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Abstract

This thesis explores the problem of finding new and interesting documents in distributed
networks using recommender systems. A recommender system is defined as an automatic
system that, given a customer model and a set of available documents, is able to select
and offer those documents that are more interesting to the customer. We will establish
that the desirable characteristics of a recommender system are (i) to be fast, (ii) dis-
tributed and (iii) secure. A fast recommender system enhances the shopping experience
of the client, since a recommendation is not useful if it arrives too late. A distributed
recommender system prevents the creation of centralized databases with sensitive infor-
mation and improves the availability of the documents. Finally, a secure recommender
system protects every participant of the system: users, content providers, recommenders
and intermediate nodes.

From the point of view of security, there are two main issues that recommender systems
must face: (i) protection of the users’ privacy and (ii) protection of all participants in the
recommendation process. Recommenders issue personalized recommendations taking
into account not only the profile of the documents, but also the private information
that customers send to the recommender. Hence, the users’ profiles include personal
and highly sensitive information, such as their likes and dislikes. The second challenge
that recommender systems face involves a new kind of attack. New legislation trends
such as ACTA, SOPA or the “Sinde-Wert law” in Spain show the interest of states all
over the world to control and prosecute nodes that aid in the process of discovering and
getting copyrighted documents. Recent trials such as MegaUpload, PirateBay or the
case against Mr. Pablo Soto in Spain show that these threats are a reality.

To achieve these goals, during the development of this thesis we propose the next
contributions:

1. A social model that captures user’s interests, and a metric function that calculates
the similarity between users, queries and documents. This model represents pro-
files as vectors of a social space. Document profiles are created by means of the
inspection of the contents of the document. Then, user profiles are calculated as
an aggregation of the profiles of the documents that the user owns. Finally, queries
are a constrained view of a user profile. This way, all profiles are contained in the
same social space, and the similarity metric can be used on any pair of them.

2. Two mechanisms to protect the personal information in the users’ profiles. The first
mechanism takes advantage of the Johnson-Lindestrauss and Undecomposability of
random matrices theorems to project profiles into social spaces of less dimensions.
Even if the information about the user is reduced in the projected social space,
we will show that under certain circumstances the distances between the original
profiles are maintained. The second approach uses a zero-knowledge protocol to
answer the question of whether or not two profiles are affine without leaking any
information in case of that they are not.
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3. A distributed system named DocCloud that protects merchants, customers and in-
dexers against legal attacks, by means of providing plausible deniability and obliv-
ious routing to all the participants of the system. DocCloud organizes databases in
a tree-shape structure over a cloud system and provide a Private Block Retrieval
protocol to avoid that any participant or observer of the process can identify the
recommender. This way, customers, intermediate nodes and even databases are
not aware of the specific database that answered the query.

4. A social, P2P network where users link according to their similarity, clustering and
randomness, and provide recommendations to other users in their neighborhood.
In order to create this social network, we define an epidemic protocol to discover
affine users and establish other additional mechanisms that speed up the creation
of the social network.

5. A distributed filesystem that provides documents. In our view of a recommender
system, a recommendation is a complete process that ends when the customer
receives the recommended document. We develop a distributed and secure filesys-
tem where merchants are protected and cannot be identified, documents are private
and authorization is required to access them, and it includes extra mechanisms to
enhance the availability of the documents.
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Resumen

Este documento explora cómo localizar documentos interesantes para el usuario en
grandes redes distribuidas mediante el uso de sistemas de recomendación. Se define
un sistema de recomendación como un sistema automático que, dado un modelo de
cliente y un conjunto de documentos disponibles, es capaz de seleccionar y ofrecer los
documentos que son más interesantes para el cliente. Las caracteŕısticas deseables de
un sistema de recomendación son: (i) ser rápido, (ii) distribuido y (iii) seguro. Un sis-
tema de recomendación rápido mejora la experiencia de compra del cliente, ya que una
recomendación no es útil si es que llega demasiado tarde. Un sistema de recomendación
distribuido evita la creación de bases de datos centralizadas con información sensible y
mejora la disponibilidad de los documentos. Por último, un sistema de recomendación
seguro protege a todos los participantes del sistema: usuarios, proveedores de contenido,
recomendadores y nodos intermedios.

Desde el punto de vista de la seguridad, existen dos problemas principales a los que se
deben enfrentar los sistemas de recomendación: (i) la protección de la intimidad de los
usuarios y (ii) la protección de los demás participantes del proceso de recomendación.
Los recomendadores son capaces de emitir recomendaciones personalizadas teniendo en
cuenta no sólo el perfil de los documentos, sino también a la información privada que los
clientes env́ıan al recomendador. Por tanto, los perfiles de usuario incluyen información
personal y altamente sensible, como sus gustos y fobias. Con el fin de desarrollar un
sistema de recomendación útil y mejorar su eficacia, creemos que los usuarios no deben
tener miedo a la hora de expresar sus preferencias. Para ello, la información personal
que está incluida en los perfiles de usuario debe ser protegida y la privacidad del usuario
garantizada.

El segundo desaf́ıo desde el punto de vista de la seguridad implica un nuevo tipo de
ataque. Dado que la prevención de la distribución ilegal de documentos con derechos de
autor por medio de soluciones técnicas no ha sido eficaz, los titulares de derechos de autor
cambiaron sus objetivos para atacar a los proveedores de documentos y cualquier otro
participante que ayude en el proceso de distribución de documentos. Además, tratados
y leyes como ACTA, la ley SOPA de EEUU o la ley “Sinde-Wert” en España ponen de
manifiesto el interés de los estados de todo el mundo para controlar y procesar a estos
nodos intermedios. Los juicios recientes como MegaUpload, PirateBay o el caso contra
el Sr. Pablo Soto en España muestran que estas amenazas son una realidad.

Para alcanzar estos objetivos, durante el desarrollo de esta tesis se han realizado las
siguientes contribuciones:

1. Un modelo social que capte los intereses del usuario, y una métrica que calcule la
similitud y afinidad entre usuarios, consultas y documentos. Este modelo repre-
senta los perfiles como vectores de un espacio social. Los perfiles de documento se
crean por medio de inspeccionar el contenido del documento mientras que los per-
files de usuario se calculan como una agregación de los perfiles de los documentos
que posee el usuario. Por último, las consultas se definen como una vista limitada
de un perfil de usuario. De esta manera, todos los perfiles están contenidos en el
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mismo espacio social, y la métrica social de similitud definida se puede utilizar con
cualquier par de ellos.

2. Dos mecanismos para proteger la información personal que contienen los perfiles
de usuario. El primer mecanismo utiliza los teoremas de Johnson-Lindestrauss
y descomposición de matrices aleatorias para proyectar los perfiles en espacios
sociales de menos dimensiones. Incluso si la información que el perfil contiene
sobre el usuario se reduce al proyectar en el nuevo espacio social, mostraremos que
bajo ciertas condiciones las distancias entre los perfiles proyectados se mantienen.
El segundo enfoque utiliza un protocolo de conocimiento cero para responder a
la pregunta de si dos perfiles son afines o no, sin descubrimiento de cualquier
información en caso de que no lo sean.

3. Un sistema distribuido llamado DocCloud que protege a los comerciantes, clientes
e indexadores contra los ataques legales, mediante el suministro de negación a
todos los participantes del sistema. DocCloud organiza las bases de datos e in-
dexadores en una estructura en forma de árbol que se monta sobre un sistema
cloud-computing y proporciona un protocolo de Private Block Retrieval para evitar
que cualquier participante u observador del proceso puede identificar el recomen-
dador. De esta manera, los clientes, los nodos intermedios e incluso los propios
recomendadores no saben quién ha respondido una petición de recomendación.

4. Una red social P2P donde los usuarios se enlazan de acuerdo a su semejanza, y
ofrecen recomendaciones a otros usuarios en su vecindario. Se define un protocolo
de enrutamiento epidémico donde los enlaces se establecen de acuerdo a la similitud
con los vecinos vecinos, el grado de agrupación y el azar. Además, se proponen una
serie de mecanismos adicionales como el SoftDHT, que ayudan en la identificación
de los usuarios afines y aceleraran el proceso de creación de grupos de usuarios
similares.

5. Un sistema de distribución de documentos que proporciona los documentos re-
comendados al final del proceso. En nuestra opinión, un sistema de recomendación
debe ser un proceso completo que acaba cuando el cliente recibe finalmente el doc-
umento recomendado. Se propone SCFS, un sistema de archivos distribuido y
seguro donde los comerciantes están protegidos y no pueden ser identificados, los
documentos son privados y se requiere autorización para acceder a ellos, y que
incluye mecanismos adicionales para mejorar la disponibilidad de los documentos.
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Part I: Introduction

Making use of recommendations during commercial transactions is older than commerce.
Probably, a couple of minutes before that the first trade took place, some words about the
advantages of the product were exchanged: “try these gorgeous, delicious, tasty Brussels
sprouts I grew in my garden. I’ll give them to you if you give me two mammoths”. This
was a step forward from the traditional “I collect my own wild fruits, I hunt my own
mammoths”. Today, we are no longer interested in mammoths (unfortunately, we still
eat sprouts) but we do use similar recommendations during our every day commercial
transactions. Our clever caveman had the excellent idea of praising his useless sprouts
for getting rid of them. After all, those sprouts started the first social wave that Alvin
Toffler described in his seminal work [126]. Recommend exactly the product that the
seller had to sell was an excellent and highly profitable recommender system for the next
millennia, regardless of the real interest of the costumer.

In the early twentieth century, Henry Ford rode the second of the Toffler’s waves while
stating his famous sentence: “any customer can have a car painted any color that he
wants so long as it is black”. Uniformed and standardized mass production was born.
In any case, since every car was virtually the same that the next one, we still needed
a crafted seller/recommender to decide which was the most suitable car for our needs.
Curiously enough, it was always the most expensive in the shop, but we were able to
decide the color regardless of Mr. Ford’s thoughts.

Toffler foresaw the come of the third social wave, an era of prosumers1 and highly
personalized products. “Demassification”, “diversity”, “knowledge-based production”
were going to be trend topics in the new society. According to Toffler, costumers won’t
visit the mall anymore; they will satisfy their own needs using concepts that are very
similar to “open source” and “Ikea”. Products were going to be no longer standardized,
and prosumers will have the chance of personalize them to suit their needs.

Toffler was wrong. We are still going to the market. However, it is now hundreds of
thousands of square kilometers wide. It is called the Internet and it enables sellers to
advertise their products from any corner of the world using only a computer. Products
are not personalized, but the number of different ones is so overwhelmingly high that
they seem personalized. There is no need to waste time personalizing something when
there is someone somewhere that makes exactly what we want and is willing to send it

1prosumer=producer+consumer
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to us for a small fee. Every time that we switch our device on, a wave made of millions
of products, documents and web sites is about to fall all over our heads.

Some voices alert that current supply is so high that we will never be able to consume
all of it, being the basis of the current economic crisis and the main challenge that the
developed economies will have to face during the next decade. We commoners are not
concerned about these issues yet, but we really need a system to tidy up this mess, a
system that surfs the wave of products for us looking for interesting things, avoids the
Brussels sprouts and comes back with our beloved, long missed mammoths.

This is a work for an automatic recommender system. And we want it to be secure.
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1. Recommender systems

Given the huge amount of information that is available on the Internet about prod-
ucts and costumers, is it possible to offer a recommender systems that provide better
recommendations than humans?

Twenty years have passed since the software systems that are now known as recom-
mender systems were first developed [50, 106]. Since that moment, researchers have con-
tinuously developed new approaches for implementing recommender systems, and today
most of us are used to receive support to our commercial decisions from recommenda-
tion services such as the one used by Amazon. The application area of recommender
systems is huge and commercially extensive, providing solutions in domains as diverse
as financial products, real estate, electronic consumer products, movies, books, music,
news, and web sites. An early commercial recommender systems survey can be found
in [112], and some of the analyzed systems are still in use.

In this thesis, we will look to the recommender system from the perspectives of net-
working and security. Thus, for the purposes of this research, a better recommendation
is achieved if (i) the output of a recommendation arrives immediately; (ii) the user
and other participants of the network can get protection against people collecting user’s
profiles and powerful lawyers willing to avoid exchange of digital content; and (iii) the
mechanisms to provide features (i) and (ii) do not affect the correctness of the recom-
mendations.

Many challenges await in the way of designing such a recommender system. For
example, users are not rational, they do not know what they want, or find difficulties in
explaining what they want. The way that an interviewer takes to ask for the users’ profile
may affect their queries to the system, and result in unsatisfactory recommendations.
Sometimes, there is a high enter barrier to a recommender system, pushing users to
fill lengthy surveys about their interests. Getting useful recommendations fast is a
desirable characteristic of the system. In addition, most recommender systems construct
extremely detailed users’ profiles that contain a great amount of personal information.
This information is stored in a centralized server that users have to trust, or is spread in a
decentralized network of uncontrolled nodes. Finally, the source of a recommendation or
the final provision of the desired product may face copyright infringements. We believe
that a better recommender system must face all these challenges. Unfortunately, this is
not the case of most successful recommender systems in use today, as we will see during
this chapter.

We focus our efforts in defining a fast, distributed and secure recommender system.
These three parameters, fast, distributed and secure, will set bounds to the available
mechanisms to describe users and classify products. Hence, even if we won’t focus our
efforts on defining a metric to capture whether or not a product is interesting, the
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requirements of the proposed recommender system would limit the number of available
metrics.

Fast recommender system. Recommendations and e-commerce are tightly related
fields. A potentially useful recommendation becomes useless if it arrives too late. The
shopping experience is enhanced if recommendations are both accurate and fast. We
assume accuracy, and this is a safe assumption since commercial recommender systems
achieve a very acceptable degree of success. In a distributed environment such as the
Internet, there are millions of potential clients, tons of available resources and there are
too many different users’ interests. Getting a fast recommendation is a hard problem if
users are distributed all over the world as a decentralized system and can search resources
using a customized query.

Distributed recommender system. Centralized recommender systems are extensively
used in current electronic commerce. However, even if some techniques could be used in
centralized systems to protect user’s privacy (as distortion of the user’s profiles before
inserting them into a centralized database, or anonymous queries), distributed recom-
mender systems are considered more secure because they prevent the creation of a single
database with all information and avoid usual centralized security attacks. Furthermore,
the deployment of a distributed system to serve millions of users is faster and cheaper
than any centralized service. In this distributed scenario, as we will see next, old privacy
preserving techniques could still be applied. However, new challenges for security arise
to the research community.

An example of a fully distributed recommender system is a distributed filesystem
where users publish their resources (movies, music, personal data, etc.) and ask for
recommendations to their friends about interesting resources. This is the scenario that
we will use for the rest of this document.

Secure recommender system. Publishing personal resources in a distributed filesys-
tem and asking for recommendations are two very sensitive processes from the point
of view of security and privacy. Many people won’t like that their personal resources
are stored in uncontrolled nodes all over the Internet without protection. In addition,
a recommendation is a very personal process that contains lots of private data. The
final recommendation depends on the users’ likes and dislikes, and the actor in charge of
making a recommendation need these likes and dislikes to give a useful piece of advice.
If customers are afraid of publishing their likes, then recommendations are going to be
less accurate. Then, protecting the user’s privacy is not only interesting for the user,
but also for the recommender since it enhances the recommendation results.

Furthermore, we will show that other actors of the recommendation process need
additional protection. The provider of a recommendation, for example, exposes his own
opinion of the resource that he is recommending. Moreover, copyright infringements of
the participants of the system must be taken into account.
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1.1. Definition of a recommender systems

1.1. Definition of a recommender systems

The introduction and first definition of collaborative filtering was proposed in [50] twenty
years ago, in the shape of a community-based system to annotate mails as interesting
or not. Since the publication of this seminal work, the terminology and definitions
of recommendation or recommender systems have been extended to cover additional
mechanisms and more complex environments. Different definitions found in the literature
include [50, 108, 68]. However, from this point forward, we will consider a recommender
system as defined next.

A recommender system is an automatic system that, given a user u and a set of
items S some of them unknown by u, returns a personalized subset including the most
interesting items of S for the user u.

We stress some key aspects of this definition:

• It is an automatic system

• It outputs resources that the user wasn’t aware of their existence

• It provides a personalized output for each user

These three main features can be considered mandatory in every recommender system.
However, our view of a recommender system includes two additional characteristics:

• It should take care of the whole process, including not only recommendations but
also the final delivery of the resources.

• It should be secure.

Automatic system. Recommender systems have been always used. We refer to them
as experts, and we still come to them in some fields such as medicine, financial sup-
port or personal training. Automatic recommender systems come as a substitute for
experts, not only because using automatic systems is usually much cheaper than hiring
experts, but also because we really believe that an automatic recommender system can
outperform the advice of an expert. Maybe, we are not prepared yet to trust on an au-
tomatic recommender system in cases such as health services, but recommender systems
provide definitely better support than experts in fields such as e-commerce or financial
investments.

Discover previously unknown documents. During a long time, the discovery of inter-
esting information in the Internet has been a painful process. A very specialized machine
with an incredible amount of memory and bandwidth crawled the net for identifying,
collecting and parsing as many pages as possible, and inserted these data into a huge
database. Meanwhile, users sent to the centralized database a list of keywords and re-
trieved a set of pages containing these words. Altavista, Yahoo, Google, Bing and many

7



1. Recommender systems

others worked and still work this way. These web search engines work quite well as long
as users know in advance the contents of the resource that they are looking for. How-
ever, the list of words must be so specific and well-defined that it is very difficult to find
something users are oblivious about. While search engines assist you in the process of
looking for the things that you know, discovery engines help you in finding the rest. We
consider recommender systems as discovery engines that find interesting and previously
unknown items.

Personalized recommendations. When we play the role of buyers and enter the mar-
ket, and this is something that we do on an everyday basis, we make lots of decisions
about the products that we are looking for: which is the best movie currently at the the-
ater, the most suitable computer to buy or the most interesting book to read. Gathering
all the information to make a well-grounded decision is a very time consuming process.
Recommender systems appeared to assist the user in quickly making the right decision
and saving time and maybe money. Many online shops decided that recommender sys-
tem were an additional service to offer to their clients. For example, this is the case of
Amazon or Netflix. Other enterprises made of appropriate recommendations their core
business. This is the case of FilmAffinity or LibraryThing.

In order to achieve this, a recommender system creates a model of users that captures
their needs or preferences, defines a mechanism to describe resources and includes an
objective way to calculate how interesting these resources are for the users of the system.
In order to provide a satisfactory buying experience, all these processes should be as
unobtrusive as possible.

A complete process. Recommender systems are extensively used in electronic com-
merce. From the point of view of a user, the output of a commercial exchange is an
item, a product or a service. However, many academic recommender systems do not
consider the final delivery of the real resource part of the recommendation process, and
returns only a reference to the recommended item. Commercial recommender systems,
on the other hand, understand that there is no point in discovering an item that cannot
be accessed, bought or downloaded. The result of the process can be used as feedback
for improving future recommendations. Giving a way to access the recommended item
is even more important in distributed networks, where any node of the network may
recommend any resource, and there must be a mechanism for the user to trace the item
back.

Thus, we establish that the recommendation process is not over until the recommended
object is provided to the user.

Security of the users. The process of receiving a useful recommendation begins with
the creation of a view of the user that contains their likes and dislikes. Thus, user’s pro-
files include sensitive information which captures the personal description of a particular
user. Protecting the users’ privacy is not only a necessity for users, since it can improve
the result of the recommendation process. Indeed, if users are not afraid of declaring
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their likes and dislikes, the recommendations that they get from the system will be more
accurate. Protecting the user’s privacy is not the only security service to provide in
recommender systems. In a distributed environment, other actors of the system may
need additional protection. The providers of a recommendation, for example, expose
their own opinion of the resource that they are recommending. Thus, recommenders
should be protected in the same way than users. Furthermore, recommenders and other
participants that assist in the recommendation process may be, even unknowingly, com-
mitting a copyright infringement. The risk of being prosecuted may affect the quality
of the output of the system, for example, preventing the recommendation of a certain
movie even if the recommender thinks that it is the most suitable for the user. This is
a new kind of legal attack, and providing protection for this attack may improve the
quality of the recommendations.

1.2. Steps of a recommendation

Last section introduced the definition and main features of a recommender system. In
this section, we formalize the steps that a recommender system takes for providing a
recommendation. We aim for a general description of a recommender system, trying to
fit many different types within the same structure. Thus, actual systems may reduce
some of these steps to a simple process while others perform complex tasks inside them.

Document collection and profiling. During this step, the recommender system col-
lects and identifies the items that it is going to offer to the users. For example, in a
centralized online shop, the merchant inserts the items in the local database and adds
a description to them. If the recommendation is based on the properties of the items,
this step includes the creation of a profile that captures the defining characteristics of
the item. As we will see in chapter 2, some recommender systems do not need to assign
a profile to the resources.

User profiling. During this step, the user enters the system. This is the sign-on process
of an online shop, or the first run of a P2P client in a distributed recommender system.
In this moment, a user profile is created and assigned to the user. This profile could be
controlled by the user, for example, if it is based on the answers of a test, or controlled
by an external observer. This is the case of profiles that involve the study of the buying
habits of the users. Therefore, the information that is included in the user profile is
highly sensitive, and the system must provide mechanisms to protect and secure this
profile.

Recommender selection. The recommender system may have many actors that are
able to answer to a recommendation request. For example, some recommenders may be
specialized only on some product categories, or it is better to select a recommender that
shares interests with the user. During this step, the system selects those recommenders
that are more suitable to answer the query of the user. For example, the number of
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users in movie recommendation systems may be of millions, and the number of available
movies is several thousands. In order to manage this amount of information, an initial
classification of users that rate similar the same movies takes place. In a social network,
participants often select an initial set of “friends” or “similar people” that can be used
to make recommendations.

Query the system. During this step, users send a query to the system that includes
their current interests. The complexity of the process of querying the system varies
with the different recommender types. For example, this is a very simple process in
an online shop, since it is reduced to entering a text in the home page of the shop.
In distributed systems, on the other hand, this step involves routing the query to the
selected recommenders and it may be a complex task. As in the case of users’ profiles,
the query of a user to the system includes sensitive information that must be protected.

Recommendation process. The selected recommenders search their internal resource
databases to select those resources that are more suitable to answer the query of a user.
Then, the recommenders return a set of links to the resources that they believe that are
interesting to the user.

At this point, we find useful to imagine a recommender system as a matrix where rows
are users and columns resources, as figure 1.2 shows. An element of the matrix rij is the
rate that a user i gave to a resource j. This matrix is scarcely populated and most of
the elements are empty, since it is usually impossible for users to evaluate a significant
subset of the available resources. The goal of the recommender system is making a
good guess of the rate that a user would give to a resource that is not yet evaluated.
Given these guesses, the system decides whether a resource interests the user or not
with an algorithm that is often as simple as “the document is interesting if its calculated
rate is higher than a threshold λ”. The mechanisms that are used to populate the
elements of the matrix, the input that the recommender needs for guessing rates and
the actual location of the matrix in the system are the main differences between the
different implementations of real recommender systems.

Accessing the recommended resources. During the final phase of the system, users
access the recommended items. In online shopping, users buy and receive the selected
products. In a streaming multimedia service, users access and watch the recommended
movies. The final output of the process may be useful to enhance future recommenda-
tions. This is the case of user profiles that are based on buying habits. From the security
point of view, an access to a resource implies that a recommendation was correct, and this
is a security leakage. Even if the other steps of the process are conveniently protected,
an attacker may learn something about a user’s profile by means of inspecting only the
resources that the user downloads. A system that aims to protect the user’s privacy
must consider the final access to the item as part of the recommendation process, and
provide protection to this access as much as it protects queries and/or recommendations.

10



1.3. Actors and roles in a recommendation system
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Figure 1.1.: View of recommender systems as a matrix of users and interests

1.3. Actors and roles in a recommendation system

Figure 1.2 shows the main roles and interactions of a recommender system. As recom-
mender system and e-commerce are heavily interrelated, we will use a similar terminology
to describe many of the actors of a recommender system.

Documents are the resources that costumers are looking for. They may be real objects,
such as books, videos, or electrical appliances, accessible services, or a composition
of business processes that achieves some desired goal. Documents may be modeled
using a document profile. During this thesis, we establish that documents can
be streamed or downloaded from the Internet.

Customer is the role of the actor that looks for recommendations of documents. Cus-
tomers are modeled with a customer profile that captures their likes and dislikes
and/or issue queries that contain a description of the document that they are cur-
rently interested in. Customers may be aware of the existence of their profile or
not. In the first case, costumers can have access to their profile (for example, to
modify or obscure it) or not.

Merchant is the role that an individual or organization plays when he offers a document
to the community. If document profiles exist, the merchant is in charge of providing
them. Additionally, there may be a merchant profile under the same conditions
than costumer profiles. The documents of the merchant are stored in a document
repository.

Profiler is the role of the system played by the entities that match users’ queries and
suitable recommenders. A profiler selects the recommenders that are more likely
to answer the query of the user.

Recommender is the role of the system played by the entities that match customer
profiles and document profiles. Recommenders output a link to an interesting
document that can be used to locate the document in the document repository.
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Figure 1.2.: Actors and interactions of a recommender system
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Document profile database is a database of the profiles of the documents that the
merchants share. It may be distributed.

User profile database is the actor that stores customers and merchant profiles, if they
exist.

Document repository is the actor that stores documents for the merchants. Given a
link to a document from the recommender, this actor returns the document that
the costumers are interested in.

Some actors of the system may play different roles at different moments of the recom-
mendation process. For example, in a distributed recommender system, it is common
that users play both the role of costumers and merchants. From this point forward, we
will use the term users when the exact role of customers or merchants they are playing is
unimportant. In most centralized recommender systems, the costumer profile resides in
the central node that plays the roles of user profile database, document profile database
and recommender, at least.
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2. A taxonomy of recommender
systems

Previous works in the literature created categories of recommender systems to extensively
classify all of them [9, 68, 59]. Every classification is necessarily a simplification, since
real recommender systems often share elements of several categories. In any case, such
categories are useful to understand the current trends in the automatic recommender
systems field, and some of the decisions that their designers took.

In this thesis, we will classify a recommender system based on three different axes:

• According to the source of data for recommenders. The recommender system
may use the past behavior of the customer as the main hint to select documents.
Or it might analyze the structure of the document to decide which one is more
interesting to the customer.

• According to the structure of the system. This way, recommender systems can be
centralized, decentralized or organized as a social P2P network.

• According to the security that the system offers to its actors. This axis captures
whether or not the system protects the privacy of the users, the confidentiality
of the documents, the issuer of a recommendation or the distributor of the final
document.

2.1. According to the source of data for recommenders

According to the source of the data that is used to create a recommendation, the systems
are divided in (i) collaborative filtering (recommendations are based on the evaluations
of our friends), (ii) content based filtering (recommendations are calculated by direct
inspection of the characteristics of the documents) and (iii) knowledge based recommen-
dation (performed by an expert that surveys the interest of the customer in a personal
way). Most real systems do not use a pure approach, and prefer (iv) a hybrid algorithm
to decide recommendations.

2.1.1. Collaborative filtering

In collaborative filtering, users help each other to detect interesting documents. A
recommendation that uses collaborative filtering only detects the annotations that other
users made of the available documents, and therefore a recommendation does not depend
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on the content of the documents. In this context, an annotation is the evaluation or rate
that a user assigned to the document in the past. In collaborative filtering recommender
systems, the recommender guesses the annotation that a specific customer will assign to
a document by means of aggregating the annotations provided by other users, weighted
with the similarity between users. Often, to save resources and computing time, the
recommender does not use the whole set of available users but only a subset of it. This
subset includes only the friends of the original users.

Collaborative filtering is based on these assumptions:

• Two users that showed common interests in the past will show common interests in
the future. As a consequence of this property, annotations that other users made
are useful to decide whether or not a document is interesting for a customer.

• No additional information apart from annotations is necessary. Especially, in-
formation about the item (genre, author, etc.) is considered redundant and the
recommender does not use these data to issue a recommendation.

Collaborative filtering is one of the most successful type of recommender system in
the literature. Many different recommender systems use collaborative filtering, since an-
alyzing documents is a difficult task for the current state-of-the-art artificial intelligence,
and categorizing them is still a task where humans outperform machines. In this case,
observing the behavior of humans and not analyzing documents seems a reasonable and
easy way to provide useful recommendations.

Unfortunately for the recommender, the process of collecting annotations for every
available document may be hard and slow. This collection can use explicit or implicit
methods. Some examples of explicit data collection are: (i) asking the customer to rate
an item on a sliding scale, (ii) asking a user to rank a collection of items from favorite
to least favorite, (iii) showing two items to a user and asking him to pick the better one,
or (iv) asking a user to create a list of items that he likes. Examples of implicit data
collection include the following: (i) observing the items that a user views in an online
store, (ii) analyzing item/user viewing times, (iii) keeping a record of the items that a
user purchased online, (iv) obtaining a list of items that a user has listened to, and (v)
analyzing the user’s social network and discovering similar users.

One of the most used algorithms in collaborative filtering is the k-nearest neighbor-
hood approach. In a social network, a particular neighborhood of users with similar
tastes or interests can be created by calculating the Pearson’s correlation between the
users. This way, friends of the original user are identified and linked together, creating
a neighborhood of users that share interests.

sim(a, b) =

∑
p∈P (ra,p − r̄a)(rb,p − r̄b)√∑

p∈P (ra,p − r̄a)2
√∑

p∈P (rb,p − r̄b)2
(2.1)

pred(a, p) = r̄a +

∑
b∈N sim(a, b)(rb,p − r̄b)∑

b∈N sim(a, b)
(2.2)
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Being, sim(a, b) the similarity of two users a, b (or Pearson’s correlation coefficient), r̄a
the average rating of user a, and ra,p the rating of user a of document p, and pred(a, p) the
prediction of the rating that user a would give to document p. [58, 68, 13] compares this
metric with the cosine similarity and Bayesian networks. The current opinion between
the experts seem biased to consider the cosine metric (to be introduced later in this
document) as superior to this similarity.

By means of collecting the preference matrix of top-N nearest neighbors of the partic-
ular user (weighted by the similarity of the users), the evaluation that a user will make
about an unknown document can be predicted. The approach of creating a neighborhood
of friends has an additional advantage: the system does not have to evaluate the global
set of documents, since evaluating the documents that are known by the neighborhood
is usually enough.

This model shows other drawbacks that are intrinsic to the collaborative filtering
concept, and they are difficult to cope with.

• The model suffers of the sparsity problem of the evaluation matrix. Many docu-
ments are annotated by few users, and only some of them are really popular. The
creation of useful neighborhoods without sharing some evaluations of documents
is not possible in a pure collaborative filtering approach.

• Despite the last point, [22] found that an agreement on popular documents is not
as important as an agreement on non-popular documents. In their work, authors
reduced the relative importance of the agreement on universally likable items using
a variance weighted factor.

• [58, 59] showed that users that rated few items are a poor input for recommenders.
They introduced the necessity of a significance weighting. This is a problem similar
to the “gray sheep problem”, which studies how to identify and manage those users
that are not consistent with their annotations. Unfortunately, most users if not
all of them follow a “gray sheep” behavior in some of their annotations.

• Most collaborative filtering uses the k-neighbors approach. However, if the thresh-
old to accept a new friend in the neighborhood is very restrictive, a reduced cover-
age of the available data is produced and data sparsity appears [58]. [59] showed
that “in most real-word situations, a neighborhood of 20 to 50 neighbors seems
reasonable”.

• Implicit methods to collect annotations such as analyzing the browsing history
maybe heavily intrusive and unacceptable by the user. If the user takes some pro-
tection techniques such as anonymous/private browsing and cannot be identified,
it might be not possible to give him personalized recommendations.

• The new item problem: when a new document is introduced in the system, no user
has inserted any annotation and won’t appear in any recommendation. Different
methods to publish new items in the system must be included in collaborative
filtering systems. Similarly, new users without any prior history or profile can get
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recommendations, especially of generally liked documents and hits. The accuracy
of the recommendations increases with the gradual definition of the user’s profile.

Next, we study some examples that use collaborative filtering as the main input for
their recommenders.

Amazon is a paradigmatic example of collaborative filtering is the recommender
system [12]. A customer with a long history that enters Amazon finds recommendations
in three different categories: “customers that bought X also bought Y”, “customers
that visited X also visited Y” and “X% of customers that visited this page bought the
product”. Some additional parameters that describe the item are used in some extend,
such as recommendations of books by the same author, other books of the same category,
new books that entered an interesting category.

The recommender system of Amazon is intentionally simple and focused mainly on
implicit information of the user collected from his behavior and not his description.
Steven Johnson, during an interview in Amazon.de, explains these points: ”The software
doesn’t know what it’s like to read a book, or what you feel like when you read a
particular book. All it knows is that people who bought this book also bought these
other ones; or that people who rated these books highly also rated these books highly,
etc. Out of that elemental data something more nuanced can emerge–if you set up the
system correctly, and give it enough data.”

Based on the success of Amazon on collaborative filtering, there are other recom-
mender systems that share the same ideas.

MovieLens [55] is a recommender system for movies that started as an academic
sandbox project. When a user joins the system, he is presented a list of random movies
to rate from 1 to 10. Then, similar users are identified according to these rates, and an
estimation of interesting movies is performed using collaborative filtering. FilmAffin-
ity [7] is a commercial system that offers a service that is very similar to MovieLens, but
the initial list of movies to rank is not random. FilmAffinity presents in the initial list
of movies to rate well-known and highly controversial movies. In this case, the initial
profile of the user is more extreme than MovieLens.

StumbleUpon [121] is a web page recommender that uses pure collaborative filtering
based on user profiles. After joining, users create a profile of their interest by manually
stating the set of categories and subcategories that they are interested in. In total, there
are about 500 different categories and subcategories. Furthermore, the user install a
simple bar in his browser with three main buttons: “like”, “dislike”, and “stumble!”.
While browsing, the user can express if he liked/disliked a page, or request a random
page that is picked up according to the pages that other similar users liked.

Some other collaborative filtering recommender systems are marketed as solutions to
e-business and not linked to a specific shop or site.

Strands [120] is a plug-in to existing e-shops that analyzes the behavior of the user
inside the shop, and presents product recommendations based on the items that other
users with similar behavior visited.

AggregateKnowledge [11] is based upon the idea that “the tastes of your friends
poorly reflect yours”. It focuses on the context of the visit (traffic source, semantics,
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etc.), the behavior of the visitors (page views, clicks, etc.) and analysis of the items that
they present.

2.1.2. Content-based recommendation

A recommendation is a way to cope with information overload, by means of categorizing
documents in adjacent sets of interesting and not interesting documents. In we explore
recommender systems from the point of view of the document contents, they are strongly
related to the information retrieval and information filtering fields. In these fields, a
document is classified as interesting/not interesting according to its contents and/or
metadata, and not the subjective opinion of external users about the document [96, 124,
125, 86].

A content-based recommender system analyzes the contents of the available documents
to provide recommendations to the customers. This approach to recommender systems
shows these main ideas:

• Recommenders must classify documents in two sets, relevant and not relevant
documents, for all customers [96].

• The classification of the documents must take into account the profiles of these
documents. The opinion that users have on some documents is usually not relevant.

• The inputs for the recommender are the document profiles and (optionally) the
customer profile to test the suitability of the classification to a specific user.

• As a consequence, the recommender can explain the reasons for a specific recom-
mendation.

• Profilers must analyze documents, collect all significant information and take a
decision about their relevancy. Often, these techniques impose some internal struc-
ture to the documents, or the existence of specific metadata prior to their insertion
into the system. The creation of this data structure is usually handed by the mer-
chant.

• The source of the information to create a recommendation is the document and
not the user profile or preferences [45]. Hence, documents can be evaluated and
categorized as they are published. The content-based approach does not suffer from
the new document problems, as the collaborative filtering methods do. However,
they suffer from the cold start problem: a new user must build his profile before
getting any recommendation [144, 66]

• Sometimes, classification is not objective and based on human parameters. For
example it is difficult to capture the “ease of use” of a computer science book.
This kind of data is better managed by collaborative filtering methods
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• Content-based recommendation shows a problem of over-specialization. For ex-
ample, if a user never showed interest on Greek cuisine, he will never get a recom-
mendation about the best Greek restaurant in the town.

• Content-based recommendation must cope with synonymia and similarity. Two
documents that are extremely similar may be actually the same document and the
system must identify and manage these situations.

In content-based recommender systems and during the insertion of a document into the
system, the document profiler must model the document using a profile. Techniques to
classify these profiles include Bayesian classifiers, neuronal networks and cluster analysis.
One of the most successful representations of a document in the Information Retrieval
field is the use of vectors [85, 124]. The components of these vectors are the frequency
of appearance of certain common terms in the document under analysis. Given a pre-
defined set of terms, a document’s profile can be constructed analyzing the weight of
each term inside the document.

tft,d =
nt,d∑
k nk,d

(2.3)

idft = log(
N

dft
) (2.4)

w(t, d) = tft,d × idft (2.5)

Being nt,d the number of appearances of the term t in the document d, tft,d the
frequency of a term in a document, N the number of documents, dft the number of
documents that contain the term t, idft the inverse document frequency and w(t, d) the
weight of a term in a document. The document’s profile is the set of the weights of
the analyzed terms. This way of constructing a document profile is called tf–idf weight
(term frequency–inverse document frequency).

This same idea can be generalized to include taxonomies or categories of terms. In-
deed, it is possible to convert a vector of terms (bag-of-words) into a vector of taxonomies
or categories (bag-of-concepts). The creation of a taxonomy that classifies documents
falls beyond the scope of this thesis. In interested, the reader may refer to recent studies
in the Information Retrieval and Artificial Intelligence fields [85, 125, 86, 129].

One of the main metrics to calculate the similarity of two documents is the cosine
metric of Equation 2.6. In [147] we find simulations using the cosine metric in a P2P
network, and it is proved that it may enhance search results [106, 85, 79]. We will study
this metric in chapter 5, while modeling our social space.

sim(p̄1, p̄2) =
p̄1 · p̄2
|p̄1||p̄2|

=

∑
p1ip2i√∑
p21i
∑
p22i

(2.6)

PANDORA [94] is one of the most successful examples of content-based recom-
menders. Pandora is a music recommender radio that analyzes music files to detect the
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inner structure of the music such as patterns, rhythm, vocals, lyrics, etc. Then, the
profiler builds a database of songs and proposes to its users a list of the songs that are
more suitable to their tastes. Pandora uses the Music Genome project [48] to analyze
up to 400 different attributes and to create a classification of the song. Any song is
represented by a vector that contains approximately 400 attributes or so-called genes
and each gene corresponds to a characteristic of the music. For example, the rhythm of
the music, the type of instrumentation, the recording style, influences, individual instru-
ments, etc. The creators of the Music Gene project reported that rock and pop songs
have 150 genes, rap songs have 350, and jazz songs have approximately 400. The system
depends on a sufficient number of genes to render useful results. Each gene is assigned
a number from 1 to 5, in half-integer increments. The music Genome project plays the
recommender role of this system. It calculates offline the genes of every song and the
distance between them. The customer selects a song that he likes, and the recommender
points to similar songs that he may like. Finally, Pandora provides a streaming service
to listen to the recommended songs.

Internet Movie Database [67] is another example of a content-based recommender
system. When a customer visits the description of a movie in the web, the recommender
shows a “if you liked this movie, our system recommenders...” list of movies. This list is
constructed using movie ratings from other customers, and analyzes the genre, title and
keywords of the movies [45]. Customers gain access to this list of recommendations
even if they never visited IMDB before, and hence without providing any personal
information.

Webwatcher [70] and [97] are other representative cases of content-based recom-
mender systems. They were early web crawlers that inspected web links to categorize
them and present the results to the customers.

Due to the limitations of this type of system, currently cooperative filtering techniques
seem to be favored by both the commercial and academic recommender systems.

2.1.3. Knowledge based recommendation

Closely related to the expert systems, knowledge-based recommender systems provide a
set of interesting documents based on the characteristics of a product and the current
interest of the customer. They are used when a list of products that fulfill a set of
characteristics is not enough, since it lacks personalization, or the costumer is not sure
about the list of characteristics that he needs. This is the kind of recommendation that
we get from a salesperson in a department store. We look for a dishwasher, and by
no means are we experts on this kind of appliance. Then, we ask the salesclerk for
a recommendation and he will ask questions about the capacity that we need, or the
energy consumption that we are able to afford, the kind of dishes that we own and so
on.

Knowledge based recommendations have these main points:

• Usually, items are classified in a very specific personal way and for a “one time
buyer”. The system cannot trust on the past history of the customer to decide
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whether or not an item is interesting for him. The survey to identify the interesting
documents must be taken during each interaction with the system.

• It is difficult to capture the “relative importance of characteristics”, and depends
on the skills of the seller or the designer of the survey.

• This kind of system needs a complex interaction between the customer and the
recommendation system

• Misbehavior of the seller apart, the final recommendation is highly accurate and
personalized to the exact needs of the customer.

StyleHop [2] predicts fashion trends incorporating consumer preferences, risk and
other data. Its service MarginFeeder collects data from specifically targeted, trend
conscious consumers. StyleHop came to an end on 2010, but similar services such as
ModCloth still exist for more specific fashion markets [72].

Some other recommender systems use social networking to create recommendations.
This is the case of review aggregators and expert ratings, such as TrustPilot, Ciao or
Yelp [130, 115, 148]. These systems have not any automatic recommender, and they
allow customers to comment and read comments on specific products before buying.
The final decision is made by the customer, based on the opinions of other users of
the web about the same product. Sometimes, these systems include a content-based
recommendation by means of lists of “related and similar products”.

A especial form of expert recommenders are darknet networks that are organized as “a
network of friends”, such as RetroShare [107], Gnunet [74], i2p or anoNet. In these
networks, users that trust each other link in a darknet and share the list of documents
that they own [109]. As far as we know, these networks do not include any form of
automatic recommender, but the fact that nodes are connected only to friends shows
that they share something in common. Therefore, the list of documents that our friends
own may be used to get a basic kind of expert recommendation.

The knowledge based recommender system is not of the interest of this thesis. Making
automatic recommendations in a social network, as we intend in this thesis, seems to
be against the specific opinion of a human, which is the basis for knowledge based
recommendations.

2.1.4. Hybrid approaches

The mechanisms that were introduced in the last sections are rarely used in isolation.
For example, Amazon adds to its collaborative filtering mechanisms additional criteria
such as others books by the same author, or other books in the same category. Most
recommender systems share several properties from different categories. This way, most
recommender systems use hybrid approaches to create the list of recommended items.
In this section, we analyze Google, which is a clear example of a hybrid recommender
system.
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Google [52] is a paradigmatic example of a hybrid recommender system. When
customers search in Google, they enter an expression containing keywords and sentences.
Then, Google shows a list of pages that contain the list of keywords. Google also takes
into account synonyms, miss-spelling and usually related keywords to tweak the list
of keywords, including suggestions such as ”did you mean...?”. An example of these
suggestions are shown on figure 2.1. The keyword list is the main filtering criteria
for links, and corresponds to a content-based recommender system. However, this list is
ordered based on the PageRank algorithm. In this algorithm, pages are ranked according
to the number of external sites that that link back to the page, and the rank of these
external sites. Additionally, Google uses some context information about the user to
modify the order of the links. For example, the final list is heavily based on the location
of the customer and his previous web history. The parameters to order the list of links
are a case of collaborative filtering recommender.

Figure 2.1.: Several suggestions from Google Suggests

Eli Pariser [95] alerted that the smart algorithms that are used to recommend pages
in Google and other recommenders are deciding which content is relevant to our inter-
ests and leaving out, till disappearance, any other content. Eli Pariser introduced the
concept of the “filter bubble”, which is created when automatic systems recommended
always similar items and only show documents that are of our interests. This way, it
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is increasingly harder to find new content or different points of view that are located
outside the automatic filter bubble.

We performed a casual experiment to test these ideas. The sentence ”security locks”
was searched by users that (i) were never interested on locks, (ii) were actively looking
for locks in the past weeks, and (iii) were familiar with locks but not searching them
specifically. User (i) was located in Argentina, while users (ii) and (iii) were in Spain.
Results are shown in Figure 2.2. User (i) received generic information about locks. User
(ii) found that nine out of ten links of his first page were to the company TESA, or
reviews for TESA’s products. Any other lock from a different maker was not presented
in his first page. User (iii) received a page similar to the one received by user (ii), but
without the strong bias towards the products by TESA. User (ii) acknowledged that
without comparing his results with the results obtained by other users, he would never
consider a lock not made by TESA.

Figure 2.2.: Google: recommendations for security locks

Different recommender systems are used in other Google’s services. For example in
Google+ and Android devices, friends and VIPs are recommended by inspection of the
most often contacted persons. Google Reader offers a cooperative filtering recommender
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system to find new interesting blogs, using the subscription list of other users that read
the same blogs than us.

2.2. According to the network structure

According to the network structure of the system, we classify current recommender
systems in (i) centralized, (ii) simple decentralized and (iii) smart decentralized recom-
mender systems.

2.2.1. Centralized Recommender systems

In a centralized recommender system, users send their profiles, annotations, documents,
etc. to a central server that calculates all affinities, possible friends or analyzes the
profiles of the documents. Figure 2.3 summarizes the building blocks of a centralized
recommender system. Almost all current commercial recommender systems are cen-
tralized. This way, the owners of the recommender system can easily monetize the
recommendations and charge for them. Amazon, Pandora, FilmAffinity, MovieFinder,
Google and most of the recommender systems that were analyzed so far are centralized.

Interaction

Web
Page

Recommender

User profiles

Document DB

feedback

Figure 2.3.: Centralized recommender systems

Centralized recommender systems share these characteristics:
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• A central database of customer and/or document profiles exists somewhere in the
system. This database controls every piece of data in the system. As a conse-
quence, the quality of the recommendations is limited by to the correctness of the
similarity metrics, and not by the network structure.

• Customers address to a well-known, central entity to get recommendations. This
is the only entity in the system that issues recommendations. This entity usually
plays both the roles of profiler and recommender.

• Centralized recommender systems show many security issues based on the fact
that users have to trust on the central node. For instance, customers expect that
the central node provides only suitable recommendations, without any malicious
bias, and that the central node won’t make a misuse of the private information
that customers provide to receive a personalized recommendation.

Bawa et al. [19] introduced a system that indexes shared documents inside an intranet.
Nodes identify and index their shared documents and send this list to a central repository.
Customers searching for a list of keywords contact the central repository and get a list
of nodes that store documents that include these keywords. Next, these nodes are
contacted to confirm that they store the desired document. Nodes maintain databases
of often used keywords and nodes, so they can be accessed without the need of the central
repository. Furthermore, there is a recommender system that works in parallel to the
searching service, and users can assign a recommended document to some keywords.
Bawa et al. proved that such system scales up to one thousand nodes in an intranet.
The main problem of this approach is that the central register of the system makes it
prone to attacks of denial of service, and provides with little scalability. Finally, authors
do not took into account any security issues, since this system is deployed inside the
walls of an intranet and they assume that every node can be safely trusted.

SENSE [31] was a recommender system in a decentralized network to distribute
documents with a precomputed global database. The existence of this central database
is the reason to classify SENSE in this category. SENSE classifies documents in three
different groups: socials are those inside the cluster of friends explicitly declared by the
user; spirituals are documents recommended by other users that are alike the searcher;
and global are documents recommended by every node in the network, regardless of their
affinity. Searches and affinity are calculated from the overlap of keywords in the common
documents.

2.2.2. Early decentralized networks

In a decentralized or P2P network, all nodes are equal and there is not any service
run only by a single participant. This way, documents, profiles, customers and recom-
menders are organized, managed and indexed in several nodes of the network, maybe
replicated databases and structured in a decentralized way. There is not a single point
to get a recommendation, and customers may ask to their neighbors for some interesting
documents. In early decentralized networks, users are organized and linked together
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according only to the necessities of the network, in order to maintain the structure and
function of the network.

The P2P decentralized structure is suitable for social networks thanks to two char-
acteristics of these networks, (i) the fact that every node is equal to any other node of
the network (peer) and (ii) the lack of a traditional server. Those are a very convenient
characteristic to cope with the challenge of replication of data and services. In this re-
gard, any node of the network may offer any service or resource. Besides, the dynamism
of users in mobile environments is well covered by networks where none has a special
significance to maintain the network.

Early decentralized P2P networks such as Gnutella [71] or Napster included a search
service that was based on keyword matching. With simple modifications, keyword
matching could be transformed into a profile matching problem, and the mechanism
to calculate affinities and similarities that were introduced in previous sections still ap-
ply to this kind of networks. The main characteristic of the search problem, hence, is
the algorithm used to route messages that contain profiles inside the distributed net-
work. For those decentralized networks that offer an intrinsic service searching, the more
remarkable types are:

Flooding. When customers look for a document inside P2P network, they send a mes-
sage to all the nodes that they link, which in turn forward the message to all nodes
that they link, and so on. This is for example the case of the original Gnutella [71].

Hierarchy of nodes. Nodes send a list with their documents to especial nodes named
ultra-peers. When customers look for a document, they send the query to one or
several ultra-peers of the network. This is the case of some enhanced versions of
Gnutella [25, 75] and FastTrack [4]. Often, ultra-peers are chosen among normal
nodes when they surpass a certain uptime and have high bandwidth. Next, ultra-
peers look for resources among them using a different mechanism, such as a flooding
limited to other ultra-peers.

Random Walk. This is a modification of the flooding mechanism. Queries are not sent
to all nodes in the neighborhood of a customer, but only to a randomly selected
subset of nodes. Many studies showed that this type of search mechanism is
efficient for highly popular documents [5, 21]. Epidemic routing is an especial
form of random walks. In epidemics, the selection of the subset of neighbors that
receive the query is not only random, but it is usually based on some characteristics
of the neighbor [44, 113]. We will epidemic routing in depth during part IV of this
thesis document.

Document identification. In this kind of networks, identifiers are assigned to docu-
ments and each node in the distributed network is in charge of a subset of docu-
ment identifiers. When customers look for a document, they ask to the neighbors
that most likely manage its identifier. These ones select their own more likely
neighbor and forwards the query, until that the document is found. This is the
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case of Freenet [27] or Distributed Hash Tables. We will study these mechanisms
in depth during parts IV and V of this thesis document.

There is not a single mechanism that solves every problem in search discovery. In
this regard, some authors have proposed to randomly choose the algorithm to use in
each step of the resource discovery [18]. Unfortunately, different P2P networks have
completely different structure, so there are few algorithms interchangeable in the way
that the authors of this paper proposed. In order to face this problem, we proposed and
developed several mechanisms for searching not-semantic documents in many different
networks using a common interface. We called this system the Multiprotocol Service
Discovery (MSD, [140, 139, 141, 142]).

2.2.3. Smart decentralized Recommender Systems

P2P search mechanisms evolved to make use of the social structure of the network that
they create. In the current decentralized networks, users do not create links only to let
the P2P network work as expected, but also to improve the search mechanisms. These
smart decentralized systems first organize users in neighbors that share interest, in a way
that is similar to collaborative filtering model, and then offer a recommender system on
these clusters.

One first attempt to offer recommendations on P2P networks is [117]. Sripanidkulchai
et al. presented a system to create links between nodes that share interests in network of
the Gnutella type. Authors assume that it is very likely that the nodes that stored the
interesting documents in the past will also store new interesting documents in the future.
In this regard, each node creates a direct link to the nodes that answered to previous
searches and maintain a database with the shared documents. The searching mechanism
remains unmodified. Hence, new links do not enhance directly the document discovering
mechanism of Gnutella, but improve the time needed to get interesting documents.
According to their studies, such an algorithm is able to enhance in a 50% the rate of
successful searches and drops the average path to documents from 4 to 1.5 network hops.
Besides the good results that this algorithm showed, the proposal faces many problems
that prevent an actual implementation of the ideas as-is. First, the algorithm can only be
deployed over traditional Gnutella, suffering from the same escalation problem that the
flooding mechanism of Gnutella shows. Second, the proposal has no mechanisms to find
new groups of interest, relaying on previous successful searches and thus it has a very
slow initialization phase. Third, since it is deployed over traditional Gnutella using its
searching algorithm this mechanism does not support directly recommendations. Finally,
authors of this work did not take into account the security and privacy implications of
their mechanism.

BuddyCast [100] used a simple algorithm for searches based on random walks through
friends and friends-of-friends. Two drawbacks of this algorithm are that (i) it does not
take into account the links that friends share with each other, and (ii) the creation of the
initial links is completely manual. Even though according to its authors BuddyCast is
able to handle hundreds of users at the same time [99]. Anglade et al. [14] evaluated the
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previous approach and introduced the comparison parameter in equation (2.7), named
the overload fraction fo. This parameter represents the percentage of interesting docu-
ments in the network that an algorithm is able to find. We can formally define it in this
way. Being Q the set of total queries in the network, REpidemics(q) is the set of answers
to a query q ∈ Q that a customer obtained using an epidemic algorithm, and RExact(q)
the actual number of documents in the network that match the query.

fo =

∑
q∈Q |REpidemics(q) ∩RExact(q)|∑

q∈Q |RExact(q)|
(2.7)

In the Information Retrieval field, this parameter is equivalent to the recall ratio [17].

Additionally, [14] proposed a methodology to evaluate clusters of users that share
interests. These clusters must be defined prior to the creation of the network. Therefore,
the number of possible clusters is static, predetermined and limited. Anglade et al. also
proposed the metric defined in [106] in order to calculate affinities between documents.
In order to calculate the affinity between two different users, they both must have in
common a certain number of documents. If the number of documents that both users
have in common is small, the calculated affinity may make little sense. If they have
not any common document, the affinity cannot be computed. Hence, joining the social
network is a painful process where customers must evaluate hundreds of documents and
declare their friends before any search takes place. Even in this case, since it is very
likely that the user will interact with always the same set of neighbors, the probability
to have separated clusters with the same interests that do not see each other are high.

Schifanella et al. [113] used epidemic algorithms to distribute the assessment that users
make about some documents of the system, and their system was able to dynamically
create a list of similar users. The algorithm was specially developed for ad-hoc networks
and only to distribute document assessments, so it presented the same problem exposed
above.

Ruffo et al. [110] took advantage of the small world behavior that most social networks
present. This system calculated affinity based on the number of common documents that
two users own. If two users have not any document in common they cannot calculate
the affinity between them.

Many researches prove that the small world phenomena can be used to improve the
performance of searches in P2P networks [26] presents one of these systems based on
similarity and small worlds. It works for big networks, maintaining a small degree
and diameter of the network. Unfortunately, this proposal is just a proof-of-concept
that relays on pre-established links between nodes, and it cannot be used in an actual,
dynamic network. [80] is very similar to this project, since it proposes a small world
structure of Peer-to-Peer networks to perform semantic searches. Unfortunately, users
of this proposal cannot keep their interests private.
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2.3. According to the security

As stated before, security is one of our major concerns when designing our system.
According to [77], when a recommender system is under attack the possible objectives
of the attacker are:

Exposure of personal information. The attacker gathers private information about a
single user, such as his likes and dislikes. There is a privacy risk in sending our
profiles to any profiler and recommender. This risk cannot be completely avoided
if the recommender system is a centralized entity that controls every user’s and
document’s profile in the network. Adding noise and distortion to the personal data
is a common mechanism to protect user profiles. On the other hand, distributed
systems let higher privacy control of the data that a user sends to the network.

Guessing personal information. Analyzing the data that a user sent to the network is
not the only way to learn something about him. For example, an attacker may
learn something about a user by means of observing his interactions and/or the
interactions of his neighbors. If an attacker is able to guess some information about
a node of the social network, or impersonate some user with a fake profile, he may
be able to learn some information about the social friends of this node.

Introduction of bias or “push attacks”, since the objective of the attacker is introduce
bias or push specific documents to the customer. The attacker will try to modify
the output of the recommender, by means of introducing or removing documents
from the final list. This kind of attack can be performed from the centralized
recommender, or from any user of the system. For example, a malicious user may
insert fake annotations, or fake document profiles into the system.

Damage to some documents/owners or “nuke attacks”. This kind of attack is tar-
geted against a single document or user. For example, preventing that the doc-
ument enters any recommendation sets, or preventing recommendations from a
certain user of the network.

Sabotage the whole system. The attacker wishes to put the network down, and no
one will receive any useful recommendations.

According to the security that recommender systems offer to their users, we organize
current recommender systems in these categories:

Unsecured systems. In these systems, the query of the customer is readable by any
participant of the system, the source of the recommendations can be traced down
and the final recommendation set is known by anybody in the system. Amazon,
Google, and nearly all the systems previously analyzed are unsecured systems.
The reader must notice that the fact that communications with a central server
are secure does not mean that the recommender system is secure. In this case, the
central server knows everything about its users and they have to trust that the
central server is not going to misuse that information.
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Safe users. In these systems, users are protected and they receive private recommen-
dations and secure documents. Recommendations are protected and only some
participants of the recommendation are aware of the process. This is not the same
case that unsecured recommendations. In a P2P network where recommendations
are managed in a decentralized way, customers may take advantage of an anony-
mous service to contact the recommender. If profiles cannot be identified and
assuming that the initial user cannot be traced down, the system protects the
privacy of the users even if profiles are sent in clear.

Safe recommendations. In these systems, the recommenders, merchants, profilers and
document repository cannot be identified, or they can prove that they were oblivi-
ous of the recommendation and/or document that they were providing. This way,
they are safe from a new kind of attack that we will analyze in next sections. We
will use the term deniability to refer to this property.

2.3.1. Privacy Aware Recommender systems

There are many proposals in the literature to create a privacy-aware recommender sys-
tem. For example, [23] was one of the first proposals to cope with this problem. In
there, recommendations are issued from centralized recommenders that make use of the
collaborative filtering approach. Before sending the list of annotations to the recom-
mender, customers remove some selected annotations. Finally, the recommender is able
to calculate similarities and recommended documents because it is able to predict to
some extend the missing annotations.

Canny [23] described a recommender system in which a centralized singular value
decomposition model is created combining encrypted ratings vectors from each user.
Attackers cannot learn the original ratings vectors from the protected ones, but users can
decide if their original ratings are included in the model using zero knowledge protocols.
This way, there is no external entity that has access to the private data of a user, in this
case, the vector of ratings.

From this early attempt, tens of different proposals appeared in the literature to
protect the privacy of the evaluators and readers. Reference [102] is a recent patent on
centralized recommender system that performs searches. Privacy is managed by means
of noise addition to the user’s data with a given permutation probability. This way, the
users that insert pieces of data into the indexer are able to control the amount of personal
information in the indexer. The objective of the work is preventing the attackers from
identifying the users that inserted grades in an indexer, but they do not try to protect
indexers against legal attacks. In this regard, the work grants privacy to the users but it
is not interested in providing plausible deniability to indexers and intermediate nodes.

In [20], authors study deniability using “lies” within the user’s profile. The mechanism
to achieve deniability is by means of Bloom’s filters. A query is mapped into a Bloom’s
filter, and some bits of the filter are switched. In this case, it is possible to tweak the
length of the filter and the lying probability to provide deniability to the user, since he
could have picked up any possible query that matches a specific Bloom’s filter. Authors
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of [20] do not provide any searching service in their network, and users should meet one
by one to calculate their affinity. Furthermore, since there is not any indexer in their
proposal, if a merchant leaves the network his documents are lost for the community.

Some authors explored the union of different recommender system to provide a joint
recommendation which may be more accurate than any of the recommendations pro-
vided by the individual systems. These authors acknowledged the privacy problem that
systems must solve while joining databases, and explored cryptographic solutions. In
[149], Zhan et al. explore the performance of privacy preserving recommender systems
that use homomorphic encryption and scalar products. Zhang et al. [150] use a secure
multi-party approach to explore the same system.

2.3.2. Legal protection of the participants in the recommendation
process

Glorioso et al. [49] analyzes existing legal threats against content providers. After
studying some court decisions, they concluded that, according to the US jurisprudence,
intermediate nodes of the communication, even at the network level such as ISPs, are
threatened with legal attacks. The main argument for prosecutors is that “making
available copyrighted document” also includes document indexers.

Hermoni et al. [60] proposed deniability as the security service that protects nodes in
a P2P network against censorship. Their definition of deniability is similar to the one
that we are going to establish in this thesis, and the goals of the adversary are the same
than in their work. The authors described a system that is able to download a document
only if it is known in advance by the reader, since the system in [60] does not provide
any search or recommendation mechanism to their users. In addition, they include a
strong definition of deniability that is no longer suitable in recommendation systems.
Machanavajjhala et al. [84] proved that there is a trade-off for utility and privacy in
recommendation systems, as usual when dealing with privacy. In this thesis, we will
introduce this trade-off as the “plausible deniability” concept.

Some governments demand that service providers give access to any data that they
store after a warrant from their law system. This is the case of most European countries,
for example. How to prevent data leakage from servers that users do not control anymore
and still performing calculation on data is a main subject of research. Hu et al. [65] assert
that plausible deniability is the service that prevents cloud filesystem providers to give
away the private data of their clients. They describe plausible deniability as a necessary
yet probably undeveloped service for most cloud service providers.

As we do, Mortier et al. [91] found a threat for intermediate nodes and propose “dust
clouds”, highly dynamic virtual machines on a cloud system and where users run routing
nodes for an anonymity service whenever they need. Mortimer et al. claim that this
system provides deniability. They take advantage of the monitoring services of cloud
systems to let the user prove that they are not the source of any dubious message. To
cope with this issue, the application model that we will use in this thesis is similar to the
privacy manager for cloud systems proposed in [98]. In their work, the authors propose
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obfuscation of private data using a module that is local to the client, and the cloud
server only processes obfuscated data.

Although they are not targeted to recommender systems, plausible deniability for
indexers has been studied in the literature. Strategies for plausible deniable search
proposed in the literature usually involves dummy traffic, where nodes issue forged
queries into the network that are not really of the interest of the user [28, 104]. This
strategy may help the source of the message to protect her privacy, but intermediate
nodes and indexers that answer the forged queries can still be prosecuted. An attacker
can even forge these messages in order to prosecute a targeted indexer. In any case, this
kind of system is not incompatible with our proposal. Indeed, a user really interested in
preserving her privacy can use these proposals, while intermediate nodes should use ours.
[104] proposes a system where users can deny that they performed a query with some
terms to the system. Rebollo et al. defined a social model and they provide deniability
as a form of k-anonymity: an observer cannot decide whether the user performed a
specific query out of k possible queries. Authors of this work focused their efforts on
protecting users and not indexers, and their system was not designed with distributed
environments in mind.
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In section 2.3 we introduced a classification of security attacks to a recommender sys-
tem [77]. Lam et al. identified violations against Exposure of private data, Bias of
recommendations (both “pushing” information and “nuking” items out) and Sabotage
of the system. Due to the nature of the current scenario of convergence of recommender
systems, P2P, social networks and cloud computing, we will introduce a fourth kind of vi-
olation: attacks against third parties. These kinds of violation are attacks against roles
that are played by the actors that first appeared with recommender systems. These new
actors include recommenders, document providers and intermediate nodes that route
messages to the other actors of the system.

3.1. Security Analysis

During this thesis, we are interested in studying the Exposure and violations against
third parties. As a side effect, the results of our work can be used to improve the defenses
against Sabotage of the information. Protection against the Bias of the recommendation
was not our primary objective during the development of our work.

3.1.1. Attacks against user’s privacy

A personal recommender requires some amount of data from the customer. Providing
more information may improve the accuracy of a recommendation, as well as increase
the exposure of the private data of the user. In [77], Lam explores the attacks to the
user’s privacy using different points of view. Lam identifies data that is useful for a
recommendation, such as user’s interests, and data that is highly private but (possibly)
useless for the system, such as her ZIP code. He also proposes the definition of several
privacy metrics:

1. The value of the information that the user inserts into the system (from the point
of view of accurate recommendations) For example, the knowledge that a user likes
a popular movie may not be as meaningful as the fact that she likes an obscure,
fan-made tribute movie by the HP Lovecraft Historical Society. In addition, the
importance of these data decreases with the volume of data, and a unit of additional
information provides a marginal increase of the system knowledge. For example,
in a movie rating service, the overall profile of the user is constructed with the first
hundred ratings. When the user has rated 1,000 movies, a new rate can hardly
modify the user’s profile.
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2. A metric of the risk of exposure of the user (from the point of view of data privacy),
and likelihood of publishing sensitive data in the system. Lam also discussed about
the nature and amount of information that a user needs to insert into the system
in order to get a useful recommendation. Finally, Lam foresaw the usual trade-off
between both metrics in a real environment. There are some usual techniques
that can be applied to enhance the protection of the user’s private data and make
identification of the user harder. For example, users could add noise to the ratings
of their documents [38], insert forged, random queries between legitimate accesses
[104] or join a self-organized coalition of different users to present a joint query to
the recommender system [39].

We will study a kind of recommender systems where users participate in a social
network and links are created between affine users. Thus, nodes in the neighborhood
of a user will share with high probability her same likes, dislikes and interests. If an
attacker is able to learn somehow the interest of a certain node, or even push a node with
a crafted profile into the system, he may be able to make at least some educated guesses
about the interests of his neighbors. This kind of attack is referred as the neighborhood
attack [151]. Zhou et al were interested in de-anonymizing a social network by means
of analyzing their links, but their analysis and ideas where extended in later works. For
example, [103] analyzed the number of nodes that an attacker must subvert to get a
significant knowledge about the network. They conclude that the attack was feasible
even the current social networks, in the size of millions.

Thus, there is a need to set a bound to the personal information that users push into
the network. This limit will affect accuracy that the user expects for her recommenda-
tions, and any system that is concerned with the privacy of its users will find necessary
a privacy and utility metrics, and resolve the trade-off between these two metrics. Sev-
eral techniques exist to protect the user’s privacy in the literature, but there is lack of
research on how these techniques affect the recommendation output. Finally, protection
of the private information of a single user is not enough if her likes and dislikes can be
guessed from her neighbors’ likes and dislikes.

We will address these issues during part II of this thesis document.

3.1.2. Attacks against intermediate nodes

Recently, a new kind of attack against intermediate nodes has appeared. The attackers
in this case are legions of lawyers and policemen that put content distributors down
using copyright infringement laws.

A new international treaty regarding copyright protection called ACTA is being ne-
gotiated at the moment of writing this document. After some secrecy, the consolidated
text is now public [127]. Article 2.15 copes with liability of legal persons, and states that
“the provisions of this section shall apply to inciting, aiding and abetting the offenses
referred in article 2.14”1. The penalties that this article proposes “include imprisonment

1In this citation and other that follow, emphasis is added.
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as well as monetary fines”. Thus, not only downloading or the provision of a protected
document is punished under the ACTA, but also the abetting to the downloading. Ac-
cording to a EU Parliament member, “the lack of transparency of the negotiations has
made it very difficult for both civil society and the European Parliament to monitor the
drafting process”. Despite of this, many European states endorsed ACTA on January
26th in Japan [78], but the treaty was not ratified by the European Parliament on July,
2012 [90]. Many political groups, both inside and outside the EU Parliament, have
expressed their concerns that the ACTA treaty could enact new barriers for individual
rights, even with massive protests as in the case of Poland.

We believe that recommending is dangerously close to incitating, which is a punished
behavior according to ACTA. This situation is even worse for the recommender system
if it includes mechanisms to upload and/or download the protected document.

The ACTA treaty was the beginning of a trend in legislators throughout the world
to make people that help or even incite to download copyrighted documents liable of
copyright infringement. All over the world, bills with a similar nature and spirit to
ACTA are passed to the national Parliaments. This is the case, for example, of the Stop
Online Piracy Act (SOPA) and the Protect Intellectual Property Act (PIPA) in the
USA, or the so called Sinde-Wert law in Spain. These bills have raised lively discussions
about the balance between the protection of the rights of the copyright holders, and the
open character of Internet where most data is exchanged freely. Most of these bills are
currently under heavy modifications, but they have something in common with ACTA:
they make companies liable of user’s actions if the companies do not react to a copyright
infringement notification. Under most legislation these notifications were previously
issued only by judicial authorities, but supporters of supplementary controls criticize
the slow pace of justice courts. In order to match the fast timings of current economy,
they propose that administrative authorities or even IP holders could issue copyright
infringement notifications. In some cases, system administrators have a short time to
react to these administrative notifications, as short as 5 days in the case of SOPA. These
laws allegedly aim to “the worst of the worst” of the document providers, but according
to some opinions [62], the “broad and vague definitions” that these laws include are
dangerous and may be applied on nearly every site. For example, large action sites
and huge social networks will find extremely difficult to monitor every transaction and
activity of their users. eBay or Etsy, with hundreds of thousands of fast trades between
particular users, cannot pro-actively control the copyright status of the items that users
exchange.

Are these threats too exaggerated?

The Pirate Bay is a popular web that indexes files in the BitTorrent network. The Pirate
Bay does not provide access to the actual document but only lists a set of addresses
that allow potential downloaders to locate the document in the BitTorrent network,
outside The Pirate Bay’s servers. In April, 2009, the administrators of The Pirate Bay
were found guilty of complicity to provide unauthorized access to copyrighted content
and sentenced to one year of jail and nearly 3 million euros in damages by a Swedish
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court [118]. Short after The Pirate Bay’s trial, Rapidshare, a popular intermediate node
to download documents, handed over personal information about content uploaders from
Germany to the courts in order to prevent legal action against the company [6].

Recently, the administrators of the direct downloading site MegaUpload have been
put under arrest in New Zealand on behalf of the north-American FBI [131]. Accord-
ing to the FBI, this action “directly targets the misuse of a public content storage and
distribution site to commit and facilitate intellectual property crime”. The FBI ac-
cuses the managers of MegaUpload of: 1.- massive copyright infringement and money
laundering; 2.- “willfully reproduce and distribute many millions of infringing copies of
copyrighted works”; 3.- Creation a business model completely centered on incentive
the copyright infringement, by means of directly paying to the users that upload the
most successful files and enforcing rules that prevent the distribution of long term, pri-
vate data (such as removing data if it is not access after a short time) 4.- Finally, not
removing copyrighted material even after they are informed of its existence.

In June 2008, Warner Music, Universal Music, Emi, and Sony pressed charges against
Pablo Soto, author of several P2P applications. The companies asked for 13 million
euros for unfair competition, since the software developed by Mr. Soto could be used
to download documents under the copyright of the reporting companies. Mr. Soto
did not upload any protected material to the P2P networks, and he pleaded that he
was not able to control the activity of the network users. Pablo Soto was acquitted
about the charges of copyright violation, but he had to wait for three years for a final
ruling [33]. The high expenses of a lawsuit, the criminal charges that the defendants
face and the long time to get a ruling persuaded other site administrators to react to
these legal actions. For example, only two days after that the FBI took actions against
MegaUpload administrators, dozens of similar sites (Filesonic, Fileserve, Uploaded.to,
VideoBB, FileJungle, UploadStation, FilePost, UploadBox, x7.to, 4shared, etc.) either
changed their policies or announced a voluntary shutdown [42]. Other direct download
sites, especially European companies out of USA soil such as Putlocker or NovaMov,
took advantage of the new situation [76].

Finally, other actors acknowledge these dangers and are moving the technologies of
their services to safer grounds, at least from their point of view. For example, The
PirateBay is going to introduce an additional level of indirection by means of moving
their service from torrent distribution and tracking to the indexing of magnet URLs. In
a few months, The PirateBay will store only URLs that link to a external, uncontrolled
and privately run node in a distributed hash table that stores the equivalent to the
metadata that torrent files contained in the past [43]. Currently, PirateBay no longer
stores links to a P2P network where the desired file can be found, but links to second
level links to identify nodes that participate in the desired BitTorrent network. It is
not clear if this indirection could prevent legal prosecution against The PirateBay in the
future.

We will address these issues during part III of this thesis document.
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3.1.3. Additional concerns: recommendations availability

There are some additional concerns in current recommender systems. We collect them
under the “recommendation availability” umbrella, slightly abusing the standard security
terminology. This collection of availability concerns are related to the ability that the
network has to provide accurate recommendations or even no recommendations at all.
We will explore them briefly. Some of these open problems were identified in [122].

• From the point of view of the network operation, there is still a need of defining
efficient mechanisms to find similar users in dynamic environments, where users
join and leave continuously. Defining the exact meaning of “similarity” and “close-
ness” between users (i.e. collaborative filtering) or user-documents (content-based
filtering) is an open issue.

• Service designers still have to find a way to cope with “gray sheep”, users that are
not consistent in their opinions and therefore create useless profiles. These users
may or may not be aware of their behavior.

• The risk of not predictions available. For example, a low number of similar neigh-
bors increases the risk of not getting predictions from the system.

• The cold-start is a well-known drawback of recommender systems that use collab-
orative filtering. Proposals that study this problem must cope with the joining
process of users, how initial user’s profiles are created and how users get their first
recommendations. Reference [41] defines this problem and explores some solutions.

• Document sparsity is a problem similar to the cold-star problem, from the point
of view of documents. Solutions to this problem should face documents that are
not rated by a large number of users, and their description cannot be fully trusted.
This problem emerges when a new document is pushed into the recommender
service, of a rare document is evaluated only by a tiny subset of users.

• Finally, how to cope with synonyms and items that are actually the same document
with slight modifications, and the system models like different documents.

We will address some of these issues (cold-start, finding similar users, low number of
similar neighbors) during part IV of this thesis.

3.2. System Requirements

According to the taxonomy of recommender systems defined in chapter 2 and the security
analysis of section 3.1, during this thesis we are going to define a fast, distributed and
secure recommender system. This recommender system:

• Will use a hybrid approach to provide recommendations, using both document pro-
files that are assigned based on the contents of the file, and collaborative filtering
through the creation of communities of similar users.

39



3. Overview of the system

• Will use a completely decentralized network, without any node with special func-
tions.

• Will provide a complete recommendation experience, from the creation of the
network structure to the final download of the desired document.

• Will separate the roles of system operator, merchant, recommender and document
provider in completely unrelated actors.

• Will face the security violations of:

– Exposure, throughout the creation of a the mechanisms to protect the privacy
of the users

– Third parties, through the provision of plausible deniability to all participants
in the network
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According to our goals of “fast, distributed and secure” recommender system, we will
work on a social cloud [24] that represents a social network. Inside, we will create some
clusters of nodes that gather users that share similar interests and hence are “affine”.
When users join the network, they should find their most suitable cluster according
to their interests and then link to other users in the same cluster. There are several
proposals in the literature to create this kind of social cloud according to the interests
of the users in a decentralized fashion [100, 14, 137].

We will create a cloud system that includes all indexers of documents. This cloud is
organized in a “dust cloud” in the sense of [91]. That is, each one of the virtual machines
is controlled by a user that instantiates it as needed, and dismisses the machine after
a while. The cloud provider maintains N different entry points to the cloud system, as
many as clusters of the social network. The users instantiate machines that connect to
one of this entry points and to other machines that link to the same entry point. Using
this process, there are N different clusters of dusts inside the cloud. We will use these
machines as indexers of documents of the recommendation system.

Finally, we will create another cloud system to store the real documents. Some ex-
amples of these filesystems on clouds are [134, 116]. This distributed filesystem is in
charge of store the documents of the merchants and provide them to the costumers.
These documents and the nodes of the system that store them must be secured, in the
sense that only authorized users must be able to access them, and distributors cannot
be charged of copyright infringement for providing them.

An overview of this model is shown in figure 4.1.

Each of these networks faces different problems from the point of view of security.
This document is structured in four parts, and each part addresses one of the identified
issues.

Protection of the user’s privacy In our recommender system, the output relies on
the interests, likes, dislikes and past history of a user. This information is modeled and
contained in a user’s profile. Thus, these profiles contain very sensitive information that
not only absolutely identifies a person, but models his private thoughts and views. It
is not hard to imagine that most users prefer to keep their profiles in confidence. The
objective is not to cover illegal activity but protect the privacy of the users.

The mechanisms to protect the profiles of the users and their privacy are described in
part II.
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Figure 4.1.: System architecture

42



Protection of the recommendation source The copyright holders try to stop ille-
gal distribution of copyrighted documents by means of legal attacks. So far, content
providers and downloaders were legally reported and prosecuted. These reports have
had a variable degree of success, and even couldn’t achieve anything in some European
countries. As a result, copyright holders shifted their targets. Nowadays, there is a
legal threat against people that just aid to identify documents in a P2P network. Event
through these people does not store the final document and hence they do not pro-
vide any piece of copyrighted material, the indexers of document locations are currently
traced down and legally prosecuted.

The protection of the recommendation source is addressed in part III.

Provision of the best recommendation Giving the best recommendation is the main
goal of any recommender system. Cold start algorithms, decentralized information and
the profile distortion that privacy protection mechanisms introduce are some obstacles
in the way to the best recommendation.

In order to protect the source of recommendations, we propose a recommender system
that is constructed over a social, not-structured decentralized network where users link
each other according to their mutual affinity. Thus, users create clusters of affinity,
and they take advantage of their neighbors to find the most suitable document for their
interests. The creation of an efficient social network is usually a slow process and very
error prune.

This problem is addressed in part IV.

Protection of the content providers The MegaUpload and PirateBay cases of the
recent months proved that there is a legal threat against the final providers of protected
documents, even if they were not the actors that uploaded the media in the first place.
At the time being, legal prosecutors supported their cases on the grounds that content
providers have the ability to detect and thus react to the presence of protected media.

In this thesis, we explore a distributed filesystem to spread file pieces and responsibility
among many peers. Furthermore, none of these peers must be able to prove that they
do not have the ability of identifying copyrighted files and/or file pieces. This system is
described in part V.
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Part II: User’s privacy protection

In the recommender system that we are going to construct during this thesis, the output
of the recommender relies on the interests, likes, dislikes and previous history of the
user. Thus, the system must model the user and capture this information in the user’s
profile. These profiles absolutely identify users and contain very sensitive and private
information, since they depend on the users’ private thoughts, opinions and views. It is
easy to assume that most users will prefer to keep their profiles in confidence.

This part of the thesis models the users’ profiles and studies the protection of their
privacy. Chapter 5 introduces the social and network models for the creation of these
profiles, and defines similarities and affinities between documents and users in an unam-
biguous way. Next, two different approaches to protect the user’s profiles are proposed.
The first approach, introduced in chapter 6, distorts the user profile to limit the amount
of data that an attacker may learn about users. The main challenge of chapter 6 is the
protection of the user’s privacy while allowing calculations about their similarity. The
second approach, explored in chapter 7, proposes a zero-knowledge protocol to calculate
whether or not two users are affine without leaking any information about their profiles.
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5. Models and assumptions

According to the definition of a recommender system that was introduced in section 1.1,
the main objective of a recommender is to select a subset of all the available documents
that are interesting to a specific customer according to some definition of “interesting-
ness”. The decision of whether a document is interesting or not depends on the specific
customer. For example, a document that is principal for an individual may be dully or
even disgusting for another person. As a consequence, the output of the recommender,
or the subset of documents that it provides at the end of the process, depends on the
specific data that the customer inputs in the system.

In this chapter, we define the model of our recommender system and how recom-
menders decide that a document is of the interest of a customer. We will model users,
documents and queries as vectors that represent their profiles. Next, we define a mathe-
matical function over the vector space to model the proximity or affinity of the different
profiles in the system.

5.1. Selecting documents

Different recommender systems have different mechanisms to decide if a document is
interesting or not for a certain user. We explored these differences and used them to
classify recommender systems in section 2.1.

For example, Amazon is a collaborative filtering recommender that analyzes the past
history of the users of the store, identifies histories that share some items and recom-
mends those documents that are in one user’s history but not in the other. A pure
implementation of this model does not take into account the characteristics of the rec-
ommended document, like genre, title or author, and only the presence of the document
in another client’s history produces a recommendation.

A completely different paradigm is used by the music recommender Pandora. In this
system, the profiler analyzes some intrinsic characteristics of the documents, like their
musical genre, duration, author, lyrics, instruments, or rhythms; defines some prox-
imity metric using these parameters and recommends new documents that are similar
to other documents that the user liked in the past. In this model, the recommender
system does not take into account the opinion of other clients and only the objective,
internal classification of the documents based on their parameters is used to produce a
recommendation.

The problem of creating a social model for recommendations can be described in a
formal way [10]. Let U be the set of customers and D the set of all possible documents.
Let g be a utility function that captures the guessed rates of documents for each user,
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g : U × D → R, where R is a totally ordered set of guessed document ratings. The
recommender problem is expressed in this way. For each u ∈ U , choose the document
du ∈ D that maximizes the utility for this particular user u. That is:

∀ u ∈ U, du = arg maxd∈Dg(u, d) (5.1)

There are two main issues in this formal definition: (i) the selection of a function g
such as the guessed ratings are close enough to the ratings that the user would assign
to documents, and (ii) the ability of the recommender to maximize this function.

5.2. Social model: user’s likes and dislikes

One of the first approaches to create recommendations takes into account the information
that the system has about its clients. In these systems, users classify documents in two
simple categories, i.e. “I like it” and “I don’t like it”. This way, the user profile is the
specific classification of documents that the user made. Then, user’s profiles are sent
to the profiler that compare them according to a specific affinity metric and identifies
subsets of users that issue consistently similar rates. Finally, a recommendation for a
user u is a document that a similar user v rated as “I like it”, but u had not rated yet.
This simple mechanism is the base of the model that we propose in this chapter.

In a network N there is a finite set of unique documents D = {d1, d2, . . . , dm}, referred
as documents according to the model defined in section 1.3. These documents may be
described by means of metadata, fields or internal inspection in a way that it is possible
to define a bag of words for each of them, as proposed in [85]. The concept of bag of words
is a useful model to analyze documents that include natural language. In this model, a
document is represented as an unordered set of words and any additional information
such as grammar or contextual data is not considered. The bag of words is usually fed
into a text classification scheme. An example of this work-flow is a spam identification
engine that uses Bayes classifiers under the assumption that the presence of individual
words is mutually independent. Next, we will show how a Bayes classifier with word
independence uses the “bag of words” model.

We define a system with a set of classes or categories C = {c1, ...cN}, a set of all
possible words W , and a set of documents D where each document d ∈ D is modeled
using a bag of words d = {w1, ...wd|wi ∈ W}. The system defines a probability function
P (wi|ci) : W × C → [0, 1] that captures the frequency that a single word in used in the
context of a category. This function is usually created through training document sets.
A Bayes classifier is a function b : D → C that assigns to a document d ∈ D the most
likely category c ∈ C, where probabilities are calculated using the Bayes theorem and
the chain rule over the bag of words of the document, as in Equation 5.2,
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P (C|w1...wd) =
P (C)P (w1...wd|C)

P (w1...wd)
(5.2)

=
P (C)P (w1|C)P (w2...wd|C,w1)

P (w1...wd)
(5.3)

=
P (C)P (w1|C)P (w2|C,w1)P (w3...wd|C,w1, w2)

P (w1...wd)
(5.4)

=
P (C)P (w1|C)P (w2|C,w1)...P (wd|C,w1, w2...wd−1)

P (w1...wd)
(5.5)

Now, real implementations of Bayes classifiers on documents often simplify this calcu-
lation assuming word independence. This assumption states that words are condition-
ally independent and hence pairs of words are not analyzed. In this case, P (wi|C,wj) =
P (wi|C) and equation 5.5 is simplified to 5.6,

P (C|w1...wD) =
P (C)

∏
P (wi|C)

P (w1...wd)
(5.6)

Thus, under the assumption of independent words, it is possible to use the bag-of-
words concept to classify documents in categories. This concept has been successfully
used, for example, in most spam classifying systems or in practically all web-search
engines.

The bag of words model does not analyzes semantic relationships between words, and
the quality of the classification suffers if different words has the same meaning (syn-
onyms) or the same word have different meanings depending on the context (polysemia)
A step forward this model is the bag-of-concepts model [111]. A concept extends the word
to include not only synonyms, but a semantic analysis of the contents of the document
to model its semantics. According to [129], it is possible to define an ontology to de-
scribe documents in D. This is to say, it is possible to define n semantic orthogonal (i.e.,
statistically unrelated) categories to classify documents in D. The classification of the
documents using this ontology is the bag of concepts model of documents. This way, each
document di ∈ D has associated a vector within this ontology p̄(di) = {c1, c2, . . . , cn}.
This vector is the document profile. In this work we suppose that each component
ci ∈ p̄(d) is a real number between 0 and 1 that captures the level of interest of the user
in each semantic category. We call social space P = [0, 1]n to the vector space that is
defined in this way.

In order to simplify our model, we establish that the social space has a constant
number of categories, and hence profiles are vectors of a fixed size. This approach of
modeling documents as vectors has additional advantages, since it enables the creation
of simple, generic operations on profiles to provide additional services. This way, it is
possible to propose mechanisms that protect the privacy of the users’ profiles or provide
a smart management of documents in repositories. These additional mechanisms, which
will be studied in the rest of the thesis, do not depend on the size of the vector but

51



5. Models and assumptions

Figure 5.1.: Example of several users’ profiles for n = 6

rather on the existence of a metric function between profiles. The ideas proposed in this
document may be applied to a social model with vectors of a variable size, given that a
much more complex metric function is used.

A user u “owns” or “shares” a subset of documents Du ⊂ D. We suppose that u
assigns for each document d ∈ Du a pair (p̄(d), URL(d)), where p̄(d) is the profile of d
and URL(d) a pointer to its location inside an external filesystem that has to be defined.
We allow that two different users u and v may have common documents, Du ∩Dv 6= ∅.
Then, we assign to each user u a profile p̄(u) based on her interests or her documents.
In order to keep our model simple, we will assign during this thesis the average of the
document profiles that the user owns, as Equation 5.7 shows.

p̄(u) =

∑
d∈Du

p̄(d)

|Du|
∈ P (5.7)

As a consequence, each one of the components of p̄(u) is a real number between 0 and
1 that shows the amount of interest of the user on a determined category of the system.
Readers will notice that user profiles defined in this way are also vectors of the social
space, p̄(u) ∈ P.

Figure 5.1 shows an example of three of these user profiles in a social space of 6
different semantic categories using a star representation, as it is usual in the psychology
field.

5.2.1. Metrics for profiles

Within this social space, it is possible to define a similarity function: s : P × P → R.
In this document, we will use the cosine distance defined in Equation 5.8 to calculate
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the similarity between two users. This metric has been successfully used in the past to
compare document profiles [106, 85, 79].

s(ā, b̄) =
ā · b̄
|ā||b̄|

=

∑
aibi√∑
a2i
∑
b2i

(5.8)

The output of Equation 5.8, s(p̄1, p̄2) = 0 shows that profiles p̄1 and p̄2 are completely
dissimilar, and s(p̄1, p̄2) = 1 shows that p̄1 and p̄2 are completely similar.

The reader will be aware that the use of similarities in the way of Equation 5.8 provides
a search paradigm that is completely different from keyword searches. In a recommender
system like the one we are describing, users no longer search for a specific document but
rather for some other documents that are similar to the ones that they share. The
cosine metric is not the most optimal way of calculating similarity between documents,
as shown in the study [87]. However, the cosine metric has an additional advantage that
makes it very suitable for our recommender system. Since it is simple enough to compute
using only additions and products, it will be possible to use cryptographic mechanisms
to provide security and privacy to the users of the recommender system

Given the similarity function in Equation 5.8, and a real number 0 ≤ λ ≤ 1, we define
the affinity function aff : P× P× R→ {True, False} as in Equation 5.9.

aff(p̄1, p̄2, λ) =

{
True if s(p̄1, p̄2) ≥ λ

False if s(p̄1, p̄2) < λ
(5.9)

We say that two profiles p̄ and q̄ are affine if aff(p̄, q̄, λ) = True. If p̄(u) is the profile
of a user u, p̄(d) is the profile of a document d, and these profiles are affine, we say that
d is an interesting document for u. We call this metric the affinity of two profiles.

The reader will notice that with the previous definition, “interestingness” is unam-
biguous for a specific metric. Deciding whether or not this metric captures correctly the
“interestingness” of a document, or the proper value of parameter λ, falls beyond the
scope of this document. Hence, no false positives or negatives are allowed in this model,
a recommendation is always correct and, consequently, recall ratio and Equation 2.7 are
equivalent. We refer the interested reader to [87].

Searches by users within the network are made through queries q̄. Since these queries
should be compared with the document and user profiles, they must be in the social
space q̄ ∈ P and should be computed in a similar fashion to document profiles. We
assume that a user u will search documents that are related to their profiles p̄(u) in the
social space.

Hence, documents, users and queries may be defined as vectors of P. We defined
a similarity metric s : P × P → R to capture how two different profiles are related,
and defined an unambiguous affinity function to check whether or not two users share
interests.
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5.3. Network model: decentralized system

Social networks are extensively used to share points of view, interests and personal likes
and dislikes. If two users share some of their likes, we say that they are affine and they
would be interested to link each other in the social network. Indeed, the services that
the social networks offer are usually improved if affine users are linked together. When a
new user joins a social network, he usually takes advantage of his friends in the real world
to create his first links in a manual fashion. It is our vision that the next generation of
social networks is about to provide a service to search for other users that are affine but
have never met in advance.

We work on a network social network N . Nodes in N are interested in creating a
recommender system, as defined in section 1.1. We assume that at any moment, a
subset of nodes A ⊂ N with similar interests is the customer/merchants set of a subset
of nodes B ⊂ N that behaves as the database. Every node in A has links to other nodes
in A and at least one link to a node in B. Nodes in B have links to other nodes in B,
but not to A. We assume that there is an anonymous routing protocol in the cluster A
and an epidemic routing protocol in the cluster B.

We suppose that nodes in B use epidemic routing to distribute and replicate the con-
tent that they index. There are many proposals of epidemic protocols for recommender
systems [44]. In this kind of algorithms, a query is routed through a well-chosen subset
of neighbors that are more likely to give correct answers according to a predefined al-
gorithm. [40] explores the requirements of epidemic protocols: parallel searches, limited
connectivity and trust. Some well-known epidemic algorithms that may be used in this
scenario are [100, 14, 137]. Indeed, nodes in B save the document description of nodes
in A, but they themselves have a profile. In this regard, it is possible to use this profile
to create a social network as in [137], but instead of storing and replicating their own
documents, they store and replicate the description of the documents of nodes in A. This
same epidemic routing mechanism will be used to route the query messages of nodes in
A inside the set B.

Additionally, we establish that there is an anonymous routing protocol in the set of
customers/merchants A. By “anonymous” we mean that it is not possible for an external
observer to decide which one of the nodes in A was the source of a message. One of the
schemes that achieve the degree of anonymity that we need is Crowds [105]. In Crowds,
given a probability p, a set of nodes A and a destiny b /∈ A, if a node a ∈ A wishes
to send anonymously a message to b, she sends the message to another node in A, a′.
This a′ decides with probability p to send the message to the final destiny, or send it to
another a′′ ∈ A with probability 1− p and so on.

We define that nodes in B index the data that share the merchants in A. In our pro-
posal, data is a pair that describes the documents that nodes in A share, (p̄(d), URL(d)),
where p̄(d) is the document profile and URL(d) a pointer to the document in an external
filesystem. Since nodes in A share interests, nodes in B will index the description of
documents that are related to each other.

Nodes in A shouldn’t store the profiles of the documents that they share in other
nodes of the set A, since all of them share similar characteristics and a malicious node
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in A may use the information of the shared documents to learn private data of the user
profiles [36]. In this regard, all nodes in A agree to store their data in the nodes in B.
By means of storing the document descriptions in B, nodes in A may state plausible
deniability of the content of queries, as we will see in part III.

Nodes in B are not free contributors. They accept to store data for nodes in A because
when they play the role of merchants/customers, they store the description of their own
documents in another cluster C ⊂ N . In a real network nodes play many different roles
at the same time. For the sake of clarity in the rest of this document, we will model the
system such as nodes in A only play the roles of merchants and customers, and nodes
in B are recommenders.

5.4. Security model

We consider that any node in the network may be an attacker of the system. That is,
the attacker may be the originator of a query, any node in the path between the client
and the database or a malicious owner of a database. If the attacker is the database,
he is successful if he is able to access the content of a query or the description of the
items that he stores. If the attacker is in the middle of the path between a client and a
database, he is successful if he is able to identify the source of the query or the database
that answered it, or get any information about any of them. If the attacker is the node
that sent the query, he is successful if he is able to identify the database that answered
the query.

There are at least four ways that an attacker have to gain information about the
network: (i) by inspection of the messages that he routes in the network, (ii) his links
to other nodes, (iii) confabulation with other users of the network, and (iv) effectively
using the services that the network offers. In the case of databases, a fifth source of
information is (v) the content that they store.

5.4.1. Plausible deniability

In this work we wish to protect databases owners and intermediate nodes from legal
prosecution. From their point of view, complete deniability is the ability to deny any
knowledge about the content that the database is storing or the node is routing. A triv-
ial solution for this problem is a system where two clients pre-share a key and store an
encrypted document in a database. In this case both the database and the intermediate
nodes have no means of knowing anything about the contents of the document. How-
ever, this approach needs that clients meet and organize in advance, and displaces the
encrypted query management from the database to another entity. As a result, we need
to define a weaker objective for our work. We say that plausible deniability is the ability
to deny with high probability the exact content that the database is storing. Even if
with this ability the database is able to compute queries and perform searches among its
items, then the system works and the database is hardly responsible of the documents
that she stores.
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We assume that if a process is mathematically hard, a node cannot be prosecuted for
not doing it. For example, if a database stores data that was modified in some especial
way and need to solve a hard function to extract the original pieces of data, we assume
that the database owner may claim that the solving process is unfeasible and therefore
he is safe against legal prosecution. Examples of very hard functions are cryptographic
hash functions. A very special class of hard functions is not-injective functions. If
two possible pieces of data, one of them arguable and the other completely safe, are
transformed to the same item in the database and a random observer cannot decide
whether it is one or the other, we assume that this is a hard process.

There is an additional concern in recommender systems. The query that a user sends
to the network includes a lot of private information that most people won’t likely desire to
publish in a database. This personal description may be used by advertising companies
to send personalized spam, or to leak the very personal interests of an individual and use
this information against her. During this thesis, we will preserve users’ privacy by means
of limiting the amount of meaningful data that a user needs to send to the network to
get a useful recommendation.

It is often argued that we defend the illegal downloading of copyrighted documents.
That is, “piracy”. Too often, copyright defense is extensively claimed to put down sites
that bet for a new business model, or control the freedom of speech of individuals. Most
of the complaints against the ACTA treaty go in these lines. The high expenses and long
time that a individual user must face in order to defend his case are too overwhelming
even if he is not found guilty at the end. In some cases, users are not able to afford them
and finally arrive to an agreement with the prosecutor. Furthermore, in a distributed
network databases and nodes may help to find or route unlawful and regrettable content
just because many of them are run by individuals that has not the ability to control what
their machines are doing. We do not support neither piracy nor regrettable content. We
support databases that help a P2P network to keep working for a majority of lawful
clients, even if that supposes giving service to a few undesirables.

5.5. Outline of the proposed solutions

The amount of interests of each user in the categories of the system is an extremely
private information that must be secured. On the other hand, the main mechanisms that
the recommender system uses to provide recommendations (i.e., a direct comparison of
user’s profiles, calculation of the affinity of two users and the creation of clusters of
similar users), need some access to the information that the user’s profiles capture. This
is one more example of the classical trade-off between privacy and utility. In the next
chapters, we will explore two different approaches to solve these issues.

• The first approach sets a limit to the information that the user sends to the net-
work, protecting the privacy of a profile by means of a profile distortion that hides
the exact amount of interest of users in each of the categories that their profile cap-
tures. This distortion takes place using a lineal projection of the original profiles

56



5.5. Outline of the proposed solutions

into other social spaces with fewer dimensions. This way, the information about
a single category of the original profile is spread between different components of
the projected profile. Chapter 6 studies these projections and how they help to
improve the user’s privacy.

• The second approach protects the privacy of the user by means of preventing any
exchange of the user’s profile, and two users trying to decide whether or not they
are affine only learn the answer to this question. Chapter 7 studies a protocol to
calculate user affinities based on zero knowledge systems.

These mechanisms are not exclusive, and the recommender system may use both
mechanisms at the same time.
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As described in chapter 5, we model documents, users and queries as vectors of a social
space P. These profiles capture the interests of the users and describe them in great
detail. As a consequence, profiles include highly sensitive private data that must be
protected.

In this chapter, we propose a method to protect the data that a user profiles captures
by means of a lineal projection of the vector profiles into a different social space with
fewer dimensions. This way, since the projected vectors have fewer components than
the original profiles, we have the intuition that they will content less private information
about the user, and therefore the exposition of the user to privacy attacks is reduced.
Despite this projection, the recommender still has to be able to calculate similarities
and affinities with other users and documents, using the metrics that were introduced
in chapter 5.

We analyze the proposed method, how useful these distorted vectors are to get rec-
ommendations and how much private information the projected vectors store.

6.1. Random projections

To analyze the projection of the user profiles, we will take advantage of two lemmas:
the Johnson-Lindestrauss lemma and the undecomposability of random matrices.

Lemma 6.1.1 (Johnson and Lindestrauss [8]) Given ε > 0 and an integer n, let k be
a positive integer such as k ≥ k0 = O(ε−2logn). For every set P of points in Rd exists
f : Rd → Rk such that for all u, v ∈ P

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2 (6.1)

In our work, Lemma 6.1.1 is applied as follows. Given a set of profiles that are modeled
as vectors of a social space, it is possible to calculate a projection into a metric space
of fewer dimensions that keeps the distances between profiles bounded, and hence their
similarities and affinities. In addition, it is possible to configure the error of the final
distances to an ε suitable for our needs.

The other lemma useful for our developments is Lemma 6.1.2:

Lemma 6.1.2 (Undecomposability of random matrices [82]) Any m × n (n ≥ 2m −
1, m ≥ 2) random matrix with entries independent and identically chosen from some
continuous distribution in the real domain is not two-row decomposable with probability
1.

59



6. Random projections

Using the first Lemma 6.1.1, we concluded that if we have a social space of n categories,
we can define a projection into a space of m < n categories that keeps the distances
between profiles bounded. If m < n and the attacker access only to the projected profile
and the projection matrix, he cannot reconstruct the original profile since the linear
system is undetermined. Lemma 6.1.2 goes a step further. According to this lemma, the
malicious user is not only unable to calculate the profile in the original space if m < n,
but if n ≥ 2m − 1, he won’t be able to calculate any single component of the original
profile.

According to these two lemmas, if we use a matrix M to project profile p ∈ Pn into
a profile y = Mpt ∈ Pm where n > 2m − 1, given y, with high probability it is not
possible to recover the original components of p and the distances in the projected space
are related to the distances in the original space.

In our scenario these projections may be used to preserve privacy of data. The reader
will notice that these projections are a kind of data distortion, a technique that has been
often used to preserve privacy [38].

6.2. Selection of the projection matrix

Lemma 6.1.1 ensures that there is a projection with these characteristics, but it gives
no hint about the actual matrix. In this chapter, we will test three different matrices to
create the projections:

• A matrix with random components mij ∈R [0, 1]. We call this matrix MR

• A matrix with components (Achlioptas [8]):

mij =


+1 with probability 1/6,

0 with probability 2/3,

−1 with probability 1/6,

We represent this matrix MA. This matrix holds proposition 6.1.1, as proved in [8].

• A hybrid matrix MH = pMR + (1− p)MA, where p ∈ [0, 1]

In the simulations that follow, we will use a social space of n = 200 (the “200-space”).
That is to say, the profile includes the interest of a user in 200 categories. As a first
approach, we will use a projection space of m = 20 categories (the “20-space”). Given
the projected profile and the projection matrix, a malicious user that tries to reconstruct
the original profile has to solve a lineal system of 200 variables with 20 equations. There
are 180 freedom degrees, and then we can safely establish that the original profile cannot
be reconstructed. Under these circumstances, the privacy of the user is preserved, as we
will show next.

Since the components of the vector (the interest of a user in a category) are real
numbers between 0 and 1, the average profile is {0.5, 0.5, ..., 0.5}. The maximum distance
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Figure 6.1.: Distances of the projected profiles using MA, MR and hybrid matrices

from the average profile to any vector in the 200-space is, using the Euclidean metric,
dmax =

√
200/2 = 7.07. We will use this maximum value for the distance in our

simulations. Since we are interested in how the hybrid matrix behaves, we will use
p = 0.5. The hybrid matrix approaches the behavior of MA when p → 0, and the
random behavior when p→ 1.

Figure 6.1 shows the results of the projection of thousands of vectors using the three
types of matrices Random, Achlioptas and Hybrid under study. The horizontal axis
shows the distance between two vectors in the 200-space, while the vertical axis shows
the average and standard deviation of the final distances between projected vectors into
the 20-space. Figure 6.1 shows that there is a linear relation between distances, as
Lemma 6.1.1 states. However, the standard deviation of the distance in the projected
space increases when the distance in the original space increases. We will study this
behavior next.

Actually, there is a scale factor for distances in the m-space. The scale factor is differ-
ent for each one of the possible matrices, but since there is a lineal dependence between
the distance in the n-space and the average distance of the correspondent distances in
m-space, this scale factor can be easily computed. In figure 6.1, distances in 20-space
are normalized using this scale factor in order that distances in the 200-space and the
average distance in 20-space of the correspondent vectors match. The rest of the figures
if this document show distances in the m-space normalized in the same way.

Figure 6.1 shows that the standard deviation of the distances in 20-space increases
with the distance in 200-space. This is very convenient, since it means that if two vectors
are separated a long distance in the 200-space, then the region of possible distances in
the 20-space is large. As a consequence, the estimation of the original distance in the
200-space given a distance in the 20-space is probabilistic, and user’s privacy is preserved
in a certain amount. We can use the standard deviation of the distance in m-space as
a measure of the privacy achieved for each one of the matrices. Indeed, the larger this
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deviation, the larger is the region of distances that a given distance in the 200-space may
project. We call this parameter the “uncertainty” of the distance, and it is a measure
of the privacy of the proposal.

Proposition 6.2.1 Given a vector in the n-space a ∈ Pn, a distance dn ∈ R, a projec-
tion matrix into a m-space M and a set of vectors B = {b ∈ Pn|d(a, b) = dn}, the set of
normalized distances Dm = {d(a ·M, b ·M)} is a random variable where E[Dm] = dn.
We call uncertainty of the distance, U(n, dn,m,M):

U(n, dn,m,M) = 2 ∗
√
E[(Dm − dn)2] (6.2)

Figure 6.2 shows the U(n, dn,m,M) of the different matrices for different values of
m and M . The random matrix is nearly independent of the value of m, while the
uncertainty of the Achlioptas matrix decreases when m increases. Furthermore, the
Achlioptas matrix has much less uncertainty than the random matrix, as expected since
it was created with this objective. While a high uncertainty is convenient to preserve
privacy, it introduces a higher number of false positives and negatives. The user can
control this behavior by means of the parameter p of the hybrid matrix. In every matrix,
the uncertainty increases linearly with dn.

Figure 6.3 shows the uncertainty of the distance dn = 1 when m varies from 10 to 200.
The uncertainty is very limited in the Achlioptas matrix, while is large in the random
matrix. Furthermore, the uncertainty decreases exponentially when m is increased using
the Achlioptas matrix, while the uncertainty is invariant to m in the random matrix. In
the proposed procedure of section 6.1, users can set the uncertainty that better matches
their interest using hybrid matrices with different p.

Finally, figure 6.4 shows the percentage of false positives and negatives for each of
the proposed matrices. For n = 200 categories, dmax ≈ 7. As previously discussed, the
random matrix has high uncertainty and error. Hence, the percentage of false positives
that it shows is high. If the user sets the “affinity” threshold to a distance of α = 2,
there is a probability of a 25% to find a false positive while using a random matrix.
Meanwhile, the errors of the Achlioptas matrix are really low, about 5% for α = 2. The
limited amount of error is a good reason to use the Achlioptas matrix through the hybrid
approach, as figure 6.4 shows.

The fact that this mechanism generates false positives is not a drawback for our
recommender system. Even in those networks that make links according to the social
distance of the links [80], some amount of randomness should be introduced in order to
minimize the network diameter. Additionally, random links do enhance the recall ratio
of the random walk searching protocol, as we will show in part IV. As there is only a
limited number of false positives in the system, the analysis of this section allows us
to determine a minimum dimension for the projected profiles, in order to ensure the
privacy of the users while keeping the amount of false positives low.
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Figure 6.2.: Uncertainty of distances for different matrices

6.3. Triangulation attacks

Random projections show a heuristic behavior. In this section, we will consider the
information that an attacker can learn about a profile p̄ from the random projection p̄′

and the distance d(p̄′, f̄ ′) to a profile f̄ that the attacker can forge.

One possible attack to the system that was described in this chapter is triangulation
attacks. An attacker joins the system and shows especially crafted profiles to localize
the real position of a user profile. In our attack model, the attacker can only use
the mechanisms that the system provides. Hence, the attacker knows his own profiles,
the projected profile of the targeted user and a guess of the real distance between his
profile and the user’s profile, along with an estimation of the uncertainly as the previous
section showed. Since there is not any central authority that authenticates users’ profiles,
attackers may show any profile that they chose of their convenience. This attack, as
described, is a kind of Sybil attack.

In this section, we will show that guessing a user profile from the projected profile
and its distance to forged profiles is similar to a random walk in the social space, and
guessing the right user’s profiles is similar to discovering the profile by chance. In this
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Figure 6.3.: Normalized uncertainty of distances of MA and MR

case, this attack is a weak form of a brute force attack.

To model this kind of attack, we define an attacker that makes an additional guess
about the target profile. We model this previous knowledge as a sphere in the social space
of radius d where the target profile is located. Thus, the attacker forges NA profiles
inside this sphere and for each forged profile calculates NT new profiles at the same
projected distance than the user’s profile. In the figures, we analyze if these calculated
profiles are similar to the user profile. For these simulations, NA = 100, NT = 100 and
we will simulate profiles of n = 9 different categories projecting to an m = 3 space. For
the sake of simplicity, only the guess of the first three categories is shown in these figures.
If n = 9, the average profile similarity using the Euclidean distance in this social space
is d = 1.5. The profile of the targeted user doesn’t change during these simulations. The
projection matrix used during these simulations is MR. This is an implementation of a
Manhattan analysis, and figures will include not only the estimation of the target profile
but an idea of the uncertainty that the attacker has about the rightness of his guess.

Figure 6.5 shows this attack for an initial distance of d = 0.01. The figure shows an
estimation of the profile and the uncertainness of the attacker on his guess. As the figure
shows, the attacker was not only able to guess correctly all categories of the unprojected,
original targeted user’s profile, but also he has a low uncertainly about his guess.

When the initial distance increases of attacker and targeted user, the uncertainty of
the attacker increases. Figure 6.6 shows the guess of the attacker and his uncertainty
when the initial guess of the attacker is d = 0.1. Even if the center of the estimation
area remains constant, the uncertainty about the real profile has increased significantly.

Figures 6.7 and 6.8 show the guess that the attacker made of the profile when the
initial distance is d = 0.2 and d = 0.3. In the first case, the uncertainly area has grown
as much than the attacker only knows roughly a single bit of each category (like/dislike)
but not the amount of interest of the user in that category. When d > 0.3, uncertainty
covers all the social space and the attacker learns nothing about the original profile of
the user.
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Figure 6.4.: False positives and negatives for several thresholds

Finally, figure 6.9 shows the normalized anonymity lost [35] for the last figures. As
discussed, the anonymity lost when the attacker made a good initial guess of the user
profile (distance from attacker to user of 0.01) is 0.6. The anonymity lost reduces up to
0.03 when the attacker choses an initial profile at a distance 0.5 units from the targeted
user. The reader will remember that in the social space of 9 categories, the average
distance of two profiles that are picked at random from the social space is 1.5.

6.4. Discussion

Lineal projections of profiles into spaces of less dimensions let users add a configurable
degree of protection to their profiles. Indeed, users can modify the amount of anonymity
lost and uncertainty of the projected profile by means of selecting a different projection
matrix (for example, modifying parameter p of the hybrid matrix) or increasing the
dimension m of the projected space. Especially crafted projection matrices let not only
to protect the user’s privacy, but still make the calculation of the profiles similarity
possible, with a bounded uncertainty.

We explored a kind of attack against this mechanism and concluded that the process
of attacking a specific user with forged profiles and triangulation of the original user’s
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Figure 6.5.: Triangulation attack from d = 0.01 (three first categories)

profile need an initial good guess of the user position. If the initial guess of the attacker
is further away in the social space, it is increasingly difficult to estimate the position of
the original user profile.

There are other attacks to this system that have not been considered. For example,
the attacker may trick the targeted user to choose a matrix more convenient for the
triangulation attack. Moreover, discovering the profile of a neighbor in a social network
where links depend on similarities makes guessing new profiles easier since the attacker
knows additional information that can be used to enhance the initial guess profile.

In the next chapter, we will study a different approach that makes triangulation
attacks not possible. In the new approach, the output of the process is not an estimation
of the real distance, but the answer Yes/No to the question “are two profiles affine?”.
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Figure 6.6.: Triangulation attack from d = 0.1 (three first categories)
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Figure 6.7.: Triangulation attack from d = 0.2 (three first categories)
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Figure 6.8.: Triangulation attack from d = 0.3 (three first categories)
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Figure 6.9.: Anonymity lost during the triangulation attack
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The output of the mechanism that was proposed in the last chapter is an estimation of
the original distance between two profiles. As we showed, given the estimation of the
original distance, the projected profile and a real projection matrix, the only way for an
attacker to learn anything about the original profile was making a good initial guess of
the original profile of the targeted user, a problem that is similar to brute force attacks.
Unfortunately, the attacker may benefit of a forged projection matrix or especial cases of
users’ profiles to estimate the real distance from a forged profile and the targeted user.

In this chapter, we will approach the problem of preserving the privacy of the user
profiles using a completely different mechanism. We will make use of the graph and sub-
graph isomorphism problems to develop an alternate mechanism to protect the privacy
of the user profiles. In this case, the only output of the protocol is whether or not two
profiles are affine, and the protocol does not output any estimation about the distance
of profiles in the social space. This way, the privacy of the users’ profiles is enhanced
and triangulations attacks are not possible. The cost, as we will see, is the need of an
increased computation power.

7.1. Models and definitions

7.1.1. Graph theory

A graph is a pair G = {V, L} with a set of nodes V = {v1, v2, ..., vn} and a set of
links L = {(vi, vj), (vl, vk), ...}. In this chapter we will only consider symmetric graphs,
that is, links in L do not have direction and there are not loops that start and end
in the same node. Two graphs G and H are isomorphic if and only if they share the
same set of nodes V and there is a permutation π : {1, 2, ..., n} → {1, 2, ..., n} such as
∀ i, j(vi, vj) ∈ LG ↔ (vπ(i), vπ(j)) ∈ LH . A permutation is a relabeling of nodes in V
while maintaining the same links. If H and G are isomorphic through permutation π,
we write H = πG.

In complexity theory, it is said that a problem is in NP if there is a non-deterministic
Turing machine (NDTM) that is able to solve the problem under polynomial time. A
slightly different definition is that NP includes the class of problems that can be proved
under polynomial time using a deterministic Turing machine (DTM). An interesting
subset of NP is the NP − Complete set. A problem is in NP − Complete if it is NP
and any 3 NP problem can be transformed into it under polynomial time. Currently,
problems in NP − Complete are considered intractable, since there is not any known
algorithm for a DTM that can solve a NP −Complete problem under polynomial time.
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Specifically, the problem of checking whether or not a graph G is isomorphic with another
graph H is a NP problem, and checking whether or not G is isomorphic with any
subgraph of H is NP − Complete.

7.1.2. Objective

Two different users, Alice a and Bob b, meet each other in a social network for the first
time. They want to know whether or not they are affine. That is to say, given an affinity
function d between two profiles of the social space p̄, q̄ ∈ P, they want to decide whether
or not the output of Equation 7.1 is true, for a specific λ that was previously agreed.

True : {d(p̄, q̄) < λ} (7.1)

Alice and Bob do not want the other party to learn any additional data apart from the
result of the comparison. This includes not only the profiles p̄ or q̄, but also any possible
estimation of these profiles, their components or the distance d(p̄, q̄) that separates Alice
and Bob.

In this work we are going to define a protocol that let both users Alice and Bob check
whether or not they are affine for a specific λ, without leaking any additional information
apart from the output of Equation 7.1. This protocol is based on the problems of graph
and subgraph isomorphism.

7.1.3. Related Work

There are several proposals in the literature that study a scenario similar to the one under
consideration in this thesis. Secure multi-party computation using threshold encryption
is a common solution. [114] describes a conditional gate that is able to solve complex
computations. One of the examples that this work provided as an application of the gate
is very similar to Equation 7.1. However, authors limited the definition of interest in
the user’s profile as binary relations like-dislike, and distance between profiles is limited
to the Hamming distance. If we try to apply the conditional gate to a scenario as
complex as the one described in chapter 4, the amount of interactions between users to
run the protocol with a conditional gate is overwhelming. If we describe user’s profiles
with hundreds of categories and real numbers, the number of messages that users have to
exchange to calculate whether or not they are affine is over several thousands. This huge
number of messages seriously limits the application of the proposal to simple profiles and
cannot be used in our scenario.

Another approach to private affinity matching is profile distortion. [102] is a recent
patent in the field of recommendation systems. The authors described a recommendation
system with a centralized entity that performs searches. Privacy is managed by means
of noise addition to the user’s data with a given permutation probability. This way,
the users that insert pieces of data into the indexer are able to control the amount of
personal information in the indexer. Even if this is true, we think that private data
should not leave the circle of the user. We describe a scenario of a decentralized social
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network where users do not trust on any servers. The system proposed by [102] cannot
be used on a decentralized scenario. [20] also studies a type of profile distortion. The
authors considered privacy protection through lying in the profile. The mechanism to
achieve privacy is by means of Bloom filters. A query is mapped into a Bloom filter, and
some bits of the filter are switched. In this case, it is possible to tweak the length of the
filter and the lying probability to provide privacy to the user, since he could have picked
up any possible query that matches a specific Bloom filter. This kind of distortion has
a serious drawback. An attacker is not able to know for sure whether or not a user is
interested in a category since he may be lying, but the attacker can at least make a good
estimation. It is our objective not to leak any information of the user’s profile, and even
estimations will be forbidden.

The graph isomorphism problem was previously used in the security field. [53] de-
scribes a generic zero-knowledge protocol that can be used with any NP-Complete prob-
lem to authenticate a user, and two of the explicitly defined proposals use the graph
and subgraph isomorphism problems. In addition to the fact that the proposed protocol
cannot be applied to our scenario, [53] does not have into account the approximations to
the isomorphism problem that we will analyze in section 7.4. [128] describes a mutual
authentication protocol between a client and its access point in a WiFi network that
takes advantage of the graph isomorphism problem. Again, the protocol described in
this work cannot be applied in our scenario. As far as we know, this is the first time
that the graph isomorphism problem is applied for privacy protection.

7.2. Protocol description

In this section we define the protocol that we propose to reach the objectives of sec-
tion 7.1.2. Given two users that never met in advance, users a and b with profiles A
and B, they wish to check if they are affine. Before running the protocol, they agree
two real numbers λ and γ(λ). λ is the value to be used to check Equation 7.1, and γ(λ)
is a configuration parameter that modifies the number of false positives of the protocol.
The values of γ(λ) will be studied in section 7.2.1. In order to simplify the description,
parameter γ(λ) will be written as γ during the rest of the document. Then, both users
run the next protocol.

1. Both users a and b agree on a graph G = (V, L), build in such a way that (i) every
node V = {v1, v2, ..., vg} is a profile in P; and (ii) links in L are random. G is the
common input to the protocol. We call g to the number of nodes of the graph.
See section 7.4 for additional requisites for G.

2. Users define a clusterization function c : P → V of the social space P. This way,
for every possible profile p ∈ P, c assigns the node vi ∈ V that minimizes d(vi, p).
The clusters are defined in such a way that the maximum distance between nodes
in V that are inside a cluster (the diameter of the cluster) is γ.
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3. Secretly, user x ∈ {a, b} calculates the set HS(X,λ) ⊂ P and HS(X, 2λ) ⊂ P,
being HS(P, r) = {Z ∈ P|d(P,Z) < r}. That is to say, the hypersphere HS(A, λ)
is the subset of profiles in P under a distance λ from the profile X.

4. Secretly, user x calculates the sets Cx and C2
x, both subsets of V . Abusing of the

notation, we call c(HS(P, r)) ⊂ V as the subset of nodes in V that are assigned to
the hypersphere HS(P, r) through c. Then, users will calculate Cx = c(HS(X,λ))
and C2

x = c(HS(X, 2λ)).

5. Each user calculates the graphs Hx and H2
x as the subgraphs of G that are over

subsets of nodes Cx ⊂ V and C2
x ⊂ V .

6. Each user x chooses a random isomorphism φx : V → V , and sends to the other
participant φx(Hx) and φx(H

2
x).

7. If any of the pairs (φy(Hy), Hx), (φy(H
2
y ), Hx) or (φy(Hy), H

2
x) is isomorphic, then

each user individually accepts d(A,B) < λ.

Analysis

The main idea of the protocol is that the only data that users exchange are graphs
φx(Hx) and φx(H

2
x). These sets are created through an isomorphism of the subgraph

of G that is formed with those nodes that are closer to x’s profile. If an attacker gets
φx(Hx) and he is able to undo the isomorphism, then he would be able to learn the
original subgraph and then he can make a good estimation of the user’s profile. In
this case, the attacker has to solve the problem of subgraph isomorphism which is, as
discussed in section 7.1.1, an NP −Complete problem. Even in this case, the legitimate
users have to solve the problem of graph isomorphism in the last step of the protocol,
which it is a NP problem. In section 7.4 we will discuss the computational viability of
this approach. At the time being, the number of nodes in V must be suitable to move
the system to an area where the isomorphism problem is solvable, but not the subgraph
isomorphism problem.

7.2.1. Bounds to the parameter γ

Next we study the sets Cx and C2
x. The main idea behind our protocol is that affine

profiles that verify Equation 7.1 must outcome the same sets. As we will see, this is not
always true in the protocol and a certain amount of errors is introduced. In section 7.2,
we defined the parameter γ as the maximum distance between profiles in a cluster of V .
This is the diameter of the cluster, and its value should be related to λ. In this section,
we will set a bound on the parameters γ and λ to minimize the number of errors. To
achieve this objective, we will study some intersection cases between hyperspheres HSx
and clusters of nodes:
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Figure 7.1.: The three cases for clusters and hyperspheres

Central area of the clusters Figure 7.1(a). If a hypersphere HS(p, λ) is greater than a
cluster, then any hypersphere will always contain several clusters and the comparison of
C(p, λ) and C(q, λ) does not make sense in the general case. To get rid of this problem,
we define that the minimum distance of node in G is γmin = 2λ. In such a way, a
hypersphere that is perfectly centered in the cluster does not intersect with any other
cluster, and then it is possible to match the sets Cx of the users. In addition, if γ � 2λ,
then a cluster could house several hyperspheres with a profile even further away than λ,
as Figure 7.1(a) shows. In this case the protocol will outcome false positives, since users
that are not really affine share the same cluster. This way, it will be necessary to set an
upper bound to γmax to limit in the same way the number of false positives.

Borders Figure 7.1(b). It is possible that given two hyperspheres HS(p, λ), HS(q, λ)
and d(p, q) < λ, HS(p, λ) is completely inside a cluster but close to its border and
HS(q, λ) cuts two or more clusters. In this scenario, a comparison of the two sets
of clusters will lead to a false negative. This is the reason why we introduced in the
protocol a new set of clusters C2

x, which are those clusters that intersect a hypersphere
centered in p and radius 2λ. Indeed, this hypersphere contains HS(q, λ) and then every
cluster that is intersected by HS(q, λ) is also intersected by HS(p, 2λ). Reader will
notice that there is no gain in comparing the set of clusters of hyperspheres of radius
2λ, since they will have the same amount of errors that simple hyperspheres. Using this
modification, the protocol will give a positive result if any of the pairs of clusters are
equal. Like Figure 7.1(b) shows, in order to avoid that two hyperspheres of radius 2λ
intersect different clusters, it is necessary that γ > 4λ.

Corners Figure 7.1(c). It is a well-known fact that it is not possible to make a partition
of the space using only hyperspheres. This way, the solution that was described in the
previous paragraph only works in one direction, and even when clusters that are covered
by the hypersphere HS(q, λ) are also covered by HS(p, 2λ), this one may intersect other
new clusters. In this case, the set of clusters Cx and C2

x are different, and then the
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protocol outputs a false negative. We call “corners” to the zones of the cluster where it
is not possible to keep the restriction about γ, as Figure 7.1(c) shows. We were not able
to find a simple solution to solve this corners, and although it is possible to minimize
the effect on the false negatives by means of minimizing the value of γ. In section 7.3,
we will study how this effect modifies the protocol outcome.

As a result of these scenarios, we can conclude that we must choose a value for γ
larger than four times λ. As larger as we set this value γ, the number of false negatives
in corners decreases but the number of false positives in the central area of the cluster
increases. Finally, as we will see in section 7.4, there is also a security reason to set γ as
low as possible.

7.2.2. Bounds to the value of λ

In order to advance in this section, we need to establish a metric for affinities. We are
going to consider the Euclidean distance between user profiles. Even if numeric results
do not match using another metric, the qualitative results will.

If we assume that users spread uniformly in the social space, the average profile that
we can find is p = {1

2
, 1
2
, ..., 1

2
}, and in this case, the maximum average distance to any

other profile P is:

d̄max =

√∑
n

(
1

2
)2 =

√
n

2
(7.2)

According to the bounds that were established in the last section for the elements of
G, the maximum distance between two profiles gi and gj in G is γmax = 4λ. Hence,

4λ < d(gi, gj) < d̄max =

√
n

2
(7.3)

λ <

√
n

8
(7.4)

Equation 7.4 gives a maximum value for the threshold that can be used in dimension
n to compare profiles. Values of λ higher than this value do not hold the requisites to
run the protocol. For example, in a social network where profiles with n = 200 different
categories are defined, the highest threshold that users can agree to compare each other
is λ = 1, 178.

7.3. Simulation of the protocol

In this section, results of the simulation of the proposed protocol are shown. We define
a social space of n = 20 categories. We use γ = 0.1 and define a graph G where
sample nodes are spread γ in each direction. To simplify simulations and without loss
of generalization, we define clusters as the hypercubes that are centered in each one of
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Figure 7.2.: Percentage of errors related for several γ/λ

the nodes of G of side γ. Finally, to check the validity of the protocol it is enough to
check whether Cx or C2

x of both users match.

Figure 7.2 shows the average and standard deviation of wrong decisions that the
protocol takes for several relations γ/λ. The protocol will outcome an error if it estimates
that two users are/are not affine but the distance between their profiles is greater/smaller
than λ. Figure 7.2 supports the conclusions of section 7.2.1. According to the theoretical
analysis, there is a big number of errors if γ ≈ λ due to a large number of false negatives.
Simulations show exactly the predicted behavior: if γ = λ, the percentage of errors is
over 50%. In addition, we bounded γ to be at least 4λ and foresaw an increasing in the
percentage of error for larger γ. Simulations in Figure 7.2 show this behavior.

An interesting issue with Figure 7.2 is that the slope of the percentage of errors is
different at both sides of the minimum. We identified two different sources of error
in the protocol, false positives and false negatives. It is interesting to put apart these
errors, since they have different meaning in the scenario of a social network described in
chapter 4. In the real world, it is harder to find affine people than completely strangers:
there are lots more people that do not share interests with us than the other way around.
In a social network, a lost opportunity to find a real friend is more critical than the
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Figure 7.3.: False positives and negatives for several γ/λ

chance that someone is labeled as affine when he is not. Our affine friend-to-be will be
lost forever. Therefore, in our scenario, we should be permissive with false positives if
this keeps the ratio of false negatives low.

Figure 7.3 shows the relation of false negatives according to the people that the proto-
col thinks that are affine (positives), and the relation between false positives according
to negatives for several values of γ/λ. By inspection of Figure 7.3, a value of γ = 6λ gets
a ratio of false negatives close to 20%, and this ratio decreases exponentially with γ/λ.
At the same time, the ratio of false positives against negatives grows with γ/λ, being
close to 40% for γ = 6λ. The slow slope of the ratio of false positives is very convenient
for our scenario, as discussed before. This shows that we were too conservative when
we recommended in Section 7.2.1 a value for γ as close as possible to 4λ. Applications
in the real world are likely to show a best behavior with larger γ due to the different
significance of false negatives and positives. However, the reader should be aware that,
in order to the protocol to be feasible, a small value for γ is recommended. Section 7.4
will discuss this issue.

Even if we are permissive with false positives, they are undoubtedly errors and they
will induce a worse behavior of the social network. Figure 7.4 shows some good news
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Figure 7.4.: Real distances for several γ/λ

regarding this issue. Readers will remember that a false positive is a profile that shares
cluster with other profiles while being separated more than λ. We defined clusters to
have a diameter of at most γ. As a consequence, false affine people have not really
random interests: their profiles are at most γ units from the user. The effect of false
positives in the outcome of the protocol is that the affine people that a user is able to
find have an effective distance slightly larger than λ, and less than γ. Figure 7.4 shows
this effective distance relative to λ for several thresholds λ. In this figure, a value of 2
means that the average distance of affine users according to the protocol is 2λ. As the
figure shows, the effective distance grows linearly with ratio γ/λ.

The simulations support the theoretical analysis introduced in section 7.2.1. We rec-
ommended a value for γ larger than 4λ, where we find a minimum for the percentage
of errors. We can be more permissive with false positives than false negatives, and then
values of γ = 6λ are still safe. Even if these high values exhibit a high ratio of false
positives, the effective distance is still bounded to γ. Therefore, the proposed protocol
is actually able to compare profiles not under threshold λ, but under a threshold λ′ that
is between λ and γ. In addition, the use case proposed in chapter 4 has been studied in
other works as [137]. In the routing algorithm that is proposed there, false positives help
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to find a suitable end-point for a recommendation message. Besides, since in our system
a false positive has a maximum distance bounded by γ, it is not really a drawback for
the system.

7.4. Computation feasibility

Pattern matching inside graphs is a research field more than 30 years old. Despite the fact
that the subgraph isomorphism problem is NP −Complete and that there is not a final
word about the graph isomorphism problem, both problems have probabilistic solutions
in reasonable time. In fact, in order to make our proposal feasible, it is necessary that
two conditions are met: (i) both users must quickly decide whether or not the graphs
that result from a run of the protocol are isomorphic; and (ii) given one of these graphs,
it is not possible to undo the isomorphism and identify the original subgraph of G. The
first condition demands that the final graphs are small enough to make the problem of
graph isomorphism solvable within a reasonable time, while the second condition ensures
that the problem of subgraph isomorphism is not.

[30] proposed an algorithm to solve both problems. Its authors stated that their al-
gorithm has a temporal complexity O(N2) in the best case, and O(N !N) in the worst,
being N the number of nodes in the graph. Furthermore, they show results for the exe-
cution of the algorithm to recognize isomorphic graphs, and they can solve the problem
for N = 1000 nodes in about a second. Besides, in the same work they showed that
classic algorithm perform in a similar way. As a consequence, we can conclude that for
a number of nodes close to N = 1000 the problem of graphic isomorphism is solvable
under a feasible time, and then the first requisite of our proposal can be reached if graphs
Cx and C2

x have a number of nodes of 1000 at most.

We analyze the feasibility of the second requisite next. We assumed that the problem
of the subgraph isomorphism is not solvable and then an attacker is not able to identify
the subgraph G that is isomorphic to Ca. If he can, then he is able to identify the
nodes of G that are affine to a, and then he can make a good guess of a’s profile. As
described in chapter 4, we wish to apply this protocol to a recommendation system.
In order to achieve useful recommendations from the system, we consider that a high
number of categories are needed, most likely about several hundreds. We work on a
space with n = 200 categories. In this case, even if we assume a high value for the
minimum distance between profiles in G as γ = 0.2, the number of possible nodes inside
G is huge, Nmax = 1

γ

n
= 5200. A number of nodes as big as this cannot be managed by

classic algorithms or by the new proposals as [30], and then we can assume that in our
scenario both feasibility requisites are matched.

7.5. Common inputs attack

There is an attack line that was described in current privacy literature that can be applied
in this case. If the attacker is able to introduce in G a specially crafted subgraph H
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with certain characteristics, the solution of the subgraph isomorphism problem may be
simplified. For example, in [16] a method to introduce H into a much bigger graph G is
proposed, in such a way that H can be identified even after isomorphisms. If an attacker
is able to introduce this kind of subgraphs in G, he can effectively control some areas of
the social space. As [16] shows, for this attack to be successful, the graph H needs to
have at most O(log(N)) nodes, and each node O(log(N)) neighbors. Authors are able
to collect information with as little as 7 nodes pushed in a social network of 4 million
nodes. This subgraphs H do not have any special characteristic that let people different
from the attacker to identify them, so they can be perfectly hidden inside G.

To solve this problem we propose that the creation of graph G should be controlled by
both parties. If G is dynamically created at the moment of the matching, an algorithm
to avoid the introduction of arbitrary graphs H should be provided. For example, if
both parties agree with a randomized generation algorithm, and a random seed, it is not
possible to push a predefined subgraph H into G. Another suitable option is that both
parties agree with the creation of graphs G that verified the property of “k-anonymity
of graphs”. That is to say, given any node and its neighborhood, it is possible to find k
nodes in the network that have an isomorphic graph. [151] proposes a graph generation
algorithm that holds this property.
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The recommender system that we are developing within this thesis uses a social network
where users create links each other according to the affinity of their profiles. Thus,
checking if two profiles are affine or not is a central step of such recommender system.

In order to issue useful recommendations, a user model that captures the user’s inter-
ests must be defined, along with a suitable metric that compares the similarity between
users and documents and decides whether or not a document is interesting for a user.
The definition of these user’s profiles and an accurate metric are complex and on-going
tasks that are being researched transversely in the artificial intelligence and data mining
fields.

Chapter 5 introduces a simple model to create profiles of documents by inspection
of their contents. From the profiles of the documents that a user owns, we define the
user’s profile. Finally, queries can be modeled using the same ideas. These profiles are
vectors of a social space. Each one of the components of a user profile vector captures
the interest of the user in one of the semantic categories that the system established.
Given this social space, we can define a metric that captures the similarity between the
profiles. Finally, given a threshold λ, we defined the affinity of two profiles as follows.
Two profiles are affine if their similarity is greater than λ.

During chapter 6, the attacker model was an adversary that wants to learn the profiles
of the users that participate in the social network. The attacker is successful if he learns
some information about profile, that is, if he is able to make a good guess about the
interest of the user in some of the categories of the system. Of course, the attack is also
successful if he is able to learn the exact value of one single category of the user’s profile.

In 6, we explored a distortion mechanism to protect the users’ privacy during matching
profiles to create communities of affine users. We took advantage of Lemma 6.1.2 to
linearly project profiles into spaces of less dimensions. According to this lemma, the
attacker is not able to separate the vector elements if the dimension of the projected
space is less than half the dimension of the original social space. In addition, we used
Lemma 6.1.1 to create a projection matrix that maintains distances of the projected
profiles bounded. We explored three of these matrices: Random, Achlioptas and Hybrid.
In addition, we explored the amount of private information that the projected profiles
store, and analyzed the triangulation attack.

However, users are only safe against passive attackers that follow the rules of the
protocol. If the attacker tricks the targeted user to pick a projection matrix that is more
convenient for the objective of the attack, or uses the information of the profiles of the
neighbors to make good first estimations of the user’s profile, triangulation attacks may
be possible.

In chapter 7 we developed a protocol to calculate affinity between two users without
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leaking any information about the users if they are not affine. We defined “affine users”
as users with profiles under a distance λ, and we provided mechanisms to tweak the
protocol for different values of λ. Throughout simulations we checked that we were
partially successful, since the protocol can be configured to bound the number of false
negatives as much as necessary, but the overall number or errors increases. Despite this
fact, we analyzed that in our scenario a big number of false positives is acceptable if the
number of false negatives remains small. Through a theoretical analysis, we proposed
suitable values for the configuration parameter γ according to the desired λ. These
proposals were supported by simulations.
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Plausible deniability
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In part II, we explored several mechanisms to protect the privacy of a user of the rec-
ommendation system by limiting the amount of information that a user sends to the
network while allowing the profile matching that recommenders need. Still, there are
additional threats for a recommender system. Current legal developments such as ACTA
and prosecutions such as the MegaUpload case show that intermediate nodes, indexers
and providers can be under attack. We feel that the design of a secure recommender
system cannot be complete without considering the legal threats against other actors of
the recommender system.

This part includes the proposal of DocCloud, a document recommender system that
is deployed on a cloud computing system. This recommender service involves running
small virtual machines (PaaS/IaaS) that are controlled by individual users to actually
perform recommendations. In this case, we offer legal protection in two different layers:
from the SaaS point of view, the system provider cannot be accused of complicity on
copyright grounds since he is not aware of the documents that individual virtual ma-
chines are recommending; from the PaaS point of view, we protect individual virtual
machines and hence their owners by means of hiding the exact machine that answered
a recommendation.

Hence, during this work we focus our efforts on protecting all participants of the cloud
document recommendation system. Even if the protection of the customers’ privacy is
not going to be our first priority during this part, some of the decisions take into account
the results of other parts of the thesis.

In chapter. 9, we define plausible deniability, explore the models and assumptions of
our scenario and present the high level structure of DocCloud. Chapter 10 includes the
operation of the recommender system in the cloud and the security analysis of this sys-
tem. Section 10.3.1 evaluates the contribution of indexers to achieve optimal database
anonymity. Finally, section 10.3 analyzes DocCloud according to the requirements de-
scribed in previous chapters. Finally,
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9. Protection of intermediate nodes

Moving a recommender system to a cloud structure involves storing document descrip-
tions in the cloud components, sending queries to get recommendations to some entity
inside the cloud system and store document and user’s profile on the nodes that take
part of the cloud. These actions are not only a threat against the users’ privacy, but they
make it possible for copyright holders to take legal action against the cloud components.

There are two possible approaches to study a document recommendation system on a
cloud. If we look at the system as software as a service (SaaS), the cloud provider would
be responsible for every recommendation that the system returns. If the cloud manager
is only a service provider, in such a way that we are using the platform/infrastructure
as a service (PaaS/IaaS) paradigm to separate each one of the cloud components, the
individual entities that provide recommendations are responsible for giving access to
specific documents. Therefore, from the SaaS or PaaS point of view, the participants of
a cloud system can still be accused of distribution of copyrighted documents.

This threat is real, as introduced in section 3.1. Prevention of illegal distribution by
means of pure technical solutions has not been effective and copyright holders shifted
their targets to the prevention of document distribution throughout legal attacks to
document providers and indexers. In April, 2009, the administrators of The Pirate
Bay, a popular document indexer, were found guilty of complicity in the provision of
unauthorized access to copyrighted content and they were sentenced to one year of
jail and nearly 3 million euros in damages [118]. Shortly after The Pirate Bay’s trial,
Rapidshare, a popular cloud repository to download documents, handed over personal
information about content uploaders from Germany to the courts in order to prevent
legal actions against the company [6]. Moreover, a new international treaty regarding
copyright protection called ACTA is being negotiated at the moment of writing this
article. After some secrecy, the consolidated text is now public [127]. Article 2.15 copes
with liability of legal persons, and states that “the provisions of this section shall apply
to inciting, aiding and abetting the offenses referred in article 2.14”. The penalties
that this article proposes “include imprisonment as well as monetary fines”. ACTA
shows a trend in legislators throughout the world to make people that help to download
copyrighted documents, and hence cloud providers and virtual server owners, liable of
copyright infringement.

9.1. Plausible deniability

The security service that protects indexers and intermediate nodes from legal prosecu-
tion is plausible deniability [60]. We introduced this concept in section 5.4.1 of this
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document. Any indexer or system will achieve complete deniability when they are
able to deny any knowledge about the content that they are managing. A naive solution
for providing this service is using a pre-shared key between data issuer and receiver so
that intermediate nodes and indexers cannot access the content. This approach forces
issuer and receiver to meet and organize in advance, and displaces the search of docu-
ments from the indexer to another entity that shares the key. In order to give a more
realistic and practical solution we define plausible deniability as the property of the
system that protects indexers and intermediate nodes from legal attacks. In the com-
mon law context, plausible deniability [132] refers to circumstances where a denial of
responsibility or knowledge of wrongdoing cannot be proved as true or untrue due to a
lack of evidence proving the allegation.

If indexers and intermediate nodes are granted plausible deniability, they cannot be
blamed for the content that they are indexing/routing. Despite the plausible deniability
property, indexers still have to be able to answer queries and perform searches to make
the recommender system work as a whole.

User’s privacy. As described in chapter 5, the query that a user sends to the network
includes sensitive data that most people won’t desire to publish in a database. In this
part of the thesis, we are focus on protecting indexers, but user privacy should be
addressed in a complete system. The mechanisms that were explored in the part II must
be used in addition to the system described during this part of the thesis. In fact, as we
will see, queries and document profiles are going to be protected using the mechanisms
of chapter 6.

9.2. System Architecture

We call our recommender system DocCloud. DocCloud involves a social network of
similar users, a cloud system of recommenders and a distributed secure filesystem.

Assortative mixing is the property that a network shows when nodes link to other
nodes that are similar to them, under some quantitative definition for similarity. Most
social networks show an assortative behavior. We work on a social cloud [24] that rep-
resents a social network. Inside, there are some clusters of nodes that gather users that
share similar interests and hence are affine. When users join the network, they identify
their most suitable cluster according to their interests. Then, users inside the cluster
link each other. We focus our system on N closed clusters, and any user participates
only of one cluster. There are several proposals in the literature to create this kind of
social cloud according to the interests of the users in a decentralized fashion. Part IV of
this thesis will study an epidemic algorithm to create this social network. The interested
reader is referred to [100, 14, 138].

In addition, we will define a cloud system that includes all document indexers. This
cloud is organized in a dust cloud in the sense of [91]. That is, each one of the virtual
machines is controlled by a user that instantiates it as needed, and dismisses the machine
when the job is done. The cloud provider maintains N different entry points to the
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Figure 9.1.: DocCloud: system architecture

cloud system, as many as clusters of the social network. Users instantiate machines that
connect to one of these entry points and to other machines that link to the same entry
point. Using this process, there are N different clusters of dusts inside the cloud. We
will use these virtual machines as indexers of documents of the recommender system.

Finally, our recommender system will use another cloud system to store and distribute
the real documents. We will assume that, given an URL, users are able to download
a file from this filesystem in a private way. The details about the management of this
filesystem will be studied in part V. The interested reader is referred to secure distributed
filesystems such as [134, 116].

An overview of DocCloud is shown in figure 9.1.
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9.3. Models and assumptions

9.3.1. Document and user’s profiles

In order to describe users and documents, during this part we use the same social model
that was introduced in chapter 5. Hence, users, documents and queries are modeled as
vectors of a social space with N different categories. As explored in chapter II, we can
use different mechanisms to distort of even prevent information leaks during the profile
matching phase of the recommender process, but these mechanisms are not enough to
protect databases against legal prosecution. Indeed, even if databases are not aware
of the identity of a user or their profiles, they do know the documents that they are
providing.

During this part of the thesis, we will extend the social model described in chapter 5
to include an additional security layer to protect databases. As we will see, profile
distortion or zero knowledge protocols don’t protect databases against legal attacks and
we need to include a cryptographic approach to cope with this new problem. The reader
should notice that these mechanisms are complementary to the previously introduced
privacy protection technologies, and they can and should be used together.

The cosine metric, as defined in chapter 5, is not the most optimal way of computing
similarity between documents, as the recent work [87] shows. However, the cosine metric
is simple enough to be computed using only additions and multiplications as we will
show, and then it will be possible to use special cryptosystems to protect profiles. We
define that a protected profile [ē] = {[e1], [e2], . . . , [en]} is a profile where each one of
the components was encrypted using an additive-homomorphic cryptosystem such as
Paillier [93]. Only the user that knows the private key is able to decrypt protected
profiles. We will represent the decryption of this profile as [ē]−1 = ē. Then, given a
profile in clear ā with a known norm ||a|| and an encrypted profile [ē], it is possible to
make the calculation of a new parameter e(ā, [ē]) according to equation 9.1.

e(ā, [ē]) =
n∑
i=0

ai[ei] (9.1)

The reader should be aware that operators of equation 9.1 are on the space of the
encrypted text, not on the set of integers, and these operations will be calculated by
an entity that does not know the private key of the encryption of [ē]. Under these
circumstances, given e(ā, [ē]), only the entity that owns the private key of [ē] is able to
calculate the real similarity as in equation 9.2:

sim(ā, ē) =
[e(ā, [ē])]−1

||ā|| ||ē||
(9.2)

Next, we make some numbers using the Paillier’s cryptosystem. For a social space of
n = 256 = 28 categories and M = 256 = 28 possible levels of interest in each category,
the maximum possible value for e(ā, [ē]) is emax(ā, [ē]) = [nM ] = [216] for a certain profile
ā that holds completely different interests from ē. In a Paillier’s cryptosystem, the key
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bitlength kp bounds the size of the number that can be encrypted and it is necessary
that emax < gkp . In opposition to RSA, there is not any standard for the bitlength of
the Paillier’s cryptosystem, but we will consider that a bitlength of kp = 512 for g = 2
is the minimum acceptable to provide reasonable security. In this case, emax = [216] is
well below the upper limit 2kp = 2512. In general, it is necessary that kp ≤ logg(nM).

9.3.2. Security model

We will use the security model that was defined in chapter 5. In our security model, we
consider that any user of the recommender system or the virtual machines that create
the cloud may be attackers of the system. If an attacker is able to learn something
about the profiles of the documents or users, or the identity of customers or indexers, we
consider that the legal system may assume that these attacks are possible. On the other
hand, showing that attackers are not successful proves that nodes cannot be prosecuted
for not trying to learn information about documents or users.

We consider that users or virtual machines in the cloud may be attackers of the system.
The attackers may be (i) the originator of a query, (ii) any node in the path between
the customer and the indexer, (iii) a malicious owner of an indexer or (iv) the cloud
provider. If the attacker is the source of a query, he is successful if he is able to identify
the source of a recommendation. Second, if the attacker is in the middle of the path
between a customer and an indexer, he is successful if he is able to identify the customer,
the specific indexer that answered the query, or gain any information about their profiles.
Third, an attacker acting as an indexer is successful if he is able to access the contents
of a query or the exact profiles of the documents that it indexes. Finally, the attacker
that acts as the cloud provider is successful if he is able to identify the identity of the
indexer that answered a query, the source of the query or the contents of any of the
messages that the different participants exchange.

In particular, during this part of the thesis we are going to focus on providing these
security services:

• Indexer plausible deniability. Indexers of documents should not be aware of the
profiles of the documents that they are serving. Anyway, they still should be able
to provide correct recommendations. This way, an indexer cannot be prosecuted
for complicity in finding copyrighted documents.

• Cloud provider plausible deniability. Similar to the indexer deniability property,
the cloud provider should not be aware of the recommendations that the system
is providing.

• Oblivious routing: users that route messages in the network should not be aware
of what they are routing. In this regard, nodes that assist in identifying documents
by means of routing queries cannot be accused of abetting copyright infringement.
Systems that use onion routing are able to provide this service. However, nodes
that take part of an onion-routing are oblivious to the content of the message
that they are routing. To be effective, nodes that route queries of a recommender
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system must decide the next hop according to what they believe will provide higher
efficiency. In the next chapter, we will study how to tackle with this trade-off
between efficiency and security.

• Indexer anonymity. Customers do know the query that they send to the system
and the results of this query. If they are able to identify the indexer that answers
a query about a sensible document, they may accuse the indexer for abetting the
download of the document.

We do not consider a global attacker that is able to observe all transactions in the
network. Furthermore, we do not aim to offer protection against denial of service attacks.
In any case, since data will be replicated inside the several databases of the network, this
kind of attack is much harder to perform. In this part of the thesis, we do not consider
the possibility of identifying malicious nodes, but a system that includes identification
and marks the malicious users will improve greatly its security.
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As introduced during the last chapter, we are building a recommender system where
nodes are organized in an unstructured way according to their interests. That is to say,
nodes in the network with similar interests are linked each other with high probability.
This kind of social network is used in the literature to provide recommendations [100,
14, 113]. Therefore, nodes join together and create clusters of similar users according to
their interests. Inside these clusters, we will define that nodes agree with a shared key
and choose a “foreign cluster” to publish and perform searches. These publications and
searches are cryptographically secured in order to avoid that databases to know what
they are storing.

Figure 10.1 shows this scenario. In the scenario of the figure, nodes in the cluster
A share a key KA, publish documents and send queries to the nodes in the cluster B.
Every communication starts in A and ends in B, and nodes in B do not need to be aware
of the interests of users in A. In this regard, nodes in A act as merchants and users of
the recommender system, while nodes in B have the role of indexers and recommenders
of the system.

The reader should be aware the nodes in B, in turn, may act as merchants and users
in front of nodes of another cluster C. During this chapter and in order to simplify the
description and analysis, we will consider only a single role for each participant of the
system.

Our final goal during this chapter is that (i) nodes in A that route the query of a
customer learn nothing about the contents of the query; (ii) indexers in B know nothing
about the description of the queries p̄r that they store; (iii) databases do not know
whether or not they are answering a particular query and (iv) customers won’t learn the
identity of the specific indexer that answered a query. In this case, all participants of
the communication may plead plausible deniability in case of a legal attack.

In this chapter, we present (i) the architecture of DocCloud, (ii) the proposed algo-
rithms to get recommendations from the system and (iii) the security mechanisms that
the system provides. Specifically, we study the properties of plausible deniability and
anonymity of the indexers that issue recommendations. This way, indexers can recom-
mend products to the customers while denying with some probability any knowledge
about the product that they are recommending, and even denying their participation in
the recommendation process.
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Figure 10.1.: Deployment of the sets of customers and indexers in DocCloud

10.1. Building blocks

In this section we explore the general structure of the system giving its building blocks.
In each of the subsections, we explore the involved mathematical tools. In section 10.2,
we will join together these blocks to build the complete system.

10.1.1. Key management

Customers will identify and join a cluster of customers with similar profiles. When a
customer joins a cluster, a new key must be created and distributed among the members
of the group. We propose the key management algorithm of Hernandez-Serrano et
al. [61]. This is a Group Key Management (GKM) scheme, which manages the changes
of the shared key during the life of a group. The main challenge of a GKM scheme is
the secure update and distribution of the shared key among the members of the group.

Hernandez-Serrano et al. aimed to a scalable key management algorithm of large
groups of users that minimizes the re-keying cost when the members of the group change.
The members of the group are organized in a tree-shape structure with sub-keys in each
of the branches. When a user joins or leaves the group, only the correspondent sub-keys
are changed. This way, the number of messages to change a key is minimized. The key
management scheme of [61] does not need any central node and it is unattended. These
characteristics make this scheme suitable for our needs.

The output of the key management scheme produces a shared key that all members
of the group know. This key will be updated when a new member joins the group, or an
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old member leaves. We assume that entities that are not members of the group won’t
seek actively the group key. That is to say, we assume that attackers may have access
to the group key, but legitimate nodes that are not members of the group won’t have
interest on owning this key.

10.1.2. Random projections

Nodes in cluster A push the profiles of the documents that they share into indexers in
cluster B. These profiles are not inserted into the the document indexers databases
as-is, but they are projected into a social space with less dimensions, as was explored
in chapter 6 of this thesis. Therefore, databases index projected profiles and they are
oblivious of the real profile that they are indexing. The reader should notice that this
is true even if they have access to the projection matrix, and this matrix is something
that indexers are not expected to seek actively.

10.1.3. Homomorphic encryptions

Giving a x ∈ Zq, we call [x]k the encryption of x under the key k. We will consider a
crypto-system that holds these two homomorphic properties:

• Given [x]k and [y]k, it is possible to calculate [x+ y]k without knowing k.

• Given [x]k and y in clear, it is possible to calculate [xy]k without knowing k.

One of the homomorphic crypto-systems that is proposed in the literature showing
these properties is Paillier’s system [93].

Hence, if a profile p̄ = {p1, ..., pn} is normalized and encrypted as [p̄]k = {[p1]k, ..., [pm]k},
it is possible to calculate the encrypted distance to another normalize profile q̄ =
{p1, ..., pm} using the cosine metric as:

[d(p̄, q̄)]k = ?ni=0[pi]
qi
k = [

m∑
i=0

piqi] (10.1)

This formula is a modified and encrypted version of the cosine metric that was explored
in chapter 5. The cosine metric needs only additions and multiplications to be computed,
and hence it is possible to devise an homomorphic crypto-system that computes this
metric. Despite its simplicity, we judge that equation 10.1 is very suitable for the
objectives of this system.

We use this block as follows. Databases index profiles in the form p̄ = {p1, ..., pm}.
A customer privately creates a secret key k. Then, the customer sends to the database
queries [q̄] that are encrypted under k. Using an homomorphic crypto-system, the
database is able to calculate the value of the parameter e(p̄, [q̄]) using equation 9.1,
even if it knows nothing about k and q̄. Finally, this parameter is sent back to the user,
which calculates the similarity using equation 9.2.
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Figure 10.2.: An overview of the mechanisms

10.1.4. Private Block Retrieval

We assume the existence of a Private Block Retrieval (PBR) scheme that works on single
databases. In a Private Block Retrieval system, a client is able to get privately j bits
from a database, starting from a position i. This way, indexers are able to claim that
they do not know which item a specific customer is downloading.

One of these schemes that is suitable for our work is presented in [47]. The complexity
of this algorithm is O(k + j), being k > log(n) a security parameter. The authors of
this scheme state that it has the lowest asymptotic communication complexity of the
current proposals, and their statement seems not to be challenged in recent papers.

Additionally, the database owner is often interested in adding an oblivious transfer
mechanism to their queries. In this regard, a client of the database cannot be able to
download a significant piece by means of some forged queries. If clients can only access
to a single piece of data with a query, URL(d), then the rest of the contents of the
database are safe. The mechanism that is proposed in [47] describes the necessary steps
to achieve 1-k oblivious transfers.

In this work we assume that an efficient mechanism that provides both private block re-
trieval and oblivious transfer exists, We refer to the interested reader to the proposal [47].
For the sake of completeness, we will propose a simplified yet working version of a PBR
scheme in section 10.2.3.

10.2. Recommendation System Operation

In DocCloud, we identify four different phases to get a document recommendation: (i)
the creation of a social cloud, (ii) the insertion of document profiles into the indexers,
(iii) the search of recommendations by the customers and (iv) downloading of the rec-
ommended document. Users organize in a social network according to their interests,
documents are distributed from a secured cloud computing system that is shown on the
left of figure 10.2 and are recommended by the cloud system that is depicted on the
right side of figure 10.2.

Figure 10.2 shows the phases of the system, and outlines the mechanisms that we will
use in this section during the description of the system.
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10.2.1. JOINING: Creation of the social cloud

Users of DocCloud are organized in clusters according to their interests. How new users
discover the most suitable cluster of interest and the management of these clusters will
be studied in part IV of this thesis. At the time being, we will assume the existence of
an efficient algorithm that creates the clustered social network.

After joining to the most suitable cluster, nodes in a cluster A will agree a secret
key that includes two items, KA = (B,MA), using the block was was introduced in
section 10.1.1 The first part of the key is a reference to another cluster of nodes B that
will be used to store the profiles of the documents shared by nodes in A. The reader
should be aware that nodes in B won’t need to be aware of the identify of the cluster
A. The second part of KA is a random matrix MA that we will use to protect profiles
in A, as introduced in section 10.1.2.

An important point to notice is that since users are not authenticated when they join
group A, we cannot assume that attackers are not able to get KA. We do assume that
lawful indexers in B are not going to actively look for KA, and we will see soon that
even if they are handed over KA, they are not going to be able to calculate the original
document profiles.

Nodes in B are not free contributors. They accept to index documents for nodes in
A because they insert the profiles of their own documents in a different cluster C ⊂ N .
That is to say, in a real network nodes are both users and indexers, but for the sake of
clarity during the rest of this article we will consider only the merchant/customer roles
of nodes in A, and the indexer role of nodes in B.

10.2.2. INSERT: Inserting document profiles into indexers

After users join a specific cluster of the social cloud, they will share some documents
with the community. During this phase, user a ∈ A plays the role of a merchant. The
first step for a is assigning profiles to her documents, using the mechanisms discussed
in section 9.3. For a document di, a assigns a profile p̄(d) and publishes the document
d under URL(d) in the filesystem in the cloud, as described in section 9.2. Finally, a
inserts the pair (p̄(d), URL(d)) into a random indexer b ∈ B.

The reader will notice that if indexers and intermediate nodes are able to access these
profiles in clear, they will perfectly know the kind of documents that they are providing
access to. In addition, they are even able to estimate the user profile just by means of
collecting enough document profiles from the same source. Indexers and intermediate
nodes need to use these profiles to route and answer queries according to the affinity of
the user to the document descriptions that they index. In order to provide deniability
for DocCloud, we need to devise a mechanism that hides some of the information of the
descriptions but is still useful to calculate affinities between elements in P.

The chapter 6 of this thesis introduced projections into social spaces of fewer dimen-
sions as the mechanisms that provides this service. Two different problems arise in this
scenario: (i) whether comparison of profiles makes sense in the projected space and (ii)
the amount of information of the original description that is preserved after the projec-
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tion. Analysis in chapter 6 shows that these properties hold for some projection matrices
and n > 2m+ 1. The reader is referred to chapter 6 for additional details.

In DocCloud, when a user a ∈ A inserts the description of a document d into an
indexer b ∈ B, he sends the pair (MAp̄n(d)t, URL(d)), where the first component is
the projection of the document profile and the second component is the URL of the
document.

The identity of the owner of the document reveals information about the contents of
a document, since we assumed that users’ profiles are related to the documents that
they own, as discussed in section 9.3. In this regard, nodes in A should not publish
the pair on their own in node b, but they must hide inside an anonymous cloud. We
do not enforce any particular anonymous network, but for the rest of this document we
assume the existence of a distributed anonymous network such as Crowds [105] or Dust
Cloud [91].

Next, an epidemic routing protocol occurs to distribute information inside the set of
indexers from B. The objective of this epidemic protocol is spreading the information of
the documents in many different indexers. This way, (i) the availability of the document
profiles increases, (ii) nodes in A may contact a random node b ∈ B to perform queries
without compromising the efficiency of the results; and (iii) the possible liability of pro-
viding access to a document is shared among different nodes. There are many proposals
of epidemic protocols for recommendation system [44, 100, 14, 137, 138]. Part IV will
study a specific epidemic protocol for our scenario. Indeed, nodes in B save the docu-
ment description of nodes in A, but since they have a user profile as well, it is possible
to use this profile to organize nodes in B according to their interest, as in [138]. Thus,
nodes in B can take advantage of the epidemic algorithms proposed in the literature,
but they store and replicate the description of documents owned by nodes in A instead
of the profiles of their own documents. This same epidemic routing mechanisms will be
used to route query messages inside B.

10.2.3. QUERY & GET: Recommending documents

Our security goal during this phase of the recommender system is to provide indexer
anonymity, that is to say, to make it impossible for an attacker to distinguish which one
of the indexers is the one that stored a particular answer to a query.

During this phase, the participants view the system as figure 10.3 shows. Even if it is
not stated during this section, the reader must take into account that all communications
between customers and indexers use the anonymous routing that was introduced in the
previous phase. Hence, indexers cannot identify the customer that issued the query that
they are currently managing.

We describe a process in four steps. First, customers run algorithm 1. This algorithm
issues queries to indexers that run 2, and gets a vector E of encrypted distances. Then,
customers decrypt distances and choose the indexes of the documents that are more sim-
ilar to the queries that they issued. Then, customers download the URLs of the selected
documents using algorithm 3. Finally, customers will use these URLs to download the
recommended document from an external, distributed filesystem. During this section
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Anonymous
Network

Figure 10.3.: Multiple indexer scenario

Algorithm 1: customer search query(q̄n, M , K)

q̄m ←Mq̄n
[[q̄m]]← Enc(q̄m, K)
D ← DB search query(b ∈A B, [[q̄m]])
foreach [[di]] ∈ D do

if Dec([[di]], Kpk) ≤ λ then
customer download pbr(i)

we will look at these algorithms in detail. Even if it is not stated during this section, the
reader must take into account that all communications between customers and indexers
use the anonymous routing that was introduced in the previous phase. Hence, indexers
cannot identify the customer that issued the query that they currently manage.

QUERY document profiles

A user a ∈ A that searches for a document in an indexer b ∈ B builds a query q̄n and
chooses a private key Ka. This key is only known by a, which projects and encrypts
the query as stated in section 10.1.2 to create [q̄]. Next, a sends anonymously [q̄] to
a random indexer b ∈ B, which calculates the parameter ej(p̄j, [q̄]) of every document
profile that indexes using equation 9.1, and then creates a vector Eb that contains these
parameters ej. The query is sent to other indexers of the cluster B and the encrypted
answers are joined together. Finally, a will receive an ordered set E = ∪Eb where each
one of the components is the parameter e(p̄(r), [q̄]) of the documents that the nodes in
B indexed. Next, a decrypts and calculates the distances to the documents, and selects
those that are affine according to the threshold λ.

An epidemic algorithm without loops inside the cluster B, as we assumed in sec-
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Algorithm 2: multi DB search query(b, q̄m, depth, branches)

S ← indexer(b)
D ← {}
foreach p̄(r) ∈ S do

D ← D ∪ (
∑m

j=0[[qi]]
pi)

if depth > 0 then
for i = 0 to branches do

D ← D
⋃
multi DB search query(b ∈R B, q̄m, depth− 1, branches)

{D, π} = permute(D)
return D

Algorithm 3: customer download pbr(o, i)

D ← {}
for bj ∈E B do

D ← D ∪ download pbr(oj, [[i]])
return PBR([[i]], S) ∪D

tion 10.2.1, can create the tree of indexers that figure 10.3 shows. For the porpoises
of this document, the tree structure has a disadvantage: answers that are provided by
nodes in the inner branches of the tree are going to be localized in the last positions
of the joint vector E. Since we want to provide indexer anonymity, it is necessary that
each one of the nodes locally permutes the vector E, as algorithm 2 shows. This way,
the origin of the query cannot identify the position of an indexer in the tree according to
the position of its answer within the vector E. In addition, during the GET sub-phase,
indexers must locally undo these permutations. The permutation that each indexer ap-
ply must be a secret that shouldn’t be made public. This mechanism can be refined to
avoid duplicated items by means of Bloom’s filters.

GET URLs: Private Block Retrieval Protocol

Finally, a private block retrieval (PBR) scheme takes place in order to download the
URL(r) associated to the document that is of his interest without noticing b. The
private block retrieval scheme hides the index of the item that a is retrieving, and it
ensures that nobody in the path a → b knows which item a is interested in, not even
the indexer b.

For the sake of completeness, we describe next a simple yet useful PBR scheme to get
a URL from the indexer without leaking which URL the user is asking for. This PBR
system uses the Paillier’s crypto-system [93].

In order to improve the efficiency of the communication from the point of view of
the number or exchanged bits, we will use a two-dimensional view of the database.
Hence, the customer won’t receive a single URL, but a set of µ related, affine URLs.
First, the database needs to be organized in the following way. An indexer creates ν
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µ

ν
URLj,0 . . . URLj,k . . . URLj,µ

µ profiles affine according to λ

s̄(j) = ([0]0, . . . , [1]j, . . . , [0]ν)

S(j) = s̄(j) ·DB = ([URLj,0], . . . , [URLj,µ])

Figure 10.4.: The two dimensional PBR system

sets that contain at most µ URLs each, in such a way that the URLs inside a set are
affine according to a pre-shared λ, being λ the affinity threshold. These sets are then
organized as a matrix of ν rows and µ columns. We assume that the database used an
optimization mechanism to calculate a representative of each set, and the distance to
this representative profile was sent to the user during the QUERY sub-phase.

Then, the user asks for the j-th row of the matrix, where j was the output of the
previous sub-phase. To do this, the customer constructs the selection vector s̄(j) of
equation 10.2 and 10.3, where all components are the Paillier’s encryption of 0 except
the j-th component that stores the encryption of 1. The reader should remember that
the Paillier’s encryption is probabilistic, and an observer cannot identify the components
of this vector.

s̄(j) = (s0, s1, . . . , sk) (10.2)

where si =

{
[1] if i = j
[0] if i 6= j

(10.3)

Then, the indexer multiplies each component of the selection vector for each row of
the URL matrix, and adds the results. These operations are shown in equation 10.7,
which takes advantage of the homomorphic properties of the Paillier’s crypto-system.
As figure 10.4 shows, this process results in a vector with the URLs in the i-th row.

S(j) =
∑

si ⊗ rowi (10.4)

= [0] · row1 + . . .+ [1] · rowj + . . . [0] · rowν (10.5)

= [rowj] (10.6)

= ([URLj1], ..., [URLjµ]) (10.7)

Further analysis of possible PBR systems can be found in [92]. Even if there are other
proposals more efficient than this one, the reader will notice that the PBR system that
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has been described is very convenient for our proposal, since a user gets a complete row
of affine profiles from the indexer with a single query and most of them would be of his
interest.

We will clarify the complete recommendation process, including the indexer tree, using
an example. Figure 10.5 shows a tree of three indexers that returned an array E with 6
distances. Indexer x contributed with {d1, d2} to the array, indexer y contributed with
{d5, d6} and indexer z with {d3, d4}. When the user receives the vector of encrypted
distances, he chooses the elements 2 and 5, and starts a PBR process. Indexers do not
know the position of the elements that a user wants to download, so each x, y and
z builds a virtual database that contains the documents that they store in the same
position that they answered in E, using empty elements for the other positions. When
x receives a petition for d2 and d5, it is able to answer d2 and the 5 − th position is
empty, x5. z cannot answer any valid document and only returns empty positions, while
y answers an empty item and a valid URL d5. The reader will notice that indexers are
unaware whether they are returning valid URLs or just empty items. Then, the user
receives the answer array, undoes the PBR scheme and finally discards the empty items.

Using this scheme, it is clear that neither indexers nor an observer in the middle of
the path can learn whether a particular document comes or not from a specific indexer.
Indexers are unaware even if they gave a valid answer to the user. By means of the
additional permutation that was introduced in section 10.2.3, which was not shown in
this example in sake of simplicity, the customer cannot either reconstruct the original
positions of the indexers within the tree.

10.2.4. DOWNLOAD the document

Finally, the customer will download the desired document from the distributed filesys-
tem. We assume that it is not possible to learn any information of p̄(d) from URL(d)
of a document, and that it is not possible to access to the URL(d) from any node
not in A without the group key KA. A secure distributed filesystem that meets these
requirements will be studied in part V of this thesis.

10.3. Analysis of DocCloud

This section revisits the system requirements that were introduced in section 9.3.2.
These requirements are analyzed according to the security mechanisms and procedures
that were described in the last section. In addition, section 10.3.1 explores the indexer
anonymity requirement in depth.

Indexer plausible deniability. Indexers store document profiles “projected but in clear”.
This is not a security risk, and indexers cannot be legally prosecuted due to failure to
calculate the original document profile. First, indexers in cluster B won’t search ac-
tively for the shared key of an external cluster A because they cannot identify it. Even
if an attacker informs the indexer about the identity of the cluster A and distributes the
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d1 x6x5x4x3d2
X:{ }

d1 d6d5d4d3d2
}E:{

x1' d6d5x4'x 3'x 2'
Y:{ }

x1'' x 6''x 5''d4d3x2''
Z:{ }

d2 x5''x 2''d5x2'x 5
S(2,5)={ }

S(2, 5)?

r

r

X
Y

Z

Figure 10.5.: A PBR scheme in the multi-indexer scenario

shared projection matrix MA, the projection matrices still hold the undecomposability
threshold referred in [82]. Hence, there is not enough components to learn even a sin-
gle category of the original profile. Second, merchants are hidden in a social network
that uses anonymous routing. Hence, indexers are not able to identify the source of a
document description and they cannot use any source-analysis mechanism to learn infor-
mation about the document profiles. Third, since indexers do not distribute documents
but only index URLs that are protected with the shared key KA, they cannot access to
the actual document. We conclude that indexers are able to deny that they are able to
access to the document that they index, they cannot undo the projection and calculate
with enough precision the original profile and they cannot identify the merchant that
inserted the profile. This way, the system provides indexer plausible deniability.

Since a malicious user in cluster A is able to make a good guess of the kind of profiles
of the other users in the cluster and the document profiles that they share, the attacker
is able to inform indexers of the document about the profiles that they store. For this
attack to be successful, the malicious user must be able to identify the indexer of a
specific document profile. We will study this attack later.
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Cloud provider plausible deniability. The cloud provider only observes communication
from clients to indexers. Messages during queries use homomorphic encryption and thus
they cannot be accessed. The profiles that insertion messages include are projected,
and therefore they enjoy the same protection as individual indexers. As observers of
the communications and thanks to the PBR system, they cannot identify the specific
indexer that provided an answer. Finally, they could access to the virtual machines of
the cloud, their memory and data. Even if instances save their databases in clear, they
only manage projected profiles. This way, the cloud provider enjoys the same protection
as individual databases.

Oblivious routing. Nodes in the middle of the path between a user a ∈ A and indexers
in B route messages between them. They are inside the anonymous cloud, so they are
able to learn as much information about the source of a message as the anonymous cloud
allows. We propose a system where document profiles are published in a projected social
space but in clear. As a consequence, the intermediate nodes are similar to indexers from
the security analysis point of view, and therefore the same considerations can be applied
to them. However, since profiles will be projected to a dimension m < n−1

2
, according

to [82], the intermediate nodes are not able to calculate any specific component of the
profile. During the recommendation phase, messages exchanged by indexers and users
are encrypted using a key only known by the client a, and thus intermediate nodes
cannot gain any knowledge about messages. We can conclude that intermediate nodes
are as protected as indexers during the publication of the profiles, and that they cannot
learn anything about queries during the recommendation phase.

Indexer anonymity. The multi PBR scheme that was introduced in section 10.2.3
prevents users from learning the identity of the specific indexer that answered a query.
In fact, not even the indexers that take part of the recommendation tree know whether
or not they answered the query. Only the user that issued the query is able to distinguish
empty items from real information, and in any case the local permutation of the vector
of answers in every hop of the tree prevents to gain any knowledge about the indexer
identity. This way, the system provides indexer anonymity since not a single entity of
the system is able to identify the source of an answer.

The first three requirements are fulfilled using the building blocks described in Sec-
tion 9.2. Indexer anonymity is the only requirement that does not depend on external
mechanisms but depends directly on the structure of the system that we are proposing.
Specifically, the property depends on the number of contributions of each indexer that
participates in the tree depicted in figure 10.5, as was discussed in section 10.2.3.

In the next section, we will analyze in depth the indexer anonymity property and the
management of the indexer tree to maximize this property.
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10.3.1. A metric for indexer anonymity

In this section, we will analyze the indexer anonymity property that the system shows,
and we will provide a way to calculate the maximum number of items that each indexer
must return to provide the plausible deniability to the indexers.

Indexers are organized in a tree as figure 10.5 shows. In section 10.2.3, we learned that
items inside the answer vector must be randomly shuffled to prevent the attackers from
being able to identify indexers by means of inspection of the positions of the results.
Indeed, indexers that are deeper in the tree structure send their profiles to their root,
which performs a Bloom’s filter to avoid repetition of profiles in the answer. The effect
of this filter is that it is more likely that the information of a profile in the answer array
comes from the leaves than from the root. In an extreme case, the root of the indexer’s
tree does not contribute at all to the answer. The attacker is not able to identify the
indexer that holds a profile, but he can assign a different probability to each indexer in
the tree. In this sense, the anonymity set is biased towards the inner leaves of the tree
and it is smaller than expected.

The trivial solution to avoid different contributions is just not to implement Bloom’s
filters and let that every node contributes to the answer with his entire database. How-
ever, we describe an epidemic algorithm to spread document profiles among the indexers
of B. Hence, the same document profile is stored by many indexers of B. Not removing
duplicates in the answers implies that indexers must recalculate the PBR functions of
large vectors, which is a slow process, and the number of exchanged bits grows unnec-
essarily. We will show that we can still get balanced contributions without the need of
sending the whole database during each query.

In this section, we will consider an attacker that learns the list of document’s profiles
that a given query returns. This may be the case of the sender of a query. We establish
that the attacker wants to identify the indexer that stores a specific document profile.
To do this, he issues a query that aims exactly to the targeted document profile. We
assume that the attacker knows the identity of the indexers that participated in the
indexer tree. This is the case, for example, of an attacker acting as a cloud provider, or
a malicious indexer inside cluster B.

The main idea of this section is calculating the average size of the answer vector
a = |E| in the system of k indexers. Hence, we can force that if the indexer tree has
k nodes, then each indexer contributes to E with a/k URLs. In this sense, from the
point of view of the client, any document profile could uniformly come from any of the
indexers of the tree.

Uniform assumption

Indexers of a cluster B store a set D = {d1, d2, ..., dN} of different document profiles.
Each indexer stores n < N of them. When a query arrives, the recommender system
will randomly pick a subset of indexers S ⊂ B with cardinality k that contribute to the
creation of the answer of the query, as explained in section 10.2.3.

As a first approach, we suppose that document’s profiles are uniformly spread in B.
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That is to say, given a document di, chances that an indexer stores di are independent of
the indexer. For any indexer bu ∈ B, we define an event X̄i,u as “the document di is not
in bu”. As we assume uniform distribution of documents, the probability distribution
function (pdf) of X can be modeled as a hypergeometric distribution: given a set of
N different documents, x = 1 are of our interest. That is, di. Then, we pick without
replacement n documents and calculate the chances that k = 0 of these are di.

p(X̄i,u) = hypergeom(x = 1;n = n,N = N, k = 0) (10.8)

=

(
1
0

)(
N−1
n

)(
N
n

) =
N − n
N

(10.9)

Given a subset S of k indexers, each one storing n different document’s profiles, we
define the event Ȳi as “the document di is not in any of the indexers in S”. The
complement of this event, Yi, means that the document di is at least in one indexer in
S. Since we assume a uniform distribution of documents, the pdf of Yi is constant for
any document and indexer, and from this moment forward we will drop the subscript.
Hence, the pdf of Ȳ is:

pdf(Ȳ ) = pdf(X̄)k (10.10)

pdf(Y ) = 1− pdf(Ȳ ) = 1− pdf(X̄)k (10.11)

Finally, we define an event Zj as “the subset S has j different documents”. Since each
indexer stores n different documents, the minimum value of Zj is n, that is to say, the k
indexers are the same. On the other hand, the maximum value of Zj is nk, and this is
the case where the k indexers store completely different documents. Hence, the universe
of Zj is [n, kn]. This event is equivalent to “the subset S contents at least one instance
of j documents and no instance of N − j”.

Now, we can calculate the pdf of Zj as follows.

pdf(Zj) =

{(
N
j

)
pdf(Ŷ )N−j[1− pdf(Ŷ )]j if n ≤ j ≤ nk

0 otherwise
(10.12)

=

{
N !
NkN

(N−n)k(N−j)nki

(N−j)!j! if n ≤ j ≤ nk

0 otherwise
(10.13)

The pdf of equation 10.13 is a binomial distribution that has been shifted by kn, and
therefore its average is:

E[Zj] = (k − 1)n pdf(X) =
(k − 1)n(N − n)k

Nk
(10.14)

Equation 10.14 captures the expected number of different items in the answered vec-
tor. The results of equation 10.14 can be used to improve the anonymity set of the
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indexers. Indeed, if each of the k indexers contributes with n = E[Zj]/k items, then the
contribution of each indexer to the answer array is likely equal. In order to achieve this,
we must encourage that E[Zj] = nk. We call this n the optimal contribution coefficient
for the indexers, nopt, since it lets uniform contributions for the indexers and maximizes
the anonymity of the set. We can calculate the optimal contribution of each indexer nopt
as the n that matches the following condition.

E[Zj] = noptk =
(k − 1)nopt(N − nopt)k

Nk
(10.15)

k =
(k − 1)(N − nopt)k

Nk
(10.16)

nopt = N

(
1− k

√
k

k − 1

)
(10.17)

Equation 10.17 shows the optimal contribution of each indexer to achieve maximum
anonymity. Alternatively, equation 10.16 shows the optimum number of indexers that
must be contacted, for a fixed number of contributions from each indexer.

In the extreme case of n, k � N , E[Zj] ≈ kn and in order to achieve uniform con-
tributions, each indexer should contribute with k ≈ n items, nearly every item in the
database. Since there are much more documents in the system than the capacity of an
indexer, if the subset of indexers is small (k small), chances of collision are small and
indexers can collaborate with every item.

Even if this could simplify the system design, it is not desirable from the point of view
of efficiency. Users of the system will want to calculate the affinity to as many profiles as
possible to be able to locate the more interesting documents. In this sense, the system
will be designed for kn ≈ N .

Epidemics assumption

In section 10.2.1, we suppose that there is an epidemic routing algorithm in the indexer
set. The effect of this algorithm on document’s profiles is that it is much more likely
for neighbor indexers to share similar document profiles, and the likelihood of replicated
data is higher if indexers are adjacent. Hence, in a real system the distribution of profiles
is not uniform as we supposed in the last section, and the pdf that equation 10.9 shows
will depend on the position of the indexers in the tree. Hence, pdf(Xj) is not a simple
hypergeometric distribution as calculated in the simplified scenario. On the contrary,
pdf(Xj) must be weighted with the position of the indexer.

As a first approach to analyze this problem, we are going to suppose that indexers are
ordered in a line. This is a simplified tree with no branches. As in the last section, the
event X̄j,u represents “the document rj is not in du”, but this time we define u as the
position in line, from the root u = 0 to the branch u = k. Then, we describe a routing
epidemic protocol in such a way that there is two real numbers ε and δ such as:
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P (X̄i,u|X̄i,u−1) = p+ ε (10.18)

P (X̄i,u|Xi,u−1) = p− δ (10.19)

0 ≤ ε+ δ ≤ 1 (10.20)

being p the probability of the uniform assumption that equation 10.9 shows. These
equations may be interpreted as follows: the probability that a document is (is not) in
an indexer is higher if it is (is not) in the precedent indexer. Furthermore, we analyze a
routing protocol that makes negligible the variation of likelihood of Xj,u given Xj,v.

Equations 10.20 represents a Markov chain of probabilities. It was analyzed for ex-
ample in [69], and we present next the solution for P (Xj,d) as a convenience using our
notation.

P (X̂i,u) =
(p− δ)− (ε+ δ)u(εδ − (1− p)δ)

1− ε− δ
(10.21)

The last term of this equation attenuates with k, and then it is a monodic decreasing
function with a maximum of p for k = 1. In the new scenario, P (X̄i,u) ≤ p. The
values for ε and δ cannot be easily computed since they depend on the actual epidemics
algorithm in use, but we can conclude that any epidemics algorithm that we chose should
use equation 10.17 as an upper limit for the contribution.

A real scenario with several branches in the indexer’s tree is even more complex.
The probability P (Xj,u) follows a Fisher’s non-central hypergeometric distribution. In
order to calculate the new pdfs or achieve similar conclusions to the last section, we
need to model the epidemics algorithm that the indexer set uses. The specific kopt that
maximizes anonymity depends on the details of the epidemic algorithm that is used in
the social network.

Discussion

Even if we do not achieve a final result for the probability, we can extract some con-
clusions from the last scenario. The Fisher’s non-central hypergeometric distribution
is always shifted toward the left and its average is less than the average of the central
hypergeometric distribution. Besides, the analysis of this section for a simplified tree
showed that the Markov chain that epidemic algorithm creates always decreases P (Xj,u).
In practice, this means that we can use Eq. 10.17 as an upper limit for the amount of
collaboration of the indexers of the system.

Figure 10.6 clarifies the analysis of this section. We used a recommender network
that indexes N = 1000 documents under the uniform assumption. The figure on the
left represents the expected size of the answered vector for different sizes of the indexer
tree. For a tree of k = 10 indexers, if each indexer contributes with n = 80 elements
the answered vector has an expected length of 300 elements. The right side of the figure
shows the anonymity loss of the first indexer inside the tree. In the last example (k = 10,
n = 80), the indexer in the inner leaves of the tree was the source of an item 0.2 of the
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Figure 10.6.: Analysis of contributions for N = 1000 documents

time. Since the anonymity set of the tree has a size of k = 10 elements, attackers
learn that the inner indexers are the source of an item about twice the time than in the
maximum anonymity scenario.

For k = 50, the scenario is similar: the maximum length of the answered vector of
affine document profiles occurs when each node contributes with n = 20 items. In this
case, the inner indexer is the source of an item with probability 0.05, when the maximum
anonymity occurs at 1/k = 0.02. In this case, the probability of an item to come from
an indexer doubles the maximum anonymity scenario, and inner indexers in a tree of
k = 50 indexers when each contribute with n = 20 items, are as protected as if the tree
has only k′ = 25 indexers.

These figures and the equations from this section can be used to decide the number of
contributions from each indexer, the apparent size of the anonymity set and the expected
size of the returned vector. Larger returned vectors enhance the efficiency of the system,
since more affine documents are discovered during a query. But if the number of indexers
in the indexer tree is not chosen accordingly, the anonymity loss of the indexers that
first contribute to the answered vector may be unacceptably high.
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11. Conclusions

In this part of the document, we described DocCloud, a system that protects machines
and providers of a document recommendation system from legal attacks.

We established that plausible deniability was a necessary security service that rec-
ommender system must provide, since it protects all participants of the system against
legal attacks. We defined plausible deniability as the ability that a node has to deny
any knowledge of the document that they are recommending to the users of the system.
Absolute deniability is not feasible in our system, and we use a probabilistic approach
to provide this service.

During the development of DocCloud, we made use of the results of previous parts.
The users’ privacy is protected with the mechanisms proposed in part II of the thesis.
Profiles are distorted using a group key that is not directly available to indexers, but
indexers are still able to calculate affinities between the different profiles. In the event
that indexers learn this group key, the distortion cannot be undone. Furthermore, the
publishers of the profiles into the indexers are behind an anonymous network and cannot
be identified.

In addition, a Private Block Retrieval scheme that connects customers and recom-
menders was defined. This scheme ensures that recommenders cannot identify the profile
of the document that they are providing to the user. This is not only a safeguard that
protects the user’s privacy, but also prevents that recommenders can be prosecuted by
aiding in in the process of downloading a protected document and allows intermediate
nodes the security service of oblivious routing.

Finally, we proposed an organization of databases in a tree-shaped structure to prevent
the identification of the source of the recommendation, and provided plausible deniability
to databases. Furthermore, this tree structure lets the customer to download an item
from the database without leaking the identity of the database that answered the query.
Even the database was not able that it was answering a specific query. We explored two
different assumptions for the distribution of document profiles inside the tree structure:
a uniform distribution and a social distribution. The former is easier to analyze, but the
latter is more similar to the organization of nodes in our recommender system. Finally,
we provided an upper limit on the number of items that indexers must answer in order
to provide optimal deniability inside the indexers tree.
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Part IV: Fast clustering of users

The success and intensive use of social networks makes strategies for efficient document
location a hot topic of research. In this part of the thesis, we propose a common vector
space to describe documents and users to create a social network based on affinities, and
explore epidemic routing to recommend documents according to the user’s interests.
Furthermore, we propose the creation of a SoftDHT structure to improve the recom-
mendation results. Using these mechanisms, an efficient document recommender system
with a fast organization of clusters of users based on their affinity can be provided, pre-
venting the creation of unlinked communities. We show through simulations that the
proposed system has a short convergence time and exhibits a high recall ratio.

This part of the thesis is structured as follows. Chapter 12 introduces the related work
in Section 12.1 on document location and recommender systems; Section 12.2.1 defines
the scenario and the common description model for users, documents and queries; and
finally, the objective of this part is formally defined in Section 12.3. Chapter 13 in-
cludes the protocols to create the clustered network, Section 13.1 proposes and analyzes
an epidemic algorithm for the quick creation of the social structure, as well as addi-
tional mechanisms to enhance the efficiency of searches; these proposals are simulated
in Section 13.4 to test the efficiency of the algorithms.
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Current P2P networks tend to be huge, managing millions of documents that are dis-
tributed among hundreds of thousands of nodes. Finding a specific document in this
cyclopean library of unspeakable geometry may be a task doable only by the UU’s Li-
brarian. Currently, users typically perform searches via keyword matching: they send a
list of keywords to the network and get a set of documents with descriptions containing
some or all of the keywords from the list. In order to use these lists, users must know
in advance what they want to look for, and discovering new and interesting content is a
hard task.

Social networks are a kind of P2P network where users create links according to their
similarities. Indeed, the fact that a link exists in a social network means that two nodes
conclude that they share some common features. We can take advantage of an existing
social network to provide a recommender system similar to the one described by Yager
in [146]. In a recommender system, instead of posting a keyword list, users share their
likes and dislikes, and ask the community for tips on documents that may be of interest
to them. Two users that share a link in a social network probably also have common
interests and similar likes. Hence, documents owned by one of them will likely be of
some interest to the other. In this regard, a recommender system may use the neighbors
of a user in a social network to improve its recommendations. In a social network where
users link with similar friends, the problem of searching for documents boils down to
asking for recommendations from a small neighborhood.

In this chapter, we aim to improve the performance of our recommender system based
on the creation of a social overlay on top of an unstructured P2P network. Users are
clustered according to their affinity, and after that they can recommend documents
to their neighbors. For this approach to be successful, it requires fast identification
and location of clusters or other users that are similar, and an efficient construction of
these clusters. In building the social network, we described a common way of describing
documents, users and queries. This model was described in chapter 5. These descriptions
will make possible to not only compare queries and documents, but also users. That
would enable the social network to take advantage of the mechanisms proposed in this
part for finding users that are alike and creating links according to the users’ affinities.
On this social network, our document recommender system is easily deployable.

12.1. Related work

Epidemic searches have often been proposed for routing messages in recommender sys-
tems. Furthermore, the definition and classification of documents in a social space is an
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open field of research. In this section we describe and explore some related proposals in
the literature.

12.1.1. Epidemic searches

In a P2P network, epidemic algorithms seem to be a natural solution for searches.
Eguster et al. [44] is a good introduction to the main aspects of epidemic algorithms. This
kind of routing is often compared to flooding, however information is not disseminated
to every neighbor of a node but only to a small subset of them. Hopefully, the results in
terms of reachness are close to flooding, but epidemic algorithms are far more efficient
with regard network use. Drost et al. [40] explore the problems that epidemic algorithms
must face: parallel searches, trust and limited connectivity.

BuddyCast [100] used a simple algorithm for searches based on random walks through
friends and friends of friends. Two drawbacks of this protocol are that (i) it does not
take into account the links that friends share with each other, and (ii) the creation of
the initial links is entirely manual. Even then, according to its authors, BuddyCast is
capable of handling hundreds of simultaneous users [99].

Anglade et al. [14] evaluated the previous approach and introduced the comparison
parameter that is shown in Equation 2.7, named the overload fraction fo. This parameter
represents the percentage of interesting documents in the network that an algorithm is
able to find. We can formally define this fraction in this way. With Q being the set of
total queries in the network, REpidemics(q) represents the set of answers to a query q ∈ Q
that a user obtained using an epidemic algorithm, and RExact(q) represents the actual
number of documents in the network that match the query.

fo =

∑
q∈Q |REpidemics(q) ∩RExact(q)|∑

q∈Q |RExact(q)|
(12.1)

In the Information Retrieval field, this parameter is equivalent to the recall ratio [17].
The recall is the percentage of the interesting documents that are retrieved. In the
general case, it is possible to retrieve documents that are not interesting (false positives).
In section 12.2.1 we will model “interestingness” in an unambiguous way. Consequently,
it will not be possible to retrieve uninteresting documents. Thus, the recall ratio as
defined in the Information Retrieval field and the overload function as described in
Equation 2.7 are equivalent.

Additionally, Anglade et al. [14] proposed a methodology to evaluate clusters of users
with shared interests. However, these clusters must be defined prior to the creation of
the network and in that case, the number of possible clusters is static, predetermined
and limited. Anglade et al. proposed the metric defined by Resnick et al. [106] to
calculate affinities between documents. However, if two users wish to calculate the
affinity between them, they must have a certain number of documents in common. If
the number of documents that both users have in common is small, the calculated
affinity may make little sense. If they have no common documents, the affinity cannot
be computed. Hence, joining the social network is a painful process where users must
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evaluate hundreds of documents and identify their friends before any search can be
performed. In the literature, this is described as the sparsity problem [143]. Even in
this case, since it is very likely that the user will always interact with the same set of
neighbors, there is a high likelihood of having closed clusters with the same interests
that do not see each other.

Schifanella et al. [113] used epidemic algorithms to distribute the assessment that
users make about some documents in the system, and using this information the system
can dynamically create a list of similar users. The algorithm was specially developed for
ad-hoc networks and only to distribute document assessments, so it exhibits the same
problem cited above.

Ruffo et al. [110] took advantage of the small-world behavior that most social networks
exhibit. This system calculated affinity based on the number of common documents that
two users have, and so if two users have no documents in common, the affinity between
them cannot be calculated.

SENSE [31] is a recommender system in a decentralized network with a precom-
puted global database. It classifies documents in three different groups: socials are
those inside the cluster of friends explicitly named by the user; spirituals are documents
recommended by other users that are like the searcher; and globals are documents recom-
mended by every node in the network, regardless of their affinity. Searches and affinity
are calculated from the overlap of keywords in the common documents.

12.1.2. Vectors as profiles

We follow the social model that was introduced in chapter 5. As established previously,
documents are usually modeled as vectors in the Information Retrieval field [85, 124]. In
many cases, the components of these vectors are the frequency of appearance of certain
common terms in the document under analysis. This same idea can be generalized
to include ontologies or categories of terms. Indeed, it is possible to convert a vector
of terms (bag of words) into a vector of ontologies or categories (bag of concepts). The
calculation of the ontology that classifies documents falls beyond the scope of this thesis.
If interested, readers may refer recent works in the fields of Information Retrieval and
Artificial Intelligence [85, 125, 86, 129].

One of the main metrics used to calculate the affinity of two documents is the cosine
metric, introduced in chapter 5. Yee et al. [147] simulated the cosine metric in a P2P
network, and it is shown that it may enhance search results [106, 85, 79]. The task of
choosing a specific metric to compare how close two profiles are also falls beyond the
scope of this document. From this point forward, we assume the existence of an affinity
metric for profiles. If interested, readers may refer to [13, 87].

12.1.3. Recommendation systems

In this part of the thesis, users query a decentralized, unstructured P2P network to
find the documents that they would be most interested in. This is the definition of
a recommender system, as we show in partI. Customers are not looking for a specific
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document, but request recommendations from other nodes in the network. This is the
same concept as in [14], but we will use the vector descriptions of [147] which will allow
us to use the same mathematical tools to compare documents as well as users. In this
regard, we can construct a social network similar to the one described in [31], but in
a decentralized fashion. Authors are convinced that this enhances the efficiency of the
searches, allows for a more dynamic behavior of users and facilitates the introduction of
security mechanisms to protect them.

Many different recommender systems have been proposed, based on either a P2P archi-
tecture [14, 113, 100] or the use of a cloud [79]. Recommender systems are characterized
by the fact they must handle large amounts of data that users wish to filter according
to their profiles. In a recommender system, a user removes irrelevant data by classifying
documents according to the opinion that similar users share about documents. In this
regard, the problems that a recommender system should face are the creation of the ini-
tial social network where users that are similar meet each other, and how to distribute
queries in the social network to maximize the efficiency of searches. In this thesis, we
focus on a collaborative recommender system. In this type of system, the filtering of
documents depends on the opinion that similar users have about a document. In this
regard, the social network should be constructed according to the affinity of users.

Fuzzy clusters, where users are organized in clusters based on their affinities, are used
in some recent recommender systems. Teran et al. [124] proposes fuzzy clustering for
eElections. The number of clusters is closed, and a gradual membership function is
used. There is no need of a membership function in our recommender system: fuzzy
cluster are used only during the creation and maintenance of the social network, and
recommendations do not depend directly on the membership value. Gong et al. [51]
proposes a clustered network to solve the problem of the sparsity of resources in rec-
ommender systems. However, the process of creation of the similarity clusters is not
decentralized, and a central entity that is aware of all users and their profiles must be
provided. Furthermore, authors only use one rule to select neighbors, which we will
refer as the “similarity criterion”. In this work, we will explore some additional rules
as well as other mechanisms to improve the recall ratio of the recommendations. Xhoe
et al. [152] proposed a hybrid recommender system that uses both “accuracy” (similar-
ity) and “diversity” (success) rules. They conclude that many recommendations do not
come from close friends, but from people with a limited connection (“weak ties”). Their
system cannot be directly mapped onto a distributed P2P network, but we will use their
conclusions to develop our system.

12.1.4. DHT for Recommendation Systems

In our work, we will introduce for the first time the concept of a SoftDHT to enhance
the results that the recommender system outputs. As we will see, our SoftDHT will
allow the creation of the social structure much faster than traditional protocols.

Authors in [13] proposed a structured P2P called FuzzyDHT. Despite having a similar
name, the proposal of Andreolini et al. is completely different from our SoftDHT.
The Fuzzy DHT described in [13] allows for searching documents according to a list of
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Table 12.1.: Notation used in this part of the document

N Number of nodes in the network

k Number of outgoing links of a node. It is a parameter of
the network, and it is constant.

Neighborhood of a node u,
Γ1
u

Set of nodes that u links to

nth-neighborhood of node u,
Γnu

Set of nodes that nodes in Γn−1u link to and that are not
included in lower neighborhoods. Nodes of Γnu are at n
hops from u, and no less

nth-neighbor distribution of
a node u, Λnu

Λnu = ∪ni=0Γ
i
u. Set of nodes that are reachable with n

hops or fewer from u.

Recall ratio Fraction of the documents relevant to the query that are
successfully retrieved. In the scenario of our study, there
are no false positives and thus the recall is the ratio be-
tween the interesting documents found and existing.

Clustering coefficient, γu(v) Ratio of neighbors that u and v share. γu is the average
of the clustering coefficient for all neighbors of u, and γ
the average of γu for all users.

keywords. In this thesis, we aim to provide a recommender system that is completely
based on the affinity with our neighbors. As such, we will not use our SoftDHT to handle
keywords and find documents, but instead users whose interests are similar to ours.

12.2. Models and definitions

In this section, we define the notation and the assumptions that we will make in this
part of the document. Table 12.1 summarizes the main parameters that we use during
this work, as a convenience to the reader. Detailed descriptions of these parameters and
additional names are introduced in the rest of the section.

12.2.1. Social space and profiles

Documents, users and queries are modeled using vectors the social space introduced in
chapter 5. As described in chapter 5, it is possible to define n semantic categories to
classify all documents in the system. Then, each document ri ∈ R can be associated
with a vector within this ontology p̄(ri) = {c1, c2, . . . , cn}. We call this vector the
document profile. The space of all possible profiles is the social space of our system.
As established in section 5.2, for the sake of simplicity we model our social space with
a constant number of categories, and hence profiles are vectors of a fixed size. With a
more complex definition of the metric function that is used to calculate affinities, the
routing protocol that is proposed in this part of the thesis may be applied to a social
model with vectors of a variable size.
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These similarity functions used to compare vectors and calculate their affinities were
discussed in section 5.2. In this part of the thesis, we use the similarity based on the
cosine metric that was presented in Equation 5.8. This metric was successfully used in
the past to compare document profiles [106, 85, 79].

As a reminder to the reader, in Equation 5.8, s(p̄1, p̄2) = 0 shows that profiles p̄1
and p̄2 are completely dissimilar, and s(p̄1, p̄2) = 1 shows that p̄1 and p̄2 are completely
similar.

In chapter 5, we defined that two profiles p̄ and q̄ are affine if aff(p̄, q̄, λ) = True. If
p̄u is the profile of a user u, p̄d is the profile of a document d, and these profiles are affine,
we say that d is an interesting document for u. We call this metric the affinity of
two profiles.

Hence, documents, users and queries may be defined as vectors of P and there is an
unambiguous metric to calculate the affinity between them.

12.2.2. Network structure

In our system, users are organized in a social network that is mapped onto a P2P
network. We can consider this network as a symmetric graph G = {V, L}, where V
is the set of nodes in the network and L the set of links between them. We call the
neighborhood of a node u, Γ1

u, to the set of nodes in V that has a link in L between
them and u. By induction, we use the term Γiu to refer to the set of nodes in V that
has a link in L to a node in Γi−1u and it is not present in any lower neighborhood. We
use the term distribution Λi

u to refer to the set that results in a union of every neighbor
j ≤ i, Λi

u = ∪j≤iΓju. We use the term degree of a node ku to refer to the number of links
that it has, that is ku = |Γ1

u|. In our scenario, we define a network where the degree of
every node is constant and much less than N , (∀ u ∈ V, ku = k � N). The diameter
of the network is the maximum distance in network hops between two nodes. We define
the clustering coefficient of node u as in [145], using Equation 12.2:

γu =
|E(Γ1

u)|(
k
2

) , (12.2)

where |E(Γ1
u)| is the number of edges in the neighborhood of u,

(
k
2

)
is the number

of possible edges and γu captures the percentage of shared neighbors that u and his
neighbor have. In any highly clustered network, the Γ1 of two linked nodes is nearly the
same. The aggregated clustering coefficient, γ, is the average of all the relative clustering
coefficients.

Liu et al. [83] demonstrated how social networks show small-world behavior [145].
Small-world networks have low diameter and a high clustering coefficient. The assump-
tion that P2P networks exhibit small-world behavior has been successfully used for
document location and routing in [89, 99, 81, 56].

Research in networks with small-world behavior shows an interesting property that
Watts et al. named “the strongness of weak links” [145]. In his book, Watts stated
that a route between any two nodes will very likely pass through certain special nodes,
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called shortcut nodes. These nodes exhibit a very low clustering coefficient γ. If we
define that two nodes with a high γ are part of the same community, these shortcut
nodes are not actually members of any community. This does not mean that they have
a low number of outgoing links, but rather that nodes they link to are not linked to each
other. Figure 12.1 shows an example of a small-world network with shortcut nodes.

Shortcut

Interest
Group

Figure 12.1.: Interest groups and shortcut nodes

We will show that nodes with low γ are shortcuts between clusters that do not know
each other, but that may have shared interests. Indeed, tastes are transitive: if two
different nodes decided to link to the same shortcut, there is a high probably that they
are alike and should meet each other.

In this thesis, we make the additional assumption that it is possible to calculate the
γ of a node to any of its neighbors. A trivial solution is that every node shares the Γ1

set with its neighbors, and thus all of them are able to calculate their γ.

12.3. Scenario and objectives

Using the models and definitions from the last section, we can now define the scenario
and objective of our thesis.
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12.3.1. Scenario

We devise a system where users of a million-size network organize in large groups of users
that roughly share some common ground, and then fine-tune their searches inside these
huge groups using the mechanisms that are provided in this document. For example, let’s
imagine a social network like Facebook with a hundred million users. Within Facebook,
it is possible to create and join specific groups such as “I like movies.” Through these
groups, an initial social network of millions is now structured in several clusters of
thousands of users that are at least roughly similar. Inside these large groups, it is
possible to get enhanced document recommendations by additional clusterization using
our proposed mechanisms. Even general groups such as ”nationality” or ”age” will work.
The same digression works, for example, in a professional network like Akademia: there
are millions of potential users, but it is possible to group them by areas of interest
(computing science, physics, biology, etc) with only a few thousand and then apply
automatic clustering to fine-tuned searches.

12.3.2. Phases of the recommender system

In the social network that we are studying in this part of the thesis, we will simplify the
process of recovering recommendations to these phases.

Creation of a connection structure . The objective is to induce the characteristics of
a small-world in the network, where nodes link to each other mainly according
to the affinity of their descriptions. In [145, 29], it is proved that a few random
connections in a highly clustered network may induce this small-world behavior.

Dissemination of information about the documents shared by a user. In our scenario,
we disseminate the pair (p̄(r), URL(r)) that is associated with a document r ∈ R.
This way, documents can be found and downloaded even if the node that initially
introduced them in the network is no longer online. This scheme is similar to the
one used in [27, 73].

Document location in the network based on affinities. A user shows interest in the
description of a document, and searches the network for documents that match
the description.

Publication and download of documents . The results of the previous phase are URLs
to download a document, and in this phase we take advantage of the P2P network
mechanisms to download the document.

12.3.3. Objective

The objective of this part of the thesis is that given a query q̄ by a user u and an affinity
function (based on threshold λ), it is possible to efficiently find documents in the network
that are affine to q̄. That is to say, to retrieve as fast as possible the maximum number
of elements of Rq:
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Rq = {r ∈ R | aff(r, q) = True} (12.3)

Therefore, in this part we focus on phases one and three, using the creation of a
suitable structure for searches. Part III of this thesis explored phase two. We separate
the problem of document location from that of document download due to security
reasons. The phase four of this simplified scenario uses the mechanisms that will be
described in part V.
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P2P networks that are structured as social networks can use the small-world behavior to
enhance the results of the search mechanisms and offer recommendations to the users.
In these networks, nodes in Γ1

u are related to the interests of a user u, and they have
additional random links to maintain the structure of a small world. Hence, it is extremely
likely that nodes in Γ1

u share the same interests than u.
Several proposals of epidemic algorithms for this kind of networks were explored in

section 12.1.1. We will create open and distributed groups or clusters of users that are
linked according to their affinity. Each node will have its own view of the group, and
therefore it has no well-defined border.

In our design, links are dynamic. Hence, users do not need to share or evaluate
long lists of documents to calculate their affinities. Unlike the proposals described in
Section 12.1.1, users join the network using their user’s profile based on the profiles of
the documents that they shared, as it was introduced in chapter 5.

In this chapter, we explore first a simple proposal to create clusters. Then, we perform
some initial evaluations of this preliminary proposal and propose new mechanisms to
improve the recall parameter of our recommender system.

13.1. Basic clustering of users

13.1.1. Joining the network

When a new node v joins the network, it contacts to a random node u that was previously
inside the network and requests to “search users that are similar to me (v)”. Then, v
searches their own profile by means of querying nodes in Γ1

v (Algorithm 4).

Algorithm 4: join network(λ), run by a new user v

Data: New user of the network, v
Input: λ, the similarity threshold for the affinity function
Output: v links to some nodes of the network
begin

foreach u ∈ Γ1
v do

S ←− {u:search user(v, λ, 1)}
foreach w ∈ S do

add user w to Γ1
v (optionally, make room)

In general, we assume that a new node v enters the network with the ability of finding
random nodes that are already members of the network. Actually, real implementations
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of social networks rarely start with random friends. Often, new users link initially to
those who are their friends in real life, and it is highly likely that they share some
interests. Linking to users that are initially affine, as real social networks do, would
greatly improve the performance of recommendations during the initial searches. In
this research, we want to test the merits of the protocol when a user starts from a
truly random situation, and therefore we will consider the worst case of Γ1

v ⊂R V being
random during the initial phase.

If v gets an answer from an similar node, it is joined to Γ1
v. We set a limit to the

number of elements in Γ1
v: if a new affine node is found and there is no room in the

neighborhood, the less-similar node is removed to make room for the new one.

Algorithm 5: search user(v, λ, hops). Run by u, original caller is v

Data: Current user u, and her attribute p̄u
Input: Calling user v, λ, current hops
Output: Set S of users such as ∀ s ∈ S, aff(p̄s, p̄u, λ) = True
begin

S ←− ∅
if aff(p̄u, p̄v, λ) then

append u to S

if hops ≤ H then
foreach w ∈ select next users(v) do

add all elements of {w: search user(v, λ, hops+ 1)} to S

return S

Algorithm 5 shows the code run by nodes u that are already in the network. First,
nodes check whether they are affine with the initial node or not. Next, they check if
the maximum number of hops has been reached. If not, they forward the query to a
selected subset of their Γ1

u, and the process goes on until the maximum number of hops
is reached.

Algorithm 6 shows how the subset of Γ1
u is selected.

Algorithm 6: select next user(v)

Data: Current user u, and her attributes Γ1
u

Input: Caller user v
Output: Set R of users to forward the query
begin

R←− ∅
S ←− order by similarity(Γ1

u, p̄v)
append to R the Msim most similar elements of S
S ←− order by clustering(Γ1

u)
append to R the Mclus less clustered elements of S
append to R Mrand random nodes of Γ1

u

return R

We are defining an epidemic algorithm where nodes will choose a subset of Γ2
v to

forward messages using three parameters: Msim more-similar nodes, Mclus less-clustered
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nodes and Mrand random nodes. The process goes on until a predefined number of hops
H is reached.

All three criteria or rules of routing, Msim, Mclus and Mrand, are important for the epi-
demics of the algorithm. First, the similarity criterion through parameter Msim enables
finding users that are affine in the social space. It is easier to find interesting documents
inside affine nodes, and this is the same mechanism that was used in [14, 100]. Mean-
while, nodes that are alike in the social space are likely linked to each other, and thus
they have a high relative γ. Therefore, through parameter Mclus, the node sends the
query to nodes that are not in the same cluster as the user, disregarding their similar-
ity. This rule has been less explored in the literature. It was used for group creation in
[14], but not for routing searches. The intuition that supports the use of Mclus is that
it enables to arrive to nodes of the social space that share some interests but do not
yet belong to the same cluster as the user. Nodes with a low clustering coefficient are,
therefore, shortcuts to other clusters in the network. Finally, the criterion of random
nodes through parameter Mrand is used in many random-walk and epidemic protocols,
and it will be evaluated in our research as well. It is the main rule during the first steps
of a new user in the network, since they don’t know anybody affine and will try random
links at first.

After a round of these algorithms, v will have in Γ1
v either nodes that are alike to them,

or the same initial Γ1
v. In the simulation section, we will test how good this algorithm

is at finding similar nodes during the initial phase.

13.1.2. Browsing the network

After the joining phase, a user v should run Algorithm 4 periodically in order to find
new nodes that are affine to them. Networks are dynamic and links are created and
destroyed all the time. If a user is not able to find another user that is affine at a given
moment, it may be possible later on. In this regard, there is a “slow joining period”
before the maximum performance in the network is reached. During this period, users
are learning about the structure of the social network.

Proposals presented in Section 12.1.1 do not have any mechanism to find users that are
affine, since they only search documents. We described users and documents as vectors
in the same social space, and we use a common metric to calculate affinity between
users, documents and queries. Thus, mechanisms to find affine users can be provided,
improving the quality of the document recommendations.

After joining the network, users will try to locate documents. The process is started
by a node v, which selects a query q̄ and a threshold λ, and runs algorithm 7 over their
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own Γ1
v.

Algorithm 7: get recommendation(q̄, v, λ, hops)

Data: Current node u, her set Γ1
u, the set of shared documents Ru

Input: Query q̄, caller node v, λ, number of current hops
Output: Set R of recommended documents
begin

R←− ∅
foreach r ∈ Ru do

if aff(q̄, p̄r, λ) then
Append r to R
if v /∈ Γ1

u then
u:user found(v)

if hops ≤ H then
foreach n ∈ select next(q̄,Γ1

u) do
Append {get recommendation(q̄, v, hops+1)} to R

return R

Algorithm 7 is similar to Algorithm 5, but looking for documents instead of users. A
mechanism to create new links is introduced in Algorithm 7: when a user u receives a
query q̄ from a user v and they have at least one document that matches the query, they
test whether or not v is in Γ1

u. If they are not, then u links to v. That is to say, if a
previously unknown user v is interested in one of the documents of u, then u assumes
that v is affine and tries to create a link in Γ1

u.

Algorithm 8: select next(q̄)

Data: Current user u, and her attributes Γ1
u

Input: The query q̄
Output: Set R of users to forward the query
begin

R←− ∅
S ←− order by similarity(Γ1

u, q̄)
Append Msim most similar nodes of S to R
s ← order by clustering(Γ1

u)
Append Mclus less clustered nodes of S to R
Append Mrand random nodes of Γ1

u to R
return R

The main difference between Algorithms 6 and 8 is that the last one looks for docu-
ments instead of users, but readers will notice it uses the same parameters Mrand, Msim

and Mclus that were defined in Section 8.

The algorithm of directed searches that has been presented in this section helps to
limit the use of the network without reducing the recall ratio. We will demonstrate this
behavior in Section 13.4.
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13.2. Performance evaluation of basic clustering of users

The first tests performed on the previously proposed protocol showed that it created
many groups of users. Some of these clusters were redundant. These were disjoint
groups of users that share interests but do not link to each other. As a result, the first
version of the protocol led to a low recall ratio. Running the system as described, once
a user u locates and links to a user v with similar interests, u will likely discover and
link to v’s neighbors. Hence, it is difficult for u to locate new interesting people that
are not part of v’s group and the current proposal creates an inefficient “endogamy”
inside clusters. Actually, users within different clusters that have the same interests will
eventually locate each other, thanks to the learning capabilities of the system, but the
process is unacceptably slow. We discuss these findings next.

Figure 13.1 shows the recall ratio depending on the network size. Since the users’
knowledge about the network structure increases using their own searches and the
searches that they route, the recall ratio intuitively increases over time. This intu-
ition will be tested in our final simulations, but in this section, we simulate only a single
search from every user in the network to analyze the convergence time of the proposed
algorithms. The recall ratio of a flooding algorithm with a limited number of hops
(H = 5) is also presented. As the figure shows, the proposed algorithm performs worse
than a simple flooding after only a single search.

Figure 13.1.: Recall for different network sizes and links. Only one search per user

Figure 13.2 gives a hint about the cause of the problem. It shows the average number
of hops in the network that are needed to get an interesting recommendation 1. This

1In Section 13.4.3 we will show that in networks with N ≤ 5 000, 5 hops are probably enough to reach
all nodes in the network. Therefore, a recall ratio of nearly 1 for the flooding algorithm is consistent,
since most nodes of the network are reached.
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figure shows that our simple proposal gets its recommendations mostly at 2-3 hops (that
is, from nodes in Λ3). This suggests that there are some groups of users with the same
interests and at least 4 hops apart from each other that are not able to link and share
recommendations. These are the “constellations” of our network.
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Figure 13.2.: Average hops per search. Only a search per user.

We use the term constellation to refer to each one of the disjoint clusters in the
network with common interests. Constellations may or may not be linked by shortcut
nodes. Figure 13.3 shows an example of a clustered network. We focus our view on
a randomly picked user that is defined as the center of the network, and nodes are
organized in rings according to the number of network hops from the central user. Each
of these rings is a neighborhood as in table 12.1. Nodes that are similar to the central
user should be in the lower neighborhoods, and thus the search process is quicker and
easier. The right side of figure 13.3 shows an example of a distribution of documents
that are interesting for the central user. In this example, there is a “constellation”
of documents at Γ3. If the user limits the number hops from their messages to save
network resources, this constellation of documents won’t be reached. There should be
a mechanism to find the more-distant constellations without increasing the number of
messages in the network.

As we will show later, as time goes by and the user learns about the structure of the
network, the recall ratio goes up to nearly 90%. In any case, these figures suggest that
the very first queries users perform in the network will obtain an extremely poor recall
ratio compared to a simple flooding. Thus, flooding the network at least during the
initial steps (that is, giving extra importance to the parameter Mclus) seems like a good
idea. This approach is selfish, since it wastes network resources in the form of thousands
of routed messages to get a single document. Figure 13.4 shows the number of messages
that a single search sends to the network. If every user floods the network with several
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Figure 13.3.: The neighborhoods of a node and some constellations of resources

thousand messages to get a single recommendation, the network is likely to collapse very
quickly. Furthermore, this behavior will prevent the creation of clusters and therefore it
exhibits a slow convergence.

From this study, we conclude that the proposal has started to create a clustered
network, even after a single search from every node. While nodes find documents only
in their neighborhood Γ3 at most (Figure 13.2), the current proposal exhibits a recall
ratio lower than the ratio of flooding (Figure 13.1). We believe this is the result of the
presence of unlinked constellations, communities of users that share interests but don’t
know each other (Figure 13.3).

Based on these data, we believe it is possible to enhance the results of the simple
epidemic algorithms by means of helping to identify and locate faraway constellations.
Mechanisms to help to this location will be presented in the next section.

13.3. Enhanced clustering of users

The algorithms detailed in section 13.1 may isolate two or more groups of nodes with
the same interests, creating different constellations. In these cases, the epidemic search
by itself may not be enough to connect two isolated groups. To prevent the creation of
constellations, or at least to minimize their probability, we define a new structure based
on classic DHTs. We will use the term Soft Distributed Hash Table (SoftDHT) to
refer to this new structure.
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Figure 13.4.: Total number of hops (including w/o results)

13.3.1. Soft Distributed Hash Table

In a traditional Distributed Hash Table (DHT), a client uses a key to access a single piece
of data. Any access with the same key will return the same data. DHTs are designed in
such a way that the number of possible keys is much higher than the number of nodes
in the DHT. Therefore, each node is in charge of a segment of the key space and data
is spread through all available nodes. Some examples of DHTs are Chord [119] and
Kademlia [88].

In our proposed SoftDHT, the number of keys is smaller than the number or nodes. In
this case, several nodes are in charge of the same key and therefore different requests for
a key may return different data. This kind of table is very suitable for our purposes and
is simpler and faster than a standard DHT, since it won’t have such tight constraints to
keep data integrity as a normal DHT has.

In our implementation of the SoftDHT, we used a modification of Kademlia [88]. In
Kademlia, each node stores k sets of addresses to n different nodes, called k-buckets.
Each k-bucket stores only addresses that are under a certain distance from the original
node identifier, using a xor metric. k-buckets work as FIFO queues, where addresses are
removed when the corresponding node is no longer available. When a node searches for a
key, it asks to the m nodes of the k-bucket that are closer to the petition. If any of them
knows the response, they answer immediately. If not, they return the addresses of other
m nodes that they believe that are closer than them to the identifier. This algorithm
assumes that only those nodes that are closer to the key will store associated data and
imposes integrity on these data. Kademlia is able to get an answer after contacting
O(log(N)) nodes.

We propose a modified DHT based on Kademlia. We configure the number of elements

134



13.3. Enhanced clustering of users

in each k-bucket (n) to be small enough to create fast rotations of addresses in every
k-bucket even if the corresponding node is still on-line. Moreover, we configured a small
m to force nodes to consult a small number of neighbors at once. Finally, we relaxed
the restrictions of distance to the key to store a value and therefore data integrity is no
longer warranted in a SoftDHT. That way, different inserts under the same key k may
end in different subsets of nodes Ck. In this scenario, the value returned for a key k may
be any of the values stored by the nodes in the associated subset Ck.

Assigned to sample
profile 1

Assigned to
sample profile 3

Assigned to
sample profile 2

Assigned to sample
profile 4

Figure 13.5.: Example of a SoftDHT

Figure 13.5 shows an example of a SoftDHT with 11 nodes and only 4 keys. Two
different queries for the same key end in different nodes of the subset that is in charge
of the key, and thus these queries will have different answers.

Next, we detail how we use the SoftDHT in our system. Let us define S as a set of
well-known sample profiles in the network. The details about the construction of this
set fall beyond the scope of this thesis. For example and for the sake of simplicity, S
may be a set of profiles picked at random in the social space. All nodes in the network
have access to the same set S. If we define the similarity of users as in section 12.2.1,
any user in the network can compute their similarity to the sample profiles in S. In
addition, a number of nodes –the complete network, or a selected subset– maintain a
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SoftDHT, with S being set of keys of the SoftDHT. The cardinality of the set of samples,
|S|, should be much less than the cardinality of the set of nodes in the SoftDHT, and
therefore there are subsets of nodes that take part of the SoftDHT that manages the
same sample description.

Every user in the network calculates and identifies which sample profile in S is their
closest, and then they publish their address in the SoftDHT under the identifier of the
closest sample description. Since several nodes in the SoftDHT manage the same key,
the routing algorithm of the SoftDHT may finish in any of them. In other words, many
nodes can publish their addresses under the same key and a request to the SoftDHT
will return the address of any of them apparently at random. Since we are interested
in saving as many nodes as possible under the same key, our proposed SoftDHT is able
to have more aggressive caching methods than standard DHTs. Thus, paths are much
shorter and nodes get results quicker than in traditional DHTs, at the cost of no data
integrity at all.

13.3.2. Rules for new links

Besides the SoftDHT, some additional mechanisms are introduced in the basic algorithms
to overcome the undesired behavior described in Section 13.2. We bounded the maximum
number of links that a node have to other nodes (k). In a real system, nodes disappear
from the network because they leave, cease to work or communication fails. Most peer-
to-peer protocols have a PING mechanism to detect these disappearances, and thus (i)
nodes will occasionally have empty slots in their neighborhoods that can be filled with
new links, and (ii) a node will often find other affine users when it does not have any
empty slots. Handling these two situations is the aim of this section.

Classical solutions to remove links such as first-in-first-out or less-recently-connected
won’t work very well in our proposal, since they do not take into account the importance
of the link. In the social network that we are studying, a link between two users u and
v has two important characteristics. The first of them is the similarity of the nodes in
the link, s(u, v). The second one is the relative clustering coefficient of the nodes, γu(v).
According to these parameters, some links are not often used but are still important
to maintain a suitable social network. In this regard, we propose links to be managed
according to the similarity and clustering of both nodes, not the actual use of the link.

If γu(v) is high, it means that there are other nodes in Γ1
u that link to v. This way,

removing the link u→ v won’t have a noticeable effect on the performance of searches,
assuming that the maximum number of hops is H > 2, and therefore v should be
available in Γ2

u through other node w ∈ Γ1
u, u → w → v. In this regard, u can safely

remove links to nodes with a high relative clustering coefficient. Similarly, a node w
affine to u is probably close to other nodes in Γ1

u and it is likely at least in Γ2
u, so u can

safely remove w. Meanwhile, a node y with low relative clustering coefficient may be a
shortcut to other constellations of the network, and since u is the only node in Λ1

u that
links to y, removing y from Γ1

u may reduce the performance of searches.
We apply this idea as described next. When a node u receives a link request from

a previously unknown node v, and u has its neighbor list complete, it calculates the
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affinity s(ū, v̄) and clustering coefficient γu(v) to the new node. Then, u checks these
values against the median of the values in Γ1

u. If s(u, v) is less than the median affinities
and γu(v) is less than the median clustering coefficients, the new node is accepted. The
less affine node in Γ1

u is removed to make room for v.

Finally, a small-world network is a network where nodes of Γ1 have a small parameter
γ and yet the network has a small diameter. Small-world theory predicts that there
is a low number of hops between any two nodes of the network, even in networks of
thousands of nodes. As shown in [145], we can force a small-world network by means of
creating random links in a highly clustered network. Thus, a certain number of random
nodes are inserted both in the neighborhood of a node and in the list of next nodes to
route messages. We will study this random criteria in the next section.

13.3.3. Enhanced algorithm definition

Next, we introduce the proposed enhancements to the algorithms described in the last
section as pseudo-code.

Algorithm 9: join network(λ), run by a new user

Data: New user of the network, v. Set of sample profiles, S
Input: λ, the similarity threshold
begin

insert random links()
foreach w ∈ search user(v, λ, 1) do

user found(w)

s̄←− most similar profile to p̄v in S
foreach w ∈ SoftDHT.get(s̄) do

user found(w)

The user found of Algorithm 9 is significantly more complex than Algorithm 4. Now,
we use the SoftDHT to let nodes discover other nodes that are close to their description.
Periodically, a node searches for its nearest sample profile from S and will receive the
address of another node that is close to the same sample description. This could be
a neighbor that is already known, its own address or a completely new friend from a
constellation located far away.

In addition, the simple neighborhood management of the original system is not enough.
Algorithm 10 shows the procedure to decide whether or not a recently discovered user
should be included in the neighborhood, when the maximum number of neighbors has
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been reached.

Algorithm 10: user found(v)

Data: Current user u, and her attributes Γ1
u

Input: New affine user found, v
begin

if v ∈ Γu then
return

if |Γ1
u| > k then
s ←− get similarity(u, v)
c ←− get clustering(u, v)
median ← |Γ1

u|/2
if d < order by similarity(Γ1

u, p̄v)[median] and
c < order by clustering(Γ1

u, p̄v)[median] then
s ← order by similarity(Γ1, p̄v)
remove less similar element from Γ1

u

append v to Γ1
u

else
append v to Γ1

u

In the original version of the algorithms, if a new affine user was found when there
was no empty slots in the neighborhood, the link to the less similar node was removed.
Now, it has to handle two additional criteria: affinity and clustering. The joining is not
unconditional, as we discussed in section 13.3.2, and the median affinity with the nodes
currently in Γu must be exceeded. If the recently found node is accepted, the less similar
node is unlinked.

In the next section, we will simulate all of these algorithms to test whether or not
they enhance the search results.

13.4. Performance evaluation of enhanced clustering of
users

This section includes thorough simulations of the system proposed in this part of the
thesis. Recall ratio, number of messages sent, clustering coefficient and convergence are
obtained by comparing the behavior of the protocol with a flooding algorithm.

Flooding was used in the past to find documents in P2P networks [71, 142]. Despite not
being scalable with the number of nodes and the fact that searches consume considerable
bandwidth, a message that is flooded arrives to a large portion of the network, ideally
to all nodes. We consider flooding algorithms suitable for comparison with our proposal
to analyze how well our system behaves.

In the simulations that follow, we define the recall ratio of the search algorithm as
the average of the recall ratio for every search in the network. To calculate this ratio,
we do not consider searches that returned no results, since this is a different parameter
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that we will study later. We have limited the maximum number of hops to H = 5
even for the flooding algorithm, and we use a social space of vectors of ten categories,
n = 10. Additionally, the routing protocol should prevent cycles and our simulations
include message identification to prevent cycles. If there is no limit on the number of
hops, messages will travel continuously the network, eventually reaching every node and
discovering all interesting documents. Simulations will show that, for networks up to
several thousand nodes, the diameter of the network with randoms links is about 5 (see
Table 13.1), and thus we consider this limit appropriate for our system. We model that
users only share a single document with a random profile, and consequently, the user’s
profile and the profile of the document that they share are the same. Then, we create
networks of different sizes where nodes join one by one, running the algorithm that was
proposed in Section 13.1. To reduce the “scatteredness” of random user’s profiles, the
threshold λ for affinity definition is modified according to the number of nodes, λ = 2

Nn ,
being N the number of nodes in the network. In our simulation, nodes perform searches
one after another, and consequently the last node of the network has some advantages
over the others due to the learning capabilities of the algorithms even before the first
query. In between searches, nodes are shuffled to minimize this effect.

To run the simulations of this section, we have used a modification of Peersim [34]
that is able to simulate networks with thousands of nodes.

13.4.1. First steps of nodes in the network

During this simulation we are interested in the recall ratio during the initial phases of
the protocol, and so once the network is created every node performs a single search.
During flooding, nodes forward the message to their k neighbors, while epidemics will
choose only Mrand + Msim + Mclus ≤ k neighbors to forward the message. During the
initial steps, the additional messages handled by flooding create an advantage that may
be not yet compensated by the improved knowledge of the network that the epidemic
algorithm will have.

Figure 13.6(a) is the same as Figure 13.1, adding the enhancements that were proposed
in Section 13.3.3 (H = 5, k = 5,M1 = M2 = M3 = 1). The figure shows that the
additional mechanisms not only improve the recall ratio of the searches over the basic
algorithm, but in fact surpass the results of the limited flooding algorithm. In this case,
we are simulating a SoftDHT of 10 sample profiles. This beating is possible thanks to
the new structure that the SoftDHT created, since it is able to locate far constellations
and keep documents of interest closer to the users. The right side of Figure 13.6(a)
shows that in a network of 30, 000 nodes, the flooding algorithm limited to H = 5 hops
can locate 20% of the documents that are of interest to a user, while our basic proposal
is only able to identify 10% of these documents and after the enhancements, 30% of the
documents. For the rest of the simulations of this document, only the results of the
enhanced version of the protocol are included.

Figure 13.6(b) shows the dependence of the recall ratio of different network sizes and
maximum number of neighbors k (H = 5, k = 5,M1 = M2 = M3 = 1). Since there
was only a single search, the lack of knowledge about the network made the recall ratio
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(a) Recall ratio of basic, enhanced and flooding
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Figure 13.6.: Recall ratio for different network sizes and a single search
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decrease when the network grew in size. Meanwhile, the high recall ratio when there
is a low number of nodes in the network is caused by the flooding effect and the low
diameter of random networks. Indeed, in a network with the specified parameters Mx,
any node will contact up to 300 nodes for search. Hence, the likelihood of discovering
interesting documents solely by means of flooding is high when the network size is under
1, 000. In any case, Figure 13.6(b) shows that the presence of the SoftDHT mechanism
makes possible for the improved protocols to surpass the results of the flooding protocol,
something that the basic version was not able to do as Figure 13.6(a) shows. Increasing
the number of neighbors to k = 10, while maintaining the same value for parameter
Mx, enhances the recall ratio of the protocol. In this case, flooding is unsurpassable
(for N < 10, 000, k = 10, the network diameter is less than H = 5 and all nodes of the
network can be reached by flooding).

Next, we will analyze the use of the network for each algorithm. During the last
simulation, we counted the total number of messages that the protocols sent through
the network, and the average hops that a query needs to locate a document of interest.
Figure 13.7 shows the results of this simulation.

It is interesting to compare the results in Figure 13.6(b) with Figure 13.7(a). The
average number of hops for the epidemic algorithm is close to 3, for the scenarios of
k = 5 and k = 10. This means users only find documents in their own cluster of interest
defined as Γ3 and similar users are close in networks hops even after a single search. One
advantage is that the low number of hops means that the discovery is extremely fast in
this algorithm, and that it is scalable with the number of nodes in the network.

Figure 13.7(b) shows the network use of both protocols in a logarithmic scale, defined
as the number of hops needed to perform a search even when there is no result. This
figure shows that network use slightly increases with the number of nodes until a limit
is reached, and thus that the epidemic algorithm is scalable in N . The original epidemic
algorithm sends more messages to the network than the enhanced version, since it knows
fewer similar nodes. These extra messages used by the basic algorithm are the result of
a low-clustered network, but the additional use of the network is not enough to achieve
a better recall ratio. The proposed modifications are still scalable with the number of
nodes, and even improve upon the network use of the basic proposal.

Figure 13.8 shows, for a single search, the percentage of searches with no results for
an increasing number of nodes in the network. In order to test whether or not the
algorithms can find rare items, the number of documents in the network that match a
rule is intentionally low during this simulation. The high number of searches without
results for the basic algorithm is notable, while the proposed modifications enhance the
recall ratio, since they are able to find remote constellations. In any case, the results for
the clustered algorithms can be enhanced by an increased number of searches, as we will
see next. Figures 13.6(b) together with Figure 13.8 show that the quick convergence of
the modified algorithm makes the proposal highly recommendable in a scenario of few
searches or when many new users join the network.

Finally, Figure 13.9 shows the recall of the algorithm with an increasing number of
searches in a network of 10, 000 nodes. When the number of searches increases, the
knowledge of the network of each node increases as well, and consequently the recall
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Figure 13.7.: Network use of the search protocol
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Figure 13.10.: Recall ratio for several values of Ms

ratio of searches is higher. The recall ratio is over 60% of matching documents in the
network after only ten searches in this scenario.

13.4.2. Setting the different parameters of the protocols (Mrand,
Msim, Mclus)

Figure 13.10 shows how the recall ratio of protocols varies according to the different
parameters Mrand (random), Msim (similarity) and Mclus (clustering) for two networks
of N = 10, 000 and N = 5, 000 nodes, and k = 10. In this simulation, two of the
parameters are fixed to M = 1 and the one being studied varies from Mx = 0 to
Mx = 8. Then, we wait for the stability region before calculating the recall ratio.
The figure shows that the recall ratio of the algorithm does not depend on the exact
combination of parameters Mrand, Msim and Mclus. Since these parameters determine
how many neighbors are contacted in each step of the route, a higher parameter means
more messages in the network and thus the recall ration of the protocol gets closer to
the recall ration of flooding.

Figure 13.10 does not capture how recommendations are retrieved. At first glance, the
recall ratio achieved by the protocol does not depend on the value of Mx: regardless of
how we choose the next node in the path, we will get a very similar recall ratio. Despite
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Figure 13.11.: Percentage of results according to the several routing rules.
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this fact, it is important to learn how the recall ratio is achieved. Figure 13.11 shows the
percentage of the recommendations received by a user as a result of the messages that
they sent according to the several routing rules. For example, 50% of the recommended
documents were found using messages routed through the similarity criterion, even when
Mrand = 5,Msim = 1,Mclus = 1. Figures 13.10 and 13.11 should be examined together.
A close examination of these figures concludes that the random routing rule improves
the recall ratio because it lets a fast location of affine neighbors to use the similarity rule
with them later. Especially significant for this conclusion is the left side of Figure 13.10-
a: increasing the number of messages sent to random neighbors decreases the documents
that are found using this rule, but since the overall recall ratio increases, we can conclude
that the network is better clustered now.
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Figure 13.12.: Recall ratio to several sizes of the sample set

As we showed in previous simulations, the use of a SoftDHT enhances the recall ratio
of the protocol during the initial phases and enables a faster convergence to the stable
phase. Figure 13.12 shows the performance of the algorithm while varying the number
of samples in the SoftDHT for several networks. As the figure shows, a low number
of samples is enough to greatly improve the results of the network. As the number
of samples increases, finding new constellations of nodes is increasingly harder: there
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Table 13.1.: Network structure. N = 5000 k = 10 Mrand = Msim = Mclus =
1 Samples = 200

Cluster Random

i |Γiv| |Λiv| %nodes %res |Γiv| |Λiv| %nodes %res

1 10 11 0.22% 52.63% 10 11 0.22% 0.00%

2 14 25 0.50% 100.00% 89 100 2.00% 0.00%

3 54 79 1.58% 100.00% 746 846 16.92% 15.79%

4 169 248 4.96% 100.00% 3276 4122 82.44% 89.47%

5 455 703 14.06% 100.00% 878 5000 100.00% 100.00%

6 1199 1902 38.04% 100.00% - - - -

7 1759 3661 73.22% 100.00% - - - -

8 1205 4866 97.32% 100.00% - - - -

9 131 4997 99.94% 100.00% - - - -

10 3 5000 100.00% 100.00% - - - -

are more sample profiles, and fewer real users can identify with them. The use of the
SoftDHT is significantly more important if the number of neighbors is low: even if the
SoftDHT always improves the recall ratio of the algorithm, this improvement reaches
10% when k = 5, and 3% when k = 10.

13.4.3. Analysis of the clusters

In this section, we analyze how well clusters are built inside the social network using the
mechanisms of this research.

Table 13.1 shows the spread of documents using the enhanced algorithms and compares
it to a network with random links. This table shows the suitability of the construction
algorithm for keeping potentially interesting documents close to the nodes. For this
simulation, there are N = 5, 000 nodes in the network, each one connecting to k = 10
other nodes. Mx = 1 and a sample space of S = 200. Then, we wait until every node
in the network performs at least 4 searches. At the end of the simulation, we choose
a random node u and calculate the cardinality of its neighborhood and distribution
sequence sets, and the recall ratio for each hop, that is, for each Γiu. We repeat this
process with a network of the same size where nodes are randomly linked.

As Table 13.1 shows, 25 nodes are in Λ2 and they hold 100% of the interesting re-
sources. Our central node, in the worst case, only has to contact 25 nodes to get all of
the interesting resources from the network. It has direct contact with 10 of them, which
share more than 50% of the interesting resources. In contrast, a network with random
links needs to contact the 846 nodes of Λ3 in order to start receiving recommendations.
Even in this case, it is only able to get about 16% of the interesting documents.

These numbers come at a cost. The highly clustered network in our proposal has a
network diameter of 10 hops to visit the whole network. The random network is able
to visit the 5, 000 thousand nodes in only 5 hops. The clustered structure of the social
network is thus inefficient if the interests of the users change quickly, or if they frequently
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ask for recommendations for documents that are far away from their profile.
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Figure 13.13.: Structure of the network

Table 13.1 shows the results for a single, randomly chosen node. Figure 13.13 extends
the analysis to the whole network. In this figure, a network of N = 10 000 nodes
is analyzed for k = 10, Mrand = 2,Msim = Mclus = 1. The figure shows the upper,
lower and second and fourth quartiles of the number of hops where 50% and 100% of
the interesting documents were found. It shows that, with a slight dependence on the
sample space, 50% of the interesting documents are in Γ2. To get 100% of the interesting
documents, users need an average of 10 hops.

Finally, Figure 13.14 shows the clustering coefficient for several network sizes and a
varying size of the SoftDHT sample set. It shows that, for a network size smaller than
20, 000 nodes, having 200 sample profiles in the SoftDHT optimizes the clustering coeffi-
cient. Optimizing the clustering coefficient means that more affine nodes are connected,
and therefore interesting documents are at less hops. Simulations of Section 13.4.2 show
this. Figure 13.14-b shows the same data as 13.14-a, but with different axis. The right
side of this figure shows that increasing the sample space is not always advisable: the
clustering coefficient for a N = 1, 000 network drops if the sample space is over S = 200.
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Figure 13.14.: The clustering coefficient
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14. Conclusions

In part III, we justified that users are organized as a social network to aid in the process
of protecting the participants of the system. In a social network, nodes link each other
according to their affinities. We believe that the social network, at first a requirement
of the security mechanisms, can be used to improve the results of the recommendation
process. Indeed, the fact the nodes in a social network link to other nodes that are
controlled by similar users enhances the results of the recommendation process and aids
in the location of new and interesting documents.

In this part, we analyzed how epidemic algorithms can be used to locate interesting
documents in a social network where links depend on the user’s preferences. To achieve
this, we define users, queries and documents as vectors in the same social space, and
describe a common metric to calculate the similarity of documents as well as users.

The substrate of the network structure is created based on the affinity between the
users’ profiles, with enough random links to induce a small-world behavior. From this
point forward, we can create new links and discover new user communities by taking
advantage of the search results and the small-world behavior of social networks.

One desirable characteristic of the mechanisms to create a social network is that they
must be fast and efficient. That is to say, the social network must help users to locate
other users that are similar to them, not only when the user joins for the first time, but
in every moment of the process.

We showed that the criteria of similarity, clustering and randomness do not improve
enough the results of the epidemic algorithm. Hence, we proposed a SoftDHT, a struc-
ture of sample user profiles that aids in the location of islands of similar users that were
not identified at first. In addition, we discussed that there is little gain if a node links
to another node that already belongs to a highly clustered affinity group. It may be
more useful to limit the number of neighbors and include links to other less clustered,
external nodes. In this case, external and unknown groups of users that share the same
interests but have not being discovered yet can be found.

These ideas and improvements were tested in section 13.4. We performed throughout
simulations, and we found that the proposed enhancements improve the performance
of basic epidemics algorithms in dynamic scenarios and shortens the convergence time,
while having a comparable performance in the long run. In addition, we tested the
network structure of the basic searching algorithm and the improved version, and found
that the improvements aid in the creation of a network that shows the desired small
world behavior.
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Part V.

Confidentiality, integrity, persistence
and availability
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Part V: Confidentiality, integrity,
persistence and availability

As we discussed in part I, getting a recommendation from the system is not enough.
Recommender systems are usually involved in many of the most successful e-commerce
shop of the internet, such as Amazon or IMDB. The main objective of an online shop is
that clients buy and access the recommended products. In this regard, we believe that
providing a mechanism to access, download and/or stream the recommended document
is necessarily the final step of any recommender system. In addition, the final output of
the process may be useful to enhance future recommendations, for example, if the user’s
profiles are based on their buying habits.

Accessing documents show some problems from the point of view of security that a
secure recommender system must face. Indeed, any protection that we set on the profiles
that a user gets as recommendation from the system is useless if the final access to the
document can be traced down to the user. In addition, nodes of the network that store
and provide access to the final documents are under threat of legal attacks, as we saw
in part I.

In this part of the thesis, we introduce our contributions to the protection of users
during the insertion and download of documents into and from the system.
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15. Secure Cooperative File-system

In the information economy, data are one of the most valuable possessions for people and
enterprises. In fact, it is of such importance that there is often a significant economic
and/or sentimental damage if data loss occurs. This undesirable situation can be caused
by human or computer errors, fire or water accidents or even both business and common
burglars that steal hardware. The use of current distributed schemes such as P2P
networks and cloud computing helps to minimize the risk of data losing. In addition to
this helpful “backup service”, distributed environments let access the same documents
from any of the devices that their owner uses, or from devices that are controlled by
users that are different from the original owner of the documents.

During this thesis, we are developing our recommender system on cloud computing.
As introduced in part I, we believe that accessing documents must be part of the rec-
ommendation process, and thus it is the last step that a user follows in the system. The
distribution of files in a truly P2P network has many advantages that are suitable for
our scenario.

• The distribution of documents among many nodes in the network protects data
against local malfunctions or misbehavior that tries to prevent the access to the
document. This way, the distribution of documents enhances the document
availability.

• Distribution of documents in external nodes let that the document is available even
if the publisher of the document is no longer online. Most distributed file-systems,
hence, provide document persistence.

• Distribution of documents also means distribution of responsibility. Users that
publish their document in a distributed network that cannot trace the source of a
document are safe against the kind of legal attacks introduced in part I.

• It is easier and much cheaper the creation of distributed networks than the creation
of a centralized node to distribute large sets of documents.

In addition, distribution of documents in a P2P network has some drawbacks in regard
of the data security and user’s privacy.

• Many people will object if their data is stored in the computer of a complete
stranger Even collecting the name of the files that a user has in his personal name-
space is a violation of his privacy.
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• The pervasive nature of distributed documents make difficult delete them when
the user decides that they are no longer necessary.

• The open nature of many of these distributed networks makes difficult limit the
access and download of documents only to selected users or group of users.

• Finally, regarding the deniability problem that we explored in part III, nodes that
store dangerous document could be prosecuted if they are aware of the documents
that they manage and provide.

In this chapter, we center our efforts in a distribution of documents in a P2P file-
system that takes into account these challenges.

15.1. Related Work

There are many proposals on distributed file systems in the literature. From NFS [63]
to AFS [64], many widely deployed distributed file systems rely on several replicated
servers. This approach is no longer scalable nor cheap, and centralized servers are a
honey-pot for attackers, even if they are replicated. To solve these problems, distributed
filesystem over peer-to-peer networks appeared in the literature. In this section, we
will summarize some of the properties of current and past distributed and decentralized
filesystems that show a strong focus on security. Readers can consult a general analysis
of distributed filesystems in [57].

MojoNation [1] was a robust, decentralized file storage system. Nodes were organized
in a peer-to-peer network that showed a ring shape. Files were broken down in “pieces”
or “blocks” that were replicated and stored in the network using a unique identifier
linked to the file. MojoNation was a commercial filesystem, and the company that run
the network made profit commercializing the cash units used in the distributed network,
called mojos. Mojos were used to prevent abuse and document flooding, and users of
the system tread their mojos to replicate the pieces of their files in other nodes of the
network. MojoNation died because original designers didn’t consider the high rate of
joins and leaves of common nodes.

Free Haven [37] uses a non-structured peer-to-peer network to organize nodes and
routes messages that search for documents by flooding the network. In Free Haven, files
are broken down in blocks using an information dispersal algorithm [101]. After joining
the network, users create a pair of asymmetric keys for each file. Each block is indexed
with the same key, hash(PKsub), and traded with a previously computed and static
list of neighbors that takes into account reputation, in the form of analysis of the past
behavior of these neighbors. When clients want to download a file, they ask the network
for its associated key, wait for enough blocks and reconstruct the original file. Nodes
trade blocks with other nodes to improve anonymity and persistence of data.

FreeNet [27] was designed to store documents and allow its later access by means of
an associated key. The goals of FreeNet include the prevention of censorship and offer
anonymity both to the user who publishes the document and to the user that access it.
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To achieve these goals, the Freenet network creates a no-hierarchical and no-structured
organization of nodes that anonymously transmit and cache messages and documents
among them.

GnuNet [123] has the objective of building a broadcast routing algorithm based on
specific valuation of neighbor nodes. Each node valuates its neighbors based on their
behavior and the number of messages that route or ask to route. Messages from less val-
ued nodes receive less priority in the output queue. Each node routes its messages based
on its own interests, but the economics of the network supports strong collaboration.

Over this routing algorithm a file sharing protocol was developed [54]. Files are divided
in different blocks that are individually encrypted using their hash as the symmetric key.
Then, the hash of the key is used as the file identifier. Nodes trade these blocks with
neighbors, and get other blocks in exchange. A searching service is provided by means
of introducing keywords. When users want to search for a file, they send the hash of the
keyword to get the data blocks.

Shark [15] splits files in blocks and uses a distributed hash table (DHT) to store
blocks and iNodes. When a node downloads a block, it publishes itself in the DHT as
holder of a replica. Only nodes that are controlled by the same user will be proxies of
personal data, so clients need connect to at least one of their personal nodes to retrieve
their data. Clients must prove knowledge of the contents of a chunk to read/write, and
then Shark is not able to provide anonymity.

Cooperative File System (CFS [32]) is a file system over a distributed hash table.
Since this filesystem is going to be the base of our proposal, it will be explained in detail
in the next section.

15.2. Distributed documents for a recommender system

We will use the filesystem developed in this chapter as the last step of the recommenda-
tion that a user gets from the system. Indeed, the recommender system does not output
a profile or a link to the desired document but the real document. In this section, we will
simplify this scenario to minimize the dependency with other parts of the recommender
system. In any case, the reader should be aware that this simplified scenario does not
modify the aim of this thesis, i.e. the development of a secure recommender system.

The simplified scenario of our study is as follows. Individuals want to use the internet
as a backup of their personal documents, or as a nearly unlimited disk space for their
data. In addition, they wish to provide access to these documents from any of their
devices, or to other users that have the necessary links to the documents. In addition,
they are really interested in keeping their documents private and out of the reach of
both casual and commercial eyes.

The features of structured Peer-to-peer networks are very convenient to achieve relia-
bility and accessibility of personal data to thousands of users at the same time. Among
the networks that were studied in section 15.1, CFS is the only structured Peer-to-peer
network. Authors of CFS didn’t consider security in their original design, and this sec-
tion describes the construction of a secure structure over a CFS-like system. We call
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this system Secure Cooperative File System (SCFS).

15.2.1. Cooperative File System

Our proposal aims to add security to the Cooperative File System (CFS [32]), which is
a file system over a Distributed Hash Table (DHT). Figure 15.1 shows the architecture
of this system.

A DHT is a structured peer-to-peer network where nodes pick up a random identifier
IDi. Each one finds and links at least to the node that has the very next IDn > IDi

in increasing order. The node IDi is in charge of storing data that is identified with an
ID ∈ (IDi, IDn). The process goes on until that the last node links to the first one
and the whole network creates a ring structure. In order to put or get the information
identified with ID, a node sends clockwise a message in the ring to the node in charge
of ID, which answers. To improve the routing in the ring, nodes have far links to other
nodes of their choice. Current implementations of a DHTs include Kademlia [88] or
Chord [119], and the main difference between them is the specific algorithm for far links.

CFS was implemented over Chord. It gets a file F with a file name f , divides the file
in blocks, stores the blocks Bi and calculates Hi and IDf .

F = {B1 ∪B2 ∪B3... ∪Bn} (15.1)

Hi = hash(Bi) (15.2)

Fh = {H1, H2, H3, ..., Hi} (15.3)

IDf = hash(f) (15.4)

Then, CFS saves each block Bi in the DHT identified as Hi and stores the list of Hi

in a special block under IDf . Files in CFS are persistent and the system warrants that
every file will be retrieved, regardless of its popularity.

15.2.2. Security Requirements

Distribution of personal data in peer-to-peer networks has many drawbacks from the
point of view of security. Many people do not want that strangers were able to access
to their private data, and even they will object if it is possible to get the knowledge of
the existence of some files. Intruders may look for common file names as “accounting”,
“strategic plan” or “passwords” in the whole network for any legitimate user. In addition,
in some countries having a single MP3 file or some kind of adult content may be severally
prosecuted.

The security requirements of SCFS are:
Confidentiality Data should not be readable by others apart from the user that

uploaded it. In a distributed filesystem every node stores personal data from any user,
and the filesystem must supply mechanisms to warrant that node administrators cannot
read data from other users. In addition, if nodes cannot read the content that they store
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Figure 15.1.: Cooperative File System.

they can positively deny its knowledge and protect themselves from legal prosecution
for storing and distributing illicit content.

Privacy Malicious users may collect data about habits or interests of users. Even
if an attacker is not able to access to actual data, the name of the files of the user
name space may be relevant. Commercial research and dictatorial governments may get
profit from capturing the names of files accessed by users. The filesystem must provide
methods to prevent such eavesdropping.

Integrity Since data is stored in uncontrolled nodes, it is not possible to prevent the
modification of data. The filesystem must provide mechanisms to detect modification
and restore original data, if possible.

Persistence The filesystem must prevent data loss. Files can be lost by means of
malicious nodes that remove pieces of data, users that write data in the same place, both
intentionally and unintentionally, or network or node failures. Storage systems focus on
persistence instead of publishing the data.

Availability Users are in the move and own many devices with different network
capabilities, memory and processing power. In spite of this, they want to access to a
consistent disk space from every device regardless of its capabilities. The system should
provide mechanisms to allow data to be available from any of the devices of the users,
regardless how and where they are connected.

In the next section we propose several mechanisms on top of CFS to cover these design
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objectives.

15.3. Secure Cooperative File System

Distributed file systems over structured peer-to-peer networks provide the requirements
that the scenario under study needs. CFS is the first choice to develop a distributed file
system for personal files, but it does not provide the necessary security services. In this
section, we propose some mechanisms to add to the standard CFS system in order to
cover the security objectives studied in section 15.2.2.

This section will explain in depth each of the steps. A graphical outline of the whole
process is shown in figure 15.2.

Figure 15.2.: Description of the process.

15.3.1. Assumptions and Definitions

Table 15.1 includes the definition of the main concepts of SCFS. Readers will find a
relation of symbols in table 15.2.

In order to organize all this information in a single point, configuration file exists. A
configuration file may be associated to a file, a directory and its contents or every single
document of the user. Configuration files store the identifier of the root directory of the
user, if needed, and the set of keys K required to get the associated object or set of
objects. These configuration files are stored locally to the user in each one of the nodes
and kept private.
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Table 15.1.: Elements of the distributed filesystem

User A human client of the system.

Node Each one of the devices that a client uses to join to the network.

File An ordered array of data

Directory An unordered set of files and directories

Filename A human readable identifier for a file or directory. It is not unique
in the system, since two different users can store different files
under the same filename

Root Directory The filename of the directory that holds every file and directory
of the user. Although not mandatory, we assume that users will
have a root directory for all his documents and files.

Block Each one of the pieces than the IDA creates from a file

Metadata Blocks Special blocks of data that have enough information to restore the
complete file

iNode The first block of metadata that holds a list of the rest of metadata
blocks

For example, Bob and Alice join to a SCFS network. They both desire to store a
file that has “revenues.xls” as filename. Bob has UIDbob = bob as his identifier, and
Alice UIDalice = alice. Bob has cfs : //bob/root/ as the root directory, and Alice has
cfs : //alice/root/. In order to access to the personal root directory of Bob, he will need
his global key Kd. Since their user identifiers and Kd are different, their name-spaces
will be different as well, as the next section shows.

15.3.2. Securing the Whole File

The first step to secure a file is encrypting its contents. Each file is encrypted with a
symmetric algorithm with Kf . Encrypting a file ensures that casual attackers won’t be
able to sniff its contents.

After the encryption process, a shuffling and redundancy creator algorithm takes place.
SCFS uses an information dispersion algorithm (IDA) described in [101]. This step has
a double objective. The first one is preventing that consecutive bytes in the original file
were consecutive in the stored blocks. This shuffling prevents some kind of statistical
attacks against files with a known structure or common header, such as PDF files. Since
users can choose the kernel space of vectors for the IDA algorithm, the spreading of
data in the final blocks is deterministic only for the original author. Key Ks is used
to generate the vector space that the IDA algorithms need. The second objective of
the algorithm is creating redundancy of data. In order to enhance the availability of
the service, the algorithm takes the original file and create m blocks in such a way that
it will need k < m blocks to restore the original file. During the reading process that
redundant information may be used to check the integrity of data and correct errors. In
this regard, the system is protected against malicious nodes that randomly change the
data that they store, overloaded nodes than cannot manage all their parallel connections
and local network failures. The dimension of Bi is chosen in such a way that it matches
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Table 15.2.: Symbols used in SCFS

UID The identifier of each user. UID is the same for every node that a user controls.

F The original file of the user

IDf The final identifier of a file

S The encrypted file of the user

Bi Each one of the blocks of a file

B The set of blocks of the file

H The set of identifiers of blocks

Kd The key used to secure the filename

Kf The key used to encrypt the file

Kff The key used to encrypt the metadata

Ks The key used to generate a vector space for the IDA algorithm

Kss The key used to create block identifiers

K The set of keys. It can be generated from a master key associated to a single file.

N Number of nodes in the network

M Number of malicious nodes in the network

B Number of blocks per file

b Number of necessary blocks per file

k Average hops in the P2P substrate. k = log(N) in Kademlia

the size of a block in the DHT.

S = {F}Kf
(15.5)

B = {S}IDA = {B1, B2, . . . , Bi} (15.6)

dim(F ) = dim(S) < dim(∪B) (15.7)

Clearly, this algorithm consumes time, bandwidth and disk space in remote nodes
since the dimension of the final data in B is greater than the dimension of the original
file F . Users can choose the amount of redundancy to apply to each file, or even if this
algorithm runs or not at all over their files. Authors expect that clients will use most of
the time the default redundancy of 30%.

The encryption and shuffling steps take place locally in a node and the set B is not
yet published in the ring.

15.3.3. Securing File Blocks

After the previous step each block Bi has the same size than the DHT blocks. Since the
data in each Bi was encrypted and shuffled, it makes little sense to any casual attacker
that sniffs the blocks.

The CFS stores and retrieves blocks of data associated to an identifier. We pro-
pose three different methods to identify each one of the blocks. All of them have their
advantages and disadvantages.
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Random identifiers. The local node picks up a random identifier for each block. The
identifier has the same size than identifiers in DHT. This is the most secure method since
the random identifier has not information about the block, its contents or its publisher.
In addition, the set of ordered random identifiers of the file blocks must be stored by
the user locally.

H = {randomi} | dim(H) = dim(B) (15.8)

A file of 20MB that is stored in blocks of 2048B need about 160KB to store the random
identifiers. Since SCFS uses special blocks to store file identifiers, this approach needs
at least 80 blocks just to store the file structure.

Pseudo-random identifiers. Identifiers for each block are created with a pseudo-
random algorithm using Kss as seed of the algorithm.

H = {Kss} (15.9)

In this case, the user only has to store a key of 128 bits for every file in the system,
regardless of its length. Kss must be kept private, since there is no need to make the
job of an attacker easier publishing the list of blocks.

Hash of the block, both basic and secure hash. With the same considerations with
random identifiers in respect to size, hashes have the advantage that they could be used
to ensure integrity of data or event prevent unauthorized overwriting, as will be stated
in next sections. These two advantages are enough to make advisable to calculate the
hash code of each block and store it in the metadata file.

H = {hashKss(B1), . . . , hashKss(Bi)} (15.10)

15.3.4. Metadata

At this moment the user’s node has a local buffer with the blocks of the file B, a set H
to identify each block and a configuration file, as stated in section 15.3.1. Metadata is
then managed in the same way than file objects. It is padded, encrypted with Kff and
divided in blocks using IDA. Many of the special data is stored in a special block that
we call iNode, in the same sense that iNodes in the traditional filesystems. iNodes store
the identification of the set K, the whole contents of H and the identifiers of the rest of
metadata blocks.

In SCFS metadata blocks are published as regular blocks. Since they have the same
length and entropy as any other block, they cannot be distinguished from regular blocks.
Identifiers are assigned in the same way as block identifiers. The iNode is identified in
a special way, described in the next section. The first block is referred with a special
identifier. Metadata blocks are then randomly introduced in the local buffer. This way,
an eavesdropper cannot discriminate between file blocks and metadata blocks.
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Securing File Identifications

Every file in SCFS is related to a URI in an one-to-one relation. This means that an
URI identifies a file and any file is identified just with one URI. Furthermore, it should
not be possible to find out the URI from any number of parts or blocks of the file.

Users store in SCFS their private data with an arbitrary name, and the file system
must provide with a separate name-space of files for each one of the users. In this regard,
a human readable filename must be the main interface of the user to the system. The
complexity and security involved in mapping that string to a DHT identifier must be
hidden to the user.

If an attacker is able to identify the iNode, with convenient crypt-analysis he may
be able to retrieve the complete metadata and then the complete file. In this regard,
securing the identification of the first metadata block is crucial for the security of the
system.

There is a private name-space for each user in SCFS. Private name-spaces have an
associated secret key Kd. The filename is hashed and then encrypted using this key.
The hashing step maximizes the entropy of the encrypted string. The encryption step
warrants that the user-space is unique and secured, since none can identify the file even
if he knows the author and the filename.

IDf = hashKd
(UID, filename) (15.11)

15.3.5. Publishing the File

At this moment, the node has a local buffer with a set of blocks B that are identified with
H and the iNode of the system identified with IDf . The node publishes the contents
of the local buffer in the DHT under their keys. Readers will notice that since blocks,
metadata and the iNode were randomly introduced in the local buffer, an attacker is not
able to put them aside and a crypt-analysis is really difficult.

15.3.6. Reading Process

The reading process is the inversion of the writing process. From a filename users create
a IDf , maybe using a user key Kd to maintain privacy. From IDf , the user gets the
iNode of the file and then the list of metadata block. From the metadata, the user is
able to recreate H. Finally, the user downloads the blocks, undoes the shuffling and
then decrypts the file.

15.3.7. Implementation and Additional Mechanisms

The ideas in the previous sections were implemented in a prototype accessible in [136].
The prototype uses Kademlia [88] as the algorithm for the DHT, blocks have 2048 bytes
and there is a 30% of redundancy in the IDA algorithm. Identifiers of files, nodes and
users have 128 bits. AES is used as the encryption algorithm, and the first 128 bits
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of SHA as a hashing algorithm. Kademlia was chosen as the DHT algorithm since its
buckets are more stable against ring breakages than Chord, the DHT that CFS uses.
The prototype is written in Python and released under the GPL license.

Apart from the mechanisms of the previous sections, our implementation of SCFS
includes others to enhance the security of the system. In this section we will study these
additional mechanisms than take place in phases other that reading and writing data.

Attackers may join a large number of malicious nodes in order to perform a Sybil
attack. This way, the attacker gains a large influence in a region of the Kademlia ring
and he may be able to put the complete system down or perform denial of service attacks
to some users. In order to prevent this kind of attacks, the original designers of CFS
proposed that the identifiers of the nodes must depend on the network address of the
node. Furthermore, the random identifiers of each block disperse blocks in the whole
ring, while the IDA warrants that the file can be retrieved even if a segment of the ring
is not available. Kademlia is especially strong against breakage of the ring [88].

Attackers may collect information by means of sniffing the communications of users
in the network. Files are encrypted, shuffled and broke down in blocks as explained in
section 15.3.3, but metadata have a slightly weaker encoding process, specially the first
of them. An attacker that gets the first iNode needs to decrypt a single block of data to
get the list of every block in the system. That first iNode is encrypted using AES, but
it contents known information that may simplify the crypt-analysis. An attacker may
identify this first iNode because it will be the first block than a user demands. This way,
SCFS asks for several random blocks apart from the iNode.

There is no deletion service in SCFS. A deletion service needs to authenticate the
owner of the file in order to prevent deletion from unauthorized users. In order to
enhance privacy of the users, SCFS does not include any authentication mechanisms.
In order to prevent exponential growing with time, data is actually deleted in nodes if
owner does not access to the block after a month. In order to show interest in a block
without the need of downloading it and increasing the bandwidth, users must send a
“ping” to the data block. Nodes count these pings as an access and will mark the block
as no removable for an extra month.

Both malicious and fair users may overwrite blocks of legitimate users. Since identi-
fiers of blocks are random numbers, collisions are possible. Kademlia supports storing
different blocks under the same key, and when a user demands that key he will receive
the whole collection. SCFS takes advantage of this by means of saving the hash of the
block in the iNodes. In this regard, when a user demands a key and receives several
blocks, he is able to discriminate which one is the valid to create the original file. This
mechanism does not prevent that malicious users are able to write blocks under the same
key, but their blocks won’t be used to recreate the original file.

Directories are files with an unordered list of files or directory identifiers that it holds.
Raw content of a directory is managed as any other regular file in the system. SCFS
uses different URIs to distinguish between files and directories.
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15.4. Denial of service

In this section, we analyze how successful a denial of service attack is in SCFS.
A malicious node does not answer to the petitions of a block from a user. The lack of

response could be willing (the node does not want to answer the petition) or unwilling
(the node disappeared from the network). In this section, we analyze the probability
that a malicious node is successful in its attack, PE.

Mal. User

Path for each block

Final users

Figure 15.3.: A malicious user in the middle of the path of a block.
The probability of a successful download of any file block equals the probability of not

finding any malicious node in the path between the user and the node that stores the
block, as Figure 15.3 shows. That is, the probability that k nodes in the path are not
malicious.

Pβ(k = 1) =
N −M
N

(15.12)

Pβ(k = 2) =
N −M
N

N −M − 1

N
(15.13)

Pβ =
k−1∏
i=0

N −M − i
N

(15.14)

The user needs at least b blocks out of B to recover a whole file. If Ca
b is the bino-

mial coefficient of a and b, we can calculate the success probability PE as a Bernoulli
experiment:
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PE =
B∑
j=b

CB
j P

j
β(1− Pβ)B−j (15.15)

PE =
B∑
j=b

B!

j!(B − j)!
(
k−1∏
i=0

N −M − i
N

)j(1−
k−1∏
i=0

N −M − i
N

)B−j (15.16)

Figure 15.4 shows PE for these values:

N = 10000 (15.17)

M = 100 (15.18)

k = log 10(N) = 4 (15.19)

b = d0.9Be (15.20)

Figure 15.4.: Probability of reconstructing the original file (PE).
Figure 15.4 shows PE(B). That functions grows “exponentially”. For example, when

there are B = 50 file blocks and b = 45 are enough to reconstruct the whole file, if the
network has a size of N = 10.000 and M/N = 1% of them are malicious, the probability
of recovering the complete file is over 95%. In any case, “exponential growing” of figure
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15.4 is unorthodox, and there are lots of steps with differences up to 15% with a single
block. Indeed, if B = 20 and we need b = 18 blocks to reconstruct the file, the successful
probability goes down to 83%. Figure 15.4 simulates the system for b = 0.9B, and gives
a hint about the reason of the large differences of the last figure: differences maximize
when the quantification introduced by the integer coefficients maximizes.

In order to check how parameter b/B ∈ Q affects the output of PE, we will perform
a new test. In this case, we use the same conditions as in the last experiment, but we
keep constant the number of blocks of the file B = 100 while modifying the number of
blocks b that we need to recover it. The rest of the parameters are the same that in the
last case.

N = 10000 (15.21)

M ∈ {100, 500, 1000, 2000, 5000} (15.22)

k = log 10(N) = 4 (15.23)

B = 100 (15.24)

Figure 15.5 shows PE(b,M/N). We can observe that PE is close to 1.0 up to a
certain value for b, when it goes close to 0. Under the same conditions that in the last
experiment, M/N = 0, 01, the threshold for b is about 0.9B, and we can explain the fast
movements of figure 15.4 because we move up and down this slope. The same figure 15.5
shows PE for several values of M/N , and the threshold for b is inversely proportional to
M/N .

This threshold is an important result from the point of view of the system design
because it provides an optimal for parameter b/B for each ratio of malicious nodes. We
must take into account that parameter b/B is a measure of data redundancy. Optimal
redundancy is exactly under the threshold, because a higher redundancy does not in-
creases PE. In a similar way, a redundancy close to or above the threshold decreases the
system efficiency.

In the last experiments we supposed that the number of hops to reach the block
is a constant k = 4. Obviously, this is not true. Figures 15.6 and 15.7 show the
success probability PE for different values of k, in scenarios with and without block
replication. As figure 15.6 shows, the dependency of PE with the parameter k is less
than the dependency, for example, with the number of malicious users. In this regard,
we conclude that the number of malicious users is more critical for the denial of service
attack than the increasing of the number of hops in the network.

15.5. Security Analysis

In this section, we study some possible attacks against the system and their counter
measures. These attacks are based on the objectives that were listed in 15.2.2. For a
detailed comparison of SCFS with other distributed file systems, the reader is referred
to [134, 135].
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Figure 15.5.: Success Prob. as a function of M/N .

An attacker eavesdrop user’s communications. Every piece of data is locally encrypted
and it is never stored in plain text on SCFS. The objective of this attack is getting the
root directory, the iNode or a collection of blocks of a file to perform the next attacks.
SCFS asks for a number of random blocks in the first place. File blocks and metadata
are indistinguishable and all of them have the same size. SCFS makes difficult for an
attacker to put file blocks apart from metadata or directories.

An attacker wants to get a particular file of a user. The attacker knows of the existence
of a file named in a certain way in the personal name-space of the user, as “income.xls”.
SCFS uses the secure hash of a filename to identify an isolated file. In this case, the
attacker must break down the secure hash to get the iNode, and decrypt this block to
get the list of blocks of the file. Our prototype uses random identifiers for files stored
in a directory, and only the name of the directory of the root directory uses secure hash
with Kd. Random identifiers are safe against this attack.

An attacker wants to list the contents of a directory Directory names are protected
with Kd in the same way that filenames are. An attacker could obtain the identification
of the root directory, or even its blocks, if the last attack is successful. Directories are
special files that only stores a list of iNodes to their content, and thus they need a small
number of blocks. It is feasible a brute force attack to rearrange blocks on these small
files, but the attacker still has to break down a symmetric encryption with Kf .

An attacker gets the metadata of a file. The first blocks that a user asks to SCFS
are the metadata of a file. An attacker could put apart these blocks and crypto-analyze

171



15. Secure Cooperative File-system

Figure 15.6.: Success Prob. as a function of k (N = 10000,M = 100, k = 4, b = B).

them to get Kff . In this regard, SCFS asks for some random blocks apart from the
actual ones to make this attack less feasible.

An attacker collects every block of a single file. If an attacker eavesdrops the com-
munication of a user he is able to get the list of blocks that conforms a file without
any need of decrypting the metadata. However, since the IDA algorithm takes place
after the encryption and the attacker has no information about the Ks that creates the
vector space for the algorithm, he has to permute the blocks of the file at random and
then perform the cryptanalysis to break down the file encryption with Kf . The IDA
step adds an additional security to the encryption that makes feasible to use a weaker
algorithm for encryption of the file for constrained devices.

An attacker deletes a file of a user. Since SCFS does not offer a deletion mechanism
as explained in section 15.3.7, this attack cannot be performed.

An attacker controls a group of nodes in the network. The original CFS uses Chord
at the DHT level and the identifiers of each node depend on the network address. SCFS
shares this behavior with CFS, and then an attacker has a limited range of identifiers for
his nodes. The DHT layer is able to perform long jumps even if source and destiny are
separated a long way in the ring. The buckets of Kademlia, which is the DHT used in
SCFS, are even stronger against a ring breakage [88]. Furthermore, since users only need
k blocks of n to reconstruct the original file, the blocks stored in the segment that the
attacker controls are not really needed. As stated in [134, 135], SCFS does not currently
have an economics system to detect and prevent malicious behavior. A system of this
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Figure 15.7.: Success Prob. as a function of k (N = 10000,M = 100, b/B = 0.9).

kind minimizes the dangers of malicious users in the network by means of identifying
them as soon as possible.

Lazy nodes do not send a block, or an attacker sends a false block back. Nodes that
are overwhelmed with links or prefer not to cooperate with other nodes won’t answer to
block requests. Since SCFS uses an IDA algorithm, users will only have to gather k out
of n blocks to reconstruct the original file. Modification of a block is easily identified
with the hash included in the iNode. An economics system to prevent such kind of
attack is advisable, as stated previously.

A node try to decrypt the blocks that it stores. SCFS encrypts blocks using AES and
breaks down files in pieces with the IDA. The information of a single block makes little
sense to the node that stores a single block. Even the block identification contents no
information about the contents, its filename or its publishers.

Any user overwrites one or more blocks of another user. Since there are many users
in the network that store many files with many blocks, there is a high likelihood that a
legitimate user uses the same identifier as another user for different blocks. Attackers
may use the same identifier with malicious intentions. The DHT is able to store several
blocks under the same identifier, and it will return the whole list after a question. Since
SCFS stores the hash of the blocks in the metadata, users can discriminate their blocks
from other user’s block even if they are stored under the same key. Since SCFS uses
SHA, we assume that an attacker has not a feasible way to modify a block while keeping
the same hash and he won’t be able to overwrite a user’s block.
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An attacker traces the publisher of a file. In this attack, we assume that the attacker
could overcome the attacks listed above. That assumption needs a considerable process-
ing power, and only major government agencies can carry out such an attack. Since
there is not an authentication mechanism in the system, the agency has not any knowl-
edge of the original author of the file. In this regard, the agency has to supplant the
node that store the initial iNode and wait for the publisher to download the file to catch
him. Even in this case, the network can use one of the mechanisms described in [46]
or [3] to warrant access anonymity to its users.

A government agency prosecutes nodes that distribute a file. As stated in the previous
attacks, nodes in SCFS do not know which kind of content they store, their contents
or filename. In many countries, denying knowledge of the content that a node store is
enough to prevent prosecution from local authorities to node administrators.
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We defined in part I the recommender system as a complete process, which includes the
access to the recommended document. Hence, the recommender system must provide a
mechanism to download documents as the last step of the recommendation process.

Accessing the recommended document must be taken with care. If a user keeps his
profile private, gets a recommendation using anonymous networks and plausible deniabil-
ity and access the final document using a unsecured mechanism, the protection achieved
during the first phases of the recommender system is useless. Indeed, an attacker may
learn about the user preferences by inspection of the documents that he downloads.
Then, access to the final document may expose the user and other participants of the
process.

Additionally, other participants in the recommendation process are at risk. Part III
protected recommenders by means of providing plausible deniability to their recom-
mendations, but the output of the process was a URL(d) pointing to a document. If
recommenders can access and download documents using the URL that they index, then
they can be legally prosecuted on copyright grounds. Merchants are also at risk, since
if the document repository or an external attacker are able to identify the entity that
published a document, they could be legally prosecuted. Regarding the documents avail-
ability, the MegaUpload case showed that it is possible that huge amounts of documents
disappear after a legal attack from a foreign country.

In this part of the thesis, we analyzed several distributed filesystems from the point
of view of security and concluded that, as far as we know, there was not a satisfying
solution to store personal data. We analyzed the security requirements of such service
and concluded that CFS was the proposal that best matches the network necessities
of personal users. Then, we introduce a Secure Cooperative Filesystem that solves the
security problems of CFS. The ideas behind SCFS were implemented in [136].

SCFS system works on a Distributed Hash Table using a decentralized structure.
Files are divided in blocks, which are published on the DHT. Blocks include redundancy
to prevent data lost, and there are some special blocks save metadata and pointers to
the other blocks of the file. These special blocks are organized in name-spaces that
are in turn protected using individual and/or group keys. Without the necessary key,
an attacker cannot access to the main iNode of the file, and then he won’t be able to
reconstruct the whole file.

We analyzed the availability of documents in the distributed filesystem, and the risk of
a denial of service in this filesystem. We used both analytical and simulation approaches,
and arrived to a trade-off between data redundancy and the number of expected mali-
cious users in the network.

After this analysis, we concluded that for a given value of the coefficient b/B (data
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redundancy in the information dispersal algorithm), there is an optimal value βop(M/N)
that is related to the number of malicious nodes in the system. In addition, a system
without redundancy b/B = 1 and a number of malicious nodes is not going to work with
high probability for interesting documents Pe(B > 50) ≈ 0. Finally, we can assume that
the success Pe does not depend on the average number of hops for k for b/B < βop.

As a result of the security analysis, we conclude that SCFS solves many of the security
requirements of a distributed file system, but it has several possible enhancements.
Particularly, we would like to do further research in order to include an economic system
for SCFS.

SCFS was implemented as a real system, and published as open source.
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17. Conclusions of this thesis

In this thesis, we explored the problem of finding documents in distributed networks. We
established that a recommender system was the best approach to discover new content
that the user was not previously aware. In section 1.1, we defined a recommender system
as an automatic system that, given a customer model and a set of available documents,
is able to select those documents that are more interesting to the customer. As we
explored in section 2, recommender systems are extensively used in e-commerce.

Recommender systems must show some characteristics. Getting useful recommenda-
tions fast is a desirable characteristic of a successful recommender system. Furthermore,
most recommender systems use profiles to describe users and documents, and these pro-
files may contain personal information that must be protected. In most commercial
recommender systems, user profiles are stored in a centralized server that users must
trust, or are spread in a decentralized network of uncontrolled nodes. In addition, the
source of a recommendation, the final provider of the resource or the intermediate nodes
in the network may face charges of copyright infringements, as we found in recent times.
We believed that a better recommender system must face all these challenges. Unfortu-
nately, this is not the case of the most successful recommender systems in use today.

During this thesis, we explored the challenges that a recommender system must face.
At the beginning of chapter 1, we established that the desirable characteristics of a
recommender system are (i) to be fast, (ii) distributed and (iii) secure. A fast recom-
mender system enhances the shopping experience of the client: a recommendation is not
useful if it arrives too late, and the distributed and highly dynamic environment that is
under our study makes fast recommendations a especially difficult task. A distributed
recommender system makes difficult for an attacker to collect large sets of user’s profiles,
and prevent the creation of centralized databases with sensitive information. Finally,
a secure recommender system protects every participant of the system: users, content
providers, recommenders and intermediate nodes.

From the point of view of security, there are two main issues that recommender systems
must face: (i) protection of the users’ privacy and (ii) protection of other participants of
the recommendation process. Recommenders issue personalized recommendations tak-
ing into account not only the profile of the documents, but also the private information
that customers send to the recommender. Hence, the users’ profiles include personal and
highly sensitive information, such as their likes and dislikes. In order to have a really
useful recommender system and improve its efficiency, we believe that users shouldn’t
be afraid of stating their preferences. As a consequence, the personal information that
is included in the user profiles must be protected.

The second challenge from the point of view of security involves the protection against
a new kind of attack. Prevention of illegal distribution of copyrighted documents by
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means of pure technical solutions has not been effective. Copyright holders shifted their
targets to attack the document providers and any other participant that aids in the
process of distributing documents, even unknowingly. In addition, new legislation trends
such as ACTA or SOPA show the interest of states all over the world to control and
prosecute these intermediate nodes. During section 3.1.2, we learned that recommender
systems are treated by this new kind of attacks, and we concluded that recommender
systems should be protected against them.

To achieve these goals, during this thesis we proposed the next contributions:

1. A social model that captures user’s interests into the users’ profiles, and a met-
ric function that calculates the similarity and affinity between users, queries and
documents.

2. Two mechanisms to protect the personal information that the user profiles contain.

3. A distributed system on a cloud that protects merchants, customers and indexers
against legal attacks, by means of providing plausible deniability and oblivious
routing to all the participants of the system.

4. A social, P2P network where users link together according to their similarity, and
provide recommendations to other users in their neighborhood.

5. Mechanisms to enhance the time to create the social network, and improve its
efficiency.

6. A document distribution system that provides the recommended documents at the
end of the process.

We divided this thesis document in four main parts: (i) social model, focused on
contributions 1 and 2; (ii) DocCloud, focused on contribution 3, (iii) Clusters, focused
on contributions 4 and 5; and (iv) Document distribution, which proposed contribution
6.

Social model. The recommender system that we developed in this thesis uses social
networks where users link to each other according to the affinity of their profiles. Thus,
checking if two profiles are or not affine is going to be a mandatory step of such recom-
mender system. The social model to be used in the recommender scenario was studied
in part II of this thesis.

In chapter 5, we modeled users, documents and queries as vectors of a social space. In
addition, we explored how similarity can be defined in an objective way, and established
the definition of affinity for users, documents and queries. The user can configure the
degree of affinity by means of a parameter λ that can be personalized independently.
We used the expression document/query/user profile to refer to this model.

User profiles include their likes and dislikes, and these are very sensitive data that
must be protected. However, the recommender needs access to these data to decide
whether or not a query is affine to a document, and users of a social network need to
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be able to check whether they are affine. Therefore, the protection of the users’ privacy
should not avoid the calculation of the affinity of two profiles.

We followed two different approaches to solve this problem:

• Setting a limit to the amount of information that a profile contains about a user
or document.

• Solving the question of whether two profiles are affine or not, without leaking any
additional information about the profiles.

In chapter 6, we explored the first case using a distortion mechanism to protect the
users’ privacy during the first step of the recommendation process. We took advantage
of the lemma 6.1.2 to linearly project profiles into social spaces of less dimensions.
According to this lemma, the attacker is not able to separate the vector elements if the
dimension of the projected space is less than half the dimension of the original social
space.

But even if lemma 6.1.2 proves that the projections meet the privacy requirements
of our system, it gives no clue about the usefulness of the projection. That is, whether
projected vectors can be used to check the affinity of the users. We found that the
projection matrix must show certain characteristics. Lemma 6.1.1 assures that there is
some projection matrix that, with bounded probability, keeps distances after projections.
Then, our problem is equivalent to finding a projection matrix of less than half the
dimensions of the original social space.

We explored three different projection matrices and how they protect the information
of the user. We defined the parameter uncertainty to measure the amount of informa-
tion that the projected profile still includes about the original profile. In this case, we
established that distances (hence, affinities) were the data to protect.

As we showed, projections create a trade-off between utility and privacy: projections
into a lower space are more secure yet less usable to match profiles. In addition, tri-
angulation attacks can be used to trace down the position of the user in the original
social space, to a limit. By means of modifying the projection matrix, the user is able to
change the uncertainty of the projection and then increase the privacy of the exchange,
at the cost of an increasing of the number of false positives and negatives in the affinity
match process.

In chapter 7, we explored a different approach. In this chapter, we introduced a
zero-knowledge protocol that only answers the question of whether or not two profiles
are affine, without leaking any information about the original profiles if they are not
affine. Simulations showed that we were partially successful, since the protocol can
be configured to bound the number of false negatives as much as necessary, but the
overall number or errors increases. Despite this fact, we analyzed that in our scenario
a big number of false positives is acceptable if the number of false negatives remains
small. Through a theoretical analysis, we proposed suitable values for the configuration
parameters γ according to the desired affinity threshold λ.
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DocCloud. Next, we defined a system that protects intermediate nodes, document
indexers and recommenders from legal attacks. We referred to this system as DocCloud,
and it was introduced in part III of this thesis document.

We identified plausible deniability as the security service that recommender systems
must provide in order to offer protection against legal attacks to the participants of the
recommender system. We defined plausible deniability as the ability that a node has to
deny any knowledge of the document that they are recommending to the users of the
system. Absolute deniability is not feasible in our system, and we use a probabilistic
approach to provide this service.

In order to provide plausible deniability in our system, we use three different methods.

• The privacy protection mechanisms that were introduced in part II of the thesis.
Profiles are distorted using a group key that is not directly available to indexers. In
the event that indexers learn this group key, the distortion cannot be undone. Fur-
thermore, the publishers of the profiles into the indexers are behind an anonymous
network and cannot be identified. As proved in part 6, profiles can be matched
and affinities computed (with a bounded error) even if profiles are distorted

• A Private Block Retrieval scheme that connects customers and recommenders in
such a way that recommenders cannot identify the content that they are recom-
mending.

• A tree-shaped organization of recommenders as nodes of a cloud system to pre-
vent the identification of the source of the recommendation, and provide plausible
deniability to databases.

In chapter 10, we introduced this organization and build the recommender system
using a tree of databases that run a Private Block Retrieval scheme. This way, a customer
can get a recommendation from a set of recommenders without identifying the specific
indexer that stored the content. In addition, the databases are oblivious to the fact
of whether or not they answered the query of the user. That is to say, none of the
participants of the exchange, not even databases, is able to identify the source of the
recommendation.

As we showed, this structure needs a careful distribution of documents inside the
databases to provide the plausible deniability service. We explored two possible distri-
butions of data inside the tree of recommenders, a uniform distribution and a distribution
of resources more similar to the one expected in a social network, as the one that the rest
of the thesis create. In section 10.3.1, we provided a limit on the number of items that
indexers must answer in order to provide optimal anonymity inside the indexers tree.
To calculate analytically this limit, we made the assumptions of a uniform distribution
of resources, and databases structures such as a social network.

We believe that these mechanisms protect indexers against legal prosecution, since:
(i) they cannot identify the original publishers of document profiles; (ii) they can’t undo
the distortion and then learn the exact profile that they are indexing; (iii) they cannot
identify the customer of the system and (iii) they don’t know whether they answered
the query of the customer.
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Clusters In part I, we justified the use of a distributed network to organize users
without any central node. In part III, we justified the necessity of organizing users as a
distributed social network, where nodes link each other according to their affinities. We
believe that the social network, at first a requirement of the security mechanisms, can
be used to improve the results of the recommendation process. Indeed, the fact that
the nodes in a social network link to other nodes that are controlled by similar users
enhances the results of the recommendation process and aids in the location of new and
interesting documents.

Part IV explored the fast and automatic creation of a social network where users
link to each other according to their affinity. We analyzed how epidemic algorithms
can be used to identify interesting documents in a non-structured P2P network where
links depend on the users’ preferences. In chapter 13, we described an epidemic routing
algorithm that creates links according to the affinities of the network.

We found that affinities alone are not enough to find new similar users. Apart from
affinities, we set two additional criteria to create links in the social network: (i) clustering
and (ii) random links. The use of these two criteria tries to induce the behavior of a
small world network.

Again, we showed that these new criteria alone do not improve enough the results
of the epidemic algorithm. Then, we proposed a SoftDHT, a structure of sample user
profiles that aids in the location of islands of similar users that were not identified at
first. In addition, we discussed that there is little gain if a node links to another node
that already belongs to a highly clustered affinity group. It may be more useful to limit
the number of neighbors and include links to other less clustered, external nodes. In
this case, external and unknown groups of users that share the same interests but have
not being discovered yet can be found.

These ideas and improvements were tested in section 13.4. We performed throughout
simulations, and we found that the proposed enhancements improve the performance
of basic epidemics algorithms in dynamic scenarios and shortens the convergence time,
while having a comparable performance in the long run. In addition, we tested the
network structure of the basic searching algorithm and the improved version, and found
that the improvements aid in the creation of a network that shows the desired small
world behavior.

Document distribution As established in part I, we view the recommender system as
a complete process, which includes the access to the recommended document.

Thus, a convenient mechanism to access and download the recommended documents
must be provided. This is a key difference with many other recommender systems in
the literature. Most of them considered that the recommender process ends when the
user gets a recommendation, and do not take into account how the customer gets the
recommended document. We believe this is an error for several reasons:

• Regardless how protected the recommendation process is, accessing to the final
document may expose the user and other participants of the network at risk. If
users are not protected during this step, the kind of document that they retrieve
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17. Conclusions of this thesis

tells as much as their interests. This is more evident if the attacker analyzes
the behavior of the user in the long term. Then, we believe that it is useless to
protect the user during the recommendation phase if the document download is
not protected as well.

• Recommenders may be at risk. Part III protected recommenders by means of
providing plausible deniability to their recommendations, but the output of the
process was a URL(d) pointing to a document. If they output a recommenda-
tion of a copyrighted document pointing to a document that they can access and
download, they may be charged on copyright grounds.

• Merchants are at risk. If the document repository or an external attacker is able
to identify the entity that published a document, they could be legally prosecuted.

• Documents may disappear from the system. Cases such as MegaUpload showed
that it is possible that large, centralized repositories were taken down by foreign
authorities on copyright grounds. This way, a decentralized filesystem improves
the document availability and makes the system more secure against legal attacks.

During part V, we analyzed a distributed and secure filesystem that copes with these
issues. We called this system the Secure Cooperative Filesystem (SCFS). SCFS system
works on a Distributed Hash Table, using a decentralized structure. The distributed
filesystem works by splitting the original file in blocks and saving them in the DHT.
Blocks include redundancy to prevent data lost. In addition, some special blocks save
metadata and pointers to the other blocks of the file. These special blocks are organized
in name-spaces that are in turn protected using individual and/or group keys. Without
the necessary key, an attacker cannot access to the main iNode of the file, and then he
won’t be able to reconstruct the whole file.

SCFS was implemented as a real system, and published as open source.
The system described in chapter 15 is able to provide (i) confidentiality, in the sense

that only users with the suitable key are able to access the document; (ii) privacy, since
attackers cannot access any piece of data or metadata from the file or any of its blocks;
(iii) integrity and persistence, preventing data lost and modification of the files; (iv)
availability, by means of providing mechanisms that allow restoring the original file even
if some of its blocks are missing.

Finally, we analyzed the availability of documents in the distributed filesystem, and
the risk of a denial of service in this filesystem. We use both analytical and simulation
approaches, and arrived to a trade-off between data redundancy and the number of
expected malicious users in the network. In section 15.4, we showed this trade-off and
the suitable value for the configuration parameter for different scenarios.

17.1. Adequacy to the initial objectives

The objectives of this thesis document were established in section 3.2. As the reader
will recall, we aimed to the creation of a recommender system that was (i) hybrid, from

184



17.1. Adequacy to the initial objectives

the point of view of the input data that the recommender uses; (ii) distributed; (iii) a
complete process; (iv) with separate actors for roles, for improving the security of each
participant; and (v) secure, especially from the point of view of preventing the exposure
of private data and protection of all the participants in the system.

In part II of this thesis, we constructed a semantic model that captures the information
of both users and documents, assigning to them vectors of a social space. Additionally,
during the development of this thesis we have used several metrics in order to calculate
the similarity and affinity of users, documents and queries. Since the inputs of these
metrics and models are the profiles of documents and users, that is, the description of the
user and the categorization of documents according to their contents, the recommender
system that we have developed is a hybrid recommender system.

The main actors of our recommender systems are distributed in several networks.
Recommenders and document indexers construct a cloud computing network to protect
them against legal attacks; customers organize a dynamic social network that links
together affine users to enhance the results of the recommendation process; documents
are distributed from a filesystem that is organized as a secure DHT. Therefore, each
of the different parts of our recommender process is distributed, and there is not any
central node in our system. This thesis has built a distributed recommender system.

During part V, we described a distributed filesystem. This SCFS is used to store
documents and provide security to merchants and customers. We believe that providing
access to the final document, and keeping this access secure, is a mandatory step of a
recommender system. The SCFS meets this challenge.

The security of the different participants has been faced according to their roles. The
DocCloud that was described in part III of this document separates the participants
in roles, and defines different security mechanisms for each role. Indexers were pro-
tected using the plausible deniability service, and customers were protected by means
of the privacy mechanisms proposed in part II. Merchants and document providers were
protected using the distributed filesystem of part V. Hence, all participants of the rec-
ommender system are protected according to their roles. The reader will recall that,
being a decentralized recommender system, all participants may play different roles at
different moments.

As a consequence, we can conclude that we have meet the objectives sets during part I
of this thesis.
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18. Future Work

In this chapter we analyze the open issues and open lines that our recommender system
presents. For the sake of simplicity, we will use the same structure in parts that we used
in the rest of the thesis document.

Social model. Accurate metric and profile calculations have not being faced in this
thesis. We defined a simple user and document model, and we only analyzed the effect
of the cosine metric on the privacy of the users. In this regard, the user model should
be extended to cope with the more modern models, and additional metrics should be
evaluated.

Regarding the zero knowledge protocol of chapter 7, there is room for improvements.
We considered that the social space is clustered with hypercubes. Parameter γ should
be the average diameter of a cluster, and hypercubes have so much variance in the
length of their diameters that it may unnecessarily increase the errors that the protocol
outcomes. In this regard, we must consider how the social space should be clustered to
create optimal partitions and improve the true positive rate. Furthermore, we believe
that it is possible to dynamically define the common input G and clustering function
c in such a way that false positives are minimized and prevent sophisticated attacks to
control some areas of the social space. These are open lines for future works.

We are excited with an additional approach to protect the privacy of the user profiles
that makes use of the logistic map. Given a seed 0 < x0 < 1 that is randomly chosen
and a constant k > 0, the logistic sequence is created by iteration of the logistic map.

xi →
{

U(0, 1) if i = 0
kxi−1(1− xi−1) otherwise

After some iteration, this sequence may converge to a stable fixed point, oscillate
between unstable fixed points or have no stable behavior. The specific behavior of the
sequence depends only on the value of the parameter k. Figure 18.1 shows an example
of the values of x100 to x200 for k ∈ [0, 4]. In each case, the value of the initial seed
x0 was chosen at random. This graph is called the bifurcation diagram of the logistic
sequence.

We believe that, with the the use of secure multi-party calculation schemes, we can use
the logistic map or any other sequence with a chaotic behavior to improve the privacy
of the user. In this regard, two affine profiles will use the stability region of the logistic
sequence, while not affine profiles will end inside the chaotic region.
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18. Future Work

Figure 18.1.: Fig-tree from k = 0 to k = 4 for x100 to x200

DocCloud. There are some open lines of improvement in this system. When a user gets
the URL of an interesting document, she still has to contact another network to finally
download the document. It is not clear whether or not the process of downloading can
be separated from the process of selecting documents. For example, an attacker controls
an indexer that forges special URLs in such a way that he is able to decide whether or
not they are downloaded afterward. This way, he would be able to link a query to a
user. This kind of attack was not addressed in this document.

A second open line of research is the management of the social cloud. If cluster A
is created only with users with similar profiles, then a “representative” profile may be
calculated for the cluster, and it may be close enough to the individual descriptions of
each user to unacceptably leak private information that can be used to learn the users’
profiles. In this case, we devise that clusters should be created with users with several
“classes” of profiles. The impact of these “multi-ethnic” clusters on the efficiency of the
system remains unclear.

Additionally, during this work we described a theoretical model to protect document
indexers of a cloud system. We are testing the system and its proposed mechanisms
using a real implementation in order to have an idea of the impact that they have on
the quality of the recommendations that users obtain from the system in large social
networks. This approach is obviously limited to the quality of the assumptions that we
force upon the user descriptions. An implementation on an actual social cloud will be
the real test for this proposal. We are currently working on this implementation.

Streaming documents In this thesis, we explored a document distribution system that
gets documents from a distributed, static filesystem. While distributed filesystems are
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useful for small size files and off-line view of large files, it is not the best solution for
large and sequential documents such as movies, music or TV channels.

The adaptation of the ideas of this thesis to a streaming service is one of our future
work lines. Some preliminary results in this line were presented in [133]. The first
tests on a private streaming service showed that even with a single document provider
with many file entries, it was possible to serve a stream of as much as 10Mbps from a
single node. The first approach used selection vectors in the same sense that 10.2 with
thousands of possible selections. Even a large computer needs the order of minutes to
encrypt the selection vector of several thousand entries, and the same amount of time to
decrypt the resulting stream. A clever buffering policy of encryptions may improve speed
at the run time at the expense of a extremely slow creation of these initial values. The
streaming service was analyzed using smart-phones as final points of the network, and
this problem is much more evident on these devices due to its constraints and processing
power.

In [133], we structured documents (audio files and questions, in that context) as a
tree, as figure 18.2 shows. For each level, we provide k databases. Each database stores
an item of each one of the branches. In this way, when a user downloads a specific
question of a level, he first identifies the database that stores the item, and uses a PBR
scheme similar to the one presented in part III to obfuscate the branch that is following
at this moment.

The structure that is presented in this section needs k databases in each level of the
questions’ tree, and a total of kL databases. This structure of databases should be
organized as a cloud managed by the MSRP server. The challenges to solve in the
streameable approach are the size of the selection vector, and the limited resources of
the targeted devices.

Despite our initial simulations and analysis, the final system as a whole was not
implemented. We are especially concerned about the creation of the selection vector
in a smart-phone with constrained memory and processing power. Even if we feel that
the results provided by the theoretical analysis are promising, an implementation of the
final system to validate our ideas is very convenient. Currently, we are working on this
implementation.
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Questions

Level 0 Level 1 Level 2 Level i-th

Figure 18.2.: The tree of questions and databases
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