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útils per a la construcció de llibreries de fragments moleculars dirigides a una 

proteïna diana en particular. Partint de la premissa que entorns de proteïna 

similars molt probablement interaccionaran amb fragments moleculars similars, 

aquesta Tesi presenta un nou mètode per a identificar entorns de proteïna 

similars, utilitzat per predir noves relacions quimioisostèriques. S’aporten també 

alguns exemples de potencials aplicacions del quimioisosterisme en la disciplina 

del descobriment de fàrmacs. Un anàlisis de les implicacions que té el 

quimioisosterisme en la polifarmacologia ens duu a la hipòtesis de que els 

nivells de polifarmacologia observats en la majoria de fàrmacs no són res més 

que una signatura de l’explotació del quimioisosterisme al llarg de l’evolució. 
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Abstract 

In medicinal chemistry, two chemical fragments are considered bioisosteric if 

they bind to the same protein environment. Accordingly, looking at the same 

players from an opposite perspective, two protein environments can be 

considered chemoisosteric if they interact with the same chemical fragment. In 

this respect, this Thesis introduces the term chemoisosterism, which represents 

a new concept in drug discovery. Currently available crystal structures for 

protein-ligand complexes constitute a basis for the identification of 

chemoisosteric protein environments, of great utility for the construction of 

focused fragment chemical libraries. Under the premise that similar protein 

environments will probably bind to similar fragments, a novel approach to 

assess protein environment similarities is introduced and used to predict new 

chemoisosteric relationships. Examples of the potential applicability of 

chemoisosterism in fragment-based drug discovery are provided. The 

implications of chemoisosterism for drug polypharmacology are explored, 

leading to the speculation that the levels of polypharmacology observed in 

current drugs may just be a latent signature of the exploitation of 

chemoisosterism during evolution. 

 

Resum 

En química mèdica, dos fragments moleculars són considerats bioisostèrics si 

s’uneixen al mateix entorn de proteïna. Canviant la perspectiva sobre el mateix 

esdeveniment, dos entorns de proteïna poden ésser considerats quimioisostèrics 

si interaccionen amb el mateix fragment molecular. Aquesta Tesi introdueix el 

terme quimioisosterisme, un nou concepte en química farmacèutica. Les 

estructures actualment disponibles de complexos de proteïna i lligand 

constitueixen una font d’entorns de proteïna quimioisostèrics potencialment 
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Preface 

Drug design is a long and costly process very prone to failure, albeit of utter 

importance to provide new therapies to improve the health of a an increasingly 

aging population that is subject to new threats in the form of chronic or 

degenerative maladies associated to age, such as cancer, cardiovascular 

problems and diabetes. New diseases like Acquired Immunodeficiency 

Syndrome (AIDS), avian influenza or Severe Acute Respiratory Syndrome 

(SARS) also need to be addressed, as well of other endemic re-emerging threats 

such as malaria and tuberculosis. The massive amount of information involved 

in the process of drug discovery makes it an extremely complex activity of 

information management and interpretation. It is here where computational 

tools have been proved very useful to assist in decision making in any of its 

steps, pursuing the aim of reducing the required costs in both resources and 

time to bring a new drug to the market as well as providing new predictions 

that may ultimately lead to new advances in therapeutics. 

The increasing generation of pharmacological data for small molecules and 

its public availability has boosted research and development in the area of 

computational tools for in silico pharmacology. In particular, virtual ligand 

screening has become a valuable tool to predict the likelihood of a chemical 

compound of having affinity for a certain target. In the last years several such 

ligand-based approaches for in silico target profiling have led to the successful 

identification of new targets for old drugs. However one of the inherent 

limitations of the use of ligand-based information, as a result of its 

incompleteness and bias, is the limited hopping ability, in phylogenetic terms, 

of the new targets predicted.  

 Therefore, in order to achieve much degree of hopping one might to go 

beyond ligand-based methods. A possibility in this regard is to incorporate all 

available knowledge on protein structure publicly available in the Protein Data 



 

 xii 

Bank. Some research has been done in that direction, leading to what is usually 

referred as inverse docking. However the relatively large number of false 

positives identified from such approaches, alongside with their computational 

costs that make profiling millions of small molecules currently unaffordable; 

reveals the need for new and faster structure–based approached to in silico 

target profiling.  

This is precisely the aim of this Thesis; to contribute to fill in this gap by 

developing and exploring a structure-based approach focused on protein 

binding sites. The implementation of a method to describe and compare 

binding sites has been addressed, as well as the evaluation of several of its 

possible applications in the field of drug discovery. The Thesis has been divided 

in 5 parts. Initially a general overview to structure-based drug discovery is 

provided, along with a perspective on protein-ligand binding characteristics. 

Special emphasis is put in bioisosteric replacements and fragment-based drug 

discovery, as a special focus will be put in them in subsequent sections and 

discussions. After this introductory section, the main objectives of the Thesis 

will be listed, followed by the main achieved results, including a manuscript and 

the three publications that have resulted from this Thesis. Finally, a discussion 

and the main conclusions derived from this Thesis will be outlined. A 

bibliographic section containing the list of cited references will conclude the 

document. 
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Part I: Introduction 
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Drug discovery and development, from initial target identification, to 

optimization of drug candidates and final regulatory approval, is a long and 

costly process very susceptible to failure. The costs of discovering and 

developing an average drug, a process that typically lasts around 12 years, were 

estimated to lie between $800 million1 and $1.2 billion2 for the 1989-2001 time 

period, a figure that has been growing ever since to a recent estimation of $1.8 

billion in 2010.3 Besides its cost, ultimate success is never guaranteed and the 

process suffers from a very high attrition rate. Although success rates 

significantly differ between therapeutic areas (from around 20% in 

cardiovascular to 5% in oncology), an average success rate of 11% was 

observed during the 1991-2000 decade.4  

Additionally, over the past years there have been major progresses in 

technological and scientific fields which have been incorporated to the drug 

discovery and development pipelines. Examples of such advances include 

combinational chemistry5, which increased the rate at which drug-like molecules 

could be synthesized; high-throughput screening (HTS)6, which greatly reduced 

the cost of testing compound libraries against protein targets; DNA sequencing, 

extremely faster and cheaper than it was some years ago7, which has allowed the 

sequencing of the complete genome of multiple species; molecular modelling; 

metabolomics and systems biology. At the same time advances in scientific 

knowledge provide new drug targets or insight on disease mechanisms.  

Nevertheless, despite those advances and new technologies, initially 

expected to positively impact drug discovery and development, the cost of drug 

discovery and development has been uninterruptedly growing (Figure 1).8 The 

massive amount of information involved in the process makes appropriate the 

use of computational methods to provide tools that help in decision making in 

many of its steps improving in this way its efficiency and reducing its cost both 

in time and resources. Although cost and failure-rates are much higher at 
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clinical phases of drug development4 and the impact of computer-aided drug 

design is mainly in pre-clinical stages such as target validation, hit discovery or 

hit to lead optimization, its purpose lies in providing better drug candidates that 

will reduce costs and improve success rates in subsequent clinical steps.  

 

 

Figure 1: The number of new drugs approved by the US Food and Drug 

Administration (FDA) per billion US dollars (inflation-adjusted) spent on Discovery 

and Development (R&D). Extracted from Scannell et al..8 

 

In particular, the increasing generation of pharmacological data for small 

molecules and their availability in the public domain9–11 has boosted research 

and development in the area of computational tools for in silico 

pharmacology.12,13 This amount of information is efficiently exploited by ligand-

based approaches to in silico target profiling which have emerged in the last 

years and that have successfully led to the identification of new targets for old 

drugs.14–20 Based on the premise that similar molecules will probably exhibit 

similar properties and hence bind to similar targets, their usual workflow 

consists on predicting the targets and affinities of a particular molecule based 



on known targets and affinities of similar molecules.

resides on the molecular descriptors and metrics 

which can be highly diverse: two or three

different features or substructures are fed to 

and similarity metrics.23,24 However one limitation of the use of ligan

information for predicting new targets is the limited 

terms, of the new targets predicted. It can only explore the chemical space 

around molecules with known targets, which is known to be biased towards 

some target families such as GPCRs. 

To overcome those limitations and attain a higher degree of hopping, as well 

as increment the usable information for other protein families (e.g. enzymes)

the utilization of complementary methods are needed. Structure

approaches are suitable candidates to assume this role, as they exploit a 

different body of information that ligand

results are likely to be mostly different

approaches (Figure 2). 

 

Figure 2: Venn diagram illustrating complementarity of ligand

based approaches. 
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on known targets and affinities of similar molecules.21,22 Their main difference 

and metrics used to derive a similarity, 

which can be highly diverse: two or three-dimensional descriptors encoding 

different features or substructures are fed to a variety of classification schemes 

However one limitation of the use of ligand-based 

information for predicting new targets is the limited novelty, in phylogenetic 

It can only explore the chemical space 

around molecules with known targets, which is known to be biased towards 

those limitations and attain a higher degree of hopping, as well 

as increment the usable information for other protein families (e.g. enzymes), 

the utilization of complementary methods are needed. Structure-based 

suitable candidates to assume this role, as they exploit a 

different body of information that ligand-based methods do, therefore its 

different from those achieved by ligand-based 

 

complementarity of ligand-based and structure-
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I.1 Chemogenomics 

It is precisely to integrate all available chemical and biological information that 

chemogenomics has emerged as a new paradigm in drug discovery. Drug 

discovery has been in the last decades a multidisciplinary endeavour to optimize 

a compound’s potency, selectivity and pharmacokinetics primarily towards a 

single target. Following a one drug-one target premise, its main objective has 

been to develop potent and selective small molecules against a particular target. 

The sequencing of the human genome25 has allowed to estimate the existence 

of about 3,000 druggable targets26,27, being only a small fraction of them 

investigated by pharmaceutical industry.28 In fact, the average central nervous 

system drug has, for example, affinity on over 20 receptors.29 The relative 

affinity of a given drug for all those receptors was never optimized per se but 

was “a given” after the molecule was optimized for one single receptor. 

Pergolide, an anti-parkinsonian drug, is usually referred as a “dopamine 

agonist”, even though it has affinity for over 20 receptors. One of them, the 

serotonin receptor subtype 5-HT2B, has been identified as the ultimate 

responsible of its cardiac valvulopathy30 safety risk that forced its withdrawal 

from the market. With only a small portion of both chemical and target spaces 

been explored chemogenomics multi-target strategies emerge as an especially 

attractive approach to conceptually shift from the rather limited number of 

druggable targets to the millions of target combinations of potential therapeutic 

relevance. 

The term chemogenomics was defined in 2001 as the “discovery and 

description of all possible drugs to all possible drug targets”.31 It consists on 

organizing drug discovery by protein families32 in order to maximize the 

efficiency of biology and chemistry resources by the obtainment and 

accumulation of reusable knowledge across a target family.33 As 

chemogenomics dwells at the interface between chemistry and biology, 
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computational tools integrating bioinformatics and chemoinformatics are 

required to extract and integrate reliable information. In short, chemogenomics 

aims at completing a two-dimensional matrix of targets and compounds (as 

columns and rows) with values of binding.34 As this matrix is far from 

complete, predictive chemogenomics tools aim to fill in its existing gaps by 

anticipating new compound-protein relationship. A fragment of this matrix 

related to cardiovascular diseases is shown in Figure 3.35 

Integrative chemogenomics tools need to tackle three main tasks, namely: 

annotate and classify data, generate and integrate knowledge and rational and 

systematic design.33 Classification schemes and ontologies, both on the 

biological and chemical side are essential to establish relationships between 

proteins and ligands in an unambiguous manner. Several resources exist 

providing annotated gene and protein sequences36–39 and strcutures40–42, while 

several tools exist to univocally identify chemical compounds.43,44 Once 

classification and annotation schemes are ready, analysis of data allow to 

establish links between proteins and ligands. Structural data on proteins and 

protein-ligand complexes, structural data of ligands and ligand activity, are 

useful to predict new protein-ligand interactions, leading to structure-based and 

ligand-based chemogenomics approaches. This is done under the assumption 

that similar ligands will likely bind the same target and that similar targets will 

likely interact with the same ligand. How similarities those similarities are 

obtained will characterize a particular chemogenomics approach. For example, 

Figure 3 illustrates the application of a chemogenomics approach based on 

cross-pharmacology to complete the cardiovascular target space and infer 

potential cardiovascular off-targets.35 

 

. 
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Figure 3: Ligand–protein interaction map between scaffolds from molecules 

annotated to cardiovascular targets (in columns) and the cardiovascular-relevant 

aminergic GPCRs (in rows). Black marks are extracted from literature mining while 

white marks are identified from cross-pharmacology relationships. Figure adapted 

from Cases and Mestres.35 
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I.2 Protein-ligand interactions 

By looking in detail into the interface between the biological and chemical space 

protein-molecule interactions are found. Interactions between proteins and 

small molecules (hereby named ligands) play an important role in many cellular 

functions such as enzyme catalysis or signal transduction. Alteration of those 

interactions is often implicated in disease and can be taken advantage of to 

deliberately modulate altered functions. Detailed knowledge on molecular 

recognition between proteins and ligands provides useful information in many 

fields, including drug discovery, as most drugs exert their function through a 

binding event with a protein. From a thermodynamics point of view, the 

affinity from a ligand to a protein can be described as a Gibbs free energy (∆G), 

which is linked to the experimental binding constant (KB). The Gibbs free 

energy can be decomposed in its enthalpic and entropic components, being 

enthalpy related to the internal energy of both the protein and the ligand and 

entropy to the degree of disorder of the system. For a binding event to occur, a 

desolvation of the ligand and the binding site is followed by a certain 

conformational change of both, after which interactions are formed between 

ligand and protein.45 The main forces driving molecular recognition include 

electrostatic forces and the hydrophobic effect. Simple electrostatic forces 

include ion-ion and ion-dipole interactions and Van der Waals forces (attractive 

between permanent or induced dipoles and repulsive between electron densities 

defining the molecular volume).46,47 Combining those forces hydrogen bond 

interactions appear. Those occur when an electronegative atom (named 

acceptor) and a hydrogen atom attached to a second electronegative atom 

(donor). Hydrogen bonds also have the remarkable feature of being directional; 

contributing is such way to the specificity of intermolecular interactions. 

Combining Van der Waals, hydrophobic and electrostatic forces aromatic 

interactions involving π systems exist. This kind of interaction combines the 
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strength of the hydrophobic effect with the selectivity of electrostatic 

interactions. The electrostatic component is attributed to quadrupole moments 

in aromatic rings, where a greater electron density exists on the faces of an 

aromatic ring relative to their edges. This favours certain geometries such as 

face to face (stack), edge to face (T-shaped), parallel displaced (offset stacked), 

and cation-π .48 

A major component of the forces that stabilizes biological structures is the 

hydrophobic effect, which is defined by the IUPAC as a “tendency of 

hydrocarbons (or lipophilic hydrocarbon-like groups) to form intermolecular 

aggregates in an aqueous medium”. It is believed to be mainly entropically 

driven; as hydrocarbon molecules are not solvated due to their incapacity to 

form hydrogen bonds with solvent water molecules, those waters become more 

ordered around the hydrocarbon molecule than in bulk water. This leads in a 

higher degree of order in the system (loss of entropy), that can be 

counterbalanced by aggregation of hydrocarbon structures, reverting on an 

entropic gain as their contact surface to solvent is reduced. An example of 

interaction pattern in a sample complex structure from the PDB is shown in 

Figure 4 showing hydrophobic contacts, hydrogen bonds and aromatic 

stacking. 

A precise analysis of the balance of forces governing any ligand-receptor 

specific interaction (using docking or molecular dynamics; empirical scoring or 

energy functions) still remains a challenge due to the uncertainty of entropic 

contributions to the binding , like hydrophobic effects as well as Van der Waals 

interactions and the role of water.47 Scoring functions use empirical formulas 

and approximations assuming that a binding affinity can be defined as a sum of 

independent terms, disregarding cooperativity and non-additivity of molecular 

interactions.49 Furthermore, their computational cost is still too demanding to 

afford high-throughput calculations.  
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Figure 4: Diagram of predicted interactions patterns for a v-kit Hardy-Zuckerman 4 

feline sarcoma viral oncogene homologue in complex with imatinib (PDB code: 1T46). 

Hydrogen bonds are represented as black dashed lines; π interactions as green dashed 

lines with dots marking the interacting π systems. Hydrophobic contacts are 

represented by green residue labels and green splines along the contacting ligand 

region. Figure extracted from Stierand and Rarey.50 The interactions are predicted by 

the PoseView software. 

 

Such limitations enable the development of a wide range of different 

approximations aimed to simplify the problem. The molecular recognition was 

initially described by the lock and key image, where geometrical and 

physicochemical complementarity is often required between the protein and the 

ligand. In a more realistic model accounting for protein flexibility; the induced-
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fit model, the protein undergoes a certain conformational change to be able to 

bind the ligands.51 An alternative mechanism named selected-fit consists on the 

ligand selecting and stabilizing a complementary protein conformation among 

different protein conformations in equilibrium.52 Those models allows to 

reduce binding predictions to molecular similarity and target complementarity.53 

With an increasing number of protein structures available in the Protein 

Data Bank54, there is a sufficient corpus of data on protein-ligand complexes to 

allow extraction of knowledge that can be further applied in molecular 

recognition research and structure-based drug design. An effort has been made 

during the last decades to collect all those information in publicly available 

databases of protein-ligand interactions along with related useful information 

such as ligand similarities, interaction patterns. IsoStar, Relibase, CREDO and 

many others are examples of such databases (see Table 1 for details).55–59 Such 

amount of data allows the existence of approaches that estimate the probability 

of a certain interaction based on how often is observed in x-ray structures. 

SuperStar is one of such approaches, that uses used the experimental 

knowledge stored in IsoStar to predict drug-targets interactions by obtaining 

the propensity of different probes at different positions around the template 

protein binding site.55,60 

Notwithstanding, being all protein-interaction data derived from protein 

structures, most of them resolved by x-ray crystallography, several issues arise. 

Crystallization might produce new intermolecular interactions that may affect 

the structure of the complex and crystallization conditions, which may not be 

the same as biological ones, can also alter protein-ligand recognition event. 

Considering such caveats, the Protein Data Bank is an excellent source of 

structural information on protein-ligand biding. Exploitation of such structural 

information to enhance drug design constitutes what is known as structure-

based drug discovery. 
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Table 1. Available protein-ligand interaction databases  

 

Name Description Site 

AffinDB61 Affinity database for protein-ligand 
complexes 

http://pc1664.pharmazie.uni-
marburg.de/affinity/ 

BindingMOAD62 Subset of the PDB containing every high-
quality example of ligand-protein binding. 

http://bindingmoad.org/ 

CREDO59 A Structural Interactomics Database For 
Drug Discovery 

http://marid.bioc.cam.ac.uk/credo 

Het-PDB Navi63 Database for protein-small molecule 
interactions. 

http://daisy.nagahama-i-
bio.ac.jp/golab/hetpdbnavi.html 

IsoStar55 A knowledge-based library of 
intermolecular interactions 

www.ccdc.cam.ac.uk/Solutions/C
SDSystem/Pages/IsoStar.aspx 

LigandExpo64 Chemical and structural information 
about small molecules in the PDB. 

http://ligand-expo.rcsb.org/ 
 

LigBase65 Ligand binding proteins aligned to 
structural templates. 

http://modbase.compbio.ucsf.edu
/ligbase/ 

PDBbind-CN66 Experimentally measured binding affinity 
data for complexes deposited in the PDB 

www.pdbbind.org.cn/ 

Relibase56 
 

Searching, storing and analysing 3D 
structures of protein-ligand complexes. 

www.ccdc.cam.ac.uk/Solutions/Fr
eeSoftware/Pages/Relibase.aspx 

sc-PDB67 Druggable Binding Sites from the Protein 
Data Bank  

http://bioinfo-pharma.u-
strasbg.fr/scPDB/ 
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I.3 Structure-based drug discovery 

As it has already been mentioned, in order to achieve a higher degree of 

phylogenetic hopping and explore a wider region of the chemical space one 

ought to go beyond ligand-based methods. A possibility is to incorporate the 

vast amount of protein structural data available publicly in the Protein Data 

Bank54 (the major repository for biomolecule structures, Figure 5). 

Computational tools that make use of protein structural information are 

generally referred as structure-based methods. In this case, its applicability is 

limited to structural knowledge, which is again biased, but this time towards 

enzymes.68 This contributes to make both structure and ligand-based methods 

complementary in nature.  

 

Figure 5: Number of searchable structures available in the Protein Data Bank for the 

last three decades. An exponential growth through time is observed resulting in a 

current number of almost 90,000 structures. Data extracted from www.rcsb.org on 

April 2013. 

 

Structural knowledge of a particular protein provides insights into the 

molecular basis of its biological function, as well as information on its structural 

features governing its interactions with ligands, valuable data that can be 

incorporated in a drug discovery project. One of the most common structure-
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based methods to probe the interaction of small molecules in multiple protein 

structures is often referred to as inverse docking, where multiple small 

molecules are docked to a receptor in an attempt to discover putative ligands.69 

Docking tools aim to predict the binding site location for a ligand and its 

conformation when binding to a particular protein by computational methods. 

It roughly consists on exploring the conformational space of the ligand in the 

protein binding site and ranking these conformations by means of a scoring 

function that allows finding the best ligand pose. Such scoring schemes usually 

rely on a combination of geometric, energetic and empirical functions, which 

differ from one docking tool to another.70 

As highlighted above, accurately predicting a binding free energy is still 

challenging due to the variety and complexity of forces that drive protein-ligand 

binding events. In addition, the computational cost of such calculations is 

currently unaffordable if aimed to profile millions of small molecules in 

thousands of protein targets. New and faster structure-based approaches to in 

silico target profiling are thus needed to fill in this gap and complement existing 

ligand- and structure-based methods in order to spread the chemical space that 

can be explored. This is the ultimate aim of this Thesis: The development of a 

fast and novel structure-based approach to predict the binding of small 

molecules to multiple protein structures.  
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I.4 Fragment- based drug discovery

Fragment-based drug discovery (FBDD) is an approach mainly used for finding 

lead compounds in the drug discovery pipeline 

widespread among pharmaceutical companies. It is based on identifying small 

low affinity molecules, or chemical fragments

to lead molecules of higher affinity, either by growing or linking them (Figure 

6).71–73 The strengths of FBDD lie mainly in 

chemical diversity can be sampled more effectively than the much bigger drug

like chemical space (even though the explored 

Using NMR or X-ray techniques it is possible to discern weak binders from a 

set of fragments with significant higher hit

screening (HTS) can yield when detecting active compounds. This is not a 

surprising performance, as it is consistent with an already described trend of 

less complex molecules to exhibit a higher promiscuity.

complexity increases, chances of a mismatch between the ligand and the 

receptor that can disrupt the interaction also increase. The hit rate gain 

provided by FBDD acquires special relevance when difficult targets, like 

protein-protein sites, are involved.  

 

Figure 6: Schema illustrating the basis of fragment

red shapes represent fragments that bind to the target protein. These can be linked or 

expanded to produce high-affinity ligands. Figure extracted from Erlanson

 

based drug discovery  

based drug discovery (FBDD) is an approach mainly used for finding 

lead compounds in the drug discovery pipeline that is becoming popular and 

widespread among pharmaceutical companies. It is based on identifying small 

emical fragments, that are subsequently optimized 

to lead molecules of higher affinity, either by growing or linking them (Figure 

The strengths of FBDD lie mainly in the fact that the fragment space of 

chemical diversity can be sampled more effectively than the much bigger drug-

like chemical space (even though the explored fragment space is still small). 

ray techniques it is possible to discern weak binders from a 

set of fragments with significant higher hit-rates than high throughput 

screening (HTS) can yield when detecting active compounds. This is not a 

prising performance, as it is consistent with an already described trend of 

less complex molecules to exhibit a higher promiscuity.74,75 As molecular 

chances of a mismatch between the ligand and the 

receptor that can disrupt the interaction also increase. The hit rate gain 

FBDD acquires special relevance when difficult targets, like 

: Schema illustrating the basis of fragment-based drug discovery. The blue and 

s that bind to the target protein. These can be linked or 

affinity ligands. Figure extracted from Erlanson.71 
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Although chemical fragments tend to have weak potencies (generally Kd 

between 100µM and 10mM), they usually exhibit similar binding efficiencies as 

larger molecules. Ligand efficiency (or ligand efficiency), the binding energy of a 

molecule divided by the number of its heavy atoms, has been gaining usage 

since it was shown that high molecular weight is not indispensable for high 

binding affinity.76 A “Rule of three” has been proposed to select suitable 

fragments (≤3 hydrogen bond acceptors, ≤3 hydrogen bond donors and Clog 

≤3 ).77 Due to their reduced complexity and high binding efficiency fragments 

are usually suitable starting points for hit to lead optimisation, as they allow for 

more freedom to property optimization.  

Successful examples of fragment-based lead discovery are starting to be 

common.78 One marketed drug for metastatic melanoma, vemurafenib, was 

developed by Plexxikon in 2005 using this approach and approved in 2011. A 

compound developed by Merck against Alzheimer’s disease entered phase 

II/III trials in late 2012. A fragment approach allowed in this case the targeting 

of β-secretase (BACE1), a target that was traditionally considered almost 

undruggable. Several other examples of drug candidates discovered by such 

means are now in phase II.  

Besides its inherent advantages, fragment approaches have several 

drawbacks: the low affinity and size of fragments makes them more difficult to 

identify, forcing the screenings to detect binding instead of inhibition. The 

number of interaction sites on protein surfaces able to accommodate low-

weight compounds such as solvents might result in false positives. On the other 

side, screening fragments by X-ray diffraction or NMR has the advantage that 

the binding pose is determined at the same time a hit is found, although the fact 

that the cavity might be significantly larger than the fragment volume can result 

in incorrect binding modes.  
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Application of computational tools such as docking to fragments still 

remains challenging. Most scoring functions have been developed to reproduce 

energies of drug-like compounds having much higher affinity than fragments. 

Since the development of a reliable scoring scheme for drug-like molecules is 

still not entirely resolved, scoring and ranking fragments forming fewer 

interactions can be even more problematic. Even though, docking under 

pharmacophoric constraints or post-docking processing with interaction 

fingerprints can be used to prioritize relevant poses for low-molecular weight 

fragments.79  

Given the complexity of the drug discovery process, combinations of 

fragment-based approaches with other existing methods for lead discovery 

seems to be the best option, so all its advantages are exploited while its 

drawbacks minimized. The results of a fragment-based screening, coupled with 

X-ray crystallography provide an invaluable source of information for 

identifying bioisosteric fragments.80 
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I.5 Privileged substructures 

The low specificity of chemical fragments discussed in the last section is 

consistent with the concept of privileged scaffolds or substructures. The term 

“privileged scaffold” was first used by Evans et al. 81 referring to a molecular 

framework that is able to bind to a diverse set of receptors. Although the term 

initially made reference to the benzodiazepine core, many other privileged 

scaffolds have been identified since then. Simultaneously, the definition of 

privileged scaffold has been loosened to a scaffold that is frequent in bioactive 

molecules. These privileged scaffolds were suggested to provide affinity to the 

target, while selectivity would be introduced by variations on the decoration of 

the scaffold with different chemical groups. A comprehensive list of such 

scaffolds was assembled by Welsch et al.82, being the fragment-like structures of 

this list shown in Figure 7 ( extracted from Barelier and Krimm83). Noteworthy, 

most of them are formed by rigid and aromatic ring systems, well suited for 

binding hydrophobic pockets in the target protein. 

Privileged structures may guide the design of chemical libraries, as 

enrichment in molecules containing such scaffolds will likely produce higher hit 

rates as well as throwing hits with enhanced drug-like properties.84 Discovering 

novel privileged scaffolds in not an easy task. Hajduk and co-workers used 

NMR derived binding data of 11 targets to identify molecular motifs preferred 

for protein binding.85 Most of the structures identified were already considered 

as privileged, suggesting that a significant amount of privileged scaffolds is 

already known. Nevertheless, the fraction of explored chemical space is so 

small, that it is highly probable that there is plenty of space for advances in 

discovery of privileged scaffolds. In this direction, natural products are a source 

of chemical structures that differ from those usually found in chemical libraries, 

offering a chance to the discovery of new privileged scaffolds.  
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Figure 7: Fragment-like privileged scaffolds from drugs and natural products. 

Extracted from Barelier and Krimm.83  
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I.6 Bioisosterism 

The concept of bioisosterism has long been used to describe functional groups 

that independently of their similarity can form similar intermolecular 

interactions, thus retaining the biological activity of the compound.86 In 

medicinal chemistry, bioisosteric replacements are often employed to modulate 

compounds, especially in lead optimization process. Moreover, its application 

also include hopping from one lead structure of a competitor to another 

structure outside patent coverage and the modification of the structure of a 

compound with a suboptimal pharmacodynamic profile. A series of common 

bioisosteric replacements for kinase drug candidates from different companies 

are shown if Figure 8 as an illustrating example. 87  

A more generic concept of isosterism was first introduced by Langmuir in 

1919 to define atoms and compounds with the same arrangement of 

electrons.88 It was not until the early 1950s when the term bioisosterism started 

to be used as the concept of isosterism was applied to biological molecules.89 

Since then, a wealth of bioisosteric replacements has been described and 

successfully applied in drug discovery projects.90,91 For example, bioisosteric 

pairs extracted from the literature are available from the BIOSTER database 

and several methods to automatically identify bioisosteres have been reported, 

both knowledge-based or ab initio.92 Wagener and Lommerse86 described a 

strategy for suggesting bioisosteric replacements based on fingerprints encoding 

topological pharmacophore information. Also, the IsoStar55 database contains 

crystallographic and theoretical data on intermolecular non-bonded interactions 

that can be used to identify bioisosteric replacements. A method to identify 

potential target-specific bioisosteres analyzing sets of different ligands 

complexed with structures of a given protein has been recently described by 

Kennewell et al.80 Information of bioisosteric equivalence has also been used in 

similarity-based virtual screening to improve its performance.93 Opposite to 
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bioisosteric replacements, chemical substitutions that produce an activity cliff 

(structurally similar compounds with high potency differences, usually 

unexpected challenge SAR approaches)94

optimization.95 

Figure 8: Most frequent replacements between pharmaceutical companies ranked by 

the total number of examples that connected the two companies. The chemical 

replacement, a typical compound from the first company and a typical

from the second company are shown. The most common replacement observed (first 

row) connects 70 molecules from AstraZeneca (left) and Wyeth (right). Figure adapted 

from Southall and Ajay, only first 5 replacements are depicted.

ents, chemical substitutions that produce an activity cliff 

(structurally similar compounds with high potency differences, usually 
94 can also be exploited for lead 

: Most frequent replacements between pharmaceutical companies ranked by 

the total number of examples that connected the two companies. The chemical 

replacement, a typical compound from the first company and a typical compound 

from the second company are shown. The most common replacement observed (first 

row) connects 70 molecules from AstraZeneca (left) and Wyeth (right). Figure adapted 

from Southall and Ajay, only first 5 replacements are depicted.87 



I.7 Chemoisosterism 

As stated in the previous chapter, bioisosterism applies to different chemical 

groups being able to interact with the same protein environment. Moving the 

point of view from the protein envi

counterpart concept to bioisosterism emerges to define all the protein 

environments that are compatible with the same chemical fragment.

on the complementarity to bioisosterism, t

coined to define this concept.96 Figure 9

environments that are compatible with a phenyl ring.

 

 

Figure 9: Three chemoisosteric protein environments compatible with a phenyl group. 

Protein surface close to the phenyl is shown and coloured according to its 

pharmacophoric properties. (Grey: hydrophobic, yellow: aromatic, red: hydrogen bond 

donor, blue: hydrogen bond acceptor, green: positively charged and magenta: 

negatively charged). Representative points for the surface are also shown.

details on the protein environment representation 
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chapter, bioisosterism applies to different chemical 

groups being able to interact with the same protein environment. Moving the 

point of view from the protein environment to the chemical fragment, a 

concept to bioisosterism emerges to define all the protein 

environments that are compatible with the same chemical fragment. Stressing 

on the complementarity to bioisosterism, the term “chemoisosterism” was 

Figure 9 shows three chemoisosteric protein 

environments that are compatible with a phenyl ring.  

: Three chemoisosteric protein environments compatible with a phenyl group. 

ace close to the phenyl is shown and coloured according to its 

: hydrophobic, yellow: aromatic, red: hydrogen bond 

donor, blue: hydrogen bond acceptor, green: positively charged and magenta: 

points for the surface are also shown.. Further 

details on the protein environment representation are provided in Chapter III.3.  



Introduction 
 

 24

It is remarkable from Figure 9 that the three different protein environments 

are quite different from each other, 

properties. Although they are found in unrelated proteins

common that have been co-crystallized with the same chemical fragment. 

Accordingly, they are linked by a chemoisosteric relationship

I.2, a common graphical representation that is used to describe interactions 

between protein environments and chemical fragments is commonly kn

heat maps. In such representation, the values contained in a 

coded; with chemical fragments as rows and

a cell in i, j position is coloured if the ith chemical fragment is compatible with 

the jth protein environment. Interpreting a single column, all bioisosteric 

chemical fragments compatible with a 

obtained. In the same way, all chemical fragments in a row are chemoisosteric, 

as they are compatible with the same chemical fragment (F

 

Figure 10: Sample heat map to illustrate both bioisosterism and chemoisosterism 

concepts. The latest corresponds to heat map rows, while the former to heat

columns. 

 

According to the definition of chemoisosterism

are chemoisosteric if compatible with the 

to note here that compatibility does not necessarily imply optimality

that the three different protein environments 

, exhibiting diverse pharmacophoric 

unrelated proteins, they all have in 

crystallized with the same chemical fragment. 

chemoisosteric relationship. As seen in section 

common graphical representation that is used to describe interactions 

between protein environments and chemical fragments is commonly known as 

, the values contained in a matrix are colour-

ical fragments as rows and protein environments as columns, 

chemical fragment is compatible with 

Interpreting a single column, all bioisosteric 

 particular protein environment are 

obtained. In the same way, all chemical fragments in a row are chemoisosteric, 

th the same chemical fragment (Figure 10). 

illustrate both bioisosterism and chemoisosterism 

map rows, while the former to heat map 

According to the definition of chemoisosterism, two protein environments 

are chemoisosteric if compatible with the same chemical fragment. It is worth 

to note here that compatibility does not necessarily imply optimality. The fact 
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that a chemical fragment is compatible with a particular protein environment 

does not imply that it is able to bind there with high affinity (although it could 

well be), but that it able to be there under certain circumstances. One obvious 

source of chemoisosteric protein environments is the Protein Data Bank54, 

where environments co-crystallized with a particular chemical fragment can be 

easily extracted. As it is often assumed that bioisosteric fragments do not need 

to be similar to interact with the same protein environments and that similar 

chemical fragments will likely bind to similar protein environments, we can also 

assume that similar protein environments will bind the same chemical 

fragments. This makes of binding site similarities another source for 

chemoisosteric protein environments. The definition and exploration of 

chemoisosterism through binding site similarity is one of the milestones of this 

Thesis and will be further extended in the following chapters, especially in 

Chapter III.3. 
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Part II: Objectives 
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The main objectives pursed by this Thesis can be summarised as follows: 

  

i) To design and implement a novel structure-based methodology to 

extract, describe, store and compare protein binding sites based on 

their surface physicochemical properties.  

 

ii) To apply the new methodology in de novo design and fragment-

based drug discovery 

 

iii) To explore the implication of chemoisosterism for drug 

polypharmacology 

 

The achievement of the first has been achieved in Chapter III.1, where a new 

methodology for binding site description and comparison in described in detail. 

The expertise accumulated during this process has been materialized in the 

elaboration of a review on the topic in Chapter III.2. In Chapter III.3 the 

methodology is tailored by a fragment-based approach, resulting in the coinage 

of the term “chemoisosterism” and in some validation examples of its potential 

utility for drug discovery, achieving the second objective. Finally a review 

putting binding site similarities in the global context of drug polypharmacology 

takes advantage of all the knowledge gained during this Thesis in Chapter III.4.



 

 

 

  

 



 

 31

Part III: Results
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III.1: Family-wide pharmacophore signatures of 

protein binding sites. 

 

Family-wide pharmacophore signatures of 

protein binding sites 

Xavier Jalencas and Jordi Mestres 

 

 

Introduction 

The amount of protein structures available in public databases is expanding at 

an exponential rate. This implies a significant increase both in the number of 

structure entries for the same protein as well as of first entries for what had 

been structurally-orphan proteins. In spite of this, efforts to identify and further 

exploit the essential pharmacophore features exposed by protein cavities 

accessible for ligand and protein interactions are still limited.  

This contribution introduces a methodology to detect, describe, store, and 

compare protein binding sites as a means to identify pharmacophore signatures 

of binding sites among all members of protein families for which structures 

have been determined and made publicly available. The program suite was 

developed in Python language (version 2.6, compatible with all 2.x versions). 

Most time-consuming algorithms were implemented in a C library to improve 

their efficiency. Libraries from BioPython1 and Pybel2 were also included into 

the pipeline when indicated. Specific PyMol3 functions were devised to visualize 

all the results produced. 
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Binding site detection 

As protein-ligand interactions occur in the binding site, the first step is to 

identify such binding sites in a protein. To this purpose the LIGSITE algorithm 

was implemented.4 This algorithm, a modification of the original POCKET5, 

relies on the fact that most ligand binding usually takes place in the largest cleft 

on the protein surface, especially in enzymes, or in internal cavities.6 Using a 

purely geometric approach, the protein is embedded in a regular Cartesian grid, 

being all grid points occupied by the solvent accessible surface of the protein 

identified and leaving the rest of grid points labelled as solvent. Each of the 

solvent grid points is scanned in seven directions (x, y, z axis and the four cubic 

diagonals of the grid); if a clash with the protein surface is found when 

scanning in both sides along a particular direction, the score of the solvent grid 

point is increased by one. This way, each of the solvent grid points gets a score 

ranging from 0 to 7 (as seven directions are evaluated), which provides an 

indication of how buried the grid point it is within the protein surface (Figure 

1a). Finally, all the grid points scoring above a predefined threshold are 

grouped, being each group considered a pocket in the protein surface. A 

threshold for the minimum number of grid points that define a pocket is 

needed to discard small pockets being too small to accommodate a single 

chemical fragment of a given size. Lowering the threshold to which a grid point 

is considered a pocket allows for detecting deeper, or even internal, cavities 

where crystallographic waters may often be present. After a thorough validation 

process, it was found that a threshold of 5 was appropriate in most of the cases. 

Figure 1b shows the selected grid points predicted to be part of the binding site 

in a thrombin structure (pdb code 1vzq). Grid points represented as spheres are 

coloured according to how buried they are inside the protein cavity. The co-

crystallized ligand is also shown in this figure, although it was not considered 

for binding site detection. As can be observed, in this case the predicted 



binding site fits very well with the volume occupied by the ligand. An improved 

version of this algorithm called LIGSITEcs

solvent accessible surfaces,7 was also downloaded 

Figure 1. a) Schematic illustration of the LIGSITE algorithm. The grid points not in 

the protein volume (gray coloured) are scanned along 7 

higher score are considered part of a pocket (black dots). Figure adapted from Huang 

and Schroeder.8 b) LIGSITE outcome for a thrombin structure (pdb 1vzq). Selected 

grid points are coloured according to their score (yellow

5, 6, and 7, respectively), that is related to its depth of burial within the protein cavity.

 

Besides binding site prediction, there are several situations where defining 

the volume of a binding site based on the geometric position

appropriate, being the most obvious of 

crystallized with the protein of interest. This possibility allows 

external ligands, placed in the binding site by other methods such as do

structural alignments, or even using consensus ligands

of ligands co-crystallized in multiple structures of the same 

of the binding site volume detected in a thrombin structure by e

available implemented is shown in Figure 2.
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fits very well with the volume occupied by the ligand. An improved 

TEcs, using Connolly surfaces instead of 

was also downloaded and tested.8 

Schematic illustration of the LIGSITE algorithm. The grid points not in 

the protein volume (gray coloured) are scanned along 7 axes (blue) and those with 

higher score are considered part of a pocket (black dots). Figure adapted from Huang 

LIGSITE outcome for a thrombin structure (pdb 1vzq). Selected 

their score (yellow, orange, and red for scores of 

, that is related to its depth of burial within the protein cavity. 

esides binding site prediction, there are several situations where defining 

the volume of a binding site based on the geometric position of a ligand can be 

being the most obvious of the cases when a ligand is co-

crystallized with the protein of interest. This possibility allows also for using 

placed in the binding site by other methods such as docking or 

or even using consensus ligands, defined by an ensemble 

crystallized in multiple structures of the same protein. An example 

of the binding site volume detected in a thrombin structure by each of the 

is shown in Figure 2. 
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Figure 2: Predicted pocket volume shown in the 

obtained by different methods (pdb 1vzq).  

 

Once the binding site location is detected and its extent characterized

next step is to define its corresponding surface. 

surface of the protein is obtained using SMART.

strategies can be followed. The simplest one consists on selecting all the 

vertices whose distance to any of the grid points that define the binding site 

volume is below a pre-defined threshold that is set to 1

a distance of 2.5 Ǻ from the surface to a hypothetical

the selection of only the closest surface to the binding site volume, which does 

Predicted pocket volume shown in the surface of a thrombin protein 

location is detected and its extent characterized, the 

its corresponding surface. To this aim, a triangulated 

btained using SMART.9 At this stage, two different 

mplest one consists on selecting all the 

vertices whose distance to any of the grid points that define the binding site 

defined threshold that is set to 1Ǻ, which is equivalent to 

Ǻ from the surface to a hypothetical ligand atom. This leads to 

the selection of only the closest surface to the binding site volume, which does 
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not need to be complete, but is usually patched (Figure 3a). In most cases, in 

order to determine the volume of the cavity, it is more convenient to select all 

the surface vertices that belong to the binding site, despite the possible 

imperfections linked to this action. To this purpose, the distance threshold can 

be increased to roughly select all surface vertices, irrespectively of selecting 

surface vertices clearly out of the binding site. Then, all selected vertices 

neighbouring an unselected one are identified as surface borders and grouped 

by neighbourhood, in such a way that each continuous border encloses a 

defined region of the protein surface. At the same time, a single surface vertex 

is assumed to lie outside the binding site (the one with the largest distance to 

the binding site volume). Finally each of the borders is iteratively filled with 

neighbouring vertices until the region is complete or the external point is 

reached, in which case the section is discarded. This procedure leads to the 

selection of a continuous surface that can potentially cover a slightly wider 

surface than the original detection of the binding site. Figure 3b shows the 

selected vertices for a cavity in a structure of thrombin (pdb 1vzq), highlighting 

in red two borders involving vertices that were ultimately selected. One of them 

(the smaller) is completed while the biggest one is not, as it would lead to the 

selection of the surface vertex that is assumed to lie outside the binding site, 

and thus constituting the mouth of binding site. 
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Figure 3: Surface selection modes, complete and sharp in thrombin structure (pdb 

1vzq) 

 

 

Pharmacophore description of b

Given the large number of surface vertices that compose each binding site, a 

reduced description of its surface is required that is able, nonetheless, to 

capture the essential shape, size, and chemical properties of the protein cavity.

For this purpose, a similar approach to Cavbase

adopted. Four pharmacophoric features relevant to protein

used, namely, hydrophobic (H), aromatic (

hydrogen-bond donor (D). Optionally, features such as positively charged (P) 

and negatively charged (N) can be also included. Figure

entire process. In figure 4a, a thrombin structure (pdb 1vzq) is

with the defined binding site surface. The first

features to the protein atoms underlying the surface of

using a predefined table that assigns features to atoms 

standard amino acids (Appendix B). These 

from the protein atom to their corresponding surface vertices. The labelled 

Surface selection modes, complete and sharp in thrombin structure (pdb 

Pharmacophore description of b inding surfaces 

number of surface vertices that compose each binding site, a 

is required that is able, nonetheless, to 

capture the essential shape, size, and chemical properties of the protein cavity. 

a similar approach to Cavbase10,11 and SiteEngines12,13 was 

. Four pharmacophoric features relevant to protein-ligand binding are 

(R), hydrogen-bond acceptor (A) and 

donor (D). Optionally, features such as positively charged (P) 

included. Figures 4 and 5 illustrate the 

a thrombin structure (pdb 1vzq) is shown along 

The first step consists on assigning those 

the surface of the cavity. This is done 

using a predefined table that assigns features to atoms in each of the 20 

 features are subsequently transferred 

from the protein atom to their corresponding surface vertices. The labelled 
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surface vertices are grouped into surface patches, being each patch defined as a 

set of connected vertices assigned to the same pharmacophoric property. In 

this step, some rules are incorporated to capture the directionality of the main 

forces driving protein-ligand binding. For hydrophobic surface patches, all 

connected hydrophobic surface vertices assigned to the same heavy atom are 

grouped into a single surface patch. Likewise, all aromatic surface vertices 

assigned to the same aromatic group of atoms generate an aromatic surface 

patch but, in this case, only the surface vertices for which the angle between the 

normal vector of the aromatic group and the vector from the vertex to its 

corresponding atom is below 60º were considered. This type of filtering ensures 

that only the surface vertices at both sides of an aromatic group generate 

aromatic patches. A similar filter is applied to describe the directionality of 

hydrogen bonding. Only surface vertices in the direction of a theoretical 

hydrogen bond interaction (allowing for a deviation of 30º) are considered 

when defining the surface regions assigned to hydrogen-bond acceptors and 

donors. Figure 4b shows a patched surface coloured according to their features 

(gray: hydrophobic, orange: aromatic, red: hydrogen bond acceptor and blue: 

hydrogen bond donor). Each of the surface patches is then condensed into a 

sole surface feature point (a pharmacophore centroid), generating a surface 

feature point of the same pharmacophoric type at the position of the surface 

vertex closest to the centre of mass from all vertices defining a given surface 

patch (Figure 5a). 
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Figure 4: Binding site description of a thrombin structure (pdb 1vzq): a) Definition of 

the binding site surface and b) is decomposition into surface patches of 

pharmacophoric features 
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Figure 5: Binding site description: a) Generation of pharmacophore centroids 

representing surface patches and b) storage of their feature type and position as a 

simplified description of the binding site. 
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The generated surface pharmacophore centroids (their features and 

geometric position) constitute a simplified representation of the binding site 

that aims at retaining only its key features relevant for ligand binding. Those 

ensembles of points are stored to be subsequently used for binding site 

comparison. Figure 6 shows in detail some of the feature surface points 

generated by some particular amino acids of the protein. In Figure 6a, the 

hydrophobic points for the side chains of an isoleucine residue are depicted. In 

Figure 6b, a tyrosine produces hydrophobic and aromatic points above and 

below the phenyl ring plane and hydrogen-bond acceptor and donor points for 

its hydroxyl group. Figure 6c shows the pharmacophoric centroids that result 

from the surface features exposed by a glutamic acid. The carboxylate group is 

represented by hydrogen bond acceptor points as well for aromatic and 

hydrophobic ones. Some additional hydrophobic points are provided by the 

aliphatic part of the side chain. In Figure 6d a lysine is shown with its 

corresponding hydrogen-bond donor feature points. Finally, Figure 6e shows 

the surface feature points that are generated by a peptidic bond close to the 

protein surface. 

Due to the system used to assign hydrogen-bond acceptor and donor feature 

points, it is relevant to note that the protonation state, as well the actual 

position of the hydrogen atoms, will determine their existence and position. As 

X-ray crystallography is unable in most cases to provide enough resolution to 

assign hydrogen positions, the GROMACS14 suite is used to assign those 

protonation states.  

 

 

 

 



 

Figure 6: Details of the pharmacophore centroids

on the surface of the binding site of a thrombin structure (pdb 1vzq)

 

Binding site comparison

Once the binding sites are encoded in a set of labelled pharmacophore 

centroids in space, one cap perform pair

commonly referred to as clique detection.

considering binding sites as graphs and apply a maximum common subgraph 

isomorphism solving algorithm to find an optimal match between a pair of 

binding site graphs. A maximum common subgraph isomorphism problem for 

two graphs G1 and G2 consists on finding the largest subgraph of G

isomorphic to a subgraph of G2. One pos

one that is selected in this work, is to build a modular product graph, in which 

the largest clique is taken as the representative
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pharmacophore centroids generated by some protein residues 

hrombin structure (pdb 1vzq).  

Binding site comparison  

Once the binding sites are encoded in a set of labelled pharmacophore 

centroids in space, one cap perform pair-wise comparisons using a technique 

commonly referred to as clique detection.15–17 Basically, it consists on 

considering binding sites as graphs and apply a maximum common subgraph 

isomorphism solving algorithm to find an optimal match between a pair of 

binding site graphs. A maximum common subgraph isomorphism problem for 

n finding the largest subgraph of G1 that is 

One possible solution to this problem, and the 

is to build a modular product graph, in which 

is taken as the representative solution to the problem. 
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Figure 7 illustrates the matching process, which starts by the representation 

of the two binding sites to be compared as graphs (Figure 7a). Each surface 

feature point is assigned to a node that is coloured according to its 

pharmacophoric property. The nodes are completely connected with edges 

labelled with their distances in Armstrongs. To build the product graph (Figure 

7b), all possible pairs of nodes from the initial graphs coloured with the same 

property produce a new node. Edges between the new nodes are assigned if 

edges between the nodes in the original graphs have an equivalent label. In the 

case presented in Figure 7b, nodes Aa and Bb are linked by an edge because the 

distances between AB and ab in the original graphs are 

distances are considered equivalent if their difference is below 1

threshold allows for including a certain degree of 

otherwise only perfect matches would be successfully detected. This is 

absolutely necessary in surface-based binding site comparisons, as even the 

surfaces of the binding sites from the same protein may suffer variations in 

different structures, native or co-crystallised with a variety of ligands. 

 

Figure 7: Scheme illustrating the procedure used to locate similarities betwee

sites using a maximum common subgraph isomorphism approach

following steps of: a) binding sites are described as graphs with coloured nodes and 

labelled edges; b) construction of a product g

assignment of node equivalency between graphs.

 

Figure 7 illustrates the matching process, which starts by the representation 

of the two binding sites to be compared as graphs (Figure 7a). Each surface 

feature point is assigned to a node that is coloured according to its 

cophoric property. The nodes are completely connected with edges 

labelled with their distances in Armstrongs. To build the product graph (Figure 

7b), all possible pairs of nodes from the initial graphs coloured with the same 

ges between the new nodes are assigned if 

edges between the nodes in the original graphs have an equivalent label. In the 

case presented in Figure 7b, nodes Aa and Bb are linked by an edge because the 

distances between AB and ab in the original graphs are equivalent. Two 

distances are considered equivalent if their difference is below 1Ǻ. This 

threshold allows for including a certain degree of fuzziness to the comparison, 

otherwise only perfect matches would be successfully detected. This is 

based binding site comparisons, as even the 

surfaces of the binding sites from the same protein may suffer variations in 

crystallised with a variety of ligands.  

ure used to locate similarities between binding 

maximum common subgraph isomorphism approach. It comprises the 

binding sites are described as graphs with coloured nodes and 

construction of a product graph by clique detection; and c) 

assignment of node equivalency between graphs. 
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Once the product graph is built, a clique detection algorithm18 is used to find 

the maximal cliques, which represent the matches between the original graphs. 

A clique is defined as a completely connected subgraph and usually only the 

largest one is retained as the matching solution (Figure 7b). In this case, the 

largest clique corresponds to the nodes Aa, Bb and Dd, indicating the 

correspondences between the original graphs (Figure 7c). It is worth stressing 

here that clique detection is a NP-complete problem meaning that, although 

any given solution can be quickly verified, there is no known efficient way to 

locate a solution in the first place. This implies that the time required to solve 

the problem quickly increases as the size of the product graphs grows. In 

practice, this means that binding sites characterized by around 300 feature 

points start to be computationally too demanding to compare. Fortunately, the 

number of pharmacophore centroids that describe most ligand binding sites are 

below this size and thus, clique detection is applicable in most of the cases of 

interest for local binding site comparisons. This may not be always the case 

when comparing protein-protein interaction sites, which are much bigger in 

most cases.6 

As discussed in the previous paragraph, the clique detection algorithm yields 

the best matching between the feature points of the two binding sites being 

compared. One of the advantages of this method over other faster methods 

such as fingerprint matching19, is that a three-dimensional superimposition of 

the binding sites can be subsequently obtained from the clique matching of 

surface feature points. A least square estimation of parameters between the 

matching feature points20 results in the transformation matrix that produces the 

3D alignment between two binding sites. However, at this stage, matches 

between feature points from a concave area and a convex one are possible, 

which would produce unrealistic alignments. To avoid accepting those matches 

as solutions, an angle threshold is introduced after the superposition is 

performed. Each pair of matched surface feature points is evaluated regarding 
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the angle between the vectors from the point to each of the actual protein 

atoms that produce the feature point. If the angle is below a given threshold 

(set to 60º in this case), the match is considered permissible, otherwise it is 

discarded and the size of the match reduced. The largest 100 cliques obtained 

are hereby evaluated, and the biggest one after discounting illicit matches is 

ultimately kept. 

The last step in the comparison is the assignment of a scoring. A cosine 

score is adopted, which takes into account the size of the match as well the 

sizes of both compared binding sites. The similarity (S) is obtained as a function 

of the number of matched feature points (c), and the number of feature points 

of the two binding sites that were compared (a,b) according to the following 

formula: S = c / (a × b)½ 

 

Retrospective validations 

In order to validate the performance of our methodology, a comparative 

assessment of the results obtained against those published by other methods, 

such as Cavbase17, in several example cases is presented. 

A dataset of 113 binding cavities extracted from X-ray structures of proteins 

belonging to 13 diverse functional enzyme families was compared and 

clustered. All entries from an enzyme family belong to the same SCOP 

subfamily and thus, have similar sequences and folds. Cavities were extracted 

using LIGSITEcs and those located in the catalytic domain were manually 

selected. The clustering was performed using the CLUTO Toolkit21, with the 

partitional rb algorithm and default parameters. The number of 16 predefined 

output clusters produced the best clustering, as some cavities are divided into 

subpockets by the LIGSITEcs algorithm. As shown in Figure 8, a good 
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clustering was obtained. Only one cavity was clustered with proteins of other 

enzyme families, this misclassification being a consequence of a much bigger 

binding site detected. The obtained clustering was very similar to the one 

reported using Cavbase, demonstrating that our approach can successfully 

classify binding sites from different protein families. Although this is not our 

ultimate goal, it is a necessary and important achievement that requires proper 

validation. 

 

Figure 8: Example of binding site similarity clustering for 113 cavities from 13 diverse 

functional enzyme families.17 A good classification according to the enzyme family is 

achieved.  
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Continuing on the comparison against Cavbase, a second dataset of 24 α-

carbonic anhydrase binding sites, belonging to 6 isozyme classes, was extracted 

from the PDB. The same procedure detailed above was followed and the 

results revealed that a convincing clustering was obtained (Figure 9), consistent 

with isoform classification, and eve performing a bit better than Cavbase in 

some cases. 

 

 

Figure 9: Example of binding site similarity clustering for α-carbonic anhydrase 

binding sites.17 A convincing classification according enzyme isoforms is obtained. 
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As a third validation experiment, a dataset assembled by Kuhn et al.17 to 

evaluate the performance of Cavbase, but used also as benchmark for other 

methods,22 was tested. It consists on a set of protein kinases and thus, the 

challenge consists on evaluating the ability of a given method to differentiate 

between closely related binding sites. It contains five p38 MAP kinases, seven 

Cell Division Protein Kinase 2, five Glycogen Synthase Kinase-3 beta and five 

LCK Tyrosine kinases.  

Figure 10: Clustering of 22 ATP-binding sites from 4 protein kinase subfamilies.23  

 

As observed in Figure 10, the similarities obtained are able to perfectly 

organize the different kinase binding sites. Finally, a rather small set of eight 

binding site pairs that was used to evaluate the performance of different 
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methods in several publications22–24 was also tested. It consist of pairs of 

binding sites that, although they bind to the same (or very similar) ligands, the 

similarity is not evident and thus, they are considered difficult cases. Results are 

shown in Table 1.  

 

Table 1: Results from different comparison methods to detect significant similarities 

between difficult pairs of binding sites.23  

PDB1 PDB2 
Sites 

Base25 
SuMo 

26 
Site 

Engine12 
Pocket 
Match24 

BS 
Align27 

Site 
Align28 FuzCav23 ProBis29 TrixP22  

            

1GJC 

1V2Q 29.38 89 32.56 50.17 31.77 0.03 0.19 3.74 0.18 0.35 

2AYW NA 40 x 52.29 31.51 0.02 0.18 3.75 0.27 0.31 

1O3P 54.80 NA 38.48 88.01 42.26 0.01 0.18 4.95 0.65 0.53 

1ECM  4CSM 54.65 x x 55.56 x x 0.18 1.65 0.16 0.35 

1V07 1HBI 46.81 x x 61.42 x 0.20 0.18 6.04 0.43 0.19 

            

1M6Z 1LGA x x x 63.85 x x x 0.58 0.24 0.11 

1ZID 2CIG NA NA x 56.01 x x x 0.29 0.19 0.10 

6COX 1OQ5 x x 33.14 x x x 0.16 0.67 x 0.16 

 

The first two columns indicate the pdb codes for the binding sites that are 

compared. The following columns contain the particular scores obtained from 

the different comparison methods, the last one (shaded in gray) corresponding 

to those obtained with the method described here. Highlighted in bold face are 

the similarity values that are considered convincingly significant according to 

the characteristics of each of the methodologies. The table is divided in two 

sections, namely, a first block containing pairs of proteins sharing structural 

fold, according to SCOP30 or CATH31, and a second one containing pairs of a 

priori completely unrelated proteins. It is clear from the table that successfully 

locating similarities between binding sites belonging to proteins sharing the 

same fold is a relatively easy task that most methods can achieve, including the 
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one described here (despite failing in successfully identifying as similar the 

binding sites from 1V07 and 1HBI). Regarding unrelated binding sites (second 

block of the table), the scene changes radically. In this case, only PocketMatch 

is able to find similarities in two cases. The pair of binding sites 6COX-1OQ5, 

corresponding to a cyclooxigenase-2 and a carbonic anhydrase, deserves special 

consideration. It was experimentally shown that both binding sites can bind to 

celecoxib, a polypharmacology event that Cavbase could attribute to a partial 

match between their binding sites.32 Remarkably, most of the binding site 

comparison methods included in Table 1 fail to locate this similarity. It seems 

clear that detecting binding site similarities in unrelated proteins is a more 

challenging task that the devised methodology, as many others, fails to achieve, 

at least in the few examples included in Table 1. 

 

Pharmacophore signatures of binding sites 

Extending the pair-wise comparisons described in the preceding sections to 

multiple comparisons of a set of binding sites can also be done. The procedure 

is as follows: A single binding site is chosen as a template and all other binding 

sites are compared and superimposed to it. Independently of their origin, all 

feature points are agglomeratively clustered by their position and property. This 

strategy was adopted over clustering based on the results of the feature point 

matching obtained during comparison validations, as it revealed to produce 

consistent results irrespectively of the binding site that was chosen as template. 

The clustering itself produces a multiple alignment, a sample part of which is 

shown in Figure 11. 
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            161      162      163      164      165      166      167      168      169      

             A        A        A        D        D        D        D        D        D      

1VZQ   SER'195  GLY'216        -  SER'195  SER'195  GLY'216  GLY'219        -        - 

1T4V   SER'235  GLY'258        -        -  SER'235  GLY'258  GLY'260  PHE'269        - 

2UUF         -  GLY'216        -        -  SER'195  GLY'216  GLY'219  PHE'227   HIS'57 

1VIT         -  GLY'216        -        -  SER'195  GLY'216  GLY'219  PHE'227        - 

1DWD         -  GLY'237        -        -  SER'214  GLY'237  GLY'239  PHE'248        -  

2FEQ   SER'195  GLY'216        -        -  SER'195  GLY'216  GLY'219  PHE'227        -  

2BXT         -  GLY'216        -        -  SER'195  GLY'216  GLY'219  PHE'227        -  

1SB1         -  GLY'216        -        -  SER'195  GLY'216  GLY'219  PHE'227   HIS'57  

2ANK         -  GLY'216        -        -  SER'195  GLY'216  GLY'219  PHE'227        -     

1ETS         -        -  ARG'221  SER'195  SER'195  GLY'216  GLY'219  PHE'227   HIS'57  

 

Figure 11: Sample fragment of a residue multiple alignment based on feature surface 

points matches for 10 thrombin binding sites. 

 

Each position of the sequence alignment shown in Figure 11 corresponds to a 

cluster, and feature points of each binding site assigned to the cluster (if any) 

are shown in the column caption. It is easily seen from such alignments that 

some surface feature points are more conserved than others. Unfortunately, as 

the number of binding sites and their sized grow, such alignments can be 

difficult to interpret. To alleviate this limitation, appropriate visualization of the 

binding site features is required. Figure 12a shows a visual representation for 

the alignment of 25 thrombin binding sites. Each cluster is represented by a 

single point, coloured according to its property, which is located at the average 

position of all feature points forming the cluster. The size of the point is 

relative to the number of structures that have a feature point in that cluster, the 

largest ones corresponding to those feature points common to all binding sites 

under evaluation. A line joining each of the points to all members of the cluster 

is also shown. This provides information on the positional variability of the 

feature points in each cluster. A large point with short lines indicates a highly 



conserved feature point, both in terms of presence and position, with high 

probabilities of being relevant for ligand binding. 

Retaining only those positions in the alignment (clusters) that contain 

members of most binding sites results in what will be referred to as the binding 

site signature (Figure 12b). This signature is a simplified representation of an 

ensemble of binding sites (25 thrombin binding sites in this case), that 

highlights the most conserved features in the binding site. Additionally, it can 

be treated as a regular binding site feature point representation, so all previously 

described methodologies can be applied 

sites or against other signatures, with the advantage that the signatures are 

smaller than binding sites and thus faster and easier to compare. 

 

 

Figure 12: a) Thrombin binding site signature derived from 25 x

structures (1vzq used as template). b) Only surface feature points present in at least a 

75% of the structures are shown. 
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conserved feature point, both in terms of presence and position, with high 

probabilities of being relevant for ligand binding.  

Retaining only those positions in the alignment (clusters) that contain 

members of most binding sites results in what will be referred to as the binding 

site signature (Figure 12b). This signature is a simplified representation of an 

tes (25 thrombin binding sites in this case), that 

highlights the most conserved features in the binding site. Additionally, it can 

be treated as a regular binding site feature point representation, so all previously 

described methodologies can be applied to compare signatures against binding 

sites or against other signatures, with the advantage that the signatures are 

smaller than binding sites and thus faster and easier to compare.  

a) Thrombin binding site signature derived from 25 x-ray thrombin 

structures (1vzq used as template). b) Only surface feature points present in at least a 
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Conclusions 

A new methodology to perform binding site comparisons based on surface 

feature points has been devised and implemented. Its ability to discern between 

binding sites of both different and closely related proteins has been shown. 

Also, its performance when detecting similarities between protein binding sites 

was comparable to that of other existing methods. The methodology was 

further extended to extract those feature centroids in binding cavities most 

conserved among multiple entries of the same protein or among entries for 

different proteins of the same family. Full exploitation of these binding site 

signatures, both for proteins and protein families, is currently underway in our 

research group. 

 

References  

(1)  Cock, P. J. A.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, 
A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M. J. 
L. Biopython: freely available Python tools for computational molecular 
biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. 

(2)  O’Boyle, N.; Morley, C.; Hutchison, G. Pybel: a Python wrapper for the 
OpenBabel cheminformatics toolkit. Chem. Cent. J. 2008, 2, 5. 

(3)  The PyMOL Molecular Graphics System; Schrödinger, LLC. 

(4)  Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: automatic and 
efficient detection of potential small molecule-binding sites in proteins. J. 
Mol. Graph. Model. 1997, 15, 359–63, 389. 

(5)  Levitt, D. G.; Banaszak, L. J. POCKET: a computer graphics method for 
identifying and displaying protein cavities and their surrounding amino 
acids. J. Mol. Graph. 1992, 10, 229–34. 

(6)  Laskowski, R. A.; Luscombe, N. M.; Swindells, M. B.; Thornton, J. M. 
Protein clefts in molecular recognition and function. Protein Sci. 1996, 5, 
2438–52. 

(7)  Edelsbrunner, H.; Facello, M.; Fu, P.; Liang, J. Measuring proteins and 
voids in proteins. In Proceedings of the 28th Hawaii International Conference on 
System Sciences; IEEE Computer Society, 1995; p. 256. 



 Results 

 55

(8)  Huang, B.; Schroeder, M. LIGSITEcsc: predicting ligand binding sites 
using the Connolly surface and degree of conservation. BMC Struct. Biol. 
2006, 6, 19. 

(9)  Zauhar, R. J. SMART: a solvent-accessible triangulated surface generator 
for molecular graphics and boundary element applications. J. Comput.-
Aided Mol. Des. 1995, 9, 149–159. 

(10)  Schmitt, S.; Kuhn, D.; Klebe, G. A new method to detect related function 
among proteins independent of sequence and fold homology. J. Mol. Biol. 
2002, 323, 387–406. 

(11)  Kalliokoski, T.; Vulpetti, A. Large‐Scale Evaluation of CavBase for 
Analyzing the Polypharmacology of Kinase Inhibitors. Mol. Inf. 2011, 30, 
923–925. 

(12)  Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. J. SiteEngines: recognition 
and comparison of binding sites and protein-protein interfaces. Nucleic 
Acids Res. 2005, 33, W337–341. 

(13)  Shatsky, M.; Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. J. Recognition 
of Binding Patterns Common to a Set of Protein Structures. In Research in 
Computational Molecular Biology; 2005; pp. 440–455. 

(14)  Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; 
Berendsen, H. J. C. GROMACS: fast, flexible, and free. J. Comput. Chem. 
2005, 26, 1701–1718. 

(15)  Gardiner, E. J.; Artymiuk, P. J.; Willett, P. Clique-detection algorithms for 
matching three-dimensional molecular structures. J. Mol. Graph. Model. 
1997, 15, 245–253. 

(16)  Kinoshita, K.; Furui, J.; Nakamura, H. Identification of protein functions 
from a molecular surface database, eF-site. J. Struct. Funct. Genomics 2002, 
2, 9–22. 

(17)  Kuhn, D.; Weskamp, N.; Schmitt, S.; Hüllermeier, E.; Klebe, G. From the 
similarity analysis of protein cavities to the functional classification of 
protein families using cavbase. J. Mol. Biol. 2006, 359, 1023–44. 

(18)  Niskanen, S.; Östergård, P. R. J. Cliquer User’s Guide, Version 1.0; Tech. 
Rep. T48; Communications Laboratory, Helsinki University of 
Technology: Espoo, Finland, 2003. 

(19)  Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; 
Labaudiniere, R. F. New 4-point pharmacophore method for molecular 
similarity and diversity applications: overview of the method and 
applications, including a novel approach to the design of combinatorial 
libraries containing privileged substructures. J. Med. Chem. 1999, 42, 3251–
3264. 



Results 

 56

(20)  Umeyama, S. Least-Squares Estimation of Transformation Parameters 
Between Two Point Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 
13, 376–380. 

(21)  Karypis, G. CLUTO - Software for Clustering High-Dimensional Datasets; 
University of Minnesota, Minneapolis, 2002. 

(22)  Von Behren, M. M.; Volkamer, A.; Henzler, A. M.; Schomburg, K. T.; 
Urbaczek, S.; Rarey, M. Fast Protein Binding Site Comparison via an 
Index-Based Screening Technology. J. Chem. Inf. Model. 2013, 53, 411–422. 

(23)  Weill, N.; Rognan, D. Alignment-Free Ultra-High-Throughput 
Comparison of Druggable Protein−Ligand Binding Sites. J. Chem. Inf. 
Model. 2010, 50, 123–135. 

(24)  Yeturu, K.; Chandra, N. PocketMatch: A new algorithm to compare 
binding sites in protein structures. BMC Bioinf. 2008, 9, 543. 

(25)  Gold, N. D.; Jackson, R. M. SitesBase: a database for structure-based 
protein-ligand binding site comparisons. Nucleic Acids Res. 2006, 34, 
D231–4. 

(26)  Jambon, M.; Imberty, A.; Deléage, G.; Geourjon, C. A new bioinformatic 
approach to detect common 3D sites in protein structures. Proteins 2003, 
52, 137–145. 

(27)  Aung, Z.; Tong, J. C. BSAlign: a rapid graph-based algorithm for detecting 
ligand-binding sites in protein structures. Genome Inform. 2008, 21, 65–76. 

(28)  Schalon, C.; Surgand, J.-S.; Kellenberger, E.; Rognan, D. A simple and 
fuzzy method to align and compare druggable ligand-binding sites. Proteins 
2008, 71, 1755–1778. 

(29)  Konc, J.; Janezic, D. ProBiS: a web server for detection of structurally 
similar protein binding sites. Nucleic Acids Res. 2010, 38, W436–440. 

(30)  Lo Conte, L.; Brenner, S. E.; Hubbard, T. J. P.; Chothia, C.; Murzin, A. G. 
SCOP database in 2002: refinements accommodate structural genomics. 
Nucleic Acids Res. 2002, 30, 264–267. 

(31)  Orengo, C. A.; Michie, A. D.; Jones, S.; Jones, D. T.; Swindells, M. B.; 
Thornton, J. M. CATH--a hierarchic classification of protein domain 
structures. Structure 1997, 5, 1093–1108. 

(32)  Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C. T.; Scozzafava, 
A.; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by 
COX-2-selective celecoxib: new pharmacological opportunities due to 
related binding site recognition. J. Med. Chem. 2004, 47, 550–557. 



 Results 

 57

 

III.2: Identification of similar binding sites to 

detect distant polypharmacology  

 

 

 

In order to develop a binding-site centred structure-based approach useful in 

drug discovery, as stated in the objectives of this Thesis, a necessary first step 

corresponds to acquire knowledge on the state of the art of the field. This 

knowledge, by the side of the gained expertise on the field during the Thesis, 

has been ultimately used for the preparation of a review on how binding site 

similarities can be exploited to identify unexpected protein-ligand interactions.

Jalencas, X.; Mestres, J., Identification of similar binding sites to detect  
distant polypharmacology. Mol. Inf. Submitted minf.201300082.  
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Abstract : The ability of small molecules to interact with multiple proteins is 

referred to as polypharmacology. This property is often linked to the 

therapeutic action of drugs but it is known also to be responsible for many of 

their side effects. Because of its importance, the development of computational 

methods than can predict drug polypharmacology has become an important 

line of research that led recently to the identification of many novel targets for 

known drugs. Nowadays, the majority of these methods are based on 

measuring the similarity of a query molecule against the hundreds of thousands 

of molecules for which pharmacological data on thousands of proteins are 

available in public sources. However, similarity-based methods are inherently 

biased by the chemical coverage offered by the active molecules present in 

those public repositories, which limits significantly their capacity to predict 

interactions with proteins structurally and functionally unrelated to any of the 

already known targets for drugs. It is in this respect that structure-based 

methods aiming at identifying similar binding sites may offer an alternative 

complementary means to ligand-based methods for detecting distant 

polypharmacology. The different existing approaches to binding site detection, 

representation, comparison, and fragmentation are reviewed and recent 

successful applications presented. 

 

Keywords:  polypharmacology, target profiling, binding site alignment, 

fragment-based drug discovery, chemoisosterism 
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1.Introduction 

The increasing availability in the public domain of pharmacological data for 

small molecules[1–9] has promoted the recent development of ligand-based 

computational approaches to predicting the interaction of molecules against 

thousands of protein targets based mainly on chemical similarity principles.[10–12] 

In the last five years, these methods have predicted and then confirmed 

experimentally a total of 249 new drug-target interactions, which represent an 

increase of almost 7% of all drug-target interactions currently known for those 

drugs.[13] However, a close inspection at the novelty of the new drug-target 

interactions identified (Figure 1) reveals that, on one hand, for the vast majority 

of them there was already an interaction to a target of the same protein family 

already known in the public domain and, on the other hand, most of the new 

targets identified for old drugs belong to the class of aminergic G protein-

coupled receptors, a family known to have levels of cross-pharmacology among 

their members significantly higher than those found on average in other large 

protein families of therapeutical relevance.[13–16] Therefore, even though 

examples of distant polypharmacology relationships have been reported 

recently using ligand-based methods,[17–21] more efforts should be devoted to 

exploring alternative approaches that go beyond mere molecular similarity. 

The amount of protein structure information available in the public domain 

continues to grow exponentially and today there are over 72,000 X-ray structure 

entries in the Protein Data Bank (PDB).[22] Not only the number of structures is 

increasing but their functional coverage is being expanded as well. There is still 

a strong bias for recognised therapeutic targets,[23,24] but it is slowly being 

corrected thanks to recent structural genomics initiatives.[25,26] Consequently, 

even though the main body of information on protein structures is still devoted 

to enzymes,[23] members of protein families traditionally difficult to crystallize, 

such as G protein-coupled receptors (GPCRs) and other membrane proteins, 
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have seen their first structures crystallized in recent years.

such a vast and increasingly diverse structural information on proteins, 

structure-based methods re-emerge as a less

to well-established ligand-based methods for detecting distant cross

pharmacology relationships among targets. 

 

Figure 1. Relationships between the novel targets predicted by similarity

methods and confirmed experimentally for drugs in the last five years and the family of 

the closest target already known in the public domain at the time of the discovery. 

aGR: aminergic GPCRs; oGR: other GPCRs; IC/TC: ligand

transporters; NR: nuclear receptors; EC: enzymes

 

Protein structures have long been exploited computationally to probe 

binding cavities with ligands at an atomic level.

ligand-based methods, docking of ligands across thousands of protein binding 

have seen their first structures crystallized in recent years.[27–33] Therefore, with 

such a vast and increasingly diverse structural information on proteins, 

emerge as a less-biased complementary alternative 

based methods for detecting distant cross-

 

 

Relationships between the novel targets predicted by similarity-based 

methods and confirmed experimentally for drugs in the last five years and the family of 

the closest target already known in the public domain at the time of the discovery. 

c GPCRs; oGR: other GPCRs; IC/TC: ligand-gated ion channels/ 

transporters; NR: nuclear receptors; EC: enzymes 

Protein structures have long been exploited computationally to probe 

binding cavities with ligands at an atomic level.[34] However, compared to 

based methods, docking of ligands across thousands of protein binding 
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sites is a computationally demanding task, limited by the functional coverage of 

protein structures, and technically challenging because it requires some 

automated protocols for setting up large collections of heterogeneous binding 

sites.[10] In spite of all these inherent difficulties, several examples have 

illustrated recently the potential of structure-based approaches to identify the 

targets of small molecules.[35–41] 

In recent years, a diverse range of structure-based approaches to detecting, 

representing, and comparing binding sites in a computationally more efficient 

manner has emerged as promising new tools to identify phylogenetically-distant 

targets to which small molecules may show polypharmacology.[13,42] For 

example, a promising alternative to avoid having to dock ligands on thousands 

of proteins, is to organise binding sites based on their similarities and assume 

that they will bind to similar ligands.[43] Accordingly, this review aims at 

collecting the most significant developments in the various aspects involved in 

the identification of similar binding sites and its use to detect distant 

polypharmacology. 

 

2 Identification of similar binding sites  

Binding site similarity is easily detected between members of the same protein 

family, consistent with the relatively high levels of intra-family 

polypharmacology observed among drugs.[14] Also, similarity within binding 

sites has been shown to be in many cases more conserved than sequence and 

the overall protein structure.[44,45] Full sequences may have diverged and 

structures may have led to different overall topologies, but local portions of the 

structure essential to protein function may have been retained. Indeed, it is well 

known that proteins with low sequence identity or fold similarity can still share 

a common function and bind to the same or highly similar ligands.[42,46] For 
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example, serine proteases are a group of proteins with the same function that 

span over several sequence and structure families. They share a common 

trypsin-like catalytic triad that in some instances cannot be detected by full 

sequence comparison or structural alignment. P-loops (a phosphate binding 

motif) are also conserved among otherwise unrelated nucleotide binding 

proteins.[47–49] Conversely, proteins with common folds can also perform 

different functions, as it is the case of TIM-barrels or immunoglobulin-like 

structures.  

The fact that the function of proteins is, in many instances, dependant on a 

limited number of residues has promoted the development of methods that 

look for conserved patterns in protein structures.[50–52] Among those, local 

structural pattern screening methods, such as PINTS[53], SPASM[54], TESS[55], 

and ASSAM,[56] query a structure database with a three-dimensional pattern to 

detect similarities in the absence of fold and sequence similarity, as a means to 

infer protein function. Basically, they try to identify groups of common amino 

acids in two protein structures independently of their sequence order.[57] 

Alternatively, a protein structure can also be compared to a database of 

predefined motifs. The catalytic triad in serine proteases is a paradigmatic 

example of such structural templates. In contrast, surface matching methods 

aim at identifying common properties independently of residue and three-

dimensional atom coordinates, based on the fact that it is the protein surface 

what is ultimately involved in the interaction with ligands.[58] These methods are 

specially suited to detect cases of convergent evolution, where protein 

structures can differ largely. For example, de Rinaldis et al.[47] adapted structural 

pattern searches to surface comparison to estimate the similarity between the 

surface profile generated by a multiple structural alignment to a second protein 

surface in an attempt to ascertain whether two surfaces with similar geometric 

and chemical properties appear in different folds.  
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2.1 Binding site detection  

As small molecules interact with well-formed internal cavities or concrete 

binding clefts on the surface of proteins, only residues delineating those regions 

need to be considered to define protein-ligand binding. Identifying the 

boundaries of such regions is therefore a necessary step previous to any kind of 

binding site comparison. In this respect, there is an increasing amount of 

protein structures having a co-crystallized ligand in the binding cavity.[4,63,64] In 

these cases, identifying the binding cavity is straightforward and the residues 

defining it can be readily selected by its proximity to the interacting ligand. 

However, in many other instances, protein structure entries do not contain any 

ligand. To address these situations, computational methods have been 

developed to predict putative binding sites.[60,65]  

Many approaches are based on pure geometrical criteria and rely on the fact 

that binding sites tend to be in the largest deep cleft cavity of the protein 

surface, especially in enzymes.[22,66] Methods such as SURFNET[67], LIGSITE[68], 

PASS,[69] CASTp[70] and PocketPicker[71] are representative of geometry-based 

approaches to identify buried volumes on protein surfaces. Among them, 

LIGSITE[68] embeds the protein in a three-dimensional regular grid. Each point 

of the grid found outside the protein volume is scanned along multiple 

orthogonal axes and checked whether they hit at some point any of the grid 

points inside the protein. The larger the number of axes hitting the protein 

surface, the more buried the grid point is considered to be. Clustering of 

contiguous buried grid points is then applied to define any surface pocket 

located. The size of the grid and the number of scanned axes define the level 

of resolution of the pockets predicted. PocketPicker[71] uses a conceptually 

similar strategy and scans the molecular surroundings of grid points close to the 

protein surface along 30 search rays to obtain a buriedness index for each grid 

point. Inclusion of evolutionary information, by considering conserved residues 
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among a protein family likely to be involved in ligand binding, has been shown 

to improve the detection ability of geometry-based methods and reduce noise. 
[72,73]  

Beyond pure geometry-based approaches, some energy-based methods have 

also emerged recently based on interaction energies between the protein and 

small chemical probes.[60] Among them, Q-SiteFinder[74] uses criteria based on 

van der Waals interaction energies of a methyl probe with the protein and it 

was shown to be able to detect smaller binding sites, in a more accurate 

manner, than geometry-based approaches. Also, PocketFinder[75] is based on a 

transformation of the Lennard-Jones potential to predict envelopes 

representing the shape and size of putative binding volumes, and SiteMap[76] is 

an example of an approach that combines geometry- and energy-based criteria 

to cluster the grid points that will be ultimately selected to define surface 

cavities. Finally, FINDSITE[77] takes a completely different approach and has 

the additional advantage that it can be used in low-resolution models. From a 

target sequence, template structures are identified using a threading algorithm. 

Then, structures containing a bound ligand among all templates are 

superimposed to the target structure and any cluster of ligands observed is used 

to define putative binding sites.  

Binding site detection is not a simple task and the availability of such a large 

and diverse number of approaches is illustrative of the inherent difficulties 

encountered to clearly define what constitutes a binding pocket. Pockets may 

vary widely in shape and size and just defining the actual extent of a pocket is 

not trivial, each method having its own criteria. Nonetheless, Schmidtke et al.[78] 

recently conducted a comparison between several methods concluding that 

both geometry- and energy-based methods exhibit similar performances, with 

over 95% of the cases detecting the true binding site among the top-5 pockets 

identified. 
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2.2 Binding site representation  

Any method that aims at comparing binding sites shall first represent them 

using some mathematical description that captures the essential features 

relevant for binding. This is a key step in the entire process, since the choice for 

a particular binding site representation will strongly determine the actual 

perception of similarity among binding sites. In this respect, a simplified 

representation of the binding site is desired in order to reduce the complexity of 

subsequent pair-wise comparisons and save computational cost. At this stage, it 

is important to preserve all potentially relevant information and retain all key 

features in the binding site. A large amount of inadequately located information 

will only add noise and lead to poor performance. Thus, a useful binding site 

representation should include an optimal level of fuzziness that allows 

obtaining the same representation within a certain degree of protein flexibility. 

Indeed, exact atomic positions may differ slightly among various structures of 

the same protein due to side chain rearrangements upon ligand binding. Ideally, 

these subtle variations between structures of the same protein binding to 

different ligands should have a minimal effect in the binding site representation.  

Taking theseº considerations into account, the representation of a binding 

site is usually reduced to a set of meaningful pseudo-centres that capture the 

geometric, pharmacophoric and/or physicochemical information of its 

surrounding amino acids. Perhaps the simplest and straightforward 

representation is to use the atomic positions of the Cα carbons from the 

residues defining the binding site, labelled with generic residue properties.[79] 

This may be complemented with the atomic positions of the Cβ carbons from 

the residue side chains, labelled also with the respective pharmacophoric 

properties. In an attempt to move away from exact atomic positions, other 

strategies are to place property-labelled pseudo-atoms in the center of mass of 

the residue side chains or in predefined geometric positions relative to binding 
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site amino acids.[80,81] Alternatively, all atoms of the flanking residues[82,83] or 

vertices of the triangulated surface[84] defining the binding site can also be used 

if a more detailed representation is desired at the expense of a much higher 

computational cost during binding site comparisons. Some recent approaches 

have tried to escape from the positional bias of using atom coordinates. Among 

them, Baroni et al.[85] use GRID force field analysis to locate minimal energy 

points, Hoffman et al.[86] use of atomic densities, and Jalencas and Mestres[43] 

place pseudo-centres directly on the protein surface defining the binding site.  

One of the first methods that took care of these considerations, and that has 

since been an inspiration to others, is Cavbase[87]. It condenses the 

physicochemical properties of the residues delineating the binding site in a 

restricted set of generic pseudo-centres corresponding to properties relevant to 

ligand-protein interactions, namely, hydrophobic aliphatic (H), aromatic (R), 

hydrogen-bond acceptor (A), donor (D) and mixed donor/acceptor (AD). The 

inclusion of a mixed donor/acceptor feature is justified because protonation 

states can sometimes be difficult to determine. Such pseudo-centres are 

subsequently filtered based on their surface exposure. These pseudo-centres are 

then used to align binding sites by clique detection (vide infra). The binding site 

representation used in Cavbase[80,87] has been adopted by many other methods, 

such as MolLoc[88] or ProBiS[89] (see Table 1). In some cases, the features of the 

pseudo-centres have been expanded to include partial charges,[86] electrostatic 

potential,[84] positively (P) and negatively (N) charged regions,[90] or to 

differentiate between aromatic features in face and edge positions.[91]  

The use of pure geometric representations such as shape curvatures, 

spherical harmonics or wavelet coefficients has also been explored.[92] For 

example, Kahraman et al.[93] used pure shape descriptors to compare binding 

sites and ligands and arrived to the conclusion that the assumption that binding 

sites that interact with similar ligands have similar geometries is only partially 

true. It was found that similarity is more closely related to the flexibility of 
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molecules, being the shapes of binding sites more variable than those of the 

ligands. This fact suggests that shape complementarity alone is not sufficient 

for molecular recognition, especially with highly flexible ligands, and thus 

binding site representations should include additional physicochemical 

properties. In addition, binding pockets tend to be larger than ligands, leaving 

spaces that are either left empty or being occupied by water molecules. Also, 

An et al. used five shape descriptors (volume, surface area, and the 3 principal 

axes of the binding pocket) together with two physicochemical descriptors 

(hydrophobicity and electrostatic charge) to compare what they refer to as 

ligand binding envelopes.[75] Finally, Nayal and Honig characterized surface 

cavities by a set of 408 physicochemical, geometrical and structural attributes 

(SCREEN) and then used a random forest classifier to successfully discriminate 

drug-binding cavities.[94] 

Deriving a mathematical representation of thousands of protein binding 

sites can be a computationally demanding task. However, it ought to be stressed 

that, once computed, representations can then be stored in a database prior to 

binding site comparisons. It can take longer to build the database of binding 

site representations than to perform binding site comparisons themselves, but it 

only needs to be done once. 

 

2.3 Binding site comparison  

Comparing binding sites involves often finding the best rigid-body 

transformation that leads to an optimal three-dimensional superposition of 

protein environments. The results of this process are however strongly 

dependent on three key aspects: the binding site representation (vide supra), the 

similarity metric, and the particular algorithm used to compare the binding sites.  
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Defining a metric or score to quantify the degree of binding site similarity is 

an essential requirement to the entire process. A wide range of symmetric and 

asymmetric scores are currently in use.[95] In addition, binding site similarities 

account usually for the number of matching binding-site features to which 

different weighting schemes can be applied. Sometimes, it can be difficult to 

compare binding sites of different sizes[96] and thus, it is important to use 

scoring schemes that can be applied also to assess local similarities between 

small protein environments within binding sites.[97,98] Finally, some methods 

provide also a measure of the statistical significance of the similarity, like Z-

scores, E-values[89] or p-values, which in a number of cases are derived from an 

extreme value distribution (EVD).[99–101] For example, eF-site combines a Z-

score and coverage to evaluate pairwise similarities,[102] and Davies et al. use a 

Poisson index as a probabilistic model devised specially for binding site 

comparisons in the context of the SitesBase database.[82,96]  

As the degree of similarity between binding sites relies often on the 

alignment procedure, failing to find the best alignment solution may produce an 

underestimation of their similarity. This is perhaps one of the reasons why a 

wide variety of alignment methods exist currently. Popular algorithms include 

iterative search, geometric matching, geometric hashing, and clique detection. 

All these methods have long been used in other scientific disciplines and 

adapted to binding site comparisons. Iterative search algorithms, for example, 

can be applied when the binding site has been simplified to an extent where 

evaluating all possible alignments is feasible. Only the top scoring alignment is 

finally retained. It is a straightforward procedure but also relatively slow.  

Geometric matching algorithms compare groups of features between the 

binding sites. Feature triplets are commonly used as the minimal representation 

of local protein environments, although pairs and quadruplets are also 

employed. A triplet is characterised by the features of the vertices and the 

length of the edges connecting them. Two triplets are considered equivalent if 
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both have the same vertex features and similar edge lengths (within a given 

threshold). All triplets defining one binding site are then matched to all their 

equivalents in another binding site. The possibility of matching symmetries may 

also be considered. A transformation is performed by each triplet match 

mapping one triplet to the other by a least squares fitting routine or using 

quaternions.[103] Each transformation generates an alignment between a pair of 

binding sites, the quality of which is then evaluated and scored. The mapping 

with the highest score is conserved. When pure geometric binding site 

representations are used, surface matching is found to be able to find correct 

solutions when binding sites are highly similar, but performance drops 

significantly as similarity decreases.[104] Among these pure geometric approaches, 

MolLoc adapts spin image representations used in three-dimensional object 

recognition to locate similar regions in protein surfaces containing matching 

pairs of atoms with similar physicochemical properties.[88]  

Geometric hashing is a more efficient variation of geometric matching, 

developed originally in computer vision and later adapted for binding site 

comparisons.[105,106] In contrast to geometric matching, the features of the 

binding site are converted to a hash table.[49] Each key in the table is a group of 

features, often a feature triplet defined by the properties of the vertices and the 

length of the edges connecting them. The features of the other binding site to 

be compared are grouped in the same way and used to access the hash table to 

obtain matches. Each match defines a transformation representing a potential 

solution that can be globally scored and stored. A sample of those matches 

(seed matches) is first obtained and clustered. Those representing a similar 

transformation are grouped together, and a representative of each cluster is 

then selected. The most common transformation corresponds to the largest 

alignment that will allow obtaining subsequent feature matching and scoring for 

the entire binding site. This approach of expanding local matches to the full 
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cavity makes the methodology more suited to detect local similarities. Methods 

based on three-dimensional patterns, such as TESS,[55] use geometric hashing. 

Clique detection algorithms aim at finding the maximum subgraph 

isomorphism between two binding sites represented as graphs.[107] A product 

graph is then obtained by pairing nodes with compatible labels between query 

and target graphs.[56] Node pairs are linked if the edges connecting both 

elements in the original graphs are similar. Nodes are usually labelled with 

descriptors associated with the pharmacophoric properties of local protein 

environments, whereas edges are labelled with distances that reflect the shape 

of the binding site. Cliques of product graphs correspond to subsets of adjacent 

pairs of target nodes that satisfy both geometrical and physicochemical 

constrains. The largest common subgraph identified will then be used to 

generate a three-dimensional superimposition and its size to provide a rough 

measure of the similarity between binding sites. The Bron-Kerbosch algorithm 

is often used for this purpose.[108] However, clique detection is a NP-complete 

problem meaning that, although possible solutions can be quickly evaluated, 

there is no efficient way to locate the best solution. This implies that the time 

required to solve the problem increases very quickly as the size of the problem 

grows. Depending on the size and labels of input binding site graphs, the 

product graph can easily grow to dimensions that cannot be processed at 

affordable running times.  

Several smart strategies have been devised to address this issue. For 

example, eF-sites decomposes the entire binding site surface in small portions, 

so sub-cliques are obtained first between those surface patches that are then 

combined into a binding site clique solution if the transformation they produce 

is similar.[84] Also, IsoCleft incorporates two innovations that allow including in 

the model all the atoms of the binding site. First, an initial superimposition is 

obtained using clique detection on Cα atoms only. The resulting 

superimposition is used to filter the pairs of the product graph constructed 
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from all non-hydrogen atoms. Then, a modified Bron-Kerbosch algorithm is 

used to select the first clique solution to be explored instead of generating all 

cliques and retaining the largest clique only in the end. This strategy allows for 

obtaining a nearly optimal solution with a significant gain of time. Along the 

same lines, Weskamp et al.[109] introduced the k-clique hashing algorithm that 

combines the advantages of clique detection with the speed of geometric 

hashing. They replaced the relatively slow clique detection step in Cavbase[87] by 

a clique hashing approach consisting on applying clique detection to a 

simplified product graph whose nodes represent larger local matches of size k 

that are finally assembled. Alternatively, Hoffman et al. used a convolution 

kernel approach between two clouds of points.[86] Its main advantage is that it 

does not require a pair-wise alignment of those points, capturing instead 

similarities between atom densities. This allows for a smoother alignment and 

reflects the fact that atoms in different positions can have equivalent roles in 

ligand binding. 3D-Zernike descriptors have also been shown suitable for local 

or global binding site description and comparisons.[110–112] As a final example, 

SiteAlign maps binding site properties on a faceted sphere located at its centre 

of mass. The alignment of such spheres is intended to provide a better 

tolerance of atomic variations and rotameric states than the rather crisp 

descriptions offered by pseudo-atom methods.[98] 

Since the search for the best three-dimensional match between binding sites 

can be computationally highly demanding, a variety of alignment-free methods 

have been also developed to allow for large scale binding site comparisons. For 

example, one can use emergent self-organizing map (ESOM) to project feature 

vectors in a two-dimensional space.[92] Alternatively, Stahl et al.[91] used a self–

organizing neural network on correlation vectors encoding atom types and 

surface shape to successfully classify pockets of zinc-containing 

metalloproteases according their enzymatic class. Anderson et al.[113] replaced 

direct geometry comparisons between binding sites for a principal component 
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analysis on a wide set of cavity properties. They were able to show that the 

most important general features for differentiating ligand-binding cavities were 

size/shape, polarity, charge, depth/shape, electrostatic field and aromaticity. A 

popular approach is the use of fingerprints, where binding site properties are 

projected in a numerical high dimensional vector. In this direction, FLAP uses a 

GRID force field analysis to locate minimum energy points in molecular 

interaction fields that are then used to generate binding site four-point 

pharmacophore fingerprints complementary to those of ligands.[114] 

PocketPicker[71] compares binding sites by describing the shape of the pocket 

with the buriedness of grid probes. Binned distances between grid points 

classified according their buriedness in six bins leads to a 420-dimensional 

shape descriptor. The similarity between binding sites is assessed by computing 

the Euclidean distance of their respective shape descriptors. FuzCav encodes 

binding sites in a fingerprint of triplets by labelling Cα atoms with 

pharmacophoric properties and binning the distances between them[115] Ito et al. 

introduced a particularly fast and scalable variation of FuzCav based on 

Structural Sketches, which are bit strings created by random projections of 

triplet descriptors allowing similar pairs to be found by multiple sorting.[116] To 

minimize the impact of discretised distance ranges in the fingerprint generation, 

KRIPO adopts fuzzy fingerprints.[80] 

As a counterpart of their speed, alignment-free methods lack the 

interpretability that otherwise alignment methods provide. It is for that reason 

that some methods, such as SubCav, use a fingerprint approach to rapidly 

compare binding sites that is complemented with a final alignment step. In this 

case, the assignment of matching atoms required for the alignment is based on 

atoms that share the largest amount of fingerprint elements.[117] For the sake of 

clarity, Table 1 summarizes the main characteristics of all methodologies 

reviewed in this work. 
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Table 1. List of existing computational approaches for the structure-based comparison 

of protein binding sites.  

 

Method Features Feature position Alignment Scoring 

Stahl et al.[91] 

2000 

Accessibility, 
Aliphatic, Rface, 
Redge, A, D. 

Surface points Topological 
correlation vectors. 

Self-organizing 
neural 
network. 

eF-seek 
[84,102,118]  

2002 

Electrostatic 
potential, 
hydrophobicity 
and curvature 

Triangulated 
surface vertices 

Modified clique 
detection 

Weighted 
count of 
matches. 

Cavbase [87,119] 

2002 

H, R, A, D, AD Residue pseudo-
atoms 

Clique detection 

 

Overlapping 
surface points. 

CSC [120] 

2003 

Atom element Representative 
side chain atoms 

Pairing of 4-atom 
local environments 
and merging. 

Number of 
matching 
atoms 

SuMo [79] 

2003 

Predefined 
chemical groups 
and atom burial 

Chemical group 
mass centre. 

Geometric matching 
(triplets) on a graph 
of pairs of adjacent 
similar chemical 
group triangles. 

Number of 
matching 
groups 

pvSOAR [99,121] 

2003 

Sequence 
fragment of 
exposed residues 

Amino acid centre 
of mass 

Sequence 
alignment followed 
by structural 
alignment, 
coordinates and 
orientation RMSD 

p-value (EVD) 

SitesBase 
[49,122] 

2004 

Atom elements  

C, N, O, S, P 

Binding site atoms Geometric matching 
(triplets) 

Number of 
coincident 
mapped atoms  

SiteEngine [90] 

2004 

H, R, A, D, AD, P, 
N 

Surface patch 
shape 

 Residue pseudo-
atoms 

Geometric hashing 
(triplets) 

Hierarchical 
scoring 
scheme 

SURFACE [123] 

2004 

Residue 
(substitution 
matrix) 

Residue Cα and 
side chain 
geometric centre 

Geometric matching 
(pairs of residues) 

Number of 
overlapped 
residues 

CPASS [97] 

2006 

Residue type and 
shortest distance 
to ligand atom. 

Cα Iterative search RMSD 
weighted 
BLOSUM62 
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MultiBind [124] 

2006 

Cavbase + 
topological 

Cavbase Geometric hashing. 
Branch-and-bound 
algorithm for 
multiple alignments. 

Sum of 
similarities for 
the matched 
pseudocenters 

Park and 
Kim[125,126] 

2006 

Residue type Cα Clique detection BLOSUM62 

Zhang et al.[127] 

2006 

Residue class.  Residue side chain 
geometric centre. 

Clique detection Tanimoto 

FLAP [85] 

2007 

Grid force field. Pharmacophoric 
points 

4-point 
pharmacophore 
fingerprints.  

Cosine-like 
similarity 

PocketPicker 

2007 

Buriedness Pocket grid probes 2-point fingerprints Euclidean 
distance 

Ramensky et. 
al.[128] 

2007. 

43 force-field 
chemical types  

Binding site atoms 
around a ligand 
atom 

Clique detection Proportion of 
matched 
atoms. 

3D-Surfer [110] 

2008 

Electrostatic 
potential and 
hydrophobicity 

Grid-discretised 
surface 

3D Zernike 
Descriptor 

Euclidean 
distance 

BSAlign [129] 

2008 

Physicochemical 
and geometric 

 Cα Clique detection Number of 
aligned 
residues 
balanced by 
RMSD 

IsoCleft [83] 

2008 

H, R, A, D, 
neutral, neutral-
donor, and 
neutral-acceptor. 

Binding site non-
hydrogen atoms. 

Clique detection Tanimoto 

PocketMatch 
[130] 

2008 

Amino acid groups Cα, Cβ and side-
chain centroid 

Sorted list of 
distances between 
pairs of points (2D 
fingerprints) 

Petke similarity 

PROSURFER 
[131] 

2008 

H, A, D, P, N and 
“other” 

Feature vector in 
each surface atom 
describing the local 
environment. 

Geometric matching 
(atom triplets) 

Tanimoto-like 

 

SiteAlign [98] 

2008 

Topological and 
chemical for each 
residue. 

Projected from the 
Cα to a faceted 
sphere at the 
centre of the site. 

Iterative rotation 
and translation of a 
sphere over 
another one. 

Average of 
normalised 
differences 
along a 
fingerprint. 
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SOIPPA [132,133] 

2008 

Geometric 
potential 

Cα Delaunay 
tessellation 

Clique detection Weighted sum 
of profile 
distances for 
each aligned 
Cα pair. 

SurfaceScreen 
[134] 

2008 

Global surface 
shape and 
physicochemical 
texture 

Residue mass 
centre. 

Iterative search for 
the best 
superimposition of 
common residues. 

Surface 
Volume 
Overlap 
Tanimoto 
(SVOT) 

WaveGeoMap 
[92] 

2008 

Shape (wavelet) 
and 
physicochemical 
(H, R, A, D, AD 

Feature vector 
assigned to each 
surface patch. 

Common 
orientation of 
surface patches  

Emergent self -
organizing map 
on feature 
vectors 

MED-SuMo [135] 

2009 

Physicochemical  Surface Chemical 
Features. (SCF) 

Geometric matching 
(triplets) on a graph 
of pairs of adjacent 
similar chemical 
group triangles. 

Number of 
common 
features and 
local shape 
similarity 

MolLoc [88] 

2009 

Geometric spin 
images 

 

Connolly surface 
points. 

Geometrically 
consistent 
correspondences 
refined by atom 
types. 

Corresponding 
surface area. 

PESD [136] 

2009 

Electrostatic 
potential, polar, 
hydrophobic and 
hydrogen-bonding  

Sample of Gauss-
Connolly surface 
points. 

Property encoded 
D2 shape 
distribution. Binned 
distances between 
pairs of points.  

Signature 
comparison 

VA [137] 

2009 

Principal 
components of 29 
physicochemical 
amino acid 
properties  

Cα Clique detection Clique size 

Yin et al.[138] 

2009 

Curvature Surface points Geometric 
fingerprints 
(distance-
dependant 
distribution of 
curvatures) 

Root-mean 
deviation of 
each 
fingerprint bin. 

Anderson et al. 
[113] 

2010 

SCREEN[94] Vector assigned to 
each binding site 

Principal 
Component 
Analysis 

PLS-DA 

BSSF [139] 

2010 

Physicochemical 
features 

Residue fragments 
centroids 

Fingerprint of 
distances 

Canberra 
distance and z-
score 
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FuzCav [115] 

2010 

HRADPN Cα 3-point 
pharmacophore 
fingerprint 

Simpson 

Hoffmann et al. 
[86] 

2010 

Partial charge Cloud of atoms Convolution kernel Convolution 
kernel 

ProBiS [89] 

2010 

Cavbase 

 

Functional groups 
pseudo-atoms 

Clique detection on 
overlapping 
subgraphs 

E-value 

PocketFeature 
[140] 

2011 

Physicochemical 
features (based 
on FEATURE) 

Spherical 
microenvironments 
around residues (6 
shells ) 

Exhaustive for all 
microenvironment 
pairs 

Normalized 
Tanimoto 

Structural 
Sketches [116] 

2011 

Physicochemical 
and geometrical 
properties (8 sets 
of 4 properties) 

Cα Bit strings of 3-
point 
pharmacophore 
fingerprint random 
projections 
(SketchSort) 

Cosine 

KRIPO [80] 

2012 

HRADPN Geometric 
positions relative to 
amino acids 

3-point fuzzy 
pharmacophore 
fingerprint 

Modified 
Tanimoto 

APoc [101] 

2013 

Side chain 
orientation (Cα-Cβ 
vector) and 
residue type. 

Cα iAlign [141] p-value (EVD) 
for PS-score 

Jalencas et 
al.[43] 

HRAD Surface feature 
points 

Clique detection Cosine 

SubCav [117] 

2013 

Ppharmacophoric 
features (D, CA, 
C, P, H, D=, A=, 
H=) 

Binding site atoms 3-point 
pharmacophoric 
fingerprint  

Tanimoto and 
Cosine 

TrixP [142] 

2013 

HAD + pocket 
shape 

hydrophilic atoms 
and hydrophobic 
grid points 

3-point 
pharmacophoric 
fingerprint + 
geometric matching 
like  

Combined 
score for all 
features. 
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2.4 Binding site fragmentation  

Protein flexibility, which can range from slight side-chain rotations to relatively 

large backbone rearrangements, may result in significant variations in the size 

and shape of binding cavities, thus hindering the detection of binding site 

similarities.[143] Accordingly, the simplistic lock and key model of the molecular 

recognition event has been gradually refined to account for protein flexibility. 

In this respect, the induced-fit model takes into consideration the adaptive 

conformational changes that the protein undergoes when binding to ligands, 

whereas the selected-fit model looks at the event from the perspective of the 

ligand, which stabilises a complementary protein conformation among the 

many different conformations a protein can adopt in equilibrium.[144] The 

direct consequences of these various aspects of protein flexibility are that 

structure-based methods to comparing entire binding sites may have difficulties 

detecting similarities among the different holo and apo structures of the same 

protein but also among protein structures interacting with different ligands. 

Therefore, strategies to detect local binding-site similarities may represent an 

alternative to global binding-site comparisons, potentially less sensitive to 

protein conformational changes.  

Several methods have implemented different strategies to address the issue 

of protein flexibility, such as increasing the degree of fuzziness of the 

descriptors, focusing on local binding-site environments, or using an ensemble 

of protein conformations derived from molecular dynamics simulations. The 

sensitivity of a particular method to atom rearrangements depends very much 

on the type of the descriptors used to define the binding site. For example, a 

binding site representation based on the positions of the Cα carbons, although 

less accurate, will most probably remain invariant to side-chain conformational 

changes and be affected only by significant backbone rearrangements. On the 

other hand, a representation based on the atomic positions of side chains or on 
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surface points will be more sensitive to conformational variations. The 

challenge is thus to have the right balance between accuracy of the binding-site 

description and sensitivity to conformational changes. 

Perhaps the most common approach to deal with protein flexibility is to 

search for similar local protein environments instead of comparing entire 

binding sites. Ramensky et al. were amongst the first to introduce a local 

approach to binding site similarity and use the assumption that similar protein 

environments will interact with the same chemical fragment in a similar 

orientation.[128] However, assessing the true relevance of local binding site 

similarities is not straightforward as they can be scattered across the entire 

binding cavity in completely disconnected patches. Because of that, a balance 

between the similarity among several small surface patches and that of the 

global binding cavity should be taken into consideration.[92] In this respect, how 

sub-cavities are defined will certainly influence the final outcome. DoGSite, for 

example, allows to define surface regions in apo structures based solely on the 

topological characteristics of the binding cavity.[145] However, binding site 

fragmentation is more straightforward when holo structures are available and 

can be defined on the basis of a ligand fragmentation.[146,147] Wallach et al. used 

this strategy to deconstruct binding cavities in a set of potentially overlapping 

sub-cavities according to chemical groups of co-crystallized ligands.[148] More 

recently, Jalencas and Mestres[43] used also chemical fragments to define protein 

environments as interacting binding-site surface regions of consistent 

pharmacophoric features.  

Methods performing local binding-site comparisons between protein 

environments defined from interacting chemical fragments are particularly well 

suited for fragment-based drug discovery.[43] It is commonly accepted that some 

fragments are prone to interact more frequently than expected with certain 

amino acids. For instance Chan et al. retrieved from the Protein Data Bank all 

chemical fragments forming hydrogen bonds with the most common residues 
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in the binding site (i.e. aspartic, glutamic, arginine and histidine).

characterized chemical fragments from the Protein Data 

closest residues. Those fragment-residue interaction pro

chemical fragments have specific preferences for certain types of residues.

Along the same lines, Soga et al. introduced the term chemocavity

concavity in a protein where a specific group of small molecules (a canonical 

molecular group) is inclined to be bound. Moreover

chemocavity index based on the amino acid concurrence rat

correlate a chemocavity with its corresponding molecular group, thus 

reinforcing the idea that there may be specific sites for particular 

fragments.[151] These approaches can be used

interaction between a protein environment and a chemical frag

 

Figure 2. An illustrative example of a pair of chemoisosteric protein environments 

from structurally diverse proteins that interact with the adenyl fragment, namely, citrate 

synthase (PDB code 1csi, cyan) and glucokinase (PDB code 1ua4, yellow).

 

 

in the binding site (i.e. aspartic, glutamic, arginine and histidine).[149] Wang et al. 

haracterized chemical fragments from the Protein Data Bank by counting their 

residue interaction profiles showed that 

chemical fragments have specific preferences for certain types of residues.[150] 

introduced the term chemocavity as a specific 

concavity in a protein where a specific group of small molecules (a canonical 

molecular group) is inclined to be bound. Moreover, they introduced a 

chemocavity index based on the amino acid concurrence rate and were able to 

s corresponding molecular group, thus 

specific sites for particular chemical 

used to quantify the optimality of the 

interaction between a protein environment and a chemical fragment. 

 

An illustrative example of a pair of chemoisosteric protein environments 

from structurally diverse proteins that interact with the adenyl fragment, namely, citrate 

synthase (PDB code 1csi, cyan) and glucokinase (PDB code 1ua4, yellow). 
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Some methods offer the possibility of providing the three-dimensional 

alignment of local protein environments.[43,80,135,152] Since protein environments 

are usually defined based on the interacting chemical fragments present in the 

native ligand, alignment of protein environments translates directly into 

superposition of chemical fragments. This offers great opportunities for the use 

of these methodologies in fragment-based drug discovery.  

 

3. Detection of distant polypharmacology 

In recent years, it has become apparent that selective drugs are more the 

exception rather than the rule and that most therapeutically effective molecules 

bind to multiple proteins.[15] This ability of small molecules to interact with 

multiple proteins is commonly referred to as polypharmacology.[13] Since 

experimental testing of molecules on in vitro binding assays for thousands of 

proteins is currently unfeasible, in silico methods based on ligand similarity have 

proven very useful in predicting novel targets for known drugs.[17,153–160] 

However, as emphasised above, for the vast majority of the new drug-target 

interactions identified there was already a known interaction to a target of the 

same protein family. In fact, detection of polypharmacology across members of 

the same protein family is not surprising. From a structure-based viewpoint, 

Kinjo and Nakamura showed that the majority of similar binding sites are 

confined within the same protein family, with the exception of nucleotide and 

ion binding sites.[161] In fact, very few examples actually exist on the use of these 

ligand-based methods to predict affinities between molecules and proteins 

distantly related to any of their already known targets.[17,19–21] In this respect, 

structure-based methods may complement ligand-based methods to detect 

distant polypharmacology. 
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Indeed, the PDB offers structural evidence of distant polypharmacology 

examples.[22] We took a set of 1,358 approved drugs (excluding nutraceuticals) 

from DrugBank 3.0[8] and searched them using their InChI keys in Ligand 

Expo.[63] Of those, 387 compounds involving 2,655 structures were located in 

the PDB, 234 of them present in more than one PDB entry. Detection of 

distant polypharmacology examples was performed by assigning structural[162,163] 

and functional[24,164] classification codes to each structure. A total of 138 drugs 

were found to be co-crystallized in at least two structurally and functionally 

unrelated proteins. Filtering for drugs with known affinity in PDBbind 2011[64] 

for those unrelated protein structures resulted in a list of 20 drugs for which 

structural evidence of distant polypharmacology currently exists. Details for 

four of them are provided in Table 2. For each drug, PDB entries are grouped 

according to their functional code and a single group representative was 

selected. The percentage of sequence identity, as obtained with the Needle 

routine from the EMBOSS package),[165] between the drug’s primary target and 

any other binding protein is also provided as a metric of distant 

polypharmacology. 

Among those four drugs, acetazolamide is a carbonic anhydrase inhibitor 

used in the treatment of a wide variety of diseases. In the PDB, it is found co-

crystallised with carbonic anhydrase 2, for which nanomolar affinity is reported, 

but also with endochitinase, to which it binds with low micromolar affinity. 

Another example is indomethacin, a non-steroidal anti-inflammatory drug that 

acts as a prostaglandin inhibitor and that it is found co-crystallised in the PDB 

with 9 additional unrelated proteins and known to bind to them with low 

micromolar affinity. A third example is estradiol, a sex hormone with potent 

estrogenic effects that nonetheless it has been co-crystallised with 6 additional 

unrelated proteins, for some of which binding with potent affinity has been 

reported. Finally, caffeine is a central nervous system stimulant that acts as 

adenosine receptor A2a antagonist but it is known to bind with low micromolar 
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affinity to at least two additional proteins, for which structural evidence of their 

interaction is also available in the PDB.  

Having shown that structural evidence exists in the PDB, the challenge is 

now to show whether distant polypharmacology can be predicted with 

structure-based methods. In this respect, detection of similar local surface 

regions can be used to identify proteins that could interact with the same 

molecule.[10,166] One of the first examples where similarities between binding 

sites of unrelated proteins could explain polypharmacology was reported by 

Weber et al.
[167] They realized that the unsubstituted arylsulfonamide moiety 

present in COX-2 selective inhibitors, such as celecoxib and valdecoxib, was 

also commonly present in carbonic anhydrase (CA) inhibitors. Using enzyme 

kinetics and X-ray crystallography, they were able to confirm an unexpected 

nanomolar affinity of celecoxib and valdecoxib for isoenzymes of the CA 

family. Cavbase[87] was able to find surface property similarities between COX-2 

and CA-II binding sites for the regions accommodating the sulphonamide and 

trifluoromethyl groups, although no overall binding site similarity was detected. 

Other examples were reported by Minai et al., who used local atomic 

environments to locate structures with similar regions to those known to be co-

crystallised with a drug.[131] They obtained a list of more than one million pairs 

of such similar regions, that were made available online. In a retrospective 

analysis, some of the predicted interactions could be confirmed experimentally, 

such as captopril and matrix metalloproteinase-12. Other predictions, like the 

binding of lovastatin to RXR and flurbiproben to phospholipase A2, suggested 

plausible novel mechanisms of action.  

Another method that has been applied to detecting distant 

polypharmacology is SOIPPA (Sequence Order-Independent Profile-Profile 

Alignment).[133] Based on a shape descriptor initially devised to locate protein 

binding sites,[132] it includes also features from sequence alignment 

methodologies. Starting from a geometric potential, defined to quantitatively 
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describe the shape of a structure dependent on both the global shape and the 

local environment of each residue, SOIPPA represents the protein by a 

Delaunay tessellation of Cα carbon atoms for the whole protein, each of them 

labelled with its geometric potential, as well as with a position specific scoring 

matrix (PSSM) obtained with PSI-Blast. This triangulation is treated as a graph 

and clique detection techniques can be used for pair-wise order-independent 

local sequence alignment. This approach allowed to detect significant binding 

site similarities between the Estrogen Receptor subtype alpha (ERα) and a 

Sacroplamatic Reticulum Ca2+ ion channel ATPase protein (SERCA) and thus 

provide a potential mechanism of action by which on could explain some of the 

adverse effects known for selective estrogen receptor modulators (SERMs).[168] 

The same approach was able also to predict highly significant similarities 

between the NAD binding site of the Rossman fold and the S-adenosyl-

methionine (SAM) binding site of SAM methyltranferases.[133] This allowed to 

anticipate the interaction between entacapone (a drug targeting a SAM-

dependant methyltransferase, COMT) and enoyl-acil carrier protein reductase 

(InhA), a NAD-binding protein, which is a target for anti-tubercular drugs. This 

prediction was subsequently validated by in vitro testing of Comptan (whose 

active component is entacapone), showing an IC50 of about 80 µM on InhA, 

well beyond its toxicity concentration.[169] Finally, SOIPPA was used to 

successfully identify off-targets for the T. brucei RNA editing ligase 1 inhibitor 

drug candidate NSC-45208.[170]  

In addition, SiteAlign was used to predict the potential interaction of protein 

kinase inhibitors with synapsin I, an ATP binding protein.[171] The prediction 

was validated by an in vitro competition assay, giving an affinity of staurosporine 

to bovine synapsin I of about 0.3µM. Other more specific kinase inhibitors, 

such as roscovitine and quercetagetin, were also found to be synapsin I 

nanomolar inhibitors.[171] Also, PocketPicker was used by Stauch et al. to predict 

putative binding pockets in a model of the APOBEC3C protein, which has 
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All methods aiming at identifying similarities among binding sites involve 

performing tasks related to binding site i) detection, to focus on the concrete 

region to be compared, ii) representation, with appropriate descriptors relevant 

to the geometric and pharmacophoric features, iii) comparison, to align binding 

sites and score their similarity, and iv) fragmentation, to offer a more local 

perspective and reduce complexity.[59] For each of these tasks a rich variety of 

approaches exist.[59–62] The following sections contain a detailed survey of those 

methods, many of which are compiled in Table 1, including concrete examples 

of identification of similar binding sites and how these gave rise, in some cases, 

to detection of distant drug polypharmacology. 

 

Xavier Jalencas was born in 
Terrassa, Catalonia. He received a 
Master’s Degree in Biology from the 
Universitat Pompeu Fabra in 2005. 
He is in his final year as a PhD 
student in the Chemogenomics 
Laboratory at IMIM (Barcelona). His 
thesis focuses on the detection, 
fragmentation, comparison, and 
classification of protein binding sites 
as a means to better understand drug 
polypharmacology. 

 

Jordi Mestres was born in Girona, 
Catalonia. He received a PhD in 
Computational Chemistry from the 
University of Girona in 1996. After 
seven years in pharmaceutical 
industry (Pharmacia&Upjohn and 
Organon), he took on his current 
position as Head of Chemogenomics 
at IMIM. His research interests focus 
on the development of computational 
approaches to systems chemical 
biology and drug discovery. 

 

 

 

 

 

 
((Author Portrait)) 

 



 Results 

 87

strong antilentiviral activity.[172] Comparing the largest of those pockets with a 

set of pockets with known ligands suggested that nucleic acids could act as 

substrates. This was experimentally demonstrated to be true for RNA, whose 

binding was required for the incorporation of APOBEC3C into viral particles. 

Cavbase was used to compare and cluster a set of ATP binding sites from 

258 protein kinases spanning 48 SCOP families. As expected, high sequence 

similarity was correlated with high binding site similarity, and they obtained a 

proper subfamily classification. Nevertheless they observed cases where kinases 

with high sequence similarity exhibited a modest binding site similarity as well 

as binding site similarities between sequence-unrelated kinases.[173] Some 

examples of the later, supported by the existence of a molecule inhibiting both 

kinases, are provided by Kalliokoski et al. [174] In a similar experiment, SitesBase 

was used to cluster a non-redundant set of binding sites from 354 protein 

kinases. The clustering was compared to that obtained from sequence 

alignment and unexpected binding site similarities and dissimilarities were 

reported.[175] Experimental interaction profiles were also compared with binding 

site similarity profiles, yielding high enrichment factors. Milleti et al. used a 

shape-context based descriptor to predict kinase inhibition maps by pocket 

similarity.[176] Finally, Brylinsky et al. combined a modified version of 

PocketMatch with sequence, ligand and experimental data in a machine-learning 

approach to compute a putative map of cross-interactions within the human 

kinome.[177]  

Finally, Jalencas and Mestres[43] introduced recently the concept of 

chemoisosterism of protein environments as the complementary property to 

bioisosterism of chemical fragments. In the same way that two chemical 

fragments are considered bioisosteric if they can bind to the same protein 

environment, two protein environments will be considered chemoisosteric if 

they can interact with the same chemical fragment. Accordingly, the degree of 

chemoisosterism of protein environments is directly related to the level of 
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polypharmacology of chemical fragments. An interaction network between 

1072 chemical fragments and 3177 clusters of protein environments was 

constructed. An analysis of this fragment-environment network revealed the 

existence of local chemoisosteric relationships among binding cavities of 

completely unrelated proteins. In particular, it was shown that one can obtain a 

reasonably correct fragment mapping of the binding cavity of a nuclear receptor 

structure by direct superimposition of protein environments from enzyme 

structures only and without any further computational energy optimisation to 

refine the placement and orientation of the associated chemical fragments. The 

presence of promiscuous chemical fragments in molecular structures, such as 

phenol, 3,4-dihydroxyfuran, pyridine, and chlorophenyl, should enhance the 

chances of a molecule to have affinity for multiple targets. 

  

Table 2. Examples of approved drugs co-crystallized with at least two unrelated 

proteins. CID: PDB compound identifier, N1: number of structures for a particular 

functional code. N2: number of structures for a particular Uniprot accession number, 

AC: Uniprot Acession number, Seq. id.: sequence identity to primary target (%).[165] 

Primary targets are highlighted in bold.  

Drug name 

CID 

Functional  

code 
N1 N2 PDB AC Affinity 

Seq. 

id. 
Name 

Acetazolamide 

AZM 

EC4.2.1.1 18  8 3dc3 P00918 Ki=4.9nM NA 
Carbonic 

anhydrase 2  

EC.3.2.1.14 2 1 2uy4 P29029 Ki=21µM 8.6 Endochitinase 

Indomethacin 

IMN 

EC.1.14.99.1 1 1 4cox Q05769 
IC50= 

109.57nM b 
NA 

Prostaglandin 
G/H synthase 2  

EC.1.11.1.7 1 1 3ogw P80025 - 18.4 Lactoperoxidase 

EC.1.3.1.48 2 1 2zb8 Q8N8N7 
- 

11.1 
Prostaglandin 

reductase 2 

EC.1.3.1.20 a 3 3 1s2a P42330 
IC50= 

4.10 µMb 9.8 
Aldo-keto 

reductase family 
1 C3 
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NR.1.C.3 2 2 3ads P37231 Kd=9.73µM 9.8 PPAR-γ 

EC.3.4.21.- 1 1 3ib1 P24627 - 7.1 Lactotransferrin 

EC.3.1.1.4 4 2 3h1x P59071 Kd=1.3µM 5.7 
Phospholipase 

A2 VRV-PL-VIIIa 

TC.9.B.35.1.1 2 2 4ik7 P02766 - 5.0 Transthyretin 

EC.5.3.99.3 1 1 1z9h Q9N0A4 
IC50=1mM 

4.1 
Prostaglandin E 

synthase 2 

 3 3 2bxm P02768 
Ki=4.26µM 
b 

2.9 
Serum albumin 

Estradiol 

EST 

NR.3.A.1 10 10 1qku P03372 
Kd= 

0.26nM 
NA 

Estrogen 
receptor  

NR.3.A.2 3 2 3oll Q92731 
Ki= 

4.69nM b 
44.7 

Estrogen 
receptor beta  

E.1.1.1.35 1 1 1e6w O70351 

- 

5.9 

3-hydroxyacyl-
CoA 

dehydrogenase-
2 

 2 2 1jgl P01837 
Kd=2nM 

4.8 
Ig kappa chain C 

region 

EC.1.1.1.62 6 6 1fdu P14061 
Km=30nM 

3.6 
Estradiol 17-

beta-
dehydrogenase 1 

 1 1 1lhu P04278 
IC50=50.0n
M b 

2.6 
Sex hormone-

binding globulin 

EC.2.8.2.1 1 1 2d06 P50225 
Ki=83.2µM 

2.4 
Sulfotransferase 

1A1 

EC.2.8.2.4 1 1 1aqu P49891 
- 

0.8 
Estrogen 

sulfotransferase, 
testis 

Caffeine 

CFF 

GR.1.10.2.2 1 1 3rfm P29274 
Ki= 

19.80µM 
NA 

Adenosine 
receptor A2a  

EC.2.4.1.1 7 5 1l7x P06737 
Kd=92µM 

11.8 
Glycogen 

phosphorylase, 
liver form 

EC.3.2.1.14 2 1 2a3b Q873X9 
IC50= 

469µM 
3.3 

Chitinase 

a multiple codes, only one is shown 
b affinity values from ChEMBL[9] 
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Conclusion 

Despite the large number of currently available structure-based methods to 

perform binding-site comparisons, the number of success stories with 

prospective experimental validations of distant polypharmacology predictions is 

still relatively low. The wide diversity of existing structure-based approaches to 

comparing protein binding sites indicates that the problem is not yet 

successfully resolved and the resulting signal-to-noise ratio of the predictions is 

far to be optimal. In fact, protein flexibility remains still a challenging issue and 

structural water molecules, known to have in many instances a key role in 

bridging protein-ligand interactions, are seldom accounted for in the binding 

site description and the subsequent comparison process. Each of the methods 

reviewed has its own strengths and limitations, and their relative performance 

is, at present, very much dependent on the nature of the particular problem to 

be solved. The potential of using protein structure data for detecting distant 

polypharmacology remains to be fully exploited, particularly as an integral part 

of the ligand-based methods for predicting ligand-protein interactions. 
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III.3: Chemoisosterism in the proteome 

 

The tool for binding site characterization and comparison detailed in Chapter 

III.1 was tailored in this paper by a fragment-based approach with the aim of 

gaining ability to find similarities in unrelated proteins. The new approach was 

used in this paper to analyse protein environments binding chemical fragments. 

The term “chemoisosterism” was coined to describe the phenomenon of 

different environments binding the same chemical fragments. Some examples 

were provided on possible applications of chemoisosterism to drug design, 

focusing in the target PPAR-γ. Its complementarity to ligand-based methods 

and other structure-based methods like docking revealed chemoisosterism as a 

valuable tool for drug design projects. 

 

A poster and an oral communication were also presented on this topic. 

- Jalencas, X.; Mestres, J. A knowledge-based approach to assessing the target 
promiscuity of chemical fragments. Oral communication presented at 9th 
International Conference on Chemical Structures. 2011 Jun 5-9. 
Noordwijkerhout. Netherlands. 

- Jalencas, X.; Mestres, J. Indexing cavities in protein structures. Poster 
presented at 21st International Symposium on Medicinal Chemistry. 2010 Sep 
5-9. Brussels. Belgium 

Jalencas, X.; Mestres, J. Chemoisosterism in the Proteome. 
J. Chem. Inf. Model. 2013, 53, 279-292 
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III.4: On the Origins of Drug Polypharmacology 

 

 

After exploring chemoisosterism and its ability to detect suitable chemical 

fragments for a particular target of know structure in Chapter III.3, its 

implications to drug polypharmacology are discussed in this section. A wide-

ranging review of drug polypharmacology is elaborated, focusing on all possible 

sources for this phenomenon, including, but not limited to chemoisosterism. 

Special interest has been put in the implications that drug polypharmacology 

has in drug discovery and some hypothesis about its evolutionary origin are 

provided. 

 

Jalencas, X.; Mestres, J. On the origins of drug polypharmacology. 
Med. Chem. Comm. 2013, 4, 80-87. 

 
Journal Impact Factor: 2.8; Citations: 5 

http://pubs.rsc.org/en/content/articlelanding/2013/md/c2md20242e#!divAbstract
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Part IV: Discussion
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IV.1 Comparing binding sites 

In this Thesis, I have pursued the main objective of developing a novel 

structure-based methodology based on protein binding site comparisons that is 

able to provide valuable information on the polypharmacology of drugs. 

Comparison of binding sites was a hot and promising topic at the beginning 

of this Thesis. Several highly cited papers on the field had been published in the 

preceding years97–101 and, for the first time with physicochemical properties of 

the binding site were starting to be used alongside with shape in binding site 

comparisons. Although at that time it was a time-consuming approach, not 

suitable for large-scale screenings, it was nonetheless able to unveil similarities 

between binding sites where no other approaches succeeded102,103, even being 

able to eventually explain unexpected protein-ligand relationships.104  

Taking as a starting point the state of the art on binding site comparison 

methodologies, a novel approach has been developed and implemented 

(Chapter III.I). The main differences against other existing methods lie in the 

three-dimensional location of the descriptors, which are placed directly on the 

protein surface and encode for its local pharmacophoric properties. In contrast 

to other approaches that only consider the alpha carbons of the residues 

defining the binding cavity, the utilization of such feature surface points 

removes the need of a pair of binding sites to have residues in equivalent 

positions to be considered as similar. As long as the physicochemical properties 

they expose in the surface are equivalent and available in equivalent directions, 

similarities can still be detected irrespectively of the coordinates of the protein 

atoms.105 As a counterpart, more complexity is incorporated in the 

comparisons, and its sensitivity to protein flexibility is also increased.106 This 

apparent limitation has been addressed by implementing a fragmental approach 

to binding site comparisons, which partially alleviates this conformational 

sensitivity. 
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The methodology has been demonstrated to successfully being able to 

discriminate between binding sites from different proteins, as well as subgroups 

within a protein family. Unfortunately, like other methods, its ability to detect 

similarities between unrelated protein binding sites has proved to be limited 

when full protein cavities are considered. As similarities between related 

proteins can be established in most cases by other more efficient approaches 

such as sequence, fold or amino acid pattern comparisons107,108, a better power 

to detect similarities in unrelated binding sites is desirable as it provides new 

data that cannot be obtained by any other means. 

The bibliography and expertise gathered during this Thesis has been further 

exploited for the elaboration of a comprehensive an updated review on the 

topic (Chapter III.2). Special attention has been put in the selected cases where 

a new protein-ligand interaction has been inferred from a similarity found 

between binding sites of different proteins, and even more, this new interaction 

could be subsequently confirmed experimentally. Surprisingly, despite the large 

number of existing methodologies to compare binding sites and the wide range 

of approaches they use, only a handful of such cases exist. Locating unexpected 

similarities in unrelated proteins that can be further exploited to predict new 

protein ligand interactions is by no means a simple task. 

 

IV.2 Chemoisosterism 

To gain capacity in detecting similarities between unrelated proteins that lead to 

the identification of new targets for a particular ligand (or new ligands for a 

particular target) beyond the members of a protein family, a fragment-based 

approach has been developed to address the main issues associated with 

binding site comparisons highlighted above. As protein cavities binding similar 

or even the same ligands are rarely found to be similar if they are not related by 

sequence or fold, attention was put in detecting local similarities.109 
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Consequently, binding sites are decomposed in protein environments and 

ligands in chemical fragments (Chapter III.3).  

We early noted that when comparing protein environments, most chemical 

fragments (being the benzene ring the most extreme case) appeared to be found 

co-crystallised in different protein environments that could not be related by 

similarity. Accordingly, the term chemoisosterism was coined during the 

development of this Thesis to describe the ability of different protein 

environments to be compatible with the same chemical fragment. The term 

“chemoisosterism” is inspired by shifting the point of view of bioisosterism 

(that describes chemical fragments that can bind the same protein environment) 

from the protein (bio) to the chemical (chemo) perspective.  

To exploit protein environment similarities to its maximum extent, a 

database of chemoisosteric environments was built. Given a set of structures of 

protein-ligand complexes, unique protein environments are associated to their 

corresponding chemical fragments. The construction of such a database for the 

PDBbind66 data set is detailed in Chapter III.3. As the process of building a 

database of chemoisosteric environments is completely automatic, specific 

databases focused in a particular group of protein structures can be easily 

obtained to better adapt to the needs of a particular project. 

Applications of chemoisosterism in drug design are thoroughly described in 

Chapter III.3. Some retrospective applications are shown using as example 

Peroxisome Proliferator-Aactivated Receptor gamma (PPARγ), a member of 

the nuclear receptor family.110 Remarkably, we were able to reconstruct most of 

its ligand chemical fragments based solely on chemical fragments that are 

bound to similar protein environments in enzymes structures. It is worth 

stressing here the level of protein environment hopping achieved, between 

largely distinct protein families such as nuclear receptors and enzymes. This 
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would allow applying the same technique even in the hypothetical case where 

no other nuclear receptors had any available structure. 

Simultaneously, chemoisosteric relationships have been used to construct a 

focused chemical library111 of suitable chemical fragments for PPARγ. Many of 

those fragments could be found in molecules known to be active against 

PAPRγ, but with no available resolved structure. Interestingly, the composition 

of the fragment library was compared against ensembles of fragments obtained 

using other approaches, namely, ligand-based similarity22 and a structure-based 

docking112, and it was found that the overlap of the results obtained by the 

three methods was very small. This strongly supports chemoisosterism as a tool 

that is able to provide relevant, complementary, information that would 

probably not be obtained by any other means. Chemoisosterism can therefore 

be of utility to complement other widely used methods and even more, in cases 

where the problem to address lies out of their applicability domain but has a 

resolved protein structure available. 

 

IV.3 Polypharmacology 

One of the sought endeavours when screening for similarities between protein 

binding sites is the discovery of new targets for already known ligands. The 

ability of small molecules to interact with multiple protein targets is usually 

referred to as polypharmacology.75 An updated overview of drug 

polypharmacology has been addressed in Chapter III.4, putting special stress on 

its potential causes. Sources of polypharmacology can be primarily described as 

chemical or biological. Chemical sources of polypharmacology include 

molecular properties and fragment composition. In this respect, the experience 

and expertise on chemical fragments gained in the tasks described in Chapter 

III.3 were exploited to find a correlation between the complexity of chemical 
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fragments and their protein promiscuity (the number of targets that bind that 

fragment). Biological sources of polypharmacology, including target phylogeny 

and binding site similarities, have been equally addressed. Overall, the main 

conclusion drawn from this analysis is that there is still a highly conservative 

view of drug polypharmacology, mainly attributable to the lack of completeness 

of drug-target interaction data.113 

 

IV.4 Future directions of research 

Several different perspectives arise at different points of this Thesis. To start 

with, binding site signatures presented in Chapter III.1 have many potential 

utilities that are yet to be exploited. If comparing signatures was demonstrated 

to be equivalent to compare the binding sites themselves, the complexity of the 

comparison would be greatly reduced, resulting in considerable savings of time 

and resources. Under a chemogenomics perspective, binding site descriptors 

can be attached to similar ligand descriptors to be able to directly predict if a 

particular ligand has a probability to bind to a given binding site.114,115 In the 

present case, feature surface descriptors used for binding sites could be adapted 

to describe ligand surfaces. Complementarity between binding sites and ligands 

could be then estimated, and hence their interaction predicted. Predicting 

protein-ligand interaction is a challenging task with many pitfalls.116 Protein, and 

specially, ligand flexibility issues would be need to be solved. Even though, a 

similar approach could be also used to refine docking poses117 or homology 

models.  

Regarding the potential applications of chemoisosterism in drug discovery 

presented in Chapter III.3, here a wide array of possibilities emerges. First and 

foremost, its successful application in a real drug design project would definitely 

validate the used approach and provide insight on its real value besides the 

retrospective validations that have been performed. Chemoisosterism has been 
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demonstrated to be useful for predicting chemical fragments for a protein 

binding site, but many variations of this can be explored. By applying 

chemoisosterism under similarity constraints, an empty binding site with no co-

crystallized ligand can be populated with putative chemical fragments by 

comparing it against a set of protein environments and chemical fragments. In 

this case, a scoring scheme penalizing less the differences in size of the 

compared binding sites than the described cosine score would be desirable. 

Once a binding site is populated with chemical fragments, another interesting 

line worth to be explored is the assembly and linking of such fragments to 

complete molecules.118 This de novo drug design based on fragments119 would 

provide an easy-to-interpret and more direct output of molecules that chemical 

fragments alone. This approach, due to its hopping abilities, would be especially 

useful in proteins with little structural information, such as GPCRs.  

 In a similar way, the structure of a complex of a given molecule can be used 

to locate other binding sites compatible with its chemical fragments and 

therefore predict a new target for the molecule, what is commonly known as 

target profiling.120 Difficulties here are expected to be found regarding the fact 

that some chemical fragments are found to bind to many different proteins, and 

unless a very discriminative chemical fragment appears, it can be difficult to 

predict the targets for a given set of chemical fragments merely based on an 

enumeration of them. Fragment connectivity and assemblage would probably 

need to be addressed also in this case. It is worth noting that this feature would 

be of special interest in drug repurposing.121,122 Many structures in the Protein 

Data Bank containing drugs could be used as a starting point. 

Finally, being a knowledge-based approach, chemoisosterism relies on the 

structural data that is exploited. In this direction, a complete database of all 

chemical fragments and protein environments available in the Protein Data 

Bank would greatly improve both its applicability domain as well as its hopping 

ability and precision. Even more, a collection of all putative protein pockets 
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extracted from the PDB would also provide a valuable source of information. 

With around 90,000 structures in the PDB, the construction of such databases 

would require great computational and storage resources. Efforts in this 

direction are currently underway in our research group and will hopefully lead 

to an interesting continuation of the work presented in this Thesis. 
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Part V: Conclusions 
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The main contributions of this Thesis can be summarized as follows: 

 

i) An updated and exhaustive review on available computational binding site 

comparison methodologies has been performed putting special stress on 

the successful cases where the detection of a similarity between binding 

sites led to the identification of a new case of distant polypharmacology 

that could be experimentally tested.  

 

ii)  A novel binding site comparison methodology based on surface feature 

points has been devised developed and implemented. 

 

iii) The developed software has been demonstrated to be able to successfully 

discriminate binding sites from different proteins, achieving a similar 

degree of performance as other existing methodologies. A finer 

discrimination, exemplified by the classification of different kinase types 

and carbonic anhydrase isoforms has also been achieved. 

 

iv) A fragment-based approach involving protein environments and chemical 

fragments has been implemented to gain predictive power in the difficult 

task of locating similarities between binding sites of completely unrelated 

proteins. 

 

v) The term “chemoisosterism” has been coined as a counterpart to 

bioisosterism, to describe protein environments which are compatible with 

the same chemical fragment. 
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vi) A database of chemoisosteric protein environments related to their 

compatible chemical fragments has been constructed including 16,533 

different chemical fragments linked 73,931 different protein environments 

in 87,711 interactions. 

 

vii) Applicability of chemoisosterism in drug design processes and its value in 

complementing other existing methodologies has been illustrated by 

retrospective analysis concerning the PPARγ receptor. Most of the 

fragments of a PPARγ native ligand have been reconstructed by hopping 

fragments from enzyme protein environments. 

 

viii) A focused library of chemical fragments for PPARγ has been constructed. 

Its contents are supported by the presence of such fragments in known 

PPARγ inhibitors. 

 

ix) The origins of drug polypharmacology are yet to be clearly understood. We 

propose that the levels of polypharmacology observed in current drugs 

may just be a latent signature of the exploitation of chemoisosterism 

during evolution. 
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Appendix A 

Contributions to other publications not included in this Thesis: 

Antolín, A. A.; Jalencas, X.; Yélamos, J.; Mestres, J. Identification of Pim 
Kinases as Novel Targets for PJ34 with Confounding Effects in PARP Biology. 
ACS Chem. Biol. 2012, 7, 1962–1967. 

Journal Impact Factor: 6.446; Citations: 3 

 

The main contribution to this work consisted on the modelling an in-vitro 

confirmed interaction between a common PARP chemical probe (PJ34) and the 

serine/threonine-protein kinase PIM-1. The binding mode for PJ34 to the 

binding site of PIM-1 was initially predicted through a flexible three-

dimensional ligand alignment tool (MIMIC) applied to template PIM-1 

structures co-crystallized with different ligands. A docking tool (AutoDock) was 

subsequently used to confirm and refine the obtained models. 
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Appendix B 

Pharmacophoric properties (HRADPN) and atom types assigned to amino acid 

atoms. Hydrogen atoms inherit the properties to the atom they are bound. 

ALA N N.amh RD  

ALA CA C.3 H  

ALA C C.2 HR  
ALA O O.2 RA  
ALA CB C.3 H  
ARG N N.amh RD  
ARG CA C.3 H  
ARG C C.2 HR  
ARG O O.2 RA  
ARG CB C.3 H  
ARG CG C.3 H  
ARG CD C.3 H  
ARG NE N.plh RDP  
ARG CZ C.cat R  
ARG NH1 N.plh RDP  
ARG NH2 N.plh RDP  
ASN N N.amh RD  
ASN CA C.3 H  
ASN C C.2 HR  
ASN O O.2 RA  
ASN CB C.3 H  
ASN CG C.2 HR  
ASN OD1 O.2 RA  
ASN ND2 N.amh RD  
ASP N N.amh RD 
ASP CA C.3 H  
ASP C C.2 HR  
ASP O O.2 RA  
ASP CB C.3 H  
ASP CG C.2 HR  
ASP OD1 O.co2 RAN  
ASP OD2 O.co2 RAN  
CYS N N.amh RD  
CYS CA C.3 H  
CYS C C.2 HR  
CYS O O.2 RA  
CYS CB C.3 H  
CYS SG S.3h AD 
GLN N N.amh RD  
GLN CA C.3 H  
GLN C C.2 HR  
GLN O O.2 RA  
GLN CB C.3 H  
GLN CG C.3 H  
GLN CD C.2 HR 
GLN OE1 O.2 RA  
GLN NE2 N.amh RDA 
GLU N N.amh RD  
GLU CA C.3 H  
GLU C C.2 HR  
GLU O O.2 RA  
GLU CB C.3 H  
GLU CG C.3 H  
GLU CD C.2 HR  
GLU OE1 O.co2 RAN  

GLU OE2 O.co2 RAN  
GLY N N.amh RD  
GLY CA C.3 H  
GLY C C.2 HR  
GLY O O.2 RA  
HIS N N.amh RD  
HIS CA C.3 H  
HIS C C.2 HR  
HIS O O.2 RA  
HIS CB C.3 H  
HIS CG C.2 HR  
HIS ND1 N.ar RA  
HIS CD2 C.2 HR  
HIS CE1 C.2 HR  
HIS NE2 N.arh RD  
ILE N N.amh RD  
ILE CA C.3 H  
ILE C C.2 HR  
ILE O O.2 RA  
ILE CB C.3 H  
ILE CG1 C.3 H  
ILE CG2 C.3 H  
ILE CD1 C.3 H  
LEU N N.amh RD  
LEU CA C.3 H  
LEU C C.2 HR  
LEU O O.2 RA  
LEU CB C.3 H  
LEU CG C.3 H  
LEU CD1 C.3 H  
LEU CD2 C.3 H  
LYS N N.amh RD  
LYS CA C.3 H  
LYS C C.2 HR  
LYS O O.2 RA  
LYS CB C.3 H  
LYS CG C.3 H  
LYS CD C.3 H  
LYS CE C.3 H  
LYS NZ N.4h RDP 
MET N N.amh RD  
MET CA C.3 H  
MET C C.2 HR  
MET O O.2 RA  
MET CB C.3 H  
MET CG C.3 H  
MET SD S.3 H  
MET CE C.3 H  
PHE N N.amh RD  
PHE CA C.3 H  
PHE C C.2 HR  
PHE O O.2 RA  
PHE CB C.3 H  
PHE CG C.ar HR  
PHE CD1 C.ar HR  
PHE CD2 C.ar HR  

PHE CE1 C.ar HR  
PHE CE2 C.ar HR  
PHE CZ C.ar HR  
PRO N N.am HR   
PRO CA C.3 H  
PRO C C.2 HR  
PRO O O.2 RA  
PRO CB C.3 H  
PRO CG C.3 H  
PRO CD C.3 H  
SER N N.amh RD  
SER CA C.3 H  
SER C C.2 HR  
SER O O.2 RA  
SER CB C.3 H  
SER OG O.3h AD  
THR N N.amh RD  
THR CA C.3 H  
THR C C.2 HR  
THR O O.2 RA  
THR CB C.3 H  
THR OG1 O.3h AD  
THR CG2 C.3 H  
TRP N N.amh RD  
TRP CA C.3 H  
TRP C C.2 HR  
TRP O O.2 RA  
TRP CB C.3 H  
TRP CG C.2 HR  
TRP CD1 C.2 HR  
TRP CD2 C.ar HR  
TRP NE1 N.arh RD  
TRP CE2 C.ar HR  
TRP CE3 C.ar HR  
TRP CZ2 C.ar HR  
TRP CZ3 C.ar HR  
TRP CH2 C.ar HR  
TYR N N.amh RD  
TYR CA C.3 H  
TYR C C.2 HR  
TYR O O.2 RA  
TYR CB C.3 H  
TYR CG C.ar HR  
TYR CD1 C.ar HR  
TYR CD2 C.ar HR  
TYR CE1 C.ar HR  
TYR CE2 C.ar HR  
TYR CZ C.ar HR  
TYR OH O.3h AD  
VAL N N.amh RD  
VAL CA C.3 H  
VAL C C.2 HR  
VAL O O.2 RA  
VAL CB C.3 H  
VAL CG1 C.3 H  
VAL 7CG2 C.3 



 

 

 

 

 

 

 

 

 



 

 

 




