
TECHNICAL UNIVERSITY OF CATALONIA (UPC)
DEPARTMENT OF SOFTWARE

Ph.D. Dissertation

Automatic Synthesis and

Optimization of Chip Multiprocessors

Nikita Nikitin

Advisor: Prof. Jordi Cortadella

February 2013

Abstract

The microprocessor technology has experienced an enormous growth during the

last decades. Rapid downscale of the CMOS technology has led to higher operat-

ing frequencies and performance densities, facing the fundamental issue of power

dissipation. Chip Multiprocessors (CMPs) have become the latest paradigm to

improve the power-performance efficiency of computing systems by exploiting the

parallelism inherent in applications. Industrial and prototype implementations have

already demonstrated the benefits achieved by CMPs with hundreds of cores.

CMP architects are challenged to take many complex design decisions. Only a

few of them are:

• What should be the ratio between the core and cache areas on a chip?

• Which core architectures to select?

• How many cache levels should the memory subsystem have?

• Which interconnect topologies provide efficient on-chip communication?

These and many other aspects create a complex multidimensional space for ar-

chitectural exploration. Design Automation tools become essential to make the ar-

chitectural exploration feasible under the hard time-to-market constraints. The

exploration methods have to be efficient and scalable to handle future generation

on-chip architectures with hundreds or thousands of cores.

Furthermore, once a CMP has been fabricated, the need for efficient deploy-

ment of the many-core processor arises. Intelligent techniques for task mapping

and scheduling onto CMPs are necessary to guarantee the full usage of the benefits

brought by the many-core technology. These techniques have to consider the pecu-

liarities of the modern architectures, such as availability of enhanced power saving

techniques and presence of complex memory hierarchies.

ii

This thesis has several objectives. The first objective is to elaborate the meth-

ods for efficient analytical modeling and architectural design space exploration of

CMPs. The efficiency is achieved by using analytical models instead of simulation,

and replacing the exhaustive exploration with an intelligent search strategy. Ad-

ditionally, these methods incorporate high-level models for physical planning. The

related contributions are described in Chapters 3, 4 and 5 of the document.

The second objective of this work is to propose a scalable task mapping algo-

rithm onto general-purpose CMPs with power management techniques, for efficient

deployment of many-core systems. This contribution is explained in Chapter 6 of

this document.

Finally, the third objective of this thesis is to address the issues of the on-chip

interconnect design and exploration, by developing a model for simultaneous topol-

ogy customization and deadlock-free routing in Networks-on-Chip. The developed

methodology can be applied to various classes of the on-chip systems, ranging from

general-purpose chip multiprocessors to application-specific solutions. Chapter 7

describes the proposed model.

The presented methods have been thoroughly tested experimentally and the re-

sults are described in this dissertation. At the end of the document several possible

directions for the future research are proposed.

iii

Acknowledgments

First of all, I would like to express gratitude to my Ph.D. advisor
Prof. Jordi Cortadella for this unique opportunity to work on the thesis in
the wonderful city of Barcelona, within a team of talented, open-minded and espe-
cially friendly colleagues. These have been great years of experience and unrivaled
memories!

A special, sincere and warm Thanks to my family. To my Mom and Dad,
grandmas and aunt who were always there to listen, share and support my
endeavors. To my sister Lialya, eager to exchange the thoughts and feelings, good
news and useful lessons learned. To Kate who changed my world with a blink of an
eye. I love you all.

I would like to acknowledge and thank Prof. Valery Perekatov who noticed my
abilities in research and convinced me this would be a worth path to follow. I am
also very thankful to Prof. Alexander Marchenko who assisted me in gaining first
industrial experience, which essentially contributed to my skills.

Another very special gratitude is to Dima Bufistov, Gladys Utrera and
Josep Carmona, who became my friends almost as soon as I landed in Barcelona for
the first time, guided me though the very first steps in Spain and kept assisting all
these years. And my gratitude to Marc Galceran who has been an excellent guide
during my first US trip. Thank you all so much!

A big thanks for sharing the amazing time together and helping with great ideas
to all colleagues from UPC and Intel Corporation, especially to Javier de San Pedro,
Cesc Guim, Mike Kishinevsky, Umit Ogras, Jordi Petit and Sat Chatterjee.

This time would not had been so exciting without all of you guys, who I met in the
office S108 of Edifici Ω. An astonishing team of the office mates with a great sense
of humor and excellent problem solving capabilities (I’ll never forget our puzzling
activities at the whiteboard) is who I was awarded with for the thesis years.

Finally, this page would be incomplete without acknowledging the effort of all
people at UPC who make the life of (international) students easier, and in particular,
Mercè Juan Badia, Maria Serna and Anna Fàbregas. Thank you!

This work has been supported by a scholarship from Spanish Ministry of Science
and Innovation (FPI grant BES-2008-004612), a gift from Intel Corporation and
research project FORMALISM (CICYT TIN2007-66523).

iv

Contents

1 Introduction 1

1.1 Design challenges for CMPs and NoCs 4

1.2 Motivation and contributions . 7

1.3 Document organization . 11

2 The Architecture of Chip Multiprocessors 13

2.1 Processing cores . 14

2.2 Memory subsystem . 16

2.3 On-chip interconnects . 18

2.4 Networks-on-Chip . 21

2.5 Related work . 32

3 Modeling Networks with Constant Service-Time Routers 41

3.1 Model overview . 42

3.2 Queueing model . 44

3.3 Network model . 50

3.4 Experimental results . 52

3.5 Conclusions . 57

4 Analytical Modeling of CMP Architectures 59

4.1 The importance of contention: an example 59

4.2 Analytical performance model . 61

4.3 Analytical methods for latency estimation 67

4.4 Extensions of the model . 70

4.5 Experimental results . 72

4.6 Conclusions . 78

vi

5 Metaheuristics for Architectural Exploration 81

5.1 The Exploration Problem . 81

5.2 Transformations . 84

5.3 Exploration with Simulated Annealing 87

5.4 Exploration with Extremal Optimization 89

5.5 Experimental results . 90

5.6 Conclusions . 97

6 Static Task Mapping for Tiled Chip Multiprocessors 99

6.1 An example of the mapping problem 100

6.2 A mathematical model . 102

6.3 Mapping by metaheuristics . 109

6.4 Experimental results . 114

6.5 Conclusions . 120

7 Link Allocation for NoC Topologies 123

7.1 Model overview . 124

7.2 The integer programming model . 126

7.3 Experimental results . 137

7.4 Conclusions . 144

8 Conclusions and Future Work 145

Bibliography 148

vii

Chapter 1

Introduction

The performance of microprocessors has improved drastically in the last few decades.
For many years, the increase in operating frequencies, driven by the rapid downscale
of the CMOS technology, has served the primary source for performance improve-
ment of computing systems.

Several important architectural decisions have been introduced, which now repre-
sent widely adopted paradigms for microprocessor design [64]. Instruction pipelining
is a technique used to increase the system throughput and fully exploit the benefits
of the high clock rates. Superscalar processors improve single-threaded performance
by addressing the instruction-level parallelism (ILP) inherent in applications. ILP
refers to a group of instructions, for which the result of every instruction from
the group does not depend on the result of the other instructions from the same
group. Hence, superscalar architectures have multiple execution units to process
such groups of instructions simultaneously. Out-of-order execution extends super-
scalarity for ILP-driven optimization. It offers on-the-fly reordering of instructions
to prioritize execution of those, for which the input data has already been obtained.

The constantly increasing gap between the performance of the processing and
memory units, known as the memory wall problem [136] imposed significant lim-
itations on the overall performance of Von Neumann architectures. Luckily, the
observation of the spatial and temporal locality of memory accesses made it possible
to reduce the severity of this problem by incorporating fast, although low-capacity
on-chip caches. As the manufacturing process advanced, the growing transistor
budget was further used to alleviate this problem by incorporating larger caches, ef-
fectively hiding the memory access latency. However, as the cache latency increased
with its size, the growth in the cache size was penalized. This led to the hierarchical
organization of memory subsystem with several levels of on-chip cache, trading-off
the hit-ratio and the access latency, and exploiting the locality of memory references.

1

The increase in transistor densities faced various issues in the system-level design.
As the components of integrated circuits continued to shrink, the inter-component
(a.k.a. global) interconnects became the main performance bottlenecks. Global
wires, implementing the off-chip communication between components, introduced
delays which were significantly greater than the clock period. While pipelining tech-
niques helped to improve the communication throughput, the point-to-point latency
of the off-chip communication remained an issue. The decrease in the transistor and
wire sizes enabled the integration of several system components (such as processors,
controllers and memories) in a single chip, leading to the concept of System-on-
Chip (SoC). The SoC paradigm eliminated costly global wires by transferring the
inter-component communication to the on-chip level.

Another fundamental issue caused by the increase in CMOS operating frequencies
and transistor densities is power dissipation [131]. Both factors contributed to the
rapid growth of power density of the integrated circuits, imposing heat dissipation
as the main concern for system-level design.

Chip Multiprocessors (CMPs), which represent general-purpose SoC implemen-
tations, became the latest paradigm to raise the power-performance efficiency of
computing systems by exploiting thread-level parallelism (TLP) [58]. Instantiation
of several simple but power-efficient cores on die enabled simultaneous multithread-
ing, as well as high data exchange rates between cores.

One of the examples of commercial CMP implementation is the Texas Instruments
OMAP3530 mobile processor. The layout of this chip is shown in Figure 1.1(a). This
multiprocessor is also an example of heterogeneous CMP, incorporating a general-
purpose core with graphic accelerator and a digital signal processor (DSP). Hetero-
geneity contributes to optimize performance and power of the system, as different
types of computing tasks can be assigned to different types of cores, which exe-
cute these tasks with the highest efficiency (e.g. DSP-related tasks will be typically
assigned to DSP cores).

Prototype and industrial CMP implementations have demonstrated computing
benefits obtained by CMPs with tens and hundreds of homogeneous cores [73, 118,
119, 74]. The Intel Single-chip Cloud Computer (SCC) processor is one of such
examples [73]. The layout of this chip is shown in Figure 1.1(b). This CMP contains
48 processing cores of the Intel Pentium family. The chip is organized into 24 dual-
core tiles, each having two L2 cache modules and an on-chip router. A 6x4 mesh-
based on-chip interconnect network provides communication between the tiles as
well as access to DDR3 memory controllers and I/O interface.

The example of SCC chip emphasizes the importance of the backbone compo-
nent of CMP: the on-chip interconnect . Indeed, for a system to perform efficiently,
communication between the cores, memory and input/output subsystems has to
be balanced, in order to assure that none of the components is overloaded, while

2

DSP Core

(a) TI OMAP3530 processor [8] (b) Intel 48-core SCC chip [73]

Figure 1.1: Examples of heterogeneous and homogeneous CMP implementations.

the others remain underutilized. Actually, the interconnect critically determines
the major parameters of the developed system, including area, performance and
power consumption. The concept of Network-on-Chip (NoC) was proposed about
a decade ago and is now established as a leading methodology for the design of
high-performance low-power interconnects for many-core systems [41, 92, 58]. In
the following sections, the benefits and design issues of the NoC technology will be
addressed in more detail.

While CMPs represent one extreme class of SoCs, which are designed to sup-
port a variety of applications, another extreme is a broad class of fully customized
Application-Specific Integrated Circuits (ASICs). In contrast to the general-purpose
processors, ASICs are developed for executing a particular application (or a group
of applications). This fact allows the design-time customization of an SoC for the
requirements of the target application and brings additional degree of speed-up and
resource savings. However, custom designs also require significant engineering effort,
trading-off the development and fabrication costs.

Figure 1.2 shows an example of an ASIC, found inside the Texas Instruments
Digital Radio Mondiale Solution [9]. The SoC diagram (on the left) depicts a block
diagram of the chip, with some functionalities being audio decoding, compression
and user interface management. The use of a general-purpose core instead of a cus-
tom ASIC for this solution would consume area and power resources unnecessarily,
most likely requiring an additional cooling module. This SoC represents a typical
example about the cost of engineering an ASIC being amortized by an improvement
in performance and decrease of the fabrication cost.

The main objective of this thesis is the design of methods and models for efficient
synthesis and optimization of on-chip systems. While the majority of contributions
in this work focus on general-purpose CMPs, they can also be applied (or extended)

3

Figure 1.2: An example of ASIC SoC implementation: Texas Instruments
TMS320DRM300/350 Digital Radio Mondiale Solution [9]. Block diagram of the
system (on the left) and hardware implementation (on the right).

to the ASIC domain. Synthesis of networks-on-chip, as a backbone of CMPs, is of
particular interest in this work. Next section provides a deeper look into the CMP
organization and presents an overview of the main design challenges for CMPs and
NoCs.

1.1 Design challenges for CMPs and NoCs

This section starts by explaining a generic organization of many-core CMPs. Tiled
CMPs are an effective approach to architect general-purpose processors under the
intense time-to-market pressure [87, 15]. The replication of tiles provides a rapid way
of floorplanning many computing units in one chip and communicating them with
scalable interconnect networks. Figure 1.3(a) shows an example of a CMP with 16
tiles, each one including a computing core (C) with private L1 cache, a larger on-chip
cache (L2), and a router (R) that communicates with the on-chip interconnection
network (a mesh). Four memory controllers (MC) provide access to the off-chip
memory. Intel SCC chip (Fig. 1.1(b)) is one of the tiled CMP implementations.

To exploit the locality of memory references, hierarchical interconnects have been
proposed [43, 15]. Several cores can be grouped into one cluster to share the on-
chip cache, accessible through a local interconnect (e.g., bus, crossbar, ring, etc).
Hierarchy increases the intra-cluster hit-ratio and reduces the traffic in the top-level
interconnect. Figure 1.3(b) shows an implementation of a CMP with 4 clusters. Each
cluster has two cores with private caches, a shared cache (L3), a local interconnect
(IC), a router and a network interface (NI).

4

M
C

R R R R

R R R R

R R R R

R R R R

MC

MC

M
C

C

L2 R

C

L2

L3 RNI

IC

M
C

R R

R R

MC

MC

M
C

C

L2

(a) (b)

Figure 1.3: CMP layouts: (a) flat, (b) hierarchical.

Tile replication speeds up the engineering process by shifting the focus to the
system-level design. Nevertheless, the design cycle remains a complex process, in-
volving many stages, and only realizable by means of divide-and-conquer strategies.
Furthermore, different models are employed at every stage, representing the trade-
offs between the speed and the accuracy of modeling. For example, full-system
simulation, which is indispensable for validating the chip before fabrication, would
not be feasible for design exploration, which requires very fast estimators. As a
result, a mismatch in estimating system parameters during the different stages may
happen, so that the design stages have to be iterated until the desired constraints
are met.

Below several issues are enumerated that are among the most challenging in the
system-level design of CMPs:

• Design space exploration is the earliest stage in the design process. Given
the vast space of design parameters and, therefore, possible configurations,
the objective of this stage is to pick out a promising architecture, which will
determine the system-level structure of the future chip. The models used at
this stage have to provide very fast estimation of the architectural metrics,
even at the expense of loss in precision.

• Physical planning issues are tightly coupled with those of the exploration prob-
lem. Some architectures, which exploration marks out as delivering the highest
performance, may reveal floorplanning or routability problems after thorough
modeling. Physical planning aims at performing and verifying the chip floor-
plan and routing.

• Quality of service (QoS) analysis and validation aim at the design of models for
system performance. Both, analytical models and cycle-accurate simulation
tools are indispensable to complete the design process. Fast analytical models
are crucial to make the exploration of huge design spaces tractable, while cycle-
accurate simulation is required at the late steps of the design process for QoS
validation.

5

• System power management focuses on the development of power-saving tech-
niques. Widely applied mechanisms include powering-off unused resources,
such as cores and caches, as well as dynamic voltage and frequency scaling
(DVFS) for power saving, without substantial performance penalties. The
need for floorplanning the voltage regulators to support multiple voltage-
frequency islands makes this task closely coupled with physical planning.

• Verification of functional correctness is another important objective aimed at
design validation. Some of the issues include verification of deadlock- and
livelock-freedom of the routing algorithms and cache coherency protocols, or
proof of memory consistency.

The problems mentioned above focus on the efficient design of CMPs. Another
challenging topic is related to the efficient usage of multiprocessors after fabrication.
This topic refers to the problems of application mapping or scheduling onto many-
core systems. The trends in system design demand novel methods for application
mapping, which take into consideration the peculiarities of future CMPs, such as
the advanced power management techniques.

Interconnect design for SoCs

One of the major problems for CMP and ASIC SoC engineering is the design of the
on-chip interconnect. The traffic and latency of on-chip communication considerably
affect the overall system performance and resource requirements.

Network-on-chip realization of packet-based communication offers the benefits of
both point-to-point and bus architectures: multiple routes for packets make parallel
communication in a network feasible, while link sharing saves the interconnection
resources. This fact promotes NoCs as the outperforming solution in terms of scal-
ability. Other benefits of the on-chip networking are:

• Quality-of-Service guarantees. The QoS estimation techniques can be reused or
adapted from macro-networking studies, providing the on-chip interconnection
with better performance predictability.

• Fault-tolerance and reliability. Application of the advanced fault-tolerance
and error-recovery algorithms, including the approaches known from generic
networking, allows handling reliability problems in complex multiprocessing
systems.

• Tolerance to design variability. One of the most serious problems that technol-
ogy scaling brings is the increasing variability of design parameters. Globally

6

asynchronous locally synchronous (GALS) communication is one of the exam-
ples for coping with variability issues, which is facilitated by the modularity
of NoCs.

The modern SoCs and NoCs require a thorough design process that involves a
variety of problems: topology selection and mapping, physical planning, routing and
switching schemes, and other optimization tasks. The large number of options and
constraints makes it impossible to fully explore the solution space. On the other
hand, dividing the design problem into smaller subproblems and doing a myopic opti-
mization for each one of them may result in largely suboptimal solutions. Therefore,
efficient techniques are required to combine the objectives of several design problems
and intelligently explore the solution space for on-chip systems.

1.2 Motivation and contributions

The techniques developed in this thesis contribute to solve the problems of efficient
design and usage of CMPs and NoCs. More precisely, the objectives of the work
can be summarized as follows:

• Elaborate methods for efficient analytical modeling and design space exploration
of CMPs, incorporating high-level models for physical planning (Chapters 3, 4
and 5).

• Propose a scalable application mapping algorithm onto general-purpose CMPs
with power management techniques, for efficient deployment of many-core sys-
tems (Chapter 6).

• Address the issues of the on-chip interconnect design and exploration, by devel-
oping a model for simultaneous NoC topology customization and deadlock-free
routing (Chapter 7).

In the following, each of the problems is considered in more detail.

Analytical modeling and design space exploration

Given the vast space of design parameters, CMP designers are faced with the com-
plex problem of selecting the best architecture subject to a set of constraints. The
problem of design space exploration can be considered as the problem of efficient
usage of chip resources, such as area and power. One of the possible formulation of
the problem is maximization of the system throughput, subject to the constraints
on the total chip area and power.

7

1

10

100

1000

10000

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1E+13

Simulation

(full system)

Simulation

(probabilistic)

Analytical

(exhaustive)

Analytical

(metaheuristic)

E
x

p
lo

ra
ti

o
n

 r
u

n
ti

m
e

 (
se

c)

Design space:

109 configurations

300 centuries

300 years

100 days

100 seconds

Figure 1.4: Comparison of runtimes for various exploration strategies.

Many design options must be explored, such as the variety of core implemen-
tations, interconnect types, topologies, cache hierarchies and memory management
policies. Moreover, the amount of configurations increases drastically as the tech-
nology advances, allowing more cores and memory to fit into the chip area.

The complexity of the search space makes an exhaustive simulation-driven explo-
ration prohibitively expensive. One of the ways to handle this problem is to decrease
the number of points to be considered. Exhaustive exploration is replaced by an
intelligent search strategy leveraging the methods of machine learning [77], design
of experiments [124] or analytical optimization [31].

Another option to shorten the exploration time is to reduce the cost of evaluat-
ing every design point. In this scenario, analytical modeling becomes an effective
alternative to simulation for rapidly pruning the design space during early explo-
ration and selecting a small set of promising configurations. Along this line, several
analytical models for CMP exploration have been recently proposed (e.g., [107, 31]).

However, the use of analytical models alone is not enough for efficient exploration.
Figure 1.4 gives an idea of the ratio of exploration run times, when a simulator or
an analytical model is used to estimate the cost of architectures. For a search
space comprised of one billion configurations, the exploration task is intractable
even when a fast probabilistic simulator is used. Analytical modeling reduces run
time to approximately 100 days, which is a feasible period assuming the design
cycle of several years, though the timing cost of fixing an error committed at this
stage remains very high. Implementation of the intelligent search strategies (e.g.
metaheuristics) on top of the analytical model allows to further decrease the search
time to the order of minutes, making the exploration tool a very efficient instrument
for the designer.

8

This thesis addresses the techniques for analytical modeling of CMPs and the
on-chip interconnects in Chapters 3 and 4. A method for intelligent design space
exploration is proposed in Chapter 5.

Application mapping for tiled CMPs

From a certain point of view, a tiled CMP is similar to a coarse-granularity pro-
grammable array (FPGA), with general-purpose logic, specialized units (memories,
DSPs) and a distributed communication network for routing. The main difference
is that CMPs are software-configurable, whereas FPGAs are hardware-configurable.
In a similar way a design has to be transferred to FPGA, an application has to be
mapped onto the target CMP.

One of the peculiarities of mapping onto tiled CMPs is the presence of hetero-
geneous tiles, preserving the regularity of the structure, but introducing several
classes of processors [86, 14, 38]. Such systems may include some specialized pro-
cessors (e.g., graphics, DSP) or different implementations of the same architecture
(e.g., in-order/out-of-order, multi-threading) with varied power-performance trade-
offs. Figure 1.5 depicts a tiled CMP with three classes of tiles: general-purpose cores
(C), cores with graphics units (G) and DSPs (D).

CMPs are designed to operate under a certain power budget that assures the
performance and thermal properties of the system. One of the most effective ways
to manage power is to floorplan various voltage islands and assign the best voltage
and frequency for each core [82].

Unfortunately, voltage islands have a high design cost. Firstly, the floorplanning
of the system is constrained by the design of the power delivery network and the
location of the level shifters. Secondly, and more important, power management
requires different voltage regulators for each power supply. Off-chip regulators need
extra area on the PCB that may be unacceptable if the system has a large amount
of power domains. On-chip regulators involve a significant area overhead and power
consumption due to the large inductances and switching capacitors required to pro-
vide a stable supply voltage [79].

C C C C

C G D C

C D G C

C C C C

Core

L2

L1

R

M
C

M
C

Figure 1.5: Tiled heterogeneous CMP architecture.

9

It is therefore realistic to consider that future CMPs will have many cores (hun-
dreds) and voltage islands with several cores (e.g., 4 or 8). This fact imposes an
additional constraint in the task mapping problem: even though some cores could
possibly run at lower voltages and frequencies, sharing the island with other cores
may prevent from taking advantage of this flexibility. Hence, it is convenient to
allocate tasks in a way that cores within the same voltage islands can share similar
voltage/frequency parameters.

The mapping problem for tiled CMPs has to assume that the chip has already
been manufactured. Therefore, the voltage islands have been already floorplanned
and the maximum bandwidth of the links between cores is also known a priori. An-
other peculiarity of CMP mapping (as opposed to SoCs), is the presence of traffic
to the off-chip memory, as well as the limited bandwidth of the memory controllers
(MCs). Finally, the methods proposed for task mapping must be scalable and suit-
able to handle systems with hundreds of cores.

Chapter 6 describes the contribution of this thesis in the field of application
mapping onto tiled heterogeneous CMPs with predefined voltage islands.

Network-on-Chip topology customization and routing

Consider an example of a system, which is specified by a set of processing elements
(PE), routers and communication requirements between PE s. Assume that the
underlying system topology has been selected and the assignment of the PE s to the
routers has been performed. Some of the design problems one would like to solve
are:

• Finding a subset of links satisfying the communication requirements of the
system and minimizing the design cost.

• Defining the routing paths for each pair of communicating PE s that satisfy
the performance requirements.

• Guaranteeing that the selected routes to communicate PE s are deadlock-free.

The first problem can be referred to as the link allocation problem. The other
two problems are related to the efficient route assignment with deadlock avoidance.
These problems have different optimization criteria. By solving one of them opti-
mally and independently from the others, no acceptable solution might be found
when solving the subsequent problems. It is therefore necessary to devise non-
myopic strategies to explore the solution space in a way that all design constraints
are met and the implementation cost is minimized.

Chapter 7 describes the last contribution of this thesis for the simultaneous in-
terconnect topology customization by link allocation and routing.

10

1.3 Document organization

The dissertation is organized as follows:

• Chapter 2 gives an overview of the chip multiprocessing technology and sum-
marizes related work in the field of CMP and NoC synthesis and optimization.

• Chapter 3 presents the first contribution of the thesis, which is an analytical
model for a special class of networks-on-chip with constant-length data packets.
This specific class of the interconnects finds application in CMP systems.

• Chapter 4 describes the second contribution of the thesis, representing an
analytical modeling of the complete CMP. This section emphasizes the impor-
tance of modeling contention of the CMP interconnect and captures the cyclic
dependency between the latency and traffic of memory requests.

• Chapter 5 proposes a metaheuristic-based intelligent search of the design space
to eliminate the need for exhaustive architectural exploration for CMPs. This
technique is the third contribution of the thesis.

• Chapter 6 addresses the issues of efficient usage of general-purpose CMPs after
fabrication. A task mapping algorithm for tiled CMPs with multiple voltage
islands for power management is proposed in this section, which is another
contribution of this work.

• Chapter 7 represents the last contribution of the thesis, which is a mathe-
matical model for simultaneous topology customization by link allocation and
deadlock-free route assignment for NoCs.

• Chapter 8 concludes the work and outlines possible directions for future re-
search.

11

Chapter 2

The Architecture of
Chip Multiprocessors

This chapter provides a brief overview of the chip multiprocessor architecture, with
the objective to understand the problem domain and help evaluating the contribu-
tions of this thesis. Last section of the chapter summarizes the work in the field,
relevant to the problems considered in this dissertation.

When examining the organization of a chip multiprocessor, one may find certain
similarities with the structure of a single-core processor. Basic components of the
latter would include a processing unit (ALU), memory units (registers and L1-cache),
a control unit, a datapath and an input/output subsystem. The components of a
chip multiprocessor resemble most of those found in a single-core implementation:

• The processing cores are the computing units executing the instruction flow.
These may be general-purpose or application-specific processors, offering var-
ious cost/performance trade-offs for a variety of workloads.

• The memory subsystem is a collection of memory units representing a trade-off
between the memory capacity and access latency. On-chip components include
the private and shared cache modules.

• The on-chip interconnect is the backbone of a chip multiprocessor, providing
communication between the cores, memory units and input/output interface.
The topic of interconnect design for efficient on-chip communication is of spe-
cial interest for this work.

• The input/output interface is a set of controllers to interact with the off-chip
components of the computing system. Memory controllers can be considered
as a part of I/O interface, providing access to the off-chip memory. Another
example is a Quick-Path Interconnect (QPI) [71].

13

For the problems addressed in this work, the cores, memories and on-chip inter-
connects represent the CMP components of major interest. In the following sections
an overview of the design alternatives for each of these component types is given.

2.1 Processing cores

Cores are the main processing units executing the instruction flow. Modern CMP ar-
chitectures include from several up to hundreds of processing units [73, 118, 119, 74].
The cores of a homogeneous CMP are identical, while heterogeneous architectures
may include various combinations of core implementations for speeding-up particu-
lar applications. One of the popular examples of a heterogeneous CMP is the IBM
Cell processor [38].

The first computing cores were implemented as sequential finite-state machines
for loading, executing and writing the result of the instructions, as given by the
original instruction flow. The processing of every instruction could take several
cycles limiting the overall performance of the core, measured in instructions per
second.

It was observed that in the given implementation certain modules of computing
logic would stall while waiting for the other modules to complete their job: for
example, the execution unit would wait for the instruction loading to bring the
data in for processing. Instruction pipelining was proposed to introduce parallelism
and increase the effective load of independent pipeline modules [22]. The flow of
instruction processing is divided into several stages and every stage is executed
within an individual clock cycle in a pipelined fashion. The stages of a typical
pipeline include instruction fetch, decode, execute and memory write. Although this
technique does not improve the latency of executing a single instruction, it raises
the core throughput and enables higher operating frequencies.

It was further noticed that the instruction flow of many applications is inher-
ently parallel, in the sense that there exist groups of instructions whose result does
not depend on the other instructions in the group. This property is referred to as
instruction-level parallelism (ILP) of the application. All instructions in every such
group can be executed in parallel without affecting the result of the program. This
observation led to the decision of supplying cores with multiple execution units,
which could handle parallel instructions simultaneously, reducing the total execu-
tion time of the program. Cores with replicated execution units are referred to as
superscalar.

Still, superscalarity enabled the execution of multiple instructions in parallel only
when the instructions followed one another in the original instruction flow. In other
words, superscalar architectures represented an example of in-order execution of
the instruction flow. Performance was considerably penalized in cases when a long-

14

latency memory request was issued, causing the whole pipeline to stall for a long
number of cycles.

Out-of-order execution was proposed to extend the benefits of ILP by locally
reordering the instruction flow, and giving priority to those instructions for which
the input data had already been computed. An analysis of dependencies in the
instruction flow is required to guarantee that the program result is not affected by
the manipulations with the order.

While superscalar and out-of-order architectures aim at automating the search of
ILP by hardware, Very Long Instruction Word (VLIW) [54] architectures delegate
the responsibility of finding ILP to software, either at the compiler or programmer
level. VLIW processors realize a set of “wide” instructions, each implementing
several operations (e.g. a sum, an increment and a multiply). The task of defining
the instruction patterns is deferred to software, which is shown to be convenient for
certain application domains, where such operation patterns are common (e.g. DSP
or numerical computations).

Finally, simultaneous multi-threading (SMT) [126] emerged to exploit the thread-
level parallelism (TLP), as opposed to ILP. There are two primary sources of TLP.
First, as in the case of VLIW architectures, TLP can be specified explicitly by the
programmer within the software development process. Second, TLP often appears
due to the fact that one core is commonly used to run several applications simul-
taneously. Hence, modern cores implement multi-threading support by replicating
the thread-processing units.

An interesting observation regarding the efficiency of advances in single-core im-
plementations is known as the Pollack’s rule [29] [116]. It states that the core
performance, in terms of instructions per cycle, IPCc, only grows as a square root
of the core area Ac:

IPCc = α ·
√
Ac,

where α denotes the performance of a basic core chosen for comparison. Figure 2.1
plots an illustration of Pollack’s rule from [42], constructed for more than a hundred
of real processor implementations, using the data from Stanford CPU Database [4].
The performance and area of Intel 80386 processor are used as a baseline.

This rule has served as one of the motivations for chip multiprocessing, favoring
instantiation of a multitude of simpler cores rather than several complex designs, for
the purpose of throughput optimization [108]. However, it is worth noting that Pol-
lack’s rule only predicts a generic trend between performance and cost of single core
architectures. Depending on the type of workload, the amount of ILP and TLP in
the executed application, a CMP with more complex out-of-order cores may deliver
more throughput than the one comprised of many simple core implementations.

15

Figure 2.1: Pollack’s rule for processing cores [42], [4].

The problem of searching for the throughput-optimal CMP architecture, given
a library of components and application workloads, is one of the major problems
addressed by this thesis.

2.2 Memory subsystem

Processing cores execute instructions that operate on data. Both instructions and
data are stored in memory, and hence its organization has a significant impact on
the overall performance of the computing system.

Since its conception, dynamic RAM technology continuously evolved, with about
15% increase in performance and 2× increase in density every two years [29]. At
the same time, the performance of processing cores advanced exponentially, leading
to the constantly growing gap between the performance of computing and memory
units, known as the memory wall [136].

The principle of locality of the memory references helped to alleviate the memory
wall problem. It was observed that at least two major types of locality are inherent to
the memory access patterns. Temporal locality refers to the fact that if a particular
memory address is accessed at some moment in time, it is very likely that the same
address will be requested again in the near future. Spatial locality observes also that

16

Private
cache

Private
cache

Shared cache

Main memory

Permanent storage

Core
(registers)

O
n

-c
h

ip
 m

em
o

ry
O

ff
-c

h
ip

 m
em

o
ry

Core
(registers)

Capacity Latency

Tens GBs - TBs

GBs

Tens of MBs

Tens of KBs - MBs

Hundreds of bytes 1 cycle

2-10 cycles

Tens of cycles

Hundreds of cycles

Thousands and
millions of cycles

Figure 2.2: Hierarchical organization of memory subsystem.

if a particular memory address is accessed at some moment in time, it is very likely
that the nearby addresses will be requested in the near future.

These observations made it possible to effectively reduce the average memory
latency by organizing fast caches of moderate sizes, even when it is not feasible to
supply fast and large memory which would store all data requested by applications.
According to the principle of locality, the regions of memory which have a high
probability of being accessed in the near future are loaded and kept in the caches
for improving the average memory latency.

The introduction of caches led to hierarchical organizations of the memory sub-
system, which includes several layers of memories of increasing sizes and latencies.
Figure 2.2 gives an overview of the hierarchical organization. In addition to the
core registers, which have a very fast access time, but a limited capacity of only
hundreds of bytes, the on-chip memory subsystem is represented by several levels of
cache. The fastest private first-level cache, L1, typically has the latency of several
cycles and a capacity of tens of kilobytes. A larger private cache, L2, can be added,
providing capacities of several MBs and latencies around ten cycles. A shared cache
of a larger size, often called a last-level cache, LLC is included to extend the on-
chip memory with a flexible storage, which can be redistributed among the cores
according to the needs of the executed applications.

The off-chip memory subsystem includes the main dynamic RAM and the perma-
nent storage. The capacities of the former have the order of GBs at the expense of

17

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

M
is

s
R

a
ti

o

Cache Size (Mb)

Miss (S) = 0.1 ∙ S -0.5

Figure 2.3: Power-law cache miss model.

an increase in latency of 10× or more. Dynamic RAM is backed up by a significantly
slower, though non-volatile memory, which provides virtually infinite capacity.

One of the problems in the design space exploration of CMP systems is how
to properly architect the memory subsystem, in terms of specifying the number of
levels in the hierarchy, distributing cache capacity across the hierarchy levels and
organizing cache sharing.

A possible way to characterize an application from the perspective of its memory
requirements, is a model that defines the miss ratio as a function of the cache size.
Miss ratio for a given cache size is defined as the fraction of memory accesses for
which the data has not been found in the cache. Figure 2.3 plots an example of a
miss-ratio curve, approximated with a power-law:

MR = MR0 · S−α,

where MR0 = 0.1 and α = 0.5. Power-law was found to be a good analytical function
approximating the cache miss behavior [63]. The miss-ratio dependency on cache
size will be actively used in this work to represent the application model.

2.3 On-chip interconnects

On-chip interconnect is a backbone of a CMP, realizing data communication between
the processing and memory units of a system.

This section overviews two basic on-chip interconnect architectures, crossbars
and buses, summarizing their advantages and drawbacks and motivating the need
for on-chip networking, which is introduced in the next section.

18

Crossbars

The simplest and most intuitive way of organizing the communication between sev-
eral components is by using point-to-point connections, such as a crossbar. This
organization provides every pair of communicating components with a private link,
resulting into a high degree of parallelism in data transmission.

Figure 2.4(a) shows one possible implementation of a crossbar connecting four
components 1. Generally, every receiver will have a single queue for incoming data
arriving from all senders. Hence, an arbiter is required to resolve the cases of
contention, i.e. when several inputs request the same output port. In the depicted
implementation, arbitration signals are used as select signals for input multiplexers,
assigning the winning inputs to every output.

In some special cases of high-performance crossbars a dedicated queue may exist
for every sender-receiver pair. In this case crossbar resembles a collection of buffered
point-to-point links performing independently, so arbitration between different in-
puts is not needed.

The main issue with crossbars is their limited scalability, since the amount of
resources (mainly links) increases quadratically with the quantity of attached com-
ponents. Although academic research has demonstrated that crossbar configurations
with up to 128 components are possible [113], industrial implementations reveal a
rather conservative view on crossbar scalability, with the maximum system size not
exceeding several dozens of components.

In application-specific systems, where the communication flows are known at de-
sign time, interconnect topologies can be customized to produce partial crossbars,
which save resources by eliminating certain communication paths. Several method-
ologies for automatic ASIC-driven generation of partial crossbars have been proposed
in the literature, e.g. [97], [94].

Buses

The fact that communication between a pair of components normally does not occur
continuously in every cycle results in crossbar underutilization. This observation led
to the paradigm of resource sharing for on-chip communication, which is tradition-
ally represented by the family of bus topologies.

Buses can be seen as the opposite of a crossbar: while the latter implements
a dedicated link for commuting every pair of components, bus provides a single
shared link for any communication, making this architecture very resource-efficient.
Figure 2.4(b) shows a single bus connecting four components, and its arbiter. The

1Here and further in this chapter, components are illustrated with rounded-corner squares,
while arbiters are represented by circles labeled with ‘A’ inside.

19

X-bar

A

2 2 2 2
Arbitration

Outputs

In
p
u
ts

(a) Crossbar

A A

A

A

(b) Traditional bus

A

(c) Multiple bus (2-bus)

(d) Hierarchical bus

Figure 2.4: Interconnect solutions for four components: (a) crossbar, (b)-(d) buses.

sender issues a request for bus access to the arbiter. Once granted the ownership,
the sender establishes communication through the bus with the receiver and data is
transmitted. Upon the end of data transmission, the bus ownership is returned to
the arbiter.

Note that this communication policy is intrinsically sequential in the sense that
the next sender can not start transmitting data before the previous sender has
finished the transmission. This limitation imposes a serious bandwidth penalty
for the case when two or more low-latency communications need to be realized
simultaneously.

Another problem of bus scalability is the growing latency due to the long links
required to connect all components. Bus pipelining can alleviate the problem for
transferring large amounts of data in a single communication, but point-to-point
latency remains an issue.

Several extensions of a single bus have been proposed to tackle the mentioned
problems. The multiple bus topology is an extension of the traditional single bus
architecture, implementing several transmission lines and enabling certain degree
of parallelism in bus transactions. Figure 2.4(c) presents a 2-bus organization with
two links, which allow up to two simultaneous data transmissions. Assuming that
two different senders request communication with two different receivers at the same
time, the arbiter may assign one of the available links for every sender-receiver pair.
As a result, both communications occur simultaneously without affecting each other.

Another bus extension is the hierarchical bus topology, shown in Figure 2.4(d).
This architecture is beneficial for the communication patterns where certain de-
gree of locality of the on-chip requests is observed. Components that require high

20

inter-communication bandwidth are organized in clusters and communicate via local
buses, supplied with dedicated arbiters. In case an inter-cluster communication is
needed, it is realized via the global bus. Note that local communication is performed
through shorter (hence, faster) local buses, effectively decreasing the average point-
to-point communication latency. Hierarchical architectures can be extended to an
arbitrary number of levels straightforwardly.

It is clear that the performance improvement obtained by adding multiple bus
links or hierarchy levels comes at the cost of additional resources, such as area and
power, and represents one of the most important trade-offs in bus design. Other
common trade-offs include synchronous vs. asynchronous bus operation, separation
of signal types (address, control, data) over different physical links vs. multiplexing
of signals on the same physical link.

A number of bus standards and communication protocols have been adopted
and extensively used. Some of the most popular standards include the Advanced
Microcontroller Bus Architecture (AMBA) [1], and STBus [7].

2.4 Networks-on-Chip

Inspired by the idea of macro-networks, the Network-on-Chip (NoC) concept was
introduced to tackle the scalability issues of the on-chip communication [92], [41].
This notion changes the interconnection paradigm from routing wires to sending
data packets across the network [41]. NoCs represent a trade-off between high-
performance point-to-point connections and resource-efficient buses, since they offer
both, data transfer parallelism and link sharing between the flows.

The network-on-chip abstraction is depicted in Figure 2.5. A network is composed
of a set of routers (R), and physical links between them. The exact topology may

C1

R
R

RR R

C2 C3

C4C5 NI

NI

NI

NI
NI

Figure 2.5: Network-on-Chip abstraction.

21

vary broadly, from regular meshes and rings in general-purpose CMPs to highly
irregular solutions in ASICs. Cores (C1-C5) are connected to the network via the
network interfaces (NI). The role of the NI is to convert the data generated by
the cores into the packets that can be sent through the network, and vice versa,
decode the packets arriving at the destination nodes. The term node is used to
denote a generic traffic injector or consumer, connected to a network, which can be
a processing core, a cache memory or any other type of on-chip device, such as a
memory controller.

Typical objectives in NoC design are the low-latency, high-bandwidth commu-
nication and the easiness of network scalability. Although similar to those of the
traditional macro-networks, the requirements for on-chip networks include several
specific properties:

• Low area is an essential requirement to improve the chip yield, manufactura-
bility and reduce leakage power of the interconnect.

• Higher bandwidth, compared to the traditional networks, is needed to incorpo-
rate additional transactions, such as the traffic of cache-coherency protocols
and accesses to the shared memory.

• Fault-tolerance and reconfiguration abilities are important for guaranteeing
the interconnect correctness and performance in the presence of faulty com-
ponents.

• Variability handling becomes a necessary property for designing robust sys-
tems, given the increasing uncertainty of the CMOS devices implemented with
deep-submicron technologies.

In the rest of this section, the main design issues for NoCs are outlined, such as
the selection of network topology, switching technique, flow control mechanism and
routing algorithm. At the end of the section an overview of the NoC router internals
is provided.

Topology

The topology of the network-on-chip is an essential design parameter which critically
affects the performance and cost of the on-chip communication. Topology primarily
determines the communication bandwidth and latency by defining the number of
on-chip routers and links, their relative position and connectivity.

22

The classification of NoC topologies can be done according to different criteria,
among which the most interesting in our context are the following:

• Direct vs. indirect topologies. Direct topologies assure that every router has a
connection to at least one node, while indirect topologies allow routers which
only have connections to other routers.

• Flat vs. hierarchical topologies. Hierarchy typically resembles tree-like struc-
tures with clearly marked clusters of local communication. As in case of hierar-
chical bus, these topologies are effectively embedded in systems with significant
locality of the on-chip communication.

• Regular vs. irregular topologies. Regularity can be defined as a presence of
a certain pattern or symmetry when connecting links to routers, as well as in
distribution of the link lengths and hop counts. Regular topologies are better
fit for general-purpose designs, while irregular topologies allow to benefit from
design-time specialization.

Typical trade-offs in topology design can be analyzed by enumerating the most
common topological properties:

• Bisection bandwidth is defined as the minimal bandwidth over all possible
partitionings of the topology into two equal halves. This property is often
used to predict the performance of the network analytically.

• Network diameter is the maximum number of hops between any pair of nodes.
Diameter minimization is an important objective for improving the network
performance.

• Link count and router count define the total number of links and routers
respectively, and are used to approximate the resource cost of the network.

• Router degree represents the number of input and output ports of the router
and is closely related to the delay propagation through the router and the area
and power consumed by the router.

Finding the balanced choice of the aforementioned parameters for the given com-
munication pattern and performance constraints, so as to minimize the resource
cost, constitutes the topology selection problem for network-on-chip. The problems
of topology exploration and application-specific customization are among the im-
portant problems addressed by this thesis. For this reason, a broader glance at the
topological choices relevant for this work is next presented.

23

Meshes

A 2-dimensional mesh, depicted in Fig. 2.6(a), is the most widely adopted topology
for network-on-chip, both in research and industry. Its popularity is determined
by several factors, such as regularity, good physical properties and scalability. The
layout of regular 2D mesh facilitates the chip floorplanning and is especially valuable
for tiled architectures, which are popular for rapid prototyping of many-core systems.
Indeed, to extend the mesh to an arbitrary number of nodes one simply needs to
add rows or columns to the mesh without the need to redesign the basic network
components, such as routers and links.

The family of mesh topologies is known as k-ary n-meshes, where k defines the
number of nodes per dimension and n is the number of dimensions. Meshes with
dimensions of three and higher have a limited applicability due to issues of physical
implementation. Figure 2.6(b) sketches a 3D mesh (cube), which despite its nice
theoretical properties, has to be planarized when implemented in traditional CMOS
technology. Planarization leads to an increase of delay in certain links, so the final
performance of this topology will be strongly affected by physical implementation.
It is worth noting that with the emergence of three-dimensional semiconductor tech-
nologies (e.g. stacked memories), 3D topologies become more popular. However, the
interest in meshes of higher dimensions is still limited to the research community.

Although meshes can adopt any arbitrary number of components without signif-
icant design effort, they are considered to be poorly scalable: the network diameter
grows linearly with the mesh dimensions and its bisection bandwidth scales slower
than the communication requirements, as the number of components increases.

Concentrated mesh or C-mesh was proposed to decrease the average latency in
traditional meshes (Fig. 2.7(a)). The reduction in latency is obtained through the
increase of router degree and concentration of larger number of nodes at one router.
Although this organization incurs a penalty on network throughput, it becomes
beneficial when a certain degree of traffic locality is observed.

Another family of solutions that improve network performance in presence of lo-
cal traffic is hierarchical mesh-based topologies. An example of two-level mesh-bus
architecture is shown in Fig. 2.7(b). Similar to a hierarchical bus, this topology im-
plements individual low-latency bus interconnects for local communication in clus-
ters. Additionally, a high-throughput global mesh is responsible for inter-cluster
communication. The benefit of hierarchical approach is the separation of local and
global traffic for eliminating their interference, although at the cost of additional
resource consumption.

Hierarchical meshes are of high interest for this work, since they are considered
as a promising architecture for low-power high-performance interconnects of CMPs
with hundreds or even thousands of computing units.

24

R R

R R

R R

R R

R R

R R

R R

R R

(a) 2D mesh (4-ary 2-mesh)

R R

R

R R

RR

R

(b) 3D cube (2-ary 3-mesh)

Figure 2.6: K-ary n-mesh topologies.

R R

R R

(a) Concentrated mesh

NI

A

NI

A

NI

A

NI

A

R

R

R

R

(b) Hierarchical mesh-bus NoC

Figure 2.7: Extensions of 2D meshes.

R

R R

R R

R R

R

R R R

Figure 2.8: Irregular mesh topology.

25

Finally, irregular meshes represent a specific class of mesh-based topologies, which
are especially popular among the ASIC community, where heterogeneous nodes (i.e.
cores, memories) appear frequently. Heterogeneity of node sizes leads to irregular
floorplans, which as Figure 2.8 proposes, can be arranged in a grid of a fine granu-
larity and effectively connected by a mesh-based structure. The obtained mesh may
miss some routers, as compared to a regular implementation; the links may have
different lengths and router degrees may vary - explaining the “irregular mesh”
terminology. The fact that the interconnect topology is grid-based speeds-up the
design time considerably, making irregular meshes popular for application-specific
systems. The aspects related to mesh topology customization are considered later
in this thesis.

Tori and rings

A two-dimensional torus is another widely used solution for NoCs and represents a
mesh with added wraparound links, as in Fig. 2.9(a). The torus family is denoted
as k-ary n-cubes, with the same notation for k and n as in the case of meshes.

Tori of dimension two and higher are exposed to the same planarization problems
as high-dimension meshes. Depending on the implementation, wraparound links
may exhibit delays similar to traversing the whole chip in one dimension. For certain
chip sizes this results into a severe mismatch between the predicted link delay and
its silicon realization, causing a noticeable performance penalty.

One-dimensional tori, also known as rings (Fig. 2.9(b)) represent another exam-
ple of broadly applied topologies, due to several convenient properties. First, rings
are regular symmetric topologies which are easily floorplanned and implemented in
silicon. One can choose among uni-directional and bi-directional ring implementa-
tions to explore typical cost/performance trade-off. Another reason for using rings

R R

R R

R R

R R

R R

R R

R R

R R

(a) 2D torus (4-ary 2-cube)

R R

RR

R

R

(b) Ring (6-ary 1-cube)

Figure 2.9: K-ary n-cube topologies.

26

is the low router degree, consisting of only three ports for uni-directional or four
ports for bi-directional rings, thus simplifying router design and cost significantly.

The drawback of rings is the low bisection bandwidth, which is however compen-
sated by low area and power requirements, making rings a good choice for hierar-
chical interconnect architectures.

Fat-trees and butterflies

As opposed to meshes and tori, which are examples of direct topologies, fat-trees rep-
resent indirect topologies, implemented as multistage interconnect networks (MINs),
as shown in Fig. 2.10(a). The data has to traverse several stages of intermediate
routers in order to reach destination.

The main benefit of this topology is the high bisection bandwidth, which scales
linearly with the number of network nodes. Nevertheless, the cost of increased band-
width is paid with the augmenting number of routers. Even more important, the
problem of physical implementation of the MIN-based topologies in silicon appears
due to the complex wiring between routers. Fat-tree topologies continue raising in-
terest in the domain of optical interconnects. Recent techniques aimed at improving
the physical planning of NoCs based on fat-trees [138].

Butterfly networks are also based on MINs and similar in their physical struc-
ture to fat-trees. However, these are uni-directional interconnects, with sender and
receiver nodes situated along the opposite sides of the network (Fig. 2.10(b)). The
routing path between any sender-receiver pair in butterfly network has a predeter-
mined number of stages. The drawback of this topology is the existence of only one
path between a communicating pair of nodes. This observation requires additional
mechanisms for implementing fault-tolerance techniques in the presence of faulty
links or routers.

A similar notation is used for k-ary n-trees and k-ary n-flies, where k denotes the
number of nodes connected to each router and n is the number of MIN stages.

R R R R

R R

R R R R

R R

(a) Fat-tree (2-ary 3-tree)

R R R R

R R

R R R R

R R

(b) Butterfly (2-ary 3-fly)

Figure 2.10: Trees and butterflies.

27

Switching

The switching technique determines the policy for allocating the network resources
required for data transmission through the interconnect. Several switching schemes
are considered in this section.

The technique of reserving a dedicated channel between sender and receiver is
referred to as circuit switching. Prior to any data transmission, a path has to be
allocated between the two nodes, guaranteeing that all shared resources have been
properly allocated and the data can be commuted avoiding interference with other
flows. Once the data transmission has been completed, the path is deallocated and
its resources are released to favor communication of other flows.

The major benefit of circuit switching is the absence of contention between dif-
ferent flows. This property eliminates the need for buffering resources, effectively
reducing the NoC area and power requirements. On the other hand, the need for
path allocation and deallocation not only introduces a performance penalty, but also
reduces the amount of parallelism in communication. Indeed, the requirement to
establish and maintain a path between different parts of the network reserves re-
sources unnecessarily, blocking the data transmission of the other flows with a high
probability.

Packet switching is an alternative approach which does not require path reserva-
tion, since the data packets determine their paths independently as they propagate
through the network. Sending data in packets allows communication at a finer level
of granularity. The downside of the technique is a chance for contention when sev-
eral packets compete for the same shared resource, such as a network link. This
implies the allocation of buffer resources across the network so that the packets can
be temporarily stored and then forwarded, after contention has been resolved.

The basic implementation of packet switching is hence referred to as store-and-
forward. Every router input is provided with a buffer space, with a size greater or
equal to the size of one data packet. In this scenario, a blocked packet is stored in
the input buffer and waits for the output channel to be released. Consequently, the
requirements for a packet to continue transmission is the availability of the output
channel as well as the sufficient amount of buffer space at a receiving router.

The requirement for the complete packet to arrive at the router input before
initiating its transmission through the router was found too restrictive. Since packets
are typically formed by a number of smaller fragments, called flits (flow units), the
header flit of the packet was allowed to start transmission through the router before
the whole packet arrived to the router input. This approach was called virtual cut-
through and allowed for slight performance improvement over the store-and-forward
technique.

28

Later, the virtual cut-through scheme was extended and applied to the whole
sequence of flits. This new scheme was called wormhole switching. The wormhole
paradigm considers a packet as a sequence of flits, led by the header flit. As the
header flit propagates through the network, it establishes the path, so that the
subsequent flits follow the same path in order, experiencing no contention from the
other packets. The path is reserved until the tail flit of the packet propagates,
deallocating the resources. In this sense packet propagation resembles the behavior
of a worm, stretching across several network routers, and contributing to the name of
the technique. Wormhole switching considerably reduces the buffering requirements
of a NoC, though the inter-packet contention is increased, as distributed packets
block a higher number of router resources.

The addition of virtual channels to wormhole switching allows to alleviate the
contention problem at the cost of larger buffer space. The concept of a virtual chan-
nel is used to denote a buffered logical channel for transmitting data between sender
and receiver. Virtual channel has a dedicated physical buffer, however one physical
link is multiplexed between several virtual channels. Assuming N virtual channels,
the total buffer space of the router inputs is subdivided into N smaller buffers, while
N virtual links are multiplexed over one physical link. This organization enables
the support of N message classes, whose packets are stored in individual buffers at
every router, and hence avoid blocking packets among different message classes.

The wormhole technique is the widely adopted scheme for switching in NoCs and
is the one that will be assumed in the work presented in this thesis.

Flow Control

The mechanisms of flow control actually govern the process of packet and flit prop-
agation in the network. They define the conditions for the data units to advance
and guarantee the correctness of data transmission.

A simple approach to manage data propagation is for the receiver to send an
acknowledgment to the sender, once the data has been received. For this purpose,
an ack signal is emitted by the receiver if the data has been accepted successfully,
or a negative acknowledgment nack otherwise. This scheme is known as ack/nack
flow control.

An alternative approach, which eliminates the unnecessary data transmission if
the receiver is not ready to accept data, is to supply every sender with a go/stop
signal governed by the receiver. The receiver maintains the signal in the go state
while it is ready to accept new data and changes it to the stop state otherwise.

A more advanced flow control technique is realized by means of credit exchange
between sender and receiver. Every sender is assigned an initial number of credits,
specifying the amount of data units which the sender is allowed to transmit. The

29

sender can only transmit data when its credit is positive. The transmission of every
data unit decrements the number of available credits. This mechanism prevents
the buffer overflow at the receiver if the initial number of credits does not exceed
the buffer size. The receiver in turn supplies sender with additional credits as soon
as the data units depart from the buffer so that the sender is able to resume data
transmission.

Routing

The routing strategy has a significant impact on network performance. Routing
algorithms are used to determine the actual paths of packet propagation through
the network. Every path is defined by the sequence of links and routers that the
packet uses to travel between the sender and the receiver.

Routing algorithms can be classified according to the following criteria [92]:

• Static vs. dynamic routing. Static (also known as deterministic) algorithms
define the paths for every sender-receiver pair prior to the beginning of data
transmission and these paths remain fixed throughout the communication pro-
cess. Dynamic (also known as adaptive) algorithms generate paths for every
packet, considering the current state of the network, typically with the objec-
tive of avoiding congestion regions and minimize packet latency.

• Minimal vs. non-minimal routing. Minimal algorithms generate routes with
the minimum hop-count between source and destination nodes, while non-
minimal algorithms can favor longer paths for better communication properties
(e.g. load distribution or fault tolerance).

• Source vs. distributed routing. In source routing, the complete path for a
packet is defined at the source node and is incorporated in the packet header
for taking routing decisions as the packet propagates through the network. In
distributed routing the directions for a packet at every router are taken locally,
typically by using routing tables.

An important and widely-used category of deterministic minimal routing algo-
rithm, suited for regular topologies such as meshes and tori, is dimension-ordered
routing [92]. With this approach, an order for the dimensions of the topology is de-
fined and the packets are always sent according to the selected order of dimensions.
A popular dimension-ordered algorithm for 2D topologies is XY-routing, when the
packets are first routed in the X -dimension and then by the Y -dimension.

30

Deadlock avoidance is one of the important properties of the routing algorithm,
which can be achieved by dimension-ordered routing in certain topologies (i.e.
meshes and hypercubes) or alternatively by prohibiting routes from taking certain
turns of the topology [59, 34]. A generic approach to guaranteeing deadlock free-
dom for both static and adaptive routing algorithms is based on resolving cyclic
dependencies in the channel dependency graph [50, 52].

Router Architecture

A router is a basic building block of an on-chip network, which performs the prin-
ciple tasks for enabling communication: data buffering, arbitration and switching.
The architecture of an on-chip router is highly dependent on its implementation.
Figure 2.11 outlines a generic structure of a router with n inputs, m outputs and k
virtual channels [58].

The main components include the input buffers, routing and switching logic, and
a crossbar switch. The internal operation of a router can be well understood by
considering how a single flit traverses the router. This process can be summarized
by the following steps:

• Buffering is performed when a flit arrives at an input port. For this purpose,
every input port implements a collection of buffering slots, which can be sep-
arated into k groups to support k virtual channels. In the latter case, the
arriving flits are demultiplexed from the physical link and stored in the appro-
priate buffer. Credits are delivered to the sender as the buffer slots become
available, to resume data transmission.

• Route computation is the first step in calculating the output port, to which the
flit has to be transmitted. The route computation logic can be designed either
to extract the routing information from the flit itself, as in source routing, or
to consult the routing tables, as in distributed routing.

• Virtual channel allocation is the following step, aimed at configuring the index
of the virtual channel at the output port. The virtual channel allocation logic
also selects the flit to be transmitted in the current cycle, among the flits
waiting for transmission at the input virtual channels (as shown in the figure).

• Switch allocation aims at configuring the crossbar to connect the selected in-
puts with the outputs, according to the routing decision for the current cycle.

• Switch traversal finalizes the process of router traversal for a flit, after which
the flit continues its path through the output link.

31

Input port 1

...

Route
computation

X-bar

Virtual channel
allocation

Switch
allocation

vc 1

vc k

Data in

Credit out

Input port n

...

vc 1

vc k

Data in

Credit out

...

Data out 1

Credits in

Data out m

Figure 2.11: On-chip router architecture.

Note that depending on the implementation, some of the previous stages can
be pre-computed (e.g. route computation) or performed in parallel (e.g. virtual
channel and switch allocation), effectively reducing the router latency.

2.5 Related work

This section presents an overview of the state-of-art related to the problems ad-
dressed by this thesis.

Analytical modeling of on-chip interconnects

The problem of analytical modeling of on-chip interconnects aims at estimating the
system parameters (e.g. throughput, power, total latency) analytically, without the
need for simulation. In this section we consider the problem of modeling the total
latency for the data requests to traverse the interconnect from source to destination
nodes. This latency consists of two terms. The first term is the static (or hop-count)
latency, which depends on the geometrical distance between the source and desti-
nation nodes, and hence can be predicted statically, once the interconnect topology
and the routing function have been defined. The second component is the dynamic

32

R

R R

R

CL CL

CL CL

M
C

M
C

(a)

R

C1 C2 NI

DIRL3

(b)

Figure 2.12: Queueing model for (a) mesh NoC and (b) bus-based cluster.

(or contention) latency. Contention happens in the interconnect when several data
requests compete for the same shared resource, such as a bus or a NoC link. This re-
sults in additional delays experienced by the data in the buffers (queues) distributed
over the on-chip interconnect.

The first analytical models appeared for basic types of multiprocessor interconnec-
tion networks, such as buses, multiple buses and crossbars [23, 121]. The emergence
of more complex on-chip interconnects attracted a variety of novel techniques to the
traffic modeling problem.

Figure 2.12 depicts a generic structure of a CMP with a hierarchical network-on-
chip interconnect. Without loss of generality, a two-level hierarchical interconnect
is shown, with a 2D mesh at the top level. Figure 2.12(a) shows the queueing
representation of the top-level mesh. The mesh routers (R) have up to five input-
buffered ports to store the incoming flits. The primary ports of the routers are
connected to the clusters (CL), which in case of a flat CMP organization may consist
of one device (e.g. a core with private caches in Figure 1.3(a)). Figure 2.12(b)
presents an example of queueing model for a bus-based cluster, corresponding to one
tile of the hierarchical CMP. This cluster consists of five devices, communicating via
a shared bus: two cores with private caches, an instance of an L3 shared cache, a
directory and a network interface. Every device has a buffer to store the requests
to the bus. To distribute the off-chip memory traffic uniformly over the mesh and
avoid high contention of certain routers, memory controllers may have multiple
connections to the mesh, as shown in Figure 2.12(a).

One of the approaches to estimate the contention delays in the interconnect is to
apply queuing theory (QT) [81]. This technique models every router (or bus) as a
single server and estimates the waiting time in the input queues of the server. In
this work, one of the common flow control techniques is considered: the wormhole
routing [40]. Multiple analytical models have been proposed for wormhole routers,
but most of them are based on the standard M/G/1 and M/M/1 queueing models.
A simplified M/G/1-based model is proposed in [49].

The model in [103] offers a convenient definition of queue delays via the injection
rates in a closed form. The method calculates the probabilities of the packets coming

33

from different bus (or router) inputs to move towards the same output. It represents
an efficient generalization of the M/G/1 queueing model [81]. Another advantage
of this model is the capability to deal with a variety of interconnect types, such as
buses and router-based topologies (including meshes, uni- and bi-directional rings,
and other topologies). The drawback of this model is that it is only capable of
estimating the average packet latency in the network, which not sufficient for the
QoS guarantees for individual end-to-end delay constraints.

In [56], an approach similar to [103] is proposed, offering an accurate backpressure
analysis at the cost of the model efficiency. In [133] an M/M/1 approximation of link
delay is used for the capacity and flow allocation task that can be applied to general
networks. In [61] the authors extend the approximation of the M/M/1 model by an
empirical estimation for capacity allocation under the assumption of finite buffers.
Another work in [18] introduces an accurate model for heterogeneous NoCs that can
be useful for exploring variable number of virtual channels and link capacities at the
different levels of the hierarchical interconnect.

All mentioned QT-based models make a common assumption that the process at
every router input has a Poisson distribution. While this is an acceptable assump-
tion for the traffic sources (by definition of the model), it is known that the service
times become correlated with the packet length as the packet propagates over the
network [20]. Due to this fact, the distribution of the flow for the intermediate
routers changes. To relax this effect, the widely applied Kleinrock independence
approximation allows one to treat the input flows at intermediate routers still hav-
ing Poisson properties. This approximation is reasonable when the packet lengths
have a distribution close to exponential so that the packet service times are nearly
exponential as well. However, as simulations show, in the common situation of fixed
packet length, this assumption makes the analytical model too pessimistic. Chap-
ter 3 of this thesis presents a QT-based analytical model, which eliminates the need
for Kleinrock approximation and improves accuracy of modeling the networks with
fixed packet length.

Queuing approaches have certain limitations, such as difficulties in modeling non-
stationary traffic of bursty nature, which is especially important for heterogeneous
configurations. To overcome these limitations, alternative approaches to modeling
the interconnect traffic can be considered. In [25] and [26] a model inspired by
statistical physics is proposed to capture non-stationary traffic behavior in network-
on-chip. These works argue for self-similarity of the on-chip traffic and describe
packet arrival as a non-stationary multi-fractal process.

Network calculus [83] is another popular approach that has been successfully
applied for traffic analysis of the on-chip interconnects [123, 65].

34

CMP design space exploration

The field of CMP design space exploration has been widely studied in the last few
years. Many simulation-based frameworks extensively investigate the parameters of
multi-core architectures and memory hierarchies. Exhaustive simulations were pre-
viously used for performance-oriented exploration of core and cache organizations
and the off-chip memory bandwidth [69]. The work in [85] emphasizes the impor-
tance of joint optimization for the variables of core architecture (such as superscalar
width and pipeline depth) and system-level variables (core count, cache size, op-
erating voltage and frequency). Additionally, various area and thermal constraints
are considered. The impact of the chip floorplan on CMP design space exploration
is investigated in [93]. The power/thermal characteristics of various floorplans are
analyzed, demonstrating the importance of accounting for thermal effects at the
architectural level.

As the manufacturing process advances, more components fit the chip area, in-
creasing the number of possible configurations in the design space exponentially.
Therefore, exhaustive exploration of every configuration within the design space be-
comes intractable. Efficient simulation-driven exploration can be investigated by
the means of intelligent search techniques. The work in [77] compares the applica-
tion of several metaheuristics with machine-learning methods, reporting orders of
runtime savings compared to exhaustive simulation. In [72] predictive modeling is
used to reduce the search space by simulating sample points and teach the models
to describe relationships among design variables.

A similar idea is exploited in [124], however with the application of the Design
of Experiments paradigm (DoE) [120]. This statistical method enables a careful
selection of a set of design points to be simulated, with the same objective of ana-
lyzing relationships between different design parameters. The obtained information
is further used to tune the architectural parameters of the system, with the help of
heuristics. DoE has been successfully applied to CMP design in conjunction with the
Response Surface Modeling (RSM), which is another statistical method exploring
the relationship between the independent and response design variables [75, 112].
After a set of architectural configurations has been generated by DoE with the ob-
jective to reduce the search space, RSM is used to refine the set and incorporate any
system-level constraints to limit the set of feasible configurations. Furthermore, the
DoE and RSM stages may be iteratively repeated, as in [112].

Multicube Explorer [139] represents a flexible framework for application-specific
design space exloration. The evaluation of the system-level metrics is based on
simulation. The tool includes implementation of several evolutionary metaheuristics,
as well as the combinations of DoE and RSM approaches, giving a broad spectrum
of methodologies for efficient simulation-based exploration.

35

As another source of speed-up for the exploration process, analytical models
emerged to replace costly simulations and provide quick estimations of the CMP
performance. The model in [107] studies the trade-off between the number of cores
and the on-chip memory size for throughput optimization. The latency model in-
cludes a contention penalty with linear dependency on the number of cores. Apart
from being inaccurate, this approximation does not allow to compare interconnects
with various parameters and topologies. The work in [91] analyzes finite cache
penalties in memory hierarchies, but the interconnects are also restricted to buses.

McPAT [84] is another powerful tool with low-level analytical models for area,
timing, and power of multi-core architectures. However, the lack of traffic and
throughput models makes it unsuitable for the characterization of hierarchical on-
chip interconnects.

In [32], the authors introduce an energy-performance analytical model for CMP
architectures, however they only consider bus interconnects with a simplified con-
tention model. Their model of a CMP approximates the architectural trade-offs
(such as the miss-ratio of applications versus the cache size, or the core area versus
the core performance) with convex continuous functions. This enables the applica-
tion of the analytical optimization methods and guarantees the uniqueness of the
solution. On the one hand, this is an elegant and high-efficient approach to the
complex exploration problem. On the other hand, since the architectural design
space for CMPs is highly discrete, an approximation with convex functions may be
rather inaccurate. Hence, the solution generated by such an approach will be far
from the optimum.

In general, since analytical methods inevitably introduce certain inaccuracy when
estimating the configurations, their objective is to reduce the design space, rather
than to select the “best” architecture. Hence, it is highly desirable for the analytical
approach to generate a moderately-sized set of nearly-optimal architectures. All
these architectures can be further simulated to select the best one. This procedure
reduces the chance of choosing suboptimal architectures due to inaccuracy of the
analytical model.

Task mapping for CMPs

The problem of application mapping onto the on-chip systems aims at optimizing
the application performance and minimizing the total energy consumption by the
system. The work in [33] proposes a framework for accurate compiler-level map-
ping of applications onto homogeneous mesh CMPs through detailed analysis of the
instructions and allocation of data. A methodology for hardware/software partition-
ing and mapping of applications by parallelism extraction from the software code is
presented in [16].

36

Given the increasing demand of scalability to the mapping algoritms, the men-
tioned techniques can be effectively leveraged for profiling an application and par-
titioning it into a set of parallel tasks. These tasks can be subsequently mapped
to a CMP with an algorithm of a higher-level abstraction, therefore demonstrating
better scalability. For this reason, the application to be mapped is commonly repre-
sented as a graph of parallel tasks (Fig. 2.13) with specified average communication
requirements between the tasks [89].

An approach to multi-objective mapping onto mesh-based NoCs for
power/performance optimization is described in [13]. Evolutionary algorithms are
applied for efficient exploration of the mapping design space. Another method
proposed in [68] addresses energy-aware mapping for regular topologies and uses
bandwidth reservation to satisfy the performance requirements of the application.
Branch-and-bound is used to minimize the total energy cost.

A number of methodologies combining mapping with several other design prob-
lems have been proposed. The work in [62] describes an approach to couple NoC
topology mapping, routing and slot allocation. Real-time communication require-
ments are considered, guaranteeing the bandwidth and latency constraints of the ap-
plication. In [111] an application-specific design flow for mapping and customization
of regular topologies is proposed, with the objective to improve system performance,
while keeping the original area and energy budgets. The methodology is applied to
the STNoC technology. Another approach in [96] incorporates the floorplanning
information into the NoC design and mapping processes so as to account for the
wiring complexity of the final design. The developed tool encompasses application
mapping, topology and routing synthesis, simulation and physical design for NoCs.
The authors in [95] present another mapping methodology, which is combined with
the generation of the optimal network-on-chip topology. Their method applies for
systems that may operate in several modes, with highly varying bandwidth and
latency requirements. This methodology also aims at smooth switching between
different operating modes, which implies no loss in performance for applications.

t8

t1 t2

t6t7

t3

t9 t13

t11 t12 t16

t10

t5

t4

t15

t14

Figure 2.13: Application task graph to be mapped onto CMP

37

A more recent work in the field of NoC mapping considers the aspects of sys-
tem robustness and yield improvement [36]. The mapping algorithm is aimed at
minimizing the system power and latency, while exploiting the dynamic rerouting
techniques to enable correct functionality in the presence of faulty NoC links. Given
the growing interest of 3D architectures, the techniques for mapping onto 3D NoCs
have drawn recent attention. In [130] the problem of run-time incremental map-
ping is discussed and solved heuristically, minimizing the total energy, satisfying
the thermal constraints of the applications and reducing the possibility of resource
fragmentation.

The emergence of advanced techniques for power management, such as voltage
islanding [82, 106], triggered new research in mapping algorithms. The approach
in [88] considers performance constraints of the application, although it does not
account for the communication component of power. A more realistic approach
is proposed in [57] in which computation and communication are both optimized
taking into account a third component related to voltage shifters. Thermal-aware
island partitioning via evolutionary algorithms is proposed in [70]. The distinction of
different processor classes is introduced in [127], but assuming that every processor
can run at an independent voltage level.

The research on power-aware mapping usually assumes that the voltage islands
are defined pre-silicon during task mapping in application-specific SoCs, and often
disregarding the cost of implementing the voltage islands. The problem of applica-
tion mapping onto general-purpose chip multiprocessors has to address the efficient
usage of CMPs after fabrication. This means that the voltage islands have already
been planned, imposing an additional constraint for the mapping problem: all cores
in each island have to run at the same voltage level. As it was discussed in Sec-
tion 1.2 voltage islands have a high design cost, hence it is realistic to assume that
for CMPs with hundreds of cores every island will incorporate several cores. Hence,
the mapping algorithm has to intelligently select groups of tasks for the same voltage
island, in order to minimize the power of the island, while delivering the required
performance for all tasks.

The mapping approach proposed in Chapter 6 of this thesis contributes by consid-
ering the predefined maps of voltage islands and a variety of processing units, offered
by heterogeneous CMPs. It shows high scalability, due to a high-level abstraction
of application with a task graph.

Topology customization and routing for NoCs

Topology of the on-chip interconnect crucially affects the main parameters of the sys-
tem, such as performance, area, power consumption, reliability and fault tolerance.
Furthermore, the selection of the NoC topology is tightly coupled with the process

38

of designing the routing algorithm and guaranteeing its correctness (i.e. deadlock-
and livelock-freedom).

The topology selection problem for NoC is strongly affected by the application
domain. Due to the unpredictability of the traffic at design time, general-purpose
CMPs tend to instantiate topological solutions based on regular structures. Widely-
applied regular topologies include rings [90], two-dimensional meshes and tori [60],
concentrated meshes [15] and flattened butterflies [78]. Hierarchical topologies, such
as hybrid NoC-buses [43] have demonstrated to improve the average system latency.

Using regular topologies for application-specific systems not only helps to shorten
the design time, but also favors better electrical properties of the interconnect.
However, since the traffic requirements for ASICs can be estimated a priori, the
design of custom topologies is typically preferred in order to optimize the system
performance and resource consumption. A variety of works addresses the problem of
effective topology generation for ASICs [114, 104, 125]. In [115] a formal description
and a methodology for the problem of custom NoC synthesis are presented. The
wide spectrum of studies offer topology comparisons in terms of the selected criteria.
Some examples of these studies can be found in [19] and [128].

However, even the interconnect topologies based on regular structures can be
efficiently customized for application-specific systems. Customization may be per-
formed either by removing particular links from the full topology, as in [27], or by
adding new links between the components [105]. The latter work shows that the
“small-world” properties of the resulting solution can deliver significant performance
improvements.

Finally, topology selection is one of the most tightly related problems to VLSI
layout aspects. Thus, the works in [137] and [11] incorporate physical planning tools
into the topology selection process in order to optimize physical properties of the
design.

The routing algorithm is another important property of the on-chip interconnect,
significantly affected by the interconnect topology. Static routing can either be
implemented as a dimension-ordered strategy [39] or by means of the routing ta-
bles [68]. In adaptive routing the paths are decided at runtime [39]. This approach
can incorporate fault-tolerance techniques to increase the network reliability, since
packets may choose alternative paths, when certain components fail to operate as
expected. A combination of static and dynamic strategies is also possible and it was
proposed in [67].

Routing techniques are mostly topology dependent. For instance, dimension-
ordered routing is not feasible for irregular meshes. To adapt this popular routing
strategy, several works propose its extension for irregular topologies [28, 122, 66].

An indispensable property of routing algorithm is its correctness, such as the
freedom from deadlocks, livelocks and starvation [52]. The odd-even routing [34]

39

and turn prohibition [59] schemes were developed to guarantee deadlock-freedom in
meshes. A more general approach to deadlock-free routing is based on the construc-
tion and analysis of the channel-dependency graph, with the objective to remove
cyclic dependencies [52, 39]. Insertion of virtual channels to resolve cycles in the
channel-dependency graph for deterministic routing was first proposed in [40]. In [51]
a necessary and sufficient condition for deadlock-free adaptive routing functions were
formulated and [50] proposed two methodologies for deadlock-free adaptive routing
by insertion of either virtual or physical channels for improved fault-tolerance.

40

Chapter 3

Modeling Networks with
Constant Service-Time Routers

This chapter describes the first contribution of the thesis, which is the queuing
model for estimating the average end-to-end latency in NoC. The model addresses a
special class of networks with fixed packet length. This assumption holds for certain
on-chip systems, such as CMPs, where the data packets carry cache lines of a fixed
size. This research was published in [100].

The objective of the analytical model for on-chip interconnect is to provide a
rapid and accurate estimation of the network contention delay. Queueing theory
(QT) [81] is often used to model the network contention. QT represents a technique
to estimate the queueing delays of users waiting for some service of the system,
given the customer distribution and the service process characteristics. Therefore it
can be applied to model the delays of packets waiting for the router service. The
QT provides an M/D/1 model describing a system with Poisson input and constant
service time [20].

This work shows that due to the correlation of packet size and service time, the
Poisson property of the flow degrades as packets propagate through the network.
This dependency affects substantially the delay values so that the M/D/1 model-
ing with the Poisson input assumption is no longer accurate. Hence [100] proposes
a number of intuitive equations to significantly improve the delay estimation accu-
racy for the networks with constant service-time routers (CSTR). The new model is
referred to as the constant-time model (CTM).

41

3.1 Model overview

Modeling a network as a system of routers requires an approach for calculating
packet delays depending on the network topology. An example of a 3x3 mesh net-
work is presented in Figure 3.1. Each router (R) is connected to a processing element
(PE) and a set of neighboring routers by two unidirectional links. In our model we
focus on the delay estimation (waiting time) at the input buffers. Hence, we assume
each router to have an input buffer from each neighbor and one from the PE.

A net is an end-to-end route in the network, from one PE to another, and can be
represented as a sequence of routers that a packet must propagate through. Each
router may have an arbitrary number of input channels.

Consider the simple example in Fig. 3.2: a chain of two servers with constant
service time T and a Poisson arrival process with rate λ1. The classical QT model
for a constant-time server with Poisson input is the M/D/1 model. The waiting
time in the first input queue WS1 can be estimated using Pollaczek-Khinchin (P-K)
formula [81]:

W =
λT 2

2(1− λT)
. (3.1)

However, unlike the systems with exponentially distributed service times, the
output from an M/D/1 system is no longer a Poisson process: the time between two
consecutive outputs is guaranteed to be greater than or equal to the service time
value T . In other words, a constant-time server produces a de-randomization of the
Poisson process, thus reducing the degree of randomness of the inter-arrival times,
which is the main cause of contention delays at the input queue.

RR R

RR R

RR R

PE PEPE

PE PEPE

PE PEPE

Figure 3.1: 3x3 mesh Network-on-Chip example.

42

S
1

S

W

λ
1

W
S1

Figure 3.2: A simple server chain.

S
2

S

W
S2

W
1

λ
2

S
1

W
S1

λ
1

W
2

Figure 3.3: Merging two M/D/1 output flows.

While WS1 can be accurately predicted with (3.1), using the same equation to
estimate the waiting time at the input queue of S may result in significant errors.
More precisely, the waiting time W will be equal to zero as the successive arrivals
of packets at S occur not earlier than T , which is exactly the time to process a
packet by server S. That means that the incoming packet will never wait for his
service. This fact illustrates the inaccuracy of applying (3.1) for the estimation of
the waiting time at server S.

In the general case, a router may have an arbitrary number of inputs, including
constant-time server output flows. The goal of this work is to derive the equations
for an accurate queueing delay estimation, as an alternative to the P-K equation.

The qualitative importance of an accurate queueing delay estimation is shown
in the following example. Consider now two inputs to server S, each one being
an output from the constant service time systems S1 and S2 (Fig. 3.3). Table 3.1
reports the estimation of the waiting times W1 and W2 by the M/D/1 model and
the constant service time model (CTM) of this work depending on different input
rates (λ1 and λ2). The total delay at the server for the packets of the first flow is
D1 = T + W1, where T is the packet service time (assumed to be 1 cycle for the
example).

Table 3.1: Modeling results for the example in Fig. 3.3.

CTM M/D/1 SIM Error

λ1 λ2 W1 W2 D1 W1,W2 D1 D1 CTM M/D/1

0.1 0.1 0.07 0.07 1.07 0.13 1.13 1.07 0.1% 6%

0.3 0.3 0.53 0.53 1.53 0.75 1.75 1.54 0.7% 14%

0.5 0.1 0.29 0.47 1.29 0.75 1.75 1.29 0.3% 36%

43

The traffic rates of the flows (flits/cycle) are specified in the first two columns of
the table. The following three columns show the waiting times and the delay of the
first flow (in cycles) obtained by the CTM model. Next, the estimations for W1,W2

and D1 obtained with the M/D/1 model are reported. The column SIM displays the
delay of the first flow obtained by simulation. Finally, the error of D1 with regard
to the simulation is reported in the last two columns.

One can easily observe the reduction of waiting times, which is the result of the
de-randomization (W1, W2 of CTM vs those by M/D/1). Another important aspect
is that the Poisson-input models assume equal waiting times for all input streams
regardless their rate. This is not true in the case of constant service time systems.
This results into larger differences in delay estimation (see the difference between W1

and W2 in the last row of the CTM model). We also note that the difference between
our model and simulation is less than 1% in this example, while M/D/1 reveals up
to 36% of overestimation. This simple example shows that proposed CTM approach
can provide more accurate estimations. This is essential for QoS optimization.

3.2 Queueing model

This section presents the main contribution of this chapter: the QT model for
constant-time routers.

Definitions and assumptions

We use the following definitions:

• A router is a basic entity that routes traffic in a network. The router is also
referred to as server in the nomenclature of queueing theory.

• A packet is a data transmission entity. A packet consists of one or more flits
that are the minimum transmission units.

• An input flow, also referred to as input process, is an arrival process at one of
the router input buffers.

• A traffic source (sink) of the net is a processing element that injects (consumes)
packets to (from) the network.

• The traffic rate λk of the net k is the average rate of packet generation at the
net source.

44

• The waiting time at the input buffer of a router is the average steady-state
time the packets spend in the buffer before being processed by the router. In
the QT nomenclature it is referred to as a queueing delay at the input queue
(buffer).

The following assumptions are considered:

• Traffic sources generate packets according to a Poisson distribution.

• Traffic sinks consume packets immediately.

• The input buffers of the routers have infinite capacity.

• The packets have fixed size and the routers take constant time to process them.

A simple model for a 2-input router

We have already stated an important difference between a system with exponentially
distributed service times and one with constant-time service, assuming a Poisson
input in both. The output process from the former is also a Poisson process of the
same rate and exponentially distributed inter-arrival times. Thus we may use (1) for
M/M/1 systems to estimate the waiting time for any of the routers. The output flow
from a constant service time system with Poisson input has a complex distribution
discussed in [109] and [110]. The important property due to its deterministic service
time is that the time between two successive outputs is not less than the service
time T . Because of this fact, the waiting time for all the routers in a chain will
be equal to zero except for the first one (Fig. 3.2). The first router delay can be
successfully estimated with (1), since the packet generators are said to generate
packets according to a Poisson distribution.

Consider the two-input server example presented in Fig. 3.3. All three servers S1,
S2 and S, have a constant service time T . Both sources generate packets assuming
a Poisson distribution with average traffic rates λ1 and λ2. Our goal is to model the
waiting times W1 and W2 at the input queue of the server S.

For example, note that if the flow λ2 were not sending packets, i.e. λ2 = 0, then
W1 would be equal to zero as in the single-input server case. This fact supports the
idea that the waiting time W1 is generated by the packets of the complementary
flow λ2 and its value depends on the traffic rate of both flows.

To simplify the analysis, we use the concept of mean residual service time R(λ)
for an input flow [20]. If an incoming packet Pi arrives at the server queue at time
ti while some other packet Pj is being processed by the server, then the residual
time Ri for the packet Pi is the time left for Pj to finish its service. The mean

45

residual service time is an average value of residual times for each packet defined
by the service time and the flow traffic rate. The following equation represents its
steady-state value [20]:

R(λ) =
1

2
λT 2. (3.2)

Using the definition of residual time, the Pollaczek-Khinchin equation can be
rewritten as

W (λ) =
λT 2

2(1− λT)
=

R(λ)

1− λT
. (3.3)

We generalize the above expression by distinguishing traffic rates in the P-K
formula. Let us consider the traffic flow of rate λtr that is merged with some com-
plimentary flow of rate λres at the router input. As our experiments show, the
waiting time for the packets of flow λtr will depend on both rates. Then we can
rewrite (3.3) as

W (λtr, λres) =
λresT

2

2(1− λtrT)
=

R(λres)

1− λtrT
. (3.4)

This generalized waiting time can be treated as that of the traffic flow λtr ex-
periencing a delay produced by the complementary flow with rate λres, inducing a
residual time R(λres). Using (3.4) in combination with the standard M/D/1 equa-
tion (3.3) we propose the following empirical expression that was found to provide
an accurate estimation for W1 and W2:

Wk = W (λ1 + λ2)−W (λ1)−W (λ2) +W (λk, λj) =

W (
∑
i=1,2

λi)−
∑
i=1,2

W (λi) +W (λk, λj), (3.5)

where k ∈ {1, 2} and j is the complementary flow for k.

The form of (3.5) was suggested intuitively resulting from the numerous experi-
mental observations and was further empirically verified for a large range of input
parameters λi and T . The intuition behind this equation can be explained with
the following considerations. Expression (3.5) has three terms: the first one is the
M/D/1 waiting time (3.3) that input packets would observe if both inputs were
Poisson processes. The second term is the sum of the M/D/1 waiting times for each
separate flow. It can be considered as the measure of “de-randomization” introduced
by the source constant-time router. In fact this is the waiting time packets of each

46

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

Traffic rates ratio

W
a

it
in

g
 t

im
e

 (
c

y
c

le
s

)

W1 (CTM)

W2 (CTM)

W1, W2 (M/D/1)

Figure 3.4: Estimated waiting time for different traffic rates ratio (λ1/λ2).

input process spend at the source router. The last term estimates the impact of the
complementary inputs on the k-th input, similarly as it was discussed in (3.4).

An important fact that is not evident and not observed in M/D/1 systems mod-
eling is that the waiting time for the input flows differs when the traffic rates are
not equal. This phenomenon is also proved by simulation. When two flows interact
at the router input, the packets of the flow with greater traffic rate have less average
input delay. Indeed, if a packet belongs to the flow with the smallest rate it has
greater probability to be blocked by a packet of the complementary flow. As a result,
in average its waiting time will be greater than that of the packet of complementary
flow. An illustration of this fact is presented in Fig. 3.4. The traffic rate ratio λ1/λ2
ranges from 1 to 10 while their sum is kept constant (λ1 +λ2 = 0.4 flits/cycle). The
waiting time W1, W2 estimations by both models are depicted.

One can observe the increasing difference between W1 and W2 estimated by the
CTM model as the rate ratio increases. In contrast, the M/D/1 model provides a
pessimistic constant waiting time for both flows that does not depend on the ratio
of traffic rates.

Generalization for an N-input router

Equation (3.5) can be generalized for an arbitrary number of inputs N > 2. The
waiting time WN

k at input k can be calculated as

WN
k = W (

∑
i=1..N

λi)−
∑
i=1..N

W (λi) +W (λk,
∑

i=1..N, i 6=k
λi) (3.6)

47

It is also valuable to notice that this equation holds for the case of one input flow
(N = 1). In this case we obtain W 1

1 = 0, which is consistent with zero delay at all
routers in a chain, except for the first one.

Hybrid process at the router input

Another important case to consider when modeling a network is a hybrid input
process consisting of Poisson flows and constant-time router outputs. It is necessary
for modeling the traffic coming from two different sources: the Poisson processes
from the PE’s and the traffic coming from constant-time routers. We start again
considering a simple two-input server example where one net is an M/D/1 output
and another is a Poisson source (Fig. 3.5).

Combining (3.2), (3.3) and (3.4) we obtain the following expressions:

W1 = W (λ1 + λ2)−W (λ1)−R(λ2) +W (λ1, λ2), (3.7)

W2 = W (λ1 + λ2)−W (λ1) +R(λ1). (3.8)

This result can be extended to the general case presented in Fig. 3.6. Consider
a complex arrival process at the input queue of server S: an arbitrary number d of
M/D/1 output flows (λ1, .. , λd) and p Poisson flows (λd+1, .. , λd+p). Let us denote
the set of all M/D/1 outputs as D and set of all Poisson sources as P . Let also
N = d + p be the total number of inputs.

As the sum of Poisson processes with rates λk, k = d + 1, .. , d + p is also a
Poisson process of the total rate λp =

∑d+p
k=d+1 λi, we can treat the source flows as

a single input with the total rate λp. This results into packets of all the flows in P
experiencing equal waiting time.

Finally we present the generalized equations for the waiting time WN
k estimation.

For any input flow k ∈ D

∀k ∈ D : WN
k = W (

∑
i=1..N

λi)−
∑
i∈D

W (λi)−∑
i∈P

R(λi) +W (λk,
∑

i=1..N, i 6=k
λi), (3.9)

and for any Poisson input flow k ∈ P

∀k ∈ P : WN
k = W (

∑
i=1..N

λi)−
∑
i∈D

W (λi) +
∑
i∈D

R(λi). (3.10)

48

S

W
1

λ
2

S
1

W
S1

λ
1

W
2

Figure 3.5: Merging an M/D/1 output and a Poisson flow.

W
i

λ
d+1

λ
d+p

…

…

S
1

S
d

W
S1

W
Sd

S

λ
1

λ
d

Figure 3.6: Hybrid input process at a constant-time router.

We note that in case P = ∅, equation (3.9) reduces to (3.6), thus demonstrating
that (3.9) is the generalized case of the server not having traffic source inputs. Also
note that in case of pure Poisson input flows, i.e. D = ∅, equation (3.10) is reduced
to

∀k ∈ P : WN
k = W (

∑
i=1..N

λi), (3.11)

that is exactly the waiting time expression for the M/D/1 system. Thus, our equa-
tions are consistent with the M/D/1 model and provide a simple and accurate ex-
tension for the hybrid case of input processes. Another interesting fact is that we
can apply (3.10) for waiting time estimation at the sources of the nets and at any
point in which the input traffic can be modeled by a pure Poisson process estimated
by the Pollaczek-Khinchin formula (3.1).

We are using the pair (3.9)-(3.10) to predict contention delays at the input buffers
of the network routers and build our delay model around them. As we show in the
experimental section these equations allow accurate estimations for a wide range of
input model parameters.

49

3.3 Network model

This section introduces the model of a network used in this work.

Router model abstraction

We represent a network as a system of connected routers. Given the single router
model presented in the previous section, we now use it to model the behavior of a
network. We use the router model under the following assumptions:

• The router is regarded as a black-box with constant service time for incoming
packets and infinite capacity buffers.

• The router can only transmit one packet at a time. Simultaneous packet
transmission is not considered.

• The strategy of processing inputs in order may vary. We discuss it in the
experimental section.

Extension of the model for a network

As we have already discussed, (3.9) and (3.10) provide the waiting time estimation
at the input of an arbitrary router depending on the network topology and traffic
rates at the inputs. The traffic process in a network is a complex process that is
the result of merging and splitting the traffic flows of individual nets. In this work
we address the waiting time estimation at the input buffers in case of merging N
flows at the router input but we do not discuss the split process. However, as will be
shown in the experimental section, by only considering merging processes we already
obtain a significant accuracy in the estimation.

An important feature of a Poisson process served by a constant-time router is
that it accumulates “de-randomization” introduced by the latter. Formally, let us
consider N processes that have constant-time outputs, each one having some traffic
rate λi. Once these processes have been merged at the constant-time router they
become a single constant-time output process with the rate λ =

∑N
i=1 λi that satisfies

(3.9)-(3.10). We represent this fact in Fig. 3.7. Here two flows λ1 and λ2 that are
M/D/1 outputs merge at router S to form a single flow at its output. We use (3.9)
to estimate the waiting times at router S. Now the new flow travels to the router S’,
where it merges with the flow λ3. In order to estimate the waiting times at router
S’, we apply (3.9) again assuming two input flows with rates λ = λ1 + λ2 and λ3.

This fact basically says that the waiting time of a constant service time system
output process does not depend on the way it propagates in the network but only

50

S’

W
12’

S
3

W
S3

λ
3

W
3’

S
2

S

W
S2

W
1

λ
2

S
1

W
S1

λ
1

W
2

λ
1

+ λ
2

Figure 3.7: Successive flow merge.

on the traffic rate at a particular router. As a result, we do not require information
about the flow propagation and are able to calculate delays at each router inde-
pendently. Below we show how independent router delays are joined to form the
end-to-end delay of each net.

Net delay estimation for wormhole routing

The estimation of the full delay for a particular net is performed based on the worm-
hole routing strategy. In wormhole routing, a packet is transmitted by processing
the request of its first flit, also referred to as a header flit. The header flit notifies
the router to be served as soon as it arrives at the router input queue. Once the
router has granted the connection to the header flit, the rest of the packet flits fol-
low in a pipeline manner. To introduce the equation for the delay we use following
nomenclature:

• The routing path Pi of a net i is the sequence of routers traversed by the
packets of this net, from source to destination routers (including both).

• The packet size S represents the number of flits in a packet. The packet size
includes the header flit and is a constant value for all packets in our model.

• The header service time HS denotes the time necessary for the router to
grant a connection, i.e. find the appropriate output channel and establish the
connection. HS does not include the waiting time at the queue.

• The flit transmission time FT is the time necessary to transmit one flit that
is not a header in a pipeline manner. In our model we assume FT = 1 cycle.

• The end-to-end average packet delay Di of a net i is the average time the
packets of the net spend in the network, starting from the injection at source
router and exiting at the output of the destination router.

51

• The average waiting time Wij at router j ∈ Pi of the packets of net i is
the waiting time the packet header spends in the router queue before being
processed.

The end-to-end net delay model for wormhole routing that we use incorporates
two terms. The first term depends on the topology and geometrical distance between
the net endpoints, thus it can be predicted statically. It is usually referred to as
a hop-count delay Dhc

i of net i. As follows from the wormhole routing strategy,
the hop-count delay consists of the time to propagate header (HS) and the time
necessary for the rest of packet flits to reach the destination router:

Dhc
i =

∑
j∈Pi

HS + FT (S − 1) (3.12)

The second term of the net delay is the contention delay Dc
i , that is the sum of

the input buffer delays Wij over all routers in the path Pi:

Dc
i =

∑
j∈Pi

Wij (3.13)

The contention delay occurs when several input packets compete for the same
router outputs. It is estimated with the model we present in Sect. 3.2. Hence, the
full end-to-end delay of net i is defined by the following expression:

Di = Dhc
i +Dc

i =
∑
j∈Pi

(HS +Wij) + FT (S − 1) (3.14)

Finally we use (3.14) to calculate the end-to-end delay of every net assuming that
(3.9)-(3.10) provide the waiting times Wij. The constants HS, FT and S are the
input parameters. According to the wormhole strategy, the packet router service
time T used in the calculation of Wij is the sum of the header service time and the
propagation time for the remaining flits. Formally, T is defined as:

T = HS + FT (S − 1). (3.15)

3.4 Experimental results

Traffic flows in a network are complex flows that can be described as a system of
merging and splitting processes at every router. The delays experienced by every
input also depend on the priority scheme of the merging inputs. As it was discussed,
the equations (3.9)-(3.10) provide an estimation of the waiting time in the input

52

buffers of constant-time router assuming a first-come, first-served (FCFS) scheme of
merging the arrival processes at the router inputs.

In this section we first show the accuracy of our equations by analyzing networks
characterized by the merge of processes. We present an experimental proof of the
fact that our equations are capable of estimating the delay within a wide range of
input parameters such as load and packet size. Then we also compare our model
with M/D/1 for different priority schemes at the router inputs, namely round-robin
(RR) and longest queue (LQ). LQ stands for prioritizing service of the input with
the largest number of flits in the buffer. Finally we apply (3.9)-(3.10) to arbitrary
networks and show that our equations provide a noticeable improvement in the
estimation of end-to-end delays, even without a detailed analysis of flow splitting.

An important fact about the experiments is that we investigate worst-case delay
errors over the network, i.e. the largest error estimating the net (buffer) delays from
all nets (buffers) in the network. Many of the models suggested so far only estimate
average net delays. This is not suitable for QoS evaluation with end-to-end delay
constraints.

We compare our CTM model and the classical M/D/1 model with the simulations
performed by an accurate flit-level simulator written in C++. Even though we use
mesh topologies in the experiments, our methodology is applicable to any type
of network since the delay estimation is independent from the network topology
(discussed in Sect. 3.3). The simulations on meshes are performed to simplify the
benchmark suite and the architecture of the simulator.

Single-output router networks

This is a special type of networks we use to emphasize the accuracy of our model for
constant service time networks. As the pair (3.9)-(3.10) provides delay estimation
for a merging process, we first focus our analysis on this type of networks to avoid
splitting at the output of the router, i.e. every router sends packets only to one
direction. We start with a 3x3 mesh network with uniformly distributed traffic and
FCFS priority scheme. In this experiment we measure the deviations between the
net and buffer delay values obtained by simulation and estimation by CTM and
M/D/1 models. We show the modeling error dependency on the maximum router
utilization (flits/cycle) determined by the network load.

Packet size variations

Varying the packet size from 1 to 100 flits and the router utilization from 0.10 to
0.90 flits/cycle, we note that the CTM worst-case error does not exceed 0.25% for
net delays and 2% for buffer delays, while the errors produced by the M/D/1 model

53

are 9% for net delays and almost 100% for buffer delays. In the other experiments
we fix packet size to 5 flits per packet.

Changing priority schemes

Although our experiments assume a FCFS priority scheme for the router inputs, we
show that it can also be a good approximation for other schemes such as RR and
LQ. Table 3.2 presents the relative errors of the worst-case estimation of net and
buffer delays versus simulation at different traffic loads. We select three values for
router utilizations to demonstrate model behavior at low, medium and high traffic
loads.

The first two columns of the table represent the utilization and the priority
scheme. The values in the other columns report the errors between the estimated
(Dest) and simulated (Dsim) delays, calculated as

Err =
|Dsim −Dest|

Dsim

· 100%. (3.16)

The third and fourth columns represent the worst-case errors of the net and
buffers delays estimated by the CTM model with respect to simulation. The last
two columns are the errors of the M/D/1 estimation. One can see a significant
improvement in the accuracy of CTM model against the classical M/D/1 model
assuming low and medium traffic loads (utilizations). At high loads, the FCFS
scheme still provides a high accuracy. For the other schemes, the gap between CTM
and M/D/1 tends to reduce.

Table 3.2: Relative delay error between simulation and analytical models for a 3x3
single-output network.

Utilization Priority CTM error (%) M/D/1 error (%)

(flits/cycle) scheme net buffer net buffer

FCFS 0.06 1.67 1.39 95.46

0.10 RR 0.05 2.55 1.39 94.22

LQ 0.05 2.58 1.41 95.29

FCFS 0.07 0.89 5.43 83.46

0.50 RR 0.32 6.73 5.73 94.79

LQ 0.72 5.76 5.98 93.09

FCFS 0.24 0.65 5.38 61.49

0.90 RR 16.44 34.17 20.62 77.81

LQ 13.65 22.34 14.29 73.22

54

Non-uniform traffic

In this experiment (Table 3.3), we change the traffic distribution to be highly non-
uniform. We observe that the M/D/1 model provides an overly pessimistic estima-
tion of the delays for a medium traffic load. On the other hand, the CTM model
still provides an accurate estimation for the FCFS scheme.

The difference between the CTM and M/D/1 models increases for all priority
schemes. Hence, the CTM model is more accurate for the delay estimation assuming
a non-uniform traffic distribution.

General networks

In this section, we present results for two general networks without the single-output
router assumption. Although our model does not consider the splitting of the traffic
flows, its application improves the delay estimation in comparison with the M/D/1
model, even for general networks with arbitrary configuration.

Table 3.4 represents the results for 3x4 mesh with highly communicating central
nodes. The conclusions for this experiment are similar to those for the previous
experiments. The relative error is sometimes reduced by several tens of percent.

A large example: We also present comparative results for an 8x8 mesh NoC under
a variety of traffic loads. We have generated an arbitrary 8x8 network with 64 nets
that are randomly distributed over the network, each net having the same traffic
rate. Fig. 3.8 depicts the traffic distribution between the network links for this
particular example, so that the darker arrows correspond to the links with higher
traffic rates. The experiments were carried out for the utilizations in the range of
0.1 to 0.7 flits/cycle. The relative errors for the net delays are shown in Fig. 3.9.
There is a tangible reduction of the error of CTM model at low and medium loads
when compared to M/D/1 model. Another important fact is that the simulation of
every configuration took several minutes to ensure a level of confidence smaller than
1%. The application of the CTM model took about 0.3 msecs.

Table 3.3: Relative delay error between simulation and analytical models for a 3x3
network with non-uniform traffic.

Utilization Priority CTM error (%) M/D/1 error (%)

(flits/cycle) scheme net buffer net buffer

FCFS 0.51 1.41 23.80 122.50

0.50 RR 5.95 21.15 23.98 123.66

LQ 16.02 42.87 27.24 161.17

55

Table 3.4: Relative delay error between simulation and modeling for a 3x4 network
with highly communicating central nodes.

Utilization Priority CTM error (%) M/D/1 error (%)

(flits/cycle) scheme net buffer net buffer

FCFS 0.34 19.02 1.97 99.92

0.10 RR 0.58 27.96 2.23 114.94

LQ 0.68 25.86 2.25 111.41

FCFS 2.01 14.15 7.05 71.41

0.50 RR 5.75 34.89 9.39 85.60

LQ 3.93 31.21 8.83 84.74

FCFS 5.54 23.93 11.80 76.65

0.90 RR 28.05 78.76 33.14 102.35

LQ 13.31 54.12 18.87 100.28

To sum up, the CTM model with different priority schemes provides a notable
improvement in accuracy in comparison with the M/D/1 model within wide range
of traffic loads. The buffer delay estimation improvement reaches up to several times
in absolute value, while the net delay mainly determined by the hop count at low
and medium loads improves up to several tens of percent. This is a significant result
for designs that have QoS constraints for end-to-end latencies.

Figure 3.8: Traffic distribution for an 8x8 mesh NoC example.

56

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Router utilization (flits/cycle)

R
e
la

ti
v
e
 e

r
r
o

r
 o

f
n

e
t

d
e
la

y
 (

%
) FIFO (CTM) FIFO (M/D/1)

RR (CTM) RR (M/D/1)

LQ (CTM) LQ (M/D/1)

Figure 3.9: Relative errors between simulation and modeling for 8x8 NoC.

3.5 Conclusions

This work addresses the problem of modeling constant service time systems via
queueing theory. The major contributions can be summarized as follows:

• It has been demonstrated that the classical Markovian models provide pes-
simistic approximation of waiting times for CSTR systems, due to the effect
of “de-randomization” at intermediate routers.

• A constant-time model has been proposed to eliminate the assumptions of the
Markovian models and improve the modeling precision.

• The results have been validated for networks with variable sizes, different
packet lengths, traffic loads and priority schemes.

The traffic process in a network is a complex process that is the result of merging
and splitting the traffic flows of individual nets. This work addresses the estimation
of the waiting time at the router inputs for the case of merging an arbitrary number
of flows. Future work on this model should cover the splitting process to improve
the modeling precision.

57

Chapter 4

Analytical Modeling of
CMP Architectures

This chapter addresses the problem of analytical modeling of CMP architectures.
The contribution in this field is the analytical method for estimating performance
of large-scale hierarchical CMPs with hundreds and thousands of cores, published
in [102]. Specifically, it was shown that contention of the interconnect network has a
major significance when analyzing CMP performance. The proposed approach not
only captures the behavior of different core architectures and cache hierarchies, but
also estimates the traffic and contention of various interconnect topologies.

To model the contention in the interconnect network, the cyclic dependency be-
tween latency and memory traffic is formulated as a system of non-linear equations.
Two numerical methods are proposed to resolve it efficiently: fixed-point iteration
and bisection. These methods can use any black-box analytical model for latency,
making the approach flexible to incorporate new interconnect models. As the per-
formance of a CMP is highly determined by the executed applications, the proposed
method can be parametrized with various workload models.

The application of this model to the exploration of large-scale CMPs is discussed
in the next chapter.

4.1 The importance of contention: an example

Consider a CMP with 48 cores and 16 shared on-chip cache modules. Figure 4.1
presents three (of the many) possible architectures with such parameters. One of
the architectures has an 8×8 structure of regular tiles connected with a mesh (Fig-
ure 4.1(a)). The cores and caches are shown as light and dark squares, respectively.
Solid lines represent the mesh links.

59

(a) 8×8 mesh (b) 4×4 mesh with
bus clusters

(c) 2×2 mesh with
bus clusters

Figure 4.1: Possible architectures for a 48-core CMP.

Table 4.1: Performance of architectures in Figure 4.1.

Architecture Lest θest Lsim θsim
(a) 11.17 8.23 11.26 8.16
(b) 10.12 9.04 10.40 8.81
(c) 9.95 9.19 16.69 5.58

To take advantage of the locality of memory accesses, several cores and caches
can be grouped in a cluster and communicate via the local interconnect. For in-
stance, clusters with bus interconnects were shown to notably improve the average
communication latency [43]. This fact encourages the exploration of hierarchical
interconnects. Figure 4.1(b) describes the CMP organization with 16 clusters, each
one having three cores, one cache and a shared bus. The clusters communicate via
the top-level 4×4 mesh. Another option is to increase the cluster size up to 16
components (12 cores and 4 caches) and decrease the dimensions of the top-level
mesh (Figure 4.1(c)).

One of the problems of architectural exploration is to select the configuration with
the best performance. We first estimated the throughput of each configuration using
only the static (hop-count) latency of the network, i.e., assuming no contention. In
this experiment we assumed the ideal throughput of cores (under the assumption
of zero-latency memory) to be 2.0 IPC (instructions per cycle), and the number of
memory references per instruction to be 0.5. The values of static latency (in cycles)
and the estimated throughput (in IPC) are displayed in the columns Lest and θest of
Table 4.1. Hierarchical architectures show a higher performance due to the exploited
locality: configuration (c) has the largest size of local cache (per cluster), hence the
increased local hit ratio. Therefore, (c) shows the highest estimated throughput.

However, this conclusion is incorrect when network contention is taken into ac-
count. Simulation reveals rather distinct performance numbers, reported in the
Lsim and θsim columns of Table 4.1. For configurations (a) and (b), the estimated
throughput with no contention is close to the one reported by simulation. How-

60

ever, the performance of configuration (c) drops by about 40%. In fact, simulation
concludes that (c) is the worst in terms of performance.

The reason of this significant discrepancy is the network contention. It occurs
because of the competition between memory requests for the shared resources of the
interconnect. This results in longer latencies, decreasing the overall performance of
the system. In this example, configuration (b), which incorporates hierarchy at some
extent, is the one with the highest throughput and represents the best architectural
trade-off between cache locality and communication parallelism.

4.2 Analytical performance model

This section introduces the models for the evaluation of CMP performance and
power. First, we explain the assumptions and input parameters of the models.
Next, the equation for modeling static latency is presented. This equation is then
extended to consider the contention component of communication. Finally, the
throughput model is next discussed and the formula for the memory traffic rate is
derived, emphasizing the cyclic dependency between traffic and latency.

Assumptions and input parameters of the models

This work focuses on systems with two-level hierarchical interconnect fabrics. How-
ever, the approach can be applied for an arbitrary number of hierarchical levels,
including the particular case of flat interconnects. Several components are grouped
into a cluster: cores, components of the memory subsystem and the local intercon-
nect. The top-level interconnect provides communication between the clusters and
access to the off-chip memory (Figure 1.3(b)).

The system has N cores in total with parametrizeable architectures: in-order,
out-of-order, single- or multi-threaded. The workload model assumes that every
core is executing an application, characterized by two parameters. IPC0 is the ideal
throughput of the core for the application, i.e., the amount of instructions per cycle
executed by the core, assuming zero-latency memory. MPI is the average number of
memory references generated per instruction.

Without loss of generality, we assume that the memory subsystem has four hier-
archy levels. Every core has a private L1 cache and possibly, a private L2 cache of
larger size but higher latency. The clusters incorporate modules of a distributed L3
cache, shared by all cores. The off-chip memory is accessible via a set of memory
controllers. The latencies of the caches and off-chip memory are parameters of the
model.

61

L1Core L2 L3 MC

f(c, L1)

f(c, L2)

f(c, L3)

f(c, MC)

F(c)

Figure 4.2: Memory flows F (c) of a core.

The term memory flow is used to denote a feasible communication between a core
and a component of the memory subsystem. For example, each core may access its
own L1 or L2 caches, or any of the L3 modules or MC s. In this work we only
consider the request and reply flows between the cores and the memories. However,
a specific coherence protocol can be modeled by adding the synchronization traffic.

Figure 4.2 gives an example of the set of all possible memory flows for a core c,
which is denoted as F (c). In this example, a pair of the request and reply flows
between c and a particular level of memory hierarchy, Lx, is denoted as f(c,Lx), e.g.
the flows between c and L1 are denoted as f(c,L1).

Every flow f ∈ F (c) is realizable with probability pf , that defines the probability
for c to request data from a certain memory component. In our work we calculate
these probabilities using a model of cache miss behavior for the workload in con-
sideration, which represents the dependency between miss ratio and cache size. A
power law model was proven to be a good approximation [63]:

Miss(S) = κS−α, (4.1)

where S is the cache size, and κ, α are the model parameters (Fig. 4.3). Alternatively,
the miss model can be precharacterized using simulation and specified as a set of
cache-size / miss-ratio points and interpolation between them.

Since L3 is a distributed cache, its access latency depends on the cluster where
the requested data is stored. In this work the probability to find the data in a
particular cluster is assumed to be inversely proportional to the distance between
the requesting core and the cluster. However, the method can be parameterized
with any other model for distributed cache.

62

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

M
is

s
R

a
ti

o

Cache Size (Mb)

Miss (S) = 0.1 ∙ S -0.5

Figure 4.3: Power-law cache miss model.

Static latency

In this section we describe how to calculate the average static latency of memory
accesses for a core c in the presence of memory hierarchy. Given the probability pf
for each particular flow f ∈ F (c) and its static latency Lf , the average static latency
Lstc is:

Lst
c =

∑
f∈F (c)

pfLf . (4.2)

Since requests to L3 and MC are sent via the communication network, its
delay must also be considered. This delay is defined using the routing function
R : f → π(f), that for any flow f returns its routing path π(f). In this work we
consider the XY-routing function [39], however any deterministic or even adaptive
routing can be used, specifying the probabilities for certain paths. The total la-
tency to access an L3 instance is the sum of the network traversal latency along the
path π(f) and the L3 latency. The total latency of the off-chip memory accesses is
calculated likewise.

The flow probabilities pf are obtained using the miss ratio model, Miss(S), given
by (4.1). Assuming the sizes SL1, SL2 of the two low-level caches, the probabilities
to access them are:

pL1 = 1−Miss(SL1),
pL2 = (1− pL1)(1−Miss(SL2)).

As L3 is shared, the miss ratio is defined by the effective L3 size, Seff
L3, seen by

each core [12]. To estimate Seff
L3 we use the concept of the average number of cores

63

R

R R

R

CL CL

CL CL

M
C

M
C

(a)

R

C1 C2 NI

DIRL3

(b)

Figure 4.4: Queueing model for (a) mesh and (b) cluster.

sharing each line, as proposed by [12]. The probability to access L3 is then:

pL3 = (1− pL1)(1− pL2)(1−Miss(Seff
L3)).

Finally, pL3 should be multiplied by the probability to find the data in a particular
L3 instance (cluster). A similar strategy is used to calculate the probabilities of flows
to every memory controller.

Queueing model for the on-chip interconnect

Equation (4.2) describes the static latency of memory accesses. Another important
part of the communication delay is the dynamic or contention latency [39]. Con-
tention happens in the interconnect fabrics when several packets compete for the
same shared resource, such as a bus or an NoC link. This results in additional de-
lays experienced by packets in the buffers distributed over the on-chip interconnect.
One of the approaches to estimate the contention delays is to model the CMP as a
system of queues and apply queuing theory to calculate the buffer delays.

In this work two-level hierarchical interconnects are assumed, with a 2D mesh at
the top level. At the lowest (cluster) level, buses, uni- and bi-directional rings are
used for the interconnection. Figure 4.4(a) shows the queueing representation of the
top-level mesh. The mesh routers (R) have up to five input-buffered ports to store
the incoming flits. The primary ports of the routers are connected to the clusters
(CL), which in case of a flat CMP organization may consist of one device (e.g. a core
with private caches in Figure 1.3(a)). Figure 4.4(b) presents an example of queueing
model for a bus-based cluster, corresponding to one tile of the hierarchical CMP.
This cluster consists of five devices, communicating via a shared bus: two cores
with private caches, an instance of an L3 shared cache, a directory and a network
interface. Every device has a buffer to store the requests to the bus. To distribute

64

the off-chip memory traffic uniformly over the mesh and avoid high contention of
certain routers, we assume that memory controllers have multiple connections to
the mesh, as shown in Figure 4.4(a).

Total memory latency

The average total latency for core c, Lc, is calculated by adding the static latency
(Lst

c) and the queue delays along the communication paths (wq). Hence, given the
paths π(f) for every flow f , we extend equation (4.2) accordingly:

Lc = Lst
c +

∑
f∈F (c)

pf ∑
q∈π(f)

wq

. (4.3)

To find the values for wq, an analytical model for the on-chip interconnects can
be used. In this work we apply the model from [103], which offers a convenient defi-
nition of queue delays via the injection rates in closed form. The method calculates
the probabilities of the packets coming from different bus (or router) inputs to move
towards the same output. It represents an efficient generalization of the M/G/1
queueing model [81]. The efficiency of this model is essential for our iterative pro-
cedure, described in Sect. 4.3. Another advantage of this model is the capability to
deal with a variety of interconnect types, such as buses and router-based topologies.

Given the vector of injection rates, λ ∈ RN , the model in [103] proposes to express
queue delays in the form of a system of equations with a matrix W :

wq = W (λ), (4.4)

where wq is the vector of delays for all queues of the interconnect. The exact form of
the matrix W is given by the expressions (5) and (18) in [103]. What only remains
is to compute the rates λ, which is covered in the next section.

Throughput model

The throughput of a CMP and the traffic in the interconnect are closely related.
To derive the exact dependencies, we start with the performance model for a single
core, given in [64]. For a core with the average rate of accesses to remote memory
(RemRate), and the cost of an access (RemCost), the average number of cycles for
executing an instruction, CPI, is:

CPI = CPI0 + RemRate · RemCost, (4.5)

65

where CPI0 = 1/IPC0 is the ideal CPI under the assumption of zero-latency memory.
For a single-threaded in-order core, the cost of a remote access is the average latency,
given by (4.3), and the remote rate is given by the MPI value. As throughput is
typically measured in IPC, the reciprocal of CPI, from (4.5) we obtain:

θc =
1

CPI
=

1
1

IPC0
+ MPI · Lc

. (4.6)

The throughput of the entire CMP, Θ, is then calculated as the total performance
of individual cores: Θ =

∑
c θc.

The rate of memory accesses, λc, is the probability for a core to issue a remote
memory request per cycle. λc is proportional to the core throughput and the MPI:

λc = θc · MPI =
MPI

1
IPC0

+ MPI · Lc
. (4.7)

The cyclic dependency between memory latency and traffic

One can observe an intuitive result: the latency of the memory requests traversing
the interconnect depends on the injection rate of requests, due to the network con-
tention. On the other hand, the request rate is determined by the latency, as no
new memory requests are issued if the execution of cores stalls due to the absence
of data. These facts emphasize the cyclic dependency between the latency and rate
of memory requests.

More formally, in order to calculate the buffer delays, equation (4.4) requires the
injection rates, λ, at every input (source) of the interconnect, while equation (4.7)
gives the rates of request generation per core. Note that the injection rates in a
flat interconnect are directly defined by the core rates: for a CMP with N cores,
λ = {λ1, .., λN}. In case of a hierarchical interconnect fabric, the core rates will
correspond to the injection rates at the sources of the cluster-level interconnects,
such as the bus in Figure 2.12(b). The injection rates to the top-level mesh can be
calculated, given the fraction of inter-cluster traffic. The latter is defined by the
probabilities of access to the L3 and the off-chip memory, discussed in section 4.2.
Below we directly consider the dependency of memory latency on the core rates.

We observe the following system of dependencies:

∀c = 1, .., N :

{
Lc = L(λ)

λc = λ(Lc),
(4.8)

where Lc is the average memory latency for core c, defined by (4.3) that depends
on the injection rates of all cores, λ, due to definition of queue delays wq in (4.4).

66

λc is the injection rate for core c, thus depends only on the latency Lc (4.7). The
dependencies (4.3), (4.4) and (4.7) create a system of equations with respect to the
vectors of variables L, λ, and wq. In Section 4.3 we describe the methods to resolve
this system.

4.3 Analytical methods for latency estimation

There are several methods to solve non-linear systems of equations [30]. For example,
the solution of a non-linear system (4.8) can be found using one of the Newton-based
methods, typically available in a generic solver, such as MATLAB [5]. The downside
of this approach is the need for the calculation of function derivatives, which is a
computationally expensive process. Apart from that, this approach only works for
analytical models that can be represented with closed-form equations.

In this section we propose two numerical methods to efficiently resolve the cyclic
dependency (4.8). The first method, fixed-point iteration, delivers the solution with
a desired precision in case of convergence and can be applied to arbitrary configura-
tions. The second approach, based on bisection, always converges for our problem
but finds an approximate solution. However, it resulted to be a good approximation
for tiled homogeneous CMPs (see Section 4.3).

The subgradient method [21] was also considered as an alternative to bisection.
Although it is more accurate, it is also significantly slower. In this work we focus
on the first two methods, since their performance and quality represent the best
compromise for the evaluation of homogeneous architectures.

Fixed-point iteration

The algorithm proposed in this section is a popular numerical method for solving
systems of nonlinear equations [30]. While the theoretical speed of convergence of
this method is relatively slow, it performs well in practice due to its low cost for a
single iteration. Given a system of equations in the form:

x = F (x), (4.9)

where x is the vector of variables and F is the system matrix, and an initial guess
x0, the following iterative procedure can be used to find a solution x∗ (fixed point)
of the system:

xn+1 = F (xn), n ≥ 0.

In our setting, x is composed of the variables {L, λ, wq} and matrix F is defined by
the right-hand terms of the equations (4.3), (4.4) and (4.7). For the initial guess,

67

Analytical
modelInput Output

L0
λ0

L
λ

Li
λi

Li+1
λi+1

Figure 4.5: Iterative calculation of latency and traffic, using analytical model.

x0, we use static latencies (4.2) and compute other values using the same equations:

L0 = L
st
, λ0 = λ(L0), wq,0 = W (λ0).

The benefit of the proposed method is that it does not require closed-form analyt-
ical expressions for latencies. Furthermore, any black-box model for the dependency
of interconnect latency on injection rate can be used. The method hence maintains
the modular structure of hierarchical interconnects and permits plugging indepen-
dent models for different topologies, such as bus (cluster-level) and mesh (top-level).
This makes the approach a valid tool for future interconnect modeling.

Figure 4.5 illustrates the iterative procedure. The initial values for vectors of
variables L0 and λ0 are obtained with an approximation by static latency. The
analytical model (equations (4.7) and (4.3)) is used to improve the estimations of
variables Li and λi at every iteration. The iterative process stops and returns final
values once the required precision for latency and traffic is reached.

As a numerical method, fixed-point iteration is subject to convergence issues. For
a system in the form (4.9), the sufficient condition for convergence is [30]:∑

i

∣∣∣∣∂F∂xi
∣∣∣∣ < 1.

In our case, this requires the latency to grow slowly with the injection rate, and vice
versa. This condition holds for the communication networks that perform far from
their saturation throughput (for instance, see chapter 23 in [39]). Although this is a
sufficient condition, it is not necessary for convergence. In practice we observe that
for the majority of configurations the iterative procedure converges.

A second issue of the fixed-point iteration is due to the analytical models based
on queueing theory: the queueing models work under the assumption of the system
being in the steady-state [81]. This means that for any router with service time
T and the sum of arrival rates to its inputs λ, the following condition must hold:
λT < 1. In other words, there should be no unbounded packet accumulation in the

68

input queues of the router. Unfortunately, this requirement may be not satisfied by
the initial solution. From (4.7) we know that the latency Lc and the memory access
rate λc are inversely proportional. Since static latency is taken as the initial value
of Lc, the total latency may be highly underestimated for the configurations with
high contention. As a result, the initial value of λc will be overestimated and may
violate the steady-state condition.

To handle this situation as well as the configurations for which the fixed-point
iteration diverges, we propose a method based on the bisection search of λc, to find
a reasonable and fast approximation to the solution.

Bisection search for traffic rate

The advantage of the bisection method is that it always converges for our model (due
to the intermediate value theorem [30]). Since every core generates traffic at certain
rate, λc, multidimensional bisection [135] can be applied to find the exact rates.
However, a good approximation to the exact rates can be obtained by using the
less complex unidimensional bisection. By simulation we observed that the traffic
rates of the cores of tiled CMPs with homogeneous clusters change proportionally
to their estimates, obtained by the static latency. Hence, we initialize the vector of
injection rates λ with the values estimated by static latency, and on every bisection
step adjust all rates in the same proportion.

To introduce the bisection more formally, let us rewrite equation (4.7) by isolating
Lc, and using the star symbol to distinguish it from the latency in (4.3):

L∗c(λc) =
1

λc
− 1

MPI · IPC0
. (4.10)

From (4.3) and (4.10) we define the average latencies L(λ) and L∗(λ) as the
functions of the vector λ:

L(λ) =
1

N

N∑
c=1

Lc(λ),

L∗(λ) =
1

N

N∑
c=1

L∗c(λc).

Finally we introduce the latency difference function, F(λ):

F (λ) = L(λ)− L∗(λ).

69

0

10

20

30

40

50

0 0.05 0.1 0.15 0.2

L,
 a

ve
ra

ge
 la

te
n

cy
 (

cy
cl

e
s)

λ, average traffic rate (flits/cycle)

L(λ)

λ (L)

A

Figure 4.6: Behavior of the latency functions L(λ) and L∗(λ).

Figure 4.6 shows the typical behavior of these functions, emphasizing the cyclic
dependency (4.8). To depict a 2D view of this behavior, we plot L(λ) and L∗(λ) as a
function of the average rate Λ = 1

N

∑N
c=1 λc. The curve L∗(λ) shows that the average

rate of memory requests increases as the latency decreases. On the contrary, L(λ)
shows that the average latency increases with the injection rate. The real values for
latency and traffic are defined by the intersection point A of these curves, that can
be found as a root of F (λ). Hence, we use the bisection as a root-finding method,
that does not require the exact knowledge of the function F (λ) and can be used
with any black-box analytical model for latency.

Bisection searches for λ that satisfies the condition |F (λ)| < ε, where ε is the
solution tolerance. The initial range for λ is limited by the traffic, obtained with
static latency: λmin = 0, λmax = λ(Lstc). Assuming the proportionality in variation
of the individual components of λ, all components are updated simultaneously. For

any pair of consecutive iterations i and i + 1, either λ
i+1

min = λ
i

when F (λ
i
) < 0, or

λ
i+1

max = λ
i

when F (λ
i
) > 0. The iteration is continued until the required tolerance

for F (λ) or λ is met [30].

4.4 Extensions of the model

This section describes two extensions of the performance model from Section 4.2.
First, it is shown how to adapt the model to capture the behavior of multithreaded
and out-of-order core architectures. Afterwards, an extension to model the power
consumption is presented.

70

Multithreaded and out-of-order cores

Equation (4.7) can be extended for the case of multithreaded and out-of-order cores.
A multithreaded core can be modeled as a group of single-threaded cores. The latency
for each thread remains Lc, but the total memory rate becomes λmtc = Mλc, where
M is the number of threads.

The difference in modeling an out-of-order core is that the remote memory access
does not force the core to stall, hence the effective remote latency Lc decreases [64].
Following the techniques in [53], we make two adjustments to capture this behavior
in our model. First, the authors in [53] consider the short latencies of L1 and L2 to
be hidden by instruction reordering. In our model, it can be modeled by excluding
the flows between the core and the first two levels of local cache from the memory-
flow set: FOoO(c) = F (c) \ {f(c,L1), f(c,L2)} (see Fig. 4.2). Equation (4.3) is used
with the new FOoO(c) to calculate the average total latency.

The second adjustment to the model is done by considering memory-level par-
allelism of the workload (MLP), which is the average number of memory requests
issued in parallel [35]. When a core issues several requests in parallel, the latency
penalty is amortized due to overlapping of the requests. We capture this fact by
adjusting the MPI value to reduce the fraction of memory requests per instruction
(and hence the penalty):

MPIOoO =
MPI

MLP
.

This new value is used with (4.6) and (4.7) to obtain the throughput and traffic of
the out-of-order cores.

Power model

The analytical model can also be extended to estimate power consumption. In this
work we model power using a first-order approximation of leakage and dynamic
power for individual components, such as cores, caches and interconnects. Leakage
power of component c is proportional to the unit leakage pleak,c and the area Ac:

Pleak,c = pleak,c · Ac.

Dynamic power is primarily defined by the utilization of components. For cores,
it is proportional to the throughput of the core θc, the energy of executing single
instruction Einst,c, and the core frequency Freqc:

Pdyn,c = Einst,c · θc · Freqc.

71

Similarly, the cache power depends on the number of accesses to the cache per
cycle (e.g. traffic), Λc, and the energy per access Eacc,c:

Pdyn,c = Eacc,c · Λc · Freqc.

Dynamic power for the components of on-chip interconnect, such as routers and
links, is proportional to the traffic through the component, Λc, and the energy per
flit transmission Eflit,c:

Pdyn,c = Eflit,c · Λc · Freqc.

Here the areas Ac and the performance metrics θc and Λc of the components are
calculated by the performance model. Frequency is a parameter of exploration. To
find the power and energy coefficients we employ the data obtained from [117] for
the cores, CACTI 5.3 model [2] for caches and Orion 2.0 model [76] for on-chip
routers and links.

4.5 Experimental results

In this section we describe several experiments used to validate the proposed ana-
lytical method for efficiency and quality. Validation is performed with respect to
simulation. Next subsections describe our simulation environment and the experi-
ments.

Simulation environment

A cycle-accurate simulator for hierarchical CMP interconnect networks has been
designed [45] using BookSim 2.0 [39] as underlying infrastructure. The simulator
can model the contention of the interconnect network at flit level.

Three enhancements were made to BookSim. First, the probabilistic traffic injec-
tion patterns were replaced by state-machine models for cores, caches and memory
controllers. The cores inject memory requests according to parameters character-
izing the average workload of the system. Cores are stalled when they are waiting
for responses from memory. Both in-order and out-of-order cores can be modeled.
Memories accept requests from cores and send replies after a predefined latency.

Support for hierarchical topologies was added, thus enabling the simulation of
multi-level interconnect networks with an arbitrary number of levels. Finally, models
for bus and multibus topologies were also created.

Each simulation was run long enough to obtain a 2% relative error (the same value
used for the analytical model) with a 95% confidence degree. The 95% confidence
interval is guaranteed using the batch means method [55].

72

Table 4.2: Performance comparison of analytical methods.

Test Mesh
Content. Num. of Runtime (sec)
latency var./eqn. MATLAB Fixed-point Bisection

T1 2× 2 5% 236 0.023 0.001 0.001
T2 4× 4 13% 1224 1.412 0.001 0.002
T3 6× 6 8% 3108 30.831 0.002 0.003
T4 8× 8 12% 6128 408.539 0.006 0.010
T5 10× 10 23% 10620 > 1h 0.010 0.012
T6 10× 10 46% 10620 > 1h 0.022 0.015
T7 10× 10 55% 10620 > 1h NA 0.016

Efficiency of the model

In this section we compare the efficiency of the three analytical methods for resolv-
ing the cyclic dependency presented in Section 4.3: solver (MATLAB), fixed-point
iteration (FP) and bisection (BS). We generated a set of CMPs having flat mesh
topologies with various dimensions and contention degrees. The reason to select
flat interconnects is to demonstrate that even for rather simple architectures the
obtained system of equations is hard to be tackled in a straightforward way.

The test cases and the results are summarized in Table 4.2. The first three
columns show the test name, mesh dimension and the ratio of contention latency
with respect to the average total latency. The fourth column represents the number
of variables and equations in the obtained system. The fifth column shows the time
required to find a solution using the general nonlinear solver provided by MATLAB.
The last two columns show the time consumed by the FP and BS methods. For
each test case the three methods converged to the same solution, within the given
tolerance region of 2%.

Test cases T1 to T5 accentuate how the MATLAB time grows with the mesh
size. The solution of T5-T7 could not been found within an hour. Clearly, this
straightforward method is not acceptable for efficient exploration of CMPs.

The purpose of test cases T6 and T7 is to compare the FP and BS methods.
T6 has higher contention than T5. As a result, FP takes more time to converge
than BS. T7 has even more contention, resulting in a violation of the steady-state
assumption for the queueing model (see Section 4.3). Hence, FP can not be used in
this case, so BS is the only option.

We observed that FP typically outperforms BS when the contention component
of latency is moderate, i.e. does not exceed about 30-40% of the total latency. Hence
we choose to run FP first and use BS only when the former method fails.

73

Table 4.3: Parameters of the exploration space S1.

Parameter S1 values
Chip area 350 mm2

Core area 1.25 mm2

Core ideal IPC 2.0
L1 size 64, 128 Kb
L2 size 128 Kb to 1 Mb
Mesh dimensions 2×2 to 10×10
Off-chip memory latency 100 cycles
Type of cluster interconnect Bus, uni-ring, bi-ring
Interconnect link width 256 bits
Workload MPI 0.25
Workload MLP 1.25

Table 4.4: Cache area-performance model.

Cache size 64K 128K 256K 512K 1M 2M 4M 8M
Area (mm2) 0.063 0.125 0.25 0.5 1.0 2.0 4.0 8.0
Latency (cycles) 2 3 4 5 6 7 8 9

Quality of the model

To validate the quality of the model in estimating performance, we carry out a CMP
design space exploration experiment. For every configuration of the design space we
obtain the throughput using both analytical modeling and simulation. The search
space in this experiment is made intentionally small in order to allow an exhaustive
simulation of all configurations. With this experiment we demonstrate that the
analytical model selects a set of best-throughput architectures very similar to the
simulator, but in much shorter time.

The parameters of the exploration space S1 for this experiment are listed in
Table 4.3. The value chosen for chip area is typical for CMP exploration studies [107,
32]. The estimates for the area of each component are derived from the parameters
of the Intel Core 2 Duo E6400 processor [6]. The ideal IPC of core is obtained
from [117]. We also assume that the core is out-of-order (OoO).

We scale the core area and memory density down to 16nm to allow hundreds of
cores within the chip area. Table 4.4 shows the area-performance model for cache
memory.

74

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4

M
is

s
R

a
ti

o

Cache Size (Mb)

Figure 4.7: Cache miss model of soplex application.

Without loss of generality, we assume all cores to be running the soplex appli-
cation from SPEC CPU2006. Figure 4.7 depicts the miss ratio produced by the
application as a function of the cache size, obtained through simulation.

The number of cores and cache sizes are varied to explore the trade-off between
computing units and on-chip memory. Three types of local interconnects are con-
sidered inside the clusters: buses, uni- and bi-directional rings. The exploration of
the mesh dimensions compromises the number of clusters and processors per cluster.
The maximum power of all configurations is limited to 130W .

Given these parameters, our framework generates 2095 feasible configurations.
The simulation of all configurations takes about 18 hours, while the analytical model
takes 48 seconds, delivering more than a 1300x speedup. The best configuration
obtained by simulation has a throughput of 72.07 IPC. This architecture has a 2×2
mesh (4 clusters with bi-ring interconnect, 21 cores per cluster), a total of 84 cores
with 128Kb L1, 1Mb L2 private caches and 150Mb shared L3 cache.

In Fig. 4.8 we sort the configurations by throughput horizontally, as estimated by
simulation. One can see that the analytical model tracks the simulation curve with
reasonable accuracy. The analytical model underestimates contention and, for this
reason, the discrepancy with simulation increases with higher values of contention.
Configurations with similar throughput may have different contention values, hence
the noisy behavior of the modeling curve. The average absolute error in throughput
is 7.7%, which corresponds to the error reported by the latency model [103].

The worst-case error for all nearly-optimal configurations does not exceed 10%
(low-error zone), although it grows as we move away from the optimum. This is
explained by the fact that architectures with balanced interconnects tend to have
higher throughput and less contention. The precision of the analytical model drops

75

0

10

20

30

40

50

60

70

80

1

6
7

1
3

3

1
9

9

2
6

5

3
3

1

3
9

7

4
6

3

5
2

9

5
9

5

6
6

1

7
2

7

7
9

3

8
5

9

9
2

5

9
9

1

1
0

5
7

1
1

2
3

1
1

8
9

1
2

5
5

1
3

2
1

1
3

8
7

1
4

5
3

1
5

1
9

1
5

8
5

1
6

5
1

1
7

1
7

1
7

8
3

1
8

4
9

1
9

1
5

1
9

8
1

2
0

4
7

2
1

1
3

T
h

ro
u

g
h

p
u

t
(I

P
C

)

Configurations sorted in descending order of throughput

Modeling

Simulation

Low error (< 10%)

Figure 4.8: Throughput comparison for analytical model and simulation.

when the contention increases, hence the error grows for configurations which are
far from the optimum. Since the design exploration problem is aimed at selecting
configurations with the highest throughput, this loss of precision is not critical. If
required, the quality of the model can be further improved by considering alternative
analytical models in conjunction with the iterative techniques proposed in this work.

What really matters for exploration are the relative, rather than the absolute
values of throughput. When exploring a huge design space we would like to dis-
card suboptimal architectures and keep a moderate subset of promising solutions.
These configurations can be further simulated to select the best one. Hence, we
are interested in comparing the order of configurations by the highest throughput, as
delivered by the analytical model and the simulation. Here is where our technique
demonstrates very accurate results: Figure 4.9 shows the comparison for the best-
throughput order. To make the picture illustrative, we only consider the 50 best
configurations, although this tendency is maintained for the whole set of configu-
rations. The horizontal axis specifies the number N of best configurations chosen
by simulation. The vertical axis indicates the minimum number of best configura-
tions chosen by the analytical model that include the N best ones by simulation.
For example, the point with coordinates (1;1) means that the best configuration by
simulation is also the best one by modeling. The rightmost point on the plot (50;60)
means that the 60 best configurations by modeling include the 50 best by simula-
tion. This is actually a very accurate result for the analytical model, considering
that two thousand configurations are compared.

76

(5; 33)

(9; 61)

(1; 1)

(8; 22)

(50; 60)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

B
e

st
 c

o
n

fi
g

u
ra

ti
o

n
s

b
y

 m
o

d
e

li
n

g
 t

h
a

t
in

cl
u

d
e

N

Number of best configurations by simulation (N)

Model with static latency

Model with total latency

Ideal model (Simulation)

Figure 4.9: Order comparison for analytical model and simulation.

We also demonstrate that estimations based on static latency deliver a deficient
order. It biases the exploration towards configurations with large bus-based clus-
ters, given the fact that the long contention latency in the buses is not considered.
The point (5;33) in Figure 4.9 means that the fifth best configuration is on the 33rd
position when not considering contention. Note that modeling with only static la-
tency fails to discover the four best configurations due to the power constraint. In
the absence of contention, the latency (4.3) is underestimated, while the through-
put (4.6) and traffic (4.7) are overestimated, resulting in overestimation of power
(see Sect. 4.4). The problem could be avoided by setting the power constraint to
a higher value. However, a higher power limit would bring new configurations into
consideration, aggravating the deviations in the order with respect to simulation.

Scalability of the model

To investigate the scalability of the analytical model, we generated several CMPs
with mesh-of-buses topology and similar structure. Each cluster contains four com-
ponents (three cores and one cache module) and a bus interconnect. The top-level
mesh dimensions are varied from 2×2 to 16×16, producing CMPs with 16 to 1024
components. For each test case we executed both fixed-point and bisection and com-

77

0.001

0.01

0.1

1

10

100

1000

0 100 200 300 400 500 600 700 800 900 1000

R
u

n
ti

m
e

 (
se

co
n

d
s)

Number of components in CMP

Simulation

Modeling

≈700-component

CMP in 1 second

Figure 4.10: Performance comparison of the analytical model and simulation.

pared the average runtime value of these two methods with simulation. Figure 4.10
shows the comparative results.

Our probabilistic simulator demonstrates very good performance. Simulation of
the 16-component CMP takes just 2.5 seconds, and for the 1024-component CMP
about 600 seconds. However, the analytical model yet brings about three orders
of magnitude improvement in efficiency. For the 16- and 1024-component CMPs
modeling took only 0.002 seconds and 3.3 seconds respectively. In one second our
method handles a CMP with nearly 700 components. This result justifies high
scalability of the proposed method and its ability to efficiently explore architectures
with many hundreds of cores.

4.6 Conclusions

Analytical models for CMP performance are crucial to make the architectural ex-
ploration possible. This work shows that such models need to incorporate the con-
tention factor in order to adequately estimate performance. We have presented an
analytical method to model contention of hierarchical interconnects, by resolving
the cyclic dependency between the memory latency and traffic.

The important conclusions drawn from the experiments are:

• The proposed numerical methods for resolving the cyclic dependency (4.8)
demonstrated several orders of magnitude improvement in performance com-
pared to a generic solver. The approach was shown to be suitable for efficient
analytical modeling of CMP architectures.

78

• The scalability of the model was illustrated by estimating the performance of
a CMP with nearly 700 components (cores, memories, routers) in one second.

• The estimation of CMP throughput using the approximation by static latency
(i.e. without considering the interconnect contention) resulted in a poor rank-
ing, which did not match well with simulation.

• The exploration of the design space, using the proposed model as an archi-
tecture estimator selected a very similar set of best-throughput architectures
as simulation. Furthermore, modeling delivered more that 1300x speedup, as
compared to simulation.

The techniques described in the following chapter show how this model can be
combined with an intelligent search strategy to avoid exhaustive exploration.

79

Chapter 5

Metaheuristics for Architectural
Exploration

The goal of this chapter is to propose a methodology for efficient architectural ex-
ploration of large-scale hierarchical CMPs within vast design spaces. Efficiency is
achieved by using analytical modeling instead of simulation, and by replacing the
exhaustive exploration by an intelligent search strategy. The proposed approach is
built on top of the analytical power-performance model presented in Chapter 4 and
performs an efficient metaheuristic-based search that does not require simulation.
To the best knowledge of the author, this work becomes the first one to integrate
an analytical model for CMP with metaheuristic optimization.

Architectural exploration for CMPs must be performed on a highly discrete design
space. For this reason, hill-climbing strategies for combinatorial optimization are a
promising approach, as it was shown in [77]. Two probabilistic metaheuristics based
on extensions of hill climbing are considered: Simulated Annealing [80] and Extremal
Optimization [24]. SA has been successfully applied in many design automation
problems and EO has recently emerged as a very competitive alternative. For our
problem, both heuristics exhibit similar performance and results, although for some
design spaces one may behave more efficiently than the other. This chapter explains
the customization of both methods for the exploration problem.

5.1 The Exploration Problem

The exploration problem addressed in this chapter assumes tiled hierarchical CMP
architecture, the benefits of which for shortening the CMP design cycle have already
been discussed in the previous chapters. Tiled architectures are organized as arrays
of identical clusters, each one incorporating one or several computing cores, caches
and an on-chip interconnect. Figure 5.1 shows an example of a tiled hierarchical

81

M
C

R R R R

R R R R

R R R R

MC

MC

M
C

C2 L2

C1
L2

C1
L2

L3

R
NI

Bi-Ring

X = 4
Y = 3
I = “Bi-ring”
N1 = 2
N2 = 1
L11 = 64K
L21 = 512K
L12 = 128K
L22 = 1M

Figure 5.1: A configuration example and its variables.

Table 5.1: Configuration parameters for 2 types of cores.

Name Description

X, Y Dimensions of the top-level mesh

I Type of interconnect in a cluster (e.g. bus, ring)

N1, N2 Number of the first/second-type cores in a cluster

L11,L12 L1 cache size for the first/second type of cores

L21,L22 L2 cache size for the first/second type of cores

configuration, comprised of a 2D array (mesh) of clusters, where every cluster has
two C1 and one C2 cores with private L2 caches, a shared L3 cache, a router
of the inter-cluster interconnect network and a bi-directional ring for intra-cluster
communication.

Consider an exploration design space S that contains all possible architectural
configurations. Each configuration is uniquely determined by the values of the vari-
ables shown in Table 5.1. These variables include dimensions of the top-level mesh
(X, Y), type of interconnect within a cluster (I), and for every type of core i, the
number of cores per cluster (Ni) and the sizes of the L1 and L2 caches (L1i, L2i). Ta-
ble 5.1 shows the complete list of variables when the design space contains two types
of cores. The process of adding new variables to the design space is straightforward.

Figure 5.1 also enumerates the design variables and their values for the consid-
ered configuration. Note that while the listed variables are the independent (free)
variables of the exploration problem, the size of L3 cache is chosen to be a depen-
dent variable. In other words, L3 cache fills all the area which is left after placing
the cores, private caches and interconnect. For this reason, the size of the L3 cache
is computed using the area constraint and is not a free variable. An alternative
formulation where L3 is a free variable is also possible. The number of memory
controllers is kept constant (we assume one MC at every side of the mesh).

82

The problem of architectural exploration consists in finding a configuration (or
several configurations) to optimize the selected design metrics, subject to a set of
constraints. For simplicity, in this work we focus on the following formulation: Max-
imize the overall chip performance (IPC), subject to the resource budget, i.e. area
and power constraints. The methodology described here applies to other formula-
tions of the problem and also allows the incorporation of additional metrics, such
as thermal and other physical parameters.

To enforce the satisfaction of constraints we use penalty functions. For every
constrained metric the objective is penalized once the metric value exceeds the
constraint value.

Let us consider an area constraint indicating that the total area cannot exceed
the value MaxArea. We define the relative excess of Area as

Ex(Area) =
max(0,Area−MaxArea)

MaxArea
. (5.1)

The excess is zero when the area constraint is satisfied. Otherwise, it gives a relative
degree of area violation. Next, we define the area penalty in the objective function:

Pen(Area) =
1

1 + λ · Ex(Area)
, (5.2)

where λ is a penalty factor that grows as exploration advances. This decreases the
probability of accepting infeasible configurations as the exploration evolves towards
the final solution. Now consider the objective function in the form

Obj = IPC · Pen(Area).

If the area constraint holds (Area ≤ MaxArea), then Pen(Area) = 1 and the objec-
tive is equal to the IPC of configuration. If Area > MaxArea, then Pen(Area) < 1
and the IPC value in the objective function is degraded.

Penalty functions in the form of equation (5.2) allow adjusting the objective of
infeasible configurations with respect to the violation degree. This mechanism makes
the design space smoother and allows leaving the feasibility region temporarily,
rather than stopping at its boundaries. When the exploration is out of the feasibility
region, the penalty grows with the distance to the region, thus forcing the exploration
to progressively return to the feasibility region.

The complete objective function used in this work contains the penalty terms for
area, power and aspect ratio of the top-level mesh, AR. These terms are defined
similar to (5.2), so the final equation is:

Obj = IPC · Pen(Area) · Pen(Power) · Pen(AR). (5.3)

83

One of the main properties of the exploration approach is its scalability, i.e. the
ability to efficiently discover promising configurations within vast design spaces.
Exhaustive exploration is therefore not feasible, and in this work metaheuristic-
based search is considered as a strategy to achieve the efficiency in exploration. In
the following sections customization of metaheuristics for the exploration problem
is proposed.

5.2 Transformations

The concept of configuration neighborhood has a key importance for metaheuristics.
The neighborhood of some configuration C is defined using a set of rules to obtain
neighbors from C. We refer to these rules as transformations. More precisely, every
transformation identifies one or several variables of C that are modified to create a
neighbor.

As an example, consider the IncX transformation, which increments the X-
dimension of the top-level mesh by one. If C is a configuration with a 4×3 mesh
(as in Figure 5.1), then IncX defines a neighbor of C which is a 5×3 mesh with the
same values for the other variables.

Selecting the neighborhood size is another important aspect of metaheuristics.
Small neighborhoods may cause metaheuristics to get stuck in a local optimum and
lead to suboptimal solutions. Large neighborhoods may become the reason for slow
advance through the design space and a significant increase of the algorithm execu-
tion time. The neighborhood size for C is primarily determined by the cardinality
of the transformation set. Hence, an important question to solve is to find a mod-
erately sized set of transformations to balance performance and quality. Another
property that must be guaranteed is the reachability of any configuration C ∈ S
from any other C0 ∈ S, via a sequence of transformations.

Three types of transformations are proposed for efficient exploration, as described
below. To provide a visible example of the transformation set, Table 5.2 enumerates
all transformations for two types of cores. Section 5.5 presents an example of how
different types of transformations have an impact on the efficiency of the search.

First-Order Transformations

First we define a group of basic transformations, each affecting only one variable of
the configuration. They are referred to as first-order transformations. With every
variable V (from Table 5.1) we associate a pair of transformations, IncV and DecV,
that increase and decrease the value of V to the next available value in the domain,
respectively. For example, if X is allowed to take any integer value between 2 and
10, then the IncX transformation applied to a 4×4 mesh (Fig. 5.2(a)) will produce

84

Table 5.2: List of transformations for 2 types of cores.

First-order Second-order
IncX DecX IncX-DecY IncY-DecX

IncY DecY IncX-DecN1 IncN1-DecX

IncI DecI IncX-DecN2 IncN2-DecX

IncN1 DecN1 IncY-DecN1 IncN1-DecY

IncN2 DecN2 IncY-DecN2 IncN2-DecY

IncL11 DecL11 IncN1-DecN2 IncN2-DecN1
IncL12 DecL12 Reclustering
IncL21 DecL21 RecIncX RecDecX

IncL22 DecL22 RecIncY RecDecY

a 5×4 mesh (Fig. 5.2(b)). DecY applied to a 4×4 mesh will produce a 4×3 mesh
(Fig. 5.2(c)). The other variables remain unchanged.

For the other variables, the next available values may be different. For example,
the next available value for a memory of 128KB can be 256KB. The first-order
transformations are summarized in the left column of Table 5.2. Every type of core
implies independent transformations. For example, if there are two different types
of cores, then IncN1 and IncN2 are different transformations, increasing the number
of cores of either first or second type.

An order for interconnect types can be assigned according to some criteria, such
as an increase in bisection bandwidth. Hence, the next value for the current inter-
connect type will be another type with the increased bisection bandwidth. As an
example, a bus will be followed by a uni-directional ring, which will be followed by
a bi-directional ring.

Transformations may also produce illegal configurations. For example, if X has to
be in between 2 and 10, then DecX applied to a 2×2 mesh will produce a configuration
which is outside the design space. In this case DecX is an infeasible transformation
and will not be considered when exploring the neighborhood of a 2×2 mesh.

(a) Original: 4×4 (b) IncX: 5×4 (c) DecY: 4×3 (d) IncX, DecY: 5×3

Figure 5.2: Transformations applied to a 4x4 mesh.

85

It is obvious that first-order transformations guarantee the reachability between
any pair of configurations. Indeed, if configurations C0 and C differ in some variable
V , then a sequence of either IncV or DecV will equalize the values.

Second-Order Transformations

First-order transformations still define small neighborhoods that may impede the
search to escape from local optima with high probability and increase the meta-
heuristic running time. This fact is particularly important for highly constrained
design spaces, when the penalty for violating a constraint is too high1.

Consider again the configuration with 4×4 mesh shown in Figure 5.2(a). IncX

produces a 5×4 mesh with 25% more area and a low probability to be accepted if
the area penalty is high (Fig. 5.2(b)). On the other hand, DecY yields a 4×3 mesh
which has 25% less area (and hence, less computing cores and cache, Fig. 5.2(c)).
It is not likely to be accepted either, since the performance of this configuration is
significantly lower, compared to the original solution. However, if we apply both
transformations simultaneously, we obtain a 5×3 mesh, as shown by Fig. 5.2(d).
This solution has comparable area and performance, and hence higher probability
to be accepted.

We refer to the transformations that perform a simultaneous update of two vari-
ables in the current configuration as second-order transformations. Rather than
proposing transformations for all pairs of variables, we select a small group of vari-
ables, which we observe to enhance the neighborhood effectively. In particular, we
create second-order transformations for the mesh dimensions (X and Y) and the
number of cores of each type (Ni). For any pair of these variables, one is increased,
while the other is decreased. An example of the IncX-DecY transformation was
shown in Fig. 5.2(d). The right column of Table 5.2 enumerates the second-order
group.

Reclustering

Finally we introduce the third type of transformation, reclustering, which decreases
the search time notably, as it extends the neighborhood with promising configura-
tions that were previously achievable only after a sequence of steps.

The idea of reclustering is illustrated in Fig. 5.3. Assume the original configura-
tion is a 2×2 mesh with 30 cores per cluster, i.e. 120 cores in total (Fig. 5.3(a)).
The IncX transformation will deliver a 3×2 mesh, as in Fig. 5.3(b). However, as
the number of cores per cluster has not changed, the new configuration will have
180 cores with a 50% area increase. This is likely to cause unacceptable area and

1The mechanism of penalty functions used for constraint modeling is explained in section 5.1.

86

30 30

30 30

(a) 2×2 mesh
with 120 cores

30 30 30

30 30 30

(b) 3×2 mesh with
180 cores

20 20 20

20 20 20

(c) 3×2 mesh
with 120 cores

Figure 5.3: Reclustering of the 2×2 mesh.

power penalties and prevent the exploration from ever escaping the 2×2 size neigh-
borhood. To compensate, we propose adjusting the number of cores accordingly, so
that the total number of cores remains constant. In the example, the new number
of cores per cluster becomes b30·2

3
c = 20. Figure 5.3(c) shows the new configuration.

We refer to this procedure as reclustering, as it permits changing the number of
clusters without causing strong penalties for any of the metrics.

Reclustering affects k + 1 variables, where k is the number of core types in the
design space. Indeed, either variable X or Y is updated to resize the mesh while all
Ni variables (i = 1, .., k) are updated to adjust the number of cores. There are four
reclustering transformations, which are defined by either increasing, or decreasing
any of the mesh dimensions. They are listed in the right column of Table 5.2.

5.3 Exploration with Simulated Annealing

The Simulated Annealing (SA) [80] algorithm is outlined in procedure 1. It starts
with some initial configuration, that can be chosen randomly. We typically assign
the lowest feasible value for every variable of configuration to prevent the constraints
from being violated.

The algorithm implements a conventional annealing schedule. Given an initial
temperature Tinit and cooling factor α < 1, a new configuration (NewC) is generated
(lines 5-6). It may be accepted probabilistically, depending on the current tempera-
ture Tcur (line 7). The value of Tcur decreases as the system evolves in time (line 10).
Penalization weight λ grows in time to decrease the probability of accepting infea-
sible solutions (line 11). For every temperature, a number of moves that depends
on the size of the problem (k = P , the total number of available transformations)
is generated.

NewC is obtained by selecting some transformation ti and applying it to CurC.
The probability distribution for the selection of ti can be specified by the user. In
this work we used uniform probabilities for all ti and selected the transformation to
be applied at every iteration randomly.

87

Procedure 1 SimulatedAnnealing

1: CurC← BestC← ”Some initial solution”
2: Tcur = Tinit
3: while improvement in last k iterations do
4: for P iterations do
5: select ti randomly with uniform probability
6: generate NewC by applying ti to CurC
7: if Accept(CurC, NewC) then CurC← NewC
8: if Obj(CurC) > Obj(BestC) and Feasible(CurC) then BestC← CurC
9: end for

10: Tcur = α · Tcur
11: λ = λ/α
12: end while
13: return BestC

Procedure 2 Accept(CurC, NewC)

1: if Obj(NewC) > Obj(CurC) then return true
2: else return true with probability Pa, defined by (5.4)

The new configuration is accepted probabilistically according to Procedure 2.
Configurations with better objective value (calculated using (5.3)) are always ac-
cepted (line 1), other configurations are accepted with probability Pa:

Pa = e−γ, γ =
Obj(CurC)

Obj(NewC)
· 1

Tcur

. (5.4)

This probability depends on two exponent factors. The former avoids the ac-
ceptance of solutions with high degradation of the objective function. The latter
increases the probability of hill climbing as the temperature cools down.

We use a commonly applied strategy for defining the initial temperature,
Tinit [134, 17]. Running the algorithm for P iterations and always accepting the
new configurations, we calculate the average cost variance as:

∆ =
1

P

P∑
i=1

Obj(CurC)i
Obj(NewC)i

.

This value is further used in (5.4) in place of the objective ratio to evaluate Tcur

which gives a high initial acceptance probability, e.g. around 0.95.

88

Note that the best solution is updated only when the CurC is feasible as given
by the Feasible(CurC) procedure in line 8. This procedure returns true if and
only if CurC satisfies all constraints (for area, power and aspect ratio in our case).

5.4 Exploration with Extremal Optimization

Extremal Optimization (EO) [24] is inspired by the principle of evolution in ecosys-
tems, which were observed to evolve by selecting against its worst components (or
features). We draw here an analogy with the exploration problem, by considering
every configuration to be determined by the conjunction of its variables, P , similarly
to the components (features) of the ecosystem.

Given a configuration, EO evaluates the fitness of its variables by comparing the
current objective value with that of the neighbors, defined by the transformation set.
A variable is well-fit if the configuration objective can not improve significantly by
applying any of the transformations changing this variable. EO focuses on improving
the status of variables with low fitness.

Since there are transformations that update several variables simultaneously, it is
more convenient to work with the transformation fitness. As opposed to variables,
well-fit transformations are those that cause higher improvement of the objective,
when applied. More precisely, given the current configuration CurC, the fitness of
transformation ti is:

Φ = Obj(NewC), (5.5)

where NewC is the configuration obtained by applying ti to CurC. To maximize
the objective function, at every iteration EO algorithm selects a transformation with
high fitness and applies it to the current configuration.

Local optima are avoided by randomizing the selection process. The transforma-
tions are ranked according to their fitness in descending order (the best transforma-
tions have lower indices in the rank). The transformations are randomly selected by
some probability distribution biased towards the ones with highest fitness values.
The power-law distribution is a typical one for EO. For example, if the system has
N transformations ranked from 1 to N in descending order of their fitness, the index
i of the selected transformation can be calculated as follows:

i = dN · pτe (5.6)

where p is a random number obtained from a uniform distribution in the interval
[0, 1] and τ is the power law exponent.

89

Procedure 3 ExtremalOptimization

1: CurC← BestC← ”Some initial solution”
2: while some improvement in the last k iterations do
3: local search: evaluate P randomly selected transformations and accept only

those that improve the Obj(CurC);
4: sort all transformations in descending order of Φ;
5: select ti according to equation (5.6);
6: apply ti to CurC ;
7: if Obj(CurC) > Obj(BestC) and Feasible(CurC) then BestC← CurC ;
8: λ = λ · βτ ;
9: end while

10: return BestC

The EO algorithm is described in Procedure 3. After the definition of an initial
solution, the execution is continued until no further improvement is observed during
a certain number of iterations.

In this work we use a variation of EO called Continuous Extremal Optimiza-
tion [140]. This variant combines EO with a local search at the beginning of each
iteration, contributing to improve the objective value of the final solution and the
speed of the algorithm. Local search implements hill climbing by sequentially trying
P random transformations and accepting only those that improve the objective.

To select a transformation ti, all transformations are sorted according to their
fitness value (5.5). The power law described by equation (5.6) is used to randomize
the selection. Finally ti is accepted unconditionally and BestC is updated if the
objective is better than any other configuration visited so far. Penalization weight
λ increases as the system evolves, as in the SA algorithm. Since EO does not have
the notion of temperature, we select a geometric law to update λ (line 8), where β is
a constant, slightly greater than one (such as 1.01). The selection of β has to assure
that λ grows slow enough for an efficient exploration, which implies a periodical
acceptance of infeasible configurations.

5.5 Experimental results

In this section we present the experiments used to validate the quality and efficiency
of metaheuristics. For this purpose we consider a substantially large search space S2,
containing about 1.5 · 109 configurations. The parameters of S2 and their comparison
with the parameters of space S1 from previous chapter are given in Table 5.3.

There are three types of cores available in S2, which is the major reason for
the dramatic explosion in the number of configurations. Figure 5.4 plots the ideal

90

Table 5.3: Parameters of the exploration spaces S1 and S2.

Parameter S1 values S2 values
Core types C2 C1, C2, C3
L1 size 64, 128 Kb 64, 96, 128 Kb
L2 size 128 Kb to 1 Mb 64 Kb 1 Mb
Mesh dimensions 2×2 to 10×10 2×2 to 16×16
Chip area 350 mm2

Memory density 1 mm2 / Mb
Off-chip memory latency 100 cycles
Type of cluster interconnect Bus, uni-ring, bi-ring
Interconnect link width 256 bits
Workload MPI 0.25
Workload MLP 1.25

performance of every type of core (C1, C2 and C3) as a function of the core area.
The parameters for C2 are obtained from [117], whereas the parameters for C1 and
C3 are generated by applying Pollack’s rule [116] to the parameters of C2. We also
assume that the smallest core, C1, implements in-order execution (IO), while the
other two implement out-of-order execution (OoO). The models for in-order and
out-of-order architectures were explained in Section 4.4.

Additional values for cache sizes and mesh dimensions also contribute to the
expansion of the design space.

Without loss of generality, we assume all cores to be running the same application.
For this study we select the soplex application from SPEC CPU2006. Figure 5.5
depicts the miss ratio produced by the application as a function of the cache size.

1.5

1.75

2

2.25

2.5

2.75

0.75 1 1.25 1.5 1.75 2 2.25

Id
e

a
l

IP
C

Area (mm2)

C1 (IO)

C2 (OoO)

C3 (OoO)

Figure 5.4: Core types for S1 and
S2 exploration.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4

M
is

s
R

a
ti

o

Cache Size (Mb)

Figure 5.5: Cache miss model
of soplex application.

91

There are several ways how exploration can be performed for multiple applica-
tions. If all cores can execute only one type of application simultaneously, which can
change in time though, one can evaluate a configuration with a weighted objective
function. For example, if for two applications A1 and A2 some configuration C deliv-
ers performance IPC(A1) and IPC(A2) respectively, then the aggregate performance
for C can be defined as IPC(C) = α · IPC(A1) + β · IPC(A2), where α and β are the
user-defined weights.

In the other scenario, several applications can be executed in parallel. For this
case, the applications have to be distributed among the cores assuming some map-
ping algorithm, and the exploration procedure can be applied without any change.

Evolution of search in time

Figure 5.6 shows the evolution of the best throughput discovered by the heuristics
as the exploration evolves. To emphasize the need for intelligent search, we compare
SA and EO with a naive Random Best (RB) strategy. RB simply generates random
solutions, without tracking any history, keeping only the best known result.

The exploration is performed with a maximum power Pmax = 180W , which was
found to be a reasonable value to explore the trade-off between throughput and
power. The metaheuristic parameters are α = 0.995 and τ = 1.6.

One can observe that SA discovers the optimum2 (103.26 IPC) in about 160
seconds. EO reaches the optimum in just 80 seconds. However, for RB it takes
almost 400 seconds to find a configuration with 85.71 IPC, 17% worse than the
optimum. The exhaustive exploration of all configurations in S2 would have taken
more than 100 days using a single-core machine. These facts justify the importance
of the metaheuristics in the exploration.

Importance of selecting the set of transformations

Next, the importance of several transformation types is demonstrated. Figure 5.7
shows the evolution of the best discovered throughput in time (using Simulated An-
nealing), when the power constraint is set to 180W. The dashed line shows an explo-
ration trace for the case when only the first-type transformations are considered. It
takes approximately 600 seconds to reach the optimum solution of 103.26 IPC. The
solid line depicts a trace for the case when all three transformation types are used.
Time to reach the optimum solution drops to 120 seconds, delivering a 5x speed-up.

2We have computed the optimum by exhaustively running the model for all configurations in
S2. A high-performance computing cluster was used, which effectively reduced the exploration
time to five days.

92

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

B
e

st
 t

h
ro

u
g

h
p

u
t

(I
P

C
)

Exploration runtime (sec)

Simulated Annealing

Extremal Optimization

Random Best

103.26 IPC

85.71 IPC

Figure 5.6: Evolution of best discovered throughput in time.

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000

B
e

st
 t

h
ro

u
g

h
p

u
t

(I
P

C
)

Exploration runtime (sec)

All transformations

First-order transformations

103.26 IPC

Figure 5.7: Evolution of the exploration objective in time for different sets of trans-
formations.

93

70

80

90

100

110

120

130

100 120 140 160 180 200 220 240

T
h

ro
u

g
h

p
u

t
(I

P
C

)

Power (W)

6x5, Bi-Ring, 4C2

5x4, Bi-Ring, 6C2

5x3, Bi-Ring, 8C2

4x3, Bi-Ring, 10C2

4x2, Bi-Ring, 15C2

3x2, Bi-Ring, 20C2

6x5, Bus, 4C2

7x4, Bus, 3C2+1C3

7x4, Bus, 4C2

6x5, Bus, 2C1+2C2

6x4, Bus, 3C1+2C2

Figure 5.8: Power-performance trade-off in S2.

This example emphasizes how the second-type and reclustering transformations im-
prove the performance of metaheuristic-based search.

Power-performance exploration

This study shows how our model can be used to explore power-performance trade-
offs. Figure 5.8 depicts configurations with best throughput (Y-axis) discovered
by metaheuristics with different power budgets (X-axis). We start with the power
limit that delivers highest performance, and reduce the budget in amounts of 10W
until we reach 130W . This plot illustrates the expected decrease in performance for
configurations with lower power budgets.

The configuration with highest performance (118.99 IPC) has a power of 230W .
The block diagram of this configuration is shown in Fig. 5.9(a) and represents a
6×5 mesh with four C2 cores and bi-ring interconnect in clusters. As we reduce
the power budget, the mesh dimensions are reduced, decreasing the number of high-
performance but power-hungry routers. The clusters incorporate more cores, result-
ing into higher latencies of memory access. Therefore, performance of configurations
decreases. Note that the bi-ring interconnects are preferred for budgets greater than
180W . The layout of the last configuration with a bi-ring, at 180W , is shown in
Fig. 5.9(b). It has a 3×2 mesh and 20 C2 cores per cluster.

Bi-rings deliver the highest performance, however they are less power-efficient
when compared to buses. Hence, buses replace rings as soon as the power budget

94

M
C

R R R R R R

R R R R R R

R R R R R R

R R R R R R

R R R R R R

MC

MC
M

C

C2
L2

C2
L2

C2
L2

C2
L2

L3

R
NI

Bi-Ring

(a) No power constraint (230W)

M
C

R R

R R

MC

MC

M
C

L3

C

C C C

C

C C C

C

C C C

C C C

RNI

C

C

C

R

R

CC

(b) 180W

M
C

R R R R R R

R R R R R R

R R R R R R

R R R R R R

MC

MC

M
C

C2
L2

C2
L2

C1
L2

L3

R
NI

Bus

C1
L2

C1
L2

(c) 130W

Figure 5.9: Best configurations, discovered by exploration for some power budgets.

95

drops significantly (below 180W). With further decrease in the budget, power is
saved by either reducing the number of cores, or by selecting more power-efficient
cores (e.g. C1 vs. C2). Thus, the best configuration for 130W contains 24 bus-based
clusters with 3 C1 and 2 C2 cores (Fig. 5.9(c)).

Also note that C2 cores are typically preferred when the power budget does not
impose strong limits. This is explained by the fact that C2 are the most efficient
in terms of performance per area unit. C2 is out-of-order, hence it hides memory
latency more efficiently than the in-order C1 core. At the same time, even though
C3 is out-of-order too, C2 delivers more performance per unit area, which makes it
the most competitive among the three types of cores.

Comparison with simulation

The main question this section tries to answer is: how can we check that the accuracy
of the results given by metaheuristics is acceptable for a huge search space?

To answer this question one would need to simulate all configurations exhaus-
tively. This task is intractable due to enormous computational cost. What we
propose is to run the exploration and store the n best configurations discovered by
the search (n is a parameter). Afterwards, we simulate those n configurations and
check whether the best configuration retains its rank after simulation.

In this experiment we run the EO algorithm with τ = 1.6 and a power constraint
of 180W . As the search evolves, a set of n = 100 best configurations is maintained.
Upon the algorithm termination these configurations are simulated. The dotted
line in Fig. 5.10 shows the throughput values in descending order, as calculated by
the analytical model, with the maximum being 103.26 IPC (#1) and the minimum

80

85

90

95

100

105

110

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

T
h

ro
u

g
h

p
u

t
(I

P
C

)

Configurations sorted in descending order of throughput

Analytical model

Simulation

Best configuration (#2) with 105.81 IPC

Figure 5.10: Throughput of 100 best configurations.

96

94.77 IPC (#100). Then, all 100 configurations are simulated, and for each one the
throughput obtained by simulation is plotted (solid line in Fig. 5.10).

The best configuration by simulation is #2, with a throughput of 105.81 IPC.
Although this configuration is assigned the second place in the order created by
model, the difference between the simulated throughput of #1 and #2 is less than
4%. Certain deviations in this experiment are inevitable due to the simplifying
assumptions of the analytical model. However, for the majority of configurations
the tendency for the throughput is to decrease as the rank id increases, indicating
a good correlation between the simulator and the model.

5.6 Conclusions

This chapter shows how to effectively reduce the number of configurations considered
during the exploration by using metaheuristics for the combinatorial optimization.
This contribution is indispensable to make the architectural design space exploration
of future hundred- and thousand-core CMPs tractable.

The main conclusions from experimental results are summarized below:

• The metaheuristic-based search can discover the optimal configuration of a
large design space, such as S, within tens of seconds. Naive search strategies
show worse results, even with longer running times (17% lower throughput
with 5x increase in exploration time).

• The proposed methodology can be efficiently applied to power-performance
exploration of CMPs. An example of the power-constrained exploration was
given above.

• By simulating 100 configurations with the top throughput, discovered by the
search, it was demonstrated that the throughput rankings between the model
and simulation match closely. This fact is an additional confirmation of the
quality of the analytical model introduced in Chapter 4, when applied to large
search spaces.

These results confirm that the metaheuristic-based search strategy, supplied by
the carefully selected transformations, can replace exhaustive search and substan-
tially reduce the exploration time.

There remain open questions related to the selection of transformation set in an
optimal way. Chapter 8 discusses some of these questions, which require future
investigation.

97

Chapter 6

Static Task Mapping for Tiled
Chip Multiprocessors

The previous contributions of this thesis focus on different aspects of the design of
CMPs. The contribution described in this chapter aims at the efficient usage of
CMPs after manufacturing, by addressing the problem of application task mapping.

To assure the performance and thermal properties of the system, CMPs are de-
signed to operate under a certain power budget. An effective way to manage CMP
power is to floorplan several voltage islands and assign the best voltage and fre-
quency for each island. The number of voltage islands is constrained by the design
of the power delivery network and costly implementation of voltage regulators. It is
therefore realistic to consider that CMPs with hundreds of cores will have voltage
islands with several cores (e.g., 4 or 8). This fact imposes an additional constraint in
the task mapping problem: even though some cores could possibly run at lower volt-
ages and frequencies, sharing the island with other cores may prevent from having
this flexibility.

The examined problem consists of statically mapping a set of parallel tasks onto
a many-core CMP and selecting the voltages of islands so that the total system
power is minimized. Every task is considered as an infinite process (encountered
in control, automotive and robotics systems) and has an associated throughput
constraint that guarantees the required QoS for that task. A variety of processor
classes is supported, each one characterized by a set of voltage/performance/power
parameters used to find the best performance/power trade-off for each task.

The main contributions of this work can be summarized as:

• Mathematical formulation of a mixed-integer linear programming problem
(MILP) delivering optimal mapping solutions for the examples of small size.

99

• Heuristical mapping optimization by Simulated Annealing (SA).

• Scalable approach based on Extremal Optimization (EO) [24], shown to out-
perform the optimization by SA, both in quality and computational cost.

This work has been published in [101] and [99].

6.1 An example of the mapping problem

This section discusses the task mapping problem using a small example. Let us
assume a task graph with four tasks (Fig. 6.1(a)). There are three flows between the
tasks, with the bandwidths specified in the arcs of the graph (in Gbps). Figure 6.1(b)
depicts a CMP with four processors. There are two classes of processors: C1 (light)
and C2 (dark). The task graph must be mapped into the CMP.

Communication-optimal mapping

Figure 6.1(c) shows a task mapping that optimizes the communication metric, that
is the product of bandwidth and hop-count. Assuming the distance between the
neighboring processors is one hop, the communication cost of this mapping is

CCost1 = 1.0 · 1 + 1.0 · 1 + 0.5 · 2 = 3.0 (Gbps).

Throughput-feasible mapping

Now let us take into account the processor parameters and consider the throughput
requirements of the tasks. Figure 6.1(d) describes the processor parameters. They
can operate at two voltages, 1.0 and 0.8V . The corresponding frequency (F , in
GHz) and power (P , in W) for each voltage is shown in the tables. Due to the
nature of the tasks and the implementation of each processor, each task may be
executed with a different performance (Instructions Per Cycle (IPC)) in each class
of processors. Finally, each task may require a specific throughput (given in giga-IPS
in Fig. 6.1(d)).

The mapping in Fig. 6.1(c) is infeasible for the specified throughput constraints.
Consider task t2 assigned to a C2-processor. The maximum performance that C2

can provide for t2 is IPC(t2) · F (1.0V) = 0.8 · 0.5 = 0.4 GIPS, while the throughput
requirement for t2 is 0.8 GIPS.

To satisfy the requirements, tasks t2 and t3 are swapped (see Fig. 6.1(e)). This
mapping satisfies the throughput constraints and still keeps the optimal value for
the communication metrics.

100

1.0

1.0
0.5

t1 t2

t3 t4

(a) Task graph

C2C1

(b) Processor mesh

t1 t2

t3 t4

(c) Comm.-optimal
mapping

 V F P

1.0 1.00 0.30
0.8 0.75 0.15

 V F P

1.0 0.50 0.10
0.8 0.35 0.05

 t1 t2 t3 t4

0.7 0.8 0.4 0.3

C1

C2

Throughput
(GIPS)

 IPC

t1, t2 1.0
t3, t4 0.8

 IPC

t1, t2 0.8
t3, t4 1.0

(d) Processor and
throughput data

t1 t3

t2 t4

V1

V2

(e) Throughput-
feasible mapping

t1 t4

t2 t3

V1

V2

(f) Power-optimal
mapping

Figure 6.1: Task mapping example.

Power-optimal mapping

As a final step, let us consider the partitioning of the CMP into voltage islands. Let
us assume the CMP has two islands, separated by the bold dotted line, as shown in
Fig. 6.1(e). Processors in the same island must operate at the same voltage level,
that is the minimal voltage required to satisfy all the throughput constraints for the
tasks mapped to this island.

For the mapping in Fig. 6.1(e), the upper island has to operate at 1.0V dictated
by the throughput constraint of t3. The lower island also has to run at 1.0V , because
of t2. Thus, the computation power, calculated using the data from Fig. 6.1(d), is
Pcomp = 0.30 + 0.10 + 0.30 + 0.10 = 0.80 W . Let the energy to transfer one bit for
one hop be Ebit = 0.1nJ/bit. Then the communication power is

Pcomm = CCost2 · Ebit = 3.0Gbps · 0.1nJ/bit = 0.3 W,

and the total power P = Pcomp + Pcomm = 1.10 W .

Notice that if we swap tasks t3 and t4 (Fig. 6.1(f)), the upper island can lower the
voltage to 0.8V without violating the throughput constraints. The new computation
power is Pcomp = 0.15 + 0.05 + 0.30 + 0.10 = 0.60 W . The communication cost is
increased: CCost3 = 1.0 ·1 + 1.0 ·2 + 0.5 ·1 = 3.5 (Gbps ·hop), so the communication
power becomes Pcomm = CCost3 ·Ebit = 3.5 ·0.1 = 0.35 W . However, the total power
P = 0.95 W decreases, making the assignment in Fig. 6.1(f) the best one in terms
of total power.

101

The previous example demonstrates the importance of the task mapping problem
when trying to minimize power consumption in a CMP with multiple classes of
processors and voltage islands. The next section shows how optimal solutions for
small instances of the problem can be found based on an MILP formulation.

6.2 A mathematical model

This section gives a formal definition of the problem via a Mixed-Integer Linear
Programming model. This model will be later used as the basis of a heuristic method
for large-scale systems based on Simulated Annealing and Extremal Optimization.

Parameters of the problem

The parameters of the problem are summarized in Table 6.1. The variables of the
MILP formulation are outlined in Table 6.2.

A task graph TG(T ,F) is a directed graph with vertices representing the tasks
ti ∈ T . Each arc represents a flow fsd ∈ F that defines the communication from
task ts to td. Every flow has a minimum required bandwidth Bsd. Every task ti has
a throughput constraint IPS(ti), that is the minimum number of instructions per
second required to provide the service delivered by the task. Λ(ti) defines the total
traffic rate between ti and the memory controller. The ratio between the traffic to
and from the controller is specified by the parameter ρ. Note that Λ(ti) value can
be approximated, given the amount of data, operated by the task (i.e. the working
set), and the size and miss-ratio of the tile cache.

A CMP is represented by a mesh of processors PM(P,L) with dimensions W×H,
where P is the set of processors and L is the set of communication links. Links are
organized in an on-chip network with a regular mesh topology [92]. The communi-
cation capacity between the neighboring cells is determined by the global parameter
Cap (all links are assumed to have the same capacity). Every cell represents a proces-
sor pj, belonging to one of the processor classes in C = {c1, .., cC}. Different classes
of processors have distinct performance executing each task. The performance of pj
to execute task ti, measured in instructions per cycle, is specified by the function
IPC(ti, pj).

The processors may operate at different voltages. We assume a set of voltages
V = {v1, .., vV } available for all processors. The frequency and power of pj operating
at voltage vk are defined by the functions F (pj, vk) and P (pj, vk), respectively. Every
pj belongs to some voltage island ιn, as defined by the island map I. The voltage of
an island can be adjusted independently of the other islands, however, all processors
in an island must operate at the same voltage.

102

Task parameters

TG Task graph with tasks ti and flows fsd
Bsd Bandwidth requirement for flow fsd

IPS(ti) Throughput requirement for task ti (instr./sec.)

Λ(ti) Traffic of task ti to the memory controller

ρ Ratio of traffic rates to and from controller

Processor grid parameters

PM(P,L) Mesh of processors (P) with communication links (L)

Cap Maximum capacity of the communication links

IPC(ti, pj) Performance of pj executing ti (instr./cycle)

V Set of available operating voltages vk
F (pj, vk) Frequency of processor pj at voltage vk
P (pj, vk) Power of processor pj at voltage vk
MC(pj) Memory controller associated with pj

McDist(pj) Distance from pj to associated controller

McBw Maximum bandwidth of memory controllers

Voltage island parameters

{ιn} Set of voltage islands

I Map from processors to voltage islands

Table 6.1: Input parameters of the problem.

Variable Type Description

aijk task ti is assigned to processor pj with voltage vk
vnk Binary voltage island ιn operates at voltage vk
rlsd link l belongs to the route of flow fsd

ml
sd Real

mapping indicator for the terminals of fsd
hxsd, h

y
sd hop-count (x and y) of route fsd

Table 6.2: Variables of the MILP formulation.

103

A CMP has a set of controllers to access the off-chip memory. Guided by the
existing implementations [118, 119], in this work we assume controller placement
at the periphery of the mesh. However, this does not limit the proposed approach
from having the controllers placed inside the mesh, that was demonstrated beneficial
by recent research [10]. Another assumption we make is that every processor pj is
associated with one controller, as defined by the function MC(pj). This assumption
can be eliminated by specifying the probabilities of accessing different controllers for
pj. Function McDist(pj) returns the hop-count distance from pj to the related con-
troller. The McBw parameter sets the maximum controller bandwidth to guarantee
performance of memory access.

Cost function

The goal of the model is to minimize power consumption under a set of design and
performance constraints.

The binary variables aijk define whether task ti is mapped onto processor pj
operating at voltage vk. The total power consumption for computation can be
defined as follows:

Pcomp =
∑
ti∈T

∑
pj∈P

∑
vk∈V

aijk · P (pj, vk).

The power consumption for communication has two terms: the on-chip commu-
nication, defined by the flows between the tasks and the off-chip communication,
defined by the traffic to the memory controllers. To model the first term, we intro-
duce the variables hxsd and hysd that represent the hop-count of flow fsd in the x- and
y-directions, respectively. Assuming minimal-path routing, the power consumption
for inter-task communication can be defined as

P t
comm =

∑
fsd∈F

Bsd · (hxsd + hysd) · Ebit,

and the term related to communication with memory controllers

Pmc
comm =

∑
ti∈T

∑
pj∈P

∑
vk∈V

aijk · Λ(ti) · McDist(pj) · Ebit,

where Ebit is the estimated energy for transmitting one bit over a link. The objective
of the problem is to minimize the total power:

min : P = Pcomp + Pcomm = Pcomp + P t
comm + Pmc

comm. (6.1)

104

Constraints

The first two constraints are the classical requirements for an assignment problem.
Every task ti has to be assigned to some processor pj and every processor can hold
one task at most:

∀ti ∈ T :
∑
pj∈P

∑
vk∈V

aijk = 1. (6.2)

∀pj ∈ P :
∑
ti∈T

∑
vk∈V

aijk ≤ 1. (6.3)

The next step is to model the communication component of the power. A set of
constraints is introduced to calculate the hop-count of each flow assuming an XY-
routing. Each processor pj is located in a tile at column xj and row yj of the mesh
(Fig. 6.2a). The coordinates are uniquely defined by the index j: xj = j mod W and
yj = bj/W c, where W is the width of the mesh. For any task ti, we define (xi, yi)
as the location of the processor assigned to the task. Then, the location is specified
by the expressions over the task assignment variables:

xi =
∑
pj∈P

(j mod W)
∑
vk∈V

aijk

yi =
∑
pj∈P

(bj/W c)
∑
vk∈V

aijk. (6.4)

For every flow fsd, the source and destination tasks, ts and td, are mapped onto
processors ps and pd, with coordinates (xs, ys) and (xd, yd), respectively, defined
by (6.4). The horizontal hop-count, hxsd = |xs − xd|, and the vertical hop-count,
hysd = |ys − yd| are defined by the following constraints1:

xs − xd ≤ hxsd, xd − xs ≤ hxsd
ys − yd ≤ hysd, yd − ys ≤ hysd. (6.5)

The next group of constraints defines the relations between voltage islands and
throughput. Let the binary variable vnk represent the fact that the voltage island ιn
operates at voltage vk. First, for every island ιn only one voltage has to be selected:

∀ιn ∈ I :
∑
vk∈V

vnk = 1. (6.6)

1the pair of inequalities and the fact that the h variables are implicitly minimized with the cost
function (since this implies minimization of power), guarantee the equality with the absolute value.

105

xj

yj

0 1 2 3

0

3

2

1 pj

E
A

S
T
 M

C

W
E
S
T
 M

C

(a) Processor pj located in the cell
(xj , yj) of the mesh.

xlb xle

yl

0 1 2 3

0

3

2

1

E
A

S
T
 M

C

W
E
S
T
 M

C
(b) East link from cell (xlb, yl) to
cell (xle, yl).

Figure 6.2: Definition of the processor and link location in mesh.

To enforce that all processors in the same voltage island work with the same
voltage, the following constraint is added:

∀ιn ∈ I, ∀vk ∈ V :
∑
ti∈T

∑
pj∈ιn

aijk ≤ Num(aijk) · vnk , (6.7)

where Num(aijk) is the number of aijk variables in the LHS of the inequality.
Expression (6.7) in combination with (6.6) guarantees that only the assignment
variables for the selected voltage may take non-zero values.

The throughput constraint should guarantee that for each task ti executed on
processor pj the product of IPC(ti, pj) and the processor frequency F (pj, vk) defined
by the current voltage, is not less than the required throughput IPS(ti). Hence, the
following relation is specified for each ti ∈ T :∑

pj∈P

∑
vk∈V

aijk · IPC(ti, pj) · F (pj, vk) ≥ IPS(ti). (6.8)

The last group of constraints aims at satisfying the requirements for link capacity
and memory controller bandwidth, under the assumption of XY-routing. We start
by considering the link capacity. The total link bandwidth can be expressed as the
sum of the bandwidths of all flows that pass through the link. There are two terms
that contribute to link bandwidth, related to the inter-task and memory controller
traffic, hence the constraint can be written as

∀l ∈ L : TaskTerm(l) + McTerm(l) ≤ Cap. (6.9)

Let us consider the task term first. In XY-routing, the data is always sent in
the X-direction first and the Y-direction afterward. Hence, the route of a flow will

106

pass through a link, only in case the source and destination tasks are mapped to a
specific subset of processor locations. Thus, for every link l and flow fsd we define
the binary properties, MapSrc(l, fsd) and MapDst(l, fsd), that indicate whether the
source and destination tasks are mapped onto the locations that imply link l to be
on the flow route.

To guarantee that l is on the route of fsd, both properties should be asserted, i.e.,
MapSrc(l, fsd) · MapDst(l, fsd) = 1. This is a non-linear constraint that we linearize
by introducing the real variables ml

sd:

MapSrc(l, fsd) + MapDst(l, fsd) = ml
sd. (6.10)

Since the mapping properties can only take binary values, the ml
sd variable can

only take three values: 0, 1, or 2. We use another scaling of ml
sd to the binary

variables rlsd, that take non-zero values only when ml
sd = 2, i.e. both mapping

properties are true:

rlsd ≥ ml
sd − 1, 2 · rlsd ≤ ml

sd. (6.11)

The variables rlsd are equal to 1 if the route of flow fsd goes through link l. Now
the task term for link l is written as:

TaskTerm(l) =
∑
fsd∈F

Bsd · rlsd. (6.12)

Next we explain how to represent the mapping properties MapSrc(l, fsd) and
MapDst(l, fsd). Consider the horizontal east link of a cell with coordinates (xlb, yl)
to a cell (xle, yl) (Fig. 6.2b). The XY-route of flow fsd can only pass through the
link in case the source task ts is mapped onto one of the two dotted processor cells.
Indeed, the processor ps should be located on the same row and in a column that
is lower than or equal to the origin of the link: (xs ≤ xlb) ∧ (ys = yl). Hence, the
source mapping property for an east link is:

MapSrc(l, fsd) =
∑

pj : xj≤xlb,
yj=yl

∑
vk∈V

asjk. (6.13)

For the destination task td the requirement is to be located in a column that
is greater than or equal to the link endpoint xle (striped cells). The destination
mapping property becomes:

MapDst(l, fsd) =
∑

pj : xj≥xle

∑
vk∈V

adjk. (6.14)

107

The mapping properties for south, west and north links are derived in a similar
manner.

Now consider the term related to the memory controller traffic. For link l let us
denote Req(l) the set of processors that send requests to their controllers through
link l. Similarly, Rep(l) is the set of processors that receive replies from controller
through l. Hence, traffic to and from controllers through l is defined by the rate of
tasks mapped to the sets Req(l) and Rep(l):

McTerm(l) =
∑
ti∈T

∑
pj∈Req(l)

∑
vk∈V

aijk · ρ · Λ(ti)+∑
ti∈T

∑
pj∈Rep(l)

∑
vk∈V

aijk · (1− ρ) · Λ(ti). (6.15)

The sets Req(l) and Rep(l) can be expressed similarly to the MapSrc and MapDst

properties for links. As an example, let us consider the same east link (Fig. 6.2b).
Assuming XY-routing, pj sends requests in the direction of the associated controller.
Hence, the set of processors sending requests through the link is limited by those,
associated with the EAST controller and located on the same row in the column
that is lower or equal to the link origin:

Req(l) = {pj : (MC(pj) = EAST) ∧ (xj ≤ xlb) ∧ (yj = yl)}.

The sets for other links are derived similarly. The inequalities (6.9) together with
the scaling relations (6.10), (6.11) and definitions (6.12)-(6.15) guarantee that the
link capacity constraints are met.

The last step is to specify the bandwidth constraints of the memory controllers.
The bandwidth of controller mcκ ∈ MC is defined by the rates of tasks mapped onto
processors, associated with mcκ:

∀mcκ ∈ MC :
∑
ti∈T

∑
pj :MC(pj)=κ

∑
vk∈V

aijk · Λ(ti) ≤ McBw. (6.16)

Problem formulation

The problem can now be formulated as follows.

Minimize: power consumption (6.1)

subject to:

assignment constraints and hop-count definition (6.2)-(6.5),

108

voltage selection constraints (6.6), (6.7),

throughput constraints (6.8),

link capacity constraints (6.9)-(6.15)

and memory bandwidth constraints (6.16).

6.3 Mapping by metaheuristics

This section discusses two metaheuristics commonly used to solve complex com-
binatorial problems: Simulated Annealing (SA) [80] and Extremal Optimization
(EO) [24]. Both methods are inspired by equilibrium statistical physics. SA has
been successfully applied in many EDA problems, mostly related to layout syn-
thesis. However, EO has emerged as a very competitive alternative that can give
superior results in quality and computational cost. This section shows how EO can
be customized to effectively solve the task mapping problem. The results prove the
superiority with regard to SA.

The SA and EO metaheuristics have already been considered in Chapter 5. In
this section they are reviewed again for self-containment of the present chapter.

Both metaheuristics start from an initial mapping obtained by greedily placing
the tasks with highest throughput to the fastest processors. It is assumed that the
system is not highly throughput-constrained and that a feasible initial assignment
can be achieved by a greedy heuristic. The bandwidth constraints may be violated
in the initial mapping and will be handled during the optimization process.

Simulated annealing

The general algorithm for SA is described in procedure 4. To evaluate every configu-
ration, two functions are used. Cost() returns the cost of a configuration, calculated
as the total system power according to equation (6.1). CapP() calculates the penalty
for link capacity and memory bandwidth violations:

CapP =
∑
l∈L

max

(
Bl − Cap

Cap
, 0

)
+
∑

mc∈MC

max

(
Bmc − McBw

McBw
, 0

)
,

where Bl is the total bandwidth of flows routed through link l and Bmc is the
bandwidth of controller mc. If all constraints are satisfied, then CapP = 0.

The SA algorithm implements a conventional annealing schedule. Given the ini-
tial temperature Tinit and the cooling factor α, a new solution (NewSol) is generated
(line 4) and may be accepted probabilistically, depending on the current tempera-
ture Tcur (line 5). The value of Tcur decreases as the system evolves in time (line 8).

109

Procedure 4 SimulatedAnnealing
1: Tcur = Tinit
2: while improvement in last k iterations do
3: for P iterations do
4: generate NewSol
5: if Accept(CurSol, NewSol) then CurSol← NewSol
6: if Cost(NewSol) < Cost(BestSol) then BestSol← NewSol
7: end for
8: Tcur = α · Tcur
9: end while

10: return BestSol

Procedure 5 Accept(CurSol, NewSol)

1: CurCost← Cost(CurSol) + λ CapP(CurSol)
2: NewCost← Cost(NewSol) + λ CapP(NewSol)
3: if NewCost < CurCost then return true
4: else return true with probability Pa

For every temperature, a number of moves that depends on the size of the system
(P , that is the number of cells) is generated.

NewSol is obtained by swapping a pair of random tasks and is accepted prob-
abilistically according to Procedure 5. To penalize capacity violations, the cost is
calculated as shown in lines 1-2, where λ = Tinit/Tcur is the weight for penalization,
that grows in time. This decreases the probability to accept infeasible solutions as
the simulation advances.

Solutions with better cost are always accepted (line 3), whereas worse-cost solu-
tions are accepted with probability Pa:

Pa = e−γ, γ =
NewCost

CurCost
· 1

Tcur
, (6.17)

This probability depends on two factors. The former avoids the acceptance of
solutions with high cost degradation. The latter increases the probability of hill
climbing as the temperature cools down.

As in Chapter 5, the initial temperature, Tinit, is calculated so as to obtain a high
initial acceptance probability, such as Pa = 0.95. This is done by first evaluating an
average ratio of the NewCost and CurCost during P iterations (P is the number of
processors), and then using the obtained value in (6.17) to calculate the temperature
for the desired value of Pa.

110

Extremal optimization

This section proposes Extremal Optimization (EO) [24] for solving the task mapping
problem. The idea of EO was introduced in Section 5.4. As a reminder, EO evolves
by selecting against the worst components of the system. For the task mapping
problem, EO evaluates the fitness of each task in the mapping configuration. A
high fitness value indicates that the task has a comfortable low-cost status in the
configuration. EO focuses on improving the status of tasks with low fitness.

At each iteration EO selects a pair of tasks to be swapped: an unfavorable task
(tu) and a replacement task (tr). Unlike SA, EO uses information about the system
cost when selecting the swapped tasks. This results into a faster progress towards
the final solution. In addition, EO accepts new solutions unconditionally without
depending on any temperature cooling schedule, thus making the algorithm easier
to tune.

The mapping problem can be considered as a multiobjective optimization prob-
lem, since the Pcomp, P

t
comm and Pmc

comm terms of the cost function (6.1) depend
on weakly related voltage level and hop-count values. It was observed in [44] (and
proved by our experiments) that the multiobjective EO operates better by interleav-
ing the optimization of individual objectives in time, rather than trying to optimize
all of them simultaneously. This suggests to introduce different fitness functions
for the optimization of three power components and alternate them at different
iterations of the algorithm.

The EO algorithm is outlined in procedure 6. After the definition of an ini-
tial solution (greedily), the execution is continued until no further improvement is
observed during a certain number of iterations.

At the beginning of each iteration, local search is performed by sequentially swap-
ping P random pairs of tasks and accepting only those that improve the cost. This
variant contributed to improve the cost of the final solution and the speed of the
algorithm [140].

The core of the algorithm focuses on selecting the pair of tasks that must be
swapped. The fitness functions alternate depending on the iteration number. In
one case, fitness is oriented to improve the power consumption generated by inter-
task communication, considering the hop-counts and bandwidth parameters. In the
second case, the power of communication with memory controllers is optimized. The
last case addresses the power generated by computations.

The first task, tu, is selected by using the Φu fitness function and sorting the tasks
according to the fitness value. The second task, tr, is selected by ranking the task
according to the improvement in cost that the swap would produce (Φr functions).
The power law described by equation (5.6) is used to select the tasks randomly.

111

Procedure 6 ExtremalOptimization

1: CurSol← BestSol← ”Some initial solution”
2: while some improvement in the last k iterations do
3: Local search: swap P randomly selected pairs sequentially and
4: accept only those that improve the cost of CurSol
5: if (iter mod 3) = 0 then /* improve task comm. cost */
6: sort all tasks in ascending order of Φcomm

u,t

7: select tu according to equation (5.6)
8: sort all tasks ti 6= tu in ascending order of Φcomm

r

9: select tr according to equation (5.6)
10: else if (iter mod 3) = 1 then /* improve mc comm. cost */
11: sort all tasks in ascending order of Φcomm

u,mc

12: select tu according to equation (5.6)
13: sort all tasks ti 6= tu in ascending order of Φcomm

r

14: select tr according to equation (5.6)
15: else /* improve comp. cost (iter mod 3 = 2) */
16: sort all tasks in ascending order of Φcomp

u

17: select tu according to equation (5.6)
18: sort all tasks ti 6= tu in ascending order of Φcomp

r

19: select tr according to equation (5.6)
20: swap tasks tu and tr in CurSol
21: if Cost(CurSol) < Cost(BestSol) then
22: BestSol← CurSol
23: end while
24: return BestSol

Finally the locations of tasks of tu and tr are swapped unconditionally and
BestSol is updated if the cost is better than any other solution visited so far.

Fitness functions

To model the fitness for the power consumption generated by the inter-task traffic
on the mesh, Φcomm

u,t ranks the tasks according to the product of total traffic and the
square of hop-count of the involved flows:

Φcomm
u,t (ti) = −

∑
fsd:(ts=ti)∨(td=ti)

Bsd · (hxsd + hysd)
2.

The square of hop-count tries to balance the length of the flows. It penalizes tasks
with longer flows, rather than those with high bandwidth, since Bsd is a constant
parameter that cannot be changed. The selection of the ranked tasks tends to pick

112

tasks with high communication cost. The negative sign allows to rank the tasks in
ascending order of fitness.

Similar fitness is used to select unfavorable task ti mapped to processor pj for the
controller-related term of power:

Φcomm
u,mc (ti) = −Λ(ti) · McDist(pj)

2.

Although the fitness functions selected for both terms of communication power
look similar, we consider them as individual candidates for multiproduct optimiza-
tion. The intrinsic difference between the two types of communication is that an
inter-task flow depends on mapping of both, source and destination tasks, while the
memory controller flow depends on one, either source or destination task.

The fitness function for the replacement task tr is the same for both types of
communication. It aims at selecting a task that, when swapped with tu, would
mostly decrease the communication cost and contribute to reduce the violations of
maximum bandwidth:

Φcomm
r (ti) = Cost(NewSol) · (1 + CapP(NewSol)),

where NewSol is the solution obtained by swapping ti and tu.

The computation-oriented fitness functions aim at finding power-efficient solu-
tions by smoothing the voltage spillover in the voltage islands. Let us call V min

i

the minimum voltage required to guarantee the throughput of task ti assigned to
a processor in some voltage island ιn. Since task is living in the same island with
other tasks, it may not be possible to assign V min

i to it, as other tasks may require
a higher voltage.

We define the voltage spillover of ti as Spilloveri = V min
i − V , where V is the

average minimal voltage of all tasks allocated in the same voltage island. The
dispersion of island ιn is defined as

Dispersionn =
∑
ti∈ιn

(Spilloveri)
2.

and measures the voltage imbalance for the island. High dispersions imply less
power-efficient solutions, as more processors operate at voltages higher than re-
quired. Computational fitnesses aim at decreasing the voltage dispersion of the sys-
tem. The unfavorable component is selected from the tasks with the high spillover
value:

Φcomp
u (ti) = −Spilloveri.

113

The replacement task is selected to maximize the product of the cost improvement
with the dispersion, penalizing solutions with large capacity violations:

Φcomp
r (ti) =

1 + CapP(NewSol)

∆Cost ·∆Dispersion
.

6.4 Experimental results

The results presented in this section have three primary objectives. Firstly, opti-
mal solutions are obtained for small examples by solving the MILP model. It is
shown that metaheuristics can also find the optimum for these examples, and in
much shorter time. Secondly, the quality and speed of SA and EO are compared.
The latter is demonstrated to outperform in both metrics for a vast space of solu-
tions. Thirdly, the impact of the link capacity and memory bandwidth constraints
is discussed.

Examples and experimental setup

Every test case for the mapping problem is characterized by an application task
graph and a target CMP. The parameters of the test cases are presented in Table 6.3.
The number of tasks and flows are reported in the second and third columns. The
fourth column shows the dimensions of the mesh for the target CMP. The last
column displays the number of memory controllers in each test case.

The first group of examples is inspired by realistic applications, widely used in
the SoC research domain (e.g. [115, 57]): Multi-Window Displayer (MWD), MPEG4
decoder (MPEG4) and Object Plane Decoder (OPD). To explore the scalability of the
proposed technique, we generate a group of large examples for mapping onto 8× 8,
12× 12, 16× 16 and 20× 20-tile CMPs (test cases 64T to 400T). The task graphs
for these configurations are obtained by combining instances of MWD, MPEG4 and
OPD. For instance, the task graph for 400T consists of 30 small applications, 10
instances of each type. To avoid having totally disconnected clusters of tasks, few
random flows were added between the components. The third column of Table 6.3
displays the resulting number of flows in graphs.

For the experiments, we have considered three processor classes (C1, C2 and C3)
with different frequency and power parameters operating at three different voltages:
1.2V, 1.0V and 0.8V. The parameters are reported in Table 6.4. The distribution
of tiles in the CMP is as follows: 20% of the tiles have C1-processors, 30% have
C2-processors and 50% have C3-processors. The classes are distributed uniformly
in such a way that all voltage islands have a similar mixture of classes. Without loss

114

Name # of tasks # of flows Grid size # of MC

MWD 12 11 4× 3 2

MPEG4 12 13 4× 3 2

OPD 16 17 4× 4 2

64T 64 90 8× 8 4

144T 144 200 12× 12 4

256T 256 380 16× 16 8

400T 400 595 20× 20 8

Table 6.3: Testcase configurations.

Class 1.2V 1.0V 0.8V
C1 1000MHz, 260mW 800MHz, 150mW 600MHz, 70mW
C2 450MHz, 200mW 350MHz, 120mW 250MHz, 60mW
C3 160MHz, 55mW 130MHz, 30mW 100MHz, 15mW

Table 6.4: Parameters of the processor classes.

of generality, we assume that all islands have the same size Svi (number of tiles).
Different values have been used in the experiments.

Every task has a different throughput requirement (IPS) and a different perfor-
mance when executed at each class of processor (IPC). All these values are defined
randomly, with IPC values in the interval [0.5, 2.0] and guaranteeing that a feasible
mapping exists for the assigned performance and throughput requirements. This
randomization contributes to explore a larger set of configurations and to have an
unbiased tuning of the metaheuristics.

The traffic Λ(ti) between the task ti and memory controller was estimated as 20%
of total traffic between ti and all other tasks. The ratio between the request and
reply traffic was set to ρ = 0.2.

Comparison with the optimal solution

The MILP formulation allows obtaining optimal solutions for the mapping problem.
However, the search of the optimum is computationally affordable only for small
examples. We used CPLEX [3] to solve the MILP problem for the test cases of the
first group: MWD, MPEG4 and OPD. The size of voltage islands Svi was set to
four. The time required to find the optimum is displayed in the “MILP” column of
Table 6.5. One can observe the two-order increase in runtime for a 16-tile example
(OPD) in comparison with the 12-tile examples (MWD, MPEG4).

115

Name MILP SA EO

MWD 85.25 0.01 0.01

MPEG4 120.17 0.02 0.01

OPD 4594.40 1.17 0.08

Table 6.5: Time to reach the optimal solution (sec).

The metaheuristics are able to achieve the optimal solution for the same examples
in much shorter time (columns “SA” and “EO” of Table 6.5). In this experiment
the SA and EO algorithms were run for a variety of parameters (α and τ), and
the best runtime values were selected. This comparison affirms the fact, that both
metaheuristics perform very well for the small examples with known optimum.

Simulated Annealing and Extremal Optimization:
comparison

This section tries to give an apple-to-apple comparison of both metaheuristics for the
task mapping problem. The comparison is illustrated using the 256T example with
Svi = 16 and represents a typical behavior of the two algorithms for the explored
test cases.

The timeout for execution was set to 200 seconds, since no significant improve-
ments were observed after that time for both methods. Figure 6.3 depicts the
evolution of the cost function value obtained by SA with various α and by EO with
τ = 4.0. The traces corresponding to higher values of α drop slower, but achieve
better solutions in the long run.

Let us now consider the EO trace. At every moment in time the current solution
found by EO is better than any of the SA solutions, obtained with different α
values. The resulting cost discovered by EO upon timeout outperforms any of the
SA solutions by 12%. Another important fact is that EO solution cost drops rapidly
(0.1-2.5 seconds, depending on the test case), to the 10% of accuracy, with respect
to the value obtained in the long run. This makes EO useful to apply when fast
estimation of the cost is required, e.g. in exploration loops.

SA requires a careful tuning to eliminate the dependency of the α parameter
on the problem size. Otherwise, small changes in α may lead to an important
degradation in quality. In this work we do not aim at tuning the SA method.
Rather, we perform multiple runs with different α values and select the best results.
The aim is to show that EO is a better alternative even with a good tuning of SA.

116

25

30

35

40

45

50

55

60

65

70

75

80

85

0 20 40 60 80 100 120 140 160 180 200 220

Runtime (sec)

P
o

w
e

r
 (

W
)

SA, α=0.999

SA, α=0.99995

SA, α=0.99998

SA, α=0.99999

EO, τ=4.0

12%

Figure 6.3: Evolution of SA and EO solutions in time.

In the experiments, it was also observed that EO is much less sensitive to τ and to
the size of the problem. This simplifies the tuning of the algorithm. Note that some
variation of τ may provide slightly better results for certain examples. However, we
do not aim at demonstrating the highest improvement for all test cases. We prefer
to emphasize that even having τ fixed, EO is able to outperform SA with any α.
Guided by this reasoning, in the following experiments we always define τ = 4.0.
This value was found to deliver good results for all test cases.

Power optimization with EO

In this section we analyze the final solutions obtained with a timeout of 200 seconds.
The goal is to study the reduction in power that EO delivers in comparison with SA
for broad set of configurations. It is important to indicate that the results obtained
by SA were selected by taking the best solution from all the α values, thus making
the analysis independent of the cooling factor.

Three parameters are explored to obtain a comprehensive collection of test cases.
Firstly, examples of different size are considered. These include the 64T, 144T,
256T and 400T configurations from Table 6.3. Secondly, for every test case the
size of the voltage islands is varied among 4, 8 and 16 processors. Thirdly, different
ratios between the computation power Pcomp and communication power Pcomm are
considered. This is an important parameter, as it reflects the ability of the approach

117

0.6

0.7

0.8

0.9

1

1.1

64
T/4

64
T/8

64
T/1

6

14
4T

/4

14
4T

/8

14
4T

/1
6

25
6T

/4

25
6T

/8

25
6T

/1
6

40
0T

/4

40
0T

/8

40
0T

/1
6

Configuration

P
o

w
e

r
 r

e
d

u
c

ti
o

n
,

E
O

/S
A

Pcomp/Pcomm ≈ 0.2

Pcomp/Pcomm ≈ 1.0

Pcomp/Pcomm ≈ 5.0

Figure 6.4: Power reduction by EO with respect to SA.

to give priority to one power component or improve both simultaneously. Three
values for Pcomp/Pcomm are explored: 0.2, 1.0 and 5.0. They and inspired by the
results presented in [127].

Figure 6.4 reports the power (equation (6.1)) of the EO solution with respect to
the best value obtained by SA with various α. For each configuration, denoted as
testcase/Svi along the X-axis, three values for different Pcomp/Pcomm are shown. For
the majority of configurations EO outperformed the results of SA, with a maximum
gain in power of 22.5% (configuration 256T/16, Pcomp/Pcomm = 5.0). Only for 3 of
36 explored configurations (64T/4, 64T/16 and 400T/4 with Pcomp/Pcomm = 0.2)
EO was slightly worse than SA. The difference in this case did not exceed 2.0%.

EO tends to perform better at higher Pcomp as well as for larger values of Svi. In
other words, EO better minimizes the voltage of islands, due to the consideration
of voltage spillover. As the island size grows, the amount of tasks, required to
be swapped in order to improve the voltage, also increases. This is one of the
important features of EO, since it can model the fitness of each component in the
system. Modeling the voltage spillover in SA is difficult, since only a global cost is
considered in the acceptance of moves and random swaps do not concentrate on the
components with worst fitness.

As an example, Fig. 6.5 shows the final voltage distributions for the 256T example
with Svi = 16. The system has 16 voltage islands and each island contains 16
processors with a mixture of C1, C2 and C3 classes, as shown in Fig. 6.5(a). The

118

C3 C2 C3C1

C2 C3 C1C3

C3 C2 C3C2

C1 C3 C2C3

0.8V 1.0V 1.2V

(a) SA solution (b) EO solution

V
I

s
iz

e
 =

 8

V
I

s
iz

e
 =

 1
6

V
I

s
iz

e
 =

 4

0

5

10

15

20

25

30

35

40

P
o

w
e
r
 (

W
)

(c) EO power

Figure 6.5: Voltage distribution and power for 256T example.

final voltage assignment for each island is represented by the three colors in the
figure. The solution obtained by SA has 8 islands at 1.2V, 5 at 1.0V and 3 at
0.8V. The one obtained by EO has 3 islands at 1.2V, 6 at 1.0V and 7 at 0.8V.
The estimated power consumption of the EO solution is 12% smaller than the SA
solution.

Another intuitive result is that the total power grows with the size of voltage
islands (Fig. 6.5(c)). The island size sets the number of tiles that must run at the
same voltage. Hence, larger islands imply less mapping flexibility for individual tiles
to reduce voltage.

Impact of link capacity and memory bandwidth

The link capacity and memory controller bandwidth constraints have a relevant
influence on power consumption. In this example we fix the memory bandwidth
and analyze how the solution changes as the link capacity constraint becomes more
stringent. The dependency of power on the memory bandwidth has a similar trend.
We use again the test case 256T with Svi = 16 and set the bandwidth of each
memory controller to 3 Gbps.

The results for SA and EO are plotted in Fig. 6.6. A sequence of solutions
for different values of capacity constraints was obtained. The minimum capacity
required to obtain feasible solutions was Capmin = 0.91 Gbps, and was reached by
both methods. The trendlines included in the plot help to analyze the evolution of
the solutions as the link capacity changes.

The tendency for power is to increase as capacity constraint tightens up. This
happens principally due to the growth in communication cost as the tasks need to
be spread to avoid congestion in the links.

119

30

35

40

45

50

55

60

0.5 1 1.5 2 2.5 3 3.5 4

Link capacity (Gbps)

P
o

w
e

r
 (

W
)

SA

EO

min capacity = 0.91

Figure 6.6: Impact of link capacity on system power.

Although the gap between the EO and SA costs decreases as the capacity ap-
proaches to Capmin, EO wins in power for all considered values. This example
represents the typical behavior, observed for both metaheuristics, when optimizing
a configuration subject to capacity constraints.

6.5 Conclusions

This work has addressed the problem of static task mapping for large-scale tiled
CMPs with multiple voltage islands, as one of the approaches to reduce design cost
and time-to-market. The problem formulation considers task throughput require-
ments, on-chip and off-chip memory traffic, and bandwidth constraints.

Experimental results prove that:

• Metaheuristic-driven search efficiently solves the task mapping problem for
CMPs with predefined voltage islands. The quality of the search is verified by
the ability of metaheuristics to discover optimal solutions for moderate-size
examples, for which the optimum is known by solving the MILP.

120

• EO outperforms SA in both, quality of the final solution and execution time.
This fact makes EO very competitive in application to the mapping problem,
comparing to the widely adopted SA metaheuristic.

• The proposed method is scalable, as demonstrated by performing task mapping
of application graphs with hundreds of tasks onto large-scale CMPs.

The proposed approach has certain limitations. One of them is the requirement
for each core to hold at most one task. To eliminate this constraint, the problem of
dynamic task mapping or scheduling has to be addressed. The future work in this
direction is summarized in Chapter 8.

121

Chapter 7

Link Allocation for NoC
Topologies

Networks-on-chip lie at the heart of modern on-chip systems, realizing communi-
cation between the components of many-core CMPs and ASICs. In order to make
NoCs efficient in terms of performance and cost, a complex design process is required.
This process demands for the completion of multiple tasks, including topology se-
lection and mapping, physical planning, design of routing algorithms and switching
schemes, and other optimization problems.

Individual tasks are traditionally addressed within a sequential flow, one after
another, often leading to suboptimality of the final solution, due to the difference in
optimization criteria. Hence, it is very desirable to develop methods which combine
several tasks in one problem and explore the complete solution space in a way that
all design constraints are met and the implementation cost is minimized.

This chapter proposes a model for simultaneous topology customization and route
allocation for networks-on-chip. The presented approach can be applied to both,
application-specific SoCs, characterized by the communication graph, and general-
purpose CMPs, modeled with a complete communication graph and uniform traffic
requirements. It focuses on the strategy for removing particular links from a com-
plete regular topology [27], which is referred to as the link allocation problem for
regular topologies. More precisely, link allocation can be defined as the problem of
searching for a subset of links that satisfy the communication requirements of the
system and minimizing the design cost.

The contribution of this research is a mathematical programming model for si-
multaneous link allocation and deadlock-free route assignment for on-chip intercon-
nects, published in [98]. This model is capable of finding minimal deadlock-free
routes for irregular topologies, which is an important problem for the interconnect
power minimization [89].

123

(a) Full mesh (b) Partial mesh (c) Minimal strongly-
connected mesh

Figure 7.1: Different link allocation solutions for a 3x3 mesh.

7.1 Model overview

This section gives an overview of the contributions of the work by using a simple
example. In this work, we consider communication topologies that can be mapped
onto a two-dimensional grid. Every link can connect two adjacent routers and the
transit time through each link is constant and known a priori. We also assume that
the system has already been floorplanned and each PE is connected to a router.

Figure 7.1 shows three different topologies based on an underlying 3x3 mesh.
Figure 7.1a depicts a fully-connected mesh in which all possible links have been laid
out. This topology can provide a very high performance. Every router can reach
any other router in no more than four hops. However, this topology requires a costly
implementation in wiring and router area. Every router implements a crossbar that
has a quadratic cost on the number of links of the router.

On the other hand, Fig. 7.1c shows a mesh with the minimum number of links to
preserve strong connectedness, which results in a very area-efficient implementation.
However, the diameter of the network doubles since some routes may require eight
hops to communicate one PE with another. Additionally, some links may become
over-congested if they have to be shared among different routes that carry dense
traffic, thus incurring in a significant throughput penalty due to the contention in
the network.

The designer will probably want to find an intermediate topology that satisfies
certain throughput constraints with a reduced implementation cost. Figure 7.1b
depicts one of these solutions. The cost has been reduced by removing some of
the links of the full mesh. However the diameter has already been increased (some
routes require five hops). This may also involve extra congestion in some specific
links.

The solution space of this type of problems is huge. It becomes even larger when
we consider the route assignment problem. Figure 7.2a depicts the communication

124

(a) (b) (c)

1 2

3 4

5 6

1 2

3 4

65

1 2

3 4

5 6

Figure 7.2: (a) Communication graph; (b) and (c) two different link allocation and
route assignment solutions.

graph for six PE s that need to exchange information. In this particular example,
every PE is assumed to be attached to a router. Figure 7.2b shows a solution
in which the links have been allocated to provide a minimum hop-count for every
communication edge. The routes are represented by the dotted lines. The longest
routes are for the pairs (1, 4), with the route 1→ 2→ 4, and (3, 6), with the route
3→ 5→ 6.

Let us assume that the traffic through the links 1→ 2 and 2→ 4 is very congested
due to the intensive communication requirements of the PE s attached to those
routers. Let us also assume that edge 1→ 4 is not critical and has a low priority.
Hence, the designer might consider to deviate the traffic 1→ 4 through another
route, as shown in Fig. 7.2c. This solution implies an extra link in the network,
but may contribute to meet the throughput requirements of the system. Note that
the route 1→ 3→ 5→ 6→ 4 is not using the shortest path. The model presented
in this work allows the exploration of non-optimal paths to alleviate the traffic in
congested links.

Even though this work assumes a 2D grid as the underlying structure, the topol-
ogy of the network is not limited to regular meshes. Irregular meshes with PE s
exceeding the size of one tile can also be considered, thus providing an extra flex-
ibility in the exploration of solutions. Furthermore, the links are not constrained
to have equal length. This makes the design flow even more flexible in terms of
floorplanning and placement.

125

Sketch of the model

To explore the space of solutions, the mathematical model presented in this work
introduces a set of constraints for link allocation, route assignment and deadlock
avoidance. The set of constraints can be extended to cover other design criteria.

One of the most practically important constraints is the limitation of the number
of ports in every router. As it will be discussed further, port limitation highly
reduces the complexity of the router, thus saving area and power resources of the
system. The traditional link capacity constraint is also supported. These two types
of constraints are associated to physical requirements of the design.

To guarantee a sufficient performance in the system, a set of delay constraints
are defined. These constraints are modeled as a maximum hop-count (structural
latency) for each net1. The communication demands are defined by the bandwidth
requirement between each pair of PE s.

An essential property of route assignment is deadlock and livelock freedom. The
incorporation of turn prohibition constraints guarantees the absence of any deadlock
and livelock in the explored solutions.

The mathematical model includes four optimization objectives in the cost func-
tion: the minimization of the number of links in the grid, the maximum hop-count
over all nets, the total net delay (sum of all net delays) and the uniform traffic dis-
tribution. The first objective is related to the area optimization, whereas the other
three objectives guide the search toward increasing the performance of the system.

The constraints of the model can be represented as linear inequalities with integer
and real variables. In this way, the problem can be specified with a mixed-integer lin-
ear programming (MILP) or mixed-integer quadratic programming (MIQP) model,
depending on the cost function. The term mixed-integer programming (MIP) will be
used to refer to both problems interchangeably. Even though these are NP-complete
problems, the experimental results show that optimal solutions can often be found
with moderate computational cost. Section 7.3 will present results obtained from
different benchmarks.

7.2 The integer programming model

This section presents the MIP model for link allocation and route assignment prob-
lem. Table 7.1 summarizes the input parameters for a quick reference. We introduce
several types of variables and set notations to formulate the problem. The summary
of the MIP notations can be found in Table 7.2.

1We refer to a net as a logical connection between two PE s, represented as an edge in the
communication graph.

126

Table 7.1: Input parameters of the problem.

Input Description

(x, y) Grid size

n Number of nets

Bk Required bandwidth for net Nk

Dk Maximum hop-count for net Nk

Cj Capacity of link Lj
Pi,in Maximum number of input ports for router Ri

Pi,out Maximum number of output ports for router Ri

Table 7.2: Notation for the MIP problem.

Notation Type Description

Lj Link presence in the solution

Lkj Binary variable Link usage by net Nk

Tp Prohibition of turn Tp

Dmax Real variable Maximum net delay

I(Ri) Set
Incoming links of router Ri

O(Ri) Outgoing links of router Ri

Parameters and variables of the problem

The problem consists of defining a set of routes in a 2-dimensional grid structure
that satisfies a set of physical and performance constraints. The routes must support
the communication among the PE s of the system.

The grid structure with size (x, y) is represented as a directed graph G(R,L).
The vertices of the grid define a set of routers R = {R0, .., Rr−1}, where the total
number of routers is r = x · y. The edges of the grid define a set of uni-directional
links L = {L0, .., Ll−1}, where the total number of links for a grid with size (x, y) is
calculated as l = 2 (x(y − 1) + (x− 1)y).

A global assumption about the grid is that every pair of neighboring routers may
have up to two uni-directional links to send data in both directions. Each link Lj
has a maximum capacity parameter Cj (flits/cycle). It limits the amount of data
that can be transmitted over the link in one cycle.

Another input of the problem is the underlying communication graph GC(PE,N)
that represents the logical connectivity of the network. Every vertex represents a

127

processing element and every edge represents a logical connection between a pair
of processing elements. Every edge in the set N = {N0, .., Nn−1} is a net of the
system. Each net Nk has two associated parameters: the required bandwidth Bk

(flits/cycle) and a maximum delay constraint Dk (hops) for the packet transmission
from source to destination.

The additional parameters Pi,in and Pi,out specify constraints on the number of
input and output ports for router Ri, respectively.

Path selection constraints

We focus on the deterministic routing path selection, without considering path diver-
sity mechanisms. The latter would allow multiple paths for a pair of communicating
processors. On the contrary, we assume there is only one path to send data packets
for each communicating pair. Path diversity is an option for the routing path se-
lection task. Our assumption for considering only one path eliminates the need to
perform packet ordering at the destination router.

We start the constraint set description with introducing the basic mechanism
for path selection and link representation in the model. Any configuration for link
allocation contains a subset of links from the full grid. The presence of each link in
a configuration is represented by the set of variables Lj

2, i.e., Lj = 1 iff link Lj is
present in the configuration.

The routing paths for every net are represented by another set of binary variables
Lkj , specifying the fact net Nk uses link Lj in its routing path. As we show below, this
provides high flexibility for the solution space as every net may be routed through
any arbitrary subset of links.

To reduce the potentially large number of Lkj variables (n · l), it is possible to
introduce rules that bound a routing region for a net. For example, we may not be
interested in having long routing paths for the short nets with source and destination
routers located at the neighboring grid vertices. In this case we may limit search
region to be within few hops. An example is presented in Fig. 7.3. Net Nk is
connecting two neighboring nodes, located in the corner of the grid. By limiting the
maximum path length to 5 hops, only 10 links are eligible for selection in the route
(marked with dashed lines). The max-hop constraints contribute to significantly
reduce the number of link variables.

The sets of variables Lj and Lkj are both related to the selection of link Lj. The
Lkj variable defines the relationship between a link and a particular net Nk, while

Lj defines whether there is at least one net Nk′ ∈ N such that Lk
′
j = 1. In other

words, ∀k : Lkj ⇒ Lj. Assuming both sets Lj and Lkj consist of binary variables and

2For the sake of notation simplicity we use Lj to denote both the variable and the link.

128

kN

Figure 7.3: Path region limitation for Nk with 5 hops.

n is the total number of nets, we can write the following relations for each Lj:

Lj ≤
∑
N
Lkj ,∑

N
Lkj ≤ n · Lj.

(7.1)

These two constraints guarantee the consistency of the variables from both sets
in the MIP model.

We now formulate the set of routing constraints that allow one and only one
path selection for each net. Let us denote the set of incoming links to the router
Ri as I(Ri) and the set of outgoing links as O(Ri). For each net Nk with source at
router Rs, destination at router Rd and any intermediate router Ri ∈ R\{Rs, Rd},
the following constraints are defined:

for Rs :
∑
I(Rs)

Lkj = 0,
∑
O(Rs)

Lkj = 1

for Rd :
∑
I(Rd)

Lkj = 1,
∑
O(Rd)

Lkj = 0 (7.2)

for Ri :
∑
I(Ri)

Lkj =
∑
O(Ri)

Lkj .

The first two equations in (7.2) represent the boundary conditions on the path
for the source and destination routers, while the last one can be treated as a path
maintenance constraint for the intermediate routers. Indeed, the source router Rs is
the one that injects the Nk packets into the network, thus there should be no input
links to this router. The number of output links, carrying the Nk packets from Rs

should be equal to one, as we allow only one path for each net. The inverse situation

129

(a) Closed path cycle. (b) Open path cycle.

Figure 7.4: Path cycles introducing redundant links.

is observed at the destination router Rd, that consumes Nk packets: there is one
input link that delivers the Nk packets to Rd, while the number of output links is
zero. The last equation in (7.2) guarantees that if an intermediate router Ri has an
input link for Nk, then it will have an output link for this net. This condition assures
that the path will be constructed correctly from source to destination node [132].

Note that the path constraints in (7.2) do not prevent the configuration from
having cycles like the ones depicted in Fig. 7.4. Generally, a closed path cycle
(Fig. 7.4a) may occur without breaking any constraint in (7.2), but allocating extra
links. An open path cycle (Fig. 7.4b) may also occur, replacing one of the path
turns with the sequence of three complementary turns and occupying redundant
links. In the MIP model, these cycles can never appear due to the turn prohibition
mechanism to avoid deadlocks (which will be described later in this section) and
the cost function of the problem, that tends to minimize the number of links in the
network.

For efficiency reasons, we have found interesting to add explicit constraints on
the number of input (output) path links for each router:

for Ri :
∑
I(Ri)

Lkj ≤ 1. (7.3)

Even though the overall number of constraints in the model increases, our exper-
iments show that the problem is solved faster due to the limitation of the solution
space. The constraints (7.3) avoid the exploration of solutions with redundant links
that will never be optimal.

130

WST

TSE

TNW

TEN

TSWWNT

TNE TES

(a) 8 possible turns in 2D grid. Two
turns, TWN and TNW, depicted in
dashed lines, are prohibited.

(b) The cycle that still
occurs after prohibiting
turns TWN and TNW.

Figure 7.5: Turns in a 2D grid.

Deadlock avoidance

Deadlocks and livelocks may occur in the wormhole routing networks due to the
limited capacity of the router input buffers [39]. An important property of the
routing algorithm is deadlock freedom. In deterministic routing, the propagation
paths for every net are defined statically. Thus, deadlock freedom can be guaranteed
by incorporating certain restrictions into the path selection procedure.

One of the approaches for deadlock and livelock avoidance is turn prohibition [59].
There are eight possible turns a packet may follow in a 2D grid (Fig. 7.5a). We
refer to a turn according to the directions of the input and output links of the turn,
namely: west-north (WN), north-east (NE), east-south (ES), south-west (SW) in the
clockwise direction and west-south (WS), south-east (SE), east-north (EN), north-
west (NW) in the counter-clockwise direction. In order to guarantee that deadlocks
never occur, certain turns should be prohibited in both cycles (clockwise and counter-
clockwise). Specifically, prohibition of one turn from each cycle is enough to assure
that the cycles will not occur. However prohibition of some turn pairs will still allow
deadlocks resulting from the complex cycles depicted in Fig. 7.5b. Luckily, these are
just four pairs and they are easy to identify [59]. Thus, when prohibiting two turns,
one from each cycle, we should check that they do not belong to the same pair.

Finally, we want to apply the turn prohibition mechanism to guarantee deadlock
freedom in the MIP model. We introduce a set of binary turn variables to represent
each one of the 8 possible turns: {TWN, TNE, TES, TSW, TWS, TSE, TEN, TNW}. For
example, the WN turn will be prohibited in the final solution if and only if TWN = 1.
We formulate three sets of the turn constraints, based on the considerations above.

131

First, we have to guarantee that one turn is removed from each of the two potential
cycles (Fig. 7.5a), that is

TWN + TNE + TES + TSW = 1,

TWS + TSE + TEN + TNW = 1.
(7.4)

Second, the excluded turns should not belong to the same pair that still allows
complex cycles (Fig. 7.5b):

TWN + TNW ≤ 1,
TNE + TEN ≤ 1,
TES + TSE ≤ 1,
TSW + TWS ≤ 1.

(7.5)

To ensure that none of the selected paths incorporates a prohibited turn, we
should guarantee that from each pair of links, that contribute to the turn, at most
one link can be selected for the net path. We need to formulate these constraints
with the net-related variables Lkj .

Two neighboring links may exist in the solution independently, but the turn will
occur only when there is a net that traverses these links in sequence. This idea is
illustrated with the examples in Fig. 7.6. On the left example, two intersecting nets
are depicted: N1 propagating from south to north and N2 from west to east. All
four links exist in the routing solution:

Lnorth = Least = Lsouth = Lwest = 1.

However the solution does not contain any turn. This fact is reflected by the net-
related variables that take the following values:

L1
north = 1, L1

east = 0, L1
south = 1, L1

west = 0,
L2

north = 0, L2
east = 1, L2

south = 0, L2
west = 1.

None of the pairs {Lkwest, L
k
north} or {Lksouth, L

k
east} has both variables set to 1

(that would describe a turn condition). On the right example, two touching nets
are shown: N1 propagating from west to north and N2 from south to east. All the
four links are still present, but the net-related variables have different values now:

L1
north = 1, L1

east = 0, L1
south = 0, L1

west = 1,
L2

north = 0, L2
east = 1, L2

south = 1, L2
west = 0.

In this case one turn is introduced by each net: an east-north turn TEN by N1 and
a north-east turn TNE by N2. In the MIP model, this fact is observed by obtaining
two pairs of non-zero variables: {L1

west = 1, L1
north = 1} and {L2

south = 1, L2
east = 1}.

132

east

L north

L south

westL L
N 2

N 1

(a) No turn in case of in-
tersection.

east

L north

L south

westL L
N 2

N
1

(b) Turns exist in case of
touching.

Figure 7.6: Turn existence in dependence of nets positioning.

Therefore, in order to exclude a turn from the solution, we must prevent all con-
tributing link pairs from having both variables set to 1. More formally, if turn Tp is
prohibited, then for any net Nk and any pair of links Lj and L′j that contribute to
the turn, the following implication is required: Tp ⇒ ¬(Lkj ∧ Lkj′), that is equivalent

to ¬(Tp ∧ Lkj ∧ Lkj′). This represents the third set of the turn prohibition constraints
for the problem, that we can formulate in the following manner. For every net Nk,
turn Tp and all pairs of links Lj and L′j, that form Tp:

Tp + Lkj + Lkj′ ≤ 2. (7.6)

The constraints (7.4), (7.5) and (7.6) are sufficient for the MIP model to ensure
a deadlock and livelock-free solution.

Port limitation constraints

A new design option introduced in this work is the constraint on port limitation.
A typical router for a 2D grid network has input (I) and output (O) ports in 5
directions, i.e. 10 ports in total (Fig. 7.7). However the router complexity highly
depends on the number of ports. For instance, the size of the internal crossbar grows
quadratically with the number of ports, contributing to the overall area and power
consumption of the network. Also by constraining the number of ports, the physical
design of the router and the routing of the wide links become easier. Finally, few-
ported routers can often be implemented with single cycle latencies, low area and
short cycle time. Many-ported routers often require a trade-off between latency,
cycle time and area. By considering the use of few-ported routers, it is possible to
have a global view of the optimization problem since we are not a priori restricted to
the larger areas and latencies inherent in many-ported routers. Thus, it is useful for
the designer to have the capability of limiting the number of ports for each particular
router.

133

I

O

O

O

O

OI

I

I

I

L
O
C
A
L

SOUTH

NORTHW
E

S
T

E
A

S
T

Figure 7.7: NoC router with I/O ports in 5 directions.

The MIP model can be easily extended with port limitation constraints. These
limitations can be reduced to limitations on the number of links each router is
connected, since each link is connected to a port of the router. The constraints
may also distinguish between input and output ports. Let the limits for the number
of input and output ports of the router Ri be Pi,in and Pi,out, respectively. Let us
also introduce an indicator function PE(Ri), that is equal to one if router Ri has a
processing element connected to it, or zero otherwise. If PE(Ri) = 1, then a local
port connection exists and the port limitation should be decreased by one. We have
the following set of constraints for each network router Ri:∑

I(Ri)

Lj ≤ Pi,in − PE(Ri),

∑
O(Ri)

Lj ≤ Pi,out − PE(Ri).
(7.7)

Link capacity constraints

Another set of constraints in our model refers to the link capacity. A link Lj can
support a bandwidth up to Cj flits per cycle. The bandwidth of each link is one of
the input parameters of the problem.

As one physical link may be used by several nets, the total traffic in the link will
be defined by the sum of the bandwidths of all nets that are routed through the
link. The net-related variables Lkj can be used to define whether the path of net Nk

uses the link. The following constraint guarantees that the total traffic in the link
does not exceed the link capacity:∑

N
Lkj ·Bk ≤ Cj. (7.8)

134

Net delay constraints

The proposed model offers a high flexibility in the selection of the routing path for
any net as there are no limitations on the path shape or length. However, designers
might be interested in limiting the path hop-count. This may be especially important
for time-critical nets or some short nets that we want to prevent from having very
long paths. In other words, we want to introduce performance constraints that
approximate the net delay by the hop-count metric. This simple metric enables us
to use the MIP formulation, and yet at the same time accurately captures latency
for low traffic loads. The hop-count of a net can be calculated as the sum over all
net-related link variables, since only the links with Lkj = 1 contribute to the path.
Given a limit Dk for the hop-count of net Nk, we obtain the following constraint for
the delay of net Nk: ∑

L
Lkj ≤ Dk. (7.9)

Cost functions

A variety of cost functions are introduced to find solutions with different optimiza-
tion criteria. These cost functions are further discussed in the experimental section.
The first three cost functions are linear, so the obtained problem is classified as a
Mixed-Integer Linear Programming (MILP) problem, while the last cost function is
quadratic, resulting into a Mixed-Integer Quadratic Programming (MIQP) problem.

The cost functions do not need to be used in isolation. Linear combinations with
weighted coefficients can be used for a multiple cost optimization.

Number of links

The total number of links is obtained by summing variables Lj over the set L:

min
∑
L
Lj. (7.10)

Solving the MIP problem with the cost function in the form (7.10) tends to find
a feasible routing solution with minimized area and power consumption.

Maximum net delay

We may want to minimize the maximum net delay over all nets in the network in
order to find a feasible routing solution with the highest performance (net delay

135

constraints for particular nets may still be incorporated). The introduction of a new
variable to represent the maximum delay, Dmax, is required:∑

L
Lkj ≤ Dmax. (7.11)

and the cost function is simply:
minDmax. (7.12)

Total net delay

The minimization of the total delay over all nets (that is equivalent to minimizing
the average net delay) can be regarded as another performance metric. The cost
function in this case is obtained by summing all the net-related variables Lkj for all
nets from N :

min
∑
N

∑
L
Lkj . (7.13)

Uniform traffic distribution

this cost function aims at assigning a uniformly distributed traffic over all the links of
the network. The distribution tends to decrease the contention delays in the network
and, hence, increase the overall network performance by improving the throughput
and the average packet delay. This cost function introduces quadratic terms, so
the problem becomes an IQP problem. A more uniform distribution is obtained by
minimizing the sum of the squares of the link traffics:

min
∑
L

(∑
N
Bk · Lkj

)2

. (7.14)

Problem formulation

Having discussed the set of the constraints and the cost functions, we are now
ready to present the formulation of the MIP problem for link allocation and route
assignment:

Find

the optimal value for a cost function obtained as a linear combination of (7.10),
(7.12), (7.13) and (7.14)

136

subject to

physical constraints (7.7),

application-specific communication constraints (7.8),

performance constraints (7.9),

deadlock-avoidance constraints (7.4), (7.5), (7.6)

and additional model constraints (7.1), (7.2), (7.3), (7.11).

Note that the user is free to select a subset of constraints if certain features are
not required for the design. The cost function can also be extended with small effort
due to the flexibility of the model.

7.3 Experimental results

This section presents the experimental results to demonstrate the functionality and
the quality of the proposed MIP model. We define the trade-offs and discuss the
results for several design problems with various constraint sets and optimization
objectives.

We use CPLEX [3] to solve the MIP model and an accurate flit-level C++ simu-
lator with a variety of routing schemes to obtain the network parameters. Different
testcases are used throughout the experiments: we start with artificial configurations
and we next consider a testcase with typical server workloads from the SPEC2006
benchmarks.

Three types of the experiments are introduced. First, the area-performance trade-
off is analyzed. Second, the application of the model for performance optimization
by means of the routing paths redistribution is considered. Finally, the use of port
limitation constraints for design exploration and tuning is presented.

Area-performance trade-off

One of the optimization tasks in the design of multiprocessor interconnection net-
work is the minimization of the number of links. Given a set of constraints, the goal
is to find the minimal number of links that satisfy the constraints, determine the
link allocation and assign the traffic routes. This optimization contributes to de-
crease area and leakage power. However, the average hop-count delay may increase
as the number of the links decreases and the packets have to follow longer round-
about paths. For this reason, the dynamic power may also increase. Note, that
the variation in power will be defined by the relation between leakage and dynamic
power.

137

(a) Minimal link number (b) Minimal hop-count

Figure 7.8: Link allocation solutions for a 4x3 network.

(a) Minimal link number (b) Minimal hop-count

Figure 7.9: Deadlock-free link allocation for a 4x3 network.

This set of experiments demonstrates the ability of the model to explore the area-
performance trade-offs by link reallocation. Given the communication graph, we first
search for the minimal number of links to enable the connectedness of all routers and
estimate the maximum net delay value. Additionally, we investigate minimal link
solutions subject to the limitation on the maximum net delay. In order to find the
minimal link allocation, we solve the problem with the cost function in form (7.10).
We apply the constraints (7.9) to limit the net delay and (7.4)-(7.6) to guarantee
the deadlock freedom.

We show the area-performance trade-off for a 4x3 network with a complete com-
munication graph, i.e. with net between every pair of processing elements. The
minimal number of links required to connect all routers is 12 and forms the uni-
directional ring topology, that is depicted in Figure 7.8a. For this allocation the
packet delivery will take up to 11 hops for some nets. However, the diameter of the
network can be reduced to 5 hops. The solution obtained with this delay limitation
is presented in Fig. 7.8b. It incorporates 20 links, but the delay for any net is now
guaranteed not to exceed 5 hops. Obviously, there is a trade-off between these two
cases. We explore it by varying the delay constraint value in the specified range.
The set of solution points is displayed in Fig. 7.10 (“Minimal”). Based on this de-
pendency, one can determine the minimal number of links to guarantee a particular
network diameter (for example, 14 links are required for the 8-hop network).

138

10

12

14

16

18

20

22

24

26

28

4 5 6 7 8 9 10 11 12

M
in

im
u

m
 n

u
m

b
e
r
 o

f
li

n
k
s

Maximum net delay (hops)

Minimal

Deadlock-free

Figure 7.10: Area-performance trade-off points in terms of the link number and net
delay for a 4x3 network.

Another important property is deadlock freedom. We provide a similar function
after incorporating the turn prohibition constraints into the problem. Due to the
extra limitations in routing paths, deadlock-free solutions tend to include more links
for the same hop-count limit. Thus, the minimal number of links to provide full
connectivity is 22 (Fig. 7.9a) and the solution with minimal delay of 5 hops has 26
links (Fig. 7.9b). This trade-off is also depicted in Fig. 7.10 (“Deadlock-free”).

Finally, we note that even the “Minimal” solutions can be designed to be
deadlock-free by choosing a suitable architecture. For example, the solution shown
in Fig. 7.8a can be realized in practice by using a token-ring architecture [47] or
virtual channels and dateline scheme [39]. Our model is also capable of discovering
well-known structures, such as the bi-directional ring, that is seen in the variety of
cell processors [90]. This proves that the class of the generated solutions is actually
used in practice.

The area-performance trade-offs discussed in this section demonstrate the suit-
ability of the model for design exploration and optimization. By incorporating
additional application constraints, the user is allowed to perform more accurate,
application-specific optimizations.

139

0

15141312

10 11

1 2 3

7654

8 9

Figure 7.11: Underlying mesh for a typical server workload testcase.

Performance optimization by route reassignment

Another application of the model is related to the optimization of the network delay
by routing path redistribution. In this experiment we assume the communication
requirements of the network, including the nets and their bandwidths, are specified.
The objective is to minimize the average packet delay of the network. The average
optimal hop-count delay can be obtained with the cost function (7.13), but the
contention affects the delay value significantly once the network enters the saturation
region. However, the contention delays can be alleviated by distributing the traffic
uniformly over the network. For this purpose, we are using the cost function (7.14)
to select routing paths that distribute the traffic more uniformly. The quality of the
solution is estimated by simulation and compared to that of the XY and odd-even
routing algorithms. Using the example of a typical server workload, we demonstrate
that the obtained solutions improve the network delay as compared to the classical
routing algorithms for a wide range of injection rates. Furthermore, the throughput
increases as the saturation occurs at higher injection rates.

In this experiment we are considering the typical server workload traffic pattern
collected using the SPEC2006 benchmarks. A 16-core application is assumed to be
mapped onto a 4x4 full mesh, with all links present (Fig. 7.11). The cores connected
to the routers 1 and 2 are the memory controllers that receive high traffic from the
other cores. The traffic injected by each core is assumed to have Poisson distribution.

In Fig. 7.12, the comparison for the average delay estimation at different traffic
rates is shown. We draw the packet delay as a function of the total injection rate to
the network (in packets/cycle), for each of the three mentioned routing algorithms:
XY, odd-even and the one using routing tables, based on the MIP solution. The
timeout for the MIP solution was set to 1000 seconds. Simulation shows that the
average packet delay, obtained with the MIP routing, is better than the delays of XY
or OE schemes in the large range of injection rates. The XY-routing is only winning
slightly the MIP configuration when the injection rates are small, as contention is
low and the XY scheme results into the most uniform solution. However, as soon as

140

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
e

r
a

g
e
 p

a
c
k
e

t
d

e
la

y
 (

c
y
c

le
s

)

Total injection rate (pkt/cycle)

XY

OE

MIP

Figure 7.12: Average delay depending on the injection rate.

contention effects start to contribute significantly to the delay value (injection rates
≥ 0.3 pkt/cycle), the MIP routing improves the average packet delay, as compared
to both XY and odd-even schemes. It can be also seen from the graph that the
saturation occurs at higher rates, hence, the network throughput is increased.

Design optimization by port limitation

Port limitation is another feature introduced by the model in order to extend the
user design flexibility. The ability to limit the number of ports provides the means
to account for the router design complexity at the network planning stage. Typi-
cal routers with 5-in and 5-out ports (Fig. 7.7) have complex designs and are not
capable of running the full bandwidth. Hence, a mismatch between the network
floorplanning stage and the router functionality appears, resulting in a potential
loss of performance. By limiting the maximum number of ports of the routers, the
use of complex routers during the network planning is avoided. This limitation also
allows the optimization of area and leakage power.

We use a simple intuitive model to measure the area variation of the components
in the network. We assume that the major network components are the links and
the routers. The total link area is proportional to the number of links that is
obtained from the MIP solution. The area of the router can be approximated by the

141

complexity of the crossbar and buffer area [48]. The crossbar area has a quadratic
dependency on the number of ports, while the buffer area dependency is linear.

We assume that the leakage power is proportional to the network area. In order
to estimate the variation of the delay and the dynamic power of the solution, we use
a simulator with the incorporated Orion power model [129].

The same typical server workload example of the system, mapped to the 4x4
network, will be used to demonstrate the port limitation functionality. We perform
a set of experiments, aimed at finding the optimal route assignment and link al-
location, subject to additional limitations on the maximum number of input and
output ports of the routers. Further we estimate the network parameters and make
comparison to the results obtained for the full mesh solution with XY-routing.

In these experiments, the number of ports includes the local connections to PE s
(see discussion of (7.7)). In the full mesh solution, there are no limitations on the
number of router ports. The largest routers with 5 input and 5 output ports appear
in locations 5, 6, 9 and 10 (Fig. 7.11). Table 7.3 shows the results of solving the
route assignment and link allocation problem with the number of input, output or
both types of ports limited to 4. Each row is related to a different experiment with a
particular port limitation. The first two columns of the table represent the maximum
number of ports that a router may have. The values in the following columns are
normalized to those obtained for the full-mesh solution with XY-routing. Thus, the
ratio of the total link, crossbar and buffer area is reported in columns from third
to fifth. The average packet delay and dynamic power are reported in the last two
columns.

An example of the network layout for the experiment with 4-input and 4-output
port limitation (4th experiment in Table 7.3) is depicted in Fig. 7.13. This layout
contains 42 links instead of the 48 links in the full-mesh solution. The total area of
links, crossbars and buffers in the presented solution has been decreased by 12.5%,
13.7% and 6.4%, respectively. One can observe the average packet delay increase by
9.9% as well as the dynamic power increase by 6.4%. The increase of average delay,
unless the contention is high, is caused by the removal of links, since the minimal
path for the neighboring routers rises to 3 hops. However, the increasing delay

Table 7.3: Port limitation results for server workload testcase.

Port limit Area Average Dynamic

in out link xbar buffer delay power

5 5 1.000 1.000 1.000 1.003 1.001

5 4 0.916 0.928 0.969 1.037 1.027

4 5 0.916 0.928 0.969 1.040 1.037

4 4 0.875 0.863 0.936 1.099 1.064

142

Figure 7.13: Network layout with 4 input and 4 output port limitation. Links
connecting routers with the co-located PE s are not shown.

may be an acceptable solution if certain nets are not critical (see discussion of the
example in Fig. 7.2). Otherwise, a designer is allowed to put a limiting hop-count
constraint for the critical nets. The variation in power should be calculated together
with the leakage power decrease, that is correlated with the network area. The total
power estimation is technology dependent, but due to the growing importance of the
leakage power resulting from the technology downscale [76], the variation in power
may be negligible as compared to the area savings.

This example demonstrates the potential introduced by the port limitation mech-
anism. Its applicability can be combined with other design constraints. This pro-
vides a designer with a vast spectrum of possibilities for exploration and tuning.

Computational time

The computational complexity of the IP model depends significantly on the number
of binary variables of the model that determines the span of the branch-and-bound
search. For a square mesh of P processing elements, the number of variables is about
4P 3. Still, efficient ILP solvers can handle this model for problems with moderate
size.

Table 7.4 shows the CPU time for solving the model with the link minimization
cost function (7.10), that is the most time consuming linear cost function. The
third column shows the time to find the minimal number of links that guarantee
network connectedness. The last two columns report the CPU times for finding
deadlock-free solutions, which are larger due to the introduction of the turn prohi-
bition constraints.

When an optimal solution is hard to find, a feasible solution close to the optimal
might be also sufficient. The column “Feasible” reports the time required by the
solver to find the optimal solution, while the rest of the time was spent to prove the
non-existence of a better solution. The solution for the 4x4 network was obtained

143

Table 7.4: CPU time for link minimization.

Number of Network Minimal link Deadlock-free (sec)

cores size count (sec) Feasible Optimal

8 4x2 0.21 0.70 1.98

9 3x3 0.81 5.31 31.74

10 5x2 0.55 4.40 23.60

12 4x3 7.86 49.90 4031.25

16 4x4 147.96 2117.89 Timeout

by defining a CPU timeout of three hours. The reported solution is the last one
obtained within the timeout, without knowing whether it was optimal or not. Given
the behavior for the other cases, we conjecture that this solution is very close to the
optimal.

The results show that optimal solutions can be obtained for moderate size net-
works. The model is also useful to partially explore the search space with CPU time
limits, still obtaining high-quality solutions.

7.4 Conclusions

The results of this work can be summarized as follows:

• This research states the link allocation problem for regular topologies explicitly
and proposes an approach for solving this problem simultaneously with the
route assignment task.

• This work is the first one to formulate an integer programming model for
deadlock-free routing by turn prohibition.

• A variety of constraints and cost functions is analyzed and applied for design
space exploration of the on-chip systems. The model is capable of discovering
well-known structures, such as the bi-directional ring, that is seen in commer-
cial implementations [90]. This proves that the class of the generated solutions
is actually used in practice.

It has to be mentioned that the proposed model has a high computational com-
plexity, as the majority of integer programming models. To improve the scalability
of the approach, relaxation techniques for mixed-integer models can be considered.
Future work for this problem is summarized in Chapter 8.

144

Chapter 8

Conclusions and Future Work

The objective of this chapter is to conclude the work and to outline the directions
in which the research could be continued.

This work presents a number of contributions in the field of architectural design
and deployment of many-core chip multiprocessors. First, the problem of efficient
architectural design space exploration is addressed. Efficiency is obtained through
the usage of analytical models and intelligent search strategies, instead of simulation-
based exhaustive exploration.

An important effect of the closed CMP system is demonstrated, which is the cyclic
dependency between the latency and traffic of requests to the memory subsystem.
This dependency is crucial to accurately estimate the interconnect contention, when
evaluating the CMP performance analytically. Several numerical methods for re-
solving this dependency are presented and further used to build an analytical model
of a complete CMP. The efficiency of the model is demonstrated by its ability to es-
timate the performance of a CMP with 700 components (including cores, memories
and on-chip routers) in one second.

The developed model is applied as a rapid and accurate performance estimator
in a framework for architectural exploration. This framework encompasses many
architectural parameters, including the core count, cache sizes, number of levels
of the memory hierarchy, interconnect topologies, core architectures and others.
Metaheuristic-based search is proposed to efficiently navigate through a large design
space and discover optimal (or nearly-optimal) configurations, demonstrating orders
of magnitude savings in run time, when compared to simulation-based methods.
The search method is also shown to outperform simple exploration strategies both in
CPU time and quality. An example of applying the framework to power-performance
exploration of CMPs is given.

Another contribution of this work is in the field of analytical modeling for on-chip
interconnects. It is shown that the classical Markovian models provide pessimistic

145

approximation of waiting times for interconnects with constant-length packets. The
constant-time model was proposed to eliminate the assumptions of the markovian
models and improve the modeling precision.

This thesis makes a contribution for the problem of task mapping onto prefabri-
cated CMPs with multiple voltage islands. Metaheuristic-driven search is shown to
efficiently solve the mapping problem. The quality of the search is verified by the
ability of metaheuristics to discover optimal solutions for moderate-size examples,
for which the optimum is known by solving the MILP. Scalability of the method is
demonstrated by performing task mapping of application graphs with hundreds of
tasks.

Finally, this research contributes to the problem of topology customization for
on-chip interconnects. An approach for solving the link allocation problem simul-
taneously with the route assignment task is proposed. This work is the first one to
formulate an integer programming model for deadlock-free routing by turn prohibi-
tion. The model is capable of discovering well-known interconnect solutions, which
are seen in commercial implementations.

Future work

There are several directions in which the presented research can be continued.

The following considerations can be taken into account to extend the developed
methodology for architectural exploration. The approach described in this document
performs high-level floorplanning of a chip by selecting dimensions of the top-level
interconnect. However, elaboration of the detailed cluster-level floorplans is essential
to obtain accurate estimation of the chip area. Additionally, wire-planning has to be
performed to verify routability of the produced floorplans. The initial work in this
direction has justified the importance of physical planning for CMP architectural
exploration [46], [37].

Organization of the access to off-chip memory brings another dimension of ex-
ploration. The quantity and placement of memory controllers, and location of the
injection ports have a strong impact on the system performance. Various alterna-
tives of the memory controller architecture can also be considered. Additionally,
the influence of cache-coherence protocols on system performance has to be stud-
ied. Traffic models have to include extra messages generated by the protocols and
possibly affecting the interconnect contention.

Another interesting direction is to extend the model and architectural exploration
methodology for heterogeneous CMPs. Possibility of having heterogeneous clusters
on-chip results into an enormous increase of the design space. This fact requires
a clever selection and fine tuning of the transformation set to obtain reasonable
compromise between run time and solution quality. Furthermore, analytical model

146

has to be verified to provide accurate performance estimation for heterogeneous
configurations. Alternative numerical methods can be considered for resolving the
cyclic dependency between memory traffic and latency.

The task mapping approach proposed in this work has a limitation of assigning
only one task per core. To eliminate this constraint, the problem of dynamic task
mapping or scheduling has to be addressed. Another important aspect that is not
considered in current formulation of the problem is thermal-aware task mapping.
Thermal issues influence the primary metrics of the chip, such as performance and
power dissipation, and additionally affect the circuit lifetime.

The major issue of the proposed model for link allocation and routing is the high
computational complexity, which is typical for the majority of integer programming
models. One of the options to improve the scalability of the approach is to explore
relaxation techniques for IP models. Another option is to consider alternative so-
lution strategies, such as heuristical search, compromising search time and solution
quality. The described model also assumes that the application is pre-mapped to
the initial topology. Development of a combined method for mapping and topology
customization with route allocation can be a next step in enhancing the proposed
methodology.

147

Bibliography

[1] ARM AMBA specification: http://www.arm.com/products/system-ip/amba/.

[2] CACTI. http://www.hpl.hp.com/research/cacti/.

[3] CPLEX. http://www.ilog.com/products/cplex.

[4] CPU Database. http://cpudb.stanford.edu.

[5] MATLAB. http://www.mathworks.com.

[6] Parameters of Intel Core 2 Duo E6400 processor at CPU Database.
http://cpudb.stanford.edu/processors/1088.

[7] ST Microelectronics website: http://www.st.com/.

[8] Texas Instruments OMAP3530 Application Processor.
http://www.ti.com/product/omap3530.

[9] Texas Instruments TMS320DRM300/350 Digital Radio Mondiale Solution.
http://www.ti.com/lit/ml/sprt354/sprt354.pdf.

[10] D. Abts, N. D. E. Jerger, J. Kim, D. Gibson, and M. H. Lipasti. Achieving pre-
dictable performance through better memory controller placement in many-core
CMPs. In ISCA, pages 451–461, 2009.

[11] T. Ahonen, D. A. Sigüenza-Tortosa, H. Bin, and J. Nurmi. Topology optimization
for application-specific networks-on-chip. In Proceedings of the 2004 international
workshop on System level interconnect prediction, pages 53–60, 2004.

[12] A. R. Alameldeen. Using compression to improve chip multiprocessor performance.
PhD thesis, 2006.

[13] G. Ascia, V. Catania, and M. Palesi. Multi-objective mapping for mesh-based noc
architectures. In Intl. Conf. Hardware/Software Codesign and System Synthesis,
pages 182–187, 2004.

[14] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of performance
asymmetry in emerging multicore architectures. In Proceedings of the 32nd annual
international symposium on Computer Architecture, ISCA ’05, pages 506–517, 2005.

149

[15] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip networks. In
Proc. Intl. Conf. on Supercomputing, pages 187–198, 2006.

[16] G. Beltrame, D. Sciuto, C. Silvano, P. Paulin, and E. Bensoudane. An application
mapping methodology and case study for multi-processor on-chip architectures. In
Intl. Conf. Very Large Scale Integration, pages 146=–151, Oct. 2006.

[17] W. Ben-Ameur. Computing the initial temperature of simulated annealing. Comput.
Optim. Appl., 29(3):369–385, Dec. 2004.

[18] Y. Ben-Itzhak, I. Cidon, and A. Kolodny. Delay analysis of wormhole based hetero-
geneous NoC. In NOCS, pages 161–168, May 2011.

[19] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. De Micheli. NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Trans. Parallel Distrib. Syst., 16(2):113–129, 2005.

[20] D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, second edition, 1992.

[21] D. P. Bertsekas. Nonlinear Programming. 2nd edition, Sept. 1999.

[22] D. Bhandarkar. RISC architecture trends. In Proc. CompEuro, pages 345–352, 1991.

[23] L. N. Bhuyan, Q. Yang, and D. P. Agrawal. Performance of multiprocessor inter-
connection networks. Computer, 22(2):25–37, Feb. 1989.

[24] S. Boettcher and A. G. Percus. Extremal optimization: Methods derived from co-
evolution. In Proceedings of the Genetic and Evolutionary Computation Conference,
Orlando, Florida, USA, pages 825–832, 1999.

[25] P. Bogdan, M. Kas, R. Marculescu, and O. Mutlu. Quale: A quantum-leap in-
spired model for non-stationary analysis of NoC traffic in chip multiprocessors. In
International Symposium on Networks-on-Chip (NOCS), pages 241–248, May 2010.

[26] P. Bogdan and R. Marculescu. Non-stationary traffic analysis and its implications
on multicore platform design. Computer-Aided Design of Integrated Circuits and
Systems, 30:508–519, Apr. 2011.

[27] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS architecture and
design process for network on chip. Journal of Systems Architecture, 50(2-3):105–
128, 2004.

[28] E. Bolotin, A. Morgenshtein, I. Cidon, R. Ginosar, and A. Kolodny. Automatic
hardware-efficient SoC integration by QoS network on chip. In Electronics, Circuits
and Systems, pages 479–482, Dec. 2004.

[29] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–
77, May 2011.

150

[30] R. Burden and D. Faires. Numerical Analysis. Brooks Cole, 2010.

[31] A. Cassidy, K. Yu, H. Zhou, and A. Andreou. A high-level analytical model for
application specific CMP design exploration. In Proc. Design, Automation and Test
in Europe (DATE), pages 1–6, Mar. 2011.

[32] A. S. Cassidy and A. G. Andreou. Beyond Amdahl’s law: An objective function that
links multiprocessor performance gains to delay and energy. IEEE Trans. Comp.,
61(8):1110–1126, Aug. 2012.

[33] G. Chen, F. Li, S. Son, and M. Kandemir. Application mapping for chip multipro-
cessors. In Proc. ACM/IEEE Design Automation Conference, pages 620–625, June
2008.

[34] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE Trans. Parallel
Distrib. Syst., 11(7):729–738, 2000.

[35] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for exploiting
memory-level parallelism. In ISCA, pages 76–87, 2004.

[36] A. D. Choudhury, G. Palermo, C. Silvano, and V. Zaccaria. Yield enhancement
by robust application-specific mapping on network-on-chips. In Intl. Workshop on
Network on Chip Architectures, pages 37–42, 2009.

[37] J. Cortadella, J. de San Pedro, N. Nikitin, and J. Petit. Physical-aware system-level
design for tiled hierarchical chip multiprocessors. In Intl. Symp. Physical Design,
Mar. 2013.

[38] D. Pham et al. Overview of the architecture, circuit design, and physical implemen-
tation of a first-generation cell processor. Solid-State Circuits, 41:179–196, 2006.

[39] W. Dally and B. Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers, Inc., 2003.

[40] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor inter-
connection networks. IEEE Trans. Comput., 36(5):547–553, 1987.

[41] W. J. Dally and B. Towles. Route packets, not wires: on-chip inteconnection net-
works. In DAC ’01: Proceedings of the 38th conference on Design automation, pages
684–689, New York, NY, USA, 2001. ACM.

[42] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz. CPU DB:
recording microprocessor history. ACM Queue, 10(4):10–27, Apr. 2012.

[43] R. Das, S. Eachempati, A. Mishra, V. Narayanan, and C. Das. Design and eval-
uation of a hierarchical on-chip interconnect for next-generation CMPs. In High
Performance Comp. Arch., pages 175–186, Feb. 2009.

151

[44] I. De Falco, A. Della Cioppa, D. Maisto, U. Scafuri, and E. Tarantino. A multiobjec-
tive extremal optimization algorithm for efficient mapping in grids. In Applications
of Soft Computing, volume 58, pages 367–377, 2009.

[45] J. de San Pedro. A simulation framework for hierarchical Network-on-Chip systems.
Master’s thesis, 2012.

[46] J. de San Pedro, N. Nikitin, J. Cortadella, and J. Petit. Physical planning for the
architectural exploration of large-scale chip multiprocessors. In Proc. ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), Apr. 2013.

[47] F. Deslauriers, M. Langevin, G. Bois, Y. Savaria, and P. Paulin. Roc: A scalable
network on chip based on the token ring concept. In Circuits and Systems, 2006
IEEE North-East Workshop on, page 157, June 2006.

[48] R. R. Dobkin, R. Ginosar, and A. Kolodny. QNoC asynchronous router. Integration,
the VLSI Journal, 42(2):103 – 115, 2009.

[49] J. T. Draper and J. Ghosh. A comprehensive analytical model for wormhole routing
in multicomputer systems. J. Parallel Distrib. Comput., 23(2):202–214, 1994.

[50] J. Duato. A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Trans. Parallel Distrib. Syst., 4(12):1320–1331, Dec. 1993.

[51] J. Duato. A necessary and sufficient condition for deadlock-free adaptive routing
in wormhole networks. IEEE Trans. Parallel Distrib. Syst., 6(10):1055–1067, Oct.
1995.

[52] J. Duato, S. Yalamanchili, and N. Lionel. Interconnection Networks: An Engineering
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[53] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A mechanistic performance
model for superscalar out-of-order processors. ACM Trans. Comput. Syst., 27:1–37,
May 2009.

[54] J. A. Fisher. Very Long Instruction Word architectures and the ELI-512. SIGARCH
Comput. Archit. News, 11(3):140–150, June 1983.

[55] G. S. Fishman. Grouping observations in digital simulation. Management Science,
24:510–521, 1978.

[56] S. Foroutan, Y. Thonnart, R. Hersemeule, and A. Jerraya. An analytical method for
evaluating Network-on-Chip performance. In Proc. Design, Automation and Test in
Europe (DATE), pages 1629–1632, Mar. 2010.

[57] P. Ghosh and A. Sen. Energy efficient mapping and voltage islanding for regular
NoC under design constraints. Int. J. High Perform. Syst. Archit., 2:132–144, Aug.
2010.

152

[58] F. Gilabert, F. Silla, M. E. Gomez, M. Lodde, A. Roca, J. Flich, J. Duato,
C. Hernández, and S. Rodrigo. Designing Network On-Chip Architectures in the
Nanoscale Era. CRC Press, 2010.

[59] C. J. Glass and L. M. Ni. The turn model for adaptive routing. SIGARCH Comput.
Archit. News, 20(2):278–287, 1992.

[60] P. Gratz, C. Kim, R. Mcdonald, S. W. Keckler, and D. Burger. Implementation
and evaluation of on-chip network architectures. In in International Conference on
Computer Design, pages 477–484, 2006.

[61] Z. Guz, I. Walter, E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. Efficient link
capacity and QoS design for network-on-chip. In DATE ’06: Proceedings of the
conference on Design, automation and test in Europe, pages 9–14, 3001 Leuven,
Belgium, Belgium, 2006. European Design and Automation Association.

[62] A. Hansson, K. Goossens, and A. Rǎdulescu. A unified approach to constrained
mapping and routing on network-on-chip architectures. In Proceedings of the 3rd
IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis, pages 75–80, 2005.

[63] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma. On the nature of cache miss
behavior: is it square root of 2. Journal of Instruction-Level Parallelism, 10, 2008.

[64] J. L. Hennessy and D. A. Patterson. Computer Architecture, 4th Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., 2006.

[65] T. Henriksson, P. van der Wolf, A. Jantsch, and A. Bruce. Network calculus applied
to verification of memory access performance in SoCs. In Workshop on Embedded
Systems for Real-Time Multimedia, pages 21–26, Oct. 2007.

[66] R. Holsmark, M. Palesi, and S. Kumar. Deadlock free routing algorithms for ir-
regular mesh topology NoC systems with rectangular regions. Journal of Systems
Architecture, 54(3-4):427 – 440, 2008.

[67] J. Hu and R. Marculescu. Dyad: smart routing for networks-on-chip. In DAC ’04:
Proceedings of the 41st annual Design Automation Conference, pages 260–263, New
York, NY, USA, 2004. ACM.

[68] J. Hu and R. Marculescu. Energy- and performance-aware mapping for regular NoC
architectures. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 24:551–562, 2005.

[69] J. Huh, D. Burger, and S. W. Keckler. Exploring the design space of future CMPs. In
Proc. Int. Conf. Parallel Architectures and Compilation Techniques, pages 199–210,
2001.

153

[70] W.-L. Hung, G. M. Link, Y. Xie, N. Vijaykrishnan, N. Dhanwad, and J. Conner.
Temperature-aware voltage islands architecting in system-on-chip design. In Proc.
International Conf. Computer Design (ICCD), pages 689–696, 2005.

[71] Intel Whitepaper. 64-bit Intel Xeon Processor MP with up to 8MB L3 cache. 2005.

[72] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz. Efficiently
exploring architectural design spaces via predictive modeling. SIGARCH Comput.
Arch., 34(5):195–206, Oct. 2006.

[73] J. Howard et al. A 48-core IA-32 processor in 45 nm CMOS using on-die message-
passing and DVFS for performance and power scaling. J. Solid-State Circuits,
46(1):173–183, 2011.

[74] J. Owens et al. GPU computing. Proceedings of the IEEE, 96:879–899, May 2008.

[75] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil. Construction and use of
linear regression models for processor performance analysis. In Intl. Symp. High-
Performance Computer Architecture, pages 99–108, 2006.

[76] A. Kahng, B. Li, L.-S. Peh, and K. Samadi. Orion 2.0: A fast and accurate NoC
power and area model for early-stage design space exploration. In Proc. Design,
Automation and Test in Europe (DATE), pages 423–428, Apr. 2009.

[77] S. Kang and R. Kumar. Magellan: a search and machine learning-based framework
for fast multi-core design space exploration and optimization. In Proc. Design,
Automation and Test in Europe (DATE), pages 1432–1437, 2008.

[78] J. Kim and W. J. Dally. Flattened butterfly: A cost-efficient topology for high-radix
networks. In Proc. of the Intl. Symp. on Computer Architecture, 2007.

[79] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast, per-core
DVFS using on-chip switching regulators. In IEEE 14th International Symposium
on High Performanc Computer Architecture (HPCA), pages 123 –134, Feb. 2008.

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

[81] L. Kleinrock. Queueing Systems, Volume 1. Wiley-Interscience, 1975.

[82] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M.
Cohn. Managing power and performance for system-on-chip designs using voltage
islands. In Proc. International Conf. Computer-Aided Design (ICCAD), pages 195–
202, 2002.

[83] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag, Berlin, Heidelberg, 2001.

154

[84] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
McPAT: an integrated power, area, and timing modeling framework for multicore
and manycore architectures. In Proc. Int. Symp. Microarchitecture, pages 469–480,
2009.

[85] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP design space exploration
subject to physical constraints. In High-Performance Computer Architecture, pages
17–28, Feb. 2006.

[86] M. Azimi et al. Integration Challenges and Tradeoffs for Tera-scale Architectures.
Intel Technology Journal, August 2007.

[87] M. Taylor et al. The Raw microprocessor: a computational fabric for software
circuits and general-purpose programs. Micro, IEEE, 22(2):25–35, Mar. 2002.

[88] W.-K. Mak and J.-W. Chen. Voltage island generation under performance require-
ment for SoC designs. In Proc. of Asia and South Pacific Design Automation Con-
ference, pages 798–803, 2007.

[89] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote. Outstanding
research problems in NoC design: system, microarchitecture, and circuit perspec-
tives. IEEE Transactions on Computer-Aided Design, 28(1):3–21, Jan. 2009.

[90] M. R. Marty and M. D. Hill. Coherence ordering for ring-based chip multipro-
cessors. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 309–320, Washington, DC, USA, 2006. IEEE
Computer Society.

[91] R. E. Matick, T. J. Heller, and M. Ignatowski. Analytical analysis of finite cache
penalty and cycles per instruction of a multiprocessor memory hierarchy using miss
rates and queuing theory. IBM J. Res. Dev., 45:819–842, Nov. 2001.

[92] G. D. Micheli and L. Benini. Networks on Chips: Technology and Tools (Systems
on Silicon). Morgan Kaufmann Publishers, Inc., 2006.

[93] M. Monchiero, R. Canal, and A. Gonzalez. Power/performance/thermal design-
space exploration for multicore architectures. Parallel and Distributed Systems,
19(5):666–681, May 2008.

[94] S. Murali, L. Benini, and G. De Micheli. An application-specific design methodology
for on-chip crossbar generation. IEEE Transactions on Computer-Aided Design,
26(7):1283–1296, July 2007.

[95] S. Murali, M. Coenen, A. Radulescu, K. Goossens, and G. De Micheli. A method-
ology for mapping multiple use-cases onto networks on chips. In Proc. Design,
Automation and Test in Europe (DATE), DATE ’06, pages 118–123, 2006.

155

[96] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini, G. De Micheli,
and L. Raffo. Designing application-specific networks on chips with floorplan in-
formation. In Proc. International Conf. Computer-Aided Design (ICCAD), pages
355–362, New York, NY, USA, 2006. ACM.

[97] S. Murali and G. D. Micheli. An application-specific design methodology for stbus
crossbar generation. In Design, Automation and Test in Europe (DATE), pages
1176–1181, 2005.

[98] N. Nikitin, S. Chatterjee, J. Cortadella, M. Kishinevsky, and U. Ogras. Physical-
aware link allocation and route assignment for chip multiprocessing. In Proc.
ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pages 125–
134, 2010.

[99] N. Nikitin and J. Cortadella. Static task mapping for tiled chip multiprocessors with
multiple voltage islands. Technical report, http://www.lsi.upc.edu/~techreps/
files/R11-13.zip.

[100] N. Nikitin and J. Cortadella. A performance analytical model for network-on-chip
with constant service time routers. In Proc. International Conf. Computer-Aided
Design (ICCAD), pages 571–578, 2009.

[101] N. Nikitin and J. Cortadella. Static task mapping for tiled chip multiprocessors with
multiple voltage islands. In Proc. Architecture of Computing Systems, pages 50–62,
2012.

[102] N. Nikitin, J. de San Pedro, J. Carmona, and J. Cortadella. Analytical performance
modeling of hierarchical interconnect fabrics. In Proc. ACM/IEEE International
Symposium on Networks-on-Chip (NOCS), pages 107–114, May 2012.

[103] U. Ogras, P. Bogdan, and R. Marculescu. An analytical approach for network-
on-chip performance analysis. Computer-Aided Design of Integrated Circuits and
Systems, 29:2001–2013, Dec. 2010.

[104] U. Y. Ogras and R. Marculescu. Energy- and performance-driven NoC commu-
nication architecture synthesis using a decomposition approach. In Proc. Design,
Automation and Test in Europe (DATE), pages 352–357, 2005.

[105] Ü. Y. Ogras and R. Marculescu. ”It’s a small world after all”: NoC performance
optimization via long-range link insertion. IEEE Trans. VLSI Syst., 14(7):693–706,
2006.

[106] U. Y. Ogras, R. Marculescu, P. Choudhary, and D. Marculescu. Voltage-frequency
island partitioning for GALS-based networks-on-chip. In Proc. ACM/IEEE Design
Automation Conference, pages 110–115, 2007.

[107] T. Oh, H. Lee, K. Lee, and S. Cho. An analytical model to study optimal area
breakdown between cores and caches in a chip multiprocessor. In ISVLSI, pages
181–186, May 2009.

156

[108] K. Olukotun. Chip Multiprocessor Architecture: Techniques to Improve Throughput
and Latency. Morgan and Claypool Publishers, 2007.

[109] C. D. Pack. The effects of multiplexing on a computer-communications system.
Commun. ACM, 16(3):161–168, 1973.

[110] C. D. Pack. The Output of an M/D/1 Queue. OPERATIONS RESEARCH,
23(4):750–760, 1975.

[111] G. Palermo, G. Mariani, C. Silvano, R. Locatelli, and M. Coppola. Mapping and
topology customization approaches for application-specific stnoc designs. In Intl.
Conf. Application-Specific Systems, Architectures and Processors, pages 61–68, July
2007.

[112] G. Palermo, C. Silvano, and V. Zaccaria. ReSPIR: A response surface-based pareto
iterative refinement for application-specific design space exploration. IEEE Trans-
actions on Computer-Aided Design, 28(12):1816–1829, Dec. 2009.

[113] G. Passas, M. Katevenis, and D. Pnevmatikatos. Crossbar NoCs are scalable beyond
100 nodes. IEEE Transactions on Computer-Aided Design, 31(4):573–585, Apr.
2012.

[114] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. Efficient synthesis of
networks on chip. In Proc. ICCD, 2003, pages 146–150, 2003.

[115] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli. A methodology for
constraint-driven synthesis of on-chip communications. IEEE Transactions on
Computer-Aided Design, 28(3):364–377, Mar. 2009.

[116] F. J. Pollack. New microarchitecture challenges in the coming generations of cmos
process technologies. In IEEE Micro, page 2, 1999.

[117] T. K. Prakash and L. Peng. Performance characterization of SPEC CPU2006 on
Intel Core 2 Duo processor. In ISAST, pages 36–41, 2008.

[118] S. Bell et al. TILE64 - processor: A 64-core SoC with mesh interconnect. In Solid-
State Circuits, pages 88–98, Feb. 2008.

[119] S. Vangal et al. An 80-tile 1.28TFLOPS network-on-chip in 65nm CMOS. In Solid-
State Circuits, pages 98–589, Feb. 2007.

[120] T. J. Santner, W. B., and N. W. The Design and Analysis of Computer Experiments.
Springer-Verlag, 2003.

[121] M. Sayeed and M. Atiquzzaman. Multiple-bus multiprocessor under unbalanced
traffic. Computers and Electrical Engineering, 1999.

157

[122] M. K. F. Schafer, T. Hollstein, H. Zimmer, and M. Glesner. Deadlock-free routing
and component placement for irregular mesh-based networks-on-chip. In ICCAD
’05: Proceedings of the 2005 IEEE/ACM International conference on Computer-
aided design, pages 238–245, Washington, DC, USA, 2005. IEEE Computer Society.

[123] H. She, Z. Lu, A. Jantsch, L.-R. Zheng, and D. Zhou. Traffic splitting with net-
work calculus for mesh sensor networks. In Proceedings of the Future Generation
Communication and Networking, pages 368–373, 2007.

[124] D. Sheldon, F. Vahid, and S. Lonardi. Interactive presentation: Soft-core processor
customization using the design of experiments paradigm. In Proc. Design, Automa-
tion and Test in Europe, pages 821–826, 2007.

[125] K. Srinivasan, K. S. Chatha, and G. Konjevod. Linear-programming-based tech-
niques for synthesis of network-on-chip architectures. IEEE Transactions on VLSI
Systems, 14(4):407–420, 2006.

[126] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: maxi-
mizing on-chip parallelism. In Intl. Symp. on Computer architecture, pages 533–544,
1998.

[127] G. Varatkar and R. Marculescu. Communication-aware task scheduling and volt-
age selection for total systems energy minimization. In Proc. International Conf.
Computer-Aided Design (ICCAD), 2003.

[128] H. Wang, L.-S. Peh, and S. Malik. A technology-aware and energy-oriented topology
exploration for on-chip networks. In Proc. Design, Automation and Test in Europe
(DATE), pages 1238–1243, 2005.

[129] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion: a power-performance simulator
for interconnection networks. In Microarchitecture, 2002. (MICRO-35). Proceedings.
35th Annual IEEE/ACM International Symposium on, pages 294–305, 2002.

[130] X. Wang, P. Liu, M. Yang, M. Palesi, Y. Jiang, and M. C. Huang. Energy efficient
run-time incremental mapping for 3-d networks-on-chip. J. Comput. Sci. Technol.,
28(1):54–71, 2013.

[131] N. H. E. Weste and K. Eshraghian. Principles of CMOS VLSI design: a system
perspective. Addison-Wesley, Boston, MA, USA, 1985.

[132] E. C. Wille, M. Mellia, E. Leonardi, and M. A. Marsan. A lagrangean relaxation
approach for qos networks cfa problems. International Journal of Electronics and
Communications, 63(9):743–753, 2009.

[133] E. C. G. Wille, M. Mellia, E. Leonardi, and M. A. Marsan. Algorithms for IP
network design with end-to-end QoS constraints. Comput. Netw., 50(8):1086–1103,
2006.

158

[134] D. F. Wong and C. L. Liu. A new algorithm for floorplan design. In Proc.
ACM/IEEE Design Automation Conference, pages 101–107, 1986.

[135] G. Wood. The bisection method in higher dimensions. Math. Program., 55, June
1992.

[136] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious.
SIGARCH Comput. Archit. News, 23(1):20–24, Mar. 1995.

[137] J. Xu, W. Wolf, J. Henkel, and S. Chakradhar. A design methodology for
application-specific networks-on-chip. ACM Trans. Embed. Comput. Syst., 5(2):263–
280, 2006.

[138] Z. Wang et al. A novel low-waveguide-crossing floorplan for fat tree based optical
networks-on-chip. In Proc. Intl. Conf. Optical Interconnects, May 2012.

[139] V. Zaccaria, G. Palermo, F. Castro, C. Silvano, and G. Mariani. Multicube Explorer:
An open source framework for design space exploration of chip multi-processors.
Proc. Architecture of Computing Systems, pages 1–7, Feb. 2010.

[140] T. Zhou, W.-J. Bai, L.-J. Cheng, and B.-H. Wang. Continuous extremal optimization
for Lennard-Jones clusters. Phys. Rev. E, 72(1), July 2005.

159

