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Thesis abstract  

This thesis deals with the development of tools and analysis to characterize and predict artificial recharge 
and radial convergent solute transport processes in heterogeneous media. The goal is to provide new 
insights to understand how heterogeneity, which is the main natural source of uncertainty in decision-
making processes related with groundwater applications, can be controlled and its effects predicted for 
practical purposes in these topics. For hydrogeological applications, accurate modeling of phenomena is 
needed, but it is uncertain. Uncertainty is derived from the spatio-temporal random distribution of 
hydrodynamic (physical, chemical and biological) variables affecting groundwater processes, which is 
translated into random distribution of modeling parameters and equations. Such randomness is of two 
types: epistemic, when it can be reduced increasing the sample frequency of an experiment; aleatory, 
when it cannot be reduced when more information is analyzed. Sometimes hydrodynamic processes occur 
at so small scales that they become impossible to characterize with traditional methods, and from a 
practical perspective, this is analogous to deal with aleatoric model parameters. However, if some 
constitutive relationship (either empirically, theoretically or physically based) can be built between 
processes across different scales, then small-scale processes can be reproduced by equivalent large-scale 
model parameters. Uncertainty becomes amenable to be treated as epistemic randomness, and large-scale 
characterization techniques can be used to improve the description, interpretation or prediction of these 
processes. This thesis deals with these topics. The manuscript is composed by two main parts (the first on 
artificial recharge and the second on solute transport), each of them divided into three chapters. In chapter 
1 of each part, a tool is developed to obtain quantitative information to model a selected variable at coarse 
grid resolutions. In the case of artificial recharge, satellite images are used to model the spatial variability 
of the infiltration capacity on top soils with a metric-scale detail. In the case of solute transport, a new 
method to estimate density from particle distribution is shown. In chapters 2, it is explored what processes 
occurring at the fine scales can affect the interpretation of artificial recharge and solute transport 
processes at larger scales. In the first part, a combined method that joins satellite images and field data 
along with a simple clogging model is used to display the equally-possible spatio-temporal mapping of 
the infiltration capacity of topsoil during artificial pond flooding activities. In the second part, numerical 
three-dimensional models are used to simulate transport in heterogeneous media under convergent radial 
flow to a well at fine scale. It is shown that an appropriate model framework can reproduce similar 
observations on contaminant temporal distribution at controlling section similar to those obtained in the 
field tracer tests. It is also provided a physical explanation to describe the so-called anomalous late-time 
behavior on breakthrough curves which is sometimes observed in the reality at larger scales. In the 
chapters 3, models are used to define the uncertainty around operating parameters in the optic of 
prediction and management on artificial recharge and solute transport. In the first case, a probability 
framework is built to define the engineering risk of management of artificial recharge ponds due to 
random variability of the initial distribution of infiltration, which controls several important clogging 
factors based on theoretical approaches. In the case of solute transport, it is discussed how equivalent 
parameters based on mass-transfer models can be related with the geometrical distribution of hydraulic 
parameters in anisotropic formation, when convergent flow tracer tests are used. 



Resumen de tesis  

Esta tesis está enfocada en el desarrollo de herramientas y análisis para caracterizar y predecir procesos 
de recarga artificial y de transporte de solutos convergente radial en medios heterogéneos. El objetivo es 
proporcionar nuevas perspectivas para comprender cómo la heterogeneidad, que es la principal fuente 
natural de incertidumbre en la toma de decisiones relacionadas con las aplicaciones en hidrogeología, 
puede ser controlada y sus efectos predichos para propósitos práctico. Para ello se precisa correctamente a 
los fenómenos, pero esta tarea es incierta. La incertidumbre se deriva de la distribución aleatoria espacio-
temporal de las variables (físicas, químicas y biológicas) que afectan a los procesos hidrodinámicos en las 
aguas subterráneas, lo que se traduce en una distribución aleatoria de los parámetros de los modelos y de 
sus ecuaciones. Dicha aleatoriedad es de dos tipos: epistémica, cuando puede reducirse aumentando la 
frecuencia de muestreo de un experimento; puramente aleatoria, cuando no se puede reducir añadiendo 
más información. A veces, se producen procesos hidrodinámicos a escalas tan pequeñas e imposible de 
caracterizar con los métodos tradicionales que se convierten desde un punto de vista práctico en 
parámetros puramente aleatorios. Sin embargo, si alguna relación constitutiva (o bien empíricamente, 
teóricamente o de base física) puede ser construido entre los procesos a escalas diferentes, entonces los 
procesos a pequeña escala puede ser reproducido por parámetros de modelo equivalente. La 
incertidumbre se debe entonces a variabilidad epistémica, y técnicas de caracterización a gran escala se 
puede utilizar para mejorar la descripción, interpretación o predicción de procesos pequeña escala. Esta 
tesis se ocupa de estos temas. El manuscrito se compone de dos partes principales (el primero sobre la 
recarga artificial y la segunda sobre transporte de solutos), cada uno de ellos dividido en tres capítulos. En 
el capítulo 1 de cada parte, se documenta una herramienta para obtener información cuantitativa una 
variable seleccionada con modelos a resoluciones gruesas. En el caso de la recarga artificial, las imágenes 
satelitales se utilizan para modelar la variabilidad espacial de la capacidad de infiltración en los suelos 
superiores con un detalle de escala métrico. En el caso del transporte de solutos, se muestra un nuevo 
método para estimar la densidad de distribución de partículas. En los capítulos 2, se explora qué procesos 
ocurren a escalas finas y que pueden afectar a la interpretación de la recarga artificial y de los procesos de 
transporte de solutos con modelos a escalas más grandes. En la primera parte, un método combinado que 
une a las imágenes de satélite y datos de campo con un modelo de colmatación de poros simple se utiliza 
para visualizar la posible evolución espacio-temporal de la capacidad de infiltración del suelo durante la 
inundación de balsa de recarga. En la segunda parte, modelos numéricos tridimensionales se utilizan para 
simular el transporte en medios heterogéneos bajo flujo radial convergente a un pozo a gran escala de 
detalle. Se demuestra que modelos 3D son más apropiados que modelos 2D para reproducir 
observaciones similares sobre la distribución temporal contaminante en un punto de control. También se 
proporciona una explicación física para describir el llamado efecto de anomalía a largos tiempos sobre las 
curvas de llegada que a veces se observa en la realidad. En el capítulo 3, los modelos se utilizan para 
definir la incertidumbre entorno a los parámetros de los modelos, de cara a la predicción y a la gestión de 
la recarga artificial y transporte de solutos. En el primer caso, se propone un análisis de probabilidad para 
definir el riesgo ingenieril de gestión de las balsas de recarga artificial, debido a la aleatoriedad de la 
distribución inicial de infiltración, que controla varios factores importantes de colmatación de poros 
según enfoques teóricos. En el caso del transporte de solutos, se discute cómo los parámetros equivalentes 
basados en modelos de transferencia de masa pueden estar relacionados con la distribución geométrica de 
los parámetros hidráulicos en formaciones anisótropas, cuando se usan ensayos de trazadores con flujo 
convergente radial. 
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Chapter 1

Introduction

In the last century, the Earth has su�ered from the major depletion and pollution

of aquifers. Groundwater is a poorly renewable and extremely vulnerable resource,

yet it represents about the 40% of the total fresh water in the Earth. In some cases,

it provided the 100% of totally available fresh water in some semi-arid areas of the

world ([Foster 2006]).

In the recent years we started to acknowledge the importance of groundwater.

Until now, however, uncontrolled and undocumented drilling activities have a�ected

most of the urban and semiarid aquifers all around the world (e.g. [Carrera 2005,

Custodio 2002, Llamas 2002, Foster 2006]). Because of the slow groundwater move-

ment, most of the negative e�ects of such a long uncontrolled situation in the past

decades are still to be seen in the incoming future.

Aquifers are very slowly naturally regenerated by recharge and highly vulnerable

to direct contamination from the surface. To maximize the groundwater use and

to minimize the risk of contamination in the most sustainable and cost-e�ective

manner, strategic decisions about hydrogeological management at short, mid and

long terms need to be accurately made. However, this represents an uncertain

task in most cases because of the complex hydrodynamic physical and chemical

distribution of properties in the subsurface, mainly due to geological and geochemical

heterogeneities.

Typically, the impossibility of complete characterization of geological hetero-

geneities render hydraulic variables controlling �ow and solute dynamics as random

parameters for modelling purposes ([Tartakovsky 2008]). In this sense, a proba-

bilistic approach is advisable ([Krzysztofowicz 2001]), since it could then be inte-

grated into a larger scale probabilistic risk assessment studies ([Tartakovsky 2007,

Bolster 2009, de Barros 2008]). Randomness can be essentially of two types ([Christakos 2000]):

epistemic, when it can be reduced by increasing the number of experiments; or,

aleatory, when it cannot be reduced by increasing the number of experiments. A

statistical framework is most of the time need to de�ne the level of uncertainty of a

decision.

From a practical perspective, it is better to deal with epistemic randomness.

In this case, poorly characterized site can be additionally sampled to obtain more

exhaustive descriptions and the uncertainty reduced about a variable. Some hydro-

geological processes occur, however, at spatio-temporal scales that are unfeasible to

observe and behave as aleatoric variable at macroscale. Yet, if some mathemati-

cal physically-based formulation can be built to pass from non characterizable to

practically characterizable scales, such as using upscaling or downscaling procedure,
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then these variable these models can be used . Evidently, these working models

need to be properly developed and checked, since the modeling scaling issue is very

uncertain in most hydrogeological cases.

Example of these multiscale processes are touched in this thesis. Those de�ning

clogging or anomalous solute transport mechanisms, for instance, occur at the pore

scales, which cannot be measured because of lack of su�cient detail; those describing

the full spatial variability of an hydraulic property, such as in�ltration capacity or

geological anisotropic structure, can occur and show continuity over tens or hundreds

of meters, and thus require too much information that cannot be obtained for cost-

limiting reasons.

An additional issue that is explored in this thesis is how e�cient numerical tools,

such as image processing of remote sensing images or particle tracking to reproduce

solute transport, can be adopted to e�ciently reproduce multiscale dynamics. Ef-

�ciency means �nding the optimum trade-o� between detail of he outcome and

computational cost, which can be a high price to pay in most cases that render the

mathematical treatment of a problem unfeasible to solve for in the practice.

1.1 Thesis goal and outline

This thesis is focused to illustrate tools to deal with hydraulic heterogeneity in

an e�ective manner, and to understand processes in groundwater to reduce the

e�ects of uncertainty in decision-making processes and risk assessment. Two topics

are analyzed in details: aquifer arti�cial recharge by means of super�cial ponds is

analyzed in the �rst part of the thesis; radial convergent transport of solutes is

studied in the second part. Each part is composed of three chapters, following this

sequence.

(1) The �rst chapters describes the 'tools' used to obtain spatial and tempo-

ral distribution of variables. In the �rst part, satellite images are used to obtain

spatial description of the in�ltration capacity in preclogging states. In the second

part, kernel density estimation are coupled to particle tracking to obtain accurate

probability density functions of solute concentrations.

(2) The second chapters deal with the 'analysis' of the process occurring during

arti�cial recharge activities and during the transport characterization of an aquifer

by means of tracer tests, when heterogeneity is accounted for but it cannot be di-

rectly measured or reproducible. In the �rst part, the e�ects of an accurate selection

of lumped temporal models for clogging are evaluated to obtain reliable spatio-

temporal variability of the in�ltration capacity from data. In the second part, anal-

ysis of processes generating macroscopic anomalies on breakthrough curves during

convergent �ow tracer tests are analyzed.

(3) The third chapters account for the 'application' of these �nding for pre-

dictive purpose and accurate management of natural resources. In the �rst part,

an engineering-risk-based analysis is developed to deal with the e�ects of spatial

variability of topsoils hydraulic properties of arti�cial recharge ponds; in the second
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part, the e�ects of anisotropic statistical distribution of geological properties are an-

alyzed to evaluate the resulting distribution of apparent mass-transfer parameters

used to upscale and predict solute transport in heterogeneous aquifers.

Each part of the thesis ends with the general conclusions obtained from each of

the three chapters composing the part. A �nal global conclusion is also reported

at the end of the thesis. The single chapters are based on manuscripts oriented for

scienti�c journals. The references to each manuscript is given at the beginning of

each chapter.

Note that in the thesis reference keys are always de�ned by the surname (or

enterprise name) of the �rst authors and year, despite many authors can have con-

tribute to the publication. The complete bibliographic references are reported in

the Bibliography at the end of the thesis.
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Aquifer arti�cial recharge
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Prologue to part 1

Managing water resources under scarcity is a necessity in many arid and semi-

arid regions worldwide [Gee 1988, Bouwer 2002, Gale 2005, Scanlon 2006]. Amongst

the many practices that exist to increase groundwater availability as well as to im-

prove water quality in a given area, arti�cial or induced recharge practices (AR)

are viable options [Dillon 2002, Greskowiak 2005, Jha 2009]. A common system to

induce recharge is via excavated surface ponds (SP). These facilities are popular

in developed and developing countries (e.g. [O'Shea 1981, Asano 1985, Hofkes 1986,

Ting 2002, Tuinhof 2003, Aish 2004, Stonestrom 2007, Cheng 2009]).

In an arti�cial SP facility, recharge is performed by diverting available water

(e.g. reclaimed, storm water, river water) into the pond and letting it in�ltrate

naturally from the top surface to the underlying aquifer. Excavations are �ooded

with water coming from any available source (e.g. reclaimed water, stormwater,

river water). In a properly designed facility, evaporation and other losses are typi-

cally negligible compared with the in�ltration rates, and shallow water depths are

typically preferable ([Bouwer 1988]).

The maximum rate at which water can in�ltrate in the subsurface is known

as the in�ltration capacity (Ic). It regulates both the total amount of in�ltration

towards the aquifer and some characteristic times (such as the water residence time

within an SP) which are needed to make appropriate management of the facilities

(e.g. [Perez-Paricio 2000]).

Methods for assessment Ic are quite di�erent than those estimating total aquifer

recharge, such as the ones evaluated using e.g. energy or chemical mass bal-

ances using analytical or numerical methods( [Hantush 1967, Caro 1981, Rao 1983,

Latinopoulos 1986, Das Gupta 1988, Finnemore 1995]). In e�ect Ic is mostly con-

trolled by the �rst few centimeters of soil. Most of the times, estimations of Ic are

done directly, such as using in�ltrometers ([Smith 1972]), or indirectly, such as from

pore- or grain-size distributions (PSD, GSD) ( [Brooks 1964, van Genuchten 1980]).

Ic varies in space and time due to soil heterogeneities, clogging processes and

temperature �uctuations, as well as other processes that a�ect the aquifer topsoil

(i.e Ic → Ic(x, t)). Most of these phenomena are uncertain to predict as they occur

at not easily characterization scales.

Spatial descriptions of Ic(x, t) are usually uncertain since data are usually very

limited to a few points in space, and are not exhaustive for adequate spatial de-

scription of the in�ltration capacity of the topsoil is required to guarantee successful

long-term performance of AR practices.

However, although Ic(x, t) generally varies in space and time, typically the vari-

able of true interest in managing operations is its spatially-averaged counterpart

Ic(t). At a given time, Ic(t) can be estimated either statistically from small-scale

local measurements if a su�cient amount of spatially-distributed data are avail-

able, or experimentally with large-scale in�ltration tests (e.g. [Abu-Taleb 1999,

Barahona-Palomo 2010]).
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Because of temporal processes that in�uence Ic(x, t), however, such a map should

be update periodically. The most common e�ects for temporal variation of the in-

�ltration are natural reactions related to a variety of clogging mechanisms that

together reduce Ic(x, t) and I(t) during pond �ooding stages. Clogging is a combi-

nation of physical, biological and chemical processes, which modify the properties of

both the water and the soil. At a typical SP site, one observes a signi�cant reduction

in PSD and GSD within the �rst few centimeters of the soil due to clogging. Sea-

sonal variations in the density and viscosity of water may contribute to the temporal

variability of Ic(t), but these e�ects are expected to be secondary and act on much

larger time scales (months) than those relevant to clogging (days). These topics

have been widely discussed in the literature (e.g [Baveye 1998, Vandevivere 1995,

Perez-Paricio 2000, Bouwer 2002, Greskowiak 2005, Civan 2007, Civan 2010])

The rate of natural clogging mechanisms at small scales is highly uncertain.

Most approaches have been suggested in the past to assess the e�ect of independent

individual mechanisms (a detailed analysis on clogging processes and models is of-

fered in Chapter 4). However, a fundamental question is how to evaluate the e�ect

on pore clogging that encompasses the mutual dependence of all clogging mech-

anisms. Although several published �eld and laboratory experiments exist that

aim to understand and quantify their mutual interaction depending on soil type

[Ernisee 1975, Avnimelech 1983, Rosowski 1986, Kim 2010, Ho�mann 2010], pre-

dicting the clogging rates via cumulation of individual mechanisms remains, in the

practice, challenging. The reasons are that : (i) reactions leading to a (macroscale)

clogging e�ect take place at microscales (e.g. [Baveye 1998]) that cannot be easily

measured, or that cannot be easily upscaled to the �eld pond scale and (ii) the rate

at which clogging mechanisms jointly develop depends on a variety of site-speci�c

conditions and factors, such as the initial textural, chemical and density hetero-

geneities, or water temperature �uctuations ([Guin 1972, Tien 1979, Clement 1996,

Greskowiak 2005, Civan 2007, Civan 2010, Zamani 2009]).

Making adequate decisions for managerial application about arti�cial recharge

ponds relies therefore in the correct assessment of the spatio-temporal local variabil-

ity of Ic(x, t) and Ic(t), which is intrinsically uncertain. In the following chapters,

three aspects are analyzed to deal with this issue.

In Chapter 2, a remote-sensing approach is used to estimate the spatial variabil-

ity of the in�ltration capacity in pre-clogging conditions (i.e. Ic0(x). This method

allows to infer the exhaustive description of this variable at any point of the domain,

and its reliability is based on the quality of the correlation between data and pixel

values, and on the resolution of the satellite image.

In Chapter 3, a method to couple direct measurements of Ic(x, t) at varoius

stage during the �ooding stages of the pond, large-scale satellite information and a

clogging model is presented. This method allows to obtain spatio-temporal maps of

Ic(x, t), which is a requirement for adequate management of these facilities. Uncer-

tainty is due to both the quality of the correlation between data and satellite image,

as well as with the temporal model chosen to reproduce clogging.

In Chapter 4, the relationship between heterogeneity and uncertain management
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of these facilities is evaluated within a probabilistic framework. Ic(x, t) is treated

as a spatio-temporal random �eld. It is assumed that the clogging model depends

directly on the �rst estimated spatial distribution of the in�ltration capacity (again,

obtained for instance using the estimation from the satellite images). Uncertainty

derives from the random distribution of Ic at the initial conditions, which of course

can be very di�erent from site to site. For this reason, both single realization and a

Monte Carlo framework are used to carry on the uncertainty analysis.





Chapter 2

Using satellite images to map the

in�ltration capacity of topsoils

2.1 Introduction

The goal of this chapter is to explore the potential use of satellite images as an e�-

cient, low-budget and fast method to assess the spatially-variable in�ltration capac-

ity of topsoils in preclogging conditions (Ic0(x)). The aim is to build a relationship

between pixel intensities and hydraulic properties in order to estimate Ic0(x) over

large domains using satellite images. As an illustrative case, a case study has been

studied based on a pilot SP facility in the municipality of Sant Vicenç dels Horts

(Barcelona, Spain) located in the silico-clastic and highly heterogeneous Llobregat

alluvial aquifer.

Spatial variations of the in�ltration capacity occur at scales much below the size

of an in�ltration pond. While in most time a single value of in�ltration for the

full pond is needed, this means involving some homogenization process, and some

representative equivalent in�ltration value has to be used instead of the local-scale

in�ltration capacity.

In most cases averaged values are found integrating the information about lo-

cal Ic0(x). Direct measurement are typically scarce and sparse, if not non-existent.

Thus, it may be desirable to rely on secondary information using geophysics, remote

sensing, image analysis, or any combination of the above. These methods provide

dense information over large scales about (secondary) variables that are related to

the (primary) variable of interest. The secondary variables' spatial structure can be

more easily evaluated and used to infer that of the primary variable. In fact, vari-

ograms or covariance functions about the secondary variables can be implemented

to study the spatial structure of primary data (e.g. [Gooverts 1997]).

Remote sensing is a relatively well-understood, successful and cost-e�ective solu-

tion to obtain qualitative estimations of recharge or related hydrogeological variables

over large scales (e.g. [Saraf 1998, Granger 2000, Milewskia 2009]). However, very

few cases in the literature have documented the use of such approaches for quantita-

tive assessments of in�ltration capacity. The use of photographic images is restricted

to a few studies (e.g. [Chica-Olmo 2000, Reddy 1989]). Historically there has been

0This chapter is based on D. Pedretti et. al (2012), A fast and inexpensive method for the

quantitative assessment of the spatially variable in�ltration capacity using satellite images, Journal

of Hydrology, vol. 430-431, pp. 118-126, doi 10.1016/j.jhydrol.2012.02.008
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a major economic barrier as the acquisition of a typical sequence of satellite images

analysis [Bons 1996], was a prohibitely expensive step.

This situation has changed in the recent years. Today, satellite and aerial images

of relatively high quality can be obtained at a high resolution and a�ordable prices

(or often no cost) from a variety of sources such as popular Internet-based map

providers, cartographic or geological surveys, military research institutions, national

and international space agencies, etc.

Satellite or aerial images can cover entire geological basins, and so can be ex-

tremely useful for hydrological studies. Often they can be obtained at di�erent

resolutions (supports). An image is composed of a �xed number of pixels with vary-

ing intensities. Digital images can be made up of several bands (or 'channels'), both

in the visible range of colors (red to blue colors) and of non-visible bands (such as the

infrared one). The combination and superposition of the visible colors give rise to

the typical image one observes on a computer screen. In a single band, the relative

intensity of each pixel depends on the electromagnetic energy re�ected by the land

surface. This is then processed by an acquisition device with a given sensitivity.

Understanding the interaction between soil re�ectance and the acquisition device is

key to deriving information from remote-sensing data [Goetz 1985].

While technical descriptions about the characteristic features of the capturing

devices (cameras, video recorders, radars) and monitor quality can be easily ob-

tained from the technical spec sheets, quantifying the soil re�ectance in heteroge-

neous media remains challenging. Some conditioning factors are for instance, mois-

ture content, iron-oxide mineral content, organic-matter content, surface roughness,

thickness and colonial organization of the vegetation canopy and grain structure and

organization (see [Irons 1989, Okin 2004] for details).

Hydraulic properties of topsoils are also dependent on the same factors as soil

re�ectance. For instance, the characteristic grain size of a soil is related to the soil

permeability [Hazen 1882, Vukovic 1992], as well as the soil porosity [Kozeny 1927,

Carman 1938, van Genuchten 1980]). Moisture content is also in�uenced by both

clay and organic-matter content. All this reasoning suggests that soil re�ectance

can be used to obtain information about hydraulic parameters of the topsoil.

The chapter is organized as follows: section 2.2 describes the site and the avail-

able experimental data on Ic0(x); section 2.3 discusses the image analysis; section

2.4 shows an application of the proposed methodology.

2.2 The arti�cial recharge facility in Sant Vicenç dels

Horts

A SP was constructed in the municipality of Sant Vicenç dels Horts near Barcelona

to study managed arti�cial recharge practices in the Llobregat River Lower Valley

aquifer. The purpose of this pilot area is as a research facility to study the fate of

micropollutants during in�ltration practices. The facility is located in the prodelta

region of the Llobregat River. The site is centered at UTM coordinates 418446.63
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North and 4581658.18 East (zone 31T). Di�erent high-resolution satellite photos are

available for the site at di�erent years. Fig. 2.1 shows an image available to the

public through a popular Internet-based map server, and captured on November

15th, 2007.

Figure 2.1: Aerial photo of Sant Vicenç dels Horts and the Barcelona municipality.

The site is located in the Lower Valley, a few km up from the beginning of the delta.

The Llobregat River can be traced in the picture. The UTM coordinates are 31T

[418446.63 N , 4581658.18 E]

The geology of the area is a sequence of �ne- and coarse-grained facies of silico-

clastic materials, deposited according to the evolution of the paleoriver. The deposi-

tion of �ne-grained materials occurs in low energy streams (minimum on the alluvial

planes), while coarser material needs higher transport e�ciency (maximum along

the channel). Therefore the hydrogeological setting is composed of sandy-gravel or

gravelly-sand (depending on the proportion of the average grain sizes), separated by

non-continuous �ne-grained layers. At the scale of the pond, the unsaturated zone

has a thickness of between 8 to 10 meters. The excavation of the pond ranges from

4 to 6 meters below the actual ground surface, on the western edge of the Llobregat

River. A series of �eld experiments were performed in the SP to assess the local

heterogeneities of the topsoils. In the following sections, we summarize two of the

most signi�cant activities, the vertical geological description of the ground surface

using open pits and a campaign of double rings in�ltrometer tests. Both were per-

formed before any MAR activity was carried out at the site (only natural rainfall

actually in�ltrated during this time).
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2.2.1 Vertical geological pro�les of topsoils

Three open pits were dug to study the vertical distribution of the geological materials

at the upper meter measured from the bottom of the pond. Additionally, samples

were taken to obtain the granulometry curve of the di�erent materials described in

the open pits. This enabled the qualitative inference of the hydraulic properties of

the formation. Fig. 2.2 shows three vertical pro�les obtained at locations C1-C2-C3

(see �g. 2.2). Visual abrupt changes of soil color (seen in the �eld) are marked in

the �gure by solid lines. These changes indicate that soil moisture content and grain

distributions are layered in the top sections. Speci�cally, for C1, the 30-cm-thick

top layer displays high moisture, clay and organic content, overlapping the other

deeper layers which show coarse-grained materials at lower moisture content. Such

di�erences are visible in the left most photo of �g. 2.2: the upper horizon is clearly

darker than the rest of the outcrop. Outcrops from pits C2 and C3 show similar

horizontal layering. In this case, �ne-grained materials and organic content were not

observed in the outcrop; the vertical variability is due to changes in sand or gravel

relative content.

Just by looking at �g. 2.2 it follows that there should be a correlation between

soil color and permeability, dark pixels being representative of the less permeable

materials. This proposed correlation is explored in Section 2.3.

mixed coarse
and fine content

mainly fine
content

0 40 cm
mainly coarse

content

C3C2C1

Figure 2.2: Vertical pro�les at C1 (left), C2 (center) and C3 (right) excavated pits,

located close to the double ring test zones S1, S4 and S5, respectively (see location

of all these points in �g. 2.1). The right side of each picture shows the geological

stratigraphic columns (legend at the bottom).
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2.2.2 Field measurements of topsoil local in�ltration capacity

Six double-ring in�ltrometer tests [Bouwer 1986] were performed in February 2009

on the topsoil of the pond. The location of these experiments (S1 to S6 points in

�g. 1) was randomly-selected. A double-ring in�ltrometer technique was used. This

technique has been well documented [Bouwer 1986] for the direct measurement of

in�ltration rates and its applicability has been assessed and validated for several

ground conditions (e.g. [Bodhinayake 2004]).

We brie�y describe the method here. The device consists of two concentric thin-

walled metal cylinders, with an approximate height of 40 cm, in which a falling

head test is carried out. The test consists of three parts: (a) the rings are pushed

into the �rst (�ve to ten) centimeters of topsoil with minimum soil disturbance;

(b) both rings are �lled with water to the same initial level; (c) the change in

water level (decrease) in the inner ring is measured over time. The purpose of

the external ring is to minimize lateral �ow occurring under the internal ring and

ensures primarily vertical �ow. After a standard time of about 2 hours, the soil is

saturated and the in�ltration rates (i.e., changes of water heights versus variable

time intervals) tend asymptotically to a quasi-steady constant value. The actual

in�ltrated volume versus time curve is interpreted by means of a modi�ed Kostiakov

method [Smith 1972]. Vertical in�ltration rate is then determined by the amount

of water poured into the inner ring per unit of surface area and time. The inner

ring diameter is 0.4 m and as such our tests provide the in�ltration capacity of the

S-location over a support area of 0.13 m2.

For illustrative purposes we plot the in�ltration curves for three locations (S1,

S2 and S6) in �g. 2.3. These three are representative of the low (S1), middle (S2)

and high (S6) rate in�ltration areas. Complete results are summarized in the �rst

two columns of Table 2.1. Note that local in�ltration rates span over at least two

orders of magnitude in this domain.

2.3 Image analysis

As reported in Section 2.2, heterogeneities occur at the site in both vertical and

horizontal directions, with di�erent characteristic scales. MAR facilities need to

adequately map the spatial distribution of the local in�ltration capacity Ic0(x) over

the entire pond since we are interested in total recharge as a function of time (i.e.

the spatially-averaged in�ltration capacity Ic0(x)(t)).

The spatial structure of Ic0(x) cannot be inferred with great con�dence only from

the information obtained at a few sparsely distributed data points (such as S1-S6

from the February 2009 campaign). Additional information, either on Ic0(x) or else

on a related secondary variable must be sought for this purpose. While the former

can be expensive or challenging for a variety of reasons, secondary information can

be used to condition the primary information.

Secondary variables are typically related to primary variables via mathematical

and physically-based models; the density of secondary data is normally su�cient for
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Figure 2.3: Experimental measurement of local in�ltration rates from double-ring

in�ltration tests and interpretation using the modi�ed Kostiakov method, at three

location S1,S2 and S6. Ic0(x) is calculated as the in�ltration rate measured after

120 minutes. The analytical curves proposed by Kostiakov [Smith 1972] are shown

for reference. The actual value used in Table 2.1 is that inferred from the analytical

curve at t = 2h, rather than the measured values itself, in order to avoid noise.

detailed spatial descriptions, and with some approximations, can be directly used

to model the primary information [Journel 1999]. In most cases the correlation

between the two variables is not perfect and some error (either correlated or not)

must be included in the model.

Our conjecture is to use satellite images of our pond to extract secondary in-

formation, and infer primary information based on the relationship between the

measured Ic0(x) and the pixel intensity of the image at the test locations. Recalling

�g. 1 and Table 2.1, we can see that point S1 corresponds to the lowest Ic0(x)

value and is located in a green area in the two images (dark in gray colors). Such

visual di�erences are no longer appreciable to the human eye (or at least our eyes)

for locations with high Ic0(x) values, since it is more di�cult to distinguish bright

colors. Nonetheless a relationship appears to exist.

2.3.1 Description of the digital data for the Sant Vicenç dels Horts
site

We analyze the relationship that exists between Ic0(x) and the pixel intensities of

two types of digital images, coming from two di�erent sources. The �rst is obtained
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by an Internet-based map software, while the second is an image provided by the

local cartographic institute. While the latter may suppose an initial, sometimes

prohibitive, investment, we aim to achieve good-quality information with former,

which is completely free and is suitable for for fast and cheap assessments.

In our �rst case, the Internet image (the same in �g. 1) is obtained by capturing

an image as a standard RGB (Red, Green and Blue channels) raster (saved in TIFF

�le format). For convenience, we choose to work only on a rectangular portion of

the image (marked in �g. 1), which corresponds roughly to an area of 45 × 100

m2. This area is represented by 326× 730 pixels, so that each pixel corresponds to

0.02 m2. The raster is then composed of a total of 2.38·105 pixels per band. This

method is deliberately quick and simple to illustrate that it can be cost e�ective

and quick. However, it must be noted that the method can su�er from a lack

of precise information due to image compression, resolution problems and �ltering

that may have been performed by the Internet map software programmer or with

other processing software to save the TIFF �le. In this case, this provider does

not appear to provide su�cient information about the image to know exactly what

�ltering processes and image editing were performed.

On the other hand, the second digital image of the exact same space at the exact

same time is provided directly by the local Cartographic Institute of Catalonia

(ICC). The image is a non �ltered RGB bands raster, in non compressed TIFF

format, with a pixel resolution of 25 cm2. We refer to this image as the 'original'

image, since all speci�cations are well known from the source. In fact, it is known

that the Internet map provider used images from the ICC to build their software

and images.

For comparison purposes, both digital images are taken as the same moment in

time and considered the same working area. The color depth of both digital images

is of 8 bits, o�ering 28 = 256 values on intensity per channel. The range is from 0

(black = minimum intensity) to 255 (white = maximum intensity) .

Fig. 2.4 displays histograms of the pixel intensities for each X color channel

(X=R,G or B), and histograms of averaged values over the three bands, for both

images. For the Internet image, the color intensities in all channels do not cover the

entire range of possible values, demonstrating a potential �ltering that took place.

Moreover, the statistics for each of the three channels are di�erent. Let m(X) and

σ(X) be respectively the mean and the standard deviation of the pixel values for

each X channel, calculated from the histograms. The red (R) color intensities range

from 35 to 225 with m(R) = 184.64 and σR = 16.8. The Green (G) and Blue (B)

channels exhibit similar standard deviations (σ(G) = 16.0 and σ(B) = 16.9) but

with smaller means m(G) = 174.1715 and m(B) = 162.4). Notice that the actual

distribution of pixel data is quite symmetric, showing slightly positively skeweness

and a leptokurtic e�ect. To test it visually, we plot an equivalent Gaussian bell with

the same m(X) and σ(X) in each band of the Internet based image.

The original ICC-provided image exhibits similar histograms of color intensities

but with higher variances than the Internet-provided image. Here, m(R) = 183.6,

σ(R) = 36.7; m(G) = 179.5791, σ(G) = 34.8; m(B) = 157.7, σ(B) = 33.3. These
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Figure 2.4: Density of pixels in the three bands of the sampled image. A Gaussian

curve (dotted line) is �tted to the histograms of the Internet-provided images to test

visually the symmetry of the distributions
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histograms again display a positive skewness.

2.3.2 Accounting for support scales dissimilarities

A quantitative analysis of the correlation between Ic0(x)(x, t) and color intensities

from digital images can be visually inspected with a scatter plot. However, the

spatial support of the in�ltration test (0.13 m2) is rather large compared to the

pixel resolution (around 0.02 m2). In order to make comparable predictions we

averaged the pixel intensities in the digital images over a window of 3 × 3 pixels.

The procedure is graphically explained in �g. 2.5).

For each Sj site (S1 to S9) and for each X band we estimated the local mean

µj,X and relative local standard deviation σµj,X over a 3× 3 pixel window centered

at j. The variance is a measure of the quality of the estimation, which depends

on the variations observed within the given window. These values are reported in

Table 2.1.

2.3.3 Multiband regression model

We formulate a general regression model which considers the quality of data varying

with each observation location in each color channel. This is done to include di�erent

degrees of con�dence which are implicitly associated with the regression model of

each color channel. In our case (�g. 2.4), we see that, for each observation window

and image, the mean pixel values (µj,X) are in most cases similar among color

channels. However, the quality of the estimation of µj,X given by its standard

deviation σµj,X varies with the observation, so that the regression coe�cients depend

on the image source and color channel. In an attempt to incorporate these e�ects,

we generalized the previous methodology as it follows. Noting that the Pearson's

correlation, r2
X , measures the goodness of �t to a linear regression model in each X

band, for each j-point we estimated the color intensity as a weighted average over

the color channels, µj , such that

µj,X =
r2
R µj,R + r2

G µj,G + r2
B µj,B

r2
R + r2

G + r2
B

(2.1)

The results are shown in Table 2.2. We found that a linear regression model

can satisfactorily describe the dependence of the natural logarithm of Ic0(x) and

averaged pixel intensity µj,X . The general form of the equation is

ln(Ic0) = a(µ) + b+ ε (2.2)

Note that color intensities were found to follow a quite symmetric distribution

(�g. 2.4). Despite they do not show an exactly Gaussian behavior we could in

principle assume that the related in�ltration capacity roughly follows a log-normal

distribution, as given by (2.2). Log-normal distribution model is a typical adopted

for hydraulic conductivities in soils (e.g. [Freeze 1975]), to which Ic0(x) strictly

depends.
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Figure 2.5: Assigning pixel intensities to a given test j-location (Sj) for each X band

(R, G or B). The point location of the test is assigned to a given pixel in the image.

Intensity values are obtained as the average over the 3× 3 pixel window centered at

this reference pixel (µj,X); the standard deviation (σµj,X ) of the 9 pixel intensities

referred to µj,X are reported in Table 2.1.
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In (2.2), ε expresses the model error. Since the quality of the estimates of µj,X
is not constant across observations, other regression methods such as weighted least

squares should be used. In this method, the measurement error is weighted based on

its corresponding degree of con�dence. Here, we estimated these weights as inversely

proportional to the quality of the local multiband estimation µj , such that

wj =
1√
σ2
µj

(2.3)

where σ2
µj

is the multiband estimation variance calculated as

σ2
µj

=
r4
R σµj,R + r4

G σµj,G + r4
B σµj,B(

r2
R + r2

G + r2
B

)2 , (2.4)

Estimates of the variances for all measurements are reported in Table 2.1. Fig.

2.6 shows the resulting �tted regression models for each digital image source. For

Internet-provided image

ln(Ic0) = 0.0380µ− 5.244 r2
X

= 0.85, (2.5)

while for the original image we obtain

ln(Ic0) = 0.0343µ− 4.466 r2
X

= 0.93. (2.6)

2.3.4 Model Validation

The regression model was validated against three independent double-ring in�l-

trometer measurements obtained during a second campaign. Their locations are

also denoted in �g. 2.1 and marked by S7, S8 and S9 tags. These new experiments

were speci�cally selected to �ll gaps in the linear regression model. The in�ltration

tests for these 3 locations took place in June 2009.

Unfortunately, the new measures of Ic0(x) could not be used directly. Between

the two campaigns, a large �ooding test took place in the pond, resulting in a net

decrease of in�ltration capacity due to clogging processes. The impact of �ooding

was analyzed by repeating the previous in�ltration tests at the S1-S6 locations.

A good linear relationship was found between the pre-clogged and post-clogged

in�ltration values, which allowed us to correct the June 2009 data to the values

corresponding to February 2009 (see the following Chapter 3 for details). These

corrected value are reported in Table 2.1. In �g. 2.6 they are indicated with a star

beside the points. We see that they agree quite well with our regression model, lying

within the region of con�dence (expressed by the 95% con�dence boundaries of the

multiband regression model).
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2.3.5 Single band regression

A special case of the multiband model is when only single bands are accounted for.

Such models (single-band regression models) are a general form of (2.2) and are

especially useful when one speci�c channel or band provides a better �t than the

others (provided physical conditions are ful�lled).

For instance, infrared bands (when available) have been used to evaluate speci�c

patterns of soil moisture (e.g. [Price 1980]). This information could be related to

some characteristic hydrodynamic property of the soil, thus making the correlation

more robust. In our case, we explore the quality of a linear regression for the three

visible-color bands, separately in each image. This is simply done by taking the

single channels parameters in (2.2). The single band model is thus

ln(Ic0) = aXµX + bX + εX (2.7)

where the regression coe�cients are now referred to the selected band X. We found

that a good correlation exist for the three color channels in each image. In the

Internet-provided image,

aR = 0.0383, bR = −5.327, r2
R = 0.94,

aG = 0.0452, bG = −6.342, r2
G = 0.91,

aB = 0.0393, bB = −4.985, r2
B = 0.92,


while for the original image,

aR = 0.0320, bR = −4.586, r2
R = 0.90,

aG = 0.0335, bG = −4.758, r2
G = 0.878,

aB = 0.0350, bB = −4.094, r2
B = 0.840,


We observe that the parameters di�er slightly from one other due to small di�erences

in the histrogram distributions (m(X) and σ(X)). However, r2
X is greater than 84%

for each of the three channels, which suggests that a good correlation exists for

each case. r2
B for the Internet image is slightly larger than the for the other cases

and perhaps this might suggest this is the preferred image and band. However,

given that the di�erences in r2 are so small, in the following, we apply the general

multiband model for illustrative purposes.

2.4 Estimates of In�ltration Capacity at the pond scale

The methodology described above is used to estimate the spatial distribution of

Ic0(x) at the SP pilot site. Results are only shown for the multiband regression

model, but in this particular example plots would be qualitatively identical and

quantitatively similar using the single-band model. The resulting in�ltration map

stemming from the multiband regression analysis of the Internet digital image is
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shown in �g. 2.7. The local in�ltration capacity is calculated using (2.2) at each

pixel in the whole image. As a way to evaluate the adequacy of the model, we

compared estimates of the global in�ltration rate as calculated from the Internet

image with observations of the total maximum in�ltration recorded during a �ooding

test performed at the SP site by local water authorities from March to May 2009.

The global in�ltration rate (Ic0) is calculated as the spatial average of the local

Ic0(x) over the Ω area, as

Ic0 =
1

Ω

∫
Ω
Ic0(x)dx (2.8)

During this test, experimental value of the total in�ltration rate were calculated

using a water balance in the pond (conservation of mass in the pond including

evaporation). The total maximum in�ltration rate was reached after 40 days (when

the pond was completely �ooded) and was measured to be 3.6 m/day. Predictions

using the multiband model are of Ic0 = 4.47 m/d for the original image and Ic0
= 3.92 m/d for the Internet image. We observe that the latter prediction provides

a relatively good agreement with the experimental data, as the error is less than

10%. We deem this to be an acceptable error given the trade-o� between the cost

of the analysis and the estimation error. It is worth noting that a more proper and

detailed assessment of errors should follow a rigorous evaluation of several factors,

including errors in the calculation of the global mass balance. In the latter case,

for instance, the combined e�ects gas clogging, incomplete pond �ooding, errors in

the measurements of the discharge rates of entry water, etc. lead to measurement

uncertainty. This has not been considered in detail here.
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Figure 2.7: Map of the local in�ltration capacities (in m/d) calculated using the

multiband regression model based on the Internet image pixel values shown in Fig.

1. The natural log scale is used to highlight the heterogeneous distribution of soil

hydraulic properties over the studied area.
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Table 2.1: Field measurements of in�ltration capacities (Ic0(x), in m/d) from the

double ring tests at the speci�ed locations (Sj) and the correspondent average (µX,j)

and standard deviation (σX,j) of the 3x3 window pixel values for each X band (R,G

or B) at the j-site (j=1,...,9). Above, the data refer to the Internet-provided image;

below, the data corresponding to the original image are reported. For the full color

map, Mj is the arithmetic mean of the pixel values when all bands are considered

together at the j location, and wj = weight from the regression analysis at the j

location. The in�ltration tests for S7, S8 and S9 were performed in June 2009 and

have been corrected to the values of February 2009 by means of linear regression

(see text).

Internet image

Site Ic0
Red band Green band Blue band

µR,j σR,j µG,j σG,j µB,j σB,j
S1 0.2 94.1 2.29 98.9 1.83 77.6 5.69

S2 2.6 179.1 1.83 168.1 4.39 160.3 4.82

S3 2.9 181.1 4.48 171.0 0.60 160.0 9.16

S4 3.3 187.3 0.50 177.9 5.21 166.4 8.81

S5 12.9 196.9 4.98 178.2 1.58 178.2 5.18

S6 12.6 196.0 1.58 185.0 5.05 176.0 6.17

*S7 0.17 103.2 5.21 104.7 1.80 84.7 4.53

*S8 3.04 183.3 1.80 172.3 5.42 162.7 5.00

*S9 0.75 142.4 5.41 132.4 7.12 120.4 9.28

Original image

Site Ic0
Red band Green band Blue band

µR,j σR,j µG,j σG,j µB,j σB,j
S1 0.2 91.2 6.96 93.3 4.53 71.9 2.03

S2 2.6 193.5 7.10 179.1 4.83 151.2 2.45

S3 2.9 179.6 10.32 191.6 6.94 156.2 4.39

S4 3.3 181.4 11.89 160.9 7.24 145.2 0.52

S5 12.9 198.9 4.68 193.1 5.18 160.9 5.21

S6 12.6 202.4 6.64 203.3 4.16 179.4 1.58

*S7 0.17 83.8 4.47 86.3 3.77 58.6 5.22

*S8 3.04 198.0 5.09 195.0 5.91 150.3 1.99

*S9 0.75 141.9 10.04 149.0 7.96 146.4 5.41
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Table 2.2: Multiband average (muj) and calculated multiband weight (wj) among

the X band at the 3 × 3 windows around the j-th experimental S-sites (j=1,...,9).

Data refer to the Internet and the original images

Site
Internet image Original image

muj wj muj wj
S1 90.1 0.50 85.7 0.18

S2 169.2 0.34 175.1 0.19

S3 170.7 0.28 176.1 0.12

S4 177.2 0.34 162.9 0.11

S5 184.4 0.24 184.8 0.21

S6 185.6 0.32 195.4 0.18

*S7 97.4 0.24 76.5 0.25

*S8 172.8 0.30 181.7 0.20

*S9 131.7 0.17 145.7 0.12



Chapter 3

Spatio-temporal mapping of

in�ltration capacity using limited

experimental data and

geostatistics

3.1 Introduction

Complete spatio-temporal mapping of Ic(x, t)) is crucial for the optimal operation,

management, and maintenance of the arti�cial pond (as shown in Chapter 4). How-

ever, it is a cumbersome task, since it is not realistically feasible using direct mea-

surements and models are uncertain.

During recharge processes, Ic(x, t) reduces in time because of a variety of clogging

processes that tend to modify the pore size distribution (PSD) and the grain-size

distribution (GSD) of the top soil. The topsoil hydraulic conductivity Ks(x, t)

depends on the PSD and GSD (e.g. [Kozeny 1927, Carman 1938, Hazen 1882]),

which in turn controls Ic(x, t). To complicate matters even further, the reduction

of in�ltration also can depend on some initial properties of the soil. A detailed

assessment of theories to compute clogging is given with references in the following

section and in Chapter 4.

This chapter is devoted to explain how a geostatistical approach can be used to

obtain exhaustive map of the spatio-temporal distribution of the in�ltration capacity

(Ic(x, t)) on an arti�cial recharge pond during a �ooding activity. The approach

is developed to integrate a limited dataset of direct information about clogging

development, secondary information about the initial in�ltration capacity based on

satellite images, and a physically-based lumped exponential model for clogging.

The chapter is structured as follows. In Section 3.2 we brie�y recall some aspects

concerning the use of clogging model and spatial analysis to evaluate the combined

spatio.-temporal variability of Ic. In Section 3.3 we propose a local in�ltration model

with an exponential decay to an asymptotic value. Initial, asymptotic in�ltration,

and decay coe�cients are considered to be correlated. In Section 3.4 we further

develop the model by applying it directly to an arti�cial in�ltration pond where

0This chapter is based on D. Pedretti et. al (2011), Spatio-temporal assessment of soil in�l-

tration capacity using physical-based models and geostatistical inference, Stochastic Environmental

Resources and Risk Assessment, vol. 25,n. 8, pp. 1065-1075, doi 10.1007/s00477-011-0486-4
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local in�ltration data is available at a few points and can be further obtained from

a full mapping of a secondary variable. An external validation of the model from

the evolution of the spatially averaged in�ltration with time is also included.

3.2 Background

The quality of most of the information depends on the quality of geological charac-

terizations, which is almost always poor in practice since direct investigations are

costly, a�ected by serious errors and sometimes simply not feasible. Some models

have been proposed in the past to correlate initial hydraulic conductivity pro�les

with the intensity of clogging.

Unfortunately, most of them are based on assumptions of homogeneities that

over- or under-estimate the rate of clogging. For instance, assuming the soil pore

sizes or the grain sizes to be uniformly (e.g. [Kozeny 1927, Carman 1938, Hazen 1882])

and non-uniformly (e.g. [Guin 1972]) distributed is essential to correctly estimate

the development of clogging. Indeed, the use of uniform formulations implicitly

include average macro-characteristic features of PSD and GSD, such as the total

soil porosity φ or some characteristic grain size dg, from which the seepage velocity

is calculated. However, bioclogging does not grow uniformly but rather starts by

developing local microcolonies ithin smaller pores, and grows to occupy the larger

pores. On the other hand, physical mechanisms act di�erently.

According to the �lter theory (see [Zamani 2009] for details) the clogging rates

are inversely proportional with dg but this relationship depends strongly on other

factors such as the suspended solid size (ds) and Ic(t = 0). [Guin 1972] adopted

a macroscopic Kozeny-like model where the porous medium is decomposed into a

bundle of channels with di�erent hydraulic radii R (ratio between porosity and the

speci�c surface area of the soil, Sa). In the case of rapid particle deposition, the clog-

ging rate of individual pores is proportional to the square of its speci�c surface area

(−dSa
dt ∝ S2

a). Thus, this implies that the area of larger pores (i.e. larger initial in�l-

tration capacities) is decreased preferentially. In the case of slow particle deposition,

−dSa
dt ∝ S

1/2
a . Experiments on bioclogging [Cunningham 1991, Vandevivere 1992]

showed that the relative change of permeability (Ks/Ks0) depends, among other

parameters, on the GSD.

It has been observed that all clogging mechanisms do not go on inde�nitely,

but rather end up providing an asymptotic in�ltration value, which varies in space

(e.g. [Baveye 1998]). The reasons that lead to an asymptotic clogging e�ect are

controversial and depend on local conditions. For instance, bioclogging mechanisms

roughly follow a Monod behavior [Monod 1949, Okubo 1979, Baveye 1998], which

reproduce a microbial growth with a maximum asymptotic value of development.

Physical clogging, on the other hand, varies in time since the governing forces change

from volumetric to surface and vice-versa depending on �ow velocity, available re-

active surface areas, etc. (see [Zamani 2009] for a complete description of whole

physical processes). While physical clogging could theoretically result in zero in�l-
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tration, bioclogging may help preventing additional physical clogging, so that the

combination of both processes may still present a �nite non-zero asymptotic value.

While assessment of initial and �nal permeabilities can certainly be done with

the use of empirical or theoretical formulations, the question still remains about

how to evaluate the actual evolution of in�ltration with time. This is required for a

proper risk assessment (this issue is addressed in Chapter 4).

Lumped solutions such as exponential decay formulations are often adopted at

the �eld scale [Iwasaki 1937, Perez-Paricio 2000, Kim 2010, Ho�mann 2010]. The

use of such models is appealing since only a few parameters are required for esti-

mation purposes, but so far there is no widely accepted work on the relationship

between the upscaled and the local in�ltration models. While lumped (upscaled)

models are routinely used as a way to assess when maintenance operations should

take place at the full pond (usually drying the pond and cleaning), we contend that

a detailed clogging model could be used to derive an ad-hoc remediation operation

that targets only speci�c portions of the pond (similar to the concept of precise

agriculture).

A major limitation of mapping in�ltration variations locally in space and time

is that primary information is limited and plagued by errors. A viable option to

enhance the mapping of characteristic soil properties is to combine direct (primary)

with secondary data (related to the primary ones). An example is to combine

measurements from surface in�ltrometers with satellite-images based secondary in-

formation, such as using the method shown in Chapter 2. Normally, secondary in-

formation is suitable for spatial assessment as it typically contains a denser dataset

(e.g. [Gooverts 1997]), but the robustness of the method relies in the strength of the

correlation existing between the two types of information.

3.3 Methodology

3.3.1 Problem Statement

Let us consider a given arti�cial SP recharge site in which direct measurements

of the local in�ltration rate, Ic(x, t), are known at sparse locations and at a few

discrete times, i.e., Ic(xi, tj) {i = 1, ...,m}, {j = 1, ..., n}. This is often the case in

most practical applications as the operation of an arti�cial recharge pond is typically

done under �ooding conditions and thereby any exhaustive characterization of the

in�ltration capacity is too costly and time-consuming. The support scale of the

measurement is local and given, for example, by the size of an in�ltrometer test.

We assume that an extensively sampled secondary variable is available at some

support scale. An example would be data coming from the colour intensity of a

satellite image, which can provide valuable information related to the soil hydraulic

properties such as the moisture content of the soil, the vegetative canopy density

on the ground [Chica-Olmo 2000, Granger 2000, Milewskia 2009] or the in�ltration

capacity at a speci�c time (see Chapter 2). Evidently, a limitation of satellite images

is that image-based methods are restricted to non-�ooded times, with at most two
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measuring times, i.e., before and after �ooding.

Under these conditions, we attempt to map the temporal evolution of the in-

�ltration capacity at the site so that better management of the arti�cial recharge

pond can be undertaken.

3.3.2 Clogging model

We assume that the temporal reduction of the in�ltration capacity at every point x in

the domain due to clogging processes follows a decaying exponential law. The model

assumes that clogging takes place on the order of tens of days. Temperature can

therefore be neglected as it �uctuates on two temporal scales, seasonally and daily,

that do not a�ect clogging occurrence. Seasonality occurs at temporal scales much

longer than clogging time, and night-day �uctuations are too short to a�ect clogging

development permanently. The clogging model can be formulated in di�erent ways.

One possible formulation is

Ic(x, t) = R Ic,0(x) exp(−λ(x, t)t) = Ic0(x) exp(−λ(x, t)t), (3.1)

where Ic, 0(x) is the in�ltration capacity at some initial operation stage, λ(x, t) is

the lumped clogging coe�cient and R is a generic, instantaneous reduction function

of in�ltration caused by gas production and other mechanisms [Olsthoorn 1982,

Bouwer 2002], which in general is close to 1. We can remove the impact of R by

using Ic0(x) = R Ic,0(x) as the initial in�ltration value. It is worth noting that in

(3.1), λ changes over space and time, tending to zero as time increases.

Consequently, Ic(x, t) values tend to an (spatially dependent) asymptotic value,

Ic,f . Therefore, an alternative model to (3.1) that implicitly includes this asymptotic

value Ic,f can be formulated as

Ic(x, t) = Ic,f (x) + (Ic0(x)− Ic,f (x)) exp(−λ(x)t), (3.2)

where λ(x) is now constant in time. This clogging model constitutes the basis

of our approach to map the temporal evolution of the in�ltration capacity. The

fundamental advantage of this model is that parameterizes the temporal evolution of

the in�ltration capacity Ic by means of three constant-in-time variables/parameters:

Ic,f (x), Ic0(x), and λ(x), all three variable in space, and are therefore susceptible

to simple geostatistical analysis.

Total in�ltration capacity can be obtained by spatial averaging of either (3.1) or

(3.2); i.e.

Ic(t) =
1

V

∫
V
Ic(x, t)dx. (3.3)

In most cases Ic(t→∞) ≡ Ic,f will be too small to be acceptable; that is, it will

be below a pre-speci�ed threshold value, It. Such small could be unacceptable in

practical situations. Thus, the need for a model that can provide information about

the spatial evolution of in�ltration with time. It turns out that whenever Ic,f (x)
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and Ic0(x) are fully known, the temporal evolution of the local in�ltration depend

exclusively on λ(x). We postulate that this non-time dependent clogging factor is

directly correlated with some initial property of the soil, so that λ(x) = f(Ic0(x)).

This is feasible since clogging develops at di�erent rates according with the local

distribution of PSD or GSD, both highly uncertain.

3.3.3 Mapping the soil in�ltration capacity

If experimental measurements of Ic are limited to a few locations, secondary in-

formation can be incorporated to estimate the spatial distribution of the primary

variable. For this purpose, several geostatistical techniques can be used, such as the

collocated cokriging model. Yet, in this case, its direct application is cumbersome as

one needs to estimate the evolution of the variogram matrix with time as clogging

progresses. To overcome this problem, we propose a new approach.

As shown in Chapter 2 of this thesis, the exist a relationship such that Ic0 =

f1(Pv) and Ic,f = f2(Pv), where Pv are the color pixel values of a satellite image and

f are two generic linear functions. By extension, and invoking a phenomenological

approach, it is to be expected that there could exist a relationship between soil

parameters and Pv, and thus also between λ and Pv.

This relationship should be constructed via theoretical or empirical methods.

The theory suggests that some clogging mechanisms, such as physical clogging, can

be modeled using a �lter approach (e.g. [Zamani 2009]); thus, the clogging rate

should be negatively correlated with some grain size representative diameter, dg.

Other mechanisms however do not necessarily rely on this assumption: biological

clogging can be modeled using Monod-based growing models (e.g. [Clement 1996]),

for which the rate of bioclogging is linearly proportional to the soil density ρ which

is positively correlated with dg (see Chapter 4 for derails). Therefore, in a real site,

it is important to assess the relative importance of the two mechanisms, since this

will control the relationship existing between λ and the soil properties. In the �eld

though, the use of (3.2) gives lumped clogging factors, in which the single e�ects of

each mechanism is somehow hidden. As such, any relationship existing between Pv
and experimentally-based λ does not give any indication of the relationship existing

between Pv and all the parameters characterizing the soil, including dg, but also

density, fraction of organic matter, etc. Thus, it is not a priori clear whether λ and

Pv should be positively or negatively correlated. In the application example later

we will use both possibilities.

Our approach starts from having a perfect knowledge of some secondary variable

(obtained for example from satellite images), while there is little to no information

on the three primary variables controlling in�ltration: Ic0, Ic,f , and λ. Thus, it

is possible to use some geostatistical approach involving either cokriging (to get a

smooth estimate in a mean sense) or cosimulation (to be included in a Monte Carlo

approach). Since data from the primary variables are always expected to be less

than exhaustive, we chose a collocated cokriging approach under the Markov model

I. Such a model limits the secondary variable to the data available at the estimation
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location, and further estimates the cross-variograms by employing an underlying

regression model. The advantage is that matrix instabilities caused by densely

sampled secondary data (such as high-resolution satellite rasters of pixel values) are

avoided and reduce the burden of modelling all variograms and cross-variograms in

a cokriging system [Almeida 1996, Journel 1999]. In this case, the cokriging model

only requires the knowledge of the variogram of the primary variable, the correlation

coe�cient, and the variance of the secondary variable. Thus, the modelling e�ort

is almost the same as for kriging one variable. For simplicity, the cokriging of each

variable is conducted independently.

Unfortunately, in most practical situations, the variogram of these primary vari-

ables cannot be directly estimated as too little information is available at a given SP

site. To circumvent this problem, we suggest to completely rely on the variogram of

the secondary variable (satellite image) that is always well characterized. For each

primary variable, {Ic0, Ic,f , λ}, the auto-variogram can be estimated using regression

models. In Chapter 2, it was shown that a linear regression satisfactorily correlates

the natural logarithm of in�ltration capacities (both Y0=ln(Ic0) and Yf=ln(Ic,f ))

with the color pixel values of an image (Pv). The model has the form

Y0 = a0(Pv) + b0 + εY,0, (3.4)

Yf = af (Pv) + bf + εY,f , (3.5)

where a and b are the regression coe�cients, and εY represents regression model

errors. To complete the picture we must specify a model for λ. Parsimony leads us

to postulate a similar linear model in terms of Yλ = ln(λ),

Yλ = aλ(Pv) + bλ + εY,λ. (3.6)

From these simple models we can write the variogram functions as

γYi(h) = a2
i γPv(h) + γεY,i(h), i = 0, f, λ (3.7)

where h is the lag distance between data values. We can further assume that the

regression model errors are uncorrelated both with errors at di�erent locations or

with the secondary variable (pure nugget). Once the spatial distributions of the three

variables have been obtained, it is possible to use (3.2) to obtain the spatio-temporal

distribution of the local in�ltration rate, and consequently the temporally variable

global in�ltration. We now illustrate the method and highlight the limitations in a

real site.

3.4 Application Example

3.4.1 Observations and modelling at the pond scale (global scale)

We apply this approach on the pilot SP located in Sant Vicenç dels Horts. The

reader is referred to Chapter 2 for a detailed description of the site. We will con-

sider here that �g. 2.7 represents the initial state of our system (Ic0(x)). A �ooding
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test was performed on this site between March and June 2009 in order to test the per-

formance of the site for MAR operations. The following variables were recorded on

a continuous basis: headwater at the pond, h(t); discharge rate towards the aquifer,

Q(t) (recorded from water mass balance within the pond, disregarding evaporation);

in�ltration area, A (usually a direct function of h(t) to include the basin slopes);

and distance from the surface to the water table, L(t). In�ltration at the full pond

scale is then obtained as

Ic(t) ≈
(
Q(t) L(t)

A h(t)

)
(3.8)

The recorded in�ltration values can be matched by a simple exponential model

Ic(t) = Ic,f + (Ic,0 − Ic,f ) exp (−λet) (3.9)

Fig. 3.1 shows that a good match between data and the best-�t approximation of

the large-scale in�ltration model (3.9) can be obtained. λe is an equivalent clogging

parameter for the entire pond. Note that the asymptotic value is used to evaluate

the minimum in�ltration value of the pond, which is reached when clogging no longer

develops. The solid line represents observations using (3.8), while the dotted line is

the best �t model solution using (3.9) giving the following parameters: Ic,f = 0.44,

and λe = 0.17 d−1. Note that in�ltration data are dimensionless being normalized

by the maximum initial value of the in�ltration rates.

Note also that according to the calibration process using (3.9), we have a global

model of the reduction of in�ltration with time, that could now be used for manage-

ment or risk evaluations. For example, it is found that reduction of in�ltration to

50% of the initial value is reached after just roughly 7 days, but it will for example

take 14 days to reduce to 40% of the original value. It is possible to obtain a compro-

mise between allowing the system to work for larger periods without maintenance

by just allowing less water to in�ltrate.

In Fig. 3.1 the in�ltration curve displays some daily oscillations. This is due

to unaccounted causes, such as the impact of water temperature or atmospheric

pressure with time. A detailed analysis of these causes could lead to a smoothing

of the oscillations, leading to a better �t of the simple exponential model. However,

this is not deemed essential here and the impact of these additional processes is not

pursued in our work.

3.4.2 Observations at the local scale

Double-ring in�ltrometers [Smith 1972] were used to measure the local in�ltration

capacities at sparse locations in the SP, before and after the �ooding test was per-

formed. A double-ring in�ltrometer reproduces the local soil transition from un-

saturated to saturated conditions that would take place under �ooding conditions,

and evaluates the in�ltration capacity. In short, two metal rings are buried a few

centimeters deep into the soil and �lled with water (at constant or variable height).
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Figure 3.1: Experimental observations (solid line) of normalized Ic with time from

the �ooding test. The dotted curve is the best-�t approximation with I(t = ∞) =

0.44 and λe=0.17 d−1.
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After a standard time of two hours, the in�ltration rate approaches a steady state

value, identi�ed as Ic(x, t) at that location x and time t.

During the �ooding experiments it is possible to obtain in�ltration values at the

local scale by using other devices. For consistency we did not use other methods

and rely on two double-ring campaigns, This implies that the only available mea-

surements are those of Ic0 and Ic,f . Only a few points are available for each one of

these two variables. The former was obtained at 6 spatial points and the latter at

those same 6 points plus three additional ones (a total of 9).

It is worthwhile noting that double-ring tests provide a direct estimate of in�l-

tration capacity at the scale of the device. In this case, they were representative

of a small support scale (≈ 0.12 m2). This may have a signi�cant in�uence in

the geostatistical analysis, since it is important to use a method that accounts if

necessary for the di�erence in support between the di�erent variables involved. In

Figure 1 the "S" letters denote the locations where the double-ring in�ltration tests

were performed. The "C" letters refer to excavated pits where geology was directly

observed and described.

Results from the analysis of the in�ltration tests (using the modi�ed Kostyakov

method) were reported in Table 2.1 in Chapter 2, and are graphically plotted in Fig.

3.2. It is clear that all points analyzed show a reduction in in�ltration between the

initial and the �nal stage. It can be observed that this reduction is larger (both in

absolute and in relative terms) for the points displaying higher Ic0 values.

3.4.3 Local scale modelling

The results of the correlation between the red band of the image presented in Fig.

3.2 and the logarithm of the in�ltration values at t = t0 and at t = tf are found to be

linear according to equations (3.4) and (3.5). A good linear correlation is obtained

for both states of the arti�cial pond, with a Pearson's coe�cient of r2 = 0.87 for

the February campaign (t = t0) and r
2 = 0.89 for the June campaign (t = tf ).

3.4.4 Experimental variograms and Cross-variograms

Field experiments are usually di�cult to conduct and costly. Thus, one can typically

always expect a very low number of data points, which in most cases (certainly in

ours), prevents the direct estimation of the variogram of the in�ltration capacity.

Instead, a well behaving sampled variogram may be available for some secondary

variable, Pv in our case. Fig. 3.3 shows the resulting two directional variograms

obtained for Pv in the principal directions. The direction of maximum correlation

is oriented along the y axis. The model variograms show three di�erent structures,

whose combined formulation in terms of principal directions is

γPv(hx) = 297

[
0.32 ·Gauss(

hx
7

) + 0.44 · Sph(
hx
92

) + 0.24 · Exp(
hx
400

)

]
(3.10)
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Figure 3.2: Correlation between the pixel values (Pv) from the red band of the

satellite image (Figure 2.1) and measured in�ltration capacities at selected locations

in the SP at two di�erent moments: pre-�ooding (open circles), and post-�ooding

(stars). The lines show the linear �tting to the experimental data. The Pearson's

coe�cient for the dotted line (February dataset) is r2=0.87; for the straight line

(June dataset), r2=0.89
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Figure 3.3: Directional variograms of the pixel values in the reference image (exhaus-

tive dataset)

γPv(hy) = 297

[
0.32 ·Gauss(

hy
7

) + 0.44 · Sph(
hy
68

)

]
(3.11)

where Gauss(.), Exp(.) and Sph(.) are the standard unitary variogram mod-

els [Deutsch 1998].

3.4.5 Mapping the clogging factor

Finally, the clogging factor λ should also be estimated. In our case, no direct

�eld estimates about this parameter were measured. To overcome this problem,

we assumed a perfect correlation between this parameter and the initial in�ltration

capacity Y0,

Yλ = a(Y0) + b. (3.12)

The coe�cients a and b were estimated from the temporal evolution of the inte-

grated in�ltration capacity observed during the �ooding test. The theory is unclear

as to whether these two parameters should be positively or negatively correlated

(e.g. [Guin 1972, Zamani 2009]). Thus, we explore in our site the potential range

of parameters in the power law formula (3.12) that can lead to a �t of the observed

global in�ltration behavior. In particular, we analyze the sign of the coe�cient a.
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We will see how this may have a strong e�ect in devising potential remediation

strategies.

Starting from given values a and b, the map of the λ values is obtained with

(3.6), and then the local in�ltration in space-time is obtained from (3.2). Finally, the

integrated in�ltration is obtained with (3.3). The method is repeated by changing

the values of a and b until the curve matches that of Figure 3.1.

Several potential combinations of the two parameters might lead to reasonable

�ts. In Fig.3.4 we �x two di�erent b values and explore the sensitivity of the global

in�ltration curves to a. It is found that we are able to obtain two sets of parameters

(a, b), (−0.4,−0.3) and (0.3,−3.0) that lead to a similar �t. It can be observed that

the curves are quite sensitive to the two parameters, providing a way to calibrate

them. Calibration cannot be fully completed in our site since no data for interme-

diate times could be recorded. As a consequence we believe that there is a need to

perform short �ooding tests in real sites in order to obtain real values of λ that could

be used to design an optimal management operation. This can only be obtained by

performing test during the �ooding period. The problem is that in�ltration mea-

surements are quite sensitive to the method used, and so it is di�cult to be able to

combine data coming from double-ring or seepage meters, for example.

While one can �nd di�erent sets of (a, b) values, the key is the sign of the a

parameter. Depending on this sign we will have enhanced clogging in regions of

initially high in�ltration capacities, or alternatively, clogging enhanced in points

displaying initially small in�ltration capacities. This can be seen in Fig. 3.5, which

includes the maps corresponding to the two sets of (a, b) already presented before.

By construction, the maps are visually highly correlated with those of initial or �nal

in�ltration, included also in the same �gure.

3.4.6 Temporal evolution of the statistical distribution of local in-
�ltration values

One of the main factors controlled by a is the actual shape of the probability density

functions (PDFs) of λ. Thus, while the two sets of parameters lead to a very similar

�t of the global in�ltration curve, the actual values of λ are very di�erent (see

Fig.3.6).

A direct implication is that it is not possible to derive an equivalent λ value from

the local ones capable of reproducing the full behavior. This can be observed in Fig.

3.7, where the evolution of in�ltration with time using the harmonic, geometric and

arithmetic means of the point values presented in Fig. 3.6 are computed. It is

clear that upscaling from local values would be an error in general, and that some

conditioning on real values is needed to produce a proper reproduction of the global

behavior.

The evolution of the distributions of the local values of in�ltration capacity with

time is dependent on the map of λ values. This can be observed in Fig.3.8, where

we plot the cumulative distribution functions (CDFs) of Ic(x, t). Positive a values

imply a slower reduction in the in�ltration values with time than a negative a value.
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Figure 3.4: Sensitivity of the correlation model between ln(Ic) and ln(I0) on

the slope coe�cient a and the y-intercept. The results are plotted for b = −0.3

(up) and b = −3 (down). The normalized observed values, calculated using

the water balance equation, are also plotted for comparison with the curves.
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alent solution using the e�ective λe = 0.17 d−1. The numerical solutions

(marked with line and symbols style) are obtained by spatial average of lo-
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for comparison purposes.
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in�ltration capacity.

This is caused by the former leading to very small λ values in Fig. 3.6. These small

values cause the in�ltration to be reducing slowly with time. The picture completely

changes for the alternative set of parameters (−0.4,−0.3) where the local λ values

are high, and thus in�ltration reduces very fast with time.

These results will be signi�cant when devising a remediation method. Notice

how in Fig.3.8 it is observed that for the set (0.3,−3.0) all values of in�ltration

decrease more or less equally in time. Thus, the best alternative for remediation

would be to empty the full pond and restore the initial capacity if possible. On

the other hand, for the (−0.4,−0.3) we observe how the reduction of in�ltration is

mostly produced by the fast reduction in the more permeable areas. Thus, we could

devise a method that targets the initially high in�ltration areas. If clogging in these

points is prevented, the global in�ltration will remain high for a long period of time.



Chapter 4

A stochastic framework for the

optimal maintenance of arti�cial

recharge ponds under uncertainty

4.1 Introduction

Due to both soil heterogeneity, pore clogging, and lack of adequate soil and processes

characterization, Ic(x, t) is highly uncertain. Inherent uncertainty in estimates of

in�ltration capacity in an arti�cial ponds (SP) and predictions of its temporal evo-

lution introduces signi�cant uncertainty into decisions about SP management, with

important economical and environmental implications.

The goal of this chapter is to provide a framework to evaluate the engineering risk

of making decisions in regards to optimal maintenance of SP, when spatio-temporal

distributions of local hydraulic properties of the topsoils are uncertain. In this

Chapter, Ic(x, t) is treated as a random �eld that renders the equations governing the

spatio-temporal evolution of the arti�cial in�ltration process stochastic. Clogging

models are here derived from theoretical studies, most of them applied to other

disciplines than hydrogeology, such as �lter theories, biomass generation studies or

biogas production.

In this chapter, the problem of management SP under uncertainty is formulated

within a probabilistic framework context ([Drazen 1998, Orr 2005, Wagner 1987,

Zenios 1998]). This in turn can form the core of a probabilistic risk analysis, which

while a relatively new discipline in hydrogeology ([Batchelor 1998, Tartakovsky 2007,

Winter 2008, de Barros 2008, de Barros 2009, Bolster 2009]), forms standard prac-

tice in other engineering disciplines(e.g. [NRC 1997]).

This chapter is structured as follows. Section 4.2 provides a justi�cation for

adopting this probabilistic approach. The main factors and their modeling formula-

tions are described in section 4.3. Section 4.4 contains a general sensitivity analysis

of the selected models. In section 4.5, this methodology is applied to one real and

a few synthetic examples.

0This chapter is based on D. Pedretti et. al (2012), Probabilistic Analysis of Maintenance and

Operation of Arti�cial Recharge Ponds, Advances in Water Resources, vol. 36, pp. 23-35, doi

10.1016/j.advwatres.2011.07.008
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4.2 Operation of SP under Uncertainty

Depending on the overall intensity of the clogging mechanisms, SP can su�er from

"aging" [NRC 1994], which is an appreciable reduction in the in�ltration capacity in

the �rst few days after �ooding (e.g. see Chapter 3). To meet designed in�ltration

rates, SP must be periodically maintained with either preventive or corrective mea-

sures [ASCE 2001, CGWB 2007]. The speed with which the in�ltration capacity

approaches or drops below some critical threshold value (I∗c )is the primary variable

indicating when and what type of corrective measures should be taken.

The complexity of modeling soil clogging and the corresponding reduction in

in�ltration capacity, coupled with ubiquitously insu�cient site characterization and

soil heterogeneity, renders predictions of an in�ltration pond's performance fun-

damentally uncertain. This challenge is partially alleviated by the fact that this

performance is determined by the integrated in�ltration capacity Ic(t) rather than

the actual distribution of local in�ltration values Ic(x, t).

Empirical evidence from several operating SP suggests an exponential decay

behavior in the overall in�ltration capacity (e.g. [Perez-Paricio 2000, Kim 2010,

Ho�mann 2010])

Ic(t) = Ic0e−λeff t (4.1)

where the initial capacity Ic0 and the e�ective decay (clogging) rate λeff are

highly uncertain �tting parameters that are di�cult to predict prior to the SP's

operation. Actually, in general, the in�ltration rate tends asymptotically to a non-

zero value, but is most cases this asymptotic value is very small compared to the

initial one and can thus be approximate by a zero value (e.g. the pilot SP in Spain

discussed in Chapter 3).

A variety of maintenance activities with di�erent scheduling plans can be ap-

plied to SP to control the reduction of Ic(t) with time. These can be subdivided

into preventive or corrective measures ([Bedford 2001]). Preventive or maintenance

activities are performed during the operation period in order to extend the system's

life. Examples include pre-�ltering input water to eliminate particles, scraping the

soil surface before in�ltration, using disinfectants to control algal growth, designing

a large settling pond to remove organic matter, and controlling entry water temper-

ature to avoid gas bubbling. Corrective measures must be taken if and when Ic(t)

reaches its minimally acceptable level Ic. For these the operation of the SP must

be temporarily stopped. Examples include scraping the bottom surface when the

basins are dried out after speci�c recharge cycles, supplying additional disinfectants

or chemicals to the water, or using underwater robots to scrape the soil surface

during in�ltration.

Regardless of the maintenance strategy, a SP's operating life is highly uncertain.

Maintenance decisions have to be made under uncertainty, calling for a probabilistic

approach. However, current practice is to schedule corrective measures based on

experience and monitoring [CGWB 2007]. An optimal scheduling and selection of
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maintenance measures a�ects the operational costs of SP. Forecasting these costs

is subject to uncertainty and depends on many factors, such as the optimal per-

formance of the chemical products, the input water quality and the performance of

scraping machines.

4.3 Processes Contributing to SP Failure

We de�ne a "system failure" at time t as the event "water in�ltration capacity Ic(t)

falls below a design value Ic". Among a large number of events that can lead to

system failure are interruptions in water supply to the pond, deposition of extraneous

impermeable materials at the pond's bottom, bad design and/or improper use of

the pond, and its complete breakdown due to embankment slides, earthquakes, and

acts of vandalism [Dillon 2002]. These and other similar events should be included

into a complete probabilistic risk assessment of SP, but lie outside the scope of the

present analysis.

Instead, we focus on system failures due to reduction in the soil's in�ltration

capacity caused by clogging. A mathematical model capturing the relationship

between in�ltration capacity and the soil hydraulic parameters is presented in sec-

tion 4.3.1. Various clogging mechanisms are discussed, modeled, and combined

together for an e�ective model of clogging in section 4.3.2.

4.3.1 In�ltration & hydraulic parameters

In a well designed SP, in�ltration is controlled by the top soil layer. (A counterexam-

ple would be the occurrence of a very low-permeable layer with horizontal continuity,

at some depth, limiting in�ltration. The presence of such a layer is not considered

here). When the top soil layer controlling the in�ltration capacity is (nearly) fully

saturated and the in�ltration can be described by the one-dimensional Darcy law,

we can write

Ic(x, t) = −K(x, t)
∂h(x,z,t)

∂z
(4.2)

where x = (x, y)T is the vector of horizontal coordinates, z is the vertical coordi-

nate, h is the hydraulic head, and K is the saturated vertical hydraulic conductivity.

The latter is de�ned as K = κρwg/µw, where κ is the soil intrinsic permeability in

the vertical direction, ρw and µw are the density and dynamic viscosity of water,

respectively; and g is the gravity acceleration constant.

To account for changes in hydraulic conductivity due to pore clogging, we adopt

the Kozeny-Carman law [Kozeny 1927, Carman 1938] according to which perme-

ability κ varies with the soil porosity φ as

κ =
dm
180

φ3

(1− φ)2
(4.3)
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where dm is the percentile of the cumulative distribution of the soil grain sizes.

The Kozeny-Carman law is applicable within a range of φ that includes soil grains

coarser than �ne sands. Such soils are typical for arti�cial recharge facilities, which

typically are built in (highly permeable) coarse sandy sedimentary environments.

However it is important to note that the Kozeny-Carman law is known to su�er

from severe limitations that the user should be aware of prior to application (e.g.

[Chapuis 2003]). When such limitations occur, alternative models can be integrated

into this framework.

Assuming that the water properties and hydraulic gradient do not change over

time, it follows from (4.2) that any reduction in in�ltration capacity is linearly

related to the reduction in K, i.e.,

Ic(x, t)

Ic0(x, t)
=
K(x, t)

K0(x)
(4.4)

where Ic0(x, t) = I(x, t = 0) andK0(x) = K(x, t = 0) are the initial values of the

in�ltration capacity and the hydraulic conductivity, respectively. Combining (4.3)

and (4.4), we obtain an equation relating the reduction in in�ltration capacity to

the reduction in porosity,

Ic(x, t)

Ic0(x, t)
=
φ3(x, t)

φ3
0(x)

[1− φ0(x)]2

[1− φ(x)]2
≈ φ3(x, t)

φ3
0(x)

(4.5)

where φ0(x) = φ(x, t = 0) is the initial porosity before clogging started to occur.

The approximation in (4.5) is valid as long as temporal changes in φ remain

small.

4.3.2 Mathematical models of clogging

A number of physical [Zamani 2009], biological [Baveye 1998, Clement 1996] and

chemical [Greskowiak 2005] processes can contribute to clogging. Their complex in-

terplay complicates the development of fully comprehensive mathematical models of

clogging even though individual mechanisms are relatively well understood [Chang 2009,

Civan 2005a, Civan 2005b, Tufenkji 2004]. Representative models of the three clog-

ging mechanisms are discussed below.

4.3.2.1 Physical clogging

Physical clogging typically refers to �ltration processes that reduce porosity φ through

sedimentation and dragging of suspended particles [Iwasaki 1937, Zamani 2009].

Following [Iwasaki 1937], we employ a �rst-order mass transfer model,

∂C(x, z)

∂z
= −λz(x)C(x, z), (4.6)
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to describe the vertical pro�le of the volumetric concentration of particles, C, that

are removed from the suspension in the SP by trapping within the soil. The �l-

tration coe�cient λz combines volumetric and surface forces [Perez-Paricio 2000].

An exhaustive review of various forms of the �ltration coe�cient can be found

in [Zamani 2009].

In a typical model, e.g., [Boyd 1974], λz is a combination of the following mech-

anisms:

• �ltration induced by inertial forces, λine ∝ d1.5
s ;

• �ltration due to interception mechanisms, λint = (ds/dg)
n/dg;

• �ltration caused by molecular (van der Waals) forces, λmol ∝ d2
s;

• �ltration due to di�usion, λdif = [φ0KbT/(µwdsdg|q|)]0.66/dg;

• �ltration due to sedimentation, λsed = gφ0(ρk − ρw)d2
s/(18µwdg|q|).

ds is the mean diameter of suspended particles in the water during the �ooding

stage, dg is the characteristic grain size of the soil, n is the geometrical parameter

for clogging interception mechanisms, Kb is the Boltzmann constant, T is the water

temperature, q is the �ow velocity of water, and ρk is the bulk density of the soil.

Empirical relationships can be used to relate the characteristic grain size dg
to the soil permeability κ. In the present analysis, we choose the Hazen for-

mula [Hazen 1882],

κ = Ad2
10, A ≈ 100, (4.7)

in which dg = d10, the grain size corresponding to the tenth percentile in the cu-

mulative distribution of grain sizes. The Hazen formula (4.7) is most appropriate

for clean sands, which are typical in SP. It is worth emphasizing that the Hazen

formula is used here for illustrative purposes, and can be replaced by other textural

relations. Finally, we assume that d10 remains constant during an SP's operation,

i.e., that the clogging material does not change the grain size distribution over time.

This is deemed reasonable as clogging materials are typically an order of magnitude

smaller (in the case of suspended particle) or have lower density (in the case of

biomass) than the original material.

Let va denote an average particle attachment velocity to the soil matrix. Typical

values of va can be obtained from the literature or from laboratory experiments.

The experiments reported in [Perez-Paricio 2000] yield va ≈ 10−5 m/day, which

is in agreement with reference values suggested in [Tien 1979]. Setting t = z/va
in (4.6) and integrating in time yields

C(x, t) = C0(x)e−λ
∗
p(x)t, λ∗p = λzva (4.8)

where C0(x) is the initial concentration of particles in the soil column. Changes

in the particle concentration, δC, cause changes in the porosity, δφ. We postulate
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a linear relation between the two, δφ/φ = mpδC/C, where mp is the coe�cient of

proportionality. It follows from (4.8) that

φ(x, t) = φ0(x)e−λp(x)t, λp = mpλ
∗
p (4.9)

where λp can be seen as the characteristic physical clogging factor. Substituting (4.9)

into (4.5) yields a model describing the exponential reduction in the in�ltration

capacity due to physical clogging,

Ic(x, t) = Ic0(x)e−3λp(x)t. (4.10)

4.3.2.2 Biological clogging

Biological activity, such as biomass growth and biogas generation, obstructs the

pores and reduces both porosity and pore connectivity [Cunningham 1991, Baveye 1998].

Biological clogging is typically described with one of the three approaches: macro-

scopic models, micro-colony-based models, and bio�lm-based models. Macroscopic

transport equations resulting from all three are identical if bio�lms and micro-

colonies are fully penetrating [Baveye 1989]. Furthermore, the three approaches

yield acceptable predictions for coarse-textured materials (which are typical in SP

operations), while poor predictions arise in �ne-textured materials [Vandevivere 1995].

Bio-clogging manifests itself through a combination of factors: formation of a

thin impermeable layer at the soil surface, bio�lm formation on the soil grains,

and precipitation of biomass that occludes the pores. We focus on the last two

phenomena that act to reduce porosity. Speci�cally, we adopt a macroscopic ap-

proach and assume that all biomass growth leads to a direct reduction of porosity,

φ(x, t) = φ0(x)− φb(x, t), so that

φ(x, t)

φ0(x)
= 1− φb(x, t)

φ0(x)
(4.11)

The fraction of the pore volume occupied by the biological mass, φb(x, t), can be

expressed in terms of Mb, the relative biomass attached to the soil, and the biomass

density ρb, [Clement 1996], such that

φb(x, t) =
ρk(x)

ρb
Mb(x, t) (4.12)

In general, biomass growth occurs in four stages: time-lag (adaptation), ex-

ponential growth (microbes have acclimated), stationary (limiting substrate), and

decay (substrate exhausted) [Zwietering 1990]. While assessing the performance of

SP, one is concerned with the initial stages of bio-clogging in which biomass grows

exponentially,

Mb(x) = M∗b (x)[eλs(x)t − 1] (4.13)

whereM∗b (x) is the initial distribution of biomass and λs(x) is the microbial growth

parameter. Combining (4.11)�(4.13) yields
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φ(x, t)

φ0(x)
= 1−

ρk(x)M∗b (x)

ρbφ0(x)
[eλs(x)t − 1] (4.14)

For λst� 1, (4.14) can be approximated by

φ

φ0
≈ 1−

ρkM
∗
b λs

ρbφ0
t ≈ e−λb(x)t, λb =

ρkM
∗
b λs

ρbφ0
(4.15)

This approximation implicitly assumes the variation in porosity due to bio�lm

growth to be small relative to the initial biomass. It is adequate for risk assess-

ment purposes, since a large reduction in porosity and permeability would make the

SP operation not viable. In other words, standard SP operations would not allow

clogging to develop beyond the exponential growth phase.

Substituting (4.15) into (4.5) yields a model describing the exponential reduction

in the in�ltration capacity due to biological clogging,

Ic(x, t) = Ic0(x, t)e−3λb(x)t (4.16)

4.3.2.3 Chemical clogging

During the initial �lling of a pond, gas can be generated within pores by a number of

chemical processes, including microorganism activity, temperature e�ects, and the

release of trapped bubbles [Christiansen 1944, Fry 1995]. As the air continues to

occupy some pores (mainly large ones), water saturation and consequently hydraulic

conductivity and in�ltration rates decrease. Degassing can be rapidly reversed if the

proper water temperature conditions are met [Perez-Paricio 2000]. The relationship

between moisture content and conductivity is also characteristic of the grain size

(i.e. type of soil); when this is similar to the pore distribution, the heterogeneous

distribution of gas clogging factors would also show a spatial variability similar to

the one of the grain size. However, direct measurements of the characteristic curves

are challenging and costly. We take advantage of the fact that clogging due to

gas formation takes place at small time scales (much smaller than those associated

with physical and biological clogging). This allows us to employ an instantaneous

reduction model of gas clogging,

Ic(x, t) = R(x)Ic0(x) (4.17)

where the reduction factor R(x) ∈ (0, 1] is treated as an uncertain (random) �tting

parameter.

4.3.2.4 E�ective model of clogging

Although a few studies examining the interaction between processes exist (e.g. [Ernisee 1975,

Rosowski 1986, Avnimelech 1983] for physical and biological clogging), most scarcely
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provide quantitative information about the cumulative e�ect on reducing the in�l-

tration capacity. For modeling purposes, we obtain the overall reduction in the

in�ltration capacity by linearly combining (4.10), (4.16), and (4.17), such that

Ic(x, t) = R(x)Ic0(x)e−3[λp(x)+λb(x)]t (4.18)

4.4 Dependence of SP Performance on Soil Parameters

Predictions of clogging and the corresponding reduction in in�ltration capacity de-

pend on a number of parameters, whose values are highly uncertain due to soil

heterogeneity. We adopt a probabilistic framework both to predict the e�ects of

clogging on a SP's in�ltration capacity and to quantify the predictive uncertainty.

Speci�cally, we focus on the impact of soil texture, as encapsulated by the grain

size parameter dg, on the reduction in the SP in�ltration capacity due to various

clogging mechanisms. Recall that dg can be directly related to the initial in�ltration

values I0 using (4.2) and (4.7), so that we could alternatively have selected Ic0(x, t)

or K0(x). In section 4.3, we demonstrated how the reduction in the in�ltration

capacity Ic(x, t) in (4.18) can be related to the soil texture and to the soil particle

size dg. The following sensitivity analysis is used to explore further the question of

how this soil parameter a�ects various clogging mechanisms and, via (4.18), the SP

in�ltration capacity.

The following grain sizes and soil densities were chosen to represent three di�er-

ent types of soils:

• dg = 1.5·100 cm and ρk = 1.8 g/cm3 for soils of type (a),

• dg = 1.5·10−2 cm and ρk = 1.5 g/cm3 for soils of type (b),

• dg = 1.5·10−4 cm and ρk = 1.2 g/cm3 for soils of type (c).

The other parameters used for these simulations are reported in Table 4.1, taken

as typical values encountered in the literature cited within this work. Note that

the use of λs = 2.5·10−3 1/day renders the approximation (4.15) applicable for t on

the order of hundreds of days. Finally, we �x φ0 = 0.3 and |q| = 0.1 m/day even

though these parameters are expected to vary with dg. This is done to isolate the

relative importance of the physical and biological clogging, both of which depend

exclusively on the grain size dg.

Figure 4.1 illustrates the temporal evolution of the in�ltration capacities, nor-

malized by the corresponding initial values, considering individual and joint clogging

process. We observe that biological processes play the dominant role in the overall

clogging (λp + λb) for soils of type (a) (the coarser soils in our selection), while

physical clogging is dominant in type (c) (the �ner soils). For mid grain-sized soils,

both mechanisms have similar impact on the overall clogging.
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Table 4.1: Selected values for model entry parameters used for sensitivity analysis

Parameter value unit

ds 2·10−3 cm

ρs 1.5 g/cm3

n 2 -

T 298 K

ρw 1 g/cm3

µw 1.002·10−7 N·s/cm2

ρb 2.5 ·10−3 g/cm3

λs 2.5·10−3 1/day

φ0 0.3 -

|q| 0.1 m/day
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Physical clogging

Biological clogging

Coupled physical and
biological clogging

Figure 4.1: Reduction of the in�ltration capacity of the SP topsoil (normalized with

the initial value), calculated using Eq. (4.18), due to biological and physical clogging

at the three di�erent location of a SP characterized by locally uniform grain size

distribution, corresponding respectively to (a) coarse, (b) mid-grained, and (c) �ne

soils. For mid-grained soils, physical clogging (stars) and biological clogging (points)

practically overlap.
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4.5 Applications

We demonstrate the applicability of the proposed approach with two examples.

The �rst deals with �eld data collected at a pilot SP site (section 4.5.1). The

second considers several synthetic examples that enable one to analyze the approach

accuracy and robustness, and to quantify predictive uncertainty (section 4.5.2).

4.5.1 Pilot SP in Sant Vicenç dels Horts, Spain

We use the mathematical framework developed in Sections 4.3 and 4.4 to predict

soil clogging and the corresponding reduction in the pond's in�ltration capacity at a

SP site located in Sant Vicenç dels Horts (herein, SVH) near the city of Barcelona,

Spain (see Chapter 2)

The data analysis presented in Chapter 2 provides a rare example of SP, in which

the initial local in�ltration capacities are known with su�cient certainty. In general,

this is not the case, and uncertainty (randomness) in Ic0(x) should be accounted for

in decision-making. In the analysis below, we explore both scenarios.

In this work we use Fig. 4.2A as our reference raster of initial in�ltration ca-

pacities (Ic0(x)). Notice that the in�ltration map here is a mirror version of �g.

2.7.

Figure 4.2B exhibits the characteristic grain size distribution dg(x) inferred from

the distribution of Ic0(x) in Fig. 4.2A by means of the Hazen formula (4.7). The

logarithmic color scales in Fig. 4.2 highlight the high degree of spatial variability of

the parameters considered in this study at the local (i.e., pixel) scale (≈ 102 cm2).

The parameters are inferred, and assumed to be constant, on a pixel basis.

The estimates of the grain-size distribution dg(x) in Fig. 4.2B rely on the re-

lationship between the pixel intensity and the in�ltration rate and on the Hazen

formula (4.7), both of which are likely to introduce estimation errors. The impact

of uncertainty on predictions of the SP in�ltration capacity is quanti�ed in Sec-

tion 4.5.2 by conducting a series of Monte Carlo simulations. In the remainder of

this subsection, we treat the grain-size distribution dg(x) in Fig. 4.2B deterministi-

cally, i.e., as a realization of the corresponding random �eld.

Figure 4.3 shows the estimates of physical clogging rates λp(x) (Fig. 4.3A) and

biological clogging rates λb(x) (Fig. 4.3B) obtained from the estimates of the char-

acteristic grain sizes dg(x) by following the procedure described in section 4.3.2.1

and 4.3.2.2. Note that the values of λp span four orders of magnitude, while λb
is relatively uniform. In these calculations, we adopt the same default values for

entry parameters as in Table 4.1. ρk was related to dg according to the relationship

established in Section 4.4.

To simplify the presentation, we take the reduction factor R due to gas clogging

to be spatially homogeneous and set it to R = 0.9. Spatially-varying R(x) can be

obtained by invoking physical models combined with �eld measurements. Substitut-

ing λp(x) and λb(x) from Fig. 4.3 into (4.18), we compute the in�ltration capacity

Ic(x, t) in each pixel. Temporal snapshots of the resulting Ic(x, t) after t = 7, 14
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Figure 4.2: (A) Reference map of initial in�ltration capacity distribution (modi�ed

from Chapter 2), and (B) relative grain-size distribution predicted with the Hazen

formula (4.7). The size of the image is 286 × 694 pixels. Coordinates are also in

pixels.
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Figure 4.3: Spatial distributions of (A) the physical clogging rates λp and (B) the

biological clogging rates λb, inferred from the spatial distribution of dg in the refer-

ence domain. As such, each value has a pixel-size support volume. Notice scales are

di�erent in both plots.
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Figure 4.4: Spatial distribution of the in�ltration capacities of the soil at di�erent

�ooding stages (t = 7, 14 and 42 days) in the reference domain.

and 42 days of in�ltration are shown in Fig. 4.4. A comparison of these snapshots

with the initial in�ltration capacity in Fig. 4.2A reveals a signi�cant deterioration in

performance of the SP. While a large fraction of the SP maintains s high in�ltration

capacity after 7 days, 42 days of SP operation results in a large reduction of the

area corresponding to high in�ltration.

Figure 4.5 summarizes the spatial variability of the in�ltration capacity Ic(x, t)

in Figs. 4.2A and 4.4 in the form of its probability density function (PDF) and cu-

mulative distribution function (CDF) after 1 (t1), 7 (t7), 14 (t14) and 42 (t42) days

of SP operation. These were computed from the corresponding histograms of pixel-

level values of Ic(x, t). The in�ltration-capacity PDFs at early times are broad,

re�ecting high uncertainty (spatial variability) of I. As time increases, the PDF

shifts to the left, re�ecting the decrease in in�ltration rates. It also sharpens, indi-

cating the decreased uncertainty. At all times, the PDF curves display asymmetric

tailing (positively skewed curves)

4.5.1.1 On the use of e�ective clogging rates

Since previous observation show that large scale �ooding experiments typically dis-

play an exponential decay in in�ltration rate, we explore the feasibility of using an

e�ective clogging rate λeff as a parameter to represent the various biological and

physical clogging mechanisms over the whole SP footprint.

We compute the mean in�ltration capacity Ic(t) by averaging the values of

Ic(x, t) in (4.18) over all pixels. The resulting Ic(t), normalized with the average ini-

tial in�ltration capacity Ic0, is shown in Fig. 4.6a. Using a least-squares regression,

the best �t exponential curve approximating the rate of change of the in�ltration

capacities gives a constant-in-time λeff ≈ 0.139 d−1, which means a characteristic
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Figure 4.5: (a) Probability density function and (b) cumulative distribution function

of the pixelized in�ltration capacities Ic(x, t) after 1 (t1), 7 (t7), 14 (t14), and 42 (t42)

days of SP operation at the SVH site.

clogging time of the water in the pond of 7.2 days .

Alternatively, we can estimate a variable-in-time λeff(t) by invoking (4.1), such

as

λeff(t) = −1

t
ln

[∫
ΩIc(x, t)dx∫
ΩIc0(x)dx

]
(4.19)

The results of the two methods to calculate λeff(t) are plotted together in

Fig. 4.6b. The numerical evaluation of (4.19) suggests that in this case, λeff is

monotonically decreasing in time, ranging from 0.155 d−1 to 0.125 d−1 over the

chosen time interval (up to 100 days). This corresponds to characteristic clogging

times between 6.45 days to 8 days (Fig. 4.6b). From a practical perspective, this

di�erence may be negligible and a constant e�ective parameter λeff , exhibiting a

"homogeneous" (or, more appropriately, homogenized) exponential decay, can be

considered a good approximation (see the good �t in �g. 4.6).

4.5.1.2 SP management strategies

Next, we explore how spatial variability of the SP in�ltration capacity I(x, t) a�ects

the e�ciency of the following four maintenance strategies:

• No maintenance activity is performed,



4.5. Applications 59

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
. I

nf
ilt

ra
tio

n

 

 
(a)

0 20 40 60 80 100
0.125

0.13

0.135

0.14

0.145

0.15

0.155

Time (days)

λ ef
f

(b)

 

 

Numerical solution
  Best exponential fitting

Figure 4.6: (a) Reduction in the overall in�ltration capacity Ic(t) at the reference

site� computed by averaging its spatially-distributed counterpart Ic(x, t) (crosses)

and the exponential �tting to the solution (solid line) with λeff=0.139 d
−1; (b) com-

parison between best-�t λeff (steady variable) and the time-dependent counterpart

calculated from the numerical solution (4.19).

• All biological clogging mechanisms are remediated (Type A),

• All physical clogging mechanisms are remediated (Type B),

• Physical clogging mechanisms are remediated in selected areas of the SP foot-

print (Type C).

Type C maintenance can employ di�erent criteria to identify the parts of the SP

footprint where the remediation is to take place. One could clean an area selected

purely on geometrical criteria (e.g., target a half of the area of the pond at a time).

We on the other hand pursue a Type C maintenance strategy that relies on soil

heterogeneity and hydraulic criteria to select clean-up areas. Speci�cally, we target

the areas, wherein λp in Fig. 4.3A falls below a certain threshold value, e.g., 50%

or 80% percentiles of the λp probability distribution (Fig. 4.7). Since λp is high for

points displaying low I0 and vice-versa, such maintenance strategies focus on the

areas with the highest initial in�ltration capacity I0. This allows one to sustain

higher in�ltration rates longer, thus resulting in a decrease in the reduction of the

mean in�ltration capacity over long time. Complex geometries over which such a

maintenance is to be performed present practical implementation di�culties. Thus,

this approach has little practical signi�cance at the current stage of SP practices

but could be potentially interesting for future large scale facilities.

Figure 4.8 displays the average in�ltration capacity Ic(t) achieved with the four

maintenance strategies identi�ed above. Unsurprisingly, all the strategies increase
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Figure 4.7: Areas corresponding to the 50% (left) and 80% (right) percentiles of the

initial I0 reference distribution. These black areas should be targeted in order to

minimize the impact of physical clogging rate (Type C maintenance)
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Figure 4.8: Reduction in the normalized mean in�ltration capacity, Ic(t)/Ic0, of the

reference site for the alternative maintenance strategies.

Ic(t) relative to its counterpart without any maintenance. If one de�nes 37% of

the initial in�ltration rate (corresponding to a characteristic time t=1/λeff) as the

minimum acceptable in�ltration capacity, then the SP's operational time without

maintenance is about 7 days. Treating bio-clogging extends the operational time to

about 9.5 days, and the full treatment of physical clogging increases the operational

time to about 28 days. This analysis reveals that at this site physical clogging is

the primary inhibiter for maintaining e�ective mean in�ltration rates.

If only a partial maintenance of physical clogging is performed, the treatment of

50% of the domain extends the operational time to 18-20 days. A more extensive

treatment, 80% of the domain, delivers a substantial gain over the untreated case

of about 25-27 days. Thus, if feasible, a partial targeted maintenance o�ers signi�-

cant gains in operational time (and thus could be a valid cost-e�cient management

alternative).

4.5.2 SP operations under uncertainty

In the preceding analysis on the pilot SP, we assumed that all the relevant param-

eters to compute (4.18) are known with certainty. Such a degree of certainty is

uncommon in practical situations, where dg, K0, I0, R, λb and λp are sparsely sam-

pled and highly uncertain. This parametric uncertainty translates into uncertainty

in predictions of whether and when the predicted mean in�ltration rate Ic(t) falls

below a critical value Ic.

To explore the e�ects of parametric uncertainty, we supplement our analysis
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of the SVH site with a number of synthetic �elds whose ensemble statistics are

loosely based on the data obtained from this site. Rather than treating dg as our

random variable, we take the hydraulic conductivity, which we treat as determinis-

tically linked to dg as random. Speci�cally, as is commonly done, we assume that

the initial natural log hydraulic conductivity Y0(x) = lnK0(x) is a multi-Gaussian

random �eld with zero mean Y0 = 0, variance σ2
Y , an exponential variogram, and

correlation length IS . We set h=0.5 m (constant in space and time) to compute

I0 from K0 using (4.2) and A=100 to compute dg from K0 using (4.7). Since A

and h are constant in space and time, the spatial structure is identical for dg, K

and I0. Random realizations of Y0(x) were generated with the sequential simulation

algorithm GSLIB [Deutsch 1998] on a computational domain comprised of 284 ×
692 pixels. These realizations were not conditioned to data.

Section 4.5.2.1 contains an analysis of the in�ltration capacities Ic(t) for single

realizations of soil parameters. Its goal is to verify the robustness and generality of

our �ndings at the SVH site. In Section 4.5.2.2, we perform Monte Carlo simulations

(MCS) to quantify predictive uncertainty.

4.5.2.1 Analysis of individual (single) realizations

Consider four SP operating in soils, whose distributions of initial in�ltration capac-

ities Ic0(x) are shown in Fig. 4.9. These �elds are individual realizations of random

�elds obtained using di�erent parameters, e.g. (a) σ2
Y = 4 and IS = 66, (b) σ2

Y = 4

and IS = 6.6, (c) σ2
Y = 1 and IS = 66, and (d) σ2

Y = 1 and IS = 6.6. In all cases

the units for IS are pixels.

Fig. 4.10 shows how the various maintenance strategies described in Section 4.5.1.2

a�ect the decay in the normalized in�ltration capacity Ic(t)/Ic0 in the four synthetic

�elds (Fig. 4.9). Note here that when we say Type C maintenance it refers to the

de-clogging of 50% of the pond surface.

For σ2
Y = 4 and Is = 66, the results suggest that removal of biological clogging

(Type A) yields better performance than applications on physical processes (Types

B,C). For instance, 40 days after recharge has started, the reduction of in�ltration

from its initial value is about 80% using Type B and C maintenance (which prac-

tically overlap in this case), while there is a reduction of around 70% with Type

A. For the same variance of σ2
Y = 4 but a comparatively small correlation length

(IS = 6.6), Type B and C o�er slightly better performance than Type A, although

after around 40-45 days of operation this behavior is inverted. However, the late

time di�erence is quite small.

On the other hand, for the smaller variance (more homogeneous) system with

σ2
Y = 1, biological clogging always appears to play a secondary role when compared

to physical clogging e�ects in direct analogy to what we observed at the SVH site

(Fig. 4.8). This is true for both the IS = 66 and 6.6 realizations. Maintenance

applied in the e�ort to remove biological clogging is practically useless relative to

doing nothing. On the other hand both physical clogging maintenance approaches

are much more e�ective.
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Figure 4.9: Individual realizations of the initial in�ltration capacities Ic0(x), using

di�erent variances of soil hydraulic conductivity σ2
Y and correlation length IS : (a)

σ2
Y = 4 and IS = 66, (b) σ2

Y = 4 and IS = 6.6, (c) σ2
Y = 1 and IS = 66, and (d)

σ2
Y = 1 and IS = 6.6. Units of IS in pixels
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Figure 4.10: Impact of the di�erent types of maintenance on the normalized in�ltra-

tion capacity Ic(t)/Ic0 at the four SP sites shown in Fig. 4.9.

Note that in all cases the selective removal of physical clogging, i.e. Type C main-

tenance, is almost as e�ective as the complete removal maintenance, particularly for

the high variance cases. This is because this maintenance keeps the dominant �ow

channels open and the low permeability regions a�ect the mean value very little.

4.5.2.2 Monte Carlo analysis

To quantify the uncertainty associated with predictions in the decline in the in�l-

tration capacity of the four SP in Fig. 4.9, we conduct four sets of Monte Carlo sim-

ulations (MCS). Each set consists of 1000 realizations of the initial log-conductivity

�elds Y0(x) whose statistical properties are described in Section 4.5.2.1. As in the

case of the single realizations, we use (4.2) and (4.7) to relate dg and the initial

in�ltration to Y0(x).

Figures 4.11 and 4.12 display some of the most signi�cant results of the analysis.

The former displays the normalized spatially-averaged in�ltration capacities against

time (Ic(t)) for each of the four statistical �elds. The �gure includes the ensemble

mean of the predictions over all realizations, along with the degree of uncertainty
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for each prediction expressed by the coe�cient of variation (CV). Note that apart

from the case with IS = 66 and σ2
Y =4, the ensemble mean curves of Type B and

C (marked by squares and circles) practically overlap.

One feature that stands out is that CV, initially zero (we assume perfect knowl-

edge of Ic0) increases towards larger values at di�erent rates, that depend on the

type of maintenance and geometrical distribution of soil parameters. The most un-

certain cases are those with biological maintenance and with no maintenance at all,

while the uncertainty is generally quite small for the system with maintenance of

physical clogging. This is in some sense a re�ection of the fact that maintenance

of physical clogging homogenizes the system. Interestingly, while biological pro-

cesses are also heterogeneous, their range of heterogeneity is much smaller and so

only treating biological processes maintains a high degree of uncertainty in the sys-

tem with late time coe�cients of variation in many cases reaching values of O(1).

Comparing physical clogging maintenance schemes B and C demonstrates that the

ensemble mean behavior is practically unchanged except with a small visible dif-

ference in the most heterogeneous system where IS = 66 and σ2
Y =4. As already

highlighted, the uncertainties are small for both cases with a largest value around

O(10−2) in the most heterogeneous systems. The uncertainty is always smallest for

Type B maintenance, which is rather intuitive since it removes all physical clogging,

while C only targets it partially, thus still maintaining a certain degree of physical

clogging heterogeneity in the system. It is shown that biological maintenance results

in the highest degree of uncertainty, which raises an important point for managers

and decision makers: if dealing with a highly heterogeneous pond, one would have

to decide whether to gamble with the uncertainty associated with maintenance A

or take the more certain approach of maintenance against physical clogging.

To highlight the main observations from the Monte-Carlo simulations in a dif-

ferent way we present the cumulative distribution functions (CDF) of normalized

in�ltration at various times in �gure 4.12. The CDFs are shown for each of the 16

cases (4 ponds with 4 maintenance strategies) at �ve di�erent times t1, t7, t14, t21

and t42, where the subscript corresponds to the number of days elapsed. In �gure

4.12 the cases, which su�er from the greatest degree of uncertainty, clearly stand out

(e.g. the pond with σ2
Y = 4 and I = 66 with maintenance type A). On the contrary,

many of the systems with low variance, particularly with maintenance types B and

C have almost instantaneous jumps in their CDFs. These sudden jumps re�ect a

very high degree of certainty.

Finally to convey this information even more clearly we present selected prob-

ability density functions for some speci�c cases to highlight particular features in

�g. 4.13. The PDFs are calculated as the best-�t non-parametric approximation to

the discrete experimental histograms of in�ltration capacities. We show the PDFs

at various times for di�erent maintenance activities, calculated for the case with

greatest uncertainty (IS = 66 pixels and σ2
Y = 4 m2/day2). The PDFs are shown

at three di�erent times, t7, t14 and t42.

The width of the PDFs re�ects the degree of uncertainty and nicely visualizes

some of the measures of uncertainty in �gures 4.11 and 4.12. We would like to
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highlight that in �g. 4.13, the shape of the PDFs for Type C is clearly di�erent

from the others; this is due to the fact that the type C maintenance selects to only

maintain the higher in�ltration rate channels, thus maintaining higher statistical

mean in�ltration capacity and inducing a negative skewness to the PDF. This is

what increases the degree of uncertainty relative to full removal of physical clogging.
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Figure 4.11: Ensemble average and coe�cient of variation resulting fromMonte Carlo

analysis (1000 realizations) of the normalized overall in�ltration capacity Ic(t) in time

for each �eld geometry and variance, for di�erent types of maintenance. Notice that

Type B and C curves overlap in many cases, expressing a similar behavior.
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Figure 4.12: Cumulative distribution frequency (CDF) of the normalized overall

in�ltration capacity Ic(t) resulting from the Monte Carlo analysis. Results are shown

at times t1=1, t7=7, t14=14, t21=21 and t42=42 days. Results are shown for the

four synthetic �elds and four maintenance strategies.



4.5. Applications 69

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Norm. Infiltration

No maintenance

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8
Type A

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120D
en

si
ty

Type B

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80
Type C  50 %

 

 

t42

t7

t14

t7t14

t42

t7

t14

t42
t42

t7

t14
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tion rates, resulting from the Monte Carlo analysis. PDFs re�ect the ensemble of

�elds synthetic realizations with σ2
Y = 4 and IS = 66 pixels, for di�erent types of

maintenance applied on soils, at times t7=7, t14=14 and t42=42 days.





Conclusions for part 1

The major conclusions that can be drawn from the �rst part are listed as follows

and divided by chapters.

Using satellite images to map the in�ltration capacity of topsoils

Dealing with spatial variability of soil hydraulic variables (like the in�ltration

capacity) in the �eld is always challenging and uncertain. This is due to the high

cost of in situ site characterization. An alternative and low-cost method has been

presented to map the in�ltration capacity in heterogeneous alluvial formations from

satellite images. Its was found that a relationship between in�ltration capacity

(measured in some random locations) and color intensity of two digital images can

be well established to provide the spatial distribution of soil properties such as the

in�ltration capacity. The method was satisfactorily applied to an arti�cial recharge

pond area close to the city of Barcelona.

The relationship we built appears to be robust, physically justi�able, and satis�es

some premises like monotonicity of the correlation functions. In the test images, the

ground surface appears not to be a�ected by objects or other disturbances (for

instance, a presence of trees or shadows) that could have modi�ed the natural color

or re�ectance in portions of the domain. This avoids the need to apply �lters to

the image to remove such imperfections, which would modify the original pixel

organization, structure and intensities.

The physical validity is justi�ed by noticing that the image depicts darker por-

tions which have been associated with �ne-grained portion of the soils, with sub-

stantial organic content and vegetation canopy, whereas brighter colors correspond

to areas with cleaner sands and gravels of low �ne content and vegetation. It is

worth noting that the correspondence of dark soil to dark pixels and vice versa may

not be universal (e.g. depending on the considered light spectrum range). Also

di�erent soil re�ectance can depend on several factors such the type of light, solar

ray inclination, time of day, season etc. As such, it is suggested that this method

should be valid for a rapid assessment of areas that are geologically similar to the

one we consider and for applications where the ground surface is free of covering

materials. Both these conditions are characteristic of typical arti�cial recharge sites.

Most importantly, estimates of the total maximum in�ltration rate obtained for

the arti�cial pond site based on this relationship were consistent with a water mass

balance performed during a �rst inundation experiment at the site. Predicted val-

ues match quite well with actual observations, according to o�cial measurements

made by the local public administration. Both digital images, the Internet digital

image from a popular web based provider and the one o�cially provided by the

Catalan Cartographic Institute, gave similar results, highlighting the robustness of

the method. The discrepancies that do arise suggest that any estimates should be

coupled with an uncertainty analysis to quantify the reliability of this method as
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compared to other more sophisticated but more expensive ones.

Spatio-temporal mapping of in�ltration capacity

Assessing the spatio-temporal variability of soil hydraulic variables is often needed

to make optimal, e�ective and e�cient decisions in many branches of the ground-

water hydrology. A methodology to map the spatio-temproal distribution of the

characteristic lumped temporal factors of clogging (λ ) in a SP, with the aid of

satellite images and a few experimental datasets based on local sparse measure-

ments is provided.

The method allows to estimate the spatio-temporal variability of the in�ltration

capacities of the topsoil on the pilot arti�cial recharge area in Spain. Although

the developed model introduces some simple hypotheses and simpli�cations in this

illustrative example, it is shown that we were able to map the evolution of local

in�ltration with time. To validate the method, the measured total in�ltration ca-

pacities at the SP scale is compared with the ones calculated by integration of

calculated local values using a geostatistical-physically-mixed approach. Numerical

results satisfactorily agree with the observations

It is found that arguably the most signi�cant parameter is the sign of the a

parameter in the power law model relating λ and the initial in�ltration. Depending

on this sign it is possible to see the practical relevance of designing a remediation

method that targets only parts of the domain (acting on the high in�ltrating areas

during operation), or else it is better to use the classical approach of treatment after

emptying the facility. This alternative might have signi�cant impact in managing

an SP site.

Maintenance of arti�cial recharge ponds under uncertainty

A stochastic framework to evaluate the in�ltration rate in an arti�cial recharge

pond over time is formulated and used to manage operations of maintenance of

the pond under uncertainty. The framework focuses on physical, biological and

retardation-like clogging mechanisms, although additional processes can easily be

included. The general methodology is applied to two sets of single realization ex-

amples (a real SIP and four synthetic ones), and within a Monte Carlo framework.

Biological and physical processes was combined to produce a joint reduction of

in�ltration in time. The relative impact of one versus the other is governed by some

typical parameter of the soil like the grain size. A simple sensitivity analysis on the

models demonstrates that physical clogging is more sensitive to soil heterogeneity

than biological clogging.

Detailed knowledge of the geological heterogeneities of the soil are a determin-

ing factor for optimal decision making in maintenance operations of the arti�cial

ponds. Actions can be taken aimed at reducing the impact of biological or physical

clogging independently. Some of them can be selectively applied to target portions

of the domain, instead of being applied over the whole domain. A proper initial
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characterization can signi�cantly help to accurately predict the in�ltration rate in a

pond. Such an initial characterization can for example be conducted using primary

or secondary information, such as satellite images.

The single realization approach considers the spatial distribution of initial in-

�ltration capacity to be fully known at any location of the pond. It demonstrates

how in a heterogeneous system the mean in�ltration rate can be described with an

e�ective homogeneous decay rate despite the large degree of heterogeneity.

The Monte Carlo framework shows that the risk of making optimal decisions

depends on soil heterogeneity. Uncertainty mainly depends on the global variability

of the hydraulic properties of the soil (risk of design failure increases as the variance

of the hydraulic conductivity increases). The geometric distribution (evaluated by

the correlation length) of such parameters also plays a role, but in most cases is

secondary.

Maintenance actions that target physical clogging mechanisms signi�cantly re-

duce the uncertainty in predicting the temporal evolution of the in�ltration rate

relative to only maintenance in relation to biological clogging or no maintenance at

all. On the other hand, some soil characterization parameter combinations lead to a

larger value of the ensemble in�ltration capacity with time. Thus a decision maker

must weight the relative gain in in�ltration capacity to the gamble of uncertainty.



Part II

Solute transport
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Prologue to part 2

Solute transport in heterogeneous media is highly uncertain to model and pre-

dict. The main reason is related to the existence of heterogeneity of hydrodynamic

soil properties that determines random groundwater �ow dynamics. Accurate mod-

eling of such dynamics is needed to make decisions in the optic of risk assessment

and prevention of hazardous situations management of remediation activities (e.g.

[Tartakovsky 2007, de Barros 2008, Bolster 2009]).

For predictions to be reliable, models need to show accuracy and capacity to

reproduce experimental characterization tests. However, de�ning an appropriate

model for this purpose is challenging. Typical characterization scales are done at

the order of 100 to 103 meters ([Gelhar 1992, Gelhar 1993]), while most of the pro-

cesses controlling �ow and transport �uctuations occur at the pore scale (10−6 to

10−2 meters). Possibly, in the next future, practical characterization methods will

be able to explore microscopic levels of the soils, and at the same time practical

models will be able to extensively and e�ciently simulate directly �ow and solute

dynamics at such microscopic scales. Today, only very speci�c characterization

methods and models have remarkably showed that this approach may work (e.g.

[Morris 1997, Tartakovsky 2006]), indicating that this path must be followed and

investigated. However, they are still in an embryonal stage as they require huge

costs and high demanding computational e�orts that impede their current use for

practical purposes.

Nowadays, macroscopic models are required, invoking some scaling-up (e.g. av-

eraging) procedure. For upscaling method to be e�ective, they require in turn an

extensive knowledge about the evolution of the processes controlling �ow and trans-

port over several spatio-temporal scales. A classical macroscopic model that has

been largely used so far is the advection-dispersion equation (ADE), which can be

developed considering parallel or radial coordinates, depending on the geometry of

the �ow �eld ([Bear 1972, Moench 1989]). ADE relies on the Fickian laws and works

for homogeneous cases, which are however not very common in nature. Most �eld-

scale experiments showed that this model presents serious limitation to reproduce

solute transport, and some author from the 1960's has been invoking the existence

of additional apparent process that can control transport at large observation scales

([Coats 1964]). Transport that cannot be simulated by ADE is generally called

'non-Fickian', or 'anomalous'.

A macroscopic evidence for non-Fickianity are the non symmetric breakthrough

curves (BTCs) resulting in most tracer test experiments. Many authors have pos-

tulated that BTCs non-Fickianity is a consequence of the presence of physical and

chemical soil heterogeneities (e.g. [Levy 2003, Salamon 2007, Riva 2008]). Phe-

nomenological evidences suggests that heterogeneity determines heavy-tailed dis-

tributions on BTCs that sometimes scale very similarly to a power-law (PL) dis-

tribution of the form c ≈ t−m at late times (long after the peak is observed).

The parameter m is also known as the BTCs slope, since PL distributions scale
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as straight lines in double logarithmic plots; m has been reported to range be-

tween 1 and 3 in several cases (e.g. [Becker 2000, Becker 2003, McKenna 2001,

Hoehn 1998, Fernàndez-Garcia 2004, Gouze 2008]). Other distributions than PL

also display an apparent straight slope in double-log plots ([Clauset 2007]) and

can be used to �t late-time behavior of experimental BTCs (e.g. the lognor-

mal or the gamma probability density functions). PL distribution are, however,

very attractive since some authors found a strict relationship between PL-shaped

BTCs and some speci�c spatio-temporal distribution of some physical soil properties

(e.g. [Dentz 2003, Bijeljic 2006, Willmann 2008, Gouze 2008] and reference therein).

Nonetheless, the common thing in these works is that consider nonstationary �elds

or mean uniform �ow conditions; for many other circumstance where heavily-tailed

BTCs similar to PL distribution are observed, such as under radial convergent �ow

and in stationary sandy aquifers (e.g. [Fernàndez-Garcia 2004]), a clear relationship

between physical parameters and BTCs scaling has been given yet.

Heavy-tailed BTCs are in most cases found to be very similar to those pro-

duced by 'mass-transfer' processes. Mass-transfer-based methods have been com-

monly used as an upscaling method to simulate non Fickian transport. While

these methods were designed to simulate processes where part of solute was ac-

tually uptake to or stagnant in less mobile zones ([Coats 1964, Van Genuchten 1976,

Brusseau 1990]), recent theories (e.g. [Haggerty 1995, Carrera 1998, Sanchez-Vila 2004])

and applications ([McKenna 2001, Gouze 2008]) showed that di�usive mechanisms

can also lead to similar mass-transfer processes.

Pore-scale velocity contrasts from �uctuation of the hydraulic conductivity can

also lead to late-time tailing on BTCs. This aspect has been observed for instance

using detailed numerical techniques under uniform �ow conditions ([Fiori 2006]).

Mass-transfer-based models can be still used in this case for �tting purposes, but a

direct relationship between mass-transfer parameters cannot be easily built. First

of all, because of the fundamental di�erence between advective-dominated and

di�usion-dominated processes. In the �rst case apparent mass-transfer is actually

due to local �ow �uctuations and while in the second scale it is driven by concentra-

tion gradients. From a mathematically perspective, di�usion is similar to �rst-order

rate mass transfer (e.g. [Nkedi-Kizza 1984]).

Several authors sought for a possible apparent phenomenological link between

mass-transfer parameters and advective-dominated anomalous transport (e.g. [Zinn 2003,

Willmann 2008, Flach 2012]). To �nd such a link, these authors relied on the abil-

ity of two-dimensional numerical models under uniform �ow conditions to reproduce

anomalous tailing, in order to understand what dynamics control the shape of BTCs

and and consequently control mass-transfer parameters. However, this model con-

�guration presents limitations, both because of the model dimensionality and also

because of the geometry of the �ow �eld.

Two dimensional models are in most cases not able to reproduce �ow and

transport dynamics when injection-extraction distances are of the order of mag-

nitude are vertical model dimensions. In addition, when horizontal integral scales

of aquifer heterogeneity are similar to the vertical ones, three-dimensional models
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are suggested (e.g. [Dagan 1989], Part 4). Comparing data reviews in [Gelhar 1992,

Gelhar 1993], it seems that these conditions are usually met in most experimental

sites. [Fernàndez-Garcia 2004] for instance indicate that anomalous behavior devel-

ops at a distance of a few horizontal integer scales under convergent radial �ow;

here three-dimensional tanks were employed and �lled with clean sands of variable

conductivity and without arti�cially-imposed connected channels. When injection

distances are similar to the horizontal integer scales, �ow and transport may tend to

behave as in a strati�ed medium ([Dagan 1989], p.293). Three-dimensional models

are also suggested to better reproduce connectivity patterns ([Fiori 2012]), which

can have a large impact on anomalous solute transport [Zinn 2003, Willmann 2008,

Trinchero 2008]. Two-dimensional models of stationary Multigaussian �elds are very

limited to simulate connected channels ([Sanchez-Vila 1996]); in e�ect, [Zinn 2003,

Willmann 2008] had to arti�cially modify their Multigaussian �elds to obtain long-

connected structures and thus reproduce anomalous transport.

The aim of this second part of the thesis is to understand the nature of BTCs

tailing when anomalous transport generating during conservative tracer tests in

three-dimensional, stationary, Multigaussian and unconditional simulations of log-

transformed hydraulic conductivity �elds under radial convergent �ow to a well.

Knowing the nature of tailing is fundamental to understand whether mass-transfer

models can be e�ectively applied to predict transport in these situations, where a

sound mathematical relationship between solute transport parameters and mass-

transfer parameters does not apparently exist.

The second part of this thesis is thus organized as follows.

In Chapter 5 a new tool that improve the estimation of BTCs from particle

tracking distribution is illustrated. Particle tracking is an attractive method to

accurately simulate transport in heterogeneous aquifers, but a reliable estimation of

densities is usually cumbersome to obtain using traditional methods.

In Chapter 6, processes causing tailing on BTCs are analyzed. It is shown

that tailing can be caused as a combination of three-dimensional radial convergent

�ow, strati�cation of the tracer after being injected in the aquifer and connectivity

between the injection and the extraction well. The shape of these tails is very

similar to those found during experiments and also very similar to tailing caused by

mass-transfer processes.





Chapter 5

An automatic locally-adaptive

method to estimate heavily-tailed

breakthrough curves from particle

distributions

5.1 Introduction

Among the several numerical methods existing to reproduce solute transport, parti-

cle tracking methods (PTM) provide an e�cient and versatile method (e.g. [Prickett 1981,

Kinzelbach 1987, Pollock 1988]). PTM are especially indicated to simulate La-

grangian advective and dispersive/di�usive transport in heterogeneous porous me-

dia under complex boundary conditions, which naturally occur during typical tracer

tests for aquifer characterizations (e.g. [Tompson 1990]). In heterogeneous domains,

�ow velocity contrasts can be very high and traditional approaches such as Eulerian

models fail as they would require a very �ne grid discretization to catch the actual

pore-scale dynamics controlling solute variability (e.g [Liu 2004]), which is most

cases not feasible from a computational perspective in most common applications.

On the other hand, PTM can reproduce di�usive/dispersive processes in absence

of typical numerical problems encountered in other methods, such as oscillation or

dispersion, and thus improving the modelling exercise in a cost-e�ective manner

([Salamon 2006b]).

PTM are based on the estimation of Lagrangian velocities taken by solute parti-

cles while travelling between known locations in the aquifer (e.g. [Kaasschieter 1995,

Bensabat 2000, Pokrajac 2002]). Their application in many groundwater problem

has been widely reported in the literature, especially for application in risk assess-

ment and solute transport remediation and protection ([Shapiro 1988, Dagan 1992,

Berglund 1995, Zimmerman 1998, Andricevic 1996, Bellin 2004, Andricevic 2008]).

A general conclusion from these works is that, for a proper estimation of the

risk, the entire shape of travel time probability density functions (PDFs) at a

controlling section (i.e. the breakthrough curves, BTCs) is very important. For

application involving design and maintenance of aquifer restoration and protec-

tion activities, PDFs also need to be smooth to adequately reproduce gradients

0This chapter is based on D. Pedretti and D. Fernandez-Garcia et al. (submitted to Advances

in Water Resources), An automatic locally-adaptive method to estimate heavily-tailed breakthrough

curves from particle distributions



82

Chapter 5. An automatic locally-adaptive method to estimate

heavily-tailed breakthrough curves from particle distributions

(e.g. [Fernàndez-Garcia 2011]). Temporal gradients are used for instance to in-

fer physical and chemical properties of the soils from PDFs, such as connectivity,

fractional parameters, matrix-di�usion or mass-transfer parameters ([Carrera 1998,

Benson 2000, Haggerty 2000, Berkowitz 2006, Trinchero 2008]).

A major di�culty using PTM relies in the estimation of PDFs. For computa-

tional reasons, a generic mass can be discretized into a limited number of particles

(n), usually ranging from n = 104 to n = 107 (e.g. [Riva 2008]). An estimation

based of a rough estimation of the histogram or using some naive estimator de-

termines discontinuous density functions, based an arbitrarily selected bandwidths

([Silverman 1986]). Classical approaches lead to unrealistic PDFs peaks and discon-

tinuities that impede the calculation of PDFs derivative.

Kernel density estimators (KDE) o�er a valid option to obtain smooth den-

sity functions from a �nite distribution of samples ([Silverman 1986, Hardle 1990]).

While several KDE methods exist, they can be divided into two main groups, de-

pending on the criteria chosen to �nd the bandwidth size (the key parameter control-

ling the degree of smoothness of the estimated densities). The �rst class of methods

is called global estimators, since the bandwidth size is constant and independent

from the distribution shape. The second class corresponds to adaptive estimators,

where the bandwidth size is still scaled and depend on the distribution shape. Ac-

cording to [Silverman 1986], the selection of one of the two method depends on the

speci�c goal of the study, since each of them is more oriented to estimate a speci�c

portion of the curves, but penalizing other parts. Adaptive methods, for instance,

are suggested to �t tails on heavy-tailed distribution, while global estimators provide

a more robust option for symmetric curves.

For application involving the reconstruction of solute travel time PDFs from

PTM model in heterogeneous aquifers, however, it is not clear what method should

be selected, since the shape of BTCs is not known 'a priori' in most cases. In

this Chapter, we develop a general method that provide accurate estimation of

the full BTCs independently from their �nal shape. This approach combines the

ability of both global and adaptive methods and takes advantage of the experimental

cumulative distribution function (CDFs) of the particles travel times, which is a

natural output from each model run. To check the improvement of our method, we

�rst analyze traditional methods against some benchmark solutions. Then, we show

how our method predicts PDFs in a much more accurate and cost-e�ective manner

than the other ones.

This Chapter is structured as follows. In section 5.2 we introduce the concept of

KDE methods and how particle travel time PDFs and BTCs are linked together. In

Section 5.3, we de�ne KDE statistics and the automatic and optimum selection of

the global bandwidth. In the following Section 5.4, we show how adaptive methods

are derived from the global methods, and introduce a standard method to compute

adaptive estimates. After observing the limitation of both methods, we introduce

in the last Section 5.5 the new method, and compare qualitative and quantitative

advantages with respect with the other tested methods.
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5.2 Particle Tracking Methods and Kernel Density Es-

timation

Particle tracking methods simulate transport by injecting a large number of parti-

cles into the system. Each particle carries a portion of the solute mass which moves

with groundwater and reacts according to some fundamental mechanisms. A large

variety of mechanisms can be chosen to e�ciently simulate di�erent transport phe-

nomena. These mechanisms range from pure advective and random walk motions to

complex reaction and mass transfer processes (e.g. [Tompson 1990, Salamon 2006b,

Moroni 2007, Benson 2009]).

In all cases, the outcome of PTM is typically expressed as a distribution of par-

ticle travel times at control locations and/or positions observed at di�erent times.

Since this information is discrete in nature a reconstruction process is mandatory

to �nally obtain concentrations. Reconstructing concentrations from particle distri-

butions is normally seen as the main disadvantage of PTM. This process is based

on the relationship between particle distributions and concentrations, which deter-

mines that concentrations are proportional to particle densities; for instance, �ux

concentrations observed at a given well location, cf , are related to the particle travel

times PDF, p(t), by

p(t) =
Q

m0
cf m0 =

∫ ∞
0

Qcfdt (5.1)

where Q is the total �ow at the extraction well, and m0 is the area underneath

the BTC. Unfortunately, the application of such simple relationship is plugged with

di�culties. An in�nite number of particles is never used to properly ful�ll the

validity of this equation. Kernel Density Estimation (KDE) methods have been

introduced in the late '50 ([Rosenblatt 1956]) as a manner to improve the density

estimation of the probability density function. For a complete and exhaustive review

of these methods we refer to [Silverman 1986] or [Hardle 1990].

The need of KDE appears crucial at the moment of estimating smoothed PDFs

with frequency histograms, which basically consists in counting the number of par-

ticles falling into a given time interval Bj = [t0 + (j − 1)h, t0 + jh], where h is the

time interval (size of the bin) and t0 is the origin of the histogram. The frequency

at the jth bin is determined by

pj ≈ p̂j ≡
1

n

n∑
i=1

1

h
I{ti ∈ Bj}, (5.2)

where ti is the particle travel time data (t1, ..., tn), and I{·} is an indicator function

de�ned as one if ti is inside the bin Bj and zero otherwise. By its de�nition, the use of

indicator functions provides a discontinuous box model that prevents the estimation

of smooth probability density functions. Moreover, the histogram depends on its

origin t0 and the selection of the bandwidth h. Kernel density estimators is a natural

extension of the histogram estimator in which the �xed box model is replaced by

moving weighting function K,
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Table 5.1: Possible type of kernel functions (from [Silverman 1986])

Type of kernel K(τ)

Biweight


3(1−( 1

t
τ2))

4
√

5
for|t| < 1

0 otherwise

Epanechnikov

{
15(1−t2)2

16 for|t| <
√

5

0 otherwise

Gaussian 1√
2π

exp(−τ
2

2 )

Rectangular

{
1
2 for|t| < 1

0 otherwise

Triangular

{
1− |t| for|t| < 1

0 otherwise

p̂(t) =
1

n

n∑
i=1

1

h
K

(
t− ti
h

)
, (5.3)

where h is the deterministic histogram lag and K is a weighting function that should

be chosen from symmetric functions of unitary area, i.e.

∫
K(τ)dτ = 1. (5.4)

Typical kernel functions are reported in Table 5.2. While Gaussian kernels are

usually preferred for computational advantages (and will be used in all the applica-

tions shown in this Chapter), the choice of a speci�c type of kernel does not in�uence

substantially the �nal results. The 'kernel window width' (or simply, 'kernel band-

width') h is the smoothing parameter that depends on the data distribution and

varies from datum to datum. We discuss the selection of h in the following section,

being the focus of this Chapter.

Based on this, the density estimation can be seen as an attempt to reconstruct

an histogram where every point is the center of the sampling lag interval h. The

area of in�uence of the ith datum is restricted to a �xed area, determined by the

arbitrary choice of h. If h is too large, �nal densities can display discontinuities

instead of more continuous shapes. If h is too small, there cannot be su�cient data

to �nd the proper density and the outcome will �uctuate. Therefore, the outcome

density is not built accounting for the relative importance of the single datum, but

it is based upon an 'a priori' selection of the bandwidth size.
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5.3 Automatic global selection of bandwidth

The parameter h controls the degree of smoothing and relates the area of in�uence

around a datum. When h is small, less data can e�ectively in�uence the estimate

at a given time location, leading to �uctuations. When h is large, many particles

can contribute to that estimate. To select an optimal h value, we �rst need to

evaluate the goodness of the estimator given by ((5.3)) with an objective criterion.

A common criterion is the Mean Integrated Squared Error (MISE), formally written

as

MISE(h) = E

∫
(p(t)− p̂(t))2 dt, (5.5)

and expressed in terms of the bias and variance of the estimator as ([Parzen 1962])

MISE(h) =

∫
bias2(p̂(t))dt+

∫
var(p̂)(t)dt, (5.6)

Assuming p to be twice di�erentiable, an approximated expression of the bias is

bias(p̂(t)) =
h2

2
p′′(t)µ2(K) +O(h2), (5.7)

where µ2(K) is the second moment of K and p′′(t) is the second derivative of the

estimated function. Notice that the bias error is quadratic in h. A similar approxi-

mation can be written for the variance

var(p̂(t)) =
1

nh
‖K‖22p(t) +O

(
(nh)−1

)
, (5.8)

here the symbol ‖ · ‖22 is the L2-norm operator, i.e., ‖p(t)‖2 =
∫
p(t)2dt. Notice that

the variance error is inversely proportional to the product of the number of particle

and the kernel bandwidth.

An optimal global value of h can be obtained by minimizing (5.6). Imposing

that the derivative of MISE with respect to h is zero in the limit when h → 0 and

(nh) → ∞ and recalling that
∫
p(t)dt = 1, we obtain ([Parzen 1962]) the global

optimum kernel bandwidth ĥG reading

ĥG =

(
‖K‖22

n‖p′′(t)‖22µ2(K)

)1/5

(5.9)

Note that from (5.9), ĥ is inversely proportional to the number of particles. That

means that the larger the number of particle, the smaller the bandwidth size is. It

can be observed that ĥ depends on the second derivative of the density function

(p′′(t)) , i.e. on the shape of the density function in itself, which is unknown.

To deal with this issue, several methods have been proposed in the literature to

estimate p′′(t). A common method is the so-called 'plug-in' methods, which consists

of �nding a direct estimation of p′′(t) by �rst using a reference distribution and

iteratively applying successive approximation to a convergence criteria. Details of
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the method can be found in e.g. [Park 1990, Hardle 1990]. Plug-in methods have

been applied for instance by [Fernàndez-Garcia 2011] to estimate reactions rates

from concentration gradients from PTM simulations. This method is used in the

applications shown in this chapter.

Replacing (5.9) into (5.3), the global bandwidth method (GB) is obtained such

that

p̂(t) =
1

n

n∑
i=1

1

ĥG
K

(
t− ti
ĥG

)
, (5.10)

In order to evaluate the performance of GB to reproduce heavily-tailed BTCs

from particle distribution we compare analytical solutions of the multi-rate mass

transfer model embedded in STAMMT-L ([Haggerty 2002]) with those reconstructed

from randomly distributed particles, of di�erent population sizes, generated using

a known particle tracking code, RW3D ([Fernandez-Garcia 2005, Salamon 2006a]).

STAMMT-L simulates one dimensional uniform-�ow transport a�ected by advec-

tive, dispersive and rate-limited mass-transfer mechanisms. We chose a power-law

distribution of mass-transfer coe�cients so as to generate PDFs with di�erent peak-

ness and tailing. The shape of these BTCs mainly depends on two dimensionless

numbers: the Peclet number (Pe), which relates advective and dispersive charac-

teristic times (no molecular di�usion is accounted for), and the Damköhler number

(Da), which relates advective and mass-transfer characteristic times. Both numbers

can be written as

Pe =
L

a
Da =

(1 + β)Lαh
v

(5.11)

where L is the domain length, a is the local dispersivity, β is the capacity

coe�cient, αh in the harmonic mean of mass-transfer rates and v in the advective

velocity. For a power-law function, αh depends on the cut-o� rates αmin and αmax
and the power-law slope k. For most combination of parameters, αh is computed

numerically (e.g. [Haggerty 2000]).

We chose to �x Pe = 100 and to vary Da. The complete set of resulting

parameters can be found in Table 5.3 and at the title of each plots from �g. 5.1

to 5.6. When Da is low, such as for k = 1, β = 1, advection dominates over

mass-transfer mechanisms, and BTCs have very peaked shapes with long tails. For

increasing Da, the shapes tend to be more symmetric, as mass-transfer increases its

relative importance over advection. Analytical solutions are reported from �g. 5.1

to �g. 5.6 with dotted line.

The RW3D particle tracking code move particles by a combination of a drift term

that accounts for velocity and a Brownian motion that is responsible for dispersion.

In addition to this, mass transfer processes are simulated by tracking the state of a

particle that can change with time. The state of a particle is an attribute that de�nes

the domain at which the particle is present at a given time within the overlapping

multiple porosity media. The change from one state to another is determined using

transition probabilities.
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The results of the application of GB are shown in �g. 5.1 for two di�erent

distribution sizes. Solid thick (blue) line indicate the results for n = 104, while

solid thinner (red) line for the case with n = 105. The analytical solution is plotted

in black dotted line. We can appreciate that the estimation by GB satisfactorily

matches the early arrival and peak behavior of the reference PDFs. However, it

performs poorly at late times (i.e. after the peak), where the numerical solution

oscillates and eventually tends to a �ctitious asymptotic plateau. At the case k = 3,

β = 5 (high Da), the solution does not �uctuate as in the other cases, re�ecting

that GB works better to reproduce more symmetric distributions. The starting time

for oscillation is linked due to amount of particles used to obtain the PDFs: when

n = 105, the oscillation looks like more stable over a wider time length than in the

case of n = 104.

To obtain a quantitative measure of the �tting quality for this method, we mea-

sured the relative local error between the estimated and actual density functions at

the i-th datum, ε, reading i.e.

εi =

∣∣∣∣ p̂(ti)− p(ti)p(ti)

∣∣∣∣ (5.12)

In �g. 5.3, the black lines with circles refer to ε for GB (the other curves indicate

the errors for the other methods, and they will be describe in the following sections).

Note that the plot scales are logarithmic to emphasise that ε can span over several

orders of magnitude. For GB, ε is minimum around the concentration peaks and

it is generally lower at shorter times, where the number of particle used for the

estimation is large. As the time elapses and the mass used to estimate the particle

density diminishes, ε becomes dramatically higher (above ε = 101); this is especially

true for heavy-tailed PDFs (low Da).

The use of GB is therefore robust and reliable to estimate early time and peak

behavior of the PDFs outcomes, but it generates spurious e�ects on tail that can be

alleviate only by increasing the number of particles (at expense of additional compu-

tational time). For limited number of particles, tailing is only partially reproduced,

especially for heavy-tailed distributions. In the following sections, alternative adap-

tive methods are tested to cope with this issue.

5.4 Globally adaptive bandwidth method

Adaptive methods are considered an e�cient manner to deal with long-tailed dis-

tributions ([Silverman 1986]). Long-tailed distributions implicate that the masses

are smudged out over a wider range than one in the main part of the distribution.

Intuitively, as the number of particles used to estimate their density diminishes, the

smoothing parameter (h) should increase, to allow a smoother estimation to in the

regions where data are lacking. To partially overcome the problem derived from GB

on heavy-tailed distribution, one common procedure consists in varying h so that it

increases where data are lacking. This is formally written as
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Figure 5.1: Comparison between reference PDFs from analytical solutions and esti-

mated particle density functions using the global bandwidth method. Simulations

are run using di�erent number of particle datasets. Parameters k indicate the slope

of the PDFs and β indicating the position of center of mass; Da is the Damkohler

number.
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Table 5.2: Parameters for analytical solutions. v= pore-scale velocity;

α=longitudinal dispersivity; φ=total porosity; L=domain length; k=distribution

power; β =capacity coe�cient; ∗=only for random walk simulation

Variable value [dimensions]

v 1 [LT−1]

a 0.05 [L]

L 5 [L]

Pe 100

k 1; 2; 3 [-]

β 1; 5 [-]

αmin 10−4 [T−1]

αmax 1 [T−1]

Da (k=1,β = 1) 0.002

Da (k=1,β = 5) 0.005

Da (k=2,β = 1) 0.009

Da (k=2,β = 5) 0.023

Da (k=3,β = 1) 1.08

Da (k=3,β = 5) 2.71

p̂(t) =
1

n

n∑
i=1

1

hi
K

(
t− ti
hi

)
, (5.13)

A common approach is suggested by [Silverman 1986] and it is tested here against

the reference distributions shown previously. This approach is based on a few iter-

ative steps:

1. �nding the initial estimation of the PDFs using GB (i.e. using (5.13));

2. calculating a new weighting function hi, such that

hi = ĥGλi λi =

(
p̂i(t)

FG

)−α
(5.14)

where p̂i(t) is the �rst estimate of the density function at the i-th datum, FG
is its geometric mean of p̂i(t), i.e.

FG = exp

(
1

n

n∑
i=1

ln(p̂i(t))

)
(5.15)

where α is a sensitivity parameter ful�lling 0 ≤ α ≤ 1;

Note that hi is no longer constant to ĥG such as in GB, but stirred by the �rst

estimated to change from datum to datum. The new estimation can be obtained
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substituting (5.14) into (5.13). This approach is therefore is called 'globally adaptive

bandwidth' method (GA).

We highlight that the new density estimation does not follows a second optimiza-

tion process, but relies on the �rst estimated ĥG. The selection of α determines how

important the shape of the �rst guess is in the selection of the second estimation.

There is not a well-de�ned automatic criterion to obtain α; only [Abramson 1982]

found a theoretical response to choose α=0.5, but for the other values such a sound

mathematical background is lacking.

The comparison between the reference and the simulated curves using GA is

given in �g.5.2 for α = 0.5. It can be observed at a �rst qualitative glance that this

method seems to �t quite well the heavy-tailed reference PDFs cases (the one show-

ing low Da). As Da increases, however, GA determine underestimated peaks and

the late-time behaviors no longer matches from the reference distributions. Espe-

cially, while tails seem quite smoothed and continuous at late-time, their gradients

are di�erent from the ones showed by the reference distributions. This is issue is

particularly visible for the cases with k = 3, which are much more symmetric than

the rest. Here, the kernel estimation is erroneously overweighting the late-time tail-

ing and sacri�cing too much the early portions of the curves, while in reality the

weights should be more equally distributed.

Surprisingly, the method seems to work better for lower n where Da is lower

(more asymmetric curves). This fact can be explained considering that in (5.9) the

errors diminish as n increases, but from the use of (5.14) (noticing the negative sign

on α) the relationship is inverted.

While this analysis is qualitatively suggesting that this method may not perform

satisfactorily to reproduce BTCs, this conclusion is additionally supported after

observing �g. 5.3. Here we report the temporal variation of the local errors (ε) in

comparison with GB. For completeness, we also add the error analysis for α = 0.25,

α = 0.5 and α = 1. It can be appreciate that at larger times and for low Da, ε for

GA tend to lower values than for GB, meaning that GA increase the accuracy of the

estimation. For the other cases (higherDa and/or earlier y times) the local errors are

in general dramatically high (ε > 101), re�ecting the oversmoothing e�ects around

the peak and that these methods perform poorly for more symmetric distributions.

The use of GA poses serious concerns about the reliability of the PDFs outcomes,

as it can give misleading solute transport parameters that can have a catastrophic

impact on decision-making processes (e.g. in designing risk assessment or aquifer

remediation activities). Moreover, the fact that the results worsen while increasing

the number of particles renders unclear what best dataset size should be applied

to improve the �tting exercise. To address this issue, an alternative solution is

presented in the next section.
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Figure 5.2: Comparison between reference PDFs from analytical solutions and esti-

mated particle density functions using the adaptive method.
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5.5. An Improved Locally Adaptive Method 93

5.5 An Improved Locally Adaptive Method

The analysis of the two standard kernel methods described so far suggests that

the choice of the most proper estimator should be indicatively done depending on

the type and the goal of the problem. When the estimation of early-time or peak

behavior is relatively more important than the late-time behavior, GB should be

preferred; if the late-time distribution is the key feature to analyze and very skewed

PDFs are most likely to be observed, then GA should be implemented.

Unfortunately, in most hydrogeological applications the �nal PDFs shapes are

not known 'a priori' and the selection of the kernel estimator is uncertain. Dur-

ing tracer tests performed in heterogeneous aquifers, for instance, the shape of

BTCs measured after injecting solutes from di�erent positions is highly variable

and can be very dissimilar to ideal parametric distributions such as those simulated

using MRMT models with PL distribution (e.g. [Fernàndez-Garcia 2004]). Dimen-

sionless transport parameters controlling the BTCs shapes such Peclet, Damköhler

or β numbers are partially obtained by 'a posteriori' model �tting ([Harvey 1995,

Willmann 2008]) but they would be necessary for an 'a priori' selection of the type

of kernel.

Therefore, we look for a common and general procedure to be universally applied

independently from the �nal expected shape of the BTCs. We propose here a new

KDE weighting function, which is derived after coupling the ability of GB and GA

methods. The idea is the following. We notice from the previous analysis that (1)

the weighting factor hi should be similar to the global estimated bandwidth at early

portion (hi → ĥG as t → 0) and around the peak of PDFs, while (2) it should

increase only at late-time i.e. on the tails, where the estimation is based on a more

limited number of particles, similarly to the weight given by GA (hi → ĥGλi as

t → ∞). This means �nding a new function that drives the behavior of hi, but to

avoid additional complexity of the bandwidth selection, we look for a solution to be

applied without any need of calibration.

A suitable and appealing function displaying these characteristics and that is

directly obtained from the numerical outputs is the experimental cumulative density

function, P (t). A quick manner to obtain P (t) is by sorting the vector of arrival

time distribution from the shorter (t1) to the largest arrival time (tn); P (t) results

P (ti) =
i− C
n

(5.16)

where C gives the functional form of P for a datum (e.g. for a triangle shape,

C = 0.5; for a box shape, C = 0). P (t) always takes values comprised between

[0, 1], being lower around the early time and increasing in the regions where less

mass is used to estimate the PDFs for larger times. The new weighting function to

be substituted into (5.13) becomes

hi = (1− P (ti))ĥG + P (ti)ĥGλi (5.17)
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We call this method 'locally adaptive bandwidth method' (LA), because hi is

locally modi�ed by a function that is independent from the �rst estimated PDFs.

The results from the application of this method are shown in �g. 5.4, �g. 5.5 and

�g. 5.6 respectively for α = 0.25, α = 0.5 and α = 1. We note from these �gure that

LA sensibly improves the estimation for each combination of parameters, and works

satisfactorily well for for heavy-tailed and less skewed curves. More speci�cally,

using α = 0.5 and α = 1 not only the oversmoothing e�ects around the BTC peak

disappear but tailing is also captured, matching the one of the reference analytical

solutions.

In �g. 5.8, we compare the weighting functions (hi, normalized in the plots

by ĥG) for GA (Eq. (5.14)) and for the locally adaptive method (Eq. (5.17))

applied to the case k = 2, β = 1. We note that at early times the weights for the

locally adaptive method tend to ĥG for all α, while they dramatically increase in

the case of the globally adaptive method (generating oversmoothing e�ects). At

late times, both solutions match, so that the locally adaptive method provide the

same accuracy at the globally adaptive methods on tails. Table 5.5 resumed all the

weighting functions used in this analysis.

The question is now what α parameter should be selected. The goal is to �nd

a general method that is independent from any calibrating parameters. From a

quantitative perspective, the ε criterion (shown in �g.5.7) helps to indicate which α

provide the lowest local error and more accurate local estimation for each reference

cases. At shorter times, all the errors collapse to the one of GB, while at larger time

ε is always lower using LA than using GB. Observing the plots, α = 1 apparently

is the best option for k = 1 and k = 2, while α = 0.5 o�ers the best tested option

for k = 3.

However, it is observing the full shape of the BTcs that we suggest α = 0.5 as

most robust parameter to be used for universal estimations. In e�ect: (a) using

α = 0.25 (�g.5.4), the weighting function provide very few bene�ts with regard

to GB at late time, where estimated PDF still oscillate; (b) using α = 1 (�g.5.6)

�uctuations almost disappears and local errors are in most cases very low, but

concentration gradients are not very well captured as the solutions departs from the

reference distribution at large times for the most symmetric distributions (higher

Da); (c) using α = 0.5 (�g.5.5), an excellent agreement is found for high Da, while

for low Da tailing are correctly estimated and �uctuation are reduced for a su�cient

time to correctly capture the late-time gradients.

Another important point concerns with the e�ciency of the method. LA is much

more e�cient than using the standard methods (GB and GA), as a �rst qualitatively

analysis observing for instance that the use of GB and GA estimators with n = 105

perform less accurately than LA with α = 0.5 and n = 104. To quantitatively check

this behavior with more detail, we consider a global error of the estimated PDFs in

terms of the root mean squared errors (RMSE) for several distributions of variable

size. The RMSE is calculated as
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Figure 5.4: Comparison between reference PDFs from analytical solutions and esti-

mated particle density functions using the proposed method with α = 0.25.
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Table 5.3: Weighting functions used in the three kernel density models. See the text

for the de�nition of each parameter.

Method hi

Fixed bandwidth ĥG

Globally adaptive bandwidth ĥG(p̃(t)/FG)−α

Locally adaptive ĥG((1− P (t)) + P (t)(p̃(t)/FG)−α)

RMSE =

√√√√ 1

n

(
n∑
i=1

(ε(ti))
2

)
(5.18)

In �g. 5.9 we show the results for GB, GA and LA for α = 0.5 and α = 1 and

using di�erent distribution sizes. It is found that LA with α = 0.5 with n = 105

always gives the smallest overall error, independently from the �nal shape of the

BTCs. It can be observed that for the case with low Da, GB with n = 105 (which

takes ≈ 780 seconds on a computer equipped with an Intel R© Xeon R© with 2.80 GHz

and 6 Gb of RAM memory) perform generally worse than LA with n = 104 (which

takes ≈ 20 seconds per simulation on the same machine) and in some cases even

for n = 103 (which takes less than 3 seconds). For high Da, GB and LA methods

perform similarly for larger datasets. It is noticeable again that the overall quality

of the estimation using GA worsen as n, for the reasons we discussed above.

From these results, we can thus suggest the use of LA with α = 0.5 as a general

method to accurately reproduce the shape of any PDFs, and especially accurately

capturing early time, peak as well as tailing gradients. While to improve the quality

of the assessment n = 105 provide the best �t, in the optic of performing a large

number of simulations (e.g. within a Monte Carlo framework) and considering

the long computational times required to evaluate large datasets, a good trade-o�

between computational time and quality of the results can be found using α = 0.5

and reducing the number of particles to n = 104.
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Figure 5.5: Comparison between reference PDFs from analytical solutions and esti-

mated particle density functions using the proposed method with α = 0.5.
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mated particle density functions using the proposed method with α = 1.
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Chapter 6

Development of anomalous tailing

under radial convergent transport

in three-dimensional

heterogeneous sandy aquifers

6.1 Introduction

This Chapter is devoted to analyze the formation the heavy-tailed breakthrough

curves (BTCs) with late-time distributions similar to those obtained during tracer

tests in typical experimental conditions and stationary hydraulic conductivity �elds.

The goal is to understand what modeling parameters, similar to physical counter-

parts, are at the origin of the development of heavy-tailed BTCs.

Tailing on BTCs is a macroscopic evidence of heterogeneity and mass-transfer

processes at the pore scale (e.g. [Levy 2003, Sanchez-Vila 2004, Salamon 2007,

Riva 2008]). Being able to accurate reproducing and modeling it becomes impor-

tant to understand the dynamics generating anomalous transport and give a physical

meaning to model parameters (these methods are discussed in the next Chapter).

Several authors (e.g. [Zinn 2003, Willmann 2008, Flach 2012] used 2D numeri-

cal simulations to reproduce anomalous transport under the assumptions of uniform

�ow conditions and �nite correlated log-normal hydraulic conductivity structures

(i.e �elds with log-normal distributed hydraulic conductivity). They conclude that

these models cannot reproduce connectivity patterns, which are the most in�uent

hydrodynamic parameter controlling BTC late-time behavior. In these works, con-

nectivity is de�ned as the ratio between spatially-averaged and e�ective parameters

de�ning �ow and transport ([Knudby 2006]). We refer to the recent work by [Re-

nard 2011] for an extensive review on connectivity concepts. These �ndings are in

disagreement with some theoretical and experimental works. proved the existence of

tailing on BTCs for short travel distances in multigaussian �elds with �nite integer

scales of log-transformed hydraulic conductivity.

The experimental evidences reported by [Fernàndez-Garcia 2004] also indicate

that transport under �nite correlated structure can lead to anomalous transport.

0This chapter is based on D. Pedretti et. al (submitted to Water Resources Research), On

the formation of heavily-tailed breakthrough curves during convergent �ow tracer tests in three-

dimensional heterogeneous sandy aquifers
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The latter reproduced in laboratory and controlled conditions similar hydraulic con-

ductivity �elds and simulate convergent, divergent and uniform �ow tracer tests in

an intermediate-scale three-dimensional aquifers. Four of the experimental BTCs

obtained during the convergent �ow tests (CFTTs) using a deep-penetration source

injection ([Fernàndez-Garcia 2003]) are shown in �g.6.1 and clearly display non-

uniform transport behavior. We can observe from �g.6.1 that: (a) the BTC obtained

after injecting at E1 (situated two integer scales away from the pumping well, dis-

played a heavy-tailed distribution after the peak, well approximated by a power-law

function with m = 1; (b) at the same radial distance from the pumping well. the

BTCs obtained injecting at E2 and E3 were quite symmetric, being E3 much more

similar to a Gaussian bell than E2 (on which a PL �t could lead to low m values );

(c) E4 is much more irregular and only approximately similar to a power-law with

m = 1.

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

E1

 

 

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

10
-2

10
-1

E2

10
1

10
2

10
3

10
4

10
-5

10
-4

10
-3

10
-2

10
-1

E3

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

E4

time

Conc

m=1m=1

m=1

m=1

Figure 6.1: Four of the experimental BTCs obtained by [Fernàndez-Garcia 2004]

during CFTT in heterogeneous 3D tank. Notice that the part of the BTCs showing

heavy-tailed distribution scale following c ≈ t−1 (at E1 and at E4), while at E2 and

E3 the shape is more symmetric. The injecting location varies within the 3D tank,

keeping the radial distance from the well (rλ =≈ 2)

The two-dimensional uniform �ow simulations are hardly comparable with radial

converging �ow tracer tests setting. First, there is a fundamental di�erence in the

two �ow geometries. For instance, tailing naturally arise on BTCs under radial �ow

in homogeneous �elds ([Gelhar 1971, Moench 1989, Welty 1994]), while it does not
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under uniform �ow Second, because two-dimensional (2D) models are not suitable

to reproduce typical tracer tests settings, where the distance between the injection

and the controlling section is on the range of the heterogeneity representative scales

such as the integer scale (I) in a multigaussian K �eld. In this case, whenever

possible, 3D models are preferable (e.g. [Dagan 1989]).

The dimensionality is also a key factor when studying connectivity. Flow connec-

tivity is largely enhanced by 3D con�gurations than by 2D counterparts,according

to the detailed analysis by [Fiori 2012]. This is especially true if unconditional

Sequential Gaussian Simulations (SGS) are used to simulate stochastic hydraulic

conductivity �elds ([Fernàndez-Garcia 2010]). In fact, [Willmann 2008] had to heav-

ily condition their simulations to generate highly conductive non-stationary struc-

tures leading to heavy-tailed BTCs similar to those observed in the �eld. It should

be reminded that the numerical 3D �ow and transport simulations by [Fogg 1986]

showed the most in�uencing factor controlling �ow and transport is the lenses con-

nectivity rather than the relative K values of the lenses themselves. That means

that not only high conductivity zone have a large impact on �ow dynamics, but

also poorly permeable zones if well-connected. The reliability of 2D SGS to ad-

equately reproduce transport connectivity patterns have been extensively debated

in the past ([Sanchez-Vila 1996, Gomez-Hernandez 1998]). However, 3D models

have being much less studied than 2D counterparts, probably because of the still

high-demanding computational cost of 3D simulations.

Several question arise: is BTCs scaling found by the experimental evidences

reported in [Fernàndez-Garcia 2004] (power-law behavior with slope m = 1) due to

some physical reasons, or is it just a random output? More in general, are there

any physical reasons controlling BTCs scaling at large time after injection? What

is the impact of the model dimensionality on the formation of tailing?

In this Chapter, we aim to give an answer to these questions. It will be show

that 3D numerical realizations under radial convergent �ow conditions help to re-

producing solute transport similar to the experimental observations. We simulate

synthetic heterogeneous �elds drawn from a multilognromal K distribution, which

is characterized by di�erent combination of �nite-scale correlation and variances,

and use a special technique to measure the peak concentration time of each layer

composing the three-dimensional simulations as an indicator of variability of point-

to-point connectivity ([Trinchero 2008]) at various depth in the aquifer. The use of

concentration peak times to estimate statistics of travel time was already adopted

for instance by [Bellin 2004] and reference therein. The aim to provide new insights

to explain how BTCs behave in typical CFTT �eld settings, and to �nd the key

link between needed to interpret the results obtained from �eld tracer tests in real

applications.

The Chapter is structured as follows. In Section 2, we describe the numerical

approach we used to reproduce CFTTs in synthetic heterogeneous aquifers. Numer-

ical output are used to estimate BTCs, both as 'depth-integrated' and as 'multilevel'

distribution of concentrations at the extracting well. In Section 3, we show the full

results in which we highlight how BTCs tailing develops in di�erent heterogeneous



106

Chapter 6. Development of anomalous tailing under radial convergent

transport in three-dimensional heterogeneous sandy aquifers

�elds, and assuming injections to take place at variable positions within the same

heterogeneous �elds. The Chapter ends with a �nal discussion on the similarities

between 3D simulations and their corresponding 2D counterparts, in Section 4, and

the conclusions.

6.2 Numerical simulation of CFTT in di�erent geological

settings

We consider a typical CFTT scenario, in which a passive injection well (or piezome-

ter) is located at a distance (r) from an extraction well. The latter is activated

to withdraw groundwater at a constant discharge rate (Q). Once steady-state con-

ditions are established at the injection well, a known mass (M) of a nonreactive

compound is introduced into the aquifer through the injection well. The injected

mass is potentially fully recoverable in ideal conditions; in real tests, the combina-

tion of mass losses plus the �nite recording time leads to partial recovery of the

injected mass.

In heterogeneous aquifers, under forced-gradient conditions, the horizontal �ow

velocity can vary along the vertical column by several order of magnitude. Therefore,

the amount of tracer mass injected into the aquifer at di�erent depths is proportional

to the local horizontal velocity found at the di�erent horizon along the vertical

injecting column. This combination of injection and extraction proportional to

local �ow forces one to pose the problem in terms of �ux-averaged concentrations

rather than resident concentrations ( [Kreft 1978, Parker 1984]).

BTCs can be measured both at the extraction well and, if existing, at some

controlling section between the injection and the extraction location. We assume,

without lack of generalization, that only the extraction well is used for measur-

ing concentrations. At the extraction well, concentrations are usually observed as

'depth-integrated' BTCs over the entire screened section of the well, taking samples

of the water once withdrawn and pushed to the surface. Alternatively, measure-

ments can be made at di�erent intervals along the screened section of the well using

multilevel samplers (MLS), giving raise to 'multilevel' BTCs. These methods have

been widely used in the past to provide useful indication about strati�cation of

transport properties of the aquifers and to indicate the existence of preferential �ow

paths (e.g. [Ptak 1996, Ptak 2004, Bianchi 2011]).

With these concepts in mind, we adopt a numerical approach consisting of (a)

generation of a number of realization of Y -�elds from a prede�ned geostatistical

model; (b) solution of the groundwater �ow problem in each of the Y -�elds by

setting appropriate boundary conditions to impose forced-gradient behavior to a

well; (c) solution of the transport problem (d) calculation of 'depth-integrated' and

'multilevel' BTCs at the well.

Details of the di�erent steps are provided in the subsequent subsections.
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6.2.1 Simulation of heterogeneous hydraulic conductivity �elds and
convergent �ow solution

We start by generating three stochastic realizations of Y -�elds using a sequen-

tial Gaussian simulator 'sgsim' included in the geostatistical modeling software

SGEMS ([Remy 2009]). The support grid consists of a regular 3D lattice com-

posed of NL=100 planar layers, each of which is formed by NC = 251 horizontal

squared cells per side. We use i, j to identify a cell respectively in the x, y direction

(i, j = 1, ..., NC) and k to identify a speci�c layer (k = 1, ..., NL). We assume Y to

be isotropic in each cell, with the exception of the central vertical column, which

represent the wells and inherits large vertical conductivities. Each cell has unit size,

in all three directions.

By construction, all Y -�elds have zero mean log-transformed hydraulic conduc-

tivity (Y = 0). Three exponential variograms with unit variance (σ2
Y = 1) and

variable integral scales, I, are used. Thus, indicating the three directional integer

scale as Ix,Iy and Iz, we build:

• Field (A): Ix=Iy=Iz=4;

• Field (B): Ix=Iy=40, Iz=4;

• Field (C): Ix=Iy=Iz=40.

x = injection locations (with ID)
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Figure 6.2: On the left, the 3D anisotropic �eld (B) used in the simulations, along

with the position of the injection locations at various radial distances and angles

around the well. On the right, schematic decomposition of a 3D �eld into 100 layers,

each of them representing a 2D �eld with the same planar spatial correlation as the

3D original counterpart.

Field (B), reported on the left of �g. 6.2, displays statistical axisymmetric

anisotropy, with ratios Ix = Iy and Ix/Iz = Iy/Iz = 10). Field (A) and (C) are

statistically isotropic, but with di�erent ratio between integral scales and domain

size to explore the impact of the relative distance of injection. Notice that since the
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same �elds will be used afterwords to explore the e�ects of having higher variances

(increase degree of heterogeneity) by simple scaling, �g. 6.2 does not report the

legend on purpose.

To obtain pumping conditions in each heterogeneous �eld, we proceed as follows.

In each realization and at each cell, Y is back-transformed to arithmetic values

(K = exp(Y )), and set as property conditions within the �nite-di�erence numerical

code Mod�ow-2000 ([Harbaugh 2000]). Flow simulations are run under steady-state

conditions and the aquifer is considered to be con�ned. To simulate radial �ow

conditions, we set Dirichlet boundary conditions at the lateral domain sides, and

assign a sink term to the bottom cell of the pumping well, situated at the center

of the domain. The �ow e�ects driven by a pumping well are achieved by setting

a large anisotropy ratio in the local hydraulic conductivity between horizontal and

vertical direction (Kz/Kx = 105) at the pumping well central column.

Finally, to simulate other Y -�elds, characterized by the same heterogeneous

architecture but di�erent variances, we multiply each cell of the Y -�eld by a factor

of 2 and 2
√

2 to obtain new synthetic �elds displaying σ2
Y=4 and 8 respectively

for �elds A,B and C. No numerical convergence problems were found regardless the

variance numbers.

6.2.2 Design of 3D transport simulations and estimation of depth-
integrated BTCs

We simulate conservative solute transport using the random-walk particle-tracking

code RW3D ([Fernandez-Garcia 2005, Salamon 2006a]) which is e�ciently coupled

with Mod�ow-2000. In this algorithm, M is discretized into Np particles (the mass

of each particle resulting mp = M/Np). Based on the Langevin equation, each

particle moves according to a drift displacement, based on the radial �ow velocities

calculated at each cell of the domain by Mod�ow-2000, and a Brownian motion that

accounts for local dispersive process. In our simulations, we set NP = 3 · 104 and

a local dispersivity value α = 0.25, isotropic in all directions. We used a constant

porosity value equals to φ = 0.1 in all our simulations.

Injection wells are simulated at 16 di�erent locations around the extracting well,

indicated in �g. 6.2, such that

• injection boreholes at points U1,R1,L1,D1 are located at a distance of 5 cells

from the extraction well, oriented along the coordinate axis

• injection boreholes at points U2,R2,L2,D2 are located 12.5 cells away from the

extraction well;

• injection boreholes at points U3,R3,L3,D3 are located 25 cells away from the

extraction well;

• injection boreholes at points U4,R4,L4,D4 are located 75 cells away from the

extraction well;
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Each tracer test is independent from one another and by injecting sequentially

in a vertical line at each of the 16 injection wells.The number of particles at each

layer is assumed to be proportional to the local Darcy's �uxes, to better represent

�ux-averaged conditions. Particles are introduced in the system from layer k=5 to

layer k=95; a few cells are skipped at the top and at the bottom, to avoid rebounds

and other uncontrolled boundary e�ects. Injection takes place as a pulse, at the

initial time (t = 0). Notice that our analysis is dimensionless.

We obtain 'depth-integrated' BTCs after estimating the density of the distribu-

tion of travel times of the ensemble of released particles. As such, we do not keep

track of where (at which depth) particles were injected. Since each particle carries

the same amount of mass (mp), the estimated density distribution of travel time is

equivalent to the estimation of a normalized BTCs.

The estimation of the density functions is found using the kernel density estima-

tors described in Chapter 5. The numerical solution was successfully tested under

homogeneous conditions against the formulae by [Moench 1989] and [Gelhar 1971],

to ensure the transport was not a�ected by boundary conditions.

6.2.3 An illustrative result of a depth-integrated BTC

Let us �rst analyze the key aspects involved in the formation of a BTC obtained in

one speci�c simulation. This will help us to highlight the main phenomenological

feature need to understand subsequent simulations results. We focus on the traveling

paths of the particles within the heterogeneous domain and its impact upon BTCs

tailing.

We consider injection taking place at location L4 in �eld (B) (�g. 6.2) with

σ2
Y = 4. Fig. 6.3 is divided in four subplots, each of them representing the position of

1000 particles (above) and the 'depth-integrated' BTCs (below) collected at the well

at di�erent temporal snapshots ranging from t = 0 to t = 7 · 105. The background

colors represent the distribution of the (log) hydraulic conductivities on the vertical

section parallel to the x-axis, passing through both the injection and the extraction

well.

At t = 0 (initial time) the particles are more concentrated in the highly conduc-

tive areas along the vertical section where Darcy's velocities are higher (red pixels)

while only a few particles are located in less conductive areas (green pixels).

At t = 2.5·104, particles located initially within the higher Y -zones have traveled

longer distances (eventually reaching the extracting well) compared to those located

in initially lower permeability areas. Since a large number of particles were initially

onjected in relatively high Y areas, the concentration peak is clearly displayed at a

relative short time (t ≈ 2.5 · 104).

At t = 1 · 105, most of the particles (i.e. mass) have been collected, and only a

few still remain in the system. Notice that the BTC scales very di�erently before

and after this time. Especially, a well-de�ned tail with behavior similar to c ≈ t−1

is clearly visible from this moment, scaling from t = 7 · 105 on with a heavy-tailed

distribution similar to a PL with slope m = 1.
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Figure 6.3: Particle displacement at di�erent temporal steps during the simulation of

a CFTT in the anisotropic �eld (B) with σ2
Y = 4, after injecting from position L4. In

the upper plots, particles are plotted along with the distribution of log-transformed

hydraulic conductivities, Y , at the central section of the domain. In the bottom, the

evolution of the BTC estimated as 'depth-integrated' particle mass density at the

extraction well.



6.2. Numerical simulation of CFTT in di�erent geological settings 111

This example indicates that our numerical settings are able to produce anoma-

lous transport which gives rise to heavy-tailed BTCs, similar to experimental evi-

dences (e.g. compare �g.6.3 with the E1 case in �g. 6.1). We can now take advantage

of the numerical model to see whether we can provide a physical explanation for

m ≈ 1. To address this issue in detail, which will be more thoroughly discussed in

Section 4, we study the impact of imperfect strati�cation in the 3D model.

6.2.4 Simulation of 'multilevel' transport

To evaluate the variability of solute mass arriving at di�erent depths in a fully

penetrating pumping well we propose the following approach, which is graphically

resumed in �g. 6.2.

A proper evaluation of multilevel BTCs could be obtained by measuring the

density of particle arrival time at each cell of the controlling section (the extraction

well). Unfortunately, this would require a huge number of particle to inject in order

to obtain an adequate estimate of the density at less connected or conductive level.

In e�ect, observing �g. 6.3, particles are massively arriving at a few location along

the well, while only a few particles arrive at other depths. This �gure was generated

with only 100 random particles as a graphical examples, but it is very well illustrative

of this problem.

To partially overcome this issue, we opt for an alternative measure of multilevel

BTCs. We account for the fact that in radial convergent �ow, planar �ow is dom-

inant with respect to its vertical component. Moreover, at relative short injection

distances compared with with the horizontal integral scales (r/Ix ≈ 1), plumes mi-

grate practically independently from one planar layer to the next. This e�ect is

enhanced in �elds displaying axisymmetric anisotropy.

Noticing that negligible vertical velocities and transverse dispersion leads to

particle paths that exclusively follow the horizontal plane in which particles are

initially injected, we proceed as follows. We separate each k layer composing the 3D

block and use them as independent 2D Y -�elds. The new 2D �elds have 251 cells

per side with unit thickness (b = 1) and same Ix, Iy, and σ
2
Y than the 3D original

source.

In each of theNk = 100 decomposed layers, we reproduced 2D �ow and transport

and estimate BTCs, with a similar procedure described in previous sections. We

inject the same number of particles (NP = 3 · 105) and the same mass (M = 1) per

layer as a pulse release directly at the same 16 positions used for the 3D simulations

and extract at a discharge rate Q (same as the one used for the 3D simulations).

We thus obtained 100 BTCs (one for each layer) for each injection position. Herein,

BTCs obtained from this methodology are called as '2D-BTCs'.

As an example of the output, we consider again the injection taking place at

location L4 in �eld (B) with σ2
Y = 4. In �g. 6.4, in the big window, the same

depth-integrated BTC obtained from 3D transport (�g. 6.3, bottom-right) is again

reported as a thick, black line in the big picture. Along with that, the gray curves

represent the 100 BTCs obtained after injecting in each layer composing the 3D
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block (i.e. the 2D BTCs). Distance and time are expressed with the following

dimensionless variables

• Dimensionless time (tc), which is obtained such that

tc =
t

tadv
(6.1)

where tadv is the advective time, such that

tadv =
πr2bφ

Q
(6.2)

where b is the aquifer thickness (b = 1 for 2D simulations and b = 100 for 3D

simulations).

• Dimensionless injection distance (rλ), which is obtained to compare BTCs

obtained from di�erent realizations, showing di�erent integral scales. We nor-

malize r by the horizontal integral scale of each �eld, Ix, such that

rλ =
r

Ix
(6.3)
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Note that in Eq.(6.2), we have used r rather than rλ, with the purpose of em-

phasizing the e�ect of heterogeneity on the solute travel time.

We observe from 6.4) that, di�erently from the 3D integrated case, 2D-BTCs

never show heavy-tailed BTCs, but are mostly symmetric (with rare exceptions).

This means that the behavior of 2D �elds is much more similar to the one found

in homogeneous �elds rather the one found in heterogeneous �elds, implying that

our 2D settings are not suitable to reproduce anomalous transport, despite the

synthetic �elds are obtained using the same horizontal variogram statistics than the

3D counterparts. Maybe, this is due to the use of unconditional 2D SGS simulations,

similarly to what observed by [Willmann 2008].

Another remarkable e�ect is that 2D-BTCs look like convolved over several time

lengths. This is indicated by the spread of the maximum peak of concentrations on

each BTCs (marked by a blue square), which will be extensively used as a travel time

indicator in the following lines The peak time is representing the position of most of

these each symmetric curves, expect with the few exceptions showing asymmetric

patterns. It can be noticed that the ensemble of maximum concentrations for the

2D BTCs (indicated by squares in �g. 6.4) scale similarly to a PL with unit slope,

i.e. of the form p̂(t) ≈ t−1
c .

The reader should have noticed, however, that there is a fundamental di�erence

between the estimated concentration for 2D and depth-integrated BTCs. This is due

to the fact that 2D and 3D simulations account for the same NP and M . However,

in 3D simulation the mass is released along the vertical injection line is M = 1, but

because of the �ux-weighted injection scheme at each layer, the total mass at each

layer is split di�erently among the layers . Thus, In 2D simulations, one expects

that the injected mass should be equal to the one injected at each corresponding

layer in 3D simulations. To do so, one needs to divide the estimated mass density at

each 2D simulation corresponding to a layer k (p̂k(t)) with the total mass injected

in the 3D simulation at that layer (Mk). This is obtained as

p̂k(t) =
1

DF (k)

QC(t)∫
QC(t)dt

(6.4)

where DF (k) is a dilution factor that is proportional to the mass injected in the

system at each layer in 2D simulations and and 3D simulations, and C(t) is the

resident concentration at the well locations. DF (k) can be de�ned as

DF (k) =
qx(k)∑NL
k=1 qx(k)

(6.5)

where qx(k) is the local seepage velocity at each injection locations. The e�ects

of the mass normalization are shown in the small window in �g. 6.4. We only plot

the 2D-BTC peaks for graphical purposes. It can be seen that the concentration

peaks are found at similar concentrations as the 3D counterparts, con�rming that

the mass distribution among layer comes from a convolution of layer transport giving

raise to the depth-integrated counterpart. The scattering between 2D peaks and 3D

curves are due to the intrinsic di�erent structure of 2D and 3D �ow simulations (i.e.
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we totally neglect the vertical advective and dispersive component), while they are

expected to disappear using a proper multilevel sampling.

We present in the next section the most relevant �ndings extracted from the

additional simulations, in order to �nd the impact of the degree of heterogeneity in

the di�erent slopes of the BTCs.

6.3 Comparison of di�erent cases

We describe other signi�cant results of our numerical analysis, to be compared with

the illustrated case in �g. 6.4. The purpose is to show how exportable is the scaling

as p̂(t) ≈ t−1
c on the depth-integrated BTC tailing at late times, and to link this

slope to some characteristic physical patterns, such as the distribution of peak times.

6.3.1 Evaluation of the anisotropic case (�eld B) with σ2
Y=4

We compare here the results for other injection locations within the anisotropic �eld

(B) with σ2
Y=4. In addition to injection at L4, in �g. 6.5 we plot the results for

other three injection locations, speci�cally at L1, L2 and L3 (mainly accounting for

the di�erent distances to the pumping well). In the plot, the depth-integrated BTCs

(black line) are reported with a cloud of points representing the peaks of the 2D

BTCs simulations (resulting after applying the 'layer decomposition' methodology

described above, for each injection point).

We observe that depth-integrated BTC always show heavy-tailed distributions,

but the BTCs slopes change as rλ increases. Speci�cally, we observe that injecting

at short distances (L1,L2) where the normalized injection distance is very small

(rλ ≈ 0.1, 0.3), PL tailing is observed with constant slope, but di�erent from (larger

than) p̂(t) ≈ t−1
c . On the other hand, as soon as the injecting distance increases

PL behaves as p̂(t) ≈ t−1
c (L3,L4). Moreover, as the distance increases, the slope

manifest for larger times. Notice that L3 and L4 curves display a shape very similar

to the one of (respectively) E3 and E1 cases in �g. 6.1.

Note that the peak concentrations are not normalized using (6.4). This is done

to emphasise that the cloud of 2D peaks, which is aligned to p̂(t) ≈ t−1
c for all

injection locations, has a relative spread depending on the injection position. It is

being narrower at L1 and wider at L4, with L2 and L3 as intermediate cases. The

spread is calculated as

σ2
t =

1

Nk − 1

Nk∑
k=1

(
ln(tpk(k))− ln(tpk)

)
(6.6)

where ln(tpk(k)) represent the log-transformed value of dimensionless temporal

coordinate at which the peaks are observed on a speci�c 2D BTCs (i.e. at a speci�c

layer k) and ln(tpk) is the average of ln(tpk(k)). A low variance (e.g. σ2
t → 0)

would indicate that transport is very similar in all the horizons (e.g. homogeneous

medium).
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Figure 6.5: 3D BTCs (and relative peak distributions) obtained after injecting in

the anisotropy �eld (B) with σ2Y=4, at L-points. Notice that the behavior p̂(t) ≈
t−1
c can be �tted only at L4 (rλ ≈ 1.8) , while the other locations display a more

symmetric behavior.

At L1, σ2
t = 0.076. This low value is due to the short normalized injection

distances, which prevent the tracer to display a vertical strati�cation of the concen-

tration measurable in terms of 'depth-integrated' BTCs. At L2 and L3, σ2
t=0.165

and 0.324, respectively, emphasizing the development of vertical strati�cation of the

plume, and enhancing di�erence between layers. At L4, where rλ is close to the

horizontal integral scale, σ2
t = 0.561, indicating that the plume is more strati�ed

than in the other cases, and it is totally controlled by the di�erent properties of

each layer.

6.3.2 Comparison with isotropic �elds

Considering that �eld (B) (�g.6.2) has anisotropic correlated structure of the hy-

draulic conductivity, a reasonable question is whether the strati�cation of the plume

is controlled by the strati�ed distribution of Y . We therefore evaluate the behavior

of BTCs 2D and 3D Y �elds (A,C) constructed from isotropic models.

The curves for �eld (A) are plotted in �g. 6.6. We plot only the curves corre-

sponding to the injection wells R1 to R4, since the other arrays (L,U,D) show similar
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behavior. Being Ix = 4 in this �eld, the normalized injection distance is close to the

unit for R1 (rλ ≈ 1.8) and increases to higher values (up to rλ ≈ 18 for R4).
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Figure 6.6: 3D BTCs (and relative peak distributions) obtained after injecting in the

isotropic �eld (A) with σ2Y=4, at R-points. Notice that the behavior p̂(t) ≈ t−1
c is

very similar to the 3D BTC slope at L1 (rλ ≈ 1.8) , but tend to diverge as long as

the injection distance increases. At R4, the BTCs is more symmetric.

.

A behavior very similar to p̂(t) ≈ t−1 is observed at R1 but as soon as the injec-

tion distance increases, this behavior tends to vanish, until it is no longer observable

at R4. From R1 to R3, σ2
t decreases from 0.621 to 0.372. At R4, σ2

t is slightly

higher than at in the other cases (0.717); it should be noticed however from �g. 6.6

that this value can be biased by the presence of a few outliers, since a few layers

observed very high peak time. Disregarding the 5 larges values ot peak times (5%

ot the total layers), for instance, σ2
t reduces to 0.341. This last point could indicate

that p̂(t) ≈ t−1
c is observed on the 3D BTC not only when σ2

t is high, but also that

the condition 'rλ ≈ 1 must be accomplished.

The curves for �eld (C) are plotted in �g. 6.7. This �eld shows the same hori-

zontal integral scale (Ix) as �eld (B), but a relevant point is that the ratio between

aquifer thickness and vertical integer scales is small (b/Iz = 2.5). Therefore, it

should be expected a more homogenization in the BTCs. We found that, at very
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short injection distances, such as R1, the distribution of 2D peaks is very narrow

(σ2
t = 0.07), and no heavy-tailed behavior is clearly observed. However, it becomes

very important as long as the distance increases (at R4, σ2
t = 0.25), similarly to the

anisotropic �eld (B) (whose BTCs tends to scale with p̂(t) ≈ t−1
c at R4).
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Figure 6.7: 3D BTCs (and relative peak distributions) obtained after injecting in the

anisotropy �eld (>C) with σ2Y=4, at R-points. Notice that the behavior p̂(t) ≈ t−1
c

can be �tted at L4 (rλ ≈ 1.8). From R1 to R4, the 3D BTCs increasingly tend to

heavy-tailed distributions; at R2 and R3, a PL behavior with m = 1 can be inferred

at di�erent intermediate portions of the BTCs.

This latter result suggests that, in our single realizations, the initial vertical strat-

i�cation of the tracer is quite relevant, independently on the statistical structure of

the media, when the injection takes place at a distance similar to the horizontal

integral scale. As a consequence of (A) and (C), it looks like there is only a middle

range of injection distances where p̂(t) ≈ t−1
c . If the distance is very small, the

system acts as practically homogeneous and solutes tend to arrive at similar times,

so that the BTC shape is controlled by dispersion, leading to quite symmetric dis-

tributions. Also, this happens for very large systems, where we can consider that

the concentration are homogenized and no heavy-tailed behavior is observed.

Contrarily, for intermediate cases and when the system is highly strati�ed, BTCs

develop a PL tail with unit slope value.
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6.3.3 E�ect of injection position on power-law scaling

In single stochastic realizations and especially under radial �ow conditions, the solute

behavior is non ergodic even when injection distance is located at tens of integrals

scales apart from the well (e.g. [Matheron 1967, Rubin 2003]). Non ergodicity of

the plume means that BTCs can vary very di�erently from realization to realization.

A direct consequence of ergodicity would be that all curves would not depend

on the injection location, but only on its distance to the well. In our realizations,

this was not the case, and so we compare here the solutions obtained for the BTCs

recorded at points located at the same distance but in di�erent directions, showing

a signi�cant non-ergodic e�ect.

In �g.6.2 we plot the depth-integrated BTC with relative 2D peaks obtained

after mass injection at locations D2, L2, D4 and L4 in the three �elds (A,B,C). For

these simulations, we keep σ2
Y=4. Results are shown in �g. 6.8. In the plot, features

corresponding to injection points 'L' are displayed in red, while those corresponding

to injection points 'D' are displayed in blue.
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Figure 6.8: 3D BTCs (and relative peak distributions) after injecting in the the three

�elds A,B,C with σ2
Y=4, at di�erent locations. Red slopes indicate injections taking

place from L2 (top) and L4 (bottom); in blue, injections taking place from D2 (top)

adn D4 (bottom). The line indicate which BTcs display a behavior like p̂(t) ≈ t−1
c .

We observe that in �eld (A) (left) the shapes of BTC are slightly di�erent for

the injection locations L2 and D2 (rλ ≈ 3) and no PL behavior similar to p̂(t) ≈ t−1
c
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is observed. At L4 (rλ ≈ 18), BTCs show a well-de�ned behavior p̂(t) ≈ t−1
c at late

time; here, the spread of the distribution of 2D peaks is close to the unit (σ2
t at L4

= 0.701). At D4, the variance is slightly larger σ2
t=0.533, but analogous to what is

seen for R4 (�g. 6.6), BTC does not scale with p̂(t) ≈ t−1
c .

Observing �eld (B) (center), the late-time behavior on BTCs at D2 and L2

(rλ ≈ 0.6) is practically the same, showing no constant PL tailing. Here, the spread

of the distribution of 2D peaks is narrow (σ2
t = 0.263 for D2 and σ2

t = 0.165 for

L2, indicating that once again the BTC does not develop for low vertical variability

of the plume behavior. A more pronounced PL e�ect is found at D4, but not in

the case of injection from L4. Again, despite both injection points are located at

rλ ≈ 1.8, the spread of the 2D peaks distribution is much higher at D4 (σ2
t=1.007)

than at L4 (σ2
t=0.562)

In �eld (C) (right), for injection locations D2 and L2, BTCs are found to follow

a similar, symmetric behavior at late time (σ2
t = 0.045 at D2 and σ2

t = 0.036 at

L2). At D4, the BTC shows a heavy-tailed distribution (roughly following a PL

with m ≈ 1, despite the disturbing presence of multiple peaks), and at L4 the BTC

is more symmetric. Once again, σ2
t the spread of the peaks is higher when BTCs

displays PL tailing (σ2
t = 0.252 late D4) than than where no tailing occur (σ2

t=

0.056 at L4).

Once again, the combination of high σ2
t and rλ close to the unit determine scaling

similar p̂(t) ≈ t−1
c , independently from their position and type of geological setting.

6.3.4 E�ect of Y variance on power-law scaling

The last parameter evaluated is the e�ect of the total variance of the log-transformed

hydraulic conductivity, σ2
Y . In our analysis, we consider the e�ect of σ2

Y=1,4, and 8

on the anisotropic �eld (B) (�g.6.2 b), after injecting at two di�erent locations (L2

and L4).

The results are summarized in �g. 6.9. The upper plots display the BTC from

3D simulations (along with the relative peaks of concentration of 2D BTCs) for

σ2
Y=1. The central plots refer to σ2

Y=4 and the bottom plots for σ2
Y=8. On the

left, the plots indicate BTC (and peaks) obtained after injecting in L2, while on the

right we plot the results on an injection from L4.

The general e�ect of σ2
Y is to increase σ2

t . At L2, we can observe that the variance

of the 2D peaks increases from σ2
t=0.038 for σ2

Y=1 to σ2
t=0.329 for σ2

Y=8. In no

case we appreciate c ≈ t−1, which can be attributable to the fact that injection take

place very close to the well (rλ < 1).

At L4 (where rλ ≈ 1.8), BTCs are much more asymmetric. While for σ2
Y=1

(having σ2
t=0.143) BTCs do not show PL behavior as p̂(t) ≈ t−1, this e�ect is

much more clearly show for the case σ2
Y=4 and at σ2

Y=8. In the latter cases, σ2
t is

respectively 0.562 and 1.101.

From this last analysis, we have observed that the variance is a key controlling

factor for the development of PL tailing on our BTCs; however, two other conditions

(injection distance close the integral scale and high spread of the 2D peaks) need to
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Figure 6.9: 3D BTCs (and relative peak distributions) for the anisotropic �eld (B)

for variable variance (σ2
Y=1,4,8, respectively from to the top to the bottom of the

plot), at two injection locations, L2 and L4. Note that BTC tends to scale as a PL

with m ≈ 1 for L4 in case of variance σ2
Y = 4 and 8, which also show distribution of

2d peaks more spread than in the case where m is not found close to the unit.

be accomplished for PL tailing to occur.

6.4 Discussion: what does it mean c ≈ t−1 scaling?

From our results, we have observed that in most cases a breakthrough curve with

a well-de�ned PL tailing of the form p̂(t) ≈ t−1
c can develop during CFTTs in

sandy aquifers. This behavior is highly variable, but common patterns seem to be

identi�ed to phenomenologically explain this behavior. Especially, we learned that

the normalized injection distance for PL to take place on BTCs is rλ ≈ 1. Once this

PL shape develops, its e�ect extend for larger times with increasing σ2
Y .

To explain m = 1 on depth-integrated BTCs, we �rst consider why the slope

of the peaks of 2D BTCs must also follow m = 1. We account for the fact that

the architecture of the tracer, once it has been injected into the well, is strati�ed.

This is well visible from �g. 6.3. Plume strati�cation is due to the existence of �ow

heterogeneities, that condition (I) the mass injected in each layer, which depend

exclusively on the �ow velocities at the cells located along the injection column and
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(II) the mean travel time along each horizon.

The larger the integral scale, the further away the impact of layering at the

injection well extends within the aquifer. On the other hand, when the injection

point is far away from the pumping well, transport tends somehow to homogenize,

despite it never reaches ergodic conditions.

The limit case is the one of a perfectly strati�ed medium , where each layer

acts independently (assuming transversal dispersion is negligible). In each k-th

layer, convergent radial transport can be approximated by the analytical solution

of [Welty 1994] (their Eq. 26). After some manipulation, it can be seen from this

equation that the peak of concentration cpk, is

cpk =
M

2Qtpk

(
4

3
π

1

Pe

)
(6.7)

where Pe is the Peclet number, de�ned as

Pe =
r

αL
(6.8)

in which αL is the longitudinal dispersivity. This solution is valid for Pe >≈ 10,

which is usually found in the �eld, according to [Gelhar 1992]. It highlights that,

for each layer, the maximum concentration in each layer scales linearly with the

layer-speci�c injected mass and inversely proportional to the discharge rate applied

to this .

In the 2D-BTCs, injected mass is equal in all realizations so that the peak

concentration is governed by Q and tpk. Pe is constant for a given injection distance.

Hence, from (6.7) we can say that

cpktpk ∝ B
M

Q
(6.9)

where B is a constant. This relationship is sometimes used to design the total

mass of solute tracer to be injected during experiments.

The question is how to translate this concept to depth-integrated BTCs. Here,

a di�erent problem occurs. Assuming again a perfectly strati�ed medium, we notice

that for a given layer and due to boundary conditions (�ux-averaged injection), the

ratio M/Q should be constant. Thus, in each layer it is also satis�ed that

cpk ∝ t−1
pk (6.10)

However, the further away from the ideal condition, the more the solution de-

teriorates. For instance, a less strati�ed medium (Iz/Ix not tending to zero) would

manifest di�erently in the curves. A similar explanation can be sought for large

injection distances. Due to the quasi-radial �ow geometry, particles injected very

far away from the well move initially with low velocity (compared with the mean

aquifer velocity), so that dispersion dominates (small Pe). Then, the individual 2D

BTCs would be less symmetric and show signi�cant tailing (e.g. [Moench 1989]).
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In section 3 we have shown that while 2D-BTCs exhibit a shape similar to a

Gaussian bell, their corresponding peak time can drastically vary from one layer to

another (measured by σ2
t ). From (6.9) this variability causes that for radial distances

closes to the integral scale a power-law tailing behavior with m = 1 develops. This

variability re�ects the fact that the speci�c structure of the hydraulic conductivity

contained within the particle path connecting the well with the injection is di�erent

for each layer. This is very similar to the concept of point-to-point connectivity

([Trinchero 2008]), who explained the importance of the structure and organization

of K values along the particle path to predict travel times. Based on this, we can

attribute large σ2
t to large variability of point-to-point connectivity patterns along

the vertical line injection. In this line, it is worthwhile noticeable that one should

consider an e�ective discharge rate Q to be used in 2D simulations. Such a value

should be proportional to the e�ective discharge rate obtained at each layer of the

well column in 3D simulations, and used in each of the 2D simulations. It should

be noticed that the e�ect of rescaling Q at each layer would not a�ect the peak

distributions but only σt. In e�ect Q only a�ects tpk (because of (6.2)) and not the

constant factor cpktpk.



Conclusions of part 2

The main conclusions from this part are shown in the following paragraphs.

A locally-adaptive algorithm for particle density estimation

Particle tracking algorithms provide an attractive method to model solute trans-

port in the subsurface, but several problems arise at the moment of estimating par-

ticle density functions. Here it is shown that various existing method to estimate

these densities that using di�erent number of particle and di�erent classes of kernel

densities fail to correctly reproduce various degree of peakness and tailing, when

tested against several reference distributions.

We observed that kernel density estimators based on a global bandwidth method,

which have a sound mathematical background, can qualitatively reproduce the gen-

eral shape of skewed densities only if a huge number of particles is adopted. If a

reduced number of particles is used, the estimated BTCs is not completely reliable,

especially on the tails, which appear disturbed by numerical e�ects (such as oscilla-

tions). In addition, the computational time can be very high if several realizations

are needed.

Classical adaptive methods, such as the one proposed by [Silverman 1986], pro-

vide a better �tting of the tails on heavy-tailed distributions, which appear smoothed

and thus gradients could be more easily determined; however, they underestimated

peak concentrations and perform worse in symmetric distributions. Since the shape

of density functions is in most cases unknown, adaptive methods are not very reliable

for typical applications in hydrogeology.

A new method has been proposed that uses the experimental cumulative distri-

bution of particles to rescale the bandwidth size and adapt to the shape of the �rst

estimated density. In this sense, an universal method that improves the �tting for

any type of symmetry degree has been succesfully obtained and sensibly improve the

�tting test against benchmark solutions. Only one calibration parameter is needed,

and its selection may depend on the purpose of the study. The recommendation to

use this method are the following:

1. If only a quick estimation is needed to determine the shape of the distribution,

it can be su�cient to perform a single simulation using a large number of

particles combined with the proposed method with α = 0.5.

2. If a more accurate estimation is needed, three simulations are needed: the

�rst, with a large number of particles and the �xed-bandwidth method and

the other two with less particles and the proposed method with α = 0.5 and

α = 1; thus, the correct parameter is chose depending on which of the two

proposed methods is more similar to the �xed-bandwidth estimation;

3. If more simulations are needed, such as in a Monte Carlo framework, the

proposed method can be used once α has been chosen after testing a few
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realizations with large number of particles using the three methods, and then

using the proposed one with a few number of particles.

Development of tailing

The processes involved in the development of heavy-tailed BTCs in heteroge-

neous porous media have been studied using a numerical approach based on single

realizations of stochastic multigaussian simulations of log-normal hydraulic conduc-

tivity �elds. A three-dimensional approach under convergent radial �ow has been

adopted, which appears a logical conceptual setting to adequately reproduce the

usual con�gurations of real tracer tests. Nonetheless, the topic has received poor

attention in the literature.

The focus on this Chapter has been to focus on the physical causes leading to

power-law tails with low exponent (m=1), sometimes observed in real tests.

A �rst conclusion of this work is that in realistic three-dimensional settings, the

late-time distribution of the concentrations observed in convergent �ow �eld tracer

tests is mainly controlled by thedegree of (pseudo) strati�cation whether it is real

(physical) or caused by strong variantion in the hdyraulic conductivity.

The main conclusions of the work are that, for a given random �eld with prede-

�ned geostatistical properties, di�erent late-time behaviors are observed for break-

through curves obtained at di�erent injection locations. When the following four

conditions are accomplished:

1. large vertical variability of the connectivity for the layers composing the 3D

formation;

2. disordered systems (with mid to high variance);

3. injection distance comparable with the planar horizontal integral scale of the

heterogeneity;

the tendency of our synthetic �elds is to display BTC scaling at late time with

c ≈ t−1. The reason is that the maximum concentrations of breakthrough curves

under general �ow conditions depend inversely on the arrival time of the peak value.

When these conditions are not or only partially ful�lled, BTC scale with a PL slope

comprised between 1 and 4, which is similar to the observation reported in literature.

This work suggests also that three-dimensional models are necessary to repro-

duce skewed BTC similar to the ones observed in the �eld using sequential Gaussian

simulations. Tailing does not naturally occurred in 2D transport simulations, un-

less new phenomena are accounted for such as nonlocality of the transport at the

pore-scale. We can also suggest that the nature of the memory functions associated

to these models in sandy aquifers are mostly related to the vertical architecture of

the connectivity patterns between the injection location and the pumping well.

Anisotropy

The existence of a quantitative link relating the capacity coe�cient β of mass-

transfer models and hydraulic anisotropy has been shown. The results provide
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a quantitative and robust evaluation of the strict dependence of β and physical

parameters of the aquifers. Especially, a quick method to estimate β based on ratio

between the concentration peak time from each breakthrough curve and the �rst

moment of the arrival time distribution showed that β is largely controlled by the

connectivity between injection and extraction wells, which is highly dependent upon

anisotropy.

The work shows how important a characterization of the anisotropic structure

of the aquifer is to predict the macroscopic behavior of β and to de�ne the possible

range of variability of this variable. More speci�cally, important conclusions that

can be inferred from this work are listed as follow:

1. Connectivity has been found to be a key parameter controlling the devel-

opment of apparent mass-transfer behavior and thus controlling β. From

connectivity it depends how likely is the system to behave as an (apparent)

mobile/immobile domain.

2. When connectivity is high, solute is injected through a few selected paths and

injection distances are comparable with the horizontal integer scales (three

conditions met by �elds showing high permeable channels embedded in a rel-

ative less permeable matrix and tracer injection takes place as �ux-averaged

scheme from well located along the main direction of anisotropy), a relation-

ship can be established between β and some connectivity indicators, such as

the concentration peak time.

3. When connectivity is high but injection takes place along planes, such as in

the case of fractures oriented along the well column, solute are more quickly

mixed after being injected into the aquifer and they reach the controlling

section without developing an (apparent) mass-transfer behavior. In this case,

a relationship between anisotropy and β is not well displayed

The main conclusion is that the behavior of β during CFTTs can be predicted

in as statistical sense when anisotropic formations are being characterized. These

�nding helped to �nd a direct link between mass-transfer upscaling parameter sim-

ulating apparent anomalous transport and physical soil parameters, (such as con-

nectivity) which is in most of the time missing. While in speci�c �eld departures

from ensemble mean can be important, this work shed new light on the possibility

of render these e�ective solutions useful for predictive purposes and upscaling of

solute transport modeling.





Conclusions

This thesis has dealt with several problems occurring during arti�cial recharge of

aquifers and solute transport and mainly relate to hydrodynamic heterogeneities

occurring at all scales in aquifers. The focus has been to develop tools to analysis and

predict the e�ects of heterogeneity on the decisions in a more e�cient and e�ective

manner, as well as to understand what dynamics control macroscopic evidences of

heterogeneity and the e�ects on the selection of e�ective modeling solutions.

The major common conclusions drawn from the two parts are listed as follows.

The technical tools that have been presented improve the modeling of arti�cial

recharge and solute transport dynamics and can be used to obtain better estimation

of random variables. Satellite images has been proved to bea new and powerful

tool to characterize the uncertain spatial distribution of the in�ltration capacity of

aquifer on broad scales, in a cheap and quick manner. A new type of locally-adaptive

kernel density estimators has been developed to increase the accuracy of particle

density estimation from travel time distributions, reducing computational time and

increasing the estimation of breakthrough curves from heterogenous aquifers.

The analysis on the macroe�ects of heterogeneity on clogging and solute trans-

port have shown that analytical models to upscale variability of the in�ltration

capacity and solute transport spatio-temporal dynamics should account for the na-

ture of heterogeneity itself. It has been observed that in the presence of only few

data about the in�ltration capacity at the beginning and at the end of a �ooding

test, the wrong selection of an upscaling model can deliver uncertain spatio-temporal

description of the variable, if the relationship between physical and model proper-

ties is not clear. When data do not exist, but the spatial structure of the clogging

variables and the initial condition of the ponds are known, the relative intensity of

each process (assuming that it depends exclusively on the initial conditions) can be

highly variable and the decisions to be made about the maintenance of the ponds can

be weighted depending on initial conditions of the pond, which can be for instance

inferred by means of satellite images.

Solute transport in synthetic multigaussian �elds characterized by �ne-grid �ow

and particle-tracking transport methods displayed anomalous dynamics similar to

those produce by mas-transfer models. The missing link between anomloaus trans-

port in this type of �elds seems to be related mostly to connectivity and �ow strati-

�cation, which are in turn mostly controlled by the anisotropic structure of aquifers

become strati�ed, the e�ects of connectivity are enhanced, con�rming that both

aspects are fundamental for the development of tailing in this cases. Connectivity

has also been observed to control the apparent directional distribution of the ca-

pacity coe�cient in statistically anisotropic aquifers. This behavior is emphasized

observing in detail single realization as well as ensemble of realizations. The latter

result provides new insights to obtain prediction about the distribution of the capac-

ity coe�cient in presence of anisotropic structure, which can be essential to make
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accurate decisions concerning the characterization of solute transport properties in

heterogeneous media.
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Appendix A

Derivation of Equation (7.6) in

Chapter 7

We explain a possible derivation for (7.6) in Chapter 8, which can be obtained

following [Haggerty 2000]. The sink-source term in (7.5) can be written as

Γ(x, t) =

∫ t

0
g(τ)

∂Cm(t− τ)

∂τ
dτ (A.1)

where g(τ) is the memory function ([Haggerty 1995, Carrera 1998]). (A.1) can also

be written as

Γ(x, t) = c ∗ ∂g(τ)

∂τ
+ g0Cm(t− τ) + Cm0g(τ) (A.2)

where the subscript 0 indicate the initial amounts fore each variable and '* is

the convolution operator. Let's assume that Cm0 = Cim0 = 0, and that an injection

of a unit mass takes place as an instantaneous pulse. [Haggerty 2000] show that at

late times, the sink-source term becomes

Γ(x, t) ≈ m0
∂g(τ)

∂τ
(A.3)

where m0 is the zeroth moment of the mass. We obtain

∂Cm
∂t

+ β
∂g(τ)

∂τ
= L(Cm) (A.4)

where L(Cm) is mechanical advective-dispersive operator. At late time, it can be

considered that the dispersive �ux is negligible with regards with the advective �ux,

i.e.

L(Cm) ≈ vm(r)
∂Cm
∂r

(A.5)

and also that the derivative of the memory function is equal to the derivative of

the mobile concentration. It results that

(1 + β)
∂Cm
∂t

= vm(r)
∂Cm
∂r

(A.6)

Let's now move from a Eulerian to a Lagrangian picture of the solute transport.

Using the following relationships between velocity and travel times
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tm =

∫
dr

vm(r)
tadv =

∫
dr

va(r)
(A.7)

where tadv is also equal to the �rst temporal moment µ1
t , and va(r) = ∂r/∂t is the

advective velocity. Then (A.6) can be rewritten as

µ1
t = tm(1 + β) (A.8)

or as Eq. (7.6) in Chapter 7.
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