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SUMMARY 

Rapid diagnosis of most illnesses has a vital importance for providing the appropriate cure and 

hence controlling public health concerns. Fast and accurate detection of large biomolecules, 

specifically proteins, is one of the major steps regarding the subject. Over recent years, several 

detection methodologies have been developed. However, almost all of the developed methods 

either required very complex techniques to be applied, or a long time to obtain the results. The 

most commonly used techniques were specific label requiring immunoassays. They generally 

require highly trained staff and complex equipment which results in an expensive and relatively 

slow methodology. 

To improve performance characteristics and operational conditions such as obtaining higher 

limits of detection or faster detection time and even higher sensitivity, nanostructured materials 

have been incorporated to the mentioned biosensing platforms. Electrochemical methods, but 

especially potentiometry was among the simplest and fastest. Potentiometric solid-state 

electrodes have been one of the most promising candidates to date. They still are one of the 

best options to detect charged ions. However, they failed to detect relatively larger molecules 

due to the membrane based structure that does not allow any transport of large molecules 

through the solution-transducer interface. Due to the properties of the proteins, several 

challenges, mostly related to the analyte size and the recognition element structure, were still 

needed to overcome.  

The main objective of the thesis was to develop, characterize and utilize a new type of direct 

potentiometric sensors based on a layer of single-walled carbon nanotubes (SWCNTs) as ion-to-

electron transducers, and aptamers  as recognition layer.  

In the literature screening, we noticed that recent advances in biotechnology enabled scientists 

to design relatively short DNA/RNA fragments (aptamers) that were able to bind relatively large 

molecules such as proteins or even bacteria. They were highly selective and sometimes specific 

to the target molecules, and had better physical stability compared to antibodies. So we decided 

to choose aptamers as recognition elements to use in the developed sensors. 

Carbon nanotubes were chosen as transducing materials as they were showing excellent 

electrochemical properties that we needed. 
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With the present thesis we report a new type of label-free potentiometric solid state carbon 

nanotube based aptasensors that can detect large analytes, as case example proteins, in a rapid 

(almost instantaneous), selective and sensitive way, for the first time. The developed sensors 

successfully responded to analyte protein (human α-thrombin) within physiological human 

serum levels. 

Some drawbacks of the developed sensors are the reproducibility and stability issues. These are 

thought to be caused by the lack of proper blocking of the sensor surface. Introducing proper 

blocking methodology and a better deposition method for the transducer layer is also 

considered as a future development aspect. 

The work done in the present doctoral thesis is structured into three main parts. The first part 

(Chapters 1 to 4) introduces recent advances in nanostructured material usage in potentiometry 

and explains the methodology. Second part (Chapter 5) shows proof of concept and optimized 

applications of the developed sensors. And lastly the third part (Chapters 6 and 7) focuses on 

characterization and comparison studies and finally summarizes the thesis. 

The present thesis divided into 7 chapters with the following specific information regarding to 

each section: 

 Chapter 1 presents a brief review of the current state of the art in potentiometric sensors with a 

particular focus on protein detection. It also introduces the general and specific objectives of the 

present doctoral thesis. 

Chapter 2 explains the fundamental concepts related to chemical and biosensors, and 

potentiometric electrochemical detection. It also gives detailed information of the produced 

sensor’s main elements and the analyte. 

Chapter 3 focuses on reflecting the recent trends in nanostructured material use in 

potentiometry in an explanative way giving detailed examples for basic sensor types that are 

used. 

Chapter 4 includes a description of all the apparatus, materials, and reagents used along the 

experimental chapters of the thesis with corresponding procedures. Also, microscopic and 

electrochemical characterization techniques are described with their corresponding objectives. 
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Chapter 5 focuses on applications. Two sensors are developed where both sensors uses 

aptamers as recognition elements and SWCNTs as transduction elements to detect thrombin in 

aqueous solutions. 

Chapter 6 focuses on characterization of the sensor by trying to determine the number of active 

aptamers on the surface. It also compares the developed carbon nanotube based sensor with a 

PANI based one in terms of characterization and sensitivity. 

Chapter 7 introduces the conclusions have been made and points out some ideas about further 

development of the sensors.  

Finally, annexes are introduced to complete the doctoral thesis. 
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RESUMEN  

El diagnóstico rápido de la mayoría de las enfermedades tiene una importancia vital para 

proporcionar el remedio adecuado y, por lo tanto, el control de problemas de salud. La 

detección rápida y selectiva de biomoléculas grandes, específicamente proteínas, es uno de los 

objetivos  importantes en este campo. Durante los últimos años se han desarrollado varias 

metodologías de detección, sin embargo, para poder aplicar casi todos los métodos descritos, se 

requieren técnicas complejas o bien un tiempo prolongado de análisis. Las técnicas basadas en 

inmunoensayo son las más comúnmente utilizadas, aunque requieren un marcaje específico. Por 

lo general, estos métodos también requieren personal altamente capacitado y equipos 

complejos que se traduce en una metodología relativamente cara y lenta.  

Para mejorar las características de rendimiento y las condiciones operativas, tales como la 

obtención de mejores límites, mayor sensibilidad  o menor tiempo de detección, a las 

plataformas biosensoras mencionadas se han incorporado materiales nanoestructurados. En 

cuanto a técnicas de detección, los métodos electroquímicos, sobre todo la potenciometría, se 

encuentran entre las  más simples y  rápidas. Los electrodos potenciométricos selectivos a iones 

de estado sólido han sido uno de los candidatos más prometedores hasta la fecha. Todavía son 

una de las mejores opciones para la detección de iones cargados. Sin embargo, no pueden 

detectar moléculas relativamente grandes debido a la estructura de la membrana que no 

permite ningún transporte de moléculas voluminosas a través de la interfase solución-

transductor. Debido a las propiedades de las proteínas, aún se necesitan superar varios desafíos, 

la mayoría relacionados con el tamaño y la estructura del analito a reconocer y al elemento de 

reconocimiento.  

El objetivo principal de la tesis ha sido desarrollar, caracterizar y utilizar un nuevo tipo de 

sensores potenciométricos directos basados de una capa de nanotubos de carbono de pared 

sencilla (SWCNT) como transductores ion-electrón, y aptámeros como capa reconocimiento.  

En el estudio de la bibliografía científica hemos observado que los avances recientes de la 

biotecnología permiten desarrollar fragmentos de ADN/ARN relativamente cortos (aptámeros) 

que son capaces de unirse a moléculas relativamente grandes, tales como proteínas o incluso 

bacterias. Estos segmentos son muy selectivos, a veces específicos, a las moléculas objetivo y 

tienen una mejor estabilidad física frente a los anticuerpos. Por ello decidimos elegir los 

aptámeros como elementos de reconocimiento para utilizarlos en los sensores desarrollados.  
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Los nanotubos de carbono se eligieron como materiales de transducción ya que muestran 

propiedades electroquímicas excelentes para convertir el proceso de reconocimiento químico en 

una señal eléctrica medible.  

En la presente tesis aportamos por primera vez un nuevo tipo de aptasensores potenciométricos 

de estado sólido basados en nanotubos de carbono que pueden detectar analitos grandes, como 

por ejemplo proteínas, de manera rápida (casi instantánea), selectiva, y sensible sin necesidad 

de marcaje químico. Los sensores desarrollados responden correctamente a la proteína analito 

(α-trombina humana) dentro de los niveles fisiológicos en el suero humano.  

Las mejoras a introducir en el futuro  en los sensores desarrollados se refieren principalmente a 

la reproducibilidad y la estabilidad. Los valores relativamente bajos de estos parámetros se cree 

que pueden estar causados por la falta de bloqueos adecuados de la superficie del sensor. 

También se consideran como aspectos a desarrollar en el futuro la introducción de la 

metodología apropiada de bloqueo y un método de deposición mejor para la capa de 

transducción.  

El trabajo realizado en la actual tesis doctoral se estructura en tres partes principales. La primera 

parte (Capítulos 1 a 4) presenta los últimos avances en el uso de materiales nanoestructurados 

en potenciometría y explica la metodología empleada. La segunda parte (Capítulo 5) muestra la 

prueba de concepto y dos aplicaciones optimizadas de los sensores desarrollados. La tercera 

parte (Capítulos 6 y 7) se centra en la caracterización y estudios de comparación y el último 

capítulo corresponde a las conclusiones seguidas de los anexos. 

La presente tesis está dividida en 7 capítulos con la siguiente información específica en cada 

sección:  

Capítulo 1 presenta una breve revisión del estado actual de la técnica en los sensores 

potenciométricos con un enfoque particular en la detección de proteínas. También introduce los 

objetivos generales y específicos de la presente tesis doctoral.  

Capítulo 2 explica los conceptos fundamentales relacionados con sensores químicos y 

biosensores, y la detección electroquímica potenciométrica. También da información detallada 

de los elementos principales del sensor producido y el analito.  
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Capítulo 3 se centra en reflejar las tendencias recientes en el uso de materiales 

nanoestructurados en la potenciometría de una forma pedagógica, dando ejemplos detallados 

para los tipos de sensores básicos que se utilizan.  

Capítulo 4 incluye un descripción de todos los aparatos, materiales y reactivos utilizados a lo 

largo de los capítulos experimentales de la tesis con los procedimientos correspondientes. 

También, se describen la caracterización microscópica y electroquímica con sus objetivos 

correspondientes.  

Capítulo 5 se centra en las aplicaciones. Se aportan dos sensores que utilizan aptámeros como 

elementos de reconocimiento y SWCNTs como elementos de transducción para detectar la 

trombina en soluciones acuosas.  

Capítulo 6 se centra en la caracterización del sensor al tratar de determinar el número de 

aptámeros activos en la superficie. También compara el sensor desarrollado basado en 

nanotubos de carbono con otro de  polianilina, PANI, en términos de caracterización y 

sensibilidad.  

El capítulo 7 presenta las conclusiones que se han alcanzado y señala algunas ideas sobre el 

desarrollo ulterior de los sensores.  

Por último, los anexos se presentan para completar la tesis doctoral.  
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CHAPTER 1 

INTRODUCTION 

1.1. State of the art 

Potentiometry, although currently is one of the important analytical techniques in the daily 

practice in many laboratories, has been used since the early years of the last century [Hildebrand 

1913, Bakker and Pretsch 2001, Pretsch 2007, De Marco and Clarke 2009]. Potentiometry is 

addressed mainly to charged small cations and anions. Potentiometric detection of large 

analytes, such as proteins, became a possibility by the introduction of the first potentiometric 

immunoelectrode by Janata et al [Janata 1975]. It was based on the electromotive force 

generated by the antibody-antigen interaction in the solution being analysed. This seminal work 

has been enlarged by the scientific community as briefly explained below. Throughout the years, 

the incorporation of different electrochemical sensing mechanisms and the development of 

appropriate measuring instruments have enabled the improvement of potentiometric methods 

to determine different types of analytes.  

The first attempts addressed to the direct potentiometric detection of proteins, that is, the 

recording of the instrumental signal without any need of adding labels or further reagents, 

based on the potential generated by the interaction between receptor (linked to the electrode) 

and the proteins in the test solution, that also focused to explain the underlying phenomena, 

started in the mid-seventies [Janata 1975], but they could not correctly explain the sensing 

mechanism. Similar experimental results were obtained in the potentiometric detection of the 

protein concentrations, even when the research groups have a potentiometric signal which is 

usually a few mV, by using antibody-antigen couple in order to detect the potential difference 

originated in the immunoreactions events using chemically modified electrodes [Aizawa 1978, 

Yamamoto 1978, Aizawa 1979, Yamamoto 1980, Feng 2000]. The principles applied regarding 

the measurement of protein-related potentials were; charge redistribution, streaming potential, 

lipid membrane dipole potential and electrode surface potential. These principles later led to the 

construction of different variations of composite modified electrodes; a polypyrrole modified 

platinum electrode, on which the human immunoglobulin G (IgG) was immobilized, acts as an 

effective immunosensor for anti-IgG (from goat) [Taniguchi 1986].  A layer of plasma-
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polymerized Nafion film (PPF) deposited on the platinum electrode surface, which was positively 

charged with tris(2,2’-bipyridyl)cobalt(III) (Co(bpy)3
3+) and subsequently negatively charged with 

gold nanoparticles containing adsorbed hepatitis B surface antibody (HBsAb) assembled by 

layer-by-layer technique  to detect hepatitis B surface antigen [Tang 2005a]. And finally, an 

integrated automatic electrochemical immunosensor array for the simultaneous detection of 5-

type hepatitis virus antigens (i.e. hepatitis A, hepatitis B, hepatitis C, hepatitis D, and hepatitis E) 

where 5-type hepatitis virus antibodies were immobilized onto a self-made electrochemical 

sensor array using nanogold particles and protein A as matrices [Tang 2010]. But in most of 

these reported works, the charge transfer and/or redistribution could not clearly be explained 

not to mention the problems on slow response and/or low sensitivity. As a consequence, 

immunosensors were left apart in the field of biosensors. The Donnan equilibrium theory has 

been used to explain the phenomenon when the antibody and the antigen form a layer, similar 

to a semi permeable membrane, on the surface of the electrode [Bergveld 1991]. Some of the 

most remarkable works were published by Baumann, Pfeifer and Engel during the beginning of 

nineties at the same Mainz Institute in Germany. The selective binding of 3-indole acetic acid 

(IAA)  alkali phosphatase (AP) to respective antibodies immobilized on pre-treated titanium 

wires were studied potentiometrically by Pfeifer et al [Pfeifer 1993]. They optimized and 

investigated the conditions with; which the antigen IAA-Me could be detected with good 

sensitivity, selectivity, and reproducibility and they showed for the first time for a small antigen 

that - when carefully controlling the conditions - this type of selective detector works indeed 

sufficiently well. Its limit of detection goes down to less than 100 pmol/ml and its selectivity is 

good, if cross-reacting compounds are excluded. They concluded that the unspecific binding of 

the IAA-AP, most probably through its enzyme part to the immobilized protein, as well as to the 

polystyrene layer, or even through holes therein to the titanium oxide, takes place to a large 

extent. Pfeifer et al used pencil tips as graphite polymer material in order to detect atrazine by 

direct potentiometric detection [Pfeifer 1993]. They tried several methods to immobilize the 

antibodies against atrazine but only one turned out to be useful for the preparation of graphite 

based immunoelectrode; that was the electrode that incorporates bound glutardialdehyde to 

active sites of the graphite surface and subsequent cross-linking of the antibodies with 

glutardialdehyde. They assumed the source of the potential as due to the charge equilibrium on 

a structurally complicated surface of the electrode which is severely changed when an antigen 

docks to the antibody since this reaction yields not only electronic but geometric structural 

changes in the area of the antigenic determinants of the antibody, which in turn then changes 

local charge densities which may even be near one elementary charge. Engel et al described a 
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method to determine atrazine and its cross-reacting relatives in water sample based on Pfeifer’s 

method [Engel 1994]. They could obtain a 50 ng/L limit of detection. On another side, direct 

electron transfer to/from the active site of the proteins has been studied in order to 

demonstrate the applicability of the direct electron transfer (DET) effect [Varfolomeev 1996] to 

potentiometric, amperometric and semi conductive biosensors. Tunneling of electrons has been 

shown as a possible way for the explanation of DET effects. 

Another remarkable strategy  of potentiometric detection was the incorporation of the 

recognition layer in a classical membrane structure (albeit with higher pore size) to detect 

proteins. Yuan et al. [Yuan 2004] developed an ultrasensitive potentiometric immunosensor 

using colloidal gold and polyvinyl butyral (PVB) as sol-gel matrixes to detect hepatitis B surface 

antigen (HBsAg). Similarly, Tang et al. incorporated Nafion, colloidal Ag (Ag), and PVB as matrixes 

to potentiometrically detect hepatitis B surface antigen via immobilizing hepatitis B surface 

antibody [Tang 2004a], and again Nafion, colloidal gold, and gelatin as matrixes to 

potentiometrically detect diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-

Diph) [Tang 2004b] both on a platinum electrode. They also created a membrane-like sol-gel 

methodology to detect adrenal cortical hormone [Tang 2005b] and again a potentiometric 

immunosensor where nanoparticles mixture (containing gold nanoparticles and silica 

nanoparticles) and PVB as matrix for detection of diphtherotoxin (D-Ag) [Tang 2005c]. A new 

type of potentiometric immunosensor for the determination of human α-fetoprotein (AFP) was 

developed by Qiang et al. [Qiang 2006] where gelatin–silver film as a gentle carrier was used to 

immobilize anti-AFP on the surface of platinum disk electrode and glutaraldehyde was employed 

to improve the character of complex film. Zhou et al. [Zhou 2007] developed a 

poly(vinylchloride) (PVC) membrane based potentiometric immunosensor for the direct 

detection of alphafetoprotein. They chemisorbed Au colloid particle onto amino groups of 

ophenylenediamine, which were dissolved in plasticized PVC membrane. Then they immobilized 

alpha-fetoprotein antibody (anti-AFP) onto the surface of the Au colloid particle to prepare the 

potentiometric AFP immunosensor. As it can be seen from the above examples, the target is 

limited to antibodies due to the size limit of the membrane transport. 

From all the reports explained above, it can be inferred that there have been problems about 

the selectivity, stability and the sensitivity of the potentiometric sensors to detect proteins. 

Therefore, alternatives should be devised to overcome the present hurdles. After the great 

revolution into the materials science during 1990’s, new materials were disseminated into 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON NANOTUBE BASED POTENTIOMETRIC APTASENSORS FOR PROTEIN DETECTION 
Ali Düzgün 
Dipòsit Legal: T.616-2013 
 
 



12 

 

others field. These materials have been employed in many applications since the end of the 

1990’s until to date enabling to overcome previous obstacles successfully. 

Field effect transistors (FETs) have been the most promising potentiometric devices to 

determine large analytes until the work performed in the present thesis. FETs often measure the 

current flow across the transistor that contains a semiconducting channel whose conductivity is 

affected by external fields. In the case of analytical sensors, these external fields have an 

electrochemical origin. Therefore, although these transistors are measuring the current, the 

origin of the current change is a variation in the potential, or field effect. This is the reason why 

FETs are classified as potentiometric devices. Kong et al [Kong 2000] reported the first chemical 

sensor based on a recently developed FET that in turn was based on a single semiconducting 

SWCNT. The conducting channel in carbon nanotube FETs (CNTFETs) can be made of a single 

SWCNT, a few interconnected SWCNTs, or a network of numerous SWCNTs. Although the first 

CNTFETs were initially developed for the sensitive detection of gaseous substances, most 

subsequent CNTFETs have been used to detect large biocompounds such as proteins, DNA 

sequences, immunoglobulins and bacteria [Kauffman 2008a 2008b, Stern 2008].  

Meanwhile, our group also reported successful applications of CNTFETs for the detection of 

Salmonella infantis and Candida albicans [Villazimar 2008, 2009], trace levels of potassium in 

water using an ion-selective membrane [Cid 2008a], human immunoglobulin G both in aqueous 

and physiological conditions [Cid 2008b, 2008c], picomolar detection of bisphenol A in water 

[Sánchez-Acevedo 2009], and finally SO2 at room temperature based on organoplatinum 

functionalized SWCNTs [Cid 2009]. The use of SWCNTs in FETs raised the idea to use them in 

solid contact ion-selective electrodes (SC-ISEs) as transducing elements. Crespo et al successively 

used them to detect potassium in aqueous solutions [Crespo 2008a]. It was the first application 

of SWCNTs in an SC-ISE as transducing element. Later the same team investigated the 

transduction mechanism of SWCNTs in order to understand the underlying phenomena of the 

generated EMF [Crespo 2008b]. Considering the transduction ability of the CNTs combined with 

their capability to be functionalized, we thought that a recognition element could be covalently 

linked to them. This concept made it possible to eliminate the ion-selective membrane since it 

would restrict the mobility of the large analyte.  

During the literature scan, we noticed that aptamers, short DNA/RNA fragments (from about 15 

to 100 nucleotides) which could be designed in a selective process, called SELEX, could be good 

candidates as recognition elements due to their specific binding abilities to their targets 
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[O’Sullivan 2002].  This led the research group to try and assess the possibilities to use aptamers 

directly linked to CNTs as new recognition and transducing elements. This strategy could 

eliminate the ion-selective membrane and thus to be able to detect larger analytes such as 

proteins by the help of aptamers. 

As will be shown throughout this thesis, carbon nanotubes, polyaniline and aptamers can be 

successfully integrated to provide facile, rapid and cheap sensors to detect large analytes 

potentiometrically. 

Very recently, works indirectly resulting from the present doctoral thesis using nanostructured 

materials have been reported regarding direct potentiometric sensors that are going to be 

detailed in chapter 3 [Zelada-Gullién 2009, Washe 2010, Zelada-Gullién 2010]. 

1.2. Objectives 

The main objective of this thesis is the development, characterization and application of a new 

type of direct potentiometric sensors based on a layer of single-walled carbon nanotubes 

(SWCNTs) as ion-to-electron transducers, and aptamers  as recognition layer.  These sensors 

have been compared to those using the well-known conducting polymer, polyaniline (PANI), as 

transducer layer. 

 This general objective is detailed in the following specific objectives:   

1. Demonstration that a layer of purified single wall carbon nanotubes can be employed as 

efficient ion-to-electron transducer in direct potentiometric sensors and aptasensors. 

2. Explanation of the transduction mechanism involved in direct potentiometric  

aptasensors based on carbon nanotubes  

3. Design, construction, validation and testing of a new aptasensor based on thrombin 

binding aptamers (TBAs) as recognition layer as well as SWCNTs as transducers to detect 

thrombin in aqueous samples. 

4. Miniaturization of direct potentiometric sensor and aptasensors based on carbon 

nanotubes using filter paper as the substrate to increase the versatility and decrease the 

production costs. 

5. Testing, comparison, and characterization of polyaniline based sensors to SWCNTs based 

ones in order to better understand the underlying phenomenon of the sensing 

mechanism. 
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The main added value of this thesis is the exploration of the capability of carbon nanotubes and 

aptamers to build membrane-less direct (i.e. direct contact between receptors and targets) 

potentiometric sensors that are capable of sensing large charge analytes as proteins without 

using any type of labels. The new sensors are comparable in terms of performance 

characteristics to the existing conventional ion-selective electrodes. This thesis attempts for the 

first time to implement and explain the use of nanostructured material as the transducer and 

aptamers as recognition layers in the direct potentiometric sensing of proteins. 
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CHAPTER 2 

FUNDAMENTAL CONCEPTS 

2.1. Introduction 

This chapter presents a short overview of the principles of classical potentiometry when using 

ion-selective membranes and aptamers as recognition layer and carbon nanotubes and 

polyaniline, acting as transducer layer. 

2.2. Chemical sensors and biosensors 

According to the IUPAC definition [Thevenot 1999], "A chemical sensor is a self-contained 

integrated device that transforms chemical information, ranging from the concentration of a 

specific sample component to total composition analysis, into an analytically useful signal. 

Chemical sensors usually contain two basic components connected in series: a chemical 

(molecular) recognition system (receptor) and a physicochemical transducer. This latter sends 

the signal to the detection system which converts it into measurable data containing 

information. Biosensors are chemical sensors in which the recognition system utilizes a 

biochemical receptor." Thus biosensors can be classified according to the type of their 

transducer, the detection system and the recognition element. 

Electrochemical detection shows some characteristics that are advantageous compared to other 

detection techniques such as optical, thermal or mass detection. For instance, electrochemical 

techniques are easy to miniaturize and display a low cost. Therefore, they can be applied to 

portable instruments. In addition, many electroanalytical methods can be applied in turbid 

solutions and, in many cased, show performance parameters comparable to other techniques. 

Electrochemical sensors, which share the common characteristic of having an electrochemical 

detection system, can be classified according their transducing and recognition elements. The 

electrochemical signal can be generated by detecting the current (amperometry) or the 

potential in the absence of the current (potentiometry). Also; conductance and impedance, 

among other parameters, can be used for the detection. The amperometric and voltammetric 

sensors are characterized by their current-potential relationship with the electrochemical 
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system. Amperometric sensors can also be viewed as a subclass of voltammetric sensors. The 

general principles of electrochemical sensors have been extensively discussed [Janata 2009]. 

Commonly used electrochemical transducers are based on amperometry [Liu 2012], 

potentiometry [Vincke 1985, Musa 2011], conductometry [Watson 1987, Soldatkin 2012] and 

impedance spectroscopy [Keese and Giaever 1990, Ismail 2011]. Optical sensors are based on 

the detection of luminescence whether as a result of the generation of luminescent centers or 

by quenching them [Xia 2012]. Moreover, piezoelectric transducers are used in biosensors such 

as the quartz crystal microbalance (QCM) [Tessier 1993, Wang 2011], mechanical such as 

cantilevers [Florin 1995, Mostafa 2011] and temperature [Danielsson 1992], or magnetic 

[Kindavater 1990, Sinn 2011]. Biosensors that incorporate aptamers as recognition elements are 

named as “aptasensors” *O’Sullivan 2002+. 

Electrochemical sensors are frequently reviewed by many authors [Zhang 2008, Jacobs 2010, 

Carrara 2011, Ju 2011, Albrecht 2012, Malitesta 2012].  

2.3. Potentiometry 

Potentiometry is an electroanalytical technique which is based on measurement of potential 

generated in an electrochemical cell in absence of current. This measured electromotive force is 

primarily related to the activity of the target ion in solution. Potentiometric measurements 

enable selective detection of ions in presence of multitude of other substances.  Classical 

potentiometric measurement system consists of two electrodes (working or indicator electrode 

and reference electrode), a potentiometer and a solution containing the analyte. In a system like 

the one depicted on Figure 2.3-1, the potential is measured by a high impedance voltmeter 

placed between a reference electrode e.g. Ag/AgCl electrode, and the ion-selective electrode. 

Reference electrode is an electrode with potential which is  

a) Independent of the analyte and other ions in solution, and their activity, 

b) Independent of temperature.   

The potential of an indicator electrode depends on the concentration of the target analyte ion. 

This dependence is not absolute, so there is always a certain degree of selectivity. Here the 

classical potentiometric electrodes are names ion-selective electrodes (ISEs). 
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Figure 2.3-1 Conventional electrochemical cell. 

The sensing mechanism in the ion-selective electrodes has been the source of a large discussion 

for over 30 years since there are several models that attempt to explain the mechanism using 

different factors and suppositions. Several models ranging from basic ones to others showing a 

high degree of complexity have been proposed. Bobacka et al [Bobacka 2008] summarize in his 

review the advantages and drawbacks of each model. To summarize, the most accepted theory 

is the phase-boundary potential model suggested by Bakker et al [Bakker 2004] that is based on 

the assumption of local equilibria at the aqueous/polymeric membrane interface. 

Due to this detection system, optimized potentiometric ISEs can detect very low amounts of ions 

up to picomolar levels [Skokalski 1997]. Also they are not affected from the change of the 

solutions color or transparency. Therefore the ion-selective electrodes are widely applied in 

biological, industrial and environmental fields [Dimeski 2010]. Furthermore, the interest in 

developing small sensing devices for biomedical use is a promising trend [Wang 1999, Pretsch 

2007].  

The conventional ion-selective electrodes use an internal reference solution that is able to 

transduce the ‘ionic current’ in the membrane into the ‘electronic current’ in the conducting 

wire of the electrode. However, these classical ion-selective electrodes are not well suited for 

some applications. Although this type of ISEs are the most commonly used due to their high 

selectivity and reliability for the pH or other ions (e.g. Ca2+, Cl-, K+), they display some 

disadvantages such as high ohmic resistance, the need for internal solution, the fragility of the 

membrane and vertically usage obligation [Michalska 2006]. Also they should be simpler, have 
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better mechanical flexibility and allow the miniaturization of the devices. Most of these 

disadvantages are overcome with the use of all-solid-state electrodes, specifically, solid state 

potentiometric electrodes that do not contain an internal reference solution. 

2.3.1. Solid-state potentiometry 

Solid-state potentiometry, as a subsection of potentiometry, emphasizes phenomena in which 

the properties of solids play a dominant role. This includes phenomena involving ionically and/or 

electronically conducting phases. The initial aims were the elimination of the liquid parts and 

change them with appropriate solid transducer as conductive polymers. Thus, designing much 

smaller and more rigid sensors would be possible. Many attempts [Michalska 2006] resulted in 

relative success but with some drawbacks such as high drift, low response stability and relatively 

higher limit of detection. 

The main sensor types that use solid state potentiometry are built in a way that no liquid 

junction plays a role in the construction. Polymeric membrane ion-selective electrodes (ISEs) are 

currently one of the most widely applied chemical sensors [Zhu 2009, Anastasova-Ivanova 2010]. 

New theory and more applications of potentiometric ion sensors have been exploited after the 

detection limit of ISEs was pushed to trace levels [Bakker 2001]. Solid-contact ISEs have drawn 

much attention in this direction, since the solid inner contact eliminates ion flux in the 

membrane from inner filling solution [Sutter 2004].  As an excellent conductor, carbon 

nanotubes (CNTs) have been firstly used as the ion-to-electron transducer in solid-state ISEs by 

Crespo et al [Crespo 2008] to detect K+ ions. Following this pioneering work, our group has used 

the concept for different applications such as: detection of perchlorate [Parra 2009], choline and 

derivatives [Ampurdanés 2009], Ca2+ in sap [Hernández 2010] and even as solid state reference 

electrodes [Rius-Ruiz 2011]. 

2.4. Direct potentiometric chemical sensors 

Direct potentiometric chemical sensors are self-contained integrated devices that record the 

instrumental signal without any need of adding labels or further reagents. They are based on the 

potential generated by the direct interaction between the recognition element (usually linked to 

the transducer layer of the electrode) and the analyte. Depending on the transducing or 

recognition element as well as their basic construction, they can be named using different 

names such as carbon nanotube field effect transistors (CNT-FETs) or potentiometric 

aptasensors. 
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2.4.1. Carbon nanotube based sensors 

Carbon nanotube based sensors are chemical sensors that incorporate CNTs mainly as 

transducing elements although, in some specific cases, they can also act as recognition 

elements.  

2.4.1.1. Carbon nanotubes 

CNTs are grapheme sheets rolled up into a nanoscale-tube [Saito 1998], which were 

rediscovered by Sumio Iijima [Iijima 1991].  A single sheet generates single-walled carbon 

nanotubes (SWCNTs) while multiple concentric sheets produce multi-walled carbon nanotubes 

(MWCNTs) (see figure 2.4-1).  SWCNTs have a minimum diameter of about 0.4 nm and can reach 

up to 2 nm. Also lengths up to 1.5 cm have been reported [Huang 2004]. Such dimensions give 

rise to aspect ratios (length/diameter) of over ten million [Raffaellea 2005]. SWCNTs can be 

either metallic or semiconducting [Fischer 2006] depending on their chirality and diameter.    

 

Figure 2.4-1 Schematic representation of the CNTs. A single-walled carbon nanotube (left) and a multi-walled carbon 
nanotube (right) 

Noriaki et al, at the NEC Laboratory in Tsukuba have calculated dispersion relations for small-

diameter nanotubes showing that about one-third of small-diameter nanotubes are metallic, 

while the rest are semiconducting, depending on their diameter and chiral angle [Noriaki 1993]. 

By contrast, MWCNTs have diameters from 10 to 200 nm and lengths up to hundreds of microns 

with an adjacent shell separation of 0.34 nm [Khare, R., and Bose, S. 2005].  They usually display 

a metallic character. 

The properties of CNTs are very different depending on whether they are SWCNTs or MWCNTs 

[Saito 1998]. SWCNTs are stable up to 750 °C in air (but in an oxidizing atmosphere they start to 
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become damaged earlier) and up to 1.500 °C in an inert atmosphere. They have half the mass 

density of aluminum. Their unique structural features give SWCNTs exceptional physical and 

chemical properties [Dresselhaus 2001, Dai 2002, Zhou 2002]. Their incredibly high 

surface/volume ratio and their capacity for charge transfer makes them very important 

candidates for sensor applications. In addition to this feature, chemically inertness, 

functionalizability of carboxylated CNTs are the other essential properties. Furthermore due to 

the sp2-hybridized carbon atoms in CNTs, a free electron cloud exists on the surface which 

enables rapid mobility of electrons. 

There are many ways to roll a graphene structure to form a SWCNT, resulting in structural 

variations. These variations, as well as the tube diameter, determine the electrical properties 

displayed by the various types of tubes. The most fundamental of these properties is whether 

the tube will behave as a metal or as a semiconductor.   

Although CNTs are not actually synthesized by rolling graphite sheets, it is possible to explain the 

different structures by considering the way graphite sheets might be rolled into tubes. An 

SWCNT can be formed by rolling a sheet of graphene into a cylinder along an (n,m) lattice vector 

in the graphene plane, where n and m are integers of the vector equation OA = Ch = na1 + ma2, 

which is known as the Hamada vector[Kim 2007]. The chiral angle (Ө) is formed between the 

Hamada vector and the unit lattice vector a1. The values of n and m determine the chirality and 

the diameter of a CNT (Figure 2.4-2, Table 2.4-1). The chirality in turn affects the conductance of 

the nanotube, its density, its lattice structure, and other properties. An SWCNT is considered 

metallic if the value resulting from (n-m)/3 is an integer. Otherwise, the nanotube is 

semiconducting [Dekker 1999]. Consequently, when tubes are formed with random values of n 

and m, we would expect two-thirds of nanotubes to be semi-conducting, and one third to be 

metallic [Saito 1998, Dai 2002]. 
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Figure 2.4-2 Diagram depicting different directions to roll a graphene sheet to create an SWCNT. Three different 

SWCNT structures resulting in graphene sheets rolled differently, a zigzag-type nanotube, an armchair type nanotube, 

and a chiral nanotube. 

Table 2.4-1 Effect of integer coefficients on electric behavior and morphology of the carbon nanotubes. 

Type 
Integer 

coefficients 
Chiral 
angle 

Morphology 
Electrical 

characteristics 

Armchair n=m 30° 
No twist with 

respect to tube 
axis 

100% metallic 

Zigzag n=0 or m=0 0° 
Maximum twist 

angle 

25% metallic 
75% 

semiconducting Chiral 
Both n and 
m vary in 

value 

Angle 
varies 

between 
0° and 

30° 

Twist angle 
between no 

twist and 
maximum twist 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON NANOTUBE BASED POTENTIOMETRIC APTASENSORS FOR PROTEIN DETECTION 
Ali Düzgün 
Dipòsit Legal: T.616-2013 
 
 



24 

 

 

2.4.2. Carbon nanotube based aptasensors 

CNT based aptasensors incorporate CNTs as transducers and aptamers as recognition elements. 

2.4.2.1.  Aptamers 

Aptamers are small nucleotide fragments (approx. 15-100 bases) that are purposely isolated 

from random combinatorial libraries most commonly by an exponential enrichment method 

called SELEX (Systematic evolution of ligands by exponential enrichment). As a result, the unique 

three-dimensional structure for the binding of their target can be determined and synthetised. 

Aptamers can selectively or specifically recognize and bind virtually to any kind of targets. Those 

including, ions [Smironov and Shafer 2000], whole cells [Famulok 2000], drugs [Varani and 

Gallego 2001], toxins [Jayasena 1999], low molecular weight ligands [Famulok 1999], peptides 

[Wilson and Szostak 1999] and proteins [Mc Cauley 2003]. Many recent reviews about the 

therapeutic character of sensors, where aptamers are used as sensing elements, can be found in 

the literature [Hage 2010, Xu 2010, Hamula 2011, Citartan 2012, and Palchetti 2012]. 

As well as high affinity, aptamers also demonstrate high specificity. Using aptamers, targets can 

be discriminated on the basis of subtle structural differences such as the presence or absence of 

a hydroxyl group [Sassanfar and Szostak 1993] or a methyl [Haller and Sanow 1997]. Enzymes 

with similar activity and structure can be distinguished, as is demonstrated with the detection of 

a-thrombin and y-thrombin [Paborsky 1993]. More impressive is the ability of aptamers to 

distinguish between enantiomers, as was reported by Geiger et al [Geiger 1996], when L and D-

arginine were discriminated. The high degree of specificity often seen in aptamers, sometimes 

even better than antibodies [Jenison 1994], is a result of the selective process in the SELEX. 

The aptamer generation emerged from the experimentation of three independent groups, all of 

whom published their work in 1990. First, the Joyce group [Robertson and Joyce 1990] was 

looking for a new enzymatic activity of RNA. They used in vitro mutation, selection and 

amplification to isolate the enzymatic RNA, which became the basis for the current in vitro 

selection of aptamers. Then the Gold group was trying to identify in vitro the sequences of T4 

DNA polymerase [Tuerk and Gold 1990]. The library they created was based on the natural 

structure but with the eight-loop randomized. They were the first to baptize the process of in 

vitro selection as SELEX, and the process was able to identify the natural target of the enzyme as 

the predominant. The authors patented their process. A month later Szostak and Ellington 

reported the use of in vitro selection to isolate molecules with specific ligand binding activities 
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[Ellington and Szostak 1990]. They created a library with 100 nucleotides of randomized 

sequences, related to any known oligonucleotide sequence. The targets had no previously 

identified nucleic acids ligand. This group coined the term aptamer, which comes from the Latin 

aptus meaning "to fit" and Greek meros, "region". 

2.4.2.2. Target-aptamer interaction 

The affinity of aptamers depends on the kind of target. Aptamers against small molecules have 

affinities in the micromolar range, as in the case of dopamine, 2.8 µM [Lorsch and Szostak 1994] 

or ATP, 6 µM [Kiga 1998]. Affinities in the nanomolar and sub-nanomolar range are found 

against some large molecules as proteins, for example, vascular endothelial growth factor 

(VEGF) with an affinity of 100 pM [Ruckman 1998], and keratinocyte growth factor, 1pM 

[Pagratis 1997]. 

The interactions between protein and aptamers include Van der Waals, hydrogen bonds and 

water mediated contacts [Gutfreund 1995]. About 30% of all interactions are non-specific bonds, 

mediated through Van der Waals forces; however, they are extremely important for the stability 

of the complex. The majority of the specific interactions involves hydrogen bonds [Schwabe 

1997] and demonstrates some amino acid-base preferences. Cowan et al [Cowan 2000] 

demonstrated that 80 % of the binding energy was contributed by hydrogen bonds. The relative 

contributions of these and other forces, such as interaction with aromatic rings and Van der 

Waals forces have been also reported [Hermann and Patel 2000]. Water molecules also facilitate 

the contact by filling the empty spaces at the protein-aptamer interface and play an important 

role in complex formation [Tuerk and Gold 1990].  

The Ellington Lab. in University of Texas at Austin introduced an aptamer database where it can 

be found the appropriate aptamers with their corresponding target interaction in selected 

scientific journals [http://aptamer.icmb.utexas.edu/]. 

2.4.2.3. Thrombin 

Thrombin (commonly α -thrombin) is a pluripotent serine protease enzyme that plays a central 

role in homeostasis following tissue injury. It selectively cleaves the Arg–Gly bonds of fibrinogen 

to form fibrin and release fibrinopeptides A and B. The predominant form of thrombin in vivo is 

the zymogen, prothrombin (factor II), which is produced in the liver. The concentration of 

prothrombin in normal human plasma is 5‑10 mg/dL. Prothrombin is a glycoprotein with a 

glycan content of ~12%. Prothrombin is cleaved in vivo by activated factor X releasing the 

activation peptide and cleaving thrombin into light and heavy chains yielding catalytically active 
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α-thrombin. α-Thrombin is composed of a light chain (A chain, MW ~ 6,000) and a heavy chain (B 

chain) (~31,000). These two chains are joined by one disulfide bond as can be seen in Figure 2.4-

3 [Sigma-Aldrich Biofiles © 2012, Lundblad 1976]. 

 

Figure 2.4-3 Diagram depicting different structural regions of thrombin protein [Sigma-Aldrich Biofiles © 2012]. 

There is not any known naturally occurring nucleic acid sequence that binds thrombin. One of 

the anti-thrombin aptamer sequences that shows a higher affinity constitutes the first example 

of an in vitro designed oligonucleotide targeted towards protein binding. The identified 

thrombin binding aptamer has a well-defined folded structure in solution [Bock 1992, Fukusaki 

1993, Russo Krauss 2012]. α-thrombin binding affects two electropositive parts of the molecule, 

the fibrinogen-recognition and heparin-binding exosites. When thrombin is in contact with the 

aptamer, the aptamer adopts folded G-quadruplex structure [See Figure 2.4.4], the central part 
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of the structure is formed by two guanine quartets. The quartets are connected at one end by 

two TT loops, which span the two narrow grooves and at the other end by a TGT loop, which 

spans a wide groove of the mini-quadruplex. 

 

Figure 2.4-4 Schematic of thrombin binding aptamer.  

The anti-thrombin aptamer can be applied as an inhibitor of thrombin activity [Tasset 1997, Bock 

1992, Holland 2000]. The aptamer drug ARC183 from Archemix Corporation is a thrombin 

inhibitor for use as an anticoagulant during coronary artery bypass graft procedures. Currently, 

herapin is used for this aim. However, the herapin treatment has serious side effects and 

requires a separate reversing agent. These limitations could be overcome with the use of the 

anti-thrombin aptamer. A further application of anti-thrombin aptamers is as an imaging agent 

to detect thrombus, since it distinguishes between actively growing clots and inactive clots. The 

thrombus imaging permits an accurate identification of pulmonary embolism, calf veins thrombi, 

vascular thrombus and other thrombotic disorders [Goldhaber 1998, Knight 1993, Worsley and 

Alavi 2001]. More recently, anti-thrombin aptamers have been used as biorecognition elements 

for thrombin detection in biosensors [Xu 2001, Schlensog 2004, Fan 2012, Rotem 2012, Tang 

2012].  

 

2.4.3. Conductive polymer based aptasensors 

Molecular imprinting polymers (MIPs) and conducting polymers (CPs) are the two types of 

polymers that are commonly used in biosensing applications [Hahm 2011]. Conductive polymer 
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based aptasensors are composed of a conducting polymer, as the transducing element, while 

the aptamer is the recognition element. 

2.4.3.1. Polyaniline 

Polyaniline (PANI) is a conducting polymer of the semi-flexible rod polymer family. Although the 

compound itself was discovered over 150 years ago, only since the early 1980s polyaniline has 

captured the intense attention of the scientific community. This is due to the rediscovery of its 

high electrical conductivity. Amongst the family of conducting polymers and organic 

semiconductors, polyaniline is unique due to its ease of synthesis, environmental stability, and 

simple doping/dedoping chemistry. Although the synthetic methods to produce polyaniline are 

quite simple, its mechanism of polymerization and the exact nature of its oxidation chemistry 

are quite complex. Because of its rich chemistry, polyaniline is one of the most studied 

conducting polymers of the past 50 years. 

Polymerized from the aniline monomer, polyaniline can be found in one of three idealized 

oxidation states [Feast 1996]: 

    leucoemeraldine – white/clear & colorless 

    emeraldine – green for the emeraldine salt, blue for the emeraldine base 

    (per)nigraniline – blue/violet 

 

Figure 2.4-5 Main polyaniline structures n+m = 1, x = degree of polymerization 

In figure 2.4-5, x equals half the degree of polymerization (DP). Leucoemeraldine with n = 1, m = 

0 is the fully reduced state. Pernigraniline is the fully oxidized state (n = 0, m = 1) with imine links 

instead of amine links. The emeraldine (n = m = 0.5) form of polyaniline, often referred to as 

emeraldine base (EB), is neutral, if doped it is called emeraldine salt (ES), with the imine 

nitrogens protonated by an acid. Emeraldine base is regarded as the most useful form of 

polyaniline due to its high stability at room temperature and the fact that, upon doping with 

acid, the resulting emeraldine salt form of polyaniline is electrically conducting [Tzamalis 2003]. 

Leucoemeraldine and pernigraniline are poor conductors, even when doped with an acid. 
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The color change associated with polyaniline in different oxidation states can be used in sensors 

and electrochromic devices [Huang 2006]. Though color is useful, the best method for making a 

polyaniline sensor is arguably to take advantage of the dramatic conductivity changes between 

the different oxidation states or doping levels [Virji 2004]. 

PANI in its conductive form, the ES, can easily be functionalized with a thiolated molecule such 

as aptamers. This hybrid material can be employed as the basic component of the 

electrochemical aptasensor. Chapter 6 demonstrates a characterization and comparison study 

where the PANI is compared with SWCNTs as transducing element in electrochemical 

aptasensors. 
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CHAPTER 3 

NANOSTRUCTURED MATERIALS IN POTENTIOMETRY 

3.1. Introduction 

This chapter reflects an overview of the current trends of the nanostructured material use in the 

potentiometry field in an explanative way. It introduces the two main well known types of 

potentiometric sensors, the field effect transistors (FETs) and ion selective electrodes (ISEs), and 

new types of potentiometric sensors where the polymeric membrane in ISEs has been replaced 

by receptors linked directly to the transducers. The functionalization of some of these materials, 

particularly carbon nanotubes and graphene, which has been extensively reported [Ahammad 

2009, Jacobs 2010, Shao 2010], investigates the possibility of directly linking the receptor 

molecules to carbon nanotubes instead of entrapping them in the ion-selective polymeric 

membranes. 

Later it focuses on potentiometry as a tool for analyzing nanostructured materials by introducing 

different advances in the field. Also it gives a brief introduction on a different type of 

potentiometric approach that relies on porous nanostructures in a way that the nanopore, and 

the interactions within it, modulating the transport characteristics of the target analytes. Lastly, 

it gives a brief outlook on the advances and discusses them. 

The contents of this chapter has been published as a trend article in the journal Analytical and 

Bioanalytical Chemistry, year 2011, volume 399, pages 171-181, and co-authored by Gustavo A. 

Zelada-Guillén, Gastón A. Crespo, Santiago Macho, Jordi Riu and F. Xavier Rius. Recent advances 

during and after the publication of the article are also introduced and discussed in section 3.3. 
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3.2.              “Nanostructured materials in potentiometry” 

Analytical and Bioanalytical Chemistry 2011, 399. 171-181 

Ali Düzgün, Gustavo A. Zelada-Guillén, Gastón A. Crespo, Santiago Macho, Jordi Riu and F. 

Xavier Rius* 

Department of Analytical and Organic Chemistry, Rovira i Virgili University,  

43007 Tarragona, Spain. 

3.2.1. Abstract 

Potentiometry is a very simple electrochemical technique with extraordinary analytical 

capabilities. It is also well known that nanostructured materials display properties which they do 

not show in the bulk phase. The combination of the two fields of potentiometry and 

nanomaterials is therefore a promising area of research and development. In this report, we 

explain the fundamentals of potentiometric devices that incorporate nanostructured materials 

and we highlight the advantages and drawbacks of combining nanomaterials and potentiometry. 

The paper provides an overview of the role of nanostructured materials in the two commonest 

potentiometric sensors: field-effect transistors and ion-selective electrodes. Additionally, we 

provide a few recent examples of new potentiometric sensors that are based on receptors 

immobilized directly onto the nanostructured material surface. Moreover, we summarize the 

use of potentiometry to analyze processes involving nanostructured materials and the prospects 

that the use of nanopores offer to potentiometry. Finally, we discuss several difficulties that 

currently hinder developments in the field and some future trends that will extend 

potentiometry into new analytical areas such as biology and medicine. 

3.2.2. Keywords 

Potentiometry – Nanostructured materials – Sensors – Field-effect transistors – Ion-selective 

electrodes – Nanoparticles – Nanotubes – Nanowires – Graphene 

3.2.3. Introduction 

Potentiometry is one of the simplest electrochemical techniques. It is a very attractive option for 

numerous analyses owing to the low cost and ease of use of the instruments employed. 

Potentiometry also has other interesting properties, such as short response times, high 

selectivity, and very low detection limits. Moreover, the instrumental response does not depend 

on the area of the electrode. Therefore, potentiometric devices could be readily miniaturized 
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without, in theory, losing their determination capabilities. In this way, the inherent portability of 

the electrochemical sensors could be added to the already numerous performance 

characteristics of potentiometry.  

On the other hand, nanomaterials display new properties not shown in the bulk material. Their 

extremely high surface-to-volume ratio promotes a greater interaction with targets when 

nanostructures are part of the recognition layer. Moreover, the exceptional electrical properties, 

such as the high charge transfer and the extraordinary electrical capacities generated at the 

interfaces of some nanostructured materials, are of paramount importance when nanomaterials 

are used as the transducing components in potentiometric sensors.  

Can we combine the simplicity of the potentiometric technique with the new characteristics 

provided by nanostructured materials? Can we devise new devices that take advantage of both 

complementary aspects? What role do nanostructured materials play in the new potentiometric 

measurements? We will try to answer these questions in the present report while also 

explaining to the nonspecialist reader the advantages and drawbacks encountered when 

merging the two fields.  

Two main devices fall within the category of potentiometric sensors: field-effect transistors 

(FETs) and ion-selective electrodes (ISEs). Both have been successfully used for many years. In 

2004, Janata [1] wrote a paper to commemorate 30 years of chemical FETs (CHEMFETs), a 

particular type of FET acting as a chemical sensor. Since then, the introduction of nanomaterials 

in FETs has not only brought about a change in their architecture, but has also extended the type 

and number of analytes that can be detected and quantified. The development of FETs based on 

nanostructured materials is well established. In fact, FETs were the first type of electrochemical 

sensors incorporating a single semiconducting carbon nanotube [2]. On the other hand, several 

breakthroughs have revitalized the field of ISEs since their original conception [3, 4]. Moreover, 

the introduction of nanomaterials as transducing elements or as part of the recognition layer is 

opening the field to the determination of species other than small ions. New potentiometric 

sensors are emerging that are based on different sensing mechanisms and which are able to 

determine large molecules such as proteins or even much more complex targets such as 

microorganisms, leading to a new wave of potentiometric sensors.  

The paper is structured as follows. After this introduction, the most important characteristics of 

the two main types of potentiometric sensors, FETs and ISEs, are briefly reviewed. The 
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importance of introducing nanostructured materials is described for each sensor type. The 

nanomaterials are introduced according to their quantum confinement characteristics (zero-, 

one-, and two-dimensional nanostructures). In all cases, we have tried to stress the advantages 

and drawbacks of new devices that incorporate nanomaterials. We then discuss new 

potentiometric sensors using nanomaterials, potentiometry as a tool for analyzing 

nanostructured materials, and new potentiometric systems based on nanopores. The final 

section, the outlook, describes some of the future challenges and trends that will appear in the 

field.  

3.2.4. Two main types of potentiometric sensors 

3.2.4.1. Field-effect transistors 

FETs often measure the current flow across the transistor that links the source and drain 

electrodes. These transistors always contain a semiconducting channel whose conductivity is 

affected by external fields. In the case of analytical sensors, these external fields have an 

electrochemical origin. Therefore, although these transistors are measuring the current, the 

origin of the current change is a variation in the potential, which in turn is affected by the 

analyte concentration in the test sample. This variation in the potential, or field effect, is the 

reason why FETs are classified as potentiometric devices. CHEMFETs are a particular type of FET 

that have traditionally been used for chemical sensing, but the incorporation of nanostructured 

materials in FETs has led to a new generation of nano-FETs displaying an architecture different 

from that of CHEMFETs. The theory and applications of CHEMFETs are well explained in 

reference books [5]. Their selectivity is provided by the polymeric membranes containing 

ionophores in a similar way to ISEs. With use of electronic circuits, the source–drain current may 

be kept at a constant value and, in this case, the changes at the solution membrane interface are 

reflected in changes in the potential difference between the source and gate electrodes (Fig. 4.1-

1a). Therefore, the signal recorded in CHEMFETs is in this case a voltage that varies with the 

activity of the ion tested following the Nernst equation. 
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Figure 4.1-1 Different field-effect transistors (FETs): a chemical FET; b electrolyte-gated carbon nanotube field-effect 
transistor (CNTFET); c internally gated CNTFET showing the receptors directly contacting the carbon nanotubes 

The introduction of nanostructured materials in the development of FETs represents an 

evolution of CHEMFETs that has contributed the following innovations:  

1.  The semiconducting channel is not made of doped silicon but of different semiconducting 

nanomaterials such as nanowires, nanoparticles, nanotubes, or thin films.  

2.  The ability of the sensor to detect very low amounts of the target analyte usually increases 
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when the size of the nanostructured material decreases, partly because to the very high 

surface-to-volume ratio of individual nanostructured materials. Moreover, some of the 

nanomaterials’ charge-transfer properties play an additional role, compared to the bulk 

material, in detecting lower amounts of the target analyte.  

3.  The nanostructured channel connects the source and drain electrodes and is not buried 

under the dielectric layer but rather is in contact with the test sample containing the target 

analytes.  

4.  In a similar configuration to CHEMFETs, nanostructured FETs can be externally gated through 

an electrolyte solution [6] (Fig. 4.1-1b). These sensors are able to detect even lower amounts 

of the target analyte; however, they are difficult to miniaturize because of difficulties in 

reducing the size of the reference electrode.  

5.  Alternatively, the gate electrode can be integrated into the device as a back electrode, which 

obviates the need for an external electrode (Fig. 4.1-1c). Internally gated devices are a clear 

improvement over externally gated FETs when miniaturizing sensors.  

6.  The recognition layer is, in the vast majority of examples, directly immobilized into the 

nanostructured material, which acts as the semiconducting channel. This is a significant 

advantage over CHEMFETs (including ion-selective FETs, ISFETs, a specific case of CHEMFETs) 

because FETs based on nanostructured materials can take advantage of a wide range of 

molecular receptors (e.g., antibodies, nucleic acids, synthetic receptors, etc.) that are 

selective for different target analytes. This strategy has led to the development of new 

biosensors that are able to detect a large range of targets, from small molecules to 

microorganisms (Fig. 4.1-1c).  

7.  Alternatively, the recognition layer can be made of chemical receptors entrapped in a typical 

polymeric membrane, although very few examples of FETs based on nanostructured 

materials using this strategy can be found. Thus, these nano-FETs behave in a similar way to 

CHEMFETs/ISFETs. The electrochemical membrane potential is generated at the interface 

between the polymeric membrane and the solution and creates the electrical field that 

influences the potential difference between the source and gate electrodes.  

These innovations overcome some of the drawbacks of CHEMFETs, such as unstable responses 

due to the lack of a thermodynamically reversible interface between the polymeric membrane 
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and the transducer elements or the presence of an inner water layer. However, some challenges 

still remain. The deposition of the semiconducting nanostructured material must be better 

controlled and the resistance between the metallic electrodes and the semiconducting material 

must be kept as low as possible, otherwise the high Schottky barrier influences the signal. 

Currently, the low control of these effects significantly influences the response signal’s precision 

between devices. In the specific case of carbon nanotubes, only semiconducting carbon 

nanotubes should be present in order to prevent the damaging effect of metallic pathways. The 

most sensitive sensors are based on a single nanostructure (a sole nanotube, nanorod, etc.); 

however, the difficulties in properly handling these single structures and the lack of physical 

robustness of the resulting devices prevent this format from being generally applied in 

commercial devices.  

Virtually all the examples of FETs using nanostructured materials directly link the molecular 

receptor, which is selective to the target analyte, to the nanostructures instead of using a 

polymeric membrane where the chemical receptors are entrapped (as is the case in CHEMFETs).  

There are only a few examples of FETs where the semiconducting channel is made of quasi-zero-

dimensional nanostructures applied to sensing applications. An interesting example that 

combines photonics and FETs involves the use of quantum dots. Quantum dots have recently 

been used as optically addressable floating gates in the development of optically gated FETs for 

photon-number discrimination [7]. These optically gated FETs could have many applications in 

the future both for quantum communications and for single-molecule detection if the FET is 

properly functionalized with molecular receptors so that it can selectively detect the target 

analyte.  

Both nonmetallic and metallic nanoparticles are currently used as labels in combination with 

bioreceptors. An example of this is the FET developed by Luo et al [8] for detecting glucose by 

simultaneously immobilizing MnO2 nanoparticles and the enzyme glucose oxidase on the gate of 

an ion-sensitive FET. In such a device, the MnO2 nanoparticles enhance the dynamic range of the 

sensor, although the detection limit obtained (0.02 mM) is not particularly low. The MnO2 

nanoparticles act as an oxidant of H2O2 which is produced by the glucose oxidase driven catalytic 

reaction of glucose oxidation, instead of acting as a catalyst for H2O2 decomposition. Fullerenes 

have also been employed in FET technology since the middle of the 1990s as an n-type material 

that transports electrons [9]. Metals caged inside the fullerenes also represent an interesting 

option in the development of this family of FETs. Kobayashi et al [10] reported FETs that include 
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within their structure a thin film of a dimetallofullerene (two atoms of La caged in a C80 fullerene 

molecule) as the conducting channel, and these might be useful for determining the mechanism 

of the charge transport and carrier types in similar systems.  

FETs made of quasi-one-dimensional nanostructures (i.e., mainly single-walled carbon 

nanotubes, SWCNTs, or nanowires) have been much more widely reported than quasi-zero-

dimensional nanostructured FETs. Kong et al [2] reported the first chemical sensor based on a 

recently developed FET that in turn was based on a single semiconducting SWCNT. The 

conducting channel in carbon nanotube FETs (CNTFETs) can be made of a single SWCNT, a few 

interconnected SWCNTs, or a network of numerous SWCNTs. The first CNTFET-based sensing 

devices were reported for the detection of gases and were able to detect analytes at parts per 

trillion levels in samples containing a single gas in a few seconds. Selectivity is one of the most 

important performance characteristics in gas detection because of the small size of the gaseous 

interferences that are able to interact with the SWCNTs and nonselectively modify the electrical 

conductance of the CNTFET device. There have been recent promising advances in making 

CNTFETs selective for gas sensing [11, 12], most of these involving coating the SWCNTs to isolate 

them from interferences. However, a CNTFET that can sense gases in complex real samples has 

yet to be reported. In most cases the process of functionalization increases the response time by 

up to a few minutes, probably owing to the specific response mechanism between the target 

analyte and the sensing layer attached to SWCNTs.  

Although the first CNTFETs were initially developed for the sensitive detection of gaseous 

substances, most subsequent CNTFETs have been used to detect large biocompounds such as 

proteins, DNA sequences, immunoglobulins and bacteria [13, 14]. Apart from the intrinsic 

interest of these biocompounds, there are probably two main reasons why there is such a high 

number of biosensing CNTFET devices: on one hand, the relatively high number of available 

molecular receptors (e.g., antibodies or synthetic nucleic acid segments) that selectively bind to 

the target analyte and that can be used to functionalize CNTFETs, and, on the other hand, the 

relatively large size of these biocompounds, meaning that the selectivity is tested against 

interfering biocompounds of similar size (e.g., a protein similar to the target protein to be 

detected), which makes it easier to isolate the SWCNT surface against nonspecific interactions 

caused by interferences. After functionalization of the SWCNTs (usually in a noncovalent way) 

with a suitable molecular receptor for the target analyte, a blocking agent [e.g., Tween 20, 

gelatine, poly(ethylene glycol) or pyrene] is used to coat the SWCNTs to prevent nonspecific 

binding. These CNTFETs are able to detect very low concentrations of the target analyte, on the 
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order of picomolar concentrations for proteins or 100 cfu/mL for Salmonella infantis [15], 

usually in short response times ranging from a few seconds to 1 h in the case of bacteria. The 

affinity between the target analyte and the molecular receptor is often very high, making it 

difficult to regenerate the sensing device in some cases. However, for safety reasons, the future 

commercialization of these sensors would probably be as disposable devices.  

In addition to detecting biocompounds in a solution, CNTFETs are also able to detect small 

molecules. Very recently, a microfluidic-based CNTFET was reported as being able to detect 

500 fmol·L-1 of a single herbicide [16].  

Although the chemical sensing principles of CNTFETs have been well established, many articles 

fail to report their most suitable performance parameters. CNTFETs are sensing devices with a 

lot of potential but their accuracy, selectivity, stability, and precision are often not described in 

sufficient depth. Consequently, the potential of CNTFETs needs to be confirmed through 

empirical studies of the devices’ performance parameters and their application to real samples. 

Another problem regarding CNTFETs is their lack of reproducibility. There is a significant current 

variation between CNTFETs that are made identically from a single carbon nanotube, and this is 

mainly caused by variations in nanotube diameters and chiralities and the different contacts 

with the metallic electrodes.  

Nanowires are made mainly of Si, but InAs, GaN, Ge, and metal oxides have also been 

incorporated into FETs to create nanowire FETs (NWFETs) [17]. Some of these devices, despite 

having the classic FET configuration, apparently work at zero gate potential, i.e., they work as 

resistors rather than FETs. These NWFETs have characteristics similar to those of CNTFETs and 

have also been mainly used for detecting different biocompounds [18]. A particular advantage of 

NWFETs is that they are exclusively semiconducting, unlike carbon nanotubes, which are both 

metallic and semiconducting. Moreover, NWFETs are highly reproducible because the nanowire 

growth process can be controlled without difficulty. NWFETs are mainly functionalized with 

covalent bonds, a process which takes advantage of current knowledge regarding the chemical 

modification of oxide surfaces. A particular feature of NWFETs is that nonselective binding 

seems to be much less of a problem than it is for CNTFETs, which means that nanowires are not 

commonly protected with a blocking agent after functionalization. Other quasi-one-dimensional 

nanostructured FET devices include nanobelts and nanorods mainly made of different metal 

oxides [19], although these have yet to be widely applied as potential chemical sensors.  
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Quasi-one-dimensional nanostructured FETs (i.e., FETs that contain just a few SWCNTs or 

nanowires) have several better intrinsic properties than traditional FETs based on the metal 

oxide semiconductor technology. In addition to the semiconductor channel being in direct 

contact with the target analytes, they have either a larger on-state current and 

transconductance or a smaller off-state current, which makes these FETs better suited for 

sensing applications. However, from an operative point of view these FETs are expensive devices 

because they depend heavily on costly lithographic techniques. A few devices have been built 

using less costly screen-printing techniques that deposit silver conductive paint as the source 

and drain electrodes, but the reproducibility of these devices is worse than when lithographic 

techniques are used.  

Graphene is a nanomaterial that could soon provide ultrafast electronics, and is the best 

example of a two-dimensional nanostructured material used as the conducting channel in FETs. 

The two-dimensional nature of graphene combined with its quantum properties and high carrier 

mobilities make it a promising material for use in the next generation of sensors, particularly 

those based on the field effect, although graphene-based FETs cannot be turned off owing to the 

absence of a band gap, leading to an on/off ratio of around 5. Recent FETs using bilayer 

graphene in a dual-gate FET have been reported as having on/off ratios of between 100 and 

2,000 [20], although the construction of these devices involves complicated and lengthy steps 

such as identification of bilayer flakes using optical and Raman spectroscopies or the use of 

different lithographic techniques. One of the main obstacles so far to using graphene is probably 

the construction of reproducible FETs. Mechanical exfoliation from natural graphite is probably 

the most widely used method for obtaining single- and multilayer graphene films. Other tedious 

and complicated methods can be used to obtain high-quality graphene sheets, for example, one 

recently reported method obtains high-quality graphene sheets in only 10 min by quenching hot 

graphite in an ammonium hydrogen carbonate aqueous solution [21]. Although graphene FETs 

are a very recent development and have not been as widely applied as CNTFETs or NWFETs, 

each year they are applied in an increasing number of applications and for different analytes, 

including vapor [22], pH [23] and proteins [24]. Figure 4.1-2 shows a solution-gate FET in which 

graphene exhibits an ambipolar behavior, and the shift in the negative gate potential as a result 

of the pH change follows a supra-Nernstian response of 99 meV/pH [23]. To summarize, we can 

say that current graphene-based FET technology is in a similar place as SWCNT-based FETs or 

NWFETs were 5–7 years ago. Graphene-based FET devices have shown immense potential for 

sensing applications (some authors claim that these devices have lower electrical noise and 
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lower detection limits than those based on SWCNTs and nanowires [25]). However, suitable 

graphene functionalization strategies must be developed to achieve adequate selectivity. The 

successful application of graphene-based FETs to real samples remains a challenge for the 

future.  

 

Figure 4.1-2 A solution-gated FET based on few layers of graphene (top). Hydronium (H3O
+
) and hydroxyl (OH

-
) ions in 

the solution capacitively charge the surface of the graphene and thus induce an ambipolar charge transfer, 

characterized by a V-shaped conductivity versus gate potential curve (bottom). Scanning tunneling microscopy images 

of the graphene layers (right) [23] 
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From an operative point of view, the reduction in the size of FET devices made from 

nanostructured materials should be accompanied by the development of portable 

semiconductor analyzers so as to enable analysis in situ. Moreover, FETs require skilled and 

trained personnel to correctly select the potentials to be applied to the gate and to the 

conducting channel so as to record optimized measurements. 

3.2.4.2. Ion-selective electrodes 

The field of ISEs has recently been revitalized by several factors. The thorough understanding of 

the chemical and physical processes, especially the ion fluxes in the polymeric membranes (the 

sensing layer, which contains the ionophore that is the molecular receptor), has led to very low 

limits of detection and increased selectivities. Moreover, eliminating the undesired inner water 

layer has improved the performance of the electrodes [26, 27].  

One challenge remains which would complement these achievements: the miniaturization of the 

electrodes. The main motivation for miniaturization is to satisfy the need to obtain analytical 

information faster. Multitarget and/or multisample determinations would be highly desirable in 

potentiometry and the development of multianalyte electrodes would add substantial value to 

the already attractive characteristics of these electrodes. Miniaturization is a prerequisite for the 

development of multielectrodes. Pipette-type ISEs were miniaturized in a robust way by 

Gyurcsányi et al [28] and they have recently been multiplexed [29]. Although miniaturized 

electrodes based on the classic scheme of an inner filling solution and polymeric membranes 

have been in use for a long time, the development of microcavities and the electrical instabilities 

generated by the use of pulled-glass micropipette tips make these needle-type electrodes very 

cumbersome to fabricate and delicate to use.  

Solid transducers are very attractive because they avoid the use of internal liquids, do not 

require maintenance, are easy to store, and do not display any risk of solution leakage. 

Moreover, all-solid-state electrodes can operate in any position or configuration. Many 

researchers have investigated new transducer materials to obtain solid-contact ISEs with stable 

electrode potential. To achieve this, it is necessary to have sufficiently fast and reversible ion-to-

electron transduction in the solid state without any contribution from parasitic side reactions 

[30].  

In the early 1990s, several components from the conducting polymer family were introduced as 

promising transducers because they showed an excellent ion-to-electron transducing ability that 

overcame the signal instability problems in coated-wire electrodes and triggered the new wave 
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of solid-contact ISEs [31, 32]. The solid-contact concept has been widely accepted within the ISE 

community since the publication of the papers by Sutter et al [33, 34] in 2004 which showed that 

the detection limit of all-solid-state ISEs could be extended to the subnanomolar range by using 

electropolymerized conducting polymers.  

Different research groups have actively participated in determining the transduction mechanism 

in conducting polymers. Basically, conducting polymers behave as anion or cation exchangers 

and when ions approach or move away from the doped electroactive polymer backbone, redox 

processes are established and the ion-to-electron transduction takes place. Moreover, the high 

redox capacitance enables stable responses to be obtained from the solid-contact ISEs. 

Nevertheless, conducting polymers show some disadvantages, such as secondary reactions with 

redox interferences and high sensitivity to CO2 and O2. A recent study investigated the formation 

of a water film between the conducting polymer and the membrane because this is especially 

critical for measurements in the low limit of detection range and for the stability of the sensor 

[26]. Another drawback to conducting polymers is related to the light sensitivity of the 

semiconducting conducting polymers [35]. The difference in energy between the valence and 

conducting bands of most of these compounds matches the visible–near UV wavelengths of 

daylight, which clearly affects the measurements.  

Nanostructured materials were initially introduced as new transducers in ISEs in an attempt to 

overcome the main drawbacks displayed by conducting polymers. Fouskaki and Chaniotakis [36] 

recently reported the first ISE which uses a layer of fullerenes as the transducing element. The 

authors attributed the charge-transfer mechanism to the ability of C60 to accept and donate 

electrons and to act as a solid electrolyte film between the membrane and the inner conducting 

support. Other nanostructured materials have also been assayed as transducing elements; these 

include three-dimensional ordered macroporous carbon [37], platinized porous silica [38], 

SWCNTs [39, 40], multiwalled carbon nanotubes [41] and the composite material multiwalled 

CNT–poly(3,4-ethylene-dioxythiophene) [42].  

Usually, the nanostructured material is deposited onto the conducting substrate in layers that 

are several micrometers thick. Fullerenes are deposited as crystalline layers, carbon nanotubes 

are randomly entangled, forming spaghetti-like films, and macroporous carbon is a monolith 

displaying an array of uniform spherical nanometric pores imbedded in a glassy carbon 

structure. In all cases the contact surface between the nanostructured material and the ion-

selective membrane is very large and the transducing mechanisms seem to be very similar. The 
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high stability of the recorded potential exhibited by all the nanostructured materials is 

attributed to the large double-layer capacitance which results from their very large surface-to-

volume ratio [37, 43]. Moreover, carbon nanotubes display a notable charge-transfer capability 

between heterogeneous phases. Recently, Crespo et al [43] graphically represented the different 

electrical contributions involved in the ion-to-electron transduction mechanism. Figure 4.1-3 

displays these contributions, which, unlike in the transduction in conducting polymers, have a 

nonfaradaic character.  

 

Figure 4.1-3 The ion-to-electron transduction process of the glassy carbon(GC)/single-walled carbon nanotube 

(SWCNT)/electrolyte system. The electronic bulk capacitance is generated at the asymmetric capacitor established 

between the SWCNT wall and the solution (this solution would be replaced by the ion-selective membrane in a solid-

contact ion-selective electrode). N 
+ 

cation, A 
- 
anion, e 

– 
electron 

Unlike FETs, which need semiconducting nanorods or nanotubes, the transducing elements in 

ISEs do not need a nanostructured material with specific electrical characteristics. The large 

number of individual nanostructures (e.g., carbon nanotubes) involved in the transducing layers 
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means that the resulting devices are highly robust from a physical point of view. Moreover, their 

deposition is easily reproduced, providing highly precise instruments. Additionally, all carbon-

based nanostructures display hydrophobicity, which is important for preventing water layers 

from forming between the ion-selective membrane and the transducing layer. Moreover, the 

risk of interferences is further reduced because they are insensitive both to light and to species 

displaying redox behavior. Therefore, although the nanostructured materials in ISEs are not in 

direct contact with the analytical targets (unlike in the majority of CNTFETs), they do have a 

series of unique characteristics that make them very valuable as substitutes for conducting 

polymers.  

Zhu et al [44] went a step further by incorporating a transduction layer made of multiwalled 

CNTs into the polymeric membrane. However, 3 years earlier, Abbaspour and Izadyar [45] had 

reported the determination of Cr(III) in real samples using a coated wire electrode and a PVC 

membrane containing the same type of carbon nanotube. They used a very simple electrode 

preparation method to disperse the nanotubes into different polymeric ion-selective 

membranes, and demonstrated that the instrumental signal recorded was very stable and the 

performance characteristics were comparable to those of previously developed electrodes. 

However, the transducing mechanism of these ISEs has yet to be reported. Other nanostructures 

have also been used as components of the ion-selective membrane in ISEs; for example, PbO 

and PbS nanoparticles have been used in a cellulose acetate membrane [46] and in PVC 

membranes [47], respectively, to detect Pb(II). Nevertheless, in the latter case, the 

nanostructured material acts as an ionophore, that is, as the basic component of the sensing 

layer, and not as a transducing layer.  

3.2.5. New potentiometric sensors using nanomaterials 

The introduction of nanostructured material enables the development of a new type of 

potentiometric sensors in which the polymeric membrane has been replaced by receptors linked 

directly to the transducers. The functionalization of some of these materials, particularly carbon 

nanotubes, has been extensively studied of these reports, our group investigated the possibility 

of directly linking the receptor molecules to carbon nanotubes instead of entrapping them in the 

ion-selective polymeric membranes.  

These types of sensors are very different from ISEs for different reasons: (1) the receptor is 

immobilized onto the walls of carbon nanotubes instead of being entrapped in a polymeric 

membrane; (2) the receptor is in direct contact with the target, and the recognition event is 
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based on an affinity process; (3) the targets are not necessarily small ions, but instead can be 

large multiionic species such as proteins or complex systems such as microorganisms; (4) the 

sensing mechanism is based on a superficial phenomenon, very different from the well-

established phase-boundary potential model in ISEs; (5) the sensing mechanism is based on the 

potential generated by the different charged species in the chemical environment of the 

nanotubes, which in turn means that the calibration curves do not follow the classical Nernstian 

model; (6) the sensitivity of the new sensors is very low compared with that of ISEs, but it is high 

enough to enable the detection of the target as shown in the examples given below.  

Düzgün et al [48] covalently linked a thrombin aptamer to a layer of carboxylated SWCNTs, thus 

developing the first aptasensor able to record a potentiometric signal that is directly 

proportional to the concentration of the target protein. The direct potentiometric signal can be 

easily recorded within 15 s and the method has a limit of detection of 80 nM. Fluorescence 

confocal microscopy results obtained with this labeled aptamer seem to confirm that the 

biosensing mechanism is based on the competition between the target analyte and the SWCNTs 

for the aptamer. The presence of the target protein induces a conformational change in the 

aptamer that separates the phosphate negative charges from the SWCNT side walls, thus 

inducing the subsequent increase of the recorded potential. This mechanism is similar to the one 

described by Levon’s group *49], which used polyaniline as a transducer to monitor DNA 

hybridization.  

Following this approach, Zelada-Guillén et al [50] demonstrated the feasibility of quantitatively 

determining the presence of very low levels of bacteria in a rapid and selective way using the 

hybrid material carbon nanotube–aptamer. Figure 4.1-4 shows a schematic representation of 

the interaction between the target bacteria and the hybrid aptamer–SWCNT system. Figure 4.1-

4 also shows an environmental scanning microscope image obtained from an aptamer-

functionalized SWCNT electrode after it had been exposed to Salmonella typhi (panel A) and the 

same electrode’s two main performance parameters, sensitivity (panels B and C) and selectivity 

(panel D).  
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Figure 4.1-4 Left: The interaction between the target bacteria and the hybrid system aptamer–SWCNT. Right: 

Environmental scanning microscope image obtained from an aptamer-functionalized SWCNT electrode after exposure 

to Salmonella typhi (A) aptamer-functionalized SWCNT electrode exposed to stepwise increases of Salmonella typhi 

concentration (B), EMF response versus log of concentration of Salmonella typhi (C), and controls and selectivity 

assays (D) [50] 

The low limit of detection achieved is probably due to the fact that many aptamers 

simultaneously link to the same bacterium, thus providing a clearly distinguishable signal. This 

new type of potentiometric sensor expands the field of potentiometry to include large charged 

species that cannot be analyzed using the classic ISEs because they are unable to be extracted in 

the polymeric membranes. However, some challenges still remain to be solved. One is the 

characterization problem. It is necessary to be able to correctly characterize the number of 

receptors linked to the nanotubes’ surface to be able to optimize the devices. Moreover, the 

sensing mechanism should be clearly established. Although Düzgün et al [48] made some 

suggestions regarding the nature of the detection system, it still remains to be fully 

demonstrated. The new sensors also display some drawbacks. For instance, the devices have a 

rather narrow instrumental response range, which is probably because the electrostatic 

interactions on the sensor’s surface are limited in their ability to generate large potential values. 

The ionic strength should be strictly controlled. All potentiometric sensors are sensitive to 

changes in the ionic strength but these devices, which are based on a superficial interaction, are 

more susceptible to ionic strength changes than ISEs. Finally, test samples containing charged 
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species that can approach the carbon nanotubes and undergo a charge transfer should be 

preprocessed so they can be eliminated. 

3.2.6. Potentiometry as a tool for analyzing nanostructured materials 

The improvements in ISE limits of detection have led to very promising applications in 

biochemical assays involving nanostructured materials. A cadmium ISE was used to quantify Cd2+ 

in a heterogeneous immunoassay. To do so, a microtiter plate format sandwich immunoassay 

was carried out on mouse IgG using CdSe quantum dot labels on a secondary antibody. The 

CdSe–quantum dot labels were dissolved in H2O2 and the response of the selective electrode 

was recorded [25]. Very recently, ISEs have also been used to characterize nanostructures and to 

monitor processes that involve nanostructured materials such as biometallization processes and 

nanoparticle growth. A copper ISE was used to monitor in real time the NADH-mediated 

reduction of copper in the presence of gold nanoparticle seeds [51]. Silver ISEs have been used 

in a glucose biosensor to monitor Ag+ generated from silver nanoparticles. These silver 

nanoparticles were oxidized by the H2O2 resulting from the oxidation of glucose by glucose 

oxidase [52]. Silver ISEs were also used to monitor the hydroquinone-induced precipitation of 

silver on gold nanoparticle seeds [53]. The growth dynamics of metal nanoparticles obtained 

from the potential–time recordings correlate well with classical optical measurements, and are 

useful because they are independent of sample turbidity. In these methods, ISEs are used as the 

detection device because of their extremely low detection limits. However, the steps involved in 

these methods must be carefully evaluated to determine the value of the potentiometric 

detection technique compared with that of the traditional techniques that use labels normally 

employed in biochemical assays. 

3.2.6.1. Other potentiometric systems 

The chemical interactions between species within nanopores offer interesting detection 

characteristics. Although all the interaction mechanisms have yet to be fully described, the basic 

idea is that the nanopore, and the interactions within it, modulates the transport characteristics 

of the target analytes. This offers the possibility of analyzing very small volumes of samples 

without using labels. Historically, nanopores have been classified into two groups, “biological” 

and “solid state”, depending on the techniques used to make them. In contrast to the 

development of biological nanopores, that of solid-state nanopores has grown rapidly in recent 

years owing to the implementation of nanoprocessing and nanofabrication techniques. High 

reproducibility, low cost, robustness, and flexibility in terms of size, shape, and material type of 

are some of the features of modern nanopores [54]. Shim et al [55] developed the first all-solid-
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state ISE using glass nanopores with a diameter of 15–100 nm. In this case the nanopore was 

fabricated by sealing a conically etched platinum wire in a glass capillary and developing an 

AgCl/Ag electrode within the pore. The AgCl/Ag-layer-coated ISE was used in electrochemical 

microscope experiments to map the presence of the Cl- ion by using the flux through the 

micropore. Very recently, Studer et al [56] reported the formation of nanopores using lipid 

bilayers. The diffusion of sodium ions across α-hemolysin channels was determined using ISEs. 

Small changes in the geometry of the nanopores resulted in large variations in the observable 

dynamic biomolecular processes. There is every chance that this area will offer interesting 

possibilities in the future for miniaturizing potentiometric sensors; however, in addition to 

solving the technical challenges inherent in manipulating nanopores, a thorough understanding 

of the theoretical aspects involved in the sensing process is still needed. 

3.2.7. Outlook 

Nowadays, potentiometric sensors have very attractive features, such as extremely low limits of 

detection and significant selectivity coefficients that complement favorable operational 

parameters such as simplicity, low cost, and labelless detection. However, multianalyte portable 

sensors should be available on the market to meet current analytical requirements. The future 

will therefore probably see the miniaturization of the potentiometric devices in response to the 

need for multiplexed in situ determinations. This envisaged miniaturization of all-solid-state 

electrodes will probably become a reality soon. Designing efficient solid ion-to-electron 

transducers that provide stable potential measurements is one of the key elements in the future 

development of robust arrays of potentiometric ultramicroelectrodes with diverse geometrical 

patterns. New nanostructured materials such as graphene that are being tested and compared 

with the available nanostructures will probably play an important role in this area. Solid-state 

miniaturized reference electrodes will be particularly important.  

The wealth of studies on the functionalization of nanostructured materials has provided broad 

knowledge for the immobilization of different sensing layers. In this way, the different 

bioconjugation techniques, such as covalent and noncovalent bonding and entrapment or 

encapsulation of the receptors in the nanoparticles [57–61], nanotubes [62–65], nanowires [66–

69], and other nanostructures [70, 71] that perform as transducers, will enable the development 

of new devices with different sensing mechanisms that complement the classic entrapment of 

ionophores within the polymeric structure of ion-selective membranes. The incorporation of 

new receptors will expand the range of analytes that can be determined using potentiometry to 

include entities such as DNA, proteins, viruses, and higher cellular organisms that are of 
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particular interest to biology and medicine. Nevertheless, the reader should be aware that all 

superficial interactions in potentiometry are limited by the screening of the ions in solution. 

Therefore, ionic strength must be strictly controlled.  

Isolated nanostructures are the most sensitive; however, technical improvements are necessary 

to develop low-resistance, reproducible, and robust contacts between these nanostructures and 

the conducting material. Moreover, the use of micro- and nanofluids is necessary for the target 

analyte to encounter the receptor. Sensors that combine the characteristics of nanopores and 

electrochemical/potentiometric detection will be exhaustively explored in the future. Combining 

the chemical functionalization of these nanostructures with the needle-type ISE (with or without 

ion-selective membranes) will enable the development of even more sensitive instruments.  
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3.3. Recent advances of nanostructured materials in potentiometry 

3.3.1. Introduction 

A detailed explanation of FETs and ISEs, with the concept theory and examples of different types 

of them, has already been given in chapters 3.2.4.1 and 3.2.4.2, respectively.  Chapter 3.2.5 

explained some different types of potentiometric sensors using nanomaterials and chapter 3.2.6 

introduced recent works about the characterization of nanomaterials via potentiometry.  

More detailed discussions regarding general nanoscience concepts and their possible 

applications in (bio)sensor technology have been recently reported in the literature [Reithmaier 

2011, Li 2011]. 

Considering the recent trends in potentiometric sensing in different types of solid state sensors 

and biosensors, the following section introduces an update of the recent advances that have 

been appeared after the ones mentioned in chapter 3.2.  

3.3.2. Field-effect transistors 

Recently, Tian et al [Tian 2010] have managed to build a three dimensional pH FET, more 

specifically a nanoscale field-effect transistor (nanoFET) at the tip of an acute-angle kinked 

silicon nanowire, where connections are made by the arms of the kinked nanostructure, and 

remote multilayer interconnects allow three-dimensional (3D) probe presentation. The authors 

showed a near Nernstian response with ~58 mV/pH. Similarly, a leaf-like carbon nanotube/nickel 

(CNT/Ni) composite nanostructure is developed by Huang et al [Huang 2011] as the sensing 

membrane in an extended-gate field-effect transistor (EGFET) for the pH sensing using a 

nanocomposite plating technique. While sensing pH within a working range of 2-10, the leaf-like 

CNT/Ni EGFET exhibited a sensitivity of 59 mV/pH. This simple and low-cost sensing membrane 

can be applied in disposable biosensors. Hagen et al [Hagen 2011] reported zinc oxide field 

effect transistors (ZnO-FETs), covalently functionalized with single stranded DNA aptamers as a 

selective platform for label-free small molecule sensing. The sensor demonstrated selective 

detection of riboflavin down to pM levels in aqueous solution using the negative electrical 

current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the 

surface. On another hand, Chen et al [Chen 2011] managed to obtain ultrahigh detection limit 

below attomolar level concentrations with their GaN nanowire (GaNNW) based EGFET 
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biosensor, capable of specific DNA sequence identification under label-free in situ conditions. 

Graphene based FETs, that are using graphene as the channel material, have also been used in 

the recognition of proteins (Ohno 2009), bacteria (Mohanty 2008), and single stranded DNAs (Lin 

2010). Furthermore graphene based FETS are very recently used to detect glucose [Kwak 2012] 

by functionalization the CVD-grown graphene with linker molecules in order to immobilize the 

enzymes that induce the catalytic response of the sugar. 

3.3.3. Ion-selective electrodes 

Ciosek et al [Ciosek 2011] succeeded to classify amino acids and oligopeptides using 8 different 

classical potentiometric ISE arrays based on the increase of information gained during 

measurements of sensors’ signals at various pH. In this way, they are able to capture more 

potentiometric data on interaction of amino acids and oligopeptides. Ghaedi et al [Ghaedi 2011] 

incorporated MWCNTs into their carbon paste electrodes including sodium tetraphenylborate 

(NaTPB), BHBAHMBP, Nujol, and graphite powder. Different amounts of MWCNTs 

(500/3.4/150/6.0/50 mg) were added to optimize the response against Pb2+ ions. At optimum 

values of variables, the proposed electrode response toward Pb2+ ion was linear in the range of 

5.0×10-7 to 1.0×10-1 mol L-1 with slope of 29.50 mV per decade-1 of Pb2+ ion concentration and 

detection limit of 2.5×10-7 mol L-1. The electrode response was in the pH range of 2.7-4.0, while 

the response time of the electrode was ~ 40 s. Kisiel et al [Kisiel 2010] used polypyrrole 

microcapsules as a transducer for ion-selective electrodes to detect Ca2+ ions. They have 

managed to obtain a potentiometric response slope equal to 23.9 ± 0.1 mV/dec, and detection 

limit equal to 10− 4.3 M. Addition of platinum and gold nanoparticles [Jaworska 2011a, 2011b] 

enabled to decrease the resistivity of polyacrylate ion-selective membranes, and to increase the 

potential reading stability on ISEs, respectively. Our group also recently reported several 

novelties: an ISE to determine Ca2+ ions in sap [Hernández 2010]; covalent immobilization of a 

new hybrid material, i.e. benzo-18-crown-6 covalently linked to MWCNTs, and its use in solid-

state ion-selective electrodes both as a receptor and an ion-to-electron transducer for Pb2+ 

determination [Parra 2011]; solid-state classical and planar reference electrodes based on CNTs 

and polyacrylate membranes [Rius-Ruiz 2011a, 2011b]; and a potentiometric planar strip cell 

based on SWCNTs that aims to exploit the attributes of SC-ISEs for decentralized measurements 

[Rius-Ruiz 2011c]. 

Mousavi et al [Mousavi 2011] compared Multi-walled carbon nanotubes (MWCNTs) with poly(3-

octylthiophene) (POT) as ion-to-electron transducer in all-solid-state potassium ion-selective 

electrodes with valinomycin-based ion-selective membranes using potentiometry and 
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electrochemical impedance spectroscopy. They found that the MWCNT-based electrodes have a 

more reproducible standard potential and a lower overall impedance than the electrodes based 

on POT. Both types of electrodes showed similar sensitivity to potassium ions and no redox 

sensitivity. 

3.3.4. New potentiometric sensors using nanomaterials 

Chirizzi et al [Chirizzi 2011] introduced a potentiometric urea biosensor based on urease (Ur) 

electrochemical immobilisation by poly(o-phenylenediamine) (PPD).  Our group also reported a 

biosensor based on the same theory of functionalization of SWCNTs with aptamers to detect 

Escherichia coli (E. coli) CECT 675 in complex samples [Zelada-Guill n 2010+ and sensors 

incorporating SWCNTs as both recognition and transduction elements to detect aromatic 

hydrocarbons in aqueous solutions [Washe 2010]. Moreover, a new sensor containing covalently 

functionalized SWCNTs with adenosine monophosphate as potential transducing and 

recognition elements in potentiometric sensors has recently been reported [Blondeau 2011]. 

3.3.5. Conclusions  

As it can be seen from the very recent reports in the literature, both ISEs and FETs continue 

being an area of large scientific interest, where new techniques and nanomaterials are 

increasingly used due to their new and attractive properties. However, the new type of 

membraneless electrodes, based on the direct linking of the receptor to the carbon nanotubes, 

which creates the base of the current thesis, is yet to be widely studied and exploited. 

Improvements should be performed not only to develop robust and reliable sensors but to know 

the sensing mechanism as well.  
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CHAPTER 4 

EXPERIMENTAL SECTION  

4.1. Introduction 

This chapter describes in detail all the apparatus, materials, and reagents used along the 

experimental chapters of the thesis. Some useful references and development procedures are 

also introduced. Also, microscopic and electrochemical characterization techniques are 

described with their corresponding objectives. 

4.2. Apparatus, materials, and reagents 

4.2.1. Apparatus 

A Keithley (U.K.) 6514 potentiometer, a Lawson (USA) multi-channel potentiometer and a 

Metrohm (Switzerland) Ag/AgCl reference electrode were used to perform the potentiometric 

experiments. A CHI Instruments (USA) electrochemical workstation was used for cyclic 

voltammetry (CV) experiments. A FEI Company (Netherlands) SEM-Quanta 600 is used to take 

the SEM image. Confocal images were acquired using a NIKON TE2000-E confocal laser scanning 

microscope. A Sutter 2000 puller machine was employed to make the teflon outer coatings for 

the glassy carbon rods. 

4.2.2. Materials 

The single walled nanotubes (SWCNT) were purchased from HeJi (China) in bulk form with > 90 

% purity, 150 μm average length and 1.4-1.5 nm of diameter. 15-mer (5’-GGT TGG TGT GGT 

TGG-3’)5’-NH2-modified (with a 3-carbon spacer) thrombin binding aptamers (TBA), 15-mer (5’- 

GGTTGGTGTGGTTGG-3’) 5’-SH modified (with a 3-carbon spacer) TBA,  35-mer (5’-TCT CTC AGT 

CCG TGG TAG GGC AGG TTG GGG TGA CT-3’)5’-NH2 (with a 3-carbon spacer) TBA and 3’-

carboxyfluorescein (FAM) modified TBA were purchased from Eurogentec (Cultek, Spain). 

Human α-thrombin supplied by Haematologic Technologies (Vermount, USA). Gassy carbon (GC) 

rods were purchased from HTW (Germany). 
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4.2.3. Reagents 

The reagents 1-ethyl-3-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS) and N-morpholinoethane sulfonic acid (MES) buffer were purchased 

from Acros Organics (Belgium). Phosphate buffer solution (PBS) is from Panreac Quimica (Spain). 

PBS was a mixture of 84 mL of 0.2 M NaH2PO4 and 16 mL 0.2 M Na2HPO4 in 100 mL of water to 

a final pH 7.5. Cetyl trimethylammonium bromide (CTAB) was purchased from Sigma-Aldrich 

(Spain). Aniline monomer (Aldrich) was distilled and kept cooled at 4 ºC. It was also kept in the 

dark to avoid any potential photooxidation. Sodium dodecyl sulphate (SDS) and sodium dodecyl 

benzene sulfonate (SDBS) (Aldrich) was used as purchased. [Ru(NH3)6]3+ (RuHex, Ru[(NH3)6]Cl3) 

were purchased from Sigma Aldrich (Spain). 

4.3. Procedures 

4.3.1. Pretreatment of carbon nanotubes 

As the SWCNTs were purchased in bulk from, they need a two-step purification and 

carboxylation processes depending basically on the application required.  

Firstly, oxidation of the amorphous carbon is achieved through a dry heating purification step to 

minimize the nanotubes’s loss. Carbon nanotubes are heated up to 360 ºC under an oxygen at-

mosphere for 90 min [Furtado 2004]. 200 mg SWCNTs are put inside quartz tubular reactor (4 

cm x 120 cm, Afora) and heated by a horizontal split tube furnace (HST/600, Carbolite). At the 

same time, a dry air current flows (100 cm3.min-1, Carburos Metálicos) through the tube. 

Secondly, the SWCNTs were refluxed in 2.6 M nitric acid for 4 h for the carboxylation process 

and to further purify them by oxidizing the metallic impurities. The SWCNTs in nitric acid 

solution were then filtered and rinsed with Milli-Q water to remove the acid completely, and 

subsequently dried overnight at 80 ºC. 

4.3.2. Deposition of carbon nanotubes 

4.3.2.1. Spraying 

SWCNTs were deposited onto the glassy carbon (GC) substrates by an optimized spraying 

technique derived from the report of Kaempgen et al [Kaempgen 2005]. 10 mg of SWCNTs were 

powdered via an agate mortar miller and dispersed in 10 ml of 1 % wt of sodium dodecyl 

sulphate (SDS). The dispersion was homogenized by tip-sonicator for 30 min (amplitude 60 %, 

cycle 0.5, Ultraschallprozessor UP200S, Dr. Hielscher). After a few seconds to settle, only the 

superior fraction is transferred to the compartment placed on the spray-gun. The electrodes are 
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placed at 30 cm in perpendicular line. The deposition was achieved in successive steps. After 

spraying the dispersion of SWCNTs for 2 seconds, the layer was dried by a hot-gun, thoroughly 

washed with water and dried again. The aim of this last step was to eliminate as much as 

possible the SDS on the electrode. The process was repeated 35 times obtaining a thickness 

around 35 μm (Figure 4.1). 

 

Figure 4.1 The scheme depicting the deposition of the CNTs by spraying technique onto the glassy carbon substrate. 

4.3.2.2. Drop casting 

1 mg of acid-purified SWCNT is dispersed in 1 ml of dimethyl formamyde (DMF) to form 

homogeneous dispersion. The glassy carbon rod covered with teflon is placed vertically onto the 

electric heater in such a way that the lower tip is in contact to the hot electric plate adjusted at 

200 ºC. The solution of SWCNTs in DMF is drop casted onto the tip of the electrode by waiting 5 

min after each drop. In this way the solvent is evaporated. The total numbers of the drops are 

10. 

4.3.2.3. Immersing in SWCNTink 

In order to prepare the ink, we have used the SWCNTs and the SDBS, mixing them in water. The 

new solution is sonicated in the bath for 60 min. Later, the dispersion was further sonicated for 

90 min in the tip sonicator. 

4.3.3. Electrochemical deposition of polyaniline 

Polyaniline films were electropolymerized onto the polished distal end of the glassy carbon rod 

via cyclic voltammetry with a three-electrode system that consisted of an Ag/AgCl reference 

electrode, a platinum wire as a counter electrode, and a GC rod as a working electrode. Prior to 
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electropolymerization, GC rods were pre-treated with 0.85 V potential during 10 s for the 

activation of the surface. Electropolymerization of aniline was carried out potentiodynamically 

on the GC rod within the potential range of -0.15 to 0.85 V by applying 50 potential cycles at a 

sweep rate of 100 mV/s. 

4.3.4. Development of solid contact sensors 

The GC rods were inserted by mechanical pressure into a hard teflon body. The electrical 

connections were directly made with a clamp in contact with the overhanging GC (teflon body: 

length 40 mm and external diameter 6 mm, Amidata SA). 

4.3.5. Development of paper based sensors 

Sensors were prepared by first dipping the rectangular cut (1 x 2 cm) filter papers into the 

nanoink for two days followed by rinsing in MilliQ water 24 hours. 

4.3.6. Functionalization of aptamers 

4.3.6.1. Covalent functionalization of aptamers 

For SWCNTs based sensors, the carboxylic groups of the SWCNTs were activated with a solution 

containing 200 mM EDC and 50 mM NHS [Williams 2002] (dissolved in MES buffer, 50mM, pH 

5.0). The GC surface containing the SWCNTs was dipped in this solution for 30 minutes. To 

covalently link the TBA to the walls of the SWCNTs through the nucleophilic attack of the amine 

to the activated carboxylic group, the sensor subsequently was dipped overnight in a solution 

containing 0.001 M PBS, 1 μM 5’-amine-TBA, as well as 0.2 mM of CTAB, a positively charged 

surfactant, added to facilitate the TBA immobilisation as the CTAB  interacts with the remaining 

non-activated carboxylic groups (negatively charged) and avoids the electrostatic repulsion 

between these carboxylic groups and the TBA (also negatively charged at pH=7.5). Scheme 1 

shows the steps of the covalent immobilisation of TBA. 

For PANI based sensors, PANI modified GC probe is dipped into 5 µM TBA solution overnight for 

immobilization of the thrombin aptamer via aromatic substitution at the conducting polymer 

surface [Zhou 2009] 

4.3.6.2. Non-covalent functionalization of aptamers 

The GC surface containing the sprayed non-carboxylated SWCNTs was dipped in 5 μM solution 

of aptamers for overnight and rinsed 3 times with MilliQ water. 
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4.3.7. Microscopic characterization 

4.3.7.1. Scanning electron microscopy 

Environmental Scanning Electron Microscopy (ESEM) was used to characterize the CNT’s layer 

deposited onto the electrodes by the spraying technique. The SWCNTs layer was attached to the 

support inside the E-SEM chamber. Parameters (potential, pressure and working distance) were 

characterized in each case to obtain the maximum resolution possible of the images. 

4.3.7.2. Confocal laser electron microscopy 

Confocal images were acquired using a NIKON TE2000-E confocal laser scanning microscope 

using 488 nm line from an argon laser for excitation. Images were recorded using an x100 oil 

immersion objective. 

4.3.8. Electrochemical characterization 

4.3.8.1. Potentiometry 

A Keithley 6514 and Lawson multichannel high input resistance (1015 Ω) potentiometers were 

used to record electromotive forces (EMF). A double-junction Ag/AgCl/KCl (3 M) reference 

electrode (type 6.0729.100, Methrom AG) containing a 0.1-1 M LiAcO electrolyte bridge was 

used. The measurements were performed in stirred solutions at room temperature. 

4.3.8.2. Cyclic voltammetry 

Cyclic voltammetry experiments are conducted with a three-electrode system that consisted of 

an Ag/AgCl reference electrode, a platinum wire as a counter electrode, and a GC rod as a 

working electrode. 

4.3.8.3. Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy experiments were performed in a preliminary attempt 

to elucidate the nature of the mechanism that may explain the increase of potential after the 

aptamer-protein interaction. The impedance spectra were recorded first with the sensors 

containing only a SWCNT layer, secondly after the aptamer functionalization, and finally after 

the interaction of the TBA functionalized SWCNTs. 
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CHAPTER 5 

APPLICATIONS 

5.1. Introduction 

This chapter focuses on applications. The main aim is to develop two sensors to determine 

thrombin. In chapter 5.2, glassy carbon rod, covered with a Teflon jacket, is used as the sensor 

backbone while in chapter 5.3 a filter paper based CNTink aptasensor is described. Both chapters 

describe aptasensors that uses aptamers as recognition elements and SWCNTs as transduction 

elements to detect thrombin in aqueous solutions. 

Recent advances in potentiometric protein determination using aptamer based sensors during and 

after the publications of the articles are also introduced and discussed in section 5.4. 

5.2. “Solid-contact potentiometric aptasensor based on aptamer 

functionalized carbon nanotubes for the direct determination of proteins” 
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5.2.1. Abstract 

A facile, solid-contact selective potentiometric aptasensor exploiting a network of single-walled 

carbon nanotubes (SWCNT) acting as a transducing element is described in this work. The molecular 

properties of the SWCNT surface have been modified by covalently linking aptamers as 

biorecognition elements to the carboxylic groups of the SWCNT walls. As a model system to 

demonstrate the generic application of the approach, a 15-mer thrombin aptamer interacts with 

thrombin and the affinity interaction gives rise to a direct potentiometric signal that can be easily 

recorded within 15 s. The dynamic linear range, with a sensitivity of 8.0 mV/log aThr corresponds to 

the 10−7–10−6 M range of thrombin concentrations, with a limit of detection of 80 nM. The 

aptasensor displays selectivity against elastase and bovine serum albumin and is easily regenerated 

by immersion in 2 M NaCl. The aptasensor demonstrates the capacity of direct detection of the 

recognition event avoiding the use of labels, mediators, or the addition of further reagents or 

analyte accumulation. 

5.2.2. Introduction 

Potentiometric solid-contact electrodes display high selectivity, sensitivity, low limits of detection1,2 

and their miniaturizability and ease-of-use adds to their appeal. Since the first attempts in the mid-

seventies many efforts have been devoted to replace the polymeric membranes and use the 

electromotive force generated by a direct interaction between the suitable receptor and the target 

molecule. As an example, an antibody-antigen interaction to directly detect proteins has been 

described.3 However, the recorded signal was attributed later to secondary effects. Tang et al, have 

recently reported a potentiometric immunosensor for the detection of diphtheria antigens where 

the signal was large enough due to the building of sequential fields4 and a selective direct 

potentiometric myoglobin and hemoglobin sensor was reported using a gold coated silicon chip.5 

Potentiometric monitoring of DNA hybridization has recently been demonstrated.6 

Aptamers are able to bind to target proteins such as thrombin, a pluripotent serine protease, or 

other molecules with high affinity and specificity. Their small size, chemical simplicity, flexibility, 

reversible denaturation and use under non-physiological conditions, makes aptamers very 

advantageous with respect to other receptors such as antibodies, and consequently have been 

widely used to develop biosensors for protein detection.7–10 
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Carbon nanotubes (CNT) display extraordinary physical and electrical properties that are very 

beneficial for electrochemical detection,11 and these characteristics have been taken advantage for 

the development of field effect transistors using the hybrid material SWCNT-nucleic acid.12 Crespo et 

al13 recently demonstrated that SWCNTs can act as efficient transducers in solid-contact ion 

selective electrodes. However, the presence of a selective polymeric membrane allowed the 

determination of small charged molecules but hindered the detection of large biomolecules. 

Therefore, a recognition layer of the sensor, directly linked to the transducing SWCNT, is a very 

attractive alternative. 

In this report we describe the development of a solid-contact selective potentiometric sensor 

exploiting SWCNT as transducers, and aptamers as biorecognition elements, where the electrical 

potential following aptamer-target interaction is significantly changed to directly detect a protein 

target. The entrapment of the receptor into a polymeric membrane, routinely used in ion-selective 

electrodes, has been replaced by covalently linking the thrombin binding 5′-NH2-functionalized 15-

mer aptamer to the carboxylic groups of the SWCNT walls. In this way, aptamers assure selectivity 

towards the target molecule whilst the remarkable electronic properties of the SWCNT facilitate a 

significant potential change due to the charge distribution produced by the protein-aptamer binding 

process. 

5.2.3. Experimental 

5.2.3.1. Materials 

SWCNT were purchased from HeJi (China) in bulk form with >90% purity, 150 μm average length and 

1.4–1.5 nm diameter. 15-mer (5′-GGT TGG TGT GGT TGG-3′)5′-NH2-modified (with a 3-carbon 

spacer) thrombin binding aptamers (TBA) and 35-mer (5′-TCT CTC AGT CCG TGG TAG GGC AGG TTG 

GGG TGA CT-3′)5′-NH2 (with a 3-carbon spacer) and 3′-carboxyfluorescein (FAM) modified TBA were 

purchased from Eurogentec (Cultek, Spain). Human α-thrombin supplied by Haematologic 

Technologies (Vermount, USA). 

The reagents 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC), N-

hydroxysuccinimide (NHS) and N-morpholinoethane sulfonic acid (MES) buffer were purchased from 

Acros Organics (Belgium). Phosphate buffer solution (PBS) is from Panreac Quimica (Spain). PBS was 
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a mixture of 84 mL of 0.2 M NaH2PO4 and 16 mL 0.2 M Na2HPO4 in 100 mL of water to a final pH 7.5. 

Cetyl trimethylammonium bromide (CTAB) was purchased from Sigma-Aldrich (Spain). 

5.2.3.2. CNTs oxidation and purification 

200 mg of as-purchased SWCNT were oxidized in a silica furnace chamber in order to selectively 

remove the amorphous carbon impurity, using the following conditions; T = 365 °C, air flow-rate = 

100 cm3 min−1, t = 90 min. Subsequently, the SWCNTs were refluxed in 2.6 M nitric acid for 4 h to 

carboxylate them and to further purify them by oxidizing the metallic impurities.14 The SWCNT in 

nitric acid solution were then filtered and rinsed with Milli-Q water to remove the acid completely, 

and subsequently dried overnight at 80 °C. 

5.2.3.3. Sensor development 

The solid contact sensor is prepared by placing a 3 mm diameter glassy carbon rod within a teflon 

body with an outer diameter of 7 mm. The tip is first polished using a Buehler p4000 paper, 

subsequently 25 μm and finally 3 μm grain size alumina powder to obtain a smooth surface prior to 

the spraying process. 25 mg of the purified and dried SWCNTs were powdered in a marble mill and 

then dispersed in 10 mL of Milli-Q water containing 100 mg of Sodium Dodecyl sulfate (SDS) to form 

the micelles and increase the solubility of SWCNT in water. The solution was sonicated for 30 min at 

0.5 s−1 in order to achieve the maximum homogeneity of the dispersion. The sonicated solution was 

sprayed with approximately 1 bar pressure onto the glassy carbon surface under a high temperature 

(approx. 200 °C) air blower by spraying 35 times, dipping the surface into Milli-Q water under 

stirring conditions at intervals of 5 sprays so as to eliminate the SDS as its presence decreases the 

conductance on the SWCNT network. 

We deposited a layer of about 30 μm thickness (measured with SEM) of purified SWCNT onto the 

polished tip of a glassy carbon (GC) surface. 

5.2.3.4. TBA immobilisation process 

The carboxylic groups of the SWCNT were activated with a solution containing 200 mM EDC and 50 

mM NHS15 (dissolved in MES buffer, 50 mM, pH 5.0). The GC surface containing the SWCNTs was 

dipped in this solution for 30 min. To covalently link the TBA to the walls of the SWCNTs through the 

nucleophilic attack of the amine to the activated carboxylic group , the sensor subsequently was 
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dipped overnight in a solution containing 0.001 M PBS, 1 μM 5′-amine-TBA, as well as 0.2 mM of 

CTAB, a positively charged surfactant, added to facilitate the TBA immobilisation as the CTAB 

interacts with the remaining non-activated carboxylic groups (negatively charged) and avoids the 

electrostatic repulsion between these carboxylic groups and the TBA (also negatively charged at pH 

= 7.5). Scheme 5.2-1 shows the steps of the covalent immobilisation of TBA. 

 

Figure 5.2-1 Steps of the covalent immobilization of TBA. Activation of the carboxylic groups using EDC and NHS, and 

subsequent covalent functionalization of 5′-NH2-modified thrombin aptamer. 

5.2.3.5. Setup and measurements 

A Keithley (U.K.) 6514 potentiometer and a Metrohm (Switzerland) Ag/AgCl reference electrode 

were used to perform the experiments. A FEI Company (Netherlands) SEM-Quanta 600 is used to 

take the SEM image. Confocal images were acquired using a NIKON TE2000-E confocal laser 

scanning microscope. The 488 nm line from an argon laser was used for excitation. Images were 

recorded using an ×100 oil immersion objective. 

Potentiometric measurements were conducted in 5 ml 1 mM PBS solution (pH = 7.5). The solution 

was stirred during the measurements at 1000 rpm. The two-electrode system consisted of an 

Ag/AgCl reference electrode and the developed GC sensor as the working electrode. Thrombin was 

spiked to the 5 ml solution to have a total concentration ranging from 0.5 nM up to 1 μM. 
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5.2.4. Results and discussion 

Fig. 5.2-2 shows a scheme of the sensor together with a SEM image of the tip surface. This image 

shows the SWCNT onto the GC surface in a spaghetti form. The porous nature of the layer enlarges 

the number of the thrombin aptamers bound. 

 

Figure 5.2-2 a) Scheme of the tip of the developed sensor. b) SEM image of the tip surface where the SWCNT have been 

deposited in a spaghetti form. 

 

The time responses of the aptamer functionalized SWCNT solid-contact sensors for stepwise 

concentrations of thrombin from 5 × 10−10 to 10−6 M in 1 mM phosphate buffer solution (PBS) and 

pH 7.5 are shown in Fig. 5.2-3. The low ionic strength is necessary to avoid the screening effect of 

the electrolytes in the sample solution. Following addition of analyte, the signal rapidly plateaus to a 

very stable signal, with a response time of approximately 15 s, independent of analyte 

concentration, displaying a small negative average drift of 0.05 mV min−1. 
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Figure 5.2-3 Calibration curve for the potentiometric aptasensor. a) Potential over time for a typical aptamer-SWCNT 

sensor for concentrations of thrombin in samples ranging from 0.5 nM up to 1 μM. b) Calibration curve obtained for three 

different sensors. The error bars represent the range of potential values obtained for each set of three measurements 

recorded. 

Fig. 5.2-3b shows the calibration curve after subtracting the shift due to different standard 

potentials. The standard deviation of the standard potentials corresponding to three different 

sensors (each for 3 times, N = 9) is 2.1 mV. Two segments of very different slopes can be observed. 

The useful linear interval, with a sensitivity of 8.0 mV/log aThr corresponds to a range of thrombin 

concentrations between 1 × 10−7 and 8 × 10−7 M. At a working pH of 7.5 human thrombin is neutral 

(pI = 7.0–7.6),16 therefore, the EMF recorded cannot be related to the activity of the charged analyte 

in a Nernstian way. It should be taken into account that this sensor differs from a potentiometric 

ion-selective electrode in the sense that it does not use a polymeric membrane, and the recorded 

response is related purely to the affinity between the aptamer and the target analyte. Therefore, it 

is a non-reversible sensor that could find valuable applications in disposable miniaturized devices. 

The limit of detection, defined for classical potentiometric sensors as the intersection of the two 

straight lines, is 80 nM. A value of 65.5 nM is obtained if the detection limit is computed according 

to the three sigma method. This value is close to the minimal physiological concentration levels of 
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thrombin. It is known that this level may increase up to a few μM levels when the clotting process is 

activated.16Regeneration of the aptasensor is achieved by dipping their tip into 2 M NaCl for 10 min. 

The standard deviation of the E0 differences between regenerated and non-regenerated sensors 

(using seven regeneration cycles with the same sensor, n = 7) is 4.7 mV. The sensor is highly 

reproducible, with RSD = 5.8% for the slope obtained from the same sensor with individual 

measurements made on 14 days. 

Two different control experiments were performed to assess that the increase of potential was only 

due to the interaction of thrombin with the SWCNT immobilized aptamers. In the first experiment, 

the purified SWCNT deposited onto the GC surface were not functionalized with the aptamers. The 

potential of the sensor was measured against thrombin using the same experimental conditions (i.e. 

from 5 × 10−10 M to 10−6 M in phosphate buffer solution (PBS). When carbon nanotubes are not 

functionalized with aptamers, a constant drift is observed. When this background drift of constant 

slope (10−2 mV s−1 in 1 mM PBS) is subtracted from the thrombin this results in a very slight potential 

increase (approximately 0.15 mV/log aThr) that can be attributed to the non-specific binding of the 

protein onto the surface of the non-functionalized carbon nanotubes. This drift appears to be 

related to the extreme sensitivity of CNT to their surrounding chemical environment and the ionic 

strength of the solution.17 However, the signal due to non-specific adsorption of protein is negligible 

compared to the specific signal being just 0.64% for the lower concentration of 100 nM, and 4.94% 

for the higher concentration of 800 nM. This result indicated that the aptamer functionalized 

sensors had a much higher interaction ability to the thrombin molecules than the non-functionalized 

sensors. 

In the second control experiment, all steps for the sensor development were followed except for the 

deposition of the SWCNT. In this way, the aptamers were functionalized directly onto the glassy 

carbon surface. A signal response of similar characteristic to that shown in Fig. 5.2-3 although with 

much lower sensitivity (approximately 3.8 mV/log aThr) was obtained. This result is not surprising if 

we consider that aptamers can be covalently linked directly to the surface of the glassy carbon 

through their carboxylated groups.18,19 

Selectivity of the sensor was checked against two proteins; bovine serum albumin (BSA) and 

elastase, using two different experiments. In the first setup, the sensor response to each of the two 

mentioned proteins was checked separately. In the second setup the response against thrombin was 
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recorded in presence of BSA and elastase. BSA is a common plasma protein with a higher molecular 

weight compared to thrombin. Elastase is a serine protease enzyme with an isoelectric point and 

molecular weight similar to that of thrombin. As can be seen in Fig.5.2-4a, no significant potential 

increase is observed until the presence of 2 μM level for each interfering protein. Fig. 5.2-4b shows 

the TBA response of the sensor in presence of the two non-target proteins. Concentration of 

elastase was 3.2 nM, which is approximately the normal blood level.20 Above this value, elastase 

starts to breakdown the thrombin, which explains the absence of the potential increase when a 

higher concentration of elastase is used (data not shown). However a similar behaviour was not 

observed for BSA which was present at a concentration 0.5 μM. Sensitivity of the sensor was 7.4 

mV/log aThr. The reduced drop in the sensitivity value can be attributed to the presence of the non-

specific target proteins in the solution. The sensor does not respond to a variation of type or 

concentration of inorganic electrolytes as long as the ionic strength is kept constant. 

 

Figure 5.2-4 a) Responses of the aptamer functionalized SWCNT solid-contact sensors for stepwise concentrations of the 

non-specific targets elastase and BSA. b) Response against thrombin in presence of 3.2 nM elastase and 0.5 μM BSA. A 

sensitivity of 7.4 mV/log aThr is obtained. 

Electrochemical impedance spectroscopy experiments were performed in a preliminary attempt to 

elucidate the nature of the mechanism that may explain the increase of potential after the aptamer 
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-protein interaction. The impedance spectra were recorded first with the sensors containing only a 

SWCNT layer, secondly after the aptamer functionalization, and finally after the interaction of the 

TBA functionalized SWCNT with 1 μM thrombin solution. 0.1 M of PBS is used as background 

electrolyte in all experiments. As shown in Fig. 5.2-5, the impedance spectra are dominated by a 

nearly 90° capacitive line, which extends down to low frequencies (0.3 Hz). At high frequencies, only 

a slight deviation from the capacitive line can be seen, indicating fast charge transfer at the glassy 

carbon/SWCNT/aptamer in solution interfaces as well as fast charge transport in the SWCNT layer. 

These results suggest that these glassy carbon sensors containing functionalized single-walled 

carbon nanotubes in contact with aqueous electrolyte and protein solution show a very small 

resistance and a large bulk capacitance that is related to a large effective double layer at the SWCNT 

/electrolyte interface.21 

 

Figure 5.2-5 Complex plane impedance plots of the GC sensor containing only the SWCNT layer ( ), after TBA 

functionalization of the SWCNT layer ( ) and after thrombin binding (▲). 

The biosensing mechanism is based on the equilibrium competition between the target analyte and 

the SWCNTs to be linked to the aptamer. Johnson et al22 have recently used molecular dynamics to 

demonstrate that aptamers are self-assembled to carbon nanotubes via π–π stacking interaction 

between the aptamer bases and the carbon nanotubes walls.23 Since the phosphate groups of the 

aptamers are largely ionized at pH 7.5, these negative charges are transferred to the carbon 

nanotubes. This agrees with the decrease in the standard potential of the sensor measured 
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following functionalization of the SWCNTs with the aptamers. The presence of the target protein 

induces a conformational change in the aptamer that separates the phosphate negative charges 

from the SWCNT sidewalls24,25 inducing the subsequent increase of the recorded potential. This 

mechanism is in agreement with the fluorescence confocal microscopy results obtained with the 

thrombin aptamer labeled with the fluorescein derivative FAM. In the absence of thrombin, the 

fluorescence is quenched by the proximity of the label to the carbon nanotube, whilst the presence 

of thrombin in the test solution results in the appearance of a fluorescent signal due to the 

competitive binding of the thrombin with the SWCNT for the aptamer, with a conformational 

change of the latter and the corresponding spatial displacement of the dye from the surface of the 

carbon nanotube.26Fig. 5.2-6 shows the confocal image of the tip sensor surface consisting of FAM 

labeled TBA linked to the SWCNTs. A very faint fluorescence is observed in the absence of thrombin 

while a strong fluorescence is observed after 30 min incubation of 45 μl of a 5μM thrombin solution 

followed by thorough washing. 

 

Figure 5.2-6 Fluorescence confocal image (area 127.3 μm × 127.3 μm) of tip sensor surface where SWCNTs have been 

modified with FAM-labelled thrombin aptamer. a) In absence of thrombin. b) After 30 min incubation of 45 μl of a 5 μM 

thrombin solution. 

5.2.5. Conclusions 

To summarize, we have reported on a generic method for aptasensing of proteins, where the 

simplicity of the selective potentiometric sensor, combined with its ability to directly detect a 

biorecognition event obviating the need for labels, mediators, the addition of further reagents or 
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analyte accumulation, highlight the promise of this electrochemical technique. In conclusion, we 

report on the use of SWCNTs as transducers in aptamer based potentiometric solid-contact sensors, 

with interaction between the TBA and the thrombin giving rise to a direct potentiometric signal that 

can be easily recorded in nearly real-time. 
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5.3.1. Abstract 

A new type of simple, disposable and low-cost potentiometric paper-based aptasensors is described 

in this work. A network of single-walled carbon nanotubes (SWCNTs), embedded in a filter paper, 

act as the transducing element of the sensor. Molecular recognition properties of the surface have 

been modified by covalently linking aptamers to the carboxylic groups of the SWCNTs. The useful 

linear interval, with a sensitivity of 7.33 mV/ log aThr corresponds to the 100 and 800 nM range of 

thrombin concentrations. The limit of detection (LOD) goes down to 82.57 nM thrombin 

concentration. Indeed, the analytical performances (sensitivity, selectivity, LOD) of the new paper-

based sensor are comparable to the previously reported solid-contact potentiometric sensor while 

the stability improved with lower noise levels. Importantly, the construction of the sensor was 

considerably simplified involving painting and dip-coating processes which could be easily mass-

manufactured. Using filter paper as a sensor backbone, we managed to build small, cheap and 

versatile sensors for highly selective detection of proteins. 

5.3.2. Introduction 

Sensors are usually designed to perform out of the laboratory. A further step consists not only in 

developing simple, cheap and portable sensors, which display relevant performance characteristics 

such as sensitivity and selectivity, but sensors that are integrated into flexible materials that can be 

embedded into everyday materials such as clothes, bandages, etc. The development of rapid, simple 

and inexpensive detection assays are also important to satisfy the increasing demand of diagnostic 

tools in isolated rural areas, as “point-of-care” 1-3 tests or for the expansion of telemedicine.4, 5 

Paper-based biosensors accomplish these requirements, targeting exciting new compounds and 

therefore, aiming to improve the quality of life world-wide. Thus, paper has become recently a 

popular base in flexible and low-cost sensor systems. Moreover, it is pollution-free due to its pure 

cellulose structure and it has the optimum thickness and hardness for manufacture. Several 

applications have been reported where functionalized paper-based sensors offer a great promise.6 A 

new method for patterning microfluidics on a paper surface using plasma treatment has been 

demonstrated by Li et al..7 The devices are capable of single- and multi-step tests, as well as 

reactions to be performed. Similarly, a microfluidic paper-based chemiluminescence analytical 

device (μPCAD) for glucose and uric acid was designed.8 Cheng et al. used paper as the sensor 

substrate to perform enzyme-linked immunosorbent assays (ELISA) with a 96-microzone plate 
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(paper-based ELISA, or P-ELISA).9 Liu et al. recently reported a self-powered paper based 

amperometric detection system for adenosine detection.10 

 Combination of flexible materials with aptamers,  artificial nucleic acid oligomers that are 

able to bind to target proteins or other molecules11, further improves the detection system by 

adding durability, selectivity and flexibility considering their small size and high affinity to the target. 

Biosensors for protein detection via aptamers have been widely studied and reported.12-17 

 Electrochemical techniques and specifically potentiometric methods are very adequate as 

detection systems in biochemical sensors because, in addition to displaying high selectivity, 

sensitivity and low limits of detection,18 they can be miniaturized and are  very easy to use.19-21 A 

recent trend has emerged by the integration of nanostructured materials to potentiometric 

sensors.22 Among these  nanomaterials, carbon nanotubes (CNTs) display excellent physical and 

electrical properties that are very good candidates for electrochemical detection.23 Crespo et al. 

showed that single-walled CNTs (SWCNTs) can act as efficient transducers in solid-contact ion 

selective electrodes.24 Zelada-Guillén et al. used a hybrid transducing/biosensing material consisting 

of SWCNTs as ion-to-electron potentiometric transducers and aptamers as biorecognition molecules 

to detect bacteria.25-27 The generated electromotive force (EMF) of this SWCNT-aptamer hybrid 

material derive from the SWCNT double-layer capacitance which have a remarkable ability to 

support charge transfer between the SWCNT-solution interface and surrounding  ions. The 

extremely high surface-to-volume ratio of the nanotubes also enables sensing conformational 

changes in the linked aptamers during the target-recognition event that is thought switching the 

surface charge on the SWCNT layer.28, 29 

 There have been several attempts to incorporate CNTs to flexible materials.30, 31 Immersing 

is one of the simplest and cheapest methods when an appropriate sensor backbone, e.g. filter 

paper, is used. It is also a less time consuming method compared to more complex methods such as 

electrochemical deposition or spraying, which has relatively more CNT loss during the process. Thus, 

we   disperse SWCNTs in an aqueous suspension to generate the SWCNT ink and apply onto the 

paper surface. The paper becomes conductive, being among the simplest and low cost mass 

manufacturing methodologies.32  Noteworthy, SWCNTs not only provide electrical conduction, but 

also make available the transduction layer of the potentiometric sensor thanks to their chemical 
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structure that enables chemical immobilization. The suitable receptors then immobilized onto the 

SWCNTs confer selectivity to the paper-based sensor.  

 We herein report a new type of simple and flexible solid-contact selective potentiometric 

paper-based aptasensor to detect proteins, which is based on the direct interaction between the 

aptamer receptor and the target protein. We chose the thrombin protein, a pluripotent serine 

protease enzyme that plays a central role in homeostasis following tissue injury that play important 

roles in subsequent inflammatory and tissue repair processes,33 as a case study to show the 

uniqueness of the detection technique. SWCNTink based SWCNT act as the transducing element and 

thrombin binding aptamers (TBA) as the selective recognition elements. Importantly, we also 

compared the performance characteristics to our previously reported SWCNT based aptasensors 

where the sensor backbone is glassy carbon (GC) rods.28 

5.3.3. Experimental 

5.3.3.1. SWCNT ink preparation 

The preparation of the SWCNT ink was achieved according to previous work using purified 

SWCNTs.34, 35 Briefly, we have used 1.6 mg/ml purified and oxidized SWCNTs with 10 mg/ml SDBS, 

stirring them in MilliQ water. The obtained dispersion was sonicated in the bath for 60 min. and 

subsequently, 90 min. more in the tip sonicator (amplitude 60 %, cycle 0.5, Ultraschallprocessor 

UP200S, Dr. Hielscher).  

5.3.3.2. Aptasensor development 

Aptasensors are prepared by cutting 1 × 0.5 cm pieces of filter paper as substrate followed by first 

drop casting the SWCNT ink to the rectangular cut filter papers until the average resistance is as low 

as 0.3 kΩ. Figure 5.3-1 shows the chart where resistance is plotted versus the number of layers of 

carboxylated SWCNTs. In addition, the resistance of the non-carboxylated SWCNTs, previously 

developed in our group, was also shown for comparison. Interestingly, both SWCNT inks enable to 

reach a final resistance as low as 0.3-0.5 kOhms cm-1. Although carboxylated SWCNTs afford similar 

resistance than non-carboxylated SWCNTs, a higher number of layers was necessary for the former  

(17 layers vs. 5 layers respectively). Nevertheless, the carboxylated SWCNTs display the advantage 

of being further functionalized by bioreceptors through covalent bonds.34 As anchoring strategy for 
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the aptamer, we have selected covalent bonding instead of non-covalent immobilization because 

the first one enables better performances with potentiometric aptasensor and the resulting hybrid 

material is more stable in harsh conditions.27 

 

 

Figure 5.3-1 Resistance graph of non-carboxylated (•) and carboxylated () SWCNTink covered filter paper surface as a 

function of the number of layers of SWCNT ink. 

The SWCNT ink covered paper is then rinsed in MilliQ water for 24 hours. Conductance of the 

solution was monitored during this process to monitor the removal  of the SDBS. Lastly,  a PVC 

sticker with 3 mm diameter holes (active sensing area), used as a mask, is applied to the paper and 

coated with parafilm (excluding the sensing area) to avoid solution leakage which might cause drifts 

(See Scheme 5.3-1). The TBA immobilization was done according to a previous procedure.28 

 

Scheme 5.3-1 a) Non-treated rectangle shaped filter paper. b) SWCNTink treated filter paper. c) PVC sticker mask and 

SWCNTink treated filter paper cut to final shape letting the active sensing area open. d) Final sensor containing a mask 

layer of parafilm (not visible). 
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5.3.3.3. Setup and measurements 

The potentiometric measurements were made in 5 ml 10-3 M PBS solution (pH = 7.5). The solution 

was stirred during the measurements at 1000 rpm. The two-electrode system consisted of an 

Ag/AgCl reference electrode and the developed SWCNT ink sensor as the working electrode. 

Thrombin was spiked to the 5 ml solution to have a total concentration ranging from 0.5 nM up to 

0.8 μM. Cyclic voltammetry (CV) was performed in a single-compartment classical 3-electrode 

electrochemical cell with a 10 mL volume. Supporting electrolytes and [Ru(NH3)6]3+, were 

deoxygenated via purging with nitrogen gas for 10 min prior to measurements and nitrogen was 

bubbled during the experiments. 

5.3.3.4. Cyclic voltammetry 

Cyclic voltammetry (CV) was performed in a single-compartment classical 3-electrode 

electrochemical cell with a 10 mL volume. Supporting electrolytes and [Ru(NH3)6]3+, were 

deoxygenated via purging with nitrogen gas for 10 min prior to measurements and nitrogen was 

bubbled during the experiments.  

5.3.4. Results and discussion 

5.3.4.1. Surface characterization experiments 

The aim of these experiments is to know the surface ligand distribution/density in order to better 

understand the effectiveness of the SWCNT ink method compared to classical spraying method.  By 

evaluating the amount of the immobilized aptamers and their concentration on the surfaces we 

should be able to compare the TBA surface density between the paper-based sensors and the GC 

sensor. 

 To characterize the active sensor surface, voltammetric ΓRu, a direct measure of the charge 

density (in mol/cm2) of [Ru(NH3)6]3+ forming ion-pairs with the phosphate groups of the TBA-

modified sensors,  can be calculated.36-38 1 mM stock [Ru(NH3)6]3+ solution is added to the 

voltammetric cell starting from 1 µM up to 130 µM [Ru(NH3)6]3+ in presence of 5 mM PBS until it is 

saturated as shown in Figure 5.3-2. For each successive step, one CV cycle is recorded after the 

addition of corresponding amount of [Ru(NH3)6]3+ solution. Average of the total charge value, ΓRU 

(mol/cm2) is calculated as 3.21×10-11 mol/cm2. The total charge (Q) was estimated by integration of 
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the average cathodic peaks starting from 1 µM to 130 µM in the cyclic voltammograms of the 

[Ru(NH3)6]3+ and subsequently the total capacitance, CT, is calculated. The area of the sensor is 

obtained by dividing the estimated total capacitance CT, by the empirical reference value, C* (10 

µF/cm2), used for the capacitance of the unit true surface area of SWCNT. 39 

A = CT / C*                                                                                 (1) 

 

 

Figure 5.3-2 CV of the SWCNTink based aptasensor at different [Ru(NH3)6]
3+

 concentrations. 

The data in the Figure 5.3-2 shows that both sensors show reversible Ru3+  Ru2+ reaction. 

Reduction of [Ru(NH3)6]3+ takes place at -0,29 V. The area under the cathodic peak (subtracting the 

capacitive contribution) is related to the total amount of surface-confined [Ru(NH3)6]
3+ complex that 

is reduced. According to the areas obtained under the SWCNT ink peaks, there is a high charge 

accumulation on SWCNT. This result is most probably due to the large surface area of the carbon 

nanotubes and to the higher surface area density of the thrombin aptamer which is covalently 

linked to this surface. 

 Table 5.3-1 shows the calculated values for paper-based aptasensor in comparison in 

comparison with the GC rod based sensor with similar active surface, each in form of 3 mm diameter 

circle, that are in contact with the solution. Surface area total amount of immobilized aptamers of 

the paper-based SWCNT ink sensor are the highest while the aptamer density is comparable. The 

results indicate a considerable difference in the calculated active surface areas between the sensors: 

190.92 cm2 for SWCNT ink on paper, and 27.40 cm2 for SWCNT on glassy carbon, i.e. a 7 fold 

increase. This difference is in good agreement with the increased total surface area of the three 
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dimensional porous structured filter paper compared to the two dimensional GC plane. Hence, the 

total charge on the surface is calculated as 5.73×10-4 C and 8.21×10-5 C for paper-based and GC rod 

based sensors, respectively. The results are also in accordance with the better sensor stability and 

lower noise levels for paper-based sensor (standard deviations of the noise are 0.072 mV and 0.167 

mV, N=3, of SWCNTink and SWCNT based sensors, respectively). Although higher surface area was 

detected for the paper-based sensor, the TBA density was found comparable to the previous system 

(GC rod). Noteworthy, the type of surface does not affect the covalent linkage of the aptamer to the 

SWCNT. 

Table 5.3-1  Surface characterization results of different sensor setups. 

 A (cm
2

) Q (C) ΓRU (mol/cm
2

) ΓTBA (molecule/cm
2

) NTBA 

Paper-based 

sensor 
190.92 5.73×10-4 3.21×10-11 3.87×10+12 7.15×10+14 

GC rod based 

sensor 
27.4 8.21×10-5 3.11×10-11 3.75×10+12 1.03×10+14 

 

5.3.4.2. Sensitivity experiments 

Potentiometric response of the SWCNT ink based TBA sensors against thrombin is evaluated. The 

stabilization time where the initial EMF stabilizes to a quasi-constant value, which is required to 

start the thrombin additions, is approximately 30 minutes, which is comparable to the previously 

reported SWCNT sensor. Figure 3 shows the time responses of the aptamer functionalized 

SWCNTink-paper based sensors for stepwise concentrations of thrombin from 5 x 10-10 to 10-6 M in 1 

mM phosphate buffer solution (PBS) at pH 7.5. The average sensitivity (N=3) is calculated as 7.33 

mV/decade with a limit of detection of 82.57 nM (calculated according to the intersection between 

the  extrapolated response function and the potential for the electrolyte background). A close value 

of 63.8 nM is obtained if the detection limit is computed according to the three sigma method. 

Slightly lower sensitivity against the previous SWCNT sensor (8,03 mV/decade vs. 7.33 mV/decade) 

suggests that the total sensing area does not affect the obtained EMF which coincides to the nature 

of potentiometry that is independent of the area. Instead, ligand distribution (ΓTBA) and efficiency 

of the TBA-thrombin interactions might be the main factor, as shown in Table 5.3-1. 

UNIVERSITAT ROVIRA I VIRGILI 
CARBON NANOTUBE BASED POTENTIOMETRIC APTASENSORS FOR PROTEIN DETECTION 
Ali Düzgün 
Dipòsit Legal: T.616-2013 
 
 



89 

 

In Figure 5.3-3, it is observed that after the initial signal jump corresponding to the thrombin 

addition, the signal tends to stabilize rapidly, with a response time of approximately 20 s, 

independent of analyte concentration. A control experiment is done using n-butylamine instead of 

TBA thanks to its structure that does not bind to thrombin while having the amine end for providing 

immobilization possibility similar that of the TBA. In this way, the SWCNT surface is highly blocked. A 

signal response with very different characteristics is obtained as shown in Figure 3. Considerably 

lower sensitivity (average 1.57 mV/log aThr, N=3) was obtained. 

 

 

Figure 5.3-3 Potential over time graph for the butylamine functionalized CNTink sensor for concentrations of thrombin in 

samples ranging from 0.5 nM up to 1 μM. 

Figure 5.3-4 shows the average (N=3) calibration curve after subtracting the shift due to 

different standard potentials. The standard deviation of the standard potentials corresponding to 

the sensors is 5.2 mV. This value is slightly higher than the previously reported SWCNT sensor (2.1 

mV) although the noise levels of these standard potentials are lower in SWCNT ink based sensor as 

indicated above. Roughly, two segments of different slopes, first from 0.5 nM to 50 nM, and the 

second from 50 to 800 nM, can be observed. The useful linear interval, with a sensitivity of 7.33 

mV/log aThr corresponds to a range of thrombin concentrations between 100 and 800 nM. It should 

be noted that this interval is in the range of the minimal physiological concentration levels of 

thrombin.40 
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Figure 5.3-4 Calibration curve obtained for three different SWCNT ink sensors. The error bars represent the range of 

potential values obtained for each set of three measurements recorded. 

5.3.4.3. Selectivity experiments 

Selectivity of the sensor was evaluated against two proteins; bovine serum albumin (BSA), a 

common plasma protein with a higher molecular weight than thrombin and elastase, a serine 

protease enzyme with an isoelectric point and molecular weight similar to thrombin, in two 

different scenarios. In the first setup, the sensor response to each of the proteins was checked 

separately. In the second setup the response against thrombin was recorded in presence of both 

BSA and elastase. As can be seen in Figure 5.3-5, no noticeable increase of the potential is observed 

until the presence of 2 µM level for each interfering protein. 

 

 

Figure 5.3-5  Responses of the TBA modified SWCNT ink sensors for stepwise concentrations of the non-specific targets; 

elastase and BSA. 

Figure 5.3-6 shows the potentiometric response against thrombin in presence of the two 

non-target proteins. Concentration of elastase was 3.2 nM, which is approximately the normal blood 

level.41  Higher concentration of elastase starts to breakdown the thrombin, which explains the 
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absence of the potential increase when a higher concentration of elastase is used (data not shown). 

BSA concentration was 0.5 µM. Sensitivity of the sensor was 5.9 mV/log aThr with a limit of detection 

of 107 nM. The reduced drop in the sensitivity value can be attributed to the presence of the non-

specific target proteins in the solution. The sensor does not respond to a variation of type or 

concentration of inorganic electrolytes as long as the ionic strength is kept constant. 

 

Figure 5.3-6  Potentiometric response against thrombin in presence of 3.2 nM Elastase and 0.5 µM BSA. Inset: calibration 

curve of the potentiometric response. 

The electrochemical impedance spectra were recorded first with the sensors containing only 

a SWCNT ink layer, secondly after the aptamer functionalization to this layer, and finally after 1 µM 

thrombin interaction (see supporting information). The impedance spectra are dominated by a 

nearly 90° capacitive line, which extends down to low frequencies (0.3 Hz). At high frequencies, only 

a slight deviation from the capacitive line can be seen, indicating fast charge transfer at the SWCNT-

aptamer solution interfaces as well as fast charge transport in the SWCNT ink based SWCNT layer. 

5.3.5. Conclusions 

We have shown that the SWCNT ink that is immobilized onto filter paper works as a transduction 

element of the potentiometric sensor. While sensors developed this way have comparable 

performance characteristics to our previously reported sensor (which uses SWCNT solution sprayed 

onto glassy carbon support) physical and economical aspects of the SWCNT ink based aptasensors 

are considerably enhanced. The advantages of this system are the flexibility, much lower cost, 

availability, lowered noise levels, and further miniaturization possibilities of the aptasensor which 
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widens the application areas thanks to the filter paper as the sensor support element. Additionally, 

the deposition of SWCNTs by using SWCNT ink enables avoiding any possible SWCNT loss and 

increased the total active sensor surface area. 

In conclusion, we have further widened the application possibilities of our previously 

reported generic method for aptasensing of proteins with similar performance characteristics. The 

simplicity of the selective potentiometric sensor is further optimized, allowing a much versatile 

application possibilities thanks to its paper backbone. Future investigation is needed to increase the 

reproducibility of the sensor and correlate the performance characteristics with the surface ligand 

density. Different types of aptamers for different types of analytes are currently studied in our lab 

with this new optimized detection system. 
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5.3.8.  Supporting information 

5.3.8.1. Chemicals and materials 

A Keithley (U.K.) 6514 potentiometer and a Metrohm (Switzerland) double junction Ag/AgCl 

reference electrode with saturated KCl (3 M) as inner filling solution and a 1 M LiOAc as a bridge 

electrolyte were used to perform the potentiometry experiments. An Autolab (Netherlands) 

electrochemical workstation was used for cyclic voltammetry (CV) experiments. SWCNTs have been 

purchased from HeJi (China) in bulk form with > 90 % purity, 150 μm average length and 1.4-1.5 nm 

of diameter and were purified acording to a previous procedure.28, 42 15-mer (5’- 

GGTTGGTGTGGTTGG-3’) 5’-NH2-modified (with a 3-carbon spacer) thrombin binding aptamers (TBA) 

have been purchased from Eurogentec (London, UK) and human α-thrombin is supplied by 

Haematologic Technologies (Vermount, USA). The reagents 1-ethyl-3-3(3-dimethylaminopropyl) 

carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), the phosphate buffer solution (PBS) 

was a mixture of 84 mL of 0.2 M NaH2PO4 and 16 mL 0.2 M Na2HPO4 in 100 mL of water, 2-(N-
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morpholino)ethanesulfonic acid (MES) buffer, cetyl trimethylammonium bromide (CTAB),  sodium 

dodecylbenzenesulfonate (SDBS) and hexamine ruthenium chloride (Ru[(NH3)6]Cl3) have been 

purchased from Sigma-Aldrich (Spain).  

 

5.3.8.2. Electrochemical impedance spectroscopy 

 

Figure 5.3-7 Complex plane impedance plots of the SWCNTink sensor containing only the SWCNT layer (), after TBA 

functionalization of the SWCNT layer () and after thrombin binding (). Inset shows a zoomed scale to distinguish the 

responses easier. 

5.4. Recent advances 

5.4.1. Introduction 

A detailed explanation of solid-contact potentiometric sensors, with the concept theory and 

examples of different types of them, has already been given in chapters 5.2.2 and 5.3.2. 

A very recent review discussed the use of carbon nanotubes and graphene in various types of 

sensors including biosensors [Pérez-López 2012]. Another detailed review by Liu et al. [Liu 2012] 

discussed recent advances in affinity and enzyme based biosensors for cell analysis and point-of-

care testing. Hernandez and Ozalp have discussed graphene and other nanomaterial-based 

electrochemical aptasensors [Hernandez and Ozalp 2012]. 

Considering the recent trends in potentiometric sensing of large analytes in different types of solid 

state sensors and biosensors, the following section introduces an update of the recent advances 

that have been appeared after the ones mentioned in chapters 5.2 and 5.3.  
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5.4.2. Solid-contact (apta)sensors 

Zelada-Guillén et al. very recently developed a hybrid transducing/biosensing material [Zelada-

Guillén 2012] consisting of SWCNT as ion-to-electron potentiometric transducers and aptamers as 

biorecognition molecules for ultrasensitive and real-time detection of proteins in blood. They used 

the same aspects and the methodology of this thesis and optimized it to be able to make detection 

in complex samples.  

A potentiometric label-free and substrate-free (LFSF) aptasensing strategy which eliminates the 

labeling, separation, and immobilization steps is described by Ding et al. [Ding 2012]. Using 

adenosine triphosphate (ATP) as a model analyte, they managed to detect ATP down to the sub-

micromolar concentration range in HeLa cells. 

Zhang et al. [Zhang 2012] have investigated the label-free electrochemical detection of tetracycline 

by an aptamer based nano-biosensor with a nano-porous structure. Electrochemical impedance 

spectroscopy (EIS) was used to analyze the behavior of the sensor. The specific binding of 

tetracycline to the aptamer biosensor led to a decrease in impedance. The corresponding 

impedance spectra (Nyquist plots) were obtained when serial concentrations of tetracycline were 

added into the system. An equivalent electrical circuit was used to fit the impedance data. The linear 

range of the sensor was 2.1–62.4 nM. 

5.4.3. Flexible sensors 

Cork et al. [Cork 2012] tested the commercial Vantix ® disposable sensor base to be able to detect to 

bovine herpes virus 1 (BoHV-1) antibodies comparable to standard ELISA method within 15 mins. 

The sensors consist of a working and reference electrode coated in the conductive polymer 

polypyrrole and covered in a protective plastic film. Biochemical or enzymatic activity taking place 

on the surface of the working electrode as a result of immunocomplexes built up on the electrode, 

causes electrochemical changes in the conductive polymer layer on and around the working 

electrode that generates the measurable change in electrical potential (measured in millivolts; mV) 

relative to the reference electrode. 

Ibupoto et al. [Ibupoto 2012] developed a disposable potentiometric antibody immobilized ZnO 

nanotubes based sensor for the detection of C-reactive protein. They immobilized the monoclonal 

anti-C-reactive protein clone CRP-8 (mouse lgG1 isotype) with glutaraldehyde onto ZnO nanotubes 
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using simple physical adsorption method. They managed to detect the antibody in the concentration 

range of CRP from 1.0 × 10−5 mg/L to 1.0 × 100 mg/L with sensitivity of 13.17 ± 0.42 mV/decade. 

5.4.4. Conclusions 

Detection of large molecules using flexible sensors continues being an area of large scientific 

interest, where new techniques and nanomaterials are increasingly used due to their new and 

attractive properties. However, improvements should be performed not only to develop robust and 

reliable sensors but to know the sensing mechanism as well. 
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CHAPTER 6 

CHARACTERIZATION 

 

6.1. Introduction 

This chapter focuses on characterization of the SWCNTs based sensor by trying to determine the 

number of active aptamers on the surface. It also compares the developed carbon nanotube based 

sensor with a PANI based one in terms of characterization and sensitivity.  

Recent advances in characterization of electrochemical sensors during and after the publications of 

the articles are also introduced and discussed in section 6.3. 

6.2. “Protein detection with potentiometric aptasensors. A comparative 

study between polyaniline and single wall carbon nanotubes transducers” 
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6.2.1. Abstract 

A comparison study on the performance characteristics and surface characterization of two different 

solid-contact selective potentiometric thrombin aptasensors, one exploiting a network of single-

walled carbon nanotubes (SWCNT) and the other polyaniline (PANI), both acting as a transducing 

element is described in this work.  The molecular properties of both SWCNT and PANI surface have 

been modified by covalently linking thrombin binding aptamers as biorecognition elements. The two 

aptasensors are compared and characterized thorough potentiometry and electrochemical 

impedance spectroscopy (EIS) based on the voltammetric response of multiply charged transition 

metal cations (such as hexaammineruthenium; [Ru(NH3)6]
3+) bound electrostatically to the DNA 

probes. The surface densities of aptamers were accurately determined by integration of the peak for 

reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+. The differences and similarities, as well as the transduction 

mechanism are also discussed. The sensitivity is calculated as 2.97 mV/decade and 8.03 mV/decade 

for the PANI and SWCNTs aptasensors respectively. These results are in accordance with the higher 

surface density of the aptamers in the SWCNT potentiometric sensor. 

Keywords: Carbon nanotubes; Polyaniline; Potentiometry; Protein detection; Aptamers; Aptasensor. 

6.2.2. Introduction 

Biosensors based on electrochemical detection have been extensively used to detect proteins [1-3]. 

They offer, in addition to selectivity and sensitivity, the possibility to detect the target analytes in 

cloudy samples in a very simple and fast way. Even though the electrochemical techniques 

employed, such as amperometry, voltammetry or electrochemical impedance spectroscopy (EIS) 

provide these performance characteristics, the relative complexity of the detection procedures and 

the need for portable detectors enabling detection of the targets at the point of care, motivate the 

development of more rapid, cheaper and simpler detection techniques. 

Potentiometry is one of the most simple electrochemical detection methods. Nanostructured 

biosensors based on field effect transistors (FETs) are considered members of this type [4, 5]. The 

miniaturized bio-FETs are able to detect nowadays large molecules such as plasma proteins or even 

bacteria [6, 7]. However, these devices display low physical robustness, large response times and 

poor reproducibility among individual sensors.  Moreover, they are usually developed using 

microfabrication techniques and consequently they display high production costs. The appearance 
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of potentiometric all solid state aptasensors other than FETs made it possible to overcome most of 

these problems [8]. 

Aptamers enable the development of cheap and sensitive biosensors. Aptasensors, thanks to their 

relatively reduced nucleic acid based nature, display several advantages over the antibody 

counterparts developed for the same targets: higher heat, pH and ionic strength stability, smaller 

size, and in some cases higher selectivity [9]. Moreover, they can be synthesized at low cost. 

Electrochemical biosensors incorporating aptamers as recognition elements are extensively 

reported in the bibliography [10-14] although the translation to commercialized devices is very 

scarce [15]. 

Düzgün et al. recently demonstrated the feasibility to potentiometrically detect large analytes such 

as proteins using a nanostructured hybrid material (based on carbon nanotubes, CNT) that 

incorporate thrombin binding aptamers (TBA) [16]. The main advantages of this detection system 

are simplicity due to two electrode system used in potentiometry, low cost and real time detection 

which make it highly valuable for different types of applications. Zelada et al. showed that the same 

strategy could be applied to quantify bacteria in real samples [17, 18]. The biosensing mechanism is 

thought to be based on the superficial restructuration of the aptamers lying onto the surface of the 

single-wall carbon nanotubes (SWCNTs) when the target analyte, displaying a very high affinity 

constant with the aptamers, enter in contact with them.  Johnson et al. [19] have recently 

demonstrated that aptamers are self-assembled to carbon nanotubes via π-π stacking interaction 

between the aptamer bases and the carbon nanotubes walls by using molecular dynamics. Since the 

phosphate groups of the aptamers are largely ionized at pH 7.5, these negative charges can be 

transferred to the carbon nanotubes. This agrees with the decrease in the initial potential of the 

sensor measured following functionalization of the SWCNTs with the aptamers. The presence of the 

target protein induces a conformational change in the aptamer that separates the phosphate 

negative charges from the SWCNT sidewalls [20] inducing the subsequent increase of the recorded 

potential. This mechanism is similar to the one reported by Levon’s group in the development of a 

nucleic acid potentiometric biosensor based on the hybridization of the complementary DNA 

strands and using polyaniline (PANI) as transducer layer [21]. The sensing mechanism was assigned 

to a different interaction of the nucleic acid probes with the strongly cationic polyaniline substrate.  
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The conformational changes in the nucleic acid probes caused by the selective hybridization with the 

complementary strand provide the potential change that is monitored.  

Due to the similarity of the proposed sensing mechanisms, it would be interesting to compare the 

performance of conducting polymers and SWCNTs as transducer elements in these potentiometric 

sensors. PANI and SWCNTs show different characteristics in terms of material nature, electrical 

conductivity, deposition procedures and thickness control of the transducing layer. Therefore it is 

worthwhile the comparison of their performance characteristics could provide us an advantage in 

terms of producing similar performance characteristics considering the relatively simple spraying 

method that is used for SWCNTs.  

The characterization of the aptamer-SWCNT based aptasensors, basically the number of aptamers 

linked for unit length of carbon nanotube, is difficult due to the specific nature of the substrate and 

the small size of the nucleic acid segments attached to the carbon nanotube walls. Electrochemical 

techniques could provide a suitable methodology, although EIS studies cannot be applied directly to 

the system due to the reduced conductivity on the sensor surface made of semiconducting SWCNTs 

[22]. Surface ligand density calculation as a part of electrochemical characterization is a key factor in 

determining the source of the potentiometric signal, as classical Nernstian theory is not applicable 

due to the lack of a thermodynamic equilibrium at the sensor surface. 

In this work, we conducted a comparative study of the aptasensors to determine protein using both 

SWCNT and PANI. We compared the sensitivity and the stability of the sensors using TBA as 

recognition layer and human alpha thrombin as target analyte. Furthermore, we characterized the 

solid surface by measuring the total surface aptamer density based on Cottrell equation [23, 24] 

assuming complete charge compensation of the DNA phosphate residues by redox cations. 

6.2.3. Material and methods 

6.2.3.1. Instrumentation and Reagents 

A Lawson (USA) multi-channel potentiometer and a Metrohm (Switzerland) Ag/AgCl reference 

electrode were used to perform the potentiometric experiments. A Metrohm (Switzerland) 

laboratory type pH probe was used for the pH detection using 3 standards calibration. A CHI 

Instruments (USA) electrochemical workstation was used for cyclic voltammetry (CV) experiments. A 

FEI Company (Netherlands) SEM-Quanta 600 is used to take the SEM image. Aniline monomer, 
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[Ru(NH3)6]3+ (hexaammineruthenium  , Ru[(NH3)6]Cl3) , and H2SO4 were purchased from Sigma 

Aldrich (Spain). Single walled carbon nanotubes (SWCNT) were purchased from HeJi (China) in bulk 

form with > 90% purity, 150 μm average length and 1.4-1.5 nm of diameter. 15-mer (5’- 

GGTTGGTGTGGTTGG-3’) 5’-NH2 and 15-mer (5’- GGTTGGTGTGGTTGG-3’) 5’-SH modified (with a 3-

carbon spacer) thrombin binding aptamers (TBA) were purchased from Eurogentec (Cultek, Spain) 

and Genemed Synthesis Inc. (USA), respectively. Human α-thrombin  supplied by Haematologic 

Technologies (Vermount, USA). Elastase and BSA supplied by Aldrich. Phosphate buffer solution 

(PBS) is from Panreac Química (Spain). Glassy carbon (GC) rods were purchased from HTW 

(Germany). Aniline monomer (Aldrich) was distilled and kept cooled at 4 °C. It was also kept in the 

dark to avoid any potential photooxidation. Sodium dodecyl sulphate (SDS) (Aldrich) was used as 

purchased. 

6.2.3.2. Sensor preparation 

The solid contact sensors were prepared by placing a 3 mm diameter glassy carbon rod into a teflon 

body with the outer diameter of 7 mm. The tip was polished firstly using a Buehler p4000 paper.  

Subsequently, 6 μm diamond polish and 1 μm grain size alumina powder were used to obtain a 

smooth surface. Polished sensors were bath sonicated for 30 minutes in Milli-Q water to clean the 

alumina and diamond residues from the GC surface before the electropolymerization and spraying 

processes. The above mentioned steps were the same for both SWCNT and PANI modified sensors. 

6.2.3.2.1. SWCNT sensor 

25 mg of the purified and dried SWCNTs were powdered in a marble mill and then dispersed in 10 

mL of Milli-Q water containing 100 mg of sodium dodecyl sulphate (SDS) to provide solubility of 

SWCNT in water. The solution was sonicated for 30 min at 2 s-1 in order to achieve the maximum 

homogeneity of the dispersion. The sonicated solution was sprayed with  approximately 1 bar 

pressure onto the glassy carbon surface under a high temperature (approx. 200 °C) air blower by 

spraying 35 times, dipping the surface into   milliQ water under stirring conditions at intervals of 5 

sprays so as to eliminate the SDS as its presence decreases the conductance on the SWCNT network. 

We deposited a layer of about 30 µm thickness (measured with SEM) of purified SWCNT onto the 

polished tip of a glassy carbon (GC) surface. Lastly, to ensure the removal of the SDS, the SWCNT 

sprayed GC rods were placed into CVD furnace at 300 °C for 1 h under low air flow. The carboxylic 

groups of the SWCNT were activated with a solution containing  200 mM EDC and 50 mM NHS [25] 
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(dissolved in MES buffer, 50mM, pH 5.0). The GC surface containing the SWCNTs was dipped in this 

solution for 30 minutes. To covalently link the TBA to the walls of the SWCNTs through the 

nucleophilic attack of the amine to the activated carboxylic group, the sensor subsequently was 

dipped overnight in a solution containing 0.001 M PBS, 1 μM 5’-amine-TBA. 

6.2.3.2.2. PANI sensor 

Polyaniline films were electropolymerized onto the polished distal end of the glassy carbon rod via 

cyclic voltammetry with a three-electrode system that consisted of an Ag/AgCl reference electrode, 

a platinum wire as a counter electrode, and a GC rod as a working electrode. Prior to 

electropolymerization, GC rods were pre-treated with 0.85 V potential during 10 s for the activation 

of the surface. Electropolymerization of aniline was carried out potentiodynamically on the GC rod 

within the potential range of -0.15 to 0.85 V in 0.5 M H2SO4 solution by applying 50 potential cycles 

at a sweep rate of 100 mV/s. Finally, the PANI modified GC probe is dipped into 5 µM TBA solution 

overnight for immobilization of the thrombin aptamer  via aromatic substitution at the conducting 

polymer surface [21], obtaining in this way the potentiometric PANI aptasensor. 

Both types of sensors were washed out thoroughly with MilliQ water to get rid of non-covalently 

attached aptamers. 

6.2.3.3. Measurements 

Cyclic voltammetry measurements for both electropolymerization of PANI and ligand density 

calculations were performed in a single-compartment electrochemical cell with a 10 mL volume. 

Supporting electrolytes, H2SO4 and hexaammineruthenium, were deoxygenated via purging with 

nitrogen gas for 10 min prior to measurements and nitrogen was bubbled during the experiments. 

Potentiometric measurements were conducted in 5 ml 5mM PBS solution (pH = 7.5). This was 

important as to maintain physiological pH level for the aptamers and the thrombin. The solution was 

stirred during the measurements at 1000 rpm. The two-electrode system consisted of an Ag/AgCl 

reference electrode and the developed GC sensor as the working electrode. 

6.2.3.3.1. Surface density measurements of TBA 

The number of the probe TBA molecules that are covalently immobilized onto PANI was calculated 

from the number of cationic redox molecules of hexaammineruthenium   forming ionic pairs with 

the anionic TBA backbone. Charge compensation is provided for the anionic phosphate groups in 
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TBA by cations, typically Na+, K+ and H+. These cations readily exchange with other cations in the 

media [26] because the association constant between cations and TBA phosphate increases with the 

cation charge [27]. When a TBA sensor is placed in a low ionic strength electrolyte containing a 

multivalent cation, this latter cation exchanges with the native cation and becomes electrostatically 

trapped at that interface [28]. The trapped multivalent cation, hexaammineruthenium   in our case, 

due to its oxidizing character can be readily reduced at the electrode as a surface-confined species. 

The resulting charge at the surface can easily be calculated from the cyclic voltammogram by 

integrating the suitable reduction peak. In saturation conditions, the amount of surface-linked 

hexaammineruthenium   is proportional to the surface density of aptamers attached to the carbon 

nanotubes and PANI substrates. The objective was to characterize the electrode surface by 

determining the total number and density of the TBA in both sensor surfaces and to explain the 

sensitivity and stability differences that are observed between the two studied sensors. 

 

6.2.3.3.2. Potentiometric setup 

The EMF values recorded with TBA modified SWCNTs and PANI sensors were measured against the 

Ag/AgCl reference electrode with a Lawson multi-channel potentiometer in 5 mM PBS  solution to 

maintain low ionic strength (I = 5×10-3). For the thrombin detection assay, the potentiometric cells  

were introduced in a solution in which successive aliquots of  thrombin solutions were added giving 

rise to a total thrombin concentration starting from 0.5 nM up to 800 nM, which is the 

approximately the maximum physiological levels in blood [29, 30]. Assays were performed at 

solution temperatures of 37 °C. 

6.2.4. Results and Discussion 

6.2.4.1. Surface ligand density in functionalized PANI and SWCNTs 

Voltammetric ΓRu is a direct measure of the charge density (in mol/cm2) of [Ru(NH3)6]3+ forming ion-

pairs with the phosphate groups of the TBA-modified sensors [24, 31, 32]. It can be calculated from 

ΓRu   = Q / nFA                                                                                                     (1) 

where Q is the charge obtained by integration of the redox peaks in the cyclic  voltammograms of 

the hexaammineruthenium  coordination complex (see Fig. 1), n is the number of electrons in the 
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reduction reaction from Ru(III) to  Ru(II), F is the Faraday constant and A is the area of the working 

electrode. 

The calculated ΓRu value can be directly converted to the TBA surface density, ΓTBA, in molecule/cm2 

using the relationship 

ΓTBA = ΓRU (z/m)NA                                                                                            (2) 

where m is the number of nucleotides in the TBA, z is the charge of the hexaammineruthenium 

redox species, which is 3 in our case, and NA is the Avogadro's number. In order to determine the 

surface ligand density, 1 mM stock hexaammineruthenium solution is added to the voltammetric 

cell starting from 1 µM up to 130 µM hexaammineruthenium in presence of 5 mM PBS until it is 

saturated as shown in Fig. 1. For each successive step, one CV cycle is recorded after the addition of 

corresponding amount of hexaammineruthenium solution without any further modification to the 

electrochemical cell. All of the CVs are overlaid and shown for PANI (Fig. 6.1-1a) and SWCNT (Fig. 

6.1-1b). 

 

Figure 6.1-1 CV of the a) PANI b) SWCNT based aptasensors at different hexaammineruthenium concentrations. In all case 

the sweep rate was 0.1 V/s. The observed area under the average cathodic peak from 1 µM to 130 µM due to addition of 

hexaammineruthenium is used for calculations in (1) and (2). 

According to the data in the Fig. 6.1-1, both sensors the CV has cathodic (reduction) and anodic 

(oxidation) peaks associated with hexaammineruthenium but the reduction peak shifted negatively 
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compared to hexaammineruthenium with TBA, supporting that the signal originates from 

hexaammineruthenium bound in the TBA[33]. Ideally, there should be no cathodic and anodic peak 

separation for a surface-confined molecule. Peak separation can be induced by kinetic control or 

interfacial electron-transfer rates comparable to the scan rate. Other reasons for apparent 

“nonideality” could be dissociation and association of *Ru(NH3)6]3+/2+ that accompanies the 

electrochemical process due to different stochiometric PO4
3-/hexaammineruthenium ratios when 

hexaammineruthenium is in the oxidized and reduced state[34]. These results also indicate that the 

hexaammineruthenium is slightly more present at PANI surface. The typical capacitive behavior of 

the carbon nanotube sensor is observed in Fig. 6.1-1b. The area under the cathodic peak 

(subtracting the capacitive contribution) is related to the total amount of surface-confined 

hexaammineruthenium complex that is reduced. According to the areas obtained under the PANI 

and SWCNTs peaks, there is a much higher charge accumulation on SWCNT. These results could be 

due to the larger surface area of the carbon nanotubes and to the higher surface area density of the 

thrombin aptamer covalently linked to this latter surface.  

Average of the saturation charge value at 130 µM is used to calculate the hexaammineruthenium   

charge density, ΓRU (mol/cm2). This value is 5.18×10-12 mol/cm2 and 5.19×10-12 mol/cm2 for PANI and 

SWCNTs sensors, respectively. Placing this value in (2) gives the total surface aptamer density per 

cm2. After estimating the approximate area of each sensor (see below) the aptamer density on the 

surface can be easily calculated. 

According to IUPAC [35, 36], surface area of a non-metallic porous electrode surface can be 

estimated by determining the apparent total capacitance of the electrode surface and assuming  

that the  double layer charging, i.e. the capacitive component, is the only process in the conditions 

that voltammetric curves are recorded. We have estimated the total charge (Q) by integration of the 

average cathodic peaks starting from 1 µM to 130 µM in the cyclic voltammograms of the 

hexaammineruthenium in Fig. 6.1-1 and subsequently calculated the total capacitance, CT, by 

dividing it to the sweep rate following the expression CT = δQ/δE = I δt/ δE = I/(δE/δt). The area of 

the sensor is obtained by dividing the estimated total capacitance CT, by the empirical reference 

value, C* (10 µF/cm2), used for the capacitance of the purified SWCNTs [37]. 

A = CT / C*                                                                                 (3) 
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Table 6.1-1 shows the values obtained from the addition of hexaammineruthenium to PANI and 

SWCNTs based aptasensors. The obtained results show considerable differences in the calculated 

surface areas for both sensors: 164.29 cm2 for SWCNTs versus 11.27 cm2 for PANI with standard 

deviations of 25.7 cm2 and 2.16 cm2 for SWCNTs and PANI, respectively (N=3). The area of the 

polished glassy carbon surface is 0.07 cm2. The increase in the area of PANI sensor is thought to be 

due to the polymer chains conformation on the surface which is creating some slight roughness 

compared to bare GC surface. The area differences between PANI and SWCNTs sensors could result 

from the fact that the surface area to volume ratio of SWCNTs is much higher than the PANI chains 

deposited in the two dimensional plane of the sensor surface. Furthermore, spaghetti like formation 

[16] of the SWCNTs compared to very orderly distributed PANI chains also supports this result. The 

total charge on the surface are calculated 5.63×10-6 C for PANI, and 8.21×10-5 C for SWCNT based 

sensors with standard deviations of  1.08×10-06 C and 1.29×10-05  C for PANI and SWCNTs, 

respectively (N=3). Using equations (1) and (2), 6.23×10+11 and 6.24×10+11 TBA molecules are bound 

per cm2 of PANI and SWCNT surface respectively which lead a total of 7.03×10+12 aptamer molecules 

on PANI and 1.03×10+14 aptamer molecules on SWCNT total sensor surface. All of the corresponding 

standard deviations are presented in Table 6.1-1. 

 

Table 6.1-1 Calculated surface charge and ligand density values with corresponding standard deviations (N=3). 

 A (cm
2
) Q (C) ΓRU (mol/cm

2
) 

ΓTBA 

(molecule/cm
2
) 

NTBA  at 

sensor surface 

PANI 11.27 5.63×10
-06

 5.18×10
-12

 6.23×10
+11

 7.03×10
+12

 

SWCNT 164.29 8.21×10
-05

 5.19×10
-12

 6.24×10
+11

 1.03×10
+14

 

PANI StDev  2.16 1.08×10
-06

 9.94×10
-13

 1.20×10
+11

 1.00×10
+12

 

SWCNT StDev 25.7 1.29×10
-06

 8.11×10
-13

 9.77×10
+10

 1.60×10
+13

 

 

6.2.4.2. Potentiometry 

Potentiometric responses of PANI and SWCNTs based TBA modified sensors against thrombin are 

evaluated. Evaluation is done under consideration of that the sensing system is not based on 

equilibrium process, hence should not be explained by the Nernstian theory. The sensors do not 
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contain any membrane to provide the equilibrium process that is necessary for realizing the 

Nernstian theory, and it is similar to field effect transistors (FETs), which are also considered 

potentiometric sensors [4, 5]. Instead, our target is a neutral protein at where the isoelectric point is 

in the pH range of 7,0 – 7,6. What is thought is that the conformational change of the aptamer 

during binding event changes the capacitance value of the surrounding of the SWCNTs/PANI (the 

transducing elements) which leads to the detectable signal. Within this scenario, the response could 

be considered sensitive enough, at least for any type of semi-quantitative or qualitative detection 

since the target analyte is a protein that shows an illness above or below a critical level in blood. 

The stabilization time for the PANI sensor is much longer (16 hours) than the approximately 30 

minutes needed for the carbon nanotube sensor using the same experimental conditions. It might 

be related to the time needed to reach the equilibrium position of the nucleic acid segment onto the 

different surfaces and to the establishment of the interfacial double-layer in PANI sensor than the 

SWCNT sensor. This could also be attributed to relatively lower chemical stability and higher light 

sensitivity of PANI against SWCNTs. Fig. 6.1-2 shows the potentiometric responses obtained when 

increasing the total concentration of thrombin in the solution. Both sensors are kept without analyte 

until reaching a stable state and additions have been made simultaneously in both sensors for 

technical reasons. The sensitivity is calculated as 2.97 mV/decade and 8.03 mV/decade for the PANI 

and SWCNTs aptasensors respectively. These results are in accordance with the higher surface 

density of the aptamers in the SWCNT potentiometric sensor. Inset of the Fig. 6.1-2 shows average 

(N=3) calibration curves of the potentiometric response for both SWCNT and PANI. 
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Figure 6.1-2 Potentiometric response of the TBA modified PANI and SWCNT based sensors to thrombin. Concentration 

range is 0,5 nM-800 nM in both cases. Inset; Average calibration curves for the PANI and SWCNTs potentiometric sensors 

against thrombin with corresponding error bars. 

Selectivities of both sensors were measured against elastase and BSA separately. Both sensors did 

not show a noticeable response until 2 µM level. Additions were done first by ranging from 0.5 µM 

up to 800 nM as in the sensitivity experiments with no noticeable response. Later, the additions 

have been conducted by first 1 µM and later 2 µM of interfering proteins where they showed a 

noticeable signal.  

Comparing the performance of PANI and SWCNTs as transducers in potentiometric aptasensors, the 

first aspect is that PANI can be deposited electrochemically onto the GC surface with a very high 

control on thickness. The same thickness control is difficult to reach with carbon nanotubes using 

any of the available deposition techniques [38]. Nevertheless, the produced sensor interface is very 

different in both sensors, while we obtain a quite homogeneous surface with PANI (area = 11.27 

cm2), the surface of the spaghetti-like deposited carbon nanotubes is very rough and 

inhomogeneous producing a very large superficial interface (area = 164.29 cm2).   

The chemistry used to covalently immobilize the thrombin aptamer onto the substrate gives very 

similar results in terms of surface density of the ligand (ΓTBA is approximately 6.2×10+11 molecule/cm2 
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in both sensors). While the aromatic substitution involving a thiol group is used to link aptamers to 

PANI (See Scheme 6.1-1), the covalent bonds via carboxylic groups have been established between 

the receptors and SWCNTs. However, the very different available surface area in both substrates 

gives rise to large differences in the total ligand linked to the substrate (NTBA = 7.03×10+12 in PANI 

and 1.03×10+14 in SWCNTs).  

Considering that SWCNTs have a larger total surface area than the relatively planar PANI surface, a 

higher percentage of the immobilized and active aptamers is probably responsible of the differences 

in the observed sensitivity. Another reason for the higher sensitivity could be attributed to the 

relatively higher affinity that is caused by the covalent backbone of the carboxylic acid-amine 

interaction. Also there are some electrostatic interactions present which caused the phosphate 

backbone of the TBA and positively charged surface of PANI. These interactions must be higher than 

the ones between TBA and CNTs so that the total energy needed for the TBA to get its chair G-

quartet formation is lower in case of CNTs which thought to be source of the potential response 

[39]. Further research is needed to be able to explain this difference considering the similarities and 

differences in both charge transfer mechanisms. However, both sensors have a similar limit of 

detection (LOD) (80 nM for SWCNT based sensor and 71 nM for PANI based sensor) values. 

Relatively lower noise level in PANI based sensor is thought to be the responsible for this slightly 

better LOD. 

To conclude, using a redox molecule to determine the total charge on the surface of TBA modified 

sensor, and as a consequence, being able to calculate the surface ligand density can help in 

enhancing sensor’s performance. However, the current method doesn’t provide information on the 

formation and the distribution of the aptamer molecules on the SWCNT/PANI surface. Further 

investigation is needed to determine the correct formation of the aptamers to thoroughly 

understand the underlying phenomena of the generated EMF. In comparison to previously reported 

CNT based potentiometric sensor [16], PANI based sensor doesn’t provide nor as good sensitivity, 

neither stability. However, both sensors responded to interfering proteins exhibiting a similar 

selective behavior. 
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Scheme 6.1-1 The scheme depicting charge competition and TBA-thrombin binding. a) When the thrombin is not in the 

system, TBA tends to remain attached to PANI backbone due to charge attraction. b) TBA starts to dislocate from PANI 

surface through thrombin. c) Positively charged active site of the thrombin binds to the TBA which leads a potentiometric 

signal. 
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6.3. Recent advances 

6.3.1. Introduction 

Recent trends in use of nanostructured materials have been discussed in detail in chapter 3. In 

chapter 6.2 we compared polyaniline and carbon nanotubes as transducing materials by 

characterizing the active surface areas of the sensors. This section focuses on newer reports on 

several transducing elements that display similar characteristics to carbon nanotubes and on the 

characterization of sensors using several instrumental techniques.  

6.3.2. Transducers and characterization studies 

Lange et al. [Lange 2012] proposed the use of conducting polymers, a polythiophene film as a case 

example, to monitor redox titrations potentiometrically without using electrolyte in the 

measurement solution, opening a way to perform electroanalytical measurements and in non-

aqueous media. The approach was applied for redox titration. Equivalent points obtained by this 

titration in aqueous and organic solutions were identical. Then the approach was applied to the 

determination of bromine number by redox titration in non-conducting organic phase by using both 

conductimetry and redox potentiometry. 

Marinina et al. [Marinina 2012] have investigated the behavior of polyfunctional properties 

ruthenium-titanium oxide film electrode (RTOE) in the absence of polarization in potentiometry. 

They checked the possibility of its application to the potentiometric detection of iron(III) titration 

with an ethylenediaminetetraacetic acid solution. They also have investigated mechanisms of 

reactions determining the potentials of electrodes by a number of methods. 

Lakard et al. [Lakard 2012] have optimized the structural parameters of new potentiometric pH and 

urea sensors based on polyaniline and a polysaccharide coupling layer by using screen-printed 
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carbon electrodes.  The resulting pH sensor exhibited a fast, reproducible and sensitive 

potentiometric response of approximately 59 mV per pH unit from pH 4 to 8. The sensitivity of 

polyaniline to pH variations was then used to design an enzymatic biosensor. For that purpose, 

urease was immobilized on a polyelectrolyte multilayer film (PEM), obtained by the alternate 

deposition of charged polysaccharides (layer-by-layer assembly), over the polyaniline film. Covalent 

grafting of the urease enzyme to the PEM film was also tested using carbodiimide coupling reaction. 

The potentiometric response of this assembly to pH variations was similar to the one of polyaniline 

films, and its response to urea, from 10−4 to 10−1 mol L−1, exhibited a very high sensitivity combined 

to fast response, good lifetime and reproducibility. The number of polyelectrolyte layers composing 

the PEM film was also found to affect the response of the urea sensors. 

6.3.3. Conclusions 

Characterization of active surfaces of electrochemical sensors is very important to understand the 

underlying phenomenon of the generated signals. Recent reports include different transducing 

materials and mechanisms for electrochemical detection. However, proper characterization of the 

structure and mechanisms in the reported sensors remains as a challenge due to several reasons. 

New sensing methodologies and different sensor concepts usually lack of an appropriate 

characterization techniques. This is very usual in nanotechnology where the available techniques are 

usually expensive and difficult to use. More characterization techniques, and/or optimizations of the 

existing ones need to be developed to overcome most of these problems. 
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CHAPTER 7  

7.1. CONCLUSIONS 

The main conclusion of this thesis is that with aptamer functionalized single-walled carbon 

nanotubes (SWCNTs), the classical polymeric ion-selective membrane (ISM) can effectively be 

eliminated to lead a membraneless potentiometric sensor which enables the determination of 

analytes larger than ions, such as proteins. For the first time, it has been demonstrated that this 

nanostructured composite material is able to compete with classical methods that usually require 

complex, expensive, and/or time consuming systems to detect large analytes. 

This main conclusion can be detailed in a series of specific conclusions: 

We have reported on a generic method for aptasensing proteins, where the simplicity of the 

selective potentiometric sensor, combined with its ability to directly detect a biorecognition event 

obviating the need for labels, mediators, the addition of further reagents or analyte accumulation, 

highlight the promise of this electrochemical technique.  

We have also reported the use of SWCNTs as transducers in aptamer based potentiometric solid-

contact sensors, with interaction between the TBA and the thrombin giving rise to a direct 

potentiometric signal that can be easily recorded in nearly real-time. 

Potentiometric results demonstrated that an aptamer functionalized layer of single wall carbon 

nanotubes deposited onto a conducting substrate is able to transduce an ionic current into 

electronic current in SWCNTs based aptasensors. 

The total charge on the surface of TBA modified sensor has been determined using the redox 

molecule, hexamine ruthenium chloride (Ru[(NH3)6]Cl3) which enabled the calculation of the surface 

ligand density. This ligand density is related to the sensitivity of the sensor, therefore it is used to 

enhance the sensor’s performance. 

The biosensing mechanism is presumed to be based on the equilibrium competition between the 

target analyte and the SWCNTs to be linked to the aptamer. Since the phosphate groups of the 
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aptamers are largely ionized at pH 7.5, these negative charges may be transferred to the carbon 

nanotubes. This agrees with the decrease in the standard potential of the sensor measured 

following functionalization of the SWCNTs with the aptamers. The presence of the target protein 

induces a conformational change in the aptamer that separates the phosphate negative charges 

from the SWCNT sidewalls, inducing the subsequent increase of the recorded potential.  

This mechanism is in agreement with the fluorescence confocal microscopy results obtained with 

the thrombin aptamer labeled with the fluorescein derivative FAM. In the absence of thrombin, the 

fluorescence is quenched by the proximity of the label to the carbon nanotube, whilst the presence 

of thrombin in the test solution results in the appearance of a fluorescent signal due to the 

competitive binding of the thrombin with the SWCNT for the aptamer, with a conformational 

change of the latter and the corresponding spatial displacement of the dye from the surface of the 

carbon nanotube. 

Potentiometric responses of PANI and SWCNTs based TBA modified sensors against thrombin are 

evaluated. The stabilization time for the PANI sensor is much longer than the SWCNT sensor. This 

could be attributed to relatively lower chemical stability and higher light sensitivity of PANI against 

SWCNTs. 

It should be noted that the developed electrodes have completely different sensing mechanism 

from the well-established ISEs. As long as the classical Nernstian theory is considered, the ideal 

sensitivity slope should be 59,2 mV/decade as a response for a single charged “ion” detection. 

However, the classical Nernstian theory is not applicable in our sensors since the sensors do not 

contain any membrane to provide the equilibrium process that is necessary for realizing the phase-

boundary potential model. What is thought is that the affinity reaction between aptamer and the 

protein is causing a conformational change on the aptamer during the binding event, and changing 

the capacitance value of the surrounding of the SWCNTs/PANI (the transducing elements) which 

leads to the detectable signal. Although this theory is not well proved, we can speculate on the basis 

of the evidences collected. Within this scenario, the response could be considered sensitive enough, 

at least for any type of qualitative or semi-quantitative analysis where the target analyte could be a 

protein that indicates an illness when detected above or below a critical level in blood.  
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CNTs are known to be affected from the surrounding ions, which has a direct translation to 

reproducibility issues. Therefore, one of the most important development aspects is the proper 

blocking the surface of the CNTs without disturbing the surrounding aptamer in a way to enable the 

conformational change. We have made several attempts using surface blocking agents such as 

Tween 20 without high success. Strict controlling of temperature, pH and ionic strength is also 

necessary to avoid unforeseen effects such as drift and background noise. The ionic strength also 

should be as constant as possible to have an easily distinguishable signal. 

Additionally to the proper blocking mentioned above, our production techniques could also be some 

of the reasons for decreasing reproducibility. Spraying of CNTs onto the conducting backbone, albeit 

is a fast and effective method, is very difficult to control. Therefore the thickness is not the same for 

all sensors in a batch. CNT loss is also another problem. To overcome these problems, we tried the 

immobilization of SWCNT ink to paper backbone, which enabled the control of the amount of CNTs 

on the active sensing area and the flexible management of the process, with similar performance 

characteristics as the glassy carbon backbones and minimal CNT loss. 

Currently, there are no studies in the literature dealing with the detection of large analytes using 

potentiometric aptasensors with consistent experimental selectivity. The most similar sensors are 

the ones incorporating antibodies instead of aptamers and hence they have their specific drawbacks 

that are mentioned throughout the thesis. The original strategy shown in this work, with a 

systematic chemical functionalization of SWCNTs, could serve to open different pathways in order to 

obtain highly selective aptasensors useful for bacteria, protein, or polypeptide detection. 

7.2. Acquisition of attributes and skills 

During my PhD studies, in addition to acquiring scientific knowledge, I have also acquired certain 

attributes that will help me to develop my career in the future. 

In this thesis I have outlined the development of my research project. Firstly, I have focused on 

learning the main features of what for me was a new and thus challenging field, nanotechnology, 

and how this field is related to analytical chemistry, which was my specific research area. To do this, 

I studied the literature extensively in order to understand the concepts and terminology involved. 

Secondly, I selected and reviewed the literature I found in order to obtain what was most useful for 
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my own work. This has helped me to develop critical reading skills for evaluating the relevant 

literature. 

Moreover, I have acquired the ability to initiate research projects and to define the framework and 

variables involved. 

These skills enabled me to perform my experimental work, which involved understanding what 

SWCNTs were, developing aptamer functionalized SWCNTs-based sensors for detecting a specific 

target analyte, and gaining the ability to critically evaluate my results, both within and across a 

changing disciplinary environment. The experimental work of this thesis has been conducted in 

collaboration with other members of the research group, and so I have learned to work as a 

member of a team.  

I have taken several master’s and doctorate courses after which I was awarded the official master’s 

degree in Nanoscience and Nanotechnology. At the same time, I have attended several congresses 

where I had to present and discuss our scientific results.  I also visited a foreign research group, and 

had the chance to observe differences and similarities of conducting science which also gained me 

some experience in collaboration strategies. Moreover, I have written up and published the results 

of our work in international scientific journals. Through these scientific contributions, I have 

acquired the ability to communicate results effectively both orally and in writing, and have gained 

an understanding of the relevance and value of my research to the national and international 

scientific communities.  
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ANNEXES 

Annex 1. Glossary 

 Ω: resistance unit (Ohm) 

ASS-ISE: all solid state ion selective electrode 

CNTFET: carbon nanotubes field effect transistor  

CNTink: carbon nanotube ink 

CNTs : carbon nanotubes 

COOH: carboxyl function 

    CTAB: cetyl trimethylammonium bromide 

CV: cyclic voltammetry 

CWE: coated wire electrode 

DMF: dimethylformamide 

EDC: 1-ethyl-3-3(3-dimethylaminopropyl) carbodiimide hydrochloride 

EIS: electrochemical impedance spectroscopy 

EMF: electromotive force 

ESEM: scanning electron microscopy 

F: Faraday constant (96485 C mol
-1

)  

FET: field effect transistor 

GC: glassy carbon rod  

    Hz: frequency unit (Hertz) 

I: current unit (Ampere) 

ISEs: Ion Selective Electrodes 

IS-ISEs: internal solution ion selective electrodes 

ISM: ion selective membrane 

IUPAC: international union of pure and applied chemistry 

LOD: limit of detection 

MES: n-morpholinoethane sulfonic acid 

MWCNTs: multiwall carbon nanotubes 

N
-
: anion with negative charge 

N
+
: cation with positive charge 

NHS: n-hydroxysuccinimide 

PANI: polyaniline 

PBS: phosphate buffered saine 
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PVC: Poly(vinyl chloride) 

R: molar gas constant (8.314 J K-1 mol-1) 

rpm: revolutions per minute 

Rs: solution resistance 

SC-ISE: ion-selective electrodes with internal solid-contact 

SDBS: sodium dodecyl benzene sulfonate 

SDS: sodium dodecyl sulfate 

SEM: scanning electron microscopy  

SWCNT ink: single wall carbon nanotube ink 

SWCNTs: single wall carbon nanotubes 

T: absolute temperature (K) 

    TEM: transmission electron microscopy 

V: voltage unit (Volt) 

Z: impedance  
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