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Abstract

This dissertation concerns the computational modelling of early life devel-
opment of music perception and cognition. Experimental psychology and
neuroscience show results that suggest that the development of musical rep-
resentations in infancy, whether concerning pitch or rhythm features, depend
on exposure both to music and language. Early musical and linguistic skills
seem to be, therefore, tangled in ways we are yet to characterize. In parallel,
computational modelling has produced powerful frameworks for the study
of learning and development. The use of these models for studying the de-
velopment of music information perception and cognition, connecting music
and language still remains to be explored.

This way, we propose to produce computational solutions suitable for
studying factors that contribute to shape our cognitive structure, building
our predispositions that allow us to enjoy and make sense of music. We
will also adopt a comparative approach to the study of early development
of musical predispositions that involves both music and language, searching
for possible interactions and correlations.

We first address pitch representation (absolute vs relative) and its rela-
tions with development. Simulations have allowed us to observe a parallel
between learning and the type of pitch information being used, where the
type of encoding influenced the ability of the model to perform a discrim-
ination task correctly. Next, we have performed a prosodic characterization
of infant-directed speech and singing by comparing rhythmic and melodic
patterning in two Portuguese (European and Brazilian) variants. In the
computational experiments, rhythm related descriptors exhibited a strong
predictive ability for both speech and singing language variants’ discrimin-
ation tasks, presenting different rhythmic patterning for each variant. This
reveals that the prosody of the surrounding sonic environment of an infant
is a source of rich information and rhythm as a key element for charac-
terizing the prosody from language and songs from each culture. Finally,
we built a computational model based on temporal information processing
and representation for exploring how the temporal prosodic patterns of a
specific culture influence the development of rhythmic representations and
predispositions. The simulations show that exposure to the surrounding
sound environment influences the development of temporal representations
and that the structure of the exposure environment, specifically the lack
of maternal songs, has an impact on how the model organizes its internal
representations.

We conclude that there is a reciprocal influence between music and lan-
guage. The exposure to the structure of the sonic background influences
the shaping of our cognitive structure, which supports our understanding of
musical experience. Among the sonic background, language’s structure has
a predominant role in biasing the building of musical predispositions and
representations.
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Introduction

1.1 Motivation

In this research, we address, from a computational perspective, the way the
exposure to specific registers of music and language interplay in early stages
of development. Our methodology and computer experiments aim to shed
light on the ways speech prosodic aspects, which are specific of the native
language, can be reflected on or enhanced by implicit musical enculturation.

Music is part of human existence. Throughout human evolution, in every
culture, music has been present. Music, in its earliest manifestations, was
central in group activities, functioning as a means of establishing behavi-
oural coherence in groups of people in contexts such as ritual and religious
ceremonies and occasions calling for military arousal (Roederer, 1984). Mu-
sic was also functional in regulating emotions in mother-infant interaction
(Masataka, 2009).

Nowadays, in modern western societies, music is part of the fabric of
everyday life. As in the past, music still remains embedded in collective
celebrations such as sports events or weddings, and in contexts where it
conveys emotional states, as in movies and advertisement. Our cognitive
architecture allows us to compose music, to perform it and listen to it and,
while in its turn it may be modulated and changed by these activities.

Still, with the growing focus in the individual, a different dimension of
music experience emerges: an awareness of music as an individual’s conscious
experimentation, with self-regulation functions, characterized by differenti-
ated sensitivities. Every human being has the capacity to understand and
use music, but each one’s music experience acquires a subjective meaning
and brings forth a unique feeling. But how do we form these individual
preferences? Are they innate? Or, alternatively, are they brought about by
experience?

Early experience has a fundamental role in brain development. During
infancy the brain develops rapidly, experiencing peak synaptic activity and
forming neural networks. In this critical period, developmental processes
are especially sensitive to environmental input, and the acquisition of adult
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level abilities in specific areas is dependent on the surrounding stimuli or the
lack of them (Patel, 2008). Exposure to sonic information, along with ge-
netic influence, is determinant for the strengthening of neural communication
paths, synaptic formation and organization. So, could it be that we build
our predispositions through development? Does the information present in
the sonic environment of an infant influences its musical aesthetics and bias
its preferences?

Among the auditory information to which infants are exposed, the most
salient are speech and singing sounds. Parents and caregivers, across cul-
tures, languages and musical systems, use a distinctive register for singing
and speaking to their infants (Papousek & Papousek, 1991; Trehub et al.,
1993). The distinctive modifications that are characteristic of this register
attract the infant’s attention and may be used by adults to regulate infant’s
mood, playing an important role in conveying a range of communicative
intentions to pre-verbal infants (Rock et al., 1999; Fernald, 1993).

From the perspective of a pre-verbal infant, music and speech may be
not as differentiated as they are for older children and adults. Both music
and language may be perceived as sound sequences that unfold in time,
containing elements such as frequency, intensity, and duration. Thus, from
the perspective of a pre-linguistic infant, who must learn about each system
before understanding its communicative intent, music and language may be
very similar. Consequently, at an early developmental stage, infants may use
a single mechanism underlying both learning domains (McMullen & Saffran,
2004). So, could it be that mother tongue has a paramount role in the
process of shaping our musical predispositions? Does this bring a cultural
imprint into our cognitive architecture?

However, how can we approach this complex problem? If each human
being develops her own predispositions driven by her unique experience,
how can we avoid a "mythopoeic explanation"! (Cook, 1992) to surpass
the bounds of the intrinsic individuality of this phenomenon? Can we find
answers to our problem by focusing on the building up of the mechanisms
that underlie this process? If we study the mechanisms behind the shaping
of individual sensitivity, will we be able to understand subjective experiences
of music?

Computational tools propose a formal and explicit method for specifying
how information is processed in the brain (Shultz, 2003). This way, com-
puter models bring out the conditions to go beyond a descriptive approach
that accounts on a superficial perspective of human behaviours that may be
considered an emergent result of inner working processes and mechanisms.
Hence, the use of computational tools aims to explain the intrinsic paramet-

1In the sense that the scientific method approach to music must be rejected since
music is a cultural and individual phenomenon and its explanations cannot be generalized
and thus validated. This way, the mythopoeic explanation, does not transcend the bounds
of the individual and cultural dimensions in its approach.
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ers and algorithms that operate in the human mind. Therefore, computer
models can contribute to a causal mechanistic understanding of cognitive
phenomena, providing a source of insights into behaviour as well as explan-
ations from the perspective of the functioning of underlying mechanisms
(Mareschal & Thomas, 2006).

Computational tools have been producing powerful models for computing
learning and development, some applied to music but mostly applied to
vision, memory, face-recognition and language (Westermann et al., 2006).

The use of these models for studying the development of music informa-
tion, perception and cognition, in a way that connects music and language
still remains to be explored.

Accordingly, we propose to explore, throughout this dissertation, compu-
tational tools suitable for each specific research step that can best contribute
to the study of factors which contribute to the shaping our cognitive struc-
ture, biasing our musical predispositions during early development. We will
also explore a comparative approach to the study of early life development
of musical predispositions involving both music and language, searching for
possible interactions and correlations.

1.2 Dissertation outline

Music cognition is built on multiple dimensions of cognitive processing and
knowledge manipulation and its study involves identifying the mental mech-
anisms that underlie the appreciation of music. Consequently, studying
music cognition implies crossing different disciplines and establishing con-
nections between research lines such as cognitive computing (computational
developmental modelling), psychology (music cognition, developmental sci-
ence), linguistics and cognitive neuroscience, leading to a trans-disciplinary
analysis of the problem. This perspective brings a comprehensive and global
approach to the research object that allows us to look into the problem from
diverse angles of analysis.

We accordingly introduce in Chapter 2, theoretical concepts combining
knowledge from different disciplines and from different perspectives, with
the aim of covering pertinent theoretical issues that frame this research.
The chapter is divided into four main parts. In the first part, we review
key topics regarding music as a human ability, its relation with meaning,
its origins, a developmental account of it and its instantiation in the brain,
whether it uses specific or general domain (shared) mechanisms. In the
second part, we review correlations and interactions regarding music and
language, which is made necessary by the comparative approach taken by
this research. In the third part, we cover cognitive processes related with
this research that operate in music understanding. Finally, we identify the
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study’s main problem and propose the aims that determine the guideline to
the developed research.

In Chapter 3, we present an overview of computational modelling, re-
quired for a research that aims to explore computational solutions suitable
for studying different issues related to music cognition. Hence, in the first
part of the chapter, we address cognitive computational modelling as an
approach to the study of cognition. After that, we characterize compu-
tational models whose architecture is focused on neural networks, that is,
connectionist models. We have applied connectionist models for modelling
cognitive phenomena in two occasions in this research and thus their review
becomes necessary. In the next section, we discuss development, learning and
strategies for their modelling. On the following section we overview compu-
tational modelling applied to music perception and cognition. Finally, in the
last section, we review the benefits and problems of computational modelling
as a methodology for studying cognitive phenomena.

In Chapter 4, we examine the processes that lead to the perceptual shift
of pitch representation, looking for causes that influence pitch represent-
ation throughout development. This way, we focus our research on pitch
processing and representation (absolute versus relative), as well as its rela-
tions with development, from a computational perspective. Concurrently,
this step is a first incursion into computational tools as a means for under-
standing cognitive phenomena, allowing the exploration and practice of this
methodology.

With this purpose, we have developed computational simulations, based
on Saffran’s (Saffran & Griepentrog 2001) empirical experiments, using neural
networks. More specifically, Feed-Forward Neural Networks are used in an
on-line setting, and the connection weights of the network are updated ap-
plying back-propagation learning rule.

The simulations have allowed us to observe a correlation between learning
and the type of pitch information being used, whereby the type of encoding
influences the ability of the model to perform the task correctly and learn to
discriminate between languages. These results are coherent with the findings
reported by Saffran & Griepentrog (2001) in their experiments, showing a
parallel between learning and the type of pitch information being used for
representation. Computational simulations turned out to be a valuable tool
and worthwhile to extend to further research.

Furthermore, during this research stage, we have realized that pitch rep-
resentation develops depending not only on learning or age, but also on the
language to which the infant is exposed (Deutsch et al., 2004). Pitch rep-
resentation is affected by a learning process that involves both spoken and
musical experience and thus language may be a crucial factor affecting mu-
sic cognitive mechanisms. Therefore, we have hypothesized that exposure to
speech and music from different cultures, with different prosodic character-
istics, could result in the development of different musical representations.
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Consequently, in Chapter 5, a comparative perspective has been taken,
involving both music and speech. With this in view, we have conducted a
study aimed at capturing rhythmic and melodic patterning in speech and
singing directed to infants from two variants of the same language (European
vs. Brazilian Portuguese). By taking two variants of the same language, we
exclude the language itself as a variable (the lexicon) while still considering
the prosodies of two different cultures.

We address this issue by exploring the acoustic features that best pre-
dict different classification problems. For the implementation of the study,
we have built a data-base composed of audio recordings of infant-directed
speech from two Portuguese variants and infant-directed singing from the
two cultures. The computational experiments that were performed provided
a detailed prosodic characterization of the infant-directed register of speech
and singing from both language variants.

The findings suggest that the prosody of the surrounding stimuli, most
relevant to infants (such as speech and vocal songs), is a source of rich inform-
ation that provides specific cues about the rhythmic identity of their culture.
Furthermore, the results point to rhythm as a key element in characterizing
the prosody of language and vocal songs from a given culture. The results
open up new possibilities for further extending the scope of rhythm topic,
regarding infant-directed speech and singing. Can the temporal prosodic
patterns specific to a given culture influence the development of rhythmic
representations and predispositions? Can exposure to the rhythmic struc-
ture of speech of a specific culture cause a bias that affects music processing
mechanisms and representations? Can exposure to music, or lack of it, in-
fluence language acquisition?

In order to explore these questions, in Chapter 6 we present a computa-
tional model based on rhythmic information processing and representation.
Specifically, we look into the influence of exposure to the rhythmic structure
of speech from a specific culture in the formation of music-related represent-
ations and consider, conversely, if the exposure to the rhythmic structure of
music, or lack of it, could somehow influence language acquisition.

With this in view, we have built a connectionist model based on tem-
poral information processing and representation and have performed com-
putational simulations following Yoshida et al. (2010)’ s human-based exper-
iments. The model shows developmental behaviour in so far as it displays a
new competence that acquired through an experience-driven transition from
an early state into a later one. Therefore, the model has proven suitable for
studying how the temporal prosodic patterns of a specific culture influence
the development of rhythmic representations and predispositions.

Our findings reveal that exposure to the surrounding sound environment
influences the development of rhythmic representations. Speech and singing
directed to infants provide a means of transmitting cultural constraints, spe-
cifically rhythmic identity of a culture that is likely to condition our later
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music processing mechanisms and representations.

Finally, in Chapter 7, we present the general conclusions, related to the
developed research as a whole. We also summarize the contributions of this
dissertation and propose directions for future research.



State of the art

Summary

In this chapter, we introduce theoretical concepts that were considered to be
relevant in the scope of this research. The choices made to what to include
here were thus intended to provide the context for the research that was
developed, biased by a point of view. Addressing music cognition and its re-
lated shaping of predispositions through a computational approach requires
to build a theoretical framework based on multidisciplinary knowledge. In
this regard, we have structured this chapter combining knowledge from dif-
ferent disciplines with different perspectives.

The chapter is divided into four main parts. In the first part, we review
key topics regarding music as a human capacity, its relation with meaning, its
origins, a developmental account and its instantiation in the brain, whether
it uses specific or general domain (shared) mechanisms.

In the second part, we review parallels and interactions regarding music
and language, necessary by the comparative approach taken by this research.
We explore music and language commons from a developmental and evolu-
tionary perspective. We explore prosody as a shared characteristic between
both. In addition, we review the characteristics in infant-directed speech
and singing, explore common processing mechanisms and, finally, comparat-
ive studies that have been performed over music and language.

In the third part, we cover cognitive processes that operate in music
understanding that have been involved in this research in any given time.
These are cognitive development and categorization. The cognitive concepts
are reviewed according to three perspectives: the pure cognitive domain
account, the application of the cognitive process in the musical domain, and
computational approaches to the cognitive process.

Finally, we identify the problem that is object of study, defining the
hypothesis and research question. Furthermore, we propose the aims that
guide the developed research.
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2.1 Music

Music is an intriguing phenomenon of human culture, which is inherent to
humans: it is a “natural outcome of a species that takes every facet of its
behaviour and explores, amplifies, and extends it” (Brandt et al., 2012, p.
3). Regardless of the difficulty in defining music itself, since it means dif-
ferent things and has different purposes according to individual, social and
cultural contexts (Nettl, 2005), we are interested in defining what musical
capacity is. The human capacity for musicality is ubiquitous across hu-
man societies, present in every human being, although it can be realized in
different forms, different degrees and different cultural and social environ-
ments. For Jackendoff & Lerdahl (2006), “Musical capacity constitutes the
resources in the human mind/brain that make it possible for a human to ac-
quire the ability to understand music” (Jackendoff & Lerdahl, 2006, p. 35).
In this definition, it is underlying the concept of listening competence and
hence music understanding. Brandt et al. (2012) proposes a complementary
definition: the human ability to “engage and appreciate creative play with
sound”(Brandt et al., 2012, p. 3), arising whenever sound meets human ima-
gination. This account is flexible enough to embrace musical capacity across
time and cultures.

2.1.1 Music and meaning

Music and meaning is a debatable topic that usually leads to inconclusive
discussions in different fields such as musicology, philosophy, cognition and
artificial intelligence. Meaning emerges from the musical experiencing and
appreciation (Cross & Tolbert, 2008). However, although music is universal,
its meaning is not. Across cultures, there are diverse forms in which music
can be interpreted and experienced as bearing meaning. Specifically, musical
meaning may arise from social domain, where there is a shared understand-
ing (cultural grouping) and individual domain of aesthetics’ foundations or
even from the combination of these contexts (Cross, 2001). The relationship
between music, emotions and affect, and how meaning of music carries the
expression of emotions has been theorised since later seventeenth century.
Music evokes strong emotional responses in their listeners, reflecting a sort
of pre-linguistic symbol of emotions with social functions in communication.
(Cross, 2012)

Despite the inconsistency and ambiguity in the emotional responses to
music, there is a large body of theory and experiments that propose that
the same type of physiological responses, as elicited emotion-producing situ-
ations can be produced when listening to music (Juslin & Sloboda, 2001).
To their listeners, music can sound happy, sad, contemplative, and so forth.
This association of music - which could be seen as simple sequences of tones
- with particular emotions is related with acoustic cues such as mode and
tempo or in the harmonic domain in terms of patterns of tension and resolu-



2.1. MUSIC 9

tion. However, these associations are historically and culturally determined
(Dalla Bella et al., 2001). For example, in western music, happy is frequently
conveyed with fast rhythms and major keys whether sad with slow tempos
and minor keys (Hevner, 1935).

2.1.2 Music and origins

Music capacity has several open questions in debate related with its nature,
origins and its evolution (Honing & Ploeger, 2012). Several disciplines have
been concerned with these questions such as anthropology, ethnomusicology,
developmental and comparative psychology, cognitive science, neuropsycho-
logy and neurophysiology.

There are a few hypothesis regarding its origins and adaptive significance.
They address issues such as innateness and the biological determination,
evolution and adaptation, and domain-specificity or general mechanisms in-
volved in its processing (modularity). Despite of different points of view in
these issues, there are converging evidences that there are universal features
in music (whether as a manifestation, as system or as perception) that point
to an innate constraint determination. The main generic music universals
can be summarized as (1) relative pitch perception, (2) discrete pitch levels
and scales existence with 5 to 7 pitches arranged within an octave range
(3) octave equivalence, (4) simple frequency ratio interval notes, (5) tonality
or tonal hierarchy and (6) lullabies or songs composed and sung for infants
(Dowling & Harwood, 1986; McDermott & Hauser, 2005).

In respect to its nature, the musical capacity entails two related problems
which are (i) whether there is an innate state of musical knowledge, prior
to any musical experience within a culture and; (ii) how this initial state of
musical knowledge is transformed into the adult state of music perception
within a culture (Hauser & McDermott, 2003). These problems involve
important issues such as innate constraints, musical experience, cognitive
development and resource sharing of general mechanisms in specific domains.

Regarding the innate features, they can be explored by developmental
studies that attempt to understand how infants, that lack cultural expos-
ure, perceive music and what their musical predispositions are. However,
infants never completely lack of exposure to music because in-utero exper-
ience must be considered. Humans start responding to sound around 30
weeks of gestational age and until about 6 months of age a critical period of
auditory perceptual development takes place (Ilari, 2002; Graven & Browne,
2008). This shows that it is remarkably hard to control for the level of prior
exposure to music. Moreover, unlike adults, infants cannot verbally report
their experiences, representing an experimental challenge that leads to look
for non-verbal behavioural response experimental measures. Examples of
these are sucking rates for neonates when sucking a non-nutritive pacifier
and looking time when oriented towards a stimulus presentation for older
infants (Trehub, 2001).
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2.1.3 Developmental perspective

From a developmental perspective, findings yielded developmental evidences
concerning the ability of young infants to respond strongly to musical sounds
(Dowling, 1999). In this sense, processing predispositions for music are as-
sessed in infants to inspect their musical capacity (Ilari, 2002; Trehub, 2001;
Dowling, 1999; Hargreaves, 1986). In their account, infants’ sensitivity to
musical patterns is much similar as of adults, as infants show very good
auditory discrimination skills for features such as pitch, timbre, durational
patterns and melodic contour. These processing skills are also used for dis-
criminating sounds in language acquisition (Brandt et al., 2012). Addition-
ally, infants even show more sophisticated musical processing abilities such
as sensitivity to scales, harmony, musical structure and form (Trehub, 2003).
However, these processing abilities gradually develop more specific features
tuned to the infants’ native culture. For example, at 6 months of age, infants
can equally detect changes in melodies made up of pitches using both West-
ern major/minor scale system and Javanese scales, in contrast with Western
adults that more readily detect changes in melodies when using Western
scales (Lynch et al., 1990). The cultural bias is also observable regarding
rhythmic aspects such as musical meter and rhythmic grouping (see Chapter
6 for more) (Soley & Hannon, 2010; Yoshida et al., 2010). These evidences
found early in development suggest that these abilities might be innate, a
result of evolution that shaped human brains to have these specific pro-
cessing skills that are required to acquire mature musical abilities (Trehub,
2000).

Regarding innate and universal preferences, most of the studies are per-
formed in western cultures and therefore, they cannot determine if early mu-
sical predispositions are a result of the specific cultural kind of exposure and
if different cultural inputs would alter preferences and perceptual discrimin-
ations. An example of this is infants’ preference of consonant over dissonant
intervals that, due to the impossibility to exclude probable prenatal exposure
in the cultural environment, is still considered an open question (Masataka,
2006). Acculturation has crucial role and it biases music perception through
the exposure to music of one’s culture (Carterette & Kendall, 1999). Infants
are born with a wide range of perception possibilities that, throughout devel-
opment, are narrowed by means of cultural constraints (Lynch et al., 1990).
This perceptual narrowing, product of the infant’s cultural experience, is not
specific to music, being observed as a domain-general phenomenon across
perceptual modalities.

Lullabies are a musical feature that has been found across a wide range
of cultures. They involve mother-infant vocal interaction and show similar
forms and functionality across cultures (Trehub, 2000). Common properties
in lullabies are slow tempo, and repetitive falling pitch contours (Papousek
et al., 1987). This cross cultural correspondence might suggest that infants
have an innate predisposition for this musical form.
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2.1.4 Modularity

In addition to innateness versus experience-dependent shaped by the envir-
onment debate, remains the discussion concerning neural specialization for
music (or brain modularity) - domain-general or specific mechanisms used
in music processing. These debates are specially raised concerning the ori-
gins and evolution of music. There are two main lines towards music and
evolution: one that regards music as a by-product of other cognitive skills
and other that considers that musical capacity is a direct target of natural
selection. Whether it is a biological adaptation (Darwin, 1871; Cross, 2001;
Huron, 2001) or rather a side effect of the auditory system features that
evolved for other purposes (Pinker, 1997), music capacity evolved in human
species and thus, it is clear that such universal capacity of music reflects
changes in the brain that might have started to take place 6 million years
ago (Carroll, 2003)

Music capacity may be concerning different processing modules (Peretz
& Zatorre, 2005). Some processing modules might be exclusively specialized
for music (Peretz & Morais, 1989), while others may be shared, for example,
with speech (Patel et al., 1998). Concerning modularity, there are accounts
pointing to the existence of distinct processing modules for music. Peretz
et al. (2003) found patients that may go through recognition failures that
affect exclusively the musical domain. This would imply the existence of spe-
cialized brain networks for musical functions, with no overlap with language
or environmental sound perception networks. What still remains to determ-
ine is which are and are not the processing components uniquely involved in
music (Peretz & Zatorre, 2005).

Regarding the domain-specificity, the question is to what extent music
processing relies on exclusive mechanisms or whether music capacity is a
product of general perceptual mechanisms that are neither music nor species
specific. Musical capacity is based upon various perceptual mechanisms,
some argue that are product of general perceptual mechanism and shared
with most other vertebrates (Trehub & Hannon, 2006), and some argue that
they are a balance between general-domain species shared and potentially
unique to our species and music dedicated mechanisms (Peretz, 2006; Fitch,
2006) This discussion is especially fruitful regarding music and language
domains. We will further explore this issue in the next section.

2.2 Music and Language: parallels and interactions

Music and language are two distinct sound systems with very different struc-
tural organizations that require domain-specific knowledge and representa-
tions. Language involves the manipulation of words and their syntactic prop-
erties whereas music involves representing chords and their harmonic rela-
tions (Patel, 2007). In regard to the functional level, music and language also
have different communicative purposes. Regarding their functional proper-
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ties, these two domains also diverge. Language is used for communication
and expression of rational thought and organization of human societies, con-
trarily from music that lacks of semantic meaning (Meyer, 1956).

Despite their obvious differences, music and language are both ubiquit-
ous elements in all cultures, they are human specific and both require cul-
tural and learning transmission. Because they are both meaningful sound
sequences, this resemblance invites to draw comparisons between the two
domains. Music and language are both perceived primarily through the
auditory system, with similar acoustic properties. They both are organized
temporally, and their structures unfold over time. Regarding their struc-
tural similarities, music and language are composed by sequential elements
with a specific rhythm, segmental (discrete phonemes and discrete pitches or
notes) and supra-segmental information (prosody). Moreover, they are both
human system constructs, based on rules and composed of basic elements
such as phonemes/words and notes/chords. These elements are organized
into higher-order hierarchical structures such as musical phrases and lin-
guistic sentences, by using rules of harmony and syntax (Besson & Schon,
2001).

Music and language similarities have intrigued a wide range of thinkers,
including musicologists, linguists, biologists and philosophers. Their cor-
respondences have been explored since their origins, with Darwin’s (Darwin,
1871) hypothesis indicating a shared evolution history. Throughout the next
sub-sections, we will explore music and language’s connections from different
points of view.

2.2.1 Common origins

The possible connections between music and language’s evolutionary path-
ways are a topic of debate involving anthropologists, psychologists and sci-
entist of animal behaviours. There is a hypothesis that points to a shared
evolutionary history of these two domains. During the evolution to bipedal-
ism, caregivers had to somehow compensate the lack of physical contact when
infant-riding was lost. This compensation was made through the develop-
ment of special vocalizations that also served to better co-ordinate mother-
infant interactions. This interaction would eventually provide the infant the
opportunity to acquire the capacity to learn vocal usage (Falk, 2004). These
vocalizations that might have evolved from this need of compensation rep-
resent a communication system or "prosodic protolanguage" that provided a
precursor for music and language as we know them today (Masataka, 2009).

Moreover, these vocalizations might have been the origins of infant-
directed speech and singing, that are used across all cultures (see Section
2.2.4). Speech and singing directed to infants are still used by its affective
salience and attention-getting properties to communicate emotionally with
infants on a basic level. In turn, the infant-directed register is preferred
by infants relative to adult-directed register (Fernald, 1985; Cooper & As-
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lin, 1990; Masataka, 1999). This special parenting style is also known to
work, at the prosodic level, as a beneficial facilitator of language learning for
preverbal infants (Thiessen et al., 2005).

2.2.2 Developmental perspective

From the infant perspective, in a preverbal stage, speech and singing might
not be as differentiable as for adults and young children given that, without
linguistic knowledge, both domains might be perceived as sequences of sounds
that unfold in time. Thus, at an early stage of development, infants might be
attending to melodic and rhythmic properties of speech in the same way as
in music, sharing resources for processing both (McMullen & Saffran, 2004).
Brandt et al. (2012) go further and describe spoken language as a special
type of music. In their view, spoken language is presented to the child as a
vocal performance from which infants extract musical features first. Without
the ability to hear musically it wouldn’t be possible to learn to speak.
Hence, at an early stage, musical and linguistic abilities may be based
upon the same learning competences. This way, the musical aspects present
in speech and singing directed to infants become an integrant ontogenetic
factor in the development of human communication capacities developing,
at an early stage, an intermediate communication ability based on prosody.

2.2.3 Prosody

Prosody is a central common supra-segmental cue in music and language.
The term prosody has its origins in ancient Greek culture, where it was
originally related to musical prosody (Nooteboom, 1997). Musical prosody
can be seen as the musician’s manipulations of acoustic signals to create
expression, communicate emotion and clarify structure. Thus, in order to
shape music, the performer adds variations to the sound properties, including
pitch, time, amplitude and timbre (Palmer & Hutchins, 2006). The manners
in which performers’ model musical pieces in order to add expression is very
similar to the ways in which talkers manipulate speech sounds and sequences
(i.e., lengthening or shortening sounds, adding modulations, making attacks
more or less abrupt, etc.). This way, both musical and speech prosody relate
to the manipulation of acoustic features to convey emotional expression and
to provide segmentation and prominence cues to the listener.

Speech prosody refers to speech properties that go beyond sequences
of phonemes, syllables or words, that is, the supra-segmental properties of
speech. These characteristics comprise controlled modulation of the voice
pitch, stretching and shortening of segments and syllable durations, and
intentional loudness fluctuations (Nooteboom, 1997). In other words, pros-
odic cues are associated with acoustic variations of pitch or fundamental
frequency, spectral information or voice quality, amplitude, and relative dur-
ations in patterns of speech.
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In respect to the common prosodic structure, there are comparable rhythmic
and melodic features in music and language worth to be analysed. As for
rhythmic features, both music and language are composed by systematic
temporal accentual and phrasal patterns (Patel, 2008). However, music
rhythm is usually regular, with isochronous pulse and perceptually periodic
(Bispham, 2006; Fraisse, 1984), whereas in speech there are no repeating
patterns temporally regular (Port, 2003). Comparing music and language
as bridging non-periodic aspects of both has shown fruitful (Iversen et al.,
2008; Yoshida et al., 2010) and, thus, periodicity should not limit the study
of rhythmic correlations between both.

Regarding melodic aspects, both music and language can be seen as “an
organized sequence of pitches that conveys a rich variety of information to
the listener” (Patel, 2008, p. 182). In speech, the melody carries affect-
ive, syntactic, emphatic (signalling prosodic grouping) and emotional in-
formation. “From a musical perspective, speech is a concert of phonemes
and syllables, melodically inflected by prosody” (Brandt et al., 2012, p. 4).
Musical melody also conveys information, evoking a rich set of perceptual
relations. The human perceptual system converts the sequence of pitches
into perceived relations such as interval structure, grouping structure and
tonality relations (hierarchical pitch relations and harmony) (Patel, 2008).
These perceptual associations may lead to many more meta-relations, res-
ulting in a psychologically distinct perception of musical melodies in terms
of subjective experience.

2.2.4 Infant-directed speech and singing

Prosodic features in both music and language are highly salient to infants
(McMullen & Saffran, 2004). The sensitivity to affective prosody is present
in infants since the first days of life (Cheng et al., 2012). This early tuning
for prosodic information might start in utero experience, where patterns of
rhythm, stress, intonation, phrasing and contour are the available human-
produced external sound source. At the same time, the prosodic stimulation
that comes from the infants’ environment is highly rich from musical and
linguistic domains.

Prelinguistic infants, since they are born, are exposed to a special register
of music and speech, known as infant-directed singing and speech. In these
registers, both domains are subjected to adjustments by caregivers in order
to be the most attractive to infants. Infant-directed speech’ modifications
involve the use of exaggerated intonation contours, expressed in slower rate
of speech, higher fundamental frequencies, wider range of pitch variations
(Papousek et al., 1987) and characteristic repetitive intonation contours (Pa-
pousek & Papousek, 1991; Papousek et al., 1990). These modifications are
found cross-culturally (Fernald, 1992; Falk, 2004) and are used to regulate
infants’ emotional state and convey meaning, e.g., approval and disapproval.
The emotional content of infant-directed speech can be even understood
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across different cultures and languages (Bryant & Barrett, 2007). Addition-
ally to the functional role in emotional communication, the modifications in
infant-directed speech might aid infants’ language learning (Thiessen et al.,
2005).

In respect to infant-directed singing, caregivers also modify their register
when they interact musically with infants. The repertoire is composed by
a few songs, play-songs and lullabies, normally characterized by simple and
repeated pitch contours and these properties are also cross-cultural (Trainor
et al., 1997).

2.2.5 Modularity versus shared resources

As a result of the early developmental trajectory of musical and linguistic ex-
periencing, it is still not clear how these two domains are instantiated in the
brain, whether if similar processing mechanisms such as memory and learn-
ing are shared in knowledge acquisition in the two domains. This brings back
the discussion about the modularity of mind and to what extent are cognit-
ive mechanisms specifically dedicated to particular domains but, this time,
specifically focusing on music and language domains. In Fodor (1983)’s point
of view, music and language processing makes use of distinct architectural
brain regions that are independent in such way that there is no connection
between them. It has been observed that the perception of speech and mu-
sic elicits different patterns of activation in the brain. Speech perception
relies more on the left hemisphere and music relies more on the right (Callan
et al., 2006). This lateralized activity has been related with the use of dif-
ferent types of processing, with speech demanding for very rapid temporal
processing required for the extraction of segmental and phonemic inform-
ation and music associated with pitch features that vary over longer time
windows (Zatorre et al., 2002).

On the other side, recent scientific research has been exploring music
and language possible connections in a comparative context, yielding cues
in the sense of neurophysiologic, perceptual and cognitive overlap. Recent
studies have been suggesting significant overlap in neural regions underly-
ing music and speech perception (Merrill et al., 2012). The overlap may
respect to mechanisms such as acquisition (Schon et al., 2008), encoding
basic auditory cues (Kraus & Chandrasekaran, 2010), detecting violations
in predicted structures (Slevec et al., 2009) and implicit memory (Ettlinger
et al., 2011). Moreover, there are evidences showing that the activation to
infant-directed speech and to instrumental music show significant overlap-
ping in newborns (Kotilahti et al., 2010). These findings suggest that the
hemispherical separability observed in adults might emerge over the course
of development. Finally, the same temporal precision has shown to be ne-
cessary to process both music and language (Hukin & Darwin, 1995), with
small time windows being crucial for timbre recognition in music (Hall, 1991)
and speech processing relying on longer time-scale windows that correspond



16 CHAPTER 2. STATE OF THE ART

to syllable-sized vocalizations (Morillon et al., 2010). The observed hemi-
spherical differences might be a result of a cortical specialization in aspects
of general auditory processing rather than specialization for music or speech
(Brandt et al., 2012).

In order to reconcile contradictory evidences in respect to music and lan-
guage correspondences, Patel (2007) proposes a theoretical framework that
aims to make a distinction between domain-specific knowledge and shared
neural resources. The resource-sharing framework is based on two main
principles that involve domain-specificity and neural overlap concepts: (i)
music and language entail domain-specific representations and; (ii) the brain
shares neural resources between music and language processing, which op-
erate similar cognitive processing upon domain-specific representations. In
other words, the processing algorithms would be shared but the knowledge
outcomes, memories and sources would be separated.

2.2.6 Comparative studies

Music and language cognition and its interactions have been addressed with
diverse scientific approaches. The contour-based processing in early infancy
experience may have an effect on prosodic predispositions and sensitivity.
The notion that linguistic environment influences musical culture whether
in terms of rhythm or in pitch representation has motivated empirical com-
parative studies that explore these possible correspondences.

Deutsch (1991) explores the influence that language can have on music
perception by testing the differences in the perception of musical patterns
known as the tritone paradox. The conducted study is led by the hypo-
thesis that the perception of the tritone paradox might be related to the
processing of speech sounds. The study demonstrates that spoken language
is the basis factor that influences the individual differences in perception.
Krishnan et al. (2005) also found evidences on language’s influence on pitch
neural encoding. In their study, findings showed that tone language speaking
subjects (Mandarin Chinese) had stronger pitch representations and smother
pitch tracking than the English speaking subjects. These results imply a re-
lationship between pitch representation and the long-term experience with
language, revealing an experience-dependent auditory neural plasticity of
mother tongue. In later research, pitch representation is revisited, showing
that although absolute pitch representation might be present at birth univer-
sally, tone language infant learners may maintain this kind of representation
due to their language learning requirement to associate pitches with verbal
labels during the critical period for speech acquisition, whereas learners of
other languages miss that capability (unless it is maintained by some musical
training) (Deutsch et al., 2004). Pitch representation is further elaborated
in Chapter 4.

Regarding rhythm, there are also evidences that support music and lan-
guage relations. Patel et al. (2006) conducted a study where they compared,
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using quantitative methods, musical and spoken rhythm from British English
and French. Their findings support the notion that the prosody of a culture’s
spoken language is reflected in the rhythmic and melodic structure of its in-
strumental music. These results are reinforced by Hannon (2009) who, in
his experiments, found that listeners perceive language-specific rhythms in
musical contexts and classify instrumental sequences based on the language
rhythmic information. Other example comes from Soley & Hannon (2010)
whose experiments suggest that infants’ meter preferences might be driven
by culture-specific experience.

Moreover, rhythmic grouping, that was viewed as governed by univer-
sal perception principles, was found to be dependent on auditory experience
(Iversen et al., 2008). Specifically, the language-dependent bias in perceptual
grouping is developed by 8-months when linguistic phrasal grouping devel-
ops, and the developed preferences are consistent with the mother tongue’s
structure of infant subjects (Yoshida et al., 2010). The subject of language
influence on rhythmic representations is further developed in Chapter 6.

The studies that were presented represent a body of research that is
still underdeveloped. However, they reveal cognitive interactions and open
a promising path for comparative studies that aim to explore music and lan-
guage relations (Patel, 2008). In this line, we consider that the comparative
approach that we take, involving music and language cognitive processing,
allows the research to take advantage of the body of knowledge produced
in the language processing, either in cognitive research or in computational
modelling techniques. The crossing of information that comes from two fields
introduces a vaster character to the research, enabling to correlate music and
language systems, and opens new possibilities for building more solid hypo-
thesis related to its correlations and interactions. Moreover, using speech
and vocal songs material throughout the research might add qualitative ex-
tent to the research object and brings validity to the research.

2.3 Cognitive processes that operate in early music
understanding

2.3.1 Cognitive development

The individual development that can take place within a life span of an
organism is an active process of change by which proper biological structures
and abilities emerge in each individual by means of complex, constructive
and variable interactions between endogenous (genes) and environmental
factors (Johnson & Hann, 2011). The nature of the interaction between
genes and environment remains controversial. The paradigmatic nature-
nurture debate describes two dimensions, the Nativist versus the Empiricist
views on cognitive development. Radical Nativists defend the idea that
almost all knowledge is available to the infant before any experience. Radical
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Empiricists, in contrast, defend all knowledge is acquired through experience
with the learning abilities which infants are born with.

The relations between learning and development and the nature of their
interaction is also an issue of debate (Lindner & Hohenbergen, 2009). There
are three main lines in this debate that can be defined: (i) the interaction
between development and learning is unidirectional, where learning capital-
izes on the achievements of development and cannot happen unless a certain
stage of development has been accomplished (Piaget, 1953); (ii) the inter-
action is bidirectional wherein learning and development mutually influence
each other, by development being able to enable or limit learning and, in
turn, development progresses with learning (Kuhl, 2000); (iii) There are no
boundaries between learning and development, being both part of a dynamic
system in a continuum process of change (Thelen & Smith, 1994).

Learning is experience-dependent and results from practice and exercise
that produces a relatively permanent change in organisms (Gordon, 1989).
Learning can occur in implicit fashion, where the acquisition of knowledge
takes place independently of conscious will to learn and without the pres-
ence of explicit knowledge about what was acquired (Reber, 1989). Explicit
learning, in contrast, differs in the aspect of awareness, where learning is
triggered by the presence consciously accessible knowledge. Hence, implicit
learning works as the default mode mechanism (Reber, 1989).

Statistical learning can be considered a form of implicit learning, char-
acterized by a discovery procedure that detects basic statistical properties
such as patterns and regularities and results in the acquisition of structure
in the environment. This type of learning mechanism is neither species nor
domain specific and thus considered to be basic and robust. It is commonly
related to language learning in young children, regarding the discovery of
prosodic regularities and word segmentation (see Chapter 4 and Chapter 6
for an application of this learning mechanism) (Saffran et al., 1996; Saffran
& Griepentrog, 2001; Jusczyk et al., 1994).

There has been a traditional dichotomization regarding the progression
of cognitive development. In one side, there are the ones defending that
development occurs in discontinuous stages that are universal commons and
characterize all domains of development (Piaget, 1971). This definition fo-
cuses on the structure or the sequence of development that is necessary
for going from initial to adult form. A branch of study derived from this
approach to development is the demarcation of transitions between stages,
specifying how progressions are stage-like.

One criterion taken, beyond age, was the qualitative changes that mark
transitions to new stages, wherein the structural organization is analysed,
rather than the amount of a behaviour or capacity. However, with this cri-
terion, every increment of learning would mark a new stage (Fischer et al.,
1984). For this reason, and to bypass this problem, researchers used an in-
tuitive sense for determining what an important qualitative change is. Con-
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servation! is one example of a structural definition that has been provided
to specify important changes (Biggs & Collis, 1982).

On the other side, cognitive development is a continuous process, showing
different individual developmental patterns driven by particular experiences
or environmental effects (Feldman, 1980). This perspective is characterized
by a mechanistic approach to development, emphasising the functions that
serve behavioural change. This way, individual differences in development
are assessed concerning that environment influences behaviour through the
principles of learning or problem solving and thus, development is as variable
as its context (Skinner, 1969). Consequently, developmental paths that are
specific to domains and experiences, are potentially infinite in their diversity.

However, this dichotomization has been refuted by data that demonstrate
that both positions coexist, showing that development occurs in stages and
also shows great individual diversity (Fischer & Silvern, 1985). There are
evidences showing that cognitive development has stage-like changes char-
acteristics with cross domain consistency and, at the same time, is charac-
terized by environmental effects and individual differences. This way, the
nature of cognitive development emerges from a combination of environ-
mental and organismic factors. This integrated perspective determines that
development is plastic, varying in response to environmental variation but,
at the same time, this diversity is constrained by the organization of devel-
opmental stages (Gollin, 1984; Lerner, 1984). Thus, given different contexts,
the same initial structural conditions will produce different probable devel-
opmental paths and outcomes, creating a probabilistic epigenesis. Therefore,
individuals exhibit developmental plasticity, functioning differently in differ-
ent contexts. These contexts may be social group and cultural organization.
In turn, the functioning influences the subsequent structures that also in-
fluence the subsequent functioning factors, such as genetics, behaviour or
neuroanatomy. The interaction between environmental constraints and cog-
nitive structure will be developed in Chapter 6.

Brain goes through a maturation process that involves different types
of neural change, to acquire specific cognitive acquisitions. During an ini-
tial stage of development, especially between the late prenatal and early
postnatal period, infants’ brains go through a synaptic overproduction that
tends to gradually decrease to adult levels after the age of two. This high
density of production of synaptic connections shapes the prefrontal cortex
and other related brain areas, and it is directly involved in forming stable
representations capable of being accessed and used on-line (Goldman-Rakic,
1987).

The heighten levels of brain plasticity occurring in simultaneous with crit-
ical periods exert a great influence in shaping the neural circuits and form
enduring representations, through experience, altering permanently perform-

LConservation refers to a psychological task used to test a child’s ability to capture the
invariance of an object property (such as substance, weight or number) after it undergoes
physical transformation.
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ance and behaviour. Critical periods are developmental time windows during
which a specific type of experience or its deprivation has a prominent effect
on the development of an ability or behaviour. Moreover, the experience or
its absence during a critical period can cause the consolidation of structural
modifications in the architecture of neural circuits, leading to the stabiliza-
tion of certain patterns of connectivity that become energetically preferred
(Knudsen, 2004).

The development of musical expertise might be dependent on critical
periods (Trainor, 2005). The analysis and definition of musical critical peri-
ods still has no simple answer due to the complex nature of musical structure
and the blurry identification of general and musical-system-specific learning
mechanisms involved in perception and cognition. However, there are some
identified examples where early experience might have a permanent effect,
such as the development of the auditory cortex and the tonotopic map forma-
tion (Moore & Guan, 2001; Weinberger, 2004) and the development of pitch
representation (absolute versus relative) (this issue is further analysed in
Chapter 4). Trainor (2005) considers that it is of essential importance the
analysis of the mechanisms that underlie the interaction between genetic and
experiential factors that create musical critical periods. This analysis would
contribute to a better understanding of the musical critical periods as well
as their timing and duration.

Despite how cognitive development progresses, it is clear that develop-
ment is to change. Thus, for a comprehensive understanding of develop-
ment, it is necessary to first understand the mechanisms that produce that
change, contributing for cognitive development (Siegler, 1989). By cognitive-
developmental mechanisms it is intended to be interpreted as any mental
process that improves the ability of children to process information. In the
regard of looking to understand how developmental mechanisms operate,
some of the best ideas were achieved in the context of connectionist models,
for example, regarding associative competition. The connectionist approach
has consequently influenced the thinking about cognition. In Chapter 3 we
further explore connectionist models.

2.3.2 Categorization

Categorization is a mental process that requires some form of abstraction
or generalization, reducing the complexity of a continuous world of sens-
ory features, by partitioning them into equivalent classes. In other words,
it is the ability to relate familiar experiences to each other and to other
novel experiences by focusing on common aspects of information and ig-
noring differentiable features. The recognition of the same object under
different circumstances involves learning a property of an item that is ex-
tended to other similar items (Sloutsky, 2010). This ability is considered
essential for knowledge acquisition. Besides, the capacity to build coherent
mental representations or category representations for similar or like entities
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provides the organization and stability of cognition (Quinn & Eimas, 2000)
and reduces the load on memory (Rosch, 1975).

The way items are grouped or categorized determines how the relation-
ships between the objects are learned and how these relationships are gen-
eralized to novel items (Mareschal & Quinn, 2001). Two types of object
categorization have been identified in infancy: perceptual and conceptual
categorization (Mandler, 2000). Perceptual categorization is considered to
be an automatic part of perceptual processing that computes perceptual
similarity between objects, creating perceptual representations of the object.
In contrast, conceptual categorization processes focus on what objects do,
forming category representations based on objects’ functionality (Mandler,
2000). In general, perceptual categorization is applied in object identific-
ation and conceptual categorization in inductive inference, although there
may be interactions between the types of categorization. For the scope of
this dissertation we will only refer to the perceptual categorization type.

Early categorization has been studied seeking to understand how the cat-
egory representations emerge during development, how they are formed and
how they develop (Younger & Gotlieb, 1988). Infants display the ability to
form perceptual category representations since their first days of life (Slater,
1995). They show flexible and responsive processes in category formation
that adapt to the variability characteristics of the stimuli (Bomba & Sique-
land, 1983).

The mental representations of categories may form hierarchical organ-
ized systems with different levels of inclusiveness. Global categories may
be formed earlier than basic level categories due to the great efficiency of
their representations and the more discriminable and frequent attributes that
characterize the global categories (Quinn, 2007). With the increasing fre-
quency of experience, items will tend to be represented in more differentiated
and subordinate levels, forming more basic categories.

In the musical domain, categorization is critical for music processing and
it is involved in several tasks. For example, in early development, infants
possess specific representations relative to tempo and timbre, not being able
to generalize music with changes in these attributes and recognize pieces
played at different tempo rates or new instruments (Trainor et al., 2004).
As a function of experience, the level of specificity changes and the ability
to represent music abstractly grows. Another example is the organization
of rhythmic patterns in music which relies in the categorization of durations
according to the hierarchical temporal structure of the music. This metrical
categorization process is culturally biased by typical duration ratios, since
infants show flexible perception of meter but, in contrast, adults are tuned
to the metrical categories of their musical culture (Hannon & Trehub, 2005).
In chapter 6, we address the formation of category representations relative
to temporal prosodic patterns that are present in infant directed speech and
songs from a specific culture.

Categorization has been addressed by the computational perspective
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(Kruschke, 2008). Computational models have been used to explore the
mechanisms that underlie the category learning in infancy (Marechal &
French, 2000). Marechal & French (2000) conclude that both infants and the
connectionist model used covariation information to segregate items into dif-
ferent categories. Moreover, they suggest that categorization emerges from
the interaction between the mechanisms internal to the subject (infant) and
the properties of the environment (the stimuli).

Throughout this dissertation, in the different research works performed,
we have relied on categorization in our computational approach. Especially
in chapter 5, where different categorization problems are posed in order to
capture characteristic rhythmic and melodic patterning in infant directed
speech and songs from two different cultures that share the same language
(Portuguese).
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2.4 Problem statement

The study of how the brain processes music emerged as a rich and stimu-
lating area of research in cognition, perception and memory. Experimental
psychology and neuroscience show results pointing that the development of
musical representations and predispositions in infancy, whether concerning
pitch or rhythm features, depend both on experience and language (Deutsch,
1991; Saffran & Griepentrog, 2001; Krishnan et al., 2005; Iversen et al., 2008;
Hannon, 2009; Soley & Hannon, 2010; Yoshida et al., 2010).

However, there are still many open issues regarding the processes and
mechanisms that underlie music cognition. The above referred disciplines
identify and describe the cognitive phenomena. Yet, their account regards
on a perspective based on the features of human behaviour which, in turn,
are an emergent result of the inner working processes and mechanisms that
operate in the human mind. The understanding of human musical inform-
ation processing is a very fertile area, with growing research interest and
that still has a lot of potential for further developments. Additionally, the
ubiquity and, at the same time, diversity attributes make musical capacity
a rich field. At the same time, music processing engages a series of complex
perceptual, cognitive and emotional mechanisms and has an important role
in ontogenetic development and human evolution. All these attributes make
music an ideal means to study human cognition and can contribute with new
insights for the understanding of the human brain (Koelsch, 2012; Pearce &
Rohrmeier, 2012)

In parallel, computational modelling has produced powerful tools for
computing learning and development. There are models that hold fea-
tures that embody basic characteristics of the human brain such as self-
organization, plasticity or experience-dependent structural elaboration.
These models have proven to be a powerful tool for problem solving in pat-
tern recognition, prediction, and associative memory (Haykin, 2009). They
have also demonstrated success as being suitable for solving cognitive devel-
opmental modelling problems (Elman, 2005; Munakata & McClelland, 2003;
Quinn & Johnson, 1997; Westermann et al., 2006). Most applications of
these models are in vision, memory, face recognition and language (West-
ermann et al., 2006). However, the use of these models for studying the
development of music information, perception and cognition, in a way that
connects music and language still remains to be explored.

At this point, we hypothesize that the infants’ development of musical
predispositions is influenced by the prosodic features that are present in the
sonic environment of their culture. Consequently, this hypothesis, poses the
following question: how do these features or elements influence the develop-
ment of musical representations and predispositions during infancy?

Regarding this question, the purpose of this research is to explore com-
putational solutions suitable for each specific research stage (i.e. Chapter
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4, Chapter 5 and Chapter 6), that can best contribute for the study of the
shaping of the human cognitive structure, biasing the musical predispositions
during early development. This research will also explore a comparative ap-
proach to the study of early development of musical predispositions that
involves both music and language, searching for possible interactions and
parallels.

2.5 Aims of the study

The capacity to endow meaning to music is found in every human being,
in every culture (Nettl, 2000; Cross, 2012). From the musical experience,
meaning emerges differently in each human being (Cross, 2001). However,
the interpretation of musical meaning can have common factors within cul-
tures, showing that experience might bias the way humans understand music
(Deutsch, 1991; Krishnan et al., 2005; Iversen et al., 2008; Hannon, 2009; So-
ley & Hannon, 2010; Yoshida et al., 2010). During infancy, the brain exper-
iences a high level of brain plasticity period, which is critical in shaping the
neural circuits and form enduring representations and altering permanently
performance and behaviour. During this period, developmental processes are
especially sensitive to environmental input, and its experiencing (or the lack
of it) has strong influence on the consolidation of structural modifications
in the architecture neural circuits and thus on the acquisition of adult level
abilities in specific areas (Knudsen, 2004). Among the auditory information
to which infants are exposed, the most salient are speech and singing sounds
(Masataka, 1999; Werker & McLeod, 1989). From the perspective of a pre-
verbal infant, music and speech may be not as differentiated as they are for
older children and adults (Brandt et al., 2012). They may be perceived as
sound sequences that unfold in time, following patterns of rhythm, stress
and melodic contours (Masataka, 2009).

In this context, the main goal of this research is to explore, relying on
computational modelling techniques, factors that contribute to shape our
cognitive structure, influencing our predispositions and representations that
allow us to enjoy music and make sense of it as it is heard. This goal takes
in the operational objectives described following:

e Investigate the factors that lead to the perceptual shift in pitch rep-
resentation.

e Explore and identify the prosodic features that best characterize and
provide specific cues about the cultural identity of the auditory envir-
onment of an infant by comparing rhythmic and melodic patterning in
infant directed speech and vocal songs of two cultures.

e Study how the temporal prosodic patterns of a specific culture influence
the development of rhythmic representations and predispositions.
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Apply a comparative approach that involves both music and language
cognitive processing in order to explore its interactions and possible
parallels.

Build and test computational models for pitch and temporal processing
by running experiments, using empirical data from experimental psy-
chology.

Produce, based on the architecture, structure and data derived from
the models, explanations for how the sonic environment of a specific
culture influences the development of our musical representations and
predispositions.

Contribute to the building of a theoretical framework, based on mul-
tidisciplinary knowledge that allows a comprehensive approach to the
elements that influence music cognition and perception.






Methods

Summary

In this research, we propose to explore computational tools suitable for
studying different issues, yet all commonly related with the central problem:
exploring factors that contribute to shape the human musical representa-
tions and predispositions. Hence, we devote this chapter to the methods
followed, that is, computational modelling. The chapter is divided into two
main parts: An overview of computational modelling and a summary of
the methodology followed with computational tools. In the first part, we
address cognitive computational modelling as an approach to the study of
cognition. After that, we characterize computational models whose archi-
tecture is focused on neural networks, that is, connectionist models. We
applied connectionist models for modelling cognitive phenomena in two oc-
casions in this research and thus its review provides an introduction to the
unfamiliar reader. In the next section, we discuss development, learning and
strategies for its modelling. In the following section we overview computa-
tional modelling applied to music perception and cognition. Finally, in the
last section, we review the benefits and problems in computational modelling
as a methodology for studying cognitive phenomena.

27
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3.1 Computational modelling overview

3.1.1 Computational cognitive modelling

Computational models are algorithms that can be implemented as computer
programs. These programs can run, be manipulated and tested. Thereby,
computational models can be useful theory-building tools, as they can in-
corporate the description of cognition in computer algorithms and programs
(Turing, 1950). In this perspective, they can be taken as theory repres-
entations. In this sense, computer models as theories can be divided into
product-based theories or input-output theories and process-based theories
(Sun, 2008).

Product-based theories focus on the result of a process but do not com-
mit to a particular mechanism or process. Therefore, these theories do not
make any predictions about the process that is involved in producing the res-
ult. This way, the evaluation of these theories can be performed by simply
measuring the result of the process.

The contrasting process-based theories aim to understand and specify, in
an accurate way, the computational models’ representations, mechanisms,
and processes. The models, thus, explain how human performance occurs
and by what mechanisms, processes and knowledge structures. Thereby,
computational cognitive modelling explores the essence of cognition and vari-
ous cognitive functionalities through the analysis of computational models of
representations, mechanisms and processes. However, evaluating a process-
based theory is not simple, because it involves using process measures, if
they are available and valuable, valid and relevant. In this regard, compu-
tational models hold a great advantage, since they allow inspecting their
internal representations.

Regarding cognitive science, there may be 3 categories of models, namely,
mathematical, verbal-conceptual, and computational models (Bechtel & Gra-
ham, 1998). Mathematical models are about relationships between variables,
using mathematical equations. These models can be viewed as a subset of
computational models because they could hypothetically lead to computa-
tional implementations, but they are commonly sketchy and lack process
details. Verbal-conceptual models describe entities, relations, and processes
in informal natural languages. But language often fails in the attempt to
capture complexity, richness and subtlety of phenomena. Computational
models, in turn, present process details using algorithmic descriptions. The
explicitly to which the computational perspective forces often leads to new
ways of understanding observed phenomena and a complementary view to
empirical experimental methodologies in understanding cognitive phenom-
ena.

The computational approach to cognition is constantly challenged by the
extreme complexity of the systems to be analysed. For this reason, the view
of hierarchical levels of analysis was introduced, to deal with complexity
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(Marr, 1982; Newell & Simon, 1976; Sun et al., 2005). This implies that
computational models can be used to address different levels of analysis,
that is, levels of abstraction. Following this notion of levels of analysis, Marr
(1982) proposed three different levels at which an information processing
task carried out by any device must be understood. These levels are: (i) the
abstract computational theory of the device, where what the program does
is specified, without worrying about exactly how the program does it; (ii) the
choice of a representation and algorithm that manipulates and transforms
the representation in order to implement the computational theory and; (iii)
the implementation level, or how the algorithm and representation are real-
ized physically. Despite the independence that exists among these levels of
description on understanding information processing, they remain connec-
ted because the options taken in one level can condition at a certain degree
the options taken on the other two and, in this sense, they are logically and
causally related.

The risk that Marr’s approach might take is that the implementation
level could be irrelevant faced to the other two levels of analysis as if the
implementation issues wouldn’t affect the algorithmic and computational
theory levels. Indeed, computer algorithms can become implementations by
the automatic process of compilation. However, the brain functioning and
its neural implementation are a complex matter to express at a higher-level
of description and, thus, it is not obvious that they do derive automatically
from a higher-level. This automatic derivation is not obvious too in parallel
computing, where new and unexpected behaviours can emerge from the im-
plementation of the higher-level of computational theory. Given the complex
nature of the brain, its parallel information processing functioning and, con-
sequently, its emergent cognition, it is dangerous to aim simple explanations
that are framed in the operating mode of standard computers.

On the other hand, an approach that emphasises the implementation
level, reducing the importance of the computational theory and algorithmic
levels is an approach that might lead to a poor understanding of the prop-
erties of the phenomena to model and the degree of relevance of these prop-
erties. The poor specification of the goals, purposes and constraints of a
cognitive process can lead to complicated models that offer little account on
the cognitive phenomena the model aims to explain.

Consequently, a balanced approach between all levels of analysis, that
creates links between information across all levels can be much more valuable.
An approach that stands on the trade-off of between a simple model and the
aspiration to include as much of the mechanisms that are known from the
cognitive phenomena. This is where we situate the approach that we have
pursued along this research.



30 CHAPTER 3. METHODS

3.1.2 Connectionism

In this section we characterize computational models whose architecture is
focused on neural networks. These models are known as artificial neural net-
works (ANN), connectionist models or parallel distributed processing (PDP).
Connectionist models were stimulated by research produced on how the
brain processes information. They can gain considerable diverse forms or
architectures, but all models are essentially constituted by the same basic
components: simple processing units, linked by weighted connections. In
the networks, processing is distributed, characterized by patterns of activa-
tions across the processing units. For this reason, this approach for studying
cognitive phenomena is called connectionism. This approach has been estab-
lishing as a valuable and contributing tool for the study of cognition over the
last twenty years (Thomas & McClelland, 2008). Connectionist models have
been applied to several cognitive skills (Houghton, 2005) such as memory,
attention, perception, language, concept formation and reasoning. Many of
these models concern the adult cognitive performance. However, these mod-
els provided a tangible means to observe their internal representations and
how they evolve over time. The consequence of this was an increasing focus
on developmental phenomena and the origins of knowledge (se section 3.1.3).
For now, we will present a short description of this category of models.

Basic concepts

Parallel distributed processing models emerged from the pursuit to break
with the formal manipulation of symbolic expressions paradigm, inspired by
biological neural networks functioning (Hinton, 1989). Seeking to understand
human cognitive capabilities led to an understanding of how computation is
organized in systems like the brain, that consist of substantial numbers of
slow processing nodes that are interconnected. This way, connectionist mod-
els are composed by simple neuron-like processing units that interact trough
weighted connections. Each unit has a state that is established by the input
received from other units in the network. The main goal of connectionism
is to contribute with efficient learning procedures that permit the models to
build complex internal representations of their environment. Connectionist
models have numerous variations and architectures. Rumelhart et al. (1986)
propose a general framework enabling the discussion of various connectionist
models by identifying eight major aspects of parallel distributed processing
models. By its pertinence and utility in understanding these models, we will
describe them very shortly next.

e A set of processing units u;. These units can be distinguished into
input, output and hidden units. Distributed representation means,
thus, that one in which the units represent a small feature-like entity.
The meaningful level of analysis becomes then the pattern as a whole
of the units.
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e A state of activation a,(t). At each point in time ¢, each unit has an

activation value. The vector a(t), composed of N real numbers, rep-
resents the pattern of activations over the set of processing units, that
captures what the system is representing at time ¢. It is possible, this
way, to register the system’s processing as the evolution of a pattern
of activity of the whole units, throughout time.

An output function for each unit such as f;(a;(t)) that maps
the current state of activation a;(t) to an output signal o;(¢). This is
how units interact, transmit signals to their neighbours. Thus, their
degree of activation determines the degree to which they affect their
neighbours. Commonly, f is a threshold function and thus a unit does
not affect its neighbours unless its activation surpasses a certain value.
It is also common that the output of the unit depends probabilistically
on its activation values and f is assumed to be a stochastic function.

A pattern of connectivity among units. The absolute value of
the weight w;; represents the strength of the connection between unit
u; and u;. Positive numbers for w;; indicate an excitatory connection
between u; and u; and negative values of w;; signify an inhibitory
connection between u; and v;. The matrix W, that contains the weight
values for the network units, represents the pattern of connectivity in
which the weight w;; stands for the strength of the connection between
u; and u;. The pattern of connectivity contains the information that
determines the response yielded to any given input. This way, this
matrix is the structure holding the "knowledge" gained by the system
with respect to a given task or problem.

A propagation rule for propagating patterns of activities through-
out the network. This rule combines the output values of the units,
represented in vector o(t) and the values of the connectivity matrix W
in order to produce a network input into each receiving unit.

net; = W x (t) = Zwijoj

An activation rule. This rule determines how the inputs that flow
into a given unit are combined within each other and the current state
of that unit to produce its new level of activation. F is the function
that derives the new activation state by taking a(t) and the vectors
net; for each type of connection

a;(t+ 1) = F(net;(t))
A learning rule whereby patterns of connectivity are modified as a

function of experience. Changing the knowledge structure in connec-
tionist models entails the modifying of the interconnectivity patterns.
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In this sense, these systems gain plasticity given that their patterns
of interconnectivity are always changing by weights modifications as a
function of experience. These modifications can be of three types: i)
the construction of new connections (constructivism); ii) the deletion
of existing connection and; iii) the modification of the strength of the
existing connections. Learning rules can have numerous variations but
fundamentally they descend from the Hebbian learning rule (Hebb,
1949). The basic idea behind it is that the strength of a connection
strength is a result of the synaptic neural activity. This means that
the weight between two units should be changed proportionally to the
activity between those two units. This idea is expressed by

Awij = naiaj

where 7 is the constant of proportionality or also called learning rate.
This is mostly valid for rules that concentrate on the modification of
connection strengths (i.e. the case iii) ).

e An environment within which the system must operate. In these
models, the environment is represented as a time-varying stochastic
function over the space of input patterns.

Neural Plausibility

Neural networks were built on the parallelism with the computational prop-
erties of neural systems and roughly capture some principles operating on
biological neurons. Similar to the human brain, that contains near 10 billion
neurons in which each one contributes its part to overall human cognition,
neural networks or parallel distributed processing systems are composed by
simple processing units that contribute for the overall process. This way,
parallel distributed systems can be a valuable tool for understanding how
collective interactions between several processing units such as neurons, can
lead to the emergence of cognition (O'Reilly & Munataka, 2000; O’Reilly,
1998).

Neural networks are flexible systems that embody the plasticity proper-
ties of human brain, integrating the capacity to learn and adapt through
experience. Connectionist models allow conforming to brain-style computa-
tion, providing a neurological plausibility that is absent from other modelling
methods (Shultz, 2003). Moreover, computational models that are based on
biological properties of the brain can contribute for understanding all of its
complexity.

However, this view is not unanimous and neural plausibility of neural
networks is put in question (see Thomas & McClelland (2008)). Thomas &
McClelland (2008) claim that “neural plausibility should not be the primary
focus for a consideration of connectionism. The advantage of connectionism,
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according to its components, is that it provides better theories of cognition”
(Thomas & McClelland, 2008, p. 29).

Connectionist contributes for cognitive science

Connectionism represents an opportunity to centre the attentions on causal
explanations of cognitive mechanisms, focusing on how cognitive capabilities
work, rather than a descriptive classification of what are the cognitive capab-
ilities and when they appear through development. In connectionist models,
it is possible to explain the nature of the representations that govern the
behaviour of the network. This happens because these models offer an ac-
count of the representations that trigger the performance on a cognitive task,
allowing looking into the model’s representations and providing a means of
explanation for the mechanisms that underlie the model’s behaviours. Ex-
ploring the nature of these underlying representations is fundamental for
contributing on the "how" perspective of understanding in these systems,
focusing on an explicative rather then descriptive perspective on cognit-
ive phenomena. This is due to, as Hawkins & Blakeslee (2005) states, the
input-output paradigmatic shift that these models allowed in understanding
intelligence. Instead of measuring intelligence by the external behaviour,
in line with the Chinese Room’s idea (Searle, 1980), the analysis must be
internal, as connectionist models permit inspecting their internal states (i.e.
hidden unit activation patterns) of the acquired knowledge.

Thus, connectionism influenced explanations about cognitive phenom-
ena, leading to a different thinking in this matter (Thomas & McClelland,
2008). There are several examples that can be given in the study of cognitive
neuropsychology disorders or developmental disorders (Munakata & McCle-
lland, 2003) but we will focus on cases with relevance for the scope of this
thesis. One example where connectionism brought paradigmatic changes in
conceptualizing the phenomena and its theories is memory. There is a shift
on what is conceived as knowledge versus processing. On the classical per-
spective, memory is a place for information storage, whether random access
memory or RAM or the hard disk that is a physically independent entity
from the central processing unit or CPU which accesses memory information
and operates upon it. In this computational view, the information that the
hard disk contains, that can be seen as the long-term memory, is moved
into the CPU, or the working memory, to be processed and the long term
memories are discarded through RAM, a short-term memory buffer (Turing,
1950). In this paradigm, there is a clear physic distinction between what
knowledge storage is and where it is processed.

On the contrary, in connectionist models, processing occurs via the propaga-
tion of activations throughout the network. Knowledge, in turn, is encoded in
the network’s weights between the processing units. knowledge, in this case,
is not an entity that moves from one place to another but rather happens in
the changes of connections, driven by experience and is attached to the struc-
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ture of the model. Hence, information is processed in the same substrate
where it is stored. Moreover, it is possible to establish a distinction between
two types of knowledge representation, namely latent and active (Munakata,
1998). Latent knowledge representations correspond to information encoded
in the connection weights that are built from prior accumulated experience.
Active knowledge representations are present in the maintained activation
states of the system, representing currently relevant information. These two
types of knowledge representation establish a parallel with the long-term and
short-term memory.

Another example that is relevant in the scope of this thesis is the contri-
bution of connectionist models for the study of cognitive development (Plun-
kett & Sinha, 1992). Connectionist models, because they allow inspecting the
model’s representations which, in turn, are resulting of a learning algorithm
that changes the patterns of connectivity as a function of experience, provide
a means of observing the mechanisms from which development emerges. The
possibility to observe different stages of development representations and the
underlying mechanisms that drove the change is a fundamental property that
makes these models more suited for studying cognitive development relative
to symbolic, rule-based computational models (Elman et al., 1996). Con-
tributes from connectionism in the study of cognitive development include
developmental phenomena such as memory (Munakata, 2004) infant per-
ceptual category development (Mareschal et al., 2000; Quinn et al., 1993),
language acquisition (Bates et al., 2002; Christiansen & Chater, 2001), and
reasoning in children (Gentner et al., 1995; Shrager & Siegler, 1998; Ahmad
et al., 2002; Shultz & Sirois, 2008; Mareschal & Thomas, 2007). The issue
of computational modelling of development will be addressed next.

3.1.3 Modelling development and learning

Development inevitably involves change. One of the most difficult issues in
developmental psychology is the transition from one stage of functioning to
another and the underlying mechanisms that produce that change. Without
insights on the mechanisms that produce change, no comprehensive under-
standing of development is possible. In this regard, the problem is divided
in (i) the what, that includes identifying such mechanisms and establishing
the effects that the mechanisms produce and (ii) the how that specifies how
the mechanisms operate (Siegler, 1989). It is fundamental to identify what
develops in children and indeed this perspective concerned considerable at-
tention (Sternberg, 1984). However, it is in the perspective of the how of
development that computational modelling can build major contributions,
that is, how knowledge is represented and how the transition is performed
from one state of knowledge to the next (Shultz, 2003).

The central benefit brought by computational modelling in the study of
cognitive development is the possibility of exploring the causal mechanisms,
that is, focusing on how information is processed, rather than descriptive
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approaches that focused on what are the infants’ capabilities at any given
age. Therefore, computational models provide a tool for understanding the
information processing mechanisms and the processes involved in develop-
mental change (Mareschal & Thomas, 2007). Moreover, computational mod-
els allow inspecting internal representations of the model, contributing for
an account of how knowledge is represented.

The extent to which computational models capture development is not
clear and it is an issue under debate. This depends indeed on the definition
given to development in the first place and how it is differentiated from
learning, if it is considered differentiable (see section 2.3.1). We identify two
criteria for evaluating developmental tractability.

The first criteria has to do with the developmental transition from one
stage into the next, that is related with (Klahr, 1984)’s definition, as stated:
“It evaluates the extent to which the competing theories, which propose two
different pairs of state descriptions for earlier and later competence, can be
integrated with a transitional theory: one that can actually transform the
early state into the later one. Regardless of the predictive power or elegance
of a theory for a given state of knowledge, if there is no plausible mechanism
that might have produced that state from some previous one, such a theory
is seriously deficient.” (Klahr, 1984, p.107)

The second criteria involves the constructivist perspective on develop-
ment that goes further and claims that underlying the transition must also
exist a structural qualitative change in the cognitive structure, leading to a
previous stage with increasing and complex processing capacity (Mareschal
& Shultz, 1996). “The constructivist view of cognitive development holds
that children build new cognitive structures by using their current struc-
tures to interact with the environment. Such interaction with the environ-
ment forces adaptation to environmental constraints, and the adaptation of
existing cognitive structures results in new, more powerful cognitive struc-
tures.” (Shultz, 2003, p. 160)

Shultz & Marechal (1997) consider that connectionist and generative ap-
proaches can be reconciled and suggest directions in how to decide whether
static or generative models are more appropriate to model development.
They propose that connectionist networks are suited to be used in modelling
basic universal cognitive skills because these abilities reflect regularities in
the environments independently of cultural variations. Generative models,
because they are able to construct their own architecture, hold the flexibility
to apply quantification knowledge to a wide range of possible task domains.
Thus, these models are more appropriated for high level cognitive skills that
are built on top the initial core of abilities that begin to develop very early
in infancy and that tend to vary significantly across the world.

The most applied computational techniques for the study of cognitive
development are production systems, connectionist networks, dynamic sys-
tems, Bayesian inference and robotics (Shultz & Sirois, 2008). Production
systems were a proposal for symbol manipulation in cognitive modelling, first
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introduced by Newell (1973). These systems are long-term knowledge rep-
resentations in the form of production rules, or condition-action pairs that
determine actions or conclusions to be taken. Production rules are symbolic
expressions that contain constants and variables. Such rules can also be
called productions because of its capability to produce new knowledge. This
means that in these symbolic architectures, symbols, or the assumed con-
stituents of abstract cognition, are taken as modelling primitives. Examples
of architectures for this approach include ACT-R (Anderson, 1993), Soar
(Newell, 1990) and C4.5 (Quinlan, 1993).

In contrast, in connectionist networks, symbolic behaviour emerges from
the operation of sub-symbolic processing units. These models process in-
formation by the propagation of activation between simple processing units.
Knowledge is stored in the strength of the connections among units. Learn-
ing, therefore, happens through the gradual adjustment of the strengths of
these connections.

The most common neural learning algorithms that are applied to devel-
opment include back-propagation and its variants, cascade-correlation and
its variants, simple recurrent networks, encoder networks, auto-association,
feature mapping and contrastive Hebbian learning (Shultz & Sirois, 2008).

Given the networks’ capabilities to learn and self-organize, the connec-
tionist approach to development has gained extended interest in mechanisms
of cognitive transition (Elman et al., 1996). These models address develop-
ment as a consequence of non-linearities in the multilayer networks that
produce graded transitions between different expertise stages. Generative
networks, a variant of connectionist models, claim, as connectionist mod-
els, that learning takes place through connection-weight adjustments and
development, in turn, occurs via a qualitative change in the structure that
involves the recruitment of new units to the hidden layer of the network.

Dynamic systems are, in short, differential equations that determine how
a set of quantitative variables change concurrently and interdependently,
continually over time (Schoner, 2008). Dynamical systems address cogni-
tion through a theoretical framework within which an embodied view of
cognition can be formalized. Neural networks can be considered dynamical
systems, when a change in a state depends in part on values of current state.
This overlap happens in: (i) recurrent networks, where the update of the
activation depends in part of the current activation values and; (ii) also in
learning networks where the update of weights depends in part on current
weight values.

Bayesian inference are probabilistic models where the Bayes’ rule is used
to perform posterior inferences. Bayesian models have been gaining ground
in cognitive phenomena and in the application to developmental problems
(Griffiths et al., 2008). This framework for probabilistic inference presents a
general approach for understanding how problems of induction can be solved
and possibly how they might be solved in human mind. Three major contri-
butions for modelling human cognition can be pointed out in these models.
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The first is that Bayesian models establish a connection between human
cognition and the normative prescriptions of a theory of rational inductive
inference. Secondly, they contribute for the communication between different
fields such as statistics, machine learning and artificial intelligence. Finally,
these models can untie some theoretical debates that exist between models
that emphasize symbolic representations and deductive inference and models
that emphasize continuous representations and statistical learning such as
neural networks.

Finally, developmental robotics challenge developmental modelling by
employing the computational models inside of a robot, functioning in real
environments and in real time. In this computational approach to develop-
ment, the algorithms are embodied, turning robots into instances of models
from developmental sciences (Lungarella et al., 2003). The intersection that
robotics build between different disciplines such as artificial intelligence, arti-
ficial life, robotics, developmental psychology, neuroscience, and philosophy
results in an approach that claims that brain, body and environment are con-
nected. Consequently, cognition emerges from having a body that mediates
perception by interacting with and moving in the real world.

3.1.4 Models of music perception and cognition

Music is present in every human culture and in different human activit-
ies. However, it is a culture-dependent phenomenon that adopts different
forms, habits, and predispositional patterns. The forms of musical expres-
sion change with time and geographic location or culture. This attribute
of ubiquity and, simultaneously, diversity makes musical trait a rich field.
At the same time, music processing requires a series of psychological mech-
anisms such as learning and memory, attention, syntactic processing and
processing of meaning information, emotion, action and social cognition.
All these attributes make music an ideal means to study human cognition
and can contribute with new insights for the understanding of the human
brain (Koelsch, 2012; Pearce & Rohrmeier, 2012)

Models of music cognition aim capturing human musical knowledge, by
transferring it to computers and integration into intelligent programs. Con-
sequently, musical thought can be conceived as based on computations, con-
necting perceptions and actions, and is treated as empirically observable and
formalizable (Laske, 1988).

Applications to music modelling

Music cognition is a very complex phenomenon and its exploration through a
computational perspective is still underdeveloped. There is a lack of models
that investigate music perception as a whole phenomenon or developmental
related aspects such as how certain musical cognitive capabilities or predis-
positions develop from an initial infancy stage to a more adult-like mature
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stage. The more common approaches to the problem take the scientific re-
ductionism and aim to understand one element of the problem while holding
the others fixed. There is a considerable amount of work done following this
perspective, modelling music processing tasks (Purwins et al., 2008). Gener-
ally, computational models in music research can be distinguished between
two approaches: (i) one that aims to model music knowledge, originating
from music theory and; (ii) other that aims to formalize and understand the
mental processes involved in music cognition (Honing, 2006). These models
are specifically devoted to aspects of rhythm, melody and tonality percep-
tion. We will give a short overview on rhythm and melody which fit the
scope of this thesis.

Generally, rhythm perception models focus on specific topics such as
pulse finding, rhythm grouping and categorization, even though a compre-
hensive approach is still lacking (Purwins et al., 2008). In pulse-finding
models, different approaches have been suggested. In rule-based models,
pulse is suggested based on the regularities of the first audio events and then
this hypothetical pulse is extended to the upcoming temporal patterns. Ex-
amples of this approach are Desain & Honing (1999) and Steedman (1977).
Another account for modelling pulse finding is given by the idea of inner
clocks which activation is induced by the perception of rhythm patterns
(Povel & Essens, 1985). The internal clock is a regular pulse that is reg-
ulated to match the perceived rhythmic patterns as accurate as possible.
Oscillator models address pulse in a signal processing perspective. Gasser
et al. (1999) proposes an adaptive oscillator model that adjusts their fre-
quency and phase to a sequence of input pulses. This model intends to
model the perception of variable metrical timing patterns such as in music
and speech. This system composed by a network of coupled oscillators is
thus responsive with metrical structure stimulation, dealing with variation
and reveals specific preferences based on experience. Todd (1994) proposes
the primal sketch pulse detector, inspired by the theory of edge detection in
vision (Marr, 1982). This multi-scale model of rhythm perception demon-
strates to be successful for both music and speech signals. The output of
the algorithm produces a "rhythmogram" that illustrates the input prosodic
structure that can be interpreted as the rhythm grouping representation of
the input in terms of Lerdahl & Jackendoff (1983)’s generative theory of
tonal music. Finally, the contribution of robotics stresses the importance
of the body for rhythm perception. Honing (2005) combines rhythm cat-
egorization with a kinetic model to address global tempo, note density and
rhythmic structure.

Rhythmic grouping modelling is of special interest for this dissertation.
In Chapter 6 we address the development of rhythmic representations and
predispositions that consequently have influence in rhythm grouping. There-
fore, the implementation of the computational model can somehow be related
with this category of models.

Rhythmic grouping modelling has been addressed in less extent than
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pulse finding. Unlike in pulse finding, where the perceiving is usually con-
sensual, reinforced by notation and, hence, the analysis is clear, in grouping
the correct analysis is much less certain. In grouping, human perceiving
is much more ambiguous and vague than in pulse. Notwithstanding, there
is enough agreement about grouping to make its modelling valuable (Tem-
perley, 2004). Tenney & Polansky (1980) gave an important step in the
computational study of grouping. Their algorithm is based on two grouping
factors that derive from Gestalt principles, that is, proximity and similarity.
The algorithm looks for smallest-level groups through the identification of
local maxima in interval values. A different computational approach is de-
veloped by Baker (1989). In this approach that is intended for tonal music,
a harmonic analysis is done to produce a hierarchical structure based on
phrase structure rules similar to Lerdahl & Jackendoff (1983)’s approach.
Mentioned before in pulse finding, Todd (1994)’s primal sketch is also a
grouping model, where the input is analysed and peaks of energy are identi-
fied. These peaks lead to a hierarchical grouping structure. Finally, Desain
& Honing (1991) present a connectionist model for rhythm categorization.
Their numerical model considers consecutive durations and the internal rep-
resentations of the relation between these durations converge to simple in-
teger ratios. Extensive information on rhythm computational models can be
found in and Gouyon (2005).

3.2 Computational modelling as a methodology

In this section we provide an overview of the methodology taken in this
research, that is, computational modelling. For that, we will make a short
description of the approach taken in computer simulations and a summary
on the reasons that motivated the choice for this methodology. Apart from
the benefits that computational modelling might represent, it is fundamental
to be aware of the potential problems that one might face when dealing with
this methodology. Therefore, we will cover very briefly these possible traps.

Music cognition is a complex subject and its study or understanding in-
volves the contribution and crossing of many disciplines. Computational
modelling is a territory where all the disciplines can be integrated and form-
alized into a computational model and connections can be built between the
different disciplines. Moreover, computational modelling allows explaining
musical thinking in the same way as everything else in science: by redu-
cing a complex phenomenon as music cognition is into simpler components
(O’Reilly & Munataka, 2000). Much as reductionism, cognitive computa-
tional models entail simplifying and identifying components that are mostly
based on the physical substrate of the human cognition, that is, the brain.
But complex system, in general, cannot be understood as a simple extrapol-
ation from the properties of its elementary components. In this point, the
computational approach enables combining the component pieces to recon-
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struct the larger phenomenon. This step would be hardly achieved by using
verbal models since it would be hard to use verbal arguments to reconstruct
human cognition. This leads to the essential opportunity to observe inter-
action among the components. Hence, we get a complementary approach
for analysing elements of a problem by dissecting a system to understand its
essential elements and a later stage where these elements are "synthesised"
or combined for understanding their interactions. Through the possibility
of testing computer models, it is possible to observe non-expected emergent
phenomena that could not be obviously present in the individual behaviour
of the elements that arise from the interaction between the components. For
this reason, computational modelling is a complete tool because it allows
contemplating different kinds of explanation at different levels of description
(microscopic and macroscopic level) that are linked into a cohesive whole
(Marr, 1982).

For the computational models, we have adopted a connectionist ap-
proach (see Chapter 6). Connectionist models establish a detailed connection
between biology and cognition in a way that is consistent with many estab-
lished computational principles, since from a neuron-like structure high-level
cognitive behaviours emerge (Shultz, 2003). Connectionist models allow fo-
cusing on computational processing of information in the brain and, at the
same time, through that processing, observe and study high-level cognitive
behaviours. This way, these models provide an account of the representations
that underlie performance on a task that also incorporates a mechanism for
the change of that representation. Not only computer models require being
explicit about knowledge because they are implemented theories and data in
terms of symbolic expressions but the sort of implementation, that is, dis-
tributed processing implementation, also leads to a simultaneous multiple
level of analysis. Next, we summarize some of the advantages we found
relevant in computer modelling approach for studying cognitive phenomena.

e Explicitness. The process of implementing a computer model forces
to be precise about the assumptions taken and about how the relevant
mechanisms work, avoiding some misunderstanding problems often re-
lated with verbal theories such as possible inexact arguments. Repres-
entations, symbols and variables must have an exact definition to allow
implementation. This leads to confronting aspects of the problem that
one might have otherwise ignored or considered to be irrelevant. Con-
sequently, the algorithmic specificity results into detail and conceptual
precision that implementing compels.

e Contribution to a more explicative rather that descriptive
perspective on cognitive phenomena. Understanding the human
mind only by observation of the human behaviour can be limited. Pro-
cesses and mechanisms cannot be understood purely strictly on the
basis of behavioural experimentation. They account on a superficial
perspective of the features of human behaviour that are an emergent
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result of the inner working processes and mechanisms that operate
in the human mind. In this regard, computer models bring out an
opportunity to complement this approach, and aim to explicate the
intrinsic parameters and algorithms of the human mind. Therefore,
computer models can contribute to a causal mechanistic understanding
of cognitive phenomena, providing sources of insights into behaviour
and explanations in the perspective the functioning of the underlying
mechanisms. This way, computer models contribute to a transform-
ation of the study of cognitive phenomena from a descriptive science
into a explanatory science (Mareschal & Thomas, 2006).

e Models’ testability. Computer models are implemented cognitive
structures on a computer program that can be manipulated and tested
by running simulations, enabling to explore the underlying mechanisms
of cognitive phenomena. Simulations are opportunities for exploring
different possibilities of details of a cognitive process and, furthermore,
developing future theories. Moreover, models that implement a theory
offer a means of testing internal self-consistency of that theory. The
errors and failures that arise when implementing that theory will lead
to a re-evaluation of the theory. This also can let emerge unexpected
implications of the theory that, from the complexity of its nature, gives
origin to interaction between its components.

¢ Computational models are complementary to empirical exper-
iments and experimental data gathering, creating constraints on the
direction of future empirical research.

e Complexity. Computer models can deal with complexity in the
way that verbal models cannot, producing satisfactory explanations
throughout its implementation. Computational models can handle
complexity across multiple levels of analysis, allowing data across these
levels to be integrated and related to each other.

e Control. Computer models allow control in the sense that many more
variables can be controlled and with much more precision than in real
systems. This allows exploring causal roles of different components in
ways that would otherwise be impossible.

3.2.1 Problems with computational models

Although the advantages that cognitive computational modelling might have,
there are drawbacks that one must be aware of, avoiding possible pitfalls
when following this methodology. One common critic made to computa-
tional models is that they "can do anything". It is a very frequent assumed
that, by changing and adjusting parameters, models can yield any desired
output. It is true that computer models can have many degrees of free-
dom in their architecture. In particular, neural networks have numerous
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parameters that determine the adaptation of weights between units. It is
tempting to think that with so many parameters, fitting any behavioural
phenomena might be simple and, therefore, not worthy. Other argument
that supports this view is that different models can provide a reasonable ex-
planation for one same given phenomenon. It is called as the indeterminacy
problem (O’Reilly & Munataka, 2000). Relatively to the first argument, it
must be present that most of the parameters in parallel processing models
are not random or even adjustable by the modeller but rather determined
by principled learning mechanisms. Due to the indeterminacy problem, this
perspective on computer models can be outwit with an approach of strik-
ing an exhaustive testing to the model that although might be applied to a
wider range of data, it is also applied in a greater detail on each task and
properties of the learning process that the model must perform. This kind
of approach avoids much likely that two different models can fit all the data
(O’Reilly & Munataka, 2000).

Other risk that one might be exposed to in the computer modelling ap-
proach is when the assumptions taken for building the model lead to an
implementation that is so simple that does not capture the relevant aspects
of the phenomenon to be modelled and thus its validity becomes question-
able. Building a computational model, because of the level of explicitness it
requires, inevitably involves reducing and simplifying complex phenomenon.
Indeed the assumptions that necessarily have to be made can be wrong.
However, simplification can be beneficial for the model if the details that
were omitted in the implementation are irrelevant and do not influence the
results.

The opposite to over simplifications can also be a problem, as when
models are too complex. When this happens, models and its behaviours
become too difficult to understand and do not add any account on human
behaviour because there are too much details interacting and influencing
the results. This problem can be attenuated if the model is faced as an
instantiation of wider principles rather than an end unto itself. These critical
principles of the model must be clearly identified and articulated with the
model’s behaviour, demonstrating the relative insignificance of the other
aspects that are excluded.

3.2.2 Computer simulations

In our approach, the integration of different disciplines is materialized in
computer simulations. In a computer simulation there is a given cognitive
phenomenon that we aim to study, that can also be named as the target.
This target is mostly a dynamic entity, in the sense that it changes over
time and reacts to its environment. The computer model creates an abstract
specification of the target phenomenon that, in principle, should be simpler
to study than the target itself. The simulation of the model is the means for
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an analysis where the similarity between the predictions generated by the
model and collected experimental data are evaluated (see Figure 3.1).

Simulation

Model ———F———> Simulated data
Abstraction Similarity
Coghnitive Collected data

phenomenon Data gathering (experimental data)

Figure 3.1: Simulation as a method, based on Gilbert & Troitzsch (2005).

However, given the dynamic nature of the target and, consequently, the
need for dynamic non-linear models, not always the outcome of the model is
entirely what was predicted in advance. It is not obvious to predict what the
consequences of a model are, especially when dealing with complex phenom-
ena. Therefore, simulations are crucial for testing the models. Simulations
are an opportunity to test a computer model by running careful experiments
and observing their behaviour under controlled conditions. This way, com-
puter simulations can be seen as parallel to experimental methodology, where
experiments are performed on a different sort of model’s entities pool, instead
of human subjects. Furthermore, computer models, because their internal
representations can be inspected and analysed, gain a conceptual function in
allowing the possibility to explain how the model solved some sort of prob-
lem. However, there must be precaution in assuming that the solution that
the model presents for some mechanism of an observed behaviour is necessar-
ily the same as the one that happens in humans. The plausibility of a model
must be taken carefully since there is never a guaranty that the model is an
accurate reflection of the human. Computer models are metaphors of the
phenomenon aimed to be simulated and must be regarded as a resemblance
to the real system they claim to model. On the other hand, because of the
degree of unpredictability of models that can exhibit unexpected behaviours
in simulations, models must be faced as rich sources of new hypothesis that
can yield suggestions on new experiments to perform empirically.

Next, we enumerate the methodological procedures followed when build-
ing a computational model and testing it through simulations (Plunkett &
Elman, 1997; Gilbert & Troitzsch, 2005).

3.2.3 Methodological procedures

“The process of model development within cognitive neuroscience is an ex-
ploration: a search for the key principles that the models must embody, for
the most direct and succinct way of capturing these principles, and for a
clear understanding of how and why the model gives rise to the phenomena
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that we see exhibited in its behaviour.” (McClelland, J. L. in (O’Reilly &
Munataka, 2000, p. xxii))

As stated by McClelland, when building computational models and test-
ing them through simulations, there are three items that must be defined
right from the beginning: (i) a well defined hypothesis; (ii) a design for test-
ing the hypothesis and; (iii) a plan for how to evaluate the result (Plunkett
& Elman, 1997). However, these three main stages in building a computer
model can be scrutinized into more detailed steps, as we do next:

e Define a question which will be the aim of the research to resolve.
This step involves a clearly articulated problem and a well-defined
hypothesis that is aimed to be tested. This first step is of extreme
importance because it will influence the course of the rest steps. The
question that is initially defined will influence the type of tests that
will be performed in the simulation and, at the same time, the tests
are limited by the design of the simulation.

e Gather empirical data. This includes data such as observations on
the cognitive phenomenon that allow projecting the model and making
decisions on the assumptions taken when designing the model and also
data for constituting a training set. It is from this training set that
the model will learn. Thus, the nature of training data is an issue
of extreme importance, in terms of quantity and quality. There must
be enough instances in the set and they must be as ecological and
diverse as possible so that there is not the risk of extracting spurious
generalizations.

e Design the model

— Delimit a question to which the model should answer

— Define clearly the assumptions taken when designing the model
which state what is left out and what is included. This step
involves making a set of choices to gain insight into the model.
The options should be taken in order to achieve abstract and
simplified models that better capture cognitive processes. The
more is excluded, the more conceptual degree of the model and
less complexity.

— Define an algorithm

x Motivate the nature of the stimulus representation used to
feed the model. This deals with converting data into numer-
ical codes and the decision of which representation to choose
has consequences in the goals of the simulation.

x Justify the use of the algorithm in the context of the empirical
experiment
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e Define the task that the model will perform. The task represents the
behaviour that the model is trained to do. This can be, for example,
learning to produce the correct output given an input. This implies
the conceptualization of behaviour in terms of inputs and outputs.

e Verification of the correct implementation of the model by debugging
the program

e Test the model by executing simulations

— Expose the model to the training data set, training it on the task
that was previously defined.

e Evaluation of the performance of the model on the simulation. This
analysis is made through the validation of the model, by certifying that
the behaviour of the model corresponds to the behaviour of the cognit-
ive phenomenon, or its predictive and generalization power (Purwins
et al., 2008). If there is some correspondence between what the simu-
lation of the model reproduces and the observed data, the simulation
can possibly represent a plausible model of the processes that led to
the observed behavioural data. This can be done by measuring three
parameters:

— Individual pattern error that represents the difference between
the output result of the model and the target output that the
model should produce.

— Global error is the averaged result of the overall individual pattern
errors. In general, as learning progresses, this error declines.

— Analysing internal representations. Techniques for doing so can
involve hierarchical clustering of hidden unit activations that mean
the measure of inter-pattern Euclidean distance. Inputs that are
considered as similar by the model will produce similar internal
representations, hence closer Euclidean distances (Plunkett & El-
man, 1997). Other options resolve the previous approaches’ lim-
itation which is looking at the space directly, by visualising the
hidden unit activation patterns. This can be achieved using prin-
cipal component analysis together with projection pursuit or using
the "Hinton diagrams" (Hinton, 1986), that involves looking at
activation conjunction with the actual weights.

e Understand the mechanisms that caused the performance of the
model. It is not sufficient an empirical validation, a theoretical and
computational analysis are equally important for better understand
models and the phenomena they are representing. This involves infer-
ring from the data and thinking about the mechanisms that underlie
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the production of the results. This process can lead to alternative ac-
counts for the patterns of data. Then, a decision must be made for
which of the several alternative proposals provides the "right" account.



Pitch Representation in Infancy

Summary

This chapter addresses pitch representation and its correlation with develop-
ment. We approach this issue using computational tools. This way, we have
carried out computational simulations that follow the setup and data for val-
idation from behavioural experiments performed by Saffran & Griepentrog
(2001). This research was developed in collaboration with Amaury Hazan,
Perfecto Herrera and Hendrik Purwins (Salselas et al., 2008).

The computational model is supported in feed-forward neural networks
and has been previously tested in computational simulations that involved
solving tone sequence learning tasks in a framework that simulates forced-
choice task experiments (Hazan et al., 2008). In the simulations, age is
manipulated using different encoding types of the stimuli.

In the first simulation we test the models ability to perform a discrim-
ination task based on absolute pitch cues, according their pitch encoding
type. The second simulation represents a counterpart experiment, wherein
the ability to perform discrimination tasks based on relative pitch cues is
tested, according to the models pitch encoding type.

We have observed, through the simulations, a parallel between learning
and the type of pitch information being used, where the type of encoding
that was being used influenced the capacity of the model to perform the task
correctly and learn to discriminate between music grammars. Moreover, the
computational simulations’ results support Saffran & Griepentrog (2001)
hypothesis in the sense that infants may begin life with the capacity to
represent absolute pitch and the relative pitch representation is developed
later. Accordingly, the results achieved in the computational simulations
were coherent with the findings reported in the behavioural experiments,
validating the model and the encoding options taken. The simulation results
revealed the model suitable for the simulation of absolute versus relative
pitch representation and perceptual learning in infants and adults using a
sequence learning task and added further validation to the model.

47



48 CHAPTER 4. PITCH REPRESENTATION IN INFANCY

4.1 Pitch perception and representation in early
development

Pitch is a fundamental perceptual attribute of sound and its detection is in-
dispensable for encoding and memory storage of melody in music as well as
in prosody in speech (McDermott & Oxenham, 2008; Trainor & Desjardins,
2002). Infants have the ability to categorize and discriminate single complex
tones on the basis of pitch. Indeed, infants’ resolution of frequency is finer
than that required for musical purposes (Clarkson & Clifton, 1984). Five to
8 month old infants were tested for their thresholds for frequency differen-
tiation and at a standard of 1000 Hz, presented at 70 dB, infants showed
thresholds averaged at 21.6 Hz (Olsho et al., 1982). Moreover, infants’ capa-
city for discriminating pitch depends on the spectral content of the sound,
with experimental results showing that infants’ performance in a pitch per-
ception task deteriorates as the number of harmonics in a tonal complex
decreases (Clarkson et al., 1996). The effect of number of harmonics held
both for sound containing the fundamental frequency and for sounds lacking
energy at that frequency. Experimental results have also shown that infants
in early development discriminate more readily high pitches and also have a
preference for this type of pitch (Werner & VandenBos, 1993). Maturation
of the child’s ability to discriminate frequencies may only reach adult levels
until 7 years of age (Thompson et al., 1999).

In the process of learning about sequences of melodic tones or vowels and,
consequently, in order to represent pitch, two main types of pitch cues can
be used, namely absolute and relative pitch information. In absolute pitch
representation, the cognitive processing of pitch is done independent of its
relation to other pitch values, without any point of reference. In relative
pitch representation, it is required a relational processing where distances
between pitches must be considered and thus, there is no information about
the specific fundamental frequencies (Levitin & Rogers, 2005).

It has been proposed (Mandler, 1992) that infants’ attention is first more
focused on absolute perceptual properties of a stimulus and then, progress-
ively, becomes more abstract and, thus, attentive to structural relationships
existent between different stimuli, similar to adult thinking. This substan-
tially different way of processing information occurs, thus, through the emer-
gence of qualitatively different modes of thought. In other words, there is a
transition from unidimensional to multidimensional thinking (Siegler, 1996).

A transition also occurs in the auditory information processing. Younger
infants, during a pre-conceptual period, focus on immediate perceptual di-
mensions of musical stimuli, such as pitch and timbre. In a later stage, as
children develop and conceptual thinking increases, they learn more complex
perceptual activities such as comparisons, transpositions and anticipation.
This way, children focus on organization within the stimuli, such as rhythmic
and melodic patterns, or contour, tonality and harmony (Sergeant & Roche,
1973). In experimental research, 3-year-old children showed greater tendency
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to accurate representation of the pitch levels at which they had perceived
the stimuli. Six-year-old children, in contrast, showed less concern for pitch
level but more for melodic shape and sense of tonality (Sergeant & Roche,
1973).

The developmental shift in focus from absolute to relative features might
also take place specifically in pitch representation. Accordingly, Saffran et al.
(2005) have investigated the hypothesis that infants show developmental
shifts in the focus on absolute or relative pitch information and that they
have the capacity to encode pitches of sounds in an absolute way, independ-
ently of its relation to other sounds. In their experiments, results show
that infants preferentially represent absolute pitches whereas adults prefer-
entially represent relative pitches. Saffran et al. (2005) argue that infants
use absolute pitch representation as a basic strategy for encoding audit-
ory information, although relative pitch is also available. Accordingly, they
hypothesize that infants may begin processing pitch in an absolute repres-
entation. This representation would be done via tonotopic frequency maps
in the auditory cortex. Pitch contour, consequently, would be represented
as a domain-general coding of up-down pitch change. Authors argue that
absolute pitch processing is easy for an inexperienced brain as it is less com-
putationally complex than relative pitch usage. Relative pitch information
might be already available at this stage of development, but may be more
complex to compute as it requires the detection of exact distances between
pitches and the contrasting of multiple absolute pitch levels. However, in a
later stage, through development, infants learn that relative pitch represent-
ation is more effective than absolute pitch representation and begin using
it preferentially. Furthermore, speech perception requires the detection of
relative distances between formants that contain acoustic information neces-
sary for the recognition of phonemes and distinction between consonants.
Hence, the use of relative pitch processing becomes essential.

Pitch perception and representation is also dependent on language exper-
ience (Cangelosi, 2005). Language experience may influence basic auditory
processes such as pure tone perception at the level of auditory cortex. Ac-
cording to Deutsch et al. (2004), pitch representation is different in individu-
als that speak tone languages (Mandarin, Cantonese, Thai, and Vietnamese)
from individuals that speak intonated languages such as English. In tone
languages, words take different lexical meaning depending on pitch heights
and also on their pitch contour. This may mean that in a critical period of
development, tone languages’ learners learn to associate words with pitches
and pitch contours. Krishnan et al. (2005) tested the accuracy of pitch track-
ing and pitch strength in native speakers of Chinese Mandarin and English,
measuring activity within the rostral brainstem. Chinese group exhibited
stronger pitch representation and smoother pitch tracking than the English
group. Researchers hypothesize that language experience may induce plas-
ticity at the brainstem level. Depending on speech input, these adaptive
neural mechanisms may influence pitch and pitch contour processing.
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It is not clear how an absolute-pitch system develops into a relative-
pitch processing one. Therefore, it becomes relevant to understand how
this development occurs and, additionally, if it is somehow related to spe-
cific structural or training properties in the environment that could enhance,
block or make possible such evolution. In order to explore developmental
changes triggered by learning, in the types of perceptual information detec-
ted by the mechanisms underlying auditory learning, we have performed a
computational simulation that follows a behavioural experiment (Saffran &
Griepentrog, 2001). As this experiment provided the conducting thread for
our simulation, we will subsequently proceed to its detailed description.

4.1.1 Absolute and relative pitch representation:
experimental evidences

Saffran & Griepentrog (2001) ran two different experiments, where 8-month-
old infants were examined in the use of absolute and relative pitch cues in
a tone-sequence statistical learning task. In the first experiment, subjects
were confronted with a learning problem that could only be solved if tones
were represented by its absolute pitches. The second experiment is the coun-
terpart design of experiment 1, where relative pitch pair statistics are the
only available cues for solving the learning problem. A third experiment was
performed, where adults were tested on the same statistical learning tasks
used in the infant experiments, providing a cross-age comparison. For mat-
ter of simplicity, we will refer to two types of experiments, performed either
with infants or adults, namely Experiment 1 and Experiment 2. The two
types of experiments will be explored next.

Experiment 1: absolute pitch cues usage in a statistical learning
problem

In this experiment, subjects were exposed to a continuous, unsegmented se-
quence of tones that served as a brief learning experience. The tone sequence
was constructed by concatenating out of four tone words (see Table 4.1), with
the stipulation that the same word wouldn’t occur twice in a row, forming a
3 minute stream. Moreover, tone words did not resemble any paradigmatic
melodic fragment or follow the rules of standard western-tradition musical
composition.

Part-words (F C C# and Df Gf Af) are created by joining the final tone
of one word to the first two tones of another word, spanning word boundar-
ies. Words and part-words contain identical interval sequences. This means
that part-words contain novel absolute pitch cues (combination of tones) but
familiar relative pitch cues (intervals between tones). After the familiariz-
ation, a test period followed where subjects were confronted with pairs of
words containing identical relative pitch sequences (see Table 4.1). The only
information available for discrimination of words was absolute pitch cues.
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Table 4.1: Tone words and test words used in the experiments by Saffran &
Griepentrog (2001) in Experiment 1.

Absolute Pitches Relative Pitches

Gt At F M21 P4)

Tone words C Ct D M27 M2t
B Ft G P4] m27t

ADE P41 M2t

B Ft G P4] m2t

Test Words ADE Pt M2t
FCCt P4] m27t

D G At P41t M2t

The assessment of subjects’ preferences was done by means of prefer-
ential listening methodology in the case of infants and forced-choice task
methodology in the case of adults. In the preferential listening methodo-
logy, following the exposure phase, infants’ listening preferences for words
versus part-words are assessed by measuring the looking time at the source
of the stimuli. For the forced-choice task, after the exposure phase, adults
had to indicate the most familiar item between a word and a part-word (See
Figure 4.1).

o o/"@
5

Tt

@© 0)

Figure 4.1: Methodology followed by Saffran & Griepentrog (2001) with
their subjects.

Experiment 2: relative pitch cues usage in a statistical learning
problem

Experiment 2 represents a contrasting test of the previous one performed.
In this experiment, the methodology used with the subjects was the same
but the stimuli used were different (see Table 4.2). In this case, test words
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contained novel relative pitch cues but familiar absolute pitch cues. Con-
sequently, discrimination was possible only on the basis of relative familiarity
of relative pitch cues but not on the absolute pitch cues.

Table 4.2: Tone words and test words used in the experiments by Saffran &
Griepentrog (2001) in Experiment 2.

Absolute Pitches Relative Pitches

At Df G P5] M3t
Tone words FeD A M3 Pot
G Af F M21 P4)
CiFfE P41 M2
Af Df G P5] M3t
Test Words FiD A M3y P5T
G Af Dt M21 P5]
CiFgtD P41t M3J

Part-words (G# Af Df and Cf Ft D) consist of parts of two words rather
that a sequence spanning a word boundary. Part-words contain novel rel-
ative pitch pairs (intervals between tones) but familiar absolute pitch pairs
(combination of tones).

Behavioural experiments’ results

The results indicated that adults and 8-month-old infants do not show the
same pattern of learning performance given an identical set of tone sequence
stimuli as input and that they based their discriminations on different types
of pitch information. Infants succeeded at discriminating words from test
words only for the contrast based on absolute pitch cues (Experiment 1)
and failed to discriminate based on the relative pitch contrasts (Experiment
2). Adults showed the opposite pattern: successful discrimination based
on Relative Pitch contrasts (Experiment 2) and no discrimination based on
Absolute Pitch contrasts (Experiment 1).

Notwithstanding, Saffran & Griepentrog (2001) argue that the results ob-
tained do not mean that infants can detect and use relative pitch information
in tone sequence learning, or that adults do not retain residual absolute pitch
abilities. The results show that given a sequential learning task, in which
both relative and absolute pitch cues were available for discriminating words,
infants rely more heavily on absolute pitch cues and adults rely more heav-
ily on relative pitch cues. Possible explanations for the results obtained are
pointed such as the atonal structure of the stimuli and the lack of musical
structure on the stimuli.
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4.2 Computer simulation goals

In this research step we aim to explore correlations between learning and
pitch representation. Saffran & Griepentrog (2001) behavioural experiments
concern early pitch perception and representation and, additionally, they
approach this issue using a cross-age, developmental perspective. For the
referred reasons, after a thorough analysis of Saffran & Griepentrog (2001)
behavioural experiments, it becomes clear that they represent an excellent
means for exploring pitch representation (absolute vs relative) and its re-
lations with development. Therefore, the purpose of this research step is
to investigate how learning (or exposure) influences the development of re-
lative pitch representation given that infants might be initially equipped
with absolute pitch representation. For that, we will perform computational
simulations, based on these empirical experiments, applying different data
encoding. This way, the simulations are a means for exploring absolute pitch
representation in infancy and its development. At the same time, these sim-
ulations also correspond to a first step on computational modelling, allowing
the practice and exploration of this methodology that we aim to pursue. The
computational simulations are described hereafter.

4.3 Computational model overview

The computational model is supported in feed-forward neural networks (F-
NN). F-NN’s are artificial neural networks that process information in a
parallel distributed mode and in its structure, the connections between the
units never form a directed cycle. The network acquires knowledge through a
learning process, and it is stored in the interconnection strengths or synaptic
weight, resembling, this way, the brain functioning (Haykin, 2009). In sum,
learning takes place by the continuous adaptation of the synaptic weights and
bias levels, stimulated by the environment in which the network is embedded.

The connection weights of the network are updated applying back-propa-
gation learning rule, implemented in an on-line setting. The type of learning
is determined by the manner in which the parameter changes take place. In
the specific case, learning is supervised, where the availability of a ground-
truth set of training data is made up of N input-output examples.

The used back-propagation algorithm involves two phases: the forward
phase, during which the parameters of the network (i.e. synaptic weights
and bias levels) are fixed, the input signal is propagated through the network
and, finally, the error signal is computed; and the backward phase, during
which the error signal is propagated through the network in the backward
direction and, hence, the adjustments are applied to the parameters of the
network so as to minimize the error. Finally, back-propagation learning
has been implemented in a sequential mode (or on-line mode, as referred
before). This means that the adjustments made to the network’s parameters
are made on an example-by-example manner, in contrast with batch mode,
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where adjustments are made at the end of each entire set of training examples
(or epoch).

FNN’s are suited for tasks such as next-event prediction, since they use
past events as inputs and the next event to be predicted as output. This way,
for the neural network to learn to predict the continuation of an encoded
tone sequence, based on the tones observed so far, inputs that can be tones
or intervals are presented to the input layer and successively transformed and
propagated into successive layers via connection weights until activating the
output layer, producing the prediction of the next event. Consequently, the
model behaves so that the data in the input layer is successively transformed
and propagated into the following layers, via connection weights, until the
output layer is activated.

Moreover, the model had been tested previously in computational simula-
tions that involved solving tone sequence learning tasks in a framework that
simulates forced-choice tasks experiments (Hazan et al., 2008). For that,
predictions of the model are compared with the actual data, for each word
tone or interval (depending on the selected coding schema). The model per-
forms the forced-choice task by selecting the word that possesses the lowest
mismatch (between the model’s predictions and the actual data).

4.3.1 Encoding

For the material used, three languages were created following the protocol
used by Saffran & Griepentrog (2001):

e [(: A training language to create training sequences;
e [,: Language one containing words from the training language;
e [o: Language two containing novel words

Words in Lg are the same as the tone words in Saffran & Griepentrog
(2001) as well as L; and Ly are the test words. We have considered two
options for the encoding of the sequences (see Figure 4.2).

e In Pitch Class encoding, each tone is encoded using a single pitch
representation that contains meaning by itself, as in absolute pitch
representation. In concrete, in this encoding, the FNN will receive 12
input units for representing a given pitch, and also the unit corres-
ponding to the semitone is set to one

e In Pitch Class Intervals, there is a relational representation that con-
siders intervals between elements and not its absolute value, as in relat-
ive pitch representation. For this case, the network receives 25 inputs
that allow representing intervals ranging from -12 to +12 semitones.
For an interval from one semitone to another, a specific unit is set to
one
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4.4 Simulations’ setup

The computational simulations were performed following the behavioural
experiments (Saffran & Griepentrog, 2001) that were previously described.

To carry out the simulations, we started from the assumption based on
Saffran & Griepentrog (2001) experimental findings that, given a sequential
learning task, in which both relative and absolute pitch cues were available
for discriminating words, infants rely more heavily on absolute pitch cues
and adults rely more heavily on relative pitch cues. Due to this, for the
encoding of the material, we used Pitch Class encoding to simulate infant
subjects and Pitch Class Intervals to simulate adult subjects. The different
encodings involve the use of different number of input units. This way, age
is manipulated with the type of encoding used (see Figure 4.2).

Infants: Adults:

Pitch Class encoding Pitch Class Intervals encoding

12 input units 25 input units (from -12 to +12)

Example word “D-E-D”: Example word “D-E-D":

D 001000000000 D 0000000000001000000000000
E 000010000000 E 0000000000000010000000000
D 001000000000 D 0000000000001000000000000

Figure 4.2: Encoding of the material: Pitch Class encoding was used to
simulate infant subjects and Pitch Class Intervals to simulate adult subjects.

The experimental setup followed (see Figure 4.3) was in accordance with
methods carried out by Saffran & Griepentrog (2001) with their subjects.
In each run, one FNN; or ezpectator, is created, representing one subject,
with random initial weights. Also, a learning sequence of encoded tones is
generated using L0 and L1-L2 pairs of words for the forced choice tasks. The
tone sequence was built according to the rules of the psychological experi-
ment, in which tone words concatenated together in random order to create
a 3 minute tone stream with the stipulation that the same tone word would
never occur twice in a row.

Following, a pre-exposure forced choice task is performed in order to con-
trol any existing initial bias. Next, the expectator is trained, being exposed
to the encoded tone stream previously generated and finally, one last forced
choice task is performed in order to observe possible learning from the neural
network.

Two simulations were carried out, correspondingly to the behavioural
experiment aimed to be simulated. In simulation 1, the same tone words
were used as in Table 4.1 and in simulation 2 as in Table 4.2. For each
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Create an expectator (FNN) with random initial weights
Pre-exposure Forced choice task

Training the expectator (only one iteration)
Post-exposure forced choice task

pwprs

Figure 4.3: The experimental set-up followed for the simulations.

simulation, 50 runs were performed.

4.4.1 Simulation 1: absolute pitch cues usage in a
statistical learning problem

This simulation aims to reproduce the behavioural experiment (see Exper-
iment 1 in section 4.1.1) performed by Saffran & Griepentrog (2001). This
way, the tone words used for this simulation are the ones shown in Table
4.1. Underlying the structure of these words is the fact that only absolute
pitch contrasts are available for discrimination. Therefore, only an "infant"
expectator, that is, a network trained using pitch class encoding, would be
able to discriminate a familiar language L, from a novel language Lo. In the
same way, an "adult" expectator, that is, a network trained using pitch class
interval encoding, wouldn’t be able to learn Ly and, consequently, wouldn’t
discriminate Lq from Ls. Figure 4.4 illustrates the results achieved in this
simulation, using pitch class encoding, that is, for "infant" expectators and
the tone words used by Saffran & Griepentrog (2001) in Experiment 1.

Figure 4.5 illustrates the results, using pitch class interval encoding, that
is, for an "adult" expectator and the tone words used by Saffran & Griepen-
trog (2001) in Experiment 1.
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Successes Scores for languages L1 and L2
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Figure 4.4: Results for "Infant" Fxpectators with Pitch Class encoding,
before exposure and after exposure (50 runs), in simulation 1. Vertical axis
represents percentage of successes.

Successes Scores for languages L1 and L2
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Figure 4.5: Results for "Adult" Ezpectators with Pitch Class Interval
encoding, before and after exposure (50 runs), in simulation 1. Vertical axis
represents percentage of successes.

4.4.2 Simulation 2: relative pitch cues usage in a
statistical learning problem

This simulation aims to reproduce the behavioural experiment (see Exper-
iment 2 in section 4.1.1) performed by Saffran & Griepentrog (2001). This
way, the tone words used for this simulation are the ones shown in Table 4.2.
Underlying the structure of these words is the fact that only relative pitch
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contrasts are available for discrimination. Therefore, only an "adult" ezpec-
tator, that is, a network trained using pitch class interval encoding, should
be able to discriminate a familiar language L; from a novel language Ly. In
the same way, an "infant" expectator, that is, a network trained using pitch
class encoding, shouldn’t be able to learn Lo and, consequently, wouldn’t
discriminate Lq from Ls. Figure 4.6 illustrates the results achieved in this
simulation, using pitch class encoding, that is, for "infant" expectators and
the tone words used by Saffran & Griepentrog (2001) in Experiment 2.

Successes Scores for languages L1 and L2

0.8

o
o

Successes

o
5

0.0

Before Exposure

After Exposure

Figure 4.6: Results for "Infant" FExpectators with Pitch Class encoding,
before and after exposure (50 runs), in simulation 2. Vertical axis represents
percentage of successes.
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Figure 4.7 illustrates the results, using pitch class interval encoding, that
is, for an "adult" expectator and the tone words used by Saffran & Griepen-
trog (2001) in Experiment 2.

Successes Scores for languages L1 and L2
Lo

I- L1

0.6

Successes

0.4

0.0

Before Exposure

After Exposure

Figure 4.7: Results for "Adult" FExpectators with Pitch Class Interval
encoding, before and after exposure (50 runs), in simulation 2. Vertical axis
represents percentage of successes.

4.5 Results and discussion

The model was successful in learning languages given different types of en-
codings. In simulation 1, it was possible to simulate the learning of L1 using
Pitch Class encoding, when only absolute pitch contrasts were available for
discrimination (see Figure 4.4). In Figure 4.5 it can be observed that the
Ezperimenters, not being able to learn L; based on Pitch Class encoding,
choose words randomly either before or after exposure.

In contrast, in simulation 2, the model was unable to learn L, given Pitch
Class encoding (see Figure 4.6) but it was possible to simulate the learning
of L1 using Pitch Class Interval encoding, when only relative pitch contrasts
were available for discrimination (see Figure 4.7).

These results are coherent with the findings reported by Saffran &
Griepentrog (2001) in their psychological experiments, showing a parallel
between learning and the type of pitch information being used. Saffran &
Griepentrog (2001) report that adults and infants based their discriminations
on different types of pitch information. Infants succeeded at discriminating
words from test words only for the contrast based on absolute pitch cues and
failed to discriminate based on the relative pitch contrasts. Adults showed
the opposite pattern: Successful discrimination based on relative pitch con-
trasts and no discrimination based on absolute pitch contrasts.
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In the case of the computational simulation, learning after exposure of
L1 in both cases of Experiment 1 and Experiment 2 depends on the type
of pitch encoding used. Using Pitch Class encoding in order to simulate
infant subjects, the system showed post-exposure learning scores when hav-
ing available absolute pitch contrasts. In turn, using Pitch Class Interval
encoding in order to simulate adult subjects, post-exposure learning scores
were observed only when having available relative pitch contrasts.

This way, the model has shown suitable for the simulation of absolute
versus relative pitch representation and perceptual learning in infants and
adults using a sequence learning task by being able to yield different types
of decisions, depending on the encoding utilized.

4.6 Concluding remarks

Throughout the simulations, we have observed that the type of encoding that
was being used influenced the capacity of the model to perform the task cor-
rectly and learn to discriminate between languages. The simulations’ results
were coherent with the experimental ones. The encoding chosen for "infant"
Ezxpectators allowed the model to perform in conformity with behavioural
experimental results obtained for infants. In turn, the encoding chosen for
"adult" FEzxpectators allowed the model to perform in conformity with be-
havioural experimental results obtained with adults. Thus, we conclude
that manipulating age with the type of encoding was a correct assump-
tion. Moreover, the simulations’ results also represent additional validation
to the model that had been previously tested in computational simulations
(Hazan et al., 2008). The simulation results, this way, corroborate Saffran &
Griepentrog (2001) conjecture about infants beginning life with the capacity
to represent absolute pitch and the relative pitch representation is developed
later.

Further than having models that successfully perform tasks using differ-
ent types of encoding, it would be a challenge to explore the mechanisms
that could lead one type of encoding evolving to the later one. Generative
models could eventually be a means to study this evolving process. These
models allow structural change in the model, leading to a previous stage
with increasing and complex structure (see section 3.1.3). This character-
istic adaptation would potentially permit the model to develop from one
type of encoding to the next. The fact that models, using different encoding
types, have different performances also points out that choosing the type of
encoding is a matter of relevance. For this reason, the selection of the type
of encoding to be used, when building a computational models of music,
becomes extremely important.

Regarding the methodology used, we consider that computational model-
ling is a suitable means for studying cognitive phenomena, worthwhile to be
explored in further research. As refereed before, language experience may in-
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fluence basic auditory processes, among which pitch perception would be one
of them. For this reason, language should be included in the next research
stages, pursuing a comparative approach where both music and language
are included. The comparative approach might contribute for exploring fur-
ther influences between music and language and possible shared processing
mechanisms.






Prosodic characterization in music and speech:
exploring key factors during early development

Summary

In this chapter we pursue the hypothesis whether the infants’ development of
musical predispositions is influenced by the prosodic features that are present
in the sonic environment of their culture. We consider that an important step
towards the exploration of this hypothesis is to first understand what are the
key elements for characterizing the prosodic environment of an infant. In this
regard, in this chapter we aim to capture rhythmic and melodic patterning
in the most salient auditory information to which infants are exposed, that
is, speech and singing directed to infants.

We address this issue by exploring the acoustic features that best pre-
dict different classification problems. We built a database composed by
infant-directed speech from two Portuguese variants (European vs Brazilian
Portuguese) and infant-directed singing from the two cultures, comprising
977 tokens. These two Portuguese variants share the same lexicon and thus
the prosodic differences between them would be the variable to focus on.

In the first machine learning experiments conducted, we aimed to auto-
matically discriminate between language variants for speech and vocal songs
in order to explore the acoustic properties that best differentiate the two
Portuguese variants. Descriptors related with rhythm exhibited strong pre-
dictive ability for both speech and singing language variants’ discrimination
tasks, presenting different rhythmic patterning for each variant. Moreover,
common features could be used by a classifier to discriminate speech and
singing, indicating that the processing of speech and singing may share the
analysis of the same stimulus properties. These results suggest that fur-
ther exploration of music and language processing parallels and interactions
should be taken. With respect to the experiment aiming to discriminate
between interaction classes, pitch-related descriptors showed better perform-
ance.

We conclude that prosodic cues present in the surrounding sonic envir-
onment of an infant are rich sources of information not only to make dis-
tinctions between different communicative contexts through melodic cues,

63
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but also to provide specific cues about the rhythmic identity of their mother
tongue. Consequently, these rhythmic prosodic differences and the influence
they might have in the development of the infant’s musical representations
will be further explored in Chapter 6.

5.1 Introduction

Early experience has a fundamental role in brain development. In this critical
period, developmental processes are especially sensitive to environmental
input, and the acquisition of adult level abilities in specific areas is dependent
on the surrounding stimuli or the lack of it (Patel, 2008).

Among the auditory information to which infants are exposed, the most
salient are speech and singing sounds. Parents and caregivers, across cul-
tures, languages and musical systems, use a distinctive register for singing
and speaking to their infants (Papousek & Papousek, 1991; Trehub et al.,
1993). Regarding singing, caregivers usually use a special selection of music,
consisting of lullabies and play songs. These are sung to infants in a partic-
ular style of singing that is different from the typically adult style (Trainor
et al., 1997). These acoustic modifications in infant-directed singing attract
the infant’s attention and may be used by adults to regulate infant states
and to communicate emotional information (Rock et al., 1999).

In infant-directed speech, also called motherese, there are acoustic ad-
justments in speech elements such as hyper-articulation, with more extreme
vowel formant structure, higher mean pitch, wide pitch range, longer pauses
and shorter phrases (Papousek et al., 1987). In addition to engaging and
maintaining the infant’s attention, these distinctive modifications play an im-
portant role for indicating different communicative intentions to pre-verbal
infants, such as to arouse or to soothe and to convey approval and prohibition
(Fernald, 1993).

The meaning of the melodies present in maternal speech has been studied
and the form of the melodic contours has been categorized according to con-
tour shape (Fernald, 1989). Performing an acoustic analysis of utterances,
prototypical contours were found for specific interaction classes (Papousek
et al., 1990). These prototypical shapes have been considered cross-linguistic
universals (Papousek & Papousek, 1991).

From the perspective of a pre-verbal infant, music and speech may be
not as differentiated as they are for older children and adults. They may
be perceived as sound sequences that unfold in time, following patterns of
rhythm, stress and melodic contours. Therefore, before the availability of
verbal communication, the prosodic information present in speech and music
domains such as melodic and rhythmic cues are primarily a communication
system, a pre-linguistic system or a "prosodic protolanguage" (Masataka,
2009).

Culture-specific perceptual biases (such as sensitivity to language-specific
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rhythms) emerge during infancy and may be acquired by being exposed to
the speech and music of a particular culture. It is possible that the statistical
information present in the sonic environment of infants shapes their prefer-
ences for certain contours (sequences of pitches and durational contrasts),
and thus the exposure to speech and music with different prosodic charac-
teristics could result in the development of different melodic representations.
Comparing the rhythmic and melodic patterning in speech and music should
shed some light on this issue. Additionally, a cross-varietal examination of
prosodic differences may help to distinguish between generic features (that
are shared and exploited in different cultures) and specific features of a given
speech culture.

We have selected Brazilian and European Portuguese for pragmatic reas-
ons. These two Portuguese variants share the same lexicon (verbal content)
and thus the prosodic differences between them would be the variable to
focus on. The conduct of this study will lead to further investigation in how
prosodic patterning from each Portuguese variant may influence the infant’s
development of different melodic representations or predispositions in each
culture.

The processing of speech and singing may require the use of the same
perceptual processes and of similar cues such as durational (or rhythmic)
and pitch patterning. Therefore, we also aim to explore if the same features
are used to perform speech discrimination and singing discrimination tasks,
in order to verify if the cognition of music and language share perceptual
cues and computational characteristics during the pre-verbal period. Also,
we aim to investigate if the features used to discriminate the variants of
speech and singing are specific to this task or if they are also discriminative
in a different condition, such as an interaction context discrimination task.

After a brief background review, we explain in section 5.2 how we gathered
relevant samples of infant-directed speech and infant-directed singing, and
how rhythmic and melodic features were extracted from them in order to
devise and test different classification models based on task-related prosodic
properties. In section 5.3, different classification experiments will be repor-
ted. Section 5.4 presents the discussion of the results obtained, and the last
section presents our conclusions.

5.1.1 background

Prosody in both music and speech manipulate acoustic features to convey
emotional expression and to provide segmentation and prominence cues to
the listener. Speech prosody refers to speech properties that go beyond se-
quences of phonemes, syllables or words, that is, the supra-segmental prop-
erties of speech. These characteristics comprise controlled modulation of the
voice pitch, stretching and shortening of segments and syllable durations,
and intentional loudness fluctuations (Nooteboom, 1997).
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Speech intonation or melody is related with speaker-controlled aspects of
voice pitch variations in the course of an utterance. These pitch variations
can have similar patterns, and thus languages can be organized as inton-
ation languages, such as the Germanic, Romance and Japanese languages,
or as tone languages, such as Chinese, in which words take different lexical
meanings depending on pitch pattern (pitch heights and pitch contours).
Although speech melody is perceived by listeners as a continuous streaming
of pitches, in fact it is interrupted by the production of voiceless consonants
such as /p/, /t/, /k/ that introduce silent intervals or pauses. Therefore,
pitch is perceived in voiced pitch (quasi-periodic complex sounds) such as
vowels.

Prosodic rhythmic properties are related to temporal aspects of speech
and involve the patterning of strong beats or prominent units alternating
with less prominent ones. The study of speech rhythm focuses on the or-
ganization of sound durations and its contrasts, that compose the temporal
patterning of speech. Different factors contribute to the perception of these
durational variations (Santen & Olive, 1989). However, the definition of the
durational units, and thus, which duration units are more salient from a per-
ceptual point of view, remains controversial. Furthermore, speech rhythm
may be a consequence of the perception of time-specific events like beats,
and not durational units.

In the study of prosody and language, different durational units have been
considered. Vocalic intervals are defined by the section of speech between
vowel onset and vowel offset. Consonant intervals or intervocalic intervals are
defined as the section between consonant onset and consonant offset (Ramus
et al., 1999). Other durational units have also been considered such as Inter-
Stress Intervals (ISI) or the duration between two successive stresses, the
duration of syllables, and the V-to-V durations (Barbosa, 2007) or intervals
between successive vowel onsets, which are considered to be perceptually
equivalent to syllable-sized durations.

Languages have been categorized into rhythm classes based on the no-
tion of isochrony (Pike, 1945). These classes would typically be syllable-
timed, stressed-timed and mora-timed languages. A contrasting approach
is that languages would be organized in rhythm along a uniform continuum
space rather than in cluster classes (Grabe & Low, 2002). European Por-
tuguese and Brazilian Portuguese have been found to be clearly distinct in
rhythm patterning (Frota & Vigario, 2001). European Portuguese is con-
sidered to have a mix of both stress and syllable-timing rhythm patterning
while Brazilian Portuguese is considered to have a mix of syllable and mora-
timing rhythm patterning. Thus, these two variants from the same language
share the same words (lexical content) but differ in prosodic properties.

Infants are very sensitive to prosodic information. They can retain sur-
face or performance characteristics of familiar melodies in long-term memory.
These are said to contribute to the perception of the expressed emotional
meaning. In particular, infants can remember specific details of tempo and
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timbre of familiar melodies (Trainor et al., 2004). Prosodic cues are also fun-
damental for infants in speech domain. Infants primarily focus on acoustic
features of speech such as prosodic information rather than phonetic or lex-
ical information. Moreover, newborn infants are able to categorize different
speech rhythms, as they discriminate their mother tongue from languages
belonging to different standard rhythmic classes.

Infants can discriminate speech rhythm classes with a signal filtered at
400 Hz, which suggests that they probably rely on distinctions between vow-
els and consonants to accomplish the discrimination task (Mehler et al.,
1996). These findings point to rhythm based discrimination by newborns
(Nazzi & Ramus, 2003). Thus, prosodic features play an important role in
the acquisition of both music and speech, as they provide information to
segment continuous streams into meaningful units and to learn about their
structures.

Music and language cognition and its interactions have been addressed
with diverse scientific approaches. Some studies are oriented to explain cog-
nitive phenomena, as it is the case of Patel et al. (2006), who studied lan-
guage and music relations by quantitatively comparing rhythms and melod-
ies of speech and of instrumental music. This study has shown that music
(rhythms and melodies) reflects the prosody of a composer’s native language.
Also supporting the suggestion that musical rhythm of a particular culture
may be related with the speech rhythm of that culture’s language, Hannon
(2009) demonstrated that subjects can classify instrumental songs composed
in two languages that have different rhythmic prosody basing their decisions
on rhythmic features only.

In a different approach, language and its rhythmic and melodic proper-
ties have been explored by looking forward to design automatic recognition
systems such as automatic language identification, automatic emotion re-
cognition in speech, and speech synthesis. In these artificial systems, speech
is automatically segmented into rhythmic units (syllable, vowel, and con-
sonant intervals). The temporal properties of these units are then computed
and statistically modelled for the identification of different languages (Rouas
et al., 2005). For segmentation, spectral information is extracted, conson-
ants are identified as abrupt changes in the wave spectrum, and vowels are
detected by locating sounds matching vocalic structure by means of spectral
analysis of the signal (Pellegrino & Andre-Obrecht, 2000).

Galves et al. (2002) propose a different approach to segmentation which
is based on the measure of sonority defined directly from the spectrogram
of the signal. This means that two types of portions of the signal (sonor-
ant and obstruency) are identified: sonorant parts exhibit regular patterns,
and obstruency portions exhibit the opposite pattern, similarly to vowels
and consonants. In automatic identification of emotional content in speech,
features of the signal such as pitch (pitch range), intensity, voice quality
and low-level properties such as spectral and cepstral features have been
explored.
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Slaney & McRoberts (2003) used pitch, broad spectral shapes and en-
ergy variations to automatically classify infant-directed speech into differ-
ent communicative categories. To characterize the broad spectral shapes,
they used mel-frequency cepstral coefficients (MFCC’s). Automatic identi-
fication of emotional content in speech has also been applied to categorize
different communicative intentions in infant-directed speech. For this task,
supra-segmental features are examined such as statistical measures of fun-
damental frequency and properties of the fundamental frequency contour
shape (Mahdhaoui et al., 2009; Katz et al., 2008).

In the present study, we will make use of computational techniques, lin-
guistic and psychology knowledge with the purpose of understanding music
and speech categorization by infants. Methods used to carry out this study
will be described in the next section.

5.2 Methods

5.2.1 Corpus

For the construction of the audio database that served as a basis to our
study we considered infant-directed speech and infant-directed singing from
Brazilian Portuguese and European Portuguese. European Portuguese was
taken from recordings captured for the purpose of this study. Brazilian
Portuguese infant-directed speech and singing was compiled taking samples
from the CHILDES database (MacWhinney, 2000), specifically from an au-
dio database compiled to study rhythm acquisition (Santos, 2005) and from
on-purpose captured audio. All audio signals considered were digital, stereo,
16 bit at 44100 Hz.

The recordings contain caregivers interacting with their healthy babies
aged up to 18 months. During the recordings, caregivers were interacting
with the babies at their home and in different contexts such as playing,
feeding, bathing and putting them to bed. The materials contain spontan-
eous interactive speech and singing. The database is comprised by 23 adult
caregivers, 9 Brazilian Portuguese subjects (2 male and 7 female) and 14
European Portuguese subjects (3 male and 11 female). For the singing ma-
terials, a subset of subjects is represented. For European Portuguese there
are six singing subjects, and for Brazilian Portuguese there are five singing
subjects. Each singing class contains 20 playsongs and 8 lullabies.

Subsequently, the audio from the recordings was cut into utterances that
we refer to as interaction units. Four interaction classes were considered:

o Affection: a positive affect to provide comfort to the infant such as
“Ohhh my sweet baby”

e Disapproval: a negative affect such as “No!! Don’t do that!”
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e Questioning: a more complex sound sequence such as “Would you like
to have a cookie?”

e Singing: considering play songs and lullabies sung while interacting
with the baby

These sounds were used as the instances for all the experiments repor-
ted in this paper, organized and grouped into different manners, as will be

described. Instances gathered are summarized in Table 5.1.

Table 5.1: Organization of the instances gathered

Brazilian Portuguese European Portuguese
Affection 151 Affection 162
Disapproval 150 Disapproval 150
Question 156 Question 152
Singing 28 Singing 28

Utterances that were used to build the database were recorded in spon-
taneous interaction contexts. As such, the materials do not contain exactly
equivalent text (sentences) for each variant. However, when recorded, sub-
jects spoke the same language, Portuguese, and they were making use of the
same word dictionary (lexicon). The database contains a sufficient number
of instances (977) to ensure a variety of elements that can be considered
comprehensive.

Because of the amount of instances collected, and because of the use of
the same interaction contexts in both language variants, it is unlikely that
a lexicon bias appears in the corpus. According to these considerations, we
trust the database as being representative of the classes we try to model and
compare, and thus we can generalize from these particular examples.

As infant-directed speech was recorded in the context of spontaneous
interactions, it was very difficult to select portions of audio that belonged
to a given interaction class and that were not mixed with background noise,
such as, for example, babbling and noise from the baby’s toys. For this
reason, the amount of data (instances) is somehow limited. On the other
hand, the data considered is spontaneous and it was collected from recordings
of four different interaction contexts. Therefore, for its variety in content,
the corpus can be considered representative.

5.2.2 Discrimination system model
Automatic segmentation method

For the segmentation of the durational units in the utterances, we used
Prosogram (Mertens, 2004). The main purpose of Prosogram is to provide
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a representation of intonation, considering that auditory perception of pitch
variations depends on many factors other than FO variation proper. Proso-
gram produces a representation that aims to capture the perceived pitch pat-
terns of speech melody (a stylisation based on perceptual principles). Four
perceptual transformations to which speech is subject are taken into account;
specifically, segmentation into syllabic and vocalic nuclei, a threshold for the
detection of pitch movement within a syllable or the glissando threshold,
the differential glissando threshold (a threshold for the detection of a change
in the slope of a pitch movement in a syllable) and temporal integration of
F0 within a syllable. Figure 5.1 illustrates a pitch contour stylisation from
Prosogram.

0 1 2

1104 - - - ; - - . - - - - - - - Toudness, G=0.32/72, DG=30[[min=0.050
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9047 /
150 Hz anection-br-4 Prosogam 2%

Figure 5.1: Ilustration of the Prosogram of an affection instance (“hmmmm
nham nham nham nham nham nham”). Horizontal axis represents time in
seconds and the vertical axis shows semitones (relative to 1 Hz). Green line
represents the intensity, blue line the fundamental frequency, and cyan the
intensity of band-pass filtered speech.

Prosogram is a suitable tool for studying music and language (Patel et al.,
2006; Patel, 2006) since the representation produced consists on level pitches
and pitch glides. Hence, we have applied this method for speech and singing.
We used Prosogram to extract, from the interaction units, vocalic intervals’
onset and offset, intervocalic intervals’ onset and offset, and pitch value
within vocalic intervals.

This automatic segmentation algorithm does not require preliminary seg-
mentation into sounds or syllables. It uses local peaks in the intensity of
band-pass filtered speech, adjusted on the basis of intensity, to segment the
signal. FO detection range was set to 40 to 800 Hz, with a frame rate of
200 Hz. The glide threshold used was 0.32/T? semitones/s, where T is the
duration of a vocalic nucleus in seconds.

An evaluation to assess Prosogram’s reliability for automatic segment-
ation was performed. We compared Prosogram’s automatic detection of
vowels against a ground-truth made with manual annotations. The Vowel
Error Rate (VER) (Rouas et al., 2005; Ringeval & Chetouani, 2008) was
used to evaluate Prosogram, as well as vowel onset and offset detection.
VER is defined follows:

VER = 100.
NUOUJ

%o (5.1)
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where Nge; is the number of vowels deleted or not detected, N;,, is
the number of inserted vowels and N, is the reference number of vowels
provided by manual annotation. We have manually annotated a subset of
96 instances from the materials (15 from each speech class and 3 from each
singing class) that represent approximately 10% of the whole corpus. Table
5.2 shows the total number of vowels hand-labelled (Reference N,y ), de-
tected by Prosogram (Detected), inserted (Inserted N;,s) and non-detected
(Deleted Nge;) and finally VER value. The VER value is considerably low
when comparing with VER values obtained by Ringeval & Chetouani (2008).

Table 5.2: Prosogram’s performance compared with hand labelling.

Reference Ny Detected Inserted N;,s Deleted Ngoy VER
592 558 (94.26%) 15 (2.53%) 34 (5.74%) 8.27T%

In order to complete the evaluation, we assessed Prosogram’s detection
of the onset and offset of vowels. We used a tolerance window of 25ms,
which is approximately 10% of the annotated vowel average durations. We
obtained 80% precision (F —measure = 0.796) for onset detection and 56.6%
precision (F — measure = 0.569) for offset detection. Thus, Prosogram
proved to be very helpful in providing a reliable automatic detection and
saving a cumbersome hand-labelling task.

Durational units considered

The vowels’ onset and offset obtained using Prosogram were used to compute
three different durational units: vocalic intervals (V), consonant intervals
(C), and V-to-V intervals.

Vocalic intervals where computed considering the section of speech between
a vowel onset and a vowel offset. A vocalic interval may then contain more
than one vowel and can span a syllable or word boundary. Consonant in-
tervals or intervocalic intervals consist of portions of speech between vowel
offset and vowel onset. We are considering these durational intervals with
the assumption that infants can distinguish between vowels and consonants.

Ramus et al. (1999) argue that infants perform a crude segmentation
of the speech stream which only distinguishes vocalic and non-vocalic por-
tions, and classify different languages based on this contrast. In addition, in
languages with rhythmic patterns close to stressed-timing such as European
Portuguese, stress has a strong influence on vowel duration. Marking certain
syllables within a word as more prominent than others leads to vowels con-
sistently shorter or even absent, in contrast to Brazilian Portuguese where
there is small contrast in the duration of adjacent syllables.

V-to-V durations were computed as the interval between successive vowel
onsets (Barbosa & Bailly, 1994; Barbosa, 2007). V-to-V units are considered
perceptually equivalent to syllable-sized durations, a fundamental unit for
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speech perception (van Ooyen et al., 1997). It is relevant to consider here
these durational units given that infants are responsive to syllable patterning
and these units are particularly salient during the initial period of speech
acquisition and processing, regardless of the language and rhythmic pattern
of the stimuli (Bertoncini et al., 1995).

Extraction of descriptors

After computing the temporal measures just described, we proceeded to
compute descriptors in order to capture melodic, temporal and accentual
prosodic patterns of the speech and singing materials. Descriptors were
computed separately for each instance. We have divided the descriptors
into two categories: pitch-related and rhythm-related descriptors. A brief
description of these descriptors follows.

(a) Rhythm-related descriptors: Normalised pairwise variability index
(nPVI) was computed for the vocalic intervals and for the V-to-V in-
tervals in order to measure the contrast between successive durations,
which may reveal changes in vowel length within interaction units (Ling
et al., 2000). Higher overall nPVI should occur in the European Por-
tuguese variant, in which vowel reduction and consonant clustering are
characteristic, leading to greater durational contrast.

For consonant intervals, raw pairwise variability index (rPVI) was com-
puted. nPVI was not considered for this type of durations because it
would normalize for language variant differences in syllable structure
(Grabe & Low, 2002). Also, this descriptor could reflect consonant clus-
tering due to potential vowel suppression in European Portuguese but
not in Brazilian Portuguese.

Standard deviations were calculated for vocalic, consonant and V-to-V
durations. Coefficients of variability (std/mean) were also computed for
the three duration types in order to measure the variability of durations.
These measures may not be directly relevant to the perception of rhythm
but may reflect, as global statistics, the variability in syllable structure
(Patel, 2008). Finally, speech time, the proportion of vocalic intervals in
an interaction unit (%V) or the percentage of speech duration devoted
to vowels, and speech rate (number of vocalic intervals per second) were
also computed.

(b) Pitch-related descriptors: nPVI and coefficient of variability were
computed for the median pitch of each vocalic interval in order to meas-
ure the contrast between pitch values and pitch variability, respectively.
The lowest pitch value, highest pitch value, pitch range, mean and stand-
ard deviation pitch value for each interaction unit were also calculated.
Finally, the percentage of vocalic intervals in which pitch is flat, rises,
and falls were computed.
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Additionally, descriptors related with the overall pitch contour were ex-
tracted aiming to capture pitch shape patterns. A polynomial regression
was performed, using the median pitch values of each vocalic interval as
points, in order to fit the pitch contour.

Next, kurtosis, skewness and variance were extracted from the pitch con-
tour approximation previously calculated. Dividing this approximation
curve into three equal portions, the slope of the beginning, middle and
end of the curve was then calculated.

Attribute selection

In order to identify a group of relevant descriptors for class discrimination,
we performed an attribute selection using the Correlation-based Feature sub-
set Selection (CFS). The CFS algorithm (Witten & Frank, 2005) uses a
correlation-based heuristic for evaluating the goodness of a descriptors’ sub-
set. For the evaluation, this heuristic considers both the predictive power
of each descriptor individually and the level of inter-correlation between
descriptors. The CFS searches for subsets that, on the one hand, contain
descriptors that are highly correlated with the class and, on the other hand,
are uncorrelated with each other. We have used this method for all the
experiments reported here.

Discrimination model

The discrimination model used, the Sequential Minimal Optimization (SMO)
is a training algorithm for support vector machines (SVM) (Platt, 1998). The
basic training principle of SVMs is the construction of a hyperplane or a set
of hyperplanes in a high dimensional space that separate data points into
classes with maximum margins (Vapkin, 1982). SVMs look for the largest
distance of the hyperplane to the nearest training data points of any class,
such that the generalization error of the classifier is minimized.

Training SVM requires solving a large quadratic programming optimiz-
ation problem. SMO breaks the problem down into the possible smallest
programming optimization problems. These problems are solved analytic-
ally, which improves significantly its scaling and computation time. The
implementation of the SMO algorithm is included in WEKA, a data mining
suite with open source machine learning software written in Java (Witten &
Frank, 2005).

A validation process was carried out in order to go further than the per-
formance of the discrimination model on the available data, and to evaluate
its generalization capabilities i.e., its performance when classifying previously
unseen instances. To evaluate the predictive performance of the discrimina-
tion model based, the 10-fold cross-validation method was performed. In this
method, the data set is randomly divided into 10 subsets or folds. Then, 9 of
the folds are used for training and one for testing. This process is repeated 10
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times and the final result is averaged over the 10 runs. The classification ac-
curacy of the discrimination model is assessed by examining the F-measure!,
a weighted average of precision and recall which varies between 1 for its best

value and 0 for its worst.

5.3 Experiments

In this section, we describe the machine learning experiments conducted to
investigate if infant-directed speech from Brazilian and European Portuguese
can be discriminated and which are the best features to achieve this; also
if infant-directed singing from Brazilian and European Portuguese can be
discriminated, and which are the type of features that discriminate these
two.

In addition, we will verify if the type of features (rhythmic and melodic)
that perform best when discriminating infant-directed speech and singing
are shared by both discrimination models.

Finally, we will explore if these features are useful for another discrim-
ination condition, an interaction context classification task, or if they are
specific to the discrimination of Portuguese variants. The descriptors com-
puted previously will be used as input to the discrimination models.

5.3.1 Discriminating between Brazilian and European
Portuguese infant-directed speech

In the present classification experiment, we aim to discriminate Brazilian
Portuguese from European Portuguese utterances, exploring which features
exhibit the best performance. Previous studies show that European Por-
tuguese and Brazilian Portuguese differ regarding rhythm (Frota & Vigario,
2001). Additionally, infants can distinguish between different speech rhythm
classes (Nazzi & Ramus, 2003). However, these studies used adult-directed
speech and not infant-directed speech.

Can these two Portuguese variants be discriminated when dealing with
infant-directed speech? What are the acoustic properties that best discrim-
inate these two Portuguese variants? Are the rhythmic distinctions between
Portuguese variants still noticeable in infant-directed speech register?

We will look for acoustical correlations that can identify differences between
the two Portuguese variants. Table 5.3 provides statistical information of
the utterances dataset built for this experiment. Statistics reveal that the
Brazilian Portuguese speech rate is higher than the European Portuguese
one. This result might reflect some level of vowel reduction or even vowel
suppression present in European Portuguese, given that speech rate is the
measure of vocalic intervals per second.

1 (2 x recall x precision)
Fmeasure =

(recall + precision)
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Table 5.3: Basic statistical information about the utterances grouped by
Portuguese speech variant.

Brazilian European
Portuguese Portuguese
Number of
instances o7 o
Duration (s) 1.58 (0.62) 1.84 (0.74)
Mean (std)
Speech rate (V/s) 3.84 (1.08) 2.99 (0.98)
Mean (std)
Mean F; (Hz) 275.77 (74.88) 285.20 (76.13)
Mean (std)

Attribute selection was performed with CFS in order to identify a group
of relevant descriptors for the discrimination task. The selected group of
descriptors is mainly composed by rhythm-related features:

rPVI of the consonant interval durations

Standard deviation of the vocalic interval durations

o Coefficient of variability of the consonant interval durations
e Speech rate
e Percentage of vocalic intervals with falling pitch

Table 5.4 presents the mean, standard deviation and p-value for rhythm-
related descriptors shown to be relevant in language discrimination tasks (see
sub-section Durational units considered), as well as pitch-related descriptors
associated with the contour shape with statistical relevance. P-values were
obtained performing a t-test for independent samples, with Portuguese vari-
ant as a factor and the descriptors as dependent variables.

Rhythm-related descriptors show higher statistical significance regard-
ing the discrimination of Portuguese variants when compared with contour
shape related descriptors, such as initial slope and variance of the approxim-
ation of the pitch contour. European Portuguese exhibits higher durational
contrast than the Brazilian variant for the vocalic and consonant duration
intervals. V-to-V durations did not show statistical relevance for discrimin-
ating between Portuguese variants.

To conclude, we ran the classification method using the sequential min-
imal optimization algorithm for training a support vector classifier with a 10-
fold cross-validation test mode. Results achieved with the stratified 10-fold
cross-validation test gave 68.3% correctly classified instances (627 correct
over 291 incorrect) with an accuracy F-measure of 0.68.
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Table 5.4: Mean, standard deviation and p-value for a group of features,

considering Brazilian and European Portuguese speech variants.

Brazilian European
Portuguese Portuguese p
Mean (std) Mean (std)
nPVI
(V durations) 59.60 (32.71) 67.46 (37.67) 0.003
nPVI
(V-to-V 43.38 (28.79) 43.09 (29.66) 0.52
durations)
rPVI
(C durations) 11.62 (9.40) 18.86 (16.47) <0.001
CvV
(C durations) 0.61 (0.256) 0.74 (0.30) <0.001
Initial slope of o o0 ()15 34) ~46.79 (424.30) 0.019
pitch contour
Variance of the 0.12 (0.16) 0.18 (0.28) 0.003

pitch contour

5.3.2 Discriminating between Brazilian and European
Portuguese infant-directed singing

In this experiment, the aim is to discriminate between infant-directed singing
from the Brazilian and European Portuguese samples. It is known that in-
fants in a pre-verbal stage focus on prosodic cues present in music and speech,
and may perceive these stimuli as sound sequences that follow patterns of
rhythm, stress, and melodic contours (Trainor et al., 2004; Mehler et al.,
1996; Nazzi & Ramus, 2003). Therefore, infants may treat both music and
speech using the same perceptual processes.

Can infant-directed singing from the two Portuguese variants be discrim-
inated using the same cues as for infant-directed speech? For the implement-
ation of this experiment, we have followed the same steps as before so that
results are comparable. We have computed the same durational units us-
ing the method described earlier and extracted the same descriptors (see
sub-section Discrimination system model). Statistical information of the ut-
terances in dataset built for this experiment is provided in Table 5.5. Once
again, speech rate is higher for Brazilian Portuguese, as had occurred with
for speech.

As before, we performed a CFS based attribute selection in order to
identify a group of relevant descriptors for the discrimination task. The
group of features shows, as in the previous experiment with speech, a strong
presence of rhythm-related features:
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Table 5.5: Basic statistical information about the utterances grouped by
Portuguese singing variant.

Brazilian European
Portuguese Portuguese
Number of
instances 28 »
Duration (s) 7.22 (4.27) 11.99 (7.85)
Mean (std)
Speech rate (V/s) 3.10 (0.63) 1.99 (0.37)
Mean (std)
Mean Fy (Hz) 263.30 (33.96) 275.75 (48.97)
Mean (std)

rPVI of consonant interval durations

Standard deviation of vocalic interval durations

Speech rate

Percentage of vocalic intervals in which pitch rises

Percentage of vocalic intervals in which pitch is flat

Intermediate slope of pitch contour approximation

It can be observed that three features (rPVI of the consonant interval
durations, standard deviation of the vocalic interval durations, and speech
rate) are common in the selected sets of speech and singing. Table 5.6
presents the mean, standard deviation and p-values for rhythmic contrast
descriptors reported in the previous experiment, as well as rhythm and pitch-
related features that showed statistical significance for the discrimination
of Portuguese singing variants. These results were obtained performing t-
tests for independent samples, with Portuguese variant as a factor and the
descriptors as dependent variables.

As observed in the speech materials, European Portuguese singing ex-
hibits higher durational contrast than Brazilian Portuguese for the vocalic
and consonantal interval durations. V-to-V durations, once again, did not
show statistical relevance for discriminating the Portuguese variants.

Finally, we ran a 10-fold cross-validation experiment using the SMO clas-
sification algorithm. Results yielded 83.9% correctly classified instances (47
correct over 9 incorrect) with an accuracy F-measure of 0.83.

An additional analysis was carried out in order to assess the perform-
ance of the classification model built for speech (see Discriminating between
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Brazilian and European Portuguese infant-directed speech) applied now to
the singing materials.

The results for this analysis with the stratified 10-fold cross-validation
test gave 67.86% correctly classified instances (38 correct over 18 incorrect)
with an accuracy F-measure of 0.64. Performing the inverse analysis, that
is, applying the singing model to 10 different subsets of speech materials,
each one containing the double of total singing instances (2x56 = 112), we
obtained 76.4% correctly classified speech instances (F-measure = 0.7601;
std = 0.0393).

Table 5.6: Mean, standard deviation and p-value for a group of features,
considering Brazilian and European Portuguese singing classes

Brazilian European
Portuguese Portuguese p
Mean (std) Mean (std)
nPVI
(V durations) 52.40 (12.13) 60.87 (19.37) 0.065
nPVI
(V-to-V 49.33 (17.88) 46.07 (14.59) 0.476
durations)
rPVI
(C durations) 16.35 (10.33) 26.21 (10.99) 0.002
Std
(V durations) 0.08 (0.03) 0.15 (0.05) <0.001
%V which
pitch rises 0.02 (0.03) 0.11 (0.09) <0.001
%V which
pitch is flat 0.91 (0.11) 0.7193 (0.17) <0.001
Intermediate
slope of the -4.72 (50.06) 20.87 (28.98) 0.03

pitch contour

5.3.3 Discriminating interaction classes: Affection vs.
disapproval vs. questions

Previous research has shown that the shape of the melodic contours of infant-
directed speech can be categorized into contour prototypes according to com-
municative intent (Fernald, 1989). Automatic characterization of emotional
content in motherese has been implemented and features concerning the
melodic contour of speech have shown satisfactory results (Mahdhaoui et al.,
2009).
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Do melodic contour related features show the best performance when
discriminating interaction classes such as affection, disapproval and ques-
tioning? Can these interaction classes be discriminated using descriptors
related with the shape of the speech melodic contour, in contrast with the
discrimination of speech variants, in which rhythm-related features yielded
better performance?

In this experiment, we aimed to detect the best features for the discrim-
ination of interaction types, examining if the features used to discriminate
speech and singing are specific to the discrimination of Portuguese variants,
or if they are also discriminative in different conditions, namely an interac-
tion context discrimination task.

For this experiment we have considered the three interaction contexts
of affection, disapproval and questioning in a cross-Portuguese variant ap-
proach. In other words, we have grouped all the interaction units belonging
to a specific interaction context, regardless of the Portuguese variant to which
they pertained.

The dataset for this experiment was organized as shown in Table 5.7, that
also shows the statistical information about the utterances in each class. The
affection class gets the highest mean fundamental frequency value, whereas
the disapproval class gets the lowest. Regarding speech rate, the question
class has the highest value, and affection class the lowest.

Table 5.7: Basic statistical information about the utterances grouped by
interaction classes.

Affection Disapproval Question
1\.Iumber of 313 300 308
instances
Duration (s) 2.07 (0.77) 1.56 (0.61) 1.49 (0.50)
Mean (std)
Speech rate (V/s) 2.91 (0.91) 3.47 (1.13) 3.85 (1.08)
Mean (std)
Mean Fy (Hz) 300.37 (79.29)  256.41 (74.02) 283.84 (66.55)
Mean (std)

Attribute selection was performed in order to identify a group of relevant
descriptors for the discrimination task. Only two features are not related
with pitch and contour shape. The group of selected features includes:

e Initial slope of the pitch contour approximation
e Intermediate slope of the pitch contour approximation
e Final slope of the pitch contour approximation

e Skewness of the pitch contour approximation
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Variance of the pitch contour approximation

Mean pitch for each utterance

The percentage of vocalic intervals in which pitch falls

Standard deviation of the duration of vocalic intervals

e Speech rate

One-way ANOVAs were calculated, with interaction class as factor and
descriptors as dependent variables, in order to test a possible dependency
of the observed descriptor values on the different communication contexts.
Table 5.8 presents the mean, standard deviation and p-value for the rhythmic
contrast descriptors reported in the previous experiments as well as rhythm
and pitch-related features that showed statistical significance for the dis-
crimination of the singing variants.

Finally, we have run a 10-fold cross-validation experiment as the previ-
ously reported ones. Results for this analysis yielded 63.62% correctly clas-
sified instances (584 correct over 334 incorrect) with an accuracy F-measure
of 0.64.

Table 5.8: Mean, standard deviation and p-value for a group of features,
considering affection, disapproval and question speech contexts.

Affection Disapproval Question
Mean (std) Mean (std) Mean (std) p
nPVI 70.66 63.37 56.60 ~0.001
(V durations) (35.44) (36.99) (32.57) )
nPVI
47.53 40.06 41.99
(V-to-V 0.004
durations) (28.42) (31.44) (28.04)
rPVI 17.62 16.20 11.96 ~0.001
(C durations) (14.82) (15.25) (10.60) ’
Std 0.117 0.068 0.060 0.001
(V durations) (0.073) (0.044) (0.041) '
Skewness of 0.058 -0.054 0.112 ~0.001
pitch contour (0.328) (0.322) (0.288) '
I“:tfali::lpe -17.29 79.54 11456 o0
P (296.98) (354.28) (468.22) '
contour
Final slope of -79.49 -45.62 172.75 ~0.001
pitch contour (227.31) (443.04) (451.65) '

As mentioned before, previous research has categorized communicative
intents into prototypical melodic contours in infant-directed speech (Fernald,
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1989). These prototypical shapes have been considered cross-linguistic uni-
versals (Papousek & Papousek, 1991). However, despite these cross-linguistic
universals, can the different rhythmic patterns between Portuguese variants
be noticeable? In other words, can the interaction classes be discriminated
considering the Portuguese variant? Can the mixture of rhythmic differ-
ences between Portuguese variants and contour shape differences between
interaction classes solve this discrimination problem?

We examined the predictive performance of the computed descriptors in
a more complex task. In this analysis, we aim to assess the performance
of the discrimination between interaction classes, but this time considering
simultaneously the Portuguese variant to which each instance belongs.

We expected that the discrimination model was able to detect different
interaction classes and simultaneously the Portuguese variants. Six different
classes were considered: Brazilian Portuguese (BP) Affection, Disapproval
and Question (A-BP, D-BP, Q-BP, respectively, in Table 5.9), and European
Portuguese (EP) Affection, Disapproval, Question (A-EP, D-EP, Q-EP, re-
spectively, in Table 5.9).

The distribution of instances per classes as well as the corresponding
statistical information is shown in Table 5.9. For both the Brazilian and the
European variants, the Question class shows the highest value for speech
rate, as also happened in the preceding experiments. Overall results for
speech rate are higher for the Brazilian Portuguese variant, when comparing
equivalent interaction classes.

Table 5.9: Basic statistical information about the speech utterances grouped
by classes considering interaction contexts and Portuguese variants (see
text).

A- D- Q- A- D- Q-
BP BP BP EP EP EP

Number of

. 151 150 156 162 150 152
instances

Duration (s) 2.01 1.36 1.39 2.13 1.76 1.59
Mean (std) (0.63) (0.52) (0.46) (0.89) (0.63) (0.52)

Speech rate 3.34 3.88 4.27 2.51 3.07 3.41

(V/s)

Mean (std) (0.85) (1.14) (1.02) (0.78) (0.98) (0.96)
hdff;;)Fb 284.64 258.60 283.69 315.03 254.21 283.99
Mew () (77°22) (8144)  (6265) (78.62) (65.98) (70.53)

In the additional analysis, we performed an attribute selection in order to
identify a group of relevant descriptors for the discrimination task. The pres-
ence of rhythm-related features is stronger for this discrimination problem
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as compared to the set of features selected in the previous one:

e Initial slope of the pitch contour approximation

e Intermediate slope of the pitch contour approximation
e Final slope of the pitch contour approximation

e Variance of the pitch contour approximation

e The percentage of vocalic intervals in which pitch falls
e Mean pitch for each utterance

e rPVI of the consonant interval durations

e Standard deviation of the vocalic interval durations

e Speech time

e Speech rate

We ran several ANOVAs to test the effect of language variant and in-
teraction context (and their possible interaction) on each descriptor listed
above, and found that in most of the cases only the effect of the interaction
context was statistically significant (p < 0.001). This was observed for 7
descriptors (5 pitch-related and 2 rhythm-related), namely initial slope of
the pitch contour approximation (F' = 20.42;d.f. = 2), intermediate slope
of the pitch contour approximation (F' = 4.80;d.f. = 2), final slope of the
pitch contour approximation (F = 38.42;d.f. = 2), variance of the pitch
contour approximation (F' = 42.64;d.f. = 2), mean pitch for each utterance
(F = 28.48;d.f. = 2), std of vocalic intervals duration (F = 97.36;d.f. = 2)
and speech time (F' = 92.23;d.f. = 2).

For 3 descriptors (1 pitch-related and 2 rhythm-related) only the variant
was significant, namely vocalic intervals in which pitch falls (F = 47.18;d.f. =
1), rPVI of the consonant interval durations (F' = 66.96; d. f. = 1) and speech
rate (F = 166.74;d.f. = 1).

Finally, we ran a 10-fold cross-validation experiment analogous to the
previous ones. Results for this analysis yielded 46.73% correctly classified
instances (429 correct over 489 incorrect) with an accuracy F-measure of
0.46. As can be seen in Table 5.10, that shows the confusion matrix, com-
municative contexts are confused across variants.
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Table 5.10: Confusion matrix for the classification considering interaction
speech contexts and Portuguese variants.

A-EP D-EP Q-EP A-BP D-BP Q-BP Classified as

104 17 10 23 2 6 A - EP
24 55 10 21 26 13 D - EP
21 18 54 12 17 30 Q - EP
27 26 13 69 7 9 A-BP
4 30 13 10 58 33 D - BP
2 9 17 11 28 89 Q- BP

5.4 Discussion

The present study explored rhythmic and melodic patterning in speech and
singing directed to infants from Brazilian and European Portuguese variants.
Different classification configurations were conducted in order to provide
insight into the prosodic characterization of the infant-directed register of
speech and singing from the two Portuguese variants.

In the first experiment, Brazilian and European Portuguese infant-di-
rected speech were discriminated with a 68.3% success rate. The attribute
selection performed identified a group of the five best features in which four
were rhythm-related, demonstrating strong predictive power. The results
indicate that there are relevant rhythm differences between infant-directed
speech from the two Portuguese variants and not melodic differences; dur-
ational contrasts are higher in European Portuguese than in Brazilian Por-
tuguese (see nPVI and rPVI values in Table 5.4).

As referred before, the two Portuguese variants are considered to have
distinct rhythm patterning (Frota & Vigario, 2001): European Portuguese is
considered more stress-timed, characterized by vowel reduction and, there-
fore, with higher durational contrast values and, contrastingly, Brazilian
Portuguese is considered more syllable-timed. Therefore, despite a natural
tendency in infant-directed speech to clearly articulate phonemes, namely
vowels, in order to facilitate language acquisition (Papousek et al., 1987), a
different rhythm patterning is still observable between the Portuguese vari-
ants. These results demonstrate that both variants keep rhythm patterning
differences in the infant-directed speech register.

It would be of interest to test the same discriminative features found
in this experiment for discrimination between adult-directed speech from
the same two Portuguese variants. Should the same features not reveal the
same discriminative power for adult directed speech, it would be important
to determine if these features are "infant-adapted" and to explore adaptive
explanations for this fact.

In the second experiment, Brazilian and FEuropean Portuguese infant-
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directed singing were discriminated with 83.9% success rate. The set of fea-
tures identified by an attribute selection includes six features, in which half
were rhythm-related and half were pitch-related. The three rhythm-related
features, namely rPVI of consonant interval durations, standard deviation
of the vocalic interval durations and speech rate, were also part of the group
of features with high predictive performance built for the speech materials.

Moreover, the model trained with speech is capable of correctly classify-
ing 67.86% of the singing materials, and the inverse analysis applying the
singing model to speech materials yields 76.4% correctly classified instances.
These results considering the discrimination between language variants in-
dicate that processing speech and singing share the analysis of the same
properties of the stimuli.

Additionally, values for durational contrasts in singing are higher for the
European Portuguese materials (see nPVI and rPVI values in Table 5.6),
as observed with infant-directed speech. Therefore, rhythmic patterning
differences are also kept in the singing material. These results are consistent
with previous findings relating the musical rhythm of a particular culture
with the speech rhythm of that culture’s language (Hannon, 2009; Patel
et al., 2006)).

Our last experiment examined the discrimination between pragmatic
classes such as affection, disapproval and questioning, and the resulting
model correctly classified 63.6% instances. In this experiment, pitch-related
features revealed to be efficient for the pragmatic discrimination, in contrast
to what had been observed for the language variant discrimination.

When we look at the simultaneous detection of interaction and variant,
the presence of rhythm-related features as the best descriptors for the task
is noticeable. This contrasts with the set of features required for the dis-
crimination between variants only, or between interactions only, where few
rhythm descriptors were needed.

A closer analysis of the confusion matrix produced by this classification
problem reveals that the communicative contexts were similar across variants
and therefore they yielded many classification confusions. This confirms
the presence of cross-linguistic properties of different interaction contexts
(Papousek & Papousek, 1991).

Summing the correctly classified cases in each interaction context ir-
respective of language variant (for example, the 104 correct cases from
FEuropean Portuguese affection plus the 23 cases from Brazilian Portuguese
affection, and so on, cf. Table 5.10), would make a total of 582 cases. There-
fore, disregarding errors in classifying language variants, we get a 63.4%
successful discrimination of interaction contexts, a value closer to the one
obtained in the classification problem where only the interaction classes were
considered.

Another fact worth being noted is that the speech rate values, for all the
experimental set-ups, are found to be higher for the Brazilian Portuguese
variant. Speech rate was measured here as the number of vocalic intervals
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per second. Therefore, this result might reflect some level of vowel reduction
or even vowel suppression in European Portuguese, which could in turn imply
that certain vocalic intervals are absent in this variant.

Additionally, vocalic and consonantal intervals revealed to be more relev-
ant in comparison to the V-to-V durations for discriminating the Portuguese
variants. These results are consistent with previous findings suggesting a
rhythm based discrimination by newborns relying on distinctions between
vowels and consonants (Mehler et al., 1996; Nazzi & Ramus, 2003; Ramus
et al., 1999).

Although the main goal of this study was not focused on the robustness
of the discrimination models, but rather on the results of these models as a
means to capture rhythmic and melodic patterns in speech and singing dir-
ected to infants, the classification results for all experimental configurations
were below our expectations. It is possible that, for an automatic discrim-
ination approach such as the one adopted here, more instances were needed
or that the materials do not contain the equivalent text (sentences) for each
variant. It could also be the case that the features used were not sufficiently
efficient. An effort should be made in the future in the sense of exploring
more descriptors for the discrimination tasks performed in this study.

Finally, care has been taken in collecting representative stimuli of what
is most salient to an infant, that is, infant-directed speech and singing, and
descriptors have been computed trying to capture the perception and pro-
cessing of prosodic patterns from the perspective of an infant. Therefore,
the results achieved may reveal that prosody of the surrounding stimuli of
an infant, such as speech and singing, is a source of rich information not only
to make a distinction between different communicative contexts but also to
provide specific cues about the prosodic identity of their mother tongue.

5.5 Conclusion

The main goal of the present study was to explore rhythmic and melodic
patterning in speech and singing directed to infants from Brazilian and
European Portuguese variants. Different machine learning experiments were
conducted in order to provide insight into the prosodic characterization of
the infant-directed register of speech and singing from the two Portuguese
variants.

Descriptors related with rhythm, namely rPVI of the consonant interval
durations, standard deviation of the vocalic interval durations and speech
rate, showed strong predictive ability for the discrimination of the Portuguese
variants, both in speech and in singing. Moreover, different rhythmic pat-
terns were observed in the two variants, with higher durational contrasts
for European Portuguese speech and singing than for Brazilian Portuguese
(see nPVI and rPVI values in Table 5.4). Further investigation should be
carried out to determine if these prosodic differences are related to infant
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development of musical predispositions and how they might bias melodic
representations differently for each culture.

Rhythm-related descriptors were not relevant for the discriminations of
interaction contexts. However, when increasing the complexity of the in-
teraction classification problem by including the language variants, rhythm-
related features emerged as more relevant than they had been in the context-
only classification problem. Therefore, we provide additional evidence that
prosody of the surrounding stimuli of an infant, such as speech and singing,
are rich sources of information to make a distinction between communicat-
ive contexts through melodic information, and also to provide specific cues
about the rhythmic identity of the native language.

Moreover, common features were used by the classification method for
discriminating speech and singing tasks. This indicates that processing
speech and singing share the analysis of the same properties of the stim-
uli. Hence, these results strengthen previous findings by providing further
evidence that the cognition of music and language may share computational
resources during the pre-verbal period.

We consider that, rather than recognizing or discriminating, such as the
approach taken in this study, the infant has to learn patterns and discover
structures. Consequently, in the next research step we will build a develop-
mental model for exploring the fact that prosodic features present in infant-
directed speech and singing may affect the infant’s development of rhythmic
representations.



Temporal information processing in early
development: a computational model for
exploring correlations and possible interactions
between music and speech

Summary

In this chapter we describe a computational model based on temporal dif-
ference reinforcement learning used to explore how the temporal prosodic
patterns of a specific culture influence the development of rhythmic rep-
resentations and predispositions in human infants. With this purpose, we
performed the computational simulation of Yoshida et al. (2010)’ s empirical
experiments.

The model is composed by two main modules: (1) the perception mod-
ule, where the raw auditory data is processed in a way analogous to early
sound processing, and (2) the representation module consisting of the neural
network that learns to classify sounds on the basis of the output of the per-
ception module. The training data is composed by three categories of sounds:
(1) infant-directed speech, (2) infant-directed singing, and (3) environmental
sounds.

We assessed the extent to which the model’s exposure to the durational
patterns of a specific culture influenced the construction of its internal repres-
entations and if this construction changed with greater auditory experience.

Across development, the model showed a similar developmental profile
as that found in infants. Moreover, infant directed singing was found to be
a crucial factor in explaining this developmental profile.

We conclude that the exposure to the surrounding sound environment
influences the development of auditory temporal representations and that
the singing may work as a facilitator in learning the temporal regularities of
a specific language and auditory culture.

87
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6.1 Introduction

Musical capacity is universal to all cultures. Despite its diversity, it is present
in every human society and in every historical period (Nettl, 2000). How-
ever, there are important cultural differences regarding the processing and
representation of music (Morrison et al., 2003). These differences might be
due to many culturally specific factors, especially those related with the early
exposure to the melodic, harmonic and rhythmic features that compose the
auditory environment of a specific culture. This early exposure may lead to
the development of particular cultural perceptual constraints (Morrison &
Demorest, 2009).

Among the variety of sonic experiences that can influence human aud-
itory perception, music and speech have been highlighted as determinant
factors (Carterette & Kendall, 1999; Patel et al., 2006; Iversen et al., 2008;
Hannon, 2009). Of the auditory information to which infants are exposed,
the most salient are speech and singing sounds (Nakata & Trehub, 2004;
Cooper & Aslin, 1994; Trehub et al., 1993). Moreover, from the perspective
of a pre-verbal infant, music and speech may both be perceived as sound
sequences that unfold in time, following patterns of rhythm, stress, and
melodic contours (Masataka, 2009). Therefore, despite the surface differ-
ences of speech and musical stimuli, infants may nevertheless use the same
cognitive processes to attend to the melodic and rhythmic aspects of both
music and speech (Patel, 2007).

Music and language cognition, and their interactions have been studied
using different approaches and techniques. For example, Patel et al. (2006)
studied language and music relations by quantitatively comparing rhythms
and melodies of speech and instrumental music. This investigation has shown
that instrumental music (rhythms and melodies) reflects the prosody of a
composer’s native language. Also supporting the suggestion that musical
rhythm of a particular culture may be related with the speech rhythm of that
culture’s language, Hannon (2009) showed that subjects can discriminate
between instrumental songs composed in two languages that have different
rhythmic prosody basing their decisions on rhythmic features only.

Another example of the interaction of these two domains comes from
rhythm perception, specifically from auditory perceptual grouping, a funda-
mental operation in processing temporal elements from auditory patterns.
Based on the Gestalt notion of the integration of parts to form a whole,
perceptual grouping consists in the process of selecting components from an
analysed scene that, by being grouped, form an individual object. Simil-
arly, the mechanisms of organization, segmentation and grouping occur in
the auditory domain as well, involving spatial and temporal segregation of
events (Bregman, 1994). For the matter, we are interested in the temporal,
specifically, rhythmic grouping. Grouping mechanisms are subjacent in the
perception of rhythm. These mechanisms are motivated by the detection
of stressed or salient events, in order to segment into coherent higher-level
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patterns (e.g., motives and phrases). The salience or prominence in a stream
of events is perceived through fluctuations in loudness, duration and pitch
values of the rhythmic elements. Either in speech or in music, the rhythmic
element is stressed by the joint occurrence of (i) peaks of loudness together
with long duration intervals or (ii) peaks of loudness together with peaks
of pitch (Bolton, 1894; Woodrow, 1909). Combinations of stressed events,
non-stressed events, and silences create the sensation of boundaries. These
boundaries lead to the perceptual segmentation of rhythmic events, also re-
ferred as rhythmic grouping.

Auditory perceptual grouping is a central component in rhythmic beha-
viours such as music and language. These two structures are both temporally
organized and unfold over time. Therefore, its processing depends on abil-
ities to process temporal information. The grouping of these two structures
will determine how we segment a continuous stream of sound into smaller
pieces, building a complex interpretation of the acoustic input.

Perceptual grouping processes are known to be operative early in infancy
(Thorpe & Trehub, 1989), and the principles governing these processes have
been proposed to be universal, forming an innate building block of percep-
tion. These principles, similar to what underlies the perception of visual
patterns and its link to the gestalt principles, follow two main rules: (i)
louder sounds tend to mark group beginnings and; (ii) longer sounds tend
to mark group endings. These rules are known as the Iambic and Trochaic
laws respectively (Bolton, 1894; Woodrow, 1909). In addition, these prin-
ciples are considered as key causal factors in language learning, since they
influence aspects of language learning such as word segmentation.

However, recent studies have shown that perceptual grouping is not uni-
versal but learned from the environment and thus dependent on experience
(Iversen et al., 2008). Also in contrast with much previous research, Yoshida
et al. (2010) demonstrated a cultural difference in non-linguistic perception
of grouping. This difference develops early due to the different language en-
vironments. In two experiments, they tested Japanese and English learning
infants of 5-6 and 7-8 months. They observed that 5-6 month old infants
do not reveal any systematic perceptual grouping bias (e.g., preference for
grouping based on English or on Japanese patterns). In contrast, 7-8 month
old infants developed grouping preferences. These preferences were consist-
ent with the ones found in adulthood (Iversen et al., 2008). The key factor
for explaining the development of different grouping preferences is that these
infants (American vs Japanese) have different auditory experiences. Addi-
tionally, the most salient cause of cultural differences in auditory experience
is the dominant language, which also explains that the grouping preferences
that are developed are consistent with their language structure and therefore
reflect the rhythms of the two languages (English vs. Japanese). The learn-
ing of the duration patterns is made through the exposure to the rhythmic
units present in speech. This exposure leads to an implicit learning of the
rhythmic structure of speech and is responsible for shaping low-level group-
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ing biases.

Other than speech, infants are also exposed to a special selection of music,
consisting of lullabies and play songs (Trehub & Trainor, 1998). Parents and
caregivers, across cultures, languages and musical systems, use singing to
regulate infant states and to communicate emotional information (Trehub
et al., 1993; Rock et al., 1999). Therefore, it is possible that speech, together
with singing, is shaping the low-level grouping biases observed in the older
infants. But how does the structure of these two sound systems, namely,
speech and singing, influence the construction of rhythmic preferences and
representations? And how do they interact in this process? How important
is it that singing is present, in addition to speech?

In this context, aiming to explore these questions and, at the same time,
produce explanations for how the temporal prosodic patterns of a specific
culture influence the development of rhythmic representations and predis-
positions, we propose to build a computational model based on temporal
difference information processing and representation. The model is exposed
to an audio training data set, typical of that which infants experience, con-
sisting of recordings of caregivers interacting with babies, infant-directed
speech and infant-directed singing utterances from European Portuguese as
well as recordings of environmental sounds, all of which can be categorized
by capturing temporal patterns present over durational sequences. Model
performance is then evaluated against that of human infants.

For the validation of the model, we propose the simulation of an empirical
experiment from Yoshida et al. (2010) that should produce similar results.
Furthermore, on Experiment 1 (see section 6.4.2), we aim to verify if the
model’s exposure to the durational patterns of a specific culture influence
the construction of its internal representations and if this construction is
developmental dependent.

In Experiment 2 (see section 6.4.3), we perform manipulations in the
input environment, with the aim of deriving predictions from the model.
Thereby, we exclude the singing material with the aim of testing its influence
in the process of the model’s building of rhythmic internal representations
and preferences. After a brief overview of the model, the experiments are
reported in section 6.4. In section 6.5, we present a general discussion of the
experiments, and, finally, the last section (6.6) presents our conclusions.

6.2 Model overview

The model is composed of two main modules, the perception and the rep-
resentation modules (see Figure 6.1). In the perception module, the raw
data is processed for input to the representation module. Operations such
as durational intervals extraction from the audio data and subsequent pitch,
duration and loudness are computed. The representation module consists of
a neural network and it is fed with the data that was pre-processed. Each
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of these is discussed in more detail below.
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Figure 6.1: Schematic illustration of the computational model.

6.2.1 Perception module

Infants are very sensitive to rhythmic information. During the pre-linguistic
period, when developmental processes are particularly susceptible to envir-
onmental input, rhythmic cues from prosody play an important role in ac-
quisition, either in music or speech, as they provide information to segment
continuous streams into meaningful units and learn about their structures.

Vowels are perceptually relevant regarding rhythm. They are especially
important in languages with rhythmic patterns close to stressed-timing,
where stress has a strong influence on vowel duration and the marking of cer-
tain syllables within a word as more prominent than others leads to vowels’
duration fluctuation. Infants are able to segment vocalic intervals from the
speech stream (Ramus et al., 1999). Ramus et al. (1999) argue that infants
perform a crude segmentation of the speech stream which only distinguishes
vocalic and non-vocalic portions, and classify different languages based on
this contrast. Vocalic intervals are acoustically characterized by the por-
tions of the signal that exhibit periodic spectral patterns over time. This
way, for the model, we consider a durational interval as a segment of signal
that shows constant spectral behaviour over time, whether it is the case of
speech or singing audio materials or not. Therefore, the same method for
extracting the durational intervals is used for all the audio materials.

Both in speech or music, the fluctuations in pitch, duration and loudness
values are perceived as salient or prominent events in a stream. Combina-
tions of stressed events, non-stressed events and silences create the sensation
of boundaries. These boundaries lead to the perceptual segmentation of
the events, also referred as rhythmic grouping (Palmer & Hutchins, 2006).
This way, we computed the significant components that characterize prosody,
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from each durational interval, that is, pitch duration and loudness (Noote-
boom, 1997).

The same processing methods, including the extraction of the durational
intervals, are used for all the input data, regardless of its category (i.e.,
speech, singing or environmental sounds). Indeed, for infants without any
verbal knowledge, music and speech may not be as differentiated as for older
children and adults and therefore it is possible that they are using the same
cognitive operations and sharing processing resources (Patel, 2007).

The result of this processing, the module outputs a vector composed by
the durational events of each utterance on the audio dataset. Each durational
event is composed by its duration, pitch and loudness values (see Figure 6.2
on Data Section).

6.2.2 Representation module

The model is situated within connectionist framework. Connectionism, from
a methodological perspective, can be seen as a structure for studying and
explaining cognitive phenomena by means of artificial neural network mod-
els. Neural network modelling is an excellent tool for understanding devel-
opment, for exploring the link between multiple interacting biological and
environmental constraints, and the development of cognitive representations
(Shultz, 2003; O’Reilly & Munataka, 2000; Haykin, 2009). Based on the
principle that human brain is a complex, nonlinear and parallel information
processing system, neural network models are designed under a neurobio-
logical analogy with the brain, composed by neuron-like simple processing
units. These units are functionally related by synaptic-weight, and adapt to
the input data, capturing the plasticity of a developing nervous system to
the surrounding environment (Haykin, 2009). In these models, processing
and memory are distributed over a whole network, exploiting the parallel
processing capability of the human brain. This processing consists on the
propagation of activation through the network of simple processing units that
are interconnected by weighted connections. This way, the internal repres-
entation of knowledge can be observed in the activation values of the hidden
processing units. Consequently, knowledge is represented in the structure of
the processing system, in opposition to symbolic approaches, where know-
ledge is transferred between different memory registers. Modifications in the
connections, driven by experience, provide a mechanism for both learning
and development. This way, gradual learning and development can take
place as small changes that shape the values of the activations and the
weighted connection. As a product of this learning process, connectionism
proposes that cognition emerges in neural network models (Hinton, 1989).
This approach has been successfully applied to modelling many develop-
mental phenomena (Mareschal & Thomas, 2007).

Therefore, connectionist models have been a powerful method for com-
puting learning and development, motivated by plausible biological support.
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These models provide the possibility of implementing graded representations,
where response can assume any of a range of continuous values as it happens
in human knowledge (Mareschal et al., 2007).

The model uses the Temporal Differences (TD) learning rule (Sutton,
1988). This method belongs to a class of incremental learning procedures
that uses past experience to predict its future behaviour. Instead of be-
ing driven by the error between predicted and actual outcomes, TD uses
the difference between temporally successive predictions and, thus, learn-
ing happens whenever there is a change in prediction over time. The pair-
wise approaches that include supervised learning methods with the typical
"input-output" behaviours and also prediction problems where the pair can
be seen in the data based on which a prediction must be made versus item
to be the actual outcome, ignore the sequential structure of the problem.
In contrast, TD learning considers temporal sequences of observations and
predictions, where learning proceeds simultaneously with processing, being
suited for problems which data is generated over time. In addition, TD learn-
ing is combined with reinforcement learning (O’Reilly & Munataka, 2000).
This algorithm provides a strong fit to biological properties in the sense
that considers that an organism can produce actions in an environment and
this environment, in result of these actions, produces rewards, most often
delayed. As a consequence, the organism will look to produce actions that
result in the maximum total amount of reward. The value function expresses
mathematically such phenomena and it is:

V(t) = (Yor(t) +ytr(t + 1) + 20 (t +2)...)

Where V' (t) corresponds to the value of the current state at a given point
in time. The discount factor, v, establishes the degree of how much future
rewards are ignored. This value that can vary between 0 and 1, expresses
the less priority that an organism gives to rewards that are distant in the
future and, therefore, the degree of discount of these later rewards is bigger.
r(t) is the reward at time ¢. This way, the algorithm will map situations
to actions so as to maximize numerical reward signals. This means that
the model is not being told which action to take but must discover which
actions yield the most reward by trying them. This is a different scenario
from that of supervised learning, where learning is made from examples
provided by a knowledgeable external supervisor. These actions may affect
not only the immediate reward but also the next situation and, through that,
all subsequent rewards, leading the model to be able to learn from its own
experience.

In the simulations reported below, the task involves capturing patterns
over a durational sequence. Thus, the model must have the ability to con-
sider short-long sequences. The properties described above make this model
suited for the experimental scenario and developmental learning processes
we aim to simulate. On one hand, reinforcement learning enables the sim-
ulation of the implicit learning that we want to achieve (i.e., made through
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the exposure to the auditory context) and, on the other hand, allows solving
problems that involve learning the detailed timing of events, and not just
their order, (i.e., temporal contingencies that span many time steps).

6.3 Data

The training data set was constructed by considering what are the most sa-
lient sounds among all auditory information to which infants are exposed.
Specifically, it contains infant-directed speech and infant-directed singing
from European Portuguese. These distinctive registers are used by parents
and caregivers, across cultures, languages and musical systems (Papousek
& Papousek, 1991; Trehub et al., 1993). This audio collection is part of a
database described in detail elsewhere (Salselas & Herrera, 2010). All audio
signals were digital, stereo, 16 bit sampled at 44100 Hz. The recordings con-
tain caregivers interacting with their healthy babies aged up to 18 months.
During the recordings, caregivers were interacting with the babies in their
home and in different contexts such as playing, feeding, bathing and putting
the babies to bed. The materials contain spontaneous interactive speech and
singing. The audio from the recordings were subsequently cut into utterances
that we refer to as interaction units. Each of these utterances represents an
instance in the audio database.

A third category of sounds was also collected. Here, environmental
sounds belonging to the auditory environment of an infant that are dis-
tinct from speech and singing, such as animals (dog barking, bird singing),
house noises (door opening, keys, tv, etc...) and outdoors noises (nature,
traffic, etc) were gathered. Each of these sounds represents an instance in
the audio database. The purpose of this category is, in an abstract way,
to complement the collection of sounds to which the model is exposed to,
with elements that are contrastive with infant-directed speech and singing,
allowing the model to learn from their structure. In this way, the auditory
environment of the model is enriched.

The complete database consisted of 197 instances:

e 94 Portuguese infant-directed speech instances
e 45 Portuguese infant-directed singing instances
e 58 Portuguese environmental sounds instances

Because infant-directed speech was recorded in the context of spontan-
eous interactions, it was very difficult to select portions of audio that be-
longed to a given interaction class and that were not mixed with background
noise such as babbling and noise from the baby’s toys. Consequently, the
amount of data (number of instances) is somehow limited. However, the
data is truly spontaneous and was collected from recordings from four differ-
ent interaction contexts. The encoding of each audio input was organized as
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shown in Figure 6.2, where D stands for the values of the durational intervals
that were extracted (see Section 6.2.1), P is the median extracted pitch and
L the median extracted loudness of the respective durational interval.
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Figure 6.2: Representation of the input data. D stands for duration, P stands
for pitch and L stands for loudness. The azimuthal dimension represents
each durational interval of an instance made up of the three values D, P &
L. In the horizontal direction, values are placed by the order of temporal
extraction, in accordance with their index (1 to n, where n can be up to 33).

This form of organizing the data is motivated by the assumption that
duration, pitch and loudness are processed in parallel in the brain. This
way, each column represents one durational interval and, additionally, the
columns imprint the sequential dimension in time.

In addition to the training data, test and familiarization input stimuli
are needed to evaluate the model. Throughout the simulations, the model
is submitted to a familiarization phase and tested after that. These were
designed to reflect the structure of the experiment described by Yoshida
et al. (2010). In their experiment, tones had a fundamental frequency of 256
Hz with 67 dB. Therefore, in our encoding, tones are differentiated from
the inter-stimulus intervals (pauses) by their pitch and loudness values. In
tones, pitch and loudness are 256 and 67, respectively, while in inter-stimulus
intervals, these values are zero. These stimuli are encoded according to the
representation illustrated in Figure 6.2. Examples of these stimuli, namely,
familiarization and test (iambic and trochaic) stimuli are shown in Table 6.3.
In each stream of tones (horizontal direction), each tone is composed by 3
components, namely, duration, pitch and loudness (vertical direction).

6.4 Simulations

In this section, we will describe the computational experiments done on
temporal information processing in music and speech. Our first step was to
simulate Yoshida et al. (2010)’ experiment carried out with English-learning
infants.

In their study, 5- to 6-month-old and 7- to 8-month olds are familiarized
with a sequence of tones of different durations (short-long sequences). After
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Table 6.1: Examples of iambic, trochaic and familiarization stimuli.

Iambic (short-long sequence)
stimuli representation. In this
02 02 06 04 02 (.) sequence, short (0.2 s) and long
256 0 256 0O 256 (...) (0.6) tones alternated, with inter-
67 0 67 0 67 (.. stimulus intervals 0.4s long after the
long.

Trochaic (long-short sequence)
stimuli representation. In this
06 02 02 04 06 () sequence, short (0.2 s) and long
256 0 256 0 256 (..) (0.6) tones alternated, with inter-
67 0 67 0 67 (.. stimulus intervals 0.4s long after the
short.

Familiarization stimuli repres-

entation. In this sequence, short
02 02 06 02 02 (.) (0.2 s) and long (0.6) tones altern-
256 0 256 0 256 (..) ated, with all inter-stimulus inter-
67 0 67 0 67 (...) vals 0.2s long.

this initial stage familiarization, during a test phase, infants’ preferences for
iambic or trochaic durational sequences were assessed. This was done using
a head-turn preference paradigm, where looking time is measured preceded
by a familiarization phase (Kemler et al., 1995). Depending on the pre-
exposure time to the familiarization stimulus, infants change their orienting
preferences from familiar to novel stimuli, a behaviour that is exploited by
the habituation paradigm (Houston-Price & Nakai, 2004). This way, when
interpreting the results, Yoshida et al. (2010), according to the habituation
and head-turn preference paradigms, they consider that infants look longer
to novel stimuli and less to familiar stimuli (Hunter & Ames, 1988). Yoshida
et al. (2010) found that 5- to 6-month-olds did not show any preference
for any iambic or trochaic durational pattern. However, 7- to 8-month-
olds developed a preference for trochees, suggesting that this was the novel
sound pattern and, thus, that iambic was the familiar sound pattern for
these infants. Looking time was lower for iambs than for trochees during the
test trials for the 7- to 8-month-olds.

The network’s performance is evaluated by analysing its internal repres-
entations. In this analysis, we look to measure the degree of familiarization
of the model to each type of test stimuli, in the same way as it is done in the
behavioural experiment, and not the ability of the model to distinguish or
categorize the stimuli. We will therefore focus on the model’s hidden layer.
Specifically, we consider the hidden unit activation vector for a given in-
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put pattern to be the network’s internal representation of the given pattern
(Plunkett & Elman, 1997). An example of an activation vector, for a k x j
dimensional hidden layer for speech is given next:

Spoo  ---  SPoj

SPko  ---  SDkj

The input data will produce activations on the hidden units and inputs
that are treated as similar by the network will produce internal representa-
tions that are similar, that is, internal representations that have closer Euc-
lidean distances to each other (Plunkett & Elman, 1997). Therefore we used
FEuclidean distances between hidden units activation vectors as a measure
of the familiarity with each of the iambic and trochaic durational patterns.
Euclidean distances were calculated according to the following equation:

. . 2
Spoo  --- SPoj 00 --- 05

Dypi= " : - N
p—1 . . .
SPko .-+ SPEkj ikO AN ikj

where D,,_; is the distance between speech (sp matrix) and iambic (4
matrix) test stimuli representations.

The distances aim to quantify how close or distant the representations of
the test stimuli are from those for speech, singing and environmental sounds
categories. If, for example, the representation of a given test stimulus is
closer to the representation of speech, we consider that the model relates
this test stimulus more with the speech category, and so forth.

This way, four distances were considered, namely:

e Dg,_; : distance between speech and iambic test stimuli representa-
tions;

e D.,_; : distance between environmental sounds and iambic test stimuli
representations;

e D,,_; : distance between speech and trochaic test stimuli representa-
tions;

e D,.,_; : distance between environmental sounds and trochaic test stim-
uli representations;

In the experiments performed, age is manipulated by the amount of ex-
posure to sound events (McClelland & Jenkins, 1991). With the intention
of observing a developmental trajectory, the model is analysed in two dif-
ferent stages of learning. Thus, the model is tested twice. The first test is
performed after 100 epochs have elapsed and the second test is performed
after 500 epochs 500 have elapsed.
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6.4.1 Experimental setup

Our aim was to follow the experimental procedure used with infants as closely
as possible (see Figure 6.3).

Familiarization
+
Testing

Familiarization
+
Initialization Testing

of the model

Trochaic Trochaic

lambic lambic

Exposure phase 1 Exposure phase 2

L 'l — 1
Epoch 0 Epoch 100 Epoch 500
SP SG ES T SP SG ES T
" save || [ save [
0] 0]
Compute distances: Compute distances:
€SP TT & SP €SP TT & SP
& SG TT 6> SG © SG TT¢> SG
Legend:

SP: Hidden layer representation of the model for the infant-directed speech input stimuli probing
SG: Hidden layer representation of the model for the infant-directed singing input stimuli probing
ES: Hidden layer representation of the model for the environmental sound input stimuli probing

: Hidden layer representation of the model for the lambic test input stimuli probing
TT: Hidden layer representation of the model for the Trochaic test input stimuli probing

Figure 6.3: Setup used throughout the experiments.

These steps are as follows:

1. The model is initialized and a network instance is created. This was
achieved by seeding the network with random initial weights and ac-
tivation values, thereby simulating an individual infant to be tested.
Specifically, The model is initialized and run 80 times, producing 80
different and independent results, as with independent 80 participants.
These results are then averaged and statistics are computed across the
80 participants.

2. The model is exposed to the input data (infant-directed speech, infant-
directed singing and environmental sounds) for a total of 500 epochs.

3. The model is tested at two different moments (100 and 500 epochs)
during the exposure time. These points are meant to capture the differ-
ent levels of language auditory exposure 5- and 7-month-olds will have
with their general auditory environments (see Schafer & Mareschal
(2001) for a similar procedure). Testing proceeded as follows:

a) The representation across hidden layer of the model is recorded,
for each category of input data, namely, infant-directed speech,
infant-directed singing and environmental sounds. Specifically,
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this means that a vector containing numeric activation values of
the hidden layer of the model is saved at that specific moment.

b) On every occasion that the model is submitted to a test trial,
a familiarization stage precedes this event, likewise in the beha-
vioural experiment (Yoshida et al., 2010). Familiarization stage
consists in exposing the model to the familiarization stimuli. The
familiarization stimuli replicate the stimuli used in the original be-
havioural experiment concerning the characteristics of the tones
(duration, fundamental frequency and loudness) and the total
duration of the trials.

¢) The model is exposed to the test stimuli, either iambic or trochaic
that, in the same way as the familiarization stimuli, replicating
the stimuli used in the original behavioural experiment.

d) After each test trial is presented to the model, for both iambic
and trochaic, a representation of the hidden layer of the model is
recorded.

4. Finally, the response of the model to the test stimuli to which it is
exposed is analysed. In this analysis, we are interested in measuring
familiarity in terms of how similar are the test stimuli with each of
the input data that the model was previously exposed to in order to
understand how the model is organizing the test stimuli (as infant-
directed speech, singing or environmental sound). For that reason,
Euclidean distances are computed between of each the representations
of the test stimuli and the target speech, singing and environmental
sound categories.

6.4.2 Experiment 1: Simulating a developmental
trajectory in European Portuguese

RATIONALE

Music and language are the two most prominent structures in the auditory
environment of infants. The exposure to these structures develops in humans
non-linguistic grouping preferences consistent with their cultural temporal
structure (Iversen et al., 2008). Culture-specific perceptual biases, such as
sensitivity to language-specific rhythms, emerge during infancy and may be
acquired by being exposed to the speech and music of a particular culture
(Nazzi & Ramus, 2003). In their experiments, Yoshida et al. (2010) demon-
strated that infants growing up in different language environments develop
different non-linguistic grouping preferences that are consistent with their
respective language’s structure.

The European Portuguese language’s structural properties are close to
those of the English language, largely at the phrasal level. Similarities in-
clude: (i) phrasal structure (iambic: short-long); (ii) word order, that is
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correlated with phrase level prosody (VO: verb-object) and; (iii) the phrasal
prominence realizations (weight-sensitive stress) that is considered to be
Head-Complement Right-edge (Dryer & Haspelmath, 2011). In other words,
phonological prominence is stress-final, marking an iambic pattern at the
phrasal level (Nespor et al., 2008)

Therefore, if English-learning infants showed higher familiarity with iambic
durational sequences and this familiarity is highly influenced by the lan-
guage’s rhythmic structure, then a model that is exposed to European Por-
tuguese infant-directed speech and singing should develop infant-directed
speech representations that are closer (i.e., more similar) to the iambic test
stimuli representations.

Thus, in this experiment, we were interested in observing the evolution of
the representations that the model produces for infant-directed speech and
environmental sound categories of the input data and how these represent-
ations evolve in relation to the representation produced for the iambic test
stimuli.

The model was exposed to infant-directed speech, singing and environ-
mental sounds. Through the exposure, the model captures the input data’s
patterns, building its internal representations. In order to assess the model’s
familiarity with iambic durational sequences and produce, simultaneously,
results that are comparable with the empirical data, the distance between
speech representations and iambic test trial representations are measured
and monitored. So to establish a comparison basis for this distance and
its developmental behaviour, the distance between environmental sounds’
representation and the iambic test trial representation are also displayed.

RESULTS

Figure 6.4 shows the average Euclidean distance between the average hidden
unit patter for iambic and environmental sounds. Figure 6.5 illustrates the
same relations but between trochaic and environmental test trial represent-
ations.

Model performance was tested through the analysis of variance with Trial
(first versus second test trial) as a between subject factor and Sound (en-
vironmental sound versus speech sound) as a within subject factor Separate
analyses were run for the iambic and trochaic cases. This way, the average of
the distances was submitted to a 2(test) X 2(distance type: Des—; or Dgp_;)
ANOVA for the iambic case and (2(test) X 2(distance type: D.s_+ or D sp-t
) ANOVA for the trochaic case.

The analysis for the iambic tests revealed that after 100 epochs of ex-
posure, the model showed no significant differences between environment
and speech sound conditions (F'(1,158) = 1.20,p = 0.39). However, after
more exposure to the input data the network showed greater familiarity
(reduced distance) between speech and iambic test stimuli representations:
(F(1,158) = 2.37,p = 0.0001).
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Figure 6.4: Average distances for 80 runs of the model. Light grey bars cor-
respond to the mean distances between iambic test trials and environmental
sounds representations (Dgs_;). Dark grey bars correspond to the mean dis-
tances between iambic test trials and speech representations (Dsp—;). Error
bars indicate 0.95 confidence interval of the standard error of the mean.

For trochaic test stimuli, the ANOVA revealed that in neither after 100
epochs of exposure (F(1,158) = 0.49,p = 0.49), nor after 500 epochs of
exposure (F'(1,158) = 0.13,p = 0.71) did the model show any significant
differences in familiarity between the two types of test stimuli.



102 CHAPTER 6. A COMPUTATIONAL MODEL

4,4

4,3

Des-t
4,1 +——
M Dsp-t

Euclidean distances

3,9 -
test trials at test trials at
100 epochs of 500 epochs of
exposure exposure

Figure 6.5: Average distances for 80 runs of the model. Light grey bars
correspond to the mean distances between trochaic test trials and envir-
onmental sounds representations (Des—;). Dark grey bars correspond to
the mean distances between trochaic test trials and speech representations
(Dgp—t). Error bars indicate 0.95 confidence interval of the standard error
of the mean.

DISCUSSION

The model’s developmental trajectory is analogous to that in the infant
empirical data (Yoshida et al., 2010). In an initial exposure phase, both
model representations for speech or environmental sounds did not differ in
their averaged distances from the iambic test stimulus representation. In
contrast, with additional exposure, the model develops opposite behaviours
for each representation for speech and environmental sounds. For the en-
vironmental sounds’ representation of the model, the distance relative to
the iambic test trial representation, increased considerably. The distance
between the model’s representation of infant-directed speech relative to the
iambic test trial representation, decreased considerably. This is not observ-
able for trochaic stimuli (Figure 6.5). In fact, regardless of the results are
statistically not relevant, the opposite behaviour can be observed, that is,
D.s_; decreases and Ds,_; increases with exposure.

This means that the model treats the iambic test stimulus as more famil-
iar to what it knows as infant-directed speech and, in addition, it organizes
this test stimuli representation as different from the environmental sounds
representation.

These results confirm our predictions, in which the model’s exposure
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to the durational patterns present in maternal speech and singing would
influence, in a later stage, the construction and the organization of the rep-
resentations for each stimulus, specifically the approximation of the speech
and iambic durational sequence representations. Moreover, a transition from
one early state into a later one is also observable in the model. That is, the
model transforms, through the learning of speech, singing and environmental
sounds, an early state of no familiarity with any type of durational sequences,
either iambic or trochaic, into a later competence where an organization of
the representations that approximates the iambic durational sequences to
the speech data is observable.

However, it matters to discuss how this transition between two stages
occurs. Furthermore, we have to examine the mechanisms by which the
model acquired the later stage of development.

The developmental trajectory that was obtained might have been caused
by several aspects. One possibility is the structure of the exposure data
that shapes the model’s representations. The fact that the nature of the
data has influenced the construction of the internal representations reflects
that the model extracted the durational patterns present in the data. Other
aspect concerns how the model captures these patterns that are present in
the data. There are two ways in which this could happen: (1) the nature of
the algorithm, and (2) the encoding of the data.

When capturing patterns in a durational sequence (and specifically the
iambic durational sequence where events are perceived as sequences of short-
long events), it is essential to consider the relation between consecutive ele-
ments. We suggest that for processing duration patterns, not only the order
of the events must be considered, but also the specific timing of each event.
Moreover, the process of learning should simulate an exposure environment
where there isn’t a formal teacher. The positive modelling results suggest
that the learning algorithm, encoding and training environment were all
found to be suited, being validated by the achieved results.

Regarding the encoding options taken for handling the input data, these
have demonstrated to be suited for the problem in question to solve, convey-
ing to the model the notion of concurrence of duration, pitch, and loudness
for each durational event and additionally the time dimension in the sequen-
tially presentation of the durational events.

The nature of the environment that was recreated for the exposure in
order to convey experience to the model, and how it influences the develop-
mental trajectory followed is a subject of most interest. In this sense, we
would like to investigate to which extent did the singing data biased the
results of this simulation. Accordingly, we proceeded to the experiment 2.



104 CHAPTER 6. A COMPUTATIONAL MODEL

6.4.3 Experiment 2: manipulating the exposure
environment

RATIONALE

Recent research has shown correspondences in music and language processing
and representation correspondences in adult humans. Patel et. al. (2006)
have shown that the prosody of a culture’s native language is reflected in
the rhythms of its instrumental music. Language is also reflected in an in-
dividual’s non-linguistic grouping preferences (Yoshida et al., 2010). Music
has shown to be beneficial for speech development (Wibke et al., 2010).
Together, these findings suggest that the processing and internal represent-
ations of music and language may interact fundamentally. Consequently, in
this second experiment we aim to investigate the influence that the singing
data has on the model’s construction of the stimuli’s representations. In
other words, we ask if the model is not exposed to singing data then, does
it produce a similar developmental trajectory as the one observed in the
previous experiment?

In order to explore possible interactions between music and language, we
propose an experiment in which the singing data is excluded. This way, we
can observe if the same behaviour is produced as in the previous experiment
or not. The total number of instances used as input data remain unchanged.
The exposure environment will then be composed by 75% of speech instances
(145) and 25% of environmental sounds instances (48). The experimental
setup was the same as followed in the first experiment, performing two tests
at different learning stages of the model in order to observe changes in rep-
resentations over the course of exposure.

RESULTS

Figure 6.6, likewise Figure 6.4 illustrates the mean distances between internal
representations of environmental sound and iambic and the mean distances
between internal representations of speech and iambic representations, for
two different points in learning. Similarly, Figure 6.7 illustrates the mean
distances between environmental sound and trochaic sound representations
and the mean distances between speech and trochaic representations for two
different points in learning.
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Figure 6.6: Average distances for 80 runs of the model that has not been
exposed to singing data. Light grey bars correspond to the mean distances
between iambic test trials and environmental sounds representations (Des_;).
Dark grey bars correspond to the mean distances between iambic test trials
and speech representations (Dgp—;). Error bars indicate 0.95 confidence
interval of the standard error of the mean.

The results were subjected to an analysis of variance with Trial (first
test trial versus second test trial) as a between subject factor and Sound
(environmental sound distance versus speech distance) as a within subject
factor. Two separate ANOVAs were run for the iambic case and the trochaic
case (2(test) X 2(distance type: Des—; or Dsp_;) ANOVA for the iambic case
and (2(test) X 2(distance type: Des_¢ or D sp-t ) ANOVA for the trochaic
case).

The analysis reveals that either in the first test, after 100 epochs of ex-
posure (F(1,158) = 0.008,p = 0.93), or in the second test after 500 epochs of
exposure(F'(1,158) = 0.19,p = 0.66), the model had no significant different
familiarity in the two distances measured.

In turn, ANOVA for trochaic test reveals that in either for the first test,
after 100 epochs of exposure, or after more exposure, the model had no
significant different familiarity in the two distances measured, respectively
(F(1,158) = 0.0016,p = 0.97), (F(1,158) = 1.6,p = 0.20). In summary,
no significant effects or interactions were found (all Fs < 1.5) in any of the
analyses.
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Figure 6.7: Average distances for 80 runs of the model that has not been
exposed to singing data. Light grey bars correspond to the mean dis-
tances between trochaic test trials and environmental sounds representa-
tions (Des—¢). Dark grey bars correspond to the mean distances between
trochaic test trials and speech representations (Dy,—¢). Error bars indicate
0.95 confidence interval of the standard error of the mean.

DISCUSSION

These results confirm that the structure of the environment to which the
model is exposed impacts dramatically on how the model encodes stimuli.
In this specific case, the lack of infant directed singing in the exposure data
influenced the way in which the model organized the representations. In
this experiment, this becomes clear when obtaining different results from the
experiment 1. When comparing Figure 6.6 that was obtained in experiment
2, with the Figure 6.4 from experiment 1, it is possible to observe the same
pattern of behaviour, although in Figure 6.6 the results are statistically not
significant. In the case of the environmental sounds — iambic, the distance
is bigger in the older networks. In the case of the speech — iambic, the
distances reveal an opposite track, where more experienced networks show
smaller distances than the younger ones. The factor that is to point out
between the two figures is that in the Figure 6.4 the behaviour noted before
is magnified.

In particular, when comparing the results across the two experimental
setups, they reveal that the infant-directed singing was essential in producing
the outcome in the Experiment 1. Moreover, regarding the trochaic test, the
results are opposite to the ones obtained in Figure 6.5, even though they are
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not statistically relevant.

6.5 General discussion

The suggestion that the exposure to the surrounding sound environment
influences the development of musical preferences and representations (De-
morest et al., 2010) was explored by performing computer simulations with
a computational model based on temporal information processing and rep-
resentation. We observed the evolution of the internal representations of
the computer model over time, throughout exposure to an auditory environ-
ment, and compared these representations with the representations resulting
from the test stimuli.

The computer model is composed of two main modules. In the pre-
processing module, the audio data is segmented and three dimensions of
sound are extracted, namely pitch, duration and loudness. These elements
are organized in such a way (see Figure 6.2) as to enable the handling pitch,
duration and loudness in parallel for each durational event, while at the same
time, maintaining the time information available in the sequential ordering
of the durational events.

In the network module, the input data that comes from the pre-processing
module is exposed to a neural network. The TD reinforcement leaning al-
gorithm (Sutton, 1988) was used to train the network. This module is inten-
ded to develop knowledge of the exposure environment. Through exposure
to the data, the network develops meaning or coherent internal representa-
tions. In the particular case, the knowledge that the model needs to acquire
requires the processing of sound sequences, characterized by a succession
of particular sounds that occur in specific orders (Warren, 1993). At some
level of analysis, the comprehension of sequential structures such as speech
or music (i.e., singing) involves the balance of different resolutions of exam-
ination, one at the level of the sequence of the components and other at the
level of the global organization. This relates to mechanisms based on the
global integration of items in sequences, such as grouping. The model must
be able to capture the relation amongst successive events, as for a listener
derives the rhythmic structure of a sequence of sounds during the course of
speech or music processing. This involves two mechanisms that must op-
erate concurrently: (i) order identification and preservation and; (ii) global
recognition of overall patterns, such as an holistic pattern recognition, that
does not imply the decomposition into component elements. It is possible
that novice listeners are still not attending to this holistic dimension and are
rather building it through experience (Warren, 1974).

In neural networks, knowledge representation can be interpreted as di-
vided into a long-term memory of the network that is represented in the
connection weights and a working memory that is represented in the transi-
ent activation patterns (Shultz, 2003). This way, previously acquired know-
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ledge interacts with the current data in the interpretation of online auditory
stimulation. But, like in human memory, new learning interferes slightly
with old knowledge, but not catastrophically (Barnes & Underwood, 1959).
Therefore, this characteristic of neural networks of slowly building long term
memory, bit by bit with new information corroborates with the idea of build-
ing by exposure the holistic dimension for sequence processing.

The TD learning algorithm is centred on the idea of predicting a quant-
ity that depends on future values of a given signal. Combined with re-
inforcement learning, the quantity to predict becomes the measure of the
total amount of reward that is expected over the future. This way, the al-
gorithm suits task that involve learning about temporal contingencies that
span many time steps, and not just the immediately preceding context in-
formation. These characteristics have proven to be essential, along with the
encoding of the input data, for capturing statistical properties of the data.
The fact that the statistical properties that follow the iambic (short-long)
patterns are reflected mostly at the phrasal level, according to the European
Portuguese language’s structural properties (Dryer & Haspelmath, 2011),
the more global approach to the data that Temporal Differences enables,
was fundamental for the model to become permeable to the properties of
the data and contributed for the perspective on the problem that we seek
that combines a detailed and a global dimension over the data.

When exposed to infant-directed speech, infant-directed singing and en-
vironmental sounds, the model revealed a developmental profile that is also
observed in the experimental data (Yoshida et al., 2010). That is to say, ini-
tially the model did not show any specific organization of the representations
for the test stimuli, neither the iambic nor the trochaic. In a later exposure
phase, the model treated the representation for iambic test stimuli as similar
to infant-directed speech and different from the other environmental sounds.
In addition, when infant-directed singing was excluded, the model did not
respond in the same manner, and failed to differentiate between test stimuli.
But, what were the processes that operated in the model that led to these
simulations results?

The way in which the model organized its internal representations was
consistent with the statistical patterns of the language to which it was ex-
posed. These results reveal the relevance of the exposure data on the process
of building and organizing the internal representations of the model. We
identified two factors that can contribute to the building and organization
of the internal representations of the model: (i) the intrinsic characteristics
of the structure of each element in the data and; (ii) the type of sound (i.e.
infant-directed speech, infant-directed singing and environmental sounds)
that made up the data set. Therefore, the importance is reflected on the
statistical properties in each element of the exposure material and in the
qualitative composition of the environment, specifically, whether if there is
singing or not. The model is extremely sensitive to the statistical regularities
that are present in the exposure environment and such regularities seem to
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be extremely reflected on the singing training patterns.

In infant-directed singing, caregivers tend to use a particular style of
singing that differs acoustically in a number of aspects from the typical
adult singing style. In this special register, singing has slower tempo, re-
latively more energy at lower frequencies, lengthened inter-phrase pauses
and has higher pitch and jitter factor (measure associated with increased
intensity of emotion) (Trainor et al., 1997). These characteristics lead to a
more accentuated articulation of words, when they are present. In addition,
pitch variability is higher and the rhythm exaggerated in infant-directed
play-songs, but not in lullabies (Trehub & Trainor, 1998). These acoustic
modifications in infant directed singing not only attract infants’ attention
and may be used by adults to regulate infants states to communicate emo-
tional information (Rock et al., 1999), but also seem to facilitate statistical
learning.

It has previously been suggested that music can improve behavioural
performance in various domains, including language (Moreno, 2011). Our
results suggest that singing may also work as a facilitator in learning the
temporal regularities of a language and of a culture. Moreover, if we assume
that singing is a stimulus that is close to speech (in acoustic-physical terms
i.e., speech with music on top) then music becomes the catalyst for learning.
In other words, the addition of music makes the words better articulated,
more rhythmically accented and, consequently, easier to parse, and learn
about the language’s rhythmic structure.

As a consequence of the simulations with the computer model, we have
derived this hypothesis upon simulation data. Therefore, it would be in-
teresting to test empirically with behavioural experiments if European Por-
tuguese infants develop iambic grouping preferences and if the presence of
singing in the auditory environment of babies biases in any way the acquis-
ition of speech in the early development.

It is difficult to disclose how development and learning interact. We as-
sume that development occurs through some kind of learning of long-term
memory elements (Shultz, 2003). But this assumption does not totally clear
up whether a task requires learning time or restructuring knowledge repres-
entations (i.e., development) of certain competences.

Development can be considered as a process through which an early state
is transformed into a later one (see Sections 2.3.1 and 3.1.3). Driven by ex-
perience, it is observable that a new competence is acquired in the later
stage. During the simulations performed, we have observed the progression
of the internal representations of the model. We have observed that the
model’s connections strengths changed through experience, showing an ad-
apting cognitive structure with plasticity behaviour. We have analysed its
activation patterns changing through a learning process. These representa-
tions evolved from an initial stage where there is no observable familiarity
with any type of durational sequences, either iambic or trochaic, to a later
one where an organization of representations that approximates the iambic
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durational sequences to the speech data. Therefore, in the sense that the
model’s weighted connections were shaped by continuous adaptations to the
data to which it is exposed, and as a result, qualitative different representa-
tions emerged, reflected in the progress that the model achieves in encoding
the input data, the model can be considered developmental.

However, such changes brought about by weight adjustments and activa-
tion patterns are quantitative, made within the network’s current typology.
Considering that cognitive development implies qualitative changes in the
structure that supports cognition, that is, changes in the existing structure
to allow more complex processing and provide the enabling conditions that
allow learning to be most effective (Elman, 1993), we cannot argue that
the network’s processing structure is not qualitatively different than before.
Following this framework for development, it is more likely that the model
has no developmental attributes and the transitions between stages are just
the effect of a slow learning environmental-shaped process. However, despite
the static network architecture, it is undeniable that the model was able to
build, driven by experience, a representation for the exposure stimuli, as a
long-term memory. This representation, which can be seen as a cognitive
structure for interpreting the environment, influenced the different ways that
the model encoded the test stimuli, in an initial and a later stage.

The building of these representations becomes, then, cultural dependent.
This environmental constraint that is shaped by culture might be condition-
ing our later appreciation of music (Hannon & Trehub, 2005). The adaptive
advantages of learning, driven by culture, provide a non-genetically based
transmission of behaviours, shape predispositions in a similar way within
the people of one culture and, therefore, promoting social cohesion (Cross,
2001). Our modelling results are consistent with the idea that music, like
speech, is an integral dimension of human development.

To conclude, with the computer model, we attempt to capture the nature
of the transition mechanisms that can account for how one level of perform-
ance is transformed into the next level of performance. This way, computer
model simulations provided a useful tool for discussing and reflecting about
the causal mechanisms involved in the development of rhythmic represent-
ations and predispositions as a result of exposure to the temporal prosodic
patterns of a specific culture. The computational approach additionally
enabled going beyond the laboratory stimuli, complementing experimental
data and suggesting new directions for future empirical investigations.

6.6 Conclusions

In the research work reported, we built a computational model based on
temporal information processing and representation aiming to investigate
how the temporal prosodic patterns of a specific culture influence the devel-
opment of rhythmic representations and predispositions. Additionally, we
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explore possible interactions between music and language at an early age.
With this purpose, the research was organized into two simulations.

In the first simulation, we have observed a developmental behaviour cap-
tured by the transition from one early state into a later one, which reflects
the influence of the amount of experience of the model on the construction
and organization of its internal representations. These representations show
that the iambic test stimulus is familiar to what the model knows as infant-
directed speech and, in addition, organizes this test stimuli representation
as a different from the environmental sounds representation, as it was hy-
pothesised. Consequently, our first simulation verifies the predictions made
and shows that the model provides a reasonable account of the behavioural
data.

In an effort to understand the mechanisms that underlie the develop-
mental behaviour found, the simulation generated a new problem, in partic-
ular, which was the influence of the singing data on the model’s construction
of the stimuli’s representations. For this reason, the model was submitted
to another experiment, aiming to observe how it would respond in a novel
situation. The results demonstrated that the lack of infant-directed singing
in the exposure data influenced the way in which the model organized the
representations, verifying that the structure of the exposure environment to
which the model is exposed has impact on how the model encodes stimuli.

As a final note, these conclusions do not intend to claim that the model
is an accurate reproduction of the specific mechanisms operating in human
infants. Rather, we claim that there is a correspondence between the beha-
viours and, therefore, between the kinds of constraints that are built into the
model that might operate in humans (Marr, 1982). For this reason, we con-
sider that the model captures the essence of what is going on in the human
mechanisms dealing with speech and music rhythm computation.






Conclusions

We have explored computational solutions suitable to each specific research
stage, that can best contribute to the study of the way human cognitive
structure is shaped to build musical predispositions during early develop-
ment. We have also explored a comparative approach to the study of early
infant development of musical predispositions by searching for possible in-
teractions and correlations involving music and language.

We have started from the hypothesis that the development of musical
representations and predispositions in infants is influenced by the prosodic
features that are present in the sonic environment of their culture. This hy-
pothesis, led to a further question: how would such features or elements influ-
ence the development of musical predispositions and representations during
infancy?

We conclude, from the prosodic characterization performed, that it re-
inforces the notion that the melodic information present in the prosody of
speech contains information that can be used to distinguish communicative
contexts from one another (Fernald, 1989; Papousek et al., 1990; Papousek &
Papousek, 1991). Vowels contain the melodic information present in speech
and, in this sense, they carry the intentional value, the emotional content of
communication.

The experiments carried out suggest that the processing of speech and
singing may share the analysis of the same properties of the stimuli, given
that common features were used by the classification model to discriminate
speech and singing. These results strengthen previous findings by providing
further evidences that the cognition of both music and language during the
pre-verbal period might share computational resources (Patel, 2008).

Furthermore, we have observed relevant rhythm differences between infant-
directed speech and songs from the two Portuguese variants, but not melodic
differences. This shows that despite caregivers’ cross-cultural adjustments in
their vocal interactions with infants, a rhythmic cultural identity is kept in
speech and vocal songs. This reinforces the hypothesis of a relation between
the rhythms of music and language in the context a particular culture (Patel,
2006; Hannon, 2009).
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The building of musical representations and predispositions, specifically
temporal representations, is dependent on the auditory environment. It is
from the exposure to the structure of the sonic background that we bias
the formation of the cognitive structure that supports our understanding
of musical experience. Among the auditory stimuli that surround us, the
structure of language has a predominant role in the building of musical
predispositions and representations.

The process through which pre-verbal infants become perceptually tuned
into their native language influences as well their musical sound perception
system and contributes to shape their cognitive structure. Hence, infants
gain sensitivity to culture-specific organizational principles and become ac-
culturated listeners.

This auditory environmental bias might be related to two main factors.
These are the statistical properties present in the auditory environment and
the qualitative composition of the environment, specifically whether there
is singing or not. Moreover, the lack of vocal songs might compromise the
transmission of a rhythmic cultural identity, since singing might work as a
facilitator in learning the temporal regularities of a language and of a culture.

Concerning the mechanisms that drive the biasing acquired through the
auditory environment, we consider that the comprehension of sequential
structures such as speech or music involves the balance of different levels of
cognitive processing, one at the level of the sequence of components and other
at the level of global organization. Temporal Differences learning algorithm
(one of the computational modelling techniques used in our experiments)
combines a detailed and a global dimension over the data.

There is a reciprocal influence between music and language. They inter-
act both ways as music, too, has an impact on language. Music is responsible
for imprinting emotional meaning into speech. It is through the vowels, the
musical channel present in speech, that emotion is transmitted. This creates
a paralinguistic meaning beyond the words content, which is carried in the
musical layer of speech. This is in accordance with the theory that defends
that music is a natural sign of emotions with social functions in communica-
tion (Thomas, 1995). This emotional meaning that is dragged by music into
speech becomes crucial for communication with infants, who still have no
knowledge of verbal content.

The rhythm present in language and vocal songs is a key element in
characterizing the identity of a culture. It is through the exposure to the
structure of native language and vocal songs that rhythmic preferences and
representations are shaped. Vocal songs play a paramount role in the pro-
cess of transmitting the rhythmic identity of a culture. Their lack, indeed,
might even compromise the learning of the rhythmic structure of the native
language, and thus the building of the rhythmic representations and prefer-
ences characteristic of a given culture. The building of these representations
becomes, thus, cultural determined. This culturally shaped environmental
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constraint might later condition our appreciation of music (Hannon & Tre-
hub, 2005).

The adaptive, culture-driven advantage of learning, shapes predisposi-
tions in a similar way within people of a given culture and consequently
promotes social cohesion (Cross, 2001). This dissertation bears out the idea
that music, like speech, is a product of both social interaction along with
biology and a necessary and integral trait of human development.

Assuming that music can influence both language learning and the trans-
mission of a cultural rhythmic identity, we consider music a "transformative
technology" (Patel, 2008). Although music might be built on existing pro-
cessing mechanisms serving other capacities such as language it transforms
our brain systems and thus our experience of the world.

7.1 Summary of contributions

The outcomes of this dissertation include practical contributions such as a
database, a computational model and an extensive acoustic characterization
of infant directed speech and songs from two Portuguese variants. Addition-
ally, we consider relevant the theoretical contributions in which we include
the knowledge gained, the additional evidence for existent hypothesis and
the additional support for the methods followed and predictions that were
generated.
We present them next.

A Database containing infant-directed speech and singing. The
database is composed of samples from two Portuguese variants, namely
European and Brazilian Portuguese, and different care giving contexts, com-
prising a total number of 977 instances. (See section 5.2.1 Corpus.)

A computational model. The model was developed and evaluated, provid-
ing a useful tool for exploring and reflecting about the causal mechanisms
involved in the development of rhythmic representations and predispositions.
The model can be further used as a framework for exploring possible inter-
actions and parallels between music and language.

An extensive acoustic characterization of infant-directed speech
and singing. This characterization considered European and Brazilian
Portuguese and captured rhythmic and melodic patterning. The charac-
terization reveals that there are relevant rhythm differences between the two
Portuguese variants but not melodic differences, which shows that rhythm
features are a key element for characterizing the prosody from language vari-
ants and songs from each culture.
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Additional findings for existing hypothesis. These findings support
present theories of music and language’ sharing of processing resources (Pa-
tel, 2008) and its mutual interactions. Specifically, in Chapter 5, where res-
ults indicate that the processing of speech and singing may share the analysis
of the same stimulus’ properties, given that common features were used by
the classification model to discriminate speech and singing. Moreover, in
chapter 6, vocal songs’ material is shown to be a facilitator in the model’s
learning of the temporal regularities of the language.

Support for the validity of techniques followed. This support is tra-
duced into further research work concerning computational modelling as a
means of studying cognitive phenomena specifically research into music cog-
nition from a comparative perspective that includes its interactions with
language.

New hypotheses were generated on the model’s predictions. This
process was a consequence of the computational modelling methodology
used. The hypotheses provide a solid basis for further refinement and ex-
ploration. Furthermore, they provide consistent new possibilities for future
empirical research, to be tested through behavioural experimentation. Spe-
cifically, suggestions are given towards testing Portuguese infants for their
rhythmic grouping preferences in different stages of development. Addition-
ally, we propose to test the influence of the presence of vocal songs in infants’
auditory environment in the acquisition of language, during early develop-
ment.

Knowledge gained. Further insights were obtained by searching for factors
specifically, language and its rhythmic structure that contribute to shape
our cognitive structure and influence the cognition of music by building and
shaping our predispositions and representations.

7.2 Future directions

Despite what we have accomplished so far, we consider this research work
an early approach towards the identification of the factors that contribute to
shape of our musical predispositions. Much has been left to explore. Accord-
ingly, we identify, in one hand, experiments that have not been performed
mostly for time constraints and could have enriched this research; and also,
lines of research that we see as promising for the future. These include:

e After a computational model is implemented, tested and validated,
hundreds of possibilities arise for experiments that could be performed.
In the case of the model based on temporal processing, we find that
testing other languages, in addition to the experiments that we have
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carried out, could turn out to be interesting and enriching. Brazilian
Portuguese - a language with approximately the same lexicon as European
Portuguese but with structural rhythmic differences - would provide
the opportunity to test the exposure to them and the resulting influence
of this exposure on the building of representations. Testing the model
with Japanese would provide the opportunity to observe the model’s
behaviour with a language that is completely different from Portuguese
in its structure. Additional validation would be thus provided.

Simulations could also be performed with a view to identifying a hy-
pothetical critical period wherein exposure to singing has an effect, in
the sense of facilitation, on the learning of the rhythmic structure of
the native language. This could be done by varying the time step in
which singing materials are introduced in the training data.

e Regarding the model, we find generative algorithms (Fahlman, 1990)
very appealing for modelling the developmental phenomena of music
cognition. Constructivist networks integrate neural cognitive and com-
putational perspectives that result in models whose architecture grows
by hidden-unit recruitment, changing the existent processing structure
(Mareschal & Shultz, 1996). This way, constructivist models can draw
a clearer distinction between learning and development, where learn-
ing is represented by the quantitative change in the parameter values
within the network and development is the qualitative change in the
structure of the model (Shultz et al., 1995).

e We consider that for the cognition of music, audition is not the only
physical information input. Other elements contribute to it, such as
vision (Cvejic et al., 2012), and even the whole body, which, when ex-
posed to sound, functions through haptic perception, as a resonance
cavity and stores the memory of its experiences and of proprioceptory
information (Leman, 2008). Computer algorithms that aim modelling
music cognition must consider these elements and include a connec-
tion to the world through a body. One way of doing so is to embed
algorithms in a body by means of robotics. In developmental robotics,
cognitive computational models are embodied, allowing the models to
interact and experience the real world (Lungarella et al., 2003). This
concept of embodied cognition modelling, where a body mediates per-
ception, would allow to articulate music cognition models with the
perceptual variables referred above. This approach would bring about
advances in the identification of the factors affecting our music cogni-
tion and provide, in addition, a better understanding of the way they
interact.

e Music technologies are built for people. They provide tools for sharing,
discovering and making music, among many other purposes. Mean-
while, researchers are seeking for ways of improving the implementa-
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tion of the mechanisms involved in the building of these tools, such as
semantic analysis of sound or music and sound separation. However,
the implementations of these mechanisms have still barely matched
human performance (Guaus & Herrera, 2006). Concomitantly, there is
still little insight into how human musical cognitive performance works
and how the human brain functions. Computational modelling can be
a valuable contribution towards driving forward the understanding of
the mechanisms that underlie music cognition. It is our conviction that
the more knowledge is produced about human musical cognition, and
the more these findings are applied to the building of music techno-
logies, the better the tools will perform. Building music technologies
grounded in solid musical cognitive findings will push algorithms to a
closer approximation of human performance and, therefore, produce
tools that better serve peoples’ needs. On the other hand, this know-
ledge, once produced, can also become a synergy for building more apt
computational models that will contribute, in their turn, to the further
study of music cognitive mechanisms.
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