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Departament de Matemàtica Aplicada III
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Abstract

Adaptive hybrid discontinuous methods for fluid and wave problems

Giorgio Giorgiani

This PhD thesis proposes a p-adaptive technique for the Hybridizable Discontin-

uous Galerkin method (HDG).

The HDG method is a novel discontinuous Galerkin method (DG) with interesting

characteristics. While retaining all the advantages of the common DG methods, such

as the inherent stabilization and the local conservation properties, HDG allows to

reduce the coupled degrees of freedom of the problem to those of an approximation

of the solution defined only on the faces of the mesh. Moreover, the convergence

properties of the HDG solution allow to perform an element-by-element postprocess

resulting in a superconvergent solution.

Due to the discontinuous character of the approximation in HDG, p-variable com-

putations are easily implemented. In this work the superconvergent postprocess is

used to define a reliable and computationally cheap error estimator, that is used to

drive an automatic adaptive process. The polynomial degree in each element is au-

tomatically adjusted aiming at obtaining a uniform error distribution below a user

defined tolerance. Since no topological modification of the discretization is involved,

fast adaptations of the mesh are obtained.

First, the p-adaptive HDG is applied to the solution of wave problems. In partic-

ular, the Mild Slope equation is used to model the problem of sea wave propagation

is coastal areas and harbors. The HDG method is compared with the continuous

Galerkin (CG) finite element method, which is nowadays the common method used

in the engineering practice for this kind of applications. Numerical experiments reveal

that the efficiency of HDG is close to CG for uniform degree computations, clearly out-
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performing other DG methods such as the Compact Discontinuous Galerkin method.

When p-adaptivity is considered, an important saving in computational cost is shown.

Then, the methodology is applied to the solution of the incompressible Navier-

Stokes equations for the simulation of laminar flows. Both steady state and transient

applications are considered. Various numerical experiments are presented, in 2D and

3D, including academic examples and more challenging applications of engineering

interest. Despite the simplicity and low cost of the error estimator, high efficiency is

exhibited for analytical examples. Moreover, even though the adaptive technique is

based on an error estimate for just the velocity field, high accuracy is attained for all

variables, with sharp resolution of the key features of the flow and accurate evaluation

of the fluid-dynamic forces. In particular, high degrees are automatically located along

boundary layers, reducing the need for highly distorted elements in the computational

mesh. Numerical tests show an important reduction in computational cost, compared

to uniform degree computations, for both steady and unsteady computations.
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Chapter 1

Introduction

Discontinuous Galerkin methods (DG) are finite element methods that are locally

conservative and stable, and allow to achieve high-order accuracy. The DG formula-

tion uses discontinuous approximation element by element, with the information that

passes through the elements by means of numerical fluxes. Since their introduction,

DG methods have been used to solve a large variety of partial differential equations,

gaining an increasing interest in the scientific computing community. In fact, they

have proved to be suited for the construction of robust high-order numerical schemes

on arbitrary unstructured and non-conforming grids, for a variety physical fenomena.

The main drawback of DG methods, compared to continuous Galerkin (CG), is the

increased number of degrees of freedom (DOF) due to the duplication of the nodes

belonging to faces of the elements. It has been often claimed that this disadvan-

tage becomes less important for high-order elements, due to the increasing number of

interior nodes. However, until very recently, DG methods coupled the nodes in the in-

terior of the elements, for high-order approximations, with neighboring element nodes,

even for reduced stencil approaches such as interior penalty methods, see for example

Arnold (1982), and Compact Discontinuous Galerkin method (CDG), see Peraire and

Persson (2008). This coupling precluded any technique, such as static condensation of

the interior nodes for CG, to reduce the number of DOF. Under these circumstances,

DG are penalized respect to CG.

1



2 Introduction

However, recently a numerical technique called hybridization is earning interest

among the DG users. Similarly to static condensation, hybridization of DG methods

allows to reduce the globally coupled degrees of freedom to those of an approxima-

tion of the solution defined only on the boundaries of the elements (trace solution).

The hybridizable discontinuous Galerkin method (HDG), was formally introduced by

Cockburn et al. (2009) for second order elliptic problems, and then extended to the

solution of a great variety of physical fenomena, see for example Nguyen et al. (2009,

2011c,a,b, 2010) and Peraire et al. (2010). The similarity between hybridization in DG

and static condensation in CG is highlighted by Kirby et al. (2011), both techniques

leading to an important reduction in the number of DOF for high-order computa-

tions. Nevertheless, Arnold and Brezzi (1985) showed that hybridization is not only

an implementation expedient to reduce the linear system size, but the trace unknown

contains extra informations on the exact solution. In fact, unlike other DG methods

and standard CG, HDG exhibits optimal convergence in L2 norm not only for the

primal unknown of the problem but also for its derivative, opening the path to an

element-by-element postprocess which provides a superconvergent solution.

Hence, high-order HDG can to obtain high accuracy with very efficient compu-

tations. Obviously, the most efficient way to minimize the computational effort is

to adapt the discretization in each area of the domain to satisfy a requested error

tolerance. Adaptivity is the natural way for refining the mesh only in the zones where

more accuracy is needed, either for a goal oriented computation or for achieving a

uniform error distribution. DG methods provide a natural framework for implement-

ing adaptive techniques: due to the discontinuous character of the approximation in

each element, non-matching grids containing hanging nodes and non-uniform approx-

imation degrees can easily be handled.

The most typical adaptive techniques are based on modifying the element size (h-

adaptivity, being h the element size) or modifying the polynomial degree of the element

(p-adaptivity, being p the polynomial degree of the approximation). Considering a

single element, local h-refinement is performed generating successive nested elements

of the same degree, while p-refinement is performed replacing the element with an-
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Figure 1.1: h-refinement vs p-refinement.

other of increased degree. Despite the existing vast literature on adaptive algorithms,

p-adaptive techniques have not received the attention they deserve, probably due to

its cumbersome implementation in the context of continuous approximations. Never-

theless, degree adaptive algorithms, usually in combination with mesh size adaptation,

have proved to be very efficient, specially in the context of discontinuous approxima-

tions and smooth solutions. In fact, if the exact solution of the problem is smooth,

the convergence of p-refinement is faster than the one of h-refinement, see for exam-

ple Babuška and Szabo (1991). As an example, in Figure 1.1 is shown a comparison

between h and p refinement for a second order elliptic problem. The markers on the

continuous curves refers to four different element sizes, while the dashed line joints

points of equal h and increasing p.

This example underlines the fact that increasing the polynomial degree provides

faster convergence to the exact solution. For this reason, p-adaptivity is preferred,

whenever is possible, to h-adaptivity. Moreover, no topological modification of the

discretization is involved in p-adaptivity, thus the invariance of the elemental connec-

tivity typically leads to a simpler implementation. However, it is well known that

increasing the polynomial degree of the approximation in areas of the domain where

the exact solution presents discontinuities, will only introduce more oscillations in the

approximate solution and may result in loss of stability. Hence, the a priori rule of
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thumb for hp-adaptive techniques is that h-refinement can be used to isolate singu-

larities while p-enrichment, away from singularities, delivers exponential convergence,

see for example Eskilsson (2011) and Remacle et al. (2003). A survey of the adaptive

methods proposed in the past in the framework of DG is done in Section 1.2.1.

One of the ingredients to implement an adaptive method is an a-posteriori error

estimator to drive the automatic adaptive process. The error estimation is, in most

cases, an expensive computation. In fact, it usually requires the evaluation of an

improved solution that entails a non-negligible over-cost. Some of the most common

error estimators used in the literature are summarized in Section 1.2.2.

This thesis focuses on a p-adaptive technique for the HDG method. Hence, no

problems with discontinuities are considered. The adaptive technique allows to auto-

matically modify the polynomial degree of the approximation independently in each

element. Thus, the efficiency of the computation is drastically improved, since the

computational complexity is calibrated to obtain the desired tolerance in each part

of the domain. Moreover, the adaptive technique also simplifies the initial design of

the mesh, reducing the need to a priori adjust the discretization to the finite element

solution.

The adaptive algorithm is driven by an error estimator derived exploiting the

superconvergent properties of HDG and involving only elemental computations. Thus,

the error estimation is an inexpensive computation compared to the solution, as will

be shown in the examples. High reliability of the error estimator is also found.

The p-adaptive HDG is used for the solution of incompressible flow problems and

wave propagation problems. Both steady-state and transient solutions are considered.

High efficiency of the computations and high accuracy is shown for both physical

problems considered.

In the following section the main contributions and partial objectives of the thesis

are summarized.
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1.1 Objectives and overview

The goal of this thesis is to propose a p-adaptive HDG method providing high-order

accuracy and high computational efficiency. The proposed method will be applied

to wave propagation problems and incompressible viscous flow problems. The main

contributions of the thesis are:

1. p-adaptive HDG for wave problems The application to the problem of sea

wave propagation in harbors is considered in Section 3.2. Large domains and

small geometrical features are the principal sources of computational complex-

ity in this problem. Moreover, the sloping bottom generates a non uniform

wavelength that requires different spatial resolutions in different areas of the

propagation domain. One of the main issues in wave problems is the ability

of correctly resolve the wave with a sufficient number of nodes. The proposed

adaptive technique allows to automatically capture the oscillations placing the

correct polynomial degree in each element, to obtain a uniform error distribu-

tion below a user defined tolerance. High efficiency computations are obtained

with the proposed algorithm. The adaptive technique is described in Section

3.1, while a comparison with high-order CG computations is proposed in Section

3.2. Results of this research can be found also in Giorgiani et al. (2013b).

2. p-adaptive HDG for fluid problems Incompressible flows represent another

challenging application where adaptivity is crucial. In fact, sharp gradients

of the solution are often embedded in uniform streams, and the solution can

change in time, requiring to repeatedly update the discretization to capture the

evolution of the flow. Section 3.3 is devoted to the application of the p-adaptive

technique to the Navier-Stokes equations. Several examples are presented in

2D and 3D, including a test with analytical solution that allows to evaluate the

efficiency of the error estimator, and more challenging applications of engineering

interest such as a vertical axis wind turbine. High efficiency of the computations

is shown also in this case. Results of this research can be found also in Giorgiani

et al. (2013a).
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3. Comparison for p-uniform computations Another critical issue in wave

propagation is the problem of the dispersion, that is, the difference between

the wavelength of the finite element solution and the exact solution. It is well

known that high-order approximations reduce this problem. DG methods can

also represent an alternative for reducing the dispersion error. In Section 2.2, a

thorough comparison between high-order and low-order elements is performed

in a 2D scattering problem. In this framework, the computational efficiency of

HDG is compared with the one of CG and CDG. The comparison criteria are

based on the dimension of the final linear system and on the total computational

time to obtain the solution. Results of this comparison can also be found in

Giorgiani et al. (2013).

To develop the contributions of the thesis, the following partial objectives are also

considered:

• Derivation and implementation of different finite element methods

for the solution of the problem of wave propagation in harbors. The

prediction of the wave height in coastal areas is fundamental for harbor design.

The Mild Slope equation (MSE), derived by Berkhoff (1972), is taken as model

for the simulation of this phenomenon. In Appendix F is detailed the derivation

of the MSE starting from the equation of motion of an incompressible inviscid

fluid. Both frequency and time-frequency formulations are considered. A DG

method with upwind fluxes is derived and implemented for the time-frequency

formulation of the MSE. Details of this analysis are presented in Appendix E.

Resulting clearly more efficient the frequency analysis of the MSE respect to

the time-frequency analysis –mainly due to the fact that it is an intrinsically 2D

model– the latter is discarded and the work focuses on the frequency formulation

of the MSE. Hence, three high-order finite element methods are derived for the

MSE in frequency formulation, that is CG, CDG and HDG. The weak forms of

the three methods are presented in Section 2.2. Appendix A presents a conver-

gence study of HDG applied to the MSE varying the stabilization parameter τ .
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For HDG, details on the implementation can also be found in Appendix B.

• Implementation of high-order HDG for the incompressible Navier-

Stokes equations. The HDG method is implemented for the Navier-Stokes

equations in 2D and 3D. The weak form of the problem is presented in Section

2.3. A comparison of the computational efficiency between low-order and high-

order elements is presented, using as test case the evaluation of the aerodynamic

characteristics of a NACA 0012 airfoil. Details of the implementation can be

found in Appendix C.

• Derivation of HDG fractional step methods for solving 3D fluid prob-

lems. When solving the Navier-Stokes equations in 3D, the solution of the linear

system generated by the finite element discretization becomes critical. In fact,

using a direct solver is computationally inefficient. The use of an iterative solver

is also cumbersome due to the saddle-point structure of the linear system matrix.

An alternative approach is proposed in Appendix D, where two fractional steps

methods are presented for the time integration of the unsteady Navier-Stokes

equations with HDG. The fractional step methods allow to circumvent the prob-

lem represented by the saddle-point matrix produced by the constrained system,

splitting the advancing in time in two simpler non-constrained problems.

1.2 State of the art

The importance of adaptive simulations has been pointed out by various authors since

the introduction of the finite element method (FEM), see for example Babuška and

Rheinboldt (1978, 1979); Wu et al. (1990); Prudhomme and Oden (1999); Remacle

et al. (2003, 2006); Oñate et al. (2006). On one hand, for wave propagation problems,

areas where concentration of reflections occur often coexist with zones of unperturbed

propagation of the wave. Moreover, the wavelength can vary from area to area, leading

to the necessity of different spatial resolution to correctly capture the oscillations in

the whole computational mesh. On the other hand, for fluid problems, the motion
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of an incompressible fluid subject to different type of boundary conditions and body

forces often presents zones with sharp gradients enclosed in areas where the solution

is almost uniform. Furthermore, these features can change in time and move in the

domain, leading to the necessity to repeatedly update the mesh to be able to correctly

capture the evolution of the fluid motion. In both cases, the refinement pattern is

almost unpredictable a priori, and the efficiency of the automatic adaptive algorithm

is crucial.

In the following section, a survey of the adaptive techniques proposed in the liter-

ature is done.

1.2.1 Discontinuous Galerkin adaptive methods

The first adaptive techniques in FEM are based on the works of Babuška and Rhein-

boldt (1978, 1979) and the successive elaborations by Gago et al. (1983), Löhner et al.

(1985) and Zienkiewicz and Zhu (1987) among others, which developed both h and p

refinements to solve elasticity and flow problems, in the context of continuous FEM.

Nowadays, adaptivity in CG is widely used, even though the implementation can be-

come cumbersome. If hanging nodes are introduced with local h and p refinement,

special techniques are required to impose the C0 continuity between the elements, such

as special constrains on the hanging points or transition elements. Non-conforming

CG methods have successfully been implemented through the use of mortar elements,

see Kim et al. (2005), or the use of interface matching conditions, see Fischer et al.

(2002).

On the other hand, for DG methods, the discontinuous character of the solution

provides a natural framework for adaptive techniques. Introduced by Reed and Hill

(1973) as a technique to solve neutron transport problems, the DG method has be-

come popular more than two decades later as a method for solving fluid dynamics or

electromagnetic problems. Beyond advantages for adaptivity, DG methods provide

a natural stabilization to the solution due to the inter-element fluxes, and are very

suited for parallelization. Bassi and Rebay (1997) introduced a DG method for the
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Navier-Stokes equations and then Cockburn and Shu (1998) introduced the so-called

local discontinuous Galerkin (LDG) method, generalizing the original DG method of

Bassi and Rebay.

In the 1990s, with the increasing interest in DG, the first adaptive techniques were

introduced in the method. Bey (1994), and then Bey and Oden (1996), introduced

a hp-adaptive technique in DG for hyperbolic conservation laws. The mesh modi-

fication was driven by a local (element-wise) a posteriori error estimator computed

with elemental problems on an increased polynomial space (because of the Galerkin

orthogonality, see Section 1.2.2). The choice between h or p refinement in each ele-

ment was based on the smoothness of the solution in the element. This criterion has

always been used in successive hp-techniques such as, for example, the one proposed

by Houston and Süli (2001) for first-order hyperbolic problems. In this case, the local

residual terms were multiplied with weights computed using a dual problem, and a

linear functional was used as quantity of interest. This idea was then extended to non-

linear hyperbolic conservation laws by Hartmann and Houston (2002a) and then to

the compressible stationary Euler equations by Hartmann and Houston (2002b), but

only with h-adaptivity. Hartmann (2006) extended the h-adaptive technique with

the duality approach to the compressible Navier-Stokes equation, while Wang and

Mavriplis (2009) solved the same problem with a hp-technique using an element-wise

indicator for capturing the shock.

In the field of wave propagation, the first works on adaptive FEM are due to

Stewart and Hughes (1996, 1997) and Bouillard and Ihlenburg (1999), which developed

h-adaptive techniques for CG in acoustics. However, few adaptive DG applications

have been proposed so far for the solution of wave problems, see Remacle et al. (2006)

for hp-adaptive DG and Kubatko et al. (2009) and Michoski et al. (2011b) for p-

adaptive DG, for the solution of the shallow-water equations.

Transient computations of unstable flows provide an application where adaptivity

is crucial. Remacle et al. (2003) used adaptive DG with orthogonal basis to solve

transient compressible flow problems such as Rayleigh-Taylor instabilities and shocks.

An error indicator based on the inter-element jumps of density was used, that is, no
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postprocess of the solution was used to estimate the error. This entails a fast esti-

mation crucial for repeated mesh adaptation. Burbeau and Sagaut (2005) proposed

a p-adaptive technique for viscous flows with shocks. The key ingredient was a dis-

continuity sensor devoted to the detection of the shock. Then, in regions where the

solution was quasi-uniform and in the vicinity of shocks the degree of the polynomial

basis was decreased, while a high-degree basis was used in regions of smooth fluctua-

tions of the flow. A similar approach was also used by Michoski et al. (2011a), where

a family of slope limiters was proposed for p-adaptive solutions of advection-reaction

equations.

More recent publications in the field of adaptive DG focus on the solution of large

3D applications of computational fluid dynamics (CFD), in particular turbulent flows

and RANS equations, see for example Hartmann et al. (2010, 2011), but only with

h-adaptivity.

Adaptivity of hybrid DG methods is an open field. Hybridization of DG methods

derives from the mixed methods of Raviart and Thomas when, as Arnold and Brezzi

(1985) indicate, the continuity constrain was eliminated from the finite element space

and imposed by means of Lagrange multipliers on the inter-element boundaries. The

idea was then developed by Cockburn and Gopalakrishnan (2005) and Cockburn et al.

(2009), were the HDG method was formally developed for elliptic problems. Nowa-

days, the method has been applied to typical problems, such as elasticity, electromag-

netism and fluids. The first adaptive HDG method has been proposed in Giorgiani

et al. (2013b) for wave propagation problems.

One crucial ingredient in any adaptive technique is the error estimator devoted to

drive the adaptive process. In the following section are reviewed the techniques to

estimate the error in adaptive algorithms.

1.2.2 Error estimators for adaptive computations

Error estimation is crucial for deciding where to refine/coarse the discretization. Since

the late 1970s, several strategies have been developed to estimate the discretization
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error of the finite element solution, see Huerta et al. (1999) for a general discussion.

Basically, two types of error estimation procedure are available. The so called a-priori

error estimation provides information on the asymptotic behavior of the error but it is

not designed for giving informations on the actual error on a given mesh. In contrast,

a-posteriori error estimation is a technique that involves postprocessing the numerical

solution itself in such a way that important and useful informations can be obtained

on the actual error present in the numerical solution. Ainsworth and Oden (2000)

and Gratsch and Bathe (2005) review various a-posteriori error estimators.

The basic characteristics that an efficient error estimator should have for adaptive

algorithms, are:

• the error estimate should be accurate in the sense that the predicted error is

close to the actual (unknown) error;

• the error estimator should be computable and simple, with the error estimate

inexpensive to compute when compared on the total runtime of the analysis.

The output of the error estimator is an elemental error index Ei which represents the

contribution of the element Ωi to the global error of the computation. Two broad

classed of methods for computing the a-posteriori elemental error index Ei are:

• recovery methods, based on the fact that the gradient of the finite element

solution is in general discontinuous across the inter-element boundaries. Thus,

the idea is to postprocess the gradient and find an estimate of the error by

comparing the postprocessed gradient and the non postprocessed gradient of

the approximation;

• residual methods, where the error estimation derives from the approximate eval-

uation of the residual of the original equation: they can further be divided into

explicit schemes, which employ directly the residual of the current approxi-

mation, and implicit schemes, which use the residuals indirectly and generally

involve the solution of a small linear algebraic system.
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Recovery methods have been successfully used in CG adaptive techniques, see

for example the works of Zienkiewicz and Zhu (1987) and Zienkiewicz et al. (1999).

However, this kind of estimators present some drawbacks, see Ainsworth and Oden

(2000) and Prudhomme and Oden (2003) for details, and have never been used for

DG methods.

In DG, residual methods have always been preferred. Residual methods use the

equation for the residual of the equation to obtain informations on the discretization

error. Given the variational formulation of a generic non-linear problem,

B(u, v) = F(v), ∀v ∈ V, (1.1)

being V the functional space of admissible solutions, the finite element problem reads:

find uh ∈ Vh such that

B(uh, v) = F(v), ∀v ∈ Vh, (1.2)

where Vh is the finite element space. Defining the error as eh = u− uh, the equation

for the residual is

B(uh + eh, v)− B(uh, v) = R(v), ∀v ∈ V (1.3)

where R(v) = F(v)− B(uh, v). The solution of (1.3) must be sought in an increased

space with respect to the solution space, because of the Galerkin orthogonality,

R(v) = 0, ∀v ∈ Vh,

thus a direct solution of (1.3) in the whole domain is more expensive than the original

problem (1.2). Nevertheless, the approach of solving Equation (1.3) on an increased

space has been used for adaptive techniques. For example Lacasse et al. (2007) pro-

posed a DG adaptive technique for advection-reaction problems, where the residual

equation was solved using quadratic interpolation functions, while linear functions

were used for the solution of the original problem.

However, this procedure is quite unusual, and residual type error estimators seek
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for an approximation of (1.3) which is less expensive than the original problem at

hand. Explicit methods, for example, use available data from the finite element so-

lution and do not require solving any auxiliary problem. They are also called error

indicators, since the output is not a sharp error estimation, but contains useful infor-

mation for driving the adaptive process. They are fast and computationally cheap,

thus particularly suited for repeated estimations and mesh adaptations typical of fast

transient simulation. Remacle et al. (2003) used an explicit error estimator to drive

the hp-adaptive DG method for solving compressible flow problems. Inter-element

jumps of the density were used as error indicator. This is particularly effective in

refining the discontinuities arising in compressible flows. Remacle et al. (2006) used

the adaptive technique to solve the shallow-water equations. In this case, an error in-

dicator based on the second derivative of the water height was used in smooth regions,

while the gradient of the water height was used across discontinuities. Also for the

shallow-water equations, Kubatko et al. (2009) proposed an error indicator based on

the approximate gradient of the solution inside the element. Thus, explicit estimators

are widely and effectively used. However, the derivation of such estimators rely on

multiplicative constants which are unknowns, hence the error cannot be accurately

estimate. Other approaches have also been proposed for time marching simulation

requiring fast error approximations. For example Eskilsson (2011) proposed to use the

solution computed on a p-1 mesh to evaluate the error of the p-mesh: this is equivalent

to approximate the error of the p mesh with the error of the p-1 mesh. Again, an

estimation of the error distribution among the elements is cheaply obtained, but the

absolute estimation of the elemental error is poor.

On the other hand, implicit estimators retain the structure of the original equation

as far as possible, defining a local boundary value problem with the residual as a data.

Dependence on unknown constants is reduced by the solution process itself, see for

example Parés et al. (2006, 2008, 2009). This kind of estimators have been used for

adaptive DG by Bey and Oden (1996), which used the elemental residual method

to obtain lower and upper bounds of the elemental error, solving a local boundary

problem on an increased polynomial space.
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Recently, new methods based on duality techniques have been introduced in the

field of a posteriori error estimation. For adaptive DG, weighted residuals were used

in the works of Houston and Süli (2001); Hartmann and Houston (2002a,b); Hart-

mann et al. (2010, 2011), with the weights computed from a dual problem solved on

an improved mesh. The dual problem approach leads to optimal meshes with re-

spect to an output of interest represented as a functional that can be either linear or

nonlinear. For example, for the solution of steady compressible Navier-Stokes equa-

tions, Hartmann et al. (2010) used the dual problem for an efficient approximation of

the aerodynamic force coefficients. However, the solution of the dual problem on an

increased space can be more costly than the original problem.

An equivalent way to compute the residual on an increased space is to calculate

an improved solution u∗h using a finer mesh or a higher degree of interpolation. The

comparison of the improved solution with the non-improved one provides obviously

informations on the elemental error. Again, the computation of the improved solution

can be a prohibitively expensive computation, if obtained with the same approach of

the normal solution. In HDG, an improved solution can be obtained exploiting the

superconvergent properties of the method, with a cheap element-by-element compu-

tation. This is the approach that has been followed in this thesis.



Chapter 2

High-order hybridizable

discontinuous Galerkin method

In this chapter the HDG method is introduced for second order elliptic problems, and

then the method is used to solve wave and fluid problems using high-order approxi-

mations.

The derivation of the method and the superconvergent postprocess are discussed

in Section 2.1. In Section 2.2, HDG is used to solve the Mild Slope equation mod-

eling sea wave propagation in harbors. High efficiency of high-order computations is

shown. High-order elements, in this case p > 2, provide better accuracy than low-

order elements for the same computational cost, or require less computational cost

for a desired precision, even for engineering accuracy. HDG is also compared with

CG, which is the standard method used to solve this kind of problem in engineering

practice, and with CDG, that is, a classic DG method for second order elliptic prob-

lems. HDG outperforms CDG, and reveals to be an efficient alternative to CG, even

without exploiting the possibility of p-adaptive computations.

In Section 2.3, HDG is used to solve the Navier-Stokes equations for incompressible

flows. High-order elements again reveal to be a good choice to obtain high accuracy

reducing the computational cost.

15
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2.1 The HDG method for second order elliptic prob-

lems

The hybridization of a finite element method is based on the introduction of a new

approximated solution which is defined only on the faces (in 2D and 3D) of the finite

element mesh. As shown in the unified framework for hybrid methods introduced by

Cockburn et al. (2009), several FE methods are hybridizable. In fact, static condensa-

tion of the interior nodes in high-order CG (see for example Zienkiewicz et al. (2005))

can be seen has a particular case of hybridization, see also Kirby et al. (2011). How-

ever, differently from static condensation, hybridization is not only an implementation

trick to reduce the linear system size, since the trace variable contains extra informa-

tions on the solution that can be used to enhance the convergence of the method, see

Arnold and Brezzi (1985) for more details. In the following, the derivation of HDG is

detailed for the Laplace equation.

Consider the second order elliptic problem with Dirichlet boundary conditions in

the open bounded domain Ω ⊂ Rd, with boundary ∂ΩD and d the number of spatial

dimensions
−∇ ·∇u = f in Ω,

u = gD on ∂ΩD,
(2.1)

where f ∈ L2(Ω). Suppose that Ω is partitioned in nel disjoint subdomains Ωi with

boundaries ∂Ωi. The following formal definitions and notation are used for the com-

putation domain and its broken counterpart

Ω =
nel⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, and Ω̂ :=
nel⋃

i=1

Ωi,

whereas the union of all interior faces is

Γ :=
nel⋃

i,j=1
i 6=j

Ωi ∩ Ωj =
[ nel⋃

i=1

∂Ωi

]
\∂Ω,
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and the union of all nfa faces, Γi for i = 1, . . . , nfa, is Γ
+ := Γ ∪ ∂Ω. Both Γ and Γ+

have, if needed, their broken counterparts denoted, respectively, by Γ̂ and Γ̂+.

The previous discretization allows to define the finite dimensional spaces: V̂h and

Λ̂h, namely

V̂h :=
{
v ∈ L2(Ω) : v|Ωi

∈ PpΩi (Ωi), for i = 1, . . . , nel
}
, (2.2a)

Λ̂h :=
{
µ ∈ L2(Γ+) : µ|Γi

∈ PpΓi (Γi), for i = 1, . . . , nfa
}
, (2.2b)

where Pp denotes the space of polynomials of degree ≤ p, while pΩi
and pΓi

are the

polynomial degrees in element Ωi and face Γi respectively. The space associated to

the Dirichlet boundary is defined as Λ̂h(gD) = {µ ∈ Λ̂h : µ = P∂gD on ∂Ω}, where P∂

is the L2(∂ΩD) projection into the space {µ|∂Ω, ∀µ ∈ Λ̂h}.

Remark 1. In general, the polynomial degree for elements, and faces, can vary from

element to element, and from face to face. More precisely, in all computations, given

a map of elemental degrees, the interpolation degree pΓk
for a face shared by two

elements, Γk = ∂Ωi ∩ ∂Ωj , is set as the maximum value of the degree in Ωi and Ωj,

that is pΓk
= max{pΩi

, pΩj
}, and pΓk

= pΩi
when Γk ∈ ∂Ωi ∩ ∂Ω. This procedure

ensures that for any element Ωi the degree on all its faces is at least pΩi
, providing the

desired accuracy in the element, see also Chen and Cockburn (2012a,b).

Remark 2. Standard nodal basis are used to represent these spaces. In Figure 2.1

the nodes corresponding to a polynomial degree p = 5 in a triangle are shown for the

spaces introduced. Fekete node distributions (for straight-sided and curved elements)

are considered to minimize ill-conditioning, see Taylor et al. (2000).

Due to the discontinuities between elements, the jump J·K and the mean {·} oper-

ators are defined along the interface Γ using values from the elements to the left and

right of the interface (say, Ωi and Ωj), namely

J⊚K = ⊚i +⊚j, {⊚} = (⊚i +⊚j)/2.

The major difference between the mean and the jump operator is that the latter always
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V̂h

Λ̂h

Figure 2.1: Nodes representing the spaces V̂h and Λ̂h.

involves the normal to the interface, see Montlaur et al. (2008) for more details.

Finally, the following scalar products are introduced,
(
·, ·
)
D
and

〈
·, ·
〉
B
, denoting

respectively the L2 scalar product in any domain D and the L2 scalar product of the

traces over B

The HDG formulation requires first to rewrite (2.1) as a system of first order

equations taking into account the discontinuities of the approximation spaces between

elements. Thus Equations (2.1) become:

q +∇u = 0, in Ω̂, (2.3a)

∇ · q = f, in Ω̂, (2.3b)

u = gD, in Ω̂ ∩ ΩD, (2.3c)

Jn·qK = 0, on Γ, (2.3d)

JunK = 0, on Γ, (2.3e)

where n is the unitary outward normal vector. Calling qh ∈ [V̂h]
d and uh ∈ V̂h the

FE approximations of the unknowns, the weak form of the problem (2.3) becomes

(qh,v)Ωi
− (uh,∇ · v)Ωi

+ 〈ûh,v · n〉∂Ωi
= 0,

−(qh,∇v)Ωi
+ 〈q̂h · n, v〉∂Ωi

= (f, v)Ωi
,



 for i = 1, . . . , nel, (2.4)
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for all the test functions (v, v) ∈ [V̂h]
d × V̂h. In (2.4), ûh and q̂h are the numerical

traces of the unknowns u and q on Γ+. In HDG, the numerical trace q̂h is defined as

q̂h = qh + τ(uh − ûh)n, (2.5)

while ûh is set to P∂gD on ∂ΩD and it is left as a new unknown of the problem on Γ̂.

The parameter τ is a positive stabilization parameter which is fundamental for the

stability and accuracy of HDG. A detailed study of the possible choices can be found

in Cockburn et al. (2008, 2009) and in Kirby et al. (2011). The optimal choice for

τ will be discussed for wave and fluid problems in the relative sections. A study on

the influence of this parameter on the convergence and superconvergence properties

of HDG is also presented in Appendix A.

Remark 3. The general form of the numerical traces introduced by Castillo et al.

(2000) for a generic DG method is

q̂h = {qh}+ C11JuhnK −C12Jqh · nK, (2.6a)

ûh = {uh}+C12 · JuhnK + C22Jqh · nK. (2.6b)

The stability of the DG method is proved for any non-negative value of C11 and C22.

However, the accuracy of the method depends on the actual choice for these two pa-

rameters. For implementation issues, usually C22 is set to zero, allowing to solve for

the auxiliary variable qh in terms of uh and recover a single equation in the unknown

uh. This approach is followed, for example, in the LDG method, see Cockburn and

Shu (1998), and in CDG, see Peraire and Persson (2008) for details. However, DG

methods with zero C22 parameter lead to suboptimal convergence in L2 norm for the

qh variable. In contrast, for HDG, it can be shown that the flux definition (2.5) is

equivalent to setting the coefficients in (2.6) as

C11 =
τiτj
τi + τj

, C12 =
1

2

JτK

τi + τj
, C22 =

1

τi + τj
, (2.7)

that is, the coefficient C22 is different from zero for any finite value of τ . This provides,
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for uniform p computations, optimal converging approximations with slope p+1 in L2

norm both for uh and qh.

The strong point of the hybridization technique relies on the introduction of the

new variable ûh ∈ Λ̂h, single valued for each face of the mesh. The unknown ûh is

determined by the jump condition (2.3d), which in weak form reads

nel∑

i=1

〈q̂h · n, µ〉∂Ωi
= 0,

leading to the final form of the HDGmethod for the Laplace equation: find (qh, uh, ûh) ∈
[V̂h]

d × V̂h × Λ̂h(gD) such that

(qh,v)Ωi
− (uh,∇ · v)Ωi

+ 〈ûh,v · n〉∂Ωi
= 0,

(∇ · qh, v)Ωi
+ 〈τ(uh − ûh), v〉∂Ωi

= (f, v)Ωi
,



 for i = 1, . . . , nel, (2.8a)

nel∑

i=1

〈qh · n+ τ(uh − ûh), µ〉∂Ωi
= 0, (2.8b)

for all (v, v, µ) ∈ [V̂h]
d × V̂h × Λ̂h(0). It is worth noting that (2.8a) is a local system

in each element Ωi which does not involve unknowns of neighboring elements. Thus,

(2.8a) can be solved element-by-element to express qh and uh as functions of ûh. And

consequently, Equation (2.8b) is the only equation coupling globally the variables of

different elements. Replacing qh and uh, solution of (2.8a) in terms of ûh, in (2.8b)

yields a global system on the whole mesh skeleton for the trace variable, ûh ∈ Λ̂h.

Once the global system is solved, qh and uh can be recovered for each element Ωi

using (2.8a).

HDG postprocessed solution

With the solution of the global problem described by (2.8b), the nel local problems

(2.8a) give an approximation of (uh, qh) ∈ V̂h × [V̂h]
d. Then, for each element, Equa-

tion (2.3a) can be solved using the corresponding Neumann boundary conditions and
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restriction for solvability, namely

−∇ ·∇u∗h = ∇ · qh in Ωi

−n ·∇u∗h = n · qh on ∂Ωi∫

Ωi

u∗h dΩ =

∫

Ωi

uh dΩ





for i = 1, . . . , nel.

This induces a weak problem in a richer finite dimensional space, that is, find u∗h ∈ V̂∗
h

such that
(
∇u∗h,∇v

)
Ωi

=
(
qh,∇v

)
Ωi

and
(
u∗h, 1

)
Ωi

=
(
uh, 1

)
Ωi
,

for all v ∈ V̂∗
h and i = 1, . . . , nel, where V̂∗

h must be a bigger space than V̂h. In

fact, with one degree more in the element-by-element polynomial approximation, i.e.

V̂∗
h =

{
v ∈ L2(Ω) : v|Ωi

∈ PpΩi
+1(Ωi), for i = 1, . . . , nel

}
, it is sufficient to prove

that u∗h converges asymptotically at a rate of p + 2 in the L2 norm for uniform p

distribution, see Cockburn et al. (2008). In case of non-uniform distributions of pΩi
,

superconvergence of the p-variable HDG postprocess solution, under the condition in

Remark 1 is proved in Chen and Cockburn (2012a,b).

2.2 High-order HDG for wave propagation prob-

lems

Many engineering applications and physical phenomena, such as acoustic waves, elec-

tromagnetism and vibrations, are modeled with wave equations. The assumption of

harmonic character of the solution leads to Helmholtz-type wave equations, with non-

constant coefficients in the general case. Solving this problem for high frequencies

leads to numerical difficulties because of the loss of the elliptic character and the os-

cillatory behavior of the solution. When tackling the problem with any finite element

method, the characteristic size, h, of the spatial discretization has to be sufficiently

small. Often, it is suggested to use constant kh, where k is the wavenumber, see

Thompson and Pinsky (1994) and Ihlenburg and Babuška (1995b). In practice, this
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means using a fixed number of nodes per wavelength (i.e. wave resolution) in each

spatial direction. However, Ihlenburg and Babuška (1995b) showed that this rule

guarantees an accurate solution only for low wavenumbers. In fact, Ihlenburg and

Babuška (1997) also proved that the a priori error estimate in energy semi-norm of

the finite element solution can be written as

eh ≤ C1

(
kh

2p

)p

+ C2k

(
kh

2p

)2p

, (2.10)

where C1 and C2 are two constants independent of k, h and p. The first term in

(2.10) corresponds to the interpolation error. The second term is the pollution error,

which is strictly related with the difference in wavelength between the exact and the

finite element solution, that is, the dispersion error, see Steffens and Dı́ez (2009) and

Steffens et al. (2011) for more details. For large wavenumbers, the pollution error

becomes the dominating term in (2.10) and it is responsible for the degradation of the

finite element solution at a fixed wave resolution. Thus, Equation (2.10) shows that

increasing the wavenumber requires increasing the number of nodes per wavelength

to keep a fixed level of accuracy.

Many techniques have been proposed in the past to reduce the dispersion error.

Stabilized finite elements is probably the most popular, see Chang (1990); Harari and

Hughes (1992); Babuška and Sauter (2000); Harari and Magoulès (2004); Harari and

Gosteev (2007). Embedding the oscillatory behavior of the solution in the approxi-

mating functions is another option to improve accuracy, see for instance Melenk and

Babuška (1996); Cessenat and Despres (1998); Lacroix et al. (2003); Farhat et al.

(2003); Strouboulis and Hidajat (2006); Gabard (2007); Gabard et al. (2011). An-

other alternative, obvious from (2.10), is to increase the order of the approximation

p, see Ihlenburg and Babuška (1995a). This also coincides with recent results showing

that high-order computations can be more efficient than low-order ones, see Vos et al.

(2010); Cantwell et al. (2011); Huerta et al. (2012); Modesto et al. (2012); Giorgiani

et al. (2012); Sevilla et al. (2013).

Discontinuous Galerkin methods can also be an alternative in this area, see for
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example Feng and Wu (2009) and Alvarez et al. (2006). Feng and Wu (2009) showed

that interior penalty discontinuous Galerkin method performs better than CG in the

pre-asymptotic range (large element size) for the Helmholtz equation. Alvarez et al.

(2006) proposed a discontinuous finite element formulation of the Helmholtz equation,

which requires less DOF than CG for properly chosen parameters. Note however that

Feng and Wu (2009) and Alvarez et al. (2006) are restricted to linear approximations

and, moreover, CG is hampered by the fact that no stabilization is used. To the author

knowledge there are no comparisons for high-order approximations between contin-

uous and discontinuous Galerkin where pollution errors do not require to stabilize

CG.

In what follows, HDG is compared to CG and to CDG in a 2D scattering problem

for a wide range of polynomial degrees. The CDG method is taken as reference of

classic DG methods for elliptic problems because it introduces the smallest stencil, as

interior penalty, see Arnold (1982).

The comparison is carried out through various numerical examples. Two measures

of the computational cost are considered: the dimension of the final linear system,

and the total runtime. While the criterion based on the linear system dimension

is implementation-free and gives also a measure of the hardware requirements to

obtain the solution, it is not a completely fair comparison because it does not take

into account the structure of the linear system matrix, which can be significantly

different for different methods and different polynomial interpolations. Moreover, the

assembly cost, which is also obviously different for the different cases, is not taken into

account. On the other hand, the runtime criterion takes into account all the costs,

but obviously the results may depend on the actual implementation used for each

method. To minimize this dependency, the same code optimization has been used for

all methods, see Roca et al. (2011) for details, and the same direct linear system solver

has been used for all the computations. Note that this can be disadvantageous for

DG methods because the structure of the information (constant bandwidth of block

dense matrices) allows important gains in today’s hardware, see for instance Kirby

et al. (2011), and they are not exploited here.
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2.2.1 Problem statement

The following form of the Helmholtz equation is considered

∇ · (β∇u) + k2βu = f̂ , (2.11)

in an unbounded 2D domain where β(x, y) ∈ R is a material parameter, k(x, y) ∈ R is

the wavenumber, and f̂ is an harmonic source. This equation models wave propagation

for several problems of academic and engineering interest. One of the most challenging

ones is the propagation of sea waves with a slowly-varying bottom depth. In this case,

the coefficients are non-constant, large domains with small geometrical features induce

very large systems of equations, two significant digits of accuracy are sought, and the

number of runs can be very large due to the wide range of input data. Equation (2.11)

is in this case also known as the Berkhoff or Mild Slope equation, see Appendix F.

Boundary conditions in this case are, on one hand, for reflecting/absorbing bound-

aries, ΓR,

n · β∇u− Ikαβ u = ĝ on ΓR,

where I =
√
−1 is the imaginary unit, ĝ is a data function and α ∈ [0, 1] is a

real coefficient. This coefficient is equal to zero on totally reflecting boundaries and

to one on perfectly absorbing boundaries, see for instance Berkhoff (1976). On the

other hand, unbounded scattering problems require the so-called Sommerfeld radiation

condition

lim
r→∞

√
r
( ∂
∂r

− Ik
)
(u− u0) = 0, (2.12)

where r is the radial direction and u0 the incident wave. The Sommerfeld radia-

tion condition requires, in practice, the introduction of an artificial boundary and its

corresponding boundary condition.

In this case it is usual to define a bounded computational domain and to introduce

an artificial boundary, see among others Givoli (1992) and Givoli and Neta (2003).

Note that the coefficient β is assumed constant at the artificial boundary and beyond,

at least in the normal direction. Here, a Perfectly Matched Layer (PML) surrounds the
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Figure 2.2: Problem statement.

computational domain in order to absorb outgoing waves, see for instance Berenger

(1994); Abarbanel and Gottlieb (1998); Turkel and Yefet (1998); Bermúdez et al.

(2004). The setup of the problem is illustrated in Figure 2.2, showing the PML

region. The problem to be solved is then

∇ · (βP∇u) + k2sxsyβ u = sxsyf in Ω, (2.13a)

n · β∇u− Ikαβ u = g on ΓR, (2.13b)

n · βP∇u− Ikβ u = 0 on ΓPML, (2.13c)

where u is now the scattered field, Ω is the bounded computational domain including

the PML, f and g are modifications of f̂ and ĝ accounting for the incident wave, P is

the diagonal anisotropy matrix defining the absorption in the PML medium, namely

P =

(
sy/sx 0

0 sx/sy

)
,

and sx and sy are the absorption parameters in the two Cartesian directions. Note

that sx = sy = 1 outside the PML region. More details on the application of the

PML to the Helmholtz equation can be found in Bermúdez et al. (2004). Equation
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(2.13c) is a first order non-reflecting boundary condition discretizing (2.12) on ΓPML, to

minimize non-physical reflection from the PML outer boundary. Thus, ∂Ω = ΓR∪ΓPML

with ΓR ∩ ΓPML = ∅, and no Dirichlet boundary conditions are imposed.

2.2.2 Finite element formulations

In this section the CG, CDG and HDG finite element formulations are recalled for

the solution of Equation (2.13). Since the problem considered is 2D, in the following

d = 2 is set.

The continuous Galerkin formulation

Introducing the FE space Vh of continuous functions in Ω, i.e.

Vh :=
{
v ∈ H1(Ω) : v|Ωi

∈ Pp(Ωi), for i = 1, . . . , nel
}
,

the standard discrete CG problem approximating (2.13) requires to find uh ∈ Vh such

that

a(uh, v) = l(v) ∀v ∈ Vh, (2.14)

where the bilinear and linear forms, a(·, ·) and l(·) are given by

a(u, v) =
(
βP∇u,∇v

)
Ω
−
(
γu, v

)
Ω
− I
〈
kαβu, v

〉
ΓR

− I
〈
kβu, v

〉
ΓPML

,

l(v) =
〈
g, v
〉
ΓR

−
(
sxsyf, v

)
Ω
,

with γ := k2sxsyβ.

Note that high-order CG is always implemented using static condensation for

the interior nodes of each element. This reduces considerably the number of global

unknowns at an element-by-element cost of generating and solving the small Shur

complement system of equations.
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The compact discontinuous Galerkin formulation

The CDG formulation requires first to rewrite (2.13a) as a system of first order equa-

tions taking into account the discontinuities of the approximation spaces between

elements. Thus Equations (2.13) become:

q − βP∇u = 0 in Ω̂, (2.15a)

∇ · q + γu = sxsyf in Ω̂, (2.15b)

Jq · nK = 0 on Γ, (2.15c)

JunK = 0 on Γ, (2.15d)

n · β∇u− Ikαβ u = g on ΓR, (2.15e)

n · βP∇u− Ikβ u = 0 on ΓPML. (2.15f)

As usual in CDG, proposed by Peraire and Persson (2008), two local lifting op-

erators are defined on all the interior faces (recall that here no Dirichlet boundary

conditions are applied). For any interior face Γi ⊂ Γ, the lifting ri : [L2(Γi)]
2 → [V̂h]

2

is defined by
(
ri(q),v

)
Ω
=
〈
q, {v}

〉
Γi

∀v ∈ [V̂h]
2,

Likewise, the second lifting, si : L2(Γi) → [V̂h]
2, is defined by

(
si(v),v

)
Ω
=
〈
v, Jn · vK

〉
Γi

∀v ∈ [V̂h]
2,

for all interior faces Γi ⊂ Γ.

Following the rationale detailed by Peraire and Persson (2008), the CDG weak

form associated to (2.15) requires to find uh ∈ V̂h such that

â(uh, v) = l̂(v) ∀v ∈ V̂h,
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where the bilinear and linear forms, â(·, ·) and l̂(·) are given by

â(u, v) =
(
βP∇u,∇v

)
Ω
−
(
γu, v

)
Ω
−
〈
βPJunK, {∇v}

〉
Γ
−
〈
βP{∇u}, JvnK

〉
Γ

− I
〈
kαβu, v

〉
ΓR

− I
〈
kβu, v

〉
ΓPML

+
〈
C11JunK, JvnK

〉
Γ

−
〈
β(PC12) · JunK, Jn ·∇vK

〉
Γ
−
〈
β(PC12) · JvnK, Jn ·∇uK

〉
Γ

+
∑

Γi⊂Γ

(
re(βPJunK) + se(β(PC12) · JunK), re(JvnK) + se(C12 · JvnK)

)
Ω
,

l̂(v) =
〈
g, v
〉
ΓR

−
(
sxsyf, v

)
Ω
.

Note that in the previous expressions differential operators are assumed to act on

these functions piecewise (element-by-element) and not in the sense of distributions.

In CDG, the parameter C22 appearing in 2.6 is set to zero, see Remark 3. The

parameter C11 is non-negative of order O(h−1) and, in absence of Dirichlet boundary

conditions, may be considered C11 = 0 on Γ, see Peraire and Persson (2008). The

parameter C12 ∈ R2 is an additional vector which is defined for each interior face of

the domain according to

C12 =
1

2
(Sijni + Sjinj)

where Sji ∈ {0, 1} denotes the switch associated to element Ωi on the face that element

Ωi shares with element Ωj. There are several possible choices of the switches, always

satisfying Sij+Sji = 1. Here the so-called consistent switch has been used, see Peraire

and Persson (2008) and Cockburn et al. (2002) for details.

Remark 4. Lifting operators in CDG are associated to individual faces, and therefore

there are no connectivities between non-neighbor elements. This induces small stencils

as in interior penalty methods, see the comparison by Montlaur et al. (2010). However,

the connectivity between the interior nodes of one element and interface unknowns of

neighboring elements, precludes the possibility of static condensation in CDG.
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The hybridizable discontinuous Galerkin formulation

Following the derivation explained in Section 2.1, the HDG method for system (2.13)

or, more precisely, for (2.15) can be stated as: find (qh, uh, ûh) ∈ [V̂h]
2× V̂h× Λ̂h such

that

(
Qqh,v

)
Ωi

+
(
uh,∇ · v

)
Ωi

−
〈
ûh,v · n

〉
∂Ωi

= 0
(
∇ · qh, v

)
Ωi

+
(
γuh, v

)
Ωi

−
〈
τ(uh − ûh), v

〉
∂Ωi

=
(
sxsyf, v

)
Ωi



 for i = 1, . . . , nel,

(2.16a)
nel∑

i=1

〈(
qh · n− τ(uh − ûh)

)
, µ
〉
∂Ωi

− I
〈
kαβ ûh, µ

〉
ΓR

− I
〈
kβ ûh, µ

〉
ΓPML

=
〈
g, µ
〉
ΓR

,

(2.16b)

for all (v, v, µ) ∈ [V̂h]
2 × V̂h × Λ̂h, where a new matrix is defined Q := (βP)−1. As

noted in 2.1, the trace variable ûh ∈ Λ̂h, which is single valued in each face of the

mesh, is an approximation of the trace of the solution u on the mesh faces.

Details of the implementation of HDG for the Mild Slope equation can be found

in Appendix B.

The coefficient τ may be prescribed as a positive value on every face of each trian-

gular element (all faces approach), see Cockburn et al. (2009) and Kirby et al. (2011),

or may be set to zero except on a single arbitrary chosen face of each element (single

face approach), see Cockburn et al. (2008). Both options require τ to be large enough

for stability, and both provide, for properly chosen values of τ , optimal convergence in

the solution u and its gradient q, viz. order p+ 1 in L2 norm. More precisely, exten-

sive numerical evidence by Cockburn et al. (2008) and Kirby et al. (2011) shows that

values of order one provide optimal behavior for a dimensionless problem. Hence, the

same postprocess defined in 2.1 leads to a superconvergent solution also for problem

(2.15). Nevertheless, the single face approach presents an increased robustness for

the choice of τ , it allows using larger values without any remarkable impact in the

solution. This is not the case for the all faces approach. When large values of τ are

prescribed in every face superconvergence of the postprocessed solution can be lost.
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Note that this behavior induces an extra difficulty for equations with non-constant

coefficients, such as (2.11), because τ should vary in each element to account for the

variability of the coefficients. In conclusion, the single face stabilization parameter is

considered here, that is

τ =




0 on ∂Ωi\∂Ωτ

i

τi on ∂Ωτ
i

for i = 1, . . . , nel, (2.17)

with a constant τi > 0 and ∂Ωτ
i an arbitrary face of element Ωi. A constant value τi

is used for all the elements, and a simple dimensional analysis leads to the following

expression for the minimum value of τi to be used

τi ≥ τ− := max
Ω

{kβ|sx/sy|} for i = 1, . . . , nel, (2.18)

which would correspond to τ− ≈ 1 for a dimensionless problem with constant coeffi-

cients, see Appendix A.. Note that τ is defined element-by-element, thus a face shared

by two elements may have two different values of τ , see also Remark 3.

From a computational point of view, there are nel local problems corresponding to

(2.16a), which are equivalent to solving the elemental Schur complements (static con-

densation) for the interior nodes in CG. The global solve in HDG, which corresponds

to compute the trace ûh from (2.16b), has more unknowns than CG; note that Λ̂h is a

larger space than the corresponding CG traces space, because all the vertices have a

multiplicity equal to the number of faces connected to them, see Figure 2.3. However,

HDG has a uniform block structure, which can be exploited by the solver to improve

its efficiency. Moreover, the weight of the multiplicity of the vertices decreases as the

approximation p is increased. In any case, it is also obvious from Figure 2.3 that HDG

has less DOF than CDG.
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Figure 2.3: Degrees of freedom in a two triangular elements mesh of degree 5 for
HDG, CDG and CG.

2.2.3 Numerical results

Three examples are used to compare the performance of low and high-order CG,

CDG and HDG. The first one has an analytical solution allowing for a thorough error

analysis. The others, which include a real engineering application, use a reference

overkilled solution (high-order CG with a refined mesh) to evaluate the precision of

the different approximations. Note that in all these comparisons the PML region is

kept unmodified to minimize its influence on the analysis. Moreover, when comparing

HDG the superconvergent solution described in Section 2.1 is used.

To compare the performance of the different Galerkin methods two basic criteria

are employed: the number of DOF (more precisely, the size of the global system to

be solved) and the total runtime. These comparison are done taking into account the

precision of the results, the element characteristic size h, and the degree of the ap-

proximation p, which can be combined in the dimensionless wavenumber (i.e. number

of nodes per wavelength), see Remark 5.

Obviously, the computational time strongly depends, among others, on the quadra-

ture rules employed. Here, Wandzurat symmetric rules for triangles are considered,

see Wandzurat and Xiao (2003). Moreover, in order not to penalize low-order el-

ements, some Dunavant rules for low orders are also implemented, see Dunavant

(1985). Table 2.1 specifies the number of integration points corresponding to each

order of the quadrature employed in the following examples. In practice, given the
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Table 2.1: Order of the quadrature rules employed with their corresponding number
of integration points.

Order of quadrature rule 2 3 5 6 10 15 20 25 30
Number of integration points 3 4 7 12 25 85 85 126 175

required integration order defined by the corresponding weak form and the degree of

approximation p, the rule adopted is the lowest possible of those listed in Table 2.1.

For orders of quadratures larger than 30 no Wandzurat quadrature is available, and

a tensor quadrature is used in this case.

Remark 5 (dimensionless wavenumber). The so-called dimensionless wavenumber

ξ := kh/p will be used to quantify the wave resolution. For example, ξ = π/4 corre-

sponds to 8 linear elements per wavelength and it is considered a minimum resolution

for linear elements, see Donea and Huerta (2003). However, as already noted by

Thompson and Pinsky (1994) high-order elements require less nodes per wavelength.

Homogeneous circular scattering of a plane wave

A standard benchmark for wave problems is considered, see for example Bowman

et al. (1987): a plane wave is scattered by a cylindrical object of unitary radius in a

homogeneous media. In this case, the problem defined in (2.13) is simplified because β

is constant and f = 0. Given the symmetry of the problem, only half of the geometry

is simulated as depicted in Figure 2.4. An analytical solution to this problem is given

by MacCamy and Fuchs (1954).

A study of the accuracy of the approximate solution is performed using unstruc-

tured triangular meshes for CG, CDG and HDG, and three different values of the

wavenumber, k = 11, 25, and 100, corresponding to a number of waves in the domain

equal to 17, 40 and 160 respectively. Thus, the range considered is in the mid-high

frequency regime. As an example of the obtained results, Figure 2.4 depicts the solu-

tion for k = 25. Four different values of the polynomial degree p are tested, p = 1, 2,

5, and 9. For each combination of k and p, four computations are carried out for each

method, with mesh sizes corresponding to the dimensionless wavenumbers ξ = 0.5,
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Figure 2.4: Circular scattering of a plane: problem statement (left) and scattered
wave for k = 25 (right).

0.75, 1, and 1.25, see Remark 5. The corresponding wave resolutions are 12.6, 8.4,

6.3, and 5.0 nodes per wavelength. Thus, a total of 144 simulations have been carried

out. Note that for a given ξ and wavenumber k, the meshes corresponding to different

p have approximately the same number of nodes in the domain.

The quantity kR, where R is the radius of the scattering cylinder, represents in this

problem a characteristic number, being related to the ratio between the dimension of

the scatterer and the wavelength. Figure 2.5 depicts the relative L2 error as a function

of the element size, for CG, CDG and HDG, with kR = 11 and kR = 100. The relative

L2 error is evaluated over the computational domain (top) —not including the PML

region— and on the scattering boundary (bottom). The mean slope of the curve is

displayed at the bottom of each curve. For high-order approximations, it is clear that

the slopes of the convergence curves increase with the wavenumber indicating that the

dispersion error is dominating, see (2.10). On the contrary, low order approximations

seem less sensible to dispersion, which is conforming with the results by Feng and Wu

(2009) and Alvarez et al. (2006) for the interior penalty discontinuous Galerkin.

It is important to note that Figure 2.5 indicates that HDG always induces smaller

errors than CG in the interior and on the scattering boundary on a given discretization

(same h and p). This is not the case for CDG at p = 9.

The number of DOF, i.e. the global linear system dimension, for a fixed value

of the error is depicted in Figure 2.6. The mesh size h for each accuracy level is

estimated from the convergence curves in Figure 2.5 and additional computations
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Figure 2.5: Circular scattering of a plane wave: convergence versus element size for
two different values of wave length kR = 11 (left) and kR = 100 (right) and over the
computational domain (top) or the scattering boundary (bottom).

with k = 25. More specifically, the mesh size is linearly interpolated in log-log scale,

when the chosen error level is in between the limits of the convergence curve, or it is

linearly extrapolated using the closest two points.

The curves in Figure 2.6 illustrate how an increase in p reduces the number of nodes

per wavelength for a given precision for every method. This is in perfect agreement

with Thompson and Pinsky (1994) and Ihlenburg and Babuška (1997). Note that for

a given frequency the reduction in number of DOF is of several orders of magnitude

for mid to high accuracies. Similar conclusions are inferred analyzing the error in the

domain or the error on the scattering boundary.
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Figure 2.6: Circular scattering of a plane wave: DOF for an accuracy of 1e-1 (left),
1e-3 (center), 1e-5 (right), for the error in the domain (top) and on the scattering
boundary (bottom).

For CG and HDG, the reduction in number of DOF for increasing p is more im-

portant because of their lack of interior nodes. In fact, due to the similarity between

static condensation and the hybridization technique, CG and HDG perform similarly,

with almost the same number of DOF for a given accuracy level for high-order ap-

proximations. For low-order approximations p = 1, 2, HDG method performs better

than CG without stabilization, due to the fact that DG methods are less sensitive to

dispersion errors.

As expected, Figure 2.6 also shows that CDG requires considerable more DOF

than HDG or CG for the same level of accuracy, due to the coupling of the nodes in

the interior of the element with neighboring element nodes. Thus, the computational

cost for the linear system solution is clearly larger for CDG than for CG or HDG. In

fact, the computational cost for the linear system solution is related not only to the

dimension of the linear system but also with the number of non-zero entries of the

linear system matrix. These two factors penalize CDG.
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To conclude, given that CG and HDG exhibit similar efficiency clearly outper-

forming CDG, CDG is discarded and will not be considered in the following tests,

focusing the discussion in CG and HDG.

Next, CG and HDG are further compared in terms of runtime. The total time

to obtain the solution is considered: matrix generation and assembly, linear system

solution, and the evaluation of the solution at the interior nodes in CG and HDG. In

this latter case the postprocess for obtaining the superconvergent approximation, see

Section 2.1, is also taken into account.

As noted earlier the assembly time is largely influenced by the quadrature rules

implemented. The order of the quadrature rules considered are those needed to exactly

integrate a mass matrix of a straight-sided element, which corresponds to the second

term in (2.13a) and, for this example, with constant coefficients. The overhead due

to the integration on curved elements and PML elements (for which non-constant

coefficients are present) is neglected, given that curved elements and PML elements

are a small percent of the whole element set. For a given p, the quadrature rule

adopted is the one with the lowest order that is ≥ 2p in Table 2.1.

All computations are carried out with Matlab running on a Xeon E5640, 2.66

Ghz/12MB cache with 72 GB of RAM. A code optimization based on the substitu-

tion of the code loops by matrix-matrix multiplication (whenever possible) has been

adopted, see Roca et al. (2011) for a detailed description of this optimization. For

the linear system solution, a direct solver is considered. In contrast with the com-

parison by Kirby et al. (2011) done with an hermitian positive definite matrix, here

the complex matrix is symmetric but not hermitian because of the boundary term in

(2.14) and (2.16) and the complex coefficients in the PML region. Thus, a general LU

factorization with partial pivoting is used.

In Figure 2.7 the relative L2 error in the domain is depicted as a function of the

total computing time for CG and HDG, for kR = 11 and kR = 100. These results

suggest that for a given accuracy CG is faster than HDG, at least for high-order

approximations. To further analize this issue and to confirm the better performance of

high-order approximations, these curves, and also additional results with wavenumber
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Figure 2.7: Circular scattering of a plane wave: error in the domain vs runtime for
CG and HDG and kR = 11 (left) and kR = 100 (right).
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Figure 2.8: Circular scattering of a plane wave: runtime versus wavenumber at differ-
ent precisions 1e-1 (left), 1e-3 (center), and 1e-5 (right).

k = 25, are interpolated to obtain values of the computational time for fixed values

of the error, as shown in Figure 2.8.

It is important to note that for a given accuracy, high-order elements require less

computing time than low-order ones, also at low accuracy. Note also that high-order

computations p = 5 and p = 9 induce, in general, a similar performance. For low

precision p = 5 outperforms p = 9 but as the accuracy is tightened p = 9 is faster than

p = 5. As expected, the best order p depends on the actual problem to be solved.

But, as a general rule, high-order elements (p > 2) are more efficient than low order

ones, clearly outperforming the usual practice of linear approximations.

With respect to CG and HDG several observation can be extracted. Obviously,
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Figure 2.9: Circular scattering of a plane wave: runtime ratio between HDG and CG
for fixed meshes.

for p = 1, HDG outperforms CG because no stabilization is used in CG whereas HDG

incorporates it intrinsically. For p = 2, except for low accuracies and large wavelengths

where both methods are almost equivalent, HDG is faster than CG for given precision

and this improvement of runtime in HDG is more important as k increases. This is

not the case for high-order approximations. For p = 5 and 9 at a given precision,

CG is faster than HDG. This is more obvious for low accuracies. As the precision

increases both performances are similar.

In fact, it is worth noting that the overhead of HDG for a given discretization (given

p and h) has a simple behavior. Figure 2.9 clearly shows that the runtime overhead

for a fixed mesh is almost independent of the characteristic element size and that it

decreases as the degree of the approximation increases. For high degrees this overhead

is almost constant for p. Consequently, for a given high-order CG discretization with a

uniform characteristic mesh size, from Figure 2.9 and the Remark 6, one can compute

the characteristic size of HDG inducing a similar computational cost.

Note however, as observed earlier, that the HDG overhead can be compensated at

mid to high accuracies by its increased precision. In fact, recall that as the precision



2.2 High-order HDG for wave propagation problems 39

1 2 5 9
0

1

2

3

4

5

6

p

ru
n

ti
m

e 
H

D
G

/r
u

n
ti

m
e 

C
G

 

 

Linear system solution

1 2 5 9
0

2

4

6

8

ru
n

ti
m

e 
H

D
G

/r
u

n
ti

m
e 

C
G

p

 

 

L.S.+Ass.+E. by E.

L.S.+Ass.+E. by E.+HDG post.

Figure 2.10: Circular scattering of a plane wave: runtime ratio between HDG and
CG for fixed meshes only for the linear solve (left) and accounting for all element
computations (right).

increases CG and HDG show similar performances.

Remark 6 (Runtime). Numerical evidence, as shown in this example, indicates that

for CG and HDG and meshes having a number of boundary faces negligible compared

with the number of interior ones, i.e. boundary influence is negligible, the runtime is

approximately O(nel) ≈ O(h−2).

To further analyze the overhead of HDG respect to CG for a fixed mesh, Figure

2.10 shows the runtime ratio between HDG and CG. The left figure shows the ratio

only for the linear system solve and the right one the total runtime ratio, i.e. linear

solve plus all element computations: creation and assembly of matrices, element-by-

element solution —Schur complement for CG and local solve for HDG, i.e. Equations.

(2.16a)— and postprocess for HDG. Given the relative independence of the runtime

overheads on the mesh size shown in Figure 2.9, Figure 2.10 shows averages at each

degree p for every computed mesh size h.

The remarkable overhead of HDG for linear elements compared to CG is drastically

reduced as p increases. In fact, in agreement with Kirby et al. (2011), HDG requires

less runtime to solve the global linear system for high-orders. This can be explained

by the uniform block-structure of HDG, which in average induces a smaller bandwidth
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compared to CG, see Kirby et al. (2011) for details.

The local (elemental) computations, on the other hand, are always more costly

for HDG, due its increased complexity in the local problems. This is shown in Figure

2.10 (right). In spite of its faster linear solve, HDG is still more expensive than CG

even for p = 9 when the total cost is considered, that is, adding to the global linear

solve the time required for the assembly and the local element-by-element operations.

Note however, all elemental computations are likely to be parallelized, reducing the

weight of the elemental computations on the global solving time.

Finally, Figure 2.10 (right) also depicts the overhead associated to the postprocess

of the HDG solution which allows to compute a superconvergent approximation. This

is to show that the extra cost is minor compared to the advantage of obtaining a

solution with a higher precision or, simply, an estimation of the error.

Rectangular cavity problem

In this dimensionless example an incoming plane wave at angle 225◦ with respect to

the x-axis and a wavelength of 0.25 is propagated in a semi-plane with a squared notch.

As in the previous example, the scattered wave is the solution of Equation (2.13) with

constant coefficient β and f = 0. The value of the absorption parameter used to model

the boundary is α = 0 inside the notch (i.e. totally reflecting) and α = 1 (absorbing)

on the rest of the physical boundary. Figure 2.11 shows the problem statement and

the scattered wave. The geometry is similar to the one used by Panchang et al. (1991)

and ideally models the resonance of sea waves in a rectangular harbor with constant

bathymetry. The rectangular closed region is considered as the zone of interest of the

domain, where wall reflections generate a complex wave interaction pattern that makes

the test particularly challenging from a computational point of view. In addition, as

usually in the presence of non-smooth boundaries such as corners, the solution of

the wave equation is singular leading to non-optimal convergence both for h and

p-refinement, see for instance Babuška and Szabo (1991) and Costabel and Dauge

(2000). This test aims to show that, in the absence of adaptive mesh refinement,

high-order elements are more efficient than low-order ones, even in the presence of
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Figure 2.11: Rectangular cavity: problem statement (left) and scattered wave (right)
on a mesh with h = 0.4, p = 8, and ξ = 1.26.

singularities.

Four different polynomial degree are tested, p = 1, 2, 4, and 8. For each degree

four nested meshes are used, they correspond to ξ = 1.257, 0.628, 0.314, and 0.157 (i.e.

5, 10, 20, and 40 nodes per wavelength). Given that no analytical solution is available

for this test, the relative L2 error in the zone of interest is evaluated comparing the

solution with a reference solution computed with CG with an h-refined high-order

mesh, with 160 nodes per wavelength.

Figure 2.12 depicts for CG and HDG the relative L2 error as a function of the

number of nodes per wavelength, i.e. the dimensionless wavenumber ξ (left), and as a

function of the computing time (right). In the presence of singularities, as expected,

all curves asymptotically reach the same slope, see Babuška and Szabo (1991), as

the dimensionless wavenumber decreases (as the number of nodes per wavelength

increases). In any case, high-order elements require less nodes per wavelength than

low-order elements for a given accuracy. Thus, high-order approximations require less

DOF for a given accuracy. This has a direct impact in the computing time as shown

also in Figure 2.12 and, for a given accuracy, high-order elements are faster than

low-order ones. Thus, it is worth noting that, in spite of the singularities, high-order

approximations outperform low-order ones. Obviously, an hp strategy would improve
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Figure 2.12: Rectangular cavity: error versus nodes per wavelength (left) and runtime
(rigth).

the performances, but this is out of the scope of the present comparison.

The performance of CG for p = 1 is clearly hampered by the lack of stabilization.

The comparison between CG and HDG should be focused on the other orders. For

p = 2 except for very low accuracies (below 0.1) HDG outperforms CG in runtime.

Nonetheless, CG proves to be faster than HDG for a given accuracy for high-order

elements. Obviously, the overhead of HDG decreases as the accuracy increases.

Barcelona harbor

In this section, the Mild Slope equation is used to study the wave propagation in

Barcelona’s harbor. The Mild Slope equation, derived by Berkhoff (1972), allows to

simulate the wave propagation from the open sea until the interior of the harbor,

and it is considered accurate for bottom slopes less or equal to 1/3, see Booij (1983).

Details on the derivation can be found in Appendix F.

Thus, in this example, the coefficient β in problem (2.13) is non-constant and

depends on the bathymetry, see Berkhoff (1972) for details. Moreover, the incident

potential,

u0 = exp
(
ik0(x cos θ0 + y sin θ0)

)
,

with k0 = 0.1121m−1 (corresponding to a wavelength of 56m) and angle of incidence
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Figure 2.13: Barcelona harbor: statement of the problem.

θ0 = 202.4◦ from the x-axis, induces a non-homogeneous equation, namely

f = −∇ · (β∇u0)− k2βu0.

Figure 2.13 shows the computational domain, it ranges in latitude between 41.28◦

N and 41.38◦ N and covers an area of about 34.4km2. The PML area is also depicted

as well as the areas of interest. The bathymetry data comes from a real measure

campaign1, and it has been modified to comply the condition of constant bottom

depth in the PML area. This condition is sufficient to ensure absorption of the PML

media, see for example Kucukcoban and Kallivokas (2011). The absorption coefficient

α on physical boundaries has been set to 0.05 for dikes, 0.43 for breakwaters and 0.74

for beaches.

The usual output of interest for this problem is the so-called wave amplification

factor, that is, the ratio between the total and incident wave-height, namely

H =
|u+ u0|
|u0|

. (2.19)

1
Data provided by the Autoritat Portuaria de Barcelona
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Figure 2.14: Barcelona harbor: wave amplification factor.

Figure 2.15: Barcelona harbor: zoom in the docking areas.

It is plotted for this case in Figure 2.14. Note that, with the selected period of the

incident wave, more than 200 waves are present in the computational domain.

The areas of interest, denoted as Ωint, already shown in Figure 2.13 are zoomed in

Figure 2.15. The error in Ωint is computed using a reference solution. Two measures

of the error are considered, that is, the mean error

E2 =
1

meas(Ωint)

∫

Ωint

(H∗ −H)2 dΩ,

and the maximum elemental error, that is

E2 = max
∀Ωi∈Ωint

1

meas(Ωi)

∫

Ωi

(H∗ −H)2 dΩ,

where H∗ is the wave amplification factor computed with the reference solution.

Tables 2.2 and 2.3 summarize different indicators (mean error in the area of inter-

est, maximum elemental error in the area of interest, dimension of the global system,
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Table 2.2: Barcelona harbor: error, DOF and runtime for CG.

h [m] 4 10 10 50 50 50
p 2 2 4 8 10 12

error 0.28e-2 0.26e-1 0.28e-3 0.14e-1 0.21e-2 0.50e-3
max el.err. 0.16e-1 0.14 0.15e-2 0.38e-1 0.87e-2 0.22e-2

DOF 4 908 818 1 647 698 4 115 482 367 198 467 198 567 198
runtime [s] 318 80 515 79 168 485

Table 2.3: Barcelona harbor: error, DOF and runtime for HDG.

h [m] 4 10 10 10 50 50 50
p 2 1 2 4 8 10 12

error 0.78e-4 0.33e-1 0.79e-3 0.23e-3 0.30e-2 0.57e-3 0.29e-3
max el.err. 0.98e-3 0.13 0.35e-2 0.95e-3 0.95e-2 0.30e-2 0.16e-2

DOF 11 033 058 2 467 784 3 701 676 6 169 460 4.5 105 5.5 105 6.5 105

runtime [s] 2 426 435 671 1 722 224 486 1125

and runtime) for CG and HDG and different discretizations. Three computational

meshes with characteristic element size h = 4m, 10m, and 50m have been considered,

with 2 446 554, 820 086, and 32 802 elements, respectively. Obviously, smaller elements

are present in the interior of the harbor to properly capture geometric details. As an

example, Figure 2.15 also shows in the area of interest the mesh of characteristic size

h = 50m. For this mesh, the smoothing technique proposed by Roca et al. (2011) has

been used for untangle elements and improve the quality of the mesh.

It is worth noting that the wavenumber depends on the bottom depth through the

so-called dispersion relation, leading to a non-uniform dimensionless wavenumber ξ,

see Remark 5, for a fixed element size h. As an example, the dimensionless wavenum-

ber for the discretization with characteristic element size h = 10m could vary for a

degree p = 10 from ξ = 0.2 (30 nodes per wavelength) in the docking areas with

bottom depth of about 3m, to ξ = 0.11 (57 nodes per wavelength) in open sea with

bottom depth of 30m.

As noted earlier, if runtime must be estimated the quadrature rule must deter-

mined. In this example, the coefficients are non-constant. Using quadratures (with

the minimum number of integration points) from Table 2.1 able to integrate exactly
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polynomials up to degree 3p, gives sufficient resolution and allows a fair comparison

of runtime between CG and HDG.

Results in Tables 2.2 and 2.3, corroborate that both CG and HDG perform better

with large high-order elements than smaller low-order ones. As in the previous exam-

ples, the use of large high-order elements reduces the computational cost for a given

level of accuracy.

For instance, comparing CG with {h = 4, p = 2} and {h = 50, p = 10} it can be

noticed that both have a similar mean error in the area of interest but {h = 4, p = 2}
has a larger maximum error, ten times more DOF and twice runtime. High-order

methods also perform better for lower accuracies, one order lower when {h = 10, p =

2} is compared with {h = 50, p = 8} in the same table. In this case the runtime

is similar but the high-order approximation induces smaller errors, in particular, the

maximum one.

Table 2.3 corroborates the same conclusions for HDG. For instance, HDG solutions

with {h = 10, p = 2} and {h = 50, p = 10} have similar accuracies (in terms of mean

or maximum error) but the high-order approach is 1.4 times faster. When comparing

{h = 10, p = 4} and {h = 50, p = 12} the ratio is also similar, 1.5 time faster the

high-order approximation.

Note also that, as expected, the comparison of Tables 2.2 and 2.3 shows once

again how HDG provides better accuracy than CG for the same computational mesh,

but with an overhead in runtime, which decreases as the degree of approximation

increases (recall Figure 2.10). This motivates to compute the characteristic size of

HDG inducing a similar computational cost for a given high-order CG discretization,

as stated in Section 2.2.3. Table 2.4 shows precisely the results of CG for h = 50 and

those of HDG on a mesh with a characteristic size h = 84, which is the value obtained

from Figure 2.9 and Remark 6. Consequently, the computational costs displayed

in Table 2.4 are similar for CG and HDG. This table confirms that, for a similar

computational cost, CG and HDG have similar accuracy. Nevertheless, p-adaptive

strategies are more easily implemented in an HDG framework, see Giorgiani et al.

(2012), than in a CG code.
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Table 2.4: Barcelona harbor: analogous CG and HDG results.

p 8 10 12
error 0.14e-1 0.21e-2 0.50e-3

max el. error 0.38e-1 0.87e-2 0.22e-2
CG with h = 50m DOF 367 198 467 198 567 198

runtime [s] 79 168 485
error 0.13e-1 0.11e-2 0.70e-3

max el. error 0.60e-1 0.44e-2 0.25e-2
HDG with h = 84m DOF 164 259 200 761 237 263

runtime [s] 82 175 408

2.3 High-order HDG for transient Navier-Stokes

In this section, the HDG method is specialized to the solution of incompressible flows.

In Section 2.3.1 the discrete equations are presented and a 2D steady state application

is shown in Section 2.3.2. The goal is to show that high-order elements are convenient

respect to low-order elements also for fluid problems, in particular for incompressible

flows where no shocks appears in the solution, hence smooth fields can be considered.

2.3.1 The HDG system for the Navier-Stokes equations

Let Ω ∈ Rd be an open bounded domain with boundary ∂Ω = ∂ΩD∪∂ΩN . The strong

form of the time dependent Navier-Stokes equations with Dirichlet and Neumann

boundary conditions, and symmetric form of the convective term, is

∂u

∂t
+∇ · (u⊗ u) +∇p− ν∆u = b in Ω, t > 0,

∇ · u = 0 in Ω, t > 0,

u = g on ∂ΩD, t > 0,

(−pI+ ν∇u)n = 0 on ∂ΩN , t > 0,

u = u0 in Ω, t = 0,

(2.20)

where u and p are the velocity and the pressure in the fluid, ν is the kinematic

viscosity, b is a body force and n is the unitary outward normal vector. Proper initial
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conditions u0 are assumed, and g is the prescribed velocity on the Dirichlet boundary

∂ΩD. Pseudo-stress free boundary conditions are imposed in the Neumann boundary

∂ΩN , see Donea and Huerta (2003), however more physical conditions can also be

used. Nguyen et al. (2011c) proposed a survey on the implementation of different

kind of boundary conditions for the Navier-Stokes equations in HDG.

System 2.20 is rewritten as a system of first order equations, introducing the

new variable L corresponding to the velocity gradient. The discontinuities of the

approximation spaces between elements is also taken into account. Thus Equations

(2.20) become

L−∇u = 0 in Ω̂, (2.21a)

∂u

∂t
+∇ · (u⊗ u+ pI− νL) = b in Ω̂, (2.21b)

∇ · u = 0 in Ω̂, (2.21c)

Ju⊗ nK = 0 on Γ, (2.21d)

J(−pI+ νL)nK = 0 on Γ, (2.21e)

u = g on ∂ΩD,

(−pI+ νL)n = 0 on ∂ΩN ,

where I is the identity matrix of dimension d × d. Equations (2.21d) and (2.21e)

impose the continuity of the velocity and the normal pseudo-stress across interior

element faces. Thus, the incompressible Navier-Stokes equations are stated element-

by-element in the broken domain Ω̂, see Equations (2.21a), (2.21b) and (2.21c).

The main ingredient of the HDG method is the introduction of an approximation

of the trace of the velocity on the mesh skeleton Γ, û. This new variable allows to

state a local problem in each element Ωi, corresponding to the Navier-Stokes equations

(2.21) with Dirichlet boundary conditions

u = û on ∂Ωi. (2.22)
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The Dirichlet local problem in each element can be closed prescribing, for instance,

the pressure at one point or the mean value for the pressure in the element. The usual

choice in HDG is prescribing the mean pressure in the element boundary, that is

〈
ph, 1

〉
∂Ωi

= ρh,i, i = 1, . . . , nel.

Note that for solvability of the local problem in each element, the following con-

dition on the trace variable must be satisfied

〈
ûh · n, 1

〉
∂Ωi

= 0, i = 1, . . . , nel. (2.23)

Thus, following Nguyen et al. (2011c), the HDG discretization of system (2.21)

leads to the following problem: find an approximation (Lh,uh, ph, ûh,ρh) ∈ [V̂h]
d×d×

[V̂h]
d × V̂h × [Λ̂h(g)]

d × Rnel such that

(
Lh,G

)
Ωi

+
(
uh,∇ ·G

)
Ωi

−
〈
ûh,Gn

〉
∂Ωi

= 0,

(∂uh

∂t
,v
)
Ωi

+
(
νLh − phI− uh ⊗ uh,∇v

)
Ωi

+
〈
(−νLh + phI+ ûh ⊗ ûh)n+ S(uh − ûh),v

〉
∂Ωi

=
(
b,v
)
Ωi

−
(
uh,∇v

)
Ωi

+
〈
n · ûh, v

〉
∂Ωi

= 0,
〈
ph, 1

〉
∂Ωi

= ρh,i,





(2.24a)

for i = 1, . . . , nel, and

nel∑

i

〈
(−νLh + phI+ ûh ⊗ ûh)n+ S(uh − ûh),µ

〉
∂Ωi\∂ΩN

+
nel∑

i

〈
(−νLh + phI)n+ S(uh − ûh),µ

〉
∂ΩN

= 0,

〈
n · ûh, 1

〉
∂Ωi

= 0, for i = 1, . . . , nel,

(2.24b)

for all (G,v, v,µ) ∈ [V̂h]
d×d × [V̂h]

d × V̂h × [Λ̂h(0)]
d, where ρh,i ∈ R denotes the i-th

component of ρh.
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In the HDG local problems (2.24a) the Dirichlet boundary condition (2.22) has

been replaced in the boundary integrals. Thus, the continuity of the velocity is weakly

imposed by the fact that the trace variable û is single valued on each face in the

mesh skeleton Γ. In addition, the trace of the normal stress has been replaced in all

boundary integrals by the following numerical trace

(νL̂h − p̂hI)n := (νLh − phI)n+ S(ûh − uh). (2.25)

Matrix S is the so-called stabilization tensor, and may depend on uh and ûh, see

Nguyen et al. (2011c) for details on the optimal choice. However, a direct dependence

of S on the solution can lead to a cumbersome implementation. For the sake of

simplicity, a constant scalar stabilization parameter is chosen in this work, that is

S = τI, where τ is a positive constant set to τ ≈ maxΩ(|u|), i.e. of the order

magnitude of the expected maximum value of the velocity in the domain. This choice

provides a simple and effective criterion to tune the stabilization tensor.

The HDG discrete problem (2.24) is a system of Differential Algebraic Equations

(DAE) of index 1, that can be efficiently discretized in time with an implicit time

integrator, such as backward Euler, a Backward Differentiation Formula (BDF), or

a diagonally implicit Runge-Kutta method (DIRK), see Nguyen et al. (2011c). The

time discretization of (2.24) leads to a non-linear system of equations – to compute the

solution at time tn from the solution at previous time steps – that can be iteratively

solved. Here, the non-linear system has been linearized using the Newton-Raphson

method, that is, the generic non-linear term associated to a generic trilinear form

is approximated as c(ur,ur;v) ≈ c(ur−1,ur;v) + c(ur,ur−1;v) − c(ur−1,ur−1;v),

where r is the iteration index, see for instance Nguyen et al. (2011c). In any case, a

linear system of equations is to be solved in each iteration of the non-linear solver, to

compute a new approximation of the solution at time n. In this linear system, the

equations corresponding to (2.24a) can be solved element-by-element to express the

solution at each element Ωi in terms of the trace variable ûh and the mean of the

pressure on ∂Ωi, ρh,i. Then, replacing in (2.24b) yields a global system of equations
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involving only ûh and ρh, with an important reduction in number of DOF. Further

details on the efficient solution of the non-linear DAE (2.24) can be found in Nguyen

et al. (2011c). Some details on the implementation of the HDG method for the

Navier-Stokes equations are also given in Appendix C.

Also for the Navier-Stokes equations, the particular form of the numerical fluxes

used in HDG yields optimal rates of convergence of order p + 1 in L2 norm for the

three unknowns of the problem Lh, uh and ph, see Nguyen et al. (2011c). Then, for

each element, a new problem is defined element-by-element in the new unknown u∗
h,

which is the postprocessed solution. The local postprocess proposed by Nguyen et al.

(2010) is used here, which requires solving

−∇ ·∇u∗
h = ∇ ·Lh in Ωi

−∇u∗
hn = Lhn on ∂Ωi∫

Ωi

u∗
h dΩ =

∫

Ωi

uh dΩ





for i = 1, . . . , nel.

This induces a weak problem in a richer finite dimensional space, that is, find u∗
h ∈

[V̂∗
h]

d such that

(
∇u∗

h,∇v
)
Ωi

=
(
Lh,∇v

)
Ωi

and
(
u∗

h, 1
)
Ωi

=
(
uh, 1

)
Ωi

for all v ∈ [V̂∗
h]

d and i = 1, . . . , nel, where V̂∗
h must be a bigger space than V̂h. As for the

Laplace equation in Section 2.1, with one degree more in the element-by-element poly-

nomial approximation, i.e. V̂∗
h =

{
v ∈ L2(Ω) : v|Ωi

∈ Pp+1(Ωi), for i = 1, . . . , nel
}
, u∗

h

converges asymptotically at a rate of p+ 2 in the L2 norm, see Nguyen et al. (2010).

Note that the post-process solution is not required to be computed at each time

step, but only when an improved solution is needed.

2.3.2 NACA 0012 airfoil

The goal of this numerical test is to compare the performance of high-order elements

(p > 2) and low-order elements in terms of computational efficiency, similarly to
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what was done in Section 2.2. The test proposed is the numerical evaluation of

the aerodynamics characteristics of a symmetric NACA 0012 airfoil, in laminar flow

regime, at Re=10 000 and angle of incidence α = 2◦.

The analytical expression considered for the parametrization of the upper part of

the symmetric NACA airfoil is

y =
tk
0.2

(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4), for x ∈ [0, 1],

where tk = 0.12 is the maximum thickness of the airfoil. This formula provides

a zero thickness airfoil at the trailing edge, which is usually preferred for numerical

simulations. A practical procedure for obtaining the computational mesh is illustrated

by Giorgiani et al. (2013a).

Four nested meshes of polynomial order p = 1, 2, 4, 8 are considered, with the same

number of nodes in the domain, see Figure 2.16. Similarly to Nguyen et al. (2011c),

the meshes are refined around the airfoil to capture the boundary layer, and also at

the leading and trailing edge.

Reference values of the aerodynamic coefficients are obtained using a reference

solution, with element size similar to the p = 2 computation and p = 10. Since

the output involves quantities that are not improved by the HDG superconvergent

postprocess (that is, the pressure and the velocity gradient), no postprocessed solution

is considered in this case. Results of the simulation are summarized in Table 2.5.

The error on the aerodynamics coefficients for the four computations is displayed

together with the computational cost in terms of DOF, that is, the dimension of the

linear system of the problem, and the runtime. In this case the time to perform

one Newton-Raphson iteration is considered. As expected, increasing the degree of

the approximation the number of DOF of the computation decreases. This is due to

the hybridization technique that reduces the coupled unknowns to those of the trace

of the velocity, defined only on the boundary of the elements. Also the number of

pressure unknowns in the linear system are reduced, being equal to the number of

elements. As a consequence, the runtime also decreases increasing the polynomial
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p=2

p=4

p=8

Figure 2.16: NACA 0012 airfoil: mesh p = 4 (left) and zoom in the leading edge for
the nested meshes p = 2, 4, 8 (right).

Table 2.5: NACA 0012 airfoil at Re=10 000 and α = 2◦: performance comparison
between low-order and high-order elements with HDG.

Comp. cost Error %
nDOF runtime [s] Lift Drag Moment

p = 1 128832 12.9 103.3 1.1 1.2
p = 2 45936 4.5 13.3 0.7 0.06
p = 4 18312 3.6 1.0 0.1 0.42
p = 8 7956 3.1 18.1 1.4e-3 0.47

degree. Very good accuracy is obtained with the p = 4 computation, outperforming

linear and quadratic elements. An acceptable accuracy is also obtained with the

p = 8 computation, despite the very coarse discretization. Note, in Figure 2.17, the

comparison between the element size of the p = 8 computation in the boundary layer

and the velocity profile. Even with this very coarse discretization, a good estimation of

the aerodynamic coefficients is obtained. Also the detachment point of the boundary

layer, depicted in Figure 2.18, is very well captured with large p = 8 elements.

In conclusion, HDG and high-order elements reveals to be a powerful binomial

also for fluid problems. This encourages the development of the p-adaptive technique

in the next chapter to exploit to the maximum this combination.
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Figure 2.17: NACA 0012 airfoil at Re=10 000 and α = 2◦: velocity field around the
leading edge and the trailing edge at solved with a coarse p = 8 mesh. The velocity
vector are scaled with a factor of 50 in the leading edge and 10 in the trailing edge,
to visualize the start of the recirculation.

Figure 2.18: NACA 0012 airfoil at Re=10 000 and α = 2◦: detachment point of the
boundary layer as captured by the four simulations, and comparison with the position
obtained with the reference solution.

2.4 Conclusions

The HDG method applied to the solution of 2D scattering problems in unbounded

domains. Moreover, non-constant coefficients are considered in the wave propagation

domain. This is typical of the Mild Slope equation for modeling the propagation of

sea waves in harbors.

For this wave propagation problem, the HDG method is compared with the stan-

dard continuous Galerkin (CG) method and the Compact Discontinuous Galerkin
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(CDG) method, as a representative DG method with compact stencil. The efficien-

cies of the three methods are evaluated in terms of accuracy, dimension of the global

linear system (number of DOF) and runtime. HDG with an element-by-element de-

coupling of the interior nodes, induces an important reduction in number of DOF for

high-order elements. Analogously to static condensation in CG, the actual DOF in the

HDG method correspond to nodes on the element boundaries. Consequently, HDG

exhibits an efficiency comparable to CG, providing similar levels of accuracy for the

same computational cost, and clearly outperforming CDG. However, HDG is always

more expensive but more accurate than CG on the same discretization. Nevertheless,

as the degree of the approximation increases these differences in runtime and accuracy

between HDG and CG become smaller.

At the same time, high-order approximations are compared with low-order ap-

proaches for a wide range of wavelengths. High-order elements outperform low-order

elements in terms of efficiency of the computation, since they require less degrees of

freedom for a given precision and also less computational time, both for high-accuracy

and low-accuracy. This is also the case in examples with singularities and holds both

for continuous and discontinuous methods.

The HDG method is also applied to the solution of the Navier-Stokes equations.

The computational efficiency of high-order and low-order approximations are com-

pared in a 2D numerical test regarding the evaluation of the aerodynamic character-

istics of a NACA 0012 airfoil in laminar regime. High-order elements again provide

high accuracy computations outperforming low-order approaches both from the point

of view of the linear system dimension and the runtime.



Chapter 3

Approximation degree adaptive

strategies for HDG

The previous chapter highlighted the effectiveness of high-order HDG computations

for wave propagation problems and fluid problems compared to low-order approxima-

tions. High-order elements provide better accuracy for the same computational cost,

or require less computational cost for a desired accuracy level. However, the discon-

tinuous character of the solution in the HDG method opens the path to a further

optimization: p-variable computations, that is, increasing the polynomial degree only

where more accuracy is needed.

Typically, adaptive procedures start from a discretization designed to exploit the

a priori knowledge of the solution (for example, the presence of boundary layers) and

to accurately represent the geometry of the domain. Then, adaptivity automatically

adjusts the elements locally, relying on error indicators or error estimators computed

from the solution itself, in order to provide the necessary spatial resolution and to

accurately capture the solution as it evolves.

In this chapter, a p-adaptive HDG method for wave propagation problems and in-

compressible flows problems is proposed. Exploiting the superconvergent post-process

of HDG, a simple and reliable error estimator is derived, that involves only element-

by-element computations. Thus, as shown in the numerical examples of the previous

56
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chapter, the computational cost of the error estimator is significantly smaller than

the cost of computing the solution. The error estimator drives the automatic update

of the approximation degree in each element, which is aimed at obtaining a uniform

error distribution below a user defined tolerance. No mesh topology changes are in-

troduced, thus the adaptive process is also very fast compared with the computation

of the solution. Despite the simplicity of the proposed error estimator and the adap-

tive technique, high accuracy computations are obtained, with sharp resolution of the

key features of the flow and accurate evaluation of the fluid-dynamic forces. More-

over, the p-adaptive algorithm greatly simplify the design of the initial computational

mesh, reducing for example the need of highly distorted elements for capturing the

boundary layer. An important reduction in computational cost is shown in compari-

son to p-uniform computations. Applications to steady-state and transient problems

are presented.

3.1 Error estimation and p-adaptive strategy

The use of a posteriori computable error estimates to drive an automatic adaptive

process is nowadays a common practice to control the accuracy of the computation

and to ensure the quality of the FE solution, see for example Ainsworth and Oden

(2000) . Two different approaches can be used for assessing the error: error indicators

or error estimators, see Huerta et al. (1999) for a general discussion. Error indicators

are cheap to evaluate but, in general, are designed for a specific problem and do not

provide error bounds. Error estimators are more accurate and general, can be used in

linear and nonlinear problems, see for instance Dı́ez et al. (2000), and can even produce

bounds of the exact solution as proposed by Sauer-Budge et al. (2004) and Parés et al.

(2006, 2008, 2009). But, as noted by Dı́ez et al. (2007), a posteriori error estimators

have a non trivial computational overhead when recovery techniques are used, or by

Ladevèze and Pelle (2005) when equilibrated fluxes must be computed , and also in

flux-free implementations (Parés et al., 2006). Therefore, the superconvergent post-

process inherent in HDG is a important asset, which can be readily employed to
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estimate the error.

Both for wave and fluid problems, a measure of the elemental error in the domain

of interest Ωint is prescribed below a user-given tolerance, ε, namely

max{Ei|Ωi ∈ Ωint} = Eint ≤ ε (3.1)

with Ei being the error in the element Ωi.

Instead of point-wise errors, the L2 norm is considered in each element, that is

E2
i =

1

Ai

∫

Ωi

|⊚∗ −⊚ |2 dΩ, (3.2)

where ⊚
∗ is the post-processed solution and Ai the measure of element Ωi. For wave

problems, ⊚ = H, that is, the wave amplification factor defined in (2.19), while

for fluid problems ⊚ = u, that is, the velocity. Note that the evaluation of the

improved solution ⊚
∗ requires an inexpensive element-by-element computation, see

the numerical tests of the previous chapter, that is actually done only when the error

estimator is to be evaluated. Thanks to the superconvergent properties of the HDG

method, the error estimator defined in (3.2) is an asymptotically exact estimator,

both for uniform and variable degree distributions.

The adaptive strategy proposed here is aimed at obtaining a uniform error dis-

tribution and complying with the condition (3.1). The adaptive process is based on

estimating the variation in the approximation degree pΩi
, for each element in the

computational domain, to reach the desired accuracy in the area of interest. Given an

approximation obtained with a pΩi
-map of interpolation degrees, a degree increment,

∆pΩi
, is evaluated for each element i.e. i = 1, . . . , nel. Inspired from Remacle et al.

(2003), the pΩi
variation in each element is computed as

∆pΩi
=
⌈
logb(Ei/ǫi)

⌉
, (3.3)

where ⌈·⌉ denotes the ceiling function, that is, a function that maps a real number to

the smallest following integer. The elemental tolerance ǫi usually corresponds to the
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desired tolerance ε, but can also be set differently element-by-element, to intensify

the refinement in a particular area of the domain, see for instance Giorgiani et al.

(2013b).

Similarly to the adaptation aggressiveness parameter by Fidkowski and Darmofal

(2007), the logarithm base b controls the behavior of the adaptive scheme: for a

fixed elemental error ratio Ei/ǫi, increasing b has the obvious effect of decreasing

∆pΩi
. Thus, small values of b yield drastic variations in the polynomial degree in the

elements. This may reduce the number of iterations until convergence but it can also

produce oscillatory pΩi
-map around the optimal one. On the contrary, large values of b

yield slow variations on the p-map. The number of iterations to determine the optimal

distribution of polynomial degrees is consequently increased but it converges to the

optimal map without undesired oscillations. The optimal value of the parameter b

depends on the tolerance ε required in the computation and on the specific problem at

hand. However, for the examples studied in this work reasonable results are obtained

with 10 ≤ b ≤ 100. This bounds correspond to an increment ∆p = 1 for Ei/ǫi = 10

and 100 respectively.

In addition, an upper and lower bound for the approximation degree is usually

defined, namely p− ≤ pΩi
≤ p+. On one hand, in case of fluid problems, the lower

bound is only used to guarantee a correct representation of the exact geometry with

isoparametric elements. The upper bound, which limits the maximum polynomial

degree in the mesh, may have an influence in the results if the elements are excessively

large for the desired tolerance. An hp adaptive strategy would be necessary in this

case to obtain convergence. However, the a priori information on the solution allows

to distribute the element sizes in such a way that this problem does not occur, as it

will be shown in the numerical examples.

On the other hand, in case of wave problems, the lower bound should also prescribe

a minimum number of nodes per wavelength. In fact, defining a suitable number

of elements per wavelength is not a trivial task. A “rule of thumb” proposed by

Thompson and Pinsky (1994) and Zienkiewicz et al. (2005) usually suggests 10 linear

elements per wavelength, and, obviously, less than 4 linear elements is impossible.
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To roughly estimate p− and p+, assume that high-order elements require the same

number of nodes per wavelength than linear ones, which is on the safe side because

as noted by Thompson and Pinsky (1994) high-order elements require less nodes

per wavelength. Since the number of nodes per one wavelength is 1 + p(2π)/kh

where h is the characteristic element size, a reasonable upper bound for the degree

of approximation can be estimated with p+ ≈ 10kh/2π and an absolute lower bound

by p− ≈ 4kh/2π. Note however that results are very insensitive to the prescribed

lower bound because the adaption process puts enough nodes even if a lower value for

p− is prescribed. On the contrary, the upper bound may prevent convergence of the

adaptive process if the elements are excessively large (for the desired tolerance and the

solution wavelength). Also in this case an hp adaptive strategy would be necessary to

achieve convergence. For the example presented, h refinement was unnecessary even

for very large elements (a characteristic element size equal to incoming wavelength,

i.e. kh ≈ 2π) provided engineering accuracy was imposed (i.e. approximately two

significant digits) and p+ = 10, as suggested from the previous safe estimate.

Two adaptive procedures are considered, one for steady state solutions and the

other for transient solutions, see also Wu et al. (1990) and Oñate et al. (2006). Both

of them start from a mesh with uniform degree distribution, that is, pΩi
= p− for

i = 1, . . . , nel.

The adaptive procedure for steady-state solutions concerns the solution of wave

problems described by system (2.13) and also the Navier-Stokes equation in the case

that a steady-state is sought. In this case, each iteration of the adaptive process

consists on computing the solution of (2.13) or the the steady-state solution of (2.24),

evaluating the error estimate (3.2), updating the degree map with (3.3) and the bounds

p− ≤ pΩi
≤ p+, projecting the solution onto the new computational mesh and restart

the computation.

Remark 7. Note that, for the Navier-Stokes equations, for the second and subsequent

iterations of the adaptive process, a good initial approximation of the solution, u0, is

available from the previous iteration. Thus, few time steps, with large step size, reach

the steady state solution with low computational cost. For example, in the first two
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numerical examples presented in Section 3.3, an infinite time step is used for second

and subsequent iterations of the adaptive process, which is equivalent to solving the

stationary version of (2.20), reducing the computational cost of each adaptive iteration

to the Newton-Raphson solver iterations.

The iterative adaptation scheme stops when the prescribed precision ε is attained

in the domain. Failure to converge to the desired accuracy is assumed when the

percentage of elements changing their degree in two successive iterations is lower than

a given value, and the target ε is not accomplished.

For purely transient problems, error estimation and consequent degree adaptation

is repeatedly performed after a fixed number of time steps. The solution is then

projected onto the new mesh and the simulation is continued.

The flow charts of the two adaptive strategies are shown in Figure 3.1.

Initial mesh

Calculate until

steady-state

Error estimation

Compute

new p-map;

Project solution

max{Ei|Ωi ∈
Ωint} ≤ ε

stop

no

yes

Initial mesh

Calculate N

time steps

Compute

new p-map;

Project solution

Error estimation

Final time

reached

stop

no

yes

Figure 3.1: Adaptive strategy for steady-state solutions (left) and for transient solu-
tions (right).
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3.2 P-adaptive HDG for wave problems: numeri-

cal tests

The performance of the proposed adaptive HDG method is studied in real cases of

sea wave propagation in harbors. The model problem is the Mild Slope equation as

described in Section 2.2. The first application is a medium size harbor (Mataro’s

harbor) and the second is a large one (Barcelona’ harbor). HDG adaptive solutions

are compared with high-order CG solutions, assessing the efficiency of the method

in terms of number of DOF of the linear system for the same accuracy in the area

of interest. Obviously, no analytical solution are available for these examples. The

errors are computed using the proposed error estimator for HDG. For CG the reference

solution is computed on a p+1 mesh. Note that the computational overhead for CG is

non-negligible and it is not introduced in the comparisons. The efficiency of the HDG

error estimator is also evaluated in the two test cases. To do so, a reference solution

is evaluated in each case with a high-order CG approximation on an h-refined mesh.

Since discretization errors are of concern here, the PML region is kept unchanged in

every computation, also for the reference computation.

Mataró harbor

Figure 3.2 (left) depicts the first problem statement, note that the PML region is

highlighted. The docking area is considered as the area of interest and it is shown

in Figure 3.2. The physical boundaries are also indicated, they are modeled as ab-

sorbing boundaries with α = 0.02 for dikes, α = 0.4 for breakwaters, and α = 0.7

for beaches. The incident wave direction is 10◦ from the x-axis, which should induce

strong agitation in the interior. The wave period is 5s, corresponding to short waves

with a maximum value of the wavelength of about 40m in the PML region, and a

minimum value of 25m in the interior of the harbor and close to the beach. Real

bottom depth has been used everywhere except in the PML region where constant

depth is imposed. A high-order meshing software developed by Sarrate et al. (2011)

is used to generate an unstructured triangular mesh with a uniform characteristic size
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Figure 3.2: Mataro’s harbor: problem statement (left) and wave amplification factor
solution (right)
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Figure 3.3: Mataro’s harbor: error vs. DOF for non-adaptive, i.e. uniform p (left),
for HDG and CG; efficiency of the error estimator in HDG (right).

h ≈ 40m everywhere in domain, except for the interior of the harbor where the mesh

size is adapted locally to capture all the relevant geometrical features of the docking

area.

The wave amplification factor in the domain is also displayed in Figure 3.2 (right).

Note the increase of the wave-height (amplification factors larger than two) due to

the bathymetry in the harbor entry and on the beach outside the harbor. Figure

3.3 (left) shows the convergence of the maximum elemental wave-height L2 error in
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Figure 3.4: Mataro’s harbor: zoomed convergence curves for p-uniform CG and HDG
and p-adaptive HDG computations.

the area of interest, i.e. Eint see (3.1), versus the number of DOF. Each mark of the

convergence curves corresponds to a simulation with uniform p; along each curve p

increases from 1 to 10 on the same mesh for HDG and CG. As noted in Section 2.2,

CG is always more efficient (in terms of DOF) than non-adaptive DG methods for a

similar accuracy. However, as expected, the number of DOF for HDG is close to CG

as p increases.

In Figure 3.3 (right), the efficiency of the error estimator is evaluated for each

computation. The estimator efficiency is defined as

Eint/max{Ẽi|Ωi ⊂ Ωint} − 1, (3.4)

where Ẽi is the “real” elemental error, that is, the error computed with the reference

solution (an overkilled h-refined CG solution). The graphic shows that, in this case,

the estimator is almost always underestimating Eint. Moreover, the efficiency is, for

most of the range of p larger than 1/2. Comparisons with three different strategies

of p-adaptive HDG solutions are depicted in Figure 3.4. To better appreciate the im-

provements, a zoom, with respect to the left figure, is shown and only the HDG and

CG methods are plotted. Without recourse to computational efficiency of the differ-

ent schemes, p-adaptive HDG requires less DOF for a given accuracy compared with
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uniform CG. No CG p adaptivity is compared because it is clearly more cumbersome

to implement than in DG. This figure illustrates the convenience of the p-adaptive

technique, which allows to reduce considerably the DOF of the computation, provid-

ing better performance than uniform CG approximations. This test also shows the

reliability of the error estimator in the task of driving an adaptive process.

This results are obtained with the methodology proposed in Section 3.1 and impos-

ing two different tolerances ε = 0.5 10−1 and ε = 0.5 10−2 (i.e. one and two significant

digits, see Higham (2002), which cover the usual engineering accuracy needs). The

targeted elemental tolerance was prescribed imposing ǫi = 0.5ε for Ωi ⊂ Ωint and

ǫi = 2ε for Ωi ⊂ Ω \ Ωint. Since an almost uniform element size was is imposed

equal to the incident wave length, i.e. h ≈ 2π/k0 = 40m, the lower bound for the

approximation degree is p− = 4 and the upper bound p+ = 10 is never a restriction.

Two values of the parameter b, see (3.3), are also tested for the case ε = 0.5 10−2,

b = 10 and b = 100, leading to almost the same converging point, the first one with

three iterations and the second one with five iterations. As expected lower values of b

converge faster. However, as noted earlier, if b is further reduced convergence can be

lost, this is the case for b = 2. Figure 3.5 (left) depicts the pΩi
-map for ε = 0.5 10−2.

Note that high values of p are required in the area of interest but also outside Ωint

where interactions and water depth have an influence in the accuracy in the area of

interest. The elemental errors in the area of interest are shown in Figure 3.5 (right).

Obviously, the maximum error is below the prescribed value ε, and the majority of

the element stay in a range of error comprised in one order of magnitude. Thus, a

reasonably uniform error distribution is achieved.

Barcelona harbor

The same computational mesh of Section 2.2.3 is used in this example. Figure 3.6

shows a map of the bottom depth. It coincides with actual data except for the

vertical left and right boundaries where it is smoothed to simplify the imposition of

the PML conditions. Figure 3.7 (left) plots Eint (the maximum elemental L2 error in

the wave amplification factor for the area of interest) versus the number of DOF of
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Figure 3.5: Mataro’s harbor: adaptive results for ε = 0.5 10−2, p-map (left) and error
map in area of interest (right)

Figure 3.6: Barcelona harbor: bottom depth

the computation (solid line). Markers are plotted for p = 5, . . . , 12 since p uniform

HDG computations are performed. This curve (solid line), based on the estimate of

the post-processed solution, can be compared with the “exact” error (dashed line)

where the reference solution is obtained with CG, the same mesh, and p = 20. Note

the good agreement between the estimate and the “exact” error. To further study the

estimate Figure 3.7 (right) shows the efficiency of the error estimator as a function of

p for these computations. Again, very good efficiencies are obtained.

For the HDG p-adaptive simulations, the target accuracy is set to ε = 10−2 and

ε = 0.5 10−2, the lower bound for the order of the approximation is p− = 5 and again,
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Figure 3.7: Barcelona harbor: analysis of the error estimate for uniform p HDG
computations. Comparison between Eint and the error computed with a reference
solution for p = 5, . . . , 12 (left) and efficiency of the error estimator (right).
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Figure 3.8: Barcelona harbor: convergence comparison between p-uniform HDG and
CG for p = 5, . . . , 11 and three HDG p-adaptive computations.

there is no need to limit the polynomial degree with an upper cap. To drive the

adaptive process, the element target error is set as in the previous example, that is

ǫi = 0.5ε for Ωi ⊂ Ωint and ǫi = 2ε for Ωi ⊂ Ω \ Ωint. Figure 3.8 shows convergence

for p-adaptive HDG and p-uniform HDG and CG computations. For ε = 10−2, only

b = 10 is considered and convergence is obtained with four iterations of the adaptive

process. For ε = 0.5 10−2, two values for b are compared: b = 10 and b = 100. As
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Figure 3.9: Barcelona harbor: map of the approximation degree p at convergence, for
the case ε = 0.5 10−2 and b = 10.

Figure 3.10: Barcelona harbor: error map in the docking areas.

expected less iterations (five) are necessary for the lower b while six iterations are

required for b = 100. Nevertheless, they both reach similar converged solutions. Note

that every adaptive computation induces a significative reduction in number of DOF

compared to p-uniform CG and HDG computations. As noted earlier if b is too small,

viz. b = 2, oscillatory no convergent p-maps can be obtained.

Figure 3.9 shows the distribution of order p for ε = 0.5 10−2 and b = 10. Note

that the maximum p is only imposed in small areas. Moreover, there is a certain

correspondence between high p and shallow waters where the wavelength is reduced,

see Figure 3.6. As expected the p-adaptive technique is automatically putting the

necessary nodes per wavelength in each part of the domain.

Finally, the elemental errors in the docking area for the case ε = 0.5 10−2 and

b = 10 are plotted in Figure 3.10 with an almost uniform error distribution in the

zone of interest.
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Table 3.1: Barcelona harbor: runtime, error and DOF comparison for increasing p-
uniform CG and p-adaptive HDG, with a desired tolerance of ε = 0.5 10−2 and b = 10.

iteration 0 1 2 3 4
p 5 7 9 10 11

error 0.40 0.12 0.11 10−1 0.54 10−2 0.30 10−2

CG DOF 217 198 317 198 417 198 467 198 517 198
runtime solve [s] 18 38 130 168 317

p or its range 5 5, . . . , 8 5, . . . , 10 5, . . . , 11 5, . . . , 12
error 0.24 0.45 10−1 0.19 10−1 0.64 10−2 0.36 10−2

HDG DOF 300 000 333 832 362 028 380 842 384 951
runtime solve [s] 64 82 100 115 122

runtime err. est.[s] 17 27 33 40 42

Table 3.1 compares runtime, error and DOF in a p-refinement process for p-uniform

CG and p-variable HDG to demonstrate the advantages of the p-adaptive HDG strat-

egy. The desired accuracy is ε = 0.5 10−2, ǫi = 0.5ε for Ωi ⊂ Ωint and ǫi = 2ε for

Ωi ⊂ Ω \Ωint, and b = 10. CG computations use uniform degree p. The error can be

estimated with any a posteriori error estimator. Here, for simplicity a new compu-

tation with uniform p + 1 is done and, obviously, the runtime indicated in Table 3.1

for CG only accounts for the first solve with the approximation of order p. For each

iteration, the uniform CG degree is updated as the maximum degree in the p-map

obtained using (3.3). The table presents the degree p for each CG computation, its

corresponding maximum estimated error in the area of interest, the number of DOF

and the runtime. Four iterations of this process are needed to attain the desired pre-

cision. Note that, respect to Table 2.2, slightly different error are obtained due to the

fact that here the reference solution is considered as the p+ 1 computation.

HDG uses the proposed methodology described earlier. The results are also shown

in Table 3.1. The first iteration uses the same mesh and p = 5 as the first CG iteration.

As expected HDG is more computationally expensive than CG but provides better

accuracy for the same discretization. Now, however, the post-processed approximation

provides a reasonable error estimate with a reduced overhead (one third of the coarse

computation), that is also indicated in the table. The following iterations have an

adapted p distribution. The table shows the range of p, the maximum L2 error
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in the area of interest, the number of DOF, the run-time for the solution and the

run-time for the HDG error estimate. Four iterations are also required to attain

the desired accuracy and the successive iterations show how the proposed p-adaptive

algorithm improves the efficiency of the HDG computations. Note that the sum

over the iterations of runtimes is 483s for HDG and 671s for CG and that any error

estimator for CG will be more computationally expensive than the post-process of

HDG.

3.3 P-adaptive HDG for fluid problems: numerical

tests

In this section, the proposed p-adaptive technique is applied to the solution of the

Navier-Stokes equations. The performance of the adaptive technique is tested through

several numerical examples. In the first one, the Wang flow in a square domain is

considered. The analytical solution allows, in this example, to compare estimated

errors and exact errors.

The methodology is then applied to problem of engineering interest such as the

evaluation of the aerodynamic characteristics of a NACA 0012 airfoil and the compu-

tation of the oscillating drag force on a shedding cylinder.

Wang flow

The first example is a closed form solution of the incompressible Navier-Stokes equa-

tions introduced by Wang (1991). The computational domain is Ω ∈]−0.5, 0.5[×]0, 1[,

and the analytical solution for the velocity is

u =

(
2ay − bλ exp(−λy) cos(λx)
b exp(−λy) sin(λx)λ

)
. (3.5)

The coefficients in (3.5) are set to a = 1, b = 1 and λ = 10, which leads to a

concentration of the variation of the velocity and pressure profile to the bottom of
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the computational domain. Figure 3.11 shows the streamlines (left), the pressure

profile at x = 0 (right) and the velocity profile at the bottom boundary (bottom). No
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Figure 3.11: Wang flow problem: streamlines (left), pressure profile (right) and ve-
locity profile in the bottom boundary (bottom).

Neumann boundary conditions are imposed in this problem, thus the global problem

for pressure is closed setting its average in the domain to zero, i.e.
(
pnh, 1

)
Ω
= 0 is

added to system (2.24b).

To evaluate the accuracy of the error estimator, the estimated and the exact are

compared for a structured triangular mesh with element size h = 0.1 and uniform de-

gree p, for p = 1 . . . 8. Figure 3.12 (left) shows the comparison between the estimated

and exact maximum L2 elemental error, exhibiting an excellent agreement. The right

figure depicts the estimator efficiency defined by Equation 3.4, where Ωint = Ω and

in this case Ẽi is the elemental error computed with the analytical solution. The

maximum elemental error is always estimated with an accuracy greater than 95%,

demonstrating the excellent performance of the proposed estimator.

Figure 3.13 shows the evolution of the maximum elemental L2 error for an adap-

tive computation with tolerance ε = 10−8, uniform elemental tolerance ǫi = ε for

i = 1, . . . , nel , and adaption aggressiveness parameter b = 100. Starting from a uni-
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Figure 3.12: Wang flow problem: uniform p computations, p = 1 . . . 8. Comparison
of the estimated and exact maximum L2 elemental error (left) and error estimator
efficiency (right).
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Figure 3.13: Wang flow problem: comparison of p-uniform computations, for p =
1 . . . 8, and a p-adaptive computation (left), and error estimator efficiency in the three
iterations of the adaptive computation (right).

form p = 1 mesh, the desired accuracy is reached with three iterations of the adaptive

process. In the left figure, the convergence to the exact solution obtained with the

p-adaptive computation is compared with the convergence of the p-uniform computa-

tions, for p = 1 . . . 8. The maximum elemental error is plotted versus the number of

coupled DOF, that is, the size of the linear system of the HDG discretization. Even

in this simple example, the adaptive technique reduces the computational complexity

respect to the p-uniform computation, involving a smaller number of DOF for a given

accuracy. The right figure shows the efficiency of the estimator in each iteration,
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which is always greater than 98%.

In Figure 3.14, the p-map is shown for each iteration. As expected, higher approxi-

mation degrees are concentrated to the bottom of the domain, to properly capture the

sharp gradient in the solution. The estimated and exact elemental error maps are also

shown for each iteration, revealing again an excellent performance of the estimator.

Estimation of the NACA 0012 aerodynamic characteristics

The second numerical test concerns the evaluation of the aerodynamic characteristics

of the NACA 0012 airfoil, introduced in Section 2.3.2, in laminar flow regime. In this

case, a mesh with 560 elements is used and a geometrical p = 2 representation is

considered.

Given that the quantities of interest are the aerodynamic characteristics of the

airfoil, the region of interest Ωint is taken as an area surrounding the airfoil composed

by 5 element layers, thus avoiding excessive iterations to refine the outer part of the

domain. However, the adaptive process is applied to the whole mesh, leading to a

satisfactory uniform error in the whole domain, and minimizing the pollution effects

of the error in the wake.

Reference values of the aerodynamic coefficients are obtained using a mesh with

element size h/2, and uniform p = 10. The first simulation is carried out at Re=5 000

with angle of attack α = 2◦. The adaptive simulation is started with uniform degree

p = 2, setting the tolerance ε = 10−4, uniform elemental tolerance ǫi = ε for i =

1, . . . , nel, the adaptation parameter b = 10 and the maximum degree p+ = 10.

Convergence is achieved in 5 iterations. Figure 3.15 shows the solution and the

p-map in different parts of the domain. As expected, higher order elements are au-

tomatically placed in the boundary layer and in the wake. Thus, the boundary layer

at the leading edge and the recirculation bubbles at the trailing edge are correctly

captured. Note that thanks to the high-order elements that are automatically placed

just after the leading edge of the airfoil there is no need for highly stretched elements

to resolve the boundary layer.
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Figure 3.14: Wang flow problem: p-map, estimated error map and exact error map
in each iteration of the adaptive simulation.



3.3 P-adaptive HDG for fluid problems: numerical tests 75

Table 3.2: NACA 0012 airfoil at Re=5 000 and α = 2◦: runtime for the solve and
error estimation for each iteration.

iteration 0 1 2 3 4 5
runtime solve [s] 139 40 38 36 36 41

runtime err. est.[s] 3 5 5 5 5 6

Figure 3.16 shows the convergence to the reference values of the lift coefficient

CL and the drag coefficient CD, for p-uniform computations with p = 2 . . . 10, and

the p-adaptive computation. Fast convergence to the reference solution is obtained

with the adaptive simulation, reaching an error smaller than 0.1% in the CL and than

0.01% in the CD. Similar accuracy is obtained with a uniform p = 5 computation,

but with about 40% more DOF than the adaptive computation.

Thus, it is important to note that even though the error estimator is only based

on the velocity error, the fluid dynamic force on the airfoil, that involves integrals of

the pressure and the velocity gradient on the airfoil boundary, are properly captured.

To evaluate the computational overhead of computing the error with the proposed

estimator, in Table 3.2 are shown the runtimes for the solution and for the error

estimation for each iteration. As explained in Remark 7, for the second and subsequent

iterations of the adaptive process the initial guess of the solution, u0, is the solution

of the previous iteration. Thus, the initial guess is accurate enough to solve the

stationary version of the Navier-Stokes equations, reducing the runtime for the solve.

In any case, the computational cost of the error estimation is significantly smaller

then the cost of computing the solution in all the iterations.

The second simulation has been carried out on the same computational mesh, with

Re=10 000 and 2◦ angle of attack. The same parameters and tolerance are used to set

up the adaptive process. Convergence is achieved in 5 iterations. A detail of the p-map

is shown in Figure 3.17: note that respect to the results with Re=5 000 depicted in

Figure 3.15, now higher order elements are automatically placed at the leading edge

and at the trailing edge to capture the thinner boundary layer. The aerodynamic

coefficients are shown in Figure 3.18. In this case, the adaptive simulation requires

less than 70% DOF of the uniform p = 6 computation with similar accuracy. Figure
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Figure 3.15: NACA 0012 airfoil: solution of the adaptive computation for the at
Re=5 000 and α = 2◦, after convergence in 5 iterations with tolerance 10−4. Velocity
module (up) and p-map (down) around the airfoil and details around the leading edge
(center) and the trailing edge (right).

3.19 shows the pressure and the skin friction coefficients around the airfoil, in very

good agreement with the reference values.

To underline the importance of the refinement in the wake, the simulation at

Re=10 000 is also performed reducing the elemental tolerance ǫi in the outer elements,

that is, ǫi = 10−4 for Ωi ⊂ Ωint and ǫi = 10−2 for Ωi ⊂ Ω \ Ωint. No convergence is

achieved in this case and the computation is stopped when in two successive iterations

the degree remains unchanged for 99% of the elements. The resulting solution, see

Figure 3.20, presents an important error compared with the reference solution. Even

though globally the pressure coefficient seems to be well captured, the error in the

pressure coefficient (which is shown in the zoom) produces an overestimate of the CL

of 50%.
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Figure 3.16: NACA 0012 airfoil: convergence of the aerodynamic coefficients CL and
CD at Re=5 000 and α = 2◦. Non-adaptive and adaptive simulations are compared
with a reference solution. The right figures depict a zoom of the left figures around
the convergence point of the adaptive simulation.

Figure 3.17: NACA 0012 airfoil at Re=10 000 and α = 2◦: map of p at the leading
edge (left) and at the trailing edge (right).
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Figure 3.18: NACA 0012 airfoil at Re=10 000 and α = 2◦: convergence of the aerody-
namic coefficients CL and CD. Non-adaptive and adaptive simulations are compared
with a reference solution. The right figures depict a zoom of the left figures around
the convergence point of the adaptive simulation.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

Chord

S
k

in
 f

ri
ct

io
n

 c
o
ef

fi
ci

en
t

 

 

Reference solution

Adaptive solution

Figure 3.19: NACA 0012 airfoil at Re=10 000 and α = 2◦: skin friction coefficient
(left) and pressure coefficient (right).
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Figure 3.20: NACA 0012 airfoil at Re=10 000 and α = 2◦: non converging solution
due to a too large error tolerance in the wake. CL approximations (left) and final
pressure coefficient (right).

Von Kármán street adaptive simulation

The objective of this example is to study the performance of the proposed p-adaptive

technique in a transient simulation. The problem considered is the periodic vortex

shedding of a flow past a unitary radius cylinder at Re=100. The computational

mesh, illustrated in Figure 3.21, is composed by 728 triangular elements of variable

element size, and it is refined around the cylinder which is represented by 12 elements

of p = 2 geometry. Since space discretization errors are of concern here, no time step

adaptation is considered, and a backward Euler method with fix time step ∆t = 10−2

is used. The simulation is started incrementing the Re number from 0.5, reaching

the prescribed value in 200 time steps. The adaptive scheme is set up with tolerance

ε = 10−3, uniform elemental tolerance ǫi = ε for i = 1, . . . , nel, adaptation parameter

b = 10 and minimum p− = 2. No upper bound for the degree is prescribed in this

case. The adaptive refinement is performed every 10 time steps.

Results of the adaptive simulation are compared with four p-uniform simulations,

with p = 3, 4, 5, 6, considering the uniform p = 6 solution as the reference solution.

Figure 3.22 depicts the variation in time of the number of DOF of the adaptive compu-

tation, compared with the constant DOF of the p-uniform computations. Analyzing

the evolution of number of DOF of the adaptive simulation it is possible to recognize
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Figure 3.21: Von Kármán street example: computational mesh.

three phases: in the first phase the number of DOF increases smoothly and reaches

a constant value. In this part of the simulation, the cylinder is not shedding and

the adaptive technique is placing high-order elements around the cylinder and in the

recirculation zone behind it. The rapid increase around time t = 300 is reflecting the

start of the shedding pattern. After that, the number of DOF reaches a constant value

again, indicating that the periodic state is reached. In other words, the complexity of

the solution is reflected in the number of DOF that the adaptive technique automat-

ically places in the domain, underlining once more the efficiency of this methodology

for transient problems. Figure 3.23 shows the solution and the corresponding p-map

in two time steps, before and after the start of the vortex shedding.

Table 3.3 shows the error in the mean drag force on the cylinder, averaged in one

period of the periodic shedding regime. The adaptive simulation provides the best

accuracy with almost the same number of DOF of the p = 3 uniform computation,

that is 58% of the number of DOF of the p = 6 computation. On the other hand,

the adaptive computation provides an accuracy similar to a p = 6 computation with

almost half DOF.
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Figure 3.22: Von Kármán street past a cylinder at Re=100: evolution in time of the
number of DOF in the adaptive and p-uniform simulations, for p = 3, 4, 5, 6.

Figure 3.23: Von Kármán street past a cylinder at Re=100: vorticity pattern (left)
and p-map (right) in a time step before the start of the shedding (t = 14 up Figures)
and after it (t = 750 down Figures).

Table 3.3: Von Kármán street past a cylinder at Re=100: error in the mean value of
the drag in one period of the vortex shedding flow, and % of number of DOF respect
to the reference p = 6 solution.

p = 3 p = 4 p = 5 Adaptive
Mean drag error % 1.8 0.52 0.13 0.014

DOF % 57 71 86 58
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3.4 Conclusions

A HDG p-adaptive technique is proposed for the solution of harbor agitation prob-

lems, which require solving the Helmholtz equation with non-constant coefficients in

an unbounded domain. The computational challenges of this problem are due to

large domains, compared to the wavelength, and small geometrical features, inducing

thus very large systems of equations. Moreover, the non-uniform wavelength requires

different spatial resolutions in different areas, and complex geometries generates an

unpredictable scattering pattern. The proposed adaptive technique provides uniform

error distributions below a user defined tolerance, automatically placing the correct

polynomial degree in each element. This allows to capture the oscillations accordingly

with the wavelength and the complexity of the solution locally. Adaptivity is driven

by an error estimator derived exploiting the superconvergent properties of HDG, and

involving only elemental computations. Thus, the error estimation is an inexpensive

computation compared to the solution. The efficiency of the proposed technique is

superior to high-order continuous Galerkin, both from the point of view of the linear

system dimension and the runtime. This is, to the authors knowledge, one of the first

real engineering applications where discontinuous Galerkin is shown to outperform

continuous Galerkin.

The HDG p-adaptive methodology is also applied to the solution of the Navier-

Stokes equations. In this case, the complexity lies, on one hand, in the convective

character of the equations that produces sharp localized gradients of the solution, on

the other hand, the transient nature that requires to capture the complex structures

of the flow as they move in the domain. The p-adaptive technique tackles both these

difficulties: it relaxes the need of a priori design the discretization to correctly resolve

the solution, for example with the use of highly stretched elements. Also, it allows to

repeatedly update the discretization, without any topological change in the mesh, to

follow the flow as it evolves. Three 2D numerical tests are shown. High efficiency of the

error estimator is illustrated using an academic test with known analytical solution,

for both uniform and p-variable meshes. The methodology is then applied to two
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examples of engineering interest: the estimation of the aerodynamic characteristics

of a NACA 0012 airfoil in laminar flow, and the evaluation of the drag force on a

shedding cylinder. High accuracy and reduction in computational cost, compared with

non-adaptive simulations, is found both for steady state and transient simulations.

Numerical results also demonstrate that, even though the adaptive process is based

on an error estimate only for the velocity field, accurate approximations of the fluid-

dynamic forces are obtained.



Chapter 4

Summary and future developments

This thesis presents the development of an HDG p-adaptive technique for the solu-

tion of wave propagation problems and incompressible flow problems. The adaptive

technique is based on the modification of the polynomial approximation in each el-

ement and face of the mesh, and it is driven by an error estimator, based on the

superconvergent properties of HDG, that involves only elemental computation, thus

it is computationally inexpensive compared to the solution itself. In the following,

the main contributions of the thesis are summarized.

• p-adaptive HDG for wave problems: The Mild Slope equation, which

derivation is detailed in Appendix F, is considered for modeling the wave prop-

agation in infinite domains and inhomogeneous media. The MSE in time-

frequency formulation is studied in Appendix E using a DG method with upwind

fluxes. For the frequency formulation of the MSE, high-order CDG and HDG

are derived. In particular, for HDG, the hybridization technique allows to re-

duce the global coupled unknowns to those of an approximation of the solution

defined only on the edges of the mesh, reducing drastically the dimension of the

linear system. Furthermore, the HDG solution is suitable for a local post-process

resulting in a superconvergent solution. The accuracy of the solution and the

post-process solution depends on a stabilization parameter, which influence in

studied in Appendix A.

84
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The computational efficiency of HDG is compared to the one of CDG and CG

with static condensation of the interior nodes in Section 2.2. Numerical examples

include an academic test with analytical solution and a geometry with corners.

The latter induces an unbounded solution with the consequent loss of optimal

convergence rate. The MSE also allows to solve problems of engineering interest

such as sea wave propagation from the open sea to the interior of an harbor. The

code has been developed in Matlab, and some details on the implementations are

shown in Appendix B. In order to tackle real size applications of high computing

requirements, a code optimization, detailed by Roca et al. (2011), has been

implemented in the code. This optimization is based on the substitution of all

the code loops (loop in elements, loop in faces, loop in Gauss points) with matrix-

matrix multiplications. This has permitted a thorough comparison between

high-order HDG and high-order CG for real applications, based on the total

runtime to compute the solution.

Encouraged by the excellent performance of high-order elements in HDG, and

thanks to the discontinuous character of the approximate solution, a p-adaptive

strategy has been proposed for HDG in Chapter 3. The proposed adaptive

technique provides uniform error distributions below a user defined tolerance,

automatically modifying the polynomial degree in each element. It is driven by

an error estimator derived exploiting the HDG superconvergent postprocess and

involving only elemental computations. Thus the error estimation is inexpen-

sive compared to the solution of the problem. The p-adaptive HDG for wave

problems outperforms high-order CG, both from the point of view of the linear

system size and the runtime.

• p-adaptive HDG for fluid problems: high-order HDG for the solution of

the incompressible Navier-Stokes equation has been implemented in 2D and 3D.

Some indications on the implementation are given in Appendix C.

Two fractional step methods are derived for the time integration of the unsteady

Navier-Stokes equations in Appendix D. The proposed approach allows to cir-
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cumvent the difficulties related to the solution of the saddle point linear system

produced by the HDG discretization of the Navier-Stokes equations. Conver-

gence rate and efficiency of the proposed method is shown, outperforming other

well established approaches.

The p-adaptive technique is also applied to the solution of fluid problems in Sec-

tion 3.3, for steady-state and transient solutions. Various numerical experiments

are presented, including academic examples and more challenging applications

of engineering interest. High efficiency of the error estimator is found using an

analytical example. Moreover, even though the adaptive technique is driven

by an error estimator involving only errors in the velocity field, high accuracy

is obtained in the estimation of the fluid-dynamic forces, and sharp resolution

of the key features of the flow. In the next section, dedicated to the ongoing

work, the adaptive technique is used to solve a challenging application involving

moving reference frames, and also a 3D example.

4.1 Ongoing work

4.1.1 Application of the p-adaptive technique to problems

with rotating reference frames

Adaptive computation are particularly suited for moving geometries and reference

frames. In fact, in this situations no a priori adaptation of the computational mesh

is possible, and the complex flow structures cover, in different time instants, all the

mesh.

Solving the Navier-Stokes equations in a rotating frame requires taking into ac-

count the fictitious force rising in the non-inertial frame of reference. Details on this

topics can be found in Li et al. (2002). Here, the HDG p-adaptive method has been

used to simulate a vertical axes wind turbine (VAWT) in 2D. The turbine is made

up of four NACA 0012 symmetric airfoils. A dimensionless problem is considered.

An angular velocity ω = 1 and an upstream velocity V0 = 1 are set. The Reynolds
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Figure 4.1: 2D VAWT: statement of the problem.

number is Re=1000. The statement of the problem is shown in Figure 4.1.

The simulation is carried out in a moving reference frame, which is rotating with

the turbine. Thus, the body forces appearing in the computational domain generate

a rotating velocity whose magnitude increases with the distance from the rotation

center. For this reason, particular care must be taken with the choice of the stabi-

lization parameter τ , see Section 2.3.1. In fact, numerical evidence shows that if a

constant τ is used, either loss of stability or loss of superconvergence may deteriorate

the numerical solution. Hence, a variable τ is used in this case, with the following

relation

τ =




τ0ω|x| if ω|x| ≥ 1,

τ0 if ω|x| < 1,

where x is the position vector pointing at the barycenter of the face on which τ is

defined, and τ0 is a constant value for the whole mesh.

The adaptive procedure is set up using a parameter b = 10, a tolerance ε = 10−4

and a uniform elemental tolerance ǫi = ε for i = 1 · · · nel. A constant time step

∆t = 10−2 is used, and the error estimation and adaptive procedure is performed

every 10 time steps. The maximum and minimum values of the polynomial degree

are p− = 1 and p+ = 9.

In Figure 4.2 is shown the vorticity and the p-map in an area of the domain
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Figure 4.2: 2D VAWT: vorticity (left) and p-map (right) for t = 4.3.

surrounding the turbine blades, at time t = 4.3. The adaptive technique is correctly

placing high-order elements around the blades and in the wake that they generate.

However, for this example the mesh seems to be too coarse as the maximum p is

reached in a large part of the domain.

In Figure 4.3 are shown the aerodynamic coefficient of the turbine during the sim-

ulation while Figure 4.4 shows the evolution of the number of DOF. As expected, after

an initial transient, the aerodynamic coefficients reach an quasi oscillatory behavior

and the number of DOF reaches an almost constant value. Figure 4.5 shows a fre-

quency analysis of the lift and drag coefficients of the turbine. Even with this coarse

mesh, a good agreement with reference solutions computed with the commercial code

FLUENT1 is found.

4.1.2 Application to 3D problems

The HDG p-adaptive technique has been extended to 3D problems. Some preliminary

results are shown here for a 3D version of the lid-driven cavity test case. The lid-driven

cavity is a standard benchmark for incompressible flows, see for example Montlaur

et al. (2010). A cubic domain Ω =]0, 1[×]0, 1[×]0, 1[ is considered, with zero body

1
FLUENT data courtesy of Adeline de Villardi de Montlaur
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Figure 4.3: 2D VAWT: lift, drag and moment coefficients as a function of the time.

0 20 40 60
3

3.5

4

4.5

5

5.5

6

6.5
x 10

4

Time

N
u

m
b

er
 o

f 
D

O
F

Figure 4.4: 2D VAWT: number of DOF as a function of the time.
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and comparison with FLUENT results.
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forces and one moving wall. A continuous velocity is imposed on the upper wall z = 1

u =





Θ(10x, 0, 0)T for 0 ≤ x ≤ 0.1,

Θ(1, 0, 0)T for 0.1 ≤ x ≤ 0.9,

Θ(10− 10x, 0, 0)T for 0.9 ≤ x ≤ 1,

with Θ =





10y for 0 ≤ y ≤ 0.1,

1 for 0.1 ≤ y ≤ 0.9,

10− 10y for 0.9 ≤ y ≤ 1,

and a zero velocity u = (0, 0, 0)T is enforced on the other walls. The computational

mesh is made up of 10×10×10 hexahedra. The adaptive simulation has been carried

out setting the tolerance ε = 10−2 and a constant elemental tolerance ǫi = ε for

i = 1 · · · nel. An adaptation aggressiveness b = 100 is set.

Figure 4.6 depicts the evolution of the maximum elemental error and the number

of DOF during the iterations of the adaptive technique, for Re= 10 and Re=1000. As

expected, the higher Re yields a higher number of iteration to achieve convergence of

the adaptive technique (3 iterations for Re= 10, 5 iterations for Re= 1000) and also

an larger number of DOF at convergence.

0 1 2 3
0

0.05

0.1

0.15

M
a

x
 e

le
m

en
ta

l 
er

ro
r

Iteration

 

 

3

3.5

4

4.5

5
x 10

4

N
u

m
b

er
 o

f 
D

O
F

Max elemental error

Number of DOF

Tolerance

(a) Re = 10

0 1 2 3 4 5
0

0.05

0.1

0.15

M
a

x
 e

le
m

en
ta

l 
er

ro
r

Iteration

 

 

3

3.5

4

4.5

5
x 10

4

N
u

m
b

er
 o

f 
D

O
F

Max elemental error

Number of DOF

Tolerance

(b) Re = 1000

Figure 4.6: 3D cavity flow: evolution of the maximum elemental error and the number
of DOF in the p-adaptive simulations at Re= 10 and Re= 1000.

Figures 4.7 and 4.8 and Figures 4.9 and 4.10 show the iso-surfaces of the velocity

magnitude at values 0.1, 0.2 and 0.3, and the distribution of the polynomial degrees in

the computational mesh, respectively for Re= 10 and Re= 1000. The higher velocity
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propagates more deeply into the cavity increasing the Re, as expected. On the other

hand, the adaptive technique places higher-order elements on the top of the cube,

hence close to the moving wall, and at the edges where the velocity is subject to the

strongest turns. In both cases, a symmetric distribution of the polynomial degrees

with respect to the velocity direction is obtained.

(a) |u| = 0.1 (b) |u| = 0.2 (c) |u| = 0.3

Figure 4.7: 3D cavity flow Re= 10: iso-surfaces of velocity magnitude

4.2 Future developments

• Goal oriented adaptivity: recent developments in the field of a posteriori

error estimation regards the use of duality arguments to obtain goal oriented

error estimations. This approach is based on defining an output of interest

of the numerical computation, normally defined by a functional of the solution.

Goal-oriented error assessment strategies aim at estimating the error committed

in these quantity of interest and possibly providing bounds for it.

The error propagates inside the area of interest from zone of the domain outside

it, in particular for wave problems. The convenience of a goal oriented approach

is well known in this context, see for example Steffens et al. (2011). However,

the dual problem approach can effectively be used also for fluid problems. For

example, for the NACA numerical test of Section 3.3, a non-linear functional
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(a) p = 1 (b) p = 2 (c) p = 3

(d) p = 4

Figure 4.8: 3D cavity flow Re= 10: p-map in the last iteration of the adaptive proce-
dure.

(a) |u| = 0.1 (b) |u| = 0.2 (c) |u| = 0.3

Figure 4.9: 3D cavity flow Re= 1000: iso-surfaces of velocity magnitude.
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(a) p = 1 (b) p = 2 (c) p = 3

(d) p = 4

Figure 4.10: 3D cavity flow Re= 1000: p-map in the last iteration of the adaptive
procedure.

can be defined for each one of the aerodynamic characteristic, see for example

Hartmann et al. (2011). A goal-oriented adaptive technique based on the solu-

tion of dual problem would allow to improve the performance of the adaptive

strategy and reduce the need of user defined parameters.

• hp-adaptivity: p-adaptivity is very efficient for problems with smooth solution

such as the ones considered in this thesis. To further improve the performance

of the adaptive technique, a hp-adaptive technique could be implemented. This

would reduce even more the requirements on the initial geometric discretization,

since h-refinement would be used to reduce the element size in those elements

where the maximum allowed polynomial degree is already used.
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• Parallelization: the Matlab code optimization has been pushed to the limit

where the performance are similar to a Fortran or C++ code without paral-

lelization. This has allowed to solve large 2D problems and relatively small 3D

problems. To be able to tackle large 3D problems, a complete migration to

Fortran of C++ is required. The LaCàN C++/Matlab library will help in the

migration process.

• Extension to turbulent compressible flows: nowadays, DG methods for

compressible flows are a cutting-edge topic in research for aerospace applica-

tions. Adaptivity in this field is fundamental to be able to correctly capture the

characteristic features of the flow such as shocks and boundary layers, see for

example Hartmann (2006) and Wang and Mavriplis (2009). The application of

HDG in this field is promising, see for example Peraire et al. (2010) and Nguyen

and Peraire (2011a). Hence, the model problem should be modified accounting

for turbulence, using the RANS equations for example (see Nguyen and Peraire

(2011b)), and for compressibility, modifying the continuity equation and adding

the energy equation.



Bibliography

Abarbanel, S. and D. Gottlieb (1998). On the construction of absorbing layers in
CEM. Appl. Numer. Math. 27 (4), 331–340.

Ainsworth, M. and J. T. Oden (2000). A posteriori error estimation in finite element
analysis. Pure and Applied Mathematics (New York). New York: Wiley-Interscience
[John Wiley & Sons].

Alvarez, G. B., A. F. D. Loula, E. G. D. do Carmo, and F. A. Rochinha (2006). A
discontinuous finite element formulation for Helmholtz equation. Comput. Methods
Appl. Mech. Eng. 195 (33-36), 4018–4035.

Arnold, D. N. (1982). An interior penalty finite element method with discontinuous
elements. SIAM J. Numer. Anal. 19 (4), 742–760.

Arnold, D. N. and F. Brezzi (1985). Mixed and nonconforming finite element methods:
implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal.
Numér. 19 (1), 7–32.
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Roca, X., A. Gargallo-Peiró, and J. Sarrate (2011). Defining quality measures for
high-order planar triangles and curved mesh generation. In Proceedings of the 20th
International Meshing Roundtable, Paris, France.

Roca, X., N. C. Nguyen, J. Peraire, and A. Huerta (2011). A GPU-accelerated iterative
solver for a hybridized discontinuous Galerkin method. In Proceedings of the 23rd
International Conference on Parallel Computational Fluid Dynamics, Barcelona,
Spain.

Sarrate, J., X. Roca, and E. Ruiz-Girones (2011). EZ4UMesh generation environment.
www.lacan.upc.edu/ez4u.htm.

Sauer-Budge, A. M., J. Bonet, A. Huerta, and J. Peraire (2004). Computing bounds
for linear functionals of exact weak solutions to Poisson’s equation. SIAM J. Numer.
Anal. 42 (4), 1610–1630.

Sevilla, R., O. Hassan, and K. Morgan (2013). An analysis of the performance of
a high-order stabilised finite element method for simulating compressible flows.
Comput. Methods Appl. Mech. Eng. 253 (0), 15–27.

Smith, R. and T. Sprinks (1975). Scattering of surface waves by a conical island. J.
Fluid Mech. 72 (2), 373–384.

www.lacan.upc.edu/ez4u.htm


Bibliography 105

Steffens, L. M. and P. Dı́ez (2009). A simple strategy to assess the error in the
numerical wave number of the finite element solution of the Helmholtz equation.
Comput. Methods Appl. Mech. Eng. 198 (15-16), 1389–1400.

Steffens, L. M., N. Parés, and P. Dı́ez (2011). Estimation of the dispersion error in the
numerical wave number of standard and stabilized finite element approximations of
the Helmholtz equation. Int. J. Numer. Methods Eng. 86 (10), 1197–1224.

Steffens, L. M., N. Parés, and P. Dı́ez (2011). Goal-oriented h-adaptivity for the
Helmholtz equation: error estimates, local indicators and refinement strategies.
Comput. Mech. 47 (6), 681–699.

Stewart, J. R. and T. J. Hughes (1996). A posteriori error estimation and adaptive
finite element computation of the Helmholtz equation in exterior domains. Finite
Elements in Analysis and Design 22 (1), 15–24.

Stewart, J. R. and T. J. Hughes (1997). h-adaptive finite element computation of
time-harmonic exterior acoustics problems in two dimensions. Comput. Methods
Appl. Mech. Eng. 146 (1–2), 65–89.

Strouboulis, T. and R. Hidajat (2006). Partition of unity method for Helmholtz equa-
tion: q-convergence for plane-wave and wave-band local bases. Appl. Math. 51 (2),
181–204.

Suh, K. D., C. Lee, and W. S. Park (1997). Time-dependent equations for wave
propagation on rapidly varying topography. Coast. Eng. 32 (2–3), 91–117.

Taylor, M. A., B. A. Wingate, and R. E. Vincent (2000). An algorithm for computing
Fekete points in the triangle. SIAM J. Numer. Anal 38, 1707–1720.

Témam, R. (1969). Sur l’approximation de la solution des équations de Navier-Stokes
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Appendix A

The influence of the τ parameter on

the HDG convergence properties

In this appendix is presented a study on the influence of the stabilization parame-

ter τ on the convergence properties of the HDG method. Two possible choices are

considered: the all faces approach, studied also by Cockburn et al. (2009) and by

Kirby et al. (2011), where τ is set to a positive constant value in all the faces of each

element, and the single face approach, introduced by Cockburn et al. (2008), where

τ is set to zero in all the faces except one, arbitrary chosen, face of each element, see

(2.17). Extensive numerical evidences in the cited works show that, in both cases,

values of order one provide optimal behavior for a dimensionless problem. The goal of

this study is to provide indications for the choice of τ in real engineering cases, both

in wave problems and fluid problems, to achieve the following two objectives:

• the coefficient τ provides enough stabilization;

• the postprocess solution is superconvergent.

In the first numerical test, the Laplace equation (2.1) is solved in the domain

Ω =]0, 1[×]0, 1[. The function f and the boundary conditions are chosen to obtain

an analytical solution u = cos(πx) cos(πy). Nested triangular meshes of element size

h = 1/2n, with n = 1 · · · 4 are considered, and polynomial interpolations p = 1 · · · 5
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Figure A.1: Convergence curves for the Laplace equation with single face stabilization
parameter.

are used.

Figure A.1 and A.2 show the convergence of the L2 error of the HDG solution and

the postprocessed solution. The results for the single face parameter are shown in

Figure A.1, for of τi = 1 and τi = 1000, while Figure A.2 depicts the results for the all

faces approach. At the bottom of each curve, the value of the final slope of the curve

is also displayed. The asterisk refers to the final slope of the postprocessed solution

curve. The results highlight that imposing τ different from zero in all the faces of each

element can lead to loss of superconvergence, if the chosen parameter is too large. In

this case, in fact, for τi going to infinity HDG behaves as CG with static condensation,

see Kirby et al. (2011) for details. On the other hand, the superconvergent properties

of the postprocess solution are conserved increasing τi with the single face approach.

A wave problem is considered next. The test chosen in this case is the scattering

of a plane wave by a cylindrical object of unitary radius introduced in Section 2.2.3.

In this case, a wavelength ℓ = 1.56 is used. Computational meshes of element size

h = 1.6/2n, with n = 1 · · · 4, and p = 1 · · · 5 are considered. Figure A.3 and A.4 show

the convergence of the error in L2 norm computed in the whole domain (except the

PML), for the approximated solution and the postprocessed solution. The behavior

is similar to the one obtained for the Laplace equation. In this case, however, the
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Figure A.2: Convergence curves for the Laplace equation with all faces stabilization
parameter.

value τi = 1 is not sufficient, in the single face case, to provide stability for large

elements. In fact, using equation (2.18), the minimum value to be used is τi ∼
50, which would correspond to a unitary τi in a dimensionless problem. Hence, as

expected, the convergence behavior improves as the parameter τi increases, reaching

a constant behavior when the parameter is greater than the one prescribed by (2.18).

Also for wave problems, increasing τi does not affect the superconvergence in case of

the single face choice. In case of the all faces choice, increasing τi leads to loss of

superconvergence, see Figure A.4. Note that, in case of non-constant coefficients in

the equation, such as in (2.11), this induces an extra difficulty, because τi should vary

in the domain to account for the variability of the coefficients.

In order to account for p-variable computations, a study of the performance of

the method varying τi with the polynomial order is also presented. A constant dis-

cretization is then used, with h = 0.8, and polynomial degree p = 1 · · · 10. In Figure

A.5, the convergence of the postprocessed solution is shown, for three different laws

of variation of τi with the polynomial degree. Results show that no improvements are

achieved varying τi with p. Thus, this result show that τi can be independent form

the actual pΓi
used on each face of the mesh.
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Figure A.3: Convergence curves for a scattering problem with single face stabilization
parameter.

For fluid problems, indications on the choice of the stabilization parameter can be

found in Nguyen et al. (2009, 2011c). Due to the convective character of the equations,

the single face stabilization can not be used. To stabilize the convective effect of the

Navier-Stokes equations, a stabilization tensor is introduced by Nguyen et al. (2011c),

S = τI (A.1)

where τ is chosen as

τ ≈ ν/l + |u| (A.2)
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Figure A.4: Convergence curves for a scattering problem with all faces stabilization
parameter.

being ν the cinematic viscosity, l a characteristic length and |u| the velocity mod-

ule. However, a direct dependence of S on the solution can lead to a cumbersome

implementation. For the sake of simplicity, a constant scalar stabilization param-

eter is chosen in this work, that is S = τI, where τ is a positive constant set to

τ ≈ maxΩ(|u|), i.e. of the order magnitude of the expected maximum value of the

velocity in the domain. This choice provides a simple and effective criterion to tune

the stabilization tensor. It must be taken into account that, with this choice, the

superconvergent postprocess can be deteriorated in the area of the domain where the

velocity is very low. However, in this work the main goal of the superconvergent

postprocess is to provide error estimation. The definition of the error, (3.2), is based

on the difference between the absolute value of the velocity and the postprocessed

velocity. Hence, elements with very low velocity are less involved by the refinement

process. For this reason, the deterioration of the error estimation is elements with

low velocity has low impact on the final solution.
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Figure A.5: Convergence curves for a scattering problem with single face stabilization
parameter.



Appendix B

Implementation of HDG for the

Mild Slope equation in frequency

domain

In this Appendix are given some indications on the implementation of the HDG

method for the Mild Slope equation in frequency domain, studied in Sections 2.2

and 3.1. Recall system (2.16),

(
Qqh,v

)
ΩK

+
(
uh,∇ · v

)
ΩK

−
〈
ûh,v · n

〉
∂ΩK

= 0
(
∇ · qh, v

)
ΩK

+
(
γuh, v

)
ΩK

−
〈
τ(uh − ûh), v

〉
∂ΩK

=
(
sxsyf, v

)
ΩK



 for K = 1, . . . , nel,

(2.16a)
nel∑

K=1

〈(
qh · n− τ(uh − ûh)

)
, µ
〉
∂ΩK

− I
〈
kαβ ûh, µ

〉
ΓR

− I
〈
kβ ûh, µ

〉
ΓPML

=
〈
g, µ
〉
ΓR

,

(2.16b)

representing the weak form of the HDG method for the Mild Slope equation. On one

hand, (2.16a) is a local system in each element ΩK that does not involve unknowns of

neighboring elements. Thus, (2.16a) can be solved element-by-element to express qh

and uh as functions of ûh. On the other hand, Equation (2.16b) is a global equation
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coupling variables of different elements. Replacing qh and uh, solution of (2.16a) in

terms of ûh, in (2.16b) yields a global system on the whole mesh skeleton for the only

variable ûh. Recall that ûh is single valued in each face of the mesh. Once the global

system is solved, qh and uh can be recovered for each element ΩK using (2.16a).

The unknowns uh and qh are represented, element by element, with 2D nodal basis

function Nj, that is

uh =

nbe∑

i=1

Ni {UK}i, qh =

nbe∑

i=1

NiI {QK}i, (B.2)

where nbe is the number of shape functions in the element ΩK and I is the identity

matrix of dimension 2 × 2. The vectors of nodal values in the element ΩK for the

variables uh and qh are denoted respectively with UK and QK , while {UK}i and {QK}i
are the ith component of respectively UK and QK . The unknown ûh in the face e of

the element ΩK is denoted as

ûh =

nbf∑

i=1

Ñi {ÛK,e}i, (B.3)

where Ñi is the ith 1D basis function and nbf is the number of shape functions in the

face e of element ΩK . Hence, considering for example a triangular element, the vector

of nodal values for the unknown ûh in the element ΩK is denoted as

ÛK =





ÛK,1

ÛK,2

ÛK,3




.

However, note that ûh is single valued in each face of the mesh. Thus, considering a

face with global numbering F , say ΓF , shared by the two elements ΩL and ΩR, the

nodal unknowns for ûh on ΓF is denoted as ÛF . The situation is represented in Figure

B.1: in the this example, ΓF corresponds to the second face of ΩL and to the first

face of ΩR. Thus, results

ΓF = ΓL,2 = ΓR,1,
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ΩL

ΩR

ΓL,1

ΓL,3

ΓR,2

ΓR,3

ΓL,2 = ΓR,1 = ΓF

Figure B.1: Notation for the faces of two elements p = 2.

and therefore

ÛF = ÛL,2 = ÛR,1.

Substituting (B.2) and (B.3) in (2.16a) gives, for the generic element ΩK , the

following system of algebraic equations

AKQK −BK
TUK = −CK,1

T ÛK,1 −CK,2
T ÛK,2 −CK,3

T ÛK,3,

BKQK + (DK −MK)UK = EK,1
T ÛK,1 + EK,2

T ÛK,2 + EK,3
T ÛK,3 + fK ,

(B.4)

where the form of the block matrices is given in Box B.1.

Solving (B.4) with respect to UK and QK gives, in each element,

UK = UK ÛK + uK ,

QK = QK ÛK + qK ,
(B.5)
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A2nbe×2nbe
K =

(∫
ΩK

Q11NiNj 0

0
∫
ΩK

Q22NiNj

)
, for i, j = 1 · · · nbe,

Bnbe×2nbe
K =

(∫
ΩK

NiNj,x

∫
ΩK

NiNj,y

)
, for i, j = 1 · · · nbe,

CK,e
nbf×2nbe =

(∫
Γe
ÑiNjnx

∫
Γe
ÑiNjny

)
, for i = 1 · · · nbf, j = 1 · · · nbe,

Dnbe×nbe
K =

∫

∂ΩK

τNiNj, for i, j = 1 · · · nbe,

EK,e
nbf×nbe =

∫

Γe

τÑiNj, for i = 1 · · · nbf, j = 1 · · · nbe,

Mnbe×nbe
K =

∫

ΩK

NiNj, for i, j = 1 · · · nbe,

fnbe×1
K =

∫

ΩK

sxsyfNi, for i = 1 · · · nbe.

Box B.1: Block matrices arising in the implementation of HDG for the Mild Slope
equation in frequency formulation: the index e = 1, 2, 3 refers to the three faces of the
element ΩK , nx and ny are the component of the normal vector, and Nj,x and Nj,y

are the derivatives of the shape functions in the two Cartesian directions.

having set, omitting the index K in all the terms,

U = (BA−1BT +D−M)−1(ET +BA−1CT ),

Q = A−1[(BA−1BT +D−M)−1(ET +BA−1CT )−CT ],

u = (BA−1BT +D−M)−1f ,

q = A−1B(BTA−1BT +D−M)−1f ,

and

C =





CK,1

CK,2

CK,3




, E =





EK,1

EK,2

EK,3




.

Using (B.5), Equation (2.16b) allows to assembly a global system that involves only
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the face unknowns for the whole faces set Γ+. Once the the trace variable ÛF for

F = 1 · · · nfa is computed, the nodal values UK and QK for K = 1 · · · nel in the

elements can be computed using System (B.5).

Substituting (B.2) in (2.16b) yields, for the interior face ΓF shared by the elements

ΩL and ΩR

CL,eFQL + EL,eFUL −HF ÛF +CR,eFQR + ER,eFUR −HF ÛF = 0, (B.6)

where the matrices CL,eF , EL,eF and CR,eF . ER,eF are the ones in Box (B.1) computed

on the face Γe corresponding to ΓF respectively in the elements L and R, and HF is

HF
nbf×nbf = {HF}ij =

∫

ΓF

τÑiÑj, for i, j = 1 · · · nbf.

Substituting (B.5) in (B.6), gives

(CL,eFQL + EL,eFUL)ÛL + (CR,eFQR + ER,eFUR)ÛR − 2HF ÛF =

= −(CL,eF qL + EL,eFuL +CR,eF qR + ER,eFuR). (B.7)

Equation B.7 gives the F -th block row of the matrix of the global linear system in the

unknowns ÛF , for F = 1 · · · nfa. Each row of the final matrix has five non-zero block

entries in the positions corresponding to the five faces connected by the two elements

ΩL and ΩR, see also Figure B.1.

For a boundary face, the boundary terms appearing in (2.16b) have to be inte-

grated also. In this case, the block row in the final matrix has only three non-zero

block entries, corresponding to the three faces of the boundary element to which the

boundary face belongs.

Once solved the system obtained assembling B.7 for all the faces in the mesh,

the nodal values UK and QK are recovered using (B.5) with an element-by-element

computation.



Appendix C

Implementation of HDG for the

incompressible Navier-Stokes

equations

In this Appendix are presented the main lines of the implementation of the HDG

method for the Navier-Stokes equations. The block form of the elemental matrices

appearing in the algebraic system is similar to those introduced for the implementation

of the Mild Slope equation in Appendix B, and are not given here. The main differ-

ences between the implementation of HDG for the Navier-Stokes equations respect to

the implementation for the Mild Slope equation are:

• in each element, the local problem for the pressure is closed leaving the mean

of the pressure on the border of each element as a new unknown. Hence, each

local problem generates a saddle point linear system, with the pressure acting

as a Lagrange multiplier;

• the Navier-Stokes equations are non-linear, hence the local problems and the

global problem must be solved iteratively until convergence.
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The HDG weak form of the Navier-Stokes equation, with Backward-Euler time

integration:

(
Ln

h,G
)
ΩK

+
(
un

h,∇ ·G
)
ΩK

−
〈
ûn

h,Gn
〉
∂ΩK

= 0,

(un
h

∆t
,v
)
ΩK

+
(
νLn

h − pnhI− un
h ⊗ un

h,∇v
)
ΩK

+
〈
(−νLn

h + pnhI+ ûn
h ⊗ ûn

h)n+ S(un
h − ûn

h),v
〉
∂ΩK

=

(
b,v
)
ΩK

+
(un−1

h

∆t
,v
)
ΩK
,

(
un

h,∇v
)
ΩK

−
〈
n · ûn

h, v
〉
∂ΩK

= 0,
〈
pnh, 1

〉
∂ΩK

= ρnh,K ,





(C.1a)

for K = 1, . . . , nel, and

nel∑

i

〈
(−νLn

h + pnhI+ ûn
h ⊗ ûn

h)n+ S(un
h − ûn

h), v̂
〉
∂ΩK\∂ΩN

+
nel∑

i

〈
(−νLn

h + pnhI)n+ S(un
h − ûn

h), v̂
〉
∂ΩN

= 0,

〈
n · ûn

h, 1
〉
∂ΩK

= 0, for K = 1, . . . , nel.

(C.1b)

System (C.1a) represents a local problem in each element ΩK : its solution allows

to express the elemental unknowns Ln
h,u

n
h and pnh as a function of the trace unknown

ûn
h and the mean of the pressure on the element boundary ρnh,K . Then, system (C.1b)

allows to set up a global system for the unknowns ûn
h and ρn

h in the whole domain.

Similarly to the procedure of Appendix B, the unknowns are represented with

nodal basis functions Ni in each element ΩK , that is

Ln
h =

nbe∑

i=1

NiI {Ln
K}i, un

h =

nbe∑

i=1

NiI {Un
K}i, pnh =

nbe∑

i=1

Ni {Pn
K}i, (C.2)

where now the identity matrix I has dimensions d× d for the vector unknown un
h and

d2× d2 for the tensor unknown Ln
h. The trace variable û

n
h in the face e of the element
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ΩK is denoted as

ûn
h =

nbf∑

i=1

ÑiI {Ûn
K,e}i, (C.3)

where Ñi is the ith d − 1-dimensional basis function and nbf is the number of shape

functions in the face. Hence, the vector of nodal values for the unknown ûn
h in the

element ΩK is denoted as

Ûn
K =





Ûn
K,1

...

Ûn
K,nfe




. (C.4)

where nfe is the number of faces in the element ΩK .

Replacing the forms (C.2), (C.3) and (C.4) in system (C.1a) yields the linear

system of algebraic equations in each Newton-Rapshon iteration r,

LKL
n,r
K +BKU

n,r
K = CKÛ

n,r
K ,

(BT
K − LK)L

n,r
K + (

MK

∆t
−Cv

n,r
K +DK)U

n,r
K

+(FK −GK)P
n,r
K = (EK −Hv

n,r
K )Ûn,r

K

+
MK

∆t
Un−1

K + fn,rK ,

RKU
n,r
K −OKÛ

n,r
K = 0,

WKP
n,r
K = ρn,rh,K .

(C.5)

The convective matrices CvK and HvK derive from the discretization of the tri-linear

forms related to the convective terms, that is

Cv

n,r
K ⇔

(
u

n,r
h ⊗ u

n,r−1
h ,∇v

)
ΩK

+
(
u

n,r−1
h ⊗ u

n,r
h ,∇v

)
ΩK
,

Hv

n,r
K ⇔

〈
(ûn,r ⊗ ûn,r−1)n,v

〉
∂ΩK

+
〈
(ûn,r−1 ⊗ ûn,r)n,v

〉
∂ΩK

,
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while the vector fK contains the contribution of the previous time step, the body

forces and the remaining part of the convective term,

fn,rK ⇔
(
b,v
)
ΩK

+
(un−1

h

∆t
,v
)
ΩK

−
(
u

n,r−1
h ⊗u

n,r−1
h ,∇v

)
ΩK

+
〈
(ûn,r−1⊗ûn,r−1)n,v

〉
∂ΩK

.

System (C.5) is a constrained linear system in each element in the unknowns Ln,r
K ,Un,r

K ,Pn,r
K ,

at time step n and Newton-Raphson iteration r. The solution of (C.5) has the form

L
n,r
K = Lu

n,r
K Û

n,r
K + Lρ

n,r
K ρn,rh,K + L0

n,r
K ,

U
n,r
K = Uu

n,r
K Û

n,r
K +Uρ

n,r
K ρn,rh,K +U0

n,r
K ,

P
n,r
K = Pu

n,r
K Û

n,r
K +Pρ

n,r
K ρn,rh,K +P0

n,r
K ,

(C.6)

that is, a local mapping from the nodal values of the trace unknown ûn
h and the

mean of the pressure on the element borders ρn
h to the nodal values of the elemental

unknowns Ln
h, u

n
h and pnh.

Once solved for the local mapping element-by-element, system (C.1b) allows to set

up the global system for the unknowns Ûn,r
F for F = 1 · · · nfa and ρn,rh,K forK = 1 · · · nel.

Thus, substituting (C.2), (C.3) and (C.4) in (C.1b) yields, for the interior face ΓF

shared by the elements ΩL and ΩR

−LL,eFL
n,r
L +DL,eFU

n,r
L + (Hn,r

F − EF )Û
n,r
F + FL,eFP

n,r
L

−LR,eFL
n,r
R +DR,eFU

n,r
R + (Hn,r

F − EF )Û
n,r
F + FR,eFP

n,r
R = 0,

YL · Ûn,r
F +YR · Ûn,r

F = 0.

(C.7)

If no Neumann boundaries are present in the domain, the problem for the pressure

can be closed imposing the average of the pressure in the domain equal to zero, that

is
nel∑

K=1

ρn,rh,KAK = 0, (C.8)

where AK is the measure of the element ΩK .
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Substituting (C.6) in (C.7) results

(−LL,eFLu
n,r
L +DL,eFUu

n,r
L + FL,eFPu

n,r
L ) Ûn,r

L

+(−LR,eFLu
n,r
R +DR,eFUu

n,r
R + FR,eFPu

n,r
R ) Ûn,r

R

+(−LL,eFLρ
n,r
L +DL,eFUρ

n,r
L + FL,eFPρ

n,r
L ) ρn,rh,L

+(−LR,eFLρ
n,r
R +DR,eFUρ

n,r
R + FR,eFPρ

n,r
R ) ρn,rh,R

+2 (Hn,r
F − EF ) ÛF =

(LL,eFL0
n,r
L −DL,eFU0

n,r
L − FL,eFP0

n,r
L )+

(LR,eFL0
n,r
R −DR,eFU0

n,r
R − FR,eFP0

n,r
R ) ,

(C.9)

YL · Ûn,r
L +YR · Ûn,r

R = 0. (C.10)

Figure C.1 depicts the block form of the final system matrix in the nodal values of

Û
n,r
F , for F = 1 · · · nfa, and ρ

n,r
h . Equation (C.9) represents the F -th block row of

the block matrix A: the number of non-zero blocks in the block row is equal to the

number of faces connected by the two elements ΩL and ΩR. On the other hand,

Equation (C.10) represents the L and R rows of matrix B, see Figure C.1.

The linear system produced by the assembly of (C.9) and (C.10) for all the faces,

and represented in Figure C.1, is a saddle point system that has to be solved at each

Newton-Raphson iteration. The mean of the pressure on the element boundaries ρn,rh,K

acts as a Lagrange multiplier for the nodal values of the trace of the velocity Û
n,r
F for

F = 1 · · · nfa. Equation (C.8), in case of no Neumann boundary conditions in ∂Ω,

produces another constrain on the final system, which is also displayed in Figure C.1.

Once solved the linear system for the trace of the velocity Û
n,r
F and the mean of the

pressure in each element border ρn,r
h , the nodal values Ln,r

K ,Un,r
K and P

n,r
K are recovered

using (C.6) with an element-by-element computation.
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A BT

B

nelnfa · nbf 1

Figure C.1: Block form of the final linear system matrix for the Navier-Stokes equa-
tions. The blocks with dashed lines represent zero blocks. The last column derives
from fixing the average of the pressure in the whole domain, in case of no Neumann
boundary conditions are present.



Appendix D

Fractional step methods for HDG

In this section is presented the derivation of two fractional step methods for the time

integration of the unsteady incompressible Navier-Stokes equations. The motivation

of this work is to be able to tackle 3D problems. It is well know that in 3D the solution

of the linear system becomes critical, in particular for high order elements, due to the

increased number of connections between the elements respect to the 2D case. For this

reason, for direct solvers, the solution time and the memory requirements to perform

the LU factorization increase faster when increasing the number of spatial dimensions.

This is shown in Table D.1, where the runtime and the fill-in for a Laplace problem

is considered as a function of the mesh size. For iterative solvers, the runtime get

smaller increasing the number of spatial dimensions. Thus, iterative solvers are more

efficients than direct solvers in 3D. However, for the Navier-Stokes equations, the

saddle-point nature of the linear system introduces an additional difficulty. Here is

where the fractional step methods come into play.

Fractional step methods were introduced by Chorin (1968) and Témam (1969) as

time integration techniques for the unsteady incompressible Navier-Stokes equations.

The time advancement is decomposed into a sequence of two or more steps. In partic-

ular, in the original version, the momentum equation is solved in the first step without

accounting for the diverge free constrain, obtaining in this way an intermediate ve-

locity that is projected into a divergence free space in the second step.

124



125

Table D.1: Runtime and fill-in for direct and iterative solvers as function the dimension
of the system N and the number of spatial dimensions.

1D 2D 3D
Direct solver

Fill in O(N) O(N logN) O(N4/3)
Runtime (flops) O(N) O(N3/2) O(N2)

Conjugate gradient no precond.

Runtime (flops) O(N2) O(N3/2) O(N4/3)

Fractional step methods are very popular in CG and finite volume schemes for

fluid problems, but they have had little diffusion between DG users. Nevertheless, the

uncoupling of the pressure and velocity allows to circumvent the difficulties caused by

the saddle-point nature of the variational formulation of the Navier-Stokes equations,

where the pressure variable acts as a Lagrange multiplier of the incompressibility

constrain. In fact, the HDG spatial discretization produces an algebraic system for

the nodal values of trace of the velocity and the mean of the pressure governed by

a partitioned matrix with a null submatrix on the diagonal, see also Appendix C.

Solving this system using iterative solvers is not trivial. Other solutions to avoid the

saddle-point linear system, such as the Augmented Lagrangian approach proposed by

Nguyen et al. (2011c), do not provide a robust solution for high Reynolds numbers,

see Section D.3.

In the fractional step method, in each step a simpler problem is solved. The HDG

discretization of each step produces a non-constrained linear system which can be

easily solved with preconditioned iterative methods. In the following, the HDG frac-

tional step methods of first and second-order are presented, and some numerical tests

are proposed to show the accuracy and the computational efficiency of the schemes.
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D.1 First-order scheme

Starting from the Navier-Stokes equations (2.20), the implicit Euler time discretization

of first-order gives

Ln −∇un = 0, in Ω,

un − un−1

∆t
+∇ · (un ⊗ un − νLn +∇pnI) = bn in Ω,

∇ · un = 0 in Ω,

un = g on ∂ΩD,

(−pnI+ νLn)n = 0 on ∂ΩN .

(D.1)

The first-order projection scheme is based on the approximate equivalence of (D.1)

with the two following systems

• 1st step





L̃
n −∇ũn = 0, in Ω,

ũn − un−1

∆t
+∇ · (ũn ⊗ ũn − νL̃

n
) = bn in Ω,

ũn = g on ∂ΩD,

νL̃
n
n = 0 on ∂ΩN ,

(D.2)

• 2nd step 



un − ũn

∆t
+∇pn = 0 in Ω,

∇ · un = 0, in Ω,

n · un = n · g on ∂ΩD,

pnIn = 0 on ∂ΩN .

(D.3)

where ũn is called the intermediate velocity, while un and pn are now called the end-

of-step variables. Details on the error introduced in the approximation of (D.1) with

(D.2) and (D.3) can be found in Codina (2001). Particular care must be taken for
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the treatment of the boundary condition in the projection scheme: on the Dirichlet

boundary, in the first step the intermediate velocity ũ is set equal to the prescribed

velocity g, while in the second step, only the normal component can be imposed. On

the Neumann boundary, the boundary condition is decomposed to include the viscous

part of the prescribed boundary traction in the first step and the pressure contribution

in the second-step. Details on the imposition of the boundary condition in projection

schemes can be found in Donea and Huerta (2003).

To avoid a saddle point problem in the second step, (D.3) is rewritten taking the

divergence of the first equation, giving

∇ ·∇pn =
1

∆t
∇ · ũn in Ω,

pnIn = 0 on ∂Ω,
(D.4)

which is the pressure-Poisson equation for the second step. Once solved D.4 for the

end-of-step pressure pn, the end-of-step velocity un can be computed by the explicit

relation un = ũn − ∆t∇pn. Note that the boundary condition for the end-of-step

pressure does not need to be satisfied by the unsplit original problem. This means

that the splitting procedure introduces a non-physical boundary layer in the pressure

profile. However, some procedure have been proposed to minimize this effect, see

Guermond et al. (2004).

The HDG solution of (D.2) and (D.3) is now considered. Calling ûn
h the trace

variable of the intermediate velocity ũn
h, the HDG problem for the first step (D.2) is:

find an approximation (L̃
n

h, ũ
n
h, û

n
h) ∈ [V̂h]

d×d × [V̂h]
d × [Λ̂h(g)]

d such that

(L̃
n

h,G)Ωi
+ (ũn

h,∇ ·G)Ωi
−
〈
ûn

h,Gn
〉
∂Ωi

= 0,

(
ũn

h

∆t
,v)Ωi

+ (νL̃
n

h − ũn
h ⊗ ũn

h,∇v)Ωi

+
〈
(−νL̃n

h + ûn
h ⊗ ûn

h)n+ S(ũn
h − ûn

h),v
〉
∂Ωi

= (b,v)Ωi

+ (
un−1

h

∆t
,v)Ωi





(D.5a)
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for i = 1, . . . , nel, and

nel∑

i

〈
(−νL̃n

h + ûn
h ⊗ ûn

h)n+ S(ũn
h − ûn

h),µ
〉
∂Ωi\∂ΩN

+
nel∑

i

〈
−νL̃n

hn+ S(ũn
h − ûn

h),µ
〉
∂Ωi

⋂
∂ΩN

= 0.

(D.5b)

for all (G,v,µ) ∈ [V̂h]
d×d× [V̂h]

d× [Λ̂h(0)]
d. Similarly to the unsplit problem, system

(D.5a) is a local problem in each element in the variables L̃
n

h and ũn
h, to be solved as

a function of the trace variable ûn
h. Once solved (D.5a), the global problem (D.5b)

allows to set up a linear system in the only unknown ûn
h. No saddle point is present in

this linear system. The intermediate velocity ũn
h is then computed element-by-element

once obtained ûn
h in the mesh faces.

In the second step, the intermediate velocity is projected into the divergence free

space. This is performed solving first for end-of-step pressure variable pnh using the

pressure-Poisson problem. Introducing the new variable r = −∇p, and following the

procedure described in Section 2.1, the HDG discretization of the pressure-Poisson

problem is: find (rn
h, p

n
h, p̂

n
h) ∈ [V̂h]

d × V̂h × Λ̂h such that

(rn
h,v)Ωi

− (pnh,∇ · v)Ωi
+
〈
p̂nh,v · n

〉
∂Ωi

= 0,

(∇ · rn
h, v)Ωi

+
〈
τ(pnh − p̂nh), v

〉
∂Ωi

= − 1

∆t
(∇ · ũn

h, v)Ωi
,



 (D.6a)

for i = 1, . . . , nel, and

nel∑

i=1

〈rn
h · n+ τ(pnh − p̂nh), µ〉∂Ωi

= 0, (D.6b)

for all (v, v, µ) ∈ [V̂h]
d×V̂h×Λ̂h, where p̂h represents the trace variable of the pressure

on the element boundaries. Again, the HDG solution of the pressure-Poisson problem

involves solving a local problem (D.6a) in the unknowns rn
h and pnh as a function of

the trace of the pressure p̂nh. The global problem (D.6b) is then solved for the trace

of the pressure in the whole mesh skeleton. Particular attention must be paid for
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the solution of the linear system produced by (D.6): in fact, since only Neumann

boundary conditions are present in (D.6), the matrix governing this linear system is

singular. Here, the solution is guaranteed providing that the right hand side of the

linear system belongs to the columns space of the matrix. Anyway, since the pressure

is a scalar variable, this linear system is smaller then the one produced by the first

step, even if equal polynomial interpolation are used for the velocity and pressure

variables. Thus, the projection step is a cheap computation, in particular for 3D

problems.

Once obtained the end-of-step pressure pnh and its derivative rn
h in each element ,

the end-of-step velocity is determined with the relation un
h = ũn

h +∆trn
h.

D.2 Second-order scheme

The introduction of a pressure term in the first step (D.2) improves the accuracy of the

time integration. This scheme is also called incremental pressure-correction scheme.

Using the Backward Difference Formula of second-order (BDF2) to approximate the

time derivative, the two steps of the scheme are:

• 1st step 



L̃
n −∇ũn = 0, in Ω,

3ũn − 4ũn−1 + ũn−2

2∆t

+∇ · (ũn ⊗ ũn − νL̃
n
+ pn−1I) = bn in Ω,

ũn = g on ∂ΩD,

νL̃
n
n = 0 on ∂ΩN ,

(D.7)

• 2nd step 



3un − 3ũn

2∆t
+∇(pn − pn−1) = 0 in Ω,

∇ · un = 0, in Ω,

n · un = n · g on ∂ΩD,

pnIn = 0 on ∂ΩN .

(D.8)
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As for the first-order scheme, system (D.8) is replaced by the pressure-Poisson prob-

lem, which in this case is

∇ ·∇pn =
3

2∆t
∇ · ũn +∇ ·∇pn−1 in Ω,

pnIn = 0 on ∂Ω.

Using the settings of the first-order scheme, the HDG discrete problem of the first

step (D.7) is: find an approximation (L̃
n

h, ũ
n
h, û

n
h) ∈ [V̂h]

d×d × [V̂h]
d × [Λ̂h(g)]

d such

that

(L̃
n

h,G)Ωi
+ (ũn

h,∇ ·G)Ωi
−
〈
ûn

h,Gn
〉
∂Ωi

= 0,

3

2
(
ũn

h

∆t
,v)Ωi

+ (νL̃
n

h − ũn
h ⊗ ũn

h,∇v)Ωi

+
〈
(−νL̃n

h + ûn
h ⊗ ûn

h)n+ S(ũn
h − ûn

h),v
〉
∂Ωi

=

(b,v)Ωi
+ 2(

un−1
h

∆t
,v)Ωi

− (
un−2

h

∆t
,v)Ωi

+ (rn−1
h ,v)Ωi

,





for i = 1, . . . , nel,

nel∑

i

〈
(−νL̃n

h + ûn
h ⊗ ûn

h)n+ S(ũn
h − ûn

h),µ
〉
∂Ωi\∂ΩN

+
nel∑

i

〈
−νL̃n

hn+ S(ũn
h − ûn

h),µ
〉
∂Ωi

⋂
∂ΩN

= 0,

for all (G,v,µ) ∈ [V̂h]
d×d × [V̂h]

d × [Λ̂h(0)]
d.

For the second step (D.8), the discrete HDG problem is: find (rn
h, p

n
h, p̂

n
h) ∈ [V̂h]

d×
V̂h × Λ̂h such that

(rn
h,v)Ωi

− (pnh,∇ · v)Ωi
+
〈
p̂nh,v · n

〉
∂Ωi

= 0,

(∇ · rn
h, v)Ωi

+
〈
τ(pnh − p̂nh), v

〉
∂Ωi

=

− 3

2∆t
(∇ · ũn

h, v)Ωi
,+ (∇ · rn−1

h , v)Ωi
,





for i = 1, . . . , nel,
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nel∑

i=1

〈rn
h · n+ τ(pnh − p̂nh), µ〉∂Ωi

= 0,

for all (v, v, µ) ∈ [V̂h]
d × V̂h × Λ̂h.

D.3 Numerical tests

In this section are shown some numerical tests for the validation of the fractional step

methods introduced.

The first test is aimed at checking the time accuracy of the first and second-order

scheme. To this aim, the 2D Green-Taylor vortex problem, see Nguyen et al. (2011c),

is solved on a square domain Ω ∈]0, 1[×]0, 1[. Zero body forces are set and the exact

solution for the velocity is

u =

(
− cos(πx) sin(πy) exp(−2π2t/Re),

sin(πx) cos(πy) exp(−2π2t/Re)

)
.

The above problem is considered with Re= 20 and final time T = 1.

Figure D.1 shows the time convergence of the L2 velocity error in the domain

for the first and second-order fractional step scheme, compared to the direct solve of

the saddle-point problem. Convergence rates very close to the theoretical ones are

obtained, while the approximation introduced in the splitting procedure introduces

in this case an error that is one order of magnitude greater respect to the direct

solve. Even if this error is not negligible, it should be taken in mind that the splitting

technique is aimed at solving large problems where the direct Gauss elimination is

precluded either for computational or memory reasons.

The solution of the original saddle point with an iterative solver is also awkward

for the difficulties related to the parameters setting for the pre-conditioner. As an

example, the second numerical test compares the solution of the linear system pro-

duced by the HDG discretization of the NACA problem of Section 2.3.2 with p = 4

and Re= 1000 with different approaches:
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Figure D.1: Taylor-Green vortex problem in 2D: time convergence for the fractional
step methods of first and second-order, and the direct linear solver.

• direct solution with Gauss elimination of the original saddle-point;

• iterative solution with GMRES of the original saddle-point linear system, using

as pre-conditioner the incomplete LU (ILU) factorization with tolerance ǫILU of

the original matrix;

• the solution of the two steps of the first-order projection scheme with GMRES,

with incomplete LU factorization with zero fill-in (ILU0) as pre-conditioner (note

that this kind of pre-conditioner can not be used for the saddle-point linear

system because of the zero block on the diagonal);

• the solution of the matrix generated by the Augmented Lagrangian (AL) pro-

posed by Nguyen et al. (2011c).

For the Augmented Lagrangian (AL) method, a relaxation parameter β = 10−5 for

the pressure is used. This value is chosen to guarantee the convergence of the pressure

problem. The linearization of the convective term is performed using the steady-state

solution of the problem, and a null initial vector is set. The time step is set to

∆t = 10−2.

Table D.2 summarizes the results of the numerical test. The performance of GM-

RES on the saddle-point linear system strongly depends on the tolerance of the ILU
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Table D.2: NACA 0012 airfoil at Re= 1000 and α = 2◦, mesh p = 4 and ∆t = 0.01:
comparison of the linear system solution using a direct solver on the original saddle
point system and pre-conditioned GMRES on the original saddle point system, the
linear system generated by the Augmented Lagrangian, and the two linear systems
of the first-order fractional step method. The × symbol indicates a singular pre-
conditioner.

Dir. sol. GMRES
Saddle point system AL 1st step 2nd step

ǫILU 10−1 10−2 10−3 ILU0 ILU0 ILU0
iterations × 802 55 567 16 129

time prec. [s] 0.77 13 58 0.03 0.03 0.005
time solve [s] × 120 17 32 0.16 1.1
time tot [s] 4.3 × 133 75 32 0.19 1.1

pre-conditioner. A singular pre-conditioner can be obtained, in this case using a toler-

ance for the incomplete LU factorization ǫILU = 10−1. As a consequence, it is difficult

to provide a robust behavior. In all the cases, the solution requires a large computing

time compared to the solution of the two steps of the fractional step scheme. The

matrix generated by the AL method is ill conditioned, thus the runtime for the so-

lution with GMRES is also large. The projection scheme provides by far the fastest

and most robust solution.

A similar comparison has been carried out with a 3D problem, that is, the Taylor-

Green vortex problem at Re= 1600 in a cube. The setting of the problem is the

one proposed in test-case 3.5 of the 1st International Workshop on High-Order CFD

Methods at the 50th AIAA Aerospace Sciences Meeting, Nashville, TN, 2012. An

extensive study of this problem can be found in van Rees et al. (2011). Considering

a periodic square box defined as −1 < x, y, z < 1, zero body forces and the initial

condition

u =




sin(xπ) cos(yπ) cos(zπ)

− cos(xπ) sin(yπ) cos(zπ)

0


 ,

this flow transitions to turbulence, with the creation of small scales, followed by a

decay phase similar to decaying homogeneous turbulence. In Table D.3 is summarized
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Table D.3: Taylor-Green vortex problem in 3D at Re= 1600 in a cubic computational
mesh of 33 hexahedra p = 4 and ∆t = 10−2: comparison of the linear system solution
using a direct solver on the original saddle point system and pre-conditioned GMRES
on the original saddle point system and the two linear systems of the first-order
fractional step method. The × symbol indicates a singular pre-conditioner.

Dir. sol. GMRES
Saddle point system 1st step 2nd step

ǫILU 10−1 10−2 10−3 ILU0 ILU0
iterations × 816 18 7 23

time prec [s] 1.2 45 59 3.1 0.2
time solve [s] × 234 4 0.3 0.1
time tot [s] 29 × 279 63 3.4 0.3

the study of the solution of the linear system generated with a computational mesh

of 33 hexahedra p = 4. In this case, the first time step ∆t = 10−2 is considered and

the convective term is linearized around the initial condition. Results underline once

more the excellent performance of the projection scheme.

In Figure D.2 is shown the iso-surfaces of the z-component of the vorticity, at the

initial and final time T = 20/π of the simulation. The suggested results for this test

case include the computation of the kinetic energy dissipation rate as a function of

the simulation time. As an example of preliminary study, the profile of the energy

dissipation rate ε is compared in Figure D.3 with the reference results, for different

discretizations and approximation degrees. The simulation time and the dissipation

rate are non-dimensionalised respect to a characteristic velocity and time, see van Rees

et al. (2011) for details. For computational reasons, the discretization used is much

coarser than the one suggested in the test case specifications, however the promising

results encourage to further study the HDG fractional step methods.
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Figure D.2: Taylor-Green vortex problem in 3D at Re= 1600 in a cubic computational
mesh of 103 hexahedra p = 4: iso-surfaces at value 0.25 of the z-component of the
vorticity at the initial time (left) and at final time T = 20/π (right).
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Figure D.3: Taylor-Green vortex problem in 3D at Re= 1600: energy dissipation rate
obtained with the HDG projection method (left) and reference values (right).



Appendix E

Discontinuous Galerkin

formulation of the Mild Slope

equation in time-frequency domain

E.1 Introduction

The MSE, derived by Berkhoff (1972), describes the motion of sea waves over a slow

varying bathymetry, and allows to model the refraction and diffraction for deep and

shallow water, until a slope of 1/3, see Booij (1983). Starting from the incompressible

Navier-Stokes equations, with the hypothesis of non-viscous fluid, small amplitude

monochromatic waves and slow varying bottom, the MSE is derived integrating on

the vertical structure of the water motion. Details on the derivation of the MSE can

be found in Appendix F.

The MSE is a useful tool for evaluating the wave agitation in coastal zone and in

harbors. Its wide range of applicability, respect to the bottom depth, allows to simu-

late the wave propagation from the open sea to the interior of the harbor. Non linear

effects such as non-linear interactions between different frequencies, wave breaking,

friction with the bottom and sea currents can be included with further development

of the MSE (see for example Khellaf and Bouhadef (2004)).

136
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The MSE in frequency domain is

∇ · ccg∇uT + k2ccguT = 0, (E.1)

where uT (x, y) is the surface elevation, k(x, y) is the wave number, c(x, y) is the

phase velocity and cg(x, y) is the group velocity. Equation (E.1) models the steady

state condition of a traveling wave with an angular frequency ω given by the disper-

sion relation Equation (F.33), introduced in Appendix F. Equation (F.33) relates the

wavenumber with the bottom depth and the frequency, modeling therefore the effect

of the bathymetry on the wave propagation, that is, the refraction. Modifying the

derivation as detailed by Smith and Sprinks (1975), see also Appendix F, it is possible

to obtain an equation that describes the temporal evolution of the wave train. The

MSE in time-frequency domain is

∂2uT
∂t2

−∇ · (ccg∇uT ) + (ω2 − k2ccg)uT = 0, (E.2)

having obviously a steady state condition that verifies (E.1).

Another form of the MSE in time-frequency formulation is often found in literature,

see for example Oliveira (2001) and Bokaris and Anastasiou (2003). This alternative

form, called the harmonic form, is derived imposing that the steady state condition

has the harmonic form

uT (x, y, t) = φ(x, y) exp(Iωt)

so that
∂2uT
∂t2

= −ω2uT . (E.3)

Introducing (E.3) in (E.2), the harmonic form of the Mild Slope equation in time-

frequency domain is
cg
c

∂2uT
∂t2

−∇ · (ccg∇uT ) = 0. (E.4)

The steady state of (E.2) and (E.4) is obviously the same. In most of the cases, the

steady state configuration of the wave agitation is what drives engineers in harbor
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(a) Original form of the MSE
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(b) Harmonic form of the MSE

Figure E.1: Cycles to convergence to a steady-state solution for the MSE in original
form (left) and in harmonic form (right), for a 1D shoaling problem with three different
values of the bottom slope.

design. Figure E.1 shows the number of cycles to reach a steady-state solution as a

function of the period of the wave, for the original form of the MSE (E.2) and the

harmonic form (E.4). The problem considered is a unidirectional wave motion in the

x-direction, for x = [0, 800]m, with linear bottom slope (linear shoaling problem, see

Dingemans (1997)). Three decreasing bottom depths are considered, starting with a

depth of 10m and with slope 0.4, 0.6 and 0.8, and period of the wave varying from 4s

to 16s. The original form has a transient state that is much longer than the harmonic

form, needing a number of cycle to converge that is one order of magnitude larger.

For this reason the harmonic form is considered in the following section for modeling

the wave propagation in coastal areas.

E.2 Problem statement

The boundary conditions introduced in Section 2.2 are considered here. The Som-

merfeld radiation condition in time domain is

lim
r→∞

√
r(n ·∇u+

1

c

∂u

∂t
) = 0, (E.5)
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where r is the radial direction. Condition (E.5) is applied to the reflected wave u,

hence it requires to divide the solution of (E.4) into two contributions: the reflected

wave u (unknown) and the incident wave u0 (known),

uT = u0 + u, (E.6)

where the incident wave is u0 = cos (ωt− k0(x cos θ0 + y sin θ0)), with k0 its wave

number and θ0 its direction. A first order non-reflecting boundary condition is used

to discretize Equation (E.5) on the artificial boundary, that is

n ·∇u+
1

c

∂u

∂t
+

1

2R
= 0, on ΓNRB,

being R the radius of the artificial boundary.

Other boundary conditions are the one modeling physical obstacles, like beaches,

dikes and breakwaters, and the one modeling symmetric boundaries. Physical bound-

aries are threated as partial reflecting boundaries, ΓR. The amount of energy that

the boundary absorbs when the wave impacts on it is called absorption parameter,

α ∈ [0, 1], and takes zero value on totally reflecting boundaries and unitary value on

a total absorbing boundaries. Thus, the partial absorbing boundary condition is

n ·∇uT +
α

c

∂uT
∂t

= 0, on ΓR.

Finally, symmetric boundary conditions prescribe zero derivative of the solution or-

thogonal to the boundary, that is

n ·∇u = 0, on ΓS.

Making use of the potential decomposition (E.6), the problem statement for the
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domain

harmonic form of the MSE in time-frequency domain becomes

cg
c

∂2u

∂t2
−∇ · (ccg∇u) = −B(u0), in Ω

n ·∇u+
α

c

∂u

∂t
= −(n ·∇u0 +

α

c

∂u0
∂t

), on ΓR (E.7)

n ·∇u+
1

c

∂u

∂t
+

1

2R
= 0, on ΓNRB (E.8)

n ·∇u = 0, on ΓS, (E.9)

where the Berkhoff operator is

B(ψ) =
cg
c

∂2ψ

∂t2
−∇ · (ccg∇ψ).

E.2.1 DG formulation of the MSE in time-frequency domain

The advantage of using the time-frequency formulation respect to the frequency for-

mulation described in Section 2.2 is the important save in memory obtained using an

explicit time integration scheme with a DG spatial discretization. In fact, the discon-

tinuous character of the solution and the explicit time integration allow to advance in

time the integration separately for each element. No global system of equations are

to be solved for the degrees of freedom of the whole computational mesh. The time

advancing reduces then to an element-by-element solution of a small linear system

represented by the elemental mass matrix.

The DG method with upwind scheme for the numerical fluxes is used to model

Equation (E.4), see for example Hesthaven and Warburton (2002). Introducing some

auxiliary variables

r :=
∂u

∂t
, qj :=

∂u

∂xj
,

where the index j = 1, 2 refers to the coordinates x and y, the problem is rewritten

as a system of 1st order hyperbolic equations

∂U

∂t
+
∂F j

∂xj
= B(u0), (E.10)
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where repeated indexes sum over. The variables are

U =





cg/c r

q1

q2

u





:=





U1

U2

U3

U4





;

F 1 =





−ccgq1
−r
0

0





=





−ccgU2

−U1

0

0





; F 2 =





−ccgq2
0

−r
0





=





−ccgU3

0

−U1

0





;

B(u0) =





−B(u0)

0

0

−r





:=





−B(u0)

0

0

−U1





;

Multiplying (E.10) by a test vector W ∈ [V̂h]
4 and integrating in one element Ωi

gives

(W ,
∂U i

∂t
)Ωi

+ (W ,
∂F j(U i)

∂xj
)Ωi

= (W ,B)Ωi
,

where U i denotes the restriction of U to the element Ωi. Integrating by parts results

(W ,
∂U i

∂t
)Ωi

− (
∂W

∂xj
,F j(U i))Ωi

+ 〈W ,F j(U i)nj〉∂Ωi
= (W ,B)Ωi

. (E.11)

To impose continuity in weak form between the elements, the flux in Equation (E.11)

is replaced by a numerical flux F̃ n(U i,U
out
i ) that depends on the solution in the two

neighboring elements sharing the face where the numerical flux is defined, obtaining

(W ,
∂U i

∂t
)Ωi

− (
∂W

∂xj
,F j(U i))Ωi

+ 〈W , F̃ n(U i,U
out
i )〉∂Ωi

= (W ,B)Ωi
, (E.12)

where U out
i is the solution evaluated at the neighboring element. The choice of the

numerical fluxes is crucial for the stability of the method. A natural choice for linear
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hyperbolic problems is the flux splitting technique described by Donea and Huerta

(2003), which corresponds to an upwind approximation. The flux is first decomposed

in the sum of two contribution, the incoming flux (-) and the outgoing flux (+), that

is

F n := F jnj = F−
n + F+

n ,

then, the numerical flux is chosen as

F̃ n(U ,U
out) = F−

n (U ) + F+
n (U

out),

that is, the outgoing flux is calculated using the unknowns in the current element Ωi,

while the incoming flux is evaluated using the unknowns in the neighboring element.

Due to the linearity of the PDE, the flux can be written as

F n = AnU ,

with the Jacobian matrix An = ∂Fn

∂U
. The matrix An can be re-written using the

spectral decomposition

An = VDV−1,

being V is the matrix of eigenvectors of An and D is the diagonal matrix containing

the eigenvalues of An. Thus, defining the two matrices

A+
n
:=

1

2
(An + |An|), A−

n
:=

1

2
(An − |An|),

where |An| = V|D|V−1, results An = A−
n
+A+

n
. The incoming and outgoing fluxes

can be written as

F−
n = A−

n
U , F+

n = A+
n
U ,

so the numerical flux is

F̃ n(U ,U
out) = A+

n
U +A−

n
U out.
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Substituting the expressions for F , the flux is

F n = F 1n1 + F 2n2 =





−ccg(U2n1 + U3n2)

−n1U1

−n2U1

0





,

giving the matrix

An =




0 −ccgn1 −ccgn2 0

−n1 0 0 0

−n2 0 0 0

0 0 0 0



.

The spectral decomposition is

An = VDV−1 =




0 0 −√
ccg/n2

√
ccg/n2

0 −n2/n1 n1/n2 n1/n2

0 0 0 0

0 0 0 0







0 0 0 0

0 0 0 0

0 0
√
ccg 0

0 0 0 −√
ccg







0 0 0 1

0 −n2n1 n2
1 0

−1
2
n2/

√
ccg

1
2
n1n2

1
2
n2
2 0

1
2
n2/

√
ccg

1
2
n1n2

1
2
n2
2 0



,

leading to the matrices

|An| =




√
ccg 0 0 0

0 n2
1
√
ccg n1n2

√
ccg 0

0 n1n2
√
ccg n2

2
√
ccg 0

0 0 0 0



,

A−
n
= −1

2




√
ccg ccgn1 ccgn2 0

n1 n2
1
√
ccg n1n2

√
ccg 0

n2 n1n2
√
ccg n2

2
√
ccg 0

0 0 0 0



,
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A+
n
=

1

2




√
ccg −ccgn1 −ccgn2 0

−n1 n2
1
√
ccg n1n2

√
ccg 0

−n2 n1n2
√
ccg n2

2
√
ccg 0

0 0 0 0



,

and resulting in the numerical flux

F̃ n(U ,U
out) =

1

2





c
√
ccg
[
(U1 − U out

1 )−√
ccg (n1(U2 + U out

2 ) + n2(U3 + U out
3 ))

]

n1

[
−(U1 + U out

1 ) +
√
ccg (n1(U2 − U out

2 ) + n2(U3 − U out
3 ))

]

n2

[
−(U1 + U out

1 ) +
√
ccg (n1(U2 − U out

2 ) + n2(U3 − U out
3 ))

]

0





.

Calling now

∆ = n1U2 + n2U3,

the numerical flux can be rewritten as

F̃ n(U ,U
out) =

1

2





√
ccg
[
(U1 − U out

1 )−√
ccg (∆

out +∆)
]

n1

[
−(U1 + U out

1 ) +
√
ccg (∆−∆out)

]

n2

[
−(U1 + U out

1 ) +
√
ccg (∆−∆out)

]

0





.

The numerical flux in each face of a generic element Ωi depends on the values of U out
1

and ∆out in the neighboring element. This is crucial for the definition of the flux in

the boundary elements, as explained in the next section.

The discretization of (E.12) in each element, see Appendix B, leads to a system

of ordinary differential equations (ODEs)

M
dUi

dt
+R(Ui,U

out
i ) = B, (E.13)

where Ui is the vector of nodal values, M is the elemental mass matrix andR(Ui,U
out
i )

is a residual vector containing the contribution of the neighboring element through

the numerical fluxes.
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The ODE system (E.13) is advanced in time using a standard explicit fourth-

order Runge-Kutta scheme, see for instance Donea and Huerta (2003). The stability

condition requires a time step

∆t ≤ C̃
hmin

cp2
(E.14)

where C̃ is a constant, hmin is the minimum element size in the mesh and c is the

phase velocity.

The time marching process is stopped when the relative error in the solution

between two consecutive cycles is small enough.

E.2.2 Boundary Conditions

Rankine-Ugoniot jump conditions

Each boundary condition provides a relation that must be fulfilled on the exterior face

of each boundary element. Thus, the boundary condition in the boundary element

provides one of the two relations needed to compute the numerical flux. The second

relation that allows to compute U out
1 and ∆out is given by the Rankine-Ugoniot jump

conditions, see LeVeque (1992), that is

JF nK = λeJUK, (E.15)

where λe are the eigenvalues of the matrix An,

λ1 = λ2 = 0, λ3 = −λ4 =
√
ccg.

Equation E.15 specialized for a boundary face is

JF nK = −√
ccgJUK,
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so the Rankine-Ugoniot jump conditions give

ccgJ∆K =
√
ccgJU1K,

n1JU1K =
√
ccgJU2K,

n2JU1K =
√
ccgJU3K,

0 =
√
ccgJU4K.

Partial absorbing boundary condition

With the notation introduced in the previous section, condition (E.7) can be written

as

∆out +
α

c
U out
1 = g,

where the incident potential information is

g = −(
∂u0
∂n

+
α

c

∂u0
∂t

).

Using the Rankine-Ugoniot jump condition
√
ccgJ∆K = JU1K, the two relations become

U out
1 =

U1 +
√
ccg(g −∆)

1 + α
√
cg/c

,

∆out =
g + α/c(

√
ccg∆− U1)

1 + α
√
cg/c

,

that are the relations needed to compute the numerical flux F̃ n on the exterior face

of the boundary element.

Radiation boundary condition

The radiation boundary condition (E.8) can be rewritten as

∆out +
1

c
U out
1 +

1

2R
U out
4 = 0,
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that, with the Rankine-Ugoniot jump conditions
√
ccgJ∆K = JU1K and JU4K = 0, gives

U out
1 =

U1 −√
ccg(∆− U4/2R)

1 +
√
cg/c

,

∆out =
1/c
(√

ccg(∆ + U4/2R)− U1

)

1 +
√
cg/c

.

Symmetry boundary condition

The symmetry condition (E.9) can be rewritten simply as ∆out = 0. Using again the

Rankine-Ugoniot jump conditions, the two relations are

U out
1 = U1 −

√
ccg∆ and ∆out = ∆.

E.2.3 Numerical experiments

A set of simulations has been carried out to estimate the computational cost of solving

the wave propagation in a harbor using equation (E.4) discretized with the DG scheme

introduced in the last section. Two different geometries have been considered to study

the effect of the scattered field on the number of cycles needed to reach the equilibrium

state. The first geometry models a circular scatterer similar to the one studied in

Section 2.2.3. The surface of the scatterer is considered totally reflecting. Due to the

symmetry of the problem, only half of the domain is simulated as shown in Figure

E.2(a). The second problem regards the scattering of a plane wave in rectangular

cavity, similar to the problem of Section 2.2.3, and its geometry is shown in Figure

E.2(b). In this case, the rectangular region is totally reflecting while the rest of

the reflecting boundary is totally absorbing. In both problems, the totally reflecting

boundaries are considered as the areas of interest of the problem. For simplicity

reason, a constant bottom depth is considered in both geometries and no PML is

considered.

The problem is solved for three wavenumbers of the incident wave, k = 3, 6, 9,

using triangular meshes. Three element sizes are considered, h = 0.5, 1, 2, and the



148
Discontinuous Galerkin formulation of the Mild Slope equation in time-frequency

domain

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5

Incoming wave

 

 

Radiation

Total reflection

Symmetry

(a) Scattering by a circular obstacle

−5 −4 −3 −2 −1 0 1 2 3 4 5

−2

−1

0

1

2

3

4

5

Incoming 
wave

 

 
Radiation

Total reflection

Total absorption

(b) Scattering by a rectangular cavity

Figure E.2: Setting of the problem for the circular scattering and the rectangular
cavity.

polynomial degree is p = 1 · · · 10. In Figure E.3 are depicted the solutions for a wave

number k = 9, corresponding to a wavelength of about 0.7. The time to compute one

single period of the incident wave is evaluated for the different discretizations. Figure

E.4 shows the runtime for simulating one single period of the incident wave with k = 9

for the two geometries. It is important to note that the runtime only depends on the

wave resolution (i.e. the number of nodes per wavelength, see Section 2.2) and not on

the discretization and the problem. This means that meshes with different element

size and different p but the same number of nodes per wavelength lead to the same

runtime for one period.

In Figure E.5 is shown the convergence to the steady state solution. This result

highlights the dependence of the convergence history from the problem, in particular

the importance of the interactions of the scattered field, and the frequency of the

problem. In fact, for the rectangular cavity where the scattering field is much more

complex, the convergence appears more irregular.

The estimation of the runtime for a real case of harbor simulation is extrapolated

from the curves of the runtime for one period of the incident wave for the two examples

considered. Referring to Figure E.4 and considering to increase the wavenumber,
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Figure E.3: Solution for k = 9 for the circular scattering (left) and the rectangular
cavity (right).
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Figure E.4: Runtime for one period of the incident wave with k = 9 for the scattering
circle geometry (left) and the rectangular cavity (right).

the result would be a translation of the points to the left (for the decrease of the

wavelenght), and also downward (for the increase of the time step, i.e. ∆t ∝ k,

see Equation (E.14) considering c ∝ 1/k). Following this rationale, it is possible to

deduce a plot similar to the one of Figure E.4 but considering a number of waves in the

computational domain realistic for a harbor simulation. In fact, if in the numerical

tests depicted in Figure E.2(a) and Figure E.2(b) only about 7 waves are present

in the domain, in a realistic large size harbor simulation at least 100 wave are to

be considered, see also the numerical example of the Barcelona harbor in Section

2.2.3. In Figure E.6, the resulting interpolated curves corresponding to k = 100 9/7

are shown. The approximated time to compute one period of the incident wave is
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Figure E.5: Convergence to the steady state solution for the scattering circle geometry
(left) and for the rectangular cavity (right), for k = 3, 6, 9.

also displayed considering a wave resolution of 10 nodes per wavelength. Using both

examples, the estimated time to solve one single period of harbor simulation is of the

order 103 seconds. It is expectable that, due to the complexity of the solution in a large

harbor, hundreds of cycles are needed to obtain a steady state solution. Moreover, the

need to capture small geometrical features in the interior of the harbor often require

small element sizes with consequent decrease of the allowable time step. Thus, the

computational effort results prohibitive compared to the runtimes obtained for solving

the Barcelona harbor using the Mild Slope equation in frequency formulation.
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Figure E.6: Estimated time to compute one single period of the incident wave for the
case of 100 waves in the domain. In the left figure, the estimation is done considering
the problem of the circular scattering, in the right one considering the rectangular
cavity



Appendix F

Derivation of the Mild Slope

equation*

* written with David Modesto

F.1 Physical problem

The ocean swell, due to the friction of the wind and the resulting exchange of energy

with the free surface of the water, has been objective of study and simulation for years

(see for example Berkhoff (1972) and Bettess and Zienkiewicz (1977)). Reproducing

the energy transport and modification by means of several physical fenomena is crucial

when simulating the variation of the free surface of the sea and its effects on multiple

engineering applications. This transport depends largely on two types of physical

contours: those in the domain of propagation, such as dikes, breakwaters, walls or

beaches, plus the seabed itself. The two contours influence the propagation of the

waves differently but with common consequences: both are capable of causing a change

of direction of the wave advance and also a variation of its height. Moreover, the

bathymetry affects the propagation speed and the wavelength. Others effects are also

present, such as breaking waves, sea currents and bottom friction.

Two dominant effects occur when a wave, as it propagates, hits a boundary. If the

152



F.1 Physical problem 153

contour reflects, completely or partially, the energy of the incident wave, reflection

occurs, that is, a change of direction of the propagation which depends on the angle

of incidence. Moreover, every object has associated an adjacent area where the wave

has no effect. With no propagation in these areas, the energy is low in comparison

with the points of incidence, for this reason such areas are known by the name of

shadow areas. If the dimension of the obstacle is much greater than the wavelength,

the shadow area is almost total and the only visible effect is the reflection. On the

contrary if the wave is very long in comparison with the size of the object, the shadow

area is smaller in comparison to the incidence area. It is in this situation where

high energy gradients between both areas cause a propagation perpendicular to the

advancing wavefront. This effect is called diffraction of the wave.

On the other hand, as the wave propagates, the oscillatory motion of the particles

forming the free surface tends to generate another motion in the fluid. The direction

of this motion is perpendicular to the plane of propagation and its trajectory is el-

liptic (a schematic representation of this movement can be seen in Figure F.1). This

oscillatory motion “connects” the bottom with the surface of the sea. Thus, when the

water is not deep enough, this current rubs with the seabed, exchanging energy and

decreasing the speed of the wave train. The more shallow the water is, the greater

is the effect produced by the friction with the seabed. However, when the water is

deep enough, the movement of the free surface can not affect the fluid particles closer

to the bottom, hence the wave speed is not altered (see in Figure F.1 as the elliptic

movement decreases with depth). For this reason, if the bathymetry is not constant,

different groups of surface waves are generated at different point of the propagation

domain. The physical consequence is that the swell rotates to obtain a direction as

parallel as possible to the maximum bottom slope line. This effect is known as the

refraction of the wave.

Here, the case of wave propagation over a varying bottom depth is considered,

to simulate both diffraction and reflection, which are the only effects present under

constant bathymetry, and also refraction. In Figure F.2 this model is presented, where

η(x, y, t) denotes the free surface, h(x, y) is the bottom depth, D the mean bottom
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Figure F.1: Elliptic movement perpendicular to the wave propagation direction.

depth, H is the wave height and ℓ is the wavelength. In the following, the obvious

condition η(x, y) ≤ h(x, y) is considered. Moreover, the additional condition on the

characteristic dimensions is made,

ℓ ≥ H.

Obviously this hypothesis is never a restriction for sea waves.

Figure F.2: Wave propagation profile over an uneven bottom.

F.2 Non-linear mathematical formulation

In this section is presented the equations and boundary conditions to model non-

linear waves. An ideal, homogeneous, incompressible fluid is considered. Using these
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hypothesis and developing the equations of continuity and momentum follows the

problem of non-linear waves. The model includes two boundary conditions contained

in the spatial variable z, based on the fact that both the seabed and the free surface

are always formed by the same particles.

Due to the complexity involved in solving this problem, in Sections F.3 and F.4

the governing equations are linearized and approximated to obtain a two dimensional

model.

F.2.1 Governing equations

The continuity and momentum equations for an ideal, homogeneous, incompressible

flow are

∂u

∂t
+ u∇u+

1

ρ
∇p = b, (F.1)

∇ · u = 0, (F.2)

where b is a vector of body forces and ρ is the density of the fluid. Taking the curl of

(F.1) and defining the vorticity ω = ∇× u, results

∂ω

∂t
+∇× (u∇u) +∇×

(
1

ρ
∇p

)
= 0

having considered conservative body forces, that is b = (0, 0,−g)T .
Using now some identities of vector calculus1, (F.1) is directly reduced to

∂ω

∂t
+ u∇ω − ω∇u = 0, (F.3)

which is the vorticity equation for an ideal, homogeneous, incompressible fluid. Note

that (F.3) is a transport equation with convective term u∇ω (u is the convection

speed) and reaction term ω∇u. Thus, imposing 2

1u∇u = ∇(
1

2
u ·u)−u×ω, ∇×(u× ω) = −ω∇ ·u+ω∇u−u∇ω, ∇×∇• = 0 and ∇ ·ω = 0.

2
Since the fluid is inviscid, this is not a restriction.
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ω|t=t0
= 0 ∀(x, y, z) ∈ Ω,

ω|∂Ω = 0 ∀t ∈ R+,

results

ω = ∇× u = 0 ∀(x, y, z) ∈ Ω, ∀t ∈ R+ =⇒ u = ∇Φ, (F.4)

where Φ is a scalar potential. Thus, (F.2) becomes the Laplace equation when (F.4)

is applied. A useful way to write it derives from splitting the Laplace operator in the

propagation plane x− y and in the out of plane direction z, that is ∆ = ∆x,y +∆z =

∆2 + ∂2/∂z2,

∇ ·∇Φ = ∆Φ = ∆2Φ +
∂2Φ

∂z2
= 0, (F.5)

which is the first governing equation.

The second governing equation comes from substituting (F.4) in (F.1), that is,

∂

∂t
(∇Φ) +∇Φ ·∇(∇Φ) +

1

ρ
∇p = b,

which is equivalent to

∇(
∂Φ

∂t
+

1

2
∇Φ ·∇Φ +

p

ρ
+ gz) = 0,

where the identity ∇(−gz) = b has been used. This equation means that the terms

in the parenthesis is a generic function of the time only, E(t), thus

∂Φ

∂t
+

1

2
∇Φ ·∇Φ +

p

ρ
+ gz = E(t), (F.6)

which is the so called Bernoulli equation, stating an energy balance in the fluid. Since

no dissipation is present in an ideal fluid, E(t) can be considered constant in time.

Thus, with no loss of generality, it can be taken E = p0/ρ, where p0 is a reference
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pressure. Re-writing (F.6), results

∂Φ

∂t
+

1

2
∇Φ ·∇Φ +

p− p0
ρ

+ gz = 0, (F.7)

which is the second governing equation.

F.2.2 Boundary condition in the profile

Once obtained the fundamental Equations (F.5) and (F.7) for an ideal, homogeneous,

incompressible fluid, the general problem of wave propagation with free surface z =

η(x, y, t) and sea bottom z = −h(x, y) is considered. Denoting F1(x, y, z, t) = z−η = 0

the spatial description of the free surface and F2(x, y, z) = z + h = 0 the spatial

description of the bottom surface (see Figures F.3 and F.4), a particle belonging to

one of these surfaces at a given time can not leave the surface, thus

DFi

Dt
= 0, i = {1, 2} . (F.8)

Figure F.3: Sea bottom as material surface.

Rewriting the material derivative in (F.8) results, for the bottom surface (i = 2),

∇Φ · ∇F2 = 0, with the obvious meaning that the velocity must be tangent to the

bottom surface. Substituting the expression for F2, the kinematic bottom condition

results
∂Φ

∂z
= −∇2Φ ·∇2h in z = −h(x, y), (F.9)

where the gradient operator in the propagation plane x−y, ∇2, has been introduced.
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Figure F.4: Free surface as material surface.

For the free surface (i = 1), the same argument leads to the kinematic surface

condition,
∂Φ

∂z
=
∂η

∂t
+∇2Φ ·∇2η in z = η(x, y, t). (F.10)

In order to obtain a boundary condition that only depends on the potential Φ, the

second governing Equation (F.7) is evaluated in z = η for a reference pressure p0 =

patm = p|z=η, obtaining

η = −1

g

(
∂Φ

∂t
+

1

2
∇Φ ·∇Φ

)
. (F.11)

This relation allows to compute the free surface once solved the wave problem as a

function of the potential Φ. Taking total derivative of (F.11) and using the kinematic

surface condition (F.10), the so called dynamic condition is obtained,

g
∂Φ

∂z
+
∂2Φ

∂t2
+
∂

∂t
(∇Φ ·∇Φ) +∇Φ · [∇Φ ·∇(∇Φ)] = 0 in z = η(x, y, t), (F.12)

which is the desired boundary condition only depending on Φ.

F.2.3 Non-linear wave problem

Summarizing the previous development, the non-linear wave problem in the z vari-

able is defined by the Laplace equation (F.5), the kinematic condition (F.9) for

the sea bottom and the dynamic condition (F.12) for the surface. Denoting Ωz =

{(x, y, z) ∈ R3 | − h(x, y) < z < η(x, y, t)} the domain in the vertical profile, the wave
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propagation problem over an uneven bottom is

∆2Φ +
∂2Φ

∂z2
= 0, in Ωz,

g
∂Φ

∂z
+
∂2Φ

∂t2
+
∂

∂t
(∇Φ ·∇Φ)

+∇Φ · [∇Φ ·∇(∇Φ), ] = 0, in z = η(x, y, t),

∂Φ

∂z
= −∇2Φ ·∇2h, in z = −h(x, y).





(F.13)

F.3 Linearization

In this section is presented the linearization of problem (F.13). The linearization

process involves Equation (F.12), but also the definition of the computational domain

Ωz, which depends on the free surface η, unknown of the problem. Hence, additional

restrictions are needed on the shape of the wave, depending on the depth of the sea

bottom.

These restriction are deduced from a particular case of one-directional wave prop-

agation over horizontal bottom.

F.3.1 Additional restrictions. Long-crested linear waves

Problem (F.13) is restricted to the direction x, and Equation (F.12) is split in the two

equivalent Equations (F.10) and (F.11). For constant bottom depth h, the lineariza-

tion of the equation gives the two dimensional wave propagation problem in the plane

z − x (long-crested linear waves), ie

∂2Φ

∂x2
+
∂2Φ

∂z2
= 0 in −h < z < η(x, t) (Laplace), (F.14)

∂Φ

∂t
= −gη in z = η(x, t) (Bernoulli),

∂Φ

∂z
=
∂η

∂t
in z = η(x, t) (Surface kinematic), (F.15)

∂Φ

∂z
= 0 in z = −h (Bottom kinematic). (F.16)
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Note that the domain Ωz depends on the free surface η.

Using variable separation, the solution of the Laplace equation (F.14) can be

written as Φ(x, z, t) = X(x)Z(z)T (t). Substituting in the problem and assuming

T (t) 6= 0 ∀t ∈ R+,
1

X

d2X

dx2
= − 1

Z

d2Z

dz2
= −k2,

where k is a constant. From the last equation, two ODE are derived for X and Z,

d2X

dx2
+ k2X = 0,

d2Z

dz2
− k2Z = 0,

with solutions

X(x) = A cos(kx) + B sin(kx), (F.17)

Z(z) = Cekz +De−kz,

where A, B, C, D are integration constants. Note that k is seen to be the wavenumber

because the spatial structure of the solution is composed by cos(kx) and sin(kx).

Hence, the potential has the form

Φ(x, z, t) = (A cos(kx) + B sin(kx))
(
Cekz +De−kz

)
T (t).

Using the kinematic bottom condition (F.16)

∂Φ

∂z

∣∣∣∣
z=−h

= XTk
(
Ce−kh −Dekh

)
= 0 =⇒ Ce−kh = Dekh =

Γ

2
,

where Γ is again a constant which allows to write the potential in the form Φ(x, z, t) =

Γ cosh [k (z + h)] (A cos(kx) + B sin(kx))T (t). Applying now the kinematic surface

condition (F.15) results

∂η

∂t

∣∣∣∣
z=η

= kΓ sinh(kη + kh) (A cos(kx) + B sin(kx))T (t),
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that is an equation for the free surface that is still non-linear. Thus, the domain must

be linearized to obtain a completely linear problem. The function sinh(kη + kh) can

be approximated by sinh(kh) if the following conditions are both fulfilled:

sinh(kη + kh) ≃ sinh(kh) ⇐⇒ |η| ≪ h and k|η| ≪ 1. (F.18)

The linearization of (F.18) is equivalent to evaluate the surface condition in z = η = 0.

Moreover, it must hold independently from the bottom depth, that is, for shallow and

deep water.

In shallow water, the wavelength is much greater than the depth of the bottom,

that is ℓ ≫ h. Given the condition |η| ≤ h, results that ℓ ≫ |η|, that is k|η| ≪ 1 is

always verified. Thus, the additional restriction |η| ≪ h must be added for shallow

water. In deep water is just the opposite, so that h≫ ℓ. Remembering the condition

ℓ ≥ H, results that |η| ≪ h is always verified. The additional constrain in this case is

k|η| ≪ 1.

Summarizing, the condition (F.18) lead to the following two constraints,

|η| ≪ h =⇒ H

D
≪ 1 for shallow water, (F.19)

k|η| ≪ 1 =⇒ H

ℓ
≪ 1 for deep water. (F.20)

The condition (F.19) implies small amplitude in comparison with the depth of the

seabed, while (F.20) means small amplitude respect to the wavelength. Both are

restrictions on the size of the waves arising from fully linearized equations.
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F.3.2 Linear wave problem

Assuming the restrictions (F.19) and (F.20), the complete linearization of (F.13) gives

∆2Φ +
∂2Φ

∂z2
= 0 in − h(x, y) < z < 0,

∂Φ

∂z
= −1

g

∂2Φ

∂t2
in z = 0,

∂Φ

∂z
= −∇2Φ ·∇2h in z = −h(x, y),





(F.21)

which is from now on the problem of linear waves, which allows to express the free

surface using the linearization of (F.11), that is

η(x, y, t) = −1

g

∂Φ

∂t

∣∣∣∣
z=0

. (F.22)

F.4 Reduction to a two-dimensional problem

The propagation of sea waves is a purely two-dimensional problem, that is, the direc-

tion of propagation always lays on the x − y plane. However, the coupling with the

sea bottom imposes that the z coordinate must also be taken into account. In this

section is introduced the mathematical procedure that allows to decouple the problem

of linear waves from this z-dependence, reducing it to a completely two-dimensional

problem.

F.4.1 Profile function

Here, the objective is to obtain a problem in the only variable z (profile problem). To

this aim, the potential is written as

Φ(x, y, z, t) = f(z)φ(x, y, t), (F.23)

where φ is now a reduced potential only depending on the propagation plane and the

time, and f(z) is the so called profile function. Hence, an analytical expression for
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f is seek, complying with the problem (F.21). Thus, substituting (F.23) in (F.21),

results

f∆2φ+ f ′′φ = 0 in − h(x, y) < z < 0, (F.24)

φf ′ = −f
g

∂2φ

∂t2
in z = 0, (F.25)

φf ′ = −f∇2φ ·∇2h in z = −h(x, y). (F.26)

In order to eliminate the time dependency in (F.25), harmonic waves of frequency

ω are considered. Hence, due to the linearity of the problem, the physical solution

will be a linear combination of all the harmonic solutions. The reduced potential is

therefore written as a monochromatic wave, that is

φ(x, y, t) = φ1(x, y) cos(ωt) + φ2(x, y) sin(ωt)

= Re
[
(φ1 + iφ2)e

−iωt
]
= Re

[
ϕ(x, y)e−iωt

]
.

(F.27)

Using the complex variable ϕ(x, y), the reduced potential φ and the potential Φ are

expressed in complex form as φ̃(x, y, t) = ϕ(x, y)e−iωt and Φ̃(x, y, z, t) = f(z) φ̃(x, y, t)

to have,

Φ = Re Φ̃, φ = Re φ̃.

Applying the dynamic surface condition (F.25) to the complex potential φ̃ results

f ′ − ω2

g
f = 0 in z = 0. (F.28)

Similarly Equations (F.24) and (F.26) also should be rewritten using the complex

potential. Nevertheless the frequency analysis does not cancel the spatial dependence

on (x, y) from these expressions. For the kinematic condition (F.26), this dependence

is eliminated using the hypothesis of horizontal bottom, so that the gradient of the

bottom function is eliminated, ∇2h = 0. Thus, the kinematic condition becomes

f ′ = 0 in z = −h. (F.29)
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For the Laplace equation (F.24), no additional hypothesis is needed, and the spatial

dependence disappear writing it as

− ∆2φ̃

φ̃
= −∆2ϕ

ϕ
=
f ′′

f
= λ =⇒ f ′′ − λf = 0 in − h < z < 0, (F.30)

where λ is a constant.

F.4.2 Sturm-Liouville problem

Equation (F.30) with the boundary conditions (F.29) and (F.28) results in the follow-

ing Sturm-Liouville problem, whose solution is the profile function,

f ′′ − λf = 0 in − h < z < 0,

f ′ − ω2

g
f = 0 in z = 0,

f ′ = 0 in z = −h.





(F.31)

Note that (F.31) is an homogeneous problem, hence functions f(z) is not unique but

belongs to a family of eigenfunctions associated to the different eigenvalues λ leading

to a non-trivial solution (f 6= 0). These eigenvalues verify the relation k2 = λ, being

k the root of the characteristic polynomial, generating hence eigenfunctions with the

form f(z) = Ae
√
λz +Be−

√
λz, where A and B are integration constants. Similarly to

Section F.3.1, the kinematic bottom condition (F.29) is used to write this family as

terms of an hyperbolic function,

f(z) = Γ cosh
[√

λ(z + h)
]
= Γcosh[k(z + h)], (F.32)

where Γ again is an integration constant. Note that f(z) has a different value for each

eigenvalue λ. Since (F.31) is not fully defined, Γ is not determined. Applying the

boundary condition (F.28), a relation is obtained involving the parameter k, known

as the dispersion relation,

kg tanh(kh) = ω2, (F.33)
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where g is the gravity acceleration. Equation (F.33) shows the dependence of the

wavenumber k, and therefore the wave velocity c = ω/k, from the bottom depth h.

So far no restriction has been considered on the eigenvalue λ. A detailed analysis

(see Dingemans (1997)) must be carried out for the cases λ > 0 (k ∈ R) and λ < 0 (k ∈
C) with objective of quantifying the number of eigenvalues providing a nontrivial

solution to (F.31). It is worth mentioning that such analysis is focused exclusively on

finding how many wavenumbers verify the dispersion equation.

For the real case k ∈ R, Equation (F.33) can be written in the equivalent form

using the notation Ω2 = hω2/g and K = kh (Ω, K ∈ R) as

Ω2

K
= tanhK.

The value of K verifying this new equation is given by the intersections of the curves

Ω2/K and tanhK. As shown in Figure F.5, there is only one eigenvalue satisfying

the Sturm-Liouville problem and producing a positive wavenumber. Denoting by

K0 = k0h this unique root, the corresponding profile function or eigenfunction of

(F.32), normally taken such that f(0) = 1 to have Γ = 1/ cosh(kh), is

f0(z) =
cosh[k0(z + h)]

cosh(k0h)
. (F.34)

For the complex case k ∈ C, similarly, the dispersion relation is defined where now K

is a pure complex number, say K = iκ (κ ∈ R). Using then the trigonometric relation

tanh z = −i tan(iz) ∀z ∈ C, Equation (F.33) results

Ω2

κ
= − tanκ.

In Figure F.6 is shown the dispersion relation as function of κ. Now, differently to the

previous case, there are infinite eigenvalues satisfying the Sturm-Liouville problem,

with complex wavenumbers kn = Kn/h = iκn/h. Similarly to (F.34), the eigenfunc-
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Figure F.5: Solution of the dispersion relation for the real value K = kh
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Figure F.6: Solution of the dispersion relation for the imaginary value K = iκ

tions associated to these eigenvalues are expressed as

fn(z) =
cosh[kn(z + h)]

cosh(knh)
, (F.35)

where n ∈ N∗ refers to the eigenvalue and the corresponding eigenfunction. Moreover,

these eigenfunctions verify the orthogonality property in the profile,

∫ 0

−h

fm(z)fn(z) dz = 0 ∀m,n ∈ N∗ | m 6= n.
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Due to the linearity of the problem (F.31), the general form for the profile function

can be written as a linear combination of the solutions (F.34) and (F.35), that is

f(z) = f0(z) +
∞∑

n=1

fn(z) =
cosh[k0(z + h)]

cosh(k0h)
+

∞∑

n=1

cosh[kn(z + h)]

cosh(knh)
, (F.36)

hence the complex potential Φ̃ results

Φ̃(x, y, z, t) = f(z) φ̃(x, y, t) = f(z)ϕ(x, y)e−iωt =

(
f0ϕ0 +

∞∑

n=1

fnϕn

)
e−iωt.

For the unidirectional case (see the example long-crested waves of Section F.3.1) and

constant time t0 = 0, results Φ̃(x, z) = f0(z)ϕ0(x) +
∑∞

n=1 fn(z)ϕn(x). In this case,

ϕ(x) is the solution of the Helmholtz equation

∂2ϕ

∂x2
+ k2ϕ = 0, (F.37)

whose solution can expressed as (F.17), producing the following harmonic potential

Φ̃(x, z) = f0(z)[A0 cos(k0x) + B0 sin(k0x)]

+
∞∑

n=1

fn(z)[An cos(knx) + Bn sin(knx)]

= a0f0(z)e
ik0x +

∞∑

n=1

bnfn(z)e
iknx

= a0f0(z)e
ik0x +

∞∑

n=1

bnfn(z)e
−κn

h
x,

(F.38)

where a0 = A0+iB0 and bn = An+iBn, similarly to (F.27). Hence the real part of the

expression (F.38) is the analytical solution of the linear wave propagation problem

(F.21), particularized for a monochromatic wave traveling in direction x, at initial

time t0 and with constant bottom depth h.

At this point, a new hypothesis is introduced in order to simplify the expression

(F.36) of the profile function. Note that the summing term corresponding to complex
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wave numbers kn in (F.38) presents an exponential with factor −κnx/h. The number

κn, always positive, increases such that κi < κj ∀ i < j, see Figure F.6. Hence,

the exponential term reduces the contribution of the complex case k ∈ C to the

wave propagation. The reduction is exponential in the propagation distance x, thus

the eigenvalues associated to kn are called evanescent modes as the wave presents the

maximum amplitude in a point and then exponentially decays. Higher modes (n≫ 0)

are more rapidly decaying.

Physically, an evanescent mode can be thought as a wave that adds a sudden

variation to the free surface. This variation can also be interpreted as a sudden

variation in the velocity of the wave train, generated by large gradients in the bottom

bathymetry. The fundamental hypothesis of the Mild Slope equation is that the

bathymetry is slowly varying. Hence, in the profile function the terms associated to

the evanescent modes are eliminated and only the propagation of progressive waves is

considered. 3 Thus, the complex potential has the form

Φ̃(x, y, z, t) =
cosh[k(z + h)]

cosh(kh)
ϕ(x, y)e−iωt, (F.39)

where for notation is taken k0 ≡ k. Dingemans (1997) describes the development

of the Mild Slope equation for sudden variation of the bathymetry, thus taking into

account the evanescent modes. From (F.39) can be derived the expression of the free

surface (F.22) for a monochromatic progressive wave in complex form

η̃(x, y, t) =
iω

g
ϕ(x, y)e−iωt, (F.40)

such that η = Reη̃.

Remark 8. The profile function (F.36) is written with unitary coefficients of the

linear combination. More generally, this linear combination can be written as f(z) =

β0f0(z)+
∑∞

n=1 βnfn(z) where β0 and βn are generic values. Taking out the evanescent

modes, β0 can be chosen in such a way that some condition on the free surface (F.40)

3
In Equation (F.38) this is equivalent to consider only the terms with the potential ϕ0(x), that

is the linear combination (F.17) which produces a traveling progressive wave without dissipation.
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is fulfilled. Normally, at the initial time t0 = 0 the wave height is prescribed as H0,

thus

H0 = 2|η̃(x, y, t0)| = 2β0
ω

g
|ϕ(x, y)| = β0

ω

g
H =⇒ β0 =

H0

H

g

ω
,

resulting in a complex free surface of the form η̃(x, y, t) = iH0

H
ϕ(x, y)e−iωt.

F.5 Derivation of the Mild Slope equation

In this section is detailed how to obtain a two-dimensional equation that models

the propagation considering a seabed that can be variable. Thus, this will allow to

model the refraction of the waves traveling over an irregular bathymetry. The basic

hypothesis imposed in this deduction is the so called mild slope condition, after which

the equation is named: it is assumed that the bottom slope is small and its shape is

smooth.

The expression of the Mild Slope equation is deduced in time and frequency for-

mulation. However, choosing the profile function as in Section F.4 leads to a time

formulation that is actually dependent on the ω chosen. In principle, this could pre-

vent the ability to of the model to reproduce a set of waves with different frequencies.

However, Dingemans (1997) shows that the time formulation is able to generate waves

almost-harmonic, where small variations of ω and k are allowed.

F.5.1 Starting point

The common idea in all the derivations of the Mild Slope equation (derived by Berkhoff

(1972) 4) is to suppose that the vertical structure of the domain is taken into account

with the profile function f(z, h(x, y)), derived for horizontal bottom in Section F.4.2,

f(z, h) =
cosh[k(z + h)]

cosh(kh)
, (F.41)

4
For this reason the Mild Slope equation is often referred as the Berkhoff equation.
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through the variable wavenumber k = k(h(x, y)) that complies the dispersion relation

(F.33). In this way, (F.41) is exactly verified in the whole domain for horizontal

bottom. In case of sloping bottom, the variation of the profile function is neglected,

which is equivalent to consider a local verification of (F.41) around a given point

(x, y). Taking derivative respect to the plane coordinates,

∇2f =
∂f

∂h
∇2h+

∂f

∂k
∇2k =

(
∂f

∂h
+ µ

∂f

∂k

)
∇2h =⇒ ∇2f ∝ ∇2h,

where the expression of µ if found deriving the dispersion relation. Thus, the gradient

of the profile function is proportional to ∇2h. Neglecting ∇2f means assume small

variation of the bottom, which is the basic assumption in the Mild Slope equation.

Theorem F.1 (Second Green identity). Let ψ, ν be two functions of class C2 defined

in the open domain Ω, and n the normal to the boundary ∂Ω. Hence, the following

identity holds ∫

Ω

ψ∆ν − ν∆ψ dΩ =

∮

∂Ω

ψ
∂ν

∂n
− ν

∂ψ

∂n
dS.

The derivation of the Mild Slope equation can follow two different paths: with a

variational principle based on the energy conservation (Hamiltonian formulation) or

using a more abstract rationale based on the Green theorem F.1. In the following, the

second procedure is explained, referring to Dingemans (1997) for a detailed description

of the first approach.

The basic idea and the principal objective is to achieve a single equation that brings

together systems (F.21) and (F.31), knowing the profile function (F.41), in such a way

that it is formulated only in the propagation plan. To this aim, the Laplace equation

(F.24) is integrated in terms of the absolute potential Φ, 5 such that

f∆2φ+ f ′′φ = 0
f 6=0
==⇒ f (f∆2φ+ f ′′φ) = 0 =⇒ f∆2Φ + f ′′Φ = 0

(F.5)
===⇒

∫ 0

−h

∂2Φ

∂z2
f − f ′′Φ dz = 0.

(F.42)

5
The linear system (F.21) that must be reduced to a single equation is formulated with the

absolute potential Φ.
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In order to obtain a relation between the integral form (F.42) and the boundary

conditions in the profile, the second Green identity is applied (see Green theorem F.1

for ψ = f and ν = Φ), obtaining

∫ 0

−h

∂2Φ

∂z2
f − f ′′Φ dz

︸ ︷︷ ︸
Laplace

=

(
∂Φ

∂z
f − f ′Φ

)∣∣∣∣
z=0︸ ︷︷ ︸

dynamic b.c.

−
(
∂Φ

∂z
f − f ′Φ

)∣∣∣∣
z=−h︸ ︷︷ ︸

kinematic b.c.

. (F.43)

Equation (F.43) presents the terms ∂2Φ/∂z2 and f ′′ that can be substituted using the

corresponding Laplace equations of systems (F.21) and (F.31). Similarly, the terms

∂Φ/∂z and f ′ of the boundary conditions can be substituted. Hence

∫ 0

−h

∂2Φ

∂z2
f − f ′′Φ dz

(F.5) and (F.30)−−−−−−−−−→ −
∫ 0

−h

f∆2Φ + k2fΦ dz,

(
∂Φ

∂z
f − f ′Φ

)∣∣∣∣
z=−h

(F.9) and (F.29)−−−−−−−−−→ − (f∇2Φ ·∇2h)|z=−h ,

(
∂Φ

∂z
f − f ′Φ

)∣∣∣∣
z=0

(F.28)−−−−→
(
∂Φ

∂z
f − ω2

g
fΦ

)∣∣∣∣
z=0

,

such that Equation (F.43) results

∫ 0

−h

f∆2Φ + k2fΦ dz = −
(
∂Φ

∂z
f − ω2

g
fΦ

)∣∣∣∣
z=0

− (f∇2Φ ·∇2h)|z=−h , (F.44)

which incorporates the linear wave problem (F.21) and the Sturm-Liouville problem

(F.31). The Mild Slope equation derives from (F.44), particularizing the term ∂Φ/∂z

for either the frequency or time-frequency formulation.

F.5.2 Mild Slope equation in frequency domain

Using the harmonic analysis for a monochromatic wave (Φ = Re Φ̃), the dynamic

condition of problem (F.21) as a function of the complex potential Φ̃ is

∂Φ̃

∂z
=
ω2

g
Φ̃,
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such that the free surface term (z = 0) in (F.44) is zero, thus

∫ 0

−h

f∆2Φ̃ + k2f Φ̃ dz = −
(
f∇2Φ̃ ·∇2h

)∣∣∣
z=−h

, (F.45)

where Φ̃(x, y, z) = f(z, h(x, y))ϕ(x, y).

Theorem F.2 (Leibniz rule). Let p(z, α) be a function defined in Ω × J with Ω

compact and J open. Hence, if p is differentiable in J ∀z ∈ Ω and that ∂p/∂α ∈
C0(Ω × J), the following relation holds

d

dα

∫ b(α)

a(α)

p(z, α) dz =

∫ b(α)

a(α)

∂p(z, α)

∂α
dz + p(b, α)b′ − p(a, α)a′.

The objective now is to reduce Equation (F.45) grouping together the integrals in

the profile such that they only affect function f(z). The integrals will be computed

analytically as the expression for (F.41) is know. Rewriting the term ∆2Φ̃ results

∫ 0

−h

f∆2Φ̃ dz =

∫ 0

−h

f 2∆2ϕdz +

∫ 0

−h

fϕ∆2f dz +

∫ 0

−h

2f∇2ϕ ·∇2f dz

=

∫ 0

−h

∇2 · (f 2
∇2ϕ)dz

︸ ︷︷ ︸
{1}

+

∫ 0

−h

fϕ∆2f dz,

where {1} is rewritten using the Leibniz rule (see Theorem F.2 for α = (x, y) and

p = f 2
∇2ϕ), that is

∫ 0

−h

∇2 · (f 2
∇2ϕ)dz = ∇2 ·

∫ 0

−h

f 2 dz∇2ϕ−
(
f 2
∇2ϕ ·∇2h

)∣∣
z=−h

.

Using this result and developing the expression for Φ̃ and its gradient ∇2Φ̃ = ϕ∇2f+

f∇2ϕ, Equation (F.45) results

∇2 ·
∫ 0

−h

f 2 dz∇2ϕ+k
2

∫ 0

−h

f 2 dz ϕ = −ϕ
∫ 0

−h

f∆2f dz− (fϕ∇2f ·∇2h)|z=−h . (F.46)
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The right hand side of (F.46) contains informations about the slope of the sea bottom,

if the terms ∆2f and ∇2f are computed as

∆2f =
∂2f

∂h2
(∇2h)

2 +
∂f

∂h
∆2h and ∇2f =

∂f

∂h
∇2h.

The terms of the order (∇2h)
2, associated to the slope, and the one of the order

∆2h, associated to the smoothness, are negligible. Suh et al. (1997) describe a mod-

ification of the Mild Slope equation that allows rapid variations of the topography,

hence where these terms are not neglected. Equation (F.46) is simplified as

∇2 ·
∫ 0

−h

f 2 dz∇2ϕ+ k2
∫ 0

−h

f 2 dz ϕ = 0.

The integration of the square of the profile function is

g

∫ 0

−h

f 2 dz = ccg, (F.47)

where c = ω/k is the phase celerity and cg = dω/dk is the so called group celerity,

computed using the dispersion relation (F.33). Using this result, the Mild Slope

equation in frequency domain is

∇2 · ccg∇2ϕ+ k2ccgϕ = 0. (F.48)

F.5.3 The Mild Slope equation in time-frequency domain

Here the aim is to obtain an equation similar to (F.48) but with the ability to model

the temporal evolution of the wave train. Starting again form Equation (F.44), the

dynamic surface condition is replaced in the linear system (F.21), obtaining

∫ 0

−h

f∆2Φ + k2fΦ dz =
1

g

(
∂2Φ

∂t2
+ ω2Φ

)∣∣∣∣
z=0

− (f∇2Φ ·∇2h)|z=−h , (F.49)
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where now, differently from (F.45), the surface term is not zero and the potential Φ is

a function of time, Φ(x, y, z, t) = f(z, h(x, y))φ(x, y, t). Using the same mathematical

manipulation as in Section F.5.2, results

∇2 ·
∫ 0

−h

f 2 dz∇2φ+ k2
∫ 0

−h

f 2 dz φ =
1

g

(
∂2φ

∂t2
+ ω2φ

)∣∣∣∣
z=0︸ ︷︷ ︸

{1}

,

where the profile function has been particularized to have f(0, h) = 1. Note that {1},
evaluated in the surface, can be incorporated in a natural way in the equation as it is

formulated in the plane z = 0. Applying again the definition (F.47) and reordering,

the Mild Slope equation in time-frequency domain results

∂2φ

∂t2
−∇2 · ccg∇2φ+ (ω2 − k2ccg)φ = 0, (F.50)

where in this case φ = φ(x, y, t).
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