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Mètodes per a generar superf́ıcies de Bézier triangulars mitjançant

minimització de funcionals, EDPs i màscares.

Presentació.

L’objectiu principal d’aquest treball és l’obtenció de diferents tècniques per tal de generar

superf́ıcies de Bézier triangulars des del punt de vista d’un dels més antics problemes del

disseny geomètric assistit per ordinador: la construcció d’una superf́ıcie que interpole unes

fronteres donades.
Les superf́ıcies més estudiades dins l’àmbit del disseny geomètric assistit per ordinador

(Computer Aided Geometric Design, CAGD) han estat les superf́ıcies de Bézier rectangulars,

que foren introdüıdes als anys seixanta per Coons i Bézier. El nostre treball, però, està basat

en l’estudi de les superf́ıcies de Bézier triangulars, que són la generalització natural de les

corbes de Bézier per la següent raó: la definició d’una corba de Bézier es basa en el concepte

d’interpolació lineal, que és la combinació convexa de dos punts i, anàlogament, la definició

de superf́ıcie de Bézier triangular es basa en les coordenades baricèntriques, que són la

combinació convexa de tres punts. De fet, les superf́ıcies triangulars van ser introdüıdes per

Paul de Casteljau a finals dels anys cinquanta, abans que les rectangulars1, veure [13] i [15],

i va definir aquestes superf́ıcies amb una formulació simètrica en termes de les coordenades

baricèntriques respecte a un domini triangular.

La importància del problema que considerem, determinar una superf́ıcie donada la seua

frontera, és conseqüència dels molts àmbits on té aplicació, com ara el disseny d’objectes, el

fairing i el blending de superf́ıcies.

En l’àmbit del disseny d’objectes la dificultat més gran que es troba a l’hora de crear

objectes pràctics amb l’ordinador com a eina és la manca de mètodes que permeten un

disseny intüıtiu. Des del punt de vista del dissenyador és extremadament important poder

crear objectes reals i manipular-los d’una manera simple. Aix́ı, com que gran part de la

informació referent a la forma d’un objecte ve donada per la seua frontera, els mètodes per a

generar superf́ıcies interpolant una frontera donada i compatibles amb transformacions afins

són una bona manera de construir superf́ıcies a partir de pocs paràmetres.

1El lector podria preguntar-se per què s’anomenen superf́ıcies de Bézier triangulars si va ser de Casteljau el primer en

introduir aquest concepte, i és que mentre el treball de de Casteljau mai fou publicat, el de Bézier śı que va ser difós i és per

això que les superf́ıcies triangulars també porten el seu nom, encara que ell mai les va considerar.

1



2

Com hem dit abans, hi ha altres problemes importants en CAGD que estan relacionats

amb el problema de construir una superf́ıcie donada la seua frontera, per exemple el fairing

i el blending.

El problema anomenat fairing d’una superf́ıcie, que se sol resoldre mitjançant la cons-

trucció d’una superf́ıcie amb frontera prescrita, consisteix en suavitzar (com el terme anglès

indica) aquelles regions d’una superf́ıcie on es troben rugositats o altres imperfeccions. A-

questes irregularitats, que normalment es produeixen quan el procés de modelat es fa especi-

ficant directament els punts de control i especialment quan es tracta d’un gran nombre de

punts, solen detectar-se mitjançant l’anàlisi de les segones derivades o, equivalentment, de

la curvatura2.

Generalment els procediments del fairing tracten d’eliminar aquests errors des del punt

de vista del disseny variacional. Per a suavitzar una superf́ıcie parametritzada, −→x : U → R3,

en alguna regió interior, U0 ⊂ U , s’elegeix una nova superf́ıcie, −→y : U → R3, que coincidisca

amb −→x fora de U0 i que a més minimitze un determinat funcional que mesure la suavitat de

la superf́ıcie. És a dir, es defineix una nova superf́ıcie en U0 amb frontera prescrita per la

superf́ıcie inicial.

Els principis variacionals són una bona eina per tal de suavitzar les superf́ıcies obtingudes

en el disseny de superf́ıcies de forma lliure, free form surfaces. Una superf́ıcie variacional

restringida és una superf́ıcie que minimitza un determinat funcional d’energia sota certes

condicions d’interpolació. Aquests mètodes que inclouen la minimització d’un funcional, el

qual, en certa manera, mesura la suavitat de la superf́ıcie, s’anomenen mètodes de disseny

variacional. Els funcionals que es minimitzen depenen, generalment, de propietats locals

de la superf́ıcie, com ara el vector normal o la curvatura. En l’article [20] es desenvolupa

un estudi al voltant de quins funcionals permeten suavitzar una superf́ıcie eficientment. El

modelat de superf́ıcies utilitzant principis variacionals amb restriccions és atractiu perquè el

dissenyador no s’ha de molestar en especificar els punts de control directament.

Un altra aplicació important de les superf́ıcies interpolants és la unió de diferents su-

perf́ıcies, anomenada blending. Les superf́ıcies que no tenen una topologia trivial necessiten

més d’una parametrització per a ser representades. Una superf́ıcie blending, és una superf́ıcie

d’unió que connecta suaument dues superf́ıcies al llarg de corbes arbitràries contingudes en

les superf́ıcies donades. Les corbes de contacte poden ser fixades per l’usuari o bé obtenir-se

per intersecció de les superf́ıcies que s’han d’unir. La superf́ıcie nexe que s’obté acompleix

certes condicions de continüıtat aix́ı com també la continüıtat del vector normal al llarg

de les corbes d’unió definides per les dues superf́ıcies base. El procés de blending és molt

important en el modelat geomètric de superf́ıcies i és molt utilitzat a l’hora de millorar la

forma d’un producte.

2Donat que la majoria dels nostres mètodes estan relacionats amb la curvatura mitjana es pot esperar que els resultats

obtinguts no presenten aquest tipus d’irregularitats.
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El problema de generar una superf́ıcie donada la seua frontera és, per tant, una qüestió

que ha estat estudiada àmpliament amb anterioritat. Una de les solucions més famoses

d’aquest problema és la superf́ıcie de Coons: donades quatre corbes, la superf́ıcie de Coons

és una superf́ıcie paramètrica definida en el quadrat unitat i que té aquestes corbes com

a corbes frontereres. Una generalització de les superf́ıcies interpoladores de Coons són les

superf́ıcies de Gordon, que varen ser definides per aquest a finals dels seixanta quan treballava

als laboratoris d’investigació de General Motors. A la interpolació mitjançant aquest tipus

de superf́ıcies li va donar el nom de “interpolació transfinita.”

Pel que fa a la interpolació de corbes amb superf́ıcies triangulars també s’ha desenvolupat

una gran quantitat de treball, com es pot veure a Barnhill et al. [4], Barnhill i Gregory [5], o

Nielson [32], on els autors defineixen diferents polinomis interpoladors de corbes frontereres.

També podem trobar una generalització de la superf́ıcie interpoladora de Coons per al cas

triangular a l’article [33].

Dins l’àmbit del CAGD es poden trobar molts mètodes diferents per tal de generar

superf́ıcies que interpolen corbes frontereres o que s’adeqüen a altres tipus de restriccions.

En aquest treball nosaltres considerem, mitjançant alguns d’aquests mètodes, el problema

de determinar una superf́ıcie polinòmica associada a un conjunt de dades inicials, com ara

corbes frontereres o algun conjunt de punts de control. Concretament, les tècniques que hem

utilitzat es poden classificar en tres categories:

(1) Minimització de funcionals: donada la frontera, determinem la superf́ıcie que

minimitza un funcional entre totes les superf́ıcies polinòmiques amb aquesta frontera.

Hem considerat tres funcionals quadràtics: el funcional de Dirichlet, el funcional

Biharmònic3 i el funcional que és minimitzat per la superf́ıcie de Coons. A més

a més, hem considerat un funcional cúbic, l’associat a les superf́ıcies de curvatura

mitjana constant. Com que el nostre estudi es desenvolupa sempre en termes de

superf́ıcies de Bézier4, aquests funcionals, restringits a l’espai dels polinomis, es poden

considerar com a funcions que depenen dels punts de control. Per tant, l’extremal

d’un funcional, I, entre totes les superf́ıcies triangulars es pot calcular com el mı́nim

d’una funció real

P → I (−→x P) ,

sent −→x P la superf́ıcie de Bézier triangular associada a la xarxa de control P .

(2) Equacions en derivades parcials (EDPs): es pot determinar una superf́ıcie de

Bézier triangular que verifique una equació en derivades parcials donats alguns dels

seus punts de control. Quin és el mı́nim conjunt de punts de control que es pot

prescriure depèn de l’equació que s’estudie, i sobre tot de l’ordre d’aquesta. Hi

ha alguns treballs previs que tracten aquesta qüestió. En [30] i [31], es realitza

un estudi al voltant de la construcció de superf́ıcies de Bézier rectangulars com a

3Aquests funcionals que s’anomenen funcional de Dirichlet i funcional Biharmònic en l’àmbit matemàtic, es coneixen com

stretching energy and bending energy respectivament a la f́ısica, l’enginyeria i el CAGD.
4Si no s’especifica el contrari quan diem superf́ıcie de Bézier ens referim a superf́ıcie de Bézier triangular.



4

solucions de l’equació de Laplace i de l’equació biharmònica. Per un altra banda, en

[6], s’estudien les solucions en forma de Bézier d’un altra equació, l’equació d’ones.

Per al cas de les superf́ıcies de Bézier rectangulars harmòniques calia prescriure

dues corbes frontereres per tal de construir la superf́ıcie mentre que per a construir

superf́ıcies de Bézier rectangulars biharmòniques eren necessàries quatre corbes com

a condicions inicials.

És important remarcar en aquest moment que, encara que siga un problema de

contorn, el problema biharmònic en el cas rectangular té solució única només amb la

prescripció de la frontera de la superf́ıcie quan es busquen solucions polinòmiques.

Aix́ı, no és necessari fixar el valor de les derivades normals al llarg de la frontera.

Si no es tractara el cas restringit, es podria esperar que fos necessari prescriure tant

la frontera com les derivades normals al llarg d’aquesta per tal que la superf́ıcie

estigués totalment determinada. El cas és que si es tracta de superf́ıcies de Bézier

rectangulars biharmòniques polinòmiques les derivades normals estan determinades

per la frontera.

En aquest treball hem considerat les equacions en derivades parcials donades

per les equacions d’Euler-Lagrange associades al funcional de Dirichlet i al funcional

Biharmònic que són l’equació de Laplace i l’equació biharmònica, i hem determinat

en cada cas quins són els punts de control que s’han de conèixer per tal que la

superf́ıcie estiga totalment determinada per l’EDP. A més a més, hem introdüıt una

equació en derivades parcials de tercer ordre, que no està associada a cap funcional,

però que ens permet definir una superf́ıcie de Bézier triangular donats els punts

de control fronterers. La prescripció de la frontera incrementa el control sobre les

superf́ıcies que poden ser dissenyades.

Hem de posar èmfasi que, donat que restringim la minimització dels funcionals

a l’espai de les superf́ıcies polinòmiques, el funcionals passen a ser funcions, i no

és necessari que un extremal d’aquestes funcions siga solució de l’equació d’Euler-

Lagrange associada al funcional. Per tant, la minimització de funcionals ens dona

unes solucions que són diferents a les que obtenim com a solució de les equacions

d’Euler-Lagrange corresponents.

(3) Màscares: un altre mètode per a construir superf́ıcies és mitjançant màscares. Una

màscara és un conjunt de coeficients que defineixen cada punt de control d’una su-

perf́ıcie de Bézier com a combinació lineal dels seus punts de control vëıns. Aix́ı, tota

la xarxa de control s’obté com a solució d’un sistema lineal. L’ús de màscares té el
seu origen en els mètodes numèrics per a discretitzar i resoldre equacions diferencials.

Una manera d’obtenir una aproximació de la solució d’una equació diferencial és fent

la seua discretització en diferències finites i llavors les solucions discretes poden ser

representades mitjançant màscares.
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En [14], G. Farin i D. Hansford van introduir un nou mètode per a generar xarxes

de control basat en un tipus especial de màscares. Les superf́ıcies obtingudes amb a-

questes màscares les van anomenar permanence patches, superf́ıcies de permanència.

La màscara per a superf́ıcies rectangulars la van definir fent una generalització de la

superf́ıcie discreta de Coons i la màscara per a superf́ıcies triangulars com a extensió

de la definició per a rectangulars. El mètode de generació de superf́ıcies donat

per aquestes màscares, que permeten la construcció de superf́ıcies de permanència,

també es pot interpretar en termes d’EDPs discretitzades com a una combinació de

principis variacionals.

En aquest treball hem definit algunes màscares associades als funcionals i a les

EDPs que hem estudiat. També hem comparat els nostres resultats amb els obtinguts

per a superf́ıcies de permanència en [14].

Abans de començar amb una descripció un poc més expĺıcita del nostre treball, farem uns

comentaris referents a parametritzacions. El fet és que hi ha una notable diferència entre

la simetria dels resultats obtinguts per a superf́ıcies de Bézier rectangulars i la asimetria

que s’obté per a superf́ıcies triangulars. Per a superf́ıcies rectangulars hi ha una clara relació

entre la xarxa de control rectangular i la parametrització de la superf́ıcie. En el cas triangular

les coses no són tan senzilles.
L’associació més directa que es pot fer entre les xarxes de control triangulars i les para-

metritzacions de superf́ıcies de Bézier triangulars és la que s’obté al substituir una de les

coordenades baricèntriques per una expressió dependent de les altres dues tenint en compte

que u+ v +w = 1. Per exemple, si −→y (u, v, w) és la superf́ıcie en coordenades baricèntriques,

llavors treballaŕıem amb la superf́ıcie −→x (u, v) = −→y (u, v, 1− u− v). A més, si suposem que

(u, v) són les coordenades cartesianes, o equivalentment que el triangle utilitzat per a definir

les coordenades baricèntriques és el triangle format pels punts (0, 0), (1, 0) i (0, 1), llavors ens

trobem amb un seriós inconvenient: es perd la simetria. Fins i tot si la xarxa de control és

simètrica (Pσ(i)σ(j)σ(k) = Pijk per a qualsevol permutació σ), la superf́ıcie de Bézier triangular

associada no conserva la simetria.
Malgrat aquesta pèrdua de simetria, nosaltres treballem amb aquestes parametritzacions

asimètriques per les següents raons:

(1) Les nostres aproximacions, encara que s’han obtingut mitjançant mètodes asimètrics,

semblen ser almenys tan bones com altres dedüıdes de mètodes simètrics com ara la

construcció de superf́ıcies de permanència o altres mètodes dedüıts exigint simetria

als resultats.
(2) Per a grau 3, hi ha un important exemple de superf́ıcie minimal: la superf́ıcie

d’Enneper. Aquesta superf́ıcie s’obté com a resultat amb els mètodes asimètrics,

però en canvi no es pot obtenir mitjançant cap màscara simètrica. Es pot provar

que hi ha parts de la superf́ıcie d’Enneper per a les quals el punt de control interior

no es pot obtenir aplicant cap màscara simètrica als punts fronterers.
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(3) Les màscares simètriques es dedueixen exigint algunes caracteŕıstiques a la xarxa de

control però, no a la superf́ıcie de Bézier associada. Els nostres mètodes es basen

directament en les superf́ıcies de Bézier, donat que el que volem és minimitzar algun

funcional relacionat directament amb la superf́ıcie.

Ara introduirem el nostre treball amb un poc més de detall.

Els tres primers caṕıtols del nostre estudi tracten del disseny de superf́ıcies mitjançant

la resolució d’equacions en derivades parcials: obtenim una superf́ıcie com a solució d’un

problema de contorn determinat. L’any 1989, Bloor i Wilson van anomenar PDE surfaces

(superf́ıcies EDP) a les superf́ıcies obtingudes amb aquesta tècnica, veure [8]. Amb aquest

mètode per a generar superf́ıcies, com que la major part de la informació que defineix una

superf́ıcie la dóna la frontera i afegint a l’EDP condicions de contorn, s’aconsegueix el control

de la superf́ıcie a partir de pocs paràmetres.

Al primer caṕıtol estudiem la manera de generar superf́ıcies de Bézier harmòniques

donats alguns dels seus punts de control com a informació inicial. Les superf́ıcies de Bézier

harmòniques són superf́ıcies EDP que s’obtenen com a solucions de l’equació ∆−→x = 0, on

∆ denota l’operador harmònic o Laplacià. Les superf́ıcies harmòniques, que tenen relació

amb diverses àrees d’aplicació en CAGD, com ara el disseny de superf́ıcies, la suavització

de xarxes geomètriques i el fairing, estan relacionades, a més a més, amb les superf́ıcies

minimals: una superf́ıcie paramètrica isoterma és minimal si i només si és harmònica.

Nosaltres hem desenvolupat en aquest caṕıtol dos mètodes diferents per a generar su-

perf́ıcies de Bézier triangulars harmòniques. El primer mètode permet construir una su-

perf́ıcie harmònica donada una corba fronterera i el pla tangent al llarg d’aquesta, és a dir,

donades dues files de punts de control. Aquest mètode ens ha permès obtenir bons resultats

per a graus inferiors però, com que al prescriure dues files de punts de control deixem lliure

el tercer vèrtex, en alguns cassos aquest pot divergir de la forma desitjada, com de fet passa

al augmentar el grau dels nostres exemples. Aquest problema l’hem pogut solucionar amb

el segon mètode que proposem. En lloc de prescriure dues files de punts de control, amb

aquest segon mètode s’obté una superf́ıcie harmònica prefixant un conjunt de punts el més

semblant possible a dues corbes frontereres. D’aquesta manera s’incrementa el control sobre

la forma de la superf́ıcie obtinguda, donat que els tres vèrtex estan controlats. Les superf́ıcies

obtingudes amb aquest mètode s’adapten perfectament a la informació donada per l’usuari.

En blau representem el conjunt de punts de control que, a cadascun dels mètodes, permet determinar totalment una

superf́ıcie de Bézier harmònica.
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Al segon caṕıtol donem dos mètodes per a generar superf́ıcies de Bézier triangulars

biharmòniques amb alguns dels seus punts de control prefixats. Una superf́ıcie biharmònica

acompleix l’EDP ∆2−→x = 0, on ∆2 és l’operador bilaplacià. El terme thin plate problem que

s’utilitza per a fer referència al problema de contorn biharmònic, es deu a l’analogia d’aquest

problema amb el problema f́ısic referent al doblegament d’una fina làmina de metall.

Com hem dit abans, en [30] i [31] podem trobar un estudi del problema biharmònic

per a superf́ıcies de Bézier rectangulars. En aquests articles es va provar que dues corbes

frontereres oposades determinen una superf́ıcie de Bézier rectangular harmònica i que una

superf́ıcie de Bézier rectangular biharmònica està totalment determinada per les seues quatre

corbes frontereres. D’aquests resultats i dels nostres per a superf́ıcies triangulars, es dedueix

que l’ordre de l’EDP determina, d’alguna manera, el nombre de paràmetres que queden

lliures.
Efectivament, en aquest caṕıtol hem obtingut dos mètodes per a generar a partir de

l’equació biharmònica, que és una EDP quart ordre, superf́ıcies de Bézier biharmòniques

donades quatre files de punts de control. En el primer mètode les quatre files de punts

de control són una fronterera i les tres files següents, de manera que un dels vèrtex queda

lliure, com en el cas harmònic i, per tant, de vegades podem obtenir resultats no desitjats

si aquest vèrtex divergeix de la informació inicial. Al segon mètode, es prefixen dues corbes

frontereres i els plans tangents al llarg d’aquestes, és a dir, dues files de punts de control

fronterers i les seues files vëınes, de manera que els tres vèrtex són informació donada aix́ı

com les dues corbes frontereres i els plans tangents al llarg d’aquestes, i només resten lliures

els punts de control interiors d’una corba fronterera. Per tant, amb aquest mètode augmenta

considerablement el control sobre la forma de la superf́ıcie dissenyada.

En blau representem el conjunt de punts de control que, a cadascun dels mètodes, permet determinar totalment una

superf́ıcie de Bézier biharmònica.

Vists els resultats obtinguts per a EDPs de segon i quart ordre és lògic pensar que,

donades les corbes frontereres d’una superf́ıcie de Bézier triangular, es podria determinar

una superf́ıcie interpoladora com a solució d’una EDP de tercer ordre.

Aix́ı, al quart caṕıtol, hem introdüıt una equació en derivades parcials de tercer ordre i

hem donat un mètode per a generar la superf́ıcie EDP associada donada la frontera. Aix́ı com

les quatre corbes frontereres determinen una superf́ıcie de Bézier rectangular biharmònica,

per al cas triangular les corbes frontereres determinen una superf́ıcie solució d’una EDP

de tercer ordre. Aquest mètode, que hem anomenat mètode de tercer ordre, fa possible la
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creació d’objectes reals basada en la informació provinent de la frontera de l’objecte que es

vol dissenyar.

Donats els punts de control fronterers està totalment determinada una superf́ıcie de Bézier que satisfà l’EDP de tercer

ordre que hem introdüıt en aquest caṕıtol.

Els dissenyadors treballen, generalment, amb superf́ıcies de baix grau, però, malgrat això,

si considerem el problema d’aproximar superf́ıcies harmòniques o biharmòniques mitjançant

superf́ıcies polinòmiques, el grau de les superf́ıcies polinòmiques ha d’incrementar-se per tal

d’obtenir bones aproximacions. Per tant, hem provat tots els resultats esmentats en general,

per a un grau arbitrari.

Abans d’introduir el mètode de tercer ordre al quart caṕıtol, al tercer caṕıtol fem un

estudi de les superf́ıcies de Coons triangulars. En contret, fem una comparació entre les

superf́ıcies de Coons triangulars i les rectangulars.

Hem considerat el problema de trobar un extremal polinòmic del funcional

F (−→x ) =

∫

U

‖−→xuv‖2du dv,

entre totes les superf́ıcies rectangulars amb la mateixa frontera. Hem provat que minimitzar

aquest funcional és equivalent a resoldre l’EDP −→x uuvv = 0 i que a més a més, la superf́ıcie

de Coons rectangular és l’única solució d’aquest problema.

D’altra banda, hem demostrat que les superf́ıcies de Coons triangulars no són extremals

d’aquest funcional. Llavors, hem estudiat sota quines condicions seria equivalent trobar els

extremals de F entre totes les superf́ıcies triangulars polinòmiques amb la mateixa frontera

i resoldre l’EDP −→x uuvv = 0.

En aquest caṕıtol també hem introdüıt les superf́ıcies de Coons tringulars discretes i hem

donat una caracterització de la xarxa de control dels extremals del funcional. Aquesta carac-

terització ens ha permès desenvolupar dos mètodes més per a generar superf́ıcies de Bézier

triangulars donada la seua frontera. El primer mètode consisteix en trobar els extremals del

funcional com a solució d’un sistema d’equacions lineals en funció dels punts de control. El

segon mètode ens permet generar superf́ıcies de Bézier triangulars mitjançant una màscara

dedüıda de la caracterització dels extremals cúbics del funcional. Comparant els resultats

obtinguts amb aquests mètodes podem dir que s’obtenen formes més ben adaptades a la in-

formació inicial amb el càlcul d’extremals del funcional que mitjançant la màscara associada.
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També s’obtenen bons resultats per a la superf́ıcie triangular de Coons, però l’ús d’aquesta

implica un augment del grau de la superf́ıcie.

Al cinquè i al sisè caṕıtols d’aquest treball hem presentat diversos mètodes per generar

superf́ıcies de Bézier triangulars donats diferents conjunts de condicions inicials, però en

contrast amb els caṕıtols previs, aquests mètodes generen ara superf́ıcies minimals i aproxi-

macions de superf́ıcies minimals.

Al caṕıtol cinquè donem alguns mètodes basats en les fórmules de representació de

superf́ıcies minimals definides per K. Weierstrass al 1861. Fent ús de la teoria de variable

complexa, descrivim la manera de generar superf́ıcies minimals i isotermes a partir de dife-

rents conjunts de condicions inicials, com ara: punts de control, els plans tangents als vèrtex

de la superf́ıcie o altres tipus de paràmetres.

El primer mètode que descrivim en aquest caṕıtol, permet construir una superf́ıcie mini-

mal cúbica donats els tres vèrtex. El segon mètode, permet construir una superf́ıcie minimal

de grau 7 donats els tres vèrtex i els vectors normals associats. El tercer métode, que és una

generalització de l’anterior, permet generar superf́ıcies de grau superior donat un conjunt

arbitrari de punts de la superf́ıcie i els vectors normals als tres vertex.

A més a més, en aquest caṕıtol hem estudiat la relació entre les superf́ıcies minimals i les

corbes complexes minimals. Amb l’objectiu de reduir al màxim el nombre de paràmetres que

determinen una superf́ıcie minimal, hem obtingut dos mètodes més per a generar superf́ıcies

cúbiques minimals i isotermes, un amb 9 graus de llibertat i un altre que només deixa lliures

2 paràmetres.

Dels resultats obtinguts dedüım que al reduir el nombre de paràmetres lliures les su-

perf́ıcies minimals resulten ser massa restrictives. Per a baix grau, per exemple quan repre-

sentem parts de la superf́ıcie d’Enneper, obtenim bons resultats, però trobem que al agmentar

el grau les superf́ıcies obtingudes són massa complicades.

D’altra banda, també podem concloure que les superf́ıcies minimals no són adequades

per resoldre problemes com el blending. La condició H = 0 imposa excessives restriccions a

una superf́ıcie, de manera que no podem esperar trobar una superf́ıcie minimal polinòmica

donada la seua frontera.

Al caṕıtol sisè hem considerat el problema de Plateau-Bézier. Al llarg dels anys el

problema de trobar una superf́ıcie minimal donada la seua frontera, anomenat problema de

Plateau, ha estat àmpliament estudiat. En aquest treball hem considerat aquest problema

però restringit, el qual hem anomenat problema de Plateau-Bézier, que consisteix en trobar

la superf́ıcie de Bézier triangular amb àrea mı́nima entre totes les superf́ıcies de Bézier

triangulars amb una frontera prescrita. Aquest problema fou estudiat amb anterioritat en

[30] per a superf́ıcies de Bézier rectangulars. En aquest caṕıtol fem un estudi similar al

realitzat a l’article citat, però per a superf́ıcies triangulars. Per tal d’obtenir una aproximació

de la solució del problema de Plateau, substitüım el funcional de l’àrea pel funcional de

Dirichlet. Llavors, comparem les àrees de les superf́ıcies extremals del funcional de Dirichlet
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amb les de les superf́ıcies generades mitjançant les màscares definides en [14], és a dir, les

superf́ıcies de permanència. A més, donem una expressió del funcional de Dirichlet en termes

dels punts de control, aix́ı el funcional passa a ser una funció dels punts de control. Després,

a partir d’aquesta expressió, hem dedüıt una caracterització de la xarxa de control d’un

extremal del funcional.
Les superf́ıcies obtingudes pel mètode de Dirichlet s’adeqüen perfectament a la informació

donada per la frontera prescrita, a més a més, com que hem comparat les seues àrees amb les

de les superf́ıces constrüıdes mitjançant diferents màscares, podem afirmar que amb aquest

mètode s’obtenen bones aproximacions polinòmiques de superf́ıcies minimals. Però, com

que la condició necessària per a que coincideixin el funcional de l’àrea i el de Dirichlet és

la isotermalitat de la superf́ıcie, si la frontera prefixada no gaudeix d’aquesta caracteŕıstica,

les aproximacions obtingudes mitjançant el mètode de Dirichlet patiran un error de sortida

inevitable. Per tal d’evitar aquest inconvenient hem desenvolupat un nou mètode, que

anomenem correció del mètode de Dirichlet, amb el qual millorem les aproximacions de

Dirichlet.
Finalment, en aquest caṕıtol hem fet un estudi anàleg al realitzat amb el funcional de

Dirichlet, però per al funcional biharmònic.

A l’últim caṕıtol hem estudiat les superf́ıcies de Bézier triangulars amb curvatura

mitjana constant, les superf́ıcies CMC. Aquestes superf́ıcies són extremals del funcional

DH(−→x ) = D(−→x ) + 2 HV (−→x ), on D(−→x ) és el funcional de Dirichlet i el funcional V (−→x ),

que introduirem en aquest caṕıtol, és el que mesura el volum englobat pel con format per

totes les l´́ınies que uneixen els punts de la superf́ıcie, −→x (u, v), amb l’origen. En aquest tre-

ball hem considerat aquest funcional restringit a les superf́ıcies de Bézier triangulars i hem

obtingut un mètode per a generar aproximacions polinòmiques de superf́ıcies amb curvatura

mitjana constant.

Com al caṕıtol sisè, donem aćı una caracterització en termes dels punts de control dels

extremals de DH entre totes les superf́ıcies de Bézier triangulars amb la mateixa frontera.

Aquesta caracterització ens permet generar aproximacions polinòmiques a superf́ıcies CMC

com a solució d’un sistema quadràtic en funció dels punts de control.

Donada una frontera, es pot trobar una famı́lia d’aproximacions polinòmiques a su-

perf́ıcies CMC amb curvatures mitjanes en un determinat interval. Aix́ı, la possibilitat de

prescriure la curvatura amb aquest mètode es pot interpretar com un grau més de llibertat

a l’hora de fer un disseny en comparació amb el mètode de Dirichlet.

Finalment, a l’última secció d’aquest treball hem considerat el problema C1 i hem in-

trodüıt un mètode per a generar aproximacions polinòmiques de superf́ıcies amb curvatura

mitjana constant donada la seua frontera i els plans tangents al llarg d’aquesta.



Introduction

The broad aim of this work is to develop different techniques to generate triangular Bézier

surfaces from the point of view of one of the oldest problems in Computer Aided Geometric

Design: the construction of a surface which interpolates given boundary curves.

Computer Aided Geometric Design, CAGD, has focused its study of surfaces mainly on

the theory of rectangular surface patches, introduced by Coons and Bézier in the sixties.

Nevertheless, our work is based on triangular Bézier surfaces, so let us explain why. Trian-

gular patches are considered a more “natural” generalization of Bézier curves than tensor

product patches. This is due to the following fact: The linear interpolation, in the definition

of a Bézier curve, is the convex combination of two points, while the barycentric coordinates,

used to define a triangular Bézier surface, are the convex combination of three points. In

fact, triangular patches were first considered by Paul de Casteljau in the late fifties, before

tensor product Bézier surfaces were defined1, see [13] and [15]. He defined these patches

with a symmetric formulation in terms of barycentric coordinates with respect to a triangular

domain.

The importance of the problem of determining a surface given its boundary curves lies

in its application in several issues such as object design or fairing and blending of surfaces.

A major difficulty in creating practical objects on the computer stems from to the lack

of methods for defining them in an easy intuitive way. From the point of view of a designer

it is extremely important to be able to create realistic objects and manipulate them in a

simple manner. Thus, since a very important part of the information about the shape of

an object comes from its boundary curves, methods to create a surface interpolating those

boundaries compatible with affine transformations are a good way of building surfaces from

a few parameters.

As we have said, there are other important problems in CAGD related with the problem

of building a surface that interpolates given boundaries, such as fairing and blending.

The problem of fairing a surface can also be solved by means of the construction of

surfaces with a prescribed boundary. Fairing consists in smoothing those regions of a surface

with wrinkles or other flaws. These irregularities, that are often produced when the process

of modeling is done by specifying directly the control points, especially when the surface is

1The reader could wonder why they are called triangular Bézier surfaces when it was de Casteljau who first introduced

the concept. The fact is that whereas de Casteljau’s work was never published, that of Bézier was, and this accounts for the

fact that triangular Bézier surfaces bear Bézier’s name although he never considered them.

11
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determined by a large number of points, are mainly detected thanks to second-order analysis

o equivalently to curvature analysis2.

Fairing procedures typically aim at removing noise from data points from the variational

design point of view. For fairing a parametrized surface, −→x : U → R3, in some inner region,

U0 ⊂ U , a new surface, −→y : U → R3, is chosen that coincides with −→x outside of U0 and also

minimizes some fairness functional. That is, a new patch is defined on U0 with its boundary

prescribed by the initial surface.

Variational principles have become quite useful for fairing purposes in the design of free

form surfaces. A constrained variational surface is a surface that minimizes some energy

functional under certain interpolation constraints. These methods involving the minimizing

of a functional, which measures the fairness of a surface, are called variational design. The

functionals typically depend on local properties of the surface, such as the normal vector

and curvature. In [20], a study of some fairness functionals that allows efficient fairing is

presented. Modeling surfaces using constrained variational principles is attractive, because

the designer is not bothered by the precise representation of the surface by means of control

points.

Another important application of interpolant surfaces is blending. Surfaces with non

trivial topology need more than one patch to be represented. A blending surface is a surface

that smoothly connects given surfaces along arbitrary curves on each surface. The contact

curves are either user-defined or obtained by offset surface intersection. The blending surface

usually ensures positional and normal vector continuity along the contact curves on the two

base surfaces within a given accuracy. Blending is very important in geometric modeling

and it is widely used to improve aesthetics and reduce stress concentrations of a product.

A lot of research has been conducted on the problem of determining a surface given its

boundary. A popular polynomial solution to the problem is the bilinearly blended Coons

patch: Given four boundary curves, the Coons patch is a parametric surface, defined over the

unit square, which has these four curves as boundary curves. Indeed, this problem is under-

specified because there are an infinite number of surfaces that can interpolate any four given

boundary curves. A generalization of Coons patches interpolating a rectangular network of

curves are Gordon surfaces, which were developed in the late 1960s when Gordon was working

for the General Motors Research labs. He coined the term “transfinite interpolation” for this

kind of surfaces.
As regards polynomial interpolation to boundary data on triangles, some previous work

has also been carried out. See Barnhill et al. [4], Barnhill and Gregory [5], or Nielson [32],

where the authors derived different polynomials interpolating boundary data. Moreover, a

particular triangular Coons patch can be found in [33].

The literature offers many different methods that have been used for surface construction

by interpolating boundary curves or fitting to some other kind of constraints. In this work we

address the problem of determining a polynomial surface described by a set of initial data,

2Since most of our method are related to the mean curvature we can expect to avoid these irregular shapes.
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such as the boundary curves or some of their control points, with some of these techniques.

The generation methods we have studied can be classified in three categories:

(1) Functional minimization: Given the boundary curves, we determine the sur-

face that minimizes some functional among all the polynomial surfaces with that

given boundary. We have considered three quadratic functionals: the Dirichlet func-

tional, the Biharmonic functional3 and the functional that the Coons patch mini-

mizes. Moreover, we have considered a cubic functional, the CMC-functional. We

conduct our study in terms of Bézier surfaces4, and these functionals, restricted to

the space of polynomials, turn into functions of the control points. Thus, the ex-

tremal of a functional I among all triangular Bézier surfaces can be computed as

the minimum of the real function

P → I (−→x P) ,

−→x P being the triangular Bézier patch associated to the control net P .

(2) PDE surfaces: A triangular Bézier surface satisfying a partial differential equation

can be determined given some of its control points. The minimum set of prescribed

control points depends on the PDE under study, mainly on the order of the PDE.

Previous work on this subject was performed in [30] and [31]. The cited papers

study the generation of rectangular Bézier surfaces satisfying the Laplace equation

as well as the biharmonic equation. Moreover, an analogous study about the Bézier

solutions of the wave equation can be found in [6]. In the case of harmonic Bézier

surfaces two boundary conditions were required to construct the surface while for

biharmonic Bézier surfaces four boundary curves were needed as initial data. It is

important to highlight the fact that although boundary-value problems are consid-

ered, if polynomial solutions are sought, the problem has a unique solution only by

prescribing the boundary and no normal derivatives along it are required. One would

expect biharmonic surfaces unconstrained to be a polynomial to be defined not only

by the boundaries but also by the boundary cross-slopes; but the fact is that, if

polynomial surfaces are required, the cross-slopes are determined by the boundary.

Here we have considered the PDE defined by the Euler-Lagrange equations as-

sociated to the Dirichlet functional and to the Biharmonic functional which are the
Laplace and the biharmonic equation, and we have computed in each case which

points on the control net must be known to have a surface uniquely determined by

the PDE. Moreover we have introduced a third-order PDE, which is not associated

to any functional, that enables us to define a triangular Bézier surface given the

border control points. The prescription of the boundary increases the control over

the shapes that can be designed.

3These functionals, which are called the Dirichlet and the Biharmonic functionals in the mathematical literature, are

known as stretching energy and bending energy, respectively, in the physical, engineering or CAGD literature.
4Unless otherwise stated Bézier surface means triangular Bézier surface along this introduction.
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Let us emphatically remark that, since we restrict the minimization of a func-

tional to the space of polynomial surfaces the functional is now just a function, and

an extremal of this function is not forced to fulfill the Euler-Lagrange equation asso-

ciated to the functional. Therefore functional minimization offers us solutions that
are different to those we get as a solution of its Euler-Lagrange PDE.

(3) Masks: Another way of building surfaces is by means of masks. A mask is a

set of coefficients that define any control point of a Bézier surface in terms of its

neighboring control points. Thus, the whole control net is obtained as a solution of

a linear system. The use of masks has its origin in numerical methods to discretize

and solve differential equations. One way of obtaining an approximated solution to

a differential equation is by performing its finite difference discretization, and then

the discrete solutions can be represented by masks.

In [14], G. Farin and D. Hansford present a new class of control net generation

schemes based on a special kind of masks that they call permanence patches. A mask

for rectangular patches is defined as a generalization of the discrete Coons patch

and the analogous mask for triangular surfaces is an extension of their definition

for the rectangular case. These masks, which allow the construction of permanence

patches, can also be considered in terms of discretized PDEs as a blend of variational

principles.

Here we have defined some masks associated to the functionals and to the PDEs
that we have studied, and we have also discussed our results in comparison with

those corresponding to permanence patches obtained through the masks defined in

[14].

Before starting an explicit description of our work, we would like to make a comment

concerning parametrizations. There is a difference between the symmetry of the results

obtained for rectangular Bézier surfaces and the asymmetry of triangular surfaces. For

usual Bézier surfaces, there is a very clear association between rectangular control nets and

parametrizations of a Bézier surface. In the case of triangular Bézier surfaces, things are not

so easy. The most direct association between triangular control nets and parametrizations of

triangular Bézier surfaces is the one obtained after the substitution of one of the barycentric

coordinates by an expression depending on the other two bearing in mind the relation u +

v + w = 1. For example, if −→y (u, v, w) is the patch in barycentric coordinates, then we shall

work with the patch −→x (u, v) = −→y (u, v, 1− u− v). Moreover, if we suppose now that (u, v)

are Cartesian coordinates or, equivalently, that the triangle used to define the barycentric

coordinates is the non-equilateral one whose vertices are (0, 0), (1, 0) and (0, 1), then this

association has a serious drawback, namely, the breakdown of symmetry. Even if the control

net is symmetric (Pσ(i)σ(j)σ(k) = Pijk for any permutation σ), the Bézier triangular surface

does not preserve the symmetry.

Nevertheless, we have followed this non-symmetric approach due to the following facts:
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(1) Our approximations, despite the use of non-symmetric methods, seem to be at least

as good as other results deduced from symmetric methods, such as the construction

of permanence patches or other methods that are deduced forcing symmetry.

(2) For degree 3, there is a well-known minimal surface, Enneper’s surface. The use

of asymmetric methods allows us to obtain this surface as a result but this is no

longer true for any symmetric mask. It can be shown that there are pieces of the

Enneper surface for which the interior control point cannot be obtained by applying

a symmetric mask to the exterior control points.

(3) Symmetric masks are deduced after some arguments on the control net, but not on

the Bézier surface. Our methods are based directly on the Bézier surface when we

want to minimize some functional directly related with the surface.

Let us introduce our work with a little more detail.
Our approach in the first three chapters regards surface design by solving Partial Dif-

ferential Equations (PDEs): we create a surface as a solution to an appropriately chosen

boundary-value problem. In 1989, Bloor and Wilson gave this type of surface modeling

techniques the name “PDE surfaces”, see [8]. Since most information defining a surface

comes from its boundary curves, adding some boundary conditions to the PDE allows the

PDE-based method to generate and control the surface shape through very few parameters.

In the first chapter we study the way to generate harmonic surfaces given some of their

control points as initial data. Harmonic surfaces are the PDE surfaces obtained as a solution

of the equation ∆−→x = 0, where ∆ denotes the harmonic operator otherwise known as the

Laplacian. Harmonic surfaces, which have found their way into various application areas of

CAGD such as surface design, geometric mesh smoothing and fairing, are moreover related

to surfaces minimizing the area: an isothermal parametric surface is minimal if and only if

it is harmonic.

In the second chapter we give two different methods to generate biharmonic triangular

Bézier surfaces with some of their control points prescribed. A biharmonic surface satisfies

the PDE ∆2−→x = 0, where ∆2 is the bilaplacian operator. The term “thin plate problem”,

which is used to refer to the biharmonic boundary problem, comes from the physical analogy

involving the bending of a thin sheet of metal.

As we said before, for tensor-product Bézier surfaces an analogous study of harmonic

and biharmonic surfaces was previously conducted in [30] and [31]. In these papers it was

proved that two opposite boundary curves of an harmonic Bézier rectangular patch determine

the surface and that any biharmonic rectangular Bézier surface is fully determined by the

boundary control points, that is, four boundary curves. From these results and from our

analogous findings for triangular Bézier surfaces, it can be deduced that the order of the

PDE somehow determines the number of parameters that are free. Therefore, it is natural

to think that, given the boundary curves of a triangular patch, an interpolating surface would

be totally determined as a solution of a third-order PDE.
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In this way, in the fourth chapter, we introduce a third order PDE and we give a method

to generate the associated PDE surface from a prescribed boundary. Since the boundary

curves determine the whole of a biharmonic surface in the rectangular case, in the triangular

case the boundary control points determine a surface associated to a third-order PDE. This

method, which we call the third-order method, makes it possible to create the geometry of

realistic objects based upon the surface information at the boundaries of the object to be

designed.

Before introducing the third-order method in chapter four, we present a study about tri-

angular Coons patches in the third chapter. More specifically we have compared triangular

Coons patches with rectangular Coons patches.

Here, we have considered the problem of finding a polynomial extremal of the functional

F (−→x ) =

∫

U

‖−→xuv‖2du dv,

among all rectangular patches with the same boundary. We have proved that this is equiv-

alent to solve the PDE −→x uuvv = 0, and that, in addition, the Coons rectangular patch is a

solution.
On the other hand, we have seen that triangular Coons patches are not extremals of this

functional. We then studied the conditions under which it would be equivalent to finding an

extremal of F among all polynomial triangular patches with a prescribed boundary and to

solving the PDE −→x uuvv = 0.

Moreover, we defined the Triangular Discrete Coons patch and we gave a characterization

of the control net of a triangular Bézier extremal of the functional F . This characterization

allowed us to develop two methods to generate triangular patches given the boundary curves.

The first method is to find the extremals of the functional as a solution of a linear system

of the control points. The second method enables us to build a Bézier triangle by means of

a mask deduced from the characterization of cubical extremals.

In general, we know designers usually only deal with low degree surfaces but, anyway, if

we think about the problem of approximating arbitrary harmonic or biharmonic surfaces by

polynomial surfaces then it is known that the degree of polynomial surfaces must increase

in order to get good approximations. Therefore we have proved all our related results in

general, for an arbitrary degree.

In the fifth and the sixth chapters of this work we also give different methods to generate

Bézier triangles given some different kinds of initial data but, in contrast to the previous

chapters, we generate minimal surfaces and polynomial approximations to minimal surfaces.

In chapter five we give some methods to generate minimal surfaces based on the repre-

sentation formulas obtained by K. Weierstrass in 1861. Making use of the theory of complex

analysis, we describe the way to build minimal and isothermal surfaces starting out from

several sets of initial conditions such as control points, the tangent planes at the surface

vertices or other kind of parameters.
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Moreover, we study the relation between minimal surfaces and minimal complex curves

and we deduce from this study two more methods to generate cubical minimal isothermal

surfaces.

In chapter six, we have considered the Plateau-Bézier problem. Over the years it has

been studied the general problem of determining the shape of the minimal surface constrained

by a given boundary, which is known as Plateau’s Problem. Here, we have considered a

restricted problem, the Plateau-Bézier problem, which consists in finding the Bézier surface

with minimal area from among all Bézier surfaces with a prescribed boundary. This problem

was previously discussed in [30] for rectangular Bézier patches. In this chapter we provide

an analogous discussion. We give an approximation to the solution of the Plateau problem

obtained by replacing the area functional with the Dirichlet functional, for triangular Bézier

surfaces. Then we make some comparisons between Dirichlet extremals and Bézier surfaces

obtained by the use of the masks defined in [14], that is, the permanence patches. We

also provide an expression of the Dirichlet functional in terms of the control points of a

triangular Bézier surface, and then the functional translates into a function of the control

points. Afterwards, from this expression we derive a characterization of the triangular control

net of an extremal of this functional. In addition, an analogous study to the one described

above for the Dirichlet functional but in this case concerning the Biharmonic functional is

also included in this chapter.

In the last chapter we study constant mean curvature triangular Bézier surfaces. CMC-

surfaces are extremals of the functional DH(−→x ) = D(−→x ) + 2 HV (−→x ), where D(−→x ) is the

Dirichlet functional and the functional V (−→x ), that we introduce in this chapter, is the

functional that measures the algebraic volume enclosed in the cone segment consisting of all

lines joining points −→x (u, v) on the surface with the origin.

Here we consider this functional over triangular Bézier patches and we obtain a method

to generate polynomial approximations to constant mean curvature surfaces.

As we did in chapter six, we give a characterization, in terms of control points, of an

extremal of DH among all Bézier triangles with the same border. This characterization of

the Bézier extremals of DH allows us to compute the polynomial approximations to CMC-

surfaces as a solution of a quadratic system of the control points.

For a given boundary it can be found a family of polynomial approximations to CMC-

surfaces with curvatures in a particular interval. Therefore, the prescription of the curvature

in this method can be seen as an additional degree of freedom.

At the end of each chapter we will present a discussion about the work done. We will

explain our conclusions deduced from the results we have obtained in relation to the problems

under consideration.





CHAPTER 1

Constructing triangular Bézier surfaces using linear PDEs:

Harmonic surfaces

In this chapter we present some results related with harmonic triangular Bézier surfaces,

that is, those Bézier triangles verifying ∆−→x = 0 where ∆ =
(

∂2

∂u2 + ∂2

∂v2

)
. The harmonic

operator, otherwise known as the Laplacian operator, has been widely used in many appli-

cation areas such as physics. It is associated with a wide range of physical problems, for

example gravity, electromagnetism and fluid flows.

Moreover, as is well known, harmonic surfaces are related to minimal surfaces. The

relation is as follows: given a parametric surface patch −→x (u, v) satisfying the isothermality

condition, i.e.,

< −→x u,
−→x u >=< −→x v,

−→x v > and < −→x u,
−→x v >= 0

where −→x u and −→x v are the first derivatives with respect to u and v and <,> is the dot

product, then the surface it represents is minimal, in the sense of minimal area, if and only

if it is harmonic. Let us remark that the harmonicity of a surface is a characteristic that

depends on the parametrization.

The main result from the theory of minimal surfaces states that, under certain conditions,

given the boundary there is a unique minimal surface prescribed by that boundary. In [29] it

was proved that the harmonicity condition, for rectangular Bézier patches, and the knowledge

of two opposite boundary curves determine the whole of the surface. Here we will present

a similar study of harmonic Bézier surfaces, (as it was done in paper [29]), but instead of

rectangular Bézier patches we will deal with Bézier triangles.

Triangular Bézier surfaces have an advantage over rectangular Bézier surfaces when deal-

ing with derivatives. Let us illustrate it with an example: Given a polynomial unvn, as a

tensor-product Bézier surface coordinate function, its degree is (n, n), while if it is considered

as a triangular Bézier coordinate function its degree would be 2n. Then if we take deriva-

tives, for example, if we consider the Laplacian, ∆ (unvn) = un−2vn + unvn−2, in terms of

rectangular patches its degree is still (n, n), but it decreases to 2n− 2 in terms of triangular

Bézier surfaces. Therefore we can consider that triangular Bézier patches are better adapted

to PDE problems.

First of all let us recall some definitions and basic properties related with Bézier surfaces.

19
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1. Triangular Bézier Surfaces

Consider a triangle with vertices A, B, C and a fourth point P , all in R3. Then, it is

always possible to write P as a barycentric combination of A, B, C

P = uA + vB + wC requiring that u + v + w = 1.

The coefficients u = (u, v, w) are called barycentric coordinates of P with respect to A,

B, C.

To build a triangular Bézier surface of degree n we have to repeat the barycentric inter-

polation in the same way we repeat the bilinear interpolation in the de Casteljau algorithm

for constructing a Bézier surface, see [21]. The control net for a triangular Bézier surface of

degree n consists of (n+1)(n+2)
2

points arranged in a triangular grid. As an example, we can

see the following triangular control net which shows the case of degree 4:

P400 P310 P220 P130 P040

P301 P211 P121 P031

(1) P202 P112 P022

P103 P013

P004

We will denote each point of the triangular control net by PI where I = (i, j, k) and

|I| = i + j + k.

In the same way that a rectangular Bézier surface admits two equivalent definitions, the

one from the de Casteljau algorithm and the one with univariate Bernstein polynomials, a

triangular Bézier surface can be defined in both equivalent ways. A triangular Bézier surface

in terms of the trivariate Bernstein polynomials :

Definition 1.1. The trivariate Bernstein polynomial of degree n is defined as

Bn
I (u) =

(
n

I

)
ui vj wk =

n!

i!j!k!
ui vj wk if |I| = n,

otherwise Bn
I (u) = 0.

Although these Bernstein polynomials look trivariate, they are not, since the barycentric

coordinates verify the relation u + v + w = 1.

We will denote by R the region R = {u = (u, v, w) ∈ R3/u+v+w = 1 and u, v, w ≥ 0}
and by T the region T = {(u, v) ∈ R2 : 0 ≤ u, 0 ≤ v, u + v ≤ 1}.

The following lemmas will introduce us to some of the properties of Bernstein polynomi-

als.
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Lemma 1.2. The product of a pair of Bernstein polynomials is given by:

(2) Bn
I (u) ·Bm

J (u) =

(
n
I

)(
m
J

)
(

n+m
I+J

) Bn+m
I+J (u) where |I| = n, |J | = m.

Lemma 1.3. The partial derivatives of Bernstein polynomials are given by:

∂

∂u
Bn

I (u) = n (Bn−1
I−e1

(u)−Bn−1
I−e3

(u))

∂

∂v
Bn

I (u) = n (Bn−1
I−e2

(u)−Bn−1
I−e3

(u)),

where we have denoted e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

Lemma 1.4. The integral of a Bernstein polynomial over the triangle T is given by

(3)

∫

T

Bn
I (u, v, 1− u− v) dv du =

1

(n + 1)(n + 2)
for all I; |I| = n.

Proof: Taking into account that for k = 0 we have that j = n− i we get:

(4)

∫
T

Bn
(i,j,0)(u, v, 1− u− v) dv du =

∫ 1

0

∫ 1−u

0
Bn

(i,j,0)(u, v, 1− u− v) dv du

=
∫ 1

0

∫ 1−u

0

(
n
I

)
ui vn−i dv du

=
∫ 1

0

(
n
I

)
ui (1−u)n−i+1

n−i+1
du

=
∫ 1

0
1

n+1
Bn+1

i (u) du = 1
(n+1)(n+2)

,

where Bn+1
i (u) is the univariate Bernstein polynomial.

Now, integrating by parts, we get the equality:

(5)

∫ 1−u

0

Bn
(i,j+1,k−1)(u, v, 1− u− v) dv =

∫ 1−u

0

Bn
(i,j,k)(u, v, 1− u− v) dv.

and therefore, by successive application of (5) to the previous computation (4), we get the

desired result.

¥

Definition 1.5. Given a triangular control net in R3, P = {PI}|I|=n, the triangular

Bézier surface of degree n associated to a control net P, −→x : T −→ R3 is given by:

−→x (u) =
∑

|I|=n

PIB
n
I (u).
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Lemma 1.6. The partial m-th derivatives of a triangular Bézier patch, −→x , are given by

the following formulas

(6)

∂m−→x
∂um

(u, v) =
n!

(n−m)!

∑

|I|=n−m

∆m,0PIB
(n−m)
I (u, v),

∂m−→x
∂vm

(u, v) =
n!

(n−m)!

∑

|I|=n−m

∆0,mPIB
(n−m)
I (u, v).

where we have introduced the notation

(7)
∆l,mPi,j,k = ∆l−1,m∆1,0Pi,j,k = ∆l−1,m (Pi+1,j,k − Pi,j,k+1) ,

∆l,mPi,j,k = ∆l,m−1∆0,1Pi,j,k = ∆l,m−1 (Pi,j+1,k − Pi,j,k+1) .

Proof: First we will compute partial derivatives with respect to u.

∂−→x
∂u

(u, v) =
∂

∂u
(
∑

|I|=n

PIB
n
I (u, v)) =

∑

|I|=n

PI
∂

∂u
Bn

I (u, v)

= n
∑

|I|=n

PI(B
n−1
I−e1

(u, v)−Bn−1
I−e3

(u, v))

= n (
∑

|I|=n

PIB
n−1
I−e1

(u, v)−
∑

|I|=n

PIB
n−1
I−e3

(u, v))

= n
∑

|I|=n−1

(PI+e1 − PI+e3)B
n−1
I (u, v)

= n
∑

|I|=n−1

(Pi+1,j,k − Pi,j,k+1)B
n−1
I (u, v)

= n
∑

|I|=n−1

∆1,0PIB
n−1
I (u, v).

So

(8)
∂−→x
∂u

(u, v) = n
∑

|I|=n−1

(Pi+1,j,k − Pi,j,k+1)B
n−1
I (u, v) = n

∑

|I|=n−1

∆1,0PIB
n−1
I (u, v).

and analogously,

(9)
∂−→x
∂v

(u, v) = n
∑

|I|=n−1

(Pi,j+1,k − Pi,j,k+1)B
n−1
I (u, v) = n

∑

|I|=n−1

∆0,1PIB
n−1
I (u, v).
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After taking derivatives repeatedly we get the m-th derivative with respect to u,

∂m−→x
∂um

(u, v) = n
∂m−1

∂um−1

∑

|I|=n−1

∆1,0PIB
n−1
I (u, v)

= n(n− 1)
∂m−2

∂um−2

∑

|I|=n−2

∆1,0(∆1,0PI)B
n−2
I (u, v)

= n(n− 1)
∂m−2

∂um−2

∑

|I|=n−2

∆2,0PIB
n−2
I (u, v)

=
n!

(n−m + 1)!

∂

∂u

∑

|I|=n−m+1

∆m−1,0PIB
(n−m+1)
I (u, v)

=
n!

(n−m)!

∑

|I|=n−m

∆m,0PIB
(n−m)
I (u, v).

An analogous computation gives the m-th derivative with respect to v.

¥

2. The harmonic condition

In this section we will study the harmonic operator, that is, the Laplacian, acting on

a triangular Bézier surface in an analogous way to [29]. First of all, we will compute its

expression in terms of the control points of a Bézier triangle and afterwards, in Theorem 1.9

and Theorem 1.18, we will discuss how a harmonic Bézier surface is totally determined by

the knowledge of some of its control points.

Some authors have previously carried out some similar work related with the Laplacian

operator, (see [14]), but from a discrete point of view. They have described the relations

between the control points of a Bézier surface satisfying the discrete Laplacian condition

instead of establishing the relations between points in the control net of a harmonic surface.

That is what we have done. We have obtained some discrete conditions but not by using

the discrete operator.

First of all, as we said before, we seek the conditions that the function −→x must fulfill in

order to be harmonic, that is, we compute the Laplacian of the Bézier patch. We do this

in terms of the control points, that is, we obtain the conditions that the control net of a

triangular Bézier surface must satisfy in order to be associated to a harmonic surface:

∆−→x (u) =

(
∂2

∂u2
+

∂2

∂v2

)
−→x (u) =

(
∂2

∂u2
+

∂2

∂v2

) ∑

|I|=n

PI Bn
I (u)



24 1. HARMONIC TRIANGULAR SURFACES

then bearing in mind the previously computed derivative of a Bézier surface, Equation (6),

we have

=n (n− 1)


 ∑

|I|=n−2

∆2,0PIB
n−2
I (u) +

∑

|I|=n−2

∆0,2PIB
n−2
I (u)




=n (n− 1)
∑

|I|=n−2

(
∆1,0 (PI+e1 − PI+e3) + ∆0,1 (PI+e2 − PI+e3)

)
Bn−2

I (u)

=n (n− 1)
∑

|I|=n−2

(PI+2e1 + PI+2e2 + 2PI+2e3 − 2 (PI+e1+e3 + PI+e2+e3)) Bn−2
I (u) .

Thus, the Laplacian of a triangular Bézier surface can be seen as a triangular Bézier

patch of degree n− 2 with associated control points

QI = n (n− 1) (PI+2e1 + PI+2e2 + 2PI+2e3 − 2 (PI+e1+e3 + PI+e2+e3)) for |I| = n− 2.

Let us recall that in the rectangular Bézier case there is no reduction of degree if the

Laplacian is computed, but here there is a decrease of total degree.

Due to the fact that {Bn−2
I (u)}|I|=n−2 is a basis, we get that −→x is harmonic iff QI = 0

for all |I| = n− 2.

Proposition 1.7. The triangular Bézier surface associated to a control net {PI}|I|=n is

harmonic, i.e., satisfies ∆−→x = 0, if and only if

(10) 0 = PI+2e1 + PI+2e2 + 2PI+2e3 − 2 (PI+e1+e3 + PI+e2+e3) for |I| = n− 2.

Remark 1.8. The previous equation, Equation (10), can be rewritten as:

(11) 0 = Pk+2,l,n−k−l−2 + Pk,l+2,n−k−l−2 + 2Pk,l,n−k−l − 2 (Pk+1,l,n−k−l−1 + Pk,l+1,n−k−l−1)

∀k, l ≥ 0, or equivalently as 0 = (∆2,0 + ∆0,2) Pk,l,n−k−l, where ∆2,0 and ∆0,2 are the usual

difference operators defined in Equation (7).

At this point we can state that the harmonic condition implies that some of the control

points of a triangular Bézier surface can be expressed as a linear combination of the other

control points. In the following sections we will study this dependence relation between

control points at harmonic control nets of an arbitrary dimension, but, first of all, we will

study the low dimensional cases, n = 2 and n = 3.

For the quadratic case the harmonic condition, which has been translated into a linear

system given by Equation (10) for |I| = n− 2, is reduced to a unique equation. So, in this

case we obtain that two lines of border control points determine a family of harmonic Bézier

control triangles. On the other hand, for the cubic case, the linear system consists of three

equations which allow us to determine, given two lines of border control points, a harmonic

triangular Bézier surface. Let us explain these results.
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2.1. The quadratic case. For n = 2 a quadratic triangular Bézier surface is defined

by the following triangular control net:

P ≡

P002 P011 P020

P101 P110

P200

If the patch associated to a quadratic triangular Bézier surface is harmonic, then Equation

(11) gives us the condition:

P200 + P020 − 2 (P101 + P011) + 2P002 = 0.

From this equation we can express one of the control points in terms of the other five,

for example:

P101 =
1

2
(P200 + P020 − 2 P011 + 2P002).

The equation above can be written by way of a “kind” of mask:

P101 =
1

2
×

2 −2 1
? 0

1

Note that, according to this, given two rows of border control points (five points), the sixth

point is fully determined by the harmonic condition. Moreover, given four points of the

triangular control net we obtain a family of harmonic quadratic surfaces since the condition

for the Laplacian does not depend on the control point P110.

2.2. The cubic case. For n = 3 the cubic triangular surface is associated to the fol-

lowing triangular control net:

(12) P ≡

P003 P012 P021 P030

P102 P111 P120

P201 P210

P300

The equations that a cubic triangular Bézier surface must satisfy in order to be harmonic

are the following:



26 1. HARMONIC TRIANGULAR SURFACES





P300 + P120 − 2 (P201 + P111) + 2P102 = 0,

P210 + P030 − 2 (P111 + P021) + 2P012 = 0,

P201 + P021 − 2 (P102 + P012) + 2P003 = 0.

From these equations it is possible to express three control points in terms of the other

seven, since we have obtained that the null space of the coefficient matrix is of dimension

seven. Therefore it is possible to choose two lines of border control points of a triangular

control net as free variables, and then the other three points are fully determined by the

harmonic condition:

P102 =
−1

2
×

−4 6 −4 1
? 0 −1

0 1
−1

P111 =
−1

2
×

0 −2 2 −1
0 ? 0

0 −1
0

P201 =

2 −4 3 −1
0 0 1

? −1
1

3. Constructing triangular Bézier surfaces from a boundary curve and the

normal derivative along it

Now, after studying the first two low dimensional cases, and seeing that the harmonic

condition determines some control points in terms of border control points, we will try to

extend this result to triangular Bézier surfaces in general. But for greater dimensions we

will find that this result has a variation. We will prove in section 5 that from n = 4 onwards,

two rows of border control points do not give enough information to determine all the other

control points. Therefore, instead of taking two border lines of control points as known

points, we will consider two different variations of the set of points that are considered as

known points.

The first variation, which we will study in this section, comes from the following usual

boundary value problem:

∆−→x (u, v) = 0,

{ −→x (0, v) = α (v)−→x u (0, v) = β (v) .

We consider the linear PDE given by the harmonic operator with Cauchy boundary

conditions. The value of the solution along a border curve, −→x (0, v), and its transversal

partial derivative, −→x u (0, v), which determines the tangent plane to the surface along this

border curve, are the conditions which are specified. It is known that in general a solution

to this problem can be uniquely determined, the point is that here we will determine a

polynomial solution. In terms of triangular Bézier surfaces, the problem is: Given the first
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two rows of control points we determine the associated harmonic surface. This will be the

first result we will prove in this section (Theorem 1.9).

The second variation of the set of known points, which we will study in section 5, is

as follows. In the rectangular case it holds that two rows of border control points fully

determine the associated harmonic chart, see [29], but unfortunately this is no longer true

for the triangular case. Therefore we will consider as known points a set of control points

which is as similar as possible to a set of border points: We consider two border lines of

control points with the exception of some of them, which are replaced by their neighboring

interior control points. The choice of the neighboring points to replace the excluded border

points comes from the fact that they are closer to the frontier, so they can give better

information about the desired shape of the surface.

The following Theorem will show that a harmonic triangular Bézier surface can be de-

termined from its first two rows of control points in the control net.

Theorem 1.9. Let −→x (u, v) =
∑

|I|=n PIB
n
I (u, v) be a harmonic triangular Bézier surface

with control net {PI}|I|=n, then the control points Pi,j,k with i 6= 0, 1 are totally determined

by the first two rows of the control net {P0,j,n−j}n
j=0 and {P1,j,n−j}n−1

j=0 .

Figure 1. An schematic grid of control points. The blue dots are known and the gray
would be obtained by asking for harmonicity.

Proof: The harmonicity condition (11) allows us to establish some relations between

control points, so if we consider the set of equations associated for any pair of indices k, l,

we get a system of linear equations where the points at the first two rows are considered as

known points and the rest of the control points are the variables. Then our goal is to ensure

that the system always has a solution. So, in order to do that, we split the system into a

number of subsystems and then we prove the solvability of them.

The following scheme shows a triangular control net of degree n written in such a way

that, at our convenience, it allows us to talk about columns:
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(13)

P0,0,n P0,1,n−1 P0,2,n−2 · · · P0,n−5,5 P0,n−4,4 P0,n−3,3 P0,n−2,2 P0,n−1,1 P0,n,0

P1,0,n−1 P1,1,n−2 P1,2,n−3 · · · P1,n−5,4 P1,n−4,3 P1,n−3,2 P1,n−2,1 P1,n−1,0

P2,0,n−2 P2,1,n−3 P2,2,n−4 · · · P2,n−5,3 P2,n−4,2 P2,n−3,1 P2,n−2,0

P3,0,n−3 P3,1,n−4 P3,2,n−5 · · · P3,n−5,2 P3,n−4,1 P3,n−3,0

P4,0,n−4 P4,1,n−5 P4,2,n−6 · · · P4,n−5,1 P4,n−4,0

P5,0,n−5 P5,1,n−6 P5,2,n−7 · · · P5,n−5,0

...
...

...
Pn−3,0,3 Pn−3,1,2 Pn−3,2,1

Pn−2,0,2 Pn−2,1,1 Pn−2,2,0

Pn−1,0,1 Pn−1,1,0

Pn,0,0

Bearing in mind this scheme, and starting from the right corner we have that in the first

and second column there are no unknown points: In the first column from the right, the

nth column, we find P0,n,0, which is assumed to be known, and the same happens with the

following column, the column n− 1, where we have P0,n−1,1 and P1,n−1,0.

On decreasing the column index, in column n − 2, the first unknown point, P2,n−2,0,

appears, but Equation (11) with k = 0, l = n− 2:

2P0,n−2,2 − 2(P1,n−2,1 + P0,n−1,1) + P2,n−2,0 + P0,n,0 = 0,

determines it. This would be the first subsystem we solve, and it allows us to obtain the

point P2,n−2,0 in terms of control points at the first two rows. In next step we consider the

relations for k = 0, l = n− 3 and k = 1, l = n− 3:

{
2P0,n−3,3 − 2(P1,n−3,2 + P0,n−2,2) + P2,n−3,1 + P0,n−1,1 = 0

2P1,n−3,2 − 2(P2,n−3,1 + P1,n−2,1) + P3,n−3,0 + P1,n−1,0 = 0.

We have two equations and two unknown points, P2,n−3,1 and P3,n−3,0, which are also

determined in terms of control points of the first and second rows. We have solved the

second subsystem.

Now, if we follow this process column by column, we can observe that in each column we

have a subsystem of linear equations which has an associated triangular coefficient matrix

with negative-sloping diagonals defined by:

ai,i = 1, ai+1,i = −2, ai+2,i = 2.

This is a triangular matrix whose determinant is equal to one when we take the points

{Pi,j,n−i−j}n,n−i
i=2,j=0 as variables. So we can ensure the solvability of each system associated in

any column.

At this point we have that, for degree n, the linear system has a solution since it can

be split into n− 2 determined compatible subsystems. Therefore, we have that a harmonic

control net can be obtained only in terms of control points in the first two rows, that is, if

we look for a harmonic patch the whole control net is totally determined if the first and the

second row in the control net are known.

¥
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Let us remark that the coefficient matrix in the previous proof is a particular case of

Toeplitz pentadiagonal matrix, a kind of matrices we will study in the following section.

The following figures show, for degree n = 4 and n = 6, some harmonic surfaces ob-

tained by means of Theorem 1.9. The first two rows of control points in the control net are

prescribed.

Figure 2. Two views of the harmonic surface, similar to a piece of a cone, determined by
a set of control points placed along two parallel straight lines.

Figure 3. Four different points of view of the harmonic surface obtained with Theorem 1.9
when the set of fixed control points were on two “parallel” circular arcs.

The following figures show the previous harmonic surfaces but now for degree n = 6. Here

it can be observed that for some higher degree examples, the first and the second line of

control points do not give enough control over the shape of the generated harmonic surface.
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Figure 4. Two views of the harmonic surface, similar to a piece of cone as before but for
n = 6, determined by a set of control points placed along two parallel straight lines.

Figure 5. These are four views of the harmonic surface obtained with Theorem 1.9 when
the set of fixed control points were in two “parallel” circular arcs. On comparing these
figures with the corresponding figures shown for n = 4 it can be seen that for this higher
degree the first and the second line of control points do not give much control over the shape
of the harmonic surface that is determined.
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4. Some Toeplitz matrices and their determinants

As we have seen in the previous section, the proof of the existence of a solution to the

problem of determining a PDE surface when some of its control points are prescribed is

reduced in order to check the solvability of some linear systems. In this section we will prove

some results that will be useful for these purposes.

Definition 1.10. A (2k + 1)−banded matrix, M, is a matrix that fulfilles

mi,j = 0 if |i− j| > k.

Hence a 3-banded matrix is said to be tridiagonal, a 4-banded matrix is said to be

tetradiagonal and a 5-banded is a pentadiagonal matrix or quindiagonal matrix.

Definition 1.11. Given 2n − 1 numbers ak, where k = −n + 1, ...,−1, 0, 1, ..., n − 1,

a Toeplitz matrix is defined as a matrix which has constant values along negative-sloping

diagonals, i.e., a matrix of the form

(14)




a0 a−1 a−2 · · · a−n+1

a1 a0 a−1
. . .

...

a2 a1 a0
. . . a−2

...
. . . . . . . . . a−1

an−1 · · · a2 a1 a0




.

Therefore if a (2k + 1)−banded matrix has constant values along its diagonals it is said

to be a Toeplitz matrix defined by 2k + 1 scalars.

A n × n pentadiagonal Toeplitz matrix, which we will denote by M
(a,b,c,d,e)
n , is a matrix

defined by five scalars located at the entries

mi−2,i = a, mi−1,i = b, mi,i = c, mi+1,i = d, mi+1,i = e,

that is,

(15) M (a,b,c,d,e)
n =




c d e 0 · · · 0 0 0 0 0 0
b c d e 0 · · · 0 0 0 0 0
a b c d e 0 · · · 0 0 0 0
0 a b c d e 0 · · · 0 0 0
0 0 a b c d e 0 · · · 0 0
...

...
. . . . . . . . . . . . . . . . . . . . .

...
...

0 0 · · · 0 a b c d e 0 0
0 0 0 · · · 0 a b c d e 0
0 0 0 0 · · · 0 a b c d e
0 0 0 0 0 · · · 0 a b c d
0 0 0 0 0 0 · · · 0 a b c




.
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Lemma 1.12. The determinant, Dn, of the n-dimensional Toeplitz penta-diagonal matrix,

M
(a,b,c,d,e)
n , defined in Equation (15), can be computed by the following recursive formula:

(16)

Dn = cDn−1+(ae−bd)Dn−2+(b2e+ad2−2aec)Dn−3+ae(ae−bd)Dn−4+a2e2cDn−5−a3e3Dn−6

Proof:
We compute this determinant by performing expansion by minors, and we start by the

first column:

Dn = a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 · · · 0
c d e 0 · · · 0
a b
0 a
0 0
...

... M
(a,b,c,d,e)
n−3

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ cDn−1

and again by the first columns we get:

Dn = a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
d e 0 0 · · · 0
a b
0 a
0 0
...

... M
(a,b,c,d,e)
n−4

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− ac

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ad

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− ba

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
c d e 0 · · · 0
a b
0 a
0 0
...

... M
(a,b,c,d,e)
n−4

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+b2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− bdDn−2 + cDn−1,

that is,
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Dn =a2e2Dn−4 − aceDn−3 + ad

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− bae

∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 · · · 0
b
a
0
... M

(a,b,c,d,e)
n−4

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

+b2eDn−3 − bdDn−2 + cDn−1

where we have only rewritten the determinants including the row (e, 0, ..., 0).

Now, we develop the first of the remaining determinants performing expansion by minors

again and, on the other hand, we denote the second determinant by Bn−3 since its dimension

is (n− 3)× (n− 3):

Dn =a2e2Dn−4 − aceDn−3 + a2d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
c d e 0 · · · 0
a b
0 a
0 0
...

... M
(a,b,c,d,e)
n−5

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ adb

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−4

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ad2Dn−3 − baeBn−3 + b2eDn−3 − bdDn−2 + cDn−1 = a2e2Dn−4 − aceDn−3

+a2de

∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 · · · 0
b
a
0
... M

(a,b,c,d,e)
n−5

0

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ adbeDn−4 + ad2Dn−3 − baeBn−2 + b2eDn−3 − bdDn−2 + cDn−1

We denote the determinant that is still not computed by Bn−4 since it is a (n− 4)× (n− 4)

determinant with the same structure as Bn−3. Then we have:

Dn = a2e2Dn−4 − aceDn−3 + a2deBn−3 + adbeDn−4 + ad2Dn−3 − baeBn−2 + b2eDn−3 − bdDn−2 + cDn−1

Now, in order to get a recurrence formula, we would have to get an expression in terms of

some Di for the determinants denoted by Bn−2 and Bn−3. To this end, we compute Dn−2:

Dn−2 = a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 0 · · · 0
c d e 0 0 · · · 0
a b
0 a
0 0
...

... M
(a,b,c,d,e)
n−4

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−3

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ cDn−3
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Dn−2 = a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
d e 0 0 · · · 0
a b
0 a
0 0
... M

(a,b,c,d,e)
n−6

0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− ac

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e 0 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−5

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ad

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d e 0 0 · · · 0
b
a
0
0
... M

(a,b,c,d,e)
n−5

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− bBn−2 + cDn−3

=a2e2Dn−6 − aceDn−4 + adBn−3 − bBn−2 + cDn−3.

Then we have:

−aeDn−2 = −a3e3Dn−6 + a2e2cDn−4 − a2edBn−3 + aebBn−2 − aecDn−3,

that is,

a2deBn−3 − baeBn−2 = aeDn−2 − a3e3Dn−6 + a2e2cDn−5 − aecDn−3.

Therefore:

Dn = cDn−1 + (ae− bd)Dn−2 + (b2e + ad2 − 2aec)Dn−3 + ae(ae− bd)Dn−4 + a2e2cDn−5 − a3e3Dn−6

¥

Let us consider separately tridiagonal and tetradiagonal Toeplitz matrices although they are

particular cases of pentadiagonal Toeplitz matrices.

A n×n tridiagonal Toeplitz matrix, which we will denote by M
(a,b,c)
n , is defined by three

scalars which are located at the entries

mi−1,i = a, mi,i = b, mi+1,i = c

which are the only non-null entries in the matrix, that is,

(17) M (a,b,c)
n =




b c 0 · · · 0

a b c
. . .

...

0 a b
. . . 0

...
. . . . . . . . . c

0 · · · 0 a b




.
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Corollary 1.13. The determinant, Dn, of the n-dimensional Toeplitz tridiagonal ma-

trix, M
(a,b,c)
n , defined in Equation (17), can be computed by the following recursive formula:

Dn = bDn−1 − acDn−2.

Proof: It follows from Lemma 1.12 since a tridiagonal matrix is a pentadiagonal matrix

with the the entries

mi−2,i = 0, mi−1,i = a, mi,i = b, mi+1,i = c, mi+1,i = 0,

that is, M
(a,b,c)
n = M

(0,a,b,c,0)
n .

¥

Lemma 1.14. The determinant of a Toeplitz tridiagonal matrix M
(a,b,c)
n is given by the

general term

Dn =
1

2n+1

(
b +

√
b2 − 4ac

)n+1 − (
b−√b2 − 4ac

)n+1

√
b2 − 4ac

.

Remark 1.15. The determinant Dn is a real number. Although
√

b2 − 4ac could be a

complex number, Dn is real since Dn = D̄n.

Proof: From Corollary 13 we have the following recursive formula

Dn = bDn−1 − acDn−2.

Then, following the usual method to find the general term of a recursively defined se-

quence, we consider the solution Dn = λn, and we get the equation:

λn = bλn−1 − acλn−2,

which is equivalent to

λ2 − bλ + ac = 0.

We solve this equation by obtaining the roots:

λ =
b±√b2 − 4ac

2
,

which could be real or complex.

At this point we must distinguish two cases:

The case b2 − 4ac = 0 which implies an unique solution with multiplicity two, and the

case b2 − 4ac 6= 0 which implies two different solutions with multiplicity one.

If b2 − 4ac = 0 then λ = b
2

with multiplicity 2, so we have to consider the nth term:

Dn =

(
b

2

)n

(A + Bn)
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with the initial conditions: D1 = b and D2 = b2 − ac. Therefore we find the coefficients

A =
4ac

b2
, B = 2− 4ac

b2
,

and then we have

Dn =
bn−2

2n−1

(−2ac (n− 1) + b2n
)

if b2 − 4ac = 0.

If b2 − 4ac 6= 0 the nth term of the sequence is given by:

Dn = A

(
b +

√
b2 − 4ac

2

)n

+ B

(
b−√b2 − 4ac

2

)n

,

also with the initial conditions: D1 = b and D2 = b2 − ac. So we compute the coefficients

A =
1

2

(
1 +

b√
b2 − 4ac

)
, B =

1

2

(
1− b√

b2 − 4ac

)

and therefore we conclude that

Dn =
1

2n+1

(
b +

√
b2 − 4ac

)n+1 − (
b−√b2 − 4ac

)n+1

√
b2 − 4ac

if b2 − 4ac 6= 0.

¥

A tetradiagonal Toeplitz matrix, which we will denote by M
(a,b,c,d)
n , is defined by four

scalars which are located at the entries

mi−1,i = a, mi,i = b, mi+1,i = c, mi+2,i = d

which are the only non-null entries in the matrix, that is,

(18) M (a,b,c,d)
n =




b c d 0 · · · 0 0 0
a b c d 0 · · · 0 0
0 a b c d 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 a b c d 0
0 0 · · · 0 a b c d
0 0 0 · · · 0 a b c
0 0 0 0 · · · 0 a b




.

Corollary 1.16. The determinant, Dn, of the n-dimensional Toeplitz tetradiagonal

matrix, M
(a,b,c,d)
n , defined in (18), can be computed by the following recursive formula:

(19) Dn = bDn−1 − acDn−2 + a2dDn−3,
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Proof: It follows from Lemma 1.12 since a tetradiagonal matrix is a pentadiagonal

matrix with the the entries

mi−2,i = 0, mi−1,i = a, mi,i = b, mi+1,i = c, mi+1,i = d,

that is, M
(a,b,c,d)
n = M

(0,a,b,c,d)
n .

¥

The determinant of a Toeplitz tridiagonal matrix can be represented by a second-order re-

cursive formula, and therefore its general term can be obtained after computing the solutions

of a quadratic equation.

On the other hand, the determinant of a Toeplitz tetradiagonal matrix is represented by

a third-order recursive formula, as we have seen in the previous corollary. Hence, its general

term could also be computed in terms of the solutions of a third-degree equation. But we

do not give it here because it is defined by a large expression.

However, the determinant of a Toeplitz pentadiagonal matrix is provided by our sixth-

order recursive formula or by Sweet’s fifth-order formula, see [41]. Therefore, since it is

impossible to compute in general the roots of a degree 5 or 6 polynomial equation in a single

variable, a formula cannot be given for the corresponding general terms.

4.1. Comparison with other recursive relations for the Determinant of a Pen-

tadiagonal Matrix. Since pentadiagonal matrices occur frequently in boundary value prob-

lems involving fourth-order derivatives, there are some results in the literature which ap-

proach the problem of computing their determinant in order to develop a good method for

determining their eigenvalues. With this aim a recursive equation relating leading principal

minors for pentadiagonal matrices was developed in [41]. The result is the following:

Theorem 1.17. [41] Given a pentadiagonal matrix, not necessarily Toplitz matrix, S =

{si,j}n
i,j=0, where it is assumed that

si,j = 0 if |i− j| > 2

si,j 6= 0 if |i− j| = 1,

defining the quantities

ai = si,i i = 1, 2, ..., n− 1, n− 2, n
bi = si,i+1si+1,i i = 1, 2, ..., n− 2, n− 1
βi = si,i+2si+2,i i = 1, 2, ..., n− 2
ci = si,i+1si+1,i+2si+2,i i = 1, 2, ..., n− 2
ct
i = si+1,isi+2,i+1si,i+2 i = 1, 2, ..., n− 2

the following algorithm allows the computation of the determinant Dn = |S|:

Set D−1 = 0, D0 = 1, D1 = a1, D2 = a1a2 − b1, ε−1 = e−1 = 0, D−1 = 0, and compute
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(20)

δk−2 = ak−1Dk−3 − βk−3Dk−4,

εk−3 = Dk−3 −
ct
k−3

bk−2

ek−4,

ek−3 = Dk−3 − ck−3

bk−2

εk−4.

Then

(21) Dk = akDk−1 − bk−1Dk−2 − βk−2δk−2 + ck−2εk−3 + ct
k−2ek−3

for k = 3, 4, ..., n.

Moreover, in the same reference a 6-term recursive relation for the determinant of a

particular pentadiagonal matrix can also be found. The recursive rule holds for cyclically

symmetric matrices, i.e., such that ci = ct
i, for i = 1, 2, ..., n− 2. If S is cyclically symmetric

then

(22)

Dk =

(
ak − ck−2

bk−2

)
Dk−1 −

(
bk−1 − ak−1ck−2

bk−2

)
Dk−2 − (βk−2ak−1 − ck−2) Dk−3

+ βk−3

(
βk−2 − ak−1ck−2

bk−2

)
Dk−4 +

(
βk−3βk−4 − ck−2

bk−2

)
Dk−5.

If S is a symmetric matrix, then it is cyclically symmetric, so (22) holds for symmetric

matrices.
In the next chapter we will need to prove the nonsingularity of a concrete Toeplitz

pentadiagonal matrix. Let us remark now that this matrix, that will be studied in Theorem

1.3, is cyclically symmetric, since ci = ct
i = 64. Therefore the 6-term recursive relation given

in Equation (22), which in this particular case is:

Dk = 6Dk−1 − 16Dk−2 + 32Dk−3 − 48Dk−4 + 32Dk−5,

could be used, in Theorem 1.3, in order to prove that the Toeplitz pentadiagonal matrix

under study is non singular. Nevertheless we will do it using our recursive relation, in

Equation (16), which is given for this particular matrix in Equation (24). In fact, both

recursive relations have the same general nth-term.

The reason why we choose to use our formula, Equation (16), in the mentioned proof,

even when Sweet’s formula has the benefit being 6-term recursive instead of 7-term, is is

as follows: The 7-term recursive formula, Equation (16), we give in Lemma 1.12 holds for

the general case of Toeplitz pentadiagonal matrices, including both non symmetric and non

cyclically symmetric matrices.

Therefore while the determinant of any Toeplitz pentadiagonal matrix could be computed

by means of the 7-term recursive formula given in Equation (24), the simpler 6-term formula

(22) only holds for cyclically symmetric matrices, so for any other kind of pentadiagonal
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matrix the general algorithm, given in Equation (21), should be the only way to compute

the determinant proposed in [41].

This algorithm holds in general, but it has the problem of its complexity due to the

recursivity of the coefficients εk and ek, in Equation (20). In fact, in the cited article R. A.

Sweet states that a 7-term recursive relation may be derived for a non cyclically symmetric

matrix. This relation would eliminate the factors εk and ek, but he did not put it forward

since he thought it was too complicated.

5. Constructing triangular Bézier surfaces from what are almost two boundary
curves

Now, as we have said previously, we will perform another choice of the subset of control

points, which we assume to be prescribed, in order to build the associated harmonic surface.

The set of fixed control points, from which we will determine the associated harmonic Bézier

triangle, should describe as much as possible the shape of the surface that will be obtained.

Because of this, an appropriate choice would be two rows of border control points describing

two of the border curves of the surface. But for this case the harmonic condition do not
determine a triangular Bézier surface. An incompatible system is obtained if we consider

two lines of border control points as preset information and the rest of control points as

variables.
We will therefore consider a similar set of control points as known points, since they will

also provide information about the shape of the border curves of the desired surface. We

will consider two border lines of control points with the exception of some of them which

will be replaced by their neighboring control points. The choice of using neighboring points

to substitute the excluded border points stems from the fact that they are closer to the

boundary, so they can give better information about the desired shape of the surface.

The following theorem allows us to state that, given some border control points and a

few interior control points the harmonic condition univocally determines the surface.

Theorem 1.18. Let −→x (u, v) =
∑

|I|=n PIB
n
I (u, v) be a harmonic triangular Bézier sur-

face with control net {PI}|I|=n. Then, given the border points in the first row {P0,n−i,i}n
i=0, the

points in the diagonal border row {Pi,n−i,0}n
i=0 with i 6= 4k and including the corresponding

neighboring points {Pi−1,n−i,1} when i = 4k, the harmonic triangular control net is totally

determined.

Proof: The proof of this result is analogous to the previous proof of Theorem 1.9.

As before, we will prove the solvability of the linear system obtained by considering the

harmonicity condition (11), for any pair k, l, but now looking for a solution in terms of

the border points in the rows {P0,j,n−j}n
j=0 and {Pi,n−i,0}n

i=0, in addition to some points

{Pi−1,n−i,1} for the values i = 4k, which we suppose are known. As before, we split the linear

system in subsystems.

Bearing scheme (13) in mind, and starting from the right corner, we have that there are

no unknown points in either the nth column or the column that follows it, n− 1.
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Figure 6. Compare this schematic grid of control points with the one corresponding to
Theorem 1.9 in Figure 9. The blue dots are known and the gray would be obtained by
asking for harmonicity.

When we consider the n− 2 column, the unknown point is P1,n−2,1 , and Equation (11)

with k = 0, l = n− 2:

2 P0,n−2,2 − 2 (P1,n−2,1 + P0,n−1,1) + P2,n−2,0 + P0,n,0 = 0,

determines it. This equation is the first subsystem we consider.

The second subsystem appears when we consider the n−3 column, that is, the harmonic-

ity condition for k = 0, l = n− 3 and k = 1, l = n− 3:

{
2 P0,n−3,3 − 2 (P1,n−3,2 + P0,n−2,2) + P2,n−3,1 + P0,n−1,1 = 0

2 P1,n−3,2 − 2 (P2,n−3,1 + P1,n−2,1) + P3,n−3,0 + P1,n−1,0 = 0.

At this step we have two unknown points, P1,n−3,2 and P2,n−3,1, which are also determined

by the equations above in terms of some of the prescribed control points.

One column forward something different happens, namely, we find an incompatible sys-

tem. At the n − 4 column, corresponding to the indexes k = 0, l = n − 4; k = 1, l = n − 4

and k = 2, l = n− 4 we have the equations:





2 P0,n−4,4 − 2 (P1,n−4,3 + P0,n−3,3) + P2,n−4,2 + P0,n−2,2 = 0,

2 P1,n−4,3 − 2 (P2,n−4,2 + P1,n−3,2) + P3,n−4,1 + P1,n−2,1 = 0,

2 P2,n−4,2 − 2 (P3,n−4,1 + P2,n−3,1) + P4,n−4,0 + P2,n−2,0 = 0.

Since we consider the control points in column n − 4: P1,n−4,3, P2,n−4,2 and P3,n−4,1, to

be variables, the coefficient matrix is a tridiagonal Toeplitz matrix, M
(2,−2,1)
3 , which has null

determinant:

D3 = det M
(2,−2,1)
3 =

∣∣∣∣∣∣

−2 1 0

2 −2 1

0 2 −2

∣∣∣∣∣∣
= 0.

Therefore, the subsystem corresponding to column n− 4, has no solution.

If we continue this process by columns, we can observe that, in each column, we find a

subsystem of linear equations which has an associated coefficient matrix that is a Toeplitz
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tridiagonal matrix, M
(2,−2,1)
m . With this notation let us consider the determinant of order m:

Dm = det M (2,−2,1)
m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 1 0 0 0 · · · 0

2 −2 1 0 0 · · · 0

0 2 −2 1 0 · · · 0

0 0 2 −2 1 · · · ...

0 0 0 2 −2
. . . 0

...
...

...
. . . . . . . . . 1

0 0 0 ... 0 2 −2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From Corollary 13 we have a recursive rule to compute this determinant. For our conve-

nience we perform some transformations of this recursive rule

Dm = −2Dm−1 − 2Dm−2 = −2 (−2Dm−2 − 2Dm−3)− 2 (−2Dm−3 − 2Dm−4)

= 4Dm−2 + 8Dm−3 + 4Dm−4 = 4 (−2Dm−3 − 2Dm−4) + 8Dm−3 + 4Dm−4 = −4Dm−4.

Therefore we can say Dm = −4Dm−4, where the first four determinants are D1 = −2,

D2 = 2, D3 = 0 and D4 = −4, so we will find some null determinants since D3 = 0. At each

value m = 3 + 4k we will find an incompatible system which will turn into a determined

compatible system by considering a different set of unknown points in the corresponding

columns. That is, if we were dealing with the column n− i and it had m = 3 + 4k variables

then we would consider the border point, Pi,n−i,0, as a variable and instead we would suppose

its neighboring point, Pi−1,n−i,1, to be known.

Taking into account the previous variation of the set of variables, the corresponding

coefficient matrix is now given by:

N3+4k =




−2 1 0 0 0 · · · 0

2 −2 1 0 0 · · · 0

0 2 −2 1 0 · · · 0

0 0 2 −2 1
. . .

...
...

...
...

. . . . . . . . . 0

0 0 0 0 2 −2 0

0 0 0 ... 0 2 1




.

where it can be observed that the last column contains Pi,n−i,0 coefficients. This point is

only involved in the last equation so it implies the values in this column to be (0, ..., 0, 1)T .

Thus, if we compute its determinant using expansion by minors, in particular through

the last column, we find that |N3+4k| = |M3+4k−1| = D4k+2 which is not null, as we have

already said.

Therefore, we can now state that we will find a compatible determinate subsystem for each

column, and from this we can ensure the solvability of the global linear system. Therefore a
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control net can be determined in order to get a harmonic chart in terms of the border points

in the first row {P0,n−i,0}n
i=0, the points in the diagonal border row {Pi,n−i,0}n

i=0 excluding

the points with i = 4k, and, instead, including the points {P4k−1,n−4k,1}.
¥

The following figures show, for n = 4, some harmonic surfaces obtained through Theorem

1.18 when the blue points are given.

Figure 7. Two views of a harmonic surface of degree n = 4, similar to a cone, determined
by a set of control points placed, with the exception of one of them, on a straight line and
in a circular arc.

Figure 8. Four different points of view of a triangular Bézier surface looking like a piece
of a sphere. The known control points in blue are equally spaced on two circular arcs.
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The following figures show, for n = 6, some harmonic surfaces obtained through Theorem

1.18 when the blue points are given. These examples will show how Theorem 1.18 provides

us with a better control of the shape of the harmonic surface than Theorem 1.9. This

improvement is obtained because in Theorem 1.18 the prescribed data are border control

points which give more information on the desired shape of the surface.

Figure 9. Two views of the harmonic surface, similar to a piece of cone, determined by
a set of control points placed, with the exception of one of them, along a straight line and
along a circular arc.

Figure 10. Four different points of view of a triangular surface looking like a piece of a
sphere. The known control points are equally spaced on two circular arcs. It can be seen that
the control over the shape of the surface is improved if we compare with the corresponding
example for Theorem 1.9, in Figure 3.
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6. Conclusions

In this chapter we have given two different methods for generating harmonic surfaces

from a prescribed set of control points.

In our first method, in Theorem 1.9, the prescription of a boundary curve and the tangent

plane along it, that is, two rows of control points, gave us good results for low degrees but

we ran into some trouble when the degree of the Bézier surface was increased. Since one of

the corners of the surface is out of control it could diverge from the desired shape.

In Theorem 1.18 we propose a second method in order to solve this lack of control. Instead

of prescribing two parallel rows of control points we prescribed a set of control points that

were as similar as possible to prescribing two boundary curves. This gave us better control

over the shapes obtained. The surfaces we obtained by this method provided an appropriate

description of the behavior of the initial information.

The Laplace equation is a second-order PDE and we find that a harmonic surface is

totally determined after the prescription of two lines of control points. Increasing the PDE

order would enable us to prescribe a bigger set of control points and therefore to gain better

control over the surface, although it would reduce degrees of freedom. So, in the next chapter

we will study the biharmonic equation, a fourth-order PDE.



CHAPTER 2

Constructing triangular Bézier surfaces using linear PDEs:

Biharmonic surfaces

In this chapter we present some results concerning with biharmonic triangular Bézier

surfaces, that is, those Bézier triangles verifying ∆2−→x = 0, where ∆2 is the biharmonic

operator also known as the bilaplacian. There are many mathematical and engineering

approaches to solve the biharmonic problem in a rectangle, and a extensive description of

the long history of this classical problem can be found in [27].

The biharmonic equation is associated with a great variety of physical problems such as

tension in elastic membranes and the study of stress and strain in physical structures. There

are many mechanical problems concerning the bending of a thin elastic clamped rectangular

plate, and they can all be formulated in terms of a two-dimensional biharmonic equation

with prescribed values of the function and its normal derivative at the boundary. Hence, the

biharmonic boundary problem is also known as the thin plate problem.

From a geometric design point of view, which is our field of interest, this operator has

found its way into various areas of application, such as surface design, geometric mesh,

smoothing and fairing. From this background let us refer to Bloor and Wilson’s PDE method

for intuitive shape generation, based on the solution of the biharmonic PDE with appropri-

ately chosen boundary conditions, see [7], [42] and [43]. We also take note of the work by

Schneider and Kobbelt and others on geometric mesh fairing, see [25], [38] and [39], where

the properties of the bilaplacian operator are used to fair triangular meshes.

As we have said previously, a fundamental result from the theory of minimal surfaces

states that, under certain conditions, given the boundary, there is a unique minimal surface

prescribed by that boundary. It is noteworthy that a similar result for rectangular Bézier

surfaces can be found in [31], where it is shown that the knowledge of the boundary of a

biharmonic Bézier rectangle fully determines the entire surface. Therefore, our first idea

is to study whether the biharmonic condition implies that the interior control points of

a triangular Bézier surface can be expressed as a linear combination of boundary control

points, as happens in the rectangular case. We will see how things change for triangular

Bézier patches.

1. The biharmonic condition

Following a similar path to that taken in the harmonic case, we look for the conditions

that the control points of a triangular Bézier surface must fulfill in order to be associated to
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a biharmonic patch. Thus, let us compute the bilaplacian of the parametrization:

∆2−→x (u) =

(
∂2

∂u2
+

∂2

∂v2

)2−→x (u) =

(
∂4

∂u4
+ 2

∂4

∂u2v2
+

∂4

∂v4

) ∑

|I|=n

PI Bn
I (u)

=n (n− 1) (n− 2) (n− 3)
∑

|I|=n−4

(
∆4,0PI + 2∆2,2PI + ∆0,4PI

)
Bn−4

I (u)

=
∑

|I|=n−4

QI Bn−4
I (u)

where

QI =
n!

(n− 4)!
(PI+4e1 − 4PI+3e1+e3 + 8PI+2e1+2e3 − 8PI+e1+3e3 + 4PI+4e3

+2PI+2e1+2e2 − 4PI+e1+2e2+e3 + 8PI+2e2+2e3 − 4PI+2e1+e2+e3

+8PI+e1+e2+2e3 − 8PI+e2+3e3 − 4PI+3e2+e3 + PI+4e2).

It can be seen that ∆2−→x (u) is also a Bézier surface with control points {QI}|I|=n−4, thus,

as in the harmonic case and due to the fact that {Bn−4
I (u)}|I|=n−4 is a basis, we get that −→x

is a biharmonic chart iff QI = 0 for all |I| = n− 4. Moreover,

Remark 2.1. Equivalently, a triangular Bézier patch is biharmonic iff its associated

control net verifies:

0 = (∆4,0 + 2∆2,2 + ∆0,4) Pk,l,n−k−l,

that is, if and only if

(23)

0 =Pk+4,l,n−k−l−4 − 4Pk+3,l,n−k−l−3 + 8Pk+2,l,n−k−l−2 − 8Pk+1,l,n−k−l−1

+ 4Pk,l,n−k−l + 2Pk+2,l+2,n−k−l−4 − 4Pk+1,l+2,n−k−l−3 + 8Pk,l+2,n−k−l−2

− 4Pk+2,l+1,n−k−l−3 + 8Pk+1,l+1,n−k−l−2 − 8Pk,l+1,n−k−l−1 − 4Pk,l+3,n−k−l−3

+ Pk,l+4,n−k−l−4 ∀k, l ≥ 0.

2. Constructing triangular Bézier surfaces from four lines of control points

There exist different representations of general solutions to the biharmonic equation, here

we will determine a polynomial solution of this problem. The following result states that

a biharmonic triangular Bézier surface is completely determined by the first four rows of

control points starting from one side.

Theorem 2.2. Let −→x (u, v) =
∑

|I|=n PIB
n
I (u, v) be a biharmonic triangular Bézier sur-

face of degree n ≥ 4 with control net {PI}|I|=n, then the whole control net is determined by

the first four rows of control points {Pi,j,n−i−j}n
j=0 where i = 0, 1, 2, 3.
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Figure 1. As in the harmonic case we show a schematic grid of control points where the
blue are known and the gray would be obtained by asking the chart to be biharmonic.

Proof: The proof of this result is analogous to the previous proofs of Theorems 2.9 and

2.18. We will prove the solvability of the linear system that is obtained when the biharmonic

condition, in Equation (23), is considered for all k, l. As before, we will prove that the system

has a solution by splitting it into some solvable subsystems of linear equations. Any linear

subsystem includes some control points in the first four rows which are known by hypothesis,

and some of the other control points in the control net, which are the variables.

So, having scheme (13) in mind again, and starting from the right corner column, as we

did before, we have that now we do not find any unknown points in the first four columns.

It is in the fifth column from the right, that is for k = 0, l = n − 4, that we find the first

unknown point, P4,n−4,0. Then the biharmonic condition, given in Equation (23):

0 =P4,n−4,0 − 4P3,n−4,1 + 8P2,n−4,2 − 8P1,n−4,3 + 4P0,n−4,4 + 2P2,n−2,0

−4P1,n−2,1 + 8P0,n−2,n+2 − 4P2,n−3,1 + 8P1,n−3,2 − 8P0,n−3,3 − 4P0,n−1,1 + P0,n,0,

determines it.
Next we would consider the relations for k = 0, l = n−5 and k = 1, l = n−5. As before,

both equations determine univocally, in terms of points in the first four rows, the pair of

unknown points in this step which are P4,n−5,1 and P5,n−5,0.

Therefore, if we continue this process by columns, we have that, taking as variables the

points {Pi,j,n−i−j}n,n−i
i=4,j=0, the corresponding system of linear equations in each column has a

coefficient matrix associated to it defined by:

ai,i = 1, ai+1,i = −4, ai+2,i = 8 ai+3,i = −8 ai+4,i = 4.

This is a triangular matrix with 1 in the diagonal so its determinant is equal to one.

Therefore, a biharmonic control net can be totally determined by the first four rows of

the control net.

¥
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The following figures show some biharmonic surfaces obtained by means of Theorem 2.2.

Figure 2. A pair of biharmonic Bézier triangles obtained by Theorem 2.2. By hypothesis
the four lines of blue points are known and the grey points are determined by the bihar-
monicity condition (23). Notice that “good” results are obtained. The shapes seem to be
desirable from a designer point of view. As stated by Farin and Hansford in [14], “good”
refers to the traditional designers’ paradigm that the interior of a surface should not have
different shape characteristics to those implied by the boundary curves.

Figure 3. Two more biharmonic Bézier surfaces obtained by Theorem 2.2. As can be seen,
some initial conditions, the four lines of control points chosen as known points, do not give
good shapes. Here, one of the three corners of the surface is not under control, in the next
section we will give a solution to this problem.
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3. Constructing triangular Bézier surfaces from two boundary curves and the

normal derivatives along them

Now, in a similar way to the harmonic case, we will consider the boundary value problem:

∆2−→x (u, v) = 0

{ −→x (0, v) = α (v)−→x u (0, v) = β (v)

{ −→x (1− v, v) = γ (v)−→x u (1− v, v) = δ (v) .

So, we will consider the PDE given by the biharmonic operator with Cauchy boundary

conditions. We prescribe the value of the solution along two border curves, −→x (0, v) and
−→x (1− v, v), and its partial derivatives, −→x u (0, v) and −→x u (1− v, v), which fix the tangent

planes to the surface along the given border curves. This problem can be written, as before,

in terms of control points of a Bézier surface: Find the biharmonic surface completely de-

termined by a pair of border lines of control points and its corresponding neighboring lines

on the triangular grid. This is what we prove in the following theorem.

Theorem 2.3. Let −→x (u, v) =
∑

|I|=n PIB
n
I (u, v) be a biharmonic triangular Bézier sur-

face with control net {PI}|I|=n, then given the points in the first and second rows ({P0,n−i,0}n
i=0

and {P1,n−i,0}n−1
i=0 ), and the points in the diagonal border row {Pi,n−i,0}n

i=0 and its neighbor

row {Pi,n−i−1,1}n
i=0, the whole biharmonic triangular control net is totally determined.

Figure 4. The schematic grid of control points corresponding with Theorem 2.3.

Proof: As we did in Theorem 2.2, we consider the linear system given by the set of

conditions that a control net must fulfill in order to be associated to a biharmonic chart.
Thus, this system is composed of the biharmonicity condition (23) for all pair of indexes

k, l. In order to prove the existence of a biharmonic solution of the system, having scheme

(13) in mind again, we consider the corresponding subsystem for each column. Then we find

that the coefficient matrices corresponding to each subsystem are the Toeplitz pentadiagonal

matrices:

M (4,−8,8,−4,1)
n .

Then, from Lemma 1.12 we have that the determinant of this matrix can be defined by

the recursive formula:

(24) Dn = 8Dn−1 − 28Dn−2 + 64Dn−3 − 112Dn−4 + 128Dn−5 − 64Dn−6.
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We will compute the general term of the sequence {Dn}∞n=0 . Following the well known

method to obtain the nth term of recursive equations we must solve the equation:

λ6 − 8λ5 + 28λ4 − 64λ3 + 112λ2 − 128λ + 64 = (λ− 2)4 (
λ2 + 4

)
= 0

obtaining three different solutions:

λ1 = 2, with multiplicity 4, λ2 = 2i and λ3 = −2i.

Therefore, the general term of the sequence is given by the formula:

Dn = 2n
(
A + Bn + Cn2 + Dn3 + Ein + F (−i)n

)
,

and we would finally obtain the coefficients by considering the initial conditions:

D1 = 23 D2 = 25 D3 = 3 · 25 D4 = 17 · 24 D5 = 3 · 28 D6 = 211.

Therefore

Dn = 2n

(
3

2
+ 2n +

1

2
n2 − 1

4
(in + (−i)n)

)
= 2(n−1)(3 + 4n + n2 − cos(

nπ

2
))

Dn ≥ 2(n−1)(2 + 4n + n2) ≥ 0.

And the system has unique solution.

¥

Remark 2.4. An analogous result could be stated to build a biharmonic surface con-

strained by a similar configuration of prescribed control points. For example, we could pre-

scribe the lines of border control points {P0,i,n−i}n
i=0 and {Pi,0,n−i}n

i=0, and their respective

neighboring lines of points on the control net. The proof of this result would be analogous

to the previous one, that is, instead of considering the subsystem of linear equations associ-

ated to each column of control points, the system associated to each diagonal line should be

considered, see scheme (13).
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The following figures show some biharmonic surfaces obtained by means of Theorem 2.3

Figure 5. A pair of biharmonic Bézier triangles obtained by Theorem 2.3. By hypothesis
the four lines of blue points are known and the grey points are determined by the bihar-
monicity condition (23). It can be seen that, as in the analogous examples for Theorem 2.2,
good shapes are obtained.

Figure 6. Here we have two more biharmonic surfaces obtained by means of Theorem 2.3.
Now we can observe the improvement in the shapes obtained in comparison to Figure 2.



52 2. BIHARMONIC TRIANGULAR SURFACES

Figure 7. Four different points of view of the biharmonic surface obtained thanks to The-
orem 2.3. The set of known control points, in blue, are located along two concentric and
parallel circular arcs contained in two orthogonal planes.

Figure 8. Two views of a biharmonic surface obtained by Theorem 2.3. The set of known
control points, in blue, are located along four parabolas.

4. Conclusions

For rectangular Bézier surfaces it was proved in [31] that the knowledge of the boundary

of a biharmonic Bézier rectangle fully determines the entire surface. Here we have conducted

an analogous study of the biharmonic equation and we have obtained that, in general, this

is not true for triangular Bézier patches.

In this chapter we have given two methods with which to generate biharmonic surfaces.

We have seen that when a fourth-order PDE, as the biharmonic equation, is considered, four

lines of control points must be known in order to ensure that a biharmonic surface is totally
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determined. So, the set of boundary control points (just three lines) does not give us enough

information to determine a biharmonic surface.
In the first method, Theorem 2.2, we have described the way to generate a biharmonic

surface given the first four rows of control points. The prescription of these rows left one

corner of the control net free, and, as happened before with the harmonic condition, it can

sometimes produce unwanted shapes.

Our second method, in Theorem 2.3, increased the control over the surface shape. The

prescription of two boundary curves and the tangent planes along them improved our results.

If the first and the second row and the points in the diagonal border row and their neighbors

are prescribed, only the central control points of one of the boundary curves are free. Note

that the three vertices and the tangent planes on them are now prescribed and the boundary

curves are almost under control. As a consequence better results are obtained with this

method.





CHAPTER 3

Coons patches

One of the oldest surface problems in CAGD is the following: given the boundary curves,

find the parametric surface −→x with these as boundary curves with no other restriction. A

popular solution of this problem is the Coons patch.

Before we present our study about triangular Coons patches, let us describe the more

conventional rectangular Coons patch and its properties.

1. Background on Coons rectangular patches

Coons first described this type of interpolant in [10]. It is assumed that four boundary

curves are given, which it is convenient to think of as coming from a surface denoted −→x0, and

so the notation −→x0 (u, 0), −→x0 (u, 1), −→x0 (0, v) and −→x0 (1, v) is used to represent these boundary

curves. The bilinearly blended Coons patch that interpolates to the given boundary curves

is defined by:

−→x (u, v) = (1− u)−→x0 (0, v) + u−→x0 (1, v) + (1− v)−→x0 (u, 0) + v−→x0 (u, 1)

− (
1− u u

) ( −→x0 (0, 0) −→x0 (0, 1)−→x0 (1, 0) −→x0 (1, 1)

)(
1− v

v

)
.

The Coons rectangular patch interpolates four boundary curves and in addition is an

extremal of the functional

F (−→x ) =

∫

U

‖−→xuv‖2du dv,

where U = [0, 1] × [0, 1], over all patches, −→x ∈ C∞[u, v], with a prescribed boundary. The

Coons patch was described in [32] as the unique interpolant that minimizes the functional

F (−→x ) .

In general if a surface, −→x , is an extremal of a functional, then it satisfies the associated

Euler-Lagrange equation, which, for this functional, is the PDE

(25) −→x uuvv = 0.

Therefore the Coons patch can be considered as a PDE surface, since it is a solution of

the equation above.

In some of the following chapters we will address the problem of finding extremals of

different quadratic functionals. But we will consider a restricted problem, namely that of

finding the polynomial patch that minimizes a functional among all polynomial patches with

the same boundary. Then, let us remark that an extremal of a functional on the restricted
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space of polynomials, Rn[u, v], must not necessarily satisfy the associated Euler-Lagrange

equation but a kind of weak version of it as we will show later.

Now we will study the special situation that is given for the restricted problem of finding

an extremal of the functional F (−→x ) in the space of polynomials. In the following theorem,

Theorem 3.5, we will show that, for this case, a polynomial patch is an extremal if and only

if it is a solution of the PDE (25). That is, the weak version of the Euler-Lagrange equation

is equivalent to it.

Let us recall the definition of the shifted Legendre polynomials and to state two lemmas

which will be needed in order to prove Theorem 3.5.

Definition 3.1. An explicit expression of the shifted Legendre polynomials is given by

Ln (t) = (−1)n
n∑

k=0

(
n

k

)(
n + k

k

)
(−t)k .

The first few are

L0(t) = 1,

L1(t) = 2t− 1,

L2(t) = 6t2 − 6t + 1,

L3(t) = 20t3 − 30t2 + 12t− 1.

The shifted Legendre polynomials, see [2], are a set of functions that are analogous to

the Legendre polynomials, but defined on the interval [0, 1]. They obey the orthogonality

relationship with respect to the usual scalar product of square integrable functions on [0, 1]

(26)

∫ 1

0

Lm(t)Ln(t) dt =
1

2n + 1
δmn.

Now, let us recall the fundamental lemma of calculus of variations because it has a

statement similar to our following lemma, which is of interest to us.

Lemma 3.2. If M is continuous and
∫ b

a
M(x)h(x)dx = 0 for all infinitely differentiable

h(x), then M(x) = 0 on the open interval (a, b).

So, let us study what happens if the product under the integral sign includes all the

Bernstein polynomials at the basis of the degree n polynomials.

Lemma 3.3. Let P be a degree n polynomial, then the equality

(27)

∫ 1

0

P (t) Bn
i (t) dt = 0 is true for all i = 0, ..., n

if and only if P (t) = 0.
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Proof: Bernstein polynomials are a basis of the degree n polynomials, so we take a

polynomial Q(t) =
∑n

i=0 ciB
n
i (t), and rewrite conditions (27). They are equivalent to

∫ 1

0

P (t) Q(t) dt = 0 ∀Q ∈ Rn[t].

Now, if we consider the basis of the shifted Legendre polynomials, described in Definition

3.1, which have the property

∫ 1

0

Lm(t)Ln(t) dt =
1

2n + 1
δmn,

we can express Q(t) =
∑n

k=0 ckLk(t), and then Equation (27) is equivalent to

0 =

∫ 1

0

P (t) Lk(t) dt ∀k = 0, ..., n.

Finally, if we consider P (t) =
∑n

j=0 AjLj(t), we have that for all k:

0 =

∫ 1

0

P (t)Lk(t) dt =
1

2k + 1
Ak ⇔ Ak = 0 ⇒ P (t) = 0.

¥

In an analogous way to the previous lemmas, we now consider the product of a polynomial

of degree n − 2 by another one of degree n but null at the extremes of the interval of

integration.

Lemma 3.4. Let us consider the vectorial subspace Vn ⊆ Rn[t] defined by

Vn = {P ∈ Rn[t] : P (0) = 0 and P (1) = 0}.

Given a polynomial y ∈ Rn−2[t], if
∫ 1

0
y(t)P (t) dt = 0 for all P ∈ Vn then y = 0. In other

words,

V ⊥
n ∩ Rn−2[t] = {0},

where V ⊥
n denotes the orthogonal complement of Vn.

Proof: In order to prove this result we will express the polynomials y and P on the basis

of shifted Legendre polynomials, P (t) =
∑n

i=0 AiLi(t) and y(t) =
∑n−2

j=0 BjLj(t).

First of all let us note that any P ∈ Vn is defined by a set of coefficients {Ai}n
i=0 with the

following constraints

0 = P (0) =
n∑

i=0

AiLi(0) =
n∑

i=0

(−1)iAi

0 = P (1) =
n∑

i=0

AiLi(1) =
n∑

i=0

Ai.
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Then we have that for any P ∈ Vn

(28) 0 =

∫ 1

0

y(t)P (t) dt =

∫ 1

0

n∑
i=0

n−2∑
j=0

BjAiLi(t)Lj(t) dt =
n−2∑
j=0

1

2j + 1
BjAj,

where the orthogonality condition (26) has been applied.

Since P is an arbitrary polynomial on Vn, we can consider a family of polynomials Pj

and make a free choice of n− 2 of its coefficients.

Let us consider Pj =
∑n

i=0 Aj
iLi(t) with

Aj
i =

{
1 i = j
0 i 6= j

for i = 0, ..., n− 2,

with the coefficients Aj
n−1 and Aj

n, determined for any Pj by the constraints

(−1)j + (−1)n−1An−1 + (−1)nAn = 0
1 + An−1 + An = 0

}
,

which imply

Aj
n−1 =

−1 + (−1)j−n

2
, Aj

n =
−1− (−1)j−n

2
.

Now, if we consider Equation (28), for any Pj we obtain that Bj = 0, for j = 0, ..., n− 2.

Therefore y = 0.

¥

The following theorem proves that a polynomial surface is an extremal of the functional

F among all polynomial surfaces with the same boundary if and only if it is a PDE surface

associated to the equation −→x uuvv = 0.

Theorem 3.5. A polynomial patch, −→x ∈ Rn[u, v], satisfies −→x uuvv = 0 iff it is an extremal

of the functional

F (−→y ) =

∫

U

‖−→yuv‖2du dv −→y ∈ Rn[u, v],

among all polynomial patches with a given boundary.

Proof: First we will see that if −→x ∈ Rn[u, v] satisfies −→x uuvv = 0, then it is an extremal

of the functional F (−→x ) among all patches with a prescribed boundary.

The patch −→x would be an extremal of the functional F (−→x ) among all patches with the

same boundary if and only if

d

dt
∣∣∣
t=0

F (−→x + t−→y ) = 0,

for any −→y ∈ Rn[u, v] null along its border. So let us compute this derivative
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d

dt
∣∣∣

t=0

F (−→x + t−→y ) =
d

dt
∣∣∣
t=0

∫

R

< −→x uv + t−→y uv,
−→x uv + t−→y uv > du dv

=2

∫

R

< −→x uv,
−→y uv > du dv.

Since the polynomial patch −→y is null along its boundary, all its border control points

are zero when we consider its Bézier form. This implies that there are some Bernstein

polynomials which are not involved in its Bézier expression:

−→y (u, v) =
n−1∑
i,j=1

QijB
n
i (u) Bn

j (v) .

Therefore, at this point, we have that −→x is an extremal of F (−→x ) if and only if

0 =

∫

R

< −→x uv,
(
Bn

i (u) Bn
j (v)

)
uv

ea > du dv, i, j = 1, ..., n− 1

where ea, a ∈ {1, 2, 3} denotes the a-th vector of the canonical basis.

Let us consider the following integration by parts

∫

R

d

dv
< −→x uv,

(
Bn

i (u) Bn
j (v) ea

)
u

> du dv =

∫

R

< −→x uvv,
(
Bn

i (u) Bn
j (v) ea

)
u

> du dv

+

∫

R

< −→x uv,
(
Bn

i (u) Bn
j (v) ea

)
uv

> du dv,

then we have
∫

R

< −→x uv,
(
Bn

i (u) Bn
j (v) ea

)
uv

> du dv =

∫ 1

0

< −→x uv, (B
n
i (u))u Bn

j (v) ea >
]v=1

v=0
du

−
∫

R

< −→x uvv,
(
Bn

i (u) Bn
j (v) ea

)
u

> du dv.

Bearing in mind that Bn
j (0) and Bn

j (1) are zero for i = 1, ..., n− 1 we have

∫

R

< −→x uv,
(
Bn

i (u) Bn
j (v) ea

)
uv

> du dv =−
∫

R

< −→x uvv,
(
Bn

i (u) Bn
j (v) ea

)
u

> du dv.

Now applying that

∫

R

d

du
< −→x uvv, B

n
i (u) Bn

j (v) ea > du dv =

∫

R

< −→x uuvv, B
n
i (u) Bn

j (v) ea > du dv

+

∫

R

< −→x uvv,
(
Bn

i (u) Bn
j (v) ea

)
u

> du dv,
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we have that
∫

R

< −→x uv,
(
Bn

i (u) Bn
j (v) ea

)
uv

> du dv =

=−
∫

R

d

du
< −→x uvv, B

n
i (u) Bn

j (v) ea > du dv +

∫

R

< −→x uuvv, B
n
i (u) Bn

j (v) ea > du dv

=−
∫ 1

0

< −→x uvv, B
n
i (u) Bn

j (v) ea >
]u=1

u=0
dv +

∫

R

< −→x uuvv, B
n
i (u) Bn

j (v) ea > du dv.

Then, after evaluating the Bernstein polynomials as before, it is obtained that −→x is an

extremal of F (−→x ) if and only if
∫

R

< −→x uv,
(
Bn

i (u) Bn
j (v) ea

)
uv

> du dv =

∫

R

< −→x uuvv, B
n
i (u) Bn

j (v) ea > du dv = 0.

Therefore a chart −→x such that −→x uuvv = 0 is an extremal for a prescribed border of the

functional F (−→x ) .

Now, in order to prove the reciprocal, we only have to apply Lemma 3.4. If a chart
−→x is an extremal with a prescribed boundary of the functional F (−→x ) , then, as we have

previously seen, it satisfies

(29) 0 =

∫

R

< −→x uuvv, B
n
i (u) Bn

j (v) ea > du dv for i, j = 1, ..., n− 1

Then, since the Bernstein polynomials {Bn
i (t)}n−1

i=1 are a basis of the vector subspace Vn

defined in Lemma 3.4, and
∫ 1

0
< −→x uuvv, B

n
i (u) ea > du is a polynomial of degree n− 2 in v,

applying this lemma we have:

0 =

∫ 1

0

< −→x uuvv, ea > Bn
i (u) du, for i = 1, ..., n− 1.

Analogously, applying Lemma 3.4 again, we have that since < −→x uuvv, ea >∈ Rn−2[u],

then it is zero for a ∈ {1, 2, 3}, that is, −→x uuvv = 0.

¥

Remark 3.6. Equation (29) gives the weak version of the Euler-Lagrange equation as-

sociated to the functional F , which we mentioned before.

An extremal of the functional among all the polynomial patches with a prescribed boundary

must fulfill

0 =

∫

R

< −→x uuvv, B
n
i (u) Bn

j (v) ea > du dv for i, j = 1, ..., n− 1.

But, thanks to Lemma 3.4 we can also ensure that, for the case of this functional, it

implies that −→x uuvv = 0.
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Corollary 3.7. The Coons patch is an extremal in Rn[u, v] of the functional F (−→x )

among all patches with a prescribed boundary.

Proof:
The Coons patch satisfies the PDE −→x uuvv = 0 since −→x uu is linear with respect to v.

¥

Some work related with rectangular Coons patches was carried out in [14] by Farin and

Hansford. While the boundary curves −→x0 (u, 0), −→x0 (u, 1), −→x0 (0, v) and −→x0 (1, v) may be totally

arbitrary, in the early days the boundary curves were considered as discretized curves with

many points on them. In fact, in [14] these boundary polygons are treated as Bézier border

control points and a discrete version of the Coons patch is given. The interior control points

Pi,j are defined in terms of boundary points by the discrete Coons patch:

(30)

Pi,j =

(
1− i

m

)
P0,j +

i

m
Pm,j +

(
1− j

m

)
Pi,0 +

j

n
Pi,n

− (
1− i

m
i
m

) (
P0,0 P0,n

Pm,0 Pm,n

)(
1− j

n
j
n

)
.

for 0 < i < m and 0 < j < n. These control points define the discrete Coons patch which is

the same patch as if Coons interpolation was applied to the Bézier curves associated to the

boundary polygons.

The discrete Coons patch also minimizes the discrete version of the functional F , in

Equation (1). In fact, the discrete Coons patch is a PDE Bézier surface satisfying the

discrete version of −→x uuvv = 0.

2. Triangular Coons patches

Now after introducing all these topics for rectangular surfaces, let us come back to trian-

gular patches. The triangular Coons patch we will define first appeared in [32]. Similar to the

rectangular Coons patch we consider the border curves −→x0 (u, 0), −→x0 (0, v) and −→x0 (u, 1− u),

(or −→x0 (1− v, v)), to denote the boundary curves and define the patch as

(31)

−→x (u, v) = (1− u− v) (−→x0 (u, 0) +−→x0 (0, v)−−→x0 (0, 0))

+ v (−→x0 (0, u + v) +−→x0 (u, 1− u)−−→x0 (0, 1))

+ u (−→x0 (u + v, 0) +−→x0 (1− v, v)−−→x0 (1, 0)) ,

or analogously, in barycentric coordinates,

−→x (u, v, w) = w (−→x0 (u, 0, 1− u) +−→x0 (0, v, 1− v)−−→x0 (0, 0, 1))

+ v (−→x0 (0, 1− w, w) +−→x0 (u, 1− u, 0)−−→x0 (0, 1, 0))

+ u (−→x0 (1− w, 0, w) +−→x0 (1− v, v, 0)−−→x0 (1, 0, 0)) ,
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with u + v + w = 1.

x(0,v)

x(u,1-u)

x(u,0)

Figure 1. A representation of a triangular Coons patch defined in Equation (31) for pre-
scribed boundary data.

Some differences with respect to the rectangular Coons patch must be pointed out. First

let us remark that if we consider the border curves −→x0 (u, 0), −→x0 (0, v) and −→x0 (u, 1− u) or
−→x0 (1− v, v) to be polynomial curves of degree n, then the associated triangular Coons

patch is a degree n + 1 polynomial surface. This increase in degree does not happen in

the rectangular case.

Moreover in the comparison between the rectangular and the triangular Coons patch we

find that, since the triangular patch is not linear in both variables, then −→x uuvv 6= 0.

Now, analogously to what was done in [14] for rectangular patches, we have obtained

the discrete version of the triangular Coons patch.

Definition 3.8. The interior points Pi,j,k with i + j + k = n + 1, of the Triangular

Discrete Coons patch are defined by

(32)

Pi,j,k =
k

n + 1
(Pi,0,n−i + P0,j,n−j − P0,0,n)

+
j

n + 1
(P0,n−k,k + Pi,n−i,0 − P0,n,0)

+
i

n + 1
(Pn−k,0,k + Pn−j,j,0 − Pn,0,0) .

The triangular Bézier surface with the previous interior control points coincides with the tri-

angular Coons patch that would be obtained from the Bézier curves associated to the boundary

control points.
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Figure 2. Two discrete triangular Coons patches. The first two figures are two views of
the same control net and a second example is shown in the third figure.

Figure 3. Three similar triangular Bézier surfaces. The first is obtained by Theorem 2.2
and the second by Theorem 2.3. The third surface is a triangular Coons patch and therefore
its degree increases for an analogous set of given data. It can be seen that in the first two
cases better shapes are obtained than for the Coons case.

In the following proposition we give a formula to express the functional of a Bézier

triangular patch

(33) F (−→x ) =

∫

T

‖−→xuv‖2du dv,

defined now in the triangle, T, in terms of the control points, PI = (x1
I , x

2
I , x

3
I) .

Proposition 3.9. The functional, F(−→x ), of a triangular Bézier surface can be expressed

by the formula

(34) F(−→x ) =
3∑

a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1
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with

(35) CI0I1 = 2n (2n− 1)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (
1

2

(
b12
12 + b13

13 + b23
23 + b33

33

)− b13
12− b23

12 + b33
12 + b23

13− b33
13− b33

23),

where the coefficients btl
rs satisfy the symmetry relation btl

rs = btl
sr = blt

rs = blt
sr, and are defined

by

(36) btl
rs =





Ir
0 Is

0It
1Ir

1+Ir
1 Is

1It
0Ir

0

(Ir
0+Ir

1 )(Is
0+Is

1)(It
0+It

1)(Ir
0+Ir

1−1)
r = l

Ir
0 Is

0It
1(It

1−1)+Ir
1 Is

1It
0(It

0−1)

(Ir
0+Ir

1 )(Is
0+Is

1)(It
0+It

1)(It
0+It

1−1)
t = l

2 Ir
0 Is

0Ir
1 Ir

1

(Ir
0+Ir

1 )(Ir
0+Ir

1−1)(Is
0+Is

1)(Is
0+Is

1−1)
r = t, s = l

2 Ir
0 (Ir

0−1)It
1(It

1−1)

(Ir
0+Ir

1 )(Ir
0+Ir

1−1)(It
0+It

1)(It
0+It

1−1)
r = s, t = l

Ir
0 Is

0Ir
1 (Ir

1−1)+Ir
1 Is

1Ir
0 (Ir

0−1)

(Ir
0+Ir

1 )(Is
0+Is

1)(Ir
0+Ir

1−1)(It
0+It

1−2)
r = t = l

2 Ir
0 (Ir

0−1)Ir
1 (Ir

1−1)

(Ir
0+Ir

1 )(Ir
0+Ir

1−1)(Ir
0+Ir

1−2)(Ir
0+Ir

1−3)
r = s = t = l.

Proof: The functional is a second-order functional and, therefore, in order to obtain the

coefficients CI0I1 we compute its second derivative:

∂2F(−→x )

∂xa
I0

∂xa
I1

=
∂2

∂xa
I0

∂xa
I1

3∑
ā=1

∑

|I|=n

∑

|J |=n

CIJxā
Ix

ā
J =

∂

∂xa
I1

∑

|J |=n

2CI0Jxa
J = 2 CI0I1 .

We compute the first derivative

∂F(−→x )

∂xa
I0

=

∫

T

∂

∂xa
I0

‖−→xuv‖2du dv =

∫

T
2 <

∂−→x uv

∂xa
I0

,−→x uv > du dv =

∫

T
2 < (Bn

I0
)uv,

−→x uv > du dv,

and then the second

∂2F(−→x )

∂xa
I0

∂xa
I1

=2

∫

T
< (Bn

I0
)uv,

∂−→x uv

∂xa
I1

> du dv = 2

∫

T
< (Bn

I0
)uv, (B

n
I1

)uv > du dv

=2

∫

T
n2(n− 12)

(
Bn

I0−e1−e2
−Bn

I0−e1−e3
−Bn

I0−e2−e3
+ Bn

I0−2e3

)

(
Bn

I1−e1−e2
−Bn

I1−e1−e3
−Bn

I1−e2−e3
+ Bn

I1−2e3

)
dudv

=2n (2n− 1)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (
1

2

(
b12
12 + b13

13 + b23
23 + b33

33

)− b13
12 − b23

12 + b33
12 + b23

13 − b33
13 − b33

23),
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where we have computed the integral of the Bernstein polynomials with the formula given

in Lemma 1.4 ∫

T
B2n−2

I0+I1
(u, v) dudv =

1

(3n− 2)(3n− 3)
,

and we have performed some simplifications like the following:

∫

T
Bn−1

I0−e1−e2
Bn−1

I1−e1−e3
+ Bn−1

I1−e1−e2
Bn−1

I0−e1−e3
dudv =

=

∫

T

(
n−2

I0−e1−e2

)(
n−2

I1−e1−e3

)
+

(
n−2

I1−e1−e2

)(
n−2

I0−e1−e3

)
(

2n−4
I0+I1−2e1−e2−e3

) B2n−4
I0+I1−2e1−e2−e3

dudv

=
2n (2n− 1)

n2(n− 12)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) I1
0I

2
0I

1
1I

3
1 + I1

0I
3
0I

1
1I

2
1

(I1
0 + I1

1 )(I2
0 + I2

1 )(I1
0 + I1

1 − 1)(I3
0 + I3

1 )

=
2n (2n− 1)

n2(n− 12)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) b13
12.

Therefore

CI0I1 = 2n (2n− 1)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (
1

2

(
b12
12 + b13

13 + b23
23 + b33

33

)− b13
12 − b23

12 + b33
12 + b23

13 − b33
13 − b33

23)

where btl
rs are defined in Equation (36) .

¥

Let us remark that the formula we give in Equation (34) translates the functional, F , into

a function of the control points, F(−→x ) =
∑3

a=1

∑
|I0|=n

∑
|I1|=n CI0I1x

a
I0

xa
I1

. In the following

proposition we compute the gradient of the functional with respect to the coordinates of a

control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
. This will enable us to obtain an extremal of the functional

among all Bézier surfaces with the same border as a solution of a linear system.

Proposition 3.10. A triangular control net, P = {PI}|I|=n, is an extremal of the func-

tional, F , among all triangular Bézier surfaces with a prescribed boundary if and only if:

(37)
∑

|J |=n

CI0JPJ = 0 for all |I0 = (I1
0 , I

2
0 , I3

0 )| = n with I1
0 , I

2
0 , I

3
0 > 0,

where CIJ are the coefficients defined in Equation (35).

Proof: The gradient of the functional with respect to the coordinates of an interior

control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
is given by
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∂F(−→x )

∂PI0

=

(
∂F(−→x )

∂x1
I0

,
∂F(−→x )

∂x2
I0

,
∂F(−→x )

∂x3
I0

)
= 2


 ∑

|J |=n

CI0Jx1
J ,

∑

|J |=n

CI0Jx2
J ,

∑

|J |=n

CI0Jx3
J




=2
∑

|J |=n

CI0JPJ .

¥

Equivalently, a triangular control net, P = {PI}|I|=n, is an extremal among all control

nets with prescribed border control points if and only if

0 =
∑

|I|=n

(
n
I

)
(

2n
I0+I

)(
1

2

(
b12
12 + b13

13 + b23
23 + b33

33

)− b13
12 − b23

12 + b33
12 + b23

13 − b33
13 − b33

23) PI

for all |I0 = (I1
0 , I

2
0 , I

3
0 )| = n with I1

0 , I
2
0 , I

3
0 > 0, with the coefficients btl

rs given in Equation

(36).

In particular we give this result for the case n = 3.

Proposition 3.11. A triangular control net of degree 3, P = {PI}|I|=3, is an extremal

of the functional, F(P), among all triangular control nets with a prescribed boundary if and

only if

P111 =
1

2
(P012 − P021 + P102 + P120 − P201 + P210) .

From the condition obtained in Proposition 11, given the exterior control points, we can

generate the whole triangular net by solving a linear system where the equations are:

2Pi,j,k = Pi−1,j,k+1 − Pi−1,j+1,k + Pi,j−1,k+1 + Pi,j+1,k−1 − Pi+1,j−1,k + Pi+1,j,k−1

Pi,j,k being a interior control point. This equation can be expressed by the following mask:

(38) Pi,j,k =
1

2
×

0 1 −1 0
1 ? 1
−1 1

0

The following figures show some examples of the triangular Bézier surfaces obtained,

given a boundary, by means of three different methods: Coons interpolation, minimization

of the functional F and with the use of the mask defined in Equation (38).
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Figure 4. Three Bézier surfaces with the same border. On the left the triangular Coons
patch. The one in the middle is a Bézier extremal of the functional F . The figure on the
right is obtained by means of the mask in Equation (38).

Figure 5. Three more examples of Bézier triangles, the triangular Coons patch, the Bézier
extremal of F in the middle and the Bézier surface built with the mask (38).

Figure 6. As before, the Coons patch, the polynomial extremal of F in the middle and in
the right another surface with the same boundary but obtained thanks to the associated
mask.
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From the previous figures it can be seen that the control nets obtained by means of the

mask, in Equation (38), derived from the functional F are quite irregular in comparison with

the nets obtained as extremals of the functional.

Now, let us remark that in contrast to the rectangular case, the Triangular Coons patch

is not an extremal of the functional F . We will prove that for the triangular case, being an

extremal of such a functional is not equivalent to satisfying the associated Euler-Lagrange

equation, as was true for the rectangular Coons patch. The following Theorem will show that

an extremal of the functional, described in Equation (33), would coincide with the solution

of its associated Euler-Lagrange equation, −→x uuvv = 0, only under certain conditions on the

control points.

The following lemmas, Lemma 3.12 and Lemma 3.15, are analogous to Lemma 3.3 and

Lemma 3.4 for bivariate polynomials. They will be needed in order to prove our next theorem

and some other results we will prove later on.

In the proof of the following lemma we will make use of the dual basis of bivariate

Bernstein polynomials defined in [22]. The set of polynomials {Cn
I }|I|=n of total degree n is

called the dual basis of the Berstein basis {Bn
I }|I|=n if

∫

T

Bn
I (u, v) Cn

I (u, v) du dv = δJ
I .

Lemma 3.12. Let −→y be a degree n bivariate polynomial, then the equality

(39)

∫

T
−→y (u, v) Bn

I (u, v) dudv = 0 holds for all |I| = n

if and only if −→y = 0.

Proof: Let us consider the expression of −→y in terms of the dual basis of Bernstein

polynomials defined in [22], y =
∑

|J |=n AJCn
J , then

0 =

∫

T
−→y (u, v) Bn

I (u, v) dudv =

∫

T

∑

|J |=n

AJCn
J (u, v) Bn

I (u, v) dudv =
∑

|J |=n

AJ δI,J = AI

for all |I| = n. Therefore −→y = 0.

¥

The proof of the next lemma, Lemma 3.15, is based on a method by T. Lyche and K.

Scherer for the computation of the eigenvalues of the Gram matrix of the s-variate triangular

Bernstein basis of degree n, see [26]. In order to prove our next result we needed to show

that a special matrix, M, which is similar to the Gram matrix, was a non-singular matrix.

So let us recall the definition of the Gram matrix of the bivariate triangular Bernstein basis.
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Definition 3.13. The Gram matrix, G, of the bivariate triangular Bernstein basis of

degree n is defined by

G = (< Bn
I , Bn

J >)|I|,|J |=n =

(∫

T

Bn
I (u, v), Bn

J (u, v) du dv

)

|I|,|J |=n

.

This is a matrix of order
(

n+2
2

)
and for both rows and columns the following linear ordering is

used: If I1 < J1 then I < J , and for I1 = J1 then the second component must be compared,

if I1 = J1 and I2 < J2 then I < J.

As an example, for n = 2, the indexes of the basis would be taken in the order

(0, 0, 2), (0, 1, 1), (0, 2, 0), (1, 0, 1), (1, 1, 0), (2, 0, 0).

We will need the following lemma in order to prove Lemma 3.15. This was proved in [26]

for multivariate Bernstein polynomials, and here we rewrite it for the bivariate case.

Lemma 3.14. ([26] Lemma 2.1.) Let us denote I = {i, j, n− i− j}, then

(1) n!
(n−k−l)!

ukvl =
∑

|I|=n
i!j!

(i−k)!(j−l)!
Bn

I (u, v) for k + l ≤ n.

(2)
∫

T
ukvlBn

I (u, v)du dv = (k+i)!(l+j)!n!
i!j!(n+2+k+l)!

for k + l ≤ n.

Lemma 3.15. Let us consider the vectorial subspace V ⊆ Rn[u, v] defined by

V = {P ∈ Rn[u, v] : P (u, 0) = P (0, v) = P (u, 1− u) = 0}.
Given a polynomial y ∈ Rn−3[u, v], if

∫

T

y (u, v) P (u, v) du dv = 0

for all P ∈ V, then y = 0. In other words

V ⊥ ∩ Rn−3[t] = {0},
where V ⊥ denotes the orthogonal complement of V.

Proof: The Bézier form of a polynomial P ∈ V , null along the border of the parameter

domain, only involves the interior Bernstein polynomials

P (u, v) =
∑

|I|=n

aI Bn
I (u, v) with I1, I2, I3 6= 0.

Therefore, if
∫

T
y Pdu dv = 0, we have that for all |I| = n with I1, I2, I3 6= 0

(40) 0 =

∫

T

y (u, v) Bn
I (u, v) du dv =

∑

|J |=n−3

PJ

∫

T

Bn−3
J (u, v)Bn

I (u, v) du dv.
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Our goal is to prove that PJ = 0 for all |J | = n − 3. Equivalently we will see that the

previous homogeneous linear system with the coefficient matrix

M =
(
< Bn

I , Bn−3
J >

)
=

(∫

T

Bn
I (u, v)Bn−3

J (u, v) du dv

)
|I| = n, I1, I2, I3 6= 0,
|J | = n− 3

has a unique solution. This is a square matrix of order
(

n−1
2

)
.

In order to prove that matrix M is non-singular we will compute its eigenvalues.

We consider polynomials Qm (to be determined) of the special form

(41) Qm =

|m|∑

k=0

|m|−k∑

l=0

qm,k,lu
kvl with m = (m1,m2) ∈ Z2 and 0 ≤ |m| ≤ n− 3,

where

qm,m = 1 and qm,k,l = 0 for k + l = |m| and (k, l) 6= m.

Note that Qm is a polynomial of degree |m| and that its only monomial of total degree

|m| is um1vm2 .

Let dm = (dm,I) be the vector of coefficients of Qm on the Bernstein basis, so

Qm =
∑

|I|=n−3

dm,IB
n−3
I (u, v), with |m| ≤ n− 3 and I = (i, j, n− 3− i− j).

We will determine the coefficients qm,k,l for fixed m so that dm is an eigenvector of M. The

idea is to express both dm and M dm in terms of the qm,k,l and use the eigenvalue/eigenvector

relation M dm = λm dm to determine the values of λm. Consider first the vector dm. Inserting

(1) from Lemma 3.14 into Equation (41) we can express each dm,I in the form

(42) dm,I =

|m|∑

k=0

|m|−k∑

l=0

qm,k,l
(n− 3− k − l)!i!j!

(n− 3)!(i− k)!(j − l)!
=

|m|∑

k=0

|m|−k∑

l=0

qm,k,l

k∑
s=0

l∑
t=0

βs,t
k,li

sjt,

for some constants βs,t
k,l independent of I, in particular

βk,l
k,l =

(n− 3− k − l)!

(n− 3)!
.

Let us consider the Ith component of M dm

(M dm)I =
∑

|J |=n−3

< Bn
I+1, B

n−3
J > dm,J =< Bn

I+1, Qm >=

|m|∑

k=0

|m|−k∑

l=0

qm,k,l < Bn
I+1, u

kvl >,
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where we have denoted 1 = (1, 1, 1). In a similar manner to before, using (2) from Lemma

3.14, we can write it in the form

(43)

(M dm)I =

|m|∑

k=0

|m|−k∑

l=0

qm,k,l
(k + i + 1)!(l + j + 1)!n!

(i + 1)!(j + 1)!(n + 2 + k + l)!
=

|m|∑

k=0

|m|−k∑

l=0

qm,k,l

k∑
s=0

l∑
t=0

αs,t
k,li

sjt

where the αs,t
k,l are independent of I, in particular

αk,l
k,l =

n!

(n + 2 + k + l)!
.

Switching the order of summation in Equation (42) and Equation (43) we have M dm =

λm dm if and only if

0 =

|m|∑
s=0

|m|−s∑
t=0




|m|∑

k=s

|m|−k∑

l=t

(αs,t
k,l − λmβs,t

k,l) qm,k,l


 isjt, ∀|I| = n− 3.

We see that this holds for all such I if and only if

(44) 0 =

|m|∑

k=s

|m|−k∑

l=t

(αs,t
k,l − λmβs,t

k,l) qm,k,l for all s, t such that s + t ≤ |m|.

Choosing (s, t) = m in this equation, since qm,m = 1 we obtain the eigenvalues

λm =
αm

m

βm
m

=
n!(n− 3)!

(n + 2 + |m|)!(n− 3− |m|)! =
(n− 3) · · · (n− 3− |m|+ 1)

(n + |m|+ 2) · · · (n + 1)
for |m| ≤ n−3.

Therefore, since all the eigenvalues are positive we can ensure that matrix M is non-

singular and there exists a unique solution of the linear system in Equation (40): PJ = 0 for

all |J | = n− 3. That is, y = 0.

¥

Remark 3.16. Let us remark that matrix M has only n−2 different eigenvalues because

if |r| = |m| then λr = λm, for all |m| ≤ n− 3.

Now we can explain the conditions under which there is an equivalence between finding

the extremals of the functional F and computing the PDE surfaces satisfying its Euler-

Lagrange equation.

Theorem 3.17. A polynomial patch −→x ∈ Rn[u, v] that satisfies −→x uv (u, 1− u) = 0 is a

solution of the PDE −→x uuvv = 0 iff it is an extremal of the functional

F (−→x ) =

∫

T

‖−→xuv‖2du dv
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among all polynomial patches with the same prescribed border.

Proof: This proof is analogous to the proof of Theorem 3.5 for rectangular patches.

A polynomial patch −→x would be an extremal of the functional F (−→x ) among all polyno-

mial patches with a prescribed boundary if and only if for any −→y ∈ Rn[u, v], null along the

border of T,

−→y (u, v) =
∑

|I|=n

QIB
n
I (u, v) , |I| = |{i, j, k}| = n with i, j, k 6= 0,

the following equality holds

0 =
d

dt
∣∣∣
t=0

F (−→x + t−→y ) = 2

∫

T

< −→x uv,
−→y uv > du dv.

Equivalently, we have that −→x is an extremal of F (−→x ) if and only if

0 =

∫

T

< −→x uv, (B
n
I (u, v))uv ea > du dv,

where ea, a ∈ {1, 2, 3}, denotes the a-th vector of the canonical basis and |I| = |{i, j, k}| = n

with i, j, k 6= 0.

Let us consider the following integration by parts

∫

T

d

dv
< −→x uv, (B

n
I (u, v))u ea > du dv =

∫

T

< −→x uvv, (B
n
I (u, v))u ea > du dv

+

∫

T

< −→x uv, (B
n
I (u, v))uv ea > du dv,

then we have

∫

T

< −→x uv, (B
n
I (u, v))uv ea > du dv =

∫ 1

0

< −→x uv, n
(
Bn−1

I−e1
(u, v)−Bn−1

I−e3
(u, v)

)
ea >

]v=1−u

v=0
du

−
∫

T

< −→x uvv, (B
n
I (u, v))u ea > du dv.

Now, bearing in mind that Bn−1
I−e1

(u, 1− u) = 0 for k 6= 0, Bn−1
I−e1

(u, 0) = Bn−1
I−e3

(u, 0) = 0 for

j 6= 0 and that Bn−1
I−e3

(u, 1− u) = Bn−1
i (u) if k = 1, we have

∫

T

< −→x uv, (B
n
I (u, v))uv ea > du dv = −

∫ 1

0

< −→x uv (u, 1− u) , Bn−1
i (u) ea > du

−
∫

T

< −→x uvv, (B
n
I (u, v))u ea > du dv.
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Now if we consider the integral
∫

T

d

du
< −→x uvv, B

n
I (u, v) ea > du dv =

∫

T

< −→x uuvv, B
n
I (u, v) ea > du dv

+

∫

T

< −→x uvv, (B
n
I (u, v))u ea >, du dv,

we have
∫

T

< −→x uvv, (B
n
I (u, v))u ea > du dv =

∫ 1

0

< −→x uvv, B
n
I (u, v) ea >

]u=1−v

u=0
dv

−
∫

T

< −→x uuvv, B
n
I (u, v) ea > du dv.

Then, after evaluating the Bernstein polynomials, Bn
I (1− v, v) = Bn

I (0, v) = 0 for i, k 6=
0, it is obtained that −→x is an extremal of F (−→x ) if and only if

(45)

∫

T

< −→x uv, (B
n
I (u, v))uv ea > du dv =

∫

T

< −→x uuvv, B
n
I (u, v) ea > du dv

−
∫ 1

0

< −→x uv (u, 1− u) , Bn−1
i (u) ea > du = 0.

Therefore if −→x is a polynomial patch satisfying −→x uuvv = 0 and such that −→x uv (u, 1− u) =

0 then it is an extremal for a prescribed border of the functional F (−→x ) .

Now let us show the reciprocal. If we suppose that −→x is an extremal of the functional

F (−→x ) among all polynomial patches with a prescribed boundary, then, from Equation (45),

it satisfies

0 =

∫

T

< −→x uuvv, B
n
I (u, v) ea > du dv for |I| = n with i, j, k 6= 0.

The polynomial patch −→x uuvv is a triangular Bézier surface of total degree n− 4, so if we

consider its degree elevation, then we can ensure that −→x uuvv = 0 from Lemma 3.15.

¥

Remark 3.18. The condition −→x uv (u, 1− u) = 0 is needed in the triangular case since

this term does not vanish here as it happened for the rectangular case. It can be written in

terms of the control points as follows:

−→x uv (u, 1− u) =
∑

|I|=n−2

∆11PIB
n−2
I (u, 1− u) =

n−2∑
i=0

∆11Pi,n−2−i,0B
n−2
i (u) .

Then −→x uv (u, 1− u) = 0 if and only if ∆11Pi,n−2−i,0 = 0 for i = 0, ..., n−2, or equivalently

iff

Pi+1,n−1−i,0 − Pi,n−1−i,1 − Pi+1,n−2−i,1 + Pi,n−2−i,2 = 0 for i = 0, ..., n− 2.
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3. Masks and triangular permanence patches

In general a condition that relates some control points can be written by means of a mask

only if (considering a 3× 3 triangular grid),

Pi−1,j−1,k+2 Pi−1,j,k+1 Pi−1,j+1,k Pi−1,j+2,k−1

Pi,j−1,k+1 Pi,j,k Pi,j+1,k−1

Pi+1,j−1,k Pi+1,j,k−1

Pi+2,j−1,k−1

this condition relates the points on the grid in such a way, that the interior point can be

expressed in terms of the boundary control points. The mask is then considered to be a

stencil for the central point.

When we considered quadratic harmonic surfaces, in section 2.1 of the first chapter, we

wrote a “kind” of mask. The inverted commas were there to show that it is not really a

mask, because the harmonic condition for quadratic surfaces only relates the control points

in a n = 2 grid. If we consider the n = 3 grid, as we did for the cubic case, in section 2.2

of the same chapter, then the harmonic condition does not relate all the control points in

a 3 × 3 triangular grid. In fact, the interior point could be written in terms of the border

control points only after solving a linear system of three equations.

On the other hand, if we consider the biharmonic condition we find that it relates the

control points in a 4 × 4 triangular grid, so a mask cannot really be used. If the following

scheme is considered:

Pi−2,j−1,k+3 Pi−2,j,k+2 Pi−2,j+1,k+1 Pi−2,j+2,k Pi−2,j+3,k−1

Pi−1,j−1,k+2 Pi−1,j,k+1 Pi+1,j+1,k Pi−1,j+2,k−1

Pi,j−1,k+1 Pi,j,k Pi,j+1,k−1

Pi+1,j−1,k Pi+1,j,k−1

Pi+2,j−1,k−1

the following arrangement of coefficients is an easy way to show the coefficient that multiplies

each control point and allows us to see which points from the control net are related by the

biharmonic condition in Equation (23):

4 −8 8 −4 1
−8 8 −4 0

8 −4 2
−4 0

1

.

Therefore as we have said earlier a mask could not be used to describe the biharmonicity

of a patch.

In the following chapter we will present a method, which we will call the third-order

method, that will enable us to determine the interior control points in terms of the boundary
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points. Therefore, when we consider it on a 3×3 grid of control points we obtain an expression

of the interior control point in terms of its nine neighbors, so it can be written using a mask.

Some previous work related to masks can be found in [14]. The rectangular Coons patch,

as well as the associated discrete Coons patch, satisfies a Permanence Principle: Let two

points (u0, v0) and (u1, v1) define a rectangle R in the domain U of the Coons patch. The

four boundaries of this subpatch will map onto four curves on the Coons patch. The Coons

patch for those four boundary curves is the original Coons patch restricted to the rectangle

R.
Moreover, as we said before, the rectangular Coons patch is a PDE surface satisfying

−→x uuvv = 0 and the discrete version of this partial differential equation is verified exactly by

the discrete Coons patch. Farin and Hansford, in the previously cited paper, [14], deduced

the following rectangular mask from this discrete PDE.

Pi,j =
1

4
×

−1 2 −1
2 ? 2
−1 2 −1

Later we will give an explanation of how they did it. After introducing this mask for the

Coons patch, which as we said satisfies the permanence principle, the authors generalized it

by defining what they called permanence patches: A permanence patch is obtained from a

control net

Pi,j =
α β α
β ? β
α β α

with 4α + 4β = 1.

This kind of mask suggests the possibility of different choices for α and β, so in this

sense Farin and Hansford, show how some choices of these values give different masks which

are also the discrete form of a PDE, as the discrete version of the Euler-Lagrange PDE
−→x uuvv = 0, gave the first rectangular mask α = −1

4
.

Moreover Farin and Hansford extended the permanence patches concept to the triangular

case just by considering the analogous triangular mask.

Given a mask of the form

(46) Pi,j,k =

α β β α
β ? β

β β
α

with 3α + 6β = 1 the triangular patch formed with such a control net is called a triangular

permanence patch.

Now, let us come back to rectangular patches and show how the α = −1
4

mask was

deduced from the Euler-Lagrange PDE −→x uuvv = 0.
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The discrete version of −→x uuvv = 0 is given by ∆2,2Pi,j = 0, where

∆1,0Pi,j = Pi+1,j − Pi,j

∆0,1Pi,j = Pi,j+1 − Pi,j.

Then

0 = ∆2,2Pi,j = Pi+2,j+2−2Pi+2,j+1−2Pi+1,j+2+4Pi+1,j+1−2Pi+1,j−2Pi,j+1+Pi+2,j+Pi,j+2+Pi,j

gives

(47)

Pi,j =
−1

4
(Pi+1,j+1 − 2Pi+1,j − 2Pi,j+1 − 2Pi,j−1 − 2Pi−1,j + Pi+1,j−1 + Pi−1,j+1 + Pi−1,j−1)

that is the rectangular mask α = −1
4

.

This mask could also be deduced as a consequence of the permanence principle. Let us

show this. We will determine for which value of α and β, with 4α + 4β = 1, a permanence

patch satisfies the permanence principle.

This principle implies that the control point Pi,j can be obtained with the discrete Coons

formula, Equation (30), from the boundary control points on a n × m grid or instead one

can apply this formula to any 3× 3 grid included in the global grid,

Pi−1,j−1 Pi−1,j Pi−1,j+1

Pi,j−1 Pi,j Pi,j+1

Pi+1,j−1 Pi+1,j Pi+1,j+1

.

Therefore if we consider that any point in the equation

Pi,j = α (Pi+1,j+1 + Pi+1,j−1 + Pi−1,j−1 + Pi−1,j+1) + β (Pi+1,j + Pi,j+1 + Pi,j−1 + Pi−1,j) ,

can be written in terms of the boundary control points, as we said by means of Equation

(30), it leads us to the value α = −1
4

.

The permanence principle is not verified by triangular Coons patches so the previous

reasoning cannot be followed in order to obtain a mask describing the Coons triangle. Any-

way we will introduce a mask, which generates a permanence patch, since it is of the kind

defined in Equation (46), and which is related to the triangular Coons patch.

We will consider the triangular control net of a triangular Coons patch of degree 3,

instead of the general case of degree n,

P003 P012 P021 P030

P102 P111 P120

P201 P210

P300
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The interior control point, P111, is defined, by Equation (32), in terms of the boundary

control points of a grid of degree 2. Moreover, the boundary control points on the degree 3

control net are the control points of the degree elevation of degree 2 border curves.

Then if we consider that any interior or border control point in the equation

P111 = α (P003 + P030 + P300) + β (P012 + P021 + P102 + P201 + P120 + P210)

can be written, thanks to Equation (32), in terms of control points of a degree 2 control net,

we find that equality is only attained for the values α = −2
3

and β = 1
2
.

Therefore the triangular permanence patch for α = −2
3

gives the triangular Coons patch

of degree 3, although in general a mask cannot be used to obtain a Coons triangle of degree
n.

Let us remark that all schemes whose construction satisfies a variational principle share

the permanence principle property, see [14]. In the following chapter we will present a method

to obtain triangular Bézier PDE surfaces as a solution of a third-order partial differential

equation. Then we will show that these surfaces satisfy the permanence principle under some

special conditions in the chosen triangular subdomain.

Some other special triangular permanence patches are described in [14]. The authors

show how some values of α give a permanence patch satisfying a PDE. One choice, related

to a PDE that is strongly linked with our work, is the mask corresponding to the value

α = 0, which is the discrete form of the Laplace PDE

−→x uu +−→x vv = 0.

If we assume that we are applying the harmonic operator ∆−→x = 0 to a given function
−→x : R→ R3, where

R = {u = (u, v, w) ∈ R3/u + v + w = 1 and u, v, w ≥ 0},

then we could discretely represent this by denoting a node in the triangle finite difference

mesh by the integers i, j, k with mesh spacing h so that the coordinates are u = ih, v = jh

and w = kh.
Therefore the discrete representation of the harmonic operator is given by:

0 =
−→x i+1,j,k−1 − 2−→x i,j,k +−→x i−1,j,k+1

h2
+
−→x i,j+1,k−1 − 2−→x i,j,k +−→x i,j−1,k+1

h2

+
−→x i+1,j−1,k − 2−→x i,j,k +−→x i−1,j+1,k

h2
,

that is,

−→x i,j,k =
1

6
(−→x i+1,j,k−1 +−→x i−1,j,k+1 +−→x i,j+1,k−1 +−→x i,j−1,k+1 +−→x i+1,j−1,k +−→x i−1,j+1,k) ,

which can be diagrammatically represented by the following harmonic mask:
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Pi,j,k =
1

6
×

0 1 1 0
1 ? 1

1 1
0

.

Moreover, it is shown in [14] that the mask (46) can be described as a blend of a corner

twist minimizing mask (the value α = −1/3 corresponds to the corner twist minimizer) and

a Laplace mask:

Pi,j,k =
1

6


e×

−2 2 2 −2
2 ? 2

2 2
−2

+ (1− e)×
0 1 1 0

1 ? 1
1 1

0




Then it can be seen the relation α = −e
3

:

Pi,j,k =
1

6
×

−2e 1 + e 1 + e −2e
1 + e ? 1 + e

1 + e 1 + e
−2e

.

These Farin-Hansford masks will be studied and compared with some others in the chap-

ters that follow.

4. Conclusions

In previous chapters we have described some different surface generation methods that

start out from a prescribed set of control points. But, since the best information about the

desired shape of a surface comes from its boundary, here we have conducted a study of one

of the most important solutions to the problem of finding a surface interpolating boundary

curves: triangular Coons patches in comparison with rectangular Coons patches.

We have seen that the problem of finding a polynomial extremal of the functional

F (−→x ) =

∫

U

‖−→xuv‖2du dv,

among all rectangular patches with the same boundary is equivalent to solving the PDE
−→x uuvv = 0 and, moreover, that the Coons rectangular patch is a solution. But, we have seen

that triangular Coons patches are not extremals of this functional.

Therefore, we have studied the conditions under which it would be equivalent to find an

extremal of F among all polynomial triangular patches with a prescribed boundary and to

solve the PDE −→x uuvv = 0.

Moreover, we have characterized the control net of a triangular Bézier extremal of the

functional F . From this characterization we have developed two methods to generate trian-

gular patches given the boundary curves. The first method is to find the extremals of the

functional as a solution of a linear system of the control points. The second method makes
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it possible to build a Bézier triangle by means of a mask deduced from the characterization

of cubical extremals.
On the other hand, we have defined the Triangular Discrete Coons patch and we have

compared the shapes of the surfaces obtained by these three surface generation methods.

We have observed that better results are obtained for the extremals of the functional and
for the triangular Coons patch, but the Coons patch implies an increase of degree. We also

compared Coons patches’ results with our results about biharmonic surfaces described in the

previous chapter.





CHAPTER 4

Constructing triangular Bézier surfaces using linear PDEs:

The third-order method

In the previous chapters our goal was to determine the triangular Bézier patch by verifying

the harmonic or the biharmonic condition for a prescribed set of control points, which were

previously fixed. We saw that, given two lines of control points, a triangular Bézier surface

is totally determined by the harmonic condition, ∆−→x = 0, which a second-order equation

PDE: ∆−→x = −→x uu + −→x vv. The pair of lines of control points were the first and the second

row at Theorem 1.9, and two border lines (with the substitution of some of them by a

neighboring point) in Theorem 1.18. In the biharmonic case we were able to determine a

biharmonic triangular Bézier patch given four lines of control points. It should be noted that

the biharmonic condition is a fourth-degree partial differential equation.

Therefore, it is natural to think about our next goal: Given all the border control points

(three lines), to determine an associated Bézier surface that will fulfill a third-order condition.

This can be achived if we consider third-order PDEs.

1. The third-order PDE

Since there is no natural third-order PDE, let us consider a general linear third-order

operator with constant coefficients:

R (−→x ) = α−→x uuu + β−→x uuv + γ−→x vvu + δ−→x vvv.

and the corresponding third-order PDE: R (−→x ) = 0.

Let −→x be a triangular Bézier surface. The third order PDE

(48) α−→x uuu + β−→x uuv + γ−→x vvu + δ−→x vvv = 0,

in terms of control points is

0 =

(
α

∂3

∂u3
+ β

∂3

∂u2v
+ γ

∂3

∂v2u
+ δ

∂3

∂v3

)
−→x (u)

=n (n− 1) (n− 2)
∑

|I|=n−3

(
α∆3,0PI + β∆2,1PI + γ∆1,2PI + δ∆0,3PI

)
Bn−3

I (u)

81
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=
n!

(n− 3)!

∑

|I|=n−3

[α (PI+3e1 − 3PI+2e1+e3 + 3PI+e1+2e3 − PI+3e3)

+ β (PI+2e1+e2 − PI+2e1+e3 − 2PI+e1+e2+e3 + 2PI+e1+2e3 + PI+e2+2e3 − PI+3e3)

+ γ (PI+e1+2e2 + PI+e1+2e3 − 2PI+e1+e2+e3 + 2PI+e2+2e3 − PI+2e2+e3 − PI+3e3)

+ δ (PI+3e2 − 3PI+2e2+e3 + 3PI+e2+2e3 − PI+3e3)]B
n−3
I (u)

=
∑

|I|=n−3

QI Bn−3
I (u) .

Hence R (−→x ) = 0 if and only if QI = 0 for all |I| = n− 3, i.e., if and only if

(49)

0 = (−α− β − γ − δ) Pi−1,j−1,k+2 + (β + 2γ + 3δ) Pi−1,j,k+1 + (−γ − 3δ) Pi−1,j+1,k

+δPi−1,j+2,k−1 + (3α + 2β + γ) Pi,j−1,k+1 − 2 (β + γ) Pi,j,k + γPi,j+1,k−1

+ (−3α− β) Pi+1,j−1,k + βPi+1,j,k−1 + αPi+2,j−1,k−1,

for all |I| = n− 3.

2. Mask formulation

Let us consider the control points according to the following scheme,

Pi−1,j−1,k+2 Pi−1,j,k+1 Pi−1,j+1,k Pi−1,j+2,k−1

Pi,j−1,k+1 Pi,j,k Pi,j+1,k−1

Pi+1,j−1,k Pi+1,j,k−1

Pi+2,j−1,k−1.

If the boundary of the previous grid was known, then the interior point, Pi,j,k, could be

determined by

(50)

Pi,j,k =
1

2 (β + γ)
( (−α− β − γ − δ) Pi−1,j−1,k+2 + (β + 2γ + 3δ) Pi−1,j,k+1

+ (−γ − 3δ) Pi−1,j+1,k + δPi−1,j+2,k−1 + (3α + 2β + γ) Pi,j−1,k+1

+γPi,j+1,k−1 + (−3α− β) Pi+1,j−1,k + βPi+1,j,k−1 + αPi+2,j−1,k−1 ) ,

for all |I| = n.

A better way of writing this is to use a mask:

(51) Pi,j,k =
1

2 (β + γ)
×

−α− β − γ − δ β + 2γ + 3δ −γ − 3δ δ
3α + 2β + γ ? γ

−3α− β β
α
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This mask suggests the possibility of having different choices for the parameters α, β, γ

and δ which could also be reduced to only three parameters, since the general third-order

PDE, Equation (48), could be divided by any of them.

In the following sections we will discuss the choice of the values of α, β, γ and δ.

But before going onto particular cases let us now state the permanence principle fulfilled

by triangular patches obtained by the third-order method.

3. The permanence principle

The triangular patches that are obtained as a solution of a third order PDE, such as

Equation (48), do not satisfy the permanence principle for all triangular subpatches but

only for those defined on isosceles right triangles.

Lemma 4.1. Let us consider a triangular patch with a prescribed boundary defined on the

triangular domain

T = {(u, v) ∈ R2 : 0 ≤ u, 0 ≤ v, u + v ≤ 1}
satisfying the general linear third-order PDE

α−→x uuu + β−→x uuv + γ−→x uvv + δ−→x vvv = 0,

where two of the four coefficients α, β, γ, δ, are other than zero.

Let two points (u0, v1) and (u1, v0), with u0 < u1 and v0 < v1, define a right triangle T1

in the domain T of a triangular patch.

(u ,v )

(u ,v )(u ,v )

0

100 0

1

T1

T

Figure 1. Two points determine a right triangle hypotenuse.

The three boundaries of this subdomain will map onto three curves on the solution triangu-

lar patch. Thus the triangular patch that is obtained by the third-order method by prescribing

those three boundary curves is the original solution triangular patch restricted to the right

triangle T1 if and only if it is an isosceles triangle.

Proof: Let −→x (u, v), u, v ∈ T be a solution with a prescribed boundary of a third-order

PDE
α−→x uuu + β−→x uuv + γ−→x uvv + δ−→x vvv = 0,

where two of the four coefficients α, β, γ, δ, are different from zero.
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Let us consider the patch

−→y (u, v) = −→x (u0 + u (u1 − u0) , v0 + v (v1 − v0)) u, v ∈ T

which is the restriction of −→x (u, v) on the triangle T1.

Then if we compute the partial derivatives of −→y what we obtain is:

(α−→y uuu + β−→y uuv + γ−→y uvv + δ−→y vvv) (u, v) =

=
(
α (u1 − u0)

3−→x uuu + β (u1 − u0)
2 (v1 − v0)

−→x uuv + γ (u1 − u0) (v1 − v0)
2−→x uvv

+ δ (v1 − v0)
3−→x vvv

)
(u0 + u (u1 − u0) , v0 + v (v1 − v0)) .

In general, this expression does not vanish except when (u1 − u0) = (v1 − v0), that is,

only for triangular subpatches defined on isosceles right triangles.

¥

Remark 4.2. Here we have only considered subtriangles on T determined by points

(u0, v1) and (u1, v0) with u0 < u1 and v0 < v1. The previous lemma could be performed for

the rest of cases analogously by just a different change of variable.

4. The symmetric mask

From the multiple choices of the parameters α, β, γ, δ, in this section we will study the

symmetric cases of the mask in Equation (51). We can distinguish two levels of symmetry,

strong and weak symmetry.

Weak symmetry: These are the conditions that the coefficients α, β, γ and δ must

fulfill for the mask in Equation (51) to be a symmetric mask

−α− β − γ − δ = δ = α

3α + 2β + γ = β = −γ − 3δ

β + 2γ + 3δ = γ = −3α− β





.

This implies α = δ = −β+γ
3

, so this is the symmetric case:

(52) Pi,j,k =

−1
6

γ
2(β+γ)

β
2(β+γ)

−1
6

β
2(β+γ)

? γ
2(β+γ)

γ
2(β+γ)

β
2(β+γ)

−1
6

.

The corresponding operator is

Sβ,γ(
−→x ) = −1

6
−→x uuu +

1

2 (β + γ)
(β−→x uuv + γ−→x uvv)− 1

6
−→x vvv.
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Strong symmetry: If there are only two different coefficients, one for the vertices and

another for the rest of the positions on the mask, then we can talk of strong symmetry. A

particular and special case of the symmetric mask in Equation (52) is obtained when β = γ.

The third-order operator is

S(−→x ) = −1

6
−→x uuu +

1

4
(−→x uuv +−→x uvv)− 1

6
−→x vvv,

hence the associated PDE S(−→x ) = 0 does not depend on β and so the associated mask is

given by

(53) Pi,j,k =

−1
6

1
4

1
4

−1
6

1
4

? 1
4

1
4

1
4−1

6

,

which turns into a Farin-Hansford mask, see [14], defined in Equation (46) with α = −1
6

.

Therefore, the PDE surfaces formed with this mask are also triangular permanence patches.

In fact, a special case of permanence patch which has quadratic precision.

The triangular permanence patches resulting from α = −1
6

enjoy a quadratic precision

property, see [14], in the sense that: Given a quadratic discrete patch Q, we degree elevate

it to an arbitrary degree n, resulting in a patch EQ, then the patch obtained with the

symmetric mask for given boundaries results in a patch PEQ satisfying PEQ=EQ

Now we will present a discussion about the existence of a triangular Bézier solution of

the third-order PDE S(−→x ) = 0.

5. About the existence of solutions

In this section we will see how a triangular PDE Bézier surface satisfying

(54) −1

6
−→x uuu +

1

4
(−→x uuv +−→x uvv)− 1

6
−→x vvv = 0

can be determined from a prescribed border.

If this problem is considered in terms of Bézier control points then a solution of the

previous PDE must satisfy the following system of linear equations

(55)

Pi,j,k =− 1

6
(Pi+2,j−1,k−1 + Pi−1,j+2,k−1 + Pi−1,j−1,k+2)

+
1

4
(Pi−1,j,k+1 + Pi−1,j+1,k + Pi,j−1,k+1 + Pi,j+1,k−1 + Pi+1,j−1,k + Pi+1,j,k−1) .

These equations can be described, as we said before, by the mask in Equation (53). That

is, each equation in the system, shows how every interior control point can be represented as

a linear combination of its triangular neighboring control points, that is: Pi =
∑

j∈Ni
λijPj,

where Ni denotes the 9 neighboring control points of an interior control point Pi.
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This kind of systems was studied extensively in [18], where a very interesting method

to discuss the existence of solution when the coefficients, λij, are a partition of unity was

obtained. In the following proposition we describe the weak sufficient condition, which was

derived in the cited paper, for the solvability of this kind of linear systems.

Proposition 4.3. Let the set of weights λij be a partition of unity. Then, the linear

system of n equations

Pi =
∑
j∈Ni

λijPj, i = 0, ..., n,

has unique solution. These equations require that each interior control point, Pi for i =

0, ..., n, be some convex combination of its neighbors, Pj with j ∈ Ni. Thus Pi will be

contained in the convex hull of its neighbors.

This result turns out to be a very useful tool in order to discuss the existence of solutions

of linear systems derived from masks, both in the rectangular and the triangular case, but

with the restriction of having positive weights such that
∑

j∈Ni
λij = 1. This restriction of

having coefficients being a partition of unity is not fulfilled in our case. Although we have

that
∑

j∈Ni
λij = 1, even for our most general mask, in Equation (51), we find that in all

particular cases negative weights appear. Therefore, this method cannot be used to discuss

the solvability of our problem. Moreover, it is not possible to do a variation of the proof

of this result for masks with negative weights since it is based on the convex hull concept,

where positive numbers are needed.

The existence of solutions to this kind of problem is not studied by many authors, the

reasoning being the following. When we consider a surface generation method which allows

us to obtain a patch with a prescribed boundary as a solution of a linear system, if given the

boundary curves, it was found that the associated system was incompatible, then a slight

change of the boundary curves would probably turn the system into a compatible one.

On the other hand, there are many other authors, such as Floater and Reimers in [18],

who show their interest on discussing the existence of solutions to these problems using

different and interesting techniques.

The existence of solutions also lies within our field of interest. In order to prove our

results easily, at the moment we will work with the usual basis of polynomials instead of

with the Bernstein basis.
Let−→x be a polynomial function of degree n ≥ 3 in terms of the usual basis of polynomials:

−→x (u, v) =
n∑

k,l=0

ak,l

k!l!
ukvl.

Since the total degree is supposed to be n, then k + l ≤ n, and there are some null

coefficients:

ak,l = 0 if k + l > n.
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Moreover, if the polynomial, −→x , satisfies the third-order PDE, S (−→x ) = 0, this condition

can be translated into a system of linear equations in terms of the coefficients {ak,l}n
k,l=0

(56) −1

6
ak+3,l +

1

4
(ak+2,l+1 + ak+1,l+2)− 1

6
ak,l+3 = 0, k, l = 0, ..., n

with the convention ak,l = 0 if k + l > n.

The following triangular scheme shows that ak,l = 0 if k + l > n and that the coefficients

at the diagonal lines, see the boxed coefficients, fulfill the requirement that k + l = r for

r = 0, ..., n.

a0,0 a0,1 a0,2 a0,3 a0,4 · · · a0,r · · · a0,n

a1,0 a1,1 a1,2 a1,3 · · · a1,r−1 · · · a1,n−1

a2,0 a2,1 a2,2 · · · a2,r−2 · · · a2,n−2

a3,0 a3,1 · · · a3,r−3

...
...

ar−1,0 ar−1,1 · · · ar−1,n−r+1

ar,0 · · · ar,n−r

...
an,0

Figure 2. Scheme of coefficients

In the following lemma we prove that the knowledge of the first three lines of coefficients

of a polynomial satisfying S (−→x ) = 0, determines all of them.

Lemma 4.4. Let

−→x (u, v) =
n∑

k,l=0

ak,l

k!l!
ukvl

be a polynomial function of degree n ≥ 3 verifying the third-order PDE, S (−→x ) = 0, then,

the coefficients {ak,l}n
k=3,l=0 are totally determined by {a0,l, a1,l, a2,l}n

l=0.

Proof:
We have seen above that the third-order PDE, S (−→x ) = 0, can be translated into a

system of linear equations given in Equation (56). So, first of all, let us consider the

coefficients {a3,l}n
l=0. We find that each of these coefficients is determined by the trio

{a0,l+3, a1,l+2, a2,l+1}n
l=0.

Analogously, any coefficient ak,l with k > 2 can be related with {ak−3,l+3, ak−2,l+2, ak−1,l+1}
and so on until the second subindex is greater than n.

¥
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Now in order to ensure the solvability of the linear system given in Equation (56), we

will split it into n − 2 subsystems. Each of them relates the coefficients in a diagonal with

k + l = r for r = 3, ..., n.

(57)

−1

6
ar,0 +

1

4
(ar−1,1 + ar−2,2)− 1

6
ar−3,3 = 0

−1

6
ar−1,1 +

1

4
(ar−2,2+ar−3,3)− 1

6
ar−4,4 = 0

−1

6
ar−2,2 +

1

4
(ar−3,3 + ar−4,4)− 1

6
ar−5,5 = 0

· · ·

−1

6
a3,r−3 +

1

4
(a2,r−2 + a1,r−1)− 1

6
a0,r = 0.

In the following lemma we will see that, for all r ≥ 3, knowledge of the coefficients ar,0,

a1,r−1 and a0,r determines all the coefficients in the diagonal r.

Lemma 4.5. Let r ≥ 3. If the coefficients ar,0, a1,r−1 and a0,r are known, then the linear

system given in Equation (56) for all k, l such that k + l = r and involving coefficients with

non negative subindexes, (r − 2 equations), and with the unknowns {ak,l} with k + l = r,

k > 1 and l > 0, has a unique solution.

Proof:
Let us consider the linear subsystem in Equation (57). Let us recall that ar,0, a1,r−1 and

a0,r are assumed to be known, so the associated coefficient matrix is the Toeplitz tetradiag-

onal matrix, M
(− 1

6
, 1
4
, 1
4
,− 1

6)
r−2 . Therefore, its determinant, given in Corollary 1.16, is

(58) Dn =
1

3n+222n

(
22n+3 + 2n+1 (−1)n − 1

)
,

which does not vanish for n ∈ N.
Therefore, there exists a unique solution of the system given in Equation (57).

¥

Remark 4.6. The linear subsystems in Lemma 4.5 can be represented as the matrix

equation:

M
(a,b,b,a)
r−2 .




ar−1,1

ar−2,2

ar−3,3
...

a3,r−3

a2,r−2




=




−aar,0

0
...
0

−ba1,r−1

−ba1,r−1 + aa0,r




,
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where a = −1
6

and b = 1
4
.

At this point we have that the first column and the first two lines of coefficients determine

the whole of the coefficients of a polynomial that fulfills S (−→x ) = 0.

a0,0 a0,1 a0,2 a0,3 a0,4 · · · a0,r · · · a0,n

a1,0 a1,1 a1,2 a1,3 · · · a1,r−1 · · · a1,n−1

a2,0 a2,1 a2,2 · · · a2,r−2 · · · a2,n−2

a3,0 a3,1 · · · a3,r−3

...
...

ar−1,0 ar−1,1 · · · ar−1,n−r+1

ar,0 · · · ar,n−r

...
an,0

Figure 3. The boxed coefficients determine all of the others.

Let us denote the unique solution of each subsystem, given by Equation (57), in terms

of ar,0, a1,r−1 and a0,r, as follows

(59) ak,r−k = ck
r,0ar,0 + ck

1,r−1a1,r−1 + ck
0,ra0,r

for k = 2, ..., r − 1. Moreover, if we define

cr
r,0 = 1, cr

1,r−1 = 0, cr
0,r = 0,

c1
r,0 = 0, c1

1,r−1 = 1, c1
0,r = 0,

c0
r,0 = 0, c0

1,r−1 = 0, c0
0,r = 1,

we can extend our notation in Equation (59) for k = 0, ..., r.

In the following lemma we will compute the coefficients ck
r,0, ck

1,r−1 and ck
0,r for k =

2, ..., r − 1. That is, we will give an explicit solution of the subsystems for r = 3, ..., n, in

terms of ar,0, a1,r−1 and a0,r.

Lemma 4.7. The coefficients ck
r,0, ck

1,r−1 and ck
0,r, which appear in the expression of ak,r−k

in terms of ar,0, a1,r−1 and a0,r given in Equation (59), can be computed by the following



90 4. THE THIRD-ORDER METHOD

formulas

(60)

ck
r0 =

−a

det M
(a,b,b,a)
r−2

(−1)r−k+1 A1,r−k,

ck
1r−1 =

1

det M
(a,b,b,a)
r−2

(
−a (−1)2r−3−k Ar−3,r−k − b (−1)2r−2−k Ar−2,r−k

)
,

ck
0r =

−a

det M
(a,b,b,a)
r−2

(−1)2r−2−k Ar−2,r−k,

where a = −1
6

, b = 1
4
, and Ai,j denotes the so-called minors of the matrix, obtained by taking

the determinant after removing the i-th row and j-th column of the matrix M
(a,b,b,a)
r−2 .

Proof: We will compute the solution of the linear system given in Equation (57) by

using Cramer’s rule:

ak,r−k =
1

det M
(− 1

6
, 1
4
, 1
4
,− 1

6)
r−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b b a 0 · · · −a ar0 0 0
a b b a 0 0 0 0

0 a b b a
... · · · 0

...
. . . . . . . . . . . . 0

. . .
...

0 · · · . . . . . . b
...

. . . 0

0 0 · · · . . . a
... b a

0 0 0 · · · 0 −a a1r−1 b b
0 0 0 · · · 0 −b a1r−1 − a a0,r a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(r−2)×(r−2)

↑
(r − k)
column

=
1

det M
(− 1

6
, 1
4
, 1
4
,− 1

6)
r−2

(− a ar0 (−1)1+r−k A1,r−k − a a1r−1 (−1)r−3+r−k Ar−3,r−k

+ (−b a1r−1 − a a0r) (−1)r−2+r−k Ar−2,r−k).

¥

In the following two lemmas we will give a recursive formula and the general term of a

specific determinant which will appear in the proof of the next theorem, Theorem 4.12.
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Lemma 4.8. The determinant, dn, of the matrix m
(a,b,c,d)
n defined by

(61) m(a,b,c,d)
n =




b c d 0 · · · 0 0 0
a b c d 0 · · · 0 0
0 a b c d 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 a b c d 0
0 0 · · · 0 a b c d
0 0 0 · · · 0 a b c

−1 1 · · · · · · · · · (−1)n




can be determined by the following non-homogeneous recursive equation where Dn = |M (a,b,c,d)
n |

(62) dn + c dn−1 + db dn−2 + ad2 dn−3 = (−1)n Dn−1 + ad (−1)n−1 Dn−3.

Proof: We compute this determinant doing expansion by minors. We start by the last

column:

dn = (−1)nDn−1 + c(−1)2n−1dn−1 + d(−1)2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
...

...

M
(a,b,c,d)
n−3

0 0
d 0
c d

0 · · · 0 a b
−1 1 · · · · · · (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)nDn−1 + c(−1)2n−1dn−1 + d(−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...

M
(a,b,c,d)
n−3 0

d
c

0 · · · 0 a
−1 1 · · · (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ db(−1)2n−3dn−2 + d2(−1)2n−4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
...

...

M
(a,b,c,d)
n−4 0 0

d 0
c d

0 · · · 0 0 a
−1 1 · · · · · · (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(−1)n Dn−1 − c dn−1 + ad(−1)n−1 Dn−3 − db dn−2 − ad2 dn−3.

¥
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Now we compute the corresponding n-term of this determinant in our particular case.

Lemma 4.9. The determinant of the matrix m
(−1

6
, 1
4
, 1
4
,−1

6
)

n , which can be obtained by the

recursive formula given in Equation (62), has the following n-term

dn =
4

3n+3

(
4

(
2 (−1)n −

(−1

4

)n

− 1

2n

)
+ 3

(−1

4

)n (−1 + 4n+1
)
n

)
.

Proof: The non-homogeneous recursive rule which defines the determinant, dn, of the

matrix m
(−1

6
, 1
4
, 1
4
,−1

6
)

n is

(63) dn +
1

4
dn−1 − 1

24
dn−2 − 1

216
dn−3 = f(n)

where, bearing in mind that Dn is defined by Equation (58), we have that

f(n) = (−1)nDn−1 +
1

36
(−1)n−1Dn−3 = 2

(−1

3

)n

+ 4

(−1

12

)n

.

We will find the solution of this recurrence equation as the sum dn = dh
n + dp

n, where dh
n is

the solution of the corresponding homogeneous equation and dp
n is a particular solution of

Equation (63).

Following the usual method, we obtain the solution of the homogeneous equation:

dh
n = A

(−1

3

)n

+ B

(−1

12

)n

+ C

(
1

6

)n

.

Now we must find a single solution of the full recurrence

dn +
1

4
dn−1 − 1

24
dn−2 − 1

216
dn−3 = f(n),

but we will obtain it as the sum of a pair of particular solutions of the equations

dn +
1

4
dn−1 − 1

24
dn−2 − 1

216
dn−3 = 2

(−1

3

)n

dn +
1

4
dn−1 − 1

24
dn−2 − 1

216
dn−3 = 4

(−1

12

)n

.

Since −1
3

and −1
12

are solutions of the homogeneous characteristic equation it is obvious that

the particular solutions we seek can not be of the form

k1

(−1

3

)n

and k2

(−1

12

)n

.

Therefore, we guess that the solutions are of the form

k1 2n

(−1

3

)n

and k2 4n

(−1

12

)n

,
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respectively. Substituting this values into the corresponding recurrence equations gives us

that k1 = 8
9

and k2 = −1
9

, then

dp
n =

16

9
n

(−1

3

)n

− −4

9
n

(−1

12

)n

,

is a particular solution of Equation (63).

The general term is given by

dn = A

(−1

3

)n

+ B

(−1

12

)n

+ C

(
1

6

)n

+
16

9
n

(−1

3

)n

− −4

9
n

(−1

12

)n

,

and we finally determine the coefficients A = B = −16
27

and C = 32
27

by applying the initial

conditions d1 = −1, d2 = 1
2

and d3 = −35
144

. Therefore,

dn =
4

3n+3

(
4

(
2 (−1)n −

(−1

4

)n

− 1

2n

)
+ 3

(−1

4

)n (−1 + 4n+1
)
n

)
.

¥

Remark 4.10. We must remark that the determinant, dn, of the matrix m
(−1

6
, 1
4
, 1
4
,−1

6
)

n

does not vanish for any value of n.

If n is even, then

dn =
4

3n+3

(
4

(
2− 1

22n
− 1

2n

)
+

3

22n

(−1 + 4n+1
)
n

)

=
4

3n+3

(
8 + 12n− 4 + 3n

22n
− 4

2n

)

=
4

3n+3

(
8 + 12n− 4 + 3n + 4 · 2n

22n

)
.

Since 4+3n+4·2n

22n > 0, we have that for any natural value of n

dn >
4

3n+3
(8 + 12n) > 0.

On the other hand, if n is odd, then

dn =
4

3n+3

(
4

(
−2 +

1

22n
− 1

2n

)
− 3

22n

(−1 + 4n+1
)
n

)

=
4

3n+3

(
−8− 12n +

4 + 3n

22n
− 4

2n

)

=
4

3n+3

(
−8− 12n +

4 + 3n− 4 · 2n

22n

)
.
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Then, bearing in mind again that 4+3n−4·2n

22n < 0, we have that for n ∈ N

dn <
4

3n+3
(−8− 12n) < 0.

Therefore we can conclude that dn 6= 0 for any natural value of n.

Remark 4.11. Since limn→∞ dn = 0, the explicit computation of this determinant for

high degrees could involve problems of precision.

Now, let us come back to the Bézier form. The following theorem, which is the main

result in this chapter, shows that a PDE surface satisfying

−1

6
−→x uuu +

1

4
(−→x uuv +−→x uvv)− 1

6
−→x vvv = 0

can be determined from a prescribed boundary.

Figure 4. Given the boundary control points, i.e. the blue dots, the whole control net is
determined by the third-order PDE associated to the symmetric mask.

Theorem 4.12. Let −→x (u, v) =
∑

|I|=n PIB
n
I (u, v) be a triangular Bézier surface satisfy-

ing the third-order PDE S (−→x ) = 0. Then all the interior control points are determined by

the boundary control points, Pi,n−i,0, Pi,0,n−i and P0,i,n−i.
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Proof: Let us write the Bézier chart in the usual basis of polynomials

−→x (u, v) =
n∑

k,l=0

ak,lu
kvl.

Note that the factorial terms in the statement of Lemma 4.4 are now included in the
coefficients ak,l, and that ak,l = 0 if k + l > n for a degree n chart.

The boundary control points determine the three boundary curves −→x (u, 0), −→x (0, v) and
−→x (u, 1− u) .

The first boundary curve is

−→x (u, 0) =
n∑

i=0

Pi,0,n−iB
n
i (u) =

n∑
i=0

n∑

k=i

(−1)k−i

(
n

k

)(
k

i

)
Pi,0,n−iu

k =
n∑

k=0

ak,0u
k.

Therefore the coefficients {ak,0}n
k=0 can be determined from the boundary control points

{Pi,0,n−i}n
i=0 by

ak,0 =
k∑

i=0

(−1)k−i

(
n

k

)(
k

i

)
Pi,0,n−i for k = 0, ..., n.

Analogously, the second boundary curve is

−→x (0, v) =
n∑

i=0

P0,i,n−iB
n
i (v) =

n∑
i=0

n∑

l=i

(−1)l−i

(
n

l

)(
l

i

)
P0,i,n−iv

l =
n∑

l=0

a0,lv
l,

so the coefficients {a0,l}n
l=0 can be determined from the boundary control points {P0,i,n−i}n

i=0

by the formula

a0,l =
l∑

i=0

(−1)l−i

(
n

l

)(
l

i

)
P0,i,n−i for l = 0, ..., n.

The third boundary curve, which is determined by the boundary points {Pi,n−i,0}n
i=0, is

(64) −→x (u, 1− u) =
n∑

i=0

Pi,n−i,0B
n
i (u) =

n∑
i=0

n∑
r=i

(−1)r−i

(
n

r

)(
r

i

)
Pi,n−i,0u

r =
n∑

r=0

bru
r,

where we have denoted by br the coefficient of ur for r = 0, ..., n in terms of the boundary

points:

(65) br =
r∑

i=0

(−1)r−i

(
n

r

)(
r

i

)
Pi,n−i,0 for r = 0, ..., n.
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On the other hand if we consider the expression of this third boundary curve in terms of

the usual basis, then we have the equation

(66) −→x (u, 1− u) =
n∑

k,l=0

ak,lu
k(1− u)l =

n∑

k,l=0

k+l∑

r=k

ak,l (−1)r−k

(
l

k + l − r

)
ur.

Now if we consider the coefficient of ur for r = 0, ..., n in both expressions, (64) and (66),

of the curve −→x (u, 1− u) we find that

(67) br =
r∑

k=0

n∑

l=r−k

(−1)r−k

(
l

k + l − r

)
ak,l for r = 0, ..., n.

Let us recall that since −→x satisfies S (−→x ) = 0, the coefficients {ak,l} are zero for k+ l > n,

that is, for l > n− k. Therefore, the index l in Equation (67) runs only until n− k. Now let

us rewrite Equation (67). For r = 0, ..., n we find

(68) br =
r∑

k=0

n−k∑

l=r−k

(−1)r−k

(
l

k + l − r

)
ak,l.

Later in this proof, we will see that the coefficients in the row of coefficients, {a1,l}n−1
l=0 ,

can be determined from the boundary control points. But, for the time being, we have that

the coefficients br for r = 0, ..., n can be written from the boundary points {Pi,n−i,0}n
i=0.

Then, let us consider Equation (68) for r = n

bn =
n∑

k=0

(−1)n−k ak,n−k.

From Lemma 4.5, for the case r = n, the coefficients {ak,n−k}n
k=0 can be written in terms

of a1,n−1, an,0 and a0,n, then

bn =
n∑

k=0

(−1)n−k (
ck
n,0an,0 + ck

1,n−1a1,n−1 + ck
0,na0,n

)

which implies

bn −
n∑

k=0

(−1)n−k (
ck
n,0an,0 + ck

0,na0,n

)
=

n∑

k=0

(−1)n−k ck
1,n−1a1,n−1.

Therefore, if
∑n

k=0 (−1)n−k ck
1,n−1 did not vanish, then a1,n−1 could be computed in terms

of the border control points, since, as we said before, the coefficients an,0, a0,n and bn, are

determined by boundary control points. Then, by applying Lemma 4.5, all the coefficients

ak,l with k + l = n would be determined in terms of an,0, a0,n and a1,n−1.
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a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2

a4,0 a4,1

a5,0

Figure 5. In the first step, for r = n we determine the boxed coefficients.

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2

a4,0 a4,1

a5,0

Figure 6. In the second step, for r = n− 1 we determine the boxed coefficients.

Now in order to determine the rest of coefficients ak,l with k + l = r for r = 0, ..., n− 1,

we would repeat this reasoning for any r. In general, we have

br −
r∑

k=0

n−k∑

l=r−k+1

(−1)r−k

(
l

k + l − r

)
ak,l =

r∑

k=0

(−1)r−k ak,r−k

and again from Lemma 4.5,

br −
r∑

k=0

n−k∑

l=r+1−k

(−1)r−k

(
l

k + l − r

)
ak,l −

r∑

k=0

(−1)r−k (ck
r,0ar,0 + ck

0,ra0,r) =

=
r∑

k=0

(−1)r−k ck
1,r−1a1,r−1.

Then, as before, if
∑r

k=0 (−1)r−k ck
1,r−1 did not vanish, a1,r−1, could be determined.

In the previous equation an expression of a1,r−1 this is given in terms of the border control

points that define a0,r, ar,0 and br, and also depending on the coefficients ak,l with k + l > r.

At this point, these coefficients would be known, also in terms of boundary control points,

since we start this scheme of computation from r = n until r = 0.
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Therefore we must prove that for r = 0, ..., n

r∑

k=0

(−1)r−k ck
1,r−1 6= 0.

Bearing in mind the value of ck
1,r−1 that was given in Lemma 4.7, for a = −1

6
and b = 1

4
,

we have

r∑

k=0

(−1)r−k ck
1,r−1 = (−1)r−1 +

r−1∑

k=2

(−1)r−k ck
1,r−1 =

=(−1)r−1 +
r−1∑

k=2

(−1)r−k

det M
(a,b,b,a)
r−2

(
−a (−1)2r−3−k Ar−3,r−k − b (−1)2r−2−k Ar−2,r−k

)

=(−1)r−1

(
1 +

r−1∑

k=2

1

det M
(a,b,b,a)
r−2

(−aAr−3,r−k + bAr−2,r−k)

)

Therefore our goal is to prove

M
(a,b,b,a)
r−2 +

r−1∑

k=2

(−aAr−3,r−k + bAr−2,r−k) 6= 0.

M
(a,b,b,a)
r−2 +

r−1∑

k=2

(−aAr−3,r−k + bAr−2,r−k) = M
(a,b,b,a)
r−2 +

+
r−1∑

k=2

−a

(−1)2n−3−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b b a 0 0 0 · · · 0

a b b a 0
...

. . .
...

0 a b b a
... 0 · · · 0

...
. . . . . . . . .

...
. . . . . .

...

0 · · · 0 a
... b a 0

0 0 · · · 0 0 b b a
0 · · · · · · 0 1 0 · · · 0
0 0 0 · · · 0 0 a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+
b

(−1)2n−2−k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b b a 0 0 0 · · · 0

a b b a 0
...

. . .
...

0 a b b a
... 0 · · · 0

...
. . . . . . . . .

...
. . . . . .

...

0 · · · 0 a
... b a 0

0 0 · · · 0
... b b a

0 0 0 · · · 0 a b b
0 0 · · · 0 1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=M
(a,b,b,a)
r−2 + (−1)n a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b b a 0 · · · 0 0 0
a b b a 0 · · · 0 0
0 a b b a 0 · · · 0
...

. . . . . . . . . . . . . . . . . .
...

0 · · · 0 a b b a 0
0 0 · · · 0 a b b a

−1 1 · · · · · · · · · (−1)n−2

0 0 0 0 · · · 0 a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)n b dn−2
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where dn−2 denotes the determinant of the matrix m
(a,b,c,d)
n−2 defined in Equation (61). Now

we will compute the other determinant using expansion by minors

M
(a,b,b,a)
r−2 +

r−1∑

k=2

(−aAr−3,r−k + bAr−2,r−k) = M
(a,b,b,a)
r−2 + (−1)n ab dn−3

−a(−1)2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b b a 0 · · · 0 0
a b b a 0 · · · 0

0 a b b a
. . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 a b b a
0 0 · · · 0 a b b
0 0 0 0 · · · 0 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ a2 (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b b a 0 · · · 0 0
a b b a 0 · · · 0

0 a b b a
. . .

...
...

. . . . . . . . . . . . . . . 0
0 · · · 0 a b b a

−1 1 · · · · · · (−1)n−3

0 0 0 0 · · · 0 a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=M
(a,b,b,a)
r−2 + (−1)n ab dn−3 − a2M

(a,b,b,a)
r−4 + a3 (−1)n dn−4 + (−1)n b dn−2

= (−1)n−1
(
−b dn−2 − ab dn−3 − a3 dn−4 + (−1)n−1 M

(a,b,b,a)
r−2 + (−1)n−2 a2M

(a,b,b,a)
r−4

)

= (−1)n−1 dn−1.

Then, since dn 6= 0 for all n, from Lemma 4.9, where its general n-th term was given, we can

finally state that the whole control net of a triangular Bézier surface satisfying S (−→x ) = 0 is

determined if its boundary is prescribed.

¥
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The following figures will allow us to compare the results obtained by the third-order

method to the results obtained in the previous chapters for harmonic and biharmonic sur-

faces.
First, for n = 6 we can compare the third-order method results with the harmonic

surfaces obtained in the first chapter by means of Theorem 1.9 and Theorem 1.18. As before

we show the grid of control points where the blue are known and the gray are obtained by

asking the chart to satisfy a PDE.

Figure 7. Three triangular Bézier surfaces similar to a piece of a sphere. The figure on the
left satisfies the third-order PDE corresponding to the symmetric mask and it is obtained for
a prescribed border. The others are harmonic Bézier surfaces obtained thanks to Theorem
1.9 and Theorem 1.18 respectively.

Figure 8. Three triangular Bézier surfaces similar to a piece of a cone. As before, the figure
on the left satisfies the third-order PDE corresponding to the symmetric mask and the other
two surfaces are harmonic surfaces obtained by means of Theorem 1.9 and Theorem 1.18
respectively.
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Figure 9. These surfaces are approximations to the minimal Schwarz surface which has
its boundary curves along some of the edges of a cube. The figure on the left is generated
by the third-order method and the other two surfaces are harmonic surfaces obtained by
means of Theorem 1.9 and Theorem 1.18 respectively. It can be observed that good results
are only obtained when the boundary is prescribed.

The following figures show some surfaces of degree n = 7 which will allow us to compare

the results obtained for biharmonic surfaces in the second chapter with the PDE surfaces

obtained by means of the third-order method, in particular thanks to the symmetric mask.

Figure 10. Again we can compare our results with triangular Bézier surfaces looking like
a piece of a sphere. The figure on the left satisfies the third-order PDE corresponding to
the symmetric mask. The other surfaces are biharmonic Bézier surfaces obtained thanks to
Theorem 2.2 and Theorem 2.3 respectively.
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Figure 11. The figure on the left satisfies the third-order PDE corresponding to the sym-
metric mask. The other surfaces are biharmonic Bézier surfaces obtained thanks to Theorem
2.2 and Theorem 2.3 respectively. The three surface generation methods give good shapes
for this example.

Figure 12. The figure on the left satisfies the third-order PDE corresponding to the sym-
metric mask. The other surfaces are biharmonic Bézier surfaces obtained thanks to Theorem
2.2 and Theorem 2.3 respectively. The control of the boundary curves prevents the loss of
control we suffered in the third figure.

6. Conclusions

In the first and the second chapters we deduced different methods to generate triangular

Bézier PDE surfaces for a prescribed set of control points. But these sets of prescribed

information could not be the boundary control points. Finally, in this chapter we obtain a

method to generate triangular Bézier PDE surfaces with a prescribed boundary.

As we said before, given two lines of control points the associated harmonic surface can be

determined, and analogously, given four lines of control points a biharmonic surface can also

be determined. The harmonic and the biharmonic equations are of second and fourth-order
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Figure 13. The figure on the left satisfies the third-order PDE corresponding to the sym-
metric mask. The other surfaces are biharmonic Bézier surfaces obtained thanks to Theorem
2.2 and Theorem 2.3 respectively. As before, the prescription of the boundary curves pre-
vents the loss of control we suffered in the third figure.

respectively, then as is to be expected, the boundary curves of a triangular Bézier surface,

that is, three lines of control points, determine a surface satisfying a third-order PDE.

Here we have defined a general third-order PDE with constant coefficients and we have

deduced that its associated PDE surfaces could be obtained by means of a mask. In partic-

ular, we have asked that mask for a symmetry property the result being that the associated

PDE surface is in addition a permanence patch.

We have compared the results we obtained with this approach, which we have called the

third-order method, with our previous results for harmonic and biharmonic surfaces, and it

can be seen that, as could be expected, control of the whole boundary gives better control

over the shape of a surface. The surfaces we have obtained with the third-order method are

perfectly adapted to the shape traced by the boundary.





CHAPTER 5

The Weierstrass representation for minimal Bézier surfaces

The CAGD problem of building a surface that interpolates given boundary curves reminds

one of the most important problems in calculus of variations: to find the minimal surface with

a prescribed boundary. The study of surfaces minimizing area with a prescribed boundary,

the Plateau problem, has been and still is a major topic in differential geometry.

The construction of surfaces subject to certain constraints such us minimizing area,

curvature or other geometric properties, has also been studied from the point of view of

graphics. In the case of the area of a surface, the interest comes from the fact that in some

real problems, minimal area means minimal cost of the material used to build the surface.

Minimal surfaces admitting a Bézier form have been previously studied in [12]. In the

cited paper the authors study minimal tensor-product Bézier surfaces and the properties that

the associated control net must satisfy. Moreover, they show that in the bicubical case all

non-trivial minimal surfaces are, up to an affine transformation, pieces of Enneper’s surface.

In this chapter we will describe some methods related with the complex function theory

that are used for the study of minimal surfaces, see [11]. We will show some methods which

will allow us to generate minimal and isothermal triangular Bézier surfaces starting out from

different sets of initial conditions that must be satisfied.
First, for the cubical case, a method to build up a minimal surface is given with the

prescription of the three vertices.

After that, we suppose that, in addition to the vertices, the tangent planes at these corner

points are prescribed, and we show how to obtain a minimal surface of degree 7. Additionally,

a similar method for obtaining a minimal surface with prescribed tangent planes at the corner

points is also given, but by fixing a free set of points of the surface instead of only the three
corners.

Finally, we will study the relations between minimal curves and minimal surfaces. This

will enable us to deduce two more methods for the generation of cubical minimal surfaces with

prescription of a different kind of initial conditions. Instead of prescribing some control points

and some tangent planes to the surface, cubical minimal surfaces can also be determined

giving some complex and real parameters.

The first two sections are background.

1. Minimal Surfaces

The study of minimal and constant mean curvature surfaces on three-dimensional Euclid-

ean space has always been one of the most important problems of differential geometry and

nowadays it is still one of the most active fields of interest.

105
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Minimal surfaces are surfaces with the least area for given boundary conditions. The

study of minimal surfaces began with Lagrange, who addressed the calculus of variations

problem of finding a minimal surface of a boundary with specified constraints, later known

as Plateau’s problem. This study made it possible to establish the Euler-Lagrange differential

equation

(69)
(
1 + h2

v

)
huu − 2huhuv +

(
1 + h2

u

)
hvv = 0

which characterizes minimal surfaces that are parametrized as −→x = (u, v, h (u, v)) .

In 1776 Meusnier found the first non-trivial examples of surfaces satisfying Equation (69),

the catenoid and the helicoid. Moreover he gave a geometric interpretation to this equation

by introducing the concept of mean curvature. Minimal surfaces were then characterized as

the surfaces with null mean curvature.
In 1865 an important boost was given to the theory of minimal surfaces thanks to Schwarz,

who obtained the solution of the Plateau problem for a quadrilateral border. This work was

based on the representation formulas obtained by Weierstrass in 1861. Similar representation

formulas were obtained in 1864 by Enneper, which enabled him to find the minimal surface

known nowadays as the Enneper surface. Other representation formulas were introduced

by important mathematicians such as Weingarten (1863), Riemann (1866), Peterson (1866)

and Beltrami (1868).

We will now introduce some general concepts which are very useful for the study of

minimal surfaces.

Definition 5.1. A chart −→x : U −→ S of a surface is said to be isothermal if E =

G,F = 0, being E, F, G the coefficients of the first fundamental form associated to the chart
−→x .

Equivalently, a chart −→x : U −→ S of a surface is said to be isothermal if the map −→x
is a conformal map, i.e., if the angles between curves in the surface are equal to the angles

between the corresponding curves in the coordinate open subset U .

The following property is a consequence of the minimization of area but it is usually

taken as definition of minimal surfaces.

Definition 5.2. A surface S is minimal if its mean curvature vanishes.

Equivalently, a different definition of minimal surface can be as follows: S is a minimal

surface iff for each point p ∈ S one can chose a neighborhood, Up, which has minimal area

among other patches V having the same boundary as Up.

Definition 5.3. A function, f, with continuous second partial derivatives is said to be

harmonic if and only if ∆
−→
f = 0, where ∆ is the usual Laplacian operator.

Definition 5.4. A chart −→x is said to be harmonic if and only if its coordinate functions

are harmonic.
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Proposition 5.5. If a chart, −→x : U → S, of a surface, S, is isothermal, then −→x (U) is

minimal if and only if the chart is harmonic, i.e., ∆−→x = 0.

It is well known that this relation between the mean curvature and the chart, is due to

the fact that any isothermal map satisfies

−→x uu +−→x vv = 2λ2H
−→
N

where λ = E = G and
−→
N is the unitary normal vector to the surface associated to the

chart. As a consequence of Proposition 5.5 the study of harmonic maps is an important step

forward within the context of minimal surfaces.

Example 5.1. The first non-trivial example of minimal surface with polynomial coordi-

nate functions is Enneper’s surface (Figure 1), −→x : R2 −→ R3 defined by

(70) −→x (u, v) := (u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2).

This surface can be expressed in barycentric coordinates as (see [19]):

−→x (u, v, w) = (
2u3

3
+ 2u2v + uv2 + 2u2w + 2uvw + 2uw2,

2u2v + 2uv2 +
2v3

3
+ 2uvw + 2v2w + vw2,u3 + u2v − uv2 − v3 + u2w − v2w).

Figure 1. Two pieces of Enneper’s surface plotted as triangular Bézier patches with their
control nets. In particular, these are the reparametrizations x(1−u−v, v) and x(u+1, v−1)
respectively.

These are the control nets of the Bézier triangles shown above,
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E1 ≡

( 2
3 , 0, 1) ( 2

3 , 2
3 , 1

3 ) ( 2
3 , 2

3 ,− 1
3 ) (0, 2

3 ,−1)

(2
3 , 0, 1

3 ) ( 1
3 , 1

3 , 0) (0, 1
3 , 0)

( 1
3 , 0, 0) (0, 2

3 ,− 1
3 )

(0, 0, 0)

E2 ≡

(−4
3 , 14

3 , 3) ( 2
3 , −10

3 , 1) (−10
3 , 2

3 ,−1) ( 14
3 , −4

3 ,−3)

(−10
3 , 2

3 ,−1) ( 5
3 , 5

3 , 0) ( 2
3 , −10

3 , 1)

( 2
3 , −1

3 ,−2) (−1
3 , 2

3 , 2)

( 5
3 , 5

3 , 0)

2. The Weierstrass representation

The usual way of working with complex techniques is to change the real parameters u, v

to the equivalent pair of complex variables z, z:

z = u + iv z = u− iv.

The use of these complex coordinates z, z could lead us to some confusion if we think of

z as being determined by z, which is true when we start from u, v. But, otherwise, we can

use z, z as abstract coordinates for R2 = C, even when they are complex-valued, and later

define u, v by means of

(71) u =
z + z

2
v =

z − z

2i
.

Now it is important to introduce the following operators:

∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
∂

∂z
=

1

2

(
∂

∂u
+ i

∂

∂v

)
,

to define the complex derivative of a local parametrization.

Definition 5.6. The complex derivative of a local parametrization −→x : U −→ Rn is

defined as

∂−→x
∂z

(z) =
1

2
(−→x u − i−→x v) (u, v) , where z = u + iv.

Equivalently we can denote the complex derivative as

∂−→x
∂z

= φ (−→x ) = (φ1 (−→x ) , ..., φn (−→x )) =
1

2

(
∂x1

∂u
− i

∂x1

∂v
, ...,

∂xn

∂u
− i

∂xn

∂v

)
.

The following lemma and the next theorem were stated in [11]. This lemma gives some

relations between the complex derivative of a local parametrization and the coefficients of

its first fundamental form.

Lemma 5.7. ([11] Lemma 23.7.) The complex derivative of a local parametrization ver-

ifies the following identities:

n∑

k=1

φk (−→x )
2

=
1

4
(−→x u · −→x u −−→x v · −→x v − 2i−→x u · −→x v) =

1

4
(E −G− 2iF ) ,



2. THE WEIERSTRASS REPRESENTATION 109

n∑

k=1

|φk (−→x ) |2 =
1

4
(−→x u · −→x u +−→x v · −→x v) =

1

4
(E + G) ,

where E,F and G are the coefficients of the First Fundamental Form.

In the following theorem, which can also be found in [11], it is proved that a minimal

and isothermal local parametrization gives rise to a n-tuple of analytic functions such that

the sum of its squares is equal to zero. This description of such a parametrization allows the

use of important theorems from complex analysis.

Theorem 5.8. ([11] Lemma 23.8.) Let −→x : U −→ Rn be a local parametrization. Then:

(1) −→x is harmonic if and only if its complex derivative, φ (−→x ) = ∂−→x
∂z

, is analytic.

(2) −→x is isothermal if and only if

(72)
n∑

k=1

φk (−→x )
2

= 0.

(3) If −→x is isothermal, −→x is regular if and only if

(73)
n∑

k=1

|φk (−→x ) |2 6= 0.

Conversely, let U be simply connected, and φ1, ..., φn : U −→ Cn analytic functions

satisfying:

(74)
n∑

k=1

φk (−→x )
2

= 0 and

n∑

k=1

|φk (−→x ) |2 6= 0,

then, there is a local parametrization −→x : U −→ Rn which is minimal, isothermal and regular

and such that Φ = (φ1, ..., φn) is the complex derivative of −→x .

Proof: Although this proof is known we include it here in order to clarify these concepts.

(1) The Cauchy-Riemann equations of φ (−→x ) = ∂−→x
∂z

are given by

−→x uu +−→x vv = 0

−→x uv −−→x vu = 0,

that is, the Cauchy-Riemann equations of the complex derivative of a local parame-

trization are only satisfied if the chart is harmonic and its mixed partial derivatives

are equal.

Conversely a harmonic parametrization has continuous second partial derivatives

and therefore, in addition to satisfying −→x uu +−→x vv = 0, its mixed partial derivatives

are also equal, −→x uv = −→x vu. This implies that ∂−→x
∂z

satisfies the Cauchy-Riemann

equations and so it is analytic.
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(2) From Lemma 5.7 we have

n∑

k=1

φk (−→x )
2

=
1

4
(E −G− 2iF ) .

Therefore we have
∑n

k=1 φk (−→x )
2

= 0 if and only if E = G and F = 0, that is for

isothermal charts.
(3) Its deduced from Lemma 5.7 since

∑n
k=1 |φk (−→x ) |2 = 1

4
(E + G) .

Now we will prove the last statement. The chart −→x is isothermal and regular as a

consequence of the previous items, so in order to prove that it is harmonic we must suppose

that

−→x = Re

∫
(φ1 (z) , ..., φn (z)) dz

and

−→y = Im

∫
(φ1 (z) , ..., φn (z)) dz.

If we denote

ψ (z) =

∫
(φ1 (z) , ..., φn (z)) dz

then the parametrizations −→x and −→y are the real and the imaginary part of an n-tuple of

analytic functions ψi (z). Therefore these functions satisfy the Cauchy-Riemann equations:

Re ψi (z)u = Im ψi (z)v Re ψi (z)v = −Im ψi (z)u

that is,

xi
u = yi

v xi
v = yi

u.

Then

xi
uu + xi

vv = yi
uv − yi

vu = 0,

and therefore −→x is harmonic.

¥

Theorem 5.8, which was stated in [11], gave a relation between minimal and isothermal

local parametrizations and an n-tuple Φ = (φ1, ..., φn) satisfying certain conditions, (74).

Now we will introduce the concept of minimal curve taking these conditions as a definition.

Definition 5.9. Let U be an open subset on C. A minimal curve is defined as an

analytic function ψ : U −→ C such that

ψ′(z) · ψ′(z) = 0 for all z ∈ U.

Moreover if the equality

ψ′(z) · ψ′(z) 6= 0
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is satisfied for all z ∈ U , then ψ is said to be a regular minimal curve.

Lemma 5.10. ([11] Lemma 23.11.) There is a one-to-one map between minimal curves

and complex derivatives of minimal and isothermal local parametrizations.

Remark 5.11. It is deduced from Theorem 8 that a minimal and isothermal local para-

metrization has an associated a minimal curve which is called its complexification: Given

a minimal and isothermal local parametrization −→x : U −→ Rn, if we consider −→x (z) with

z = u + iv we find that it is a minimal curve since

−→x ′ (z) .−→x ′ (z) =
n∑

k=1

φk (−→x )
2

= 0.

Conversely, given a minimal curve ψ : U −→ Cn we can define a minimal and isothermal

local parametrization −→x : U −→ Rn by

(75) −→x (u, v) = Re(ψ(u + iv)).

Therefore, a minimal curve can be seen as a generalization of a minimal and isothermal local

parametrization.

Lemma 5.12. ([11]) The real and the imaginary part of an analytic function are both

harmonic functions and they are called harmonic conjugated.

Definition 5.13. Let −→x ,−→y : U −→ Rn be local parametrizations on the open set U ⊆
R2.

It is said that −→x and −→y satisfy the Cauchy-Riemann equations if

−→x u = −→y v and −→x v = −→y u.

Lemma 5.14. ([11] Lemma 23.4.) If −→x ,−→y : U −→ Rn satisfy the Cauchy-Riemann

equations, then they are both harmonic and it is said that −→x and −→y are harmonic conjugated.

As was said in Lemma 5.12, the real and the imaginary part of an analytic function

are harmonic conjugated. So from this relation between analytic and harmonic conjugated

functions it follows to define an analogous of analytic function related with a pair of harmonic

conjugated local parametrizations.

Definition 5.15. The complexification of a pair −→x ,−→y : U −→ Rn of minimal and

isothermal local parametrizations is the map −→x + i−→y : U −→ Cn.

Lemma 5.16. ([11] Lemma 23.10.) The complexification −→x + i−→y : U −→ Cn, of a pair

of minimal conjugated parametrizations −→x ,−→y : U −→ Rn is an analytic function. Moreover

d

dz
(−→x + i−→y ) = 2

∂−→x
∂z

.

Definition 5.17. A complex function f : C −→ C is said to be meromorphic iff its only

singular points are its poles.
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The following definition will introduce the Weierstrass parametrization to determine min-

imal surfaces. The Weierstrass formula is another surface generation method: A minimal

surface can be determined by a pair of complex functions f and g.

Definition 5.18. Let f(z) and g(z) be a pair of meromorphic functions defined in a

region U on the complex plane C. Let us fix z0 ∈ U and then define





x1(z) = Re (
∫ z

z0

f(w)
2

(1− g(w)2)dw),

x2(z) = Re (
∫ z

z0

if(w)
2

(1 + g(w)2)dw),

x3(z) = Re (
∫ z

z0
f(w)g(w)dw).

and 



y1(z) = Im (
∫ z

z0

f(w)
2

(1− g(w)2)dw),

y2(z) = Im (
∫ z

z0

if(w)
2

(1 + g(w)2)dw),

y3(z) = Im (
∫ z

z0
f(w)g(w)dw).

where z = u + iv.
Then the Weierstrass local parametrization and its conjugate, which are determined by

f(z) and g(z), are defined respectively by

x(u, v) = (x1(u, v), x2(u, v), x3(u, v)) and y(u, v) = (y1(u, v), y2(u, v), y3(u, v)).

Theorem 5.19. ([11] Theorem 24.1.) Given an arbitrary analytic function f(z) and an

arbitrary meromorphic function g(z), the Weierstrass associated local parametrization and

its conjugate are both minimal and isothermal local parametrizations.

Corollary 5.20. ([11] Corollary 24.2.) Let f(z) and g(z) meromorphic functions de-

fined in a region U on the complex plane C, and let −→x and −→y be the associated Weierstrass

local parametrization and its conjugate respectively. Then

z 7→ (−→x + i−→y )(z)

is a minimal curve.

From the following lemma we can observe that the reciprocal is also true.

Lemma 5.21. ([11] Lemma 24.3.) Let ψ : U −→ C3 be a minimal curve such that

ψ′ = (φ1, φ2, φ3). Let us suppose that φ1 − iφ2 is not identically zero. Let us define

(76) f = φ1 − iφ2, g =
φ3

φ1 − iφ2

.

Thus, f and g determine the Weierstrass representation of ψ, that is,

ψ′ = (
f

2
(1− g2),

if

2
(1 + g2), fg).
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The Enneper surface, which is the only non-trivial minimal and polynomial surface of

degree three up to affine reparametrizations and isometries on the space (see Example 5.1),

is the Weierstrass local parametrization associated to a constant function f and to a degree

one polynomial function g.

This matter was previously studied for rectangular Bézier surfaces in [12]. The authors

considered the problem of determining all bicubical polynomial minimal surfaces bearing in

mind the possible choices of functions f and g, in such a way that the Weierstrass parame-

trization is a polynomial of degree 3. They proved that: any bicubical polynomial minimal

surface is, up to an affine transformation, a piece of Enneper’s surface.

Therefore it is natural to study the properties that a cubical triangular control net must

satisfy in order to be associated to a minimal surface. We will deduce those properties from

the fact that the corresponding functions f and g must be as we have described previously:

f a constant function and g a degree one complex polynomial.

3. Determining a cubical minimal surface given its vertices

In this section we will give a method to determine a minimal triangular Bézier cubical

surface from its three corner points. Given the three vertices of a degree three control net,

the associated minimal triangular Bézier surface with (0, 0, 1) as normal unit1 at its end can

be determined because the complex functions f and g being a constant and a degree one

polynomial respectively, characterize its control net.

Figure 2. Given the three vertices, the other seven control points are determined in a
minimal surface.

In order to characterize a minimal degree three control net P = {PI}|I|=3 with PI =

(aI , bI , cI) given the three vertices, let us recall that, the only polynomial minimal surface

for degree n = 3 is the Enneper surface, and that it is attained for

(77) f(z) = k g(z) = r z + s.

Therefore, in order to be minimal, any degree three polynomial surface must be a local

Weierstrass parametrization for f and g as above, Equation (77). That is,

1In the following section we will relate the Gauss map with the Weierstrass representation of a minimal surface, then we

will explain why the normal vector at the infinity of the cubical minimal surface we consider here must be (0, 0, 1).
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(78)
∂n+mf(u, v)

∂un∂vm
= 0 for m + n ≥ 1

∂n+mg(u, v)

∂un∂vm
= 0 for m + n ≥ 2.

If we bear in mind the complex derivative of a parametrization:

∂−→x
∂z

=
1

2
(
∂−→x
∂u

− i
∂−→x
∂v

)(u, v) =
3

2

∑

|I|=2

(∆1,0PI − i∆0,1PI)B
2
I

=
3

2
(
∑

|I|=2

(∆1,0aI − i∆0,1aI)B
2
I ,

∑

|I|=2

(∆1,0bI − i∆0,1bI)B
2
I ,

∑

|I|=2

(∆1,0cI − i∆0,1cI)B
2
I ) = (φ1, φ2, φ3),

then, the general expression of the functions f and g defined in Equation (76) in terms of P
is given by:

f(z) = φ1 − iφ2 =
3

2
(
∑

|I|=2

(∆1,0aI − i∆0,1aI)B
2
I − i

∑

|I|=2

(∆1,0bI − i∆0,1bI)B
2
I )

=
3

2

∑

|I|=2

((∆1,0aI −∆0,1bI)− i(∆0,1aI + ∆1,0bI))B
2
I ,

g(z) =
φ3

φ1 − iφ2

=
3
2
(
∑

|I|=2(∆
1,0cI − i∆0,1cI) B2

I

f(z)
,

So let us compute the derivative of f :

∂n+mf

∂un∂vm
=

∂n+m

∂un∂vm
(
3

2

∑

|I|=2

((∆1,0aI −∆0,1bI)− i(∆0,1aI + ∆1,0bI))B
2
I )

=
3

2

∑

|I|=2

((∆n+1,maI −∆n,m+1bI)− i(∆n,m+1aI + ∆n+1,mbI))B
2−(n+m)
I .

Now to compute the derivative of g we will bear in mind that f(z) is a constant function,
so

g(z) =
3
2
(
∑

|I|=2(∆
1,0cI − i∆0,1cI) B2

I

f(0)
,

and then, when we take derivatives, we get:

∂n+mg

∂un∂vm
=

3

2f(0)

∑

|I|=2

(∆n+1,mcI − i∆n,m+1cI)B
2−(n+m)
I .

As we have said in Equation (78), the derivatives we have just computed must be zero

for all z = u + iv, then, at our convenience, we will evaluate these derivatives for z = 0. We
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evaluate the Bernstein polynomials B
2−(n+m)
I (u, v) and we get that

Bn
(0,0,n)(0, 0) = 1 and Bn

(i,j,n−i−j)(0, 0) = 0 if i, j 6= 0.

Therefore,

∂n+mf

∂un∂vm
(0, 0) =

3

2
((∆n+1,ma003 −∆n,m+1b003)− i(∆n,m+1a003 + ∆n+1,mb003))

∂n+mg

∂un∂vm
(0, 0) =

3

2f(0)
(∆n+1,mc003 − i∆n,m+1c003).

Making these derivatives equal to zero we can relate the points in the control net by the

following equations:

(79)





∆n+1,ma003 −∆n,m+1b003 = 0 for m + n ≥ 1
∆n,m+1a003 + ∆n+1,mb003 = 0 for m + n ≥ 1
∆n,mc003 = 0 for n + m = 3.

On the other hand, the complex function g(z) must satisfy another condition in order to

be a complex polynomial of first degree (g(z) = mz + n), that is, g(u + iv) = mu + imv + n.

This condition can be written in the following way:

i
∂g

∂u
=

∂g

∂v
,

which evaluated at z = 0 gives:

(80)

{
i(∆2,0c003 − i∆1,1c003) = ∆1,1c003 − i∆0,2c003

∆2,0c003 + ∆0,2c003 = 0

Equations (79) and (80) are linear so it is easy to determine five of the points of the

control net:
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a012 = 1
6
(4a003 + 6a210 − 4a300 + 4b003 − b030 − 12b201 + 3b210 + 6b300)

b012 = 1
6
(−4a003 + a030 + 12a201 − 3a210 − 6a300 + 4b003 + 6b210 − 4b300)

c012 = 1
3
(3c003 + c030 − 3c201 + 2c300)





a021 = 1
3
(a030 + 3a201 + 3a210 − 4a300 + 2b003 − b030 − 6b201 + 3b210 + 2b300)

b021 = 1
3
(−2a003 + a030 + 6a201 − 3a210 − 2a300 + b030 + 3b201 + 3b210 − 4b300)

c021 = 1
3
(2c003 + 2c030 − 3c201 + 2c300)





a102 = 1
6
(2a003 + a030 + 6a201 − 3a210 − 2b003 + 6b201 − 4b300)

b102 = 1
6
(2a003 − 6a201 + 4a300 + 2b003 + b030 + 6b201 − 3b210)

c102 = 1
3
(c003 + 3c201 − c300)





a111 = 1
6
(4a003 + a030 − 6a201 + 3a210 + 4a300 + b030 − 3b210 + 2b300)

b111 = 1
6
(−a030 + 3a210 − 2a300 + 4b003 + b030 − 6b201 + 3b210 + 4b300)

c111 = 1
6
(2c003 + c030 + 3c210)





a120 = 1
3
(2a003 − 6a201 + 6a210 + a300 + 2b003 + b030 − 6b201 − 3b210 + 6b300)

b120 = 1
3
(−2a003 − a030 + 6a201 + 3a210 − 6a300 + 2b003 − 6b201 + 6b210 + b300)

c120 = 1
3
(c030 + 3c210 − c300)

Note that, besides the three corners, P003, P030 and P300, there are two other control

points, P210 and P201, which are still unknown. They can be determined by asking for

isothermality at the corners points.

P003 P012 P021 P030

P102 P111 P120

P201 P210

P300

The isothermality condition, given in Definition 5.1, at the three corner points, −→x (0, 0) ,−→x (1, 0)

and −→x (0, 1), translates into the following systems respectively.

{
∆1,0P003 ·∆1,0P003 = ∆0,1P003 ·∆0,1P003

∆1,0P003 ·∆0,1P003 = 0

{
∆1,0P201 ·∆1,0P201 = ∆0,1P201 ·∆0,1P201

∆1,0P201 ·∆0,1P201 = 0

{
∆1,0P021 ·∆1,0P021 = ∆0,1P021 ·∆0,1P021

∆1,0P021 ·∆0,1P021 = 0.

Note that, since the isothermality conditions are non-linear, the previous is a quadratic

system, with six equations and six unknowns that are the coordinates of the control points
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P210 and P201. Therefore, due to the difficulty involved in discussing it, we have solved it

with the help of Mathematica in order to give some examples here.

The following figures are obtained by the method we have just described in this section.

The characterization of a cubical control net associated to a polynomial minimal surface lets

us to obtain the following surfaces with prescribed vertices.

Figure 3. The quadratic system can sometimes have infinite solutions. For this example,

with the vertices: P003 = (0, 0, 0), P030 = ( 2
3 , 0,−1) and P300 = (0, 2

3 , 1), there is a family of

solutions depending on one parameter, c210. Therefore if we prescribe an arbitrary value for

the parameter c210 = 2
3 , we find two solutions with different orientations.

Figure 4. These surfaces correspond to the two orientations for the vertices P003 =

(0, 2
3 , 1), P030 = ( 5

3 , 5
3 , 0) and P300 = (0, −2

3 , 4)
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Figure 5. For this example we have chosen P003 = (0, 0, 1), P030 = (0, 1, 0) and P300 =
(1, 0, 0) as vertices.

Figure 6. Here the vertices are P003 = (−1
2 , −1

2 ,
√

2
2 ), P030 = (1,−1, 1) and P300 =

(−1, 1, 1). Let us recall that self-intersections may appear, as in fact, occurs with Enneper
surface.

4. The Gauss map of minimal Bézier surfaces

In this section we give a method to obtain a minimal Bézier surface but, instead of just

fixing the three vertices as we did for the cubical case in the previous section, we will also

fix the tangent planes at the corner points.

We also give a similar method to obtain a minimal surface with prescribed tangent planes

at the corner points, but now fixing a free set of points on the surface instead of only the

three corners.

Any geometrical object related to a minimal surface can be written in terms of its Weier-

strass representation. So, before introducing these new two methods, let us give an expression

of the unit normal and discuss about the geometric interpretation of it.

From the definition of φ (−→x ) = d−→x
dz

, given in Definition 5.6, we have that

−→x u ∧ −→x v = (2Reφ1, 2Reφ2, 2Reφ3) ∧ (−2Imφ1,−2Imφ2,−2Imφ3) ,
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where, see Lemma 5.21,

φ = (
f

2
(1− g2),

if

2
(1 + g2), fg)

with f = f1 + if2 and g = g1 + ig2.

An easy computation allows us to express the unit normal vector of a surface in terms of

its Weierstrass parametrization

(81) N =
2g1

1 + |g|2
(
2g1, 2g2, |g|2 − 1

)
.

This expression gives us a geometric interpretation of the complex function g thanks to

the stereographic projection of the sphere from the north pole. Let us recall the definition

of stereographic projection.

Definition 5.22. Stereographic projection is defined as an application st : S2(1) −→ C
given by

st(x, y, z) =
x + iy

1− z
.

It is easy to check that the complex function g is the stereographic projection of the

normal unit.

Lemma 5.23. ([11] Lemma 23.14.) Let ψ : U −→ C3 be a minimal curve such that

ψ′ = (φ1, φ2, φ3). Let N be the unitary normal vector field of the local parametrization

defined in Equation (75). Then

st ◦N =
φ3

φ1 − iφ2

.

At this point it is important to notice that if the complex function g is a polynomial,

the limit at infinity of the normal unit we obtain that it is (0, 0, 1), which means that the

surface has a flat end. Moreover, since g is a non-identically zero polynomial it follows that

the normal unit is (0, 0, 1) only at infinity.

Now, if we consider the cubic case, the meromorphic function g must be of degree 1 at

the most, then if g was a polynomial function the associated minimal surface would have a

flat end, as we have just said, but let us consider in addition the rational case.

If g = st ◦ N was a rational function and it had a pole of order 1 in z0, then, since

g (z0) = st (N (u0, v0)) , the unit vector N (u0, v0) must coincide with the north pole, (0, 0, 1),

which is the only singular value of the stereographic projection. Now let us consider a rotation

of the surface in such a way that the singular value (0, 0, 1) corresponds to the normal unit

at infinity, then we can ensure that the associated function g has its pole at infinity, that is,

it becomes a polynomial.

Now, let us show a property that the normal vectors at the corner points of a triangular

piece of the Enneper surface satisfy.
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Lemma 5.24. Let −→x be an isothermal parametrization of a piece of the Enneper’s sur-

face. Let N be the unitary normal vector field associated to the parametrization −→x . Let us

denote the normal vectors at the corner points, {N (−→x (0, 0)) , N (−→x (1, 0)) , N (−→x (0, 1))},
by {N003, N300, N030}.

Then

{st(N003), st(N300), st(N030)}
are the vertices of an isosceles right triangle.

Proof: Any isothermal parametrization of the Enneper surface with the same orientation

can be seen as a Weierstrass representation with a degree one, g(z) = mz+n where m,n ∈ C,

then

g(0) = n, g(1) = m + n, g(i) = mi + n,

are the vertices of an isosceles right triangle, and the length of its equal sides is given by m.

¥

Figure 7. On the left a piece of Enneper’s surface plotted as Triangular Bézier surface
with its unit normal vectors at the corner points, on the right the normal unit vectors on a
radius 1 sphere and the isosceles right triangle with the stereographic projection of the unit
normal vectors as vertices.

The following proposition shows how a minimal and isothermal Bézier surface at least

of degree six can be obtained if the corner points and the unitary normal vectors at these

points are prescribed.

Proposition 5.25. Given the corner points {P003, P300, P030} and the unitary normal

vectors at these points {N003, N300, N030}, a minimal and isothermal Bézier surface of at

least degree seven can be determined.
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Proof:
Let us recall what was said in Lemma 5.21, given a minimal curve, ψ, such that ψ′ =

(φ1, φ2, φ3) and taking

f = φ1 − iφ2, g =
φ3

φ1 − iφ2

.

the Weierstrass representation of ψ is determined, that is,

ψ′ = (
f

2
(1− g2),

if

2
(1 + g2), fg),

and therefore the associated Weierstrass local parametrization is given by −→x (u, v) = Reψ(u+

iv).

Moreover, from Theorem 5.19, we have that the Weierstrass local parametrization is min-

imal and isothermal by considering an analytic function f (z) and an arbitrary meromorphic

function g (z) .

On the other hand we can state from Lemma 5.23 that if ψ is a minimal curve as before,

and N is the unitary normal vector field of the local parametrization −→x (u, v), then:

st ◦N =
φ3

φ1 − iφ2

, i.e. st ◦N = g.

These previous results suggest us a method to build minimal surfaces through their

Weierstrass local parametrization. We define the meromorphic functions g and f by:

(82) g (z) = st (N003)
(z − 1) (z − i)

i
+ st (N300)

z (z − i)

1− i
+ st (N030)

z (z − 1)

i (i− 1)
,

which is a kind of complex Lagrange polynomial, and we consider a quadratic complex

polynomial

f (z) = b0 + b1z + b2z
2

which enables us to consider the parametrization

−→x (u, v) = Reψ(u + iv) = P003 + Re

∫
(
f

2
(1− g2),

if

2
(1 + g2), fg) dz

involving the three complex parameters bj = Rebj + iImbj for j = 0, 1, 2.

Finally, we impose the conditions

−→x (1, 0) = P300−→x (0, 1) = P030,

}

which give a linear system of six equations that allow us to determine these three complex

parameters. Therefore, a minimal surface is totally determined.

¥
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Let us comment that it can be found a related work in [34] , where the authors develop

some methods to construct LN surfaces given three vertex points and its associated normal
vectors.

Remark 5.26. Let us remark that the degree of the minimal surface is determined by the

order of the polynomial functions f (z) and g (z). In the previous proposition, we chose two

polynomials of order 2, and this implies that the minimal and isothermal parametrization is

of degree seven in general.

Figure 8. These two minimal surfaces of degree 7 are obtained by Proposition 5.25. The
corner points and the unitary normal vectors at these points are prescribed.

Figure 9. These two minimal surfaces of degree 7 are obtained by Proposition 5.25. The
corner points and the unitary normal vectors at these points are prescribed.

Now, we give a new method, analogous to the one given in the previous proposition,

which will enable us to fix some other points on the surface which is obtained. These points

can be boundary points or not, they can be chosen freely.
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The prescription of a larger set of points improves the control over the surface shape, but

unfortunately implies an increase of degree.

Proposition 5.27. Given a set of points, {Pj}m
j=0, and the three unitary vectors,

{N003, N300, N030}, a minimal and isothermal Bézier surface of at least degree 3m
2

+ 4 such

that the given points belong to the surface and the vectors are the normal vectors at the three

corner points can be determined.

Proof:
This proof is analogous to the previous one. The choice of a meromorphic function g (z)

is again the one in Equation (82), but the chosen analytic function f (z) increases its degree,

we will consider a complex polynomial of order 3m
2
− 1:

f (z) =

3m
2
−1∑

j=0

bjz
j.

Now if we consider, as before, the associated Weierstrass local parametrization,

−→x (u, v) = Re ψ(u + iv) = P0 + Re

∫
(
f

2
(1− g2),

if

2
(1 + g2), fg) dz,

we need to determine the set of 3m
2

complex parameters {bj}
3m
2
−1

j=0 which are obtained thanks

to the 3m linear equations:

Pj = −→x (uj, vj) j = 1, ..., m

where {(uj, vj)}m
j=0 is a sequence such that (uj, vj) ∈ T .

¥
Remark 5.28. If 3m

2
was not an integer we would consider the smallest integer greater

than 3m
2

, that is, 3m+1
2

. Thus, the system of linear equations is underdetermined, with 3m

equations and 3m + 1 unknowns.

Figure 10. These are two views of a minimal surface of degree 10 obtained by Proposition
5.27. Five points and the unitary normal vectors at the corner points are prescribed.
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5. Minimal Complex Bézier curves and minimal Bézier surfaces

In this section we will relate minimal complex Bézier curves with minimal Bézier surfaces.

Let us recall the important result from the theory of minimal surfaces we gave in Lemma

5.10:
There is a one-to-one map between minimal curves and complex derivatives of minimal

and isothermal local parametrizations.

Since we are interested in minimal Bézier surfaces it is natural to consider and study

minimal regular complex Bézier curves.

In the first subsection we introduce complex Bézier curves in terms of the complex Bern-

stein polynomials and then, we provide a characterization of minimal complex Bézier curves

in terms of their complex control points.

In the second subsection we characterize the derivative of the minimal Bézier curve
associated to a minimal Bézier surface in terms of the control points of the surface.

In the third subsection we do the converse, we characterize minimal Bézier surfaces in

terms of the complex control points of the associated minimal complex Bézier curve.

Finally in the last subsection, with the aim of reducing the set of initial data to the

minimal set of data that determines a minimal surface, we give two methods that enable us

to generate cubical minimal Bézier surfaces from two different sets of given parameters.

5.1. Minimal complex Bézier curves. First, let us define complex Bernstein poly-

nomials and compute their derivatives.

Definition 5.29. The complex Bernstein polynomials of degree n are defined by

Bn
k (z) =

(
n

k

)
zk(1− z)n−k

where z = u + iv.

The complex m-derivative of a complex Bernstein polynomial is analogous to the m-

derivative of a real univariate Bernstein polynomial.

Definition 5.30. The complex m-derivative of a complex Bernstein polynomial is given

by

(83)
dm

dzm
Bn

k (z) =
n!

(n−m)!
∆mBn−m

k (z),

where the difference operators are defined by

∆0Bn
k (z) = Bn

k (z) and ∆mBn
k (z) = ∆m−1

(
Bn−1

k−1 (z)−Bn−1
k (z)

)
.
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Lemma 5.31. The partial derivatives of a complex Bernstein polynomial of degree m are

given by

∂m

∂um
Bn

k (u + iv) =
n!

(n−m)!
∆mBn

k (z)

∂m

∂vm
Bn

k (u + iv) =
n!

(n−m)!
im∆mBn

k (z)

Now we can write a complex polynomial curve on the basis of complex Bernstein poly-

nomials:

ψ(z) =
n∑

j=0

ajB
n
j (z),

where aj ∈ C3 are complex Bézier control points.

In the following proposition we characterize a minimal complex Bézier curve in terms of

its complex control points.

Proposition 5.32. A complex Bézier curve ψ : C −→ C3, z 7→ ψ(z) =
∑n

j=0 ajB
n
j (z),

is minimal if and only if

(84)
k∑

i=0

(
n− 1

i

)(
n− 1

k − i

)
ti · tk−i = 0,

where ti = ∆ai.

Proof: From Definition 5.9, we have that a complex curve is minimal if and only if it is

an analytic function which verifies the isothermality condition:

ψ′(z) · ψ′(z) = 0 for all z ∈ C.

Since a complex Bézier curve is always an analytic function because it is a complex

polynomial, we have only to rewrite condition ψ′(z) · ψ′(z) = 0, in terms of complex control

points.

The derivative of ψ is given by

ψ′(z) = n

n−1∑
j=0

Bn−1
j (z)(aj+1 − aj) = n

n−1∑
j=0

Bn−1
j (z)∆aj,

therefore

ψ′(z) · ψ′(z) = n2

n−1∑

j=0,k=0

Bn−1
k (z)Bn−1

j (z)tj · tk = n2

2n−2∑

k=0

k∑
i=0

(
n−1

i

)(
n−1
k−i

)
(
2n−2

k

) B2n−2
k (z)ti · tk−i = 0.
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Then, due to the fact that the set of Bernstein polynomials of degree n is a basis of the

vector space of polynomials of degree ≤ n, we can state that ψ′ · ψ′ = 0 iff

k∑
i=0

(
n− 1

i

)(
n− 1

k − i

)
ti · tk−i = 0.

¥

5.2. Minimal Bézier complex curve associated to a minimal Bézier surface. In

this subsection we will describe the minimal Bézier complex curve associated to a minimal

and isothermal Bézier chart, called its complexification. We will give the complex control

points of the derivative of this minimal curve.

Proposition 5.33. Let {PI}|I|=n be the control net of a minimal and isothermal trian-

gular Bézier surface. Then the derivative of the associated minimal complex Bézier curve is

given by

−→x ′(z) =
n−1∑
j=0

tjB
n−1
j (z)

where the control points tj ∈ C3 are given by:

tj =
n

2

(
∆1,0P0,j − i∆0,1P0,j

)
.

Proof:
Given a minimal and isothermal Bézier chart, −→x , let us compute its complex derivative:

−→x ′(z) =
d−→x
dz

(u, v) = φ(−→x )(u, v) =
1

2
(−→x u(u, v)− i−→x v(u, v)) .

The complex derivative of a minimal and isothermal chart can also be seen as the de-

rivative of a minimal curve. Therefore it is an analytic function, so it must be a complex

polynomial of degree n − 1 in z = u + iv, and, moreover, with the same coefficients as the

polynomial in v: −→x ′(0, v).

Bearing in mind the first derivative formulas, in Equation (8) and Equation (9), and also

evaluating Bn−1
I (0, v) = Bn−1

j (v), we get:

−→x ′(0, v) =
n

2

n−1∑
j=0

(∆10P0,j,n−j − i∆01P0,j,n−j)B
n−1
j (v) =

n−1∑
j=0

tjB
n−1
j (v) where tj ∈ C3.

Therefore we get the Bézier form of the derivative of the minimal complex curve associated

to the minimal and isothermal chart, −→x ,

−→x ′(z) =
n−1∑
j=0

tjB
n−1
j (z)
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where the control points tj ∈ C3 are given by :

tj =
n

2

(
∆1,0P0,j − i∆0,1P0,j

)
.

These control points must satisfy the isothermality condition, given in Equation (84),

since they belong to the derivative of a minimal curve.

¥

5.3. Minimal chart associated to a minimal Bézier complex curve. In this sub-

section we follow the converse way of the previous one. We will obtain the harmonic and

isothermal parametrization associated to a given minimal regular Bézier complex curve.

First we will give an expression of the complex Bernstein polynomials in terms of the

real bivariate Bernstein polynomials.

Proposition 5.34. Any complex Bernstein polynomial of degree n, Bn
k (z), can be written

as:

Bn
k (z) =

∑

|I|=n

Qk
IB

n
I (u, v),

where the Q′s can be recursively computed thanks to the formula

(85) Qk
jm = (−1)m im∆0,mδjk−m −

m−1∑

l=0

(−1)m−l

(
m

l

)
Qk

jl,

where we have denoted Qk
I = Qk

(j,l,n−l−j) = Qk
jl, and δjk is the Kronecker delta, which is

defined by

δjk =

{
1 k = j,

0 k 6= j.

Proof:
The set of bivariate Bernstein polynomials of degree n is a basis of the space of bivariate

polynomials of degree ≤ n, so we can ensure the existence of a set of complex numbers

{Qk
I}|I|=n such that

(86) Bn
k (z) =

∑

|I|=n

Qk
IB

n
I (u, v).

Then, if we evaluate the complex Bernstein polynomials Bn
k (u + iv) for v = 0 we obtain

Bn
k (u) =

∑

|I|=n

Qk
IB

n
I (u, 0) =

n∑
j=0

Qk
j0B

n
j (u)

and therefore we deduce Qk
j0 = δkj.
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Now, we introduce an iterative process by taking derivatives repeatedly in Equation (86)

and evaluating at v = 0.

In the first step, the first derivative,

∂Bn
k (z)

∂v

∣∣∣
v=0

=
∂

∂v

∣∣∣
v=0


∑

|I|=n

Qk
IB

n
I (u, v)


 ,

that is,

i
(
Bn−1

k−1 (u)−Bn−1
k (u)

)
=

n−1∑
j=0

∆01Qk
j0B

n−1
j (u).

Bearing in mind the definition of the Kronecker delta we can rewrite the previous equa-

tion,

i
n−1∑
j=0

(δjk−1 − δjk)B
n−1
j (u) =

n−1∑
j=0

(Qk
j1 −Qk

j0)B
n−1
j (u),

which implies

Qk
j1 = −i∆0,1δjk−1 + Qk

j0.

Then, at the m-th step we deduce:

(−1)mim∆0,mδjk−m = ∆0,mQk
j0,

and that leads us to the desired result.

¥

The following proposition will show how to obtain the minimal and isothermal parame-

trization associated to a given minimal Bézier complex curve.

Proposition 5.35. Given a minimal Bézier complex curve ψ(z) =
∑n

k=0(ak+ibk)B
n
k (z),

with ak + ibk ∈ C3, the associated isothermal parametrization of the corresponding minimal

surface is given by

−→x (u, v) =
∑

|I|=n

PIB
n
I (u, v) where PI = Pj,r,n−j−r =

n∑

k=0

akReQk
jr − bk ImQk

jr,

with the coefficients Qk
jr defined in Equation (85).

Proof: A straightforward computation bearing in mind the previous proposition, Propo-

sition 5.35, gives us the expression:
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ψ(z) =
n∑

k=0

(ak + ibk)B
n
k (z) =

n∑

k=0

(ak + ibk)
∑

|I|=n

Qk
IB

n
I (u, v)

=
∑

|I|=n

(
(akReQk

jr − bkImQk
jr) + i(bk ReQk

jr + ak ImQk
jr)

)
Bn

I (u, v),

which allows to state that

−→x (u, v) = Reψ(u + iv) =
∑

|I|=n

(
n∑

k=0

akReQk
jr − bkImQk

jr

)
Bn

I (u, v).

¥

5.3.1. Case n=3. Here we will consider the general result obtained in Proposition 5.35

for the particular case n = 3. So, given a cubical minimal curve ψ(z) =
∑3

k=0(ak +ibk)B
3
k(z),

we will compute complex coefficients {Qk
I}|I|=3 such that B3

k(z) =
∑

|I|=3 Qk
IB

3
I (u, v), which

will enable us to obtain the associated minimal and isothermal parametrization −→x (u, v) =

Re ψ(u + iv) and its Bézier control points.

From Proposition 5.34 we have:





Qk
j0 = δjk

Qk
j1 = (1− i)δjk + iδjk−1

Qk
j2 = −2iδjk + 2(i + 1)δjk−1 − δjk−2

Qk
j3 = −(2 + 2i)δjk + 6δjk−1 − (3− 3i)δjk−2 − iδjk−3,

so we can compute Pjr =
(∑3

k=0 ak ReQk
jr − bk ImQk

jr

)
in terms of the complex control points

(ak + ibk):





Pj0 = aj j = 0, 1, 2, 3
Pj1 = aj − bj+1 + bj j = 0, 1, 2
Pj2 = 2aj+1 − aj+2 + 2bj − 2bj+1 j = 0, 1
Pj3 = −3aj+2 + 6aj+1 − 2aj + bj+3 − 3bj+2 + 2bj j = 0.

6. Building up cubical minimal Bézier surfaces

At this point we are able to obtain an isothermal parametrization of a cubical minimal

surface, starting from the four complex control points of the associated minimal complex

Bézier curve. In this section we will consider again the cubic case, we will give two methods

to generate cubical minimal Bézier surfaces.

First, we will show the way to generate a minimal curve given a complex control point

and three complex numbers, and then obtain a minimal Bézier surface as the real part of it.

In the second subsection we propose a method for generating cubical minimal surfaces

from a given set of two real numbers. We will see that, for this method, the three control
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points of a corner of the surface are prescribed with isothermality and the two real numbers

are the third coordinates of two other control points.

6.1. Building up cubical minimal Bézier surfaces given a control point and

three complex numbers. The following lemma will be needed in order to prove our next

result.

Lemma 5.36. A complex point z ∈ C3 verifies z · z = 0 if and only if it is given by

z = a((1− b2), i(1 + b2), 2b),

for a pair of complex numbers a, b ∈ C or

z = a(−1, i, 0)

for a complex number a ∈ C.

As we said above, the following result states that given three complex numbers and a

control point, it is possible to obtain the associated cubical isothermal and minimal Bézier

parametrization with (0, 0, 1) as normal vector at its end. This parametrization is obtained

as the real part of a minimal Bézier curve.

Theorem 5.37. Any cubical, isothermal and minimal Bézier chart with (0, 0, 1) as nor-

mal vector at its end verifies

−→x (u, v) = Re

(
3∑

k=0

B3
k(u + iv)ak

)
,

where

a0 = (a0
x, a

0
y, a

0
z) ∈ C3,

a1 = a0 + f0((1− g2
0), i(1 + g2

0), 2g0),

a2 = a1 + f0((1− g0g2), i(1 + g0g2), g0 + g2),

a3 = a2 + f0((1− g2
2), i(1 + g2

2), 2g2).

f0, g0, g2 being complex numbers.

Proof: Equations (84) for the case n=3 are reduced to:

(87)





t0 · t0 = 0
t0 · t1 = 0
2t1 · t1 + t0 · t2 = 0
t1 · t2 = 0
t2 · t2 = 0

where tj = ∆aj.
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From Lemma 5.36, we can suppose that

(88)
t0 = f0((1− g2

0), i(1 + g2
0), 2g0),

t2 = f2((1− g2
2), i(1 + g2

2), 2g2).

Substituting Equation (88) in Equation (87), and writing t1 = (a, b, c) ∈ C3, we have

(89)





a(1− g2
0) + bi(1 + g2

0) + 2g0 = 0
a2 + b2 + c2 = f0f2(g0 − g2)

2

a(1− g2
2) + bi(1 + g2

2) + 2g2 = 0.

From the first and the last equations we can obtain

a = c
1− g0g2

g0 + g2

b = c i
1 + g0g2

g0 + g2

.

Substituting now in the second equation of the system in Equation (89), we arrive at

c =
√

f0f2(g0 + g2), so we can finally state that

t1 =
√

f0f2(1− g0g2, i(1 + g0g2), g0 + g2).

Let us recall that if the normal vector at the end is (0,0,1), then the Weierstrass represen-

tation of the chart is given by g(z) a complex polynomial of degree 1, and f(z), a constant

complex function.

Let us now compute f(z). It is easy to see that

f(z) = 2f0B
2
0(z) + 2

√
f0f2B

2
1(z) + 2f2B

2
2(z).

Bearing in mind that B2
0(z) + B2

1(z) + B2
2(z) = 1, then f will be a constant function if

and only if f0 =
√

f0f2 = f2.

Therefore

∆a0 = f0((1− g2
0), i(1 + g2

0), 2g0),

∆a1 = f0((1− g0g2), i(1 + g0g2), g0 + g2)

∆a2 = f2((1− g2
2), i(1 + g2

2), 2g2).

¥

Remark 5.38. If we compute g(z) we get

g(z) = g0(1− z) + g2z = g0B
1
0 + g2B

1
1 .

With such a function g(0) = g0, g(1) = g2 and g(i) = g0 + i(g2 − g0), so these three

complex points, which are the the stereographic projection image of the normal vectors at

the corner points of the Bézier surface, are located in the complex plane as vertices of an

isosceles right triangle with length |g2 − g0| on its equal sides.
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Remark 5.39. The imaginary part of the complex control point a0 has no influence on the

minimal Bézier chart that we obtained. Hence, we can consider a0 ∈ R3 and f0, g0, g2 ∈ C,

and therefore there are 3 + 3 · 2 = 9 degrees of freedom to build up a cubical minimal and

isothermal Bézier surface with (0, 0, 1) as the normal vector at infinity.

Figure 11. These minimal surfaces are obtained by Theorem 5.37, in particular these five
examples are obtained respectively for the values

a0 f0 g0 g2

(0, 0, 0) 1 0 1
(0, 0, 0) −1 1− i 1 + i
(0, 0, 0) 1 1 i
(0, 0, 0) 2 1− i 1
(1, 0, 1) i 1 i

.

6.2. Building up cubical minimal Bézier surfaces given a pair of real numbers.

As we said in Remark 5.39, the surface generation method we have studied in the previous

subsection leaves 9 degrees of freedom to build a cubical minimal surface with a flat end.

In the following method we will only have two free parameters. We will prescribe the three

control points of a corner of the surface

P000 = (0, 0, 0) P012 = (1, 0, 0) and P102 = (0, 1, 0),

satisfying the isothermality condition, and we will give a method to obtain the associated

cubical minimal and isothermal parametrization, with (0, 0, 1) as the normal vector at its

end, only the third coordinate of a pair of control points, P120 and the vertex P030 being kept

free.
As we will see, in order to obtain the parametrization of this cubical minimal surface,

we first determine the control points on the first two lines of the control net. After that we

are able to determine the whole control net by Theorem 1.9 in Chapter 1, since we ask for

harmonicity.
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Proposition 5.40. Given the third coordinates, c021 and c030, where we have denoted

PI = (aI , bI , cI), and prescribed the three control points at one corner in an isothermal way,

P000 = (0, 0, 0) P012 = (1, 0, 0) and P102 = (0, 1, 0),

the isothermal parametrization of the cubical minimal surface, with a flat end associated to

these control points, is given by

−→x (u, v) = (3v + (
1

3
c030c120 − 1

9
c2
030)u

3 + (
1

4
c2
030 +

1

2
c030c120 − 3

4
c2
120)u

2v

+(
1

3
c2
030 − c030c120)uv2 + (

1

4
c2
120 −

1

12
c2
030 −

1

6
c030c120)v

3,

3u + (
1

4
c2
120 −

1

12
c2
030 −

1

6
c030c120)u

3 + (c030c120 − 1

3
c2
030)u

2v

+(
1

4
c2
030 +

1

2
c030c120 − 3

4
c2
120)uv2 + (

1

9
c2
030 −

1

3
c030c120)v

3,

c030v
2 + (3c120 − c030)uv − c030u

2
)
.

Proof:
In general in order to achive isothermality, the complex control points of a complex Bézier

curve must satisfy the relations given in Equation (84). For the cubic case these relations

are reduced to the equations given in (87), which as we have seen in Theorem 5.37, give us

the solution:





t0 = f0((1− g2
0), i(1 + g2

0), 2g0),
t1 = f0(1− g0g2, i(1 + g0g2), g0 + g2)
t2 = f0((1− g2

2), i(1 + g2
2), 2g2),

which at our convenience, we will say is equivalent to:

(90)





t0 = n
2
f0((1− g2

0), i(1 + g2
0), 2g0),

t1 = n
2
f0(1− g0g2, i(1 + g0g2), g0 + g2)

t2 = n
2
f0((1− g2

2), i(1 + g2
2), 2g2),

On the other hand, if we consider the analytic complex Bézier curve given by the complex

derivative of a harmonic parametrization, we have that its control points are

tj =
n

2

(
∆1,0P0,j − i∆0,1P0,j

)

and therefore we can rewrite Equation (90) in terms of the real control points:
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(91)

(
∆10P003 − i∆012P003

)
= f0((1− g2

0), i(1 + g2
0), 2g0),

(
∆10P012 − i∆012P012

)
= f0((1− g2

2), i(1 + g2
2), 2g2),

(
∆10P021 − i∆012P021

)
= f0(1− g0g2, i(1 + g0g2), g0 + g2).

The first and the last equations give us the expression of f0, g0 and g2 in terms of real

control points, PI = (aI , bI , cI),

f0 =
1

2

((
∆10a003 − i∆01a003

)− i
(
∆10b003 − i∆01b003

))

=
1

2
((i− 1)a003 − ia012 + a102 + (1 + i)b003 − b012 − ib102),

g0 =
1

f0

(
∆10c003 − i∆01c003

)
=

1

f0

(c102 − c003 − i(c012 − c003)),

g2 =
1

f0

(
∆10c021 − i∆01c021

)
=

1

f0

(c120 − c021 − i(c030 − c021)).

Now, bearing in mind that three control points in a corner are fixed with isothermality,

that is,

P000 = (0, 0, 0) P012 = (1, 0, 0) and P102 = (0, 1, 0),

we can see that f0 and g0 are totally determined.

Moreover, since the pair of coordinates c021 and c030 are given data, the second equation

in (91) enables us to obtain:

P111 =

(
1, 1,

1

6
(3c120 − c030)

)

P021 = (2, 0,
1

3
c030).

and from first and last equations in (91) we get:

a030 =
1

12
(36− c2

030 − 2c030c120 + 3c2
120)

a120 =
1

9
(18 + c2

030 − 3c030c120)

b030 =
1

9
(c2

030 − 3c030c120)

b120 =
1

12
(12 + c2

030 + 2c030c120 − 3c2
120).

Up till now, we have determined all the control points on the first two lines of the control

net in terms of c030 and c120. Therefore, the whole harmonic control net can be determined

by Theorem 1.9.
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The minimal and isothermal chart is given by:

−→x (u, v) = (3v + (
1

3
c030c120 − 1

9
c2
030)u

3 + (
1

4
c2
030 +

1

2
c030c120 − 3

4
c2
120)u

2v

+(
1

3
c2
030 − c030c120)uv2 + (

1

4
c2
120 −

1

12
c2
030 −

1

6
c030c120)v

3,

3u + (
1

4
c2
120 −

1

12
c2
030 −

1

6
c030c120)u

3 + (c030c120 − 1

3
c2
030)u

2v

+(
1

4
c2
030 +

1

2
c030c120 − 3

4
c2
120)uv2 + (

1

9
c2
030 −

1

3
c030c120)v

3,

c030v
2 + (3c120 − c030)uv − c030u

2
)
.

¥

Now we will show some examples of cubical minimal surfaces with isothermal chart,

which are obtained thanks to Proposition 5.40. In each of the following figures there are

three smaller black points which are the prescribed corners, the bigger black points are the

control points with a free third coordinate, P120 and P003. The other control points are in
gray.

Figure 12. These minimal surfaces are obtained by Proposition 5.40 for c003 = −1 and for
three different values of c120, which are the following: −2, 0, 2.
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Figure 13. Analogously these three minimal surfaces have been obtained by Proposition
5.40 for c003 = 0 and for three different values of c120, which are the following: −2, 0, 2.

Note that when c003 = c120 = 0, the solution is a piece of a plane.

Figure 14. These are the figures given by Proposition 5.40 for c003 = 1 and again for the
values of c120: −2, 0, 2.

Let us remark that in this last section we have given two methods to generate cubi-

cal minimal surfaces with a flat end. Since the complex function g is considered to be a

polynomial, we find, as we said before, that

lim
u,v→±∞

N(u, v) = (0, 0,±1).

If we impose this condition, that the normal vector at infinity be the North Pole, we find 9

degrees and 2 degrees of freedom, respectively, in the pair of methods we have presented. But,

the minimal surface obtained could be rotated. Then, since such rotations are parametrized

by two angles, we could consider that there are two more free parameters in order to build

a surface with a non-planar end.

7. Conclusions

In this chapter we have given different methods to generate minimal surfaces with the

prescription of some initial data.

We have described a method to generate a cubical minimal and isothermal triangular

surface given its vertices, a second method to generate a degree seven minimal and isothermal

triangular Bézier surface given, in addition to its three vertices, the tangent planes at those
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points, and a third method, prescribing an arbitrary set of points on the surface and the

tangent planes at the corner points, in order to generate a minimal and isothermal surface

of a higher degree.

Moreover, here we have conducted a study relating minimal surfaces with minimal com-

plex curves. We have deduced from this study two more methods to generate cubical minimal

isothermal surfaces. With the aim of reducing the number of parameters that totally de-

termine a minimal surface as much as possible, we have obtained two surface generation

methods related with minimal curves, one with 9 degrees of freedom and another which only

leaves 2 free parameters.

We find that, as soon as we reduce the size of the set of prescribed information, the use

of minimal surfaces becomes too restrictive. Aesthetically we obtain good shapes for low

degrees, such as pieces of the Enneper surface for the cubic case. But, we find that if the

surface degree increases, the shapes obtained get too complicated.

Another of the consequences of this study is that we have realized that minimal surfaces

are too rigid if we want to solve, for example, blending problems. The condition H = 0

imposes too many restrictions on a polynomial surface so that, given a prescribed border,

we cannot expect to be able to find a minimal polynomial surface with that border.





CHAPTER 6

The Dirichlet functional results

In this chapter we address the problem of finding the triangular Bézier patch minimizing

the area among all triangular Bézier surfaces with a prescribed boundary. As is well known,

the border of a triangular Bézier surface is determined by the border control points. So, the

problem can be reformulated as follows: Given the exterior points of a triangular control

net, find the interior control points in such a way that the resulting triangular Bézier surface

has minimal area among all the triangular Bézier surfaces with the same border. Let us call

this problem the triangular Bézier-Plateau problem.

The theory of minimal surfaces shows that in order to prove the existence of minimal

surfaces, one can replace the area functional (a highly non linear functional) by another

functional, now linear, having the same extremals. The common substitute is the Dirichlet

functional, as it is usually called in the mathematical literature, but which is known as the

stretch functional in the CAGD literature, (see [44]).

The problem of minimizing the Dirichlet functional among all rectangular Bézier surfaces

with a prescribed boundary was previously studied in [29] and [30]. The advantage of

using the Dirichlet functional is that the determination of extremals becomes just a linear

problem. Moreover, if a triangular Bézier patch is harmonic and isothermal it is the extremal

of both the area and Dirichlet functionals. We have found that when the control net satisfies
isothermality conditions at the three corner points then our method shows, in general, a

significant improvement.

When isothermality is not satisfied at the three corner points, then considering the Dirich-

let extremal as an approximation to the area extremal, presents an intrinsic error of the

method error. In the last section of this chapter we propose an improvement on the approx-

imation based on geometric principles which maintain the use of linear systems. Then, the

triangular Bézier surfaces we obtain have a smaller area than the surfaces obtained by the

other methods for the same border configurations.

The extremal for cubical triangular Bézier surfaces can be computed and the solution

used as a mask for obtaining approximations at higher degrees. On the other hand, we can

try to obtain the extremals of the Dirichlet functional at higher degrees directly. The use of

masks is due to the fact that they make the system of linear equations easier to solve (since

it is a sparse system) than the system deduced from the Dirichlet equations, which has no

null coefficients.
The mask we have obtained, the Dirichlet mask, is an asymmetric mask, as expected,

due to the asymmetry of triangular Bézier surfaces. But as we said in the Introduction, our

asymmetric methods give good results. For example, for degree 3, it is possible to show that

139
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fixing the border control points as the ones of an arbitrary triangular piece of the Enneper

surface, our asymmetric mask gives always exactly the interior control point. It can even be

shown that there are pieces of the Enneper surface for which the inner control point cannot

be obtained by applying a symmetric mask to the exterior control points.

In this chapter we have also studied the biharmonic functional or bending energy func-

tional, which is also known as thin plate energy. This functional can be chosen as a measure

of the fairness of a surface. Here we have considered, in an analogous way to how we dealt

the Dirichlet functional, the problem of finding a triangular Bézier surface which minimizes

the biharmonic functional given a boundary.

1. The Dirichlet functional results

To solve the triangular Bézier-Plateau problem we have to try to minimize the functional

area among all the triangular Bézier surfaces with a prescribed boundary which is determined

by the exterior control points. Nevertheless, due to its high non-linearity, the problem of

minimizing the area functional is hard to deal with, so we shall work instead with the

Dirichlet functional:

D(P) =
1

2

∫

T
(‖−→xu‖2 + ‖−→xv‖2)du dv.

There are two reasons for making such a substitution: the first one is given by the

following fact relating the area and the Dirichlet functional:

(92) (E G − F 2)
1
2 ≤ (E G)

1
2 ≤ E + G

2
.

Therefore, for any triangular control net P , A(P) ≤ D(P). Moreover, equality can occur

only if E = G and F = 0, i.e., for isothermal patches.

The second is related with the Euler-Lagrange equation associated to the Dirichlet func-

tional, which is defined not on control nets, but on parametrizations

−→x → 1

2

∫

T
(‖−→xu‖2 + ‖−→xv‖2)du dv.

This equation is just ∆−→x = 0. Therefore, if the extremal of the Dirichlet functional is

an isothermal patch, it is automatically a harmonic patch, and hence the surface is minimal.

Nevertheless, we are not working with parametrizations. We are working instead with

triangular control nets. So, our aim is to find the minimum of the real function P → D(−→x P),
−→x P being the triangular Bézier patch associated to the control net P . Both functionals, A
and D, have a minimum in the Bézier case due to the following facts: First, they can

be considered as continuous real functions defined on R
3(n−1)(n−2)

2 , since there are (n−1)(n−2)
2

interior control points which belong to R3. Second, as a consequence of E > 0, G > 0, and

EG − F 2 > 0, both functionals are bounded from below. Third, the infima are attained:

when looking for a minimum, we can restrict both functions to a suitable compact subset. If a

control point goes far away, then the same happens with a part of the surface and, therefore,
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the area and the sum E + G increase. So, a compact subset can be chosen such that, if

one of the interior control points is outside it, then the area functional and also Dirichlet

functional, are greater than some bound. Thus, if we restrict both continuous functions to

a compact subset we can affirm that the infima exist and that they are attained.

Notation 6.1. Throughout this chapter different subindexes, like J,K, etc. or In for

some values of n will appear, then we will assume that in general

J = {J1, J2, J3}
and in particular for the indexes In and I we denote: I = {i, j, k} and In = {I1

n, I2
n, I3

n}.
The following result will allows us to compute the control net of an extremal of the

Dirichlet by means of a system of linear equations.

Proposition 6.2. A triangular control net, P = {PI}|I|=n, is an extremal of the Dirich-

let functional among all triangular control nets with a prescribed boundary if and only if:

(93) 0 =
∑

|I|=n

(
n−1

I

)
(
2n−2
I+I0

)(a1 + a2 + 2a3 − b13 − b23) PI

for all |I0| = n with I1
0 , I

2
0 , I

3
0 > 0 and where:

(94) ar =

{
0 Ir = 0,

Ir
0 Ir

(Ir
0+Ir)(Ir

0+Ir−1)
Ir > 0

brs =
Ir
0I

s + Is
0I

r

(Ir
0 + Ir) (Is

0 + Is)
.

Proof: Let us compute the gradient of the Dirichlet functional with respect to the

coordinates of a control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
where I0 = (I1

0 , I
2
0 , I

3
0 ). For any a ∈

{1, 2, 3}, and any |I0| = n, with I1
0 , I

2
0 , I

3
0 > 0.

∂D(P)

∂xa
I0

=
1

2

∫

T

∂

∂xa
I0

(‖−→xu‖2 + ‖−→xv‖2) du dv

=

∫

T
(<

∂−→xu

∂xa
I0

,−→xu > + <
∂−→xv

∂xa
I0

,−→xv >) du dv

Let us now compute the partial derivatives

(95)
∂−→xu

∂xa
I0

=
∂

∂xa
I0

∂

∂u
−→x =

∂

∂u

∂

∂xa
I0

−→x =
∂

∂u
Bn

I0
.ea = n(Bn−1

I0−e1
−Bn−1

I0−e3
) ea

where ea, a ∈ {1, 2, 3}, denotes the a-th vector of the canonical basis, that is, e1 = (1, 0, 0),

e2 = (0, 1, 0) and e3 = (0, 0, 1).

Analogously

(96)
∂−→xv

∂xa
I0

= n(Bn−1
I0−e2

−Bn−1
I0−e3

) ea.



142 6. THE DIRICHLET FUNCTIONAL RESULTS

Therefore

∂D(P)

∂xa
I0

=

∫

T
n

(
(Bn−1

I0−e1
−Bn−1

I0−e3
) < ea,

−→xu > +(Bn−1
I0−e2

−Bn−1
I0−e3

) < ea,
−→xv >

)
du dv

=

∫

T
n


(Bn−1

I0−e1
−Bn−1

I0−e3
) < ea,

∑

|I|=n

n (Bn−1
I−e1

−Bn−1
I−e3

)PI >

+ n (Bn−1
I0−e2

−Bn−1
I0−e3

) < ea,
∑

|I|=n

n (Bn−1
I−e2

−Bn−1
I−e3

)PI >


 du dv.

Multiplying the Bernstein polynomials, see Equation (2), and integrating while bearing

in mind Equation (3):
∫

T
Bn

I (u, v) dv du = 1
(n+1)(n+2)

, we get

∂D(P)

∂xa
I0

=
n2

2n(2n− 1)

∑

|I|=n

(

(
n−1

I0−e1

)(
n−1
I−e1

)
(

2n−2
I+I0−2e1

) +

(
n−1

I0−e2

)(
n−1
I−e2

)
(

2n−2
I+I0−2e2

) + 2

(
n−1

I0−e3

)(
n−1
I−e3

)
(

2n−2
I+I0−2e3

)

−
(

n−1
I0−e1

)(
n−1
I−e3

)
+

(
n−1

I0−e3

)(
n−1
I−e1

)
(

2n−2
I+I0−e1−e3

) −
(

n−1
I0−e2

)(
n−1
I−e3

)
+

(
n−1

I0−e3

)(
n−1
I−e2

)
(

2n−2
I+I0−e2−e3

) ) < ea, PI >

=
n2

2n(2n− 1)

∑

|I|=n

(
n−1

I

)(
n−1
I0

)
(
2n−2
I+I0

) (a1 + a2 + 2a3 − b13 − b23) < ea, PI >,

with ar and br as they was defined in Equation (94).

¥
Remark 6.3. Equivalently,

∂D(P)

∂xa
I0

=
∑

|I|=n

(
n
I

)(
n
I0

)
(

2n
I+I0

) (a1 + a2 + 2a3 − b13 − b23) < ea, PI >,

since

2n(2n− 1)

n2

(
n−1

I

)(
n−1
I0

)
(
2n−2
I+I0

) =

(
n
I

)(
n
I0

)
(

2n
I+I0

) .

In particular we give the general result for the case n = 3.

Proposition 6.4. A triangular Bézier surface of degree 3 is an extremal of the Dirichlet

functional, D(P), among all Bézier surfaces with a prescribed boundary if and only if

P111 =
1

4
(2 P003 − P021 + P030 + P120 − P201 + P210 + P300).

In the proposition that follows we give a formula to express the Dirichlet functional in

terms of the control points, PI = (x1
I , x

2
I , x

3
I) , of a Bézier triangular patch.
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Proposition 6.5. The Dirichlet functional, D(−→x ), of a triangular Bézier surface can

be expressed by the formula

(97) D(−→x ) =
1

2

3∑
a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1

where

(98) CI0I1 =

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (a1 + a2 + 2a3 − b13 − b23)

and a1, a2, a3, b13, b23 were defined in Equation (94).

Proof: The Dirichlet functional is a second-order functional that can be expressed by

Equation (97), therefore we compute its second derivative in order to obtain the coefficients

CI0I1 :

∂2D(−→x )

∂xa
I0

∂xa
I1

=
∂2

∂xa
I0

∂xa
I1

1

2

3∑
ā=1

∑

|I|=n

∑

|J |=n

CIJxā
Ix

ā
J =

∂D

∂xa
I1

1

2

∑

|J |=n

2 CI0Jxa
J = CI0I1 .

Now let us compute the first derivative

∂D(−→x )

∂xa
I0

=
1

2

∫

T

∂

∂xa
I0

(‖−→xu‖2 + ‖−→xv‖2) du dv =

∫

T
(<

∂−→xu

∂xa
I0

,−→xu > + <
∂−→xv

∂xa
I0

,−→xv >) du dv,

and the second derivative

∂2D(−→x )

∂xa
I0

∂xa
I1

=

∫

T

∂

∂xa
I1

(<
(
Bn

I0

)
u

ea,
−→xu > + <

(
Bn

I0

)
v

ea,
−→xv >) du dv,

=

∫

T
<

(
Bn

I0

)
u
ea,

(
Bn

I1

)
u
ea > dudv +

∫

T
<

(
Bn

I0

)
v
ea,

(
Bn

I1

)
v
ea > dudv

=

∫

T

((
Bn

I0

)
u

(
Bn

I1

)
u

+
(
Bn

I0

)
v

(
Bn

I1

)
v

)
< ea, ea > dudv

=

∫

T

(
(Bn−1

I0−e1
−Bn−1

I0−e3
)(Bn−1

I1−e1
−Bn−1

I1−e3
) + (Bn−1

I0−e2
−Bn−1

I0−e3
)(Bn−1

I1−e2
−Bn−1

I1−e3
)
)

dudv

=
n2

2n(2n− 1)

2n(2n− 1)

n2

(
n
I0

)(
n
I1

)
(

2n
I+I0

) (a1 + a2 + 2a3 − b13 − b23),

where we took into account the formula for the product of the Bernstein polynomials, given

in Equation (2), and the value of a Bernstein polynomial integral given in Equation (3):∫
T

Bn
I (u, v) dv du = 1

(n+1)(n+2)
.

Therefore

CI0I1 =

(
n
I0

)(
n
I1

)
(

2n
I+I0

) (a1 + a2 + 2a3 − b13 − b23),
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where a1, a2, a3, b13, b23 were defined in Equation (94).

¥

Now, let us use this expression of the Dirichlet functional

D(−→x ) =
1

2

3∑
a=1

∑

|I|=n

∑

|J |=n

CIJxa
Ix

a
J

to compute, as we did in Proposition 6.2, the gradient of the functional with respect to the

coordinates of a control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
where I0 = (I1

0 , I
2
0 , I

3
0 ):

(99)
∂D(−→x )

∂PI0

=


 ∑

|J |=n

CI0Jx1
J

∑

|J |=n

CI0Jx2
J ,

∑

|J |=n

CI0Jx3
J


 =

∑

|J |=n

CI0JPJ

Therefore, the condition

(100)
∑

|J |=n

CI0JPJ = 0 for all |I0 = (I1
0 , I

2
0 , I

3
0 )| = n with I1

0 , I2
0 , I

3
0 > 0,

is equivalent to Equation (93), where it was given the characterization of a triangular control

net with a prescribed boundary of an extremal of the Dirichlet functional, see Proposition

6.2.

2. Comparison with the Euler-Lagrange equation

Let us recall the Euler-Lagrange equation, for a Lagrangian. Given a second-order La-

grangian,

L (−→x ) = L (−→x ,−→x u,
−→x v,

−→x uu,
−→x uv,

−→x vv) ,

if it is considered the functional I to be,

I (−→x ) =

∫

T

L (−→x ) du dv,

then, the extremals of I satisfy the associated Euler-Lagrange differential equation, that is,

0 =
∂L

∂−→x − d

du

(
∂L

∂−→x u

)
− d

dv

(
∂L

∂−→x v

)
+

d2

du2

(
∂L

∂−→x uu

)
+

d2

dudv

(
∂L

∂−→x uv

)
+

d2

dv2

(
∂L

∂−→x vv

)
.

Therefore problems in the calculus of variations can be studied by solution of the asso-

ciated Euler-Lagrange equation.

Now, let us consider the Dirichlet functional,

D(−→x ) =
1

2

∫

T
(‖−→xu‖2 + ‖−→xv‖2) du dv.
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Minimizing the functional D, which is equivalent to requiring that the first variation of

D is zero, gives rise to the corresponding Euler-Lagrange equation, in this case given by the

harmonicity condition:

(101) ∆−→x = 0.

Let us show this. First we will compute the first variation of the functional in order to

obtain the sufficient and necessary condition that a patch must satisfy in order to be an

extremal among all −→x ∈ C∞ (T ) with a prescribed boundary. Afterwards, we will show

how this condition changes when we look for an extremal among all polynomial patches,
−→x ∈ Rn[u, v]. The condition for the restricted problem turns into a weak version of the

Euler-Lagrange equation.

The patch −→x would be an extremal of the functional D (−→x ) among all the patches with

the same border if and only if for any −→y ∈ C∞ (T ), null along the border of T , the following

equality holds

0 =
d

dt
∣∣∣
t=0

D (−→x + t−→y ) =

∫

T

< −→x u,
−→y u > + < −→x v,

−→y v > du dv.

Then, having in mind the integration by parts formula, it follows that

d

dt
∣∣∣

t=0

D (−→x + t−→y ) =

∫

T

< −→x u,
−→y >u − < −→x uu,

−→y > + < −→x v,
−→y >v − < −→x vv,

−→y > du dv

=

∫

T

< −∆−→x ,−→y > du dv +

∫

T

< −→x u,
−→y >u + < −→x v,

−→y >v du dv

=

∫

T

− < ∆−→x ,−→y > du dv +

∫

∂T

− < −→x v,
−→y > du+ < −→x u,

−→y > dv.

Since y∣∣∣
∂T

= 0, a patch −→x is an extremal of the Dirichlet functional among all patches

with a prescribed boundary if

0 =
d

dt
∣∣∣
t=0

D (−→x + t−→y ) =

∫

T

− < ∆−→x ,−→y > du dv,

for any C∞ (T ), that is, if and only if it is a harmonic patch.

On the other hand, if we consider the Dirichlet functional restricted to polynomial

patches, an extremal of the restricted problem is not necessarily harmonic. As before, a

polynomial patch is an extremal of D among all polynomial patches with the same border if

0 =
d

dt
∣∣∣

t=0

D (−→x + t−→y ) =

∫

T

< −∆−→x ,−→y > du dv +

∫

T

< −→x u,
−→y >u + < −→x v,

−→y >v du dv,



146 6. THE DIRICHLET FUNCTIONAL RESULTS

for all −→y ∈ Rn[u, v],

−→y (u, v) =
∑

|I|=n

QIB
n
I (u, v) , |I| = |{i, j, k}| = n with i, j, k 6= 0,

null along the border of T. Equivalently, −→x would be an extremal if for all |I| = |{i, j, k}| = n

with i, j, k 6= 0,

0 =

∫

T

< −∆−→x ,Bn
I ea > du dv +

∫

T

< −→x u, B
n
I ea >u + < −→x v, B

n
I ea >v du dv.

Moreover
∫

T

< −→x u, B
n
I ea >u du dv =

∫ 1

0

< −→x u, B
n
I ea >

]1−v

0
dv = 0,

∫

T

< −→x v, B
n
I ea >v du dv =

∫ 1

0

< −→x v, B
n
I ea >

]1−u

0
du = 0,

since Bn
I (1 − v, v) = Bn

I (0, v) = Bn
I (u, 0) = Bn

I (u, 1 − u) = 0 for |I| = |{i, j, k}| = n with

i, j, k 6= 0.

Therefore we can deduce that a polynomial patch −→x is an extremal of the Dirichlet

functional D among all patches with a prescribed boundary if and only if

(102) 0 = −
∫

T
< ea, ∆

−→x > Bn
I dudv, for all |I = (i, j, k)| = n with i, j, k > 0.

In fact, the computation of the gradient of the Dirichlet functional with respect to the

coordinates of an interior control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
gives rise to the previous equation

∂D(P)

∂xa
I0

=

∫

T
(< −→xu,

(
Bn

I0

)
u

ea > + < −→xv ,
(
Bn

I0

)
v

ea >) du dv

=

∫

T

< −→x u, B
n
I0

>u − < −→x uu, B
n
I0

> + < −→x v, B
n
I0

>v − < −→x vv, B
n
I0

> du dv

=−
∫

T
< ea, ∆

−→x > Bn
I0

dudv.

Remark 6.6. Equation (102) is a kind of weak version of condition (101). Note that the

Bernstein polynomials that appear multiplying the Laplacian operator in Equation (102) are

only those with i, j, k > 0, that is, the Bernstein polynomials whose indexes correspond to

border points are excluded. If these polynomials were included it would imply that ∆−→x = 0

from Lemma 3.12.

Let us observe that the condition given in Equation (102) is equivalent to the other char-

acterizations of the Dirichlet functional extremals we have given earlier in Equation (93) and

in Equation (100).
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3. Triangular permanence patches related with the Bézier-Plateau problem:

The Dirichlet mask

As we said in Chapter 3, Farin and Hansford defined in [14] triangular permanence

patches. Given a mask of the form

(103) Pi,j,k =

α β β α
β ? β

β β
α

with 3α + 6β = 1, that is, α = 1−6β
3

, the triangular patch formed with such a control net is

called triangular permanence patch. Let us denote this mask by Mα.

The mask M0 is the discrete form of the Laplacian operator when the control net is

considered as a discretization of the Bézier surface. Such a mask is used in the cited reference
to obtain control nets resembling minimal surfaces that fit between given boundary polygons.

Other important masks are: M 1
9

which can be deduced by asking the quadrilaterals asso-

ciated to the inner edges of the triangular patch to be as close as possible to parallelograms,

and mask M 1
3
, which is the dual of M0 in the sense that for α = 1

3
we have β = 0.

From the condition obtained in Proposition 6.4, and given the exterior control points, we

can try to generate the whole triangular net by solving a linear system where the equations
are:

4Pi,j,k = 2 Pi+2,j−1,k−1 − Pi,j−1,k+1 − Pi,j+1,k−1 + Pi−1,j+2,k−1

+ Pi−1,j+1,k + Pi−1,j,k+1 + Pi−1,j−1,k+2,

Pi,j,k being a interior control point. This equation can be expressed as the following mask,

which will be called the Dirichlet mask :

1

4
×

1 1 1 1
−1 ? −1

0 0
2

As we can see, the Dirichlet mask is not a mask like Farin-Hansford’s mask because it

is not symmetric. The asymmetry of the Dirichlet mask is due to the fact that the triangle

on which we define the Bernstein polynomials is not an equilateral triangle. By applying a

symmetrization process to the Dirichlet mask, we obtain one of the masks worked in [14],

more specifically the one with α = 1
3
.

4. The Biharmonic functional results

In interactive surface modeling, the biharmonic functional or bending energy functional,

which is also called thin plate energy, is always chosen as a measure of the fairness of a
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surface and mesh. In this section we will study the problem of finding a triangular Bézier

surface which minimizes the biharmonic functional,

(104) B (−→x ) =
1

2

∫

T

‖−→xuu‖2 + 2‖−→xuv‖2 + ‖−→xvv‖2 du dv,

defined in the triangle, T, among all polynomial patches with the same boundary.

This problem was discussed in a similar way in [28]. The authors gave a characterization

of the control net for both rectangular and triangular Bézier extremals of the bending energy

functional with given boundary curves. Their methods were based on the results of the

Dirichlet functional for rectangular and triangular Bézier surfaces, in [29], [30] and [3].

Derived from this characterization of extremals they deduced a mask for the generation of

rectangular and triangular patches. Later in this section will also show this mask.

In the following proposition we give a formula to express the biharmonic functional, B,

of a Bézier triangular patch in terms of the control points, PI = (x1
I , x

2
I , x

3
I) .

Proposition 6.7. The functional, B(−→x ), of a triangular Bézier surface can be expressed

by the formula

(105) B(−→x ) =
1

2

3∑
a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1

with

(106)
CI0I1 = 2n (2n− 1)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (
1

2
(b11

11 + b22
22 + 4b33

33) + b11
33 + b22

33 + b12
12 − 2(b13

11 + b23
12 + b13

12

+b23
22 − b12

33 − b13
23) + 3(b13

13 + b23
23)− 4(b33

13 + b33
23))

where the coefficients btl
rs satisfy the symmetry relation btl

rs = btl
sr = blt

rs = blt
sr, and are defined

in Equation (36).

Proof: The functional is a second-order functional and, therefore, similarly to Proposi-

tion 6.5, in order to compute the coefficients CI0I1 we can compute its second derivative.

We compute the first derivative

∂B(−→x )

∂xa
I0

=
1

2

∫

T
<

∂−→x uu

∂xa
I0

,−→x uu > +2 <
∂−→x uv

∂xa
I0

,−→x uv > + <
∂−→x vv

∂xa
I0

,−→x vv > du dv

=
1

2

∫

T
< (Bn

I0
)uu,

−→x uu > +2 < (Bn
I0

)uv,
−→x uv > + < (Bn

I0
)vv,

−→x vv > du dv,

and the second

∂2B(−→x )

∂xa
I0

∂xa
I1

=

∫

T
< (Bn

I0
)uu, (B

n
I1

)uu > +2 < (Bn
I0

)uv, (B
n
I1

)uv > + < (Bn
I0

)vv, (B
n
I1

)vv > du dv.
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Then bearing in mind the derivatives

(Bn
I )uu = n (n− 1)

(
Bn−2

I−2e1
− 2Bn−2

I−e1−e3
+ Bn−2

I−2e3

)

(Bn
I )uv = n (n− 1)

(
Bn−2

I−e1−e2
−Bn−2

I−e1−e3
−Bn−2

I−e2−e3
+ Bn−2

I−2e3

)

(Bn
I )vv = n (n− 1)

(
Bn−2

I−2e2
− 2Bn−2

I−e2−e3
+ Bn−2

I−2e3

)

we compute the integral of the Bernstein polynomials
∫

T
B2n−4

I0+I1
(u, v) dudv =

1

(3n− 2)(3n− 3)

and we perform some simplifications like the following:
∫

T
Bn−2

I0−2e1
Bn−2

I1−2e3
dudv =

=

∫

T

(
n−2

I0−2e1

)(
n−2

I1−2e3

)
+

(
n−2

I0−2e3

)(
n−2

I1−2e1

)
(

2n−4
I0+I1−2e1−2e3

) B2n−4
I0+I1−2e1−2e3

dudv

=
2n (2n− 1)

n2(n− 1)2

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) I1
0 (I1

0 − 1)I3
1 (I3

1 − 1) + I3
0 (I3

0 − 1)I1
1 (I1

1 − 1)

(I1
0 + I1

1 )(I3
0 + I3

1 )(I1
0 + I1

1 − 1)(I3
0 + I3

1 − 1)

=
2n (2n− 1)

n2(n− 1)2

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) b33
11.

Therefore

∂2B(−→x )

∂xa
I0

∂xa
I1

= 2n (2n− 1)

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (
1

2
(b11

11 + b22
22 + 4b33

33) + b11
33 + b22

33 + b12
12 − 2(b13

11 + b23
12 + b13

12

+b23
22 − b12

33 − b13
23) + 3(b13

13 + b23
23)− 4(b33

13 + b33
23)) = CI0I1 ,

with btl
rs defined in Equation (36).

¥

In the previous proposition, as we did just before for the Dirichlet functional and for the

functional F in chapter 3, we have given a formula, in Equation (105), of the functional in

terms of the control points

B(−→x ) =
1

2

3∑
a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1

.

In the following proposition we compute the gradient of the functional with respect to the

coordinates of a control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
. Then we will characterize the extremal

of the functional among all Bézier surfaces with the same border as a solution of a linear
system.
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Proposition 6.8. A triangular control net, P = {PI}|I|=n, is an extremal of the func-

tional, B, among all triangular control nets with a prescribed boundary if and only if

(107)
∑

|J |=n

CI0JPJ = 0 for all |I0 = (I1
0 , I

2
0 , I3

0 )| = n with I1
0 , I

2
0 , I

3
0 6= 0,

with CIJ defined in Equation (106).

Proof: The gradient of the functional with respect to the coordinates of an interior

control point PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
is given by

∂B(−→x )

∂PI0

=


 ∑

|J |=n

CI0Jx1
J ,

∑

|J |=n

CI0Jx2
J ,

∑

|J |=n

CI0Jx3
J


 =

∑

|J |=n

CI0JPJ .

¥
Equivalently, a triangular control net, P = {PI}|I|=n, is an extremal among all control

nets with prescribed border control points if and only if

0 =
∑

|I|=n

(
n
I

)
(

2n
I0+I

)(
1

2
(b11

11 + b22
22 + 4b33

33) + b11
33 + b22

33 + b12
12 − 2(b13

11 + b23
12 + b13

12

+b23
22 − b12

33 − b13
23) + 3(b13

13 + b23
23)− 4(b33

13 + b33
23)) PI

for all |I0 = (I1
0 , I

2
0 , I

3
0 )| = n with I1

0 , I
2
0 , I

3
0 6= 0, where btl

rs were defined in Equation (36).

In particular we give the general result for the case n = 3.

Proposition 6.9. A triangular control net of degree 3, P = {PI}|I|=3, is an extremal

of the functional, B(P), among all triangular control nets with a prescribed boundary if and

only if

P111 =
1

12
(2P003 + 3P012 − 3P021 + P030 + 3P102 + 4P120 − 3P201 + 4P210 + P300) .

From the condition obtained in Proposition 6.9 we can generate, given the exterior control

points, the whole triangular net by solving a linear system where the equations are:

12Pi,j,k = 2Pi−1,j−1,k+2 + 3Pi−1,j,k+1 − 3Pi−1,j+1,k + Pi−1,j+2,k−1 + 3Pi,j−1,k+1 + 4Pi,j+1,k−1

− 3Pi+1,j−1,k + 4Pi+1,j,k−1 + Pi+2,j−1,k−1

Pi,j,k being an interior control point. This equation can be expressed by the following mask:

(108) Pi,j,k =
1

12
×

2 3 −3 1
3 ? 4
−3 4

1

which was also considered in [28], where it was called the bending energy mask.
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Figure 1. Two Bézier surfaces with the same border, the one on the left is a Bézier extremal
of the functional B and the figure on the right is obtained by means of the mask in Equation
(108).

Figure 2. Two more examples of Bézier triangles, a Bézier extremal of B on the left and
a Bézier surface built with the mask (108).

Figure 3. As before, a polynomial extremal of B on the left and on the right another
surface with the same boundary but obtained thanks to the associated mask.

From the figures above it can be seen that the shapes of surfaces and control nets obtained

by means of the mask, in Equation (108), are almost as good as those derived from the

extremal of the functional B. Nevertheless, as is natural, the bending energy is smaller for

the polynomial extremals than for the surfaces generated with the bending energy mask.
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5. Comparison between masks

The question that naturally arises regarding which mask is the best and, more generally,

whether there is a better mask, has a negative answer. This depends on the boundary

conditions.
In this section we will show some examples with simple boundary curves.

5.1. Case n = 3. Let us start the comparison by studying some examples in the cubic

case. We fix the three boundary curves with their control points and we construct the

triangular Bézier surface by computing the interior control point using the masks Mα, the

Dirichlet mask and the Biharmonic mask defined in Equation (108).

We have chosen some examples with their border control points: along the border of a

piece of the Enneper’s surface in the first example; along two straight lines and a circle of

radius 1 in NI1; along three circles of radius 1 in NI2; the boundary of Is is built in such

a way that at the corner points any associated patch would be isothermal. Finally, border

HNI is such that the isothermality conditions at its corners are far from being fulfilled. The

following figures show the borders and the triangular Bézier surfaces constructed by means

of the Dirichlet mask.

Figure 4. Surfaces NI1, NI2, Is and HNI are Dirichlet extremals for given boundaries.

The following table shows the areas of the corresponding triangular Bézier surfaces:

Method Enneper NI1 NI2 Is HNI
M0 4.67858 0.99685 1.21350 2.99046 13.22692
M 1

9
4.67835 0.99631 1.20844 2.88558 12.66618

M 1
3

4.67899 0.99563 1.20275 2.76656 11.67948

Dirichlet mask 4.67778 0.99793 1.20277 2.76957 12.22934
Dirichlet Correction 4.67778 0.99546 1.20216 2.75167 11.36520
Biharmonic Mask 4.67814 0.99931 1.20845 2.89077 13.24778

Table I: Comparison between different masks for triangular Bézier surfaces of degree 3.

As we will introduce the method that we have called Dirichlet correction later in this
work, let us first analyze the results for the Mα masks, the Dirichlet mask and the Biharmonic

mask. We can find that for these cubical examples the lesser areas are obtained by the M 1
3
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mask with the exception of the Enneper case, which we will study in a later section. Let us

recall that the Farin-Hansford mask, M 1
3
, can also be obtained after a symmetrizing of the

Dirichlet mask.

5.2. Case n = 10. Let us see in this section how things change with more degrees of

freedom. The following examples, for the case n = 10, are similar to the cubical examples

NI2, Is and HNI. In NI2 we have chosen equally spaced border control points along the

circles described before. In the other cases the choice of the borders was made with the same
configuration as before but with a slight modification in order to ensure isothermality at the

corners in Is and non-isothermality in HNI.

The following table shows the areas of the corresponding triangular Bézier surfaces by

using the Mα masks, the Dirichlet mask and the area of the Dirichlet extremal, which is the

area of the triangular Bézier surface whose interior control points are obtained by applying

the Dirichlet equations in Proposition 6.2. Moreover we show the area of the Biharmonic

extremal, that is the extremal of the Biharmonic functional for these boundaries, and the

area of the surface obtained by means of the Biharmonic mask.

Method NI2 Is HNI
M0 mask 1.34247 3.54592 12.61296
M 1

9
mask 1.34009 3.49978 12.53044

M 1
3

mask 1.33864 3.47307 12.47569

Dirichlet mask 1.33961 3.43799 12.68629
Dirichlet extremal 1.33963 3.43659 12.68513

Dirichlet Correction 1.33623 3.41091 12.42494
Second step 1.33625 3.37410 12.25581

Biharmonic extremal 1.34809 3.63199 13.27275
Biharmonic mask 1.34149 3.45068 12.87336

Table II: Different masks, the Biharmonic functional extremal and the Dirichlet extremal

areas for n = 10.

In the NI2 and the HNI cases the best area is the one obtained using the M 1
3

mask,

but now when we have isothermality at the corners, as in case Is, the Dirichlet extremal is

the one that gives us the lesser area, and even the use of the Dirichlet mask represents a

significant improvement. An explanation of why the Dirichlet extremal has less area in Is

will be given in section 7.

The following figures show the control nets of the triangular Bézier surfaces of degree 10

obtained, for the Is example, by means of the mask M0 and the Dirichlet mask.
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Figure 5. A pair of degree 10 control nets with the boundary Is. The net in the left is
obtained by means of the mask M0 and in the net in the right is obtained by means of the
Dirichlet mask.

Note the non-regular shape of the control net in the figure on the right, that is, the one

obtained using the Dirichlet mask for degree 10, in comparison with the figure on the left,

which is the one obtained by using the M0 mask, which is the mask for the discrete form

of the Laplacian operator. The control net is not regular, but the associated Bézier surface

is a better approximation to the minimal surface. Recall that we are looking for triangular

Bézier surfaces minimizing some functional related with the surface, and not for triangular

control nets minimizing some functional related with the net. The same fact also happens

for rectangular Bézier surfaces.

6. The Enneper’s surface as a testing model

The first non-trivial example of minimal surface with polynomial coordinate functions is

Enneper’s surface (see [19] or [12] for some plots of this surface), −→x : R2 −→ R3 defined by

(109) −→x (u, v) := (u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2).

Therefore, it can be used to test the masks we have used. Moreover, as the parametrization

(109) is isothermal, then it is an extremal not only of the area functional, but also of the

Dirichlet functional. This means that, if we take a triangular piece of the Enneper’s surface,

we determine its control net, and we look for the extremal of the Dirichlet functional with

those border control points, then the interior control point P111 is always given by the formula

in Proposition 6.4.

Nevertheless, there are cases where all symmetric masks fail to reobtain the interior

control points. For example, let us consider the patch

−→y (u, v) = −→x (u + 1, v), (u, v) ∈ T.

This is again an isothermal and harmonic patch, and so it is a patch of a minimal triangular

surface and the area of this triangular Bézier surface is 4.67778.
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The control net is

(2
3
, 0, 1) (2

3
, 2

3
, 1) (1, 4

3
, 2

3
) (5

3
, 5

3
, 0)

(2
3
, 0, 5

3
) (2

3
, 1, 5

3
) (4

3
, 2, 4

3
)

(1
3
, 0, 8

3
) (1

3
, 5

3
, 8

3
)

(−2
3
, 0, 4)

It is easy to confirm that this control net verifies the formula in Proposition 6.4. So, the

interior control point P111 can be reobtained using the corresponding asymmetric mask.

Nevertheless, for a symmetric mask, Mα, the computation of the interior control points

gives

Pα
111 = (

13− 9α

18
,
17− 21α

18
,
5

3
),

and there is no value for α such that P111 = (2
3
, 1, 5

3
).

Moreover, the minimum of the area of the associated triangular Bézier surface with

interior control point Pα
111 is attained at α = 0.12833 and its value is 4.67834.

7. Correction of the Dirichlet extremal

Obtaining an approximation of the minimal Bézier surface according to the Dirichlet

functional minimization method has a serious drawback.
The first fundamental form at the corners of any triangular Bézier surface with prescribed

border is determined by the border control points. For example, at the point−→x (0, 0) the three

coefficients of the first fundamental form are determined by the control points P0,0,n, P0,1,n−1

and P1,0,n−1. And analogously for the other three vertices.

Therefore, since the three points are border control points, the coefficients E, F and G

at −→x (0, 0) of any triangular Bézier patch with prescribed boundary will always be the same,

even for the Dirichlet extremal, no matter what interior control points we have.

Let us recall that the Dirichlet method is based on substituting the area functional by the

Dirichlet one, so it will cause a negligible error. Both functionals only agree for isothermal

patches. If the configuration of the border control points is such that the patch is always

non-isothermal at the corner points, then the inequalities in Equation (92) are strict. The

non-isothermality at the corner points will produce an error when substituting the area

functional by the Dirichlet one. At points other than the corner points, the configuration

of the Dirichlet extremal tends toward isothermality of the patch. But at the corner points,

isothermality or not is fixed by the border control points and it cannot be modified. This

is why the Dirichlet extremal does not improve the results obtained with other methods in
some cases.

Throughout this section we will propose a method to obtain, from the Dirichlet extremal

as a first approximation to the minimal Bézier surface, a new and better approximation

that attempts to avoid this problem but maintaining the fact that the new approximation is

computed thanks to a system of linear equations.
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Let us recall the following fact about the Dirichlet functional. The Euler-Lagrange equa-

tion of the Dirichlet functional defined on the set of all differentiable patches with prescribed

border is

∆−→x = 0,

where ∆ is the usual Laplacian operator. This equation is related to minimal surfaces thanks

to Proposition 5.5. But there is another main result that does not mention the isothermality

condition.

Proposition 6.10. A patch −→x is minimal iff ∆g−→x = 0 where g represents the first

fundamental form of −→x and ∆g is the associated Laplacian operator for a function f :

∆f =

(
fuG− fvF√

EG− F 2

)

u

+

(−fuF + fvE√
EG− F 2

)

v

.

It is easy to confirm that, for a given metric, g, with coefficients E, F and G, the equation

∆g−→x = 0 is the Euler-Lagrange equation of the functional

Dg(−→x ) =

∫

T

( ||−→x u||2G− 2 < −→x u,
−→x v > F + ||−→x v||2E√

EG− F 2

)
dudv =

∫

T
g−1(d−→x , d−→x )µg,

where µg =
√

EG− F 2dudv is the metric volume element.

Note that for a given g, the extremal of the functional Dg is a patch that can be computed

thanks to a linear system.

Therefore, the correction of the Dirichlet method is the following: let −→x 0 be the Dirichlet

extremal and let g0 be its first fundamental form. The new approximation is the extremal of

the functional Dg0 , that is, using the Dirichlet extremal as the fixed metric. Note that the

functional −→x → Dg0(−→x ) is quadratic in −→x . Therefore the equations that the extremal must

satisfy are linear.

Proposition 6.11. A triangular control net, P = {PI}|I|=n, is an extremal of the func-

tional Dg0 among all triangular control nets with prescribed border if and only if:

0 =
∑

|I|=n

(
n−1

I

)
(
2n−2
I+I0

)(

∫

T

G0

µg0

a1 B2n−2
I0+I−2e1

+

∫

T

E0

µg0

a2 B2n−2
I0+I−2e2

+

∫

T

G0 − 2F0 + E0

µg0

a3 B2n−2
I0+I−2e3

−
∫

T

G0 − F0

µg0

b13 B2n−2
I0+I−e1−e3

−
∫

T

F0

µg0

b12 B2n−2
I0+I−e1−e2

−
∫

T

E0 − F0

µg0

b23 B2n−2
I0+I−e2−e3

) PI

for all |I0 = (I1
0 , I2

0 , I
3
0 )| = n with I1

0 , I
2
0 , I

3
0 > 0 and where as and brs were defined in

Proposition 6.2.
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Proof: Let us compute the gradient of the functional Dg0 with respect to the coordinates

of a control point PI = (x1
I0

, x2
I0

, x3
I0

). For any a ∈ {1, 2, 3} and any I0 such that |I0| = n

with I1
0 , I

2
0 , I

3
0 > 0.

∂Dg0(P)

∂xa
I0

=

∫

T

2
G0

µ0

<
∂−→xu

∂xa
I0

,−→xu > du dv +

∫

T

2
E0

µ0

<
∂−→xv

∂xa
I0

,−→xv > du dv

−
∫

T

2
F0

µ0

(
<

∂−→xu

∂xa
I0

,−→xv > + <
∂−→xv

∂xa
I0

,−→xu >

)
du dv.

Using the value of the partial derivatives, given in Equations (95) and (96), we have that:

∂Dg0(P)

∂xa
I0

= 2n2

∫

T

(
G0

µ0

(Bn−1
I0−e1

−Bn−1
I0−e3

) < ea,
∑

|I|=n

(Bn−1
I−e1

−Bn−1
I−e3

)PI >) du dv

+ 2n2

∫

T

(
E0

µ0

(Bn−1
I0−e2

−Bn−1
I0−e3

) < ea,
∑

|I|=n

(Bn−1
I−e2

−Bn−1
I−e3

)PI >) du dv

− 2n2

∫

T

(
F0

µ0

(Bn−1
I0−e1

−Bn−1
I0−e3

) < ea,
∑

|I|=n

(Bn−1
I−e2

−Bn−1
I−e3

)PI >) du dv

− 2n2

∫

T

(
F0

µ0

(Bn−1
I0−e2

−Bn−1
I0−e3

) < ea,
∑

|I|=n

(Bn−1
I−e1

−Bn−1
I−e3

)PI >) du dv.

Now, taking into account the formula given in Lemma 1.2 and using ar and brs defined

in Proposition 6.2 we have that a triangular control net is an extremal of the functional Dg0

if and only if for any |I0| = n with I1
0 , I

2
0 , I

3
0 > 0, the following expression vanishes:

∂Dg0(−→x )

∂xa
I0

=
∑

|I|=n

(
n−1

I

)
(
2n−2
I+I0

)(

∫

T

G0

µg0

a1 B2n−2
I0+I−2e1

+

∫

T

E0

µg0

a2 B2n−2
I0+I−2e2

+

∫

T

G0 − 2F0 + E0

µg0

a3 B2n−2
I0+I−2e3

−
∫

T

G0 − F0

µg0

b13 B2n−2
I0+I−e1−e3

−
∫

T

F0

µg0

b12 B2n−2
I0+I−e1−e2

−
∫

T

E0 − F0

µg0

b23 B2n−2
I0+I−e2−e3

) PI .

¥

The formulas obtained in the last proposition give us a system of linear equations for

the interior points of the triangular net given its border. Now if we have a look to the

corresponding values in Table I and Table II, we can see that this method improves the

results obtained through all the other methods, and moreover we get this improvement for

all the examples, even when we deal with non-isothermal patches.
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Finally, we have gone one step forward. If −→x 1 is the Dirichlet extremal of the functional

Dg0 and g1 is its first fundamental form the new approximation is the extremal of the

functional Dg1 . The results obtained from this last method are shown in the Second step row

in Table II, and from them we conjecture that, especially for highly non-isothermal patches,

the improvement given by the correction method can be further enhanced by repeating the
process.

8. Conclusions

In this chapter we have deduced and compared different methods to generate surfaces

with prescribed boundary. They can be polynomial extremals of the Dirichlet functional,

polynomial extremals of the biharmonic functional, or they can also be obtained by means

of masks.
The surfaces obtained by minimizing the Dirichlet functional are polynomial approxima-

tions to minimal surfaces with prescribed boundary. Since we have compared the area of

the surfaces obtained by this method with the surfaces obtained with the use of different

masks, we can ensure that they are good approximations to minimal surfaces that can also be

improved with the Dirichlet correction method. Nevertheless, the approximations obtained

by means of the Dirichlet mask, or any of the other masks we have considered, they can be

obtained with a smaller computational cost, despite having a bigger area. This is due to the

fact that they are obtained as a solution of a linear sparse system while the linear system of

the control points associated to the Dirichlet functional has no null coefficients.

The shapes of the triangular Bézier surfaces, which are extremals of the Dirichlet func-

tional among all polynomial patches with a given boundary, have a stable behavior according

to the boundary information. This method is a good way of generating surfaces because, in

addition to obtaining a patch fitted to the boundary, it allows us to minimize the area since

a polynomial approximation to a minimal surface is obtained.

On the other hand, concerning our study of the biharmonic functional, we can say that the

shapes of the surfaces and control nets obtained by means of the biharmonic mask are almost

as good as those obtained for the extremals of the biharmonic functional. Nevertheless, the

bending energy is smaller for the polynomial extremals than for the surfaces generated with

the bending energy mask, as it could be expected.



CHAPTER 7

Triangular Bézier approximations to Constant Mean Curvature surfaces

Minimal surfaces are characterized by the vanishing of the mean curvature. A gener-

alization of this condition is to ask for constant mean curvature. Surfaces with constant
mean curvature (CMC-surfaces) are the mathematical abstraction of physical soap films and

soap bubbles, so they correspond to real situations. From a variational point of view CMC-

surfaces can be seen as the critical points of area for those variations that left the enclosed

volume invariable . In general, the characterization of “area minimizing under volume con-

straint” is no longer true from a global point of view, since they could have self-intersections

and extend to infinity. But locally, every small neighborhood of a point is still area mini-

mizing while fixing the volume which is enclosed by the cone defined by the neighborhood’s

boundary and the origin.

An exhaustive discussion of the existence of surfaces of prescribed constant mean curva-

ture spanning a Jordan curve in R3 can be found in [40]. In this chapter we will show these

results in order to discuss the existence of triangular Bézier extremals of the functional DH ,

which is defined as follows. Given H ∈ R

DH(−→x ) =D(−→x ) + 2HV (−→x )

=
1

2

∫

T
(‖−→x u‖2 + ‖−→x v‖2) dudv + 2

H

3

∫

T
< −→x u ∧ −→x v,

−→x > dudv.

If an isothermal patch is an extremal of the functional DH , then it is a CMC-surface.

The “volume” term, V (−→x ), measures the algebraic volume enclosed in the cone segment

consisting of all lines joining points −→x (u, v) on the surface with the origin. The first term

D(−→x ) is the Dirichlet functional.

We will give some examples of Bézier extremals of prescribed boundary curves for different

prescribed constant mean curvatures.

1. Existence of triangular Bézier surfaces of prescribed constant mean
curvature

A simple argument can be used to see that the function assigning the value V (−→x P) to

each control net, P , with fixed boundary control points, has no global minimum.

Let us suppose that a minimum exists. Since spatial translations do not affect the

curvature of the surface, we can suppose that the origin is located far enough away from

the surface so that the control net is enclosed in a half-space passing through the origin.

Let us move an interior control point, PI0 , toward the origin. Then, a well-known property

159
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of Bézier surfaces states that all the points of −→x (u, v) change in a parallel direction with

intensity Bn
I (u, v) . Then, since the new cone segment is totally included in the initial one,

its volume decreases.
Now, let us consider the CMC-functional,

DH(−→x ) = D(−→x ) + 2HV (−→x ).

As we said in chapter seven, the function, P → D(−→x P), for control nets with fixed

boundary always has a minimum and, as we have just seen, the function P → V (−→x P),

never has a minimum. Therefore, by using the constant H to balance both functions we can

say that the function, P → DH(−→x P), will have a minimum only for H ∈ [a,−a] for some

constant a ∈ R. It should be noted that when H = 0, DH is reduced to D and then there

is a minimum, whereas when H is too big, the main term in DH is V , and therefore the

minimum does not exist.
The symmetry of the interval, [a,−a], is a consequence of the fact that reversing the

orientation of a surface means a change in the sign of the mean curvature.

The value of a depends on the boundary control points. Let us denote Γ the prescribed

boundary. According to the results in [40] about “small” solutions, if there is a radius R

such that Γ ⊂ BR (0) , and |H| ≤ 1
R

there always exists a surface of constant mean curvature

H.
Moreover, there is another result, called the Heinz’ non-existence result, which illustrates

the need for the previous smallness condition: There exists another constant M defined

through an integral along the boundary curve, such that, when |H| > M there is no surface

of constant mean curvature H. So, there are some values of the curvature, 1
R

< |H| ≤ M ,

for which the existence of a solution for curvatures within this interval, cannot be ensured.

A solution to the problem of finding extremals of the functional DH among all surfaces

with prescribed border and constant mean curvature H can only be obtained with certainty

if |H| ≤ 1
R
.

Let us illustrate by means of an example why the possibility of finding an extremal of

the CMC-functional only exists if the prescribed mean curvature, H, belongs to a symmetric

interval [−a, a].

Example 7.2. Let us consider a triangular control net of degree 4 and prescribe the

border control points along a planar equilateral triangle. Moreover, in order to reduce the

number of variables in this example we will use a symmetric configuration for the three

interior control points. These three interior control points, that is nine degrees of freedom,

are reduced to a pair by the following symmetric restriction on them:

P112 =

(
a cos

4π

3
, a sin

4π

3
, b

)
P121 =

(
a cos

2π

3
, a sin

2π

3
, b

)
P211 = (a, 0, b) .
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Figure 1. A symmetric configuration of the control net will simplify the computation of
an extremal of DH .

The associated Bézier surface is

−→x (u, v) =

(
−1

2
(−1 + 3u)(−1 + 3(4a− 1)u2v + 3(4a− 1)u(v − 1)v),

−
√

3

2
(u + 2v − 1)(−1 + 3(4a− 1)u2v + 3(4a− 1)u(v − 1)v),−12buv(u + v − 1)

)
,

and the functional is reduced to a function fH(a, b)

DH(−→x ) = fH(a, b) =
1

30800

(
46585 + 24640b2 + 8598

√
3bH + 16a2(385 + 18

√
3bH)

+ 8a(−385 + 312
√

3bH)
)

.

Then, to find the critical points of fH (a, b) we have to solve the system

∂fH(a, b)

∂a
=

∂fH(a, b)

∂b
= 0,

that is, {
385 = 1540a + 312

√
3bH + 72

√
3abH

0 = 24640b + 3
√

3(1433 + 416a + 48a2)H.

From the second equation we get

b =
−1

24640
(3(1433

√
3H + 416

√
3aH + 48

√
3a2H))

and substituting in the first equation we obtain the following third-order equation

−1185800 + 4743200a− 502983H2 − 262089aH2 − 50544a2H2 − 3888a3H2 = 0.

Cardano’s formula would give us the solution of this cubic equation and it has the follow-

ing discriminant

−166375

14693280768H6
(−641395994624000+92020318790400H2−158618386080H4+480048687H6).
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The real solutions of

0 = −641395994624000 + 92020318790400H2 − 158618386080H4 + 480048687H6

are ±2.65596, which implies that the discriminant is greater than or equal to 0 if and only if

H ∈ [−2.65596, 2.65596]. Therefore the existence of an extremal of the CMC-functional can be

ensured if the prescribed mean curvature, H, belongs to a symmetric interval [−2.65596, 2.65596].

Here we have the plot of the extremal of DH for different mean curvatures:

Figure 2. These surfaces are symmetric approximations to CMC-surfaces with curvatures
H = −2.5, H = −2 and H = −1 respectively.

2. The CMC-functional results

The following proposition, which can be found in [40], gives a condition that involves the

Laplacian operator in order to characterize an isothermal CMC-surface. Let us recall that

an analogous characterization of isothermal minimal surfaces was given in Proposition 5.5.

Proposition 7.1. Let −→x be an isothermal patch. It is a constant mean curvature surface

(CMC-surface) if and only if

(110) ∆−→x = 2H−→x u ∧ −→x v.

Expression (110) is the Euler-Lagrange equation of the functional DH

(111) DH(−→x ) =D(−→x ) + 2HV (−→x ).

Moreover, an isothermal patch satisfies the PDE in (110) if and only if it is an extremal of

DH .

There are two qualitative differences between the Dirichlet functional and the CMC-

functional: whereas for the Dirichlet functional the extremal always exists and it is the

solution of a linear system, now, the existence of the extremal can only be ensured with
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certainty when |H| ≤ m, for a certain constant, m = 1
R
, depending on the boundary config-

uration, and they are computed as solutions of a quadratic system.

Moreover, since the Euler-Lagrange equation of the functional DH , in Equation (110), is

not linear we cannot determine a Bézier solution as a solution of a linear system of equations

in terms of the control points. In comparison, in the first and the second chapters we

saw that, given some control points as initial data, the harmonic equation and hence the

biharmonic equation, allow us to determine the associated PDE surface as a solution of a

linear system. Analogously, in the fourth chapter, we prescribed the boundary curves and

we were able to compute the associated PDE surface by the third-order method while also

solving a linear system.

Here we will give an expression of the CMC-functional in terms of the control points

of a triangular Bézier surface, which implies that the restriction of the functional to the

Bézier case can be seen as a function instead of as a functional. Afterwards, we will give

the condition that a triangular control net must fulfill in order to be an extremal of the

CMC-functional among all Bézier triangles with a prescribed boundary.

The following result will simplify the way to obtain the formula in terms of control points

of the functional DH . First, we will work the volume term of the CMC-functional. It can also

be written as a polynomial in terms of the coordinates of the control points, P = {PI}|I|=n,

of the Bézier triangular surface, −→x . Therefore the restriction of the functional, V (−→x ), to the

Bézier case is also reduced to a real function by assigning the value V (−→x P) to each control

net, P = {PI}|I|=n.

Proposition 7.2. Let −→x be the triangular Bézier surface associated to the control net,

P = {PI}|I|=n, then the volume

V (−→x ) =
1

3

∫

T
< −→x u ∧ −→x v,

−→x > dudv,

can be expressed in terms of the control points, PI = (x1
I , x

2
I , x

3
I), with |I| = |{I1, I2, I3}| = n,

by the formula

V (−→x ) =
∑

|I0|=|I1|=|I2|=n

CI0I1I2x
1
I0

x2
I1

x3
I2

where

(112) CI0I1I2 =

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) (dI0I1I2
12 + dI0I1I2

23 + dI0I1I2
13 )

with

dIJK
rs =

IrJs − JrIs

(Ir + Jr + Kr)(Is + Js + Ks)
.
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Proof: The volume of a Bézier surface,

V (−→x ) =
1

3

∫

T
< −→x u ∧ −→x v,

−→x > dudv =
∑

|I0|=n

∑

|I1|=n

∑

|I2|=n

CI0I1I2x
1
I0

x2
I1

x3
I2

,

is a cubical polynomial of the control points, so in order to compute the coefficients CI0I1I2

we will compute its third derivative. We will then have

∂3V (−→x )

∂x1
I0

∂x2
I1

∂x3
I2

= CI0I1I2 .

First of all we compute the derivative with respect to a first coordinate x1
I0

of an arbitrary

interior point PI0 = {x1
I0

, x2
I0

, x3
I0
}, where |I0| = n and I1

0 , I2
0 , I

3
0 6= 0.

∂V (−→x )

∂x1
I0

=
1

3

∫

T
( <

(
Bn

I0

)
u

e1 ∧ −→x v,
−→x > + < −→x u ∧

(
Bn

I0

)
v

e1,−→x >

+ < −→x u ∧ −→x v,
(
Bn

I0

)
e1 > ) du dv

=

∫

T
< Bn

I0
e1 ∧ −→x v,

−→x >u − < Bn
I0

e1 ∧ −→x vu,
−→x > + < −→x u ∧Bn

I0
e1,−→x >v du dv

−
∫

T
< −→x uv ∧Bn

I0
e1,−→x > + < −→x u ∧ −→x v, B

n
I0

e1 > du dv.

After computing the derivative with respect to an arbitrary first coordinate, we applied

the integration by parts formula. Now, bearing in mind that

∫

T
< Bn

I0
e1 ∧ −→x v,

−→x >u=

∫ 1

0

< Bn
I0

e1 ∧ −→x v,
−→x >

]1−v

0
dv = 0,

∫

T
< −→x u ∧Bn

I0
e1,−→x >v=

∫ 1

0

< −→x u ∧Bn
I0

e1,−→x >
]1−u

0
du = 0,

since Bn
I0

(1− v, v) = Bn
I0

(0, v) = Bn
I0

(u, 0) = Bn
I0

(u, 1−u) = 0 for |I0| = n with I1
0 , I2

0 , I
3
0 6= 0,

and the properties of the cross and the scalar triple product:

a ∧ b = −b ∧ a

< a ∧ b, c >=< b ∧ c, a >=< c ∧ a, b >,

we obtain that

(113)
∂V (−→x )

∂x1
I0

=
1

3

∫

T
< −→x u ∧ −→x v, B

n
I0

e1 > .

Now we must compute the derivative with respect to a second coordinate, x2
I1

, of an

arbitrary interior point, such that, as before, |I1| = n with I1
1 , I

2
1 , I

3
1 6= 0.

We will do this in an analogous way to the previous computation of ∂V (−→x )

∂x1
I0

:
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∂2V (−→x )

∂x1
I0

∂x2
I1

=
1

3

∫

T

∂

∂x2
I1

< −→x u ∧ −→x v, B
n
I0

e1 > du dv

=
1

3

∫

T
<

(
Bn

I1

)
u

e2 ∧ −→x v, B
n
I0

e1 > + < −→x u ∧
(
Bn

I1

)
v

e2, Bn
I0

e1 > du dv

=
1

3

∫

T
< Bn

I0
e1 ∧ (

Bn
I1

)
u

e2,−→x v > − < Bn
I0

e1 ∧ (
Bn

I1

)
v

e2,−→x u > du dv

=
1

3

∫

T

(
< Bn

I0
e1 ∧ (

Bn
I1

)
u

e2,−→x >v − <
(
Bn

I0

)
v

e1 ∧ (
Bn

I1

)
u

e2,−→x >

− < Bn
I0

e1 ∧ (
Bn

I1

)
v

e2,−→x >u + <
(
Bn

I0

)
u

e1 ∧ (
Bn

I1

)
v

e2,−→x >
)

dudv.

As before, the following integrals are null

∫

T
< Bn

I0
e1 ∧ (

Bn
I1

)
u

e2,−→x >v dudv =

∫ 1

0

< Bn
I0

e1 ∧ (
Bn

I1

)
u

e2,−→x >
]1−u

0
du = 0

∫

T
< Bn

I0
e1 ∧ (

Bn
I1

)
v

e2,−→x >u dudv =

∫ 1

0

< Bn
I0

e1 ∧ (
Bn

I1

)
v

e2,−→x >
]1−v

0
dv = 0,

therefore

∂2V (−→x )

∂x1
I0

∂x2
I1

=

∫

T

((
Bn

I0

)
u

(
Bn

I1

)
v
− (

Bn
I0

)
v

(
Bn

I1

)
u

)
< e1 ∧ e2,−→x > du dv.

Finally we compute the derivative with respect to an arbitrary third coordinate x3
I2

with

|I2| = n and such that I1
2 , I

2
2 , I

3
2 6= 0:

∂2V (−→x )

∂x1
I0

∂x2
I1

∂x3
I2

=

∫

T

∂

∂x3
I2

((Bn
I0

)u(B
n
I1

)v − (Bn
I0

)v(B
n
I1

)u) < e1 ∧ e2,−→x > dudv

=

∫

T
((Bn

I0
)u(B

n
I1

)v − (Bn
I0

)v(B
n
I1

)u)B
n
I2

< e1 ∧ e2, e3 > dudv

=

∫

T
((Bn

I0
)u(B

n
I1

)v − (Bn
I0

)v(B
n
I1

)u)B
n
I2

du dv.
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Therefore

Cx1
I0

x2
I1

x3
I2

=

∫

T
((Bn

I0
)u(B

n
I1

)v − (Bn
I0

)v(B
n
I1

)u) Bn
I2

dudv

= n2

∫

T
((Bn−1

I0−e1
−Bn−1

I0−e3
)(Bn−1

I1−e2
−Bn−1

I1−e3
)− (Bn−1

I0−e2
−Bn−1

I0−e3
)(Bn−1

I1−e1
−Bn−1

I1−e3
))Bn

I2
dudv

=

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) (
I1
0I

2
1 − I1

1I
2
0

(I1
0 + I1

1 + I1
2 )(I2

0 + I2
1 + I2

2 )
+

I2
0I

3
1 − I2

1I
3
0

(I2
0 + I2

1 + I2
2 )(I3

0 + I3
1 + I3

2 )

+
I3
0I

1
1 − I3

1I
1
0

(I3
0 + I3

1 + I3
2 )(I1

0 + I1
1 + I1

2 )
) ,

where we have achieved the last formula after computing the integral of the Bernstein poly-

nomials, given in Equation (3),
∫

T
B3n−2

I (u, v) dudv =
1

3n(3n− 1)

and performing some simplifications like the following:

∫

T
Bn−1

I0−e1
Bn−1

I1−e2
Bn

I2
dudv =

∫

T

(
n−1

I0−e1

)(
n−1

I1−e2

)(
n
I2

)
(

3n−2
I0+I1+I2−e1−e2

) B3n−2
I0+I1+I2−e1−e2

dudv

=

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) 3n(3n− 1)

n2

I1
0I

2
1

(I1
0 + I1

1 + I1
2 )(I2

0 + I2
1 + I2

2 )

=

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) 3n(3n− 1)

n2
dI0I1I2

12 .

¥

Remark 7.3. The coefficients d’s verify the following symmetry relation:

dIJK
rs = −dJIK

rs ,

which is immediate from its definition in Proposition 7.2, since:

dJIK
rs =

JrIs − IrJs

(Ir + Jr + Kr)(Is + Js + Ks)
.

Lemma 7.4. The coefficients CIJK verify the following symmetry relations

CIJK = −CJIK = CJKI .

Proof: The symmetry of the coefficients C’s is a direct consequence of the symmetry of

d’s shown in the previous remark.

¥
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In the following proposition we give a formula for the CMC-functional, DH(−→x ) in terms

of the control net, P = {PI}|I|=n, of the Bézier triangular surface, −→x . As we said before, this

lets us to see the functional as a real function assigning the value DH(−→x P) to each control

net, P = {PI}|I|=n.

Proposition 7.5. Let −→x be the triangular Bézier surface associated to the control net,

P = {PI}|I|=n, then let us write PI = (aI , bI , cI) and establish the subindex In = {I1
n, I2

n, I3
n},

then the CMC-functional, DH , can be expressed by the formula

DH(−→x ) =
1

2

3∑
a=1

∑

|I0|=n

∑

|I1|=n

CI0I1x
a
I0

xa
I1

+ 2H
∑

|I0|=|I1|=|I2|=n

CI0I1I2x
1
I0

x2
I1

x3
I2

where

CI0I1 =

(
n
I0

)(
n
I1

)
(

2n
I0+I1

) (a1 + a2 + 2a3 − b13 − b23) with ar and brs defined in Equation (94) and

CI0I1I2 =

(
n
I0

)(
n
I1

)(
n
I2

)
(

3n
I0+I1+I2

) (dI0I1I2
12 + dI0I1I2

23 + dI0I1I2
13 ) with dIJK

rs defined in Equation (112).

We have just seen in Proposition 7.5 that the CMC-functional, DH(−→x ), is a function of

the control points, so let us now compute its gradient with respect to the coordinates of an

arbitrary control point. We will then be able to give a characterization of the control net of

the triangular Bézier extremals of DH .

The gradient of the first addend, corresponding to the Dirichlet functional, was computed

in the previous chapter, see Equation (99). So, let us consider the volume expression

V (−→x ) =
∑

|I|,|J |,|K|=n

CIJKx1
Ix

2
Jx3

K ,

in order to compute its the gradient with respect to the coordinates of a control point

PI0 =
(
x1

I0
, x2

I0
, x3

I0

)
where I0 = (I1

0 , I
2
0 , I

3
0 ).

(114)

∂V (−→x )

∂PI0

=


 ∑

|J |,|K|=n

CI0JKx2
Jx3

K ,
∑

|I|,|K|=n

CII0Kx1
Ix

3
K ,

∑

|I|,|J |=n

CIJI0x
1
Ix

2
J




=
∑

|J |,|K|=n

CI0JK(x2
Jx3

K ,−x1
Jx3

K , x1
Jx2

K)

=
∑

|J |,|K|=n

CI0JK − CI0KJ

2
(x2

Jx3
K ,−x1

Jx3
K , x1

Jx2
K) =
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=
1

2

∑

|J |,|K|=n

CI0JK(x2
Jx3

K ,−x1
Jx3

K , x1
Jx2

K) +
1

2

∑

|J |,|K|=n

CI0JK(−x2
Jx3

K , x1
Jx3

K ,−x1
Jx2

K)

=
1

2

∑

|J |,|K|=n

CI0JK(x2
Jx3

K − x2
Kx3

J , x1
Kx3

J − x1
Jx3

K , x1
Jx2

K − x1
Kx2

J)

=
1

2

∑

|J |,|K|=n

CI0JK PJ ∧ PK .

Now we can characterize the triangular control net of an extremal of the CMC-functional

among all triangular Bézier patches constrained by a given boundary.

Proposition 7.6. A triangular control net, P = {PI}|I|=n, is an extremal of the CMC-

functional, DH , among all triangular control nets with a prescribed boundary if and only

if:

(115) 0 =
∑

|J |=n

CI0JPJ + H
∑

|J |,|K|=n

CI0JK PJ ∧ PK

for all |I0 = (I1
0 , I

2
0 , I

3
0 )| = n with I1

0 , I
2
0 , I

3
0 > 0, where the coefficients CI0J and CI0JK are

defined in Equation (98) and Equation (112) respectively.

Proof: The gradient of the functional with respect to the coordinates of an interior

control point:

∂DH(−→x )

∂PI0

=
∂D(−→x )

∂PI0

+ 2H
∂V (−→x )

∂PI0

is determined by the gradient of D(−→x ) and V (−→x ), computed respectively in Equation (99)

and Equation (114).

¥

Let us remark that in comparison to our analog results for the Dirichlet and the bihar-

monic functional, where a polynomial extremal could be computed as a solution of a linear

system, here the system defined in Equation (115) is a quadratic system in terms of the

control points. This quadratic system has no solution for some values of the curvature, H,

as we explained in the first section of this chapter.

In addition, since we compute solutions to a restricted problem, that is, we find extremals

of the functional DH among all polynomial patches with prescribed border, we obtain Bézier

approximations to CMC-surfaces.

Now, let us recall Proposition 7.1, where it was said that an isothermal patch is a constant

mean curvature surface, that is, it is an extremal of the functional DH , if and only if

∆−→x = 2H−→x u ∧ −→x v.

Therefore our aim is to remark that, if we consider the restricted problem, −→x is an extremal

of the functional DH among all triangular Bézier patches with a prescribed boundary if and
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only if a weak version of the above condition is fulfilled. This weak condition is given in the

following proposition.

Proposition 7.7. A triangular Bézier patch −→x is an extremal of the CMC-functional,

DH , among all patches with a prescribed boundary if and only if:

(116) 0 =

∫

T
(∆−→x − 2H−→x u ∧ −→x v) Bn

I0
dudv for all |I0 = (I1

0 , I
2
0 , I

3
0 )| = n

with I1
0 , I

2
0 , I

3
0 > 0.

Proof: We simply compute the gradient of the CMC-functional with respect to an

arbitrary control point bearing in mind Equations (102) and (113), where the gradients of

the Dirichlet functional and the gradient of the volume term were computed respectively.

¥

The following surfaces have the same prescribed boundary as in Example 2: the border

control points are placed along a planar equilateral triangle. But, now we have obtained

different approximations to CMC-surfaces without asking for the symmetric configuration

for the three interior control points that we considered in Example 2 in order to simplify our

computations.

These figures show approximations to CMC-surfaces obtained as a solution of the qua-

dratic system of the control points in Equation (115). They are polynomial extremals of the

CMC-functional.

Figure 3. Approximations to CMC-surfaces with curvatures H = −2.5, H = −2 and
H = −1 respectively.
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The boundary curves of our following example describe an approximation to a circle.

Therefore we will obtain approximations to spheres. As in our previous example, we can

obtain an approximation to a CMC-surface as a solution to the quadratic system in Equation

(115). In addition, we could generate a different approximation to a CMC-surface also

as an extremal of the functional DH , but asking for some symmetry property of interior

control points, as we did in Example 2. These figures show two different points of view of

three different approximations to CMC-surfaces with curvatures H = −1.5, H = −1 and

H = −0.5 respectively. Here we have asked the interior control points to fulfill a symmetry

condition.

Figure 4. These surfaces are approximations to CMC-surfaces with curvatures H = −1.5,
H = −1 and H = −0.5 respectively. The interior control points are in a symmetric position.

The following figures are obtained as a solution of the system of quadratic equations

described in Equation (115). Here we don’t ask for any kind of symmetry.
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Figure 5. These surfaces are approximations to CMC-surfaces with curvatures H = −1.5,
H = −1 and H = −0.5 respectively.

Finally we present some more examples of approximations to CMC-surfaces obtained by

solving the quadratic system in Equation (115). We prescribe two different boundaries.

The boundary curves in the first example are built in such a way that any associated

patch would be isothermal at the corner points.

Figure 6. These surfaces are approximations to CMC-surfaces with curvatures H = −1,
H = 0 and H = 1 respectively.
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The following six figures show two points of view of three surfaces approximating CMC-

surfaces with mean curvatures H = −2, H = −1.5 and H = −1. The prescribed boundary

curves are approximations to three circular arcs, and therefore our results look like pieces of

a sphere.

Figure 7. These surfaces are approximations to CMC-surfaces with curvatures H = −2,
H = −1.5 and H = −1 respectively.

The resulting plots are pleasant and moreover they can be continuously deformed by the

parameter H, thus allowing the designer to choose of the shape which best fits the objective.

We maintain the good shapes we got with the Dirichlet results but now the choice of the

curvature gives the designer another degree of freedom, although the surfaces are obtained

as a solution of a quadratic system of the control points.

3. The C1 problem

In this section we will consider the prescription of not only the boundary but also the

tangent planes along the boundary curves, the C1 problem. Now, the boundary and the next

to the boundary control points are fixed, but again the extremals of the CMC-functional,

where the other interior control points are considered as variables, can also be computed.
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Figure 8. The border control points and their neighboring lines of control points are prescribed.

Here we show an example. Again, we consider the same prescribed boundary as in

Example 2: the border control points are placed along a planar equilateral triangle. But,

now we also prescribe three more lines of control points. These control points are placed

along a smaller planar equilateral triangle inside the boundary triangle.

The following figures show approximations to CMC-surfaces obtained as a solution of the

quadratic system of the control points in Equation (115), but now for all |I0 = (I1
0 , I

2
0 , I3

0 )| = n

with I1
0 , I

2
0 , I

3
0 > 1. The free points are the interior control points outside the boundary and

its next line of control points.

Figure 9. These surfaces are approximations to CMC-surfaces with curvatures H = −2,
H = −1.5 and H = −1 respectively.

4. Conclusions

In this chapter we have given a method to obtain polynomial approximations to constant

mean curvature surfaces. An isothermal patch has constant mean curvature H if and only

if it is an extremal of the functional

DH(−→x ) = D(−→x ) + 2HV (−→x ).

Here we have generated approximations to CMC-surfaces, since we have considered the

problem of minimizing this functional restricted to the space of polynomials. We have

obtained an expression of the CMC-functional in terms of the control points of a triangular

Bézier surface. After that, we deduced the condition that a triangular control net must

fulfill in order to be an extremal of the CMC-functional among all Bézier triangles with

a prescribed boundary. This characterization of the Bézier extremals of DH allowed us to
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compute them as a solution of a quadratic system of the control points. The surfaces that

are obtained have regular shapes and have the advantage of allowing prescription of the

desired curvature in addition to the boundary. This makes it possible to ensure, for a given

boundary, the existence of a family of polynomial approximations to CMC-surfaces with

this boundary and curvatures within a particular interval. Therefore, the prescription of the

curvature in this method can be seen as another degree of freedom in comparison with the

Dirichlet surface generation method.

Finally, in the last section, we consider the C1 problem, that is, once the boundary

curves and the tangent planes along them have been prescribed we give a way to generate a

polynomial approximation to CMC-surface associated to this initial information.
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