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Resumen 

 

Los movimientos voluntarios del cuerpo son controlados por el sistema nervioso 

central y periférico a través de la contracción de los músculos esqueléticos. La contracción 

se inicia al liberarse un neurotransmisor sobre la unión neuromuscular, iniciando la 

propagación de un biopotencial sobre la membrana de las fibras musculares que se desplaza 

hacia los tendones: el Potencial de Acción de la Unidad Motora (MUAP). La señal  

electromiográfica de superficie registra la activación continua de dichos potenciales sobre la 

superficie de la piel y constituye una valiosa herramienta para la investigación, diagnóstico y  

seguimiento clínico de trastornos musculares, así como para la identificación de la intención 

movimiento tanto en términos de dirección como de potencia. 

 En el estudio de las enfermedades del sistema neuromuscular es necesario analizar el 

nivel de actividad, la capacidad de producción de fuerza, la activación muscular conjunta y 

la predisposición a la fatiga muscular, todos ellos asociados con factores fisiológicos que 

determinan la resultante contracción mioeléctrica. Además, el uso de matrices de electrodos 

facilita la investigación de las propiedades periféricas de las unidades motoras activas, las 

características anatómicas del músculo y los cambios espaciales en su activación, 

ocasionados por el tipo de tarea motora o la potencia de la misma. 

El objetivo principal de esta tesis es el diseño e implementación de protocolos 

experimentales y algoritmos de procesado para extraer información fiable de señales sEMG 

multicanal en 1 y 2 dimensiones del espacio. Dicha información ha sido interpretada y 

relacionada con dos patologías específicas de la extremidad superior: Epicondilitis Lateral y 

Lesión de Esfuerzo Repetitivo. También fue utilizada para identificar la dirección de 

movimiento y la fuerza asociada a la contracción muscular, cuyos patrones podrían ser de 

utilidad en aplicaciones donde la señal electromiográfica se utilice para controlar interfaces 

hombre-máquina como es el caso de terapia física basada en robots, entornos virtuales de 

rehabilitación o realimentación de la actividad muscular. 



 ii Resumen 

En resumen, las aportaciones más relevantes de esta tesis son: 

 La definición de protocolos experimentales orientados al registro de señales 

sEMG en  una región óptima del músculo. 

 Definición de índices asociados a la co-activación de diferentes músculos 

 Identificación de señales artefactuadas en registros multicanal 

 Selección de los canales mas relevantes para el análisis 

 Extracción de un conjunto de características que permita una alta exactitud en 

la identificación de tareas motoras 

Los protocolos experimentales y los índices propuestos permitieron establecer que 

diversos desequilibrios entre músculos extrínsecos del antebrazo podrían desempeñar un 

papel clave en la fisiopatología de la epicondilitis lateral. Los resultados fueron consistentes 

en diferentes ejercicios y pueden definir un marco de evaluación para el seguimiento y 

evaluación de pacientes en programas de rehabilitación motora. 

Por otra parte, se encontró que las características asociadas con la distribución espacial 

de los MUAPs mejoran la exactitud en la identificación de la intención de movimiento. Lo 

que es más, las características extraídas de registros sEMG de alta densidad son más 

robustas que las extraídas de señales bipolares simples, no sólo por la redundancia de 

contacto implicada en HD-EMG, sino también porque permite monitorizar las regiones del 

músculo donde la amplitud de la señal es máxima y que varían con el tipo de ejercicio, 

permitiendo así una mejor estimación de la activación muscular mediante el análisis de los 

canales mas relevantes. 

 

 



 

 
Summary 

 

Voluntary movements are achieved by the contraction of  skeletal muscles controlled by 

the Central and Peripheral Nervous system. The contraction is initiated by the release of  a 

neurotransmitter that promotes a reaction in the walls of  the muscular fiber, producing a 

biopotential known as Motor Unit Action Potential (MUAP) that travels from the 

neuromuscular junction to the tendons. The surface electromyographic signal records the 

continuous activation of  such potentials over the surface of  the skin and constitutes a 

valuable tool for the diagnosis, monitoring and clinical research of  muscular disorders as 

well as to infer motion intention not only regarding the direction of  the movement but also 

its power. In the study of  diseases of  the neuromuscular system it is necessary to analyze 

the level of  activity, the capacity of  production of  strength, the load-sharing between 

muscles and the probably predisposition to muscular fatigue, all of  them associated with 

physiological factors determining the resultant muscular contraction. Moreover, the use of  

electrode arrays facilitate the investigation of  the peripheral properties of  the active Motor 

Units, the anatomical characteristics of  the muscle and the spatial changes induced in their 

activation of  as product of  type of  movement or power of  the contraction. 

The main objective of  this thesis was the design and implementation of  experimental 

protocols, and algorithms to extract information from multichannel sEMG signals in 1 and 

2 dimensions of  the space. Such information was interpreted and related to pathological 

events associated to two upper-limb conditions: Lateral Epicondylitis and Repetitive Strain 

Injury. It was also used to identify the direction of  movement and contraction strength 

which could be useful in applications concerning the use of  biofeedback from EMG like in 

robotic- aided therapies and computer-based rehabilitation training. 

In summary, the most relevant contributions are: 

 The definition of  experimental protocols intended to find optimal regions for 

the recording of  sEMG signals.  
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 The definition of  indices associated to the co- activation of  different muscles.  

 The detection of  low-quality signals in multichannel sEMG recordings. 

  The selection of  the most relevant EMG channels for the analysis 

 The extraction of  a set of  features that led to high classification accuracy in the 

identification of  tasks. 

The experimental protocols and the proposed indices allowed establishing that 

imbalances between extrinsic muscles of  the forearm could play a key role in the 

pathophysiology of  lateral epicondylalgia. Results were consistent in different types of  

motor task and may define an assessment framework for the monitoring and evaluation of  

patients during rehabilitation programs. 

On the other hand, it was found that features associated with the spatial distribution of  

the MUAPs improve the accuracy of  the identification of  motion intention. What is more, 

features extracted from high density EMG recordings are more robust not only because it 

implies contact redundancy but also because it allows the tracking of  (task changing) skin 

surface areas where EMG amplitude is maximal and a better estimation of  muscle activity 

by the proper selection of  the most significant channels. 
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1  
 

Introduction 
 

  
Voluntary movements are achieved by the harmonious contraction and relaxation of  

skeletal muscles attached to bones by tendons and other tissues. When activated, they pull 

on the bones, either displacing or blocking the joints to produce movement or to stabilize a 

body segment, as for example during stand up. Muscles exert force by converting chemical 

energy into tension and contraction. Voluntary contraction is initiated when an action 

potential travelling down a motor neuron reaches the neuromuscular junction, triggering a 

chemical reaction that ends in the simultaneous shortening of  a high number of  long cells 

referred to as muscle fibers. Muscles are composed by bundles of  muscle fibers, which in turn 

are composed by bundles of  myofibrils composed by long chains of  proteins, mainly actin 

and myosin.  Myosin form thick filaments while actin form thin filaments. The sliding of  

the thin filaments past the thick filaments produces the shortening of  muscle fiber, and so 

the actual muscular contraction and the movement. 

1.1. Fundamentals of physiology of the neuromuscular system 

1.1.1 The Neuromuscular system 

The nervous system is divided into the Central Nervous System (CNS) and the 

peripheral nervous system (PNS).  

The first consists in the brain and the spinal cord and collects, process and transmits all 

the information from and to the organs of  the body in humans. The PNS consists of  all 

ganglia and neural tracts that lie outside the brain or spinal cord and connect the CNS to 

the limbs and organs of  the body.  

Voluntary and involuntary movements are produced by spatial and temporal patterns 

of  muscular contractions coordinated by the CNS. They are initiated by “lower” motor 

neurons (motor neurons-α) that directly innervate skeletal muscles which, in time, are 
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controlled by “upper” motor neurons in higher centers, enabling and coordinating complex 

sequences of  movements. Finally, circuits in the basal ganglia and cerebellum (PNS) are 

responsible for the regulation of  upper motor neurons, ensuring that movements are 

performed with spatial and temporal precision (Purves 2004). A schematic is presented in 

Figure 1.1. The combination of  the nervous system and muscles, working together to allow 

movement, is known as the neuromuscular system. 

 
Figure 1.1. Overall organization of neural structures involved in the control of movement (extracted 
from (Purves 2004)) 

1.1.2 The Motor Unit 

As mentioned before, the muscular fibers are stimulated by motor neurons-α coming 

from the spinal cord or the brainstem. A single neuron innervates several fibers at the same 

time. The set of  fibbers plus a single motor neuron constitutes the smallest functional 

structure of  the neuromuscular system: the motor unit (MU) (Figure 1.2). The stimulation 

takes place at the neuromuscular junction where the axons of  the motor neurons end. 

From there, an action potential (the Motor Unit Action Potential- MUAP) propagates to 

both ends of  the fibers at a certain Conduction Velocity CV depending on the type of  

fiber. The neuromuscular junctions are distributed in a region of  the muscle that is referred 

to as the Innervation Zone, and it is normally located in the muscle belly. When a motor 

unit is activated, all the fibers within it contract simultaneously. In order to make a muscle 

move, different motor units of  that muscle will group together and contract. This larger 

group of  motor units is commonly referred to as motor unit pool. 
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Figure 1.2. Motor Unit. Group of muscle fibers innervated by a single motorneuron. 

Human muscle fibers can be classified into fast and low twitch response according to 

their biomechanical properties: Type I fibers have slow mechanical response and they are 

oxidative and fatigue resistant. Type IIb are glycolytic easily fatigable and have fast 

mechanical response. Type IIa are both glycolytic and oxidative, have fast response and are 

fatigue resistant (Merletti, Parker 2005). Each MU is composed by fibers of  the same type, 

thus, the fiber type classification can be extended to MU. Type II MUs generate ATP for 

producing muscular contraction through anaerobic glycolysis, which in turn produces lactic 

acids and this is why they are more prone to fatigue (Merletti, Parker 2005). The diameter 

of  glycolytic fibers is generally much higher than that of  oxidative fibers. This fact has 

great significance for tension development: although the size of  the cross sectional area of  

myosin and actin filaments per unit of  cross-sectional area is about the same in all types of  

skeletal muscle fibers, their diameters are different. Thus, the larger the diameter of  a 

muscle fiber, the greater the total number of  protein filaments acting in parallel to produce 

force, and the greater the maximum tension the fiber can develop (greater strength) 

(Widmaier, Raff  & Strang 2008). Consequently, type II motor units are capable of  

producing grater force than type I. 

Finally, skeletal muscles are composed by different proportions of  Type I and Type II 

MU depending on its function and when considering the same type of  muscle, depending 

on the training status of  a specific subject (Kadi et al. 2000).  

For example, muscles of  the back, which support the upright posture, must be able to 

maintain their activity for long periods of  time without fatigue and thus contain large 

numbers of  Type I and Type IIa MU. In contrast, the muscles in the arms capable of  
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producing large amounts of  tension over a short time period, as when lift a heavy object, 

have a greater proportion of  Type IIb fibers (Widmaier, Raff  & Strang 2008).  

1.1.3 The Motor Unit Action Potential 

The motor neurons conduct nerve impulses from the anterior horn cells of  the spinal 

cord to the nerve ending where the axonal potential releases a neurotransmitter called 

acetylcholine in the neuromuscular junction. As acetylcholine (Ach) binds the walls of  the 

muscular fibers (i.e. the sarcolemma), sodium channels open creating miniature end-plate 

potentials. If  sufficient Ach is released, the summation of  all created end-plates reaches the 

excitation threshold and a fiber action potential propagates in opposite directions from its 

origin at the neuromuscular junction to the tendons. The travelling action potential spreads 

into the T-tubules and reaches the myofibril where calcium stored in the lateral sacs of  the 

sarcoplasmic reticulum is released enabling the proteins myosin and actin to interact and 

contract (Henneberg 1999) (Figure 1.3). A cross-bridge cycle in which myosin attaches and 

detaches to actin is the responsible for the shortening of  the muscle fiber. The summation 

of  single fiber action potentials generate the Motor Unit Action Potential that propagates 

at a Conduction Velocity of  3 to 5 m/s in the direction of  the muscular fibers (Pozzo, 

Farina & Merletti 2003) 

 
Figure 1.3. Diagrammatic representation of the sarcoplasmic reticulum, the transverse tubules, the 
myofibrils and the contractile proteins. Lateral and cross-section view are presented. The concept of 
calcium release is also represented. Extracted and modified from (Widmaier, Raff & Strang 2008) 
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Different MUs generate different MUAP shapes according to fiber type (I, IIa or IIb), 

and to the number and size of  its constituent fibers (Figure 1.4). Each MUAP is unique, 

though some variations are induced mainly because not all the fibbers of  the same MU 

activate at the same time instant. This variability is mainly reflected in the peak to peak 

amplitude and in the duration and the shape of  the tails (Holobar, Zazula 2004). The 

frequency of  activation is also related to the kind of  MUs: MUs of  type I have, in general, 

lower activation frequencies than MUs of  type II.  

 
Figure 1.4. MUAP shapes and characteristics associated with the different kind of MUs. Retrieved and 
modified from (Ricard 2007) 

The interval between two consecutive activations of the same MU is called IPI (Inter pulse 

Interval). Its distribution can be modeled as a Gaussian process where the mean value is 

the inverse of the activation frequency of the motor neuron. Typical values range around 

50-120 ms with a standard deviation given by (Holobar, Zazula 2004): 

𝜎 = √0.2𝐼𝑀𝐼 

Typical values of  σ are in between 0.1s and 0.33s (Merletti, Parker 2005).  

Fiber type

Frequency of 
Activation

MUAP shape

Force
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1.1.4 Force Modulation 

The Central Nervous System (CNS) controls the contraction of  muscles, and thus, the 

force, with two different strategies: by increasing the number of  active motor units (fiber 

recruitment) or by increasing the frequency of  activation of  each single motor unit. The 

greater the number of  recruited MU and the higher their activation frequency, the greater 

the tension produced by the muscle. In early 1960s, Henneman formally proposed that the 

recruitment of  MU was based in the “size principle”, in which motor units innervated by 

the smallest motor neuron α were recruited at the beginning of  the contraction followed 

by bigger motor units in increasing size, based on results obtained from electrical 

stimulation of  cat motor neurons.  The size principle states:  “The amount of  excitatory 

input required to discharge a motor-neuron, the energy it transmits as impulses, the 

number of  fibers it supplies, the contractile properties of  the motor unit it innervates, its 

mean rate of  firing and even its rate of  protein synthesis are all closely correlated with its 

size. This set of  experimental facts and interrelations has been called the ‘size 

principle’.”(Henneman 1977). Figure 1.5 explains this concept: at the beginning of  the 

contraction only type I MUs are recruited until there are no more left. As the contraction 

continues in time, type IIa MUs are recruited. Finally, if  the requirement of  force is very 

high, Type IIb MU become active, achieving the highest tension the muscle can exert by 

this mechanism. 

 
Figure 1.5. Diagram of a cross-section of a muscle (left), and size principle for recruitment of MU 
(right). Human skeletal muscle is composed by different proportions of MU types depending on its 
intended function. The higher muscle tension is achieved by the activation of type IIb MU which is 
the biggest and the strongest of the tree types. Extracted from (Widmaier, Raff & Strang 2008) 

The force at which the largest motor unit is recruited corresponds to the upper limit of  

motor unit recruitment and varies from muscle to muscle. Beyond this threshold, only the 
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rate coding contributes to increments in the exerted force. For example all motor units in 

Adductor Pollicis are recruited at 50% of  the maximal voluntary contraction (MVC) while 

upper recruitment limit in Biceps Brachii is around 80% MVC. Several studies have 

demonstrated that the relative contribution of  the two mechanisms to muscle contraction 

depend on the amount of  required force and on the speed of  the movement (Duchateau, 

Enoka 2011).  

1.2 Muscular fatigue 

When a MU is repeatedly stimulated, the tension developed by their fibers eventually 

decreases even though the stimulation continues. This decline in the contractile activity is 

known as muscle fatigue and it is characterized by a decrease in the velocity of  MUAP 

conduction and by a slower rate of  relaxation (Widmaier, Raff  & Strang 2008). It is a 

continuous process that starts the moment the MU is activated although its effects cannot 

be directly observed in a short time period. What can be observed is the failure point and 

corresponds to the time-instant when a muscle or a group of  muscles are not able to 

maintain a given level of  force (De Luca 1984). This point is also called the mechanical 

fatigue. 

 The onset of  muscle fatigue (which is not to be confounded with the failure point) 

and its rate of  development are different for different types of  MUs, and, when referred to 

a whole muscle depends on its MU composition and on the degree of  individuals’ fitness. 

A fatigued muscle recovers its ability to contract after a resting period with its rate of  

recovery depending on the intensity and duration of  the previous activity. Muscles with 

higher proportion of  type II MU, like those of  the forearm or hand fatigue earlier than 

muscles with higher proportions of  type I MU (Kupa et al. 1995). Considering training 

exercise, high-intensity, short-duration contractions such as weight lifting induce muscular 

fatigue mainly on type II MU and is characterized by rapid onset of  fatigue but also by 

short recovery periods. On the other hand, low-intensity, long-duration exercise such as 

long distance running requires much longer periods of  rest often up to 24 h before muscles 

achieve complete recovery (Widmaier, Raff  & Strang 2008). 

A series of  mechanisms are involved in fatigue induced by short-duration high-

intensity contractions. They can be found at MU level in which case we refer to them as 

peripheral fatigue or can occur at a higher level in the CNS and they are referred to as central 

fatigue. 
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Different physiological changes occur when accounting for peripheral fatigue: the 

MUAP can fail to be conducted into the fiber along the T-tubules network halting the 

release of  calcium and thus preventing the interaction of  the contractile proteins. The 

repetitive activation leads to a persistent depolarization of  the membrane potential as 

consequence of  a high concentration of  potassium ions in the small volume of  the T-

tubules (Figure 1.3) and thus its membrane is unable to produce action potentials 

(Widmaier, Raff  & Strang 2008). Other factor is related to the acidification of  the muscle: 

two different theories account for this: in the first, the production of  ATP within the fiber 

causes the accumulation and the eventual release of  lactic acid that increases the 

concentration of  hydrogen ions inside and outside of  the membrane and decreases the pH 

(De Luca 1984). However, a recent theory states that the accumulation of  lactic acid 

actually retard acidosis (Gladden 2004) and is the lack of  oxygen in association with the 

accumulation of  hydrogen ions from the production of  ATP which causes intramuscular 

acidification (Mesin et al. 2009).  Either way, the acidification of  the muscle membrane 

changes its excitability and slows the conduction of  the MUAP across the fiber (De Luca 

1984). The last factor is related to the build-up of  ADP within the muscle fiber which 

delays the detachment of  actin resulting in the slowing of  the cross-bridge cycle and lastly 

reducing the shortening velocity (Widmaier, Raff  & Strang 2008).  

On the other hand, central fatigue is related to the synchronization of  MUs (the 

tendency for MUs to discharge at, or nearly at, the same time) to increase the mechanical 

output once all available motor units have been recruited. It is the result of  common pre-

synaptic inputs to motor neurons within a motor neuron pool, showing a high time-

dependency of  action potentials from different MUs than expected by chance. Several 

works have reported this phenomenon (Mori 1973), (Kleine et al. 2001). It can occur 

during sustained long term contractions, as consequence of  training or due to pathology. 

Muscle training induces adaptations in the neural control of  MUs in order to avoid or 

retard muscle fatigue.  Skill or endurance training involving the fine control of  a group of  

muscles during long periods of  time like professional piano playing or long distance 

running promotes asynchronous recruitment of  MUs. In contrast, strength- training 

involving high-force explosive contractions like weightlifting or Olympics high-jump 

practice promote synchronous recruitment of  nearly all MUs in the muscle in a short 

period of  time (Semmler, Nordstrom 1998).  

Finally, although muscle fatigue can be beneficial in promoting muscle growth (Al-

Mulla, Sepulveda & Colley 2011),  and CNS recruitment as in the cases mentioned in the 
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previous paragraph, it is usually harmful and cause degenerative changes in the muscles, 

especially if  highly repetitive contractions are considered (Larivière et al. 2010, Moore 

2002)  

1.3 Electromyographic signal (EMG) 

The repetitive activation of  MUs generates motor unit action potential trains (MUAPt) 

in time domain. It can be described as the convolution of  the MUAP with a Dirac impulse 

train (δ) separated by the IPI of  the MU. It can be expressed as (Dan 2001):  

𝑠𝑀𝑀𝑀𝑡𝑗(𝑡) = �𝑠𝑀𝑀𝑀𝑗𝑘(𝑡 − 𝛿𝑗𝑘)
𝑀𝑗

𝑘=1

 

 Where MUAPtj is the train corresponding to MU j, MUAPtjk is the MUAP generated at 

time-instant k, Mj is the number of  times the motor unit is activated and δjk is the impulse 

train defined by the IPIj of  MUj. 

Different trains of  potentials add together to generate a signal in the time domain that 

can be recorded as the EMG signal (Figure 1.6) (Basmajian 1978) 

 
Figure 1.6. Model of the origin of the EMG signal. Each MUAP train can be seen as the convolution 
of the MUAP of a given MU with a train of neural impulses. The superposition of different trains 
creates the pattern of the EMG signal. Retrieved and modified from (Basmajian 1978) 

If  an invasive electrode is placed in a contracting muscle, the intra-muscular 

electromyogram (iEMG) can be detected as the spatial and temporal sum of  potential 

contributions from a number of  muscle fibers (some or almost all of  the fibers of  a given 

MU) depending on the type of  electrode and on its size (Merletti, Parker 2005). On the 
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other hand, if  an electrode is placed over the surface of  the skin the surface EMG signal 

(sEMG) detects the electrical activity of  a number of  MU in a wider area, and thus, 

including information from a greater proportion of  the muscle of  interest than 

conventional iEMG. Moreover, the intramuscular action potentials are not representative 

of  the entire MU because the needle is in contact with a reduced number of  fibers 

(Stålberg 1980). Both, the amplitude and the spectral properties of  the sEMG signal 

depend on the size of  the active MUs and also on their depth with respect to the recording 

electrode. Analytically, it can be expressed as (Merlo, Farina & Merletti 2003): 

𝑠𝑠𝑠𝑠(𝑡) = �𝑀𝑀𝑀𝑀𝑀𝑗(𝑡)
𝑗

+ 𝑛(𝑡) =  �𝑎𝑗 ∙ 𝑀𝑀𝑀𝑀𝑗(
𝑡 − 𝛿𝑗
𝛼𝑗

)
𝑀𝑀

𝑘=1

+ 𝑛(𝑡) 

where j indicates a specific MU, δ is the impulse train modulating the occurrence of  the 

MUAP, aj and αj are amplitude and scaling factors respectively and n(t) is additive noise. 

The factor a accounts for the amplitude of  the potential which depends on the number of  

fibers composing the MU j. On the other hand, observe that the scaling factor α directly 

affects the spectral properties of  the signal. It stands for a number of  tissues (i.e. the 

volume conductor) separating the sources and the recording electrodes, as for example 

connective tissue, fat layer, skin, other muscles, etc.  

 
Figure 1.7.  Left. Spatial transfer functions of a homogeneous volume conductor for different 
distanced D between the point of detection and the source. Right. Example of two EMG signals 
obtained from needle electrode (top) and surface electrode (bottom). Extracted from (Pozzo, Farina 
& Merletti 2003) 

The transfer function of  the volume conductor has the characteristics of  a low-pass 

filter (Figure 1.7 left). While the iEMG signal has a bandwidth up to 5 kHz, the sEMG has 

frequency content below 300 Hz as result of  the volume conductor between the recording 

electrode and the point of  origin of  the potential (Pozzo, Farina & Merletti 2003). An 

example is presented in Figure 1.7 right. It is possible to observe that the frequency content 
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of  the iEMG signal is much higher than that of  the sEMG. Additionally, in this last one it 

is also possible to observe a higher superposition of  potentials as result of  the detection in 

a wider area. 

The amplitude of  the EMG signal is stochastic in nature (De Luca 1997), regardless 

the recording method. However a signal recorded during an isometric contraction can be 

considered a wide sense stationary process if  it is segmented in time-epochs of  0.5-1s 

(Balestra, Knaflitz & Merletti 1988). sEMG amplitude can range between 0 -10 mV peak-

peak depending on the muscle and on the subject. In general, the dominant energy of  the 

signal is up to 150 Hz. An example is presented in Figure 1.8. 

 
Figure 1.8. top. sEMG signal detected in the Biceps Brachii during a constant force contraction at 
medium level of effort.  bottom.  Frequency spectrum.  

Although iEMG has been widely used in clinical applications, it has limitations in cases 

where needle insertion is not possible or not desirable. Some of  them are related to 

subjects’ condition as for example in the case of  children, professional athletes or patients 

with transplanted limbs (Farina et al. 2008), while others are mainly  related to discomfort 

as in the case of  studies related to ergonomics, biomechanics, sport practice or 

rehabilitation monitoring.  sEMG is usually analyzed as an interference signal from where 

properties of  individual motor units are indirectly inferred from global variables, like for 

example, amplitude and power spectrum 
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Though sEMG does not substitute the conventional needle EMG, it offers 

complementary information.  For instance, it allows the analysis of  motor unit properties 

which are difficult to measure with invasive technology (Farina, Fortunato & Merletti 

2000), such as muscle fiber conduction velocity which is intrinsically related to myoelectric 

fatigue and allows the determination of  the anatomical characteristics of  the muscle “in 

vivo”, such as the location of  the innervation zones (Rainoldi, Melchiorri & Caruso 2004, 

Enck et al. 2010).   

1.3.1 Myoelectric manifestations of muscular fatigue in the EMG signal 

As mentioned before, peripheral fatigue results in the reduction of  the conduction 

velocity of  active MUs. Changes at MU level are observed as a “slowing” of  the EMG 

signal in the temporal domain which correspond to a scaling of  the power density function 

(PDF) of  the EMG signal towards lower frequencies in the frequency-domain (Merletti, 

Parker 2005). The shifting of  the frequency content is observed long before reaching the 

mechanical fatigue (Figure 1.9) with its rate of  decay depending on the muscle. 

Additionally, shifts toward lower frequencies are more pronounced at the beginning of  the 

contraction and are better explained by peripheral than by central fatigue (De Luca 1984).  

Central fatigue also contributes to frequency shift since the higher the activation 

frequencies (plus possible synchronizations), the higher the probability of  MUAP 

superposition and the smother the shapes of  the action potentials in the recorded signal. 

Finally, MUAP superposition increases the energy of  the signal as the contraction 

progresses in time (De Luca 1984). 

 

 
Figure 1.9. Decrease in the frequency content of the EMG signal during a constant force contraction 
and in the exerted force during a sustained contraction. Extracted from (De Luca 1984) 
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1.3.2 Types of contraction and EMG signal 

Muscular contractions can be classified according to length changes in the muscle while 

developing tension (Hamill, Knutzen 2006): 

• Isometric contraction: It is produced by exerting force against a resistance avoiding 

the movement of  the joint. In isometric contractions no appreciable change in 

muscle length is observed, thus signals recorded with this method can be analyzed 

in segments that can be  considered as wide- sense stationary processes 

• Concentric contraction: Occurs when the muscle visibly shortens while generating 

tension. In concentric contraction, the net muscle forces producing movement 

change in the same direction as the joint angle. Concentric action is controlled by 

agonists muscles, i.e. those muscles whose specific function is involved in the 

movement being produced, for example, when contracting the biceps for flexing 

the arm from the standing position. In a flexion, the biceps is the agonist muscle 

and the triceps is the antagonist because the main function of  the last is the 

opposite (i.e., extension) 

• Eccentric contraction: In eccentric contraction, the net muscular forces producing 

the rotation are in the opposite direction of  the change in joint angle and are the 

antagonist muscles that control the movement of  the joint. Eccentric action causes 

a lengthening of  the muscle while tension is produced in response to an external 

torque that is greater than the torque generated by the muscle. Eccentric 

contractions are produce in the leg muscles, for example, when walking down a hill. 

The three types of  contraction are displayed in Figure 1.10. As the concentric and 

eccentric actions involve the movement of  the joint, they are also known as dynamic 

contractions. In time, they can also be classified into isotonic and isokinetic. In the first, the 

joint move through a range of  motion against a constant resistance. Common examples are 

push-ups, sit-ups, and the lifting of  weights. In the second, the joint angle change at a 

constant rate by varying the load or resistance at different joint angles to counteract the 

varying forces produced by the muscles. 
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Figure 1.10. Types of contraction produced by skeletal muscles. Isometric contraction does not 
change the position of the joint. In the other two the muscle shortens or elongates in response to 
external forces acting over the body segment involved. Extracted from (Hamill, Knutzen 2006) 

The three types of  contraction are normally combined to produce movement rather 

than be used in isolation (Hamill, Knutzen 2006).  However, in dynamic contractions, the 

distance between the origin of  the MUAPs and the surface electrodes changes as the 

muscle fibers contract or elongate, hardening the interpretation of  the sEMG signals and 

hindering their extrapolation to populations under study. Isometric signals, on the other 

hand, can be compared among different subjects if  they are registered under controlled 

conditions that usually include the determination of  the maximal voluntary contraction 

(MVC) (the maximal force a subject can exert during a specified task) and the feedback of  

the force being developed so the subject can maintain the same level of  force during a 

period of  time.  

1.4 Electrode Arrays 

Surface EMG signals are commonly recorded with bipolar electrodes in clinical 

environment. Such electrodes measure the voltage difference between two specific points, 

with its detection volume depending on the inter-electrode distance (IED). The differential 

configuration of  the bipolar electrode implies a band-pass filter behavior that increases 

with increasing IED. Thus, the spectral characteristics of  the signal are affected by the IED 

(Merletti, Parker 2005). Typical distances range between 15 mm and 45 mm and although 

lower distances should be desirable, the cited distances represent a compromise between 
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the need to enhance signal amplitude or signal/noise ratio and the need to limit spectral 

modifications in the signal.  Besides, signals recorded with this kind of  electrodes are highly 

affected by the relative position between the sensing region and the innervation zone and 

tendons when such information is not a-priori known. Information extracted from signals 

recorded in the proximity of  these two muscular regions can be biased and must be 

avoided for correct interpretation of  the results (Saitou et al. 2000). 

An alternative is the use of  electrode arrays. When referring to sEMG, an electrode 

arrays is a system that detects the signal at different points along the perpendicular and/or 

parallel directions of  MUAPs propagation over the skin surface. Typical IED for electrode 

arrays range between 2.5 and 15 mm. If  the electrode array is aligned with the transversal 

direction of  the muscular fibbers, it allows the detection of  MU distributed across the 

radial direction of  the muscle while if  aligned with the direction of  fiber, it can record the 

electrical propagation of  the potentials along the sarcolemma. 

 By using an electrode array it is possible to obtain a set of  signals (one for each 

electrode) that gives specific information about the distribution of  MUAPs on a given 

muscular region, allowing the observation of  anatomical regions of  the muscle like 

innervation zone and tendons.  It also enables the estimation of  the conduction velocity 

(CV) of  the active MUs by calculating the delay between two signals detected at a known 

distance.  

Figure 1.11. Multichannel sEMG signal registered with an electrode arrays over the Extensor 
Digitorum Communis Muscle. 10 bipolar channels are obtained form 11 Ag/AgCl electrode. It is 
possible to observe MUAP propagating from the IZ to the tendons. 

A signal registered with a linear electrode array (1D) is presented in Figure 1.11. The 

location of  the IZ and the propagation of  MUAPs from there to the tendons where the 

extinction occurs can be observed. Note that both the amplitude and the shape of  the 
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signals depend on the proximity between the recording electrode and the innervation zone.. 

Thus electrode positioning, either multichannel or specially bipolar, should be dependent 

on the location of  innervation zones.  

Different information can be extracted by using electrode arrays arranged in different 

fashions. The use of  2D arrays consisting in a set of  electrodes distributed in the 

dimensions of  the space and placed closely together allows a spatial sampling of  MU 

activity over the surface of  the muscle (Figure 1.12). The recorded signals, referred to as 

High Density EMG (HD-EMG), has four dimensions: two in the space, one in time and 

one in amplitude. This technique has gain attention during the last years for different 

applications such as signal decomposition (i.e. isolation and classification of  individual 

MUAPs from the sEMG signal) (Merletti, Holobar & Farina 2008), the study of  muscle 

compartmentalization (Vieira, Merletti & Mesin 2010) and of  the changes in the spatial 

distribution of  MUAPs with exercise or pain(Madeleine et al. 2006).  

However, along with MUAPs from the muscle of  interest, it is also possible to detect 

potentials originated in the activation of  neighboring muscles or in the change of  media 

(from muscle to tendon) obstructing the interpretation of  the sEMG signals. These 

potentials, known as crosstalk, are due to the low-pass filter effect of  the volume 

conductor and they can usually be observed as non- propagating potentials 

 
Figure 1.12. Contour intensity map of the electrical activity of Biceps muscle during a flexion at 
50%MVC. A grid of 8×15 electrodes was used to register high density sEMG signals. It is possible to 
observe the activation of the 2- heads of the muscle and the extinction of the potentials in the 
transversal and radial directions.  
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On the other hand, the detection of  sEMG can be enhanced by filtering in the spatial 

domain. Spatial filters can be applied online (when recording the signals) or offline (when 

analyzing the signals) (Farina et al. 2003). They are useful for reducing common-mode 

noise and crosstalk and to improve the pickup area of  different MUAPs (Figure 1.13). 

MUAPs coming from MUs close to the skin surface have bigger contributions (in terms of  

amplitude) than MUAPs from deep MUs because of  the attenuation caused by the volume 

conductor. The simplest consist in the subtraction of  each channel from the next in the 

direction of  propagation of  the potentials (Single Differential detection- SD).   

 
Figure 1.13. left. Signals obtained with different spatial filters. right. Single Differential detection. The 
sensitivity of the deepest potentials (A) is less than the most superficial potentials (B). 

Figure 1.13 (right) shows the difference between single differential (SD) and 

monopolar configurations. The signal A (low amplitude and low frequency components) 

represent a signal originated on a MU located far away from B.  In a monopolar 

arrangement, the detected signal will correspond to the sum of  the signals A and B (signal 

C). However, a SD arrangement mainly detects variations on B. This is because of  a slight 

change of  amplitude of  the potential A (ΔU2) compared with a large change of  amplitude 

of  the potential B (ΔU2), for small inter-electrode distances. Consequently, an SD 

configuration “isolates” the activity of  the potential B (Grönlund 2006).  On the other 

hand, by applying subsequent spatial filters like double differential-DD (i.e. by subtracting 

consecutive channels) in the case of  1D arrays or by weighting and subtracting neighboring 

channels in the case of  2D arrays, it is possible to reduce crosstalk because non- travelling 

potentials superimposed destructively and those that propagate remain. 
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2  
Problem Statement 

 

2.1 Introduction 

Upper-limb conditions can be classified as anatomical or aetiological (Huckstep 1993).  

The first term includes numerous musculoskeletal conditions and disorders derived from 

the repetitive use of  the upper extremity and affecting the shoulder, the elbow, and the 

hand/wrist complex. The second term includes other conditions derived from injuries to 

the brain or the spinal cord, in which case, can cause a total or partial paralysis of  the limb. 

Considering the non-invasive nature of  sEMG and that of  patients affected by medical 

conditions mentioned above, multichannel sEMG (i.e. with electrode arrays) constitutes a 

valuable tool for the diagnosis, monitoring and clinical research of  these and other 

muscular disorders. Besides, the use of  electrode arrays facilitate the investigation of  the 

peripheral properties of  the active MUs, such as its conduction velocity which can be 

determined from the time delay between two signals recorded at a known distance in the 

same direction of  the muscle fibers. The assessment of  CV is of  particular importance for 

the study of  pathological fatigue and its determinants (Merletti, Farina & Gazzoni 2003). 

Additionally, some anatomical characteristics of  the muscle can only be investigated by 

multichannel sEMG, such as location of  the innervation zones, fiber length and 

reinnervation processes (Merletti, Farina & Gazzoni 2003, Zwarts, Drost & Stegeman 

2000). Recent research on multichannel EMG support the hypotheses of  diversity in the 

distribution of  motor units, inhomogeneities in fiber activation and muscle 

compartmentalization(Farina et al. 2008, Holtermann, Roeleveld & Karlsson 2005, Vieira, 

Merletti & Mesin 2010).These premises are related to bundles of  fiber types organized in 

different regions within the muscle, each of  them following different recruitment strategies 

according to Henneman’s size principle (Holtermann, Roeleveld & Karlsson 2005) and also 

associated with the selective activation of  anatomical compartments within the muscle that 

can be recruited independently and function as a separate entity(Vieira, Merletti & Mesin 

2010).  
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2.2 Problem Statement 

2.2.1 Upper Limb Disorders 

Disorders of  the upper limb include a wide range of  inflammatory and degenerative 

conditions affecting muscles, tendons, ligaments, joints and/or peripheral nerves and 

causing pain and functional deficit. They are among the most common reasons for 

attendance to occupational physicians (Karjalainen, Niederlaender 2004) although they are 

not uniquely caused by work. This kind of  disorders causes significant morbidity and 

incurs substantial costs not only related to their treatment but also to work absenteeism 

and disability. Numerous surveys on working populations have reported upper extremity 

symptom prevalence up to 30% (Punnett, Wegman 2004). Two common disorders are 

Lateral epicondylalgia and Repetitive Strain Injury and will be discussed next. 

a. Lateral Epicondylalgia 

Lateral Epicondylalgia (LE) is a common condition related to microtraumas of  

forearm muscles caused by sports or occupational activities involving quick repetitive 

movements of  the wrist and forearm (Ciccotti, Charlton 2001, Pienimäki, Kauranen & 

Vanharanta 1997).  Affects men and women equally and its annual incidence is around 1-

3% (Allander 1974). It is characterized by loss of  force and acute pain in the zone of  the 

elbow affecting especially the muscles and tendons originated in the lateral epicondyle of  

the humerus: the extensor carpi radialis (ECR), the extensor digitorum communis (EDC) 

and the extensor carpi ulnaris (ECU) (Moore 2002), all of  them involved in the extension 

of  the wrist (Kendall F. P., Kendall McCreary E., and Provance P.G. 1993). 

Pathological findings in LE often show thicker and denser extensor carpi radialis brevis 

tendon with hypervascularization, granulated tissue, edema, and occasional tear (Goldie 

1964, Spencer, Herndon 1953, Nirschl, Pettrone 1979). Conspicuously, histological samples 

do not show inflammation (Kraushaar, Nirschl 1999). Acute cases usually improve with 

rest, anti-inflammatory drugs or local corticosteroid injections while chronic cases need 

active treatment for long-time periods (Pienimäki et al. 1996, Faro, Wolf  2007). 

According to a biomechanical model proposed by Moore, LE is originated by overload 

of  wrist extensor muscles in response to greater external forces, especially during eccentric 

contractions (Moore 2002). Muscle fatigability might also play a role in this condition. 

Consequently, several authors have promoted the use of  strengthening exercises for 

treating LE (Bisset et al. 2005, Croisier et al. 2007, Smidt et al. 2003, Trudel et al. 2004) in 

order to induce changes in the mechanical properties of  the muscles (Enoka 1996) and to 
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increase joint stability (Keays et al. 2003). Such studies are in agreement with others 

indicating that muscle conditioning induces changes in the diameter of  the muscle fibers, in 

the proportion of  MU types within the muscle (Kadi et al. 2000) and in the length-tension 

relationship of  the exercised muscles, by increasing the number of  sarcomeres(Lynn, 

Morgan 1994).  

b. Repetitive Strain Injury in musicians 

Repetitive Strain Injury (RSI) is a wide concept that involves chronic upper limb pain 

that cannot be related to a specific lesion of  joints, tendons, or muscles. In advanced stages, 

it can lead to weakness and even to loss of  response and control of  the affected muscular 

groups, ending in disability (Cooke et al. 1993). RSI is extensively associated to repetitive 

low amplitude movements, though there is still a lack of  scientific evidence proving its 

origin in repetitive contractions of  a set of  muscles which can eventually lead to tissue 

damage. What is more, there is not an agreement concerning an objective test for its 

diagnosis and treatment despite that the condition is highly prevalent in the working 

population (Winspur 2003). One of  the most affected sectors is that of  instrumentalist 

musicians affecting equally both, professional musicians and students, with its rate of  

incidence depending on practice time and load (Fry 1987).  

In recent years some studies had associated RSI to changes at motor unit level, either 

because of  changes in the proportion of  the types of  MU and mitochondrial abnormalities 

or because of  alterations to the metabolism of  muscle energy (Moreno-Torres et al. 2010). 

On the other hand, recent studies have shown that alterations in the muscles that can result 

in pain (myalgia) may be reflected in the electrical activation of  muscles (Goudy, McLean 

2006). Therefore, the use of  noninvasive methods such as surface electromyography can 

allow the analysis of  activation patterns and muscle fatigue that will be of  great importance 

for prevention, diagnosis and treatment of  patients with repetitive stress injuries.  

2.2.2 Motion intention and human-machine interfaces in rehabilitation 

As mentioned before, upper-limb conditions include those caused by injuries to the 

CNS as in the case of  cerebral stroke or damage to the spinal cord. They can be originated 

by trauma or pathology and the degree of  impact on the motor function depends on the 

extent and on the region of  the injury. In some cases, the function of  the upper-limb is not 

completely lost and can be enhanced by physical rehabilitation focused on functional goals 

engaging highly repetitive movements (Kwakkel, Kollen & Krebs 2008). 

 Rehabilitation of  subjects with motor impairments is a labor-intensive process 

involving strong physical interaction between patient and therapist, and it is effectiveness is 
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subordinated to the active participation of  the first (Hogan et al. 2006). Engineering 

approaches in the field of  robotics have been extensively developed to assist in improving 

upper limb function in individuals such as the elderly, injured or disabled. The use of  

robotic devices and biofeedback systems facilitates rehabilitation therapies because they 

allow patients to train independently of  a therapist and to improve on their own functional 

level by giving proper assistance. Robotic assistance and in general, human-machine 

interfaces like rehabilitation games or computer-based training, can help individuals with 

neural impairments or with weak muscles to start and follow a given movement in a range 

of  motion, improving their own movement control and strength. Nevertheless, 

development of  robotic devices that interact with patients is limited by the ability of  the 

machine to sense volitional movement and either assist or resist the motion. Thus, the 

robotic device should be able to sense subject’s ability and the force he can generate in the 

muscle to determine the assistance it must provide to facilitate the greatest functional 

change in muscle strength or coordination (Andreasen, Alien & Backus 2005).  Such 

information can be extracted from the electrical activity of  the muscle, considering that 

motor unit action potentials can be seen as natural, biological and selective amplifier of  the 

neural code being transferred from the CNS to the muscles an so, of  subject’s movement 

intention. 

2.3 Human Upper-limb 

The upper limb comprises the region between the deltoid and the hand. Possible 

movements of  the upper-limb are achieved by forces acting on three joints: the shoulder, 

the elbow and the wrist. The region between the shoulder and the elbow is referred to as 

the upper-arm, while the forearm comprises the region between the elbow and the wrist. 

The upper limb has multiple muscles that can be roughly divided into extensors and 

flexors. The firsts are located in the anterior compartment of  the arm (i.e., in the front 

plane of  the body) while the lasts are located in the posterior compartment. Movements of  

the upper-limb are achieved by orchestrated actions of  these muscles.   

Figure 2.1 shows a set of  movements at the elbow joint and the wrist. Different upper-

arm and forearm muscles are responsible for the flexion and extension at the elbow joint 

and the supination and pronation of  the forearm and wrist (i.e. the rotation to turn the 

hand to face upwards or downwards respectively). Conversely, extensors and flexors of  the 

forearm operate at wrist level flexing, extending and deviating the hand in different 

directions. They also extend and contract the digits and combine with other carpal muscles 
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to accomplish the gripping of  the hand. Finally, movements at the shoulder joint are 

achieved by the combined activation of  muscles in the upper-arm and trunk. 

 
Figure 2.1. Different tasks accomplished by the contraction of muscles in the upper limb. 

2.3.1 Forearm muscles 

Most of  the muscles that act at the wrist and finger joints originate outside the hand in 

the elbow joint. They are termed extrinsic muscles because their muscle belly is outside the 

hand in the forearm. These muscles provide considerable strength and dexterity to the 

fingers without adding muscle bulk to the hand, by pulling long tendons that in some cases 

end on the finger tips. A total of  thirty nine muscles act in the wrist and fingers and none 

of  them works alone. Agonist and antagonist work in pairs to produce even small and 

simple movements. Most of  the muscles acting on the elbow are capable of  producing as 

many as three movements not only at this joint but also at the wrist and phalangeal joints, 

although one movement is usually dominant (Hamill, Knutzen 2006b). Forearm muscles 

have multiple innervation zones distributed along its entire length and are thin and closely 

packed together. Additionally, location of  IZ varies from subject to subject and thus, there 

is not a clear consensus on the location of  surface electrodes for the analysis of  EMG 

signals (Saitou et al. 2000), hardening the interpretation of  results in clinical studies and the 

reliability of  the same. 
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2.3.2 Upper-Arm muscles 

Movements generated at the elbow assist the shoulder in applying force and in 

controlling the placement of  the hand in space. The combination of  shoulder and elbow 

movements affords the capacity to place the hand in many positions, allowing tremendous 

versatility (Hamill, Knutzen 2006a). 

Spatial inhomogeneities have been observed on upper-arm muscles, that is, different 

regions of  the muscle activate depending on different conditions like contraction level or 

type of  task. They have been attributed to uneven fiber type distribution and 

neuromuscular compartmentalization (Holtermann, Roeleveld & Karlsson 2005, Segal 

1992, Lucas-Osma, Collazos-Castro 2009). 

Although upper arm muscles act on the shoulder and the elbow joints, in this work we 

will be referring only to muscles operating at the elbow and responsible for the positioning 

of  the forearm and the hand in the space. Spatial inhomogeneities of  upper-arm muscles 

will be analyzed and related to the degrees of  freedom of  the elbow joint. 

2.4 Motivation 

The quantitative analysis of  EMG signals provides an objective measure of  

neuromuscular function. It allows the assessment of  pathological conditions in the muscles 

themselves and in the neural paths involved in muscle contraction. Moreover surface EMG 

provides a non-invasive tool which is easy to apply and safe for subjects and patients with 

different pathological conditions. In the study of  diseases of  the neuro muscular system it 

is necessary to analyze the level of  activity, the capacity of  production of  strength, the 

load-sharing between muscles and the probably predisposition to muscular fatigue, all of  

them associated with physiological factors determining the resultant muscular contraction. 

Such characteristics can be assessed by the analysis of  sEMG signal, although its recording 

and interpretation must be carefully conducted because many external factors can bias the 

results. The use of  electrode arrays improves the analysis of  sEMG by recording the signal 

in multiple closely –spaced locations over the muscle allowing a better assessment of  the 

spatial distribution of  the potentials and when combined with spatial filters a major 

selectivity of  MUs. 

Regarding upper-limb rehabilitation, even when strengthening of  forearm extensor 

muscles is a common approach in the treatment for upper-limb disorders, there is still a 

lack of  information concerning weakness, muscular imbalance and fatigability of  such 

muscles during voluntary contractions. Muscle imbalances, shortenings and weaknesses 
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have been identified as major biomechanical factors underlying cumulative trauma injuries 

(Benkibler, Chandler & Pace 1992, Wilder, Sethi 2004). Biomechanical deficits may both 

arise after an injury (in which case should be treated in the latter phases of  rehabilitation) 

or precede the actual injury. On the other hand, continuous activation of  forearm muscles 

could possibly lead to a higher level of  specialization in subjects exposed to repetitive tasks 

that could end in decreased muscle endurance. Thus the identification of  muscle 

imbalances and its predisposition to muscular fatigue is crucial in order to design 

rehabilitation/injury prevention programs that could help improve muscular condition of  

subjects, especially workers highly exposed to cumulative trauma injuries. In this context, 

multichannel sEMG constitute a valuable tool for the extraction of  information related to 

biomechanical deficits mentioned above. On one side, the use of  multiple electrodes allows 

the estimation of  the CV of  the active MUs and their changes associated to muscular 

fatigue. On the other side, forearm muscles are difficult to assess with traditional bipolar 

electrodes not only because of  crosstalk (given the high number of  muscles crossing the 

forearm), but also because the proximity to IZ may bias the estimation of  the parameters 

extracted from the sEMG signal. 

Regarding human-machine interfaces, sEMG signals are important to infer motion 

intention and therefore could be used to control devices such as exoskeletons, biofeedback 

systems or assistive devices (Nishikawa et al. 1999, Dipietro et al. 2005). Central to these 

goals is the extraction of  information from myoelectric signal. Despite recent literature 

concerning the development and the application of  electrode arrays (Holobar et al. 2010, 

Tucker et al. 2009, Östlund, Yu & Karlsson 2006, Zwarts, Stegeman 2003), the detection of  

surface EMG signals, both in ergonomics and in rehabilitation, is currently based almost 

exclusively on a single or a few electrode pairs. However EMG amplitude information 

provided by a single bipolar channel is unreliable and may be highly misleading because: a) 

The signal features are affected by electrode location and inter-electrode distance,  b) Signal 

quality and power line interference may change with time due to increasing/decreasing 

unbalance of   electrode-skin contact impedances, c) The quality of  acquired EMG is 

position-dependent and alters significantly in the vicinity of  innervation zones and 

tendons, d) Changing level of  crosstalk from adjacent muscles, and , e) More than one 

muscle is involved in a specific task  (Tkach, Huang & Kuiken 2010). On the other hand, 

the use of  High Density EMG signals recorded with 2D electrode arrays  provides a much 

larger amount of  information, such as:  a) The (time and task changing) skin surface areas 

where EMG amplitude is maximal, b) A better estimate of  muscle force by proper 
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selection of  the most significant channels and muscle area, c) it provides information of  

the spatial distribution of  the potentials and its relation to muscle compartmentalization, 

and d) Better assessment of  crosstalk and, in general, a better “understanding” of  the 

signal from a 2-D image rather than from a single signal. Thus, HDEMG potentially has 

more discriminating power for the identification of  movement intentions or tasks, 

providing a better signal to control robotic devices which is directly related to physiological 

processes within the neuromuscular system. 

2.5 Multichannel sEMG on upper-limb muscles: State of the art 

Multichannel sEMG, offers an alternative to conventional EMG facilitating the 

assessment of  the physical propagation of  the Motor Unit Action Potentials. Consequently, 

it allows not only the analysis of  the time varying properties of  the signal but also the 

analysis of  important spatial aspects like location of  innervation zones and extent and 

length of  the muscle fibers, which are essential for the force-generating capacity of  the 

muscle (Zwarts, Stegeman 2003).  

Multichannel sEMG either in one or two dimensions permits to enhance selectivity by 

the application of  spatial filters and can be used to estimate the Conduction Velocity of  the 

active Motor Units. It can also be used to analyze inhomogeneities in muscle activation and 

allow the study of  propagation and topographical aspects of  MUs and its relation to 

pathology (Zwarts, Drost & Stegeman 2000). Thus, multichannel sEMG is a valuable tool 

for monitoring and understanding changes induced in the neuromuscular system by 

pathology or rehabilitation therapies of  the upper-limb. 

2.5.1 Assessment of Upper Limb Disorders 

Conventional research on surface EMG for the assessment of  upper-limb disorders or 

motion intention is based on signals extracted from invasive or single bipolar electrodes 

located at predetermined landmarks that do not take into account individual differences 

regarding anatomical characteristics of  the muscle. What is more, previous studies have 

reveal that it is not possible to establish a landmark for the positioning of  bipolar 

electrodes on some upper-limb muscles, especially extrinsic muscles of  the forearm (Saitou 

et al. 2000, Signorino, Mandrile & Rainoldi 2006). Therefore a key aspect of  surface EMG 

of  forearm muscles is to choose an appropriate location for the extraction of  reliable 

information before drawing conclusions on muscular pattern related to pathology or 

motion intention. 
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In general, both iEMG and sEMG have shown to be able to offer important insights 

into muscle pathology, physiology and anatomy (Sanjak et al. 2004, Duchateau, Enoka 

2011, Ivanova, Garland & Miller 1997).  

In the case of  assessment of  upper-limb disorders, changes in variables like integrated 

EMG value (Bauer, Murray 1999) or mean rectified value (Van Galen et al. 2002), both of  

them extracted from single EMG signals recorded in the surface of  one or various muscles, 

were associated with pathology by the quantification of  differences in muscle activation 

strategies with respect to those observed in control subjects. Other studies have also 

analyzed the muscular pattern at MU level by decomposing intramuscular signals into its 

constituent MUAPs and found differences in the recruitment strategies of  MU in 

pathological subjects (Forsman et al. 2002). 

Myoelectric fatigue in upper-limb disorders, on the other hand, has been usually 

assessed from spectral compression accompanying increases in sEMG amplitude(Roman-

Liu, Tokarski & Wojcik 2004), disregarding that other factors different from physiological 

determinants of  fatigue can induce changes in frequency or time-domain variables.  

However it can be assessed from Motor Unit Conduction Velocity of  the active potentials 

which is directly related to changes in the contractile properties of  the MU as induced by 

peripheral determinants of  myoelectric fatigue (Widmaier, Raff  & Strang 2008). Different 

methods can be used to estimate the MU conduction velocity (Sun I. Kim, Kang M. Lee 

1990), though it can be measured straightforward from multichannel sEMG signals 

recorded at a known distance with an array of  closely- spaced electrodes. 

Multichannel EMG of  forearm muscles has been used in the study of  size and 

distribution of  innervation zones (Saitou et al. 2000, Signorino, Mandrile & Rainoldi 2006), 

in the evaluation of  crosstalk (Mogk, Keir 2003) and in the study of  motor neuron disease 

(Wood et al. 2001). In the case of  pathologies not related to the upper-limb, it has been 

used for example in the evaluation of  CV in chronic neck pain (Falla, Farina 2005), in the 

assessment of  low back pain (Reger et al. 2006) and in the analysis of  myoelectric fatigue in 

temporomandibular disorders (Castroflorio et al. 2012). However, to the best knowledge of  

the author, it has not been used on the forearm for assessing muscular co-activation or 

myoelectric fatigue and on the analysis of  upper-limb disorders. 

2.5.2 Assessment of Motion Intention 

Analysis of  sEMG has been extensively investigated for more than 50 years in order to 

provide proportional and simultaneous control for human-machine interfaces, especially 

for prostheses. The simplest technique consists in mapping the activation of  a given muscle 
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to a single function of  the artificial device and the power of  the detected signal to the 

velocity with which the device acts (Scott 1967).  However, myoelectric control of  multiple 

functions (or degrees of  freedom) is rather more complex. Current approaches use pattern 

recognition techniques based on feature extraction from sEMG signals recorded in 

multiple muscles or sites with bipolar electrodes (Scheme, Englehart 2011, Parker, 

Englehart & Hudgins 2006, Englehart, Hudgins 2003). Pattern recognition relies in 

mapping repeatable patterns of  activation to classes associated with different kinds of  

user’s intended motions. In general, classification accuracy obtained from pattern 

recognition has been very high. For example, (Englehart, Hudgins 2003) reported accuracy 

higher than 95% in classifying four wrist functions from sEMG. However, most of  the 

studies in this field were focused on the recognition of  motion intention regardless of  its 

strength. Additionally, in general, classification is based on features extracted from signals 

recorded while exerting a moderate force (Englehart, Hudgins 2003, Hargrove et al. 2009, 

Hargrove, Englehart & Hudgins 2007) whereas  other recent studies have shown that 

classification accuracy worsens if  the classifier is trained with a mixture of  different levels 

of  effort (Tkach, Huang & Kuiken 2010, Scheme, Englehart 2011). 

In addition to the variations introduced by the exerted force, sEMG-based control is 

complex because of  large inter-individual variability of  sEMG features due to muscle size, 

subcutaneous tissue thickness and location of  innervation zones which affect the amplitude 

of  the recorded action potentials. Signal amplitude (and thus, power) changes because of  

muscle shift under the detection system and changing level of  crosstalk from adjacent 

muscles (Tkach, Huang & Kuiken 2010, Parker, Englehart & Hudgins 2006). These 

variations are especially important when considering signals detected from one or few 

electrode pairs per muscle. These drawbacks can be reduced using High Density EMG 

(HD-EMG) obtained from 2D arrays and processing the signal in the space dimension 

((Staudenmann et al. 2009) and (Zwarts, Stegeman 2003)). The processing of  this kind of  

signals as a topographical image (HD-EMG map) provides a quantification of  both the 

temporal and spatial characteristics of  the electric muscle activity (Merletti et al. 2010a, 

Merletti et al. 2010b).Finally, it has been found that the spatial distribution of  intensity in 

RMS maps changes with time (Tucker et al. 2009), pain (Madeleine et al. 2006) and force 

level (Holtermann, Roeleveld & Karlsson 2005). This change is related to “heterogeneity 

either in the distribution of  the motor units within the muscle or in the strategy with which 

motor units are recruited” (Farina et al. 2008). 
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Very few studies have used HD-EMG and its spatial properties for the identification 

of  motor intention.  For example in (Man et al. 2011) HD-EMG was used for the proper 

selection of  the most significant channels and (Tkach, Huang & Kuiken 2010) have used it 

to assess the stability of  EMG features in the classification of  motion intention but not for 

the extraction of  features.  In this thesis it would be analyzed how spatial information 

extracted from HD-EMG maps can improve pattern recognition from sEMG for the 

identification of  movements of  the upper-limb. 

2.6 Objectives 

2.6.1 Main objective 

The main objective of  this thesis is the design and implementation of  experimental 

protocols, and algorithms to extract information from multichannel sEMG signals for the 

assessment of  muscles of  the upper-limb. Such information must be interpreted and 

related to different tasks and force levels as well as to pathological events associated to 

upper-limb conditions. 

Expected results include quantitative indexes for the assessment of  muscular co-

activation patterns and fatigue in upper-extremity disorders. Such indexes will be promising 

for the design of  rehabilitation and prevention programs and for monitoring changes 

during therapy. Co-activation patterns as well as spatial distribution of  the electrical activity 

of  the muscles from HDEMG signals are also expected to improve the automatic 

identification of  tasks associated to possible movements of  the upper limb based solely on 

sEMG signals. In the future, features extracted from HDEMG can be incorporated to 

devices intended to robotic-aided therapies or other devices requiring muscular 

biofeedback like rehabilitation games or computer-based training programs, and can also be 

related to pathological muscular patterns. 

2.6.2 Specific objectives 

• Design of  different experimental protocols for the analysis of  normal and pathological 

upper-limb function during isometric contractions: involves a selection of  tasks, 

electronic instrumentation set-up, conditioning of  mechanical and rehabilitation 

devices and software development. 

• Recording of  multichannel sEMG databases in muscles associated to Lateral 

Epicondylalgia and Repetitive Strain Injury. 
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• Definition and calculation of  sEMG variables for determining the co-activation pattern 

of  different muscles based on the amplitude of  the sEMG signals and also in their 

distribution in the space. 

• Assessment of  myoelectric fatigue in different forearm muscles and its interpretation 

based on the type of  task and/or the effect of  Lateral Epicondylalgia. 

• Comparative study of  results between healthy subjects and patients with Lateral 

Epicondylalgia and determination of  possible muscular imbalances and deficits. 

• The design of  a sensor system capable of  adapting to the different anatomical regions 

of  the upper-limb and to cover simultaneously the surface of  various muscles. Such 

system will be able to reduce contact artifacts, especially for the recording of  High 

Density EMG signals. 

• The recording of  High Density EMG signals in upper-limb muscles to analyze changes 

in the distribution of  Motor Unit Action Potentials in the surface of  the muscles 

according to different tasks and effort levels. 

• Estimation of  High Density EMG maps representative of  four tasks associated to the 

degrees of  freedom at the elbow joint during isometric contractions at different effort 

levels. 

• Automatic identification of  strength and direction of  movement intention from HD-

EMG signals. 

2.7 Thesis Framework 

This thesis has been supported by multiple funded projects: 

1) Aplicación de técnicas avanzadas en adquisición y procesado de la señal EMG de 

superficie para la rehabilitación de la función muscular, Acción Integrada. Ministerio de 

Educación y Ciencia (Spain), Ministerio de Educación (Italy), 2004-2005.Thisproject 

was conducted in collaboration with the Mutua Egarsat and the LISiN of  the 

Department of  Electronics, Politecnico di Torino and its objective was to define the 

experimental protocols for the analysis of  Lateral Epicondylalgia as well as the 

recording of  signals in patients and controls. 

2) Tratamiento e interpretación de señales biomédicas para la evaluación clínica y la 

rehabilitación, Comisión Interministerial de Ciencia y Tecnología (CICYT), Spain, ref. 

TEC2004-02274, 2004-2007. In this project, the multichannel EMG signals from 

controls and patients with Lateral Epicondylalgia recorded in the previous project were 

analyzed.  
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3) Signal Processing of  multichannel surface EMG signals from upper and forearm 

muscles, Estancia de Investigación, Beca BE, AGAUR, Generalitat de Catalunya, 2008. 

Funding of  this project was intended for a research internship for 6 months at the 

LISiN, Politecnico di Torino, Italy. During this period the initial sensorization system 

for HDEMG recording was developed and used to record signals from the upper-limb 

in tasks associated with the degrees of  freedom at the elbow joint in healthy subjects. 

4) R+D d'un sistema de neurorehabilitació de l'extremitat superior, NEUROREHAB 

3E+D, ACC1Ó-CIDEM, Generalitat de Catalunya, 2009-2010. Work in this project 

focused in the analysis of  HD-EMG signals in controls and in the definition of  

features for the differentiation of  tasks, based on temporal and spatial characteristics of  

activation maps. Additionally, a signal database in patients with incomplete spinal cord 

injury was recorded, following the experimental protocol defined in the previous 

project. 

5) Análisis de las Interacciones Dinámicas en Bioseñales No Invasivas Multicanal para la 

Terapia y la Rehabilitación, Ministerio de Ciencia e Innovación, Spain, ref.TEC2008-

02754, 2008-2011. Design of  an experimental protocol and analysis of  multichannel 

sEMG signals for the assessment of  Repetitive Stress Injuries in collaboration with the 

Institut de Fisiologia i Medicina de l'Art. 

6) Biomedical Research Networking Center in Bioengineering, Biomaterials and 

Nanomedicine, CIBER-BBN, Instituto de Salud Carlos III, Spain. 

Besides, it was developed with the collaboration of  the following institutions: 

• Department of  Physical Medicine and Rehabilitation, Egarsat Hospital, Terrasa, 

Spain 

• Laboratory of  Engineering of  Neuromuscular System and Motor 

Rehabilitation (LiSIN), Department of  Electronics, Politecnico di Torino, Italy 

• Institut de Fisiologia i Medicina de l'Art, Terrassa, Spain 

• Biomedical Engineering Research Centre CREB, Division of  Biomedical 

Signals and Systems (SISBIO), Department ESAII, Technical University of  

Catalonia (UPC), Barcelona, Spain. 
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3  
Linear Electrode Arrays 

Experimental Protocols and Setup 
  

3.1 Introduction 

This chapter focuses in the description of  the experimental protocols designed for the 

assessment of  upper limb disorders caused by repetitive contractions. The analysis is based 

on the processing of  sEMG signals recorded with linear electrode arrays. As described in 

the Introduction, a linear electrode array is a system that allows the recording of  sEMG 

signals in different points over the surface of  the muscle. In this case, the electrodes were 

distributed along a line oriented in the same direction of  the muscular fibers and separated 

by a fixed inter-electrode distance. This technique facilitates the selection of  channels away 

from the innervation zones and tendons and the estimation of  the global conduction 

velocity of  the muscular fibbers, which in time is related to physiological changes 

determining muscle fatigue. The instrumentation setup and a software tool designed for the 

protocol will be described as well. 

3.2 Experimental Protocols 

According to a biomechanical model proposed by Moore (Moore 2002), Lateral 

Epicondylalgia is caused by microtraumas with impaired healing at the origin of  wrist 

extensor muscles. They result from repetitive contractions of  forearm muscles involving 

elbow extension, supination, pronation and hand gripping. Absolute values of  maximum 

strength of  the later are commonly used to evaluate muscular deficits in Lateral 

Epicondylalgia (LE) (Bhargava, Eapen & Kumar 2010) while strengthening exercises 

comprising hand extension have been used  for rehabilitation purposes (Croisier et al. 

2007).  

On the other side, extrinsic muscles of  the forearm have been associated with 

repetitive stress injuries (RSI) in instrumental musicians, especially in guitar and piano- 

players (Bejjani, Kaye & Benham 1996). A recent study analyzed intracellular changes at 
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muscle-fiber level and concluded that pH comparmentation during exercise was associated 

to pain in extrinsic extensors of  the forearm (Moreno-Torres et al. 2010). They also 

hypothesized that such changes were related to a reduction in the oxidative capacity of  the 

muscles as consequence of  muscular fatigue. 

Therefore, muscular pattern of  extrinsic muscles of  the forearm was analyzed through 

multichannel sEMG. The study involved isometric contractions associated to Lateral 

Epicondylitis and others similar to piano-playing. In the former case, a software interface 

intended for feedback of  the exerted force during piano-like contractions was developed.  

Three types of  tasks were considered: wrist extension, hand grip and finger pressing. 

The first two were linked to LE while the third was linked to RSI in musicians. 

3.2.1 Tasks and Subject positioning 

In general, isometric contractions at low, medium and high levels of  effort were 

considered. 

Hand actions associated to LE and assessed by the experimental protocol are shown in 

Figure 3.1.  

a. Wrist extension 

During the experiment, subjects sat with the back straight and the forearm of  the 

dominant limb placed in total pronation inside a mechanical brace (Figure 3.3 top-left).  

The elbow joint was kept at an angle of  γ=90º, the shoulder in horizontal adduction at 

α~15º and the wrist aligned with the main axis of  the forearm (δ=0º). In this position, 

subjects were asked to extend the wrist in neutral deviation (i.e. perpendicular to the main 

axis of  the forearm) keeping the fingers relaxed. Wrist extension requires the co-activation 

of  forearm extensor muscles rather than the contraction of  an isolated one. Lateral 

Epicondylalgia manifests as localized pain in the origin of  wrist extensor muscles. 

Therefore, the analysis of  these muscles during hand extension is of  interest for the 

assessment of  muscular deficits and imbalances.  
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Figure 3.1.  Tasks in the experimental protocol oriented to the study of Lateral Epicondylalgia 

b. Hand gripping 

Subjects kept the same position as in the task of  wrist extension. Gripping work was 

performed on a hydraulic hand dynamometer in order to produce and maintain isometric 

contractions. The position of  the subject during the experimental session can be observed 

in Figure 3.3 top. Gripping has been associated with lateral epicondylalgia as both, a 

mechanism that induces the pathology (Moore 2002, Snijders et al. 1987) and as an index 

related to the functional integrity of  the upper-arm following recovery (Bhargava, Eapen & 

Kumar 2010). Hand gripping is produced by the simultaneous activation of  flexors and 

extensors of  the forearm. Although grip force is mainly generated by flexor muscles, 

extensor activation is important in stabilizing the wrist and maintaining the optimal 

position of  the flexors (Shimose, Matsunaga & Muro 2011) 

c. Finger pressing 

Finger actions associated to Repetitive Strain injuries in musicians are shown in Figure 

3.2. Contractions of  this kind involve movement of  the wrist and fingers depending on 

where the pressure has to be exerted. Movements at the wrist include radial and ulnar 

deviation and flexion and extension. As mentioned before, this kind of  task involves a 

complex activation of  forearms’ extrinsic and intrinsic muscles. In this work only radial and 

ulnar deviations were assed. 

 
Figure 3.2. Tasks in the experimental protocol oriented to the assessment of repetitive strain injuries 
in musicians 

During the different tasks, subjects kept the same position as in wrist extension and 

hand gripping (Figure 3.3- bottom).  In this position, subjects were asked to push against a 

transverse bar connecting the right and left arms of  the mechanical brace either 

simultaneously with all of  the fingers or with one finger at a time. Regarding this last 

exercise, two possible activations were considered: one implicating no movement of  the 

wrist (it was kept at 0º of  ulnar deviation) by pressing with each finger in its natural 

position, and the other involving a rotation of  the wrist (in radial and ulnar directions) by 
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pressing on a common point accessible to all fingers (at middle finger level). This exercise 

was designed to exert isometric contractions similar to piano-playing: each contraction 

lasted for a short time period and was followed by a short rest. Each time, the subject had 

to complete a predefined number of  repetitions at the target force level, where the level 

was relative to the MVC for each finger, if  the task consisted in the isolated activation of  

the fingers, or relative to the MVC exerted when pressing with all fingers simultaneously if  

that was the case. In all cases, the wrist was aligned with the axis of  the torquemeters and 

no movement of  the forearm was allowed during the experimental protocol. 

 

 
Figure 3.3. Subject position during wrist extension and hand gripping (top) and finger pressure 
(bottom). The position of the three joints is showed at the top figure and was common for the three 
tasks: shoulder at α~15 in horizontal adduction, elbow at γ=90º and wrist at δ=0º of ulnar deviation 
(δ was constant except for the case of finger pressing with rotation of the wrist). The forearm was 
kept in full pronation for all tasks. The position of the hand for the finger pressing task is presented at 
the bottom. The wrist was aligned with the main axis of the torquemeters and the force was exerted 
over a transverse bar connecting the two arms of the mechanical brace. 

3.2.2 Muscles 

Extrinsic muscles of  the forearm were assessed through multichannel sEMG in order 

to analyze muscle function in upper limb disorders. 

Among forearm muscles three units primarily extend the wrist: the Extensor Carpi 

Radialis Longus and brevis (ECR), the Extensor Carpi Ulnaris (ECU) and the Extensor 

Digitorum Communis (EDC) (Moore 2002).  These muscles also assist forearm flexors 

during hand gripping although power grip is primarily achieved by the contraction of  
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flexor muscles (Hamill, Knutzen 2006). Extensor and Flexor muscles also assist the 

movements of  the fingers.  

Function of  the different extrinsic muscles considered in this work is summarized in 

Table 3-1 (Hamill, Knutzen 2006, Kendall F. P., Kendall McCreary E., and Provance P.G. 

1993) and are described as following: 

 
Figure 3.4. Extrinsic forearm muscles. Posterior view (palmar) and anterior view (dorsal) are shown at 
left and right respectively. Muscles analyzed in the present study are highlighted in big fonts. Images 
were extracted and modified from (Netter 2006). 

a. Extensor Carpi Radialis 

The extensor carpi radialis muscle in one of  the main extensors of  the wrist. Its 

principal function is the deviation of  the hand in radial direction. It is originated at the 

lateral epicondyle of  the humerus and becomes a long tendon about half-way of  the 

forearm before its insertion into the second and third metacarpal bones.  This muscle is 

actually considered as two independent units: the extensor carpi radialis longus and the 

extensor carpi radialis brevis, although it is very difficult to differentiate between the action 

of  one or the other. In sEMG is commonly assessed as a unit.  

Several studies have linked this muscle with the onset of  lateral epicondylalgia (Moore 

2002) as well as with repetitive strain injuries in musicians (Moreno-Torres et al. 2010). 

b. Extensor Digitorum Communis 

The Extensor digitorum communis originates at the lateral epicondyle of  the humerus.  

At the distal forearm, it divides into four tendons which pass through a separate 

compartment of  the dorsal carpal ligament and enter the hand where it inserts into the 
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second and third phalanges of  the fingers. Its main function is the extension of  the fingers 

and also assists the extension of  the wrist. 

c.  Extensor Carpi Ulnaris 

Extensor Carpi Ulnaris is also originated at the lateral epicondyle of  the humerus as 

the extensor carpi radialis and the extensor digitorum communis. It runs along the ulna and 

inserts into the fifth metacarpal bone. Its main functions are the extension of  the wrist and 

the deviation of  the hand in the ulnar direction (Figure 3.4.) 

The three extensor muscles describe above act as flexors of  the elbow and are also 

active during hand gripping either by positioning the hand on a given direction in the space 

or to stabilize the wrist. They are commonly linked to upper-limb disorders because they 

are highly active during common tasks related to repetitive contractions of  the hand and 

fingers.  

d. Flexor Carpi Radialis 

The Flexor Carpi Radialis originates at the Medial Epicondyle and inserts into the base 

of  the 2nd and 3rd metacarpal bones. It produces wrist flexion along with other extrinsic 

flexors of  the forearm and the radial deviation of  the hand.  As in the case of  many 

extrinsic muscles, it becomes a tendon halfway along the forearm before reaching the hand. 

The anatomical locations of  the described muscles can be observed in Figure 3.4. 

TABLE 3-1. MUSCLES INCLUDED IN THE EXPERIMENTAL PROTOCOL AND THEIR FUNCTION 

Muscle Wrist 
Extension 

Wrist 
Flexion 

Ulnar 
Deviation 

Radial 
Deviation 

Hand 
Gripping 

Finger 
Extension 

Finger 
Flexion 

Extensor 
Carpi 

Radialis 

Main 
function   

Main 
function Assist Assist  

Extensor 
Carpi 

Ulnaris 

Main 
function  

Main 
function  Assist Assist  

Extensor 
Digitorum 
Communis 

Assist    Assist Main 
Function  

Flexor 
Carpi 

Radialis  
Main 

function   
Main 

function  Assist 

The following muscles in each type of  task were analyzed 

• Wrist extension: Extensor Carpi Radialis, Extensor Carpi Ulnaris and Extensor 

Digitorum Communis 
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• Hand Grip: Extensor Carpi Radialis, Extensor Carpi Ulnaris, Extensor Digitorum 

Communis and Flexor Carpi Radialis 

• Finger Pressing: Extensor Carpi Radialis, Extensor Carpi Ulnaris and Extensor 

Digitorum Communis: The activation of  extensor muscles was compared to the 

activation of  Flexor Carpi Radialis 

3.3 Instrumentation 

3.3.1 Electrode arrays and positioning 

As previously mentioned forearm muscles present multiple innervations zones and 

their assessment is hardened by the proximity of  other neighbor muscles that cause 

multiple crosstalk potentials. Therefore, the first concern was to determine the proper zone 

for the location of  the electrodes in each muscle. For this purpose a linear array of  16 

electrodes spaced by 5 mm (LISiN- OT Bioeletronica) (Figure 3.5 left) was used to identify 

the direction of  propagation of  Motor Unit Action Potentials and the location of  

innervation zones. Once the direction was determined, an adhesive array was employed 

(Figure 3.5 right). The array was placed over a line connecting the origin and insertion of  

each muscle. An example is presented in Figure 3.6. sEMG signals correspond to the 

Extensor Digitorum Communis. It is possible to observe a phase inversion of  MUAPs in 

the proximity of  innervation zones IZ1 and IZ2 (channels 9 and 7 respectively) as well as a 

change in the direction of  propagation (solid lines) from left- right to right- left. 

Additionally, MUAPs extinguish near the tendon in the proximal forearm (channels 3 to 1). 

  
Figure 3.5. Linear Electrode Arrays employed for the assessment of muscles in the forearm. The 16- 
electrodes array at the left was used to find a proper location for the 8-electrode adhesive arrays (right) 
in each muscle. IED= 5 mm in both cases 

A preliminary study showed that best locations, away from innervation zones and 

tendons, were proximal for ECR, ECU and FCR and distal for EDC (Signorino, Mandrile 

& Rainoldi 2006, Mananas et al. 2005). Around these regions final locations for 8- electrode 

arrays (IED=0.5 mm, LISiN- OT Bioeletronica) (Figure 3.5 right) were selected by 
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inspection of  sEMG signals. Propagation of  Motor Unit Action Potentials (MUAP) and 

small wave-shape differences between subsequent signals were used as criteria for the 

correct alignment of  the array with the muscle fibres.  

 
Figure 3.6. sEMG signal registered with a linear 16-electrode array (IED=0.5mm) in the muscle 
Extensor Digitorum Communis. Twelve channels are displayed. It is possible to observe two different 
innevation zones, one near channel 9 (IZ1) and the other near channel 7 (IZ2). Both the phase and the 
direction of propagation (in solid lines) changes in the proximity of innervation zones.  The extinction 
of pontentials near the tendon can be observed in channels 1-3. 

 

3.3.2 Force Measurement 

Isometric contractions were executed by means of  two devices (Figure 3.7): a 

mechanical brace for hand extension (OT Bioelettronica, range 150 N.m, resolution 

2.5mV/V) and finger flexion and a JAMAR® hydraulic hand dynamometer for the gripping 

task (Baseline®, Fabrication Enterprises Inc., U.S.A.). 

  

Figure 3.7. Left. Mechanical brace. Right. Hydraulic hand dynamometer 
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The mechanical brace consisted on a set of  bars fixed to a table at right and left to 

resist the movement of  the joint (Figure 3.7 left). On each side, the torque applied at the 

end of  one of  two independent bars was measured by a transducer placed in the coupling 

joint.  

In the case of  wrist extension, torque measurement was independent on each side in 

order to prevent pronation and supination of  the hand and the consequent activation of  

other forearm muscles employed in these kinds of  contractions. During the experiment 

subjects were trained and asked to maintain similar levels of  torque at both sides (see 

section 3.3.3) 

In the case of  finger pressing, the measurement was coupled on both sides by using a 

transverse bar (Figure 3.3. bottom). 

3.3.3 Instrumentation setup 

The general instrumentation setup is shown in Figure 3.8. Biofeedback for the subject 

was accomplished by software implemented in LabView. For each kind of  task, the subject 

was asked to reach the Maximal Voluntary Contraction (MVC), which was measured by the 

torquemeters in each side. These values were then used as reference for submaximal 

efforts, and the signals at right and left sides of  the mechanical brace were sensed and 

presented to the subject in real time. In this way the subject was able to maintain the same 

level of  force in both sides. 

Torque signals from each torquemeter were sampled at 100 Hz and stored in this first 

system by using a data acquisition card (NI PCI 1200). The EMG signals were acquired 

using a second system composed by two 16-channels amplifiers (ASE16, LISiN-SEMA 

Elettronica, Torino, Italy). Surface EMG signals were recorded in single differential mode 

(SD), bandpass filtered (3-dB bandwidth 10–450 Hz), sampled at a rate of  2048 Hz and 

stored on a PC after 12-bit analog-to-digital conversion (National Instrument NI-DAQ 

6024E and NI-DAQ AI-16E4 A/D cards). 

An example of  the feedback presented to the subject during piano playing-like 

contractions is presented in Figure 3.9. This case is underlined because it presented a 

higher complexity when compared to the other two tasks, since it has to use different 

references for different fingers, and even had to use as reference the torque signal on one 

or the other transducer when pressing with each finger in its natural position. In this case, 

the torquemeter closest to the active finger was used as reference. Besides, the purpose was 

to simulate piano playing in a way that the isometric contraction for each or all of  the 

fingers lasted only for a few seconds and was followed by a short period of  relaxation. For 
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this purpose, the software interface emitted a musical tone during a short time-interval (one 

of  the musical scale for each finger), so that the subject exerted the corresponding finger 

pressure for the duration of  that tone. Silence was associated to rest and the feedback was 

presented independently for every finger (Figure 3.9 left). 

 
Figure 3.8. Instrumentation setup for tasks in the different experimental protocols. In the case of hand 
grip, the mechanical brace was replaced by a hand dynamometer. 

The feedback software (either wrist or piano) controlled both, the recording of  torque 

signals and the trigger pulse for the synchronization of  the different systems in Figure 3.8. 

The recording of  sEMG signals from amplifiers A1 and A2 in computer C1 and of  torque 

signals in computer C2 was triggered with the rising edge of  a TTL pulse. 

  
Figure 3.9. Biofeedback for the subject during the task of finger pressing. Feedback is presented as the 
relative torque exerted in both torquemeters with all fingers (left) or independently for each finger 
(right). 
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3.4 Experimental session and signal recording  

Each session consisted in the following steps: 

• Find the proper location for the electrodes in the selected muscles. As described earlier, 

forearm muscles are difficult to assess because they are characterized by multiple 

innervation zones and they are very close to one another which increases crosstalk in 

the recorded signal. This step was critical for the correct interpretation of  the signals. 

In order to find the best position for signal detection a dry linear array of  16 silver bar 

electrodes was displaced along a line traced between the origin and insertion of  each 

muscle (Kendall F. P., Kendall McCreary E., and Provance P.G. 1993). Then, the subject 

was asked to perform short contractions in order to locate the innervation zones (IZ) 

and to find a portion of  the muscle between IZs and away from tendons in which it 

was possible to detect propagating potentials with similar shape on different EMG 

channels. Selective contractions for each of  the muscles were performed to maximize 

their activation: radial deviation for enhancing the activity of  the Extensor Carpi 

Radialis and finger extension and ulnar deviation for enhancing the activations of  

Extensor Digitorum Communis and Extensor Carpi Ulnaris respectively. The activation 

of  Flexor Carpi Radialis was assessed during wrist flexion while accomplishing a hand 

grip. Propagation of  Motor Unit Action Potentials (MUAP) and small shape 

differences between subsequent signals were used as criteria for the correct alignment 

of  a linear electrode array with the muscular fibers. 

• Skin preparation including shaving and cleaning with abrasive paste and water. This 

procedure permitted to reduce the electrode-skin impedance. 

• Fixation of  semi-disposable 8-electrode arrays with an IED of  5 mm (Figure 3.5 right). 

• Guidelines for the subject about the exercises to be performed. 

• Isometric task and signal recording: In the initial phase, Maximal Voluntary Contraction 

was measured as the maximum value of  three different explosive trials separated by 

three minutes of  rest. In the cases of  wrist extension, hand grip, and pressure with all 

fingers, MVC measurement was followed by contractions at 20%, 50% and 80% MVC 

after 5 minutes rest. Each submaximal contraction lasted for 15 seconds. For isolated 

finger pressure (either with rotation or not), submaximal contractions were performed 

by pressing sequentially with each finger (starting from thumb to little finger) until five 

complete repetitions were recorded. Subjects pressured with each finger for 2 seconds 

at a time and this task was accompanied with a different musical tone emitted by the 
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biofeedback software so that the subject was able to follow the sequence maintaining 

the target force for such time interval. A two seconds rest was imposed between 

consecutive finger pressures. This procedure was repeated for the three effort levels 

(20%, 50% and 80% MVC) and for all considered tasks. Submaximal contractions were 

performed in randomized order to avoid bias in the results and every contraction was 

followed by a resting period of  3 minutes in order to avoid the effects of  cumulative 

fatigue. 

• Finally, at the end of  the session subjects were asked to perform an endurance 

contraction at 50% MVC until exhaustion for every task (wrist extension, hand grip 

and finger pressure).   

3.5 Subjects 

The experimental protocols intended for the assessment of  Lateral Epicondylitis were 

conducted on a group of  patients and on a control group of  healthy volunteers. The 

experimental protocol intended for the analysis of  Repetitive Strain Injuries in musicians 

was applied only on healthy subjects.  

Healthy subjects did not report any history of  musculoskeletal and/or neuromuscular 

disorders of  the upper extremity. Patients had been clinically diagnosed for Lateral 

Epicondylalgia in the past and were treated with conservative therapy including physical 

modalities and exercise (surgery excluded). In all cases, the injury had been induced by 

repetitive contractions related to physical effort required by their daily work activities. They 

were free of  symptoms and pain at the time of  their participation and were actively 

working for at least six months. None of  the subjects (control or patients) were involved in 

regular training or sports activities focused on the use of  the upper limb. By chance, all the 

analyzed subjects were right-handed. Sample sizes (N) and anthropometric measures for 

the different subjects in the database are summarized in Table 3-2.  
TABLE 3-2. SAMPLE SIZES AND ANTHROPOMETRIC MEASURES FOR SUBJECTS IN THE DATABASE.  

  N Age 
(years) 

Height 
(cm) 

Weight 
(kg) 

MGS 
(k) 

Wrist 
Extension 

Control 10 31.5 ± 5.0 176.4 ± 6.2 76.3 ±5.5 43.5 ± 4.1 

Patients 10 33.3 ± 4.6 174.6 ± 5.8 76.92 ± 12.8 44.3 ± 4.1 

Hand 
Grip 

Control 10 32.5 ± 4.2 177.4 ± 6.0 79.4 ± 6.6 43.9 ± 5.34 

Patients 10 32.6 ± 4.3 169 ± 24.3 88 ± 36.3 45.7 ± 5.42 

Finger 
Pressing 

Control 5 33 ± 8.0 172.5 ± 6.3 77.5 ± 5.8 ─ 

Patients 0 ─ ─ ─ ─ 
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Maximal strength during hand gripping was measured in the groups associated to the 

study of  Lateral Epicondylitis. This measure is commonly used as index of  the functional 

integrity of  the upper extremity in clinical environments (Bhargava, Eapen & Kumar 2010). 

Maximal Grip Strength (MGS) was measured using the JAMAR® hand dynamometer in 

kilograms-force. Results are summarized in Table 3-2. No statistical differences were found 

between healthy subjects or patients, regarding age, body mass index or functional integrity 

of  the upper limb. Differences were evaluated through a Mann-Whitney’s U test. 
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4  
Linear Electrode Arrays 

sEMG analysis 
  

4.1 Introduction 

Multichannel surface EMG was used to analyse muscular co-activation and myoelectric 

manifestations of  fatigue in contractions associated to common upper-limb disorders. This 

chapter is intended to the analysis of  signals recorded in extrinsic forearm muscles during 

the experimental protocols described in Chapter 3. Different surface EMG variables were 

extracted from the signals after applying a Double Differential filter on a triplet that was 

selected on the basis of  similarity between different channels and where it was possible to 

observe propagation of  Motor Unit Action Potentials. This technique guarantees the 

correct interpretation of  results considering the difficulty of  assessing muscles in the 

forearm.   

Different indices related to co-activation patterns and fatigue were calculated from 

sEMG variables.  Such indices were related to muscular imbalances and deficits on patients 

affected by upper limb disorders. Findings of  this series of  studies can be used in the 

design and follow up of  rehabilitation therapies intended to Upper Limb Disorders. 

4.2 Methods  

4.2.1 Signal processing 

As first step, the multichannel sEMG signals were filtered between 12 and 350 Hz with 

a 4th order Butterworth filter in forward and backward direction in order to correct for 

phase distortion. Double Differential signals were calculated from the different SD 

channels in order to enhance selectivity of  the recorded signals, by reducing crosstalk and 

non-propagating components (Mesin et al. 2009). 

All variables extracted from the signals were calculated in fifty percent overlapping 

windows (epochs) of  500 ms and averaged on signal segments of  3 s where the observed 
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torque was between ±5% of  the target level. Epoch length was chosen to meet stationary 

conditions as described in (Merletti, Parker 2005)and elsewhere.  

a.  Triplet Selection 

Parameters were obtained from a triplet, that is, three consecutive SD channels 

resulting in two DD signals. Triplet selection was based on the cross-correlation coefficient 

(CC) between the DD channels and on the time delay estimated between signals to 

guarantee the propagation of  MUAPs in the recorded signals and the correct alignment 

with the muscular fibers. Triplets for further analysis were chosen among those that 

exhibited a CC>0.70 and whose time-delay corresponded to a conduction velocity ( Eq. 4-5 

and Eq. 4-6) that ranged between 3 m/s and 8 m/s according to physiological expected 

values.   

b. EMG Variables 

Parameters related to power and spectrum of  the EMG signal (associated to the 

number and conduction velocity of  the active MU respectively), were analyzed in order to 

establish the level of  activity of  the muscles involved in the contraction. 

• Amplitude variables 

Information from power and amplitude of  EMG signal was obtained by means of  root 

mean square (RMS) and average rectified value (ARV), respectively.  
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Where xi is the i-th DD signal in the selected triplet and N is the total number of  

samples in the analyzed epoch. 

• Frequency variables 

 The power spectral density of  the signal is affected by the distance between the 

recording electrodes d and the conduction velocity of  MUAPs as (Sun I. Kim, Kang M. Lee 

1990): 
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Where P represents the Power Spectral Density (PSD) of  the signal, d is the electrode 

distance, CV the conduction velocity and G(f) determine the shape of  the power spectrum.  
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Variables used to evaluate shifts in the PSD of  the signals included the mean frequency 

(MNF) and the median or central frequency (MDF) and were calculated by using the 

following expressions: 
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  (Eq. 4-3) 

Where Pi represents i-th bin of  the PSD and M is the highest harmonic considered 

(Farina, Merletti 2000). 

• Global Conduction Velocity 

Muscle fiber conduction velocity (CV) was estimated through the spectral matching 

algorithm in the frequency domain (McGill, Dorfman 1984). The algorithm is based on the 

following property of  the Fourier Transform: 

[ ] NjF eXnx /ˆ2)(ˆ θπθ Ω→←+   (Eq. 4-4) 

Where x(n) represents an EMG signal recorded on a given channel, X(Ω) is its Fourier 

transform, and θ̂  is the temporal delay introduced by the frequency shift Nje /ˆ2 θπ . Thus, 

the temporal delay θ̂  between two consecutive channels assumed to have identical shapes 

(except for noise) can be obtained by least squares minimization as: 
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 Where x1(n) and x2(n) are two consecutive DD signals, their Fourier transforms are 

represented by X1(Ω) and X2(Ω) and N is the total number of  samples of  the epoch. 

Finally, the conduction velocity was obtained as: 

θ̂
dCV =  (Eq. 4-6) 

4.2.2 Muscular Co-Activation 

The coordination of  extensor and/or flexor muscles during the different tasks and 

contraction levels was assessed by analyzing the amplitude (ARV) or the power (RMS) of  

the observed signals. As mentioned earlier, ARV or RMS values were extracted from 

epochs of  500 ms and were averaged on a signal segment of  3 seconds.  

 Two different sets of  indices were used, the co-activation index CI and the orientation 

angles θ and φ of  a set of  vectors in the contraction level- space. This last set of  indices was 

analyzed only during hand grip considering that this task is produced by the simultaneous 
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activation of  flexor and extensor muscles (Hamill, Knutzen 2006) and comparable 

activation levels were expected. That was not the case of  the other two tasks where one 

group of  muscles (i.e. extensors or flexor) or the other was expected to present higher 

activations.  

a. Co-activation Index- CI 

Muscle co-activation, in terms of  relative contributions of  each muscle to a given 

exercise, was analyzed by normalizing the ARV or RMS values obtained in the each muscle 

with respect to the sum of  the values obtained in the four muscles for each exercise as: 

lev

M

m m

i
levm

A
ACI

∑ =

=
1

 (Eq. 4-7) 

Where m = [1, 2, 3,... , M] is the identifier of  any of  the muscles from the analyzed 

subset ms = [ECR, EDC, ECU or FCR] depending on the task (wrist extension, hand grip 

or finger pressing), M is the length of  the subset ms and lev is any of  the contraction levels 

lev = [20%, 50%, 80%] MVC (see Chapter 3) . In the case of  analysis of  wrist extension A 

corresponded to the average ARV of  the signal segment and for hand grip and finger 

pressing A corresponded to the average RMS value. 

Finally, an especial case involves the analysis of  activation of  extrinsic muscles when 

pressing with different fingers. For each muscle m from the subset ms = [ECR, EDC, ECU, 

FCR] and each level lev, a co-activation index CI f similar to CI in (Eq. 4-7) was defined as: 
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RMSCI
jf
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3
= (Eq. 4-8) 

Where fj is one of  the fingers of  the set fs = [1. Thumb, 2. Index, 3. Middle, 4. Ring, 5. 

Little]. 

b. Orientation Angles θ and φ 

Considering that the absolute amplitude of  the signal is subject to many external 

factors such as intersubject variability, electrode-skin impedance, conduction volume and 

electrode location among others, an approach inspired in the works proposed by Valero-

Cuevas et al, and Danna-Dos Santos et al in (Valero-Cuevas 2000, Danna-Dos Santos et al. 

2010) was adopted. This kind of  approach avoids normalizations with respect to the 

amplitude of  EMG signal during maximal voluntary contraction (MVC) which can result in 

inaccurate associations to the exerted muscle force(Gatti et al. 2008) not only because of  
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uncertainty in MVC measurements itself   (Buchanan et al. 2004) but  also because negative 

superposition of  MUAPs during contractions at high level of  effort can be expected to 

affect the amplitude of  the obtained signal (Day, Hulliger 2001, Keenan et al. 2005). Thus, 

a nonlinear relationship between force and amplitude of  sEMG signal can be expected 

(Herda et al. 2011). The power of  the signals at different contraction levels was used to 

assemble a vector in the ℝ 3 space as: 

𝐮𝐦 = [𝑅𝑀𝑆𝑚20%, 𝑅𝑀𝑆𝑚50%, 𝑅𝑀𝑆𝑚80%]  (Eq. 4-9) 

Where each dimension corresponded to the power observed at a given effort level. The 

vector u was defined for every muscle m = [ecr, edc, ecu, fcr] and its orientation in the 

contraction level space depended on amplitude changes from a given contraction level to the 

next (i.e. from 20%MVC to 50%MVC and from 50%MVC to 80%MVC). The rationale 

behind the analysis was that if  changes were not uniform in for different muscles, or even 

for different population groups, they would be reflected in the orientation of  such vectors.  

Moreover, interactions between different muscles can also be observed from 

differences in the relative orientation of  the set of  vectors u. Several authors have reported 

differences in the force exerted by flexors and extensors of  the forearm between patients 

with upper-limb disorders and normal subjects, but those differences were based in the 

exerted force or torque (Forthomme et al. 2002, Alizadehkhaiyat et al. 2007, 

Alizadehkhaiyat et al. 2007).  In this work, muscular imbalances were assessed by 

calculating a second set of  vectors in ℝ 3 as: 

vn = un-ufcr (Eq. 4-10) 

Where vectors u were defined as in (Eq. 4-9) and n is any element of  the subset n 

corresponding to extensor muscles, n=[ecr, edc, ecu]. 

Differences in the angle between flexor and extensor vectors can be mapped to 

muscular imbalances in patients with upper-limb disorders.  

Finally, the orientation of  the sets of  vectors u and v in ℝ 3, was evaluated by the 

elevation (θ) and azimuth (ϕ) angles (Figure 4.1), after applying a transformation from 

Cartesian to Spherical coordinates (Eq. 4-11). 

 θ = tan-1( y x⁄ ) , φ = tan-1�z �x2 + y22⁄ �,   r2 = x2 + y2 + z2   (Eq. 4-11) 

where x, y, and z axis corresponded to 20%, 50% and 80% MVC respectively (Figure 4.1). 

Unlike relative angles defined in (Valero-Cuevas 2000) and (Danna-Dos Santos et al. 

2010), θ and ϕ are absolute angles and are always measured in the same direction (from the 

x axis and from the x-y plane respectively) in the Spherical coordinate system (Figure 4.1). 
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Figure 4.1.Transformation from coordinates in the Cartesian system to coordinates in the 
Spherical system. 

4.2.3 Assessment of Muscular Fatigue 

Myoelectric fatigue was assessed by the temporal evolution of  the variables described 

in section 1.2.1.b. Such evolution is commonly represented in a fatigue plot. An example of  

the changes observed on CV, MNF and MDF during a sustained contraction at 50%MVC 

is presented in Figure 4.2.  

 
Figure 4.2. Fatigue plot. The evolution of the variables CV, MNF and MDF during a sustained 
isometric contraction is presented as well as the slope of the regression (m) and the regression 
coefficient (r). 

As explained earlier, the frequency spectrum shifts to low frequencies, decreasing the 

values observed on the variables MNF and MDF as consequence of  localized fatigue, 

involving changes in the CV of  the MUs among others. Thus, a decrease in the observed 

CV is also expected. Finally, the amplitude of  the signal (ARV or RMS) is expected to 

increase because of  an increasing superposition of  MUAPs caused by the recruitment of  

new MUs or by an increase in the activation frequency of  the recruited MUs. 

Time changes were evaluated from the rate of  change m (i.e. the slope) of  the linear 

regression of  each variable normalized with respect to the initial value across the total 
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endurance time (Merletti, Parker 2005), that is, the time instant (break point) where the 

subject could no longer maintain the contraction at the desired level of  effort.  

4.2.4 Statistical Methods 

Differences between groups (healthy subjects vs. recovered patients) were assessed 

through non-parametric Mann–Whitney U test while intragroup differences were analyzed 

by Wilcoxon signed test. 

In the case of  hand-grip, Repeated Measures Analysis of  variance (ANOVA) was used 

for analyze differences in the orientation angles (i.e. the co-activation pattern) at 3 levels of  

effort (20%, 50% and 80%MVC). It was also used to analyze the trend of  CV for each 

muscle during the sustained contraction at 50%MVC. In this case, 11 levels were defined, 

each of  them corresponding to the value observed every 10% of  the total endurance time 

from 0% to 100%. Finally, Multivariate Analysis of  Variance (MANOVA) was applied to 

evaluate differences in the orientation angles θ and φ in the contraction level space for the 

set of  vectors u and v (Eq. 4-9 and Eq. 4-10).  

Effects and differences were considered significant at p=0.05. 

4.3 Results 

4.3.1 Wrist Extension 

The following results were obtained during wrist extension for 10 healthy subjects and 

10 patients with Lateral Epicondylalgia. No significant differences concerning 

anthropometric measures or upper-limb functional index (MGS) were found between 

groups. For a description of  subjects in the database, please refer to section 3.5 in Chapter 

3. EMG variables were extracted from three extensor muscles (Extensor Carpi Radialis- 

ECR, Extensor Digitorum Communis- EDC and Extensor Carpi Ulnaris- ECU) and three 

different effort levels relative to the Maximal Voluntary Contraction at 20%, 50% and 80% 

MVC (see protocol description and muscle selection in Chapter 3). 

a. Conduction Velocity and cross-correlation coefficients 

No significant differences in CV estimates were found between muscles or exercises in 

the same group (control or patients) neither when comparing the same muscles at different 

contraction levels and/or between groups.  
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Figure 4.3. Conduction Velocity (top) and Median Frequency (bottom) estimated for the control 
group (left) and patients (right) during wrist extension at different levels of effort. 

 Regarding spectral parameters, it was found that ECU signals presented higher 

frequencies with respect to signals recorded in the ECR for the control group (p<0.05 in 

all cases) but not for patients, where this relationship maintained only for the case of  the 

contraction at 20% MVC (p<0.01).  Results are presented in Figure 4.3. 

b. Co-Activation Index CI 

Six exercises were analyzed: radial, finger and ulnar extension (selective contractions for 

each muscle), and three wrist extensions at submaximal level. In the case of  patients and 

for selective contractions, CI in the muscle whose activity was enhanced was significantly 

higher than the value obtained in the other muscles (p<0.03 for ECR and p<0.004 for 

EDC and ECU) (Fig. 2b). In the case of  healthy subjects it happened only in radial and 

ulnar extension but not in finger extension where the ECR was also active.  

The main contribution to the joint activation is carried out by different muscles in 

different groups. Results are presented in Figure 4.4. 

In the case of  selective contractions in patients, CI of  the muscle whose activity was 

enhanced was significantly greater than in the other ones (p<0.03 for ECR and p<0.004 

for EDC and ECU). In the case of  healthy subjects it happened only in radial and ulnar 

extension but not in finger extension where the ECR was also active (p<0.01).  
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Figure 4.4. Co-activation Index CI based on the ARV of the signal in the different extensor muscles. 
Selective contractions as well as wrist extension at different effort levels are presented. Values are 
presented as mean and standard deviation for the control group (left) and patients (right) 

Significant differences were also found in wrist extension at different effort levels. In 

the control group, CI in ECR was higher than in EDC at all levels of  effort and also higher 

than in ECU at 80% MVC (p<0.04 in all cases). Regarding the patient group, CI in ECU 

was higher than in EDC at 20, 50 and 80% MVC (p<0.02) and also than in ECR at 

20%MVC (p<0.05). Additionally when comparing CI for each muscle between the two 

populations, it was found that the average contribution of  ECR was higher for healthy 

subjects than for patients (p<0.02). On the contrary, the average contribution of  ECU was 

higher for patients than for healthy subjects (p<0.02).  

c. Fatigue Indices 

Time evolution of  sEMG variables is presented in Figure 4.5. Results are presented in 

mean and standard deviation for subjects in each group at intervals of  10% of  the total 

endurance time. 

A significant decrease of  CV with time was observed during the endurance exercise in 

all muscles and in both groups (p<0.02 for healthy subjects and p<0.01 for patients). 

However, significant changes for MNF and MDF variables and ARV were only observed in 

the group of  patients (p<0.04 in all variables). 

When comparing between groups, ARV in ECR, ECU and EDC presented higher 

fatigue indices for patients than for healthy subjects (p<0.02, p<0.01, p<0.03 respectively). 

Conversely, the rate of  change of  CV was higher for patients than for healthy subjects for 

EDC (p<0.04) and especially for ECR (p<0.01). 
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Figure 4.5. Fatigue plots for ECR, EDC and ECU for healthy subjects (top) and patients with lateral 
epicondylalgia (bottom). Results are presented in mean and standard deviation for each group. 

4.3.2 Hand Grip 

The following results are reported for 10 subjects in each group (control and patients 

with Lateral Epicondylalgia after recovery). No significant differences concerning 

anthropometric measures or MGS index were found between groups. Four muscles among 

forearm extensors and flexors were analyzed: Extensor Carpi Radialis- ECR, Extensor 

Digitorum Communis- EDC, Extensor Carpi Ulnaris- ECU and Flexor Carpi Radialis- 

FCR. Three levels of  effort during hand grip were considered: 20%, 50% and 80% relative 

to the MVC. 

a. Cross correlation Coefficients and Conduction Velocity 

Conduction velocity for all of  the muscles ranged between 2 m/s and 8 m/s (Figure 

4.6) and their correspondent cross-correlation coefficients (in median and [IQR]) were 

76.81[13.52]% and 77.80[18.48]% for healthy subjects and patients respectively. Regarding 

CV, no differences were found between groups or between muscles or effort levels in the 

same group. These results were expected, given that the absolute value of  this parameter 

has a high dependence on the alignment of  the electrodes and the muscular fibers. 
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Figure 4.6. Box-plots for conduction velocity in healthy subjects (left) and patients (right). The four 
muscles are presented in shadows of gray for the 3 levels of effort performed in the experiment. 
Results are displayed for 10 subjects in each group. Outliers are represented with a cross (+) 

b. Co-activation Indices 

Multivariate analysis of  variance- MANOVA was applied to the angles corresponding 

to azimuth (θ) and elevation (ϕ) of  the set of  vectors u (Eq. 4-11) in the spherical 

coordinate system (Figure 4.7). Previous to the analysis, equality of  variances was tested 

through Levene’s test and it was found that azimuth angle corresponding to EDC (θedc) did 

not satisfy the condition of  equal variances in the two groups. Consequently, both angles: 

azimuth and elevation (θedc,ϕedc) for the vector uedc were removed from the analysis.  

 

Figure 4.7. Box-plots for Azimuth-θ (left) and Elevation-ϕ (right) of the set of vectors u in the 
spherical coordinate system. Outliers are displayed with a cross (+).  

A significant interaction for the factor “group” was found (p<0.026) as estimated form 

Pillai’s Trace or Wilks’ Lambda. Additionally, ANOVA revealed significant differences 

between the two groups in azimuth for θecu and θfcr and in elevation for ϕecu (p<0.027 in all 

cases). 

Co-activation Index-CI (Eq. 4-7) was evaluated for each group independently. Results 

are presented in Figure 4.8. It was found that the co-activation index for FCR was lower 
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than for the other 3 muscles at 20%MVC for both, healthy subjects and patients (p<0.02 in 

all cases). However, the co-activation index for ECU was also higher than the index for 

ECR and EDC (p<0.05) for patients but not for healthy subjects (p.n.s). Moreover, the 

same situation replies at 50%MVC (p<0.05 comparing ECU with other muscles). No 

differences between muscles were found for healthy subjects. Finally, at 80%MVC no 

differences were found for the CI of  the analyzed muscles except for EDC whose index 

was lower than ECR and ECU (p<0.01 for healthy subjects and p<0.003 for patients). 

 

Figure 4.8. Box-plots for muscle co-activation in healthy subjects (left) and patients (right). The four 
muscles are presented in shadows of gray for the 3 levels of effort performed in the experiment.  

Finally, flexor-extensor imbalances represented by the set of  vectors v were also 

analyzed through MANOVA test. Box-plots for the dependent variables are presented in 

Figure 4.9. Angles corresponding to vector vedc-fcr were once more removed from the 

MANOVA since azimuthθedc-fcr did not satisfy the condition of  equality of  variance 

according to Levene’s test.  

 
Figure 4.9. Box-plots for Azimuth-θ (left) and Elevation-ϕ (right) of the set of vectors v in the 
spherical coordinate system, representing muscular balance between flexors and extensors. Results are 
displayed for 10 subjects in each group. Outliers are represented with a cross (+) 
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Significant differences were found for the interaction with the factor group (p<0.012). 

Additionally, significant differences between healthy subjects and patients were found for 

θecu-fcr and ϕecu-fcr (p<0.008 and p<0.027 respectively) from the ANOVA test of  each angle θ 

or ϕ of  the set of  vectors v. 

c. Power Spectrum 

Mean and Median frequency (MNF and MDF) of  the recorded signals in each muscle 

and effort level are presented in Figure 4.10.In healthy subjects, no differences were found 

between muscles except for ECU whose MNF was higher than that of  the other three 

muscles regardless the level of  effort (p<0.01 in all cases). As for patients, the values 

obtained for MNF for both ECU and EDC in all exercises were higher than for ECR and 

FCR (p<0.005 and p<0.03, respectively) but no differences were found when comparing 

ECU and EDC. Similar behavior was found for MDF. Finally, differences were found for 

power spectrum variables when comparing its values between groups (healthy subjects and 

patients) at 80%MVC in EDC (p<0.026).  

 

 

Figure 4.10.Box plots for Mean (MNF) and Median (MDF) frequency (top and bottom respectively) 
for healthy subjects (left) and patients (right).The four muscles are presented in shadows of gray for 
the 3 levels of effort performed in the experiment. Results are displayed for 10 subjects in each group. 
Outliers are represented with a cross (+). 
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d. Fatigue Indices 

 
Myoelectric manifestations of  muscle fatigue, as analyzed from the rate of  change of  

sEMG parameters across the total duration of  the exercise, was observed for all muscles in 

each of  the groups (p<0.027 for all cases).  Most significant values were obtained for CV 

(p<0.004 for both groups in the four analyzed muscles). On the other hand, no significant 

differences were obtained in the slopes of  any of  the parameters between different muscles 

regardless the group. Additionally, no significant differences were found in the absolute 

initial values (before normalizing) between healthy subjects and recovered patients, which is 

consistent with results presented in the previous section for the contraction at 50% MVC. 

Moreover, differences were found when comparing the slope associated to CV in ECR, 

EDC and FCR between the two populations (p<0.03). No differences were found for 

ECU. Results are presented in Figure 4.11. 

 

 

Figure 4.11. Box-plots for fatigue indices obtained from Conduction Velocity in ECR, EDC, ECU, 
and FCR for healthy subjects (in black) and patients (gray). In each box, the central mark represents 
the median. The 25th and 75th percentiles as well as most extreme values (whiskers) are represented. 
Outliers are represented with a cross. Results were obtained from 10 subjects in each population. 

A repeated measures ANOVA test conducted on each muscle independently revealed a 

significant interaction for the factor group for ECR, EDC and FCR (p<0.03 in all cases), 

after applying the Greenhouse-Geisser correction for violations of  the sphericity of  the 

data. Profile plots for each muscle are presented in Figure 4.12. 

Finally, when comparing normalized CV through Mann-Whitney’s U test between 

groups every 10% from 0% to 100%of  the total endurance time (ET)it was found that 

differences started around 30% ET for ECR (p<0.01)and after 50%ET for EDC and ECU 

(p<0.04 and p<0.03 respectively). Additionally, after calculating the cumulative normalized 

CV from 100% to 0% ET every 10%, it was found that this value was always lower for 
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recovered patients than for healthy subjects across the entire endurance time in ECR and 

EDC (p<0.001 and p<0.04 respectively) and starting from 60% ET for FCR (p<0.05). 

 

 

Figure 4.12. Profile plots for the estimated marginal means for ECR (top-left), EDC (tor-right), ECU 
(bottom-left) and FCR (bottom-right). Curves display the normalized CV every 10% of the total 
endurance time for healthy subjects (black) and former patients (gray) and 10 subjects in each group. 

4.3.3 Finger Pressing 

The following results were obtained in a group of  five healthy subjects. For a detailed 

description of  subjects in the database, please refer to section 3.5 in Chapter 3. EMG 

signals were recorded and analysed in four forearm muscles: Extensor Carpi Radialis- ECR, 

Extensor Digitorum Communis- EDC, Extensor Carpi Ulnaris- ECU and Flexor Carpi 

Radialis- FCR. The experimental protocol considered isometric contractions associated to 

pressure on a bar with all fingers simultaneously or with each finger independently in a way 

similar to piano playing. For this task only, statistic differences were analysed with a t-test. 

a. sEMG signals corresponding to the activation of different fingers 

The activation of  each muscle was different when pressing with different fingers. This 

pattern was similar in all subjects and was analyzed through the co-activation indices CI and 
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CI f  (Eq. 4-7 and Eq. 4-8 respectively). An example is presented in Figure 4.13. It is possible 

to observe that the amplitude of  the signals depends on which finger is active, especially 

for ECU. On the other hand, no variations in the amplitude of  the ECR muscle were 

observed. This was consistent for all subjects in all tasks: pressing with all of  the fingers at 

the same time, or pressing with each finger independently. Thus the ECR muscle was 

excluded in subsequent analysis of  the sEMG signals 

 
Figure 4.13. sEMG signals recorded on ECR, EDC, FCR and ECU when pushing independently with 
each of the fingers at 50%MVC. 

b. Conduction Velocity 

 CVs estimated in ECU, FCR and EDC when pressing with all fingers and with each 

finger independently are presented in Figure 4.14 and Figure 4.15 respectively. The last 

figure present results for the case of  wrist rotation, given that similar results were obtained 

for finger pressing without rotation. In all cases (except for the ECU when pressing with 

the little finger where its level of  activation is very low), the CV was within the 

physiological range, confirming the propagation of  MUAPs and the correct alignment of  

the electrodes. No significant differences were found between muscles or resulting the 

activation of  different fingers. 

 

Figure 4.14. CV estimated in the active muscles when pressing simultaneously with all fingers at different 
levels of contraction (in different symbols). Results are presented in mean and standard deviation for 5 
subjects. 
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Figure 4.15 CV estimated in the active muscles when pressing independently with each finger and involving 
wrist rotation. Three levels of contraction are shown in different symbols. Results are reported in mean and 
standard deviation for 5 subjects. 

c. Co- activation index CI 

The CI in the analyzed muscles was similar for different levels of  contraction (20%, 

50% and 80% MVC) as can be observed in Figure 4.16 and Figure 4.17. However 

significant differences were found for different muscles when pressing with all fingers: 

CIEDC was lower than CIECU and CIFCR, especially at 80 %MVC (p<0.02, Figure 4.16), 

although no differences between these last two were found.  

 
Figure 4.16. CI for each muscle when pressing simultaneously with all fingers. Results are presented in 
mean and standard deviation for all subjects in the database 

Similar results were obtained from tasks comprising the isolated activation of  fingers as 

can be appreciated in Figure 4.17. In order to simplify the analysis, findings will be 

presented and discussed in light of  results obtained from the task of  combined activation 

of  fingers with wrist rotation which represents the most general case.  For example, no 

significant differences were found between CIECU for thumb when pressing in its natural 

position or when rotating the wrist to reach the common point. Results are summarized as 

following: CIECU presented the highest value when pressing with the thumb exhibiting 

decreasing values as the activation moved away from thumb to the little finger (p<0.007, 

Figure 4.17 top) where the ECU presented the lowest contribution to the contraction. The 

action of  the ECU was compensated by the activation of  the FCR and EDC as can be 
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inferred from CIFCR (p<0.02) and especially from CIEDC in such digits closest to the little 

finger (p<0.001). 

 

 

Figure 4.17. CI for each muscle and finger while pressing independently with each finger with wrist 
rotation (top) and when maintaining the wrist at 0º of ulnar deviation (bottom). Results are presented 
in mean and standard deviation for all subjects in the database 

d. Co- activation index CI f 

 
Figure 4.18. CI f index for ECR, FCR and ECU for the isolated activation of the fingers. Results are 
presented for the task involving wrist rotation, in mean and standard deviation for all the subjects in 
the database. 
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differences between them two or between one or the other as compared across different 

digits, with the exception of  a small difference at 20% MVC when comparing between 

CIring
EDC and CIring

FCR, and CI f
EDC and CI f

FCR ( f = [thumb or index], p<0.02 in all cases). 

e. Fatigue Indices  

Myoelectric fatigue was assessed trough the regression slope of  the variables RMS, 

MDF and CV during the endurance exercise. Examples of  fatigue plots for FCR during 

simultaneous and independent finger pressing are presented in Figure 4.19. Negative slopes 

were obtained for all of  the muscles and the different fingers when considering the task of  

isolated activation of  fingers. However, no changes in the slopes were observed when 

pressing with all of  the fingers. 

 

Figure 4.19. Fatigue plot for FCR during the simultaneous (right) and independent (left) finger 
pressing exercise. The different variables were normalized with respect to the initial value and the 
points correspond to a normalized number of epochs. Results are presented in mean for all subjects in 
the database. 

4.4 Discussion 

4.4.1 Assessment of Lateral Epicondylalgia 

a. Functional integrity of the upper-arm 

In this work, no differences were found in the functional integrity index MGS (Table 3-

2) between controls and patients with Lateral Epicondylalgia. This result differ from those 

reported by Alizadehkhaiyat et al. where LE patients (Alizadehkhaiyat et al. 2007) and even 

recovered patients, females is this case (Alizadehkhaiyat et al. 2009), exhibited significant 

lower grip forces at MVC. In this two works, MVC was measured as the mean value for 3s-

long contractions, while in our work MVC was measured as the peak force obtained during 

explosive contractions (<1s).  
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b. Submaximal contractions 

Regarding sEMG parameters during submaximal contractions, no differences in CV 

estimates between muscles or even between groups were observed. However, MNF and 

MDF estimates for ECU were higher than for the other forearm muscles (ECR, EDC and 

FCR) in the group of  healthy subjects both, during hand grip and wrist extension. 

Additionally, MNF and MDF estimates were higher for ECU and EDC than those 

obtained for ECR and FCR in the group of  recovered patients during hand grip. Although 

no differences were found for CV estimates from different muscles, high MNF estimates 

have been associated to predominance of  type-II fibers in in-vitro studies of  rat muscles, 

and confirmed with histochemical analysis (Kupa et al. 1995). Similar results were found 

for patients with choric neck pain (Falla et al. 2003) and once more, this difference was 

attributed to a higher percentage of  type II fibers with respect to type I fibers (or a greater 

role of  the firsts in any case). This can be explained in terms of  muscular adaptation to 

overload of  upper extremity as required by work activities in patients. Finally, the fact that 

these observations cannot be corroborated from CV could be because estimates of  this 

parameter can be biased by several methodological factors such as the alignment of  

recording electrodes with respect to the direction of  propagation of  MUAPs in the 

muscular fibers (Farina, Cescon & Merletti 2002). 

c. Muscle Co-activation 

Selective contractions (Figure 4.4) like those described in this work can enhance 

significantly the action of  isolated muscles in the case of  patients but not in the case of  

control subjects. This can be understood in terms of  a higher level of  specialization of  

forearm muscles due to continuous training of  the upper extremity during work activities. 

Regarding muscular co-activation, different behavior in patients can be inferred from CIs 

associated to ECU at all effort levels during wrist extension and from CIs for ECU at 20% 

and 50%MVC during hand grip. However, the Mann-Whitney’s U test showed no 

significant differences between groups. On the other side, such differences were confirmed 

from the orientation angles θ and ϕ analyzed during hand grip, not only for ECU but also 

for FCR. These results are consistent with those obtained for the set of  vectors v, defined 

to identify flexor-extensor imbalances in the same space. 

d. Myoelectric manifestations of fatigue  

Myoelectric manifestations of  fatigue were observed in both groups from slopes of  

CV, MNF, MDF and RMS, obtained by linear regression of  the normalized values in each 
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epoch across the total endurance time. These findings were consistent in tasks oriented to 

the analysis of  LE (i.e. wrist extension and hand grip). No differences were found between 

muscles regardless the analyzed group (control or recovered patients). Likewise, no 

differences were found when comparing the initial absolute values (not normalized) of  any 

of  the parameters between the two groups. This is consistent with results presented in 

section 1.4.1.a and 1.4.2.a for submaximal contractions at 50% MVC. However, when 

comparing slopes obtained for CV, higher indices (i.e. more negative) were found for ECR, 

EDC and FCR indicating greater fatigability of  these muscles in recovered patients, despite 

the absence of  symptoms. Note that the slope m was estimated from values normalized 

with respect to the initial value. It must be said that although the slope of  CV in ECU 

showed no significant differences between healthy subjects and patients, this may be related 

to a higher percentage of  type II fibers in ECU as mentioned in section 4.4.1.b, which 

would make this muscle easily fatigable both in healthy subjects and patients.  

Finally, repeated measures analysis for ECR, EDC and FCR during hand grip 

confirmed that recovered patients are more prone to myoelectric fatigue than healthy 

subjects. This kind of  analysis is more reliable since liner regression assumes that the 

scatter plot of  parameters CV, RMS, MNF or MDF is linear but it may be curvilinear as 

well (Merletti, Parker 2005).  

4.4.2 Muscular pattern related to Repetitive Strain Injury in musicians 

a. Submaximal contractions 

Although no significant differences were found for CV estimates between different 

muscles, the absolute value of  the parameter varied when pressing with different fingers. 

Such differences could be related to variations in the load-sharing of  the muscles when 

pressing with a given finger, as was later confirmed from CI and CI f indices. It could also 

be related to crosstalk originated in other forearm muscles. Nevertheless, it was possible to 

obtain a set of  three consecutive signals (a triplet) where propagation of  MUAP was 

observed and where it was possible to extract sEMG variables.  

b. Co- activation Indices CI and CI f 

The ECR was not active during the isometric contractions associated to finger pressing 

either with all or with every digit, as analyzed in this study. This result can be related to the 

angle of  the wrist defined for the experimental protocol and differs from other studies 

were physiological changes in this muscle were associated with repetitive contractions 

involving finger pressing (Moreno-Torres et al. 2010). Nevertheless, the former study 
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found physiological changes only on patients with repetitive strain injuries that were also 

experienced instrumentalists. Thus, a different muscular pattern in ECR in patients should 

not be disregarded and may be a matter of  analysis in a future study.  

On the other hand, the contribution of  ECU depended on the active finger, presenting 

higher CI and CI f indices when pressing with the digit located at the opposite side, that is, 

the thumb. Such activation is not only related to the rotation of  the wrist as can be inferred 

from Figure 4.17 and it was consistent in both tasks involving independent finger pressing. 

ECU also presented high CI indices when pressing with all of  the fingers were its 

contribution was comparable to that of  FCR. EDC presented a similar behavior but in the 

opposite direction, from little finger to thumb. On the contrary, FCR presented similar co-

activation indices for different digits and even for different levels of  contraction. 

c. Myoelectric manifestations of fatigue 

From fatigue indices it can be deduced that the set of  muscles is highly prone to 

myoelectric fatigue in contractions similar to those proposed in the present study. Future 

studies should be focused in the assessment of  similar indices in patients in order to 

analyze possible patterns leading to rapid manifestations of  fatigue.   

4.5 Conclusions 

4.5.1 Lateral Epicondylalgia 

Two biomechanical models have been proposed for lateral epicondylalgia: one 

emphasizing the role of  eccentric exertions and the other emphasizing the contact pressure 

of  the radial head (Moore 2002). The present study shows new findings which could 

complete those models since several differences between controls and patients in muscle 

activation pattern have been identified. 

Differences in the co-activation pattern of  wrist extensor muscles (namely, CI or 

orientation angles in the contraction level space) may indicate a muscular imbalance 

underlying the lateral epicondyle overuse condition. Biomechanical factors such as muscle 

imbalances, shortenings and weaknesses have been associated to cumulative trauma injuries 

in the past (Benkibler, Chandler & Pace 1992).  

Biomechanical deficits may both arise after an injury (in which case should be treated 

in the latter phases of  rehabilitation) or precede the actual injury. In any case, the 

identification of  biomechanical deficits is crucial in order to design rehabilitation/injury 

prevention programs. By pointing the target muscles to be specifically trained, findings 
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explained above might provide new insights for the design of  rehabilitation and/or 

prevention programs for lateral epicondylalgia. 

Regarding fatigue parameters, we found significantly higher CV fatigue indices for 

three of  the analyzed muscles in recovered patients. Surprisingly, higher fatigue indices 

were found not only for extensor muscles originated in the extensors common origin (i.e. 

the lateral epicondyle) but also for the flexor carpi radialis. Frequently, only extensor 

muscles are considered for the diagnosis and treatment of  lateral epicondylalgia. Fatigue 

findings could also be related to muscular imbalances depicted from this study.  It is, to our 

best knowledge, the first time that such a relationship has been found. 

Differences in fatigue indices might be related to a higher composition of  type II fibers 

in muscles of  recovered patients, though this should be confirmed by biopsy or 

histochemical analysis, which is beyond the reach of  the present study.  

In summary, findings in the present study indicate a different muscle pattern of  

contraction during wrist extension or hand grip in former patients when compared to 

healthy volunteers. The latter also showed significantly lower fatigability in both wrist 

extensor and flexor muscles. This is a conspicuous finding indicating that lateral 

epicondylalgia might be viewed not as a mere wrist dorsal flexor muscle dysfunction 

problem but as a whole forearm one (including extrinsic flexors). Consequently, a 

strengthening program designed to increase the percentage of  fatigue resistant fibers in 

both muscular groups may be desirable in LE patients or in populations at risk. Regarding 

resistance training, several studies have reported increases in the cross sectional area of  

type I fibers following such kind of  programs (for example in (Kosek et al. 2006)). What's 

more, Andersen et al. in (Andersen, Aagaard 2000) suggested that resistive training 

decreases the proportion of  type IIb fibers (fast and easily fatigable) while reciprocally 

increasing  the percentage of  type IIa fibers (also fast but resistant to fatigue). 

Further research will be done in order to check muscle performance during dynamic 

contractions (both concentric and eccentric). 

4.5.2 Repetitive Strain Injury in musicians (protocol evaluation) 

The protocol designed for the assessment of  repetitive strain injury was tested and 

validated. Isometric contractions similar to those exerted during dynamic contractions in 

tasks similar to piano playing were evaluated with multichannel sEMG. Differentiated 

muscular patterns associated to extrinsic muscles and to the activation of  different fingers 

were achieved. What is more, no differences, concerning either muscles or fingers, between 

the two tasks aimed for independent finger pressing (i.e. with or without rotation of  the 
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wrist) were found. Thus, it is possible to infer that both, the protocol and the proposed 

indices are highly repetitive. Such results are encouraging and motivate the use of  

techniques based on multichannel sEMG for the study of  repetitive strain injuries in 

experienced musicians. This kind of  analysis will be useful in establishing possible 

mechanisms underlying this syndrome as well as its possible prevention and treatment. 
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5  
High- Density EMG 

Experimental Protocol and Setup 
 

5.1 Introduction 

Neuromuscular activity recoded by sEMG can be used to track CNS strategies for the 

control of  movements, based on the correlation between the amplitude of  the sEMG 

signal and the force exerted on a given joint. This relationship has been used in the past to 

control robotic devices for different purposes like biofeedback devices for rehabilitation 

(Dipietro et al. 2005), exoskeletons (Fleischer et al. 2006), medical assistance devices 

(Pierrot et al. 1999), powered prosthesis (Parker et al. 2006) or wheelchairs (Galindo, 

Gonzalez & Fernandez-Madrigal 2006). Central to these goals is the extraction of  

information from myoelectric signal which is commonly detected with electrode pairs.  

As mentioned before, the main disadvantage of  bipolar signals is that its amplitude 

depends on the distance between the active motor units and the recording electrodes 

(Drost et al. 2004). Due to the low spatial resolution of  the bipolar signal, the standard 

surface EMG reflects the activity of  a number of  motor units (MU) within a delimited area 

of  the muscle. However, amplitude variations are expected in both, the parallel and the 

perpendicular directions of  propagation of  the MU action potentials (MUAP):  in the 

former, the amplitude of  the signal varies with the proximity to innervation zones and 

tendons, while in the latter the amplitude is attenuated because of  the propagation 

properties of  the conductor volume (Kleine et al. 2007).  As pointed out by Zwarts et al. in 

(Zwarts, Stegeman 2003), single channel approaches do not reflect the physical propagation 

of  the potentials and therefore only the time-varying properties of  the signals are usually 

analyzed, disregarding important spatial aspects of  the propagation like extent and length 

of  the muscle fibers, which are essential for the force-generating capacity of  the muscle, 

and, if  not well addressed can lead to incorrect conclusions. In recent years, on the other 

hand, the development and application of  electrode arrays in one or two dimensions have 

allowed the study of  the sEMG signal in the temporal and the spatial domain, opening new 
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possibilities to the study of  the neuromuscular system (Zwarts, Stegeman 2003, Holobar et 

al. 2010, Merletti et al. 2008) and to the field of  myoelectric control (Farina et al. 2010).  

What is more, recent studies have demonstrated that the muscles do not activate 

homogeneously, that is, distinct regions of  the muscle are activated differentially depending 

on the position of  the joint (Vieira et al. 2010) and the duration (Tucker et al. 2009) and 

strength of  the contraction (Holtermann et al. 2005). Such activation may be related to 

bundles of  fiber types organized in different regions within the muscle, each of  them 

following different recruitment strategies according to Henneman’s size principle 

(Holtermann et al. 2005). 

Therefore, EMG amplitude information provided by a single bipolar channel is highly 

dependent on the location of  the recording electrodes, even when they are well located 

away from innervation zones and tendons and it does not offer the possibility of  tracking 

inhomogeneities in the activation of  the muscles.  

The recording of  sEMG signals with 2D arrays in a wide area of  the muscles and the 

processing of  the signal in the space dimension (Zwarts, Stegeman 2003, Staudenmann et 

al. 2009) can overcome some of  the drawbacks of  single-channel approaches, providing 

information regarding  the proper selection of  the most significant channels and a 

quantification of  the temporal and spatial properties of  the electrical muscle activity 

(Merletti et al. 2010a, Merletti et al. 2010b). Therefore, the system must cover a large 

surface of  the muscles of  interest, adapt to the individual, detect and remove interference 

signals and artifacts, check signal quality, and finally, extract useful information contained in 

the signal related to the co-activation patterns of  the muscles. 

In this chapter, the experimental protocol designed for the assessment of  possible 

movements at the elbow joint by HD-EMG is described. The design of  2D- electrode 

arrays for this purpose and the instrumentation set-up used during recording sessions is 

also discussed. 

5.2 Experimental protocol 

The experimental protocol considered isometric contractions of  upper-am and 

forearm muscles at different levels of  effort. Isometric contractions were preferred over 
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dynamic, in order to be able to transfer findings in this study to the general population, 

although in this case, only healthy subjects were involved. 

5.2.1 Tasks and Subject positioning 

The experimental protocol considered four possible tasks related to the degrees of  

freedom at the elbow joint: flexion and extension of  the elbow and supination and 

pronation of  the forearm (Figure 5.1). Isometric contractions at different levels of  effort 

were carried out by means of  a mechanical brace modified to measure rotational force.  

 
Figure 5.1. Possible movements at the elbow joint. 

During the experiment, subjects sat in front of  the mechanical brace with the back 

straight, the elbow joint flexed at γ=45º measured from the transversal plane, shoulder 

abducted at α=0º from the coronal plane (parallel to the sagittal plane) and at β=90º 

parallel to the transversal plane, and forearm rotated δ=90º, midway between supination 

and pronation (Figure 5.2). This position was selected to minimize the activation of  upper-

arm muscles on the shoulder joint and to study possible synergies between forearm and 

upper arm muscles (Hamill, Knutzen 2006).  

 
Figure 5.2. Joint angles in the experimental protocol. Shoulder, α=0º (parallel to the sagittal plane), 
β=90° parallel to the transversal plane. Elbow, γ = 45° from the transverse plane and δ= 90° (midway 
between pronation and supination) 
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5.2.2 Muscles 

The co-activation pattern corresponding to tasks described in the previous section was 

assessed through electromyographic signals registered on five superficial muscles: biceps 

brachii, triceps brachii, brachioradialis, anconeus and pronator teres. Their function is 

summarized in Table 5-1 (Hamill, Knutzen 2006, Kendall F. P. et al. 1993). 

Figure 5.4 to Figure 5.6 show the anatomical location of  muscles in the upper-arm. 

Muscles analyzed in this work are highlighted in big letters and are described as follows 

(Hamill, Knutzen 2006): 

a. Biceps Brachii 

The biceps brachii is composed by two units: the short head and the long head. It 

originates on the supraglenoid tubercle and in the corocoid process and insert into the 

radial tuberosity in the forearm. Biceps brachii acts at the shoulder and elbow joints, either 

abducting the upper limb or flexing the forearm. However, because its tendon wraps 

around the radius, the biceps brachii is most effective as flexor when the forearm is in full 

supination; otherwise, its tendon is twisted under the radius. It is also a powerful supinator 

of  the forearm when the elbow is flexed, especially at 90º of  flexion. Slow, and unresisted 

supination actions are produced only by the Supinator muscle in the deep substrate of  the 

forearm, but this muscle in not accessible by sEMG.  

b. Triceps Brachii 

The triceps brachii is composed by three portions: the lateral, the medial and the long 

heads. Of  these three, only the long head crosses the shoulder joint, making it dependent 

partially on shoulder position for its effectiveness. The strongest head is the lateral, 

especially in movements against resistance.  

It is originated at the infraglenoid tubercle on scapula, the mid posterior shaft of  

humerus and the lower shaft of  humerus and inserts into the olecranon process. The 

triceps brachii is the strongest muscle within elbow extensors. Its output is not influenced 

by supination or pronation of  the forearm. 

c. Anconeus 

The anconeus is a small muscle located at the proximal forearm. It originates at the 

lateral epicondyle of  the humerus. Its main function is the extension of  the elbow and acts 

like an auxiliary muscle during pronation and supination depending on the rotation angle 

of  the ulna. 
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d. Brachioradialis 

The brachioradialis originate at the supracondylar ridge of  humerus in the upper-arm 

and inserts into the styloid process of  radius. Its main function is elbow flexion. It has the 

smallest cross-sectional area of  the elbow flexors but has the best mechanical advantage 

because of  a longer moment arm. The brachioradialis flexes the elbow most effectively 

when the forearm is in halfway between pronation and supination.  It also assists during 

pronation and supination 

e. Pronator Teres 

The pronator teres originates at the medial epicondyle along with the forearm flexors, 

and inserts into the midlateral surface of  radius. Its main function is the pronation of  the 

forearm but it also assists during elbow flexion. Forearm pronation is accomplished by two 

muscles: pronator quadratus in the deep substrate and pronator teres. Although the 

pronator quadratus is more active regardless of  forearm position, pronator teres becomes 

more active when the pronation action is rapid or against a high load.   

Possible tasks at the elbow joint can be evaluated by the analysis of  the co-activation 

pattern of  this set of  muscles. In all cases at least one of  the muscles in the set has a 

predominant action related to one of  the proposed tasks (flexion extension, supination or 

pronation). There is also at least one muscle that assists the contraction of  the main 

muscle.  Supination, however, is an exception because it is mainly achieved by the activation 

of  the supinator muscle which is not superficial. However, the biceps brachii acts as a 

supinator when the elbow is flexed (Hamill, Knutzen 2006, Kendall et al. 1993).  
TABLE 5-1. ACTIONS OF THE MUSCLES INCLUDED IN THE EXPERIMENTAL PROTOCOL DURING THE 
ANALYZED TASKS: FLEXION AND EXTENSION OF THE ELBOW AND SUPINATION AND PRONATION OF THE 
FOREARM. 

Muscle Flexion Extension Supination Pronation 

Biceps Brachii Main function   if the elbow is flexed  
Triceps 
Brachii  Main function   

Brachioradialis Main function  Assist Assist 

Anconeus  Main function Stabilize ulna Stabilize ulna 

Pronator Teres Assist 
  

Main function 
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5.3 Instrumentation 

5.3.1 Electrode arrays and positioning 

Three 2-D electrode arrays were fabricated in hydrophobic fabric (Gore-Tex ®) for the 

recording of  high density surface EMG signals- HDEMG: one for the biceps (A2), one for 

the triceps (A3) and one for the forearm (A1) which was intended for the analysis of  

brachioradialis, anconeus and pronator teres (Figure 5.3).  

  Arrays consisted in silver-plated and gel-filled eyelets (external diameter of  5 mm) 

equally spaced by 10 mm in rows and columns (inter-electrode distance, IED=1cm). Rows 

were aligned in the proximal-distal direction(y) while columns were aligned in the medial-

lateral direction (x). Textile semi-elastic fabric (Gore-Tex ®) was used as substrate for 

eyelets allowing the arrays to adapt to the geometry of  the muscle while maintaining inter-

electrode distance. The substrate was both, hydrophobic and transpirable in order to avoid 

possible cross-bridges between channels of  the array caused by gel or sweat. Finally, 

adhesion to the skin was provided by elastic straps located at the sides of  the arrays. 

The size of  each array was determined from a preliminary study on the muscles 

described in the previous section. Results for length and perimeter of  the limb segments 

involved are summarized in (Table 5-2). Lengths and circumferences of  the upper-arm and 

forearm segments were measured as follows: the length of  the ventral side of  the upper-

arm (i.e. for biceps) was measured from the acromion to the fossa cubit whereas the length 

of  its dorsal side (i.e. for triceps) was measured from the posterior crista of  the acromion 

to the olecranon. The length of  the forearm was measured from the medial epicondyle to 

the apophysis of  the radius. Circumferences were measured in the belly of  the involved 

muscles while contracting at high effort levels: distal and proximal upper-arm 

circumferences were measured over biceps and triceps during flexion and extension 

respectively and the proximal forearm circumference was measured over the brachioradialis 

during flexion. The length of  the transversal section of  the surface of  biceps and triceps 

was estimated as C=½ circumference of  the limb segment. The final dimensions for the 

electrode arrays are summarized in the last column of  Table 5-2. 
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Figure 5.3. Left. 2-D Electrode arrays fabricated in Gore-Tex ® for the experimental protocol. Right. 
Positioning of the electrode arrays during the experimental protocol 

In the case of  biceps, the electrode array covered approximately 87% of  the transversal 

section of  the muscle and 25% of  its longitudinal section. It covered the long and short 

heads of  biceps. For triceps, the array covered approximately 87% and 20% of  its 

transversal and longitudinal sections respectively. In this case, only the long and lateral 

heads were considered. Finally, the forearm array covered approximately 100% and 20% of  

the transversal and longitudinal sections of  the forearm covering different portions of  the 

muscles pronator teres, brachioradialis and anconeus. The forearm array was designed to 

have 18 or 19 columns depending on the limb of  the subject. 

In the case of  biceps and triceps, the central points of  the arrays were aligned to 

landmarks proposed by SEMIAM project (Freriks, Hermens 1999): for biceps over the line 

connecting the anterior process of  the acromion and the fossa cubit at 1/3 of  the distance 

between these two points (dacr-fc). In triceps, over the line connecting the posterior process 

of  the acromion and the olecranon at ½ of  the distance between these two points (dacr-ole). 

In the case of  the forearm, the array was located 2 cm below the elbow crease. The 

locations of  the electrode arrays can be observed in detail in Figures 5.4 to 5.6. 
 
TABLE 5-2. DIMENSIONS OF UPPER-LIMB SEGMENTS OBTAINED IN A PRELIMINARY STUDY AND SIZES OF THE 
ELECTRODE ARRAYS ACCORDING TO THEM 

 Length 
(cm) 

Transversal 
segment (cm) 

Array dimensions 
(rows × columns,  

IED=1 cm) 
Proximal Upper-arm 
(triceps) 36.2±2.5 16±1.3 8 × 15 

Distal Upper-arm (biceps) 34.3±2.8 16±1.1 8 × 15 
Forearm (brachioradialis, 
anconeus, Pronator teres) 28±1.9 17±2.5 6 × 18-19 
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Figure 5.5. Posterior view of the upper-
arm displaying triceps brachii muscle and 
the positioning of the 2D electrode. The 
image was extracted and modified from 
(Netter 2006)  
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Figure 5.4. Anterior view of the upper-
arm, displaying biceps brachii muscle 
and the positioning of the 2D electrode. 
The image was extracted and modified 
from (Netter 2006)  

 



 

          
 

Same Array 

Figure 5.6.Anterior view (left) and Posterior view (right) of the forearm. Anconeus, Pronator Teres (rotondo) and Brachioradialis muscles are shown. The 
positioning of the 2D electrode is also shown. Images were extracted and modified from (Netter 2006) 

~2cm 
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5.3.2 Mechanical Brace 

Isometric contractions were measured by means of  a mechanical brace that prevented 

muscle elongation and movement of  the elbow and the wrist. The mechanical brace had 

two parallel arms, each of  them composed by two bars connected by a joint on which a 

torque transducer (OT Bioelettronica, range 150 N.m, resolution 2.5mV/V) was placed. 

The upper-limb of  the subject was positioned between the arms of  the brace in a way that 

the elbow laid on the axes of  the transducers. Finally, the moment force exerted at the free 

ends of  the mechanical brace was measured. 

 
Figure 5.7. Mechanical Brace used in the experimental protocol 

The action of  the hand and fingers was avoided by using a bracelet-like piece designed 

to fasten the forearm at its distal end and to transmit the force exerted over two 

independent plates within this piece, to the ends of  the free bars of  the mechanical brace, 

thus maintaining independent measures in both transducers. Rotational forces were 

transduced by spherical bearings that moved freely at the end of  each brace arm (A and B 

in Figure 5.7).  This mechanism avoided hand gripping (Figure 5.3 right), and in general, 

the activation of  flexors and extensors of  the wrist. 

5.3.3 Instrumentation Setup  

The acquisition system consisted on three amplifiers (EMG-USB- 128 channels, 

sampling frequency of  2048 Hz, 3dB bandwidth 10-750 Hz, programmable gains of  100, 

200, 500, 1000, 2000, 5000 and 10000, LISiN-OT Bioelettronica) with synchronized 

sampling provided by an external signal. Amplifier #1 recorded signals from the triceps 

and amplifier #2 from biceps. Amplifier #3 recorded signals from the forearm muscles 

together with torque signals sensed by the torque transducers in the mechanical brace. The 

torque signals were amplified and displayed to the subject for biofeedback purposes (Miso 
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II, LISiN-OT Bioelettronica, Torino, Italy). A schematic view of  the connections of  the 

different instruments is presented in Figure 5.8. 

 
Figure 5.8. Instrumentation set up for the experimental protocol. 

5.4 Experimental session and signal recording  

Each experimental session consisted on: 

• Drawing a line connecting the origin and insertion of  each muscle over the surface of  

the skin to confirm that all of  them were covered by at least 3 columns of  electrodes 

(especially in the forearm). This information was later used for the definition of  

reference systems for each muscle when processing the activations maps. 

• Positioning of  the electrode arrays after skin preparation that included shaving and 

cleaning with abrasive paste to reduce contact impedance. 

• An initial training on how to avoid the activation of  wrist and fingers providing 

feedback of  the EMG signals to the subjects 

• Measurement of  the Maximal Voluntary Contraction (MVC) during explosive 

contractions. Three consecutive trials separated by 3-minute rest were completed for 

each task and the maximum of  the three was selected as the MVC for a given task. 

Subjects were instructed to maintain similar torque outputs in both transducers for 

flexion and extension while supination and pronation were associated to only one 

torque signal. 

• A set of  contractions in randomized order at 10%, 30% and 50%MVC for the four 

tasks of  interest, each of  them lasting for 10 seconds and followed by 2 minutes rest. 

The random order was included to avoid biasing in the results and the rest period was 

used to avoid the effects of  cumulative fatigue. 
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• At the end of  the experimental session, muscle fatigue was assessed by a long-term 

contraction at 50%MVC up to subjects’ exhaustion. This test was performed for each 

task with 10 minute rest between contractions.  

Monopolar signals were recorded simultaneously on the three amplifiers and power line 

interference was reduced by using a “driven right leg” (DRL) circuit (Metting et al. 1990). 

Additionally, the amplifiers were modified to provide a virtual ground to the subject in 

order to enhance the quality of  the signals (Darby, Hammond 1979). Reference electrodes 

were placed at the clavicle, wrist, and shoulder of  the same (dominant) side. The schematic 

is presented in Figure 5.9. 

 
Figure 5.9. Schematics of the acquisition of monopolar signals. A DRL circuit was used to reduce 
common mode noise. 

5.5 Subjects 

Twelve healthy male volunteers participated in the experiment. Subjects did not have 

any history of  neuromuscular disorders, pain or regular training of  the upper limb. All 

subjects gave informed consent to participate to the experimental procedure.  
TABLE 5-3. BIOMETRIC MEASURES OF SUBJECTS PARTICIPATING IN THE EXPERIMENTAL PROTOCOL 

    Biceps Triceps Forearm 
 Age 

(years) 
Height 
(cm) 

Weight 
(cm) 

L 
(cm) 

Φ 
(cm) 

L 
(cm) 

Φ 
(cm) 

L 
(cm) 

Φ 
(cm) 

s1 28 176 76 31 33 31 40 26 30 
s2 29 183 90 36 33 34 39 32 30 
s3 21 183 83 37 33,5 34 41 32 30 
s4 31 175 68 30,5 30 29 34 27 29 
s5 28 176 70 29 30 28 34 20 28 
s6 22 187 82 32 30 30 40 28 31 
s7 22 175 72 33 31 30 38 27 29 
s8 27 171 68 34 34 30 37 29 30 
s9 28 168 75 32,5 30 34 37 27 28 
s10 40 178 83 33 32,5 34 37,5 28 26,5 
s11 29 173 64 31 31,5 29 36,5 26,5 25 
s12 37 179 65 29 32 29,5 37 27 28,5 
Mean 
(std) 

29 
(5.7) 

177 
(5.4) 

75 
 (8.3) 

32 
(2.5) 

32 
(1.5) 

31 
(2.3) 

38 
(2.2) 

27 
(3.1) 

29 
(1.7) 
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By chance, all subjects were right-handed.  Data concerning age, height and weight of  

each subject as well as length (L) and the circumference (Φ) of  the limb segments involved 

are summarized on Table 5-3. 

5.6 Activation Maps  

The HD-EMG signals recorded in the two dimensions of  the space can be represented 

as an image I(x,y), where x and y represent the coordinates of  the channels in the reference 

system and I(x, y) is referred to the amplitude of  the signal in that point, either as measured 

at a “sample by sample” scale or as “averaged” on a signal segment. The firsts allow the 

identification characteristics of  individual motor unit action potential, like for example its 

propagation direction and its conduction velocity, and the second permits to map variations 

of  the values of  intensity to variations in the amplitude of  the signals recorded in each 

channel, allowing an insight in the distribution of  potentials along the surface of  the 

muscle. An example of  an averaged activation map from HD-EMG signals is presented in 

Figure 5.10. 

 

Figure 5.10. Example of HD-EMG signals and its correspondent averaged map I from Biceps during 
flexion at 50% MVC. Segments of 120 ms of the original signals are displayed according to their 
location in the electrode- array (left). The map I was obtained from the averaged RMS value of each 
channel in segments of 3s (right) 

The averaged activation map can be expressed as: 

∑
=

=
M

m
m yxA

M
yxI

1

),(1),(  Eq. 5-1 

Where x and y are the spatial coordinates of  the map (in the transversal or parallel 

directions with respect to the muscular fibers), A is a variable associated to the amplitude 

of  the signal (ARV or RMS in Eq. 4-1 in Chapter 4) estimated on an epoch, recalling that 

the EMG signals is not stationary, and M is the total number of  epochs in the analyzed 

segment. 
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In the following chapters of  this thesis, averaged activation maps obtained from HD-

EMG signals recorded using the protocol described in the present chapter will be analyzed.  
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6  
High- Density EMG 

Activation Maps at the Elbow Joint 
 

6.1 Introduction 

This chapter is devoted to the calculation of  activation maps for the upper arm and 

forearm.  As mentioned in Chapter 5, activation maps obtained with HD-EMG provide a 

larger amount of  information related to the tracking of  (task changing) skin surface areas 

where EMG amplitude is maximal and a better estimation of  muscle activity by the proper 

selection of  the most significant channels. The main objective of  this chapter was to 

analyze patterns in the activation maps associating them with the four movement directions 

at the elbow joint and by considering different strengths of  those movements. Moreover, 

such activation pattern was compared with that extracted from bipolar electrodes. 

In addition, this chapter also deals with the necessary preprocessing of  HD-EMG 

signals: identification of  outlier signals and segmentation of  global activation areas. The 

first is associated to the recording of  large number of  physiological signals where it is very 

likely to observe some low quality channels affected by artifacts due to movement, poor 

contact or power line interference.  For this purpose different algorithms based on the 

spatial spread of  the potentials over the skin surface have been proposed in the literature 

(Gronlund et al. 2005, Marateb et al. 2012). Such algorithms considered only the 

information of  the bulk of  data for the detection of  outliers in 2D multichannel 

recordings. The approach proposed here takes into account features extracted from 

channels in the close- proximity neighborhood to evaluate the quality of  a given signal and 

to interpolate its value from neighboring channels when needed. Besides, the method was 

designed to compromise between precision and sensitivity of  the detection in order to 

reduce the number of  misclassifications of  good-quality signals.  

In the second case it was necessary to select the regions associated to the main activity 

within the recording since large inter-individual variability can be expected (especially 

concerning the size of  the muscles) before extracting information associated to the global 
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activation of  the maps and averaging between subjects.  Watershed image segmentation has 

been proposed in the past for determining the regions of  activity in HD-EMG recordings 

(Vieira et al. 2010), however this method is prone to over-segmentation in the presence of  

multiple discontinuities (Vincent 1993), particularly, those introduced by dissimilarities in 

the electrode-skin impedance of  the different channels. The segmentation proposed here 

offers an alternative, being less sensitive to local maxima. Results show that features 

extracted from HD-EMG maps could be useful in the identification of  movement 

intention. 

6.2 Methodology 

6.2.1 Detection of low quality signals 

a. Features Extraction 

Human experts can identify artifact signals with high accuracy, based on their 

amplitude, frequency pattern (as in the case of  power-line interference) and in their 

similarity. However, visual inspection of  outliers (“bad” channels presenting low-quality 

signals) is time-consuming and depends on the expertise of  the operators (Minium et al. 

1999). Thus, it becomes necessary to apply an automatic method to identify such signals 

(and perform adequate processing if  necessary) before any kind of  information extraction.  

These channels are characterized by: a) high-power low frequency components, b) high 

power components at power-line harmonics due to high-impedance contacts and stray 

capacitive couplings, and c) their energy may be much higher or lower than that of  

neighboring monopolar channels, especially if  parallel-fibber muscles are considered. An 

example of  poor quality monopolar signals and its normalized Power Spectral Density 

(PSD) is presented in Figure 6.1. Low quality signals commonly present lower or higher 

amplitude (for example R1C1 and R6C2 in Figure 6.1a respectively) when compared to 

neighboring channels. They can also present large baseline fluctuations caused by relative 

motions of  the electrode over the skin, or periodic patterns mainly caused by power-line 

interference.  These two later artifacts are reflected in the power spectrum of  the signals 

(for example R6C2 and R3C3 in Figure 6.1b) 

An artifact detection method based merely on the amplitude of  the signal is not 

sufficient because the surface of  the array covers different muscles with quite different 

ranges of  EMG amplitude (Figure 6.1a). Taking this into account, no assumption on the 

power of  the non-artifact signals can be made. On the other side, the normalized power 
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spectrum of  non-artifacts can be similar to that of  artifact signals. An example is presented 

in Figure 6.1c. Signal recorded in channel R1C1 is an artifact whereas signal in channel 

R6C3 is not. Both, the power spectrum and the amplitude of  these two signals are similar 

but R1C1 can be identified as an artifact when compared to neighbor channels in time 

domain. 

Three features for the detection of  artifactual signals were defined as:  

1. Relative power of  low frequency components, Pl/t, from 0 to 12 Hz, 

2. Relative power of  power-line components Pline/t, corresponding to 50Hz and its first four 

harmonics, and  

3. Signal power calculated from the root mean square (RMS) of  the signal 

 

 
Figure 6.1. a).Signal subset recorded in array A1 (forearm) during elbow flexion at 50%MVC. Three columns 
(C1 to C3) and six rows (R1 to R6) are shown. Different kinds of artifacts are observed in C1R1, C2R6, and 
C3R3. It is also possible to observe that the energy of the signals changes in both x and y directions. 
Normalized Power Spectral Density for different signals are displayed in the bottom. Each spectrum is 
normalized with respect to its peak value. Artifactual channels can present higher or lower amplitude when 

a). Signal subset on Array 1, showing original distribution of the signals
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compared to neighbor channels. b). High amplitude signals. It is possible to observe power-line components 
on the artifactual channel R3C3 and low frequency components on the artifactual channel R6C2. The 
attenuation of the analogue filter in the amplifier is not sufficient to remove the movement artifact on 
channel R6C2.  c). Low amplitude signals. Thought normalized PSD is similar for R6C3 and R1C1, the later 
can be identified as an artifact when compared to neighbor channels in the temporal domain. 

The Power Spectral Density of  the signal was estimated with the FFT in non-

overlapping signal epochs of  500ms. Features (Pl/t, Pline/t and RMS) were computed for each 

channel as the mean of  the values obtained from six epochs over segments of  3 s where 

the exerted force remained constant. 

b. Automatic Algorithm for artifact removal 

An expert system based on thresholds associated with the three features described 

previously was designed.  

The algorithm was applied to a signals set, S, composed by signals si,j recorded in the 

rows (i) and columns (j) of a given electrode array A1 to A3 as described on Chapter 5 

(i=[1,2,…,6] and j=[1,2,…,17] or j=[1,2,…,19] for array A1 depending on the size of the 

forearm of the subject, and i=[1,2,...,8] and j=[1,2,…,15] for  arrays A2 and A3 in the 

upper-arm). A schematic of the decision algorithm is presented in Figure 6.2. 

 
Figure 6.2. Schematics of the algorithm for the detection of low quality signals. The symbols (>) or 
(<) represent the cases where the feature was expected to be higher or lower than the specified 
threshold in order to determine if a given signal was labeled as artifact. 

Thresholds threshl/t, threshline/t and threshrms were calculated from a subset of S composed 

of signals called reference (ref) that satisfied the following two conditions: 
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where IQR represents the Interquartile Range. The median was chosen instead of  the 

mean because of  its lower sensitivity to outliers since it considers the highest breakpoint 

(50%), that is, the smallest percentage of  outliers that can cause an estimator to take 

arbitrary large values (Hampel 1971).  

The thresholds were calculated as following:  
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where the constant k1 was subjected to an optimization criterion in order to improve the 

performance of the detection method as it is explained in the next section.   
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where the constant kline was subjected to a sensitivity analysis (see Table 6-1) and set to 2.5, 

as tradeoff  between the capacity of  threshline/t to identify the highest proportion of  signals 

presenting power-line harmonics and the capacity to correctly identify such signals avoiding 

the misdetection of  good-quality signals. In any case, threshline/t was always constrained to 

0.85, that is, signals presenting more than 85% of  the signal power in the bands related to 

power-line harmonics were considered as artifacts. 
TABLE 6-1. SENSITIVITY ANALYSIS FOR CONSTANT kline FOR THE DETECTION OF POWER-LINE ARTIFACTS 

kline (2.5) 1 2 3 5 7 
Acc 99,74 99,79 99,79 99,74 99,79 
S 83,33 83,33 83,33 75,00 75,00 
SP 99,83 99,87 99,87 99,87 99,91 
P 71,43 76,92 76,92 75,00 81,82 

kline in Eq. 6-3 was chosen as 2.5 (presented in parenthesis). Increasing values of kline reduced the 
sensitivity (S) of the threshold threshline/t, whereas decreasing values decreased the precision (P). 
Variations in these two indexes affected the Accuracy (Acc) and the Specificity (SP). kline = 2.5 is a 
good compromise between S and P 

• },,max{},,min{ 2 pcpbpapcpbparms stdstdstdkthresh += mmm  (Eq. 6-4) 

where µ and std are the average and standard deviation, respectively, of  the RMS of  the 

following three neighbor-pairs in the proximity of  a given channel si,j:

],[ ,1,1 jijia RMSRMSp +−=  
in the longitudinal direction, and ],[ 1,11,1 ++−−= jijib RMSRMSp  and

],[ 1,11,1 +−−+= jijic RMSRMSp  in the diagonal directions.  This third condition distinguished 

low amplitude signals corresponding to innervations zones or non- active regions (for 
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example R4C3, R5C3 and R6C3 in Figure 6.1 from isolated low amplitude signals (for 

example R1C1 in Figure 6.1) that were considered as artifacts. Hence, the threshold in Eq. 

6-4 takes into account the spatial direction of  propagation of  Motor Unit Action 

Potentials. Finally, the constant k2 in Eq. 6-4 was tuned in order to improve the 

performance of  the method as it is explained in next section.  

c. Training and Validation 

 Constant values of  k1 and k2 on Eq. 6-2 and Eq. 6-4, allowed to increase the 

performance of  the detection method, especially its sensitivity (or the capacity of  the 

method to identify the highest proportion of  low-quality signals) and the precision (or the 

capacity to correctly identify low-quality signals avoiding the misdetection of  good signals 

as low-quality).  Thus, the performance of  the method was measured in terms of  

Sensitivity(S), Specificity (SP), Precision (P) and Accuracy (A) (Farina et al. 2001) as: 

𝑆 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

       𝑆𝑃 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

        𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

     𝐴 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

   (Eq. 6-5) 

where TP and TN is the number of  channels correctly identified as low and good-quality 

signals respectively, FN is the number of  low-quality signals not identified by the method 

and FP is the number of  good-quality signals identified as low-quality. 

Signals were visually classified as low-quality or not by three experts based on the 

observation of  similarity between different channels and on the examination of  baseline 

fluctuations or periodicity patterns (related to movement artifacts and power-line 

interference respectively, see Figure 6.1a as an example).  Two databases for training and 

validation were obtained, each composed of  20 signal sets selected from different 

contractions, effort levels and arrays 1 to 3. Fleiss’ Kappa index (Fleiss 1971) was used to 

measure agreement between experts, scoring 82.63% and 86.19% for the training and 

validation databases respectively and indicating an “almost perfect agreement”. Results of  

the three experts were selected according to the majority vote in each case (i.e. the 

statistical mode of  the three opinions) in order to obtain a binary classification-label as 

artifact (1) or non-artifact (0) for each single-channel in the set S.  

Optimal values for k1 and k2 were selected according to the following criteria: 1) by 

Receiver Operating Characteristic (ROC) curves (S vs. 1-SP), widely used in classic signal 

detection theory and clinical diagnostics (Fawcett 2006) and, 2) by Precision-Recall 

representations (P vs. SP), which are commonly used in machine learning (Landgrebe et al. 

2006). Both methods assessed the accuracy of  the prediction (or outcome) of  the 

described method based on its Sensitivity, Specificity and Precision. The optimal classifier is 

found as a tradeoff  between hit rates and false alarm rates. In the first case the optimal can 
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be found as the minimum distance between the curve (S vs. 1-SP) and the point (0, 1), and 

in the second case, as the minimum distance between curve (P vs. SP) and the point (1, 1). 

6.2.2 Segmentation of HD-EMG Maps 

Areas corresponding to electrodes lying over an active region of  a muscle or a set of  

muscles can change between subjects. In addition, for each of  the five selected muscles, 

activity of  neighbor muscles can also be observed during the task. Therefore, it was useful 

to extract the region related to each muscle of  interest from the individual maps before 

averaging between subjects, in order to finally obtain a general activation map associated 

only with each of  the selected muscles. Thus, an algorithm for the segmentation of  active 

regions was proposed in this study.  An activation map I in the 2D space was obtained from 

HD-EMG signals as: 
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 (Eq. 6-6) 

where s is an EMG signal in the channel located at the position i, j of  the 2D array (as 

explained before), N is the total number of  samples in an epoch of  500 ms and the RMS 

value was averaged  in M=6 non overlapped epochs corresponding to three seconds of  

signal. Prior to the calculation of  RMS values, the EMG signals were filtered between 12 

and 350 Hz with a 4th order Butterworth filter in forward and backward direction in order 

to correct for phase distortion, following SENIAM recommendations for the processing 

of  surface EMG signals (Hermens et al. 1998). RMS values corresponding to signals 

previously identified as artifacts were replaced by triangle-based cubic interpolation based 

on Delaunay Triangulation for surface fitting proposed in (Bradford et al. 1996). 

Each channel in the map can be considered as a pixel located at the positions i and j of  

the electrode array whose intensity is given by Ii,j. In other words, the map I can be thought 

of  three dimensions where the intensity values represent elevations as in a topographical 

map. Intensity levels in the maps correspond to the activation level of  a muscle (or a set of  

muscles) during the development of  a specific task.  

The activation map was segmented by applying an h-dome transform Dh(I) over the 

image I, as proposed by L. Vincent (Vincent 1993). This transform extracted regional 

maxima and minima by the morphological reconstruction of  the original image I (the 

mask) using as marker a second image J which was derived from I by subtracting a constant 

value h: 

𝐷ℎ𝑖,𝑗�𝐼𝑑,𝑗� = 𝐼𝑑,𝑗 −  𝜌𝐼( 𝐽𝑑,𝑗) = 𝐼𝑑,𝑗 − 𝜌𝐼(𝐼𝑑,𝑗 − ℎ) (Eq. 6-7) 
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where the operator ρI stand for morphological reconstruction (Serra 1982), and J is derived 

from I by subtracting a constant value h. This transformation preserved all the domes 

above the height h, including those that contain various local maxima. In the case of  

activation maps, such local maxima could correspond to local variations on the amplitude 

of  the 2D maps due to distinct contact impedances in the various electrodes. The concept 

is explained in Figure 6.3.  

 
Figure 6.3. H-dome transform- Dh. The concept is explained on a topographical representation of the 
image I. Observe that the segmentation is not affected by local maxima or minima present in each of 
the domes Dh 

Additionally, a morphological opening (γ) was applied to the resulting image Dh in 

order to avoid the segmentation of  isolated peaks, small in area, and which corresponded 

to pixels with an amplitude slightly higher than that of  the surrounding channels. This was 

the case in “flat” maps (particularly at low-effort levels) where the activation is mainly 

reflected on the synergistic muscles with levels comparable to background noise and where 

only marginal activation can be observed in antagonist muscles. Therefore, the final 

segmented image Isi,j was obtained as: 

𝐼𝑠𝑑,𝑗 = 𝛾(𝐷ℎ𝑖,𝑗) = 𝐷ℎ𝑖,𝑗 ∘ 𝑏 = �𝐷ℎ𝑖,𝑗 ⊖ 𝑏�⊕ 𝑏   (Eq. 6-8) 

where b, the structuring element, is a disc of radius 1 and ⊖ and ⊕ are the operators for 

dilation and erosion respectively (Serra 1982). 



 105 Chapter 6: High- Density EMG, Activation Maps at the Elbow Joint  

6.2.3 Average HD-EMG Maps 

Average maps for the 12 subjects who participated in the study were obtained by 

averaging individually segmented maps, in order to obtain useful information related to 

muscle co-activation pattern in terms of  intensity values and its spatial distribution which 

were expected to be different for different kind of  tasks and/or levels of  effort. 

Considering that upper-limb dimensions in terms of  circumference and muscle length are 

different for every subject, it was necessary to normalize and interpolate the image in the 

2D space so that results could be comparable among subjects, allowing the calculation of  

an average map for the population. In the case of  arrays 2 and 3 (biceps and triceps), the 

zero of  the coordinate system was defined to correspond to landmarks defined by 

SEMIAM project (Freriks, Hermens 1999). In the case of  forearm muscles, the origin of  

the x-axis laid in the intersection of  the line connecting the origin and insertion of  each 

muscle (Anconeus, Brachioradialis or Pronator Teres) and an arch traced around the 

forearm, 2 cm below the elbow crease which in turn was the zero of  the y-axis. Values in 

the x dimension were normalized with respect to the circumferences of  the different limb 

segments: proximal forearm for array 1, distal upper-arm for array 2 and proximal upper-

arm for array 3, and values in the y dimension were normalized with respect to the length 

of  the segments between reference points as described in section 5.3.1 of  Chapter 5. Data 

on the dimensions of  subjects’ upper-limb segments are summarized in Table 6-2. 

TABLE 6-2. UPPER-LIMB DIMENSIONS FOR SUBJECTS IN THE DATABASE. 

 Length (cm)* Circumference (cm)* 

Proximal Upper Arm (ventral) 38±2.2 31±2.3 

Distal Upper Arm (dorsal) 32±1.5 32±2.5 

Proximal Forearm 29±1.7 27±3.1 
* Length was measured between reference points: Acromion and Fossa Cubit for Proximal Upper Arm, 
posterior crista of the acromion and Olecranon for Distal Upper Arm and Medial Epicondyle and 
Apofisis of the Radius for Forearm. Circumference was measured during strong contractions of Biceps, 
Triceps and Brachioradialis for the three segments respectively. Results are presented as mean ± 
Standard Deviation for 12 subjects. 

In order to obtain individual maps with the same (i, j) coordinates for the calculation 

of  population’s average map,  RMS values in the 2-D space were re-sampled in the x and y 

directions by using cubic splines interpolation, considering units relative to the total length 

and total circumference of  the upper-limb segment as explained in the previous paragraph. 

Intensity of  the maps was parameterized by the average RMS value (RMSav-HD) for the 

segmented area.  In addition, spatial distribution of  the maps was parameterized according 
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to the median of  its projection over the x and y axes, that is, x=µx or y= µy where such 

projection was divided into two regions of  equal area, as following: 
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 (Eq. 6-9) 

where 𝑄𝑘𝑑𝑑𝑑 is the value of  the projection of  the maximum of  the segmented map Is at the 

kth coordinate along the dimension dim=x or dim=y and µdim corresponds to the median of  

the projection 𝑄𝑘𝑑𝑑𝑑. The median of  the projections permitted to evaluate spatial shifts 

along the x and y-axes of  the maps, both of  them associated with changes in effort levels 

or even with different tasks. 

On the other hand, data similar to that obtained with bipolar electrodes was extracted 

by selecting two monopolar channels for each muscle in the 2D arrays: the first electrode 

corresponded to the one located at the origin of  the coordinate system (following 

SENIAM recommendations (Freriks, Hermens 1999) as described previously for each 

muscle, and the second one was located 10 mm apart in the direction of  the muscular 

fibers. A single differential signal was obtained from these two channels for each muscle 

and its corresponding bipavRMS − value was calculated at the same time-interval as in the case 

of  HD-EMG maps. The variables RMSav-bip and RMSav-HD (from bipolar or HD-EMG 

configurations) were used in the identification of  tasks and their performances were 

compared as later explained. 

6.2.4 Statistical Analysis 

The statistical analysis was intended to assess differences between information 

extracted from single bipolar signals or from HD-EMG maps and also to analyze 

differences due to type of  task and effort level. Such analysis was based in the variables 

determined in the previous section, that is, RMSav-bip and RMSav-HD both of  them related to 

the signal power, and µx and µy associated with the spatial distribution of  the maps. 

Factors considered in the statistical analysis were:  1) the type of  electrode (bipolar or 

HD-EMG), 2) The type of  task, that is, flexion, extension, supination and pronation, and 

contraction level (10%, 30% and 50% MVC), and 3) Muscle (i.e. biceps, triceps, 

brachioradialis, anconeus and pronator teres).  

Differences between RMSav-bip and RMSav-HD were evaluated with the non-parametric 

Friedman test in two-way layout. In order to avoid differences between the type of  

recording (bipolar and monopolar), both variables in each muscle were normalized with 

respect to the mean value obtained in all tasks and contraction levels. Data corresponding 

to different tasks and effort levels were pooled together by considering blocks with 
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replication of  cells of  the factor muscle according to the procedure described in (Zar 2010) 

and implemented in the statistical toolbox of  MATLAB®.   

On the other hand, the capacity of  the extracted variables (RMSav-bip or RMSav-HD) for 

the identification of  tasks and/or effort levels was evaluated by classifying the data into 

different groups based on linear discriminant analysis (Krzanowski 1988) and cross-

validation with the Leaving One Out Method (Kearns, Ron 1999).  Data was classified into 

four or twelve groups corresponding to type of  task or to type of  task and effort level 

respectively. In the former case, samples corresponding to the three levels of  effort were 

pooled together for each type of  task. The overall classification performance was obtained 

in terms of  Accuracy, Sensitivity, Specificity and Precision as described in (Farina et al. 

2001) and (Eq. 6-5). For this analysis TP were data samples well classified into any of  the 

classes, FN corresponded to the number of  missing samples in any of  the classes, that is, 

samples belonging to a given class but that were classified in another, TN were not 

misclassified samples, and FP were samples misclassified in any of  the classes.  

In addition, changes in the spatial distribution of  the maps due to type of  task and 

effort level were analyzed with a non-parametric repeated measures design based on the 

Friedman test. In this case, variations of  the variables µx and µy were evaluated in 12 

different measures corresponding to four types of  task by three levels of  effort each.  A 

Bonferroni correction was applied in order to take into account the multiple comparisons. 

Finally, pair-wise comparisons were analyzed trough non-parametric Wilcoxon signed 

rank test.  

Statistical significance was set to p=0.05. In the Friedman test, χ2 statistics was 

considered significant for χ2 (d.o.f=1)> 3.84 for one degree of  freedom (d.o.f  = 2 types of  

electrode -1) and for χ2 (d.o.f=11)> 27.28 for eleven degrees of  freedom (d.o.f=12 

measures -1) after the Bonferroni correction. 

6.3 Results 

6.3.1 Detection of Low-Quality Signals 

Sensitivity analysis for constant kline in (Eq. 6-3) in the training database is presented in 

Table 6-1. Higher values of  kline increased the number of  TP and FP affecting both, the 

sensitivity and the precision of  the detection. As it can be observed on Table 6-1, kline 

between 2 and 3 is a good compromise between sensitivity and precision as it can be 

confirmed from accuracy and specificity of  the detection, where the highest values were 
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obtained. For values lower than 2, precision decreases whereas for values higher than 3 

sensitivity decreases. 

Performance indexes for the detection of  artifacts in the training and validation 

databases using ROC and PR are shown in Table 6-3. Although results were similar when 

comparing both criteria, the precision was higher for the PR approach at the expense of  

slightly lower sensitivity because of  the introduction of  a number of  FN. The sensitivity 

was higher when considering the ROC criterion but this led to an increase in the number 

of  FP (as compared to PR).  The specificity was always very high (above 99%) because the 

number of  non-artifact signals is much higher than the number of  low-quality signals.  A 

sensitivity analysis for k1 and k2 in the training database is presented in Table 6-3. Different 

values of k2 produced the same sensitivity for increasing values of  k1 whereas the precision 

varied at high values of k1 (because of  the inclusion of  FP). Precision and sensitivity 

increased and decreased respectively for increasing values of  k1. The values adopted for 

k1and k2 in this work represent a good tradeoff  between sensitivity, specificity and 

precision. 
TABLE 6-3.OPTIMUM VALUES OF k1 AND k2 (Eq. 6-2  AND Eq. 6-4 ) AND THEIR PERFORMANCE INDICES. 

  (k1, k2) 
Acc  
(%) 

S  
(%) 

SP 
(%) 

P 
(%) 

 

Training ROC (7.1, 0.2) 99.61 97.67 99.69 92.31 

 PR (11.2, 0.2) 99.66 94.19 99.87 96.43 

Validation ROC (7.1, 0.2) 99.40 97.94 99.46 88.78 

 PR (11.2, 0.2) 99.48 92.78 99.77 94.73 

Performance measures for combinations of  k1 and k2: Accuracy (Acc), Sensitivity (S), Specificity (SP) and 
Precision (P) for the training (20 sets) and validation (20 sets) databases. The two methods proposed for 
outlier detection are presented (ROC, Receiver Operating characteristics and PR, Precision-Recall). 
Sensitivity analysis for k1 and k2 in the training database is shown in the figure. Constant k1 is represented 
along the x-axis. Curves (in shades of  gray) are shown for k2. Higher values of  k1 increased P (in dot 
lines) but decreased S (in solid lines). Acc (dash lines) remained almost constant for different values of  k1 
and k2. Optimal values for k1 were found as a compromise between S and SP; and S and P in the ranges in 
gray. Performance indexes corresponding to the selected k2=0.2 are shown in squares. 

Although high Sensitivity (S) and Specificity (SP) were desired, a lower number of  FP 

became important when considering the next step of  the analysis where RMS values of  

artifacts were interpolated from neighbor channels. If  too many channels in the 

neighborhood were wrongly labeled as “artifacts” (i.e. too many FP), then the interpolation 

process was not possible. Because of  the lower Precision of  the algorithm with the ROC 
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criterion (Table 6-3), constants k1 and k2 were finally selected according to optimization 

results obtained by Precision- Recall.  

The algorithm for artifact detection had low computational complexity. The execution 

time of  the algorithm, (mean and standard deviation for joint training and validation 

databases), was 201.2 ± 12.85ms, [min: 187.5 ms, max 234.4 ms] per signal set on a 2.13 

GHz Intel® Core2™ processor. Each set had comprised signals with a total duration of  3s 

and was composed by a different number of  channels between 109 and 120 channels.  

6.3.2 Segmentation 

Channels affected by artifacts were identified and replaced before the segmentation of  

the activation maps. An example is presented in Figure 6.4. It is possible to observe that 

RMS values corresponding to artifacts were correctly replaced even at the edges of  the 

map. An example of  the segmentation on different maps obtained for flexion, extension, 

pronation and supination in the five muscles is presented in Figure 6.5. The shape of  the 

segmented area depended on the intensity of  the peaks. 

 

Figure 6.4. Substitution of RMS values due to artifact signals. RMS values of artifact channels are 
replaced by fitting the surface described by nearby non-artifact channels. Left. Sharp peaks caused by 
artifacts are marked with a circle. Right. Fitted surface obtained after replacing RMS values detected as 
artifacts (marked with a circle). Such points were replaced by fitting the surface described by non-
artifact neighboring channels 

The segmentation produced intensity maps for each muscle and subject, and allowed 

the calculation of  average HDEMG maps representative for the 12 subjects in the study. 
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Figure 6.5. Example of segmentation of HD- EMG Maps from the right arm of subject 5: Triceps 
(top left), Biceps (top right), Brachio Radialis (bottom left), Anconeus (bottom middle), and Pronator 
Teres (bottom right). Maps corresponding to 50% MVC in exercises associated with the main 
function of each muscle are presented. Final segmented regions are presented with crosses. Regions 
limited by dash lines were also segmented and considered as belonging to neighboring muscles and 
were not taken into account to obtain the average map for the 12 subjects. 

6.3.3 Bipolar vs. High-Density EMG signals 

Significant differences were observed for the two-way Friedman test between RMSav-bip 

and RMSav-HD using the factor muscle as blocking factor (χ2 (1) = 16.55, p<0.001). Thus, 

significant differences were observed when characterizing the different tasks and effort 

levels with information extracted from one or the other type of sensor.  

Results for the overall classification into four or twelve groups are presented in Figure 

6.6 for the variables RMSav-bip and RMSav-HD. 

 
Figure 6.6. Classification performance using the feature RMSav-HD (in black) extracted from HD-EMG 
maps or RMSav-bip (in gray) extracted from single bipolar EMG signals. a). Four classes corresponding 
to type of task (flexion, extension, pronation and supination) or b). Twelve classes corresponding to 
type of task and effort level (10%, 30% or 50% MVC) 

Accuracy Sensitivity Specificity Precision
0

20

40

60

80

100

P
er

fo
rm

an
ce

(%
)

12 classes (direction+effort level)

(b)

 

 

Accuracy Sensitivity Specificity Precision
0

20

40

60

80

100

P
er

fo
rm

an
ce

(%
)

4 classes (direction)

(a)

RMS
HD

RMS
bip



 111 Chapter 6: High- Density EMG, Activation Maps at the Elbow Joint  

 

 

Figure 6.7. Average HD-EMG maps across subjects in the five assessed muscles: Triceps (top left), Biceps 
(top right), Brachioradialis (bottom left), Anconeus (bottom middle) and Pronator Teres (bottom right). 
Maps are displayed in db. The color scale for biceps and triceps is presented at the top of each figure and 
the color scale for brachioradialis, anconeus and pronator teres is presented at the bottom. a). Flexion at 
50% MVC, b.) Extension at 50%MVC, c.) Supination at 50%MVC. d.) Pronation at 50%MVC 

6.3.4 Average HD-EMG Maps 

Average activation maps for the 12 subjects at 10, 30 and 50% MVC for each of  the 

four tasks under study were obtained by averaging the individual maps of  each subject. 

Results on average maps at 50%MVC are displayed in Figure 6.7.   

TABLE 6-4. VARIABILITY BETWEEN THE 12 INDIVIDUAL MAPS ASSOCIATED WITH THE AVERAGE HD-
EMG MAPS 

 10% 30% 50% 
Biceps  0.085, 0.18, 0.29, 
(mean, [min max]) [0.07, 0.11] [0.16, 0.2] [0.23, 0.39] 
Triceps 0.13, 0.15, 0.24, 
(mean, [min max]) [0.084, 0.23] [0.089, 0.2] [0.11, 0.36] 
Brachio Radialis 0.14, 0.16, 0.23, 
(mean, [min max]) [0.063, 0.25] [0.13, 0.21] [0.17, 0.26] 
Anconeus 0.13, 0.18, 0.2, 
(mean, [min max]) [0.11, 0.14] [0.12, 0.22] [0.15, 0.23] 
Pronator Teres 0.12, 0.16, 0.22, 
(mean, [min max]) [0.063, 0.2] [0.11, 0.2] [0.15, 0.29] 

Variability was measured through the standard deviation divided by the intensity for each pixel of the 
average map. Mean variability is shown by averaging the variability values over the segmented region for 
the four tasks. Results are presented as mean for 12 subjects including minimum and maximum values. 
This average was carried out for each muscle and each level of effort 
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Variability between subjects was measured through the standard deviation divided by 

the intensity for each pixel of  the average map. Results are presented in Table 6-4. 

In addition to the average maps at 50%MVC, their projections 𝑄𝑘𝑥 at 10%, 30% and 

50%MVC for the two most active muscles in each type of task are presented in Figure 6.8. 

Each projection was normalized with respect to the maximum value reached at 50% MVC 

in order to observe changes of the intensity as a function of effort level and to compare 

among muscles and/or tasks. Changes observed are summarized as following: 

• Flexion: Intensity decreased with decreasing levels of effort (from 50 to 10%MVC) 

in Biceps and Brachioradialis (p<0.0005), preserving a similar proportion in both 

muscles (Figure 6.8a). 

• Extension:  Intensity in Triceps decayed proportionally from 50% to 10% MVC 

(p<0.0005), but not in the Anconeus, where the maximum of the distribution was 

significantly different between 10% and 30% MVC (p<0.009) but not between 

30% and 50%MVC. (Figure 6.8b) 

• Supination: Intensity decreased from 50 to 10%MVC in Biceps and Anconeus 

(p<0.0005) but not in the same proportion in both muscles. Changes in the 

activation of the Anconeus were proportionally higher at 10% and 30%MVC when 

compared to changes in biceps, (p<0.003), although the former continued being 

the most active muscle in the contraction. (Figure 6.8c) 

• Pronation:  Intensity levels in Pronator Teres and Anconeus decreased similarly 

from 50 to 10%MVC. However, the normalized levels for Anconeus at 10%MVC 

were higher than those for Pronator Teres (p<0.001) showing that the contribution 

of the former was higher at lower levels of contraction. (Figure 6.8d) 

The identification of movement intention by muscle co-activation is usual in pattern 

recognition approaches (Tkach, Huang & Kuiken 2010). Although such co-activation 

pattern has already been assessed with bipolar electrodes, performance of the identification 
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of tasks and even of the intended effort level were improved when considering HD-EMG 

maps from the upper-arm and forearm (see Figure 6.6). Additionally, differences in the co-

activation of muscles were also reflected in the spatial distribution of the maps. Results for 

the repeated measures Friedman test for the spatial distribution variables µx and µy 

extracted from HD-EMG maps are presented in Table 6-5. It is possible to observe that 

the obtained χ2 values were significant for four of the five analyzed muscles confirming 

possible changes in the spatial distribution with different tasks and/or effort levels. 

TABLE 6-5.RESULTS FOR THE REPEATED MEASURES FRIEDMAN TEST FOR THE VARIABLES µx AND µy 
EXTRACTED FROM HD-EMG MAPS. THE TABLE PRESENTS THE χ2(11,12) STATISTICS FOR 11 D.O.F. 
AND N=12 SAMPLES, AND ITS ASSOCIATED SIGNIFICANCE VALUE P FOR THE FIVE MUSCLES. 
STATISTICAL DIFFERENCES ARE MARKED WITH (*) 

 χ2(11,12) p 
 µx µy µx µy 

Biceps 47.84* 28.94* <0.001* <0.002* 
Triceps 33.18* 42.98* <0.001* <0.001* 
Brachioradialis 8.99 23.52 n.s. n.s. 
Anconeus 8.68 27.43* n.s. <0.004* 
Pronator Teres 45.08* 31.96* <0.001* <0.001* 

Furthermore, pair-wise comparisons between spatial-distribution variables obtained for 

different effort levels of the same task on a given muscle in Figure 6.8 were assessed by 

applying a Wilcoxon signed rank test to the medians. For example, µx in the Biceps, shifted 

to the left with increasing levels of contraction during flexion (p<0.02) and during 

supination (p<0.05).  Such shifts were likely due to differences in the activation of the two 

heads of this muscle. Additionally, significant shifts were also found for the Pronator Teres 

during pronation (p<0.05).  

Finally, interesting results were obtained when comparing spatial distributions between 

different kinds of task for the same muscle. Intensity levels can be very similar, with no 

significant differences in the absolute maxima of the projections, but differences were 

found in the spatial distribution along the x-axis. An example is presented for Biceps 

during supination at 50%MVC and flexion at 30%MVC in Figure 6.9a: The maxima of the 

projections Qk
x were not significantly different (p.n.s) but their spatial distribution differed  
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Figure 6.8. Contour distribution from the two most active muscles for each kind of exercise. Curves are 
normalized with respect to the maximum intensity reached at 50%MVC (showed with a label in each 
plot). a). Flexion in Biceps and Brachio Radialis, b.) Extension in Triceps and Anconeus. c.) Supination in 
Biceps and Anconeus, and d.) Pronation in Pronator Teres and Anconeus. 
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(i.e. different median µx, p<0.04). This effect was also observed in the Anconeus (Figure 

6.9b.) when considering an extension and a pronation, both at 30% MVC (p<0.05 for the 

location of  µx). Therefore, even when in these two examples the same muscle is active with 

similar levels of  intensity, only the spatial distribution permitted to observe differences 

between tasks. 

 
Figure 6.9. Contour distribution in the x-axis for Biceps during Supination at 50%MVC and 
Flexion at 30%MVC (left) and Anconeus during extension at 30%MVC and  Pronation at 
30%MVC (right). Although the maximum and the area under each curve were similar for 
different exercises (p.n.s), their contour distribution shifted laterally depending on the exercise 
kind.   

6.4 Discussion and Conclusions 

The main objective of the study was to extract information from HD-EMG maps that 

could be associated with four tasks at the elbow joint (forearm pronation and supination, 

and elbow flexion and extension) at different effort levels. This objective has been reached 

using 2D arrays of electrodes on five muscles in the upper-arm and forearm.  It was shown 

no only that the average signal power extracted from HD-EMG maps may improve the 

differentiation of tasks and effort levels but also that the spatial distribution of the maps 

differed between tasks. Variables related with the spatial distribution of the intensity may 

complement the information provided by the amplitude of the signals in the identification 

of motion intention. Additionally, average HD-EMG maps for the four types of tasks and 

for the group of 12 voluntary subjects were obtained. 
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6.4.1 Detection of low-quality signals 

Due to the high number of sEMG channels, an algorithm for the automatic detection 

of low quality signals was developed. In this study, the artifactual channels were removed 

and interpolated based on RMS values of neighbor channels in the HD-EMG maps. 

As the number of channels affected by artifacts is usually much lower than the number 

of non- artifact channels, the number of TN is usually high, so the accuracy and especially, 

the specificity, is in general very high (>99%). In this study, the percentage of low quality 

signals was between 0 and 13% of the total number of channels of each set in the training 

database.  For this reason, the ROC method, which was intended to compromise between 

specificity and sensitivity, provided an overestimated value of the former (the latter was 

always very high as it was explained above) at the expense of reducing the precision of the 

algorithm. On the other hand, PR method maximized the sensitivity while preserving the 

precision. Considering that both, the specificity and the accuracy were always very high, the 

use of PR was more convenient in our case since we were dealing with offline detection 

and interpolation of artifacts. In addition, the accuracy was slightly higher with the PR 

method. Other applications, especially those intended for online detection, should consider 

the ROC approach in order to increase the sensitivity as much as possible.   

In addition, the sensitivity analysis for the constants kline, k1 and k2 in Table 6-1 and 6-3 

showed that the selected values represented a good compromise between the Precision and 

Sensitivity of the detection. 

Different approaches have also been suggested for the detection of low quality signals. 

In (Marateb et al. 2012), a non-supervised method based on local distance-based outlier 

factor was proposed for HD-EMG signals recorded from the same muscles and electrodes 

arrays. That method did not required a training process and successfully detected low-

quality signals with an average Accuracy of 91.9%, Sensitivity of 96.9% and Specificity of 

96.4%.  If the latter index is considered (refer to SP in Eq. 6-5), it is possible that such 
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method was prone to the inclusion of FP, given that the number of TN is always very high 

as explained before. This condition was not desired in our study because intensity values 

associated with low quality signals were later replaced in the maps based on neighbor 

channels, and if the latter were wrongly identified as artifacts (FP), the interpolation for the 

replacement was not possible. Thus, another method intended to minimize the number of 

FP while preserving the accuracy of the detection was proposed in the present work. 

Moreover, the method in (Marateb et al. 2012) did not take into account information 

provided by neighbor channels as in the present work.  

A different study by Gronlund et al. in  (Gronlund et al. 2005) assumed unimodal 

distribution of the amplitude of the signals and therefore it was not applicable to cases 

where the multichannel recording involved  various regions with different levels of activity 

(as in Fig. 2) or  even with no activity at all. The latter corresponded to regions localized far 

away from the main activation areas or to muscles marginally active during the contraction 

(an example can be observed in Figure 6.5 bottom-left for the signals recorded in array A1-

forearm during flexion). In contrast, the algorithm proposed in the present work labeled a 

signal as an artifact based on the amplitude information of 6 neighboring channels (Eq. 

6-4), avoiding general assumptions on the distribution of the potentials recorded in the 

array as proposed in (Gronlund et al. 2005).   

Finally, the algorithm reached very high values for the performance indexes in the 

validation dataset (see Table 6-3). In addition, the channels identified as artifacts were 

correctly interpolated from the information of neighboring non-artifact channels even at 

the edges of the map (see Figure 6.4), which provided a smooth surface for subsequent 

stages of the analysis. Therefore, both the proposed methodology and features showed a 

very good performance for the detection and off-line replacement of low-quality signals. 
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6.4.2  Segmentation of HD-EMG maps 

 An automatic algorithm for the segmentation of active zones was proposed. This 

segmentation allowed the calculation of average HD-EMG maps for the population of 12 

subjects by determining the ranges of active zones in the x and y axes relative to upper-limb 

circumference and muscle length respectively, and referred to the electrode location 

recommended for sEMG recording on the analyzed muscles. 

Other methods have been previously proposed for the segmentation of activation 

maps. Particularly Vieira et al. in (Vieira, Merletti & Mesin 2010) proposed a method based 

on watershed for assessing muscle compartmentalization. Such segmentation was aimed at 

the extraction of zones associated with local variations in the level of neuromuscular 

activity in the same muscle and it was applied successfully with this objective on the 

gastrocnemius. However, we were interested in obtaining activation maps for each muscle 

associated with different types of contractions and levels of effort. This purpose required 

the isolation of muscle activity from background in individual maps before their average. 

Thus, the segmentation algorithm had to extract global activate regions, even if those were 

composed by several regional maxima. This last condition would lead to an over-

segmentation in terms of the purpose of our study when using Watershed techniques (see 

Figure 6.10). On the other hand, h-dome was applicable straightforward without need of 

previous equalization or transformation of the original image and was not sensitive to 

regional maxima (28). For this reason the h-dome transformation was preferred in this work. 

Furthermore, it is important to note that maps segmentation was not the aim of this 

study neither the determination of anatomical muscle regions but was an intermediate step 

in order to obtain average maps. It is known that potentials’ amplitude diffuses across skin 

surface, so the actual size of active muscle regions might be overestimated by the 

segmentation proposed. In spite of this, the segmentation permitted the extraction of 

surface areas corresponding to different muscles in individual maps and also permitted to 
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focus on the regions of major activation, avoiding other active neighboring areas that could 

be more affected by the activity of nearby muscles (see Figure 6.5). By averaging individual 

segmented maps, it was possible to obtain representative HD-EMG maps associated with 

the activation of each muscle during the different tasks and effort levels. In this sense, the 

segmentation worked properly.  

 
Figure 6.10. Segmentation of HD-EMG map from biceps of subject 2 during flexion at 10%MVC. The 
original map and its topographical view is presented at the top of the figure (left and right respectively). 
The segmentation obtained by H-dome transform is presented at bottom-left. The active zone in light 
blue is correctly isolated from the background image (displayed in dark blue). The watershed 
segmentation obtained 3 different zones: light blue, yellow and dark red (bottom-right) as consequence of 
multiple regional maxima indicated by arrows in the topographical view of the map. The final result of the 
segmentation is obtained after discarding those pixels whose intensity value is below 70% of the 
maximum intensity in each of the segmented zones. Such pixels correspond to the background (dark 
blue). 

6.4.3 Average HD-EMG maps 

Variability in the levels of intensity between subjects with respect to the average HD-

EMG maps (Table 6-4) was found to be low enough to consider such maps as 

representative for the 12 subjects. The obtained differences were higher for higher levels of 

contraction (between 20% and 29% in the four tasks at 50%MVC) and being less than 12% 

for contractions at 10%MVC (see Table 6-4).  In the average activation maps depicted in 
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Figure 6.7, it is possible to observe changes in the activation pattern corresponding to 

different tasks. Such differences were confirmed with the classification by LDA shown in 

Figure 6.6. Consequently, results concerning the spatial distribution and the levels of 

intensity from average maps can be considered as globally associated with the muscle 

function and to the activation pattern of the subjects in the study. 

 On the other hand, the classification performance was higher for the average power 

extracted from HD-EMG maps (RMSav-HD) than from bipolar electrodes (RMSav-bip) either 

for four or twelve classes, especially when considering the precision and sensitivity of the 

classification. Therefore it is possible to conclude that information extracted from the 

amplitude of signals recorded in high-dimensional configuration has more power to 

differentiate between tasks and even effort levels than single bipolar signals. With this 

respect, a recent study by Tkach et al. (Tkach, Huang & Kuiken 2010) and based on 

information extracted from bipolar signals, showed that the classification accuracy for the 

identification of motor tasks worsens when considering distinct strengths of the same 

motion. Substantial drops were observed when training and testing the classifier with data 

of mixed high and low effort levels obtaining a maximal accuracy of ~80% for the 

classification into the four tasks described in the present work. In our case, an overall 

classification accuracy of approximately 90% for 4 motor tasks with mixed data from very-

low to medium-high effort levels (10%, 30% and 50% MVC) was obtained. What is more, 

classification accuracy for 12 classes was also in the order of 90%. However, in both cases 

the precision and sensitivity were not very high, thus additional data transformations or 

other features are necessary in order to improve the identification performance. In this 

sense, the Friedman test showed that variables related to the spatial distribution of the 

maps (µx and µy, see Table 6-5) may also assist in the discrimination between types of tasks 

and effort levels.  
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In addition, Tkach et al. also found that classification accuracy dropped when bipolar 

electrodes shifted by15 mm (Tkach, Huang & Kuiken 2010). Such shifts could be due to 

relative movements between the recording electrodes and the skin or because of errors 

when positioning the sensors, for example in different days. Thus another advantage of 

HD-EMG maps relies on the contact redundancy implied by the recording of a number of 

signals over a large surface of the muscle, as well as in the possibility of extracting features 

associated with spatial-changes induced by the central nervous system in the control of the 

muscles (Holtermann, Roeleveld & Karlsson 2005). All of this makes HD-EMG maps 

more robust to errors introduced by contact artifacts and by the relative location of the 

electrodes with respect to the origin of the potentials, especially in contractions involving 

joints movement or sensors repositioning.  

When analyzing variables associated with the activation maps for the 12 subjects, it was 

possible to observe differences in the co-activation pattern of the muscles according to the 

kind of task and the effort level. For example during flexion at 50%MVC (see Figure 6.5), 

the Biceps, and the Brachioradialis were the most active muscles (as expected) but there 

was also an important activation of the Anconeus and of the Pronator Teres  likely to 

stabilize the elbow joint and to compensate for the supination action of the biceps. The 

extension at 50%MVC was mainly produced by the Triceps and the Anconeus but the 

other two analyzed muscles in the forearm were also active. All selected muscles but 

Triceps were involved during Supination at 50%MVC with similar intensity levels among 

them. Finally, during Pronation at 50%MVC, naturally the most active muscle was the 

Pronator Teres but both the Anconeus and the Brachioradialis were also active while the 

muscles of the upper-arm appeared not to be active during the contraction. Additionally, 

when considering activation patterns for contractions at 30% and 10%MVC it was found 

that the levels of intensity did not decreased proportionally with effort level in all of the 

muscles, showing changes in the load-sharing of the involved muscles.  
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Differences in the average maps between 10%, 30% and 50%MVC were not only 

related to the levels of intensity but also to its spatial distribution. It was possible to 

observe differences in their projection over the x-axis (see Figure 6.8 and 6.9 and Table 

6-5) for different effort levels depending on the task. These variations corresponded to 

shifts in the lateral to medial axis when the level of effort changed from 10% to 50% MVC.  

Furthermore, similar values of intensity were obtained for different kind of tasks in some 

muscles and differences were only found in the spatial distributions of the maps. 

For all of this, HD-EMG maps instead of single bipolar signals, and variables related to 

maps intensity and spatial distribution might be useful in applications where identification 

of movement intention is needed: for example in robotic-aided therapies focused on the 

improvement of muscle coordination where the interaction between patient and machine is 

involved and where the robot has to be able to sense patient’s intention (Hogan et al. 

2006). Additionally, other applications implying proportional control for devices like 

powered- prostheses or orthoses could benefit from information provided by HD-EMG 

maps regarding not only the task but also its strength. 
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7  
High- Density EMG 

Tasks Identification 
 

7.1 Introduction 

Surface electromyography (sEMG) records the superposition of  the motor unit action 

potentials (MUAP) originated by discharges of  the motor neurons during a voluntary 

muscular contraction. It can be used as a natural biological signal to infer motion intention 

of  the user regarding the direction of  the movement as well as its strength. sEMG signals 

have been widely used as control source for different devices in the field of  human-

machine interfaces including powered- prostheses and orthoses (Englehart, Hudgins 2003, 

Khokhar, Xiao & Menon 2010), rehabilitation robots (Dipietro et al. 2005) and assistive 

devices (Hogan et al. 2006).Therefore, when considering the control of  a robotic device, 

the basic challenge consists in the extraction of  a set of  features from sEMG signals to be 

used as input information for the control of  robotic systems. This procedure reduces the 

dimensionality of  the raw sEMG signal by obtaining a feature vector that can later be used 

for pattern recognition, that is, for classifying the features related to different muscles or 

anatomical locations into classes associated to different kinds of  user’s intended motions or 

even to different strengths of  that motion. The main advantage of  establishing the 

interface at the neuromuscular level is the ability to estimate the forces that will be 

generated by the muscles before these effects can be directly measured by kinematic 

interfaces. This also applies to highly-impaired patients, who are unable to produce 

movement but are still able to weakly activate their muscles (Dipietro et al. 2005). This 

information could be fed into an exoskeleton system, so that when the muscles contract 

the exoskeleton amplifies the joint moment by a preselected gain factor. What is more, the 

identification of  effort, (in terms of  strength and direction) is also necessary in other 

applications involving games or rehabilitation exercises (De Biase et al. 2011) in order to 
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provide the subject with biofeedback. In this way, the subject can try to improve its 

performance or to reach a given target or goal.  

Pattern recognition from sEMG signals has been extensively investigated during the 

past 50 years, especially for the control of  powered prosthesis (Englehart, Hudgins 2003, 

Scheme, Englehart 2011, Parker et al. 2006). In general, classification accuracy obtained 

from pattern recognition has been very high. For example, (Englehart, Hudgins 2003) 

reported accuracy higher than 95% in classifying four wrist functions from sEMG. 

However, most of  the studies in this field were focused on the recognition of  motion 

intention regardless of  its strength and distribution. We extend previous experience to the 

identification of  the degree of  exerted force and from EMG signals. Such information 

could be beneficial for the control of  rehabilitation games, therapeutic or assistive devices 

(Khokhar et al. 2010). Moreover, in most of  the studies, classification is based on features 

extracted from signals recorded while exerting a moderate force (Englehart, Hudgins 2003, 

Hargrove et al. 2009, Hargrove et al. 2007) whereas other recent studies have shown that 

classification accuracy worsens if  the classifier is trained with a mixture of  different levels 

of  effort (Scheme, Englehart 2011, Tkach et al. 2010).  In pattern recognition control, 

repeatable patterns of  EMG activity are mapped to classes associated with multiple degrees 

of  freedom-DOF based on the co-activation of  different muscles for a given task (Scheme, 

Englehart 2011). However, such patterns may change at different force levels because of  

variations in the load-sharing of  synergistic muscles or even because of  differences in their 

motor unit recruitment thresholds (Merletti, Parker 2004).  Thus, the correct identification 

of  the activation level for proportional control (or simply for showing the user a map of  

activation) is still an open subject that needs to be solved before translating pattern- 

recognition approaches to clinical environment (Englehart, Hudgins 2003, Scheme, 

Englehart 2011, Parker et al. 2006), especially when considering applications to devices that 

are not necessarily prostheses. 

In addition to the variations introduced by the exerted force, sEMG-based control is 

complex because of  the large inter-individual variability of  sEMG features due to muscle 

size, subcutaneous tissue thickness and location of  innervation zones which affect the 

amplitude of  the recorded action potentials. Additionally, signal amplitude changes because 

of  muscle shift under the detection system and changing level of  crosstalk from adjacent 

muscles (Parker, Englehart & Hudgins 2006, Tkach, Huang & Kuiken 2010). These 

variations are especially important when considering signals detected from one or few 

electrode pairs per muscle. These drawbacks can be reduced using High Density EMG 
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(HD-EMG) obtained from 2D arrays and processing the signal in the space dimension 

(Staudenmann et al. 2009 and Zwarts, Stegeman 2003). The processing of  this kind of  

signals as a topographical image (HD-EMG map) provides a quantification of  both the 

temporal and spatial characteristics of  the electric muscle activity (Merletti et al. 2010a, 

Merletti et al. 2010b). It has been found that the spatial distribution of  intensity in RMS 

maps changes with time (Tucker et al. 2009), pain (Madeleine et al. 2006) and force level 

(Holtermann, Roeleveld & Karlsson 2005). This change is related to “heterogeneity either 

in the distribution of  the motor units within the muscle or in the strategy with which 

motor units are recruited” (Farina et al. 2008).Thus, spatial information can improve 

pattern recognition from sEMG when different effort levels are considered. 

The main goal of  the present study was the automatic identification of  four types of  

isometric tasks associated to the DOF of  the elbow: flexion, extension, supination and 

pronation and also the differentiation between levels of  voluntary contraction at low-

medium efforts. The classifier was trained and tested using pooled data corresponding to 

different levels of  effort. The identification was attempted based on a new set of  features 

extracted from HD-EMG maps, incorporating not only traditional time-domain variables, 

but also features associated to the distribution of  potentials in the space of  HD-EMG 

maps. This set of  features showed very positive results for the classification of  tasks, in 

spite of  taking into account different levels of  force, and even for the identification of  the 

effort level associated to a single task. 

This chapter deals with the extraction of  a set of  features related to HD-EMG maps 

from the forearm and upper-arm, to their distribution in the 2D space and with the use of  

a two-steps classifier based on linear discriminant analysis and muscle function information 

for each type of  contraction for the identification of  contractions at the elbow joint.  

7.2 Methodology 

7.2.1 Reference system 

A reference coordinate system was defined for each muscle separately (biceps, triceps, 

etc.) in order to homogenize the coordinates of  the recording electrodes locations among 

subjects.  In all cases, the x-axis was parallel to the medial- lateral direction and the y-axis 

was parallel to the proximal-distal direction. Coordinates in both axes were normalized with 

respect to the circumference and length of  the different limb segments where the electrode 

arrays were placed. x- coordinates for the reference systems were normalized with respect to:  
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•  the circumference of  the proximal forearm during a strong flexion contraction 

for the array 1;  

•  the circumference of  the distal upper-arm during a strong flexion contraction 

for the array 2;  

• the circumference of  the proximal upper-arm during a strong extension 

contraction for the array 3.  

Circumference was measured over the muscle belly of  Brachioradialis, Biceps and 

Triceps respectively.  

On the other hand, y-coordinates for the reference systems were normalized with respect 

to: 

• the distance from the medial Epicondyle to the Apofisis of  the radius for the 

array 1;  

•  the distance between reference points proposed by SENIAM project for the 

triceps and biceps in arrays 2 and 3 respectively: from the Acromion to the 

Fossa Cubit (d1) for the former, and from the Acromion to the Olecranon (d2) 

for the latter (Freriks, Hermens 1999). 

The origin of  the coordinate axes of  the reference system for each muscle was defined 

as follows:  

• For muscles recorded on array 1 the origin of  the x-axis laid in the intersection 

between the line that connects the origin and insertion of  each muscle of  the 

forearm (Kendall F. P., Kendall McCreary E., and Provance P.G. 1993) and the 

arc traced around the forearm 2 cm below the elbow crease. The origin of  the 

y-axis was placed on this arch.   

• the origin  of  the reference coordinate systems for biceps and triceps 

corresponded to landmarks proposed by SENIAM project:  at the points 

located at ¾ d1 and at ½ d2 respectively over the lines that connect the origin 

and insertion of  such muscles (Freriks, Hermens 1999). 

7.2.2 Feature Extraction 

Features for the identification of  tasks and levels of  effort were related to the level of  

intensity and to the distribution of  such intensity of  HD-EMG maps in the space. Four 

features were extracted from the segmented area for each of  the five selected muscles: 

Mean and Maximum Intensities (µI and maxI, respectively), and the coordinates of  Centre 

of  gravity and Maximum (CG and MX, respectively). Intensity- based features (µI and 
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maxI) are related to the amplitude of  EMG signal, which is commonly used in the control 

of  prosthesis and other human- machine interfaces (see for example (Dipietro et al. 2005, 

Andreasen, Alien & Backus 2005). The inclusion of  spatial-based features (CG and MX) 

was motivated by previous findings (see Chapter 6), and by the work of  Holterman et al. 

who found that the spatial distribution of  HD-EMG maps changed with force level 

(Holtermann, Roeleveld & Karlsson 2005).  

 

  

Figure 7.1. Monopolar HD-EMG maps for subject 11 obtained for the five muscles under study: triceps, 
biceps, brachioradialis, anconeus and pronator teres. The full maps are presented. The four tasks are 
indicated: flexion at 30%MVC (top- left), extension at 10%MVC (top right), supination at 30%MVC 
(bottom-left) and pronation at 10%MVC (bottom-right). The maps are interpolated in both dimensions in 
space for visualization purposes only. It is possible to observe differences in the average intensity as well as in 
the spatial distribution of the maps. Note that the scales are linear and different scales were used for maps at 
30%MVC and maps at 10%MVC in order to appreciate the spatial distribution of the RMS of the signals at 
low effort levels. The maps are represented in the reference system for each muscle as described in Methods. 

Examples of  different HD-EMG maps obtained for subject 11 are presented in Figure 

7.1. Maps corresponding to the five analyzed muscles and to the four tasks are displayed. 

Two effort levels at 10% and 30% MVC are shown in order to illustrate graphically the 

described differences, not only with respect to the average intensity of  the maps but also 

with respect to their spatial distribution. It is possible to observe that different muscles are 

active according to the intensity levels of  the maps and depending on both, the task and 

the effort level. It is also possible to observe spatial shifts in the intensity values or the 
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maximum, for example when comparing flexion and supination both at 30%MVC in 

Biceps. 

Spatial features were computed by two methods: one considered the global segmented 

area (“global mass” method) while the other one considered only the areas with the highest 

intensity (“isolated masses” method).  

 In the “global mass” method, all pixels were considered for computing the center of  

gravity of  the segmented area as:  

𝐂𝐆𝐆𝐌 =  1
𝐺𝑀

∑ 𝐻𝑛 ∙ 𝐮𝑛𝑁
𝑛=1 , 𝐌𝐗𝐆𝐌 = v (Eq. 7-1) 

where H corresponded to the value of  intensity (i.e. RMS) of  channel n located at the 

positions (i, j) of  the map Isi,j (please refer  to Eq. 6-8 in Chapter6), whose position in the 

new reference coordinate system (x, y) is described by the vector u, N is the number of  

elements in the total segmented area and 𝐺𝐺 = ∑ 𝐻𝑛𝑁
𝑛=1  is the total sum of  the values of  

intensity across N elements (i.e., the “global mass” of  the segmented area of  the map) . On 

the other hand, the vector v described the position of  the electrode with maximum 

intensity in the map. Both, u and v had components in x and y and so, CGGM and MXGM 

were defined as bi-variate features. Nevertheless, this method was sensitive to local 

variations in the amplitude of  the signals on a given neighborhood (which were reflected in 

the RMS value obtained from individual channels) especially if  the activation was low 

(10%MVC). These variations could be explained by differences in the electrode-skin 

impedance of  different channels, noise, or even by crosstalk from adjacent muscles. 

Besides, the method was also dependent on the location of  innervation zones and on the 

geometry of  the segmented area.   

In the second method, the coordinates of  the maximum intensity (MXm) and of  the 

center of  gravity (CGm) were obtained by analyzing Isi,j as a set of  “isolated masses” 

corresponding to isolated regions of  high intensity (peaks) within the map. Additionally, 

using a constraint related to the minimum size of  the masses, it was possible to obtain a 

better estimation of  the maximum intensity (maxIm) and its location within the map, 

avoiding bright spots caused by dramatic variations in RMS values as described in the 

previous paragraph that could not have been considered as artifacts. 

The “isolated masses” method consisted in: 

 1). Extraction of  T intensity peaks within the map by applying an h-dome 

transformation intended for the segmentation of  isolated areas with  high intensity .The 
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image I was viewed as a topographical map with different elevations corresponding to 

peaks of  intensity or domes, which were extracted from the background by a morphological 

reconstruction of  the Image. Details are described in (Vincent 1993) and an application is 

described in Chapter 6. Isolated domes extracted from the image were used to arrange a 

system of  T isolated masses. 

2). Estimation of  the center of  gravity of  the system of  masses and the position of  the 

maximum intensity as 

𝐂𝐆𝐦 =  1
∑ 𝑚𝑡
𝑇
𝑡=1

∑ 𝑚𝑡 ∙ 𝐜𝐠𝑡𝑇
𝑡=1 , 𝐌𝐗𝐦 = w (Eq. 7-2) 

Where mt and cgt represent the mass and the coordinates of  center of  gravity 

calculated analogously to (Eq. 7-1) across K pixels for each isolated mass t=1, 2…T, and w 

is the position vector of  the maximum value of  intensity considering only the T masses. 

An example of  both approaches is presented in Figure 7.2. The map displays an 

activation of  both heads of  Biceps during flexion at 50% MVC. It is possible to observe a 

valley in the middle of  the activation zone affecting the estimation of  the center of  gravity 

obtained by applying the “global mass” method. On the other side, the center of  gravity is 

attracted to the masses at the left (m1 and m2) when applying the “isolated masses” method.  

  

Figure 7.2. Example of monopolar HD-EMG Intensity map I from Biceps during flexion at 50% 
MVC. A system of T=3, [m1, m2, m3] masses is obtained after the h-dome transformation (left).  The 
center of gravity- CGm obtained from the “isolated masses” method (*) is closer to the brightest 
area (i.e. the two masses m1 and m2 at the left) than the CGGM obtained from the “global mass” 
method (×) (right). The maps are represented in the reference system for biceps as described in 
Methods.  

On the other hand, and considering that the relationship between exerted force and 

EMG amplitude is not necessarily linear (Staudenmann et al. 2010), the Intensity level of  

each map was parameterized according to the logarithm of  the maximum value (maxIGM, 

maxIm) and of  the mean value (µI) of  intensity of  the maps. The former was calculated 
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using both approaches explained above: maxIGM and maxIm by the “global mass” and 

“isolated masses” methods respectively:   

𝑚𝑎𝑥𝐼𝐺𝑀 = 𝑙𝑜𝑔10�max�𝐼𝑠𝑖,𝑗��  ,𝑚𝑎𝑥𝐼𝑚 = 𝑙𝑜𝑔10[max(𝐼𝑝𝑡)]  ∀ 𝑡 = 1. .𝑇  

𝜇𝐼 = 𝑙𝑜𝑔10 �
1
𝑁 
∑ ∑ 𝐼𝑠𝑖,𝑗𝑗𝑖 �  (Eq. 7-3) 

where Isij was defined in Eq. 6-8 for the N pixels of  the segmented area and Ip is each of  

the segmented peaks t after the h-dome transform. Log-transformations have been found 

useful for characterizing the force-EMG relationship in the past (Herda et al. 2011). 

7.2.3 Classification   

The main research question of  the study was if  it is possible to differentiate among 

tasks and effort levels involving isometric contractions related to flexion, extension, 

supination and pronation at three submaximal contractions on the basis of  HD-EMG 

maps.  

A linear discriminant classifier (LDC) (Krzanowski 1988) based on the spatial 

distribution and intensity of  the activation maps was proposed. Different sets of  features 

defined in the previous section were used: coordinates of  CGGM, CGm, MXGM and MXm 

and intensity descriptors µI, maxIGM and maxIm for each of  the five areas corresponding to 

the five selected muscles. The classification was carried out by applying the Leaving One 

Out method (Kearns, Ron 1999). Two approaches were considered in order to define two 

classifiers for the discrimination between tasks and/or between levels of  effort from 

intensity-based features and/or spatial-based features. 

The first approach, called 1-step LDC, classified simultaneously both task and level of  

effort, that is, 12 groups. In this case, features extracted from all of  the five muscles were 

considered. 

The second approach was based on a two-steps classification and was called 2-steps 

LDC. Firstly, features were classified according to the four types of  task (i.e. flexion, 

extension, supination or pronation) considering different combinations of  the described 

features from the five muscles. Then, a second classification according to the level of  effort 

was carried out. This second step was based solely on the features obtained from those 

muscles that were expected to be involved during that particular task (identified during the 

first step). Such subset of  muscles was chosen to be composed by at least one agonist and 

one antagonist as follows: Biceps and Triceps for both flexion and extension, Biceps, 

Brachioradialis and Anconeus for supination and Pronator Teres and Anconeus for 
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pronation. The inclusion of  these subsets of  muscles was also supported by previous 

results (Rojas-Martínez et al. 2012), where significant differences were found for both 

intensity levels and their spatial distribution as obtained for variations in the levels of  effort 

relative to the maximal voluntary contraction in the selected muscles during these tasks. 

Performance of  the automatic classification was defined in terms of  Sensitivity(S), 

Specificity (SP), Precision (P) and Accuracy (Acc) (Farina et al. 2001) as: 

𝑆 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

    𝑆𝑃 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

   𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

   𝐴𝑐𝑐 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁

   (Eq. 7-4) 

where True Positives (TP) is the number of  elements of  group x classified as belonging to 

class x, False Positives (FP) is the number of  elements belonging to other groups and 

classified as class x, False Negatives (FN) is the number of  elements of  group x classified 

as belonging to other groups and True Negatives (TN) is the number of  elements of  other 

groups that were not classified as belonging to class x. 

7.3 Results 

7.3.1 Classification based on Spatial Distribution of HD-EMG maps 

First of  all, a Multivariate Analysis of  Variance was applied to the features CGm and 

CGGM obtained from the five muscles in order to assess their power in discriminating the 

four types of  task.  A significant interaction for the factor “group” (i.e. type of  task) was 

found as estimated from Pillai’s Trace (Anderson 1984), obtaining a much lower 

significance for the case of  feature CGm (p<<0.0001) than for CGGM (p<0.04). These 

results confirmed the expected differences between the two methods when calculating the 

spatial distribution-based features. 
TABLE 7-1. PERFORMANCES INDEXES FOR THE CLASSIFICATION ACCORDING TO TYPE OF TASK BASED ON 
SPATIAL-BASED FEATURES. RESULTS PRESENT THE AVERAGE PERFORMANCE INDEXES FOR THE 
CLASSIFICATION IN FOUR GROUPS AS MEAN ± STANDARD DEVIATION FOR 144 OBSERVATIONS (12 SUBJECTS 
× 4 TASKS × 3 EFFORT LEVELS). 

 Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

CGm 78.1±3.8 56.3±6.9 85.4±4.0 56.7±8.2 
MXm 78.8±2.8 57.6±11.2 85.9±2.4 57.4±5.7 

Since the method of   “isolated masses” proved to be more sensitive than the one based 

on distributed masses, in further classifications, only features CGm, MXm, maxIm and µI will 

be used instead of  the ones obtained from the classical “global mass” method. 
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Finally, spatial-based features CGm and MXm were used for the discrimination of  type 

of  tasks (flexion, extension, supination and pronation) in order to evaluate its performance 

when used in isolation avoiding the inclusion of  any other type of  feature. Results are 

summarized in Table 7-1 as mean ± standard deviation for the four types of  task. 

7.3.2 Classification based on Intensity of HD-EMG maps 

 
Figure 7.3. Performance indexes for the classification according to type of task: flexion, extension, 
supination or pronation. The LDC classifier used the Log Intensity-based features µI or maxIm (Eq. 
7-3).  Performance indexes obtained without applying the log-transformation are also presented 
(i.e.10µI or 10maxIm). Results present the performance of the classification in four tasks as mean ± 
standard deviation of the four Performance Indexes. 

Features µI and maxIm were used for differentiating between flexion, extension, 

supination and pronation. Performance of  the classification by using the 1-step LDC is 

presented in Figure 7.3 for the log-transformed features µI and maxIm as well as for the 

non-transformed ones for comparison purposes. Higher accuracy is observed for the 

former with respect to the latter. This could be because the relationship between force and 

EMG is not linear and its better explained by log-transformations of  the amplitude (Herda 

et al. 2011). Hence, log-transformed intensity features (see Eq. 7-3) will be used for further 

classifications. 
TABLE 7-2. PERFORMANCE INDEXES FOR THE CLASSIFICATION IN TYPE OF TASK + EFFORT LEVEL 
BASED ONLY ON INTENSITY-BASED FEATURES (µI OR maxIm). THE CLASSIFICATION IS PERFORMED 
USING THE TWO CLASSIFIERS: 1- STEP LDC AND 2-STEPS LDC. RESULTS PRESENT THE AVERAGE 
PERFORMANCE INDEXES FOR THE 12 CLASSES CORRESPONDING TO IDENTIFIED TASKS AND ITS 
LEVELS OF CONTRACTION AS MEAN ± STANDARD DEVIATION FOR 144 OBSERVATIONS(12 SUBJECTS × 
4 TASKS ×3 LEVELS) .. 

Class. 
Meth. 

Feature Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

1- step 
LDC 

µI 92.8 ± 2.4 56.9 ± 13.2 96.1 ± 1.80 57.9 ± 13.8 
maxIm 93.3 ± 2.0 59.7 ± 11.1 96.3 ± 1.5 60.6 ± 13.9 

2- steps 
LDC 

µI 94.3 ± 2.2 66.0 ± 14.0 96.9 ± 1.5 66.5 ± 14.5 
maxIm 94.8 ± 2.1 68.8 ± 14.3 97.2 ± 1.4 69.2 ± 13.1 
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Table 7-2 presents the performance indexes obtained by using the 1-step and 2-steps 

LDC for the joint classification of  four tasks and three effort levels using the features µI or 

maxIm. Results are shown as mean and standard deviation among the 12 groups. 

7.3.3 Classification based on Combined Intensity and Spatial distribution of HD-
EMG maps 

Different combinations of  intensity-based (µI or maxIm) and spatial- based features 

(CGm or MXm) were used as inputs for the LDC (one or two steps) to discriminate 

between tasks or tasks and their corresponding effort levels. Regarding task identification, 

similar results were obtained for all the combinations obtaining an accuracy and sensitivity 

higher that 95% and 90% respectively.  Results for the combination maxIm+MXm which 

presented the best average performance are shown in Table 7-3. In this case, the task 

extension presented a perfect discrimination (Acc=100%) while supination was the most 

difficult to differentiate with an Acc= 94.4% and S=P=88.9%. 
TABLE 7-3. PERFORMANCE INDEXES FOR THE CLASSIFICATION IN FLEXION, EXTENSION, SUPINATION 
OR PRONATION. THE LDC CLASSIFIER USED THE COMBINATION OF FEATURES maxIm+MXm. 
RESULTS PRESENT THE TOTAL PERFORMANCE OF THE CLASSIFICATION AND THE AVERAGE OF THE 
FOUR GROUPS AS MEAN ± STANDARD DEVIATION FOR 144 OBSERVATIONS (12 SUBJECTS × 4 TASKS × 
3 EFFORT LEVELS) 

Type of 
task 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Flexion 97.2 97.2 97.2 92.1 
Extension 100 100 100 100 
Supination 94.4 88.9 96.3 88.9 
Pronation 95.8 88.9 98.2 94.1 

Average 96.9±2.4 93.8±5.7 97.9±1.6 93.8±4.7 

Results for the classification in 12 groups corresponding to type of  exercise and level 

of  effort are presented in Table 7-4. The LDC classifier was applied in one or two steps. 

According to results in the previous paragraph, the pair of  features maxIm + MXm was used 

for both, the 1-step LDC and for the identification of  type of  task in the first layer of  the 

2-steps LDC.  Once the type of  task was determined, the 2-steps LDC used all possible 

combinations of  features between µI or maxIm and CGm or MXm. The best performance 

was obtained by using the features maxIm+ CGm for the differentiation of  effort levels 

during flexion and extension and from µI+MXm for determining the effort levels during 

supination and pronation. 
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TABLE 7-4. PERFORMANCE INDEXES FOR THE CLASSIFICATION IN 12 GROUPS OBTAINED FROM LDC 
IN ONE AND TWO STEPS. THE FIRST STEP USED THE COMBINATION maxIm + MXm. RESULTS ARE 
PRESENTED AS MEAN ±STANDARD DEVIATION FOR THE THREE LEVELS OF EFFORT COMPRISING 36 
OBSERVATIONS IN EACH TASK (12 SUBJECTS × 3 EFFORT LEVELS). THE AVERAGE PERFORMANCE IS 
ALSO PRESENTED AT THE BOTTOM OF EACH SUBTABLE. 

Classifier Type of 
task 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

1- step 
LDC 

Flexion 94.2 ± 2.4 66.7 ± 14.4 96.7 ± 1.6 65.4 ± 15.9 
Extension 92.4 ± 5.4 52.8 ± 34.7 96.0 ± 3.1 53.6 ± 33.0 
Supination 92.0 ± 2.4 55.6 ± 17.4 95.2 ± 1.2 50.9 ± 12.9 
Pronation 91.0 ± 3.0 41.7 ± 25.0 95.5 ± 1.5 43.4 ± 21.3 

Average 92.4 ± 3.3 54.2 ± 22.6 95.8 ± 1.8 53.3 ± 20.6 

2- steps 
LDC 

Flexion 97.7  ± 0.8 88.9 ± 9.6 98.5 ± 1.5 86.1 ±12.7 
Extension 95.4  ± 2.4 72.2 ±21.0 97.5 ± 0.9 71.3 ±12.4 
Supination 96.3± 1.1 77.8 ± 4.8 98.0 ± 1.6 79.5 ±11.8 
Pronation 95.8  ± 1.2 72.2 ± 9.6 98.0 ± 0.4 76.3 ± 6.1 

Average 96.3  ± 1.6 77.8 ±13.0 98.0 ± 1.1 78.3 ±11.0 

The major problem was observed to separate between contraction levels at 30% and 

50% MVC because such levels of  effort are similar. In order to quantify this situation and 

to evaluate the capability of  the LDC to differentiate between low and medium levels of  

effort, the contractions at 30% and 50% MVC were pooled and differentiated from those 

at 10% MVC. Results for the 2-steps LDC are presented in Table 7-5 where an important 

improvement in the performance of  the classifier can be observed. 

TABLE 7-5. PERFORMANCE INDEXES FOR THE CLASSIFICATION INTO EIGHT GROUPS BY USING THE 2-
STEPS LDC. RESULTS ARE PRESENTED AS MEAN ±STANDARD DEVIATION FOR THE 2 LEVELS OF EFFORT 
(10% AND 30%-50%MVC) COMPRISING 36 OBSERVATIONS (12 SUBJECTS × (1+2) EFFORT LEVELS)   IN 
EACH TASK. THE PRIORS OF THE 2 STEPS CLASSIFIER WERE MODIFIED IN ORDER TO TAKE INTO ACCOUNT 
THE DIFFERENT SIZE OF THE GROUPS PROVIDING THAT CONTRACTIONS AT 50% AND 30% MVC WERE 
POOLED TOGETHER. 

Type of task Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

Flexion 97.9 ± 1.0 91.7 ± 11.8 98.4 ± 0.1 87.8 ± 6.4 
Extension 97.9 ± 0 91.7 ± 0 98.8 ± 0.5 90.1 ± 7.8 
Supination 96.5 ± 0 85.4 ± 3.0 98.0 ± 0.4 84.1 ± 10.2 
Pronation 96.5 ±1.0 83.3 ± 0 98.5 ± 2.1 85.7 ± 20.2 

Average
  

97.2 ± 0.9 88.0 ± 6.1 98.4 ± 0.9 87.0 ± 9.7 
 

7.3.4 Classification using smaller sets of electrode arrays 

Identification of  tasks and levels of  efforts using smaller electrodes arrays was also 

considered in order to evaluate the classification performance using a lower number of  

electrodes located around a generic anatomical point. A subset of  the arrays corresponding 

to a square grid of  3×3 channels centered at the average of  the CGm and MXm for the 12 
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subjects for each muscle was used for the calculation of  intensity-based feature maxIm. This 

feature was considered since its classification performance was better than with the other 

intensity-based feature µI (see Figure 7.3 and Table 7-2) when using the total segmented 

area of  the arrays. Thus, a total number of  45 electrodes were considered to obtain EMG 

signals from the five muscles. The coordinates of  the center of  the 3×3 grid of  electrodes 

for each muscle are presented in Table 7-6 considering two anatomical possible reference 

locations: at the average CGm or at the average MXm for the 12 subjects. 

TABLE 7-6. REFERENCE ELECTRODE LOCATIONS BASED ON THE AVERAGE COORDINATES OF THE 
CENTER OF GRAVITY (CGm) OR OF THE MAXIMUM VALUE (MXm) FOR THE 12 SUBJECTS. RESULTS ARE 
RELATIVE TO THE DIMENSIONS OF THE LIMB. THE ORIGIN OF THE SYSTEM IS DESCRIBED IN SECTION 
7.2.1 OF METHODS 

    Biceps 
(%) 

Triceps 
(%) 

Brachioradialis 
(%) 

Anconeus 
 (%) 

Pronator 
Teres (%) 

CGm
average x 3.1 -5.9 0.1 3.6 1 

y 8.9 -3.0 15.8 15.9 13.5 
MXm

average x 5.6 -3.5 0 3.4 1.2 
y 9.6 -3.6 13.9 15.0 11.7 

The classification in four or 12 classes associated to type of  task or to the joint 

classification in tasks and effort levels at 10%, 30% and 50% MVC is summarized in Table 

7-7. The two locations of  the 3×3 grid of  electrodes arrays over each muscle as described 

above were considered.  

TABLE 7-7. PERFORMANCE INDEXES FOR THE CLASSIFICATION IN FOUR CLASSES CORRESPONDING TO 
TYPE OF TASK (FLEXION, EXTENSION, PRONATION AND SUPINATION) AND IN 12 CLASSES (2-STEPS 
LDC) INVOLVING 3 DIFFERENT EFFORT LEVELS FOR EACH TASK. CLASSIFICATION IS BASED ON maxIM 

FROM A 3X3 GRID CENTERED AT CGmaverage OR AT MXmaverage 

Electrode-array 
location 

No. of 
Classes 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Precision 
(%) 

CGm
average 4 93.8 ± 3.3 87.5 ± 9.2 95.8 ± 1.9 87.5 ± 6.1 

12 93.6 ± 2.5 61.8 ± 18.6 96.5 ± 1.5 61.5 ± 15.9 
MXm

average 4 95.1 ± 2.3 90.3 ± 5.8 96.8 ± 1.8 90.4 ± 5.1 
  12 94.2 ± 2.4 65.3 ± 15.4 96.8 ± 1.4 65.5 ± 14.9 

7.4 Discussion 

The HD-EMG maps were parameterized using their levels of  intensity and their 

distribution in the 2D space. Regarding the distribution, it was found that features 

estimated trough the “isolated masses” method proposed in this work provided greater 
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discriminating power  (p<<0.001 for a MANOVA) than the classical  “global mass” 

method and, thus, more capacity to classify or separate between tasks and their associated 

effort levels. These findings are consistent with results presented by Tucker et al. (Tucker et 

al. 2009) that reported changes in the spatial distribution of  activation maps with varying 

loads.  

The proposed features and classification methods have shown to be valid for the 

discrimination of  contractions at the elbow joint. The simple 1-step LDC can discriminate 

between the four different tasks with high accuracy when using intensity-based features 

(S=92.4%, P=92.6%, Sp=97.5%, Acc=96.2 % with maxIm) and with even slightly better 

performance(S=P=93.8%, Sp=97.9%, Acc=96.9%) when using combinations of  the 

intensity and spatial distribution-based features maxIm + MXm over the segmented area for 

each muscle (see Figure 7.3 and Table 7-3, respectively).  

Several studies have used pattern recognition based on bipolar sEMG signals to control 

prostheses with multiple degrees of  freedom, focusing on the identification of  movement 

rather than on the proportional control of  such movements to regulate the output force. 

Therefore, the classifiers are usually trained and validated with similar levels of  effort 

reaching very high accuracies. For example, in (Englehart, Hudgins 2003, Hargrove et al. 

2009, Hargrove, Englehart & Hudgins 2007),various strategies were used for the 

identification of  degrees of  freedom at the wrist and/or the hand comprising different 

features, classifiers, pattern-recognition from intramuscular signals and even feature-

projections obtained by principal component analysis. In all of  these studies, the highest 

accuracies reached values between 90% and 98%. However, none of  them took into 

account that tasks were carried out at different effort levels, and the classifier was trained 

and tested with similar forces at medium levels of  contraction, whereas different effort 

levels are considered in the objectives of  our study. 

Regarding this issue, a recent study by Scheme and Englehart (Scheme, Englehart 

2011), analyzed the stability of  classification due to changes in the force for ten classes of  

motion at the wrist and hand using eight electrode pairs. In that case subjects were asked to 

perform contractions at different levels of  force between 20% and 80% of  the strongest 

contraction they felt comfortable producing (SCC). The best classification accuracy 

(around 93%) was obtained at 70% SCC when testing at the same force level as training but 

this decreased dramatically to 72% when training with such force level and then testing 

with all levels of  force. These two accuracies were worse at lower levels of  effort reaching 

values of  81% and 54% respectively, at 20% SCC.  It is important to remark that a very low 



 139 Chapter 7: High- Density EMG, Tasks Identification  

level of  effort at10% MVC is considered in our study, and despite this, the classification 

performance is very good. Finally, the classification accuracy obtained in (Scheme, 

Englehart 2011) when training and testing with pooled data from all force levels, which is 

similar to our study,  reached only 83% and authors suggested this procedure of  mixing 

different force levels when training and testing for the identification of  tasks in order to 

reduce error in the recognition of  motor intention.  

Similarly, Tkach and Kuiken (Tkach, Huang & Kuiken 2010) analyzed the classification 

accuracy for the recognition of  DOF at the elbow joint, as in our study, using different 

time-domain features extracted from bipolar signals recorded at 25% and 65% MVC. 

When considering training and validation with features extracted from a mixture of  both 

levels of  contraction, in a way similar to our study, accuracy ranged between 50%-80% 

depending on the feature. Moreover, they also studied the influence of  disturbances such 

as electrodes shift on the classification and the accuracy decreased further up to ~35%.  

Thus, very recent studies like (Tkach, Huang & Kuiken 2010) or (Scheme, Englehart 

2011) have shown the need for continuing the research on pattern recognition from sEMG 

signals including more difficult conditions as mentioned previously. In this sense, our study 

showed that features extracted from HD-EMG maps substantially improve the 

identification of  tasks obtaining classification accuracies of  ∼ 97% when considering data 

sets extracted from different effort levels between 10% and 50% MVC. These results were 

obtained at the expense of  considerably increasing the number of  recorded EMG signals, 

however,  the classification performance was very good even when using a small grid of  

3×3 electrodes properly located at the anatomical points proposed in Table 7-6 (S>87%, 

P>87%, Sp>95%, Acc>93%, see Table 7-7).  

In our study we were interested in identifying not only motion tasks but also the level 

of  intended force. Moreover, the use of  features extracted from HD-EMG signals 

provides contact redundancy being less sensitive to shifts in electrode location. Scheme and 

Englehart (Scheme, Englehart 2011), remarked that error rate (ER=100%-Acc) introduced 

by different levels of  effort should not exceed 10% for the user to comfortably operate a 

system in the usable range of  forces. They also concluded that training and validation of  

the classifier should consider a mixture of  different levels of  effort to reduce ER. In our 

case average ER is lower than 4% for the joint identification of  type of  task and effort 

level. This information could be used by a robotic device, providing proportional control 

related to the force intended by the user. It can also be used for biofeedback purposes in 

applications intended for motor rehabilitation and based on virtual games or any kind of  
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interaction between a patient and a computer system in which the user is encouraged to 

follow a rehabilitation exercise. 

Two approaches were considered for the classification: the 1-step LDC is poor when 

analyzing the joint discrimination among tasks and effort levels (S=59.7%, P=60.6%, 

Sp=96.3% and Acc=93.3% and using maxIm). On the contrary, the second approach, called 

2-steps LDC, which consists in using a sequential classifier, is much more efficient. In the 

initial step, the observations are divided into different tasks, and after the task identification 

they are separated into sub-groups related to 10%, 30% and 50% MVC during a second 

step of  the classifier, using only a subset of  muscles assumed to be involved in each kind 

of  task. Higher performance indexes (S= 77.8%,  P= 78.3%, SP = 98% and Acc= 96.3% 

see Table 7-4) compared to 1-step LDC were obtained when combining intensity and 

spatial distribution based features in 2-steps LDC, using features as follows: a) a 

combination of  maxIm +MXm for the identification of  the four tasks in the first step of  the 

classifier and b)  a combination of  features maxIm+ CGm in flexion and extension and the 

features µI+MXm for supination and pronation in the second step for the identification of  

effort levels. Note that this LDC used the muscles selection and the appropriate features 

during the second step based on the task identification provided during the first one. When 

comparing among tasks, best results were found for flexion (S= 88.9%, P= 86.1 %, Sp= 

98.5%, Acc= 97.7), and worst identification was found for the different effort levels of  

extension (S= 72.2%, P= 71.3%, Sp= 97.5%, Acc= 95.4%), in spite that the latter presented 

a perfect classification (Acc=100%) when identifying the task (see Table 7-3). This 

highlights that extension contractions are easy to classify but it is more difficult to 

differentiate between their intensity levels, mainly because of  the similarity of  EMG maps 

obtained at levels of  30% and 50% MVC, resulting in higher numbers of  FP and FN. This 

effect was also observed, although in lesser extent, in the other three tasks. Performance 

indexes were much higher when differentiating between low-medium (30-50% MVC) and 

very low (10%MVC) levels of  effort (S= 88 %, P= 87%, SP= 98.4%, Acc= 97.2%). Such 

increase was mainly reflected in the Sensitivity (S) and in the Precision (P) of  the 

classification. 

Average anatomical locations for the center of  gravity and coordinates of  the point of  

maximal EMG amplitude were provided for each muscle. This information can be used as 

reference for electrode placement in future studies involving similar protocols. A subset of  

the arrays corresponding to a square grid of  3×3 channels (IED=10 mm) centered at these 

locations, which are the same for all subjects, was also used in order to evaluate the 
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possibility of  task identification using a much smaller number of  electrodes. In this case, 

slightly better results were found when placing the grid around the coordinates of  the 

average maximum (see Table 7-7). With such grid the identification of  tasks was very good 

(S> 87%, P>87%, SP>95%, Acc>93%) using maxIM, being only 2% less than using the 

original arrays with all the electrodes and the intensity-based features. The subsequent 

identification of  effort level was more difficult (S> 61%, P> 61%, SP> 96%, Acc> 93%), 

however these indexes were only slightly lower than when using the total segmented area 

and maxIm. Thus, despite using a much smaller number of  electrodes, the capacity for 

classification remains but only when considering intensity-based features. Due to the small 

region covered in each muscle, spatial distribution-based features do not improve the 

performance of  the classification as in the case of  using all the electrodes where they 

significantly increase the performance indexes.  

7.5 Conclusions 

Surface EMG maps from five muscles of  the upper limb were analyzed in order to 

identify differences in the muscle activation patterns associated to four tasks and three 

effort levels for each task. A Linear Discriminant classifier was described using an original 

method based on features associated to the intensity and distribution of  monopolar HD-

EMG maps based on the selective use of  information from different muscles depending 

on the identified task. Features associated to EMG distribution themselves are not 

sufficient to differentiate between tasks or the effort level with acceptable accuracy; 

however, when used in combination with intensity based features, they improve the 

performance of  the classifier. It is important to note that this improvement is not obtained 

when the intensity based features are calculated classically (“global mass” method) but it is 

obtained with the “isolated masses” method proposed in this study. This is because the 

latter is more robust with respect to several local maxima (peaks) and minima (valleys as in 

Fig. 3). Once the task has been identified, the center of  gravity is more suitable to 

determine the effort level for flexion and extension whereas the coordinates of  the 

maximum present better performance for pronation and supination. The identification of  

flexion-extension is based on biceps and triceps while the identification of  pronation and 

supination is mainly based on forearm muscles. Biceps and triceps are composed of  two 

and three well separated compartments respectively. This may be the reason why the 

coordinates of  the maximum, which is located in one of  the compartments, is less 

appropriate than the center of  gravity which depends on the intensity over the total 
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segmented area, (that is, more than one compartment). The 2-steps LDC is easy to 

implement and results showed high accuracy. The classification according to the type of  

task achieved high performance indexes, even when the HD-EMG signals related to tasks 

comprised contractions at different levels and therefore included different ranges of  

amplitude. The best automatic classification was obtained using a combination of  intensity 

and spatial-distribution features defined in this study and the proposed 2-steps LDC.  

The most difficult task to assess was supination. This is probably due to the fact that 

supination is not the main function of  any of  the analyzed muscles. The most involved 

muscles in the supination of  the forearm are the Supinator which is not superficial (and so, 

it cannot be assessed with sEMG) and the Biceps, but the main function of  this last is the 

flexion at the elbow joint. However, good results were obtained for the identification of  

supination contractions by combining intensity and spatial distribution-based features. On 

the other hand, when trying to differentiate between levels of  effort, the extension task is the 

most difficult to assess.  

The Accuracy in task identification remains very high even with a properly positioned 

smaller set of  electrodes (3×3 grids), however the classification of  the effort levels does 

not reach the performance obtained when all the electrodes are considered (being the 

supination class the most affected). 

Regarding statistical indexes associated with performance of  the classification, 

Accuracy and Specificity are not the most appropriate to be considered in multiple 

classifications (four, eight and 12 groups in our study) in spite of  being commonly used in 

the control of  powered prosthesis (Tkach, Huang & Kuiken 2010, Scheme, Englehart 

2011). Although they increased with increasing values of  Sensitivity and Precision, these 

two measures are biased by the usually very high number of  observations not belonging to 

a given group and correctly identified as members of  the other groups (TN), regardless of  

whether they were assigned to the correct group or not. Consequently, these two measures 

are always very high (>90%). On the contrary, both Sensitivity (S) and Precision (P) are 

more appropriate because they are more affected by changes in the classification 

performance and since they take into account the number of  observations for each group 

that were correctly classified with respect to the number of  those that were wrongly 

classified (FN), and with respect to those that were incorrectly classified as members of  the 

group (FP) respectively. 

The results presented in this work are based on RMS maps. These RMS values present 

large variability of  amplitude and distribution among different subjects. In spite of  this 
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difficulty, the overall performance of  the best classifier for the identification of  both the 

task and the effort level, is very good (Acc=96.3%, S= 77.8%, P=78.3%, SP=98%, see 

Table 7-4).  These results, together with the algorithms ability to differentiate between low 

(10% MVC) and medium (30%-50% MVC) levels (S= 88%, P=87%, Acc=97.2%, 

SP=98.4%, see Table 7-5), support the feasibility of  the proposed set of  features together 

with LDC to help in the estimation of  motion intention during robotic-aided rehabilitation 

and other applications concerning the use of  biofeedback from EMG signals like virtual 

games or computer-based rehabilitation training. 
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8  
Conclusions and 

Future Extensions 
 

8.1 Summary 

This thesis was directed to the analysis of  muscular pattern through sEMG and its 

relation to fatigue and pathology. Different experimental protocols were designed and 

implemented, all of  them based on multichannel EMG. Multichannel signal analysis 

allowed the assessment of  muscles with multiple innervation zones by the identification of  

the regions within the muscles where consecutive signals presented similar shapes (i.e. high 

cross-correlation coefficients) and where it was possible to observe the propagation of  

motor unit action potentials along sarcomeres. Information extracted from this kind of  

signals is not biased by the position of  the electrodes and can be reliable interpreted in the 

assessment of  upper-limb disorders (Saitou et al. 2000). Besides, the use of  spatial filters 

allowed crosstalk reduction and the estimation of  conduction velocity of  motor unit action 

potentials which has a direct relation to fatigue and pathology (De Luca 1984). 

On the other hand, two dimensional sEMG allows the assessment of  surface’ potential 

distribution when analyzing the signal as an image, either as sample by sample or averaged 

in short time intervals (Merletti et al. 2010). This technique has gain particular attention in 

recent years, allowing researchers to analyze phenomena such as muscle 

compartmentalization and motor units’ distribution heterogeneity, which is associated to 

regional variations in neuromuscular activity due to pain or fatigue, among others (Tucker 

et al. 2009, Madeleine et al. 2006). It has also been associated to changes in force level 

(Holtermann, Roeleveld & Karlsson 2005). Based on this evidence, a new set of  features 

related to the spatial distribution of  HDEMG maps was defined and tested for the 

identification of  tasks at the elbow joint. When combined with features extracted from the 

local intensity of  activation maps, not only a high accuracy was achieved but also high 

precision and sensitivity.  
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Therefore, techniques described and indices proposed in this thesis have been able to 

characterize and provide new information on the interaction between different muscles of  

the upper-limb, either to analyze muscular pattern associated to pathology or to identify the 

contribution of  different muscles to given tasks.  

The research developed and compiled in the body of  this thesis opens a new research 

line for the group of  Biomedical Signals and Systems of  the Biomedical Engineering 

Research Centre (CREB) at the Technical University of  Catalonia (UPC): analysis of  

multichannel surface EMG. 

Conclusions of  the different studies in this thesis have already been introduced at the 

end of  the chapters composing the present work. They are summarized in the following: 

8.2 Conclusions 

8.2.1 Muscular imbalances in Lateral Epicondylalgia following recovery   

Muscular imbalances in patients diagnosed and treated for Lateral Epicondylalgia were 

evaluated during experimental protocols described in Chapter 3 and following the 

methodology described in detail in Chapter 4. Results were fully discussed in Section 4.4.1 

of  Chapter 4.  

Findings on patients with lateral epicondylalgia after recovery and reinstatement to 

daily-life work activities indicate a differentiated activation pattern in voluntary contractions 

of  forearm muscles during wrist extension (p<0.05 for a t-test) and hand grip (p<0.03 for 

MANOVA). Moreover, a significantly increased fatigability has been found in recovered 

patients in both tasks (p<0.04).  

Such differentiation was analyzed based on different co-activation and fatigue indices 

extracted from EMG variables commonly analyzed in clinical environments: Average 

Rectified Value (ARV), Root Mean Square (RMS), Mean and Median Frequency (MNF and 

MDF) and Conduction Velocity (CV). The main advantage of  the focus adopted in this 

work is that all of  these variables were extracted from signals recorded in an optimal region 

of  the muscle that can only be assessed with multichannel EMG since other methods 

(namely bipolar on intramuscular recording) will fail to identify the location of  innervation 

zone and tendons when such information is not common to the general population as in 

the case of  forearm muscles (Saitou et al. 2000, Signorino, Mandrile & Rainoldi 2006, 

Mananas et al. 2005). Other advantages are related to the spatial selectivity of  the double 

differential signals, as for example, the reduction of  crosstalk components (Mesin et al. 
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2009) which are expected to be high in signals from the forearm (Mogk, Keir 2003) given 

the large amount of  muscles in this area. 

Regarding fiber type composition, MNF and MDF estimates showed higher values for 

the extensor carpi ulnaris, both in patients and healthy subjects, pointing to a higher 

composition of  type II fibers in this muscle and thus a higher predisposition to myoelectric 

fatigue (p<0.05). It is therefore not surprising that this muscle did not showed differences 

concerning fatigue index between healthy subjects and patients (p.n.s.). 

Differences in co-activation patterns may reflect muscular imbalances caused by the 

predominance of  a group of  muscles which can be overactive during a kind of  movement. 

Several studies have related such imbalances with biomechanical deficits in different 

pathologies involving hamstring (Yeung, Suen & Yeung 2009), rotator cuff  (Wang, 

Cochrane 2001)and low back muscles (Nadler et al. 2002).  

Muscular imbalances in this work were analyzed with two indices: Co-activation index 

(CI) and orientation angles in the contraction level space (θ and φ). All of  them indicated 

differences in the participation of  the extensor carpi ulnaris and flexor carpi radialis in 

patients after rehabilitation, and thus the use of  compensation mechanisms to complete the 

task (p<0.05 in all cases). Coordination between flexors and extensors was also assessed by 

the orientation angles θ and φ for the set of  vectors v (Eq. 4-10) and also showed a 

different behavior in patients, pointing to flexor-extensor imbalances associated to ECU- 

FCR and ECR-FCR (p<0.03). Finally, the orientation approach avoids normalizations of  

the power of  submaximal signals with respect to the value observed at maximal levels of  

contraction which is commonly used but could be biased because of  methodological 

considerations, (Buchanan et al. 2004), especially when considering that the relationship 

between EMG amplitude and force is not linear (Staudenmann et al. 2010).   

On the other hand, myoelectric fatigue was assessed from the rate of  change of  EMG 

variables during a sustained contraction. In both groups, healthy and former LE patients, 

significant rates of  change (i.e. slopes) were found. However, slopes were significant 

steeper (in absolute value) for patients than for healthy subjects, especially when analyzed 

from conduction velocity and for the muscles extensor carpi radialis, extensor digitorum 

communis and flexor carpi radialis (p<0.04). Conduction velocity is directly related to 

physiological determinants of  localized fatigue (De Luca 1984) and may be associated to 

changes in fiber-type composition in patients (Kupa et al. 1995). This can be explained in 

terms of  muscular adaptation to overload of  upper extremity as required by work activities 

in patients.  
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Finally, obtained results were consistent independently from the task analyzed: wrist 

extension or hand grip. Recalling that different populations were analyzed in different tasks 

(Table 3-3 in Chapter 3), it is possible to infer that the methodology employed lead to 

results that are reproducible and repeatable.  

In conclusion, findings indicate differentiated activation patterns during isometric 

contractions of  wrist extensor muscles between normal subjects and those with history of  

lateral epicondylalgia. Moreover, a significantly increased fatigability has been found in 

recovered patients. Such findings might be helpful in designing new therapeutic (i.e. 

rehabilitation) and prevention approaches. On the other hand, subjects at risk might be 

detected by the systematic evaluation of  muscular imbalances in workers exposed to 

repetitive tasks. 

8.2.2 Assessment of muscular pattern in contractions related to Repetitive Strain 
Injury 

The protocol designed for assessing the muscular pattern during contraction associated 

to Repetitive Strain Injuries was tested and validated. It was based on short time-duration 

isometric contractions that were repeated several times for each finger and considered 

different deviation angles of  the wrist. With this respect, it was found that the activation 

pattern of  the analyzed muscles was not significantly affected by the wrist rotation angle 

given that similar co-activation indices were obtained for each muscle and finger. However, 

it was found that the load-sharing between muscles depended on which finger was exerting 

the force (p<0.02) and that the activation of  muscles was higher when pressing with the 

opposite finger, that is, the finger that is located at the other side of  the limb, as for 

example in the case of  a high activation of  the Extensor Carpi Ulnaris in the lateral side of  

the forearm when pressing with the thumb, which is located in the medial side (p<0.001). 

It was also possible to assess myoelectric fatigue in the muscles as analyzed from the 

repetitive-short duration contractions of  fingers. 

Finally, considering similar activation patterns were found when pressing with every 

finger with or without rotation of  the wrist, it is possible to infer that both, the protocol 

and the proposed indices are repetitive. Such results are encouraging and motivate the use 

of  techniques based on multichannel sEMG for the study of  repetitive strain injuries in 

experienced musicians. This kind of  analysis will be useful in establishing possible 

mechanisms underlying this syndrome as well as its possible prevention and treatment. 
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8.2.3 HD-EMG maps of the Upper limb 

High- Density EMG maps of  the Upper limb were obtained for a population of  12 

healthy subjects in Chapter 6. The experimental protocol was based on the acquisition and 

processing of  sEMG signals with 2D electrode arrays as described in Chapter 5. 

The main objective of  the study was to extract information from HD-EMG maps that 

could be associated with four tasks at the elbow joint (forearm pronation and supination, 

and elbow flexion and extension) at different effort levels. Variability of  individual maps 

with respect to average maps for each muscle maintained low values (mean variability < 

23%). Consequently, average maps can be considered as globally associated with the general 

muscular pattern of  the 12 subjects in the database. Additionally, it was shown that 

information extracted from the amplitude of  signals recorded in high-dimensional 

configuration has more power to differentiate between tasks and effort levels than single 

bipolar signals (p<0.001). Conclusions from Chapter 6 supported the claim that, compared 

to bipolar signals, features extracted from HD-EMG recordings are more robust because 

of  the contact redundancy implied by the recording of  a number of  signals over a large 

surface of  the muscle, as well as to error introduced by the relative location of  the 

electrodes with respect to the origin of  the potentials. 

Two steps were involved in achieving the main goal of  Chapter 6: detection of  low 

quality signals or artifacts and segmentation of  the active zones within each electrode array. 

A supervised algorithm for the automatic detection of  low quality signals based on 

temporal and frequency features was developed. The algorithm is easy to implement and 

has low computational complexity, making it suitable for online or offline detection of  low- 

quality signals. The detection accuracy is very high (>99.4%) and more important, both the 

precision and the sensitivity to detect artifacts are also very high (>90%). Additionally, a 

sensitivity analysis showed that variations in fixed parameters of  the algorithm do not 

affect its general detection performance which makes it robust. Finally, by increasing the 

precision of  the algorithm it was possible to limit false positive detections, making it very 

useful for offline applications where it is necessary to replace artifact channels from 

information contained in the neighbor channels, provided that such information is 

sufficient and available and that those channels are not labeled as artifacts when they are 

not. When compared to other previous methods available in the literature, its main 

advantages are:  1). no distribution of  the amplitude of  the signals is assumed (Gronlund et 

al. 2005), thus it can be applied to signal sets comprising quite different levels of  muscle 
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activation and 2). It takes into account information provided by neighboring channels in 

the close proximity, decreasing the possibility of  false positive detections.  

On the other hand, image analysis techniques were used for the automatic 

segmentation of  active regions of  the maps generated from HD-EGM signals. This 

segmentation allowed the calculation of  average HD-EMG maps for the population of  12 

subjects, by determining the ranges of  active zones in the x and y axes relative to upper-

limb perimeter and muscle length respectively and referred to the electrode location 

recommended by SENIAM for sEMG. 

Other methods have been previously proposed for the segmentation of  activation 

maps.  For example Vieira et al. in (Vieira, Merletti & Mesin 2010) proposed a method 

based on watershed that segmented regions associated to local variations in the level of  

neuromuscular activity within the same muscle. However, in the present work, we were 

interested in the isolation of  the whole-individual muscle activity from background. 

Therefore, it was necessary to avoid the segmentation of  regions associated to local 

maxima or minima (i.e. peaks or valleys in the topographical map). Watershed in this case is 

not feasible because by definition, it is highly sensitive to inhomogeneities in the map and 

if  not properly applied, it can lead to oversegmentation (Serra 1982). Consequently, the 

segmentation used in this work was achieved by applying an h-dome transformation based 

on the morphological reconstruction of  the map and was especially useful for the 

segmentation of  active areas in the electrode array located around the forearm, where at 

least three disjointed areas of  activation were expected. 

Finally, it was possible to infer changes in the spatial distribution of  the energy of  

average maps (p<0.001 in the analyzed muscles) as well as in its absolute values of  

intensity. Such changes were associated to voluntary level of  effort and even to the type of  

task: flexion or extension of  the elbow or pronation or supination of  the forearm. Changes 

in intensity levels were not always proportional to effort level and were different for 

different muscles. Consequently, HD-EMG maps obtained from 2D arrays, instead of  

traditional single bipolar channels, and variables related to both their maximum intensity 

and spatial distribution should be considered in the identification of  different kind of  tasks 

at elbow level as well as in the identification of  the intended force. It can also be used in 

the analysis of  load sharing among the muscles involved on the execution of  a given task. 

8.2.4 Identification of Isometric Contractions based on HD-EMG Maps 

The main objective of  the analysis presented in Chapter 7 was the identification of  

tasks based solely on features extracted from HD-EMG maps. Such tasks consisted in the 
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extension and flexion of  the elbow and in the pronation and supination of  the forearm. 

Different levels of  effort related to MVC for each task were also considered (see protocol 

definition on Chapter 5). 

The focus adopted in this work for the classification in different tasks was on the field 

of  pattern recognition which is commonly used for the control of  powered prostheses 

(Parker, Englehart & Hudgins 2006). It consists in mapping the activation (i.e. the levels of  

intensity of  the signals) of  a given set of  muscles into types of  task by relying in distinct 

co-activation patterns corresponding to different tasks. Although pattern recognition from 

sEMG signals has been extensively investigated for the past 50 years, there are still some 

challenges to overcome before its translation to clinical applications. One of  them is the 

robustness of  the classification to changes in the force exerted by the individual when 

manipulating the prosthesis (Scheme, Englehart 2011). As pattern-recognition control relies 

on clustering repeatable patterns of  EMG activity into discernible classes, it can led to high 

classification errors because such patterns may be different for different levels of  force 

because of  changes in the load-sharing of  synergistic muscles or even because of  

differences in their motor unit recruitment thresholds, especially if  low levels of  

contraction are required (Merletti, Parker 2004). Recent studies have demonstrated that 

classification accuracy decreases when considering various levels of  effort for training the 

classifier (Scheme, Englehart 2011, Tkach, Huang & Kuiken 2010).  Thus, the correct 

identification of  the level of  activation for proportional control is still an open subject that 

needs to be resolved before translating pattern- recognition approaches to clinical 

environment (Parker, Englehart & Hudgins 2006, Scheme, Englehart 2011, Englehart, 

Hudgins 2003), especially when considering its application to other devices that are not 

necessarily prostheses. The approach presented in Chapter 7 was directed to solve this 

problem based on the hypothesis that contractions exerted at different levels of  force may 

reflect changes in the spatial distribution of  the potentials in the surface of  the muscle 

(Holtermann, Roeleveld & Karlsson 2005).  Such changes imply that muscle fiber types are 

not randomly distributed, but organized in regions with different histochemical muscle 

fiber composition. In addition, findings in Chapter 6 pointed to a differentiated spatial 

distribution not only as product of  effort level but also as product of  type of  task. Thus 

two sets of  features were extracted from each muscle: 

 Intensity-based features: Mean and Maximum values of  intensity  

 Spatial-based features: Center of  gravity of  the maps and Coordinates of  the 

maximum intensity. 
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Regarding spatial-based features, the regions corresponding to isolated areas of  

maximal intensity (i.e. local peaks) were segmented from the image in order to calculate the 

center of  gravity of  the map in a way analogous to a system of  masses instead of  

calculating it as a distributed mass.  It was found that that the isolated masses method was 

better in discriminating between types of  task than the method of  distributed mass.  

Four different tasks were successfully identified from HD- EMG maps. The classifier 

used intensity features or combinations of  intensity features and spatial features, obtaining 

higher accuracies in the second case. In any case, the classifier was always trained with 

features extracted from signals recorded at three levels of  effort and the error rate (ER) for 

any task was always less than 8% (ER= 100% -Acc) (Scheme, Englehart 2011). This result 

represents a major accomplishment when compared to recent studies that considered the 

use of  combinations of  levels of  effort to train and validate the classifier and that achieved 

error rates higher than 15% (Scheme, Englehart 2011, Tkach, Huang & Kuiken 2010).  

Finally, classification showed high performance indices when considering not only the 

discrimination between tasks (average Acc=97%, S=93%, P=93%, SP=97% for 4 groups) 

but also when discriminating between contractions performed at different levels of  effort 

(average Acc= 96%, S=77%, P=78%, SP=98% for 12 groups). Such results show the 

potential of  spatial-based + intensity-based features in time domain to simultaneously 

discriminate between tasks and effort levels, and thus to help in the estimation of  motion 

intention during robotic-aided rehabilitation. These features can only be extracted from 

HD-EMG maps and overcome most of  the drawbacks of  single bipolar channels in each 

muscle, mainly the lack of  contact-redundancy and possible shifts between the points of  

origin of  the potentials and the recording electrodes due to movement. The first is implied 

in the use of  multiple electrode arrays and the second could be a relative measure reflecting 

the “movement” of  the innervation zones in the recorded maps. 

8.3 Main contributions 

The main contributions of  this thesis are related to both experimental protocols based 

on multichannel sEMG signals, and new algorithms and indices for their analysis. In 

summary, the most relevant contributions are: 

 The definition of  experimental protocols intended to find optimal regions for 

the recording of  sEMG signals. The protocols were especially proposed for 

muscles of  the forearm that present multiple innervation zones distributed in a 

wide surface area in the general population. To the best knowledge of  the 
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author, this thesis is the first study in which the conduction velocity of  Motor 

Unit Action Potentials as obtained from multichannel sEMG signals of  

forearm muscles was used to assess differences in myoelectric fatigue between 

patients and controls during voluntary contractions.  Besides, because of  the 

problematic associated to sEMG recording in forearm muscles, the use of  

multichannel sEMG in addition to the estimation of  CV within physiological 

expected ranges allowed the determination of  the best channels to estimate the 

EMG associated variables, avoiding possible bias leading to erroneous 

conclusions.  

 A sensor system intended for HD-EMG recording in 2D, using multiple 

electrodes inserted on semi-elastic and hydrophobic fabric allowing the sensor 

to adapt to muscle geometry and to remain placed for long periods of  time. 

These sensors were used in an experimental protocol where more than 330 

sEMG channels were simultaneously recorded from forearm and upper-arm 

muscles for the first time. 

 New indices associated to the co- activation of  different muscles and based on 

the amplitude observed in signals that were recorded in an optimal region of  

the muscle. Normalizations involving the amplitude of  the signal during high 

levels of  contraction were avoided and the defined indices measured the load-

sharing between individual muscles on a given task or their orientation angles in 

a vector space. 

 An algorithm for the detection of  low-quality signals in multichannel sEMG 

recordings with high number of  channels, either online or offline with 

precision and sensitivity higher than other methods previously published. 

 The segmentation of  active regions in HD-EMG maps and associated with the 

global distribution area of  the potentials or to localized regions where the levels 

of  intensity where higher than the surrounding regions. The use of  

morphological operators avoided the segmentation of  isolated peaks of  

intensity that can appear as consequence of  inhomogeneities in the contact 

impedance between the skin and the recording electrodes. 

 An original procedure based on 2-steps LDC which uses  a new set of  features 

from the HD-EMG maps in order to  identify tasks associated to the degrees 

of  freedom at the elbow joint and to the intended level of  force with much 

higher accuracy than those obtained in similar studies so far. 
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8.4 Future Extensions 

Work developed in the present thesis open new possibilities for research in the area of  

analysis of  multichannel sEMG at the Department of  Automatic Control (ESAII) at 

Technical University of  Catalonia.  

Indices obtained in this thesis were useful to identify muscular imbalances, 

biomechanical deficits and, in general, muscular pattern of  different muscles for 

completing a given task during isomeric contractions. It will be of  interest to analyze such 

pattern during dynamic contractions which are the most common during daily-life 

activities. However, sEMG signals cannot be considered wide-sense stationary in this 

condition so it is necessary to apply other signal processing techniques, perhaps non-linear, 

and evaluate if  muscular pattern can be related to indices similar to those proposed in this 

work. Additionally, an automatic identification of  shifts of  innervation zones under the 

skin and with respect to the recording electrodes can be used in the reduction of  the 

effects of  muscle-fiber lengthening on the recorded signal. Other processing also includes 

the detection and filtering of  movement artifacts in dynamic conditions. 

Regarding repetitive strain injuries, the experimental protocol and the necessary 

hardware and software are ready to be applied to professional musicians and to be 

extended to a bigger population of  control subjects. The assessment of  myoelectric fatigue 

in instrumentalists is of  particular interest because other studies have found that changes in 

the oxidative capacity of  the muscular fibers are correlated with the manifestation of  RSI.  

Given that this condition has not been completely understood and that there is not an 

agreement regarding its diagnosis and treatment in the rehabilitation community, it will be 

of  interest to obtain quantitative indices that help improving the condition of  subjects 

affected with this syndrome and to prevent it in professional musicians which is one of  the 

most affected populations. 

On the subject of  activation maps, the techniques developed and the signals recorded 

will permit the study of  temporal characteristics of  the maps at a sample by sample scale, 

allowing the estimation of  variables such as global conduction velocity in the two 

dimensions of  the space. It could also be possible to analyze fiber-type distribution from 

spectral characteristics of  the signals in the different channels and to relate it to intensity 

inhomogeneities already inferred from research in this subject. In addition, available HD-

EMG signals will also be useful in the identification of  spatial and temporal changes 
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induced by myoelectric fatigue in sustained contractions. It will be interesting to analyze if  

myoelectric fatigue induce shifts in the distribution of  active potentials and if  those shifts 

can be correlated to information extracted from the distribution of  amplitude and spectral 

characteristics of  the signals in the space domain. Finally, HDEMG signals recorded during 

sustained contractions will permit the analysis of  the robustness of  features proposed in 

this study in the identification of  tasks during long-term contractions. 

On the other hand, additional databases were recorded as product of  the different 

experimental protocols conducted during the development of  this thesis. These databases 

are ready to be analyzed and will be useful in some of  the studies described above: 

 Multichannel sEMG in 1D during isokinetic exercises and involving eccentric and 

concentric contractions of  the extrinsic muscles of  the forearm. The signals were 

recorded in the set of  muscles described for hand-grip in Chapter 3 in controls (10 

subjects) and patients diagnosed with Lateral Epicondylalgia after recovery (10 

subjects).  

 HD-EMG signals in 2D in patients with reduced mobility of  the upper the upper-

limb (12 subjects) after cerebral-accident or incomplete spinal cord injury. The 

signals were recorded following the protocol described in Chapter 5.  

Finally, experience acquired in the design of  electrode arrays has motivated the 

development of  a new wireless electrode-system based on smart-textile technology. Such 

development is part of  a project that has recently received funding from the Spanish 

Government (Ministerio de Economía y Competitividad). 

8.5 Publications derived from this thesis 

8.5.1 Journal papers 

 Rojas- Martínez M, Mañanas MA, Alonso JF. High-Density Surface EMG Maps from 

Upper-arm and Forearm Muscles (2012). Accepted October 9th 2012. Journal of  

NeuroEngineering and Rehabilitation. Impact factor in JCR 3.264, first quartile in the 

categories Biomedical Engineering and Rehabilitation. 

 Rojas M, Mañanas MA, Alonso JF, Merletti R (2012). Identification of  Isometric 

Contractions Based on High Density EMG Maps. Accepted June 26th 2012. Journal of  
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 Unyo C, Chaler J, Rojas M, Pujol E, Muller B, Mañanas M. Forearm muscle strength in 

lateral epicondylitis patients (2012). Accepted July 16th 2012. European Journal of  Physical 
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Rehabilitation. 
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Other papers 

Additionally, the EMG signals registered with the experimental protocols described in 

this thesis have been used in other applications: 

 Marateb H, Rojas M, Mansourian M, Merletti R, Mañanas Villanueva M (2011). Outlier 

detection in high-density surface electromyographic signals. Medical and Biological 
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category Biomedical Engineering. 

8.5.2 Book chapters 
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8.5.3 International Congresses 
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Internacional sobre Domótica, Robótica y Teleasistencia DRT4ALL 2009. pp. 195-200. ISBN: 
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IEEE International Conference of  the Engineering in Medicine and Biology Society 2007, pp 4858-

61 
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Other articles 
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