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Introduction

The purpose of this manuscript is the study and extension of some theoretical aspects

that appear in the context of supergravity theories. These issues are gauged super-

gravities, black holes and non-geometric fluxes. In order to motivate the research on

these topicss, we will contextualize the role of supergravity and its importance in the

research that is being done nowadays.

Supergravity was proposed as a unifying theory which is able to host the four

interactions that, up to now, are known in the Universe. As a good candidate, it offers

some appealing ingredients: it is a quantum field theory, namely, it is a quantum and

relativistic theory, and includes a spin-2 particle in its spectrum. These three pillars,

discovered at the end of the last century, are understood to be indispensable for any

theory whose goal is the description of all the interactions.

Despite of its encouraging birth as a unifying theory of all of the interactions, su-

pergravity become ruled out due to its problem of renormalizability. However, it keeps

on considered an intriguing and useful topic to be treated by the scientific commu-

nity. To really understand why it gains relevance in the field of Theoretical Physics,

let us glance over the precedents of theories that tried to carry out this unifying goal.

The search of a unifying theory that describes the physics of the Universe has been a

challenge for humanity since long time ago. Theories of the matter composition are

considered as the first attempts of unifying descriptions. During the 6th century BC

some Indian philosophers formulated the first ideas about the composition of the mat-

ter1 [3]. They claimed that there were up to 6 different classes of atoms and assigned

up to 24 properties that described their ability to move, vibrate or combine with each

other.

In addition, Greek philosophers, led off by Democritus, also studied the concept

of ‘atom’. One remarkable fact of this thinking was the justification of any kind of

interaction as contact forces between the atoms [4]. During the Classical Greece epoch,

Aristotle proposed a different concept of matter composition as well as new ideas about

motion and vacuum. At that time, new advances in astronomy and astrophysics were

done due to observational measurements.

Despite of during the Dark Ages (from the 5th to the 15th century), not too relevant

discoveries came up in Europe. However, Mathematics were particularly improved in by

1Some historical studies refer to Mochus of Sidon, a Phoenician protophilosopher who lived in the

14th century BC as the author of the first atomic theory that inspired the atomism thinking [1, 2]
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Muslim scientists. Important mathematicians and physicists developed new concepts

that soon reached Europe and were applied and extended. This prorgress contributed

to the rise of an outstanding generation of physicists as Copernicus, Galileo, Newton

or Descartes. All of them made contributions to several branches of Physics that result

essential for the development of the theories that describe our Universe nowadays.

At this point, we consider necessary to stress some of Newton’s contributions. New-

ton’s results supposed a leap in the unification and description of diverse fields like

optics or gravity. In particular, his gravitational theory [5] resulted revolutionary be-

cause of two facts: it was the first formulation of an interaction without contact and

unified Galileo’s work on terrestrial gravity, Kepler’s laws and the phenomenon of tides

by explaining them with one single law.

Michael Faraday was one of the first phyisicists to search an evidence of unifying

theory for gravity and electromagnetism in his experiments [6]. Despite of he did not

succeed in this direction, his work was crucial for the formulation of Maxwell equations

in 1865. During this century and the following one, it gradually became apparent that

many common examples of forces (contact forces, elasticity, viscosity, friction, pressure,

. . . ) result from electrical interactions between the smallest particles of matter.

The beginning of the 20th century brought a trail-blazing proposal. Quantum me-

chanics formulation supposed a revolution in Physics and, despite of its innovating

formalism, its success and predictive power were soon known and recognized. This

can be reflected in Dirac’s thought, who at the end of the 1920s, claimed that quan-

tum mechanics was tested enough that ‘the underlying physical laws necessary for the

mathematical theory of a large part of physics and the whole of chemistry are thus

completely known” [7]. The emergence of this new formalism attracted the interest

of the majority of scientists, leaving the search of a unifying theory as a secondary

problem.

It was after General Relativity (GR) when the search for the joined theory of gravity

and electromagnetism recovered interest. In some sense, this happened because no

other interaction but electromagnetism and gravity was expected. Some authors like

Nordström, Weyl, Eddington, Kaluza, Klein or Einstein himself developed at that

period some contributions that are essential for the new theories that are currently

formulated.

The formulation of QED theory, together with the discoveries of the strong and

weak interactions impulsed quantum mechanics as a fundamental pillar in any phys-

ical theory. This contradicted Einstein’s thought, who expected its appearance as a

consequence in the framework of a bigger deterministic theory. Moreover, the work

done by Glashow, Weinberg and Salam [8–10] in 1968 led to the unification of the

electromagnetic and the weak interaction. It seemed that quantum formulation was

defeating the geometry approach of Einstein’s theory. That is why people emphasized

in attempting to unify the unique quantum-mechanically unexplained theory, QCD,

with the new electroweak theory.

Despite of there is not a unique theory of the quantum interactions, strong and
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electroweak forces coexist in the so-called Standard Model of particle physics (SM).

This theory showed non-renormalizability problems that were solved by ’t Hooft and

Veltman [11]. They showed that any quantum field theory whose interactions are based

on internal gauge symmetries is renormalizable. In particular, the gauge group of the

SM is SU(3)× SU(2)× U(1). One remarkable feature of this theory is the prediction

of massless particles in its spectrum, which disagrees with the experimental evidences.

However, this was solved by the so-called Higgs mechanism [12, 13], which breaks the

SU(2)×U(1) in such a way that a potential is generated and the degrees of freedom are

rearranged so that some particles become massive. The existence of this mechanism in

Nature has been recently proven by means of the detection of the Higgs boson [14,15].

The phenomena described by the SM happen at the scale energy of 102 GeV and its

accuracy is excellent [16]. However, when we consider theories that describe the weak

and strong interactions as sharing a common origin, the unification scale blows up to

1016 GeV. Several Grand Unification Theories (GUTs) have been formulated and, in

general, only the ones that include an additional ingredient, supersymmetry, can host

the bunch of particles that are already known and are not experimentally ruled out.

Supersymmetry (SUSY) is nowadays a crucial ingredient in the study of unification

theories. From the theoretical point of view, it can be understood as a trick to circun-

vent the Coleman-Mandula theorem [17]. This no-go theorem forbids the existence of

symmetries that combine spacetime and internal symmetries by means of Lie algebras.

However, Haag-Lopuszanski-Shonius theorem [18] demonstrates that supersymmetry,

and thus graded Lie algebras, is the only way in that spacetime and internal symmetries

can be consistently mixed.

In my opinion, what it is really interesting about supersymmetry is the match-

ing between this natural extension of the group structure of a given theory and its

parallel natural consequences from the phenomenological perspective. If we have an

arbitrary theory of fermions and bosons that enjoys Poincaré and internal symmetries,

Coleman-Mandula theorem does not allow to include more symmetries than those two.

Nevertheless, there is one remaining possibility: what if I demand my theory to be

invariant under the exchange of fermions and bosons? According to the spin-statistics

theorem, bosonic fields commute whereas fermionic fields anticommute. Combining

the two kinds of fields into a single algebra requires the introduction of a Z2-grading

under which bosons are the even elements and fermions are the odd ones. This is

not as trivial as it looks like, and some restrictions have to be imposed. In order to

preserve the equilibrium between the bosonic and fermionic sectors, a bunch of new

particle that are not predicted by the SM arise. Some criticists use this fact to detract

SUSY but, despite of this is not a matter of faith, we could think of its similarity to

the moment in which Dirac predicted the antiparticles, that required the doubling of

all the ferminonic particles known. Supersymmetry solves more theoretical problems:

it provides a suitable candidate particle to solve the problem of dark matter and cancel

the quadratic divergencies of fermions and bosons to the Higgs mass.

At this point, motivated by the success of gauge theories (GR and SM) and the
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pleasant scenario that SUSY provides, it seems natural to consider theories based on

local supersymmetry. This is the main idea of Supergravity theories (SUGRA). Quickly,

a good news appears: since the Poincaré generators are part of the superalgebra,

requiring local supersymmetry automatically implies local Poincaré invariance, so that

GR is automatically guaranteed. The first examples were soon found [19, 20]. The

initial excitement over supergravity soon waned, as various failings were discovered:

during the 1980s it was proven that supergravities could not be renormalized.

A more rebel idea than supergravity seemed to be required to describe quantum

gravity. Then, why are we studying a theory that is already ruled out? To answer

this question, a new theory has to be introduced: string theory, the most promising

candidate for the theory of everything. Its origin in the context of certain scattering

amplitudes for hadrons [21] does not have to do with the unifying interpretation that

was first given in [22]. In this work, the authors realized that some bosonic patterns of

vibrating strings had similar properties of the graviton. This led to the development of

the bosonic string, which soon was generalized to supersymmetric versions. In general,

strings can vibrate in many ways and be restricted to several boundary conditions.

The different vibrational modes correspond to different types of elementary particles

observed in Nature.

One peculiar feature of string theory is the so-called critical dimension: all string

theories necessarily live in a number of dimensions greater than four. This is motivated

by imposing Weyl invariance on the world-sheet metric of the string. That is, similarly

to the 1-dimensional worldline traced by a particle in its motion, strings generate a

2-dimensional surface where a metric can be defined. In order to perform a suitable

quantization of the string without breaking Poincaré invariance, Weyl invariance of

the worldsheet is required. Once this is imposed, a given number of dimensions is

required to avoid the conformal anomaly [23, 24]. For the bosonic strings, this critical

dimension is D = 26, and for the rest of theories, it is D = 102. Despite of having

more than 4 dimensions seems to be a problem, the additional dimensions give us more

freedom to mold our original theory towards an effective theory that describes reality

accurately. This is done by performing the so-called Kaluza-Klein (KK) dimensional

reductions [26, 27], which were originally motivated to embed 4-dimensional gravity

and electromagnetism in 5-dimensional spacetime. Although form the phenomeno-

logical point of view, it is required to have a 4-dimensional theory, the reductions in

supergravities and string theories can be done from any arbitrary dimension to any

lower dimension.

5 different supersymmetric string theories are known: type I, type IIA, type IIB,

heterotic SO(32) and heterotic E8 × E8. The discovery of T duality related IIA and

IIB theories as well as the heterotic SO(32) and E8 × E8 strings. There were found

more dualities that connect different regimes of the superstring theories. In addition,

there is a perfect agreement between the massless modes of the superstrings and the

2The so-called non-critical string theory is a formulation is an alternative formulation that circun-

vents this critical dimension keeping a vanishing conformal anomaly. We refer to [25] for its treatment.
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field content of certain supergravities. That is, type IIA/IIB superstrings fill the N =

2A/2B SUGRA massless multiplets, type I strings fill the N = 1 D = 10 massless

multiplets, and the same occurs for the heterotic strings and the N = 1 D = 10

SUGRAs, with their respective gauge multiplets. Furthermore, it was found that

the respective supergravities described the weak coupling regime of the corresponding

string theories.

On the other hand, new models of compactifications based on Calabi-Yau manifolds

were able to host the gauge group of the SM of particles [28]. This period, known as

the first superstring revolution, finished at the end of the 1980s with the discovery of

the D-branes, solitonic objects that were found to be solutions of the corresponding

supergravity theories associated to each string theory.

During the 1990s, new boosts were given to this field. Dualities provided a new

understanding of the different string theories. The so-called second superstring revolu-

tion began with the birth of a new 11-dimensional theory, M theory, whose aim was

the inclusion of the five string theories [29]. It is expected to recover the superstring

theories by dimensional reduction of M theory as well as D = 11 supergravity when we

calculate its low energy limit. M theory would implement the underlying idea of hav-

ing a unique theory in which all the string theories are particular subcases. The BFSS

model [30], a matricial approach to construct this theory, is able to obtain D = 11

SUGRA at low energies, but crashes at short distances. In fact, it suggests the need

of a non-commutative geometry that, in principle, discards the continuum spacetime

over which SUGRA is formulated.

In 1997, the work of Maldacena opened a a new enigma in string theory. Studying

extremal and charged black holes, he noted that the low energy excitations of the theory

near the horizons behaved as the string excitations of the strings near the branes.

Thus, he conjectured that string theory on a near-horizon extreme-charged black hole

geometry, an AdS × S2, is equally well described by the N = 4 supersymmetric Yang-

Mills theory. This is the so-called AdS/CFT correspondence [31].

At this point, we are ready to answer the question about the role of supergravity

in current research. Supergravity provides a useful scenario to extract some issues

and limits of string and M theory. In particular, every string theory gives rise to

a supergravity theory in its low energy limit. Similarly, due to the dualities among

different string theories, the conjectured 11-dimensional M theory has to reproduce

Cremer-Julia-Scherk supergravity [32] as its low energy limit. This means that the

results on superstrings can be projected to SUGRA and, what is more appealing, all

the results in SUGRA are exploratory hints to discover their corresponding analogs in

superstring theories. For example, the dimensional reductions of superstring theories

and the supergravities that imply have to be consistent with the SUGRAs that can

independently be constructed in any dimension. This correspondence is one of the

topics treated in this document. In particular, we will study the higher-dimensional

origin of gauged supergravities.
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General Relativity and massive theories

Einstein’s formulation of gravity completely differs from the field theoretical approach

that in the 1950s and 1960s were motivated by quantum mechanics. Had we wanted

to follow a logical path3, we had looked for a relativistic theory of bosonic fields, since

fermionic states cannot describe long range macroscopic forces due to their impossi-

bility to build up coherent states. Some of the first scalar theories were proposed by

Nördstrom [33, 34] and Einstein [35], but all of them were ruled out by experimental

evidences4. For states with helicity ≥ 1, gauge invariance is required to substract extra

degrees of freedom and guarantee positive energy conditions. By imposing gauge in-

variance for the h = 1 states, Maxwell equations are obtained. Helicity 2 states provide

a linearized general coordinate invariance as gauge symmetry. The additional inclusion

of consistent self-interactions automatically bring us to, and uniquely to, GR and full

general coordinate invariance [37–41]. Up to now, states of helicity 3 or greater cannot

describe theories that include self-interactions [42].

Thus, starting from special relativity (Lorentz invariance), all plausible particles

are considered and their interactions restrict our scenario to helicity 2 fields. However,

Einstein performed a leap of insight in this ‘logical’ description; his assumptions of the

equivalence principle and general coordinate invariance, though it was not the only

possibility, led to General Relativity. Let us see some examples of this non-uniqueness.

General coordinate invariance is the gauge symmetry of GR. The redundant description

that gauge symmetry provides, motivates the existence of the so-called Stückelberg

mechanism [43]. This procedure restores gauge invariance by including additional

auxiliary fields when the symmetry is broken. It can be applied to make any lagrangian

invariant under general coordinate diffeomorphisms, so that this property does not

necessarily implies GR. Similarly, the principle of equivalence is not exclusive of GR. For

example, Einstein-Fokker theory [36,44] includes this feature. Thus, the real underlying

principle of GR is the following: GR is the theory of a non-trivial interacting massless

helicity 2 particle. The rest of properties are consequences of this statement.

What about the range of validity of GR? It is not UV complete theory. In particular,

three different regimes are distinguished. The classical linear regime, where both non-

linear effects and quantum corrections can be ignored for r > rS ∼ M
M2
P

. The quantum

regime, r < 1
MP

, describes the region near the singularity of the black hole, where GR

has to take into account high-energy corrections. Finally, there is a middle interval,
1
MP

< r < rS, where non-linearities of the theory are valid without worrying about

quantum corrections. This scenario is a plausible motivation to try to add a mass to

the graviton (or any other modification of GR) and see what happens by making use of

the behaviour that physics must show in the continuity of its parameter (in this case,

the mass).

One of the predictions of GR is the existence of a density ρ ∼ 10−29 g/cm3, which

3Logical, in the sense of the trends of that epoch.
4We earnestly recommend [36] for a very pedagogical introduction to scalar gravity.
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is generically thought as a dark energy contribution that implies an additional term

proportional to Λ in the Einstein field equations. To give the correct vacuum energy,

this constant has to be Λ/M2
P ∼ 10−65, whereas arguments from quantum field theory

suggest a value up to order unity [45]. Many modifications can be constructed. For

example, the inclusion of more Ricci scalar terms in the Einstein-Hilbert action, the

so-called F (R) theories [46–48]. However, these models do not find a solution of the

fine-tuning of the experimental parameters. We could understand this problem from

a different viewpoint. Sometimes, these small parameters arise as natural parameters

that protects a symmetry, i.e., when they are set to zero, the system enjoys a new

symmetry. An example of this statement is chiral symmetry and the small fermion

masses. However, the case of the Higgs mass and the cosmological constant are not

justified by any obvious symmetry.

Black holes in supergravity theories

Once we have glanced some qualitative aspects and the limits of GR, we will introduce

one of the most important kind of solutions of the Einstein field equations, the black

holes. Since SUGRA is the framework of this work, we will focus on the issues of BH

solutions in these theories.

Einstein field equations explained the anomalous perihelion of Mercury in 1915,

confirming its predictive power. In the following years, Schwarzschild, Reissner, Nord-

strom, Kerr and many other authors found solutions that, at a certain limit, implied

the existence of a region where even light could not get away of gravitational force.

This region is what it is understood as black hole (BH). Some of the classical properties

of BHs can be similarly stated as laws of thermodynamics. However, this analogy turns

out to be complete when the semi-classical Bekenstein-Hawking entropy is considered.

Very appealing references of this classical treatment are [36,49–51].

But what kind of solutions do we have when gravity is coupled to more fields? Are

they similar to the ones obtained for pure gravity? What is the influence of preserving

a fraction of supersymmetric charges in our solutions? We will describe BHs in some

particular supergravity and string theory scenarios.

The discovery of string dualities in the second string revolution led to a new picture

in the knowledge of solutions of the theories. In particular, S duality provided a bridge

between the strong coupling limit of a given string theory and its dual theory that

turned out to be weakly coupled. The result of applying dualities to black hole is a dual

description of string excitations. The so-called string-black hole correspondence [52,53]

predicts the black hole entropy in terms of string states and gives an explanation for

the final state of a Schwarzschild BH.

Supergravity reproduces the Einstein-Hilbert action coupled to a certain number of

matter fields, whose specific content depends on the theory under analysis. Generically,

these fields are a bunch of scalar fields (moduli), spin-1/2 fermions, spin-1 gauge fields
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and N gravitinos, where the latter behave as the gauge fields of the local supersymme-

try. At this point, we can wonder what are the simplest BH solutions in this scenario

and their relation to the pure gravity ones. The answer is that the solution has to carry

the following quantities: electric/magnetic charges and scalar hair. Due to additional

magnitudes that describe a black hole, we have freedom enough to set a particular con-

figuration in the parameter space such that BH properties become very special. This

is the so-called extremality, that gives rise to extremal BHs [54–58]. These extremal

BHs are stable gravitational objects with finite entropy but vanishing temperature.

This means that there is a particular relation between entropy, charges and angular

momentum such that the full gravitational energy comes from scalar fields, charges

and rotation [59]. Extremality also implies that internal and external horizons, namely

the Cauchy and event horizons, do coincide. Another feature of this family of solutions

in 4-dimensional spacetime is its geometry near the event horizon. The metric in this

region is described by the Bertotti-Robinson [60] solution, which shows an AdS2 × S2

shape. Surprisingly, the radius of the AdS2 sector coincides with the radius of S2 and

it is proportional to the square root of the BH entropy.

In general, BHs in SUGRA are surrounded by scalar fields that provide a scalar

hair (the value of the moduli at infinity). Nevertheless, the BH entropy does not

show a dependence on the scalar charges, showing only dependence on the asymptotic

electromagnetic charges.

This blurry situation is explained by means of the so-called attractor mechanism

[61–64], a curious phenonemon that entails the successful collaboration of extremal

BHs, its dynamics, algebra and number theory5. The situation is described as follows:

the scalar fields approach fixed values at the BH horizon, that are only determined

by the charge configuration. The asymptotic values of the moduli are forgotten even

though the dynamics is completely valid and the fixed point represents the equilibrium

of the system. In fact, the flow of the scalars towards the horizon behaves as a gradi-

ent flow towards a fixed point, which is the minimum of a function called black hole

potential. This black hole potential is a positive definite function in the moduli space.

For solutions that preserve the maximal amount of supersymmetry (1/2-BPS) in

N = 2 theories, all of the scalar are fixed and the entropy is shown to be propor-

tional to the black hole potential evaluated in the horizon [67]. On the other hand,

non-supersymmetric extremal solutions (non-BPS states) also exhibit this attractor

behaviour. However, in this case not all of the scalar of the vector multiplets be-

come stabilized in terms of the BH conserved charges at the event horizon. Some of

them generate flat directions in the potential minimum [68]. Even though, the en-

tropy of non-BPS BHs also depends on the dyonic charges, as in the supersymmetric

case [68, 69].

Finally, it is worthy to remark the numerous bibliography that has emerged in the

late times relating pure entangled qubits states in the framework of quantum informa-

5Actually, this mechanism also applies to non-extremal BH configurations [65,66].



17

tion with extremal BHs in superstring theory [70–72].

Outline

This work is organized as follows.

• Chapter 1 presents the main features of ungauged supergravities, emphasizing in

supersymmetry as one of its pillars. In the last part, we will show the different

reduction schemes that we can follow to perform a dimensional compactification

of an arbitrary field theory.

• After having performed a knowledge in supergravity, Chapter 2 tries to provide

an understanding of supergravity from the superstring viewpoint. An overview

of the main features of string theory is done in such a way that supergravity is

understood as a reference that not only checks the consistency among the string

theories, but also gives some insights about symmetries, solutions and many other

issues that happen in string theory.

• In Chapter 3 gauged supergravities are studied, where the embedding tensor

formalism appears as an innovating tool in their search.

• After that, we give a full example of how the embedding tensor scans all the

possible gaugings of D = 9 maximal supergravity. This is done in Chapter 4.

We construct the tensor hierarchy of the gauged theory and compare with our

results with the ones found in the bibliography.

• Chapter 5 deals about flux compactifications and how do they motivate one

of the mismatchings between string theory and supergravity. The classification

of gauged supergravities that the embedding tensor provides and the ones that

arise under flux compactification of higher-dimensional theories do not coincide.

Double field theory is used to solve this problem, at least, for all maximal and

half-maximal D = 9, 8, 7 supergravities.

• In Chapter 6 we study black holes in N = 2 D = 4 supergravity and provide

a mechanism to obtain explicit composite black hole solutions with an arbitrary

number of centers and for any quadratic prepotential.

• Finally, Chapter 7 resummes and synthesize the main results and conclusions of

the work done in this thesis. Some prospects and further projects are shown as

possible candidate ideas to address.

• Some appendices are included. Appendix A treats several aspects related to

supegravity theories: dimensional reductions, scalar cosets and central charges.

Appendix B includes notation, definitions and more results obtained in Chapter
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4. Appendix C shows some technical material used in the development of the

calculus of Chapter 5.



Chapter 1

Supergravity: a primer

In this chapter, we will introduce some basic aspects of supersymmetry and supergrav-

ity theories. We will show how supersymmetry restrics and cast the field content of

the theory depending on its dimension. Furthermore, we will show a catalog of the

higher-dimensional theories, D = 11, 10, 9.

1.1 SUSY: fermionic symmetries, spinors and all

that

It is generally supposed that the exact or approximate symmetry groups of the world

were (at least locally) isomorphic to direct products of the Poincare group and compact

Lie groups. However symmetries which extend Poincare symmetry in a non trivial

way were suggested in the early sixties as a way of formulating a theory of hadronic

physics (see for example [73–78], also [79]) where the older, nonrelativistic, SU(4) ⊃
SU(2)s × SU(2)iso−s Wigner “supermultiplet” model [79] was extended to groups as

SU(6).

The partial success of the SU(6) theories raised the possibility of a relativistic

symmetry group which was not simply such a direct product. This extension of these

theories to include special relativity was however very problematic 1 A possibility of

extension was to search for a larger group which includes the SU(6) group and the

Lorentz group as subgroups. One possible group of this kind is the SL(6) group which

contains SL(2) × SL(3) as a subgroup. However, it seemed to be impossible such an

extension without the introduction of 36-dimensional space. Other possibilites were

explored as the the Ũ(8), Ũ(12) theories, a covariant merging of isospin and space-time

symmetries, including higher dimensional gamma matrices generators.

All attempts to find such a group were clearly unsuccessful. At the same time,

a it appeared set of no-go theorems [17, 80, 81], the Coleman–Mandula theorem [17]

1 In a relativistic wave equation, the spin indices are so tightly related to the coordinates (as we

may see in the Dirac equation) that it is impossible to decouple the spin variables from the coordinates

even in the free Hamiltonian.
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the strongest among them, which showed that the symmetry group of a consistent 4-

dimensional relativistic quantum field theory with a finite number of massive particles is

neccesarily the direct product of the internal symmetry group and the Poincare group.

Typically, these theorems showed that a physical field theory with a finite number of

definite mass particles and with an analytical S matrix with not any of these groups

as symmetries, would not allow anything but trivial scattering, in the forward and

backward directions.

Superalgebras, as a way of avoiding the no-go theorems, appear in particle physics

for the first time in [82], where an approximate unified model of mesons, baryons,

antibaryons and exotic (qqq̄q̄) mesons is presented 2 3.

In 1971, Gol’fand & Likthman developed the four-dimensional Poincaré superal-

gebra [85]. Ramond [86] and Neveu & Schwarz [87] developed superstrings and the

supersymmetric extensions of a non Lie algebra, the Virasoro algebra. Volkov &

Akulov [88] and Wess & Zumino [89] wrote different realizations of supersymmetric

field theories, even without being aware of the earlier work by Gol’fand & Likthman.

In particular 4, the Wess–Zumino model [89–92] was the first widely known example of

an interacting four–dimensional quantum field theory with supersymmetry. 5 Super-

space formalism was introduced in 1974 [93]. In 1975 Rudolf Haag, Jan Lopuszanski,

and Martin Sohnius published [18] a general proof that weakening the assumptions

of the Coleman–Mandula theorem by allowing both commuting and anticommuting

symmetry generators, there is a nontrivial extension of the Poincare algebra, namely

the supersymmetry algebra and this is the most general symmetry of the S matrix of a

quantum field theory. More in detail, the theorem may be summarized as follows: the

most general Lie algebra of generators of supersymmetries and ordinary symmetries

of the S-matrix in a massive theory involves the following Bose type operators: the

energy-momentum operators Pµ ; the generators of the homogeneous Lorentz group

Mµν ; and a finite number of scalar charges. It will involve in addition Fermi type

operators, all of which commute with the translations and transform like spinors under

the homogeneous Lorentz group.

2The term “supermultiplet”, as in “the SU(4) Wigner supermultiplet”, appears for the first time

in 1964, with no connection to “supersymmetry”
3Lie superalgebras appeared, though not in a central role, in some mathematical contexts in the

sixties [83,84]
4 At this time QCD and the full SM with their symmetries product of the Poincare group and

local Lie groups were well stablished and apparently there was not need for further developments.
5The model consists of a single chiral superfield (composed of a complex scalar and a spinor

fermion) whose cubic superpotential leads to a renormalizable theory. The action of the free massless

Wess–Zumino model is invariant under the transformations generated by a superalgebra allowing both

commuting and anticommuting symmetry generators.
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1.1.1 Clifford algebras and spinors

The transformation properties of Bose and Fermi generators under the Lorentz group

imply restrictions on the number of each of these types of generators and, indirectly,

on the number and signature of spacetime dimensions. These restrictions are trivial

for the case of Bose generators: a vector representation in a D-dimensional spacetime

has always D components, for any D. The situation is much more complicated for the

Fermi generators. They carry a spinorial representation of the Lorentz group which

makes convenient the detailed study of the representation theory of Clifford algebras.

Clifford algebras are relevant in Physics due to the fact that their representations

can be used to construct specific representations of symmetry groups, the spinorial

representations. In particular, a representation of the D-dimensional Clifford alge-

bra can be used to construct a representation of the D-dimensional Lorentz algebra

so(1, D − 1). More in detail, if we define gamma matrices {γµ}µ=0,...,D−1 which satisfy

a Clifford algebra with associated metric ηµν = diag (−,+, . . . ,+),

{γµ, γν} = 2ηµνI , (1.1)

then the matrices

ΣS
µν =

1

2
[γµ, γν ] (1.2)

are generators for a spinorial representation S of the Lorentz group. The exponentiation

of these generators gives a Lorentz transformation

ΓS(Λ) = exp
(

1
2
ωµνΣS

µν

)
. (1.3)

It can be shown that there is only one inequivalent irreducible representation of the

Clifford algebra in D dimensions and this is 2[D/2]-dimensional. The elements of these

2[D/2]-dimensional vector representation space, where the algebra acts are the Dirac

spinors.

Irreducible representations of Clifford algebras may lead to reducible Lorentz repre-

sentations depending on the dimension of the spacetime. For instance, even dimensions

allow the existence of 2[D/2]−1-dimensional irreducible representations. This can be eas-

ily seen by defining a matrix γD+1,

γD+1 = i(−1)
D−2
4
−1γ0 · · · γD−1 . (1.4)

This chirality matrix is traceless, squares to unity, half of its eigenvalues are +1s and

the other half are -1s. It is natural then to split Dirac spinors into the direct sum of the

subspaces of spinors with different eigenvalues. The elements of each of these subspaces

are called Weyl spinors, they satisfy, by definition, the Weyl or chirality condition,

1

2

(
1± γD+1

)
χ = χ , (1.5)
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D ( mod 8) spinor irreps real components

1, 3 M 2(D−1)/2

2 MW 2D/2−1

4, 8 M 2D/2

5, 7 D 2(D+1)/2

6 W 2D/2

Table 1.1: Different irreducible spinorial representations depending on the dimension

D and their corresponding real components.

where χ is an arbitrary spinor. The so-called left- and right-handed spinors correspond

to the eigenvectors with eigenvalues +1 and -1, respectively.

We can also reduce Dirac spinors using the fact that, since γµ satisfies 1.1, also γ∗µ
and γTµ do. This implies the existence of isomorphisms relating these representations.

One isomorphism, represented by C, relates

CγµνC
−1 = −γTµν . (1.6)

The matrix C is called a charge conjugate matrix and allows to define a charge-

conjugate spinor,

λ̂ = λTC . (1.7)

We can look for spinors whose charge-conjugate spinors are proportional to their Dirac

conjugate λ̄ defined by

λ̄ ≡ iλ†γ0 . (1.8)

That is,

λ̂ = αλ̄ = λTC = αiλ†γ0 . (1.9)

This is a “reality” condition for the spinors. The ones that fulfill it are called Majorana

spinors. Sometimes chirality and Majorana conditions may be simultaneously satisfied.

We schematically show in Table 1.1 some characteristics of the spinorial irreducible

representations for any dimension.

1.1.2 SUSY algebras and their representations

From a mathematical point of view a Lie superalgebra is based over a Z2 graded vector

space [82–84]. The physical Bose and Fermin elements will be respectively the grade 0

and grade 1 algebra vectors.

A Lie superalgebra s satisfies the following properties:
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• s is a mod 2 graded vector space over C. I.e., it admits a map:

gr : s −→ Z2 (1.10)

which decomposes s into s(0) and s(1) such that

gr(B) = 0 mod 2 , ∀B ∈ s(0) , (1.11)

gr(F ) = 1 mod 2 , ∀F ∈ s(1) . (1.12)

• s is endowed with a binary operation, the bracket {, ], which is bilinear, superan-

ticommutative and mod 2 grade additive,

This means that, given A,B ∈ s, we have [A,B] = −[B,A] in all cases but one,

where both A and B are Fermi in which case [A,B] = +[B,A]. The mod 2 grade

additivity means that denoting the grades a, b, c of A,B,C ∈ s respectively, if we

have [A,B] = C then a+ b = c( mod 2) has to be satisfied.

{A,B] = (−1)1+gr(A)gr(B) {B,A] , (1.13)

gr({A,B]) = gr(A) + gr(B) . (1.14)

• The bracket operation obeys the superJacobi identity

(−1)1+gr(C)gr(A){{A,B], C]

+(−1)1+gr(A)gr(B){{B,C], A]

+(−1)1+gr(B)gr(C){{C,A], B] = 0 .

This reduces to the ordinary Jacobi identity in all cases but one: when any two

of the elements A,B,C are Fermi and the third one is Bose in which case one of

the three usual Jacobi terms has its sign flipped.

The simple finite-dimensional Lie superalgebras over C are fully classified [94, 95].

There are eight infinite families, a continuum D(2|1;α) of 17-dimensional exceptional

superalgebras, and one exceptional superalgebra each in dimensions 31 and 40. The

special linear sl(m|n) and the orthosymplectic osp(m|n) superalgebras are the most

relevant ones from the physical point of view. The superalgebra osp(4|N), which has

as bosonic Lie algebra so(3, 2) × so(N), corresponds to the AdS superalgebra. The

superconformal one is su(2, 2|N), which has as Lie algebra so(4, 2)× su(N)× u(1).

It is of interest to us superalgebras which include the Poincare group. The Poincare

superalgebra (the superalgebra whose bosonic sector is strictly the Poincare algebra)

is generated by Pµ,Mµν , Q
i
α which satisfies the relations

[Mµν ,M
ρσ] = −2δ

[ρ
[µMν]

σ] , [Pµ,Mνρ] = ηµ[νPρ] , [Pµ, Pν ] = 0 ,

[Mµν , Q
i
α] = −1

4
(γµν)α

βQi
β , [Pµ, Q

i
α] = 0 ,

{Qi
α, Q

j
β} = (γµC−1)αβPµδ

ij . (1.15)
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The last term implies that two internal fermionic transformations lead to a spacetime

translation. Here it is realized basic feature of SUSY, the interplay between spacetime

and some other internal symmetry. 6

In superalgebras including the Poincare group the number of supercharges (or grade

1 generators) turns out to be a multiple of the number of real components of an

irreducible spinor. This is required by Lorentz invariance itself, since in this case the

components of an irreducible spinor transform into each other. Thus, the supercharges,

Qi
α, carry two indices: i = 1, . . . , N , where N is, in principle, an arbitrary integer, and

α is an irreducible spinor index (as it is obvious from the commutation relations of the

Q′s and the M ’s).

Some elementary properties

Some well-known important properties can be direct and elementarily deduced from

the Fermi sector of the Poincare superalgebra. Let us take as an example the simplest

(N = 1) supersymmetric extension of the Poincare algebra, which can be written

in terms of two complex Weyl spinors and their conjugates with the following anti-

commutation relations:

{Qα, Qβ} = {Q†α̇, Q
†
β̇
} = 0, (1.16)

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ . (1.17)

(1.18)

Contracting the first relation with (σ̄ν)β̇α, we have

4Pν = (σ̄ν)β̇α{Qα, Q̄β̇} . (1.19)

In a quantum theory the superalgebra generators are operators in the Hilbert space of

the system which includes bosonic and fermi states. Single particle states fall into irre-

ducible representations of the algebra, the supermultiplets. Since the fermi generators

commute with P µPµ all particles in a supermultiplet have the same mass 7.

The time component, P0 corresponds to the hamiltonian operator, which can be

written

4P0 = 4H =
∑
α

{Qα, Q̄α̇} =
∑
α

{Qα, Q
†
α} =

∑
α

(QαQ
†
α +Q†αQα) . (1.20)

6Incidentally we observe here the spin-statistics connection at work: fermi half integer spin gener-

ators have to be anticommuting.
7They have in addition the same charge corresponding to any possible gauge symmetry.



1.1. SUSY: fermionic symmetries, spinors and all that 25

The expected value of the hamiltonian in an arbitrary state |s〉 is given by,

〈s|H|s〉 =
1

4

∑
α

〈s|(QαQ
†
α +Q†αQα)|s〉 =

1

4

∑
α

∑
s′

〈s|Qα|s′〉〈s′|Q†α|s〉+ 〈s|Q†α|s′〉〈s′|Qα|s〉

(1.21)

=
1

2

∑
α

∑
s′

|〈s′|Qα|s〉|2 , (1.22)

≥ 0 (1.23)

where we have introduced the closure relation I =
∑

s′ |s′〉〈s′|. Thus, we conclude that

in a supersymmetric quantum theory, any physical state |s〉 must have non-negative

energy. The inequality saturates if the (ground or vaccuum) state (denoted by |0〉)
is annhilated by a SUSY generator Qα|0〉 = 0 in this case one talks of absence of

spontaneous SUSY symmetry breaking.

Since Qα has spinor indices, when it acts on a bosonic state of the hilbert state it

produces a spinor, fermionic state, any supermultiplet has both bosonic and fermionic

states. One can show that the number of boson states is equal to the number of fermion

states for each supermultiplet with nozero energy.

Using the SUSY algebra properties one can construct [96] the corresponding algebra

representations that is the detailed particle supermultiplet content. As all the particles

in the supermultiplet have the same mass one can study independently the massive and

massless cases. In both cases the SUSY algebra reduces to a Clifford algebra of raising

and lowering anticommuting operators. Combining the Clifford algebra representation

theory and maximal weight techniques one can construct the entire massive or massless

multiplets applying repeteadly times “raising” Q† operators to a given maximal spin

state. As an example, the so called massive (massless) “chiral” multiplet is formed

by starting with a spin 0 state: contains a Majorana (Weyl) fermion and a complex

scalar. The massive vector multiplet is formed from a spin 1/2 initial state, contains

two Majorana fermions, a massive spin 1 vector and a real scalar. The massless vector

multiplet turns out to be composed of a Weyl fermion and a massless spin 1 boson.

There exists a physical upper bound for N , the number spinor charges. If N ≥ 9,

massless representations necessarily contain some undesirable particles of higher spin

s ≥ 5/2. We can see in table 1.2 the spin content of all the representations whose

maximum spin satisfies smax ≤ 2.

If we restrict ourselves to theories with particles of spin no higher than 2 (and not

more than one “time”-like coordinate) the maximum number of supercharges that we

can have is 32 and may live in dimensions no higher than 11. We will refer to these

SUSY theories with the maximal number of supercharges as maximal. In 1, 3, 4, 5, 7,

8, 9, 11 dimensions, a SUSY algebra is classified by a positive integer N . Meanwhile in

2, 6, 10 dimensions a SUSY algebra is classified by two integers (NR, NL), at least one

of which is nonzero. M represents the number of left-handed SUSYs and N represents

the number of right-handed SUSYs.
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The simple SUSY algebra above, with N = 1 is invariant under a multiplication of

the Qα by a phase. The corresponding symmetry group, called U(1)R, is the simplest

example of an additional symmetry at the level of the supercharges. The so-called R

symmetry is a automorphism of the fermi sector, it transforms different supercharges

into each other. For extended SUSY (N ≥ 2), it becomes a non-abelian group. For-

mally, it is defined as the largest subgroup of the automorphism group of the SUSY

algebra that commutes with Lorentz transformations. A summary of this R symmetry

is shown in table 1.3.

Central charges

SUSY algebras with N ≥ 2 can be furtherly extended by adding “central charge” op-

erators. These can be Lorentz scalars “central charges” Zij [18]. or “tensorial” central

charges Zij
µ1,...

, [97,98]. They appear in the anticommutator of two SUSY generators as

{Qi
α, Q

j
β} = (γµC

−1)αβPµδ
ij +

∑
k

(Γµ1···µkC)αβZ
ij
µ1···µp . (1.24)

The possible combinations of central extensions will depend on the dimension and

characteristics of the theory. For example, for D = 11, we have [99]

{Qα, Qβ} = (γµC
−1)αβPµδ

ij +
∑
n

(Γµ1µ2C)αβZµ1µ2 +
∑
n

(Γµ1···µ5C)αβZµ1···µ5 . (1.25)

For a pure scalar central charge we have [18] (ε = iσ2):

{Qi
α, Q

j
β} = 2εαβZ

ij , (1.26)

{Qi
α̇
†, Qj

β̇

†} = 2εα̇β̇Z
ij† , (1.27)

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ . (1.28)

It is possible to choose a set of states | M,Zij〉 eigenstates of P µPµ and Zij. The

corresponding N ×N matrix (Zij) is antisymmetric in its indices. This matrix can be

skew-diagonalized to N/2 real eigenvalues. Thus, for example, for N = 2 one can write

(Zij) = Z(εij), (1.29)

where Z is a real parameter which can be assigned, in addition to the mass, to any

corresponding multiplet. By a redefinition of the supercharges, and ensuring that all

states of the supermultiplet have non-negative norm one arrives to the inequality ( [100],

see [96] for a simple example)

M ≥ Z. (1.30)

This is an example of a Bogmol’nyi-Prasad-Sommerfeld (BPS) bound [101, 102]. In

particular, for massless states Z = 0. The states which saturates the inequality, M = Z
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are of zero norm, in other terms, they are annihilated by some (half or a quarter or an

eighth) of the supercharges.

The structure of the algebra unitary representations is different for the cases M > Z

and M = Z: the supermultiplets with M = Z are much smaller (“short multiplets”) to

those corresponding to M > Z long multiplets. The short multiplets, those for which

M = Z are also called BPS multiplets because they are related to BPS monopoles

[97,98,101,102].

1.2 Supergravity

Supergravity theories are field theories that are invariant under local supersymme-

try [19, 20, 103–108], i.e. under superpoincare transformations with spacetime depen-

dent commuting and anticommuting parameters. Because of the underlying supersym-

metry algebra, the invariance under local supersymmetry implies the invariance under

spacetime diffeomorphisms. Therefore these theories are necessarily theories of gravity.

Supergravity, was initially proposed in 1973 by D. Volkov [88], it was quickly gener-

alized in various dimensions and additional N supersymmetry charges. The number

of supercharges in a spinor depends on the dimension and the signature of spacetime.

Supergravity theories do not contain any fields that transform as symmetric tensors of

rank higher than two under Lorentz transformations. Thus the limit on the number of

supercharges cannot be satisfied in a spacetime of arbitrary dimension. Supergravity

can be formulated, in spacetimes with Lorentz signatures, in any number of dimensions

up to eleven [109].

About supermultiplets the most common that appear in supergravity are

• Gravity multiplet. The field content satisfies smax = 2. They contain the graviton

plus N gravitinos at least.

• Vector/gauge multiplet. Here smax = 1. They exist for N ≤ 4 theories. The

gauge fields of those multiplets can gauge an extra Yang-Mills-like group that

commutes with supercharges and it is not part of the superalgebra.

• Chiral multiplet. smax = 1/2. In D = 4 theories, they only exist for N = 1.

Supersymmetry requires the scalars to span a Kähler-Hodge manifold. They

must transform under the gauge group defined by the vector multiplet.

• Hypermultiplets. They are the equivalent chiral multiplets for N = 2. They also

must transform under the gauge group. In this case, the scalars must parame-

terize a Quaternionic Kähler manifold.

• Tensor multiplet. They include antisymmetric tensors Tµν.... In some cases, they

can be dualized to scalars or vectors and be included in the other multiplets.
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1.3 Higher-dimensional supergravities

In the next sections we are going to inspect the D = 9, D = 10 and D = 11 maximal

supergravities.

1.3.1 D = 11 supergravity

In 1978, Cremmer, Julia and Scherk (CJS) found the classical action for an 11-dimensional

supergravity theory. This remains today the only known classical 11-dimensional the-

ory with local supersymmetry and no fields of spin higher than two.

Other 11-dimensional theories are known that are quantum-mechanically inequiv-

alent to the CJS theory, but classically equivalent (that is, they reduce to the CJS

theory when one imposes the classical equations of motion). For example, the de Wit

and Nicolai D = 11 Supergravity with Local SU(8) Invariance.

Supergravity in eleven spacetime dimensions is based on an “elfbein” eµ
a, a Ma-

jorana gravitino field ψµ and a 3-rank antisymmetric gauge field Cµνρ. Together with

chiral (2, 0) supergravity in D = 6, it is the only Q ≥ 16 theory without a scalar field.

Its full action reads

S =
1

2κ2

∫
d11xe[eaµebνRµνab − ψ̄µγµνρDνψρ −

1

24
F µνρσFµνρσ (1.31)

−
√

2

192
ψ̄ν
(
γαβγδνρ + 12γαβgγνgδρ

)
ψρ(Fαβγδ + F̃alphaβγδ) (1.32)

− 2
√

2

(144)2
e−1εα

′β′γ′δ′αβγδµνρFα′β′γ′δ′FαβγδCµνρ] , (1.33)

where the Ricci scalar and the covariant derivative, respectively R = R(ω) , Dν =

Dν

(
1
2
(ω + ω̃)

)
, depend on the spinorial connection ω and its supercovariant version ω̃.

In components, we have for these and other quantities

ωµab = ωµab(e) +Kµab , (1.34)

ω̃µab = ωµab(e) +Kµab −
1

8
ψ̄νγ

νρ
µabψρ , (1.35)

Kµab = −1

4

(
ψ̄µγaψb − ψ̄aγµψb + ψ̄bγaψµ

)
+

1

8
ψ̄νγ

νρ
µabψρ , (1.36)

F̃µνρσ = 4∂[µCνρσ] +
3
√

2

2
ψ̄[µγνρψσ , (1.37)

where ψb = eµbψµ, and the covariant derivative D acts on spinors as,

DνψνDνψν = ∂µψν +

(
1

8
(ω + ω̃)

)
γabψν . (1.38)

The field equations can be derived in the context of the so-called 1.5 formalism, in

which the spin connection is defined as a field that depends on eµ
a and it is determined

by its equation of motion meanwhile its supersymmetric variation in the action is
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treated as if it were an independent field [107,110], together with the Bianchi identities

for the field strength form associated to the 3-rank form field C are (F = dC)

Rµν =
1

72
gµνFρσλτF

ρσλτ − 1

6
FµρσλFν

ρσλ , (1.39)

∂µ(eF µνρσ) =
1

1152

√
2ενρσλταβγδκπFλταβFγδκπ , (1.40)

∂[µFνρσλ] = 0 . (1.41)

An alternative form for the second equation is

∂[µHνρσλταβ] = 0 , (1.42)

where Hµνρσλτα is the dual field strength,

Hµνρσλτα =
1

7!
eεµνρσλταβγδκF

βγδκ − 1√
2
F[µνρσCλτα] . (1.43)

Let us analyze the constant κ−2
11 that multiplies the lagrangian and carries dimension

[mass]9. We can see that, in principle, it is undetermined and depends on fixing some

length scale. If we apply the following shift on the fields (an R+ symmetry):

eµ
a → e−αeµ

a , ψµ → e−α/2ψµ , Cµνρ → e−3αCµνρ , (1.44)

the lagrangian rescales as

L11 → e−9αL11 . (1.45)

This is the so-called trombone symmetry [111] and it is manifest only at the level of

the equations of motion. This scaling could be reabsorbed into a redefinition of κ−2
11 ,

κ2
11 → e−9ακ2

11 . (1.46)

In many other supergravities in D dimensions we have a similar behaviour. In general,

we could make the following redefinitions:

gµν → e−2αgµν , LD → e(2−D)αLD , κ2
D → e(2−D)ακ2

D . (1.47)

1.3.2 D = 10 supergravities.

In D = 10 we have Majorana-Weyl (MW) irreducible spinors. The maximal super-

symmetry is N = 2, which gives rise to two discrete and inequivalent possibilities,

N = (1, 1) with opposite chiralities and N = (2, 0), with same chirality. They corre-

spond to the N = 2A and N = 2B theories, respectively.

In addition, a half-maximal N = 1 D = 10 supergravity can be formulated. Its

origin from the N = 2 theories will be discussed in Chapter 2.
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N = 2A supergravity

The N = 2A 10-dimensional theory can be obtained by dimensional reduction of

D = 11 on a circle. Its field content appears in table1.4 The gravitinos and the two

dilatinos have opposite chiralities.

The bosonic part of the Lagrangian is

L2A/e = R− 1

2
(∂φ)2 − 1

2
e−φ|H|2 − 1

2

∑
d=1,3

e(4−d)φ/2|G(d+1)|2 − 1

2
?
(
dC(3) ∧ dC(3) ∧B

)
,

(1.49)

where H is the field strength associated to the (“NSNS”) 2-form B and G is the

modified field strength

G(d+1) = dC(d) − dB ∧ C(d−2) d = 1, 3 . (1.50)

In this case we have two different R+ symmetries: one is a trombone symmetry, a

symmetry of the field equations analog to the existing one in D = 11 supergravity and

the other is a symmetry of the lagrangian, which acts on the field as follows:

eφ → λeφ , B → λ1/2B ,C(1) → λ1/2C(1) , C(3) → λ−1/4C(3) . (1.51)

N = 2B supergravity

The field content of N = 2B D = 10 supergravity appears in table1.5. The rank 4

antisymmetric tensor is supposed to have a self-dual field strength. This is a N = (2, 0)

theory. Both gravitinos have the same chirality. Both dilatinos also have the same

chirality but opposite to that of the gravitinos.

The Lagrangian of the bosonic sector is given by

L2B/e = R− 1

2
(∂φ)2 − 1

2
e−φ|H|2 − 1

2

∑
d=0,2,4

|G(d+1)|2 − 1

2
?
(
C(4) ∧ dC(2) ∧B

)
.

(1.53)

where the field strengths H and G(d), d = 0, 2, 4 are defined similarly as before. The

action for the N = 2B theory, due to the presence of the field strength of C(4) and its

self-dual behaviour, has supplemented by a self-duality at the level of field equations.

The N = 2B theory enjoys two symmetries. A trombone scaling symmetry and a

SL(2,R) symmetry. The former, as in the 11-dimensional case, is only realized on-shell

whereas the latter is realized at the Lagrangian level and acts on the fields as follows.

Considering an element

Λ =

(
a b

c d

)
∈ SL(2,R) , (1.54)
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the fields transform as

τ → aτ + b

cτ + d
,Bα → (Λ−1)β

αBβ , C(4) → C(4) , (1.55)

ψµ →
(
cτ ∗ + d

cτ + d

)1/4

ψµ , χ→
(
cτ ∗ + d

cτ + d

)3/4

χ , (1.56)

where

τ ≡ C(0) + ie−φ

and

Bα ≡ (−B,C(2)).

8

1.4 Maximal D = 9 supergravity

Next we study, in some more detail, maximal supergravity in D = 9. There is only one

undeformed (i.e. ungauged, massless) maximal (i.e. N = 2, containing no dimensionful

parameters in their action, apart from the overall Newton constant) 9-dimensional

supergravity [112]. Both the dimensional reduction of the massless N = 2A, d = 10

theory and that of the N = 2B, d = 10 theory on a circle give the same N = 2, D = 9

theory 9.

The fundamental (electric) fields of this theory are,{
eµ
a, ϕ, τ ≡ χ+ ie−φ, AIµ, B

i
µν , Cµνρ, ψµ, λ̃, λ,

}
. (1.57)

where I = 0, i, with i, j,k = 1, 2 and i, j, k = 1, 210. The complex scalar τ parametrizes

an SL(2,R)/U(1) coset that can also be described through the symmetric SL(2,R)

matrix

M≡ eφ

 |τ |2 χ

χ 1

 , M−1 ≡ eφ

 1 −χ

−χ |τ |2

 . (1.58)

8Type IIB string theory breaks SL(2) into its discrete subgroup SL(2,Z). This group contains the

so-called S-duality transformation that flips the sign of the dilaton φ in a background with vanishing

axion C(0). Explicitly, this is done by choosing a = b = d = 0 and c = 1 in the SL(2,R) transformation.

Because of its very definition, S-duality turns out to be a non-perturbative duality relating the strong-

and weak-coupling regimes. This is better justified in Chapter 2, when we establish a relation between

〈eφ〉 and the string coupling constant g.
9This is a property related to the T duality between type IIA and IIB string theories compactified

on circles [113,114] and from which the type II Buscher rules can be derived [115].
10Sometimes we need to distinguish the indices 1, 2 of the 1-forms (and their dual 6-forms) from

those of the 2-forms (and their dual 5-forms). We will use boldface indices for the former and their

associated gauge parameters.
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The field strengths of the electric p-forms are, in our conventions 11,12

F I = dAI , (1.59)

H i = dBi + 1
2
δii(A

0 ∧ F i + Ai ∧ F 0) , (1.60)

G = d[C − 1
6
εijA

0ij]− εijF i ∧
(
Bj + 1

2
δj jA

0j
)
, (1.61)

and are invariant under the gauge transformations

δΛA
I = −dΛI , (1.62)

δΛB
i = −dΛi + δii

[
ΛiF 0 + Λ0F i + 1

2

(
A0 ∧ δΛA

i + Ai ∧ δΛA
0
)]
,(1.63)

δΛ[C − 1
6
εijA

0ij] = −dΛ− εij
(
F i ∧ Λj + Λi ∧Hj − δΛA

i ∧Bj

+1
2
δj jA

0i ∧ δΛA
j
)
. (1.64)

The bosonic action is, in these conventions, given by

S =

∫ {
− ? R + 1

2
dϕ ∧ ?dϕ+ 1

2

[
dφ ∧ ?dφ+ e2φdχ ∧ ?dχ

]
+ 1

2
e

4√
7
ϕ
F 0 ∧ ?F 0

+1
2
e

3√
7
ϕ
(M−1)ijF

i ∧ ?F j + 1
2
e
− 1√

7
ϕ
(M−1)ijH

i ∧ ?Hj + 1
2
e

2√
7
ϕ
G ∧ ?G

−1
2

[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧
{[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧ A0

−εij
(
H i − δiiAi ∧ F 0

)
∧
(
Bj − 1

2
δj jA

0j
)}}

.

(1.65)

The kinetic term for the SL(2,R) scalars φ and χ can be written in the alternative

forms

1
2

[
dφ ∧ ?dφ+ e2φdχ ∧ ?dχ

]
=
dτ ∧ ?dτ̄
2(=mτ)2

= 1
4
Tr
[
dMM−1 ∧ ?dMM−1

]
, (1.66)

the last of which is manifestly SL(2,R)-invariant. The Chern-Simons term of the action

(the last two lines of Eq. (1.65)) can also be written in the alternative form

−1
2
d
[
C − 1

6
εijA

0ij − εijAi ∧Bj
]
∧
{
d
[
C − 1

6
εijA

0ij − εijAi ∧Bj
]
∧ A0

−εijd
(
Bi − 1

2
δiiA

0i
)
∧
(
Bj − 1

2
δj jA

0j
)}

,

(1.67)

that has an evident 11-dimensional origin.

The equations of motion of the scalars, derived from the action above, are

11We use the shorthand notation AIJ ≡ AI ∧AJ , Bijk ≡ Bi ∧Bj ∧Bk etc.
12The relation between these fields and those of Refs. [116] and [117] are given in Appendix B.2.
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d ? dϕ− 2√
7
e

4√
7
ϕ
F 0 ∧ ?F 0 − 3

2
√

7
e

3√
7
ϕ
(M−1)ijF

i ∧ ?F j

+ 1
2
√

7
e
− 1√

7
ϕ
(M−1)ijH

i ∧ ?Hj − 1√
7
e

2√
7
ϕ
G ∧ ?G = 0 , (1.68)

d

[
?

dτ̄

(=mτ)2

]
− idτ ∧ ?dτ̄

(=mτ)3
− ∂τ (M−1)ij

[
F i ∧ ?F j +H i ∧ ?Hj

]
= 0 , (1.69)

and those of the fundamental p-forms (p ≥ 1), after some algebraic manipulations, take

the form

d
(
e

4√
7
ϕ
? F 0

)
= −e−

1√
7
ϕM−1

ij F
i ∧ ?Hj + 1

2
G ∧G , (1.70)

d
(
e

3√
7
ϕM−1

ij ? F j
)

= −e
3√
7
ϕM−1

ij F
0 ∧ ?Hj + εije

2√
7
ϕ
Hj ∧ ?G , (1.71)

d
(
e
− 1√

7
ϕM−1

ij ? Hj
)

= εije
2√
7
ϕ
F j ∧ ?G− εijHj ∧G , (1.72)

d
(
e

2√
7
ϕ
? G
)

= F 0 ∧G+ 1
2
εijH

i ∧Hj . (1.73)

1.4.1 Global symmetries

The theory has as (classical) global symmetry group SL(2,R) × (R+)2. The (R+)2

symmetries correspond to scalings of the fields, the first of which, that we will denote

by α13, acts on the metric and only leaves the equations of motion invariant while the

second of them, which we will denote by β, leaves invariant both the metric and the

action. The β rescaling corresponds to a trombone symmetry.

One can also discuss two more scaling symmetries γ and δ, but γ is just a subgroup

of SL(2,R) and δ is related to the other scaling symmetries by

4
9
α− 8

3
β − γ − 1

2
δ = 0 . (1.74)

We will take α and β as the independent symmetries. The weights of the electric

fields under all the scaling symmetries are given in Table 1.6. We can see that each

of the three gauge fields AIµ has zero weight under two (linear combinations) of these

three symmetries: one is a symmetry of the action, the other is a symmetry of the

equations of motion only. The 1-form that has zero weight under a given rescaling is

13This discussion follows closely that of Ref. [117] in which the higher-dimensional origin of each

symmetry is also studied. In particular, we use the same names and definitions for the scaling sym-

metries and we reproduce the table of scaling weights for the electric fields.
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precisely the one that can be used to gauge that rescaling, but this kind of conditions

are automatically taken into account by the embedding-tensor formalism and we will

not have to discuss them in detail.

The action of the element of SL(2,R) given by the matrix

(
Ωi
j

)
=

(
a b

c d

)
, ad− bc = 1 , (1.75)

on the fields of the theory is

τ ′ =
aτ + b

cτ + d
, M′

ij = Ωi
kMklΩj

l ,

Ai ′ = Ωj
iAj , Bi ′ = Ωj

iBj ,

ψ′µ = e
i
2
lψµ , λ = e

3i
2
lλ ,

λ̃′ = e−
i
2
lλ̃ , ε′ = e

i
2
lε .

(1.76)

where

e2il ≡ c τ ∗ + d

c τ + d
. (1.77)

The rest of the fields (eaµ, ϕ, A
0
µ, Cµνρ), are invariant under SL(2,R).

We are going to label the 5 generators of these global symmetries by TA, A =

1, · · · , 5. {T1, T2, T3} will be the 3 generators of SL(2,R) (collectively denoted by

{Tm}, m = 1, 2, 3), and T4 and T5 will be, respectively, the generators of the rescalings

α and β. Our choice for the generators of SL(2,R) acting on the doublets of 1-forms

Ai and 2-forms Bi is

T1 = 1
2
σ3 , T2 = 1

2
σ1 , T3 = i

2
σ2 , (1.78)

where the σm are the standard Pauli matrices, so

[T1, T2] = T3 , [T2, T3] = −T1 , [T3, T1] = −T2 . (1.79)

Then, the 3 × 3 matrices corresponding to generators acting (contravariantly) on the

3 1-forms AI (and covariantly on their dual 6-forms ÃI to be introduced later) are

(
(T1)J

I
)

= 1
2

(
0 0

0 σ3

)
,

(
(T2)J

I
)

= 1
2

(
0 0

0 σ1

)
,

(
(T3)J

I
)

= 1
2

(
0 0

0 iσ2

)
,

(
(T4)J

I
)

= diag(3, 0, 0) ,
(
(T5)J

I
)

= diag(1/2,−3/4, 0) .
(1.80)
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We will sometimes denote this representation by T
(3)
A . The 2×2 matrices corresponding

to generators acting (contravariantly) on the doublet of 2-forms Bi (and covariantly

on their dual 5-forms B̃i to be introduced later) are

((T1)j
i) = 1

2
σ3 , ((T2)j

i) = 1
2
σ1 , ((T3)j

i) = i
2
σ2 ,

((T4)j
i) = diag(3, 3) , ((T5)j

i) = diag(−1/4, 1/2) .

(1.81)

We will denote this representation by T
(2)
A . The generators that act on the 3-form C

(sometimes denoted by T
(1)
A ) are

T1 = T2 = T3 = 0 , T4 = 3 , T5 = −1/4 . (1.82)

We will also need the generators that act on the magnetic 4-form C̃ (see next section),

also denoted by T
(1̃)
A

T̃1 = T̃2 = T̃3 = 0 , T̃4 = 6 , T̃5 = 1/4 . (1.83)

We define the structure constants fAB
C by

[TA, TB] = fAB
CTC . (1.84)

The symmetries of the theory are isometries of the scalar manifold (R×SL(2,R/U(1)).

The Killing vector associated to the generator TA will be denoted by kA and will be

normalized so that their Lie brackets are given by

[kA, kB] = −fABCkC . (1.85)

The SL(2,R)/U(1) factor of the scalar manifold is a Kähler space with Kähler

potential, Kähler metric and Kähler 1-form, respectively given by

K = − log=mτ = φ , Gττ∗ = ∂τ∂τ∗K = 1
4
e2φ , Q = 1

2i
(∂τKdτ − c.c.) = 1

2
eφdχ .

(1.86)

In general, the isometries of the Kähler metric only leave invariant the Kähler

potential up to Kähler transformations :

£kmK = km
τ∂τK + c.c. = λm(τ) + c.c. , £kmQ = − i

2
dλm , (1.87)

where the λm are holomorphic functions of the coordinates that satisfy the equivariance

property

£kmλn −£knλm = −fmnpλp . (1.88)

Then, for each of the SL(2,R) Killing vectors km, m = 1, 2, 3, it is possible to find

a real Killing prepotential or momentum map Pm such that
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kmτ∗ = Gτ∗τkmτ = i∂τ∗Pm ,

km
τ∂τK = iPm + λm ,

£kmPn = −fmnpPp .

(1.89)

The non-vanishing components of all the Killing vectors are14

k1
τ = τ , k2

τ = 1
2
(1− τ 2) , k3

τ = 1
2
(1 + τ 2) , k4

τ = 0 , k5
τ = −3

4
τ . (1.90)

and

k4
ϕ = 6/

√
7 , k5

ϕ =
√

7/4 . (1.91)

The holomorphic functions λm(τ) take the values

λ1 = −1
2
, λ2 = 1

2
τ , λ3 = −1

2
τ , (1.92)

and the momentum maps are given by:

P1 = 1
2
eφχ , P2 = 1

4
eφ(1− |τ |2) , P3 = 1

4
eφ(1 + |τ |2) . (1.93)

These objects will be used in the construction of SL(2,R)-covariant derivatives for

the fermions.

1.4.2 Magnetic fields

As it is well known, for each p-form potential with p > 0 one can define a magnetic

dual which in D = 9 dimensions will be a (7 − p)-form potential. Then, we will have

magnetic 4-, 5- and 6-form potentials in the theory.

A possible way to define those potentials and identify their (8 − p)-form field

strengths consists in writing the equations of motion of the p-forms as total deriva-

tives. Let us take, for instance, the equation of motion of the 3-form C Eq. (4.38). It

can be written as

d
∂L
∂G

= d

{
e

2√
7
ϕ
? G−

[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧ A0

+1
2
εij
(
H i − δiiAi ∧ F 0

)
∧
(
Bj − 1

2
δj jA

0j
)}

= 0 .

(1.94)

14The holomorphic and anti-holomorphic components are defined by k = kτ∂τ +c.c. = kχ∂χ+kφ∂φ.
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We can transform this equation of motion into a Bianchi identity by replacing the

combination of fields on which the total derivative acts by the total derivative of a

4-form which we choose for the sake of convenience15

d
[
C̃ − C ∧ A0 − 3

4
εijA

0i ∧Bj
]
≡ e

2√
7
ϕ
? G−

[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧ A0

+1
2
εij
(
H i − δiiAi ∧ F 0

)
∧
(
Bj − 1

2
δj jA

0j
)
,
(1.95)

where C̃ will be the magnetic 4-form. This relation can be put in the form of a duality

relation

e
2√
7
ϕ
? G = G̃ , (1.96)

where we have defined the magnetic 5-form field strength

G̃ ≡ dC̃ + C ∧ F 0 − 1
24
εijA

0ij ∧ F 0 − εij
(
H i − 1

2
dBi

)
∧Bj . (1.97)

The equation of motion for C̃ is just the Bianchi identity of G rewritten in terms of G̃.

In a similar fashion we can define a doublet of 5-forms B̃i with field strengths

denoted by H̃i, and a singlet and a doublet of 6-forms Ã0, Ãi with field strengths

denoted, respectively, by F̃0 and F̃i. The field strengths can be chosen to have the form

H̃i = dB̃i − δijBj ∧G+ δijC̃ ∧ F j + 1
2
δij
(
A0 ∧ F j + Aj ∧ F 0

)
∧ C

+ 1
2
δijεklB

jk ∧ F l , (1.98)

F̃0 = dÃ0 + 1
2
C ∧G− εijF i ∧

(
δjkB̃k − 2

3
Bj ∧ C

)

− 1
18
εijA

ij ∧
(
G̃− F 0 ∧ C − 1

2
εklB

k ∧H l
)

− 1
6
εijA

i ∧
(
Bj ∧G− C ∧Hj − 2

3
δj jC̃ ∧ F j − εklBjk ∧ F l

)
, (1.99)

F̃i = dÃi + δij
(
Bj + 7

18
δjkA

0k
)
∧ G̃− δijF 0 ∧ B̃j − 1

9
δij
(
8A0 ∧ F j + Aj ∧ F 0

)
∧ C̃

− 1
3
δijεlm

(
Bj + 1

3
δjkA

0k
)
∧Bl ∧Hm − 1

6
δijεkl

(
A0 ∧Hj −Bj ∧ F 0

)
∧ Ak ∧Bl

− 1
9
A0 ∧ F 0 ∧ δij

(
7
2
Aj ∧ C + δjkεlmA

lm ∧Bk
)
, (1.100)

15With this definition G̃ will have exactly the same form that we will obtain from the embedding

tensor formalism.



38 1. Supergravity: a primer

and the duality relations are

H̃i = e
− 1√

7
ϕM−1

ij ? Hj , (1.101)

F̃0 = e
4√
7
ϕ
? F 0 , (1.102)

F̃i = e
3√
7
ϕM−1

ij ? F j . (1.103)

The situation is summarized in Table 1.7. The scaling weights of the magnetic fields

are given in Table 1.8.

This dualization procedure is made possible by the gauge symmetries associated to

all the p-form potentials for p > 0 (actually, by the existence of gauge transformations

with constant parameters) and, therefore, it always works for massless p-forms with

p > 0 and generically fails for 0-form fields. However, in maximal supergravity theories

at least, there is a global symmetry group that acts on the scalar manifold and whose

dimension is larger than that of the scalar manifold. Therefore, there is one Noether

1-form current jA associated to each of the generators of the global symmetries of the

theory TA. These currents are conserved on-shell, i. e. they satisfy

d ? jA = 0 ,

on-shell, and we can define a (d− 2)-form potential ÃA(d−2) by

dÃA(d−2) = GAB ? jB ,

where GAB is the inverse Killing metric of the global symmetry group, so that the

conservation law (dynamical) becomes a Bianchi identity.

Thus, while the dualization procedure indicates that for each electric p-form with

p > 0 there is a dual magnetic (7−p)-form transforming in the conjugate representation,

it tells us that there are as many magnetic (d − 2)-form duals of the scalars as the

dimension of the global group (and not of as the dimension of the scalar manifold)

and that they transform in the co-adjoint representation. Actually, since there is no

need to have scalar fields in order to have global symmetries, it is possible to define

magnetic (d− 2)-form potentials even in the total absence of scalars16.

1.5 E11 formalism

D = 3 is the lowest number of spacetime dimensions for which the global symmetry

is still finite. In that case, G = E8, the largest finite exceptional Lie group, and the

dimension of the coset E8/SO(16) is 128. For D = 2, the global symmetry group

16See Refs. [118,119] for examples.



1.5. E11 formalism 39

is the affine extension of the three-dimensional one, which for the maximal theory is

E9 = E+
8 . Similarly, for D = 1, we have the overextension of the 3-dimensional group,

which for the maximal case is G = E10 = E++
8 .

Following the conjecture one step further, one can formally reduce to zero dimen-

sions and hope to obtain the very extension E11 = E+++
8 , which is conjectured to be a

symmetry of M theory. The key idea of the E11 formalism is to decompose E11 with

respect to subgroups that coincide with the symmetry structure of supergravities G in

various dimensions. The way in which E11 is decomposed is crucial: it will be splitted

into

E11 = GL(D)×G , (1.104)

where GL(D) is the sector associated to the symmetries of spacetime and G is the

duality group in D dimensions.

This construction can be also made in the context of half-maximal theories. The

general idea is just chop up the preferred Kac-Moody algebra into the gravity line

(GL(D) in the Dynkin diagrams) times the duality group. This completely determines

the full spectrum of the theory and its possible deformations. More details about this

approach can be found in [120].

However, despite of this Kac-Moody approach sucessfully provides the right sym-

metries, spectra and deformations of all possible (half-)maximal supergravities, it is

not clear whether Kac-Moody algebras play a more fundamental role in supergravity

and string theory. E11 formalism has motivated considerable literature and supplied a

mechanism that infer the field content of any theory from group theoretical arguments.
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N smax h = 2 h = 3/2 h = 1 h = 1/2 h = 0 h = −1/2 h = −1 h = −3/2 h = −2

N = 1 2 1 1

3/2 1 1

1 1 1

1/2 1 1

N = 2 2 1 2 1

3/2 1 2 1

1 1 2 1

1/2 1 2 1

N = 3 2 1 3 3 1

3/2 1 3 3 1

1 1 3 3 1

1/2 1 3 3 1

N = 4 2 1 4 6 4 1

3/2 1 4 6 4 1

1 1 4 6 4 1

1/2 1 4 6 4 1

N = 5 2 1 5 10 10 5 1

3/2 1 5 10 10 5 1

1 1 5 10 10 5 1

1/2 1 5 10 10 5 1

N = 6 2 1 6 15 20 15 6 1

3/2 1 6 15 20 15 6 1

1 1 6 15 20 15 6 1

1/2 1 6 15 20 15 6

N = 7 2 1 7 21 35 35 21 7 1

3/2 1 7 21 35 35 21 7 1

1 1 7 21 35 35 21 7

1/2 1 7 21 35 35 21

N = 8 2 1 8 28 56 70 56 28 8 1

3/2 1 8 28 56 70 56 28 8

1 1 8 28 56 70 56 28

1/2 1 8 28 56 70 56

Table 1.2: Different irreducible spinorial representations depending on the dimension

D and their corresponding real components.

dimension spinor irrep R-symmetry

10 MW SO(NL)× SO(NR)

9 M and D odd SO(N)

8, 4 M and D even U(N)

7, 5 S USp(N)

6 SW USp(NL)× USp(NR)

Table 1.3: R symmetry summary for different dimensions and its relation to the spino-

rial irreducible representations.
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N = 2A



gµν metric − graviton

φ dilaton

Bµν rank 2 antisymmetric

C
(3)
µνρ antisymmetric rank 3

C
(1)
µ graviphoton

ψ±µ 2MW gravitinos

χ± 2MW dilatinos

(1.48)

Table 1.4: Field Content of N = 2A supergravity.

N = 2B



gµν metric − graviton

Bµν , C
(2)
µν rank 2 antisymmetric

φ scalar(dilaton)

C(0) scalar(axion)

C
(4)
µνρσSD self − dual antisymmetric rank 4

ψIµα I=1,2 2MW gravitinos

λIα I=1,2 2MW dilatinos

(1.52)

Table 1.5: Field content of N = 2B supergravity.

R+ eµ
a eϕ eφ χ A0 A1 A2 B1 B2 C ψµ λ λ̃ ε L

α 9/7 6/
√

7 0 0 3 0 0 3 3 3 9/14 −9/14 −9/14 9/14 9

β 0
√

7/4 3/4 −3/4 1/2 −3/4 0 −1/4 1/2 −1/4 0 0 0 0 0

γ 0 0 −2 2 0 1 −1 1 −1 0 0 0 0 0 0

δ 8/7 −4/
√

7 0 0 0 2 2 2 2 4 4/7 −4/7 −4/7 4/7 8

Table 1.6: The scaling weights of the electric fields of maximal D = 9 supergravity.

0 1 2 3 4 5 6 7 8 9

jA AI Bi C C̃ B̃i ÃI ÃA(7) Ã(8) Ã(9)

F I H i G G̃ H̃i F̃I F̃A
(8) F̃(9)

Table 1.7: Electric and magnetic forms and their field strengths.
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R+ C̃ B̃2 B̃1 Ã2 Ã1 Ã0

α 6 6 6 9 9 6

β 1/4 −1/2 +1/4 0 +3/4 −1/2

γ 0 1 -1 1 -1 0

δ 4 6 6 6 6 8

Table 1.8: The scaling weights of the magnetic fields of maximal D = 9 supergravity

can be determined by requiring that the sum of the weights of the electric and magnetic

potentials equals that of the Lagrangian. The scaling weights of the 7-, 8- and 9-forms

can be determined in the same way after we find the entities they are dual to (Noether

currents, embedding-tensor components and constraints, see Appendix B).



Chapter 2

Stringy motivation of Supergravity

Supergravity is equivalent to the low-energy limit of string theory. The description of

any string theory at the regime α′ → 0, a characteristic constant in string theories, can

be described by means of a supergravity theory, so that any of the different string theory

have their corresponding associated supergravities. In this chapter we will introduce

the bosonic string and supersymmetric string theories.

We will explicitly see how this limit is taken properly and how SUGRA naturally

emerges. We will also review the main features of the dualities and their important

implications at the level of string theory and supergravity. Finally, we will show some

remarks about extended objects, emphasizing in the D-branes.

2.1 String theory

The origin of string theory dates from the late 1960s. Experimental data about the

strong interaction implied the existence of new resonaces. Most of them looked to

follow a certain relation between their masses and their spin. This behaviour proposed

by Regge [121]

M2 =
J

α′
+ α0 , (2.1)

where M is the mass, J is the spin of the particle and α′ ' 1 GeV is known as the

Regge slope. The scattering amplitude for two hadrons → two hadrons (1, 2 → 3, 4)

has to show certain symmetry in the momenta ki, for i = 1, . . . , 4. In terms of the

Mandelstam variables, the amplitude amounts to the interchange of t↔ s, where

s = −(k1 + k2)2 , t = −(k2 + k3)2 , u = −(k1 + k3)2 . (2.2)

At high energies, the amplitude of the exchange of a spin-J particle of mass M is

proportional to

A(s, t) ∝ (−s)J

t−M2
, (2.3)



44 2. Stringy motivation of Supergravity

which diverges for J > 1. Thus, a proposal for a dual amplitude was made by Veneziano

[21],

A(s, t) =
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
, (2.4)

where Γ is the standard Euler Γ-function and α(s) = α(0) + α′s. Soon, it was realized

that these amplitudes could be interpreted as the ones for quantum relativistic strings

[122]. The dynamics of a relativistic string with tension T can be formulated by

assigning coordinates σa = (σ, τ) to the 2-dimensional worldsheet Σ. The action is

given by the surface that the worldsheet sweeps out in the spacetime,

Sstring = −T
∫

Σ

d2σ
√
|gij| , (2.5)

where Xµ(σ), µ = 0, . . . , D − 1 are the spacetime coordinates of the string, and |gij|
stands for the determinant of the induced metric gij on the worldvolume (the pullback

of the spacetime metric gµν)

gij ≡ ∂iX
µ∂jX

νgµν(X) . (2.6)

This is the Nambu-Goto action. T is a constant with dimensions M2 (equivalent to

mass per unit length) and, for historical connotations, it is expressed in terms of the

Regge slope α′,

T =
1

2πα′
. (2.7)

We can define characteristic length (`s) and mass (ms) of the string,

`s =
√
α′ , ms =

1√
α′
. (2.8)

In additon, an action containing quadratic derivative terms of Xµ can be con-

structed by introducing an auxiliary field γij, the so-called Polyakov action [123],

SP = −T
2

∫
Σ

d2σ
√
|γ|γij∂iXµ∂jX

νgµν(X) . (2.9)

We can eliminate γij from the action by means of its equation of motion,

γij = 2
gij
gkk

, (2.10)

and we recover the Nambu-Goto action. The Polyakov action is invariant under Weyl

rescalings of the worldsheet metric,

γij → Ω2(σ)γij , (2.11)

which is a crucial requirement for the quantization of the theory .
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The equation of motion is the 2-dimensional wave equation

∂

∂σ−
∂

∂σ+
Xµ(τ, σ) = 0 , (2.12)

where σ± ≡ τ ± σ. For the closed string, periodic boundary conditions are required,

Xµ(τ, 0) = Xµ(τ, `s) , (2.13)

whereas for open strings, Neumann (+) or Dirichlet (−) boundary conditions can be

chosen,

∂

∂σ−
Xµ(τ, σ) = ± ∂

∂σ−
Xµ(τ, σ) , σ = 0, `s . (2.14)

An additional Einstein-Hilbert term can be added to the Polyakov action,

−φ0

4

∫
d2σ
√
|γ|R(γ) . (2.15)

It is Weyl invariant and does not modify the equations of motion because the 2-

dimensional Einstein-Hilbert lagrangian is just the curvature 2-form, which is locally

a total derivative (Rab = εabdω). Actually, this term is the constant φ0 times the Euler

characteristic1. φ0 is the vacuum expectation value (VEV) of the dilaton, a scalar

field present in all string theories and g ≡ eφ can be interpreted as the string coupling

constant.

Furthermore, the string worldsheet action, written as a non-linear σ-model, can

be generalized to describe the coupling to all background fields associated with the

massless modes. The coupling to an antisymmetric background field, the Kalb-Ramond

2-form Bµν can be added,

T

2

∫
Σ

B =
T

2

∫
Σ

d2σεij∂iX
µ∂jX

νBµν . (2.16)

In analogy with the coupling to the metric, this term is the integral of the pullback

of the 2-form over the worldsheet. It can be interpreted as the generalization of the

coupling to the Maxwell vector field to a charged point-particle, but now our charges

are vectors carried by the strings. Thus, the full non-linear σ-model is

S = −T
2

∫
Σ

d2σ
√
|γ|
[(
γijgµν(X) + εijBµν(X)

)
∂iX

µ∂jX
ν − α′φ(X)R(γ)

]
. (2.17)

The generators of the conformal symmetry that the worldsheet enjoys are the Vi-

rasoro generators. They satisfy the infinite-dimensional Virasoro algebra,

[Lm, Ln]PB = i(m− n)Lm+n , (2.18)

1The Euler characteristic χ is defined as χ = 2 − 2g − b − c, where g is the number of genus, b is

the number of boundaries and c is the number of crosscaps.
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where [◦, ◦]PB is a Poisson bracket and the Lm, L̃m generators2

Lm =
1

2

∑
n∈Z

αm−n · αn (2.19)

encode the Fourier modes αµk , α̃µk that span the worldsheet coordinates Xµ(αµk , α̃
µ
k).

New results arise when we quantize these Fourier modes and keep the conformal

invariance simultaneously. One of them is the condition that the theory has to be

defined in a 26-dimensional spacetime. This can be solved by performing suitable

KK dimensional reductions and getting lower-dimensional theory. The next one is

the appearance of a tachyon and a spin-2 vibration modes. While the presence of a

tachyon is problematic, the appearance of a spin-2 particle is one of the motivations

of considering string theory as a realistic description of Quantum Gravity. Despite

of a spin-2 particle is essential for a quantum gravity, it gets very problematic for a

description of the strong interaction. The absence of fermions and the presence of the

tachyon in the spectrum motivates the consideration of a more general action to have

matter included as well.

2.2 Superstring theory

The supersymmetric theory that generalizes the Polyakov action in Minkowski space-

time is the theory of D 2-dimensional scalar multiplets (Xµ, ψµ) coupled to a 2-

dimensional auxiliary multiplet (eai, χi) whose action is [124,125]

S = −T
2

∫
Σ

e

[
γij∂iX

µ∂jXµ − iψ̄µ��Dψµ + 2χ̄iρ
jρiψµ∂jXµ +

1

2
(χ̄iρ

jρiχj)(ψ̄
µψµ)

]
,

(2.20)

where i, j = 1, 2 are indices on the worldsheet and µ, ν are spacetime indices. Both ψµ

and χi are real spinors and ρi is the 2-dimensional realization of gamma matrices. The

local worldsheet supersymmetric transformations are

δεX
µ = ε̄ψµ , δεe

a
i = −2iε̄ρaχi , (2.21)

δεψ
µ = i(∂iX

µ + 1
4
χ̄iψ

µ)ρiε , δεχi = D̃iε , (2.22)

where

D̃iε = (∂i + ω̃iρ3)ε = [∂i + ωiρ3 + i(χ̄iρ3ρ
jχj)ρ3]ε , (2.23)

ρ3 is the chiral matrix and ωi is the spin connection defined on the worldsheet.

Weyl invariance is kept and, by means of their equations of motion, the zweibein

ea and the worldsheet gravitino χa, can be decoupled and eliminated from the action.

2The L̃m generators are defined in terms of the α̃µm oscillators in analogy with the Lm and αµm.
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The resulting action in terms of (Xµ, ψµ) is the so-called Ramon-Neveu-Scharwz (RNS)

model,

S = −T
2

∫
Σ

d2σ
[
ηij∂iX

µ∂jXµ − iψ̄µ��∂ψµ
]
. (2.24)

For open superstrings, Neumann and Dirichlet conditions can be chosen for the

Xµs, whereas for the ψµs, the possible boundary conditions are

• Ramond (R) ψµ+(τ, 0) = ψµ−(τ, 0) and ψµ+(τ, 2π`s) = ψµ−(τ, 2π`s) ,

• Neveu-Schwarz (NS) ψµ+(τ, 0) = ψµ−(τ, 0) and ψµ+(τ, 2π`s) = −ψµ−(τ, 2π`s) .

For closed superstrings, σ ∼ σ + 2π`, so for each component ψµ+ and ψµ−, we can

independently have

• Ramond (R) boundary conditions (periodic) ψµ±(τ, 0) = ψµ±(τ, 2π`s) ,

• Neveu-Schwarz (NS) boundary conditions(antiperiodic) ψµ±(τ, 0) = −ψµ±(τ, 2π`s)

.

Supersymmetry in the spacetime of the theory requires additional restrictions to

the worldsheet supersymmetry [103]. The alternative Green-Schwarz (GS) formula-

tion [126] already incorporates this by construction. A new local symmetry, the so-

called κ-symmetry, arises in this formulation and, due to the fermionic nature of its

transformation parameter, it halves the number of degrees of freedom in the action.

Thus, we can use this κ-symmetry and invariance under reparametrization to gauge

away all the possible degrees of freedom and impose a condition so that the bosonic

and fermionic degrees of freedom coincide. In this direction, a general result is ob-

tained in [127] that provides the condition for having a supersymmetric worldsheet

or, for extended objects, a supersymmetric worldvolume. If M is the number of real

components of the minimal spinor in the D-dimensional spacetime and N is a natural

number, for an object with p extended dimensions, supersymmetry is guaranteed if

NM = 4(D − p− 1) . (2.25)

Table 2.2 resumes the possible cases for which this is satisfied.

The model that incorporates these improvements is the Green-Schwarz action,

S = −T
2

∫
Σ

d2σ
√
|γ|γij

(
∂iX

µδaµ − iθ̄Iγa∂iθI
) (
∂jX

νδbν − iθ̄Jγb∂jθJ
)
ηab + T

∫
Σ

Ω2 .

(2.26)

θI are the anticommuting spacetime spinors and I, J = 1, . . . , N . This action can

be understood as a generalization of a superparticle action plus the addition of a

Wess-Zumino term that makes κ-symmetry to be preserved. The Wess-Zumino term
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D M p = −1 p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

2 1 8

3 2 12 8 4

4 4 16 12 8 4

5 8 16 8

6 8 16 8

7 16 16

8 16 32 16

9 16 32 16

10 16 32 16

11 32 32

Table 2.1: Classification of all the possible supersymmetric objects and their respective

supercharges, just taking into account the scalar multiplets. The entries are the product

MN , so that N is trivially obtained. Adapted from [127].

is the integral of a 2-form Ω2 such that Ω3 = dΩ2 is Poincaré- and supersymmetry-

invariant [128]:

Ω2 = −idXµδaµ ∧
(
θ̄1Γaθ

1 − θ̄2Γadθ
2
)

+ (θ̄1Γadθ
1) ∧ (θ̄1Γadθ

2) . (2.27)

In addition, it can be shown that superstring theories are Poincaré invariant only in

the critical dimension D = 10. This is allowed by the supersymmetry condition (2.25),

as we can check in table 2.2. Further details about this model are treated in [36].

The zoo of different superstrings that live in these supersymmetric theories and the

boundary conditions that restrict them imply a systematic study and classification.

Following this aim, it is useful to introduce a new indicator that helps us to group them,

the worldvolume fermion number F (defined modulo 2). It splits the Ramond (R) and

Neveu-Schwarz (NS) sectors into R± and NS± subsectors with respect to the operator

eiπF . By combining these new subsectors properly, we can construct consistent and

tachyon-free string theories. This is mechanism is known as the Gliozzi-Scherk-Olive

(GSO) projection [103]. The different possibilities are:

• Type IIB+. R+R+ ⊕ R+NS+ ⊕ NS+R+ ⊕ NS+NS+, whose massles spectrum

coincides with the N = 2B+ D = 10 SUGRA multiplet with self-dual 4-form

(1.53).

• Type IIB−. R−R− ⊕ R−NS+ ⊕ NS+R− ⊕ NS+NS+, whose massless spectrum

coincides with the N = 2B− D = 10 SUGRA multiplet with antiself-dual 4-form

and opposite chirality fermions than type IIB−.

• Type IIA+−. R+R− ⊕ R+NS+ ⊕ NS+R− ⊕ NS+NS+, whose massless spectrum

coincides with the N = 2A+− D = 10 SUGRA multiplet (1.49).
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Theory NSNS b RR b Chiral f Non-chiral Vector superm

Type IIA gµν , Bµν , φ C(1), C(3) ψµ, λ

Type IIB Jµν , Bµν , ϕ C(0), C(2), C(4±) ξµ
i(∓), χi(±)

Type I Jµν , ϕ C(2) ξµ
i(±), χi(∓) (V I

µ , η
I)

Heterotic gµν , Bµν , ϕ C(2) ψµ
i(±), λi(∓) (V I

µ , η
I)

Table 2.2: Massless sector of the 10-dimensional superstring theories.

• Type IIA−+. R−R+ ⊕ R−NS+ ⊕ NS+R+ ⊕ NS+NS+, whose massles spectrum

coincides with the N = 2A−+ D = 10 SUGRA multiplet. The sign of the CS

term is different from the previous one.

• Open superstrings. They arise from the combination of two subsectors: R+⊕NS+

or R− ⊕ NS+. Both massless spectra correspond to N = 1 D = 10 vector super-

multiplet V IJ
µ , χ, where χ is a Majorana-Weyl gaugino. Open superstrings need a

closed superstring sector, which is constructed by truncating the type IIB theory

properly. The result is the type I± SO(32) superstring, whose massless modes

correspond to N = 1± D = 10 SUGRA coupled to SO(32) vector multiplets.

In addition, we can construct another bosonic theory that includes a tachyon.

• Heterotic string. Constructed by joining the right-moving sector of the closed

type II superstring with the left-moving fields of the closed bosonic strings. Two

versions with different gauge groups exist. These local symmetries are SO(32)

and E8 × E8. The massless modes coincide with those of N = 1± D = 10.

In table 2.2 we show the massless sectors of all these supersymmetric theories.

2.2.1 Interactions and backgrounds

Open string theories require a closed string sector for consistency. Scattering am-

plitudes for particles are conveniently calculated by means of Feynman diagrams in

which there is a one-to-one correspondence between a graph and a contribution to the

amplitude. For strings, its analog is given in terms of Riemann surfaces. The most

convenient way to obtain scattering amplitudes is through the path integral methods

over all embeddings Xµ and all worldsheet metrics γij with boundary data given by

vertex operators. Without vertex operators, we get vacuum amplitudes, given by

Z =

∫
DXDγe−SP−SEuler , (2.28)

where SP is the Polyakov action (2.9) and SEuler is the topological term (2.15). Since any

2-dimensional surface is characterized by the Euler characteristic χ, the path integral

can be rewritten as

Z =
∑
t

(eφ0)−χ(t)

∫
Σt

DXDγe−SP , (2.29)
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where t runs over Σt, the space of surfaces with topology t. Thus, we associate each

topology with a loop order given by −χ(t). This sum can be understood as a per-

turbative series expansion in which eφ0 is interpreted as the string coupling constant

g,

g ≡ eφ0 . (2.30)

2.3 Supergravity from the string viewpoint

We will motivate supergravity as the result of taking the limit of a given string theory,

i.e., as an effective theory of superstrings. Supergravity coincides with the low-energy

effective description of string theory. For each superstring theory, a supergravity is

given. We mean by low-energy limit the α′ → 0 limit, i.e., the one in which the string

length can be ignored and a theory of particles (a field theory) emerges. Since we are

interested in the low-energy limit, only the massless modes will be relevant. Thus,

an obvious way to find this field theory is to compute the string amplitudes for these

massless modes, take the limit α′ → 0 and then construct a theory that reproduces

those amplitudes. Despite of just by supersymmetry arguments some superstring the-

ories can be matched to their supergravity analogs [103, 129–136], we will use scaling

invariance arguments to find this parallelism.

In order to simplify our calculation, we will focus on the so-called common sector,

spanned by the NSNS fields {gµν , Bµν , φ}. This sector is shared by all the superstring

theories, as Table 2.2 shows. Its effective action in the string frame, that will be defined

below, is given by

S =
g2

16πG
(d)
N

∫
dDx

√
|g|e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
HµνρH

µνρ

]
, (2.31)

where Hµνρ = 3!∂[µBνρ]. The factor e−2φ is associated to the genus-0 (tree level) origin

of these terms.

However, (2.17) has a problem in the coupling of the string to the dilaton. This

action breaks Weyl invariance due to the topological nature of the last term. Since Weyl

invariance is absolutely necessary for the consistency and quantization of the theory,

we can wonder what backgrounds {gµν , Bµν , φ} guarantee this scaling invariance. This

is a way of interpreting the background fields as coupling functions, and then the

question can be reformulated in terms of the β-functions. That is, the vanishing of

the β-functions associated to them are the constraints that the fields have to satisfy to
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preserve Weyl invariance [137], namely,

βµν(g) = α′
[
Rµν − 2∇µ∇νφ+

1

4
Hµ

αβHναβ

]
+O(α′2) , (2.32)

βµν(B) =
α′

2
e2φ∇ρ(e−2φHρµν) +O(α′2) , (2.33)

β(φ) =
d− 26

6
− α′

2

[
∇2φ− (∂φ)2 − 1

4
R− 1

48
H2

]
+O(α′2) . (2.34)

If we express the equations of motion in terms of the β-functions, we have

16πG
(d)
N e2(φ−φ0)√
|g|

δS

δgµν
∼ 1

α′
[βµν(g)− 4gµνβ(φ)] +O(α′2) , (2.35)

16πG
(d)
N e2(φ−φ0)√
|g|

δS

δφ
∼ −16

α′
β(φ) +O(α′2) , (2.36)

16πG
(d)
N e2(φ−φ0)√
|g|

δS

δBµν
∼ − 1

α′
βµν(B) +O(α′2) . (2.37)

Thus, we conclude that the equations of motion are equivalent to the vanishing of the

β-functions. The metric that appears in the action (2.31) is the same one as that to

which the string couples in (2.17), and is called the string-frame metric. A conformal

scaling

gµν = e
4
d−2 gEµν (2.38)

in terms of the so-called Einstein-frame metric, eliminates the factor e−2φ. In this

Einstein frame, the action is rewritten as

S =
1

16πG
(d)
N

∫
dDx

√
|gE|

[
RE +

4

D − 2
(∂φ)2 +

1

2 · 3!
e−

8
D−2

φHµνρH
µνρ

]
. (2.39)

However, the identification of the field theories with the string modes is ambiguous,

since the supergravity theories are unique up to field redefinitions. For a consistent

identification, these field redefinitions have to coincide with the duality transformations

that apply to the string modes. That is, in order to fully establish the link between

SUGRA fields and string modes, we need to ensure that the formers are related by

these dualities as the latters are.

2.4 Dualities

The main idea of dualities is that, in general, the global symmetries of the effective

field theories (SUGRAs) correspond to dualities of the string theories. This was the

statement proposed in [138], but a more precise reformulation can be done. We have to

understand any of the relations of the different effective theories as the corresponding
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dualities of their respective string theories. It is important to notice that these relations

among supergravities are, in general, described by global symmetries of a theory, but

in other cases we can establish relations even between different effective field theories.

Some of these dualities are essentially perturbative and the worldsheet approach

is valid to be studied. For instance, T duality [139], that relates string theories com-

pactified on circles of radius R and dual radius R′ = 1/R, is an exact symmetry at

all orders in string perturbation theory [140]. However, the so-called S duality, is non-

perturbative in the string coupling constant and cannot be studied using the standard

worldsheet approach. Its non-perturbative nature has to do with the inversion of the

dilaton it implies. Finally, U duality is another duality that includes S and T duality

and is directly related to the existence of the so-called M theory.

One remarkable difference is that supergravity theories enjoy duality groups that

are continuous, whereas in string theory quantum effects break them into discrete

subgroups. For example, the S duality group is, in general, associated to SL(2,R)

and gets broken into SL(2,Z) by charge quantization [141]. Thus, we have to find a

suitable translator to decode the different supergravity field configurations and their

symmetries in terms of superstring theory and vice versa. Moreover, S duality can be

a useful tool to provide new non-perturbative solutions in both scenarios.

At this point, it is clarifying to show an explicit and detailed example of how

a duality works. For simplicity, we will perform a T duality transformation to the

bosonic string.

2.4.1 T duality

The bosonic string

We will restrict to the string common sector. We will follow [36,142]. Since T duality

relates different theories compactified on a circle, we will choose the effective action

(2.31) as the one on which we will perform the dimensional reduction. We will get a

D = D̂−1 dimensional theory that will enjoy this duality. Let us assume the following

standard KK reduction ansatz,

êµ̂
â =

(
eµ
a kAµ

0 k

)
, φ = φ̂− 1

2
ln k , (2.40)

B̂µν = Bµν − A[µBν] , B̂µz = Bµ , (2.41)

where we use the same notation as in Appendix A. After integrating over the compact

coordinate, the reduced effective action is

S ∼
∫
dDx

√
|g|e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 + (∂ log k)2 − 1

4
k2F 2(A)− 1

4
k−2F 2(B)

]
,

(2.42)
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where F (A) and F (B) are the field strengths of the vector fieldsAµ andBµ, respectively.

We can check the invariance of this action under the transformation rules

Aµ → Bµ , Bµ → Aµ , k → k−1 , (2.43)

so that the KK scalar gets inverted and the KK vector and the winding vector are

interchanged. Two interpretations can be done: first, we compactify a string back-

ground, T dualize it, and decompactify it into a different background. Second, we have

two different compactifications of a given background; these compactifications give the

same D-dimensional background and thus, are dual.

The way in that these two backgrounds are related is described by an isometry.

These field relations are known as Buscher’s rules [143–145].

ê′az = ∓ ê
a
z

ĝzz
, ê′aµ = êaµ −

ĝµz ± B̂µz

ĝzz
,

B̂′µz =
ĝµz
ĝzz

, B̂′µν = B̂µν + 2
ĝ[µ|z|B̂ν]z

ĝzz
, (2.44)

φ̂′ = φ̂− 1

2
ln |ĝzz| .

Now, let us study T duality applied to the σ-model (2.17), without considering the

dilaton term, since it does not play any relevant role in this classic approach. Let us

assume (2.17) with hatted fields running over hatted indices. Then, decomposing the

D̂-dimensional fields into D-dimensional fields using (2.40), we have

S = −T
2

∫
d2σ
√
|γ|
[
γijgij − k2F 2

]
+
T

2

∫
d2σ
√
|γ|εij [Bij + AiBj − 2FiBj] , (2.45)

where gij, Bij, Ai, Bi are the pullbacks of the D-dimensional metric, KR 2-form, KK

and winding vectors respectively. Fi is the field strength of the Z coordinate,

Fi = ∂iZ + Ai , (2.46)

which reflects the shift invariance

δΛZ = −Λ(x) , (2.47)

δΛAµ = ∂µΛ . (2.48)

This invariance implies the following conserved current

Pz
i = T (k2F i − ?Bi) , (2.49)

whose associated magnetic-like conserved current is

Wz
i = T ? F i − ?Ai . (2.50)
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Their associated charges are the momentum of the string in the compact dimension

and the winding number, respectively. Now, if we perform a Poincaré duality trans-

formation on the Z coordinate, Z → Z ′, by using the Bianchi identity of Fi and its

equation of motion, we have

S ′ = −T
2

∫
d2σ
√
|γ|
[
γijgij − k−2F ′2

]
+
T

2

∫
d2σ
√
|γ|εij [Bij +BiAj − 2F ′iAj] ,

(2.51)

where

F ′i = ∂iZ
′ +Bi . (2.52)

This action coincides with the original one when we make the field replacements (2.43).

We find its conserved currents P i
Z′ and W i

Z′ , which are closely related to those of the

original theory,

P i
Z′ = WZ

i , W i
Z′ = PZ

i . (2.53)

Thus, we summarize that T duality inverts the compactification radius and inter-

changes momentum modes with winding modes, leaving invariant the mass spectrum

and performing a parity transformation on the right-moving modes.

For type II superstrings, this parity transformation changes the chirality of the

spinors and the overall result is that the N = (1, 1) type IIA theory can be mapped

into the N = (2, 0) type IIB version. This relation holds for any value of the radius, in

particular it relates the limits R → 0 and R → ∞. For the case of N = 2A and N =

2B supergravity theories, there is a discrete symmetry relating the two supergravity

theories when both are reduced to 9 dimensions [146]. A generalization of the Buscher’s

rules can be established [115,116] when we perform dimensional reductions from N =

2A and N = 2B to D = 9 and identify the same fields from the two different reduction

schemes [36],

Ĵµν = ĝµν −
ĝµzĝνz − B̂µzB̂νz

ĝzz
, Ĵµy =

B̂µz

ĝzz
,

B̂µν = B̂µν +
ĝµzB̂νz − B̂µzĝνz

ĝzz
, B̂µy =

ĝµz
ĝzz

,

ϕ̂ = φ̂− 1

2
ln |ĝzz| , Ĵyy =

1

ĝzz
, (2.54)

Ĉ(2n)
µ1···µ2n = Ĉ(2n+1))

µ1···µ2nz + 2nB̂[µ1|z|Ĉ
(2n−1)
µ2···µ2n] − 2n(2n− 1)

B̂[µ1|z|ĝµ2|z|Ĉ
(2n−1)
µ3···µ2n]z

gzz
,

Ĉ(2n)
µ1···µ2n−1y

= −Ĉ(2n−1))
µ1···µ2n−1

+ (2n− 1)
ĝ[µ1|z|Ĉ

(2n−1)
µ2···µ2n−1]z

gzz
.

On the other hand, T duality effects on the heterotic superstrings result in the

transformation laws of the heterotic whose gauge group is E8 × E8 into the heterotic

theory with SO(32) as a gauge group, and vice versa [147].
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T duality in type I string theory is even more subtle. We can obtain the effective

action of type I by considering type IIB and truncating it using one of its Z2 symmetries

plus the inclusion of an O9-plane and 32 D9-branes.3 The T duality between type IIB

and type IIA theories implies the existence of the so-called type I’ [148], which can be

interpreted as a rotation of the space where we compactify. This implies the interchange

of Neumann and Dirichlet boundary conditions for certain coordinates.

The examples of T-duality that we have discussed are only the tip of a mathematical

iceberg: there exist additional dualities known as mirror symmetries, in which different

10-dimensional string theories compactified on Calabi-Yau manifolds are related to each

other [149].

2.4.2 S duality

String theory also possesses non-perturbative dualities in which the strong-coupling

regime of a theory is related to the weak-coupling limit of another (or even the same)

theory. This kind of duality is called S duality and, as we argued before, it has to do

with the inversion of the dilaton and its role as the coupling constant of the theory.

Reference [150] is a well-known and useful review in this topic. We will compare some

particular string actions to explicitly show this duality and its consequences.

Let us compare the effective actions of the heterotic SO(32) and type I superstring

theories. The former is

Sh =
g2

h

16πG
(10)
Nh

∫
d10x

√
|g|e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 − 1

4
α′F I

µνF
Iµν

]
, (2.55)

whereas the type I action is

SI =
g2

I

16πG
(10)
NI

∫
d10x

√
|J |

{
e−2ϕ

[
R(J )− 4(∂ϕ)2

]
+

1

2 · 3!
(G(3))2 +

α′

4
e−ϕTr

(
F 2
)}

.

(2.56)

Jµν is the metric and G(3) is the field strength of the RR potential C(2). Upon in-

spection, we can check that both actions are transformed into each other under the

mapping

Jµν = e−φgµν , ϕ = −φ , C(2)
µν = Bµν . (2.57)

Since the VEV of exponential of the dilaton corresponds to the string coupling constant,

this suggests that the strong and weak coupling regimes of the heterotic and type I

superstrings are mapped into each other [151].

Another example can be found in the effective action of type IIB strings written in

3Reference [36] pedagogically shows how to do it.
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the Einstein frame,

SB =
gB

16πG
(10)
NB

∫
d10x

√
|JE|

[
R(JE) +

1

4
Tr
(
∂MM−1

)2
+

1

2 · 3!
~HTM−1 ~H

+
1

4 · 5!
F 2 − 1

27 · 33

1√
|JE|

εD ~HTη ~H

]
, (2.58)

where M is a scalar matrix,

M =
1

Im (τ)

(
|τ |2 Re (τ)

Re (τ) 1

)
, (2.59)

that depends on the dilaton and the RR scalar field by means of the complex scalar

τ ≡ C(0) + ie−ϕ . (2.60)

~H is the field strength of ~B = (C(2),B) and F = 5(∂D − ~BTη ~H) is the modified field

strength of D = C(4)−3BC(2). This action is invariant under SL(2,R) transformation,s

which act on the complex scalar as follows:

τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,R) , ad− bc = 1 . (2.61)

In particular, if a = d = 0 and b = −c = 1, this transformation implies φ → −φ, so

that the strong coupling limit of type IIB superstring theory is actually dual to its own

weak coupling regime [138].

Thus, we have proven the link between the strong and weak-coupling limits of type

IIB theory.

2.4.3 U duality and M theory

The strong coupling limit of type IIA string theory is even more exciting. To study this

regime, let us oxidyze the N = 2A action and analyze its relation to D = 11 SUGRA

(1.33). If we arrange the fields of the N = 2A action (1.49) as follows,

ĝµν = e−
1
6
φgµν + e

4
3
φCµCν , ĝµz = e

4
3
φCµ ,

ĝzz = e
4
3
φ , (2.62)

Ĉ(3) = C(3) +B(2) ∧ (dz + C(1)) , (2.63)

we fill the field content of D = 11 supergravity. In fact, substituting these fields by the

ones of the genuine action, we obtain that

L11 = L2A ∧ dz . (2.64)

That is, we notice that N = 2A supergravity is a KK dimensionally-reduced theory

of D = 11 supergravity on a circle. The already explained role of the exponential of
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the dilaton allows to relate the radius of the 11th dimension to the string coupling

constant. Now, let us give an expression for the compactified radius R11 and study

some of its limits. Following [36], the radius of the compactified 11th dimension is

naturally measured by the metric

R11 =
1

2π
lim
r→∞

∫ √
|ĝzz|dz =

`
(11)
Planck

2π
e

2
3
φ0 =

`
(11)
Planck

2π
g

2/3
A . (2.65)

From the prefactors of both sides of (2.64), we have

`
(11)
Planckg

2/3
A G

(10)
NA = G

(11)
N . (2.66)

On the other hand, Dirac quantization and consistency arguments on extended objects

imply

G
(10)
N 2A = 8π6g2

A(α′4) , (2.67)

so that defining the 11-dimensional Planck length as

16πG
(11)
N ≡ (`

(11)
Planck)9

2π
, (2.68)

we have

`
(11)
Planck = 2π`sg

1/3
A . (2.69)

This implies

R11 = `sgA . (2.70)

Now it is easy to see that the strong-coupling limit of the type IIA theory, gA →
∞ coincides with the decompactification limit in which a new dimension becomes

macroscopic [29]. This new theory is the so-called M theory [152]: it is defined to be

the theory that has D = 11 supergravity as its low-energy limit. In a same fashion, it

is argued [153] that the strong coupling of the heterotic E8 ×E8 theory is also related

to this intringuing theory, but this time the compactification is done under an interval.

Thus, one expects a generalization when considering M theory reductions on a n-

torus T n. Indeed, it has been conjectured [138] that M theory on a torus is invariant

under the dualitiy groups given in table 2.4.3. This duality group of M theory consists

of a combination of T and S dualities of string theory and is called the U-duality group.

For example, M theory on a T 2, would have an SL(2,Z) U duality group. That is,

M theory on different backgrounds that are related by SL(2,Z) transformations are

equivalent. As in the other dualities, these U duality groups will reappear as global

symmetry groups of the corresponding supergravity theories.
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D U duality T duality

9 SL(2,Z)

8 SL(3,Z)× SL(2,Z) SL(2,Z)× SL(2,Z)

7 SL(5,Z) SO(3, 3;Z)

6 SO(5, 5;Z) SO(4, 4;Z)

Table 2.3: U duality groups of M theory on T 11−D and T duality groups of IIA and IIB

string theory on T 10−D for 6 ≤ D ≤ 9 dimensions.

2.5 Extended objects

In the spectrum of the string theories, not only we find excitations of the so-called fun-

damental string itself but, for instance, making use of dualities, also extended objects

appear as solitonic states in the spectrum. These extended states have a worldvol-

ume action, analog to the worldsheet action of a string. The presence of these objects

changes the boundary conditions and the orientability of the theory. New theories can

be built by compactifying or adding these extended objects and breaking thus Lorentz

invariance or supersymmetry. That is, since these states can generate backgrounds that

modify the number of preserved supersymmetries, some truncations to half-maximal

theories can be done by tuning certain configurations of these objects.

D-brane worldvolume metrics arise, together with a suitable field configuration, as

solutions of the SUGRA field equations. In fact, it was a breakthrough in string theory

when it was realized that these Dp-branes (p counts the number of spatial dimensions

over that the worldvolume is expanded) could be identified as the hyperplanes on which

open strings can end [154].

Let us briefly introduce the so-called p-brane a-model [155], which is the simplest

model that entails the fundamental features of a supergravity. For further details, we

submit to [36].

We assume a generic supergravity: gravity coupled to one scalar and to a (p + 1)-

form potential as follows:

S =
1

16πG
(d)
N

∫
dDx

√
|g|
{
R + 2(∂ϕ)2 +

(−1)p+1

2 · (p+ 2)!
e−2aϕF 2

(p+2)

}
, (2.71)

where F(p+2) = dA(p+1) is the field stregth of the (p + 1)-form potential under which

the p-brane is charged. The equations of motion are

Gµν + 2T φµν −
1

2
e−2aϕT

A(p+1)
µν = 0 , (2.72)

∇2ϕ+
(−1)p+1

4 · (p+ 2)!
ae−2aϕF 2

(p+2) = 0 , (2.73)

∇µ

(
e−2aϕF

µν1···νp+1

(p+2)

)
= 0 , (2.74)
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where

T
A(p+1)
µν = − 2√

|g|
δS(p)

δgµν
=

(−1)p

(p+ 1)!

[
F(p+2)µ

ρ1···ρ(p+1)F(p+2)µρ1···ρ(p+1)
− 1

2(p+ 2)
gµνF

2
(p+2)

]
is the corresponding energy-momentum tensor associated to the term of the action

associated to the p-form. Their general solution, by assuming that there are additional

translational isometries in the directions z1, . . . , zq, is given by

ds2 =
(
e−2aϕH−2

) 1
p+1
[
Wdt2 − d~y2

p

]
−
(
e−2aϕH−2

)− 1
p̃+1
[
d~z2

q +W−1dρ2 + ρ2dΩ2
(δ−2)

]
,

e−2aϕ = H2x , Aty1···yp = α(H−1 − 1) ,

H = 1 +
h

ρδ−3
, W = 1 +

ω

ρδ−3
,

ω = h

[
1− a2

4x
α2

]
, x =

(a2/2)c

1 + (a2/2)c
,

c =
(p+ 1) + (p̃+ 1)

(p+ 1)(p̃+ 1)
, (2.75)

where δ = d− (p+ q) > 3. The parallel coordinates t, y1, . . . , yp span the worldvolume

of the brane, and the rest are transverse to the brane. H is a harmonic function in the

(δ − 1) transverse dimensions that do not suffer any isometry,

∆(δ−1)H = 0 . (2.76)

In addition ,we can wonder about the magnetic dual of this a-model. When we

write the dual field strength and dilaton field,

F(p+2) = e−2ϕp̃F(p̃+2) , ϕp = −ϕp̃, (2.77)

where p̃ = D − p − 4, the dilaton gets inverted. Then, due to its role as the coupling

constant, new solutions take place that are different to the dual solutions that can be

obtained from (2.75). The more general solution is

ds2 =
(
e+2aϕH−2

) 1
p̃+1
[
Wdt2 − d~y2

p

]
−
(
e+2aϕH−2

)− 1
p+1

[
d~z2

q +W−1dρ2 + ρ2dΩ2
(δ̃−2)

]
,

e−2aϕ = H−2x , F(p+2)z1···zqψ1···ψ(δ̃−2)
= (δ̃ − 3)αhΩ

(δ̃−2)
ψ1···ψ(δ̃−2)

,

H = 1 +
h

ρδ̃−3
, W = 1 +

ω

ρδ̃−3
,

ω = h

[
1− a2

4x
α2

]
, x =

(a2/2)c

1 + (a2/2)c
,

c =
(p+ 1) + (p̃+ 1)

(p+ 1)(p̃+ 1)
, (2.78)
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IIB S-dual IIB

NS1 D1

NS5 D5

D1 NS1

D3 D3

D5 NS5

D7 D̃7

Table 2.4: IIB branes and S duality acting on them. Under SL(2,Z), D3-branes are

singlet, and (NS1,D1) and (NS5,D5) are doublets. D7-branes transforms to its mag-

netic dual, the D̃7-brane. [156].

where δ̃ = d− (p̃+ q) and Ω(n) is the volume form of the n-sphere.

As long as point-particles (D0-branes) can be coupled to 1-form potentials and

strings (D1-branes) are charged with respect to 2-form potentials, Dp-branes can be

charged electrically under RR gauge potentials C(p+1) and magnetically under C(7−p).

Since D-branes also couple to NSNS potentials and we only have the 2-form Bµν , the

resulting branes are the NS1- (the fundamental string) and the NS5-brane. Thus, we

can easily infer the existence of a M2- and a M5-brane in 11-dimensional SUGRA.

The M2-brane is chareged with respect to the 3-form potential Cµνρ whereas its dual

M5-brane gets charged with respect to the corresponding 6-form potential dual to Cµνρ.

On the other hand, one also can introduce orientifold planes, Op-planes, which are

objects with negative tension. If in a string theory, worldsheet parity is combined with

a discrete symmetry of the spacetime, then the quotient is called an orbifold. Although

they are similar in other respects to Dp-branes, they are not dynamical objects. They

are attached to the fixed points of the spacetime orbifold and cannot translate or

oscillate.

Some important issues have to be taken into account to add D-branes and O-planes

consistently to superstring theories.

• Type IIA (IIB) theory admits only Dp-branes and Op-planes with p even (odd).

• Despite of Dp-branes and Op-planes are charged with respect to RR (p + 1)-

potentials, one has to introduce a 9 (10)-form potential forh the D8 (D9)-brane

and the O8 (O9)-plane.

• Dp-branes carry a unit of positive or negative RR charge that equals its tension,

qDp = ±TDp.

• Having a single Dp-brane or Op-planes in our configuration halves the supersym-

metry of the theory.

Let us see an example of the branes that can live in a given theory. Due to its

duality richness, let us see what branes can be coupled to the massless fields of the
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type IIB theory. In the NSNS sector there is only the Kalb-Ramond 2-form, so we can

have the NS1- and NS5-branes, as we said. The RR sector is spanned by the C(0), C(2)

and C(4). Thus, the D(-1), D1 and D3 branes electrically interact with them, whereas

D7, D5 and D3 become magnetically charged. The D(-1) solution is a particular type of

instanton and it is localized both in space and time. We show in table 2.5 how S-duality

acts on the these BPS objects, which is a good approach to study non-perturbative

configurations.





Chapter 3

Gauged supergravities

In any supergravity theory, we can implement deformations in such a way that part

of the global symmetry becomes gauged. We will study now how to gauge a given

supergravity theory, i.e., we will choose a subgroup G0 ⊂ G and promote it to a local

symmetry. To do this, we will use a covariant formalism that preserves and guarantees

the covariance of the final theory. This formalism is the so-called embedding tensor

(ET).

3.1 Motivation

The discovery of the relation between RR (p + 1)-form potentials in 10-dimensional

type II supergravity theories and D-branes [154] made it possible to associate most of

the fields of the string low-energy effective field theories (supergravity theories in gen-

eral) to extended objects (branes) of diverse kinds: fundamental, Dirichlet, solitonic,

Kaluza-Klein etc. This association has been fruitfully used in two directions: to infer

the existence of new supergravity fields from the known existence in the String Theory

of a given brane or string state and vice versa. Thus, the knowledge of the existence

of Dp-branes with large values of p made it necessary to learn how to deal consistently

with the magnetic duals of the RR fields that were present in the standard formu-

lations of the supergravity theories constructed decades before, because in general it

is impossible to dualize and rewrite the theory in terms of the dual magnetic fields.

The existence of NSNS (p + 1)-forms in the supergravity theories that could also be

dualized made it necessary to include solitonic branes dual to the fundamental ones

(strings, basically). It was necessary to include all the objects and fields that could be

reached from those already known by U-duality transformations and this effort led to

the discovery of new branes and the introduction of the democratic formulations of the

type II supergravities [157] dealing simultaneously with all the relevant electric and

magnetic supergravity fields in a consistent way.

The search for all the extended states of string theory has motivated the search

for all the fields that can be consistently introduced in the corresponding supergravity
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theories, a problem that has no simple answer for the d-, (d−1) and (d−2)-form fields,

which are not the duals of electric fields already present in the standard formulation,

at least in any obvious way. The branes that would couple to them can play important

rôles in String Theory models, which makes this search more interesting.

As mentioned before, U-duality arguments have been used to find new supergravity

fields but U-duality can only reach new fields belonging to the same orbits as the known

fields. To find other possible fields, a systematic study of the possible consistent super-

symmetry transformation rules for p-forms has been carried out in the 10-dimensional

maximal supergravities in refs. [157–162] but this procedure is long and not system-

atic. The conjectured E11 symmetry [163–165] can be used to determine the bosonic

extended field content of maximal supergravity in different dimensions1. These results

have been recently used to construct the U-duality-covariant Wess-Zumino terms of

all possible branes in all dimensions [167,168]. In this approach supersymmetry is not

explicitly taken into account, only through the U-duality group.

Another possible systematic approach to this problem (that does not take supersym-

metry into account explicitly either) is provided by the embedding-tensor formalism 2.

This formalism, introduced in refs. [172–176] allows the study of the most general defor-

mations of field theories and, in particular, of supergravity theories [118,119,177–183].

One of the main features of this formalism is that it requires the systematic introduction

of new higher-rank potentials which are related by Stückelberg gauge transformations.

This structure is known as the tensor hierarchy of the theory [175, 176, 182, 184–186]

and can be taken as the (bosonic) extended field content of the theory. In Supergrav-

ity Theories one may need to take into account additional constraints on the possible

gaugings, but, if the gauging is allowed by supersymmetry, then gauge invariance will

require the introduction of all the fields in the associated tensor hierarchy and, since

gauge invariance is a sine qua non condition for supersymmetry, the tensor hierarchy

will be automatically compatible with supersymmetry. Furthermore, if we set to zero

all the deformation parameters (gauge coupling constants, Romans-like mass param-

eters [187] etc.) the fields that we have introduced will remain in the undeformed

theory.

This formalism, therefore, provides another systematic way of finding the extended

field content of Supergravity Theories. However, it cannot be used in the most in-

teresting cases, N = 1, d = 11 and N = 2A,B, d = 10 Supergravity, because these

theories cannot be gauged because they do not have 1-forms (N = 1, d = 11 and

N = 2B, d = 10) or the 1-form transforms under the only (Abelian) global symmetry

(N = 2A, d = 10). Only N = 2A, d = 10 can be deformed through the introduction

of Romans’ mass parameter, but the consistency of this deformation does not seem

to require the introduction of any higher-rank potentials. The dimensional reduction

to d = 9 of these theories, though, has 3 vector fields, and their embedding tensor

1Smaller Kač-Moody algebras can be used in supergravities with smaller number of supercharges

such as N = 2 theories in d = 4, 5, 6 dimensions [166].
2For recent reviews see refs. [169–171].



3.2. Embedding tensor: the troika 65

formalism can be used to study all its possible gaugings and find its extended field

content.

3.2 Embedding tensor: the troika

The role of the vector fields are crucial in the gauging procedure. The vectors Aµ
M of

the ungauged theory transform under global G transformations ξα and Abelian gauge

symmetry U(1)nV , where nV is the number of vector fields in the theory,

δξAµ
M = −ξα(tα)N

MAµ
M , δΛAµ

M = ∂µΛM , (3.1)

whereM = 1, . . . , nV is an index of the fundamental representation and α = 1, . . . , dimG

is an index of the adjoint representation.

As we said, our aim is to promote a subgroup G0 ⊂ G to be local. Let us assume

a subset of generators XM ⊂ g = Lie G spanned by the candidates to be gauged. We

implement this local dependence by introducing the corresponding covariant derivative

∂µ → Dµ = ∂µ − gAµMXM . (3.2)

The choice of what and how the generators have to be chosen to preserve the

covariance of the theory is done by means of a matrix ϑM
α, which describes the explicit

embedding of G0 into G and is restricted to transform covariantly. ϑM
α is a constant

nV × dimG matrix. Thus, the relation between the global and the gauge candidate

generators is

XM = ϑM
αtα ∈ g . (3.3)

Since ϑM
α is constant, this is nothing but a linear combination of the generators of G

and thus, the dimension of the gauge group is the rank of ϑM
α.

The new covariant derivatives guarantee the covariance of the theory under the G

symmetry group. However, only when we choose a particular gauge group G0, i.e., a

particular ϑM
α, G gets broken. Thus, considering that the fields transform as follows,

δΛV = ΛMXMV , δΛAµ
M = DµΛM , (3.4)

the gauge invariance of the theory is not guaranteed. Gauge transformations act on

the embedding tensor in this way:

δΛϑM
α = ΛNXNM

PϑP
α − ΛNXNβ

αϑM
β (3.5)

= ΛNϑN
β
(
tβM

PϑP
α − fβγαϑMγ

)
. (3.6)

If we demand gauge invariance of the ET, we obtain a set of second-order constraints

in ϑM
α, the so-called quadratic constraints (QC). Contracting (3.5) with a generator
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tα, we obtain a constraint that guarantees the closure of the algebra of the gauge

generators,

[XM , XN ] = −XMN
PXP , (3.7)

where

XMN
P = ϑM

α(tα)N
P . (3.8)

So, gauge invariance implies the closure of the gauge generators, i.e., constraint (3.5)

is more restrictive than (3.7).

Let us split the gauge generators as follows,

XMN
P = X[MN ]

P + ZP
MN , (3.9)

where ZP
MN = X(MN)

P . Thus, from (3.7), we can check that

ZP
MNXP = 0 . (3.10)

However, if we define X[MN ]
P to be the structure constants, we realize that

X[MN ]
PX[QP ]

R +X[QM ]
PX[NP ]

R +X[NQ]
PX[MP ]

R = −ZR
P [QXMN ]

P . (3.11)

That is, Jacobi identity is satisfied upon contracting with XR, due to the condition

(3.10). This is enough in order to the QC (3.5) be satisfied.

There also exists a linear constraint (LC) arising from supersymmetry. Since we

want to keep SUSY unspoiled, ϑM
α gets restricted by dimensional and group-theoretical

arguments to live in certain representations. That is, SUSY kills some of the represen-

tations of the embedding tensor. As we will see in the following chapter, this restriction

appears explicitely when we study the closure of the supersymmetric transformations

of the fields.

As we said, the embedding tensor lives in

ϑM
α : RV ∗ ⊗Radj = V ′ ⊗ g0 = θ1 ⊕ θ2 ⊕ · · · ⊕ ϑk , (3.12)

where V ′ is the conjugate representation of the fundamental V , g0 is the adjoint repre-

sentation and θi are several irreps. Then, the linear constraint, which can be schemat-

ically represented as

Pϑ = 0 , (3.13)

restricts the r.h.s. of (3.12). In table 3.2 we have the resulting representations of the

embedding tensor in maximal theories. For half-maximal supergravities, the structure

is similar. In some cases, this linear constraint can be infered even at the very beginning

of the procedure, throughout the bosonic sector. For instance, in D = 4 N = 8 [176],

the constraint

X(MN
PΩK)P = Samtleben : 2008pe0 , ΩMN =

(
0 1
1 0

)
, (3.14)
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D G0 H ] scalars vectors ϑ

9 R+ × SL(2) SO(2) 3 1+4 + 2−3 2+3 + 3−4

8 SL(2)× SL(3) SO(2)× SO(3) 7 (2,3′) (2,3) + (2,6′)

7 SL(5) SO(5) 14 10′ 15 + 40′

6 S0(5, 5) SO(5)× SO(5) 25 16 144

5 E6(6) USp(8) 42 27′ 351

4 E7(7) SU(8) 70 56 912

Table 3.1: Embedding tensor representations in maximal supergravities for different

dimensions.

guarantees the supersymmetry of the action.

Thus, the classification of all the possible gaugings of a given theory reduces to the

search and analysis of solutions of the QC and the LC, where the former is, in general,

arithmetically difficult to solve. Moreover, the counting of inequivalent gaugings is also

a non-trivial problem to be solved, where the heaviest group theory machinery has to

be used to identify the different orbits.

3.3 Deformed tensor gauge algebra

Up to this point, we have introduced additional couplings by means of the covariant

derivative. This automatically implies that the field strengths have to include this

covariant derivative in order to ‘feel’ the new non-Abelian nature of the gauge group.

A priori, we could assume a natural ansatz

Fµν
M = 2∂[µAν]

M + gX[NP ]
MAµ

NAν
P , (3.15)

but this is not enough. The condition (3.10) ensures that the QC is satisfied. However,

this is not compatible with (3.15), since it does not transform convariantly,

δΛFµν
M = −gΛPXPN

M + 2gZM
PQ

(
ΛPFµν

Q − A[µ
P δAν]

Q
)
, (3.16)

Only when ZM
PQ vanishes, it transforms properly.

The condition of keeping G covariance is the responsible of this situation. In some

sense, we are performing a redundant description of the gauge in terms of the nV
generators XM . In general, since the dimension of the gauge group is smaller than

that of the global symmetry group, nV , not all of the XM generators are linearly

independent. For some cases, we can split the vector fields into

• Aµm, which transform in the adjoint of G0,

• Aµi, which transform in some representation of G0,
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so that Zm
PQ = 0, and Zi

PQ 6= 0.3 For some particular examples, this can be done

and the problem can be circumvented. However, a general procedure is required.

A possible covariant ansatz is

FµνM = Fµν
M + gZM

PQBµν
PQ , (3.17)

where Bµν
PQ are the 2-forms of the field content of the corresponding theory. Then,

we can balance the contribution of the non-covariant terms of (3.16) if the gauge

transformations of the 1- and 2-form fields are

δAµ
M = DµΛM − gZM

PQΞµ
PQ ,

δBµν
MN = 2D[µΞν]

MN − 2Λ(MHµν
N) + 2A[µ

(MδAν]
N) , (3.18)

where Ξµ
MN is a 1-form gauge parameter. Something similar occurs in massive super-

gravities [187]. Of course, these Bµν
MN cannot trivially be added to the theory, but

they have to be part of the spectrum of the ungauged version. Moreover, ZM
PQ is

restricted to live in the representation in which the Bµν
MN do. This means that since

ZM
PQ = ZM

PQ(ϑM
α), this condition entails a restriction on the embedding tensor and

its allowed representations.

The terms in (3.17) and (3.18) that introduce the next-order -form are called Stück-

elberg couplings. They arise as a part of the so-called Stückelberg mechanism, which is

used in many theoretical scenarios to give mass to some fields without loosing gauge

invariance.

Of course, this is extended to higher-order rank p-forms, so that a new bunch of

3-forms have to be added properly to the field strength of Bµν and its gauge trans-

formation. This mechanism necessarily brings to light all the p-form fields of a given

theory. That is, the emergence of every higher-order rank p-form is guaranteed, as we

claimed at the beginning of this chapter. Schematically, we have

FµνM = 2D[µAν]
M + · · ·+ ZMIBµνI ,

FµνρI = 3D[µBνρ]I + · · ·+ ZIACµνρ
A , (3.19)

FµνρλA = 4D[µCνρλ]
A + · · ·+ ZAaCµνρλa ,

... =
...

where indices M, I,A, a belong to different representations of G. The gauge variations

would be

δFµνM = 2D[µδAν]
M + · · ·+ ZMIδBµνI ,

δFµνρI = 2D[µδBνρ]I + · · ·+ ZIAδCµν
A , (3.20)

δFµνρλA = 2D[µδCνρλ]
A + · · ·+ ZAaδCµνρλa ,

... =
...

3For some explicit examples, see [171].
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D G 1 2 3 4

9 GL(2) 1−4 + 2+3 2−1 1+2 1−2

8 SL(2)×SL(3) (2,3′) (1,3) (2,1) (1,3′)

7 SL(5) 10′ 5 5′

6 SO(5,5) 16c 10 10s
5 E6(6) 27′ 27

4 E7(7) 56 133

3 E8(8) 248

Table 3.2: The p-form content being part of the Lagrangian of gauged maximal super-

gravities.

where the gauge transformation of the fields are

δAµ
M = DµΛM + · · · − ZMIΞµI ,

δBµνI = 2D[µΞν] + · · · − ZIAΣµν
A , (3.21)

δCµνρ
A = 3D[µΣνρ

A + · · · − ZAaΥµνρa ,

... =
...

Thus, we summarize that not only covariant derivatives are necessary as new in-

gredientes to gauge a theory, but also Stückelberg-like couplings between p-forms and

(p + 1)-forms are necessary, especially to construct suitable field transformations and

guarantee the covariance of the field strengths.

Another consequence of the new gaugings is that the field strength does not satisfy

the standard Bianchi identity, but it satisfies the so-called deformed Bianchi identity,

3D[µFνρ]
M = ZMIFµνρI ,

4D[µFνρλ]I = · · ·+ ZIAFµνρλA ,
5D[µFνρλσ]A = ZAaFµνρλσa ,

... =
...

A more detailed analysis of the higher rank tensor gauge transformations allows us

to determine the full field content of the theory, including the D- and (D − 1)-forms,

which are non-propagating fields. In table 3.3, we summarize the p-form content of

maximal supergravities [175,182].

3.4 The Lagrangian

Once we have studied the impact of the gaugings in the group structure of supergrav-

ities, let us focus on the Lagrangian. Apart from covariantizing the derivatives and
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replace the Abelian field strengths by the fully covariant ones, we need to modify the

topological terms of the ungauged version.

We have seen how the Stückelberg coupling connects the p- and (p + 1)-forms

throughout the field strenghts of the former. The presence of these fields could be,

in principle, problematic, since they do not appear in the ungauged theory and they

could imply new equations of motion.

However, these contributions combine into first order equations of motions (of the

magnetic fields), which show nothing but the fact that they are the on-shell dual

fields of the ungauged theory. They enter as Lagrange multipliers-like equations in the

Lagrangian.

It is important to point out the conceptual difference between this situation and the

so-called democratic formulations of supergravities [157], in which all the dual fields

are introduced in the action in an egalitarian way and the duality relations must be

added by hand.

Once the gaugings are properly implemented in the theory, local supersymmetry

invariance of the Lagrangian has to be imposed. The SUSY variations of the new

Stückelberg couplings of the field strengths have to be cancelled by new terms of the

lagrangian. If we schematically have a generic term

F (p)F(p) = F (p)F(p) + 2ZC(p)F
(p) + ZZC(p)C(p) , (3.22)

then, its SUSY variation at first order is given by

δε(F (p)F(p)) = 2
[
F (p)δεF(p) + F (p)ZδεC(p) + δεF

(p)ZC(p) + ZZC(p)δεC(p)

]
. (3.23)

The first term also appears in the ungauged theory and does not imply any problem.

The rest of the terms depend on the embedding tensor. In addition,

F (p) ∼ d(ε̄γ · · · γλ) ,

δεC
(p) ∼ ε̄γ · · · γλ . (3.24)

The only possibility to cancel these terms is by means of fermionic mass terms,

Lfm = g
(
ψ̄µ

aAµνabψν
b + χ̄mBµ

abψ
b
µ + χ̄mCabχ

b
)

+ h.c. , (3.25)

where ψµ and χ are the gravitinos and 1/2-fermions, respectively. The indices a, b

are spinorial and the tensors Aµνab, B
µ
ab and Cab depend, by construction, on the

embedding tensor and may depend on the scalar fields. However, the presence of these

new terms require the modification of the supersymmetric rules of the fermions4:

δψµ
a = δ0ψµ

a + Aabµ εb ,

δχa = δ0χ
a +Babεb , (3.27)

4For instance,

δε(ψ̄µ
aAµνabψν

b) ∼ 2(ψ̄µ
aAµνabδεψν

b) ∼ 2(ψ̄µ
aAµνabDµε

b) + · · · . (3.26)

The only cancellation of this term arises from δε(ψ̄µγ
µνρDνψrho), but there is not any contribution

proportional to ϑM
α. Thus, we need to modify the supersymmetric rules of the fermion fields.
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where the δ0 represents the supersymmetric transformation of the ungauged theory.

These terms are known as fermion shifts and, as happened before, they solve a problem

but they create a new one. New terms proportional to ϑ2 appear from the action of

the fermion shifts on (3.25). This requires the addition of a scalar potential, which

schematically has the form

Lpot = −eV = −e
(
Bµ

abBµ
ab − AabµνA

µν
ab

)
. (3.28)

This scalar potential supports dS and AdS vacua. V can be rewritten in terms of the

embedding tensor. In general, it can be expressed into the form

V = V MN
αβϑM

αϑN
β , (3.29)

where V MN
αβ is a scalar dependent matrix.

The tensors Aµν
ab, Bµ

ab, Cab depend on the ET and transform under the maximal

compact subgroup H of G. These two features necessarily imply the appearance of the

scalar matrix V , which as we saw, is the link between elements that transform under

G and others that transform under H. Then, these tensor A,B,C are obtained from

ϑM
α by acting on any of its fundamental G indices with V . This leads to define the

so-called T-tensor,

Ta
m ≡ ϑM

αV M
aVα

b . (3.30)

where a, m are indices of a certain representation of H. Then, every irreducible com-

ponent of ϑM
α branches into one or more H-irreducible components of T ,

ϑ = θ1 ⊕ θ2 ⊕ · · · → T = (t11 ⊕ t12 ⊕ · · · )⊕ (t11 ⊕ t12 ⊕ · · · )⊕ · · · . (3.31)

These irreducible representations correspond to these tensors A,B,C5. For example,

in D = 4 N = 8 supergravity, the maximal compact subgroup is H = SU(8) and

the embedding tensor lives in the 912 representation of G = E7. Decomposing this

representation into irreps of SU(8), we have

ϑM
α → Ta

b → (Aab, Aab, B
ab, Bab) (3.32)

912→ 36 + 36 + 420 + 420 . (3.33)

These are the main aspects of gauged supergravities and the embedding tensor

formalism. The next chapter will show an exhaustive study of all of the gauged super-

gravties in 9 dimensions, using the ET to scan all the possibilities.

5The Lorentz index of these tensors arises from the internal structure of gamma matrices that is

required for any case.





Chapter 4

Gaugings in N = 2 D = 9

supergravity

4.1 Introduction

We use the embedding tensor method to construct the most general maximal gauged

(massive) supergravity in d = 9 dimensions and to determine its extended field content.

Some gaugings of the maximal d = 9 supergravity have been obtained in the past by

generalized dimensional reduction [188] of the 10-dimensional theories with respect to

the SL(2,R) global symmetry of the N = 2B theory [116, 189, 190] or other rescaling

symmetries [191]1. All these possibilities were systematically and separately studied in

Ref. [117], taking into account the dualities that relate the possible deformation param-

eters introduced with the generalized dimensional reductions. However, the possible

combinations of deformations were not studied, and, as we will explain, some of the

higher-rank fields are associated to the constraints on the combinations of deforma-

tions. Furthermore, we do not know if other deformations, with no higher-dimensional

origin (such as Romans’ massive deformation of the N = 2A, d = 10 supergravity) are

possible.

Our goal in this chapter will be to make a systematic study of all these possibilities

using the embedding-tensor formalism plus supersymmetry to identify the extended-

field content of the theory, finding the rôle played by the possible 7-, 8- and 9-form

potentials, and compare the results with the prediction of the E11 approach. We expect

to get at least compatible results, as in the N = 2, d = 4, 5, 6 cases studied in [119]

and [166].

This chapter is organized as follows: in Section 4.2 we review the undeformed max-

imal 9-dimensional supergravity and its global symmetries. In Section 4.3 we study the

possible deformations of the theory using the embedding-tensor formalism and checking

the closure of the local supersymmetry algebra for each electric p-form of the theory.

In Section 4.4 we summarize the results of the previous section describing the possible

1An SO(2)-gauged version of the theory was directly constructed in Ref. [192].
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deformations and the constraints they must satisfy. We discuss the relations between

those results and the possible 7- 8- and 9-form potentials of the theory and how these re-

sults compare with those obtained in the literature using the E11 approach. Section 4.5

contains our conclusions. Our conventions are briefly discussed in Appendix B.1. The

Noether currents of the undeformed theory are given in Appendix B.3. A summary

of our results for the deformed theory (deformed field strengths, gauge transforma-

tions and covariant derivatives, supersymmetry transformations etc.) is contained in

AppendixB.4.

4.2 Maximal d = 9 supergravity: the undeformed

theory

There is only one undeformed (i.e. ungauged, massless) maximal (i.e.N = 2, containing

no dimensionful parameters in their action, apart from the overall Newton constant)

9-dimensional supergravity [112]. Both the dimensional reduction of the massless N =

2A, d = 10 theory and that of the N = 2B, d = 10 theory on a circle give the same

undeformed N = 2, d = 9 theory, a property related to the T duality between type IIA

and IIB string theories compactified on circles [113, 114] and from which the type II

Buscher rules can be derived [115].

The fundamental (electric) fields of this theory are,

{
eµ
a, ϕ, τ ≡ χ+ ie−φ, AIµ, B

i
µν , Cµνρ, ψµ, λ̃, λ,

}
. (4.1)

where I = 0, i, with i, j,k = 1, 2 and i, j, k = 1, 22. The complex scalar τ parametrizes

an SL(2,R)/U(1) coset that can also be described through the symmetric SL(2,R)

matrix

M≡ eφ

 |τ |2 χ

χ 1

 , M−1 ≡ eφ

 1 −χ

−χ |τ |2

 . (4.2)

The undeformed field strengths of the electric p-forms are, in our conventions3,4

2Sometimes we need to distinguish the indices 1, 2 of the 1-forms (and their dual 6-forms) from

those of the 2-forms (and their dual 5-forms). We will use boldface indices for the former and their

associated gauge parameters.
3We use the shorthand notation AIJ ≡ AI ∧AJ , Bijk ≡ Bi ∧Bj ∧Bk etc.
4The relation between these fields and those of Refs. [116] and [117] are given in Appendix B.2.
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F I = dAI , (4.3)

H i = dBi + 1
2
δii(A

0 ∧ F i + Ai ∧ F 0) , (4.4)

G = d[C − 1
6
εijA

0ij]− εijF i ∧
(
Bj + 1

2
δj jA

0j
)
, (4.5)

and are invariant under the undeformed gauge transformations

δΛA
I = −dΛI , (4.6)

δΛB
i = −dΛi + δii

[
ΛiF 0 + Λ0F i + 1

2

(
A0 ∧ δΛA

i + Ai ∧ δΛA
0
)]
,(4.7)

δΛ[C − 1
6
εijA

0ij] = −dΛ− εij
(
F i ∧ Λj + Λi ∧Hj − δΛA

i ∧Bj

+1
2
δj jA

0i ∧ δΛA
j
)
. (4.8)

The bosonic action is, in these conventions, given by

S =

∫ {
− ? R + 1

2
dϕ ∧ ?dϕ+ 1

2

[
dφ ∧ ?dφ+ e2φdχ ∧ ?dχ

]
+ 1

2
e

4√
7
ϕ
F 0 ∧ ?F 0

+1
2
e

3√
7
ϕ
(M−1)ijF

i ∧ ?F j + 1
2
e
− 1√

7
ϕ
(M−1)ijH

i ∧ ?Hj + 1
2
e

2√
7
ϕ
G ∧ ?G

−1
2

[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧
{[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧ A0

−εij
(
H i − δiiAi ∧ F 0

)
∧
(
Bj − 1

2
δj jA

0j
)}}

.

(4.9)

The kinetic term for the SL(2,R) scalars φ and χ can be written in the alternative

forms

1
2

[
dφ ∧ ?dφ+ e2φdχ ∧ ?dχ

]
=
dτ ∧ ?dτ̄
2(=mτ)2

= 1
4
Tr
[
dMM−1 ∧ ?dMM−1

]
, (4.10)

the last of which is manifestly SL(2,R)-invariant. The Chern-Simons term of the action

(the last two lines of Eq. (4.9)) can also be written in the alternative form

−1
2
d
[
C − 1

6
εijA

0ij − εijAi ∧Bj
]
∧
{
d
[
C − 1

6
εijA

0ij − εijAi ∧Bj
]
∧ A0

−εijd
(
Bi − 1

2
δiiA

0i
)
∧
(
Bj − 1

2
δj jA

0j
)}

,

(4.11)
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that has an evident 11-dimensional origin.

The equations of motion of the scalars, derived from the action above, are

d ? dϕ− 2√
7
e

4√
7
ϕ
F 0 ∧ ?F 0 − 3

2
√

7
e

3√
7
ϕ
(M−1)ijF

i ∧ ?F j

+ 1
2
√

7
e
− 1√

7
ϕ
(M−1)ijH

i ∧ ?Hj − 1√
7
e

2√
7
ϕ
G ∧ ?G = 0 , (4.12)

d

[
?

dτ̄

(=mτ)2

]
− idτ ∧ ?dτ̄

(=mτ)3
− ∂τ (M−1)ij

[
F i ∧ ?F j +H i ∧ ?Hj

]
= 0 , (4.13)

and those of the fundamental p-forms (p ≥ 1), after some algebraic manipulations, take

the form

d
(
e

4√
7
ϕ
? F 0

)
= −e−

1√
7
ϕM−1

ij F
i ∧ ?Hj + 1

2
G ∧G , (4.14)

d
(
e

3√
7
ϕM−1

ij ? F j
)

= −e
3√
7
ϕM−1

ij F
0 ∧ ?Hj + εije

2√
7
ϕ
Hj ∧ ?G , (4.15)

d
(
e
− 1√

7
ϕM−1

ij ? Hj
)

= εije
2√
7
ϕ
F j ∧ ?G− εijHj ∧G , (4.16)

d
(
e

2√
7
ϕ
? G
)

= F 0 ∧G+ 1
2
εijH

i ∧Hj . (4.17)

4.2.1 Global symmetries

The undeformed theory has as (classical) global symmetry group SL(2,R) × (R+)2.

The (R+)2 symmetries correspond to scalings of the fields, the first of which, that we

will denote by α5, acts on the metric and only leaves the equations of motion invariant

while the second of them, which we will denote by β, leaves invariant both the metric

and the action. The β rescaling corresponds to the so-called trombone symmetry which

may not survive to higher-derivative string corrections.

One can also discuss two more scaling symmetries γ and δ, but γ is just a subgroup

of SL(2,R) and δ is related to the other scaling symmetries by

4
9
α− 8

3
β − γ − 1

2
δ = 0 . (4.18)

We will take α and β as the independent symmetries. The weights of the electric

fields under all the scaling symmetries are given in Table 4.2.1. We can see that each

5This discussion follows closely that of Ref. [117] in which the higher-dimensional origin of each

symmetry is also studied. In particular, we use the same names and definitions for the scaling sym-

metries and we reproduce the table of scaling weights for the electric fields.
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R+ eµ
a eϕ eφ χ A0 A1 A2 B1 B2 C ψµ λ λ̃ ε L

α 9/7 6/
√

7 0 0 3 0 0 3 3 3 9/14 −9/14 −9/14 9/14 9

β 0
√

7/4 3/4 −3/4 1/2 −3/4 0 −1/4 1/2 −1/4 0 0 0 0 0

γ 0 0 −2 2 0 1 −1 1 −1 0 0 0 0 0 0

δ 8/7 −4/
√

7 0 0 0 2 2 2 2 4 4/7 −4/7 −4/7 4/7 8

Table 4.1: The scaling weights of the electric fields of maximal d = 9 supergravity.

of the three gauge fields AIµ has zero weight under two (linear combinations) of these

three symmetries: one is a symmetry of the action, the other is a symmetry of the

equations of motion only. The 1-form that has zero weight under a given rescaling is

precisely the one that can be used to gauge that rescaling, but this kind of conditions

are automatically taken into account by the embedding-tensor formalism and we will

not have to discuss them in detail.

The action of the element of SL(2,R) given by the matrix

(
Ωi
j

)
=

(
a b

c d

)
, ad− bc = 1 , (4.19)

on the fields of the theory is

τ ′ =
aτ + b

cτ + d
, M′

ij = Ωi
kMklΩj

l ,

Ai ′ = Ωj
iAj , Bi ′ = Ωj

iBj ,

ψ′µ = e
i
2
lψµ , λ = e

3i
2
lλ ,

λ̃′ = e−
i
2
lλ̃ , ε′ = e

i
2
lε .

(4.20)

where

e2il ≡ c τ ∗ + d

c τ + d
. (4.21)

The rest of the fields (eaµ, ϕ, A
0
µ, Cµνρ), are invariant under SL(2,R).

We are going to label the 5 generators of these global symmetries by TA, A =

1, · · · , 5. {T1, T2, T3} will be the 3 generators of SL(2,R) (collectively denoted by

{Tm}, m = 1, 2, 3), and T4 and T5 will be, respectively, the generators of the rescalings

α and β. Our choice for the generators of SL(2,R) acting on the doublets of 1-forms

Ai and 2-forms Bi is

T1 = 1
2
σ3 , T2 = 1

2
σ1 , T3 = i

2
σ2 , (4.22)

where the σm are the standard Pauli matrices, so

[T1, T2] = T3 , [T2, T3] = −T1 , [T3, T1] = −T2 . (4.23)
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Then, the 3 × 3 matrices corresponding to generators acting (contravariantly) on the

3 1-forms AI (and covariantly on their dual 6-forms ÃI to be introduced later) are

(
(T1)J

I
)

= 1
2

(
0 0

0 σ3

)
,

(
(T2)J

I
)

= 1
2

(
0 0

0 σ1

)
,

(
(T3)J

I
)

= 1
2

(
0 0

0 iσ2

)
,

(
(T4)J

I
)

= diag(3, 0, 0) ,
(
(T5)J

I
)

= diag(1/2,−3/4, 0) .
(4.24)

We will sometimes denote this representation by T
(3)
A . The 2×2 matrices corresponding

to generators acting (contravariantly) on the doublet of 2-forms Bi (and covariantly

on their dual 5-forms B̃i to be introduced later) are

((T1)j
i) = 1

2
σ3 , ((T2)j

i) = 1
2
σ1 , ((T3)j

i) = i
2
σ2 ,

((T4)j
i) = diag(3, 3) , ((T5)j

i) = diag(−1/4, 1/2) .

(4.25)

We will denote this representation by T
(2)
A . The generators that act on the 3-form C

(sometimes denoted by T
(1)
A ) are

T1 = T2 = T3 = 0 , T4 = 3 , T5 = −1/4 . (4.26)

We will also need the generators that act on the magnetic 4-form C̃ (see next section),

also denoted by T
(1̃)
A

T̃1 = T̃2 = T̃3 = 0 , T̃4 = 6 , T̃5 = 1/4 . (4.27)

We define the structure constants fAB
C by

[TA, TB] = fAB
CTC . (4.28)

The symmetries of the theory are isometries of the scalar manifold (R×SL(2,R/U(1)).

The Killing vector associated to the generator TA will be denoted by kA and will be

normalized so that their Lie brackets are given by

[kA, kB] = −fABCkC . (4.29)

The SL(2,R)/U(1) factor of the scalar manifold is a Kähler space with Kähler

potential, Kähler metric and Kähler 1-form, respectively given by

K = − log=mτ = φ , Gττ∗ = ∂τ∂τ∗K = 1
4
e2φ , Q = 1

2i
(∂τKdτ − c.c.) = 1

2
eφdχ .

(4.30)

In general, the isometries of the Kähler metric only leave invariant the Kähler

potential up to Kähler transformations :



4.2. Maximal d = 9 supergravity: the undeformed theory 79

£kmK = km
τ∂τK + c.c. = λm(τ) + c.c. , £kmQ = − i

2
dλm , (4.31)

where the λm are holomorphic functions of the coordinates that satisfy the equivariance

property

£kmλn −£knλm = −fmnpλp . (4.32)

Then, for each of the SL(2,R) Killing vectors km, m = 1, 2, 3, it is possible to find

a real Killing prepotential or momentum map Pm such that

kmτ∗ = Gτ∗τkmτ = i∂τ∗Pm ,

km
τ∂τK = iPm + λm ,

£kmPn = −fmnpPp .

(4.33)

The non-vanishing components of all the Killing vectors are6

k1
τ = τ , k2

τ = 1
2
(1− τ 2) , k3

τ = 1
2
(1 + τ 2) , k4

τ = 0 , k5
τ = −3

4
τ . (4.34)

and

k4
ϕ = 6/

√
7 , k5

ϕ =
√

7/4 . (4.35)

The holomorphic functions λm(τ) take the values

λ1 = −1
2
, λ2 = 1

2
τ , λ3 = −1

2
τ , (4.36)

and the momentum maps are given by:

P1 = 1
2
eφχ , P2 = 1

4
eφ(1− |τ |2) , P3 = 1

4
eφ(1 + |τ |2) . (4.37)

These objects will be used in the construction of SL(2,R)-covariant derivatives for

the fermions.

4.2.2 Magnetic fields

As it is well known, for each p-form potential with p > 0 one can define a magnetic

dual which in d − 9 dimensions will be a (7 − p)-form potential. Then, we will have

magnetic 4-, 5- and 6-form potentials in the theory.

A possible way to define those potentials and identify their (8 − p)-form field

strengths consists in writing the equations of motion of the p-forms as total deriva-

tives. Let us take, for instance, the equation of motion of the 3-form C Eq. (4.17). It

can be written as

6The holomorphic and anti-holomorphic components are defined by k = kτ∂τ +c.c. = kχ∂χ+kφ∂φ.
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d
∂L
∂G

= d

{
e

2√
7
ϕ
? G−

[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧ A0

+1
2
εij
(
H i − δiiAi ∧ F 0

)
∧
(
Bj − 1

2
δj jA

0j
)}

= 0 .

(4.38)

We can transform this equation of motion into a Bianchi identity by replacing the

combination of fields on which the total derivative acts by the total derivative of a

4-form which we choose for the sake of convenience7

d
[
C̃ − C ∧ A0 − 3

4
εijA

0i ∧Bj
]
≡ e

2√
7
ϕ
? G−

[
G+ εijA

i ∧
(
Hj − 1

2
δj jA

j ∧ F 0
)]
∧ A0

+1
2
εij
(
H i − δiiAi ∧ F 0

)
∧
(
Bj − 1

2
δj jA

0j
)
,
(4.39)

where C̃ will be the magnetic 4-form. This relation can be put in the form of a duality

relation

e
2√
7
ϕ
? G = G̃ , (4.40)

where we have defined the magnetic 5-form field strength

G̃ ≡ dC̃ + C ∧ F 0 − 1
24
εijA

0ij ∧ F 0 − εij
(
H i − 1

2
dBi

)
∧Bj . (4.41)

The equation of motion for C̃ is just the Bianchi identity of G rewritten in terms of G̃.

In a similar fashion we can define a doublet of 5-forms B̃i with field strengths

denoted by H̃i, and a singlet and a doublet of 6-forms Ã0, Ãi with field strengths

denoted, respectively, by F̃0 and F̃i. The field strengths can be chosen to have the form

7With this definition G̃ will have exactly the same form that we will obtain from the embedding

tensor formalism.
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0 1 2 3 4 5 6 7 8 9

jA AI Bi C C̃ B̃i ÃI ÃA(7) Ã(8) Ã(9)

F I H i G G̃ H̃i F̃I F̃A
(8) F̃(9)

Table 4.2: Electric and magnetic forms and their field strengths.

H̃i = dB̃i − δijBj ∧G+ δijC̃ ∧ F j + 1
2
δij
(
A0 ∧ F j + Aj ∧ F 0

)
∧ C

+ 1
2
δijεklB

jk ∧ F l , (4.42)

F̃0 = dÃ0 + 1
2
C ∧G− εijF i ∧

(
δjkB̃k − 2

3
Bj ∧ C

)

− 1
18
εijA

ij ∧
(
G̃− F 0 ∧ C − 1

2
εklB

k ∧H l
)

− 1
6
εijA

i ∧
(
Bj ∧G− C ∧Hj − 2

3
δj jC̃ ∧ F j − εklBjk ∧ F l

)
, (4.43)

F̃i = dÃi + δij
(
Bj + 7

18
δjkA

0k
)
∧ G̃− δijF 0 ∧ B̃j − 1

9
δij
(
8A0 ∧ F j + Aj ∧ F 0

)
∧ C̃

− 1
3
δijεlm

(
Bj + 1

3
δjkA

0k
)
∧Bl ∧Hm − 1

6
δijεkl

(
A0 ∧Hj −Bj ∧ F 0

)
∧ Ak ∧Bl

− 1
9
A0 ∧ F 0 ∧ δij

(
7
2
Aj ∧ C + δjkεlmA

lm ∧Bk
)
, (4.44)

and the duality relations are

H̃i = e
− 1√

7
ϕM−1

ij ? Hj , (4.45)

F̃0 = e
4√
7
ϕ
? F 0 , (4.46)

F̃i = e
3√
7
ϕM−1

ij ? F j . (4.47)

The situation is summarized in Table 4.2.2. The scaling weights of the magnetic

fields are given in Table 4.2.2.

This dualization procedure is made possible by the gauge symmetries associated to

all the p-form potentials for p > 0 (actually, by the existence of gauge transformations

with constant parameters) and, therefore, it always works for massless p-forms with
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R+ C̃ B̃2 B̃1 Ã2 Ã1 Ã0

α 6 6 6 9 9 6

β 1/4 −1/2 +1/4 0 +3/4 −1/2

γ 0 1 -1 1 -1 0

δ 4 6 6 6 6 8

Table 4.3: The scaling weights of the magnetic fields of maximal d = 9 supergravity

can be determined by requiring that the sum of the weights of the electric and magnetic

potentials equals that of the Lagrangian. The scaling weights of the 7-, 8- and 9-forms

can be determined in the same way after we find the entities they are dual to (Noether

currents, embedding-tensor components and constraints, see Section 4.4).

p > 0 and generically fails for 0-form fields. However, in maximal supergravity theories

at least, there is a global symmetry group that acts on the scalar manifold and whose

dimension is larger than that of the scalar manifold. Therefore, there is one Noether

1-form current jA associated to each of the generators of the global symmetries of the

theory TA. These currents are conserved on-shell, i. e. they satisfy

d ? jA = 0 ,

on-shell, and we can define a (d− 2)-form potential ÃA(d−2) by

dÃA(d−2) = GAB ? jB ,

where GAB is the inverse Killing metric of the global symmetry group, so that the

conservation law (dynamical) becomes a Bianchi identity.

Thus, while the dualization procedure indicates that for each electric p-form with

p > 0 there is a dual magnetic (7−p)-form transforming in the conjugate representation,

it tells us that there are as many magnetic (d − 2)-form duals of the scalars as the

dimension of the global group (and not of as the dimension of the scalar manifold)

and that they transform in the co-adjoint representation. Actually, since there is no

need to have scalar fields in order to have global symmetries, it is possible to define

magnetic (d− 2)-form potentials even in the total absence of scalars8.

According to these general arguments, which are in agreement with the general

results of the embedding-tensor formalism [118, 119, 184, 186], we expect a triplet of

7-form potentials Ãm(7) associated to the SL(2,R) factor of the global symmetry group

[116] and two singlets Ã4
(7), Ã

5
(7) associated to the rescalings α, β (see Table 4.2.2).

Finding or just determining the possible magnetic (d− 1)- and d-form potentials in

a given theory is more complicated. In the embedding-tensor formalism it is natural to

expect as many (d− 1)-form potentials as deformation parameters (embedding-tensor

components, mass parameters etc.) can be introduced in the theory since the rôle of

the (d − 1)-forms in the action is that of being Lagrange multipliers enforcing their

8See Refs. [118,119] for examples.
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constancy9. The number of deformation parameters that can be introduced in this

theory is, as we are going to see, very large, but there are many constraints that they

have to satisfy to preserve gauge and supersymmetry invariance. Furthermore, there

are many Stückelberg shift symmetries acting on the possible (d− 1)-form potentials.

Solving the constraints leaves us with the independent deformation parameters that

we can denote by m] and, correspondingly, with a reduced number of (d − 1)-form

potentials Ã](d−1) on which only a few Stückelberg symmetries (or none at all) act10.

The d-form field strengths F̃ ]
(d) are related to the scalar potential of the theory

through the expression [118,119,184,186]

F̃ ]
(d) = 1

2
?
∂V

∂m]

. (4.48)

Thus, in order to find the possible 8-form potentials of this theory we need to study

its independent consistent deformations m]. We will consider this problem in the next

section.

In the embedding-tensor formalism, the d-form potentials are associated to con-

straints of the deformation parameters since they would be the Lagrange multipliers

enforcing them in the action [181]. If we do not solve any of the constraints there

will be many d-form potentials but there will be many Stückelberg symmetries acting

on them as well. Thus, only a small number of irreducible constraints that cannot

be solved11 and of associated d-forms may be expected in the end, but we have to go

through the whole procedure to identify them. This identification will be one of the

main results of the following section.

However, this is not the end of the story for the possible 9-forms. As it was shown

in Ref. [119] in 4- 5- and 6-dimensional cases, in the ungauged case one can find

more d-forms with consistent supersymmetric transformation rules than predicted by

the embedding-tensor formalism. Those additional fields are predicted by the Kač-

Moody approach [166]. However, after gauging, the new fields do not have consistent,

independent, supersymmetry transformation rules to all orders in fermions12, and have

to be combined with other d-forms, so that, in the end, only the number of d-forms

predicted by the embedding-tensor formalism survive.

This means that the results obtained via the embedding-tensor formalism for the

9-forms have to be interpreted with special care and have to be compared with the

results obtained with other approaches.

9The embedding-tensor formalism gives us a reason to introduce the (d− 1)-form potentials based

on the deformation parameters but the (d−1)-form potentials do not disappear when the deformation

parameters are set equal to zero.
10The (d−1)-form potentials that “disappear” when we solve the constraints are evidently associated

to the gauge-fixing of the missing Stückelberg symmetries.
11In general, the quadratic constraints cannot be used to solve some deformation parameters in

terms of the rest. For instance, in this sense, if a and b are two of them, a constraint of the form

ab = 0 cannot be solved and we can call it irreducible.
12The insufficience of first-order in fermions checks was first noticed in Ref. [161].
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The closure of the local supersymmetry algebra needs to be checked on all the fields

in the tensor hierarchy predicted by the embedding-tensor formalism and, in particular,

on the 9-forms to all orders in fermions. However, given that gauge invariance is

requirement for local supersymmetry invariance, we expect consistency in essentially

all cases with the possible exception of the 9-forms, according to the above discussion.

In the next section we will do this for the electric fields of the theory.

4.3 Deforming the maximal d = 9 supergravity

In this section we are going to study the possible deformations of d = 9 supergravity,

starting from its possible gaugings using the embedding-tensor formalism and con-

structing the corresponding tensor hierarchy [172–176, 184, 186] up to the 4-form po-

tentials.

If we denote by ΛI(x) the scalar parameters of the gauge transformations of the

1-forms AI and by αA the constant parameters of the global symmetries, we want to

promote

αA −→ ΛI(x)ϑI
A , (4.49)

where ϑI
A is the embedding tensor, in the transformation rules of all the fields, and we

are going to require the theory to be covariant under the new local transformations

using the 1-forms as gauge fields.

To achieve this goal, starting with the transformations of the scalars, the successive

introduction of higher-rank p-form potentials is required, which results in the construc-

tion of a tensor hierarchy. Most of these fields are already present in the supergravity

theory or can be identified with their magnetic duals but this procedure allows us to

introduce consistently the highest-rank fields (the d-, (d− 1)- and (d− 2)-form poten-

tials), which are not dual to any of the original electric fields. Actually, as explained in

Section 4.2.2, the highest-rank potentials are related to the symmetries (Noether cur-

rents), the independent deformation parameters and the constraints that they satisfy,

but we need to determine these, which requires going through this procedure checking

the consistency with gauge and supersymmetry invariance at each step.

Thus, we are going to require invariance under the new gauge transformations for

the scalar fields and we are going to find that we need new couplings to the gauge

1-form fields (as usual). Then we will study the modifications of the supersymmetry

transformation rules of the scalars and fermion fields which are needed to ensure the

closure of the local supersymmetry algebra on the scalars. Usually we do not expect

modifications in the bosons’ supersymmetry transformations, but the fermions’ trans-

formations need to be modified by replacing derivatives and field strengths by covariant

derivatives and covariant field strengths and, furthermore, by adding fermion shifts.

The local supersymmetry algebra will close provided that we impose certain constraints

on the embedding tensor components and on the fermion shifts.
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Repeating this procedure on the 1-forms (which requires the coupling to the 2-

forms) etc. we will find a set of constraints that we can solve, determining the in-

dependent components of the deformation tensors13 and the fermions shifts. Some

constraints (typically quadratic in deformation parameters) have to be left unsolved

and we will have to take them into account towards the end of this procedure.

As a result we will identify the independent deformations of the theory and the

constraints that they satisfy. From this we will be able to extract information about

the highest-rank potentials in the tensor hierarchy.

4.3.1 The 0-forms ϕ, τ

Under the global symmetry group, the scalars transform according to

δαϕ = αAkA
ϕ , δατ = αAkA

τ , (4.50)

where the αA are the constant parameters of the transformations, labeled by A =

1, · · · , 5, and where kA
ϕ and kA

τ are the corresponding components of the Killing

vectors of the scalar manifold, given in Eq. (4.35) (Eq. (4.34)).

According to the general prescription Eq. (4.49), we want to gauge these symmetries

making the theory invariant under the local transformations

δΛϕ = ΛIϑI
AkA

ϕ , δΛτ = ΛIϑI
AkA

τ , (4.51)

where ΛI(x), I = 0,1,2, are the 0-form gauge parameters of the 1-form gauge fields

AI and ϑI
A is the embedding tensor.

To construct gauge-covariant field strengths for the scalars it is enough to replace

their derivatives by covariant derivatives.

Covariant derivatives

The covariant derivatives of the scalars have the standard form

Dϕ = dϕ+ AIϑAI kA
ϕ , Dτ = dτ + AIϑAI kA

τ , (4.52)

and they transform covariantly provided that the 1-form gauge fields transform as

δΛA
I = −DΛI + ZI

iΛ
i , (4.53)

where the Λi, i = 1, 2, are two possible 1-form gauge parameters and ZI
i is a possible

new deformation parameter that must satisfy the orthogonality constraint

ϑI
AZI

i = 0 . (4.54)

13As we are going to see, besides the embedding tensor, one can introduce many other deformation

tensors.



86 4. Gaugings in N = 2 D = 9 supergravity

Furthermore, it is necessary that the embedding tensor satisfies the standard quadratic

constraint

ϑI
ATAJ

KϑK
C − ϑIAϑJBfABC = 0 , (4.55)

that expresses the gauge-invariance of the embedding tensor.

As a general rule, all the deformation tensors have to be gauge-invariant and we

can anticipate that we will have to impose the constraint that expresses the gauge-

invariance of ZI
i, namely

XJ K
IZK

i −XJ i
jZI

j = 0 , (4.56)

where

XI J
K ≡ ϑI

ATAJ
K , XJ i

j ≡ ϑJ
ATA i

j . (4.57)

Supersymmetry transformations of the fermion fields

We will assume for simplicity that the supersymmetry transformations of the fermion

fields in the deformed theory have essentially the same form as in the undeformed theory

but covariantized (derivatives and field strengths) and, possibly, with the addition of

fermion shifts which we add in the most general form:

δεψµ = Dµε+ fγµε+ kγµε
∗ + i

8·2!
e
− 2√

7
ϕ (5

7
γµγ

(2) − γ(2)γµ
)
F 0ε

− 1
8·2!
e

3
2
√
7
ϕ+ 1

2
φ (5

7
γµγ

(2) − γ(2)γµ
)

(F 1 − τF 2)ε∗

− i
8·3!
e
− 1

2
√
7
ϕ (3

7
γµγ

(3) + γ(3)γµ
)

(H1 − τH2)ε∗

− 1
8·4!
e

1√
7
ϕ (1

7
γµγ

(4) − γ(4)γµ
)
Gε , (4.58)

δελ̃ = i 6Dϕε∗ + g̃ε+ h̃ε∗ − 1√
7
e
− 2√

7
ϕ 6F 0ε∗ − 3i

2·2!
√

7
e

3
2
√
7
ϕ+ 1

2
φ
(6F 1 − τ ∗ 6F 2)ε

− 1
2·3!
√

7
e
− 1

2
√
7
ϕ+ 1

2
φ
(6H1 − τ ∗ 6H2)ε− i

4!
√

7
e

1√
7
ϕ 6Gε∗ , (4.59)

δελ = −eφ 6Dτε∗ + gε+ hε∗ − i
2·2!
e

3
2
√
7
ϕ+ 1

2
φ
( 6F 1 − τ 6F 2)ε

+ 1
2·3!
e
− 1

2
√
7
ϕ+ 1

2
φ
(6H1 − τ 6H2)ε . (4.60)
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In these expressions, f, k, g, h, g̃, h̃ are six functions of the scalars and deformation

parameters to be determined, the covariant field strengths have the general form pre-

dicted by the tensor hierarchy (to be determined) and the covariant derivatives of the

scalars have the forms given above. Furthermore, in δεψµ, Dµε stands for the Lorentz-

and gauge-covariant derivative of the supersymmetry parameter, which turns out to

be given by

Dµε ≡
{
∇µ + i

2

[
1
2
eφD5

µχ+ AIµϑI
mPm

]
+ 9

14
γµ 6AIϑI4

}
ε (4.61)

where Pm 1, 2, 3 are the momentum maps of the holomorphic Killing vectors of SL(2,R),

defined in Eq. (4.33) and given in Eq. (4.37), ∇µ is the Lorentz-covariant derivative

and

D5
µχ ≡ ∂µχ− 3

4
AIµϑI

5χ (4.62)

is the derivative of χ covariant only with respect to the β rescalings. it can be checked

that Dµε transforms covariantly under gauge transformations if and only if the embed-

ding tensor satisfies the standard quadratic constraint Eq. (4.55).

An equivalent expression for it is

Dµε =
{
∇µ + i

2

[
1
2
eφDµχ− AIµϑIm=mλm

]
+ 9

14
γµ 6AIϑI4

}
ε , (4.63)

where the λm, m = 1, 2, 3, of SL(2,R) and defined in Eq. (4.33) and given in Eq. (4.36)

and where now

Dµχ ≡ ∂µχ+ AIµϑI
AkA

χ , (4.64)

is the total covariant derivative of χ (which is invariant under both the α and β scaling

symmetries as well as under SL(2,R)).

The actual form of the (p + 1)-form field strengths will not be needed until the

moment in which study the closure of the supersymmetry algebra on the corresponding

p-form potential.

Closure of the supersymmetry algebra on the 0-forms ϕ, τ

We assume that the supersymmetry transformations of the scalars are the same as in

the undeformed theory

δεϕ = − i
4
ε̄λ̃∗ + h.c. , (4.65)

δετ = −1
2
e−φε̄∗λ . (4.66)

To lowest order in fermions, the commutator of two supersymmetry transformations

gives
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[δε1 , δε2 ]ϕ = ξµDµϕ+ <e(h̃)b−=m(g̃)c+ <e(g̃)d , (4.67)

[δε1 , δε2 ] τ = ξµDµτ + e−φ [g(c− id)− ihb] , (4.68)

where ξµ is one of the spinor bilinears defined in Appendix B.1.1 that clearly plays the

rôle of parameter of the general coordinate transformations and a, b, c, d are the scalar

bilinears defined in the same appendix.

In the right hand side of these commutators, to lowest order in fermions, we expect

a general coordinate transformation (the Lie derivative £ξ of the scalars with respect

to ξµ) and a gauge transformation which has the form of Eq. (4.51) for the scalars.

Therefore, the above expressions should be compared with

[δε1 , δε2 ]ϕ = £ξϕ+ ΛIϑI
AkA

ϕ , (4.69)

[δε1 , δε2 ] τ = £ξτ + ΛIϑI
AkA

τ , (4.70)

from which we get the relations

<e(h̃)b−=m(g̃)c+ <e(g̃)d = (ΛI − aI)ϑIAkAϕ , (4.71)

g(c− id)− ihb = eφ(ΛI − aI)ϑIAkAτ , (4.72)

which would allow us to determine the fermion shift functions if we knew the gauge

parameters ΛI . In order to determine the ΛIs we have to close the supersymmetry

algebra on the 1-forms. In these expressions and in those that will follow, we use the

shorthand notation

aI ≡ ξµAIµ , biµ ≡ ξνBi
νµ , cµν ≡ ξρCρµν , etc. (4.73)

4.3.2 The 1-forms AI

The next step in this procedure is to consider the 1-forms that we just introduced to

construct covariant derivatives for the scalars.

The 2-form field strengths F I

The gauge transformations of the 1-forms are given in Eq. (4.53) and we first need

to determine their covariant field strengths. A general result of the embedding-tensor

formalism tells us that we need to introduce 2-form potentials in the covariant field
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strengths. In this case only have the SL(2,R) doublet Bi at our disposal and, therefore,

the 2-form field strengths have the form

F I = dAI + 1
2
XJK

IAJ ∧ AK + ZI
iB

i , (4.74)

where XJK
I has been defined in Eq. (4.57) and ZI

i is precisely the deformation ten-

sor we introduced in Eq. (4.53). F I will transform covariantly under Eq. (4.53) if

simultaneously the 2-forms Bi transform according to

δΛB
i = −DΛi − 2hIJ

i
[
ΛIF J + 1

2
AI ∧ δΛA

J
]

+ ZiΛ , (4.75)

where hIJ
i and Zi are two possible new deformation tensors the first of which must

satisfy the constraint

X(JK)
I + ZI

ihJK
i = 0 , (4.76)

while Zi must satisfy the orthogonality constraint

ZI
iZ

i = 0 . (4.77)

Both of them must satisfy the constraints that express their gauge invariance:

XI j
ihJK

j − 2XI(J
LhK)L

i = 0 , (4.78)

XIZ
i −XI j

iZj = 0 , (4.79)

where

XI ≡ ϑI
AT

(1)
A . (4.80)

Closure of the supersymmetry algebra on the 1-forms AI

We assume, as we are doing with all the bosons, that the supersymmetry transforma-

tions of the 1-forms of the theory are not deformed by the gauging, so they take the

form

δεA
0
µ = i

2
e

2√
7
ϕ
ε̄
(
ψµ − i√

7
γµλ̃

∗
)

+ h.c. , (4.81)

δεA
1
µ = i

2
τ ∗e
− 3

2
√
7
ϕ+ 1

2
φ
(
ε̄∗ψµ − i

4
ε̄γµλ+ 3i

4
√

7
ε̄∗γµλ̃

∗
)

+ h.c. , (4.82)

δεA
2
µ = i

2
e
− 3

2
√

7
ϕ+ 1

2
φ
(
ε̄∗ψµ − i

4
ε̄γµλ+ 3i

4
√

7
ε̄∗γµλ̃

∗
)

+ h.c. (4.83)

The commutator of two of them gives, to lowest order in fermions,
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[δε1 , δε2 ]A
0
µ = ξνF 0

νµ −Dµ

(
e

2√
7
ϕ
b
)

+ 2√
7
e

2√
7
ϕ
{[
<e(h̃)−

√
7=m(f)

]
ξµ

+
[
<e(g̃)−

√
7=m(k)

]
σµ +

[
=m(g̃)−

√
7<e(k)

]
ρµ
}
,

(4.84)

[δε1 , δε2 ]A
1
µ = ξνF 1

νµ − ∂µ
[
e
− 3

2
√
7
ϕ+ 1

2
φ
(χd+ e−φc)

]
−AIµ

[
(1

2
ϑI

1 − 3
4
ϑI

5)e
− 3

2
√
7
ϕ+ 1

2
φ
(χd+ e−φc) + 1

2
(ϑI

2 + ϑI
3)e
− 3

2
√
7
ϕ 1

2
φ
d
]

−2e
− 3

2
√
7
ϕ 1

2
φ
{
χ
[
=m(k) + 3

4
√

7
<e(g̃)− 1

4
<e(g)

]
+ e−φ

[
−<e(k)− 3

4
√

7
=m(g̃)− 1

4
=m(g)

]}
ξµ

−2e
− 3

2
√
7
ϕ 1

2
φ
{
χ
[
−<e(f)− 3

4
√

7
=m(h̃) + 1

4
=m(h)

]
+ e−φ

[
−=m(f)− 3

4
√

7
<e(h̃)− 1

4
<e(h)

]}
ρµ

−2e
− 3

2
√
7
ϕ 1

2
φ
{
χ
[
=m(f) + 3

4
√

7
<e(h̃)− 1

4
<e(h)

]
+ e−φ

[
−<e(f)− 3

4
√

7
=m(h̃)− 1

4
=m(h)

]}
σµ ,

(4.85)

and

[δε1 , δε2 ]A
2
µ = ξνF 2

νµ − ∂µ
(
e
− 3

2
√
7
ϕ+ 1

2
φ
d
)

−AIµ
[

1
2
(ϑI

2 − ϑI3)e
− 3

2
√
7
ϕ+ 1

2
φ
(χd+ e−φc)− 1

2
ϑI

1e
− 3

2
√
7
ϕ+ 1

2
φ
d
]

−2e
− 3

2
√
7
ϕ+ 1

2
φ
[
=m(k) + 3

4
√

7
<e(g̃)− 1

4
<e(g)

]
ξµ

−2e
− 3

2
√
7
ϕ+ 1

2
φ
[
−<e(f)− 3

4
√

7
=m(h̃) + 1

4
=m(h)

]
ρµ

−2e
− 3

2
√
7
ϕ+ 1

2
φ
[
=m(f) + 3

4
√

7
<e(h̃)− 1

4
<e(h)

]
σµ ,

(4.86)

where σµ and ρµ are spinor bilinears defined in Appendix B.1.1.

The closure of the local supersymmetry algebra requires the commutators to take

the form

[δε1 , δε2 ]A
I
µ = £ξA

I
µ −DµΛI + ZI

iΛ
i
µ , (4.87)

which will only happen if gauge parameters ΛI are given by



4.3. Deforming the maximal d = 9 supergravity 91

Λ0 = a0 + e
2√
7
ϕ
b ,

Λ1 = a1 + e
− 3

2
√
7
ϕ+ 1

2
φ
(χd+ e−φc) ,

Λ2 = a2 + e
− 3

2
√
7
ϕ+ 1

2
φ
d ,

(4.88)

and the 1-form gauge parameters Λi
µ satisfy the relations

[
<e(h̃)−

√
7=m(f)

]
ξµ +

[
<e(g̃)−

√
7=m(k)

]
σµ +

[
=m(g̃)−

√
7<e(k)

]
ρµ

=
√

7
2
e
− 2√

7
ϕ
Z0

i

[
Λi

µ − (biµ − hIJ iaIAJµ)
]
,(4.89)

{
χ
[
=m(k) + 3

4
√

7
<e(g̃)− 1

4
<e(g)

]
+ e−φ

[
−<e(k)− 3

4
√

7
=m(g̃)− 1

4
=m(g)

]}
ξµ

+
{
χ
[
−<e(f)− 3

4
√

7
=m(h̃) + 1

4
=m(h)

]
+ e−φ

[
−=m(f)− 3

4
√

7
<e(h̃)− 1

4
<e(h)

]}
ρµ

+
{
χ
[
=m(f) + 3

4
√

7
<e(h̃)− 1

4
<e(h)

]
+ e−φ

[
−<e(f)− 3

4
√

7
=m(h̃)− 1

4
=m(h)

]}
σµ ,

= −1
2
e

+ 3
2
√
7
ϕ− 1

2
φ
Z1

i

[
Λi

µ − (biµ − hIJ iaIAJµ)
]
,(4.90)

[
=m(k) + 3

4
√

7
<e(g̃)− 1

4
<e(g)

]
ξµ +

[
−<e(f)− 3

4
√

7
=m(h̃) + 1

4
=m(h)

]
ρµ

+
[
=m(f) + 3

4
√

7
<e(h̃)− 1

4
<e(h)

]
σµ ,

= −1
2
e

+ 3
2
√
7
ϕ− 1

2
φ
Z2

i

[
Λi

µ − (biµ − hIJ iaIAJµ)
]
.(4.91)

Using the values of the parameters ΛI that we just have determined in the relations

Eqs. (4.71) and (4.72) we can determine some of the fermions shifts:

<e(h̃) = ϑ0
AkA

ϕe
2√
7
ϕ
, (4.92)

g̃ = (ϑ1
Aτ ∗ + ϑ2

A)kA
ϕe
− 3

2
√
7
ϕ+

1
2
φ
, (4.93)

h = iϑ0
AkA

τe
2√
7
ϕ+φ

, (4.94)

g = ϑ1
AkA

τe
− 3

2
√
7
ϕ+ 1

2
φ
. (4.95)
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As a matter of fact, g is overdetermined: we get two different expression for it that

give the same value if and only if

(ϑ1
Aτ + ϑ2

A)kA
τ = 0 , (4.96)

which, upon use of the explicit expressions of the holomorphic Killing vectors kA
τ

in Section 4.2.1, leads to the following linear constraints on the components of the

embedding tensor:

ϑ2
2 + ϑ2

3 = 0 ,

ϑ1
2 + ϑ1

3 + 2ϑ2
1 − 3

2
ϑ2

5 = 0 ,

ϑ2
2 − ϑ2

3 − 2ϑ1
1 + 3

2
ϑ1

5 = 0 ,

ϑ1
2 − ϑ1

3 = 0 .

(4.97)

These constraints allow us to express 4 of the 15 components of the embedding

tensor in terms of the remaining 11, but we are only going to do this after we take into

account the constraints that we are going to find in the closure of the local supersym-

metry algebra on the doublet of 2-forms Bi.

The values of g, h.g̃, h̃ and the above constraints are compatible with those of the

primary deformations found in Ref. [117].

4.3.3 The 2-forms Bi

In the previous subsection we have introduced a doublet of 2-forms Bi with given gauge

transformations to construct the 2-form field strengths F I . We now have to construct

their covariant field strengths and check the closure of the local supersymmetry algebra

on them.

The 3-form field strengths H i

In general we need to introduce 3-form potentials to construct the covariant 3-form

field strengths and, since in maximal 9-dimensional supergravity, we only have C at

our disposal, the 3-form field strengths will be given by

H i = DBi − hIJ iAI ∧ dAJ − 1
3
X[IJ

LhK]L
iAIJK + ZiC , (4.98)

and they transform covariantly under the gauge transformations of the 1- and 2-forms

that we have previously determined provided if the 3-form C transforms as

δΛC = −DΛ + gIi
[
−ΛIH i − F I ∧ Λi + δΛA

I ∧Bi − 1
3
hJK

iAIJ ∧ δΛA
K
]

+ZΛ̃ . (4.99)
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where gIi and Z are two possible new deformation parameters. gIi must satisfy the

constraint

2hIJ
iZJ

j +XI j
i + ZigIj = 0 , (4.100)

while Z must satisfy the orthogonality constraint

ZiZ = 0 . (4.101)

Both must by gauge-invariant, which implies the constraints

XIJ
LgLi +XI i

jgJj −XIgJi = 0 , (4.102)

(XI − X̃I)Z = 0 , (4.103)

where

X̃I ≡ ϑI
AT

(1̃)
A . (4.104)

Using the constraints obeyed by the deformation parameters and the explicit form

of the 2-form field strengths F I we can rewrite the 3-form field strengths in the useful

form

H i = DBi − hIJ iAI ∧ F J + 1
6
X[IJ

LhK]L
iAIJK − 1

2
XIj

iAI ∧Bj + Zi(C − 1
2
gIjA

I ∧Bj) .

(4.105)

Closure of the supersymmetry algebra on the 2-forms Bi

In the undeformed theory, the supersymmetry transformation rules for the 2-forms are

δεB
1 = τ ∗e

1
2
√
7
ϕ+ 1

2
φ
[
ε̄∗γ[µψν] − i

8
ε̄γµνλ− i

8
√

7
ε̄∗γµνλ̃

∗
]

−δ1
i

(
A0

[µ|δεA
i
|ν] + Ai

[µ|δεA
0
|ν]

)
+ h.c. , (4.106)

δεB
2 = e

1
2
√
7
ϕ+ 1

2
φ
[
ε̄∗γ[µψν] − i

8
ε̄γµνλ− i

8
√

7
ε̄∗γµνλ̃

∗
]

−δ2
i

(
A0

[µ|δεA
i
|ν] + Ai

[µ|δεA
0
|ν]

)
+ h.c. . (4.107)

The last terms in both transformations are associated to the presence of derivatives of

A1 and A2 in the field strengths of B1 and B2 in the undeformed theory (see Eq. (4.4)).

In the deformed theory, the terms −(A0∧dAi +Ai∧dA0) are replaced by more general
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couplings −hIJ iAI ∧ dAJ and, therefore, it would be natural to replace the last terms

in δεB
i
µν by

− 2hIJ
iAI [µ|δεA

J
|ν] . (4.108)

In the commutator of two supersymmetry transformations on the 2-forms, these

terms give the right contributions to the terms −2hIJ
iΛIF J of the gauge transforma-

tions (see Eq. (4.75)). However, these terms must receive other contributions in order

to be complete and it turns out that the only terms of the form −2hIJ
iΛIF J that can

be completed are precisely those of the undeformed theory, which correspond to

hi0
j = −1

2
δi
j . (4.109)

In order to get more general hIJ
is it would be necessary to deform the fermions’

supersymmetry rules, something we will not do here. Furthermore, the structure of

the Chern-Simons terms of the field strengths is usually determined by the closure of

the supersymmetry algebra at higher orders in fermions and it is highly unlikely that a

more general structure of the Chern-Simons terms will be allowed by supersymmetry.

Therefore, from now on, we will set hIJ
i to the above value and we will set the values of

the deformation tensors in the Chern-Simons terms of the higher-rank field strengths, to

the values of the undeformed theory. Using the above value of hIJ
i in the constraints

in which it occurs will help us to solve them, sometimes completely, as we will see.

Nevertheless, we will keep using the notation hIJ
i for convenience.

Using the identity

ξρH i
ρµν − 2hIJ

iAIµ£ξA
J
ν = £ξB

i
µν − 2D[µ|(b

i
|ν] − hIJ iaIAJ |ν])]

−2hIJ
iaIF J

µν

+Zi
(
cµν − gIjaIBj

µν + 2
3
gJjhIK

jaIAJKµν]

)
,

(4.110)

we find that the local supersymmetry algebra closes on the Bis in the expected form

(to lowest order in fermions)

[δε1 , δε2 ]B
i
µν = £ξB

i
µν + δΛB

i
µν , (4.111)

where δΛB
i
µν is the gauge transformation given in Eq. (4.75) in which the 0-form gauge

parameters ΛI are as in Eqs. (4.88), the 1-form gauge parameters Λi
µ are given by

Λi
µ = λiµ + biµ − hIJ iaIAJµ , (4.112)

where
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λ1
µ ≡ e

1
2
√
7
ϕ+ 1

2
φ
(χσµ − e−φρµ) ,

λ2
µ ≡ e

1
2
√
7
ϕ
σµ ,

(4.113)

and the shift term is given by

Z1
[
Λµν −

(
cµν − gIjaIBj

µν + 2
3
gJjhIK

jaIAJKµν
)]

= e
1

2
√
7
ϕ+ 1

2
φ
[(

1
2
=m(g)− 4<e(k) + 1

2
√

7
=m(g̃)

)
χ

−
(

1
2
<e(g) + 4=m(k)− 1

2
√

7
<e(g̃)

)
e−φ
]
ξµν , (4.114)

Z2
[
Λµν −

(
cµν − gIjaIBj

µν − 2
3
gJjhIK

jaIAJKµν
)]

= e
1

2
√
7
ϕ+ 1

2
φ
(

1
2
=m(g)− 4<e(k) + 1

2
√

7
=m(g̃)

)
ξµν .(4.115)

Now, let us analyze the constraints that involve hIJ
i. From those that only involve

the embedding tensor we find seven linear constraints that imply those in Eqs. (4.97)

and that can be used to eliminate seven components of the embedding tensor:

ϑ2
1 = 0 , ϑ1

2 = 3
4
ϑ2

5 , ϑ1
3 = 3

4
ϑ2

5 ,

ϑ1
1 = 3

2
ϑ1

5 , ϑ2
2 = 3

4
ϑ1

5 , ϑ2
3 = −3

4
ϑ1

5 ,

ϑ0
4 = −1

6
ϑ0

5 ,

(4.116)

leaving the eight components (a triplet of SL(2,R) in the upper component, a singlet

and two doublets of SL(2,R) in the lower components)

ϑ0
m , m = 1, 2, 3 , ϑ0

5 , ϑi
4 , ϑi

5 , i = 1,2 , (4.117)

as the only independent ones. These components correspond to the eight deformation

parameters of the primary deformations studied in Ref. [117]. More precisely, the

relation between them are

ϑ0
m = mm , (m = 1, 2, 3) ϑ1

4 = −m11 , ϑ1
5 = m̃4 ,

ϑ0
5 = −16

3
mIIB , ϑ2

4 = mIIA , ϑ2
5 = m4 .

(4.118)

From the constraints that relate hIJ
i to ZI

i, Z
i and gIi we can determine all these

tensors, up to a constant ζ, in terms of the independent components of the embedding

tensor:
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Z i
j = ϑ0

m(Tm)j
i − 3

4
ϑ0

5δj
1δ1

i , Z0
i = 3ϑi

4 + 1
2
ϑi

5 ,

g0i = 0 , gij = εij .

(4.119)

The constant ζ is the coefficient of a Chern-Simons term in the 4-form field strength

and, therefore, will be completely determined by supersymmetry.

Finally, using all these results in Eqs. (4.89-4.91) we find

k = − 9i
14
e
− 3

2
√
7
ϕ+ 1

2
φ
(ϑ1

4τ + ϑ2
4) , (4.120)

=m(f) = 3
28
ϑ0

5e
2√
7
ϕ
, (4.121)

<e(f) + 3
4
√

7
=m(h̃) = 1

4
e

2√
7
ϕ+φ {1

2
(ϑ0

2 + ϑ0
3) + (ϑ0

1 − 3
4
ϑ0

5)χ

−1
2
(ϑ0

2 − ϑ0
3)|τ |2

}
, (4.122)

which determines almost completely all the fermion shifts. We find that, in order to

determine completely <e(f) and =m(h̃), separately, one must study the closure of the

supersymmetry algebra on the fermions of the theory or on the bosons at higher order

in fermions. The result is

<e(f) = 1
14
e

2√
7
ϕ
ϑ0

mPm , (4.123)

=m(h̃) = 4√
7
e

2√
7
ϕ
ϑ0

mPm . (4.124)

All these results are collected in Appendix B.4.

4.3.4 The 3-form C

In the next step we are going to consider the last of the fundamental, electric p-forms

of the theory, the 3-form C, whose gauge transformation is given in Eq. (4.99).

The 4-form field strength G

The 4-form field strength G is given by

G = DC − gIi
(
F I − 1

2
ZI

jB
j
)
∧Bi − 1

3
hIK

igJiA
IJ ∧ dAK + ZC̃ , (4.125)

and it is covariant under general gauge transformations provided that the 4-form C̃

transforms as
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δΛC̃ = −DΛ̃− g̃I
[
ΛIG+ C ∧ δΛA

I + F I ∧ Λ + 1
12
gJihKL

iAIJK ∧ δΛA
L
]

−g̃ij[2H i ∧ Λj −Bi ∧ δΛB
j + 2hIJ

iBj ∧ AI ∧ δΛA
J ]

−g̃IJK
[
3ΛIF JK + 2(F I − ZI

iB
i) ∧ AJ ∧ δΛA

K − 1
4
XLM

JAILM ∧ δΛA
K
]

+ZiΛ̃i ,
(4.126)

where the new deformation tensors that we have introduced, g̃I , g̃ij = −g̃ji and g̃IJK =

g̃(IJK), are subject to the constraints

gI[iZ
I
j] + Zg̃ij = 0 , (4.127)

XI + gIiZ
i + Zg̃I = 0 , (4.128)

h(IJ
igK)i − Zg̃IJK = 0 , (4.129)

plus the constraints that express the gauge invariance of the new deformation param-

eters

X̃I g̃J −XI J
K g̃K = 0 , (4.130)

X̃I g̃ij − 2XI [i|
kg̃k|j] = 0 , (4.131)

X̃I g̃JKL − 3XI (J
M g̃KL)M = 0 . (4.132)

Closure of the supersymmetry algebra on the 3-form C

Taking into account the form of δεCµνρ in the undeformed case and the form of the field

strength G, we arrive at the following Ansatz for the supersymmetry transformation

of the 3-form C:

δεCµνρ = −3
2
e
− 1√

7
ϕ
ε̄γ[µν

(
ψρ] + i

6
√

7
λ̃∗
)

+ h.c.+ 3δεA
I

[µ|
(
gIiB

i
|νρ] + 2

3
hIJ

igKiA
JK
|νρ]

)
.

(4.133)

The last two terms are written in terms of the tensors gIi and hIJ
i. In the undeformed

theory these tensors have values which are determined by supersymmetry (at orders

in fermions higher than we are considering here) and that cannot be changed in the
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deformed theory, as we already discussed when we considered the 2-forms for hIJ
i.

Thus, hIJ
i is given by Eq. (4.109) and gIi is given by Eqs. (4.119) with ζ = +1

Using the identity

ξσGσµνρ + 3£ξA
I

[µ|
[
gIiB

i
|νρ] + 2

3
hIJ

igKiA
JK
|νρ]

]
=

= £ξCµνρ − 3D[µ|
[(
c|νρ] − gIjaIBj

|νρ] + 2
3
gJjhIK

jaIAJK |νρ]

)]
+gIi

[
−aIH i

µνρ − 3F I
[µν|(b

i
|ρ] − hJKiaJAK |ρ])

]
+Z

{
c̃µνρ − g̃IaICµνρ + 3g̃ijB

i
[µν|(b

j
|ρ] − hJKjaJAKρ)− 12g̃IJKa

IAJ [µ∂νA
K
ρ]

+3hIJ
ig̃ija

IAJ [µB
j
νρ] − 1

4

(
hIJ

igKig̃L + 3XJK
M g̃ILM

)
aIAJKLµνρ

}
,

(4.134)

one can see that the local supersymmetry algebra closes into a general coordinate

transformation plus a gauge transformation of C of the form Eq. (4.99) with

Λµν = e
1√
7
ϕ
ξµν +

(
cµν − gIjaIBj

µν − 2
3
gJjhIK

jaIAJKµν
)
, (4.135)

and with the identification

Z
{

Λ̃µνρ − c̃µνρ + g̃Ia
ICµνρ + 3g̃ijB

i
[µν|
(
bj |ρ] − hJKjaJAK |ρ]

)
− 12g̃IJKa

IAJ [µ∂νA
K
ρ]

−3g̃ijhIJ
iaIAJ [µB

j
νρ] + 1

4

(
g̃LgKihIJ

i + 3g̃ILNXJK
N
)
aIAJKLµνρ

}
= 6e

− 1√
7
ϕ
[
=m(f) + 1

6
√

7
<e(h̃)

]
ζµνρ .

(4.136)

Comparing Eq. (4.135) with Eqs. (4.114) and (4.115) we find that

Z1 = X2 = 3ϑ2
4 − 1

4
ϑ2

5 , Z2 = −X1 = −3ϑ1
4 + 1

4
ϑ1

5 . (4.137)

To make further progress it is convenient to compute the 5-form G̃ since it will

contain the tensors g̃I , g̃ij, g̃IJK that appear in the above expression. These tensors

cannot be deformed (just as it happens with hIJ
i) and their values can be found by

comparing the general form of G̃ with the value found by duality, Eq. (4.41).

The generic form of the magnetic 5-form field strength G̃ is

G̃ = DC̃ − g̃J
[
(F J − ZJ

jB
j) ∧ C + 1

12
gKjhMN

jAJKM ∧ dAN
]

+2g̃ij
(
H i − 1

2
DBi

)
∧Bj − g̃JKL

(
AJ ∧ dAKL + 3

4
XMN

LAJMN ∧ dAK
)

+ZiB̃i ,
(4.138)
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and comparing this generic expression with Eq. (4.41) we find that

g̃I = −δI0 , g̃ij = −1
2
εij , g̃IJK = 0 . (4.139)

Plugging these values into the constraints that involve Z Eqs. (4.101),(4.103), and

(4.127-4.129) we find that it must be related to ϑ0
5 by

Z = −3
4
ϑ0

5 , (4.140)

and that ϑ0
5 must satisfy the two doublets of quadratic constraints

ϑi
4ϑ0

5 = 0 , (4.141)

ϑi
5ϑ0

5 = 0 . (4.142)

Plugging our results into all the other constraints between deformation tensors, we find

that all of them are satisfied provided that the quadratic constraints

εijϑi
4ϑj

5 = 0 , (4.143)

ϑ0
m
(
12ϑi

4 + 5ϑi
5
)

= 0 , (4.144)

ϑj
4 (ϑm0 Tm)i

j = 0 , (4.145)

are also satisfied. This set of irreducible quadratic constraints that cannot be used to

solve some deformation parameters in terms of the rest in an analytic form, and to which

the 9-form potentials of the theory may be associated as explained in Section 4.2.2 is

one of our main results.

4.4 Summary of results and discussion

In the previous section we have constructed order by order in the rank of the p-forms the

supersymmetric tensor hierarchy of maximal 9-dimensional supergravity, up to p = 3,

which covers all the fundamental fields of the theory.

As it usually happens in all maximal supergravity theories, all the deformation

parameters can be expressed in terms of components of the embedding tensor. Fur-

thermore, we have shown that gauge invariance and local supersymmetry allow for

one triplet, two doublets and one singlet of independent components of the embedding

tensor

ϑ0
m , m = 1, 2, 3 , ϑ0

5 , ϑi
4 , ϑi

5 , i = 1,2 . (4.146)
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R+ j1 j2 − j3 j2 + j3 j4 j5

α 0 0 0 0 0

β 0 +3/4 −3/4 0 0

γ 0 −2 +2 0 0

δ 0 0 0 0 0

Table 4.4: Weights of the Noether currents

They can be identified with the deformation parameters studied in Ref. [117]:

ϑ0
m = mm , (m = 1, 2, 3) ϑ1

4 = −m11 , ϑ1
5 = m̃4 ,

ϑ0
5 = −16

3
mIIB , ϑ2

4 = mIIA , ϑ2
5 = m4 .

(4.147)

This proves, on the one hand, that no more deformations are possible and, on the

other hand, that all the deformations of maximal 9-dimensional supergravity have a

higher-dimensional origin, as shown in Ref. [117].

Furthermore, we have also shown that it is not possible to give non-zero values to

all the deformation parameters at the same time, since they must satisfy the quadratic

constraints

ϑ0
m
(
12ϑi

4 + 5ϑi
5
)
≡ Qmi = 0 , (4.148)

ϑi
4ϑ0

5 ≡ Q4
i = 0 , (4.149)

ϑi
5ϑ0

5 ≡ Q5
i = 0 , (4.150)

ϑj
4 (ϑm0 Tm)i

j ≡ Qi = 0 , (4.151)

εijϑi
4ϑj

5 ≡ Q = 0 , (4.152)

all of which are related to gauge invariance.

Using these results, we can now apply the arguments developed in Section 4.2.2

to relate the number of symmetries (Noether currents), deformation parameters, and

quadratic constraints to the numbers (and symmetry properties) of 7-, 8- and 9-forms

of the theory. Our results can be compared with those presented in Ref. [167] (Table 6)

and Ref. [168] (Table 3) and found from E11 level decomposition.

Associated to the symmetry group of the equations of motion of the theory, SL(2,R)×
R2 there are 5 Noether currents jA that fit into one triplet and two singlets of SL(2,R)

and are explicitly given in Appendix B.3. Their weights are given in Table 4.4. They
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R+ ϑ0
1 ϑ0

2 − ϑ0
3 ϑ0

2 + ϑ0
3 ϑ1

4, ϑ1
5 ϑ1

4, ϑ2
5 ϑ0

5

α −3 −3 −3 0 0 −3

β −1/2 −5/4 1/4 3/4 0 −1/2

γ 0 2 −2 −1 1 0

δ 0 0 0 −2 −2 0

Table 4.5: Weights of the embedding tensor components

R+ Q1
1 Q2

1 Q1
2−3 Q2

2−3 Q1
2+3 Q2

2+3 Q1
4,Q1

5 Q2
4,Q2

5 Q1 Q2 Q
α −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 0

β 1/4 −1/2 −1/2 −5/4 1 1/4 1/4 −1/2 1/4 −1/2 3/4

γ −1 1 1 3 −3 −1 −1 1 −1 1 0

δ −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −4

Table 4.6: Weights of quadratic constraints components.

can be dualized as explained in Section 4.2.2 into a triplet and two singlets of 7-forms

Ã(7) whose weights are given in Table 4.4. In Refs. [167, 168] the β rescaling has not

been considered. As mentioned before, it corresponds to the so-called trombone sym-

metry which may not survive to higher-derivative string corrections. The associated

7-form singlet Ã5
(7) does not appear in their analysis. The weights assigned in those

references to the fields correspond to one third of the weight of the α rescaling in our

conventions.

Associated to each of the SL(2,R) multiplets of independent embedding-tensor

components there is a dual multiplet of 8-forms Ã(8) (i.e. one triplet, two doublets and

one singlet) whose weights are given in Table 4.4. The doublet and singlet associated

to the gauging of the trombone symmetry using the doublet and singlet of 1-forms are

missing in Refs. [167, 168], but the rest of the 8-forms and their weights are in perfect

agreement with those obtained from E11. Given the amount of work that it takes to

determine which are the independent components of the embedding tensor allowed by

supersymmetry, this is a quite non-trivial test of the consistency of the E11 and the

embedding-tensor approaches.

Finally, associated to each of the quadratic constraints that the components of the

embedding tensor must satisfy Qi
m,Qi

4,Qi
5,Qi,Q there is a 9-form potential Ã(9).

The weights of these potentials are given in Table 4.4. If we set to zero the embedding-

tensor components associated to the trombone symmetry ϑA
5, the only constraints

which are not automatically solved are

Qi
m = 12ϑ0

mϑi
4 = 0 , Qi = ϑj

4 (ϑm0 Tm)i
j = 0 . (4.153)

The first of these constraints can be decomposed into a quadruplet and a doublet:

rewriting Qi
m in the equivalent form
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R+ Ãm(7) Ã4
(7) Ã5

(7) Ãm(8) Ã4 i
(8) Ã5 i

(8) Ã4
(8) Ãi

(9)m Ãi
(9) 4 Ãi

(9) 5 Ãi
(9) Ã(9)

α 9 9 9 12 9 9 12 12 12 12 12 9

δ 8 8 8 8 2 2 8 10 10 10 10 12

Table 4.7: Weights of the 7-, 8- and 9-form fields.

Qi(jk) = ϑi
4 (ϑm0 Tm)j

lεkl , (4.154)

the quadruplet corresponds to the completely symmetric part Q(ijk) and the doublet

to

εjkQj(ki) = −Qi , (4.155)

which is precisely the other doublet. Therefore, we get the quadruplet and one doublet

of 9-forms with weight 4 under α/3, while one more doublet is found in Refs. [167,168]

.

This situation is similar to the one encountered in the N = 2 theories in d =

4, 5, 6 dimensions [119]. In those cases, the Kač-Moody (here E11) approach predicts

one doublet of d-form potentials more than the embedding-tensor formalism [166].

However, it can be seen that taking the undeformed limit of the results obtained in

the embedding-tensor formalism, one additional doublet of d-forms arises because some

Stückelberg shifts proportional to deformation tensors that could be used to eliminate

them, now vanish. Furthermore, the local supersymmetry algebra closes on them as

independent fields.

By analogy with what happens in the N = 2 theories in d = 4, 5, 6 dimensions, the

same mechanism can make our results compatible with those of the E11 approach (up

to the trombone symmetry): we expect the existence of two independent doublets of

9-forms in the undeformed theory but we also expect new Stückelberg transformations

in the deformed theory such that one a combination of them is independent and the

supersymmetry algebra closes.

This possibility (and the exclusion of any further 9-forms) can only be proven by

the direct exploration of all the possible candidates to 9-form supersymmetry transfor-

mation rules, to all orders in fermions, something that lies outside the boundaries of

this work.

4.5 Concluding remarks

In this chapter we have applied the embedding-tensor formalism to the study of the

most general deformations (i.e. gaugings and massive deformations) of maximal 9-

dimensional supergravity. We have used the complete global SL(2,R)×R2 symmetry

of its equations of motion, which includes the so-called trombone symmetry. We have

found the constraints that the deformation parameters must satisfy in order to preserve
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both gauge and supersymmetry invariance (the latter imposed through the closure of

the local supersymmetry algebra to lowest order in fermions). We have used most of

the constraints to express some components of the deformation tensors in terms of a

few components of the embedding tensor which we take to be independent and which

are given in Eq. (4.146). At that point we have started making contact with the results

of Ref. [117], since those independent components are precisely the 8 possible deforma-

tions identified there. All of them have a higher-dimensional origin discussed in detail

in Ref. [117]. The field strengths, gauge transformations and supersymmetry trans-

formations of the deformed theory, written in terms of the independent deformation

tensors, are collected in Appendix B.4.

The 8 independent deformation tensors are still subject to quadratic constraints,

given in Eq. (4.148), but those constraints cannot be used to express analytically some

of them in terms of the rest, and, therefore, we must keep the 8 deformation parameters

and we must enforce these irreducible quadratic constraints.

In Section 4.4 we have used our knowledge of the global symmetries (and corre-

sponding Noether 1-forms), the independent deformation tensors and the irreducible

quadratic constraints of the theory, together with the general arguments of Section 4.2.2

to determine the possible 7-, 8- and 9-forms of the theory (Table 4.4), which are dual

to the Noether currents, independent deformation tensors and irreducible quadratic

constraints. We have compared this spectrum of higher-rank forms with the results

of Refs. [167, 168], based on E11 level decomposition. We have found that, in the

sector unrelated to the trombone symmetry, which was excluded from that analysis,

the embedding-tensor formalism predicts one doublet of 9-forms less than the E11 ap-

proach. However, both predictions are not contradictory: the extra doublet of 9-forms

may not survive the deformations on which the embedding-tensor formalism is built:

new 9-form Stückelberg shifts proportional to the deformation parameters may occur

that can be used to eliminate it so only one combination of the two 9-form doubles

survives. This mechanism is present in the N = 2 d = 4, 5, 6 theories [119], although

the physics behind it is a bit mysterious.

We can conclude that we have satisfactorily identified the extended field content

(the tensor hierarchy) of maximal 9-dimensional supergravity and, furthermore, that

all the higher-rank fields have an interpretation in terms of symmetries and gaugings.

This situation is in contrast with our understanding of the extended field content of

the maximal 10-dimensional supergravities (N = 2A,B) for which the E11 approach

can be used to get a prediction of the higher-rank forms (which turns out to be correct

[159–161]) but th embedding-tensor approach apparently cannot be used14 for this

end. This seems to preclude an interpretation for the 9- and 10-form fields in terms

of symmetries and gaugings15, at least if we insist in the standard construction of the

tensor hierarchy that starts with the gauging of global symmetries. Perhaps a more

14In the N = 2B case there are no 1-forms to be used as gauge fields and in the N = 2A case the

only 1-form available is not invariant under the only rescaling symmetry available.
15The 8-form fields are dual to the Noether currents of the global symmetries.
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general point of view is necessary.



Chapter 5

Duality orbits of non-geometric

fluxes

In this chapter we are going to perform a SS dimensional reduction to the NSNS

sector of supergravity in order to understand the meaning of geometric fluxes. We

will motivate the existence of additional fluxes that are not captured by this standard

reduction scheme and we will present some constructions that try to solve this problem.

In particular, we will focus on double field theory (DFT), which possesses the T duality

group transformation as a symmetry of the action. We will show how, by doing a SS

dimensional reduction in that scenario, we obtain all the fluxes (geometric and non-

geometric) that are in a one-to-one correspondence with the maximal and half-maximal

gauged supergravity in D = 9, 8, 7 supergravities. That is, DFT seems to provide a

suitable scenario to uplift non-geometric orbits in an extended geometrical sense.

5.1 Flux compactification: a primer

5.1.1 Geometric fluxes

Let us briefly introduce the geometric fluxes origin from Scherk-Schwarz (SS) compact-

ifications of supergravities. We will follow [193–195].

Let us consider the common NSNS sector of supergravity, spanned by aD-dimensional

metric ĝµ̂ν̂ , a 2-form field B̂µ̂ν̂ and a dilaton φ̂, whose action is given by (2.31). All of

the fields will depend on the D coordinates and, since we will compactify this theory

to d = D − n dimensions, we will split the coordinates as follows:

xµ̂ = (xµ, ym) , (5.1)

where ym, m = 1, . . . , n are compact space directions and xµ, µ = 1, . . . , d are spacetime

directions. The fields must be decomposed into representations of the symmetry group
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of the lower-dimensional theory,

ĝµ̂ν̂ =

(
ĝµν + ĝpqÂ

p
µÂ

q
ν Âpµĝpm

ĝmpÂ
p
ν ĝµν

)
, (5.2)

b̂µ̂ν̂ =

(
b̂µν − 1

2

(
ÂpµV̂pν − ÂpνV̂pµ

)
+ ÂpµÂ

q
ν b̂pq V̂nµ − b̂npÂpµ

−V̂mν + b̂mpÂ
p
ν b̂µν

)
, (5.3)

where Âmµ and V̂mµ are vector fields and ĝmn and b̂mn are symmetric and antisymmetric

scalar matrices, respectively.

Now we have to give a reduction ansatz, expressing the dependence of these D-

dimensional fields on the effective fields that will live in d dimensions (unhatted).

These fields cannot depend on the compact coordinates, so we propose the following

ansatz

ĝµν = gµν(x) , ĝmn = uam(y)uan(y)gab(x) , (5.4)

b̂µν = bµν(x) , b̂mn = uam(y)uan(y)bab(x) + vmn(y) , (5.5)

Âmµ = ua
m(y)Aaµ(x) , V̂mµ = uam(y)Vaµ(x) , (5.6)

φ̂ = φ(x) . (5.7)

Thus, we are left with a d-dimensional metric and a 2-form plus 2n vector fields, Aaµ
and Vaµ, and n2 + 1 scalar fields (gab, bab, φ). The y-dependent elements uam(y) and

vmn(y) carry the deformation of the compactified manifold, and they have to combine

in such a way that there is not y-dependence in the effective action.

As we argued in Section A.4, the SS reduction of the gauge transformation param-

eters implies new contributions to the gauge transformations of the effective fields. For

a detailed discussion, we refer to [193,195]. Schematically, if we have a D-dimensional

gauge parameter

λ̂µ̂ = (εµ,Λm) , (5.8)

and an arbitrary vector field

V̂ µ̂ = (V µ(x), ua
m(y)V a(x)) , (5.9)

the effective Lie derivative gets modified. Namely, if

L̂λ̂V̂
µ̂ = λ̂ν̂∂ν̂V̂

λ̂ − V̂ ν̂∂ν̂λ̂
λ̂ (5.10)

is the D-dimensional Lie derivative, the (unhatted) effective Lie derivative results

LεV a = L̂εV a + fbc
aΛbV c , (5.11)

where

fab
c = ua

m∂mub
nucn − ubm∂muanucn , (5.12)
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which are the same structure constants as in (A.31). These structure constants are

known as metric fluxes due to the role that u plays on the definition of the lower-

dimensional metric.

Inspired by the O(n, n) invariance towards we are approaching, we can rearrange

the fields and gauge parameters into O(n, n) representatives,

ξ = (εµ, ε
µ,ΛA) , (5.13)

ΛA = (λa, λ
a) , (5.14)

AAµ = (Vaµ, A
a
µ) , (5.15)

MAB =

(
gab −gacbcb
bacg

cb gab − bacgcdbdb

)
, (5.16)

where indices A,B = 1, . . . , 2n are raised and lowered by means of the metric

ηAB =

(
0 δab
δa
b 0

)
. (5.17)

The gauge transformations of the effective fields result modified and their dependence

on the compact manifold is reflected in the structure constants fABC ,

δξgµν = Lεgµν , (5.18)

δξbµν = Lεbµν + (∂µεν − ∂νεµ) , (5.19)

δξA
A
µ = LεAAµ − ∂µΛA + fBC

AΛBACµ , (5.20)

δξMAB = LεMAB + fAC
DΛCMDB + fBC

DΛCMAD . (5.21)

The structure constants fABC have non-vanishing components

fab
c = ua

m∂mub
nucn − ubm∂muanucn , (5.22)

fabc = 3(∂[avbc] + f[ab
dvc]d) , (5.23)

so that fa
bc = fabc = 0.

Substituting the ansatz (5.7) into the SUGRA action (2.31), we have

S =

∫
ddx
√
|g|e−2φ

(
R + 4(∂φ)2 − 1

4
MABF

AµνFB
µν −

1

12
GµνρG

µνρ

+
1

8
DµMABD

µMAB − V
)
, (5.24)

where

FA
µν = 2∂[µA

A
ν] − fBCAABµACν , (5.25)

Gµνρ = 3∂[µbνρ] − fABCAAµABνACρ + 3∂[µA
A
νA|A|ρ] , (5.26)

and the covariant derivative is

DµMAB = ∂µMAB − fADCADµMCB − fADCADµMAC . (5.27)
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Analogous to the results of Section A.4, a scalar potential naturally arises,

V =
1

4
fDA

CfCB
DMAB +

1

12
fAC

EfBD
FMABMCDMEF +

1

6
fABCf

ABC . (5.28)

The structure constants that have appeared as a consequence of the dimensional reduc-

tion of the 2−form and the metric are called geometric fluxes due to their geometrical

reduction origin. In the literature, they are usually denoted as

Habc ≡ fabc , ωab
c ≡ fab

c . (5.29)

Beyond geometric fluxes

If, in the ansatz (5.7), we choose

gab = δab , bab = 0 , (5.30)

the twist matrices u and v can be understood as the background fields associated to

the vielbein and the 2-form that live in the compact space. Since T duality exchanges

metric and 2-form components by means of the Buscher’s rules (2.54), these geometric

fluxes can be transformed into each other as well. Let us study a simple setting of

these fluxes to see explicitly how this applies [196].

Let us consider a compactification on a 3-torus with a non-trivial 2-form, e.g.,

gmn = δmn , b23 = Cy1 , (5.31)

whose associated twist matrices are

um
a = δm

a , v23 = Cy1 . (5.32)

The corresponding fluxes are

H123 = C , ω12
3 = ω23

1 = ω31
2 = 0 . (5.33)

Since these backgrounds enjoy isometries in the y2 and y3 directions, we can perform

T duality transformations on these directions. So, applying (2.54), we get certain gmn
and bmn,

ds2 = gmndy
mdyn = (dy1)2 + (dy2)2 + (dy3 + Cy1dy2)2 , bmn = 0 , (5.34)

which imply the following fluxes:

H123 = ω23
1 = ω31

2 = 0 , ω12
3 = C . (5.35)

By simple inspection, we notice that these fluxes still can be T dualized in the direction

y2. Again, using the Buscher’s rules, they transform into

ds2 = gmndy
mdyn = (dy1)2 +

1

1 + (Cy1)2

[
(dy2)2 + (dy3)2

]
, b23 = − Cy1

1 + (Cy1)2
.

(5.36)
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The non-vanishing component of 2-form is associated to a new flux, which in the

literature is called Q1
23. If we tried to do another T duality transformation in the

direction y1, so that

Habc
Tc←→ ωab

c Tb←→ Qa
bc Ta←→ Rabc , (5.37)

we could not do it, since we are running out of isometries.

Coming back to our d-dimensional theory, we see that our embedding tensor admits

as a universal part a full O(n, n) 3-form fMNP [197]. When fMNP is decomposed into

irreducible representations of GL(n) ⊂ O(n, n), one realizes that the geometric fluxes

arising from {Hmnp, ωmn
p} are only half of the total number of components of the

3-form. Let us focus on the D = 4 case, in which we reduce over a T 6. In this

case, we have a SL(2) doublet fαMNP , α = (+,−). Thus, the dimensional reduction

only gives half of the purely electric deformations. But let us remember that twisted

compactifications are invariant under GL(6) ⊂ O(6, 6) subgroup of diffeomorphisms

and gauge transformations (in this case of the B field). So, if we want to generate

the full 220 representation of O(6, 6) (the fMNP representation), we need to expand

the T duality prescription imposed by the Buscher’s rules. That is, we can perform a

T duality transformation along directions in which there is any isometry. This would

complete the duality chain (5.37).

The first T duality transformation Tc was discussed and mentioned before, it is the

one relating metric and gauge fluxes. The second one, Tb, produces the so-called Q

fluxes, which describe locally geometric backgrounds despite of not being globally well-

defined. The last T duality, Ta, generates the R fluxes, and since there are no isometries

in this direction, there does not exist even a local description for these background

fluxes. On the other hand, if we compute the number of these new backgrounds, we

can check that the O(6, 6) representation of fMNP is perfectly filled. Even more, the

different GL(6) representations that appear in the decomposition perfectly match with

the representations of the {H,ω,Q,R} fluxes,

220 −→ 20 ⊕ (6⊕ 84) ⊕ (6′ ⊕ 84′) ⊕ 20′ .

fMNP Habc ωab
c Qa

bc Rabc (5.38)

We are, thus, in position to say that some embedding tensor configurations will not

be obtained by dimensional reduction, i.e., these gaugings will not have a higher-

dimensional origin.

In [193,196], it is shown that despite of 10-dimensional supergravities are connected

by dualities, the lower-dimensional theories obtained by SS compactifications do not

enjoy these dualities. They construct an argument to justify the necessary existence of

new fluxes by studying the closure of the algebra of the 12-dimensional gauge algebra

generated by {Zm, Xm}, m = 1, . . . , 6. Zm are the 6 KK generators corresponding to

the internal coordiante transformations δxm = Λm and Xm are the generators asso-

ciated to the internal gauge transformation of the KR form, δBmn = 2∂[mΛn]. The



110 5. Duality orbits of non-geometric fluxes

algebra is

[Zm, Zn] = ωmn
pZp +HmnpX

p , (5.39)

[Zm, X
n] = −ωmpnXp +Qm

npZp , (5.40)

[Xm, Xn] = Qp
mnXp +RmnpZp . (5.41)

That is, we are able to keep the symmetries of the g and b fields by means of the new

fluxes. In fact, without these fluxes, we would not close the algebra, especially for the

generators related to the 2-form.

Focusing on the chain of dualities (5.37), T duality would allow to transform a

single non-geometric flux into a geometric one. However, a configuration of both ge-

ometric and non-geometric fluxes turned on simultaneously such that T duality fully

is not capable of converting all the non-geometric fluxes into geometric is a special

situation. This kind of setting is called duality orbit of a non-geometric flux and is

treated in section 5, where we explicitly show that a standard SS reduction is not able

to reproduce it. This fact turns out to wonder whether we need extra ingredients in

our compactification procedure to get these additional fluxes.

Thus, we realize that T duality is going to be crucial in the development and

inclusion of these non-geometric backgrounds. Indeed, the way in that these fluxes

have emerged suggests a new framework in which T duality becomes a truly symmetry

of the genuine theory, instead of appearing after the compactification.

5.2 T duality covariant constructions

Several approaches have been developed to solve the problem of getting non-geometric

fluxes in a natural and covariant formalism. We can distinguish three different trends.

The first one is the doubled geometry, in which the local patches that define the back-

ground geometry are slightly modified. Another possibility is the so-called generalized

complex geometry, which is defined on a manifold whose bundle structure is extended

to include new elements. Finally, there exists the double field theory formalism, which

suggests the doubling of spatial coordinates, associating the new ones to their corre-

sponding dual winding modes.

Despite of the different approaches under which these theories are built, their aim

is the same: to be able to host T duality as a global symmetry by construction.

5.2.1 Doubled Geometry

The gist of this approach is the way in which the local patches of the manifold are

related. In general, we need the patches that span the manifold to be glued by charts

in which diffeomorphisms and gauge transformations are included. However, T duality

transformations are required to be included. Such a manifold defined in this way is

called T -fold [198,199].
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In [200], O(n, n) duality twist reductions have been performed by making use of

this T-fold structure. Later on, dimensional reduction over twisted doubled tori were

performed to include non-geometric fluxes configurations in [201–203].

5.2.2 Generalized Complex Geometry

The starting point of this approach appears at the level of the bundle structure. The

main idea is the treatment of the tangent and cotangent space at the same level, without

distinguishing them. In its original formulation [204], a new bundle is constructed by

joining both spaces,

X + ξ ∈ TMn ⊕ T ∗Mn . (5.42)

The underlying physical idea is the relation between complex and symplectic geometry

in string theory. It is supposed that they are each other’s mirror geometries from the

point of view of particular cases of T duality.

This generalized bundle induces a natural metric I,

I(X + ξ, Y + η) ≡ 1

2
(ıY ξ + ıXη) , (5.43)

where ıY ξ ≡ Y mξm. In the coordinate basis (∂m, dx
m), it is realized by

I =
1

2

(
0 In
1n 0

)
. (5.44)

Thus, a generalized almost-complex structure on this bundle is defined as an endo-

morphism J ,

J : TMn ⊕ T ∗Mn −→ TMn ⊕ T ∗Mn (5.45)

such that J2 = −12n and JTIJ = I.

Following the parallelism of an almost-complex structure, a generalized Lie bracket

can be defined. This is the so-called Courant bracket, which is defined as

[X + ξ, Y + η]C = [X, Y ] + LXη − LY ξ −
1

2
d(ıXη − ıY ξ) . (5.46)

Later in the context of another T dual construction, double field theory, this bracket is

still preserved. This bracket includes the suitable transformations for a closed 2-form,

guaranteeing thus the minimal requirements discussed above. Interesting monographies

are [205–210].

5.2.3 Double field theory

Double field theory (DFT) can be understood as a T duality invariant formulation of

the low-energy sector of string theory. That is, it contains T duality as a symmetry of
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the theory by construction. This is achieved by doubling the spacetime coordinates and

associating the winding modes of the strings to the new dual coordinates introduced.

Its original version was developed to describe the dynamics of closed strings on tori

[211]. However, due to the successful development of a background independent version

[212], people quickly started to perform SS reductions over different manifolds. These

dimensional compactifications done in a DFT scenario allowed to obtain the gaugings

associated to the electric sector of N = 4 D = 4 supergravity. This is how DFT and

non-geometric fluxes got to know one another: a friendship had just started.

We will show here the main features of DFT to find its relation with gauged super-

gravities. Let us introduce the necessary ingredients of DFT and some notation. For

a D-dimensional spacetime with d non-compact spacetime coordinates and n compact

dimensions (D = d+ n), the fields depend on coordinates

XM = (x̃i, x
i) = (x̃µ, ỹm, x

µ, ym) , (5.47)

where M = 1, . . . , 2D is an O(D,D) index. The 2D coordinates can be splitted into

the genuine D spacetime coordinates xi and their dual coordinates, x̃i. In addition, the

i index can be splitted into extended and compact coordinates, i = µ,m, where µ =

1, . . . , d represents extended coordinates and m = 1, . . . , n runs over the compactified

coordinates.

In its original formulation, DFT was restricted to satisfy the level matching condi-

tion

L0 − L̄0 = 0 , (5.48)

arising for closed string theory. The implications of this condition translates to the fact

that the fields and gauge parameters of DFT must be annihilated by the differential

operator

∂i∂̃
i• = 0 . (5.49)

A background independent action is constructed [212] under a stronger restriction:

(5.49) must hold not only for any field or gauge parameter, but for any product of

them. This is the so-called strong constraint (SC). If we define a generalized field Eij
in terms of the metric and the 2-form,

Eij ≡ gij + bij , (5.50)

and a T duality invariant scalar field d,

e−2d ≡
√
|g|e−2φ , (5.51)

the background independent action is

S =

∫
ddxddx̃e−2d

[
−1

4
gikgjlDpEklDpEij +

1

4
gkl
(
DjEikDiEjl + D̃jEkiD̃iElj

)
+DidD̃jEij + D̃idDjEji

]
. (5.52)
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The derivative operators Di, D̃i are defined as

Di ≡
∂

∂xi
− Eik

∂

∂x̃k
, D̃i ≡

∂

∂xi
+ Eik

∂

∂x̃k
. (5.53)

This action is invariant under the O(D,D) T duality group, which acts on the fields

as follows:

E ′(X ′) =
aE(X) + b

cE(X) + d
, d′(X ′) = d(X) , X ′ = hX , (5.54)

where h is

h =

(
a b

c d

)
∈ O(D,D) , hTηh = η with η =

(
0 1D

1D 0

)
. (5.55)

This action can be rewritten in terms of the so-called generalized metric, HMN . This

is a 2D× 2D symmetric matrix constructed from the D×D matrices gij and bij, with

the remarkable property that it transforms as an O(D,D) tensor,

H =

(
gij −gikbkj
bikg

kj gij − bikgklblj

)
, (5.56)

Under h ∈ O(D,D) transformations, the fields transform as

HMN(X)→ hM
PhN

QHPQ(hX) , d(X)→ d(hX) , (5.57)

For cases in which h corresponds to a T duality transformation, it reproduces the cor-

responding Buscher’s rules (2.54) for {gij, bij, φ}. In fact, it has been shown that these

transformation rules allow the possibility of performing a T duality transformation in

non-isometric directions [199, 200, 202, 213]. Then, in terms of this generalized metric

formulation, the is rewritten as

S =

∫
ddxddx̃e−2d

(
1

8
HMN∂MHPQ∂NHPQ −

1

2
HMN∂NHPQ∂QHMP

−2∂Md∂NHMN + 4HMN∂Md∂Nd
)
. (5.58)

Gauge invariance of the action and the closure of the algebra of DFT happens upon the

weak (WC) and strong (SC) versions of (5.59), which in O(D,D) indices are rewritten,

respectively, as

∂M∂
M• = 0 , ∂M • ∂M• = 0 , (5.59)

where • refers to any field and/or gauge parameter. Gauge transformations of the fields

{H, d} are driven by the transformation rules of Eij,

δξHMN = ξP∂PHMN + (∂MξP − ∂P ξM)HPN + (∂NξP − ∂P ξN)HMP , (5.60)

δξd = ξM∂Md−
1

2
∂Mξ

M . (5.61)
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This motivated the definition of a generalized Lie derivative, L̂ξ such that, for an

arbitrary O(D,D) tensor V M
N ,

L̂ξV M
N = ξP∂PV

M
N + (∂MξP − ∂P ξM)V P

N − (∂Nξ
P − ∂P ξN)V M

P . (5.62)

Then, the field transformations are rewritten as

δξHMN = L̂ξHMN , (5.63)

δξd = L̂ξd . (5.64)

Upon the SC, this generalized Lie derivative (and thus the gauge transformations) close

under the so-called Courant or C-bracket,

[ξ1, ξ2]C
M = 2ξM[1 ∂Nξ

M
2] − ξN[1 ∂Mξ2]N . (5.65)

Therefore, the SC results essential in this DFT development. However, some deficien-

cies to this formulation arose, especially motivated by the results of [214,215]. In these

works, some of the gaugings of N = 4 D = 4 SUGRA were obtained by SS reduc-

tions of DFT, but not all of them. Indeed, the gaugings associated to non-geometric

fluxes could be geometrized by performing suitable T duality transformations as the

ones shown before. This, together with the presence of the constraint (5.59), which

guarantees the existence of a rotation such that the fields and the parameters do not

depend on the dual coordinates, led to think about a new reformulation of DFT in

which the SC (5.59) would be less restrictive and genuine non-geometric fluxes would

be captured.

Thus, in ref. [216], DFT was formulated without imposing any constraint at the very

beginning, but leaving as new constraints the requirements of DFT: gauge invariance

of the action, the closure of the generalized Lie derivatives and the generalized Jacobi

identities. Of course, these three new constraints are automatically satisfied when

(5.59) is imposed, but the aim of this work was to perform SS reductions coexisting

with the 3 new consistency constraints. When the SS compactification is done on the

theory as well as on the constraints, it is shown that (5.59) is a sufficient but not a

necessary condition for the 3 lower-dimensional constraints get satisfied. In particular,

they find a less restrictive condition under which the 3 consistency constraints are

fulfilled. These relaxed constraints are

∂M∂
MF = 0 , ∂MF∂

MF = 0 , (5.66)

where F now means any effective (that is, living in the lower-dimensional theory)

field and/or gauge parameter. That is, while (5.59) is required not only for the lower-

dimensional fields but also for the fields of the higher-dimensional theory, the new

constraints (5.66) are only imposed on fields living in the lower-dimensional theory.

Moreover, not only the 3 consistency constraints (gauge invariant action, closure of the
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gauge transformations, Courant-like Jacobi identities) are satisfied, but an additional

term that is killed by (5.59) can be added to the action,∫
ddxddx̃e−2d1

2
∂MEaP∂MEbQSabηPQ . (5.67)

Actually, this term becomes crucial for matching fluxes and gaugings, as we will verify

in the following section.

5.3 Duality orbits of non-geometric fluxes

As we have commented in the last section, compactifications in duality covariant con-

structions such as generalized geometry and double field theory have proven to be suit-

able frameworks to reproduce gauged supergravities containing non-geometric fluxes.

However, it is a priori unclear whether these approaches only provide a reformulation

of old results, or also contain new physics. To address this question, we classify the T-

and U-duality orbits of gaugings of (half-)maximal supergravities in dimensions seven

and higher. It turns out that all orbits have a geometric supergravity origin in the

maximal case, while there are non-geometric orbits in the half-maximal case. We show

how the latter are obtained from compactifications of double field theory. Some tech-

nical material used in the development of this chapter can be found in Appendix C.1.

The results of this chapter were first obtained in refs. [217–219].

5.3.1 Introduction

In the context of half-maximal [179] and maximal [180] gauged supergravities, not only

does supersymmetry tightly organize the ungauged theory, but also it strictly deter-

mines the set of possible deformations (i.e. gaugings). As we have seen in chapter

3, the development of the so-called embedding tensor formalism has enabled one to

formally describe all the possible deformations in a single universal formulation, which

therefore completely restores duality covariance. Unfortunately, not all the deforma-

tions have a clear higher-dimensional origin, in the sense that they can be obtained by

means of a certain compactification of ten or eleven dimensional supergravity.

One of the most interesting open problems concerning flux compactifications is

to reproduce, by means of a suitable flux configuration, a given lower-dimensional

gauged supergravity theory. Although this was done in particular cases (see for exam-

ple [220,221]), an exhaustive analysis remains to be done. This is due to fact that, on

the one hand we lack a classification of the possible gauging configurations allowed in

gauged supergravities and, on the other hand, only a limited set of compactification

scenarios are known. Typically, to go beyond the simplest setups one appeals to duali-

ties. The paradigmatic example [196] starts by applying T-dualities to a simple toroidal

background with a non-trivial two-form generating a single Habc flux. By T-dualizing

this setup, one can construct a chain of T-dualities leading to new backgrounds (like
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twisted-tori or T-folds) and generating new (dual) fluxes, like the so-called Qa
bc and

Rabc. It is precisely by following duality covariance arguments in the lower-dimensional

effective description that non-geometric fluxes [196] were first introduced in order to

explain the mismatch between particular flux compactifications and generic gauged

supergravities.

Here we would like to emphasize that all these (a priori) different T-duality con-

nected flux configurations by definition lie in the same orbit of gaugings, and therefore

give rise to the same lower-dimensional physics. In order to obtain a different gauged

supergavity, one should consider more general configurations of fluxes, involving for

example combinations of geometric and non-geometric fluxes, that can never be T-

dualised to a frame in which the non-geometric fluxes vanish. For the sake of clarity,

we depict this concept in figure 5.1.

A

B

orbit 1

orbit 2 Flux configurations

Geometric

configurations

Figure 5.1: The space of flux configurations sliced into duality orbits (vertical lines).

Moving along a given orbit corresponds to applying dualities to a certain flux configura-

tion and hence it does not imply any physical changes in the lower-dimensional effective

description. Geometric fluxes only constitute a subset of the full configuration space.

Given an orbit, the physically relevant question is whether (orbit 2 between A and B)

or not (orbit 1) this intersects the geometric subspace. We refer to a given point in an

orbit as a representative.

Non-geometric fluxes are the inevitable consequence of string dualities, and only

a theory which promotes such dualities to symmetries could have a chance to de-

scribe them together with geometric fluxes and to understand their origin in a unified

way. From the viewpoint of the lower-dimensional effective theory, it turns out that

half-maximal and maximal gauged supergravities give descriptions which are explicitly

covariant with respect to T- and U-duality respectively. This is schematically depicted

in table 5.1, even though only restricted to the cases we will address in this work.

In recent years, a new proposal aiming to promote T-duality to a fundamental

symmetry in field theory has received increasing interest. It is named Double Field
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D T-duality U-duality

9 O(1, 1) R+× SL(2)

8 O(2, 2) = SL(2)× SL(2) SL(2)× SL(3)

7 O(3, 3) = SL(4) SL(5)

Table 5.1: The various T- and U-duality groups in D > 6. These turn out to coincide

with the global symmetry groups of half-maximal and maximal supergravities respec-

tively.

Theory (DFT) [211] since T-duality invariance requires a doubling of the spacetime

coordinates, by supplementing them with dual coordinates associated to the stringy

winding modes, whose dynamics can become important in the compactified theory.

Recently it has been pointed out how to obtain gaugings of N = D = 4 supergravity by

means of twisted double torus reductions of DFT [214,215], even though at that stage,

the so-called weak and strong constraints imposed for consistency of DFT represented

a further restriction that prevented one from describing the most general gaugings that

solve the Quadratic Constraints (QC) of gauged supergravity.

Subsequently, an indication has been given that gauge consistency of DFT does

not need the weak and strong constraints [216]. Following this direction, we could

wonder whether relaxing these constraints can provide a higher-dimensional origin for

all gaugings of extended supergravity in DFT. Our aim in the present work is to assess

to what extent DFT can improve our description of non-geometric fluxes by giving

a higher-dimensional origin to orbits which do not follow from standard supergravity

compactifications. We will call such orbits of gaugings non-geometric (in figure 5.1

they are represented by orbit 1).

As a starting point for this investigation, we will address the problem in the context

of maximal and half-maximal gauged supergravities in seven dimensions and higher,

where the global symmetry groups are small enough to allow for a general classification

of orbits, without needing to consider truncated sectors. We will show that in the half-

maximal supergravities in seven and higher-dimensions, where the classifications of

orbits can be done exhaustively, all the orbits (including geometric and non-geometric)

admit an uplift to DFT, through Scherk-Schwarz (SS) [188] compactifications on appro-

priate backgrounds. We provide explicit backgrounds for every orbit, and discuss their

(un)doubled nature. The result is that truly doubled DFT provides the appropriate

framework to deal with orbits that can not be obtained from supergravity. In contrast,

in maximal supergravities in eight and higher-dimensions, all orbits are geometric and

hence can be obtained without resorting to DFT.
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5.3.2 Orbits from double field theory

While toroidal compactifications of DFT lead to half-maximal ungauged supergravi-

ties, SS compactifications on more general double spaces are effectively described by

gauged supergravities like the ones we will analyse in the next sections. If the internal

space is restricted in such a way that there always exists a frame without dual coor-

dinate dependence, the only orbits allowed in the effective theory are those admitting

representatives that can be obtained from compactifications of ten dimensional super-

gravity. This is not the most general case, and we will show that some orbits require

the compact space to be truly doubled, capturing information of both momentum and

winding modes.

Recently in ref. [216], a new set of solutions to the constraints for DFT has been

found. For these solutions the internal dependence of the fields is not dynamical, but

fixed. The constraints of DFT restrict the dynamical external space to be undoubled,

but allows for a doubling of the internal coordinates as long as the QC for the gaugings

are satisfied. Interestingly, these are exactly the constraints needed for consistency of

gauged supergravity, so there is a priori no impediment to uplift any orbit to DFT

in this situation. In fact, in the following sections we show that all the orbits in

half-maximal D = 7, 8 gauged supergravities can be reached from twisted double tori

compactifications of DFT.

DFT and (half-)maximal gauged supergravities

In the SS procedure, the coordinates XM are split into external directions X = (x̃i, x
i)

and compact internal Y = (ỹi, y
i) coordinates. The former set contains pairs of O(D,D)

dual coordinates, while the latter one contains pairs of O(n, n) dual coordinates, with

d = D + n. This means that if a given coordinate is external (internal), its dual must

also be external (internal), so the effective theory is formally a (gauged) DFT. The SS

procedure is then defined in terms of a reduction ansatz, that specifies the dependence

of the fields in (X,Y)

HMN(X,Y) = U(Y)AM Ĥ(X)AB U(Y)BN , d(X,Y) = d̂(X) + λ(Y) . (5.68)

Here the hatted fields Ĥ and d̂ are the dynamical fields in the effective theory, param-

eterizing perturbations around the background, which is defined by U(Y) and λ(Y).

The matrix U is referred to as the twist matrix, and must be an element of O(n, n).

It contains a DFT T-duality index M , and another index A corresponding to the T-

duality group of the effective theory. When DFT is evaluated on the reduction ansatz,

the twists generate the gaugings of the effective theory

fABC = 3ηD[A (U−1)MB(U−1)NC]∂MU
D
M , (5.69)

ξA = ∂M(U−1)MA − 2(U−1)MA∂Mλ , (5.70)

where fABC and ξA build the generalized structure constants of the gauge group in the

lower-dimensional theory.
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Although U and λ are Y dependent quantities, the gaugings are forced to be con-

stants in order to eliminate the Y dependence from the lower dimensional theory.

When the external-internal splitting is performed, namely d = D + n, the dynamical

fields are written in terms of their components which are a D-dimensional metric, a

D-dimensional 2-form, 2n D-dimensional vectors and n2 scalars. These are the de-

grees of freedom of half-maximal supergravities. Since these fields are contracted with

the gaugings, one must make sure that after the splitting the gaugings have vanishing

Lorentzian indices, and this is achieved by stating that the twist matrix is only non-

trivial in the internal directions. Therefore, although formally everything is covariantly

written in terms of O(d, d) indices A,B,C, ..., the global symmetry group is actually

broken to O(n, n). We will not explicitly show how this splitting takes place, and refer

to [215] for more details. In this work, for the sake of simplicity, we will restrict to

the case ξA = 0, which should be viewed as a constraint for λ. Also we will restrict to

O(n, n) global symmetry groups, without additional vector fields.

There are two possible known ways to restrict the fields and gauge parameters in

DFT, such that the action is gauge invariant and the gauge algebra closes. On the one

hand, the so-called weak and strong constraints can be imposed

∂M∂
MA = 0 , ∂MA ∂MB = 0 , (5.71)

where A and B generically denote products of (derivatives of) fields and gauge pa-

rameters. When this is the case, one can argue [212] that there is always a frame in

which the fields do not depend on the dual coordinates. On the other hand, in the SS

compactification scenario, it is enough to impose the weak and strong constraints only

on the external space (i.e., on hatted quantities)

∂M∂
M Â = 0 , ∂M Â ∂M B̂ = 0 , (5.72)

and impose QC for the gaugings

fE[ABf
E
C]D = 0 . (5.73)

This second option is more natural for our purposes, since these constraints exactly co-

incide with those of half-maximal gauged supergravities1 (which are undoubled theories

in the external space, and contain gaugings satisfying the QC).

Notice that if a given U produces a solution to the QC, any T-dual U will also.

Therefore, it is natural to define the notion of twist orbits as the sets of twist matrices

connected through T-duality transformations. If a representative of a twist orbit gen-

erates a representative of an orbit of gaugings, one can claim that the twist orbit will

generate the entire orbit of gaugings. Also, notice that if a twist matrix satisfies the

weak and strong constraints, any representative of its orbit will, so one can define the

notions of undoubled and truly doubled twist orbits.

1We are working under the assumption that the structure constants not only specify the gaug-

ing, but all couplings of the theory. Reproducing the correct structure constants therefore implies

reproducing the full theory correctly, as has been proven in D = 4 and D = 10 [214,215,222].
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Non-geometry VS weak and strong constraint violation

Any half-maximal supergravity can be uplifted to the maximal theory whenever the

following constraint holds2

fABC f
ABC = 0 . (5.74)

This constraint plays the role of an orthogonality condition between geometric and

non-geometric fluxes. Interestingly, the constraint (5.74) evaluated in terms of the

twist matrix U and λ can be rewritten as follows (by taking relations (5.69) and (5.70)

into account)

fABC f
ABC = −3 ∂DU

A
P ∂

D
(
U−1

)P
A
− 24 ∂Dλ ∂

Dλ + 24 ∂D∂
Dλ . (5.75)

The RHS of this equation is zero whenever the background defined by U and λ satisfies

the weak and strong constraints. This immediately implies that any background satis-

fying weak and strong constraints defines a gauging which is upliftable to the maximal

theory. Conversely, if an orbit of gaugings in half-maximal supergravity does not sat-

isfy the extra constraint (5.74), the RHS of this equation must be non-vanishing, and

then the strong and weak constraint must be relaxed. In conclusion, the orbits of half-

maximal supergravity that do not obey the QC of the maximal theory require truly

doubled twist orbits, and are therefore genuinely non-geometric. This point provides a

concrete criterion to label these orbits as non-geometric. Also, notice that these orbits

will never be captured by non-geometric flux configurations obtained by T-dualizing a

geometric background3.

For the sake of clarity, let us briefly review the definitions that we use. A twist

orbit is non-geometric if it doesn’t satisfy the weak/strong constraint, and geometric

if it does. Therefore, the notion of geometry that we consider is local, and we will not

worry about global issues (given that the twist matrix is taken to be an element of

the global symmetry group, the transition functions between coordinate patches are

automatically elements of O(n, n)). On the other hand an orbit of gaugings is geometric

if it contains a representative that can be obtained from 10 dimensional supergravity

(or equivalently from a geometric twist orbit), and it is non-geometric if it does not

satisfy the constraints of maximal supergravity.

We have now described all the necessary ingredients to formally relate dimensional

reductions of DFT and the orbits of half-maximal gauged supergravities. In particular,

in what follows we will:

1. Provide a classification of all the orbits of gaugings in maximal and half-maximal

supergravities in D ≥ 7.

2D = 4 half-maximal supergravity is slightly different because its global symmetry group features

an extra SL(2) factor; for full details, see [223,224].
3However, we would like to stress that, in general, it is not true that an orbit satisfying the QC

constraints of maximal supergravity (5.74) is necessarily generated by an undoubled twist orbit. An

example can be found at the end of section 5.3.4.
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2. Explore mechanisms to generate orbits of gaugings from twists, satisfying

• U(Y) ∈ O(n, n)

• Constant fABC

• fE[ABf
E
C]D = 0

3. Show that in the half-maximal theories all the orbits of gaugings can be obtained

from twist orbits in DFT.

4. Show that in the half-maximal theories the orbits that satisfy the QC of maximal

supergravity admit a representative with a higher-dimensional supergravity ori-

gin. For these we provide concrete realisations in terms of unboubled backgrounds

in DFT. Instead, the orbits that fail to satisfy (5.74) require, as we argued, truly

doubled twist orbits for which we also provide concrete examples.

5. Show that there is a degeneracy in the space of twist orbits giving rise to the

same orbit of gaugings. Interestingly, in some cases a given orbit can be obtained

either from undoubled or truly doubled twist orbits.

In the next sections we will classify all the orbits in (half-)maximal D ≥ 7 super-

gravities, and provide the half-maximal ones with concrete uplifts to DFT, explicitly

proving the above points.

Parameterizations of the duality twists

Here we would like to introduce some notation that will turn out to be useful in

the uplift of orbits to DFT. We start by noting the double internal coordinates as

YA = (ỹa, y
a) with a = 1, ..., n. As we saw, the SS compactification of DFT is defined

by the twists U(Y) and λ(Y). The duality twist U(Y) is not generic, but forced to be

an element of O(n, n), so we should provide suitable parameterisations. One option

is the light-cone parameterisation, where the metric of the (internal) global symmetry

group is taken to be of the form

ηAB =

(
0 1n

1n 0

)
. (5.76)

The most general form of the twist matrix is then given by

U(Y) =

(
e 0

0 e−T

) (
1n 0

−B 1n

) (
1n β

0 1n

)
, (5.77)

with e ∈ GL(n) and B and β are generic n× n antisymmetric matrices. When β = 0,

e = e(ya) and B = B(ya), the matrix e can be interpreted as a n-dimensional internal

vielbein and B as a background 2-form for the n-dimensional internal Kalb-Ramond

field b. Whenever the background is of this form, we will refer to it as geometric
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(notice that this still does not determine completely the background, which receives

deformations from scalar fluctuations). In this case the gaugings take the simple form

fabc = 3(e−1)α[a(e
−1)βb(e

−1)γc]∂[αBβγ] ,

fabc = 2(e−1)β [b(e
−1)γc]∂βe

a
γ ,

fabc = fabc = 0 . (5.78)

If we also turn on a β(ya), the relation of e, B and β with the internal g and b is

less trivial, and typically the background will be globally well defined up to O(n, n)

transformations mixing the metric and the two-form (this is typically called a T-fold).

In this case, we refer to the background as locally geometric but globally non-geometric,

and this situation formally allows for non-vanishing fabc and fabc. Finally, if the twist

matrix is a function of ỹa, we refer to the background as locally non-geometric. Notice

however, that if it satisfies the weak and strong constraints, one would always be able

to rotate it to a frame in which it is locally geometric, and would therefore belong to

an undoubled orbit.

Alternatively, one could also define the cartesian parametrisation of the twist ma-

trix, by taking the metric of the (internal) global symmetry group to be of the form

ηAB =

(
1n 0

0 −1n

)
. (5.79)

This formulation is related to the light-cone parametrisation through a SO(2n) trans-

formation, that must also rotate the coordinates. In this case the relation between

the components of the twist matrix and the internal g and b is non-trivial. We will

consider the O(n, n) twist matrix to contain a smaller O(n − 1, n − 1) matrix in the

directions (y2, ..., yn, ỹ2, ..., ỹn) fibred over the flat directions (y1, ỹ1). We have seen that

this typically leads to constant gaugings.

Of course these are not the most general parameterisations and ansatz, but they

will serve our purposes of uplifting all the orbits of half-maximal supergravity to DFT.

Interesting works on how to generate gaugings from twists are [201].

5.3.3 U-duality orbits of maximal supergravities

Following the previous discussion of DFT and its relevance for generating duality orbits,

we turn to the actual classification of these. In particular, we start with orbits under

U-duality of gaugings of maximal supergravity. Moreover, we will demonstrate that all

such orbits do have a higher-dimensional supergravity origin.

Starting with the highest dimension for maximal supergravity, D = 11, no known

deformation is possible here. Moreover, in D = 10 maximal supergravities, the only

possible deformation occurs in what is known as massive IIA supergravity4 [187]. It

4Throughout this section we will not consider the trombone gaugings giving rise to theories without

an action principle, as discussed in e.g. [117,191,225,226].
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consists of a Stückelberg-like way of giving a mass to the 2-form B2. Therefore, such

a deformation cannot be interpreted as a gauging. The string theory origin of this

so-called Romans’ mass parameter is nowadays well understood as arising from D8-

branes [154]. Furthermore, its DFT uplift has been constructed in ref. [227]. Naturally,

the structure of possible orbits becomes richer when going to lower dimensions. In what

follows we will perform the explicit classification in dimensions nine and eight.

Orbits and origin of the D = 9 maximal case

Maximal D = 9 gauged supergravity

The maximal (ungauged) supergravity in D = 9 [112] can be obtained by reducing

either massless type IIA or type IIB supergravity in ten dimensions on a circle. The

global symmetry group of this theory is

G0 = R+ × SL(2) .

Note that G0 is the global symmetry of the action and hence it is realised off-shell,

whereas the on-shell symmetry has an extra R+ with respect to which the Lagrangian

has a non-trivial scaling weight. This is normally referred to as the trombone symmetry.

As a consequence, the on-shell symmetry contains three independent rescalings [117,

195], which we summarise in table 5.2. The full field content consists of the following

ID e a
µ Aµ Aµ

1 Aµ
2 Bµν

1 Bµν
2 Cµνρ eϕ χ eφ ψµ λ , λ̃ L

α 9
7

3 0 0 3 3 3 6√
7

0 0 9
14

− 9
14

9

β 0 1
2
−3

4
0 −1

4
1
2

−1
4

√
7

4
−3

4
3
4

0 0 0

γ 0 0 1 −1 1 −1 0 0 2 −2 0 0 0

δ 8
7

0 2 2 2 2 4 − 4√
7

0 0 4
7

−4
7

8

Table 5.2: The scaling weights of the nine-dimensional fields. As already anticipated,

only three rescalings are independent since they are subject to the following constraint:

8α − 48β − 18γ − 9δ = 0. As the scaling weight of the Lagrangian L shows, β and γ

belong to the off-shell symmetries, whereas α and δ can be combined into a trombone

symmetry and an off-shell symmetry.

objects which arrange themselves into irrep’s of R+ × SL(2):

9D : e a
µ , Aµ , Aµ

i , Bµν
i , Cµνρ , ϕ , τ = χ + i e−φ︸ ︷︷ ︸

bosonic dof’s

; ψµ , λ , λ̃︸ ︷︷ ︸
fermionic dof’s

, (5.80)

where µ, ν, · · · denote nine-dimensional curved spacetime, a, b, · · · nine-dimensional flat

spacetime and i, j, · · · fundamental SL(2) indices respectively.

The general deformations of this theory have been studied in detail in ref. [218],

where both embedding tensor deformations and gaugings of the trombone symmetry



124 5. Duality orbits of non-geometric fluxes

ID θi κij gauging

1

(0, 0)

diag(1, 1) SO(2)

2 diag(1,−1) SO(1, 1)

3 diag(1, 0) R+
γ

4 (1, 0) diag(0, 0) R+
β

Table 5.3: All the U-duality orbits of consistent gaugings in maximal supergravity in

D = 9. For each of them, the simplest representative is given. The subscripts β and γ

refer to the rescalings summarised in table 5.2.

have been considered. For the present scope we shall restrict ourselves to the first

ones. The latter ones would correspond to the additional mass parameters mIIB and

(m11,mIIA) in refs [117,218], which give rise to theories without an action principle.

The vectors of the theory {Aµ , Aµi} transform in the V ′ = 1(+4) ⊕ 2(−3) of R+ ×
SL(2) , where the R+ scaling weights are included as well5. The resulting embedding

tensor deformations live in the following tensor product

g0 ⊗ V = 1(−4) ⊕ 2 · 2(+3) ⊕ 3(−4) ⊕ 4(+3) . (5.81)

The Linear Constraint (LC) projects out the 4(+3), the 1(−4) and one copy of the

2(+3) since they would give rise to inconsistent deformations. As a consequence, the

consistent gaugings are parameterised by embedding tensor components in the 2(+3) ⊕
3(−4). We will denote these allowed deformations by θi and κ(ij).

The closure of the gauge algebra and the antisymmetry of the brackets impose the

following Quadratic Constraints (QC)

εij θ
i κjk = 0 , 2(−1) (5.82)

θ(i κjk) = 0 . 4(−1) (5.83)

The R+×SL(2) orbits of solutions to the QC

The QC (5.82) and (5.83) turns out to be very simple to solve; after finding all the

solutions, we studied the duality orbits, i.e. classes of those solutions which are con-

nected via a duality transformation. The resulting orbits of consistent gaugings in this

case are presented in table 5.3.3.

Higher-dimensional geometric origin

The four different orbits of maximalD = 9 theory have the following higher-dimensional

origin in terms of geometric compactifications [228]:

5The R+ factor in the global symmetry is precisely the combination
(

4
3 α −

3
2 δ
)

of the different

rescalings introduced in ref. [117].
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• Orbits 1 – 3: These come from reductions of type IIB supergravity on a circle

with an SL(2) twist.

• Orbit 4: This can be obtained from a reduction of type IIA supergravity on a

circle with the inclusion of an R+
β twist.

Orbits and origin of the D = 8 maximal case

Maximal D = 8 gauged supergravity

The maximal (ungauged) supergravity in D = 8 [229] can be obtained by reducing

eleven-dimensional supergravity on a T 3. The global symmetry group of this theory is

G0 = SL(2) × SL(3) .

The full field content consists of the following objects which arrange themselves into

irrep’s of SL(2) × SL(3):

8D : e a
µ , Aµ

αm , Bµνm , Cµνρ , L
I

m , φ , χ︸ ︷︷ ︸
bosonic dof’s

; ψµ , χI︸ ︷︷ ︸
fermionic dof’s

, (5.84)

where µ, ν, · · · denote eight-dimensional curved spacetime, a, b, · · · eight-dimensional

flat spacetime, m,n, · · · fundamental SL(3), I, J, · · · fundamental SO(3) and α, β, · · ·
fundamental SL(2) indices respectively. The six vector fields Aµ

αm in (5.84) transform

in the V ′ = (2,3′). There are eleven group generators, which can be expressed in the

adjoint representation g0.

The embedding tensor Θ then lives in the representation g0 ⊗ V , which can be

decomposed into irreducible representations as

g0 ⊗ V = 2 · (2,3)⊕ (2,6′)⊕ (2,15)⊕ (4,3) . (5.85)

The LC restricts the embedding tensor to the (2,3)⊕ (2,6′) [170]. It is worth noticing

that there are two copies of the (2,3) irrep in the above composition; the LC imposes

a relation between them [171]. This shows that, for consistency, gauging some SL(2)

generators implies the necessity of gauging some SL(3) generators as well. Let us

denote the allowed embedding tensor irrep’s by ξαm and fα
(mn) respectively.

The quadratic constraints (QC) then read [217,230]

εαβ ξαpξβq = 0 , (1,3′) (5.86)

f(α
npξβ)p = 0 , (3,3′) (5.87)

εαβ (εmqrfα
qnfβ

rp + fα
npξβm) = 0 . (1,3′)⊕ (1,15) (5.88)

Any solution to the QC (5.86), (5.87) and (5.88) specifies a consistent gauging of a

subgroup of SL(2)× SL(3) where the corresponding generators are given by

(Xαm)β
γ = δγα ξβm −

1

2
δγβ ξαm , (5.89)

(Xαm)n
p = εmnq fα

qp − 3

4

(
δpm ξαn −

1

3
δpn ξαm

)
. (5.90)
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ID f+
mn f−

mn ξ+m ξ−m gauging

1 diag(1, 1, 1)

diag(0, 0, 0) (0, 0, 0) (0, 0, 0)

SO(3)

2 diag(1, 1,−1) SO(2, 1)

3 diag(1, 1, 0) ISO(2)

4 diag(1,−1, 0) ISO(1, 1)

5 diag(1, 0, 0) CSO(1, 0, 2)

6 diag(0, 0, 0) diag(0, 0, 0) (1, 0, 0) (0, 0, 0) Solv2× Solv3

7 diag(1, 1, 0)

diag(0, 0, 0) (0, 0, 1) (0, 0, 0) Solv2× Solv38 diag(1,−1, 0)

9 diag(1, 0, 0)

10 diag(1,−1, 0)

 1 1 0

1 1 0

0 0 0

 2
9
(0, 0, 1) (0, 0, 0) Solv2× SO(2)nNil3(2)

Table 5.4: All the U-duality orbits of consistent gaugings in maximal supergravity in

D = 8. For each of them, the simplest representative is given. We denote by Solv2 ⊂
SL(2) and Solv3 ⊂ SL(3) a solvable algebra of dimension 2 and 3 respectively. To be

more precise, Solv2 identifies the Borel subgroup of SL(2) consisting of 2 × 2 upper-

triangular matrices. Solv3, instead, is a Bianchi type V algebra.

The SL(2)×SL(3) orbits of solutions to the QC

We exploited an algebraic geometry tool called the Gianni-Trager-Zacharias (GTZ) al-

gorithm [231]. This algorithm has been computationally implemented by the Singular

project [232] and it consists in the primary decomposition of ideals of polynomials. Af-

ter finding all the solutions to the QC by means of the algorithm mentioned above, one

has to group together all the solutions which are connected through a duality trans-

formation, thus obtaining a classification of such solutions in terms of duality orbits.

The resulting orbits of consistent gaugings6 in this case are presented in table 5.3.3.

Higher-dimensional geometric origin

• Orbits 1 – 5: These stem from reductions of eleven-dimensional supergravity

on a three-dimensional group manifold of type A in the Bianchi classification

[233]. The special case in orbit 1 corresponds to a reduction over an SO(3) group

manifold and it was already studied in ref. [229].

• Orbit 6: This can be obtained from a reduction of maximal nine-dimensional

supergravity on a circle with the inclusion of an R+ twist inside the global sym-

metry group.

6Recently, also the possible vacua of the different theories have been analysed [217]. It was found

that only orbit 3 has maximally symmetric vacua.
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• Orbits 7 – 9: These can come from the same reduction from D = 9 but upon

inclusion of a more general R+ × SL(2) twist.

• Orbit 10: This orbit seems at first sight more complicated to be obtained from a

dimensional reduction owing to its non-trivial SL(2) angles. Nevertheless, it turns

out that one can land on this orbit by compactifying type IIB supergravity on a

circle with an SL(2) twist and then further reducing on another circle with R+ ×
SL(2) twist given by the residual little group leaving invariant the intermediate

nine-dimensional deformation.

Remarks on the D = 7 maximal case

The general deformations of the maximal theory in D = 7 are constructed and pre-

sented in full detail in ref. [178]. For the present aim we only summarise here a few

relevant facts.

The global symmetry group of the theory is SL(5). The vector fields Aµ
MN =

Aµ
[MN ] transform in the 10′ of SL(5), where we denote by M a fundamental SL(5)

index. The embedding tensor Θ takes values in the following irreducible components

10⊗ 24 = 10⊕ 15⊕ 40′ ⊕ 175 . (5.91)

The LC restricts the embedding tensor to the 15 ⊕ 40′, which can be parameterised

by the following objects

Y(MN) , and Z [MN ],P with Z [MN,P ] = 0 . (5.92)

The generators of the gauge algebra can be written as follows

(XMN)P
Q = δQ[M YN ]P − 2 εMNPRS Z

RS,Q , (5.93)

or, identically, if one wants to express them in the 10,

(XMN)PQ
RS = 2 (XMN)[P

[R δ
S]
Q] . (5.94)

The closure of the gauge algebra and the antisymmetry of the brackets imply the

following QC

YMQ Z
QN,P + 2 εMRSTU Z

RS,N ZTU,P = 0 , (5.95)

which have different irreducible pieces in the 5′ ⊕ 45′ ⊕ 70′. Unfortunately, in this case,

both the embedding tensor deformations and the quadratic constraints reach a level of

complexity that makes an exhaustive and general analysis difficult. Such analysis lies

beyond the scope of our work.
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5.3.4 T-duality orbits of half-maximal supergravities

After the previous section on maximal supergravities, we turn our attention to theo-

ries with half-maximal supersymmetry. In particular, in this section we will classify

the orbits under T-duality of all gaugings of half-maximal supergravity. We will only

consider the theories with duality groups R+ × SO(d, d) in D = 10− d, which places a

restriction on the number of vector multiplets. For these theories we will classify all du-

ality orbits, and find a number of non-geometric orbits. Furthermore, we demonstrate

that double field theory does yield a higher-dimensional origin for all of them.

Starting from D = 10 half-maximal supergravity without vector multiplets, it can

be seen that there is no freedom to deform this theory, rendering this case trivial.

In D = 9, instead, we have the possibility of performing an Abelian gauging inside

R+× SO(1, 1), which will depend on one deformation parameter. However, this is

precisely the parameter that one expects to generate by means of a twisted reduction

from D = 10. This immediately tells us that non-geometric fluxes do not yet appear

in this theory. In order to find the first non-trivial case, we will have to consider the

D = 8 case.

Orbits and origin of the D = 8 half-maximal case

Half-maximal D = 8 gauged supergravity

Half-maximal supergravity in D = 8 is related to the maximal theory analysed in

the previous section by means of a Z2 truncation. The action of such a Z2 breaks

SL(2)×SL(3) into R+×SL(2)×SL(2), where SL(2)×SL(2) = O(2, 2) can be interpreted

as the T-duality group in D = 8 as shown in table 5.1. The embedding of R+ × SL(2)

inside SL(3) is unique and it determines the following branching of the fundamental

representation

3 −→ 1(+2) ⊕ 2(−1) ,

m −→ (• , i) ,

where the R+ direction labeled by • is parity even, whereas i is parity odd, such as the

other SL(2) index α. In the following we will omit all the R+ weights since they do

not play any role in the truncation.

The embedding tensor of the maximal theory splits in the following way

(2,3) −→ ��
�HHH(2,1) ⊕ (2,2) ,

(2,6′) −→ ��
�H
HH(2,1) ⊕ (2,2) ⊕ ��

�H
HH(2,3) ,

where all the crossed irrep’s are projected out because of Z2 parity. This implies that the

consistent embedding tensor deformations of the half-maximal theory can be described

by two objects which are doublets with respect to both SL(2)’s. Let us denote them

by aαi and bαi. This statement is in perfect agreement with the Kac-Moody analysis
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performed in ref. [181]. The explicit way of embedding aαi and bαi inside ξαm and fα
mn

is given by

fα
i• = fα

•i = εij aαj , (5.96)

ξαi = 4 bαi . (5.97)

The QC given in (5.86), (5.87) and (5.88) are decomposed according to the following

branching

(1,3′) −→ (1,1) ⊕ ��
�HHH(1,2) ,

(3,3′) −→ (3,1) ⊕ ��
�HHH(3,2) ,

(1,15) −→ (1,1) ⊕ ����
�XXXXX2 · (1,2) ⊕ 2 · (1,3) ⊕ ��

�H
HH(1,4) .

As a consequence, one expects the set of Z2 even QC to consist of 3 singlets, a (3,1)

and 2 copies of the (1,3). By plugging (5.96) and (5.97) into (5.86), (5.87) and (5.88),

one finds

εαβ εij bαi bβj = 0 , (1,1) (5.98)

εαβ εij aαi bβj = 0 , (1,1) (5.99)

εαβ εij aαi aβj = 0 , (1,1) (5.100)

εij a(αi bβ)j = 0 , (3,1) (5.101)

εαβ aα(i bβj) = 0 . (1,3) (5.102)

With respect to what we expected from group theory, we seem to be finding a (1,3) less

amongst the even QC. This could be due to the fact that Z2 even QC can be sourced

by quadratic expressions in the odd embedding tensor components that we truncated

away. After the procedure of turning off all of them, the two (1,3)’s probably collapse

to the same constraint or one of them vanishes directly.

The above set of QC characterises the consistent gaugings of the half-maximal

theory which are liftable to the maximal theory, and hence they are more restrictive

than the pure consistency requirements of the half-maximal theory. In order to single

out only these we need to write down the expression of the gauge generators and impose

the closure of the algebra. The gauge generators in the (2,2) read

(Xαi)βj
γk =

1

2
δγβ εij ε

kl aαl + δγα δ
k
j bβi −

3

2
δγβ δ

k
i bαj +

1

2
δγβ δ

k
j bαi + εαβ ε

γδ δkj bδi . (5.103)

The closure of the algebra generated by (5.103) implies the following QC

εαβ εij (aαi aβj − bαi bβj) = 0 , (1,1) (5.104)

εαβ εij (aαi bβj + bαi bβj) = 0 , (1,1) (5.105)

εij a(αi bβ)j = 0 , (3,1) (5.106)

εαβ aα(i bβj) = 0 . (1,3) (5.107)

To facilitate the mapping of gaugings aαi and bαi with the more familiar fABC and

ξA in the DFT language, we have written a special section in the appendix C.2. The

mapping is explicitly given in (C.16).
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ID aαi bαi gauging

1 diag( cosα, 0) diag( sinα, 0) Solv2× SO(1, 1)

2 diag(1, 1) diag(−1,−1)
SL(2)× SO(1, 1)

3 diag(1,−1) diag(−1, 1)

Table 5.5: All the T-duality orbits of consistent gaugings in half-maximal supergravity

in D = 8. For each of them, the simplest representative is given. Solv2 refers again to

the solvable subgroup of SL(2) as already explained in the caption of table 5.3.3.

The O(2, 2) orbits of solutions to the QC

After solving the QC given in (5.104), (5.105), (5.106) and (5.107) again with the aid

of Singular , we find a 1-parameter family of T-duality orbits plus two discrete ones.

The results are all collected in table 5.5.

Higher-dimensional geometric origin

The possible higher-dimensional origin of the three different orbits is as follows:

• Orbit 1: This orbit can be obtained by performing a two-step reduction of

type I supergravity. In the first step, by reducing a circle, we can generate

an R+× SO(1, 1) gauging of half-maximal D = 9 supergravity. Subsequently, we

reduce such a theory again on a circle with the inclusion of a new twist commuting

with the previous deformation. Also, these orbits include a non-trivial ξA gauging,

so we will not address it from a DFT perspective.

• Orbits 2 – 3: These do not seem to have any obvious geometric higher-dimensional

origin in supergravity. In fact, they do not satisfy the extra constraints (5.74),

so one can only hope to reproduce them from truly doubled twist orbits in DFT.

Therefore we find that, while the half-maximal orbits in D = 9 all have a known

geometric higher-dimensional origin, this is not the case for the latter two orbits in

D = 8. We have finally detected the first signals of non-geometric orbits.

Higher-dimensional DFT origin

As mentioned, the orbits 2 and 3 lack of a clear higher-dimensional origin. Here we

would like to provide a particular twist matrix giving rise to these gaugings. We chose

to start in the cartesian framework, and propose the following form for the SO(2, 2)

twist matrix

U =


1 0 0 0

0 cosh(my1 + n ỹ1) 0 sinh(my1 + n ỹ1)

0 0 1 0

0 sinh(my1 + n ỹ1) 0 cosh(my1 + n ỹ1)

 . (5.108)
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This is in fact an element of SO(1, 1) lying in the directions (ỹ2, y
2), fibred over the

double torus (ỹ1, y
1). Here, the coordinates are written in the cartesian formulation,

so we must rotate this in order to make contact with the light-cone case.

For this twist matrix, the weak and strong constraints in the light-cone formulation

read (m+n)(m−n) = 0, while the QC are always satisfied. The gaugings are constant,

and when written in terms of aαi and bαi we find

aαi = −bαi = diag

(
−m+ n

2
√

2
,
m− n
2
√

2

)
, (5.109)

so orbit 2 is obtained by choosing m = 0, n = −2
√

2, and orbit 3 by choosing

m = −2
√

2, n = 0. Notice that in both cases the twist orbit is truly doubled, so we

find the first example of an orbit of gaugings without a clear supergravity origin, that

finds an uplift to DFT in a truly doubled background.

Orbits and origin of the D = 7 half-maximal case

Half-maximal D = 7 gauged supergravity

A subset of half-maximal gauged supergravities is obtained from the maximal theory

introduced in section 5.3.3 by means of a Z2 truncation. Thus, we will in this section

perform this truncation and carry out the orbit analysis in the half-maximal theory. As

we already argued before, this case is not only simpler, but also much more insightful

from the point of view of understanding T-duality in gauged supergravities and its

relation to DFT.

The action of our Z2 breaks7 SL(5) into R+× SL(4). Its embedding inside SL(5) is

unique and it is such that the fundamental representation splits as follows

5 −→ 1(+4) ⊕ 4(−1) . (5.110)

After introducing the following notation for the indices in the R+ and in the SL(4)

directions

M −→ ( � , m) , (5.111)

we assign an even parity to the � direction and odd parity to m directions.

The embedding tensor of the maximal theory splits according to

15 −→ 1 ⊕ �S4 ⊕ 10 , (5.112)

40′ −→ ��@@4
′ ⊕ 6 ⊕ 10′ ⊕ ��HH20 , (5.113)

7The Z2 element with respect to which we are truncating is the following USp(4) = SO(5) element

α =

(
12 0

0 −12

)
projecting out half of the supercharges.
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where again, as in section 5.3.4, all the crossed irrep’s are projected out because of Z2

parity. This implies that the embedding tensor of the half-maximal theory lives in the

1 ⊕ 6 ⊕ 10 ⊕ 10′ and hence it is described by the following objects

θ , ξ[mn] , M(mn) , M̃
(mn) . (5.114)

This set of deformations agrees with the decomposition D+++
8 → A3 × A6 given in

ref. [181]. The objects in (5.114) are embedded in Y and Z in the following way

Y� � = θ , (5.115)

Ymn =
1

2
Mmn , (5.116)

Zmn, � =
1

8
ξmn , (5.117)

Zm �,n = −Z�m,n =
1

16
M̃mn +

1

16
ξmn , (5.118)

where for convenience we defined ξmn = 1
2
εmnpq ξpq.

Now we will obtain the expression of the gauge generators of the half-maximal

theory by plugging the expressions (5.115) – (5.118) into (5.93). We find

(Xmn)p
q =

1

2
δq[mMn]p −

1

4
εmnpr

(
M̃ + ξ

)rq
, (5.119)

which extends the expression given in ref. [234] by adding an antisymmetric part to

M̃ proportional to ξ. Note that the ξ term is also the only one responsible for the

trace of the gauge generators which has to be non-vanishing in order to account for R+

gaugings.

The presence of such a term in the expression (5.119) has another consequence: the

associated structure constants that one writes by expressing the generators in the 6

(Xmn)pq
rs will not be automatically antisymmetric in the exchange between mn and

pq. This implies the necessity of imposing the antisymmetry by means of some extra

QC8.

The QC of the maximal theory are branched into

5′ −→ 1 ⊕ ��@@4′ , (5.120)

45′ −→ �S4 ⊕ 6 ⊕ 15 ⊕ ��HH20 , (5.121)

70′ −→ 1 ⊕ �S4 ⊕ ��@@4′ ⊕ 10′ ⊕ 15 ⊕ ��HH36′ . (5.122)

8The QC which ensure the antisymmetry of the gauge brackets are given by

(Xmn)pq
rs
Xrs + (mn ↔ pq) = 0, where X is given in an arbitrary representation.
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By substituting the expressions (5.115) – (5.118) into the QC (5.95), one finds

θ ξmn = 0 , (6) (5.123)(
M̃mp + ξmp

)
Mpq = 0 , (1 ⊕ 15) (5.124)

Mmp ξ
pn − ξmp

(
M̃pn + ξpn

)
= 0 , (1 ⊕ 15) (5.125)

θ M̃mn = 0 . (10′) (5.126)

Based on the Kac-Moody analysis performed in ref. [181], the QC constraints of the

half-maximal theory should only impose conditions living in the 1 ⊕ 6 ⊕ 15 ⊕ 15.

The problem is then determining which constraint in the 1 is already required by the

half-maximal theory and which is not.

By looking more carefully at the constraints (5.123) – (5.126), we realise that the

traceless part of (5.124) exactly corresponds to the Jacobi identities that one gets from

the closure of the algebra spanned by the generators (5.119), whereas the full (5.125)

has to be imposed to ensure antisymmetry of the gauge brackets. Since there is only

one constraint in the 6, we do not have ambiguities there9.

We are now able to write down the set of QC of the half-maximal theory:

θ ξmn = 0 , (6) (5.127)(
M̃mp + ξmp

)
Mpq −

1

4

(
M̃npMnp

)
δmq = 0 , (15) (5.128)

Mmp ξ
pn + ξmp M̃

pn = 0 , (15) (5.129)

εmnpq ξmn ξpq = 0 . (1) (5.130)

We are not really able to confirm whether (5.127) is part of the QC of the half-maximal

theory, in the sense that there appears a top-form in the 6 from the D+++
8 decomposition

but it could either be a tadpole or a QC. This will however not affect our further

discussion, in that we only consider orbits of gaugings in which θ = 0. The extra QC

required in order for the gauging to admit an uplift to maximal supergravity are

M̃mnMmn = 0 , (1) (5.131)

θ M̃mn = 0 . (10′) (5.132)

The O(3, 3) orbits of solutions to the QC in the 10 ⊕ 10′

The aim of this section is to solve the constraints summarised in (5.127), (5.128),

(5.129) and (5.130). We will start by considering the case of gaugings only involving

9We would like to stress that the parameter θ within the half-maximal theory is a consistent

deformation, but it does not correspond to any gauging and hence QC involving it cannot be derived

as Jacobi identities or other consistency constraints coming from the gauge algebra.
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ID Mmn/ cosα M̃mn/ sinα range of α gauging

1 diag(1, 1, 1, 1) diag(1, 1, 1, 1) −π
4
< α ≤ π

4

{
SO(4) , α 6= π

4
,

SO(3) , α = π
4
.

2 diag(1, 1, 1,−1) diag(1, 1, 1,−1) −π
4
< α ≤ π

4
SO(3, 1)

3 diag(1, 1,−1,−1) diag(1, 1,−1,−1) −π
4
< α ≤ π

4

{
SO(2,2) , α 6= π

4
,

SO(2, 1) , α = π
4
.

4 diag(1, 1, 1, 0) diag(0, 0, 0, 1) −π
2
< α < π

2
ISO(3)

5 diag(1, 1,−1, 0) diag(0, 0, 0, 1) −π
2
< α < π

2
ISO(2, 1)

6 diag(1, 1, 0, 0) diag(0, 0, 1, 1) −π
4
< α ≤ π

4

{
CSO(2, 0, 2) , α 6= π

4
,

f1 (Solv6) , α = π
4
.

7 diag(1, 1, 0, 0) diag(0, 0, 1,−1) −π
2
< α < π

2


CSO(2, 0, 2) , |α| < π

4
,

CSO(1, 1, 2) , |α| > π
4
,

g0 (Solv6) , |α| = π
4
.

8 diag(1, 1, 0, 0) diag(0, 0, 0, 1) −π
2
< α < π

2
h1 (Solv6)

9 diag(1,−1, 0, 0) diag(0, 0, 1,−1) −π
4
< α ≤ π

4

{
CSO(1, 1, 2) , α 6= π

4
,

f2 (Solv6) , α = π
4
.

10 diag(1,−1, 0, 0) diag(0, 0, 0, 1) −π
2
< α < π

2
h2 (Solv6)

11 diag(1, 0, 0, 0) diag(0, 0, 0, 1) −π
4
< α ≤ π

4

{
l (Nil6(3) ) , α 6= 0 ,

CSO(1, 0, 3) , α = 0 .

Table 5.6: All the T-duality orbits of consistent gaugings in half-maximal supergravity

in D = 7. Any value of α parameterises inequivalent orbits. More details about the

non-semisimple gauge algebras f1, f2, h1, h2, g0 and l are given in appendix C.1.

the 10 ⊕ 10′. This restriction is motivated by flux compactification, as we will try to

argue later on.

The only non-trivial QC are the following

M̃mpMpn −
1

4

(
M̃pqMpq

)
δmn = 0 , (5.133)

which basically implies that the matrix product between M and M̃ , which in principle

lives in the 1 ⊕ 15, has to be pure trace. We made use of a GL(4) transformation in

order to reduce M to pure signature; as a consequence, the QC (5.133) imply that M̃

is diagonal as well [235]. This results in a set of eleven 1-parameter orbits10 of solutions

to the QC which are given in table 5.6.

As we will see later, some of these consistent gaugings in general include non-zero

non-geometric fluxes, but at least in some of these cases one will be able to dualise the

10We would like to point out that the extra discrete generator η of O(3, 3) makes sure that, given

a certain gauging with M and M̃ , it lies in the same orbit as its partner with the role of M and −M̃
interchanged.



5.3. Duality orbits of non-geometric fluxes 135

given configuration to a perfectly geometric background.

Higher-dimensional geometric origin

Ten-dimensional heterotic string theory compactified on a T 3 gives rise to a half-

maximal supergravity in D = 7 where the SL(4) = SO(3, 3) factor in the global sym-

metry of this theory can be interpreted as the T-duality group. The set of generalized

fluxes which can be turned on here is given by{
fabc, fab

c, fa
bc, fabc

}
≡
{
Habc, ωab

c, Qa
bc, Rabc

}
, (5.134)

where a, b, c = 1, 2, 3.

These are exactly the objects that one obtains by decomposing a three-form of

SO(3, 3) with respect to its GL(3) subgroup. The number of independent components

of the above fluxes (including traces of ω and Q) amounts to 1+9+9+1 = 20, which is

the number of independent components of a three-form of SO(3, 3). Nevertheless, the

three-form representation is not irreducible since the Hodge duality operator in 3+3

dimensions squares to 1. This implies that one can always decompose it in a self-dual

(SD) and anti-self-dual (ASD) part

10 ⊕ 10′ of SL(4) ←→ 10SD ⊕ 10ASD of SO(3, 3) , (5.135)

such that the matching between the embedding tensor deformations (Mmn, M̃
mn) and

the generalized fluxes given in (5.134) now perfectly works. The explicit mapping be-

tween vectors of SO(3, 3) expressed in light-cone coordinates and two-forms of SL(4) can

be worked out by means of the SO(3, 3) ’t Hooft symbols (GA)mn (see Appendix C.2).

This gives rise to the following dictionary between the M and M̃ -components and the

fluxes given in (5.134)

M = diag
(
H123, Q1

23, Q2
31, Q3

12
)
, M̃ = diag

(
R123, ω23

1, ω31
2, ω12

3
)
. (5.136)

The QC given in equations (5.127)-(5.130) enjoy a symmetry in the exchange

(M, ξ)
η↔ (−M̃, −ξ) . (5.137)

The discrete Z2 transformation η corresponds to the following O(3, 3) element with

determinant −1

η =

(
0 13

13 0

)
, (5.138)

which can be interpreted as a triple T-duality exchanging the three compact coordinates

ya with the corresponding winding coordinates ỹa in the language of DFT.

Now we have all the elements to analyze the higher dimensional origin of the orbits

classified in table 5.6.
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• Orbits 1 – 3: These gaugings are non-geometric for every α 6= 0; for α = 0,

they correspond to coset reductions of heterotic string theory. See e.g. the S3

compactification in ref. [236] giving rise to the SO(4) gauging. This theory was

previously obtained in ref. [237] as N = 2 truncation of a maximal supergravity

in D = 7.

• Orbits 4 – 5: For any value of α we can always dualise these representatives to

the one obtained by means of a twisted T 3 reduction with H and ω fluxes.

• Orbits 6 – 7: For any α 6= 0 these orbits could be obtained from supergravity

compactifications on locally-geometric T-folds, whereas for α = 0 it falls again in

a special case of the reductions described for orbits 4 and 5.

• Orbits 8 – 11: For any value of α, these orbits always contain a geometric

representative involving less general H and ω fluxes.

To summarise, in the half-maximal D = 7 case, we encounter a number of orbits

which do not have an obvious higher-dimensional origin. To be more precise, these

are orbits 1, 2 and 3 for α 6= 0. The challenge in the next subsection will be to

establish what DFT can do for us in order to give these orbits a higher-dimensional

origin. Again, before reading the following subsections we refer to the section 5.3.2 for

a discussion of what we mean by light-cone and cartesian formulations.

Higher-dimensional DFT origin

First of all we would like to show here how to capture the gaugings that only involve

(up to duality rotations) fluxes Habc and ωab
c. For this, we start from the light-cone

formulation, and propose the following Ansatz for a globally geometric twist (involving

e and B and physical coordinates y)

e =

1 0 ω1

ω3
sin(ω1 ω3 y

2)

0 cos(ω2 ω3 y
1) −ω2

ω3
cos(ω1 ω3 y

2) sin(ω2 ω3 y
1)

0 ω3

ω2
sin(ω2 ω3 y

1) cos(ω1 ω3 y
2) cos(ω2 ω3 y

1)

 , (5.139)

B =

0 0 0

0 0 H y1 cos(ω1 ω3 y
2)

0 −H y1 cos(ω1 ω3 y
2) 0

 , (5.140)

λ = −1

2
log(cos(ω1ω3y

2)) . (5.141)

This is far from being the most general ansatz, but it serves our purposes of reaching a

large family of geometric orbits. The parameters ωi can be real, vanishing or imaginary,

since U is real and well-behaved in these cases. The QC, weak and strong constraints

are all automatically satisfied, and the gaugings read

M = diag(H , 0 , 0 , 0) , M̃ = diag(0 , ω2
1 , ω

2
2 , ω

2
3) . (5.142)
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From here, by choosing appropriate values of the parameters the orbits 4, 5, 8, 10

and 11 can be obtained. Indeed these are geometric as they only involve gauge and

(geo)metric fluxes.

Secondly, in order to address the remaining orbits, we consider an SO(2, 2) twist

U4 embedded in O(3, 3) in the following way

U =


1 0 0 0

0 A 0 B

0 0 1 0

0 C 0 D

 , U4 =

(
A B

C D

)
, λ = 0 . (5.143)

This situation is analog to the SO(1, 1) twist considered in the D = 8 case, but with a

more general twist. Working in the cartesian formulation, one can define the generators

and elements of SO(2, 2) as

[tIJ ]K
L = δL[IηJ ]K , U4 = exp

(
tIJφ

IJ
)
, (5.144)

where the rotations are generated by t12 and t34, and the boosts by the other generators.

Also, we take φIJ = αIJy1 + βIJ ỹ1 to be linear.

From the above SO(2, 2) duality element one can reproduce the following orbits

employing a locally geometric twist (including e, B and β but only depending on y,

usually referred to as a T-fold):

• Orbit 6 can be obtained by taking

(6) α12 = −β12 = − 1√
2

(cosα + sinα) , α34 = −β34 = − 1√
2

(cosα + sinα) .

and all other vanishing.

• Orbits 7 and 9 can be obtained by the following particular identifications

φ14 = φ23 , φ12 = φ34 and φ13 = φ24 .

(7) α14 = −β14 = − 1√
2

sinα , α12 = −β12 = − 1√
2

cosα , α13 = β13 = 0 ,

(9) α14 = −β14 = − 1√
2

sinα , α12 = β12 = 0 , α13 = β13 = − 1√
2

cosα .

All these backgrounds satisfy both the weak and the strong constraints and hence they

admit a locally geometric description. This is in agreement with the fact that the

simplest representative of orbits 6, 7 and 9 given in table 5.6 contains H, ω and Q

fluxes but no R flux.

Finally, one can employ the same SO(2, 2) duality elements with different identifi-

cations to generate the remaining orbits with a non-geometric twist (involving both y

and ỹ coordinates):
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• Orbits 1, 3 can be again obtained by considering an SO(2)× SO(2) twist with

arbitrary φ12 and φ34:

(1) α12 = −2
√

2 (cosα+ sinα) , β34 = 2
√

2 (cosα− sinα) , α34 = β12 = 0 ,

(3) α34 = −2
√

2 (cosα+ sinα) , β12 = 2
√

2 (cosα− sinα) , α12 = β34 = 0 .

• Orbit 2 can be obtained by means of a different SO(2, 2) twist built out of the

two rotations and two boosts subject to the following identification

φ14 = φ23 , φ12 = φ34 . (5.145)

(2) α14 = β12 =
1√
2

(cosα− sinα) , α12 = −β14 = − 1√
2

(cosα + sinα) .

These backgrounds violate both the weak and the strong constraints for α 6= 0. This

implies that these backgrounds are truly doubled and they do not even admit a locally

geometric description.

Finally, let us also give an example of degeneracy in twist orbits-space reproducing

the same orbit of gaugings. The following twist

φ12 = φ13 , φ34 = φ24 , φ23 = φ14 = 0 (5.146)

(6) α13 = − 1√
2

(cosα + sinα) , β24 =
1√
2

(cosα− sinα) , α24 = β13 = 0 ,

also reproduces the orbit 6, but in this case through a non-geometric twist. What

happens in this case is that although the twist matrix does not satisfy the weak/strong

constraints, the contractions in (5.75) cancel.

5.4 Concluding remarks

In this chapter we have provided a litmus test to the notion of non-geometry, by

classifying the explicit orbits of consistent gaugings of different supergravity theories,

and considering the possible higher-dimensional origins of these. The results turn out to

be fundamentally different for the cases of U-duality orbits of maximal supergravities,

and T-duality orbits of half-maximal theories.

In the former case we have managed to explicitly classify all U-duality orbits in di-

mensions 8 ≤ D ≤ 11. This led to zero, one, four and ten discrete orbits in dimensions

D = 11, 10, 9 and 8, respectively, with different associated gauge groups. Remarkably,

we have found that all of these orbits have a higher-dimensional origin via some geomet-

ric compactification, be it twisted reductions or compactifications on group manifolds

or coset spaces. In our parlance, we have therefore found that all U-duality orbits are

geometric. The structure of U-duality orbits is therefore dramatically different from

the sketch of figure 1 in the introduction. Although a full classification of all orbits
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in lower-dimensional cases becomes increasingly cumbersome, we are not aware of any

examples that are known to be non-geometric. It could therefore hold in full generality

that all U-duality orbits are necessarily geometric.

This is certainly not the case for T-duality orbits of gaugings of half-maximal su-

pergravities. In this case, we have provided the explicit classification in dimensions

7 ≤ D ≤ 10 (where in D = 7 we have only included three-form fluxes). The numbers

of distinct families of orbits in this case are zero, one, three and eleven in dimensions

D = 10, 9, 8 and 7, respectively, which includes both discrete and one-parameter orbits.

A number of these orbits do not have a higher-dimensional origin in terms of a geomet-

ric compactification. Such cases are orbits 2 and 3 in D = 8 and orbits 1, 2 and 3 in

D = 7 for α 6= 0. Indeed, these are exactly the orbits that do not admit an uplift to the

maximal theory. As proven in section 5.3.2, all such orbits necessarily violate the weak

and/or strong constraints, and therefore need truly doubled backgrounds. Thus, the

structure of T-duality orbits is very reminiscent of figure 1 in the introduction. Given

the complications that already arise in these simpler higher-dimensional variants, one

can anticipate that the situation will be similar in four-dimensional half-maximal su-

pergravity.

Fortunately, the formalism of double field theory seems tailor-made to generate

additional T-duality orbits of half-maximal supergravity. Building on the recent gen-

eralization of the definition of double field theory [216], we have demonstrated that all

T-duality orbits, including the non-geometric ones in D = 7, 8, can be generated by

a twisted reduction of double field theory. We have explicitly provided duality twists

for all orbits. For locally-geometric orbits the twists only depend on the physical co-

ordinates y, while for the non-geometric orbits these necessarily also include ỹ. Again,

based on our exhaustive analysis in higher-dimensions, one could conjecture that also

in lower-dimensional theories, all T-duality orbits follow from this generalized notion

of double field theory.

At this point we would like to stress once more that a given orbit of gaugings

can be generated from different twist orbits. Therefore, there is a degeneracy in the

space of twist orbits giving rise to a particular orbit of gaugings. Interestingly, as it

is the case of orbit 6 in D = 7 for instance, one might find two different twist orbits

reproducing the same orbit of gaugings, one violating weak and strong constraints, the

other one satisfying both. Our notion of a locally geometric orbit of gaugings is related

to the existence of at least one undoubled background giving rise to it. However, this

ambiguity seems to be peculiar of gaugings containing Q flux. These can, in principle,

be independently obtained by either adding a β but no ỹ dependence (locally geometric

choice, usually called T-fold), or by including non-trivial ỹ dependence but no β (non-

geometric choice) [215].

Another remarkable degeneracy occurs for the case of semi-simple gaugings, corre-

sponding to orbits 1 – 3 in D = 7. For the special case of α = 0, we have two possible

ways of generating such orbits from higher-dimensions: either a coset reduction over

a sphere or analytic continuations thereof, or a duality twist involving non-geometric
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coordinate dependence. Therefore d-dimensional coset reductions seem to be equiv-

alent to 2d-dimensional twisted torus reductions (with the latter in fact being more

general, as it leads to all values of α). Considering the complications that generally

arise in proving the consistency of coset reductions, this is a remarkable reformulation

that would be interesting to understand in more detail. Furthermore, when extending

the notion of double field theory to type II and M-theory, this relation could also shed

new light on the consistency of the notoriously difficult four-, five- and seven-sphere

reductions of these theories.

Our results mainly focus on Scherk-Scharz compactifications leading to gauged su-

pergravities with vanishing ξM fluxes. In addition, we have restricted to the NSNS

sector and ignored α′-effects. Also, we stress once again that relaxing the strong and

weak constraints is crucial in part of our analysis. If we kept the weak constraint,

typically the Jacobi identities would lead to backgrounds satisfying also the strong

constraint [216]. However, from a purely (double) field theoretical analysis the weak

constraint is not necessary. A sigma model analysis beyond tori would help us to clar-

ify the relation between DFT without the weak and strong constraints and string field

theory on more general backgrounds. We hope to come back to this point in the future.



Chapter 6

Studies on N = 2 multicenter black

holes

We present a systematic study of general, stationary, multicenter black hole solutions

in ungauged four dimensional Einstein-Maxwell N = 2 supergravity theories minimally

coupled to scalars, i.e. theories with quadratic prepotentials. We show how is possible

to derive in a systematic and straightforward way a fully analytic, explicit description

of the multicenter black holes, the attractor mechanism and their properties making an

intensive use of the stabilization matrices, their newly defined sympletic adjoints and

the algebraic properties of both. The symplectic unitarity of these matrices suggests the

decomposition of the 2nV + 2 dimensional symplectic space into a subspace generated

by the center charges qa, their associated vectors S†qa and its orthogonal complement

subespace. This decomposition results useful in particular the understanding of ques-

tions as entropy increasing effects in the fragmentation of a single center black holes

into two o more centers, or the maximality of the solutions, in terms, for example, of

simple considerations of the dimensions of the each subspaces. The results properties

presented are easily extendable to general prepotentials or even theories without them.

6.1 Introduction

We are interested in this chapter in general, stationary, multicenter black hole solutions

in ungauged four dimensional N = 2 supergravity theories coupled to an arbitrary

number of N = 2 vector multiplets. The action of the theory can be determined, in

the framework of special geometry, in terms of a holomorphic section Ω of the scalar

manifold. The set of field equations and Bianchi identities associated to the action

is invariant under the group of symplectic transformations Sp(2nv + 2). This group

acts linearly on the section Ω, becoming this a symplectic vector, which can be written

Ω = (XI , FJ), (I, J) = (0, nV ). Supergravity, 4d,N = 2, black hole solutions have been

extensively studied for a long term by now, see for example [61, 63, 67, 238–246] and

references therein, or for multicenter black holes [247–253].
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The values of the nV scalar fields constitute the moduli space of the theory. A

distinctive feature of many of these theories is that the, possibly disconnected, black

hole horizon acts as an attractor for the scalar fields present in the spectrum. The

values of the moduli at any of the the horizon components does not depend on their

asymptotic values but only on the symplectic vector of charge assigned to that horizon

component [63, 243]. The embedding of the duality group of the moduli space into

the symplectic group Sp(2nv + 2) stablishes in general a relation between the upper

and lower components of Ω, FI = FI(X
J). In some cases FI is the derivative of a

single function, the prepotential F = F (XJ). The choice of a particular embedding

determines the full lagrangian of the theory and whether a prepotential exists [254,255].

In this chapter we focus in general cuadratic prepotentials. They correspond to the

simplest examples of homogeneous special Kahler manifolds, the CP n ≡ SU(1, n)/(U(1)×
SU(n)) case, The case n = 1, for example, corresponds to the Axion-Dilaton Black

Hole (see for example [256,257] or [258]). These models correspond to Maxwell-Einstein

N = 2 supergravities minimally coupled to nv scalars. They lead to phenomenologically

interesting N = 1 minimal coupling supergravities [259].

Theories derived from particular examples of these quadratic prepotentials have

been studied in detail. The list include the Axion-dilaton model with prepotential

F = −iX0X1 and the CPn models. We define for brevity the constant matrix S ≡ SF .

The aim of this study is the explicit, detailed study of stationary multicenter black

hole solutions with any number of scalars, the study of the properties of the bosonic field

solutions and their global and local properties. For this purpose we make a systematic

use of, some previously well known objects of the theory, the“stabilization matrices “

and some newly defined ones, their symplectic “adjoints”. These stabilization matrices,

SF ,SN , are related to the vector kinetic matrix and the matrix of second derivatives

of the prepotential. They are real Sp(2nv + 2) matrices, isometries of the symplectic

quadratic form, connecting the the real and imaginary parts of the special geometry

sections. Their adjoints with respect to the symplectic product S†N ,S
†
F are defined

and shown to lie inside the Lie algebra of the isometry group, they are such that

S + S† = 0. This property together with S2 = −1 make these matrices “unitary”,

SS† = 1, with respect the symplectic product. We show how is possible to derive

or rederive again in a systematic and straightforward way a fully analytic, explicit

description of the multicenter black holes and their properties (attractor mechanism,

central chage, horizon areas, masses...) making an intensive use of these stabilization

matrices, their adjoints and the algebraic properties of both.

As we will show, the properties of these matrices, in special their symplectic unitar-

ity property SS† = 1, suggests, and makes useful and convenient, the separation of the

2nV + 2 dimensional symplectic space into a 2na dimensional subspace generated by

the na center charges qa and their associated vectors S†qa ( or Sqa) and its orthogonal

complement subespace (possibly of dimension zero depending on the number and on

the linear dependency of center charge vectors). In the case of quadratic prepotentials

this separation into “charge-longitudinal” and “transversal” subespaces can be made
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global choosing S = SF . A similar, but local, s calar-dependent, separation can be ad-

vantegeously considered also for generic prepotentials, or even theories without them.

The projection of any symplectic vector appearing in the theory, for example a subset

of the charge vectors themselves or vectors characterising the black-hole ansatz at in-

finity, in terms of these new basis appears as a promising technique. The use of this

projection allows in particular the understanding of questions as entropy increasing

effects in the fragmentation of a single center black holes into two o more centers, or

the maximality of the solutions, in terms, for example, of simple considerations of the

dimensions of the each of the charge-longitudinal and transversal subspaces.

Although we have focused in this study in minimal coupling theories with quadratic

prepotentials, the main techniques, properties and expressions presented are extendable

to general prepotentials or even theories without them.

This study is organized as follows. In the first two sections we present a brief intro-

duction of the Reissner-Nordstrom Black hole and the concept of maximality (section

6.2) and then the attractor mechanism (section 6.3). In the section 6.4 we present some

well known basics of dimensional four N = 2 supergravity theories and their formu-

lation in terms of special and symplectic geometry. In the following sections we first

introduce the matrices SN,F , we emphasize some already known properties and derive

new ones and defineprojection operators constructed from them and their symplectic

adjoints. After the consideration of the attractor mechanism in terms of these projec-

tors, we enter in a full explicit description multicenter black hole solutions and their

horizon and asymptotic properties. We finally present a section of summary, discussion

and outlook.

6.2 The Reissner-Nordström black hole. Extremal-

ity in GR

Our starting point is the Einstein-Maxwell action in 4 dimensions,

L =

∫
d4xe

(
R− 1

4
FµνF

µν

)
. (6.1)

which allows charged black holes as solutions. For the sake of simplicity, we a consider

a static and spherically symmetric metric ansatz. The most general one satisfying these

requirements is

ds2 = −e2U(r)dt2 + e−2U(r)
[
dr2 + r2dΩ2

]
, (6.2)

where dΩ2 = dθ+ sin2 θdφ2 and U(r) is the warp factor. Imposing the same symmetry

conditions on the Maxwell field, the field strength is restricted to the form

F = P sin θdθ ∧ dφ+Qdt ∧ 1

r2
dr , (6.3)
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where the constants P and Q can be interpreted as the magnetic and electric charges,

respectively. Solving the field equations derived from (6.1), we get for the Reisner-

Nordström metric element

e2U(r) = 1− 2M

r
+
P 2 +Q2

r2
. (6.4)

This solution enjoys a singularity at r = 0 hidden by the horizons which appear when

the warp factor vanishes,

r± = M ±
√
M2 − (P 2 +Q2) . (6.5)

Both r± values are real when M2 ≥ P 2 +Q2, the singularity becomes naked for lower

values of the mass. We define a parameter c (the extremality parameter)

c = r+ − r− =
√
M2 − (P 2 +Q2) . (6.6)

The properties of the solution depends on the values of the mass and the electric and

magnetic charges. For c > 0 then the solution describes a non-extremal black hole with

two, interior and exterior, horizons. It is surface gravity κS
1 and are are respectively

given by

κS (∝ c) =

√
M2 − (P 2 +Q2)

2M(M +
√
M2 − (P 2 +Q2))− (P 2 +Q2)

, (6.7)

A = 4π(M +
√
M2 − (P 2 +Q2))2. (6.8)

When c = 0 or

M2 = P 2 +Q2

the two horizons coincide, the surface gravity vanishes and the horizon area is given

exclusively in terms of the charge.

A = 4π(P 2 +Q2)2. (6.9)

We have an extremal black hole. In the case c < 0 the event horizons dissapear, the

singularity at r = 0 is a naked singularity. The Schwarzchild black hole and the

Minkowski space are special cases for respectively M > 0, P = Q = 0 and M = P =

Q = 0.

In the extremal case, by introducing a radial coordinate v = r −M , the metric is

ds2 = −
(

1 +
M

v

)−2

dt2 +

(
1 +

M

v

)2 [
dv2 + v2dΩ2

]
. (6.10)

1 xxx,Nota: The acceleration of a test body at the event horizon of a black hole is infinite in

relativity. Because of this, a renormalized value is used that corresponds to the Newtonian value in

the non-relativistic limit. The value used is generally the local proper acceleration (which diverges

at the event horizon) multiplied by the gravitational redshift factor (which goes to zero at the event

horizon).
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The horizon is now at v = 0 and the near-horizon metric for v → 0 is

ds2
NH = − v2

M2
dt2 +

M2

v2
dv2 +M2dΩ2 . (6.11)

Defining a new coordinate z ≡M2/v, it is rewritten as

ds2 =
M2

z2

(
−dt2 + dz2

)
+M2dΩ2 . (6.12)

This line element describes the direct product of two manifolds, AdS2 ⊗ S2, where the

AdS scale L and the radius of the sphere rS coincide, L = rS = M . This metric is

known as the Robinson-Bertotti metric [260,261].

A generalization of the Reisner-Nordström solution arises from rewriting the metric

ansatz (6.10) in an isotropic form,

ds2 = −H−2(~x)dt2 +H2(~x)dxidxi . (6.13)

The equation of motion for this warp factor is expressed as

∆3H = 0 , (6.14)

with ∆3 the 3-dimensional Laplacian which can be solved by generic harmonic functions

H ≡ e−U = 1 +
∑
n

Mn

|~x− ~xn|
(6.15)

This is the Majumdar-Papapetrou solution [262,263].

6.3 Black holes in Supergravity. The Attractor mech-

anism

We will study now black-hole solutions in gravity theories which contain gauge and

scalar fields (such it happens neccesarily in supergravity). Some important mechanism

appears in these theories, the the attractor mechanism. The attractor mechanism was

originally discovered for BPS extremal black holes in N = 2 supergravity theories.

The origin of this mechanism can be found in [61, 62, 67]. Under this mechanism, the

values of the scalars at the black hole horizon are fixed, independently of their values

at infinity, in terms of the electric and magnetic charges possibly carried by the black

hole. The flow of the scalars towards the horizon exhibits the feature of gradient flow

towards a fixed point, which is the minimum of a function related to the central charge

of the algebra. Among other properties, a basic feature of the attractor mechanism is

that the ADM mass 2 is minimized, for fixed values of the conserved charges carried by

the black hole, when the scalar fields are constant, thake their attractor values through

the spacetime.

2 The ADM mass M is defined by gtt = 1−M/r + ....



146 6. Studies on N = 2 multicenter black holes

In the last years, the attractor mechanism has been investigated for extremal black

holes in non-supersymmetric theories, in theories beyond GR as 5d Gauss-Bonnet grav-

ity [264] as well as for non-BPS extremal solutions in N ≥ 1 supersymmetric theories.

A generic lagrangian describing a 4d,N = 2 supergravity coupled to scalars and nV
vector fields is of the form

S =

∫
d4xe

(
R− 1

2
gij(φ)∂µφ

i∂µφj +
1

4
IΛΣ(φ)FΛ ∧ FΣ +

1

4
RΛΣ(φ)FΛ ∧ ?FΣ

)
.

(6.16)

where gij(φ) is the metric of the scalar σ-model, I,R describe the gauge kinetic and

vector couplings, in particular R is the generalization of the θ-angle terms in the

presence of scalar and vector fields. We assume that there is no-scalar potential.

We are interested in finding single center, static, maximal, spherically symmetric

and charged black hole solutions. In addition we assume asymptotical flatness. We

introduce a metric ansatz of the form,

ds2 = −e2Udt2 + e−2U

(
c4

sinh4(cz)
dz2 +

c2

sinh2(cz)
dΩ2

)
, (6.17)

with the required symmetry and which cover both the maximal and non maximal

cases, the constant c is an extremality parameter. The z coordinate is related to the

standard radial coordinate by z = −1/r. It runs from z = −∞ (horizon) to z = 0

(spatial infinity). The unknown function U = U(z) is such that exp−2U(z → 0) =

exp−2Mz → 1 (asymptotic flatness). At z → −∞ we require, in order to ensure a

finite area (c 6= 0),

U(z → −∞) = cz, (6.18)

U ′(z → −∞) = c. (6.19)

In the maximal limit c→ 0 we recover the metric

ds2 = −e2Udt2 + e−2U

(
1

z2
dz2 +

1

z2
dΩ2

)
. (6.20)

In this case the condition of finite area (A) at the horizon implies the boundary condi-

tion:

exp (−2U) =
A

4π
z2, (z → −∞). (6.21)

With respect to the gauge fields, a similar static, spherically symmetric ansatz can

be introduced. For it electric and magnetic conserved charges can be defined in terms

of the field strengths and their duals,

1

4π

∫
FΛ = pΛ ,

1

4π

∫
GΛ = qΛ . (6.22)
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Due to the new couplings in (6.16) and the dependence of R and I on the scalars, the

Bianchi identities are

dFΛ = 0 , (6.23)

dGΛ = d
(
RΛΣF

Σ − IΛΣ ? F
Σ
)

= 0 . (6.24)

Where the second equation defines the quantity G. This set of equations remains

invariant when performing a symplectic rotation of the field strengths [265](
F

G

)
→ S

(
F

G

)
, (6.25)

where S ∈ Sp(2nV ,R). 3. We can introduce the couple of potentials (AΣ, AΣ), corre-

sponding to the symplectic vector of 2-forms (FΣ, GΣ) with the required symmetry.

AΛ = χΛ(r)dt− pΛ cos θdφ , (6.26)

AΛ = ψΛ(r)dt− qΛ cos θdφ . (6.27)

The electric-magnetic duality relation imposes the constraint

χ′Λ = e2UIΛΣ(qΣ −RΣΓp
Γ) . (6.28)

At this point, we can write the Einstein field equations for the metric (6.17) and

gauge field ansatze. The equations of motion for the gauge fields may then directly

solved. The equations of motion for metric and scalar fields simplify to the equations

U ′′ − e2UVBH = 0 , (6.29)

(U ′)2 +
1

2
gijφ

i′φj
′ − e2UVBH − c2 = 0 , (6.30)

φi
′′

+ Γjk
iφj
′
φk
′ − e2Ugij∂jVBH = 0 . (6.31)

The non-linear system of second degree diferential equations 6.29 is complemented by

the asymptotic boundary conditions for the metric at infinity (flatness) and at the

horizon (finite area condition) and in principle two initial or boundary conditions for

each of the scalars. The properties of this non-linear system, the existence of the

constraint equation and the requirement of regularity everywhere will imply that of

the two theoretically possible conditions for each of the scalars only one will survive.

The value of the scalars and their first derivative will be fixed at the horizon, only the

value at the scalars at infinity will remain as a free parameter of the theory. This is in

essence the attractor mechanism.

The quantity VBH is the black hole potential, which encondes the terms of the energy

momentum tensor correspongin to the vector fields that appear in the lagrangian [67].

It can be written as

VBH = −1

2
QTMQ , (6.32)

3Additional matter couplings may reduce this symmetry to G ⊂ Sp(2nV ,R), being G the U-duality

group of the theory
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where M is a scalar depending matrix

M =

(
I +RI−1R −RI−1

−I−1R I−1

)
, (6.33)

and Q is a charge symplectic vector

Q =

(
pΛ

qΛ

)
. (6.34)

Using the scalar matrixM we can rewrite the gauge field strengths in a covariant way

as (
F

G

)
= e2U Ω̃M

(
pΛ

qΛ

)
dt ∧ dz −

(
pΛ

qΛ

)
sin θdθ ∧ dφ , (6.35)

where Ω̃ is the symplectic metric

Ω̃ =

(
0 −InV
InV 0

)
. (6.36)

At this point, let us consider the possibility of deriving the field equations above

from an effective lagrangian. Let us take the following lagrangian

L = (U ′)2 +
1

2
gijφ

i′φj
′
+ e2UVBH(φ) + c2 , (6.37)

depending on the “fields” U(z), φ(z). Noether’s theorem applied to this lagrangian

implies that the effective ’energy’

E ≡ (U ′)2 +
1

2
gijφ

i′φj
′ − e2UVBH − c2 (6.38)

is a constant, it does not depend on z. The Euler-Lagrangian equations for this system

(corresponding to the fields U(z), φi) agree with first and last of the equations in

(6.29). The second equation in (6.29) has to be implemented by hand, as an additional

constraint

E = 0.

Thus, this effective action plus the constraint E = 0 is equivalent to the system. 4

We note that from the behaviour of the constraint equation 6.38 at spatial infinity

(considering that exp−2U(z → 0) = exp−2Mz → 1) we get the following constraint

between the black hole mass M , scalar charges 5, and the potential at infinity

M2 +
1

2
gijΣ

iΣj ′ − VBH(φi∞) = c2 (6.39)

4Alternatively the same lagrangian could be obtained inserting in the original action the ansatze

for the metric and the gauge fields, integrating out the spatial coordinates and ensuring that the

resulting motion equations were equivalent to the original ones.
5The scalar charges Σi of the black hole are defined by (at spatial infinity z → 0) φi = φi∞ +

zΣi/r +O(z2).



6.3. Black holes in Supergravity. The Attractor mechanism 149

Let us note that the equations in (6.29) can be solved by constant values φ̃i of

the scalar fields, if in addition these values represent a critical point of the effective

potential, that means

∂VBH(φ)

∂φi
|φ̃ = 0. (6.40)

We will construct below extremal solutions with non-constant scalars but these critical

values of the effective BH potential represent possible attractor values for the moduli

scalars (provided positivity of the hessian). They will have the same horizon-limit (for

the value of the field and its derivative), however the asymptotic values of these scalars

may be varied freely. Extremal black hole solutions in which the scalar fields take

constant values are called double-extreme black holes.

For a constant scalar solution given by the critical point of the black hole potential

∂iVBH(φ̃if , q, p) = 0 . (6.41)

The black hole charges are the only parameters that appear in (6.41), the extremal

points will be solved in terms of them,

φ̃i = φ̃i(q, p) . (6.42)

The BH potential is a constant given by

ṼBH = VBH(φ̃i(q, p), q, p) . (6.43)

The first and second equations of (6.29) for the warp factor at the horizon can be

directly solved giving

U ′′(z) = (U ′(z))2 . (6.44)

U(z) = − log

(√
ṼBHz

)
. (6.45)

This implies that the entropy is (taking into account that rH =
√
ṼBH)

SBH =
A

4
= πṼBH(q, p) . (6.46)

In addition, for double extremal solution, from the equation 6.39 and taking c = 0, we

get

M2 = VBH(φi∞). (6.47)

Next we will study general, non-constant scalar solutions. We will see how the

some universal properties attractor mechanism and of the area of extremal black holes

can be deduced only from the requirement of the regularity of the configuration, that

the geometry as well the scalars are regular near the horizon. If the scalars and their
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derivatives does not blow up near the horizon we can assume the following expression

valid for z →∞

φi = φ̃ih + ai/z + .... (6.48)

Inserting this series and exp(−2U)h = z2A/4π, the differential equations (6.29) become

at leading orders near the horizon

1

z

2

− 4π

Az2
VBH,h = 0 , (6.49)

1

z2
+
a1

z4
− 4π

Az2
VBH,h + . . . = 0 , (6.50)

a2

z3
+
a3

z4
− 4π

Az2

(
gij∂jVBH

)
h

+ . . . = 0 . (6.51)

or (a1, a2, a3 constants)

1− 4π

A
VBH,h = 0 , (6.52)

a1 + z2

(
1− 4πz2

A
VBH,h

)
+ . . . = 0 , (6.53)

a2z + a3 − z2 4π

A

(
gij∂jVBH

)
h

+ . . . = 0 . (6.54)

If we compare coefficients order by order in 1/z, we arrive to that, in order for solutions

not to blow up at the horizon, we have the conditions (assuming that the matrix gij(φ)

is invertible at the horizon) :

A = 4πVBH,h , (6.55)

φi(z → −∞) = 0 , (6.56)(
∂VBH
∂φi

)
h

= 0 . (6.57)

Thus we have shown that the area of the horizon of extreme black holes coincides

with the area of the horizon of the double-extreme black holes with the same values of

charges and is given by the value of the potential, as is expressed by the first equation

above. Moreover, the entropy of the black hole, related to the area of the horizon, will

be determined by the charges. This means that the entropy does not depend on any

continuous parameter.

In addition we see that the values of the scalars at the horizon can be considered

as free initial conditions, they are given by the minimization of the effective black-

hole potential, as it appears in the third equation of 6.52: the horizon is an attractor

point [61–64].

The gist for the existence of the attractor mechanism in extremal black holes may

be consider to reside in the distance of the horizon from any observer [67]. Whilst in

the extremal case the horizon results inachievable because of its infinite distance, in the

non-extremal situation, the proper distance is finite. This justifies the lost of memory

of the asymptotic values of the scalar fields in the former case.
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Supergravity central charge and flow equations

Now we consider in more detail the special case of N = 2 supergravity for which the

scalar manifold is a special Kahler manifold. For these N = 2 theories special geometry

can be used and the expressions are somehow simplified. The black hole potential is

given by (we will follow [65])

VBH = |Z|2 + 4gij∂i|Z|∂̄j|Z| , (6.58)

where Z is the central charge of the N = 2 SUSY algebra,

Z = e−K/2(XΛqΛ − pΛFΛ) = e−K/2〈Ω, Q〉 , (6.59)

where K is the Kahler potential and XI , FI are determined by the special geometry.

Thus, the lagrangian (6.37) and the constraint (6.38) become

L = (U ′)2 + gijφ
i′φj

′
+ e2U(|Z|2 + 4gij∂i|Z|∂̄j|Z|) , (6.60)

(U ′)2 + gijφ
i′φj

′
= e2U(|Z|2 + 4gij∂i|Z|∂̄j|Z|) . (6.61)

We will reduce this system to first order differential equations in the following simplfied

way. The energy constraint is an equality between two different sums of squares with

the same weight e2U . Thus, a possible ansatz for the solution would be

U ′ = ±eU |Z| , (6.62)

φi
′
= ±2eUgi̄∂̄̄|Z| . (6.63)

It can be checked that this ansatz is also a solution for the equations of motion (6.29)

when the same signs are chosen. Thus, this is a reduction of the original second order

system to a first order system governed by |Z|. Due to asymptotic flatness arguments,

the physical sign is

U ′ = −eU |Z| , (6.64)

φi
′
= −2eUgi̄∂̄̄|Z| . (6.65)

The same first order equations can be obtained by analyzing the Killing spinor equa-

tions for the theory. The conditions for the gravitino and gaugino supersymmetry

transformations

δψAµ = 0 , (6.66)

δλiA = 0 . (6.67)

are equivalent to the former and latter differential equations 6.

6Actually, the Killing spinor equation for gauginos implies a new first order equation for a phase

factor. However, it is also related to the Kähler connection and once the flow equations (6.64) are

fulfilled, this additional equation is automatically satisfied, showing that the phase factor is not an

independent quantity.
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By evaluating the equations at (6.64) at infinity and at the horizon similarly as in

the previous section we infer that the central charge fully determines the solution. The

fixed values of the scalars at horizon are given by the minimizacion condition

∂i|Z|h = 0 , (6.68)

whose critical points are also a critical point for the black hole potential. Solutions

corresponding to a critical point describes a supersymmetric extremal black hole. The

central charge at the horizon is fixed in terms of the discrete charges

|Z|h = |Z|h
(
p, q, φih(p, q)

)
. (6.69)

The Special Kähler nature of of the scalar manifold guarantees that the second

derivative of the central charge is such that

∂i∂̄̄|Z| = gi̄|Z| > 0 , (6.70)

all the critical points are minima of the central charge. No matter what is the value of

the scalars at infinity, they will be driven towards the minimum of the central charge.

This constitutes an attractor behaviour.

The extremal condition for the central charge was brought to an equivalent form

in [266–270] under the condition that the special geometry is not singular. They are

the so called “stabilization equations” of purely algebraic form and which will be used

in the next sections.

6.4 N = 2 D = 4 SUGRA and Special Kähler geom-

etry

The fields of the N = 2 Supergravity coupled to N = 2 vector multiplets the-

ory consist of the gravitational field, nv vectors, scalars and fermions respectively

eaµ, A
I
µ, z

α, ψµ,r, λ
α
r with α = (1, nv), I = (0, nv)). The theory also contain hypermulti-

plets which can be safely taken as constant or neglected (further details can be found

in [248] whose notation and concepts we generally adopt). The bosonic N = 2 action

can be written as, considering only gravity scalars and vectors

S =

∫
M(4d)

R ? 1 + Gαβ̄dzα ∧ ?dz̄β̄ + F I ∧GI . (6.71)

The fields F I , GI are not independent. The field strengths F I = dAI and GI are

combinations of the F I and their Hodge duals GI = aIJF
I + bIJ ? F

I with scalar

dependent coefficients aIJ , bIJ .

Abelian charges with respect the U(1)nv+1 local symmetry of the theory are defined

by integrals of the gauge field strengths (where Sa are surfaces completely surrounding

one and only one center)

q ≡ (pI , qI) ≡
1

2π2

∫
Sa

(F I , GI). (6.72)
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The theory is defined, in the special geometry formalism, by the introduction of

some projective scalar coordinates XI , for example “special” projective coordinates

zα ≡ XI/X0, and by the introduction of a covariantly holomorphic section of a sym-

plectic bundle V = V (z, z̄) ≡ (V I , VI) with 7
〈
V | V̄

〉
≡ V tωV ≡ V̄ IVI − V I V̄I = −i.

The scalar kinetic term metric is given by Gαβ̄ = ∂α∂β̄K where the Kahler potential K is

defined by the relations V = exp(−K/2)Ω where the holomorphic section Ω ≡ (XI , FI)

and

e−K = i
(
X̄IFI −XIFI

)
= i
〈
Ω | Ω̄

〉
. (6.73)

In N2 SUGRA theories the central charge central charge function can be expressed as

the linear function on the charge space:

Z(zα, q) ≡ 〈V | q〉 = eK/2
(
pIFI − qIXI

)
. (6.74)

The embedding of the isometry group of the scalar manifold metric Gαβ̄, into the

symplectic group fixes, through the Kahler potential K, a functional relation between

the lower and upper parts of V and Ω, FI = FI(X), VI = VI(V
I) [271,272].

There always exists an symplectic frame where the theory can be described in terms

of a single holomorphic function, the prepotential F (X), a second degree homogeneous

function on the projective scalar coordinates XI , such that FI(X) = ∂IF (X). For

simplicity we will assume the existence of such prepotential along this study although

the results will not depend on such existence. We use the notation FIJ = ∂I∂JF .

The lower and upper components of V and are related by a field dependent matrix

N , which is determined by the special geometry relations [63]

VI = NIJV
J , DīV̄I = NIJDīV̄

J . (6.75)

The matrix N , which fixes the vector couplings (aIJ , bIJ) in the action, can be related

to FIJ [273] by NIJ = F̄IJ + TITK , where TI is proportional to the projector of the

graviphoton, whose flux define the N = 2 central charge [273]. For our purposes it is

convenient to write this relation between the N and F matrices as

NIJ ≡ FIJ +N⊥IJ ≡ FIJ − 2i=FIJ + 2i
=FIKLK=FJQLQ

LP=FPQLQ
, (6.76)

where we decompose the matrix N into “longitudinal” and “perpendicular” parts. The

perpendicular term, N⊥IJ , acts over LI , or any multiple of it, as

N⊥IJ(αLJ) = 0. (6.77)

Form here the first relation in Eq.(6.75) can be written as

VI = NIJL
J = FIJL

J . (6.78)

7We choose a basis where ω =

(
0 −In̄
In̄ 0

)
.
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The existence of functional dependences among the upper and lower components of

the vectors V or Ω imply further relations between their respective real and imaginary

parts. They are related by symplectic Sp(2nv + 2, R) matrices SN ,SF such that:

Re (Ω) = SF Im (Ω) . (6.79)

Re (V ) = SN Im (V ) = SF Im (V ) , (6.80)

where in the last equality we have used the relation (6.78). Explicit expressions for

the matrices SN,F can be found in [273]. 8 The properties of the stabilization matrices

SN,F will play an important role in what follows.

In the particular case of theories with cuadratic prepotentials, of the form (or

equivalently for U-duality groups of degenerate type E7, [259])

F (X) =
1

2
FIJX

IXJ , (6.81)

with FIJ a complex, constant, symmetric matrix, the matrix SF , in contrast to the

matrix SN , is a field-independent, constant matrix. In fact the matrix SN is never

scalar independent in N = 2 supergravity [259]. We can assume that <FIJ = 0 and

=FIJ is negative definite.

The most general stationary (time independent) metric in four dimensions compat-

ible with supersymmetry can be written in the IWP form [274–276].

ds2 = e2U(dt+ ω)2 − e−2Udx̄2. (6.82)

The 1-form ω and the function e−2U are related in these theories to the Kahler potential

and connection, K, Q [276]. Kahler gauge fixing is acomplished if asymptotic flatness

is requested e−2U → 1 as x→∞ together with ω → 0.

Supersymmetric N = 2 supergravity solutions can be constructed systematically

following well-established methods [248]. BPS field equation solutions for the action

above, in particular expressions for the terms appearing in the metric e−2U , ω, can be

written in terms of real symplectic vectors R and I defined as:

R =
1√
2
<V
X
, I =

1√
2
=V
X
. (6.83)

where X(z, z̄) is an arbitrary function such that 1/X is harmonic. The 2n+ 2 compo-

nents of I,R are real harmonic functions in R3. Due to the relations (6.79,6.80) the

solutions can be written in terms only of the vector I:

R = SNI = SFI. (6.84)

8 The matrix SN is related to the matrix appearing in the effective potential VBH = −1/2qtMq

by SNω =M.



6.4. N = 2 D = 4 SUGRA and Special Kähler geometry 155

In practise, particular solutions are determined by giving a particular ansatz for it. We

are interested in general, single- or multi-center black hole-type solutions defined by

an I ansatz with any number of point-like singularities of the form (a = 1, . . . , na)

I = I∞ +
∑
a

qa
|x− xa|

, (6.85)

where qa = (pa
I , qaI) and I∞ are real, constant, symplectic vectors.

With the help of these vectors we rewrite the only independent metric component

as

e−2U = e−K =
1

2 | X |2
= 〈R | I〉 . (6.86)

Similarly, the time independent 3-dimensional 1-form ω = ωidx
i satisfies the equation

dω = 2 〈I | ?3dI〉 , (6.87)

where ?3 is the Hodge dual on flat R3, together with integrability constraint

〈I | ∆I〉 = 0. (6.88)

The asymptotic flatness condition implies

〈R∞ | I∞〉 = 〈SI∞ | I∞〉 = 1. (6.89)

The gauge field equations of motion and Bianchi identities can be solved directly

in terms of spatially dependent harmonic functions [248]. The modulus of the central

charge defined in Eq.(6.74) can be written, taking into account Eq.(6.86), as

| Z |2 e−2U = | 〈R | q〉 |2 + | 〈I | q〉 |2 . (6.90)

At infinity, assuming asymptotic flatness, we arrive to

| Z∞ |2 = | 〈R∞ | q〉 |2 + | 〈I∞ | q〉 |2 . (6.91)

The, assumed time independent, n complex scalar fields zα solutions to the field

equations, are given in this formalism by

zα =
Ωα

Ω0
=
V α

V 0
=
Rα + iIα

R0 + iI0 . (6.92)

The scalars can in principle take any values (z∞) at asymptotic infinity. But, at the

Black hole horixon, according to the attractor mechanism, the moduli adjust themselves

so that their values near the horizon of any center of charge vector qa approach to the

values z(x) → z(xa) = zafix. The attractor equations relate these fixed values of the

scalars to the charge vectors zafix = zafix(qI) [61, 63,239]

qa = Re
(
2iZ̄(zafix)V (zafix)

)
. (6.93)
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where it appears the prepotential, through V , and the central charge function, Eq.(6.74).

The stabilization equations can be reformulated as an extremalization condition on | Z |
or VBH evaluated at the horizons. In this way the scalar attractor values are indepen-

dent of their asymptotic values and depend only on the charge of the respective black

hole center.

Single centered black hole solutions are known to exist in all regions of the moduli

scalars at infinity, under very mild conditions on the charge vector. In the multicentered

case, for fixed charge vectors, not all the positions in the ansatz Eq.(6.85) are allowed.

The integrability condition (6.88) impose neccesary conditions on the positions and

on the moduli scalars at spatial infinity (through I∞) for existence of a solution. In

this framework a particular black hole solution is completely determined by a triplet

of charge vectors, distances and values of the moduli at infinity (qa,xa, z∞).

6.5 The stabilization matrix

It can be shown by explicit computation that the real symplectic Sp(2(nv+1) matrices

SN ,SF ≡ S given by Eqs.(6.79,6.80) satisfy the relation

S2
N = S2

F = −1. (6.94)

We note that SF is “not” the matrix appearing in VBH , however S ≡ S(N) acting

on the imaginary or real parts of the vector V or any multiple of it (for any complex

function s(z, z̄)):

<(sV ) = SN=(sV ) = SF=(sV ). (6.95)

The matrix S is an isometry of the symplectic space, we have

〈SA | SB〉 = 〈A | B〉 . (6.96)

We will find convenient to define the adjoint of the matrix S, S†, with respect to the

sympletic bilinear product such that, for any vectors A,B:

〈SA | B〉 =
〈
A | S†B

〉
. (6.97)

A direct computation shows that S† is given by

S† = −ΩStΩ. (6.98)

The adjoint matrix S† depends on the imaginary and real parts of FIJ . It can be seen

that for a symmetric FIJ we have the relation

S† = −S. (6.99)

In summary the matrix S is skew-adjoint with respect to ω and its square S2 = −1.

It fullfills an “unitarity” condition S†S = 1. We see that the matrix S is an element

of the symplectic Lie algebra.
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It is useful to define in addition the projector operators

P± =
1± iS

2
. (6.100)

We have the following straightforward properties

P2
± = P±, (6.101)

SP± = ∓iP±, (6.102)

(P±)∗ = P∓. (6.103)

According to Eq.(6.102), the projectors P± are the projectors into the eigenspaces of

the matrix S. With the help of the newly defined projection operators P± we can

rewrite a relation like the equation (6.95) as

sV = 2iP−=(sV ) = 2P−<(sV ). (6.104)

Let us consider now the attractor equations, Eq.(6.93). We will use the properties

of the stabilization matrix S to solve them in a purely algebraic way and give some

explicit expressions for the scalars at the fixed points. If we multiply both sides of

Eq.(6.93) by SfN = SN(z = zfix) we arrive, using the property (6.95), to:

SfNq
a = SfNRe

(
2iZ̄(zafix)V (zafix)

)
(6.105)

= SfFRe
(
2iZ̄(zafix)V (zafix)

)
(6.106)

= Sqa. (6.107)

We arrive to the conclusion that the attractor mechanism equation (6.93) is equivalent

to any of the equations

SfNq
a = SfF q

a, (6.108)

SfFS
f
Nq

a = −qa. (6.109)

Any of the equations above can be used in practise to get the values of the scalars at

the fixed points as a function of the charges. 9

Moreover the equation (6.93) can be written, using the expression (6.104) as

iZ̄fixVfix = P−q, (6.110)

or as its conjugate equation

− iZfixV̄fix = P+q. (6.111)

9 Note that [273] VBH =| Zi |2 + | Z |2= − 1
2q
tS(N)Ωq, | Zi |2 − | Z |2= 1

2q
tS(F )Ωq. At the fixed

points Zi = 0 then | Z |2= − 1
2q
tSNΩq = − 1

2q
tSFΩq. This last equation is satisfied by a solution of

Eq.(6.109).
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We get in addition, from eqs.(6.110,6.111), taking symplectic products,

|Zfix|2
〈
Vfix | V̄fix

〉
= 〈P−q | P+q〉 = 〈q | P+q〉 (6.112)

= − i
2
〈Sq | q〉 . (6.113)

If we insert the constraint
〈
V | V̄

〉
= −i, we arrive to the well known formula

|Zfix|2 =
1

2
〈Sq | q〉 (6.114)

The positivity of the cuadratic form g(q) = 〈Sq | q〉 is from here a neccesary consistency

condition for the existence of solutions to the attractor mechanism.

The values of the scalars at the fixed points are implicit in the equations (6.108),

or, (6.109) and can be computed from them but in fact a more explicit expression can

be found. The fixed values of the nv complex scalars, zαfix, are constructed using the

general formula (6.92) and Eq.(6.110). We arrive to

zαfix =
(P−q)

α

(P−q)0
. (6.115)

The fixed values of the scalars are given in terms of the projection of the charges

into the eigenspaces of the matrix S. For cuadratic prepotentials this is a complete,

explicit solution of the attractor equations.

The values of the n complex scalars at spatial infinity, |x| → ∞ are given by (using

Eq.(6.92) and defining I∞ = limx→∞ I)

zα∞ = lim
|x|→∞

(P−I)α

(P−I)0
=

(P−I∞)α

(P−I∞)0
. (6.116)

The ‘moduli’ zα∞ are simple rational functions of the 2n+ 2 real constant components

of I∞. They are thus independent of the fixed atractor values, (6.115).

Moreover, the expression (6.116) is formally identical to the expression, Eq.(6.115),

giving the scalar at fix point in terms of the charges. It is suggestive to write an

“effective attractor equation” at infinity where the role of the charge center is played

the vector I∞

I∞ = Re
(
2iZ̄V

)
|∞, (6.117)

whose solution is given by Eq.(6.116). We can also write the following equations which

allows the computation of I∞ for given values of the scalars at infinity and viceversa

S∞N I∞ = S∞F Ia∞, (6.118)

S∞F S∞N I∞ = −I∞, (6.119)

and where S∞N ≡ SN(z = z∞), meawhile for constant prepotentials S∞F ≡ SF (z =

z∞) = S.
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The expressions (6.115,6.116) are written, in terms of some projetive scalar coordi-

nates, as respectively at the horizon and at infinity, as

Ωfix = P−q, (6.120)

Ω∞ = P−I∞. (6.121)

Extending the arguments in [277] (and references therein) if SUSY Black Hole solutions

are uniquely determined by the symplectic real vectors qa. The also symplectic, but

complex, vector Ω = (XI , FJ) must be related to it in a some linear way, respecting

sympletic covariance. The only possibility being the expressions (6.120,6.121), which

at the points of maximal symmetry, the horizon and spatial infinity, are equivalent

forms of the standard attractor equations at the horizon and some generalized attractor

equation at infinity.

6.6 Black hole complete solutions

Let us come back to the general expression for the complex scalars and insert the ansatz

(6.85) in the general expression (6.92). The values for the nv complex scalar solutions

to the field equations can be written as

zα =
(P−I)α

(P−I)0
=

(P−I∞)α +
∑

a
(P−qa)α

|x−xa|

(P−I∞)0 +
∑

a
(P−qa)0

|x−xa|

. (6.122)

The expression (6.122) is a rational interpolating expression for the value of the

scalar fields in all the space:

zα(x) = cα∞(x)zα∞ + cαa (x)zαa,fix, (6.123)

where cα∞(x), cαa (x) are spatial dependent complex functions such that cα∞(∞) = 1,cα∞(xa) =

0, limx→xb) c
α
a (x) = δab. For a single center black hole, we note that if zα∞ = zαfix then

the scalar field is constant in all the space, a double maximal solution.

The attractor mechanism is automatically fullfilled by the ansatz (6.85). The value

of zα at any center xa is given, taking limits in Eq.(6.122), by

zα(xa) =
(P−qa)

α

(P−qa)0
= zαfix(qa). (6.124)

On the other hand, at the spatial infinity we recover spherical symmetry, we have

(with | x |≡ r))

zα(r →∞) =
r(P−I∞)α +

∑
a(P−qa)

α

r(P−I∞)0 +
∑

a(P−qa)
0

(6.125)

≡ (1− cα(r))zα∞ + cα(r)zαfix(Q) (6.126)

= zα∞ +
σα

r
+O(

1

r2
), (6.127)
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where zfix(Q) is the fixed point scalar value which would correspond to a total charge

Q =
∑

a qa, the functions cα(r) = 1/(1 + r/rα0 ) with rαo =
∑

a(P−qa)
0/
∑

a(P−I∞)0.

They are such that cα(0) = 1, cα(∞) = 0. From Eq.(6.127) we read the values of the

scalar charges

Sα = rα0 (zαfix(Q)− zα∞) . (6.128)

The expression (6.128) agrees, in the special case of a single center black hole, with the

well known fact that the scalar charges vanish for double maximal black holes. In the

multicenter case we have a similar result, the scalar charges vanish if zα∞ = zαfix(Q),

but in this case this does not mean that the scalars are constant in all the space.

Near horizon and not near-horizon geometry

The metric has the form given by Eq.(6.82). with the asymptotic flatness conditions

−grr 〈R∞ | I∞〉 = 1 and ω∞ → 0. For point-like sources, as those represented by the

ansatz (6.85), the compatibility equation (6.88) takes the form (see, for example, [248])

N ≡
∑
a

〈I∞ | qa〉 = 〈I∞ | Q〉 = 0. (6.129)

An explicit computation of the total field strength shows that Eq.(6.129) is equivalent to

the requirement of absence of NUT charges. Only after imposing the condition N = 0

the overall integral of the (F I , GJ) field strengths at infinity, similarly to Eq.(6.72), is

equal to Q =
∑
qa. As one can check, another consequence of the condition N = 0 is

that the angular speeds are the same in all the componentes of the multicenter black

hole horizon and equal to the infinite value.

Let us write a more explicit expression for the grr component at any space local-

ization. We can write, using the ‘stabilization equation’ (6.84) and the ansatz (6.85),

the expression

〈R | I〉 =

〈
SI∞ +

∑
a

Sqa
|x− xa|

| I∞ +
∑
b

qb
|x− xb|

〉

= 1 +
∑
b

1

|x− xb|
(〈SI∞ | qb〉+ 〈Sqb | I∞〉) +

∑
a,b

〈Sqa | qb〉
|x− xa||x− xb|

= 1 + 2
∑
b

〈SI∞ | qb〉
|x− xb|

+
∑
a,b

〈Sqa | qb〉
|x− xa||x− xb|

. (6.130)

where we have used the property S† = −S and the asymptotic flatness condition

〈SI∞ | I∞〉 = 1. We introduce now the quantities

Ma ≡ 〈SI∞ | qa〉 , (6.131)

Aab ≡ 〈Sqa | qb〉 . (6.132)
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The second one is symmetric in its indices: Aab = Aba. With these definitions, we can

finally write

〈R | I〉 = 1 + 2
∑
b

Mb

|x− xb|
+
∑
a,b

Aab
|x− xa||x− xb|

. (6.133)

If the metric element (6.133) describes a supersymmetric black hole then the right part

is always positive, and finite for any finite |x|.

Behaviour at fixed points and at infinity

At spatial infinity 1/ | x− xa |→ 1/r, we recover spherical symmetry.

− grr ≡ 1 +
2MADM

r
+
Atot
r2

+ o(
1

r
)3 (6.134)

= 1 +
2
∑

aMa

r
+

∑
abAab
r2

+ o(
1

r
)3, (6.135)

The first expression defines the mass MADM and the “Area” Atot, they are (Q =
∑

a qa)

MADM =
∑
a

Ma = 〈SI∞ | Q〉 , (6.136)

Atot =
∑
ab

Aab = 〈SQ | Q〉 . (6.137)

The expression for the central charge at infinity, Eq.(6.91), becomes then

| Z∞ |2 = M2
ADM +N2 (6.138)

where N is defined by Eq.(6.129). The condition N = 0 is equivalent to the BPS

condition

| Z∞ |2 = M2
ADM =| 〈SI∞ | Q〉 |2 (6.139)

The MADM quantity, on the opposite of the Atot, depends on the scalar values at

infinity through the implicit dependence on them of I∞. These can can take arbitrary

values there, or at least can be choosen in a continuos range. For one center, for

any given charge vector one can obtain a certain particular solution by setting the

scalar fields to constant values (zαfix = zα∞) and this gives the minimal possible MADM

mass.For multicenter solutions and generic non-trivial charge vectors, it is not possible

to have constant scalar fields. But, still we can can proceed to the minimization of

MADM(zα∞) with respect to the scalars at infinity for a given BH configuration. On

view of the relation (6.128), if this minimum coincides with zα∞ = zfix(Q) we would

have full analogy with the one center case.

For x → xa the metric element given by (6.133) becomes spherically symmetric

Moreover it can be shown, that, by fixing additive integration constants, we can take

ωa = ω(x → xa) = 0 at the same time that ω∞ = ω(x → ∞) = 0. As a consequence
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the metric at any of the horizon components with charge qa approaches an AdS2 × S2

metric of the form

ds2 =
r2

〈Sqa | qa〉
dt2 − 〈Sqa | qa〉

r2
dx̄2 (6.140)

The near horizon geometry is thus completely determined in terms of the horizon areas

Aha = 〈Sqa | qa〉.
The total horizon area Ah is the sum of the areas of its disconnected parts

Ah =
∑
a

Aha =
∑
a

〈Sqa | qa〉 = 2
∑
a

| Zf,a |2 (6.141)

This expression can be compared with the area corresponding to a single center black

hole with charge Q =
∑

a qa, in that case Ah(q = Q) = 〈SQ | Q〉.
The relation between the asymptotic “Area” Atot and the multicenter horizon area

Ah is simply

Atot = 〈SQ | Q〉 =
∑
a,b

〈Sqa | qb〉 (6.142)

= S + 2
∑
a<b

〈Sqa | qb〉 . (6.143)

For one center blackhole we always have Atot = Ah. For a multicenter black hole,

the horizon area can be equal, greater or less than Atot (which is also the area of the

equivalent single black hole with the same total charge) depending on the last term of

Eq.(6.143). For a two center black hole, for example, with charges q1,2 the difference is

Atot − Ah = 2 〈Sq1 | q2〉 . (6.144)

Let us study in some detail this last relation and the sign of the right term depending

on the two charges. which can be either positive, negative or null. For a general analysis

it is useful to define the vectors:

q1 = λ1Q+ µ1SQ+ δ1ŝ, (6.145)

q2 = λ2Q+ µ2SQ+ δ2ŝ. (6.146)

The two vectors q1 + q2 = Q, if we take λ1 = 1− λ2 = λ,µ1 = −µ2 = µ,δ1 = −δ2 = δ.

The vector ŝ is an arbitrary vector in the orthogonal complement (Q,SQ)⊥, that

means 〈ŝ | Q〉 = 〈ŝ | SQ〉 = 0. For convenience we choose the normalization 〈S ŝ | ŝ〉 =

〈SQ | Q〉. With this parametrization of the two charge vectors, their crossed product

is

〈Sq1 | q2〉 = (λ1λ2 + µ1µ2 + δ1δ2) 〈SQ | Q〉 (6.147)

and the expression Eq.(6.144) can be written as

Ah ≡ Ah1 + Ah2 = Ah(q1 + q2)− 2 〈Sq1 | q2〉 = (1− 2 (λ1λ2 + µ1µ2 + δ1δ2)) 〈SQ | Q〉(6.148)

=
(
1− 2λ(1− λ) + 2µ2 + 2δ2

)
〈SQ | Q〉 .(6.149)
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The first contribution in the right part of Eq.(6.149) can take any sign. In particular

it is negative for λ ∈ (0, 1), in this case −2λ(1− λ) ∈ (−1/2, 0). The minimum of this

term is obtained for the symmetric configuration λ = 1/2. The other two contributions

are always positive. We observe that S1 + S2 = S12 configuration is allowed only if

λ ∈ (0, 1) and

µ2 + δ2 = λ(1− λ) ∈ [0, 1/4]. (6.150)

In the opposite side, no such configuration can exist if

µ2 + δ2 > (λ(1− λ))max =
1

4
. (6.151)

The fragmentation of an initial charge Q into the longitudinal subspace (with λ ∈
[0, 1]) decreases the area. Meanwhile the fragmentation into the subspace generated

by (SQ, ŝ) is Area increasing.

It has been shown [258] that for this class of models, the single-center BPS extremal

black hole area with charge Q = q1 + q2 is always larger that the corresponding two-

center area Ah(Q = q1 + q2) > Ah1 + Ah2. That is

0 < Ah(q1 + q2)− (Ah1 + Ah2) = 2 〈Sq1 | q2〉 = 2
(
λ(1− λ)− µ2 − δ2

)
〈SQ | Q〉 .(6.152)

We have then, for this case, assuming 〈SQ | Q〉

λ(1− λ)− µ2 − δ2 > 0, (6.153)

λ(1− λ) > µ2 + δ2. (6.154)

More on the asymptotic flatness condition

In this section we will stablish an explicit relation between the parameter I∞ appearing

in the black hole ansatz and the values of the scalars zα∞ at infinity. It can be shown

that the vector I∞ is directly related to the charge vectors qa and MADM . For this

purpose we decompose the 2nv + 2 dimensional I∞ vector in a basis formed by the

charge vectors qa, S†qa and possibly as many other vectors needed to complete a basis.

The dimension of the space q‖ = generated by the na pairs (qa, S†qa) is in general

dim(q‖) ≤ 2na. The dimension of the orthogonal complement to this space, i.e. those

vectors s such that 〈q | s〉 = 〈Sq | s〉 = 0 is dim(q⊥) = 2(nv − na) + 2. This dimension

is zero for one scalar, one center black holes (nv = 0, na = 1). ...We will see how black

hole extremality imposes strong conditions on such extra vectors. Let us consider here

the case of a single center black hole and an arbitrary number of scalars where the

method is illustrated.

We assume that the vector I is decomposed as (with 〈Sq | q〉 6= 0)

I∞ = αq + βS†q + γs+ εS†s, (6.155)
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where α, β, γ, ε ∈ R and s is an arbitrary but fixed, normalized vector such that s ∈ q⊥,

i.e.

〈s | q〉 =
〈
s | S†q

〉
= 0, 〈Ss | s〉 = 1. (6.156)

Such a vector s can be always determined by a modified Gram-Schmidt procedure for

a given pair of vectors (q,S†q). By projecting the relation (6.155) over any of the

individual vectors, we get

〈I∞ | q〉 = β
〈
S†q | q

〉
= −β 〈Sq | q〉 , (6.157)〈

I∞ | S†q
〉

= 〈SI∞ | q〉 = α
〈
q | S†q

〉
= α 〈Sq | q〉 . (6.158)

Using the expressions (6.129,6.136,6.137) we can rewrite these last two expressions

respectively as

N = −βAtot, (6.159)

MADM = αAtot (6.160)

from where we read the values of the α, β coefficients in terms of some other physical

parameters.

Let us consider now the asymptotic flatness condition and apply the ansatz (6.155)

for I∞. We have, using the α, β values, the definition ∆2 = (γ2+ε2) and the Eq.(6.138),

the expression

〈SI∞ | I∞〉 = 1 =
(
α2 + β2

)
〈Sq | q〉+

(
γ2 + ε2

)
〈Ss | s〉 (6.161)

=
(
M2

ADM +N2
)
〈Sq | q〉 /A2

tot + ∆2. (6.162)

or, equivalently,

| Z∞ |2= M2
ADM +N2 = 〈Sq | q〉 (1−∆2). (6.163)

The BPS condition | Z∞ |= MADM = 〈Sq | q〉 is only fullfilled if N = 0 (in concordance

with Eq.(6.139)) and ∆ = 0.

The vanishing of these quantities can be directly seen by imposing extremality in

the metric elements, by requesting extremal RN black hole type metric, or, −grr ∼ f 2

with f an spatially harmonic function. The metric component grr at infinity is

−grr =1 +
2MADM

r
+
〈Sq | q〉
r2

, (6.164)

= 1 +
2MADM

r
+

(M2
ADM +N2)/(1−∆2)

r2
, (6.165)

=

(
1 +

MADM

r

)2

+
1

r2

(
M2

ADM∆2

1−∆2
+

N2

1−∆2

)
. (6.166)

We observe from the last line above that the conditions N = 0,∆ = 0 are neccesary

conditions recover an extremal RN black hole type metric. In this case

| Z∞ |2 = M2
ADM (6.167)

= 〈Sq | q〉 . (6.168)
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The first equality, Eq.(6.167), comes by directly imposing the condition N = 0. The

second equality, (6.168), comes however from the vanishing of the non-extremality

parameter ∆ (γ = ε = 0 in Eq.(6.155)), i.e. from requiring that I∞ is fully contained

in the subspace q‖ = span(q,Sq).
After imposing the conditions N = ∆ = 0, then I∞ is simply proportional to the

charge vector and the full black hole ansatz becomes

I =
q

MADM

(
1 +

MADM

r

)
. (6.169)

6.7 Concluding remarks

We have presented a systematic study of general, stationary, multicenter black hole

solutions in ungauged four dimensional Einstein-Maxwell N = 2 supergravity theories

minimally coupled to scalars, i.e. theories with quadratic prepotentials. An important

part of our analysis has been based on the stabilization matrices SF ,SN and some

new matrices, their symplectic adjoints. These stabilization matrices are isometries of

the symplectic quadratic form. Their adjoints with respect to the symplectic product

S†N ,S
†
F , which fullfills the property S2 = −1, are shown to lay inside the Lie algebra

of the isometry group, they are such that S + S† = 0. They are “unitary”, SS† = 1,

with respect the symplectic product.

Using a generic multicenter ansatz, Eq.6.85, depending on the center charges qa
and the value at infinity I∞, and the attractor equations we have rederived in a simple

way different relations. In particular the fix point scalar values have been written in

terms of the projection of the respective charges into the eigenspaces of the matrix

S, Eq.(6.115). The I∞ quantity, in analogy to the center charges, formally follows

an effective attractor equation at infinity. The horizon attractor mechanism equations

and the relation of I∞ and the scalar moduli can be written in a suggestive unified

form, Eq.(6.120,6.121),

Ωfix = P−q, (6.170)

Ω∞ = P−I∞. (6.171)

Explicit expressions for the spatial dependence of the scalars are written which

connect the S matrix, their values at infinity and the I∞ symplectic vector, Eq.(6.122).

This spatial dependence interpolates between the values of the scalars at the fixed

points (the horizons and the effective infinity “fixed point” previously introduced). As

a consequence, the vanishing of the, non conserved, scalar charges Σα, is shown to be

equivalent to the vanishing of the quantities zα∞ = zαfix(Q) where zαfix(Q) are the fixed

values of the scalars for a single center black hole of total charge Q =
∑
qa. This is in

close analogy with the single center case, where the vanishing of the scalar charges is a

neccesary and sufficient conditions for the double extremality of the black hole [238].

The study of the near horizon and infinity geometry of the black hole lead us to

the consideration of the area-like quantitities Aab = 〈Sqa | qb〉 and Atot =
∑
Aab in
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addition to the horizon areas Aha 〈Sqa | qa〉. Using different projection operators con-

structed from the matrix S, it is discussed the relation between the horizon area of a

multicenter black hole and that one of an equivalent single black hole with the same

total charge. We have seen that the fragmentation of an initial charge Q into the

longitudinal subspace decreases the area. Meanwhile the fragmentation into a orthog-

onal subspace generated would be area increasing. Finally we have studied diverse

properties and given some explicit expression of the quantity I∞ by expanding it in a

certain symplectic basis. The 2nV +2 dimensional symplectic space is decomposed into

a 2na dimensional subspace generated by the na center charges qa and their associated

vectors S†qa ( or Sqa) and its orthogonal complement subspace (possibly of dimension

zero depending on the number and on the linear dependency of center charge vec-

tors). In the case of quadratic prepotentials this separation into “charge-longitudinal”

and “transversal” subspaces is global. A similar, but local, s calar-dependent, separa-

tion can be advantegeously considered also for generic prepotentials, or even theories

without them.

The projection of any symplectic vector appearing in the theory, for example a sub-

set of the charge vectors themselves or vectors characterising the black-hole ansatz at

infinity, in terms of these new basis might be of general interest. The use of this projec-

tion, as it has been shown here, in particular the understanding of questions as entropy

increasing effects in the fragmentation of a single center black holes into two o more

centers, or the maximality of the solutions, in terms, for example, of simple considera-

tions of the dimensions of the each of the charge-longitudinal and transversal subspaces.

Preliminary results show that the use of these projection techniques together with the

careful use of asymptotic unitary are sufficient to write down generalized multicenter

mass formulas involving the mass of the black hole, angular momentum, horizon areas

and other quantities as the “crossed central charge matrix” Zij = 〈S∞qi | qj〉.
Although we have focused in this study in minimal coupling theories with quadratic

prepotentials, the main techniques, properties and expressions presented are extendable

to general prepotentials or even theories without them.



Chapter 7

Conclusions and prospects

This work comprises an analysis of theoretical topics of supergravity. A considerable

part of it has dealt with the construction of gauged supergravities and its understanding

from the string theory viewpoint. The last part treats the search of multicenter black

hole solutions in N = 2 D = 4 supergravity.

The first part is about the structure of gauged supergravities and the embedding

tensor formalism. We have introduced this mechanism as a covariant tool to generate

gauged supergravities. Even more, this formalism scans along all the possible com-

binations of the global symmetry generators catching all the gaugings allowed by the

global symmetry that the ungauged theory enjoys.

We have applied the embedding-tensor formalism to the study of the most gen-

eral deformations (i.e. gaugings and massive deformations) of maximal 9-dimensional

supergravity. We have used the complete global SL(2,R)× R2 symmetry of its equa-

tions of motion, which includes the so-called trombone symmetry. We have found the

constraints that the deformation parameters must satisfy in order to preserve both

gauge and supersymmetry invariance (the latter imposed through the closure of the

local supersymmetry algebra to lowest order in fermions). We have used most of the

constraints to express some components of the deformation tensors in terms of a few

components of the embedding tensor which we take to be independent and which are

given in Eq. (4.146). At that point we have started making contact with the results of

Ref. [117], since those independent components are precisely the 8 possible deforma-

tions identified there. All of them have a higher-dimensional origin discussed in detail

in Ref. [117]. The field strengths, gauge transformations and supersymmetry trans-

formations of the deformed theory, written in terms of the independent deformation

tensors, are collected in Appendix B.4.

The 8 independent deformation tensors are still subject to quadratic constraints,

given in Eq. (4.148), but those constraints cannot be used to express analytically some

of them in terms of the rest, and, therefore, we must keep the 8 deformation parameters

and we must enforce these irreducible quadratic constraints.

In Section 4.4 we have used our knowledge of the global symmetries (and corre-

sponding Noether 1-forms), the independent deformation tensors and the irreducible
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quadratic constraints of the theory, together with the general arguments of Section 4.2.2

to determine the possible 7-, 8- and 9-forms of the theory (Table 4.4), which are dual

to the Noether currents, independent deformation tensors and irreducible quadratic

constraints. We have compared this spectrum of higher-rank forms with the results

of Refs. [167, 168], based on E11 level decomposition. We have found that, in the

sector unrelated to the trombone symmetry, which was excluded from that analysis,

the embedding-tensor formalism predicts one doublet of 9-forms less than the E11 ap-

proach. However, both predictions are not contradictory: the extra doublet of 9-forms

may not survive the deformations on which the embedding-tensor formalism is built:

new 9-form Stückelberg shifts proportional to the deformation parameters may occur

that can be used to eliminate it so only one combination of the two 9-form doubles

survives. This mechanism is present in the N = 2 d = 4, 5, 6 theories [119], although

the physics behind it is a bit mysterious.

The second part treats gauged supergravities and their origin from SS compacti-

fications of higher-dimensional supergravities. Once we have a tool that provides all

the possible deformations of a given supergravity, we decided to use it to extend this

classification to lower dimensional theories. We performed the orbit classification of

maximal and half-maximal D = 9, 8, 7 theories. The aim of this work is not only in-

teresting by itself, but also is a reference to understand what orbits have a geometric

origin, in the sense of arising from a SS compactification of a higher-dimensional the-

ory. Since there is a mismatching between the existence of some gauged supergravities

and the gaugings that arise from flux compactifications, several T duality constructions

emerged to justify this information leak in the dimensional reduction procedure. Once

again, we want to remark that the embedding tensor formalism is essential because it

tells us all the possible gaugings and guarantees the existence of no more than the ones

found. In other case, we would work with a set of gaugings without being sure that if

it is expandable and the comparison with the flux compactification gaugings could not

be performed in a systematical way.

In chapter 5 we have provided a litmus test to the notion of non-geometry, by

classifying the explicit orbits of consistent gaugings of different supergravity theories,

and considering the possible higher-dimensional origins of these. The results turn out to

be fundamentally different for the cases of U-duality orbits of maximal supergravities,

and T-duality orbits of half-maximal theories.

In the former case we have managed to explicitly classify all U-duality orbits in di-

mensions 8 ≤ D ≤ 11. This led to zero, one, four and ten discrete orbits in dimensions

D = 11, 10, 9 and 8, respectively, with different associated gauge groups. Remarkably,

we have found that all of these orbits have a higher-dimensional origin via some geomet-

ric compactification, be it twisted reductions or compactifications on group manifolds

or coset spaces. In our parlance, we have therefore found that all U-duality orbits are

geometric. The structure of U-duality orbits is therefore dramatically different from

the sketch of figure 1 in the introduction. Although a full classification of all orbits

in lower-dimensional cases becomes increasingly cumbersome, we are not aware of any
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examples that are known to be non-geometric. It could therefore hold in full generality

that all U-duality orbits are necessarily geometric.

This is certainly not the case for T-duality orbits of gaugings of half-maximal su-

pergravities. In this case, we have provided the explicit classification in dimensions

7 ≤ D ≤ 10 (where in D = 7 we have only included three-form fluxes). The numbers

of distinct families of orbits in this case are zero, one, three and eleven in dimensions

D = 10, 9, 8 and 7, respectively, which includes both discrete and one-parameter orbits.

A number of these orbits do not have a higher-dimensional origin in terms of a geomet-

ric compactification. Such cases are orbits 2 and 3 in D = 8 and orbits 1, 2 and 3 in

D = 7 for α 6= 0. Indeed, these are exactly the orbits that do not admit an uplift to the

maximal theory. As proven in section 5.3.2, all such orbits necessarily violate the weak

and/or strong constraints, and therefore need truly doubled backgrounds. Thus, the

structure of T-duality orbits is very reminiscent of figure 1 in the introduction. Given

the complications that already arise in these simpler higher-dimensional variants, one

can anticipate that the situation will be similar in four-dimensional half-maximal su-

pergravity.

Fortunately, the formalism of double field theory seems tailor-made to generate

additional T-duality orbits of half-maximal supergravity. Building on the recent gen-

eralisation of the definition of double field theory [216], we have demonstrated that all

T-duality orbits, including the non-geometric ones in D = 7, 8, can be generated by

a twisted reduction of double field theory. We have explicitly provided duality twists

for all orbits. For locally-geometric orbits the twists only depend on the physical co-

ordinates y, while for the non-geometric orbits these necessarily also include ỹ. Again,

based on our exhaustive analysis in higher-dimensions, one could conjecture that also

in lower-dimensional theories, all T-duality orbits follow from this generalised notion

of double field theory.

At this point we would like to stress once more that a given orbit of gaugings

can be generated from different twist orbits. Therefore, there is a degeneracy in the

space of twist orbits giving rise to a particular orbit of gaugings. Interestingly, as it

is the case of orbit 6 in D = 7 for instance, one might find two different twist orbits

reproducing the same orbit of gaugings, one violating weak and strong constraints, the

other one satisfying both. Our notion of a locally geometric orbit of gaugings is related

to the existence of at least one undoubled background giving rise to it. However, this

ambiguity seems to be peculiar of gaugings containing Q flux. These can, in principle,

be independently obtained by either adding a β but no ỹ dependence (locally geometric

choice, usually called T-fold), or by including non-trivial ỹ dependence but no β (non-

geometric choice) [215].

Another remarkable degeneracy occurs for the case of semi-simple gaugings, corre-

sponding to orbits 1 – 3 in D = 7. For the special case of α = 0, we have two possible

ways of generating such orbits from higher-dimensions: either a coset reduction over

a sphere or analytic continuations thereof, or a duality twist involving non-geometric

coordinate dependence. Therefore d-dimensional coset reductions seem to be equiv-
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alent to 2d-dimensional twisted torus reductions (with the latter in fact being more

general, as it leads to all values of α). Considering the complications that generally

arise in proving the consistency of coset reductions, this is a remarkable reformulation

that would be interesting to understand in more detail. Furthermore, when extending

the notion of double field theory to type II and M-theory, this relation could also shed

new light on the consistency of the notoriously difficult four-, five- and seven-sphere

reductions of these theories.

Our results mainly focus on Scherk-Scharz compactifications leading to gauged su-

pergravities with vanishing ξM fluxes. In addition, we have restricted to the NSNS

sector and ignored α′-effects. Also, we stress once again that relaxing the strong and

weak constraints is crucial in part of our analysis. If we kept the weak constraint,

typically the Jacobi identities would lead to backgrounds satisfying also the strong

constraint [216]. However, from a purely (double) field theoretical analysis the weak

constraint is not necessary. A sigma model analysis beyond tori would help us to clar-

ify the relation between DFT without the weak and strong constraints and string field

theory on more general backgrounds. We hope to come back to this point in the future.

At this point, we wonder whether we could generalize this study to lower dimen-

sions. Unfortunately, this is a considerable more complicated goal, due to how the

global symmetry groups quickly grow. This means that the classification of the or-

bits is extraodinarily difficult. However, some questions based on some insights of our

results could be set out. What is the relation between geometric orbits and maxi-

mal supergravities? That is, is there any underlying reason why the maximal theories

analyzed only host geometric orbits? On the other hand, we wonder whether all the

gaugings of half-maximal theories have a description in terms of DFT. What about 1/4-

BPS states? Is DFT powerful enough to reproduce those solutions? Do these states

violate even the relaxed version of the strong constraint? What about the supersym-

metric completion of DFT? This is an issue that has already been studied. Finally, a

sizzling problem is the generalization of DFT towards the M theory goal. Some hot off

the press attemps have been constructed [278–280].

The third part of the manuscript treats the multicenter black hole solutions in

N = 2 theories. Despite of an exact solution was worked out in [281], it is not trivial

to find a set of parameters that satisfy the physical constraints of these solutions. We

provide a general mechanism for theories with a quadratic prepotentials that, in some

way, rearranges the fashion in that black hole solutions are found. That is, we are

able to implement the restrictions over the physical parameters (mass, areas, NUT

charges, etc) at the very beginning, guaranteeing the validity of our solutions. The

stubborn (in a friendly way) attractor mechanism is continuously telling us that the

final configuration, among other things, only depends on the electromagnetic charges

of the BH, and we use this advice to formulate the problem in terms of a particular

basis of the symplectic vector space.

In chapter 6 we have presented a systematic study of general, stationary, multicenter

black hole solutions in ungauged four dimensional Einstein-Maxwell N = 2 supergrav-
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ity theories minimally coupled to scalars, i.e. theories with quadratic prepotentials. An

important part of our analysis has been based on the stabilization matrices SF ,SN and

some new matrices, their symplectic adjoints. These stabilization matrices are isome-

tries of the symplectic quadratic form. Their adjoints with respect to the symplectic

product S†N ,S
†
F , which fullfills the property S2 = −1, are shown to lay inside the Lie

algebra of the isometry group, they are such that S + S† = 0. They are “unitary”,

SS† = 1, with respect the symplectic product.

Using a generic multicenter ansatz, Eq.6.85, depending on the center charges qa
and the value at infinity I∞, and the attractor equations we have rederived in a simple

way different relations. In particular the fix point scalar values have been written in

terms of the projection of the respective charges into the eigenspaces of the matrix

S, Eq.(6.115). The I∞ quantity, in analogy to the center charges, formally follows

an effective attractor equation at infinity. The horizon attractor mechanism equations

and the relation of I∞ and the scalar moduli can be written in a suggestive unified

form, Eq.(6.120,6.121),

Ωfix = P−q, (7.1)

Ω∞ = P−I∞. (7.2)

Explicit expressions for the spatial dependence of the scalars are written which

connect the S matrix, their values at infinity and the I∞ symplectic vector, Eq.(6.122).

This spatial dependence interpolates between the values of the scalars at the fixed

points (the horizons and the effective infinity “fixed point” previously introduced). As

a consequence, the vanishing of the, non conserved, scalar charges Σα, is shown to be

equivalent to the vanishing of the quantities zα∞ = zαfix(Q) where zαfix(Q) are the fixed

values of the scalars for a single center black hole of total charge Q =
∑
qa. This is in

close analogy with the single center case, where the vanishing of the scalar charges is a

neccesary and sufficient conditions for the double extremality of the black hole [238].

The study of the near horizon and infinity geometry of the black hole lead us to

the consideration of the area-like quantitities Aab = 〈Sqa | qb〉 and Atot =
∑
Aab in

addition to the horizon areas Aha 〈Sqa | qa〉. Using different projection operators con-

structed from the matrix S, it is discussed the relation between the horizon area of a

multicenter black hole and that one of an equivalent single black hole with the same

total charge. We have seen that the fragmentation of an initial charge Q into the

longitudinal subspace decreases the area. Meanwhile the fragmentation into a orthog-

onal subspace generated would be area increasing. Finally we have studied diverse

properties and given some explicit expression of the quantity I∞ by expanding it in a

certain symplectic basis. The 2nV +2 dimensional symplectic space is decomposed into

a 2na dimensional subspace generated by the na center charges qa and their associated

vectors S†qa ( or Sqa) and its orthogonal complement subspace (possibly of dimension

zero depending on the number and on the linear dependency of center charge vec-

tors). In the case of quadratic prepotentials this separation into “charge-longitudinal”

and “transversal” subspaces is global. A similar, but local, s calar-dependent, separa-
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tion can be advantegeously considered also for generic prepotentials, or even theories

without them.

The projection of any symplectic vector appearing in the theory, for example a sub-

set of the charge vectors themselves or vectors characterising the black-hole ansatz at

infinity, in terms of these new basis might be of general interest. The use of this projec-

tion, as it has been shown here, in particular the understanding of questions as entropy

increasing effects in the fragmentation of a single center black holes into two o more

centers, or the maximality of the solutions, in terms, for example, of simple considera-

tions of the dimensions of the each of the charge-longitudinal and transversal subspaces.

Preliminary results show that the use of these projection techniques together with the

careful use of asymptotic unitary are sufficient to write down generalized multicenter

mass formulas involving the mass of the black hole, angular momentum, horizon areas

and other quantities as the “crossed central charge matrix” Zij = 〈S∞qi | qj〉.
Although we have focused in this study in minimal coupling theories with quadratic

prepotentials, the main techniques, properties and expressions presented are extendable

to general prepotentials or even theories without them.



Appendix A

Dimensional reduction and general

properties

Dimensional reduction is a mechanism that allows to convert a theory defined in a

given dimension into a lower-dimensional theory. Despite of this is essential to justify

the plausible existence of theories that, by construction, necessarily live in D > 4,

its origin was the opposite: Kaluza and Klein tried to unify electromagnetism and

gravity formulating a 5-dimensional theory and applying a KK dimensional reduction

on a circle. When more than one dimensions have to be compactified, a wide variety of

manifolds can be used and, depending of their topological characteristics, the properties

of the effective theory show the consequences of the choice.

The relation between dimensional reduction and SUGRA becomes crucial, espe-

cially in the work that we are going to perform in the following chapters. After apply-

ing this mechanism to higher-dimensional SUGRAs, we will motivate the emergence of

a new field theory, Double Field Theory.

A.1 Kaluza-Klein reduction

We will briefly show a Kaluza-Klein (KK) reduction on a scalar manifold from D̂ =

D + 1 to D dimensions on a circle. Hatted indices and fields are defined on D̂ dimen-

sions whereas the unhatted ones correspond to D dimensions. We will refer as z the

compactified coordinate.

Let us consider a massless scalar field φ̂(xµ̂), where xµ̂ = (xµ, z). This field satisfies

the Klein-Gordon equation

(�̂−m2)φ̂ =

(
�+

∂2

∂z2
−m2

)
φ̂ = 0 . (A.1)

This equation admits a Fourier decomposition of the field as solution,

φ̂(xµ, z) =
+∞∑

k=−∞

eikz/Lφk(x
µ) , (A.2)
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such that any spacetime function associated to the kth Fourier mode, φk(x
µ), satisfies[

�−
(
k

L

)2

−m2

]
φk = 0 . (A.3)

Thus, the spectrum of the theory contains an infinite set of massive scalar fields, even

having started with m = 0. These are the so-called KK modes; only one of them

becomes massless, the case k = 0.

The equations of motion (A.3) are decoupled, so that we can deal with all of the

states independently. This is useful because when performing the reduction, one keeps

only a finite set of modes, which must be a consistent truncation of the full set.

In fact, a consistent truncation in Kaluza-Klein reduction [282] is one such that all

the gauge bosons of the isometry group G of the compact manifold are retained in a

truncation keeping only a finite number of lower-dimensional fields, with the additional

condition that setting the truncated fields to zero is consistent with the eoms of the

higher-dimensional fields. That is, the reduction ansatz is consistent if all the higher-

dimensional equations of motion are satisfied as a consequence of the equations of

motion for the surviving fields in the lower-dimensional theory.

It is common to truncate to the massless sector because, as we see in (A.3), the

masses are inversely proportional to the characteristic size of the internal manifold.

Thus, since we, effectively, live in D = 4, any internal direction is very small and

therefore the mass of states with non-zero momentum blows up. Then, we can discard

these modes because they are too massive and not physically interesting. However,

the size of the internal manifold is not essential to argue the truncation to lightest

modes. From the consistency viewpoint, the solution �φ0 = 0 and φn = 0, ∀n 6= 0 is

also a solution for �̂φ̂ = 0 and, as we have mentioned, this is enough for this to be a

consistent truncation.

Thus, we conclude that dimensional reduction is an expansion of the fields over the

internal manifold and a truncation to the lightest modes. However, in practice we make

a reduction ansatz, relating higher-dimensional fields to a set of lower-dimensional ones,

so that the latters are taken to be the lightest sector of the expansion. This reduction

ansatz can be formulated by using internal coordinates, so that the equations of motion

(or Lagrangian) could explicitly show this dependence. Nevertheless, it is strictly

necessary that the effective theory does not exhibit this dependence.

Let us overview some reduction schemes in the following sections to understand the

different properties that the lower-dimensional theory enjoys.

A.2 Toroidal reduction

In this section, we will consider toroidal reductions of pure gravity,

L̂ =
√
|ĝ|R̂ . (A.4)
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Firstly, let us consider a reduction from D̂ to D = D̂ − 1 dimensions in a circle. Due

to its periodicity, the metric admits a Fourier decomposition,

ĝµν(x
µ, z) =

∑
n

g(n)
µν (xµ)einz/R , (A.5)

where R is the compactification radius. Since all the non-zero modes have a mass

proportional to 1/R, we restrict ourselves to the massless sector, which is indeed a

consistent truncation. Our higher-dimensional metric can be decomposed as

d̂s2 = e2αφds2 + e2βφ(dz + Aµdx
µ)2 . (A.6)

Since our ansatz does not depend on the internal coordinates, consistency is guaranteed.

The ansatz gives rise to the following lower-dimensional lagrangian

L =
√
|g|
(
R− 1

2
(∂φ)2 − 1

4
e2(β−α)φF 2

)
, (A.7)

where we impose α and β to be

α2 =
1

2(D − 2)(D − 1)
, β = −(D − 2)α , (A.8)

in order to have a Ricci scalar without dilaton coupling and a suitable dilaton kinetic

term. This lagrangian led to Kaluza [26] and Klein [27] to think about the possibility of

unifiying gravity and electromagnetism when they performed this reduction for D = 5.

The corresponding equations of motion are

Gµν =
1

2

(
∂µφ∂νφ−

1

2
(∂φ)2gµν

)
+

1

2
e−2(D−1)αφ

(
Fµ

ρFν
ρ − 1

4
F 2gµν

)
,

(A.9)

∇µ

(
e−2(D−1)αφF µν

)
= 0 , (A.10)

�φ = −1

2
(D − 1)αe−2(D−1)αφF 2 . (A.11)

From (A.11), we notice that φ cannot be set to constant in order to get electromag-

netism; in fact it has to be a dynamical field.

From the lagrangian, we infer that the symmetry of the higher-dimensional space,

diffeomorphisms in D̂ dimensions, has splitted into diffeomorphisms in D dimensions

plus an internal (gauge) symmetry. In more detail, we can see that the general coordi-

nate transformation under which the lagrangian (A.4) is invariant,

δxµ̂ = −ξ̂µ̂ , δĝµ̂ν̂ = ξ̂ρ̂∂ρ̂ĝµ̂ν̂ + ĝρ̂ν̂∂µ̂ξ
ρ̂ + ĝµ̂ρ̂∂ν̂ξ

ρ̂ , (A.12)

has transformed into

ξ̂µ = ξµ , ξ̂z = λ(x) + cz . (A.13)
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That is, (D + 1)-dimensional diffeomorphisms have transformed into D-dimensional

diffeomorphisms, a U(1) gauge transformation and a global scale symmetry.

What we have done up to now can be generalized to a torus T n = S1 × · · · × S1

when the reduction is from D̂ to D = D̂− n dimensions. In this case, a valid ansatz is

d̂s2 = e2αφds2 + e2βφMmn (dzm + Aµ
mdxµ) (dzn + Aν

ndxν) , (A.14)

whereMmn is a scalar matrix parameterized by SL(n)/SO(n) We find that the Einstein-

Hilbert lagrangian converts into

L =
√
|g|
(
R− 1

2
(∂φ)2 +

1

4
Tr (∂µMmn∂µM

mn)− 1

4
e2(β−α)φMmnF

mF n

)
, (A.15)

where

α2 =
n

2(D + n− 2)(D − 2)
, β = −(D − 2)α

n
. (A.16)

It is natural then to wonder what symmetries induce the D̂-dimensional diffeomor-

phisms in D dimensions. The answer is:

ξ̂µ = ξµ , ξ̂m = λm(x) + Λm
nz

n . (A.17)

So, we have a D-dimensional general coordinate transformations, U(1)n gauge trans-

formations and a global GL(n,R) symmetry.1

For completeness arguments, let us consider, at least schematically, the reduction

of a gauge potential p-form over a circle. Let us assume a naive lagrangian made out

by a p-form Ĉ(p) coupled to a dilaton ϕ̂,

L̂ =
√
|ĝ|
(
−1

2
(∂ϕ̂)2 − 1

2
eaϕ̂Ĝ(p+1) · Ĝ(p+1)

)
, (A.18)

where Ĝ(p+1) = dĈ(p). Additionally to the gravity ansatz, we can take

Ĉ(p) = C(p) + (dz + A) ∧ C(p−1) , ϕ̂ = ϕ . (A.19)

Substituting in the lagrangian, we have

L =
√
|g|
(
−1

2
(∂ϕ)2 − 1

2
eaϕ−2pαφG(p+1) ·G(p+1) − 1

2
eaϕ+2(D−p−1)αφG(p) ·G(p)

)
,

(A.20)

where the field strenghts are G(p+1) = dC(p) + F ∧ dC(p−1) and G(p) = dC(p−1). Thus,

in general a suitable reduction ansatz of a p-form over a n-torus implies(
n

D − p̃

)
(A.21)

1Mention about the GL(n,R) = SL(n,R)×R+ splitting and the trombone symmetry linear com-

bination to get the right trombone symmetry in D = D̂ − n dimensions.
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forms of rank p̃. In this case, the gauge symmetry of the p-form

δĈ(p) = dλ̂(p−1) , (A.22)

splits up into different lower-dimension gauge transformations

λ̂(p−1) = λ(p−1) + (dz + A) ∧ dλ(p−2) , (A.23)

where the gauge parameters λ(d−1), λ(d−2) correspond to the C(d), C(d−1) potentials,

respectively. Moreover, these potentials also transform properly under (A.17), because

the lagrangian (A.20) also satisfied the higher-dimensional general coordinate transfor-

mations (A.12).

A.3 Twisted reduction

We can go beyond toroidal reduction by including a new ingredient in our reduction

scheme: new periodic conditions in which the field is not exactly the same one once

we have surrounded the circle, but it is a field transformed by an element of the global

symmetry group of the theory. That is, if we have a theory whose global symmetry

group is G and the scalar field transforms as φ → gφ, g ∈ G, we can impose the

following twisted boundary condition;

φ̂(xµ, 2πR)→M(g)φ̂(xµ, 0) . (A.24)

This is known as a monodromy transformation. If we assume the following ansatz,

φ̂(xµ, z) = g(z)φ(xµ) , (A.25)

then we have a condition on M , M(g) = g(z = 2πR)g−1(z = 0). On the other hand,

in order to avoid an explicit z-dependence, the element g(z) has to satisfy that

C ≡ g−1(z)∂zg(z) (A.26)

is a constant. This can be solved as

g(z) = eCz , M(g) = e2πRC . (A.27)

If G is not a symmetry of the theory, the reduction ansatz will not be consistent

because we would not be able to cancel the coordinate dependence in the eoms. More-

over, it would not be possible to perform this reduction if the G group was a local

symmetry.
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A.4 Reduction over a group manifold

This kind of reductions can be performed by making use of the global symmetries of

the internal manifold. This means we can apply this method only to theories where a

dynamic metric is involved.

Let us define a group manifold G with coordinates {zm}m=1,··· ,dimG as the group

element g = g(zm) ∈ G. Then points on the manifold correspond to elements of

the group. Group multiplication g → ΛLg, g → gΛR, corresponds to a coordinate

transformation. These coordinate transformations are not necessarily isometries of the

metric. To choose left multiplication as isometries, we make

ds2
G = gmnσ

mσn , Tmσ
m = g−1dg , (A.28)

where gmn is arbitrary, Tm are the generators of G. The σm are called Maurer-Cartan

1-forms and can be written as

σm = Um
ndz

n , (A.29)

where Um
n = Um

n(z) are functions of G. The isometries are generated by the Killing

vectors Lm which, by definition, satisfy the Maurer-Cartan equations,

[Lm, Ln] = fmn
pLp . (A.30)

These fmn
p are the structure constants of the group G and can be written as

fmn
p = −2(U−1)rm(U−1)sn∂[rU

p
s] . (A.31)

Lie’s second theorem ensures the z-independence of fmn
p.

Let us see now how gravity can be dimensionally reduced using this technique. We

start out with the toroidal reduction ansataz (A.14). If we apply Um
n transformation

on all the fields that ‘feel’ this symmetry, we have

d̂s2 = e2αφds2 + e2βφMmn(σm + Aµ
mdxµ)(σn + Aν

ndxν) , (A.32)

where σm is defined is (A.29). Substituting this metric into the Einstein-Hilbert higher-

dimensional lagrangian, we get

L =
√
|g|
(
R− 1

2
(∂φ)2 +

1

4
Tr (DµMmnDµM

mn)− 1

4
e2(β−α)φMmnF

mF n − V
)

,

(A.33)

where

Fµν
m = 2∂[µAν]

m + fmn
pAµ

mAν
n , DµMmn = ∂µMmn + 2fq(m

pMn)pAµ
q , (A.34)

and the scalar potential is

V =
1

4
e2(β−α)φ (2Mnqfmn

pfpq
m +MmqMnrMpsfmn

pfqr
s) . (A.35)
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The consistency of the truncation is guaranteed by two aspects: the dependence

on the internal manifold relies on the structure constants and the KK tower of fields

is truncated to fields that are singlet under the left-acting isotropy group. Finally, let

us study the symmetries inferred by this kind of reduction. The general coordinate

transformation acts as

ξ̂µ = ξµ , ξ̂µ = Um
nλ

n(x) . (A.36)

They are a general coordinate and a non-abelian gauge transformations with parameter

λn(x). The latter acts on the fields

δAµ
m = ∂µλ

m + fnp
mλnAµ

p , δMmn = fmp
qλpMqn + fnp

qλpMmq , (A.37)

leaving the metric invariant.

Due to the internal coordinate transformations

ξ̂m = Λm
nz

n , (A.38)

the internal group manifold enjoyed a global symmetry GL(n,R) that gets broken when

the reduction is done. In the gauged theory, only the part of GL(n,R) that preserves

the structure constant covariance,

fmn
p = Λm

qΛn
r(Λ−1)s

pfqr
s , (A.39)

remains unbroken. This part includes the emerging gauge group, which is realized in

the global symmetry group as

Λn
m = eλ

kfkn
m

, (A.40)

where λk are the local parameters.

We can infer here that gauge groups with non-trivial adjoint representations lead

to gaugings of a part of the global symmetry. However, for the case of a reduction on

a torus T n, the U(1)n adjoint is trivial and its abelian character implies no gaugings.

A.5 The scalar sector in SUGRA theories

In general, scalar span a non-linear σ-model and their kinetic terms appear in the

lagrangian as

Gab∂µφ
a∂µφb , (A.41)

where Gab is the metric of the σ-model and a, b are scalar indices. The scalar manifold

can have isometries generated by the Killing vectors. If the manifold is a homogeneous

space, i.e., if any point of the manifold can be reached from any other point by a

symmetry operation, then the manifold is characterized by the isometry group G. This
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means that there are the same number of linearly independent Killing vectors as the

dimension of the manifold.

The subgroup H of the isometry group G that leaves a point invariant is called the

isotropy group and, in case that H is non-trivial, the manifold is identified with the

coset G/H. If we consider the algebras g = Lie G and h = Lie H, we can define a

complementary space l to h, such that any g ∈ g can be decomposed into

g = h+ k , h ∈ h , k ∈ l , (A.42)

and for any h1, h2 ∈ h, k1, k2 ∈ l, we have

[h1, h2] ∈ h , [h1, k1] ∈ l , [k1, k2] ∈ h . (A.43)

The scalar fields span the adjoint representation of G0, the global symmetry group.

However, not all of the compact generators are physical, i.e., they can always be rotated

away. This means that the scalar degrees of freedom span a coset G0/H, where H is

the maximal compact subgroup of G0.

This decomposition can be done by means of the Cartan-Killing metric in g. Thus,

any simply connected homogeneous space for which the isometry and isotrophy algebras

satisfy these conditions is called symmetric space. Scalar manifolds of SUGRA theories

with more than 8 real supercharges are symmetric spaces G/H, where G is non-compact

and H is its maximal compact subgroup. In fact, H is the R symmetry group for

pure SUGRA and has the R symmetry group as a factor when matter multiplets are

considered.

A convenient formulation of this σ-model is by means of a matrix V , which plays

the role of a vielbein. It transforms under global G transformations from the left and

local H transformations from the right, V −→ ΛV k(x), or equivalently,

δV = ΛV − V k(x), (A.44)

where Λ ∈ G and k ∈ H.

This vielbein becomes crucial in the description of the fermionic sector, especially

with the fermionic fields that transform in linear representations of H. In the couplings

between fermions and bosons, V acts as a link of both due to its transformation rule.

In order to keep the local H freedom, it is convenient to formulate the theory in

terms of manifestly H invariant objects. For example, we can define

M = V∆V , (A.45)

where ∆ is a constant H-invariant positive definite matrix. M transforms under G as

δM = ΛM +MΛT , (A.46)

and the lagrangian takes the form

Lscalar =
1

8
Tr
(
∂µM∂µM−1

)
. (A.47)
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For instance, for the coset SL(2)/SO(2), M can be expressed in terms of a complex

scalar field τ = χ+ ie2φ, giving rise to

M =
1

Im (τ)

(
|τ |2 Re (τ)

Re (τ) 1

)
. (A.48)

A.6 Central charges in supergravity

The superalgebra of the maximal supergravities that we have studied can be general-

ized in many ways. One of them is by the explicit inclusion of the gauge transformation

associated with the antisymmetric gauge fields that appear in the theories. That is, su-

persymmetry transformations generate general coordinate transformations, local SUSY

transformations and gauge transformations. However, the last ones do not appear in

the superalgebra (1.15). This happens because at perturbative level, the theory does

not contain charged fields, so the additional charges simply vanish on physical states.

However, if we consider non-perturbative states, these solutions usually feel the gauge

fields and carry their associated charges. Black holes or branes configurations can

always be associated to these charges.

The ’gauge charges’ usually appear in the anticommutator of two supercharges and

may be regarded as disguised central charges Zij
µ1,...

, of the form

{Qi
α, Q

j
β} = (γµC

−1)αβPµδ
ij +

∑
k

(Γµ1···µkC)αβZ
ij
µ1···µp . (A.49)

These Z’s are no longer Lorentz scalars in general, and thus do not commute with the

Lorentz generators. They are therefore not extrictly central in the group-theoretical

meaning of the word.

The possible combinations of central extensions will depend on the dimension of

the theory. For example, for D = 11, we have [99]

{Qα, Qβ} = (γµC
−1)αβPµδ

ij +
∑
n

(Γµ1µ2C)αβZµ1µ2 +
∑
n

(Γµ1···µ5C)αβZµ1···µ5 .

(A.50)

It is remarkable the coincidence of these two central charge with the existence of such

solitonic M2- and M5-branes in this theory, as is show in Table 2.5.





Appendix B

Gaugings in N = 2 D = 9

supergravity

B.1 Conventions

We follow the conventions of Ref. [117]. In particular, we use mostly plus signature

(−,+, · · · ,+) and the gamma matrices satisfy

γ∗a = −γa , γa = ηaaγ
†
a . (B.1)

The Dirac conjugate of a spinor ε is defined by

ε̄ ≡ ε†γ0 . (B.2)

Then, we have

(ε̄γ(n)λ)∗ = anε̄
∗γ(n)λ∗ ,

(ε̄γ(n)λ)∗ = bnλ̄γ
(n)ε ,

(B.3)

where the signs an and bn are given in Table B.1

B.1.1 Spinor bilinears

We define the following real bilinears of the supersymmetry parameters ε1 and ε2:

n 0 1 2 3 4 5 6 7 8 9

an − + − + − + − + − +

bn + − − + + − − + + −

Table B.1: Values of the coefficients an and bn defined in Eqs. (B.3).
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ε̄2ε1 ≡ a+ ib , (B.4)

ε̄2ε
∗
1 ≡ c+ id , (B.5)

ε̄2γµ1···µnε1 ≡ ξµ1···µn + iζµ1···µn , (B.6)

ε̄2γµ1···µnε
∗
1 ≡ σµ1···µn + iρµ1···µn , (B.7)

B.2 Relation with other conventions

The electric fields used in this paper are related to those used in Ref. [116] (which uses

a mostly minus signature) as follows:

K = e
√
7
3
ϕ , (B.8)

λ ≡ C(0) + ie−ϕ = τ ≡ χ+ ie−φ , (B.9)

A(1) = A0 , (B.10)

A(1) = Ai , (B.11)

A(2) = Bi + 1
2
A0i , (B.12)

A(3) = −C + 1
2
εijA

i ∧Bj − 1
12
εijA

0ij , (B.13)

A(4) = −C̃ + C ∧ A0 − 1
4
εijB

i ∧ A0j . (B.14)

The field strengths are related by
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F(2) = F 0 , (B.15)

F(2) = F i , (B.16)

F(3) = H i , (B.17)

F(4) = −G , (B.18)

F(5) = −G̃ . (B.19)

The relation with the fields used in Ref. [117] (which also uses mostly plus signature)

is given by (our fields are in the r.h.s. of these equations)

Bi = −(Bi + 1
2
A0i) , (B.20)

C = −(C − 1
6
εijA

0ij) , (B.21)

while the field strengths are related by

H i = −H i , (B.22)

G = −G . (B.23)

The rest of the fields are identical.

B.3 Noether currents

The Noether 1-form currents of the undeformed theory jA are given by

?jm = ?dMij

(
M−1

)
jk
Tmi

k + e
4√
7
ϕ
(M−1

ij )Tmk
iAk ∧ ?F j

+ Tmk
i
[
e
− 1√

7
ϕM−1

ij

(
Bk − 1

2
A0k
)
∧ ?Hj + 1

2
εij

(
−2e

2√
7
ϕ
Aj ∧Bk ∧ ?G

+
(
Bj − A0j

)
∧Bk ∧G+ εlnA

l ∧Bjk ∧
(
Hn − 1

2
An ∧ F 0

)
+ 1

4
εlnA

0ln ∧Bk ∧Hj
)]

, (B.24)
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?j4 = 6√
7
? dϕ+ 3

[
e

4√
7
ϕ
A0 ∧ ?F 0 + e

− 1√
7
ϕM−1

ij

(
Bi + 1

2
A0i
)
∧ ?Hj + e

2√
7
ϕ (
C − 1

6
εijA

0ij
)
∧ ?G

+ A0 ∧
(
C + εijA

i ∧Bj
)
∧G

]
+ 3

2
εij
[(
−C + εklA

k ∧Bl − 7
12
εklA

0kl
)
∧Bi ∧Hj

−3
2
A0i ∧ C ∧Hj +

(
Ai ∧Bj − 1

2
A0ij

)
∧ F 0 ∧ C

]
, (B.25)

?j5 =
√

7
4
? dϕ− 3

8
?
τdτ̄ + c.c.

(=mτ)2
+ e

4√
7
ϕ
T50

0A0 ∧ ?F 0 + e
3√
7
ϕ
T5k

iM−1
ij A

k ∧ ?F j

+ e
− 1√

7
ϕM−1

ij

[
T5k

i
(
Bk − 1

2
A0k
)

+ 1
4
A0i
]
∧ ?Hj

+ e
2√
7
ϕ (
T5C − 1

12
εijA

0ij − T5k
iεij
(
Ak ∧Bj − 1

6
A0kj

))
∧ ?G

+ 1
4
εij
[
T5k

i
(
−2Bjk + 3A0j ∧Bk − 5A0k ∧Bj

)
− 1

2
A0i ∧Bj

]
∧G

+ 1
4
εij
[
T5k

i
(
+2εlnA

l ∧Bnk − εlnA0ln ∧Bk
)
− T5

(
6A0i +Bi

)
∧ C − 1

12
εklA

0kl ∧Bi
]
∧Hj

+ εijεlnT5k
i
[

5
6
A0jk ∧Bl − A0lj ∧Bk + 1

2
Ak ∧Bjl

]
∧Hn

+ T5

[
A0 ∧ C ∧G+ 1

2
εij
(
Bj + 1

2
A0j
)
∧ Ai ∧ F 0 ∧ C

]
(B.26)

B.4 Final results

In this Appendix we give the final form of the deformed covariant field strengths,

covariant derivatives, gauge and supersymmetry transformations in terms of the inde-

pendent deformation parameters given in Eq. 4.146. We must bear in mind that they

are assumed to satisfy the irreducible quadratic constraints given in Eq. (4.148) and

only then the field strengths etc. have the right transformation properties.

The covariant derivatives of the scalar fields are given by

Dϕ = − 137
24
√

7
ϑ0

5A0 +
(
−
√

7
4
ϑi

4 + 6√
7
ϑi

5
)
Ai , (B.27)

Dτ = ϑ0
mkm

τA1 − 3
4
ϑ0

5τA0 + 3
4

(
ϑ1

5τ + ϑ2
5
) (
A1 − τA2

)
, (B.28)
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and their gauge transformations are explictly given by

δΛϕ = − 137
24
√

7
ϑ0

5Λ0 +
(
−
√

7
4
ϑi

4 + 6√
7
ϑi

5
)

Λi , (B.29)

δΛτ = ϑ0
mkm

τΛ0 − 3
4
ϑ0

5τΛ0 + 3
4

(
ϑ1

5τ + ϑ2
5
) (

Λ1 − τΛ2
)
. (B.30)

The deformed p-form field strengths are given by

F 0 = dA0 − 1
2

(
3ϑi

4 + 1
2
ϑi

5
)
A0i +

(
3ϑi

4 + 1
2
ϑi

5
)
Bi , (B.31)
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where the covariant derivatives acting on the different fields are given by
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)
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The field strengths transform covariantly under the gauge transformations
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where the covariant derivatives of the different gauge parameters are given by
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The supersymmetry transformation rules of the fermion fields are given by
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where
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and where the fermion shifts are given by
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The supersymmetry transformations of the bosonic fields are

δεϕ = − i
4
ε̄λ̃∗ + h.c. , (B.56)

δετ = −1
2
e−φε̄∗λ , (B.57)
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Appendix C

Duality orbits of non-geometric

fluxes

C.1 Different solvable and nilpotent gaugings

In section 5.3.4 we have studied the T-duality orbits of gaugings in half-maximal D =

7 supergravity and for each of them, we identified the gauge algebra and presented

the results in table 5.6. Since there is no exhaustive classification of non-semisimple

algebras of dimension 6, we would like to explicitly give the form of the algebras

appearing in table 5.6.

Solvable algebras

The CSO(2, 0, 2) and CSO(1, 1, 2) algebras

The details about these algebras can be found in ref. [283]; we summarise here some

relevant facts.

The six generators are labelled as {t0, ti, si, z}i=1,2, where t0 generates SO(2)

(SO(1, 1)), under which {ti} and {si} transform as doublets

[t0, ti] = εi
j tj , [t0, si] = εi

j sj , (C.1)

where the Levi-Civita symbol εi
j has one index lowered with the metric ηij = diag(±1, 1)

depending on the two different signatures. z is a central charge appearing in the fol-

lowing commutators

[ti, sj] = δij z . (C.2)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
6 times

), where the ∓ is again related to the

two different signatures.
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The f1 and f2 algebras

These are of the form Solv4×U(1)2. The 4 generators of Solv4 are labeled by {t0, ti, z}i=1,2,

where t0 generates SO(2) (SO(1, 1)), under which {ti} transform as a doublet

[t0, ti] = εi
j tj , (C.3)

[ti, tj] = εij z . (C.4)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
6 times

).

The h1 and h2 algebras

The 6 generators are {t0, ti, si, z}i=1,2 and they satisfy the following commutation

relations
[t0, ti] = εi

j tj , [t0, si] = εi
j sj + ti ,

[ti, sj] = δij z , [si, sj] = εij z .
(C.5)

The Cartan-Killing metric is diag(∓1, 0, · · · , 0︸ ︷︷ ︸
6 times

).

The g0 algebra

The 6 generators are {t0, tI , z}I=1,··· ,4, where t0 transforms cyclically the {tI} amongst

themselves such that

[[[[tI , t0] , t0] , t0] , t0] = tI , (C.6)

and

[t1, t3] = [t2, t4] = z . (C.7)

Note that this algebra is solvable and not nilpotent even though its Cartan-Killing

metric is completely zero.

Nilpotent algebras

The CSO(1, 0, 3) algebra

The details about this algebra can be again found in ref. [283]; briefly summarizing, the

6 generators are given by {tm, zm}m=1,2,3 and they satisfy the following commutation

relations

[tm, tn] = εmnp z
p , (C.8)

with all the other brackets being vanishing. The order of nilpotency of this algebra is

2.
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The l algebra

The 6 generators {t1, · · · , t6} satisfy the following commutation relations

[t1, t2] = t4 , [t1, t4] = t5 , [t2, t4] = t6 . (C.9)

The corresponding central series reads

{t1, t2, t3, t4, t5, t6} ⊃ {t4, t5, t6} ⊃ {t5, t6} ⊃ {0} , (C.10)

from which we can immediately conclude that its nilpotency order is 3.

C.2 SO(2, 2) and SO(3, 3) ’t Hooft symbols

In section 5.3.2 we discuss the origin of a given flux configuration from DFT back-

grounds specified by twist matrices U . The deformations of half-maximal supergravity

in D = 10− d which can be interpreted as the gauging of a subgroup of the T-duality

group O(d, d) can be described by a 3-form of O(d, d) fABC which represents a certain

(non-)geometric flux configuration.

InD = 8 andD = 7, the T-duality group happens to be isomorphic to SL(2)× SL(2)

and SL(4) respectively. As a consequence, in order to explicitly relate flux configura-

tions and embedding tensor orbits, we need to construct the mapping between T-duality

irrep’s and irrep’s of SL(2)× SL(2) and SL(4) respectively.

From the (2,2) of SL(2)×SL(2) to the 4 of SO(2, 2)

The ’t Hooft symbols (GA)αi are invariant tensors which map the fundamental repre-

sentation of SO(2, 2) (here denoted by A), into the (2,2) of SL(2)× SL(2)

vαi = (GA)αi vA , (C.11)

where vA denotes a vector of SO(2, 2) and the indices α and i are raised and lowered

by means of εαβ and εij respectively. (GA)αi and (GA)αi satisfy the following identities

(GA)αi (GB)αi = ηAB , (C.12)

(GA)αi
(
GA
)βj

= εαβ εij , (C.13)

where ηAB is the SO(2, 2) metric.

After choosing light-cone coordinates for SO(2, 2), our choice for the tensors (GA)αi

is the following

(G1)αi =

(
0 0

0 1

)
, (G2)αi =

(
0 1

0 0

)
, (C.14)

(G1̄)αi =

(
1 0

0 0

)
, (G2̄)αi =

(
0 0

−1 0

)
. (C.15)
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By making use of the mapping (C.11), we can rewrite the structure constants (Xαi)βj
γk

as a 3-form of SO(2, 2) as follows:

fABC = (Xαi)βj
γk(GA)αi(GB)βj(GC)γk . (C.16)

From the 6 of SL(4) to the 6 of SO(3, 3)

The ’t Hooft symbols (GA)mn are invariant tensors which map the fundamental repre-

sentation of SO(3, 3), i.e. the 6 into the anti-symmetric two-form of SL(4)

vmn = (GA)mn vA , (C.17)

where vA denotes a vector of SO(3, 3). The two-form irrep of SL(4) is real due to the

role of the Levi-Civita tensor relating vmn to vmn

vmn =
1

2
εmnpq v

pq . (C.18)

The ’t Hooft symbols with lower SL(4) indices (GA)mn carry out the inverse mapping

of the one given in (C.17). The tensors (GA)mn and (GA)mn = 1
2
εmnpq (GA)pq satisfy

the following identities

(GA)mn (GB)mn = 2 ηAB , (C.19)

(GA)mp (GB)pn + (GB)mp (GA)pn = −δnm ηAB , (C.20)

(GA)mp (GB)pq (GC)qr (GD)rs (GE)st (GF )tn = δnm εABCDEF , (C.21)

where ηAB and εABCDEF are the SO(3, 3) metric and Levi-Civita tensor respectively.

After choosing light-cone coordinates for SO(3, 3) vectors, our choice of the ’t Hooft

symbols is

(G1)mn =


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , (G2)mn =


0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , (C.22)

(G3)mn =


0 0 0 −1

0 0 0 0

0 0 0 0

1 0 0 0

 , (G1̄)mn =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 , (C.23)

(G2̄)mn =


0 0 0 0

0 0 0 −1

0 0 0 0

0 1 0 0

 , (G3̄)mn =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 . (C.24)

Thus, we can rewrite the structure constants in the 6, (Xmn)pq
rs, arising from

(5.119) as a 3-form of SO(3, 3) as follows:

fABC = (Xmn)pq
rs(GA)mn(GB)pq(GC)rs . (C.25)



Abstract/Resumen

Resumen español

La presente tesis doctoral trata del estudio de soluciones en teoŕı as de supergravedad

y gravedad masiva. Estas teoŕı as pueden considerarse extensiones de la teoŕıa de la

Relatividad General (RG) de Einstein, la cual describe la dinámica de una part́ıcula

sin masa de spin = 2: el gravitón. Supergravedad es una extensión supersimétrica de

la RG que incorpora nuevas part́ıculas sin masa (escalares, bosones de gauge, dilatinos,

gravitinos, ...), mientras que gravedad masiva explora la dinámica de un gravitón con

masa.

Las teoŕıas de supergravedad aparecen al tomar el ĺımite de baja enerǵıa de la teoŕıa

de cuerdas o de la teoŕıa M. Una de las señas de identidad de estas supergravedades

es que requieren un espacio-tiempo con 10 o incluso 11 dimensiones (10D/11D), en

lugar de las cuatro dimensiones (4D) que experimentamos en la vida cotidiana. En

consecuencia las dimensiones extras han de ser compactas y muy pequeñas para que

resulten “invisibles” a los experimentos. Sin embargo, su forma y tamaño afectan a

la gravitación que percibimos en 4D ya que el espacio-tiempo seŕıa verdaderamente

10D/11D. Esto da lugar a desviaciones con respecto a la RG de Einstein que abren la

posibilidad de testar las nuevas dimensiones.

Tras elegir una geometŕıa determinada para un numero d de dimensiones extras,

es posible derivar la extensión de la RG que resulta en D = 10 − d o D = 11 − d

dimensiones. Sin embargo, el proceso contrario no siempre es directo: empezando con

una extension consistente de la RG, ¿se puede inferir la geometŕıa de las dimensiones

extras de las que proviene? ¿Y la configuración de la teoŕıa de cuerdas subyacente?

Estas preguntas ocupan actualmente un lugar central en investigación en teoŕıa de

cuerdas y han sido abordadas en la presente tesis. Mas concretamente, el caso de las

desviaciones de RG ocasionadas por ciertas deformaciones (gaugings) en supergravedad

que preservan N = 4, 8 supersimetŕıas. Estas deformaciones han sido estudiadas y

clasificadas exhaustivamente en dimensiones D = 9, 8y7 utilizando el marco teórico del

tensor de embedding, dando lugar a un análisis completo de su origen en 10D/11D. Uno

de los resultados más relevantes de la tesis es la clasificación de los gaugings en órbitas

cada una de las cuales produce una dinamica inequivalente en D dimensiones. Como

resultado de esta clasificacion, se observa que todos los gaugings analizados se pueden

obtener como reducciones de una teoŕıa de campos doble (Double Field Theory ≡
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DFT) en espacios toroidales con torsion (twisted tori), aun cuando un origen en teoŕıa

de cuerdas (10D) o teoŕıa M (11D) puede no ser posible. Algunos de estos gaugings

se corresponden con compactificaciones no-geométricas de cuerdas, demostrando que

DFT tiene acceso a configuraciones genuinas de cuerdas para las que la geometŕıa

Riemanniana deja de ser válida. Estas no-geometŕıas están asociadas a configuraciones

de cuerdas que no son compatibles con descartar los modos de enrollamiento y tomar

el ĺımite habitual de teoŕıa de campos.

En la segunda parte de la tesis, se presenta una extensión de RG en D = 4 que

describe la dinámica de un gravitón con masa. La primera consecuencia directa de

tener un gravitón con masa es que la RG se ve modificada a grandes escalas. Esto

afecta directamente a lo que se conoce como enerǵıa oscura del Universo suavizando el

problema de la constante cosmológica - el Universo podŕıa estar auto-acelerándose de

acuerdo a una modificación a grandes escalas de la RG sin necesidad de invocar a la

enerǵı oscura -. La segunda consecuencia es que la deflexión de la luz es tan solo 3/4

del valor que se obtiene con la RG (tras normalizar la interacción al caso de part́ıculas

test masivas). Esto se debe a que un gravitón con masa propaga 5 grados de libertad

frente a los 2 de un gravitón sin masa.

En resumen, la RG es la unica teoŕıa que describe la dinámica de una part́ıcula de

spin = 2 sin masa. Cualquier modificación de la RG para dotar de masa al gravitón

describirá un número distinto de grados de libertad con sus correspondientes consecuen-

cias. La principal de ellas es que al tomar el ĺımite de gravitón sin masa (mgrav → 0)

no se obtiene la RG sino una modificación de ésta que incluye un escalar. El ĺımite de

masa nula de un gravitón con masa no es pues un gravitón sin masa, sino un gravitón

sin masa acoplado a un escalar (discontinuidad vDVZ).

El modelo de gravedad masiva en D = 4 que se presenta en la tesis propor-

ciona un nuevo enfoque basado en resultados anteriores para el caso de D = 3.

La idea que se presenta es incluir interacciones con derivadas de orden superior las

cuales, a nivel linearizado, no introducen “fantasmas” debido a una formulación dual

“conexión/métrica” del gravitón que describe los mismos grados de libertad (el campo

del gravitón está en una representación exótica del grupo de Lorentz). También se

presenta una nueva manera de tomar el ĺımite de gravitón sin masa que respeta el

numero total de simetŕıas gauge, eliminando cualquier discontinuidad en el número de

grados de libertad propagados. Como resultado, hay dos grados de libertad (part́ıcula

de spin = 1 sin masa) que son absorbidos por el gravitón para adquirir masa en lo

que representa una versión adaptada del mecanismo de Higgs para part́ıculas de spin

= 2. En una posible versión completa del modelo (más alla del régimen linearizado),

la RG seŕıa reemplazada por una teoŕıa de gravitón con masa a grandes escalas que

se aproxima a una teoŕıa escalar-tensor con un campo de Maxwell a escalas pequeñas.

El modelo de gravedad masiva descrito en la tesis supone un gran avance hacia la

descripción de gravitones masivos en 4D.

En la parte final de la tesis, se presenta un estudio de soluciones tipo agujero

negro con multicentros en el contexto de supergravedad en D = 4 con N = 2 super-
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simetŕıas. Estas soluciones corresponden a configuraciones no-triviales de los campos

del multiplete de supergravedad acoplado a un número nv de multipletes vectoriales.

El contenido de campos de la teoŕıa se reduce pues a la métrica, escalares y vectores

aśı como los compañeros supersimétricos de éstos (fermiones). Junto con el gravifotón,

los vectores se transforman bajo rotaciones electromagnéticas de acuerdo con el grupo

de simetŕıa Sp(2nv + 2). Dado el vector de cargas electromagneticas Q = (pΛ, qΛ), con

Λ = 1, . . . , nv + 1, asociado a una configuración de agujero negro, los perfiles de los

campos escalares fluyen desde un valor genérico en el infinito hasta un valor fijo en el

horizonte del agujero negro que viene determinado por el vector de cargas Q (mecan-

ismo atractor). Este mecanismo simplifica el cálculo de los perfiles para los escalares

los cuales están codificados en una función conocida como potencial de agujero negro

VBH que depende de los campos escalares y las cargas electromagnéticas Q. A partir

de estos perfiles, se pueden obtener las cantidades que caracterizan al agujero negro

subyacente: masa, entroṕıa, etc.

En la tesis se estudia de manera completa y detallada las configuraciones estáticas

de tipo multicentro con los escalares mı́nimamente acoplados mediante un prepotencial

cuadrático. Para llevar a cabo un análisis detallado, se introducen unas matrices de

estabilización (junto con sus adjuntas), las cuales se emplean para tomar proyecciones

de las cargas. Tras hacer un ansatz genérico de solución tipo multicentro, los perfiles

de los escalares se calculan de forma expĺıcita. Como resultado, se observa que una

fragmentación de agujero negro a lo largo del subespacio longitudinal de las cargas

reduce el área, mientras que en el caso de ser a lo largo del subespacio ortogonal

lo aumenta. El uso de estas proyecciones resulta ser bastante eficiente a la hora de

abordar cuestiones relacionadas con la entroṕıa de los agujeros negros aśı como con

su masa. Los métodos expuestos en esta parte de la tesis son extensibles a casos con

prepotenciales más complejos e incluso modelos en los que no existe prepotencial, lo

que los convierte en una herramienta de cálculo muy potente.

Abstract

This doctoral thesis considers the study of solutions in supergravity and massive grav-

ity theories. These theories can be understood as extensions of Einstein’s theory of

General Relativity (GR), which describes the dynamics of a massles spin-2 particle: the

graviton. Supergravity is a supersymmetric extension of GR that entails new massless

particles (scalar fields, gauge bosons, dilatinos, gravitinos,. . . ), whereas massive gravity

explores the dynamics of a massive graviton.

Supergravity theories arise as the low energy limit of string theories or M theory.

One of their main features is the requirement of 10 or 11 dimension (10D/11D) instead

of the four dimensions (4D) that we are used to experience in our daily life. This

implies that the supplementary dimensions have to be compact and considerably small

in such a way that they result almost imperceptible by the experiments. However, their
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shape and size have direct effects on the gravity that we feel in 4D. In particular, the

fact of having a truly 10D/11D spacetime gives rise to predictions that differ from the

GR ones and open new scenarios where these extra dimensions can be tested.

Once we choose a certain geometry for the d extra dimensions, it is possible to

obtain the effective theory in D = 10 − d or D = 11 − d dimensions that results

an extension of General Relativity. Nevertheless, the inverse procedure is not always

straightforward: namely, given a particular extension of GR, can be infer the underlying

geometry of the extra dimensions that gives rise to this theory? Is the string theory

configuration that generates this modification accessible? These questions get in on the

main research topics in string theory and are addressed in this thesis. In particular, the

GR discrepancies caused by a kind of deformations (gaugings) in supergravity theories

that preserve N = 4, 8 supersymmetries. These deformations have been exhaustively

studied and classified for dimensions D = 9, 8, 7 by means of the theoretical approach

of the embedding tensor mechanism. One of the most relevant results of this thesis is

the classification of the gaugings in orbits that produce that give rise to inequivalent

dynamics in D dimensions. As a consequence of this indexing, it is found that all of

these gaugings can be obtained as a dimensional reduction of the so-called Double Field

Theory (DFT) over twisted toroidal spaces. Some of these gaugings correspond to non-

geometric compactifications of string theories, showing that DFT warrants the access

to genuine string theory configurations that are not accessible by means of Riemannian

geometry.

The second part of the thesis discusses a GR extension in D = 4 that describes

the dynamics of a massive spin-2 particle. The first consequence of having a massive

graviton is that GR results modified at large scales. This is immediately related to

the dark energy of the Universe - the Universe could be self-accelerating according to

UV modification of GR without a dispensable existence of dark energy -. The second

consequences is the effect on light deflection: it implies only 3/4 of the deflection angle

that GR predicts. This can be understood as a consequence that the massive graviton

propagates 5 degrees of freedom, in comparison with the 2 ones that a massless graviton

does.

Summarizing, GR is the only theory that describes the dynamics of a spin-2 particle.

Any GR modification that assumes a massive spin-2 graviton describes a different

number of degrees of freedom with respect to the massless case and this have remarkable

consequences. One of them is the so-called vDVZ discontinuity. When taking the

massless limit of the massive gravity, we do not obtain GR, but we have a theory of a

massless spin-2 particle coupled to a scalar field. Namely, the massless limit of massive

gravity theory is not a massless gravity theory, but a massless gravity theory coupled

to a scalar field. The fact of not having a continuity in the mass parameters originates

the name of discontinuity.

This massive gravity model that is shown in this thesis provides a new perspective

for D = 4 theories based on the exisiting ones for D = 3. The main idea is the

addition of new interactions by means of new higher-derivative terms which, at the
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linearized level, do not introduced “ghosts”. Due to a smart choice of a dual formulation

“connection-like” of the graviton (the graviton field is realized as a exotic representation

of the Lorentz group), this problem is circumvented and the same degrees of freedom

remain propagated. In addition, the Stückelberg mechanism is used to gauge away

the corresponding degrees of freedom of the graviton and take the massless limit so

that the discontinuity in the number of degrees of freedom dissapears. As a result,

there are two degrees of freedom (a massless spin-1 particle) that are absorbed by the

graviton so that it becomes massive. This represents an adapted version of the Higgs

mechanism for spin-2 particles. In a possible complete version of the theory (beyond

the linearized level), GR would be substituted by a massive graviton theory at UV

regime that behaves as tensor-scalar field plus a Maxwell field theory at low energy.

This massive gravity model provides a new contribution in the description of massive

gravitons in 4D.

The last part of the thesis deals with multicenter-type black hole solutions in a

D = 4 supergravity scenario with N = 2 supergravities. These solutions correspond

to extremal configurations (the only ones that allow the superposition of solutions as a

solution of GR equations) of the supergravity multiplet coupled to nv vector multiplets.

Together with the graviphoton, the vector fields of the vector multiplets transform

under the symmetry group Sp(2nv + 2). Assuming a vector of electromagnetic charges

Q = (pΛ, qΛ), where Λ = 1, . . . , nv + 1, the scalar fields flow from a certain value at

the infinity towards a fixed value at the black hole horizon, which is determined by the

electromagnetic charges that span Q (attractor mechanism). This mechanism simplifies

the calculation of the behaviour of the scalar fields, which is encoded in the so-called

black hole potential (VBH). This potential is a function that depends on the scalar fields

and the electromagnetic charges of the black holes, and provides information about the

quantities that characterize the black hole: mass, entropy, etc.

This thesis treats the study of black hole multicenter configurations with minimally

coupled scalar fields. These scalar fields parameterize a special Kähler manifold and in

this work quadratic prepotentials are analyzed. In order to carry out a detailed inves-

tigation, stabilization matrices are introduced (together with their adjoint matrices).

These stabilization matrices are isometries of the symplectic quadratic form. Their

adjoints with respect to the symplectic product S†N ,S
†
F , which fullfills the property

S2 = −1, are shown to lay inside the Lie algebra of the isometry group, they are such

that S + S† = 0. They are “unitary”, SS† = 1, with respect the symplectic product.

Using a generic multicenter ansatz, depending on the center charges Qa and the value

at infinity I∞, and the attractor equations we have rederived in a simple way different

relations. In particular the fix point scalar values have been written in terms of the

projection of the respective charges into the eigenspaces of the matrix S. Although we

have focused in this study in minimal coupling theories with quadratic prepotentials,

the main techniques, properties and expressions presented are extendable to general

prepotentials or even theories without them.
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