

High performance computing on biological sequence
aligment

Miquel Orobitg Cortada

Dipòsit Legal: L.290-2013
 http://hdl.handle.net/10803/110930

 Títol de la tesi està subjecte a una llicència de Reconeixement-
NoComercial-CompartirIgual 3.0 No adaptada de Creative Commons

(c) any, nom i cognom/s de l'autor/a de la tesi

Nom/Logotip de la
Universitat on s’ha

llegit la tesi

Escola Politècnica Superior
Departament d’Informàtica i Enginyeria Industrial

High performance computing on
biological sequence alignment

Memòria presentada per obtenir el grau de
Doctor per la Universitat de Lleida

per

Miquel Orobitg Cortada

Dirigida per

Dr. Fernando Cores Prado Dr. Fernando Guirado Fernández
Universitat de Lleida

Programa de doctorat en Enginyeria

Lleida, febrer de 2013

Abstract

Multiple Sequence Alignment (MSA) is an extremely powerful tool for such
important biological applications, as phylogenetic analysis, identification of
conserved motifs and domains and structure prediction. The main idea behind
MSA is to place protein residues into columns according to selected criteria.
These criteria can be the structural, evolutionary, functional or sequence sim-
ilarity. The first three criteria are based on biological meaning, but the fourth
is not. Then the best match alignment may not exhibit the best biological
meaning.

The other issue is that MSAs are computationally difficult to calculate,
and most formulations of the problem lead to NP-hard optimization problems.
MSA computation therefore depends on approximate heuristics or algorithms.
Accurate and fast construction of MSAs has been extensively researched in
recent years, and a variety of methods have been developed.

Nowadays, the new challenges in the genomics era are focused on align-
ing thousands, or even hundreds of thousands, of sequences. For this reason,
alignment methods must be adapted to avoid being relegated from everyday
use. Many MSA methods have introduced High Performance Computing ca-
pabilities to take advantage of the new technologies and infrastructures. In
particular, there are many approaches that improve alignment performance by
parallelizing the whole MSA application. However, these distributed methods
exhibit scalability problems when the number of sequences increases, as they
are constrained by data dependencies that guide the alignment process.

In this thesis, three different approaches to solving or reducing some limita-
tions of the MSA methods are proposed. The first of these is aimed at reducing
data dependencies to increase the degree of parallelism in the applications and

iii

improve their scalability. The second one is devoted to reducing the memory
requirements of a consistency-based method. And the last one is designed to
increase the alignment accuracy by improving the guide tree.

From the parallelism point of view, we propose a new guide tree construc-
tion algorithm to exploit the degree of parallelism in the final alignment pro-
cess in order to resolve the bottleneck of the progressive alignment stage in
MSA. This new contribution increases the number of parallel alignments to
take advantage of increasing computer resources by balancing the guide tree,
but taking biological accuracy properties into account. The results achieved
demonstrated that the proposed heuristic is capable of increasing the degree
of parallelism in the parallel MSA method, thus reducing the execution time
while maintaining the biological quality of the alignment.

Regarding the memory requirements, we propose a new approach to reduce
the computational requirements of the consistency-based method, T-Coffee.
The main goal of the proposal is to reduce the number of consistency data
stored. This allows a reduction in the execution time and therefore an improve-
ment in the scalability of TC to enable the method to align more sequences.
Furthermore, the proposed methodology is focused on achieve a minimal the
impact over accuracy of the alignments and it is the user who decides the de-
gree of optimization. The results obtained proved that this approach is able
to reduce the memory consumption and increase both performance and the
number and the length of the sequences that the method can align.

In connection with biological accuracy, we propose Multiple Trees Align-
ment (MTA). MTA is a new MSA method for aligning multiple guide-tree
variations for the same input sequences, evaluating the alignments obtained
and selecting the best one as a result. MTA is implemented in parallel to pro-
vide a good compromise between time and accuracy. Besides, this approach
could be applied to any progressive alignment method that accepts a guide tree
as an input parameter, and the resulting alignments could be evaluated with
any scoring function. Furthermore, we also propose two meta-score metrics,
obtained through the combination of single ones. These metrics, which are de-
vised using evolutionary algorithms, are able to improve the single ones. The
study of different alignment scoring metrics for the selection of the best align-

ment proved that in general the best ones are the two proposed meta-scores,
followed by the ones that use structural information. Finally, the results ob-
tained demonstrated that MTA with Clustal-W and T-Coffee considerably
improves the quality of the alignments.

Acknowledgements

I would like to acknowledge everybody who supported me during the course of
this thesis. First and foremost, I want express my gratitude to my supervisors,
Dr. Fernando Cores Prado and Dr. Fernando Guirado Fernández, for their
continued encouragement and invaluable suggestions throughout this work.
They have patiently supervised every little issue, always guiding me in the right
direction. Without their help, I could not have finished my thesis successfully.

Special thanks are due to all the seniors from the Group of Distributed
Computing (GCD) at the Universitat de Lleida (UdL). I must say that has
been a great experience working closely with such good people: Concepció
Roig, Francesc Giné, Francesc Solsona, Josep Ll. Lèrida, Josep M. Solà, Valentí
Pardo and Xavier Faus.

During my research, I have shared great moments with all my colleagues:
Josep Rius, Ignasi Barri, Ivan Teixidó, Héctor Blanco, Anabel Usié, Damià
Castellà, Alberto Montañola, Jordi Vilaplana, Eloi Gabaldon, Jordi Lladós
and Ismael Arroyo. Many thanks to all of them for the wonderful times we
shared.

Furthermore, I want to thank Porfidio Hernández and Toni Espinosa from
Universitat Autònoma de Barcelona (UAB) for all their support. I also want
to thank all the members of the Comparative Bioiformatics group from the
Centre for Genomic Regulation (CRG), especially Cedric Notredame, Carsten
Kemena and Paolo Di Tommaso, for their good advice and help, and for wel-
coming me as if I were one more during one month. Finally, I want to thank all
the members of the Edinburgh Data-Intensive Research group at the University
of Edinburgh. During three month, I had the chance to stay in this group and
work with great people who made me feel at home. It was a great experience

vii

viii

that marked me in many positive aspects. I would especially like to acknowl-
edge Malkolm Atkinson, Paolo Besana, David Rodríguez, Rosa Filgueira and
Gary McGilvary for all their support and for welcoming me as if I were another
member of a big family.

Last but not least, I would like to dedicate this thesis to all my friends
and, foremost, to my closest family. Especially to my father Miquel and my
sister Marta for the patience and understanding they have shown during these
long years. To my girlfriend Laura for her emotional support. And especially,
I want to dedicate this thesis to my mother Elena who unfortunately is no
longer with us.

Contents

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Bioinformatics . 3

1.1.1 Molecular Biology . 4
1.1.1.1 Biological preliminaries 4
1.1.1.2 Central Dogma of molecular Biology 8

1.1.2 Bioinformatic Research Areas 8
1.2 Sequence Alignment . 12

1.2.1 Pairwise Sequence Alignment 14
1.2.2 Multiple Sequence Alignment 14

1.2.2.1 Applications 15
1.2.2.2 Constraints and Requirements 15
1.2.2.3 Evaluation . 17
1.2.2.4 Current Status 17

1.3 High Performance Computing 18
1.3.1 Parallel Computing . 19

1.3.1.1 Hardware . 21
1.3.1.2 Software . 28

1.4 Motivation . 29
1.5 Thesis Objectives . 31

ix

x CONTENTS

1.6 Overview . 32

2 Related Work 35
2.1 Introduction . 35
2.2 Pairwise Sequence Alignment Methods 36

2.2.1 Dot-matrix Methods . 36
2.2.2 Dynamic Programming 36
2.2.3 Word Methods . 40

2.3 Multiple Sequence Alignment Methods 40
2.3.1 Exact Algorithms . 41
2.3.2 Progressive Alignment 42
2.3.3 Iterative Alignment . 44

2.3.3.1 Stochastic Iterative Algorithms 44
2.3.3.2 Non-stochastic Iterative Algorithms 48

2.3.4 Consistency-based Methods 51
2.3.5 Meta-aligners . 54
2.3.6 Template-based Methods 55

2.4 Benchmarking . 57
2.5 High Performance Computing in MSA 60

2.5.1 Parallel Algorithms for Pairwise Alignment 61
2.5.1.1 Wavefront Approach 61
2.5.1.2 Divide and Conquer Approach 61

2.5.2 Parallel Multiple Sequence Alignments 63
2.5.2.1 Multi-Threading and Multi-Process Parallel

Aligners . 63
2.5.2.2 Distributed Memory Parallel Aligners 65

2.5.3 GPUs based Parallel Aligners 69
2.5.4 Conclusions . 71

3 Balanced Guide Tree 73
3.1 Introduction . 73
3.2 Problem analysis . 74

3.2.1 Progressive Alignment analysis 76
3.3 Balanced Guide Tree . 78

CONTENTS xi

3.3.1 Neighbor-Joining Algorithm 79
3.3.2 Balancing Guide Tree Algorithm 80

3.4 Experimentation . 84
3.4.1 Balanced Guide Tree Performance 84

3.4.1.1 BalancedParallel-TCoffee 85
3.4.1.2 Balanced-TCoffee 87

3.4.2 Balanced Guide Tree Accuracy 92
3.5 Balanced Guide Tree Conclusions 94

4 Consistency Library Optimization 95
4.1 Introduction . 95
4.2 Problem analysis . 96

4.2.1 T-Coffee scalability solutions 98
4.3 Library Optimization Proposal 100

4.3.1 Library Construction . 100
4.3.2 Essential Library Method 103
4.3.3 Threshold Library Method 104

4.4 Experimental Study . 105
4.4.1 Library Optimization study 106
4.4.2 Scalability study . 109
4.4.3 Biological Accuracy study 112

4.5 Library Optimization Conclusions 113

5 Multiple Tree Alignment 115
5.1 Introduction . 115
5.2 Multiples Tree Alignment Algorithm 116
5.3 Evaluation Metrics Analysis . 119

5.3.1 Multiple Tree Alignment validation 120
5.3.2 Scoring Functions . 122

5.3.2.1 Scoring Functions without Structural Informa-
tion . 123

5.3.2.2 Scoring Functions with Structural Information . 125
5.3.2.3 Multiple Tree Alignment Scoring Functions . . 127

5.4 Genetic Algorithm Meta-Score 128

xii CONTENTS

5.4.1 Genetic Algorithm Design 128
5.4.1.1 Weighted-Score Chromosome 129
5.4.1.2 Meta-Score Code Chromosome 132

5.4.2 Genetic Algorithm implementation 134
5.4.3 Genetic Algorithm training process 135

5.4.3.1 Genetic Algorithm configuration 135
5.4.3.2 Genetic Algorithm evolution 139

5.5 Multiple Tree Alignment Experimentation 141
5.5.1 Comparison of the Evaluation Metrics 142
5.5.2 Alignment Accuracy analysis 144
5.5.3 Scalability study . 146

5.6 Integration of Consistency Library Optimization with MTA . . . 149
5.6.1 Consistency Optimization configuration 149
5.6.2 Alignment Accuracy analysis 151
5.6.3 Scalability study . 152

5.6.3.1 Parallel Multiple Tree Alignment 152
5.6.3.2 Sequential Multiples Tree Alignment 156

5.7 Multiple Tree Alignment Conclusions 157

6 Conclusions and Future Work 159
6.1 Conclusions . 159
6.2 Future Work . 165

Bibliography 169

List of Figures

1.1 Examples of DNA and RNA sequences 6

1.2 3D structure of the myoglobin protein 6

1.3 A gene that occupies a specific location in a chromosome 7

1.4 Central dogma of molecular biology scheme 9

1.5 MSA representation . 13

1.6 Global and local alignment example 14

1.7 Pairwise Sequence Alignment example 14

1.8 Cluster environment structure 24

1.9 Multi-Cluster environment structure 25

1.10 Grid environment structure . 26

1.11 P2P Network . 27

1.12 Cloud environment structure . 28

2.1 Example of a DNA dot plot of a human zinc finger transcription
factor . 37

2.2 Dynamic Programming examples 38

2.3 Substitution matrices examples 39

2.4 Progressive Alignment algorithm 43

2.5 A possible HMM model for the protein ACCY 48

2.6 Muscle algorithm . 50

2.7 T-Coffee algorithm . 53

2.8 Template-based protocols in a T-Coffee primary library 56

2.9 Wavefront parallelism in Dynamic Programming alignments . . 62

2.10 Divide and Conquer approach: first and final divisions. 62

xiii

xiv LIST OF FIGURES

3.1 PTC scalability analysis . 75
3.2 Guide tree generated with standard NJ heuristic 77
3.3 Example of NJ Guide Tree generation 79
3.4 BGT Guide Tree generation example 81
3.5 Guide tree generated with the BGT-AB heuristic 82
3.6 Comparison of the PTC and BP-TC execution times 86
3.7 Comparison of the stages of the execution times for the PF01057

sequence set . 88
3.8 Comparison of the PTC and B-TC execution times 89
3.9 PTC and B-TC execution times compared using the Myers-

Miller algorithm . 91

4.1 Library structure. 97
4.2 Analysis of the TC execution time 98
4.3 Analysis of the TC memory requeriments 99
4.4 Example of pairwise alignment 102
4.5 Example of triplet alignment 103
4.6 Memory requirement analysis 107
4.7 Execution time analysis . 108
4.8 Biological accuracy analysis . 108
4.9 Analysis of the memory requirements 110
4.10 Scalability study . 111

5.1 Multiple Tree Alignment algorithm scheme 117
5.2 MTA validation using Q benchmark score as evaluation metric . 121
5.3 Genetic Algorithm configuration study: Population number . . . 136
5.4 Genetic Algorithm configuration study: Population size 137
5.5 Genetic Algorithm configuration study: Mutation probability . . 138
5.6 Genetic Algorithm configuration study: Crossover probability . 139
5.7 MCC and WSC GA accuracy evolution study 140
5.8 Parallel MTA Scalability study 148
5.9 MTA-TC T-Library execution times increasing the number of

cores . 153
5.10 Study of the MTA-TC T-library memory requirements 154

LIST OF FIGURES xv

5.11 Analysis of the MTA-TC T-library total execution times 155

List of Tables

3.1 NJ guide tree features for some sequence sets from the Pfam
database . 78

3.2 The NJ and BGT approaches features for some sequence sets
from the Pfam database . 83

3.3 Comparison of the TC and BGT-AB profile alignment times . . 90
3.4 BAliBASE accuracy analysis . 93
3.5 PREFAB accuracy analysis . 93

4.1 Analysis of BAliBASE accuracy 113
4.2 Analysis of PREFAB accuracy 114
4.3 Analysis of HOMSTRAD accuracy 114

5.1 WSC and MCC configuration parameters 138
5.2 Comparison between different MTA-CLW configurations vary-

ing the evaluation metric . 143
5.3 Comparison between different MTA-TC configurations varying

the evaluation metric . 144
5.4 Comparison of the accuracy of MSA methods 146
5.5 Comparison between different MTA-TC T-Library configura-

tions varying the level of optimization 150
5.6 Comparison of the accuracy of optimized MTA-TC approaches

with other MSA methods . 151
5.7 Accuracy and execution time analysis of the sequential MTA-

TC T-library approaches . 156

xvii

List of Algorithms

1 Primary Library construction 101
2 Extended Library construction 102
3 Essential Library method . 104
4 Threshold Library method . 105
5 BNF grammar of chromosome code 132
6 Meta-score code example . 133
7 Meta-score code program . 141

xix

Chapter 1

Introduction

Over the twentieth century, biology played a key role among the sciences. A
major reason for the growth of biological sciences, was its links to medicine.
Progress in medicine depends on fundamental progress in solving the biological
challenges. The sequencing of insulin inaugurated the modern era of molecu-
lar and structural biology. In this pre-computer era, sequences were analysed
and compared by writing them out on pieces of paper. As soon as comput-
ers became available, the first computational biologists started to enter these
manual algorithms into the memory banks. The application of computer sci-
ence to answering the questions posed by biologists is called Bioinformatics or
Computational Biology. For this reason, bioinformatics can be defined as the
computational branch of molecular biology [CN06].

Computational biology has been revolutionized by advances in both com-
puter hardware and software algorithms. Examples include assembling the
human genome and using gene-expression chips to determine which genes
are active in a cell. High-throughput techniques for DNA sequencing and
analysis of gene expression have led to exponential growth in the amount of
publicly-available genomic data. For instance, the genetic sequence informa-
tion in the National Center for Biotechnology Information’s GenBank database
[BKML+11] has nearly doubled in size each year for the past decade, with more
than 37 million sequence records as of August 2004. Biologists are keen to
analyse and understand this data, since genetic sequences determine biological
structure, and thus, the function of proteins. Understanding the function of

1

2 Introduction

biologically active molecules leads to an understanding of biochemical path-
ways and disease-prevention strategies and cures, along with the mechanisms
of life itself.

Computing systems are now so powerful that it is possible for researchers to
consider modelling the folding of a protein or even the simulation of an entire
human body. As a result, computer scientists and biomedical researchers face
the challenge of transforming data into models and simulations that will, for
the first time, enable them to gain a profound understanding of the deepest
biological functions. Traditional uses of High-Performance Computing (HPC)
systems in physics, engineering, and weather forecasting involve problems that
often have well-defined and regular structures. In contrast, many problems in
biology are irregular in structure, are significantly more challenging for software
engineers to parallelize, and often involve integer-based abstract data struc-
tures. Solving biological problems may require HPC due either to the massive
parallel computation required to solve a particular problem or to algorithmic
complexity that may range from difficult to intractable. Many problems in-
volve seemingly well-behaved polynomial time algorithms (such as all-to-all
comparisons), but have massive computational requirements due to the large
data sets that must be analysed. For example, the assembly of the human
genome in 2001 from the many short segments of sequence data produced by
sequence robots required approximately 10,000 CPU hours.

Other problems are compute-intensive due to their inherent algorithmic
complexity (such as protein folding and reconstructing evolutionary histories
from molecular data). Some are known to be NP-hard (or harder). Thus, while
NP-hard problems are thought to be intractable, HPC may provide sufficient
capacity for evaluating bio-molecular hypotheses or solving more limited, but
meaningful, instances.

Among all the topics of molecular biology, the present thesis is focused
on Multiple Sequence Alignment (MSA). MSA is one of the techniques of
Sequence Alignment, which is the most common task in bioinformatics. Se-
quence alignment consists of comparing DNA, RNA or protein sequences to
search for evolutionary or functional relationships or differences between them
[Mou04]. The growth of data, increasing the number of new sequences to be

1.1 Bioinformatics 3

compared and the necessity of aligning DNA sequences, which are longer than
protein sequences; meant that many of the algorithms became obsolete because
of the complexity problem of aligning multiple sequences, the huge memory
consumption or the long runtime.

Many of the tools currently used were created by biologists dealing with
data sets that were minuscule in comparison with those available today. As
a result, software that was once perfectly adequate now performs slowly or is
incapable of successful analysis. As life scientists and biomedical researchers
learn more about the complexities of protein structures, computational scien-
tists find that the accurate sequencing of a large number of sequences may
be intractable without PetaFLOPS-class computers. When algorithm engi-
neering tools and practices are complemented by high-performance software
implementations designed for parallel platforms, enormous gains will be real-
ized in the size of the data sets that may be analysed and the speed in which
that analysis is carried out. Therefore, nowadays, the use of HPC systems and
techniques is essential for solving MSA.

In this chapter, the concepts of bioinformatics, sequence alignment and
HPC are introduced. In Section 1.1, the most relevant concepts of molecular
biology and the major research areas are explained to give the reader a basic
knowledge to be used during throughout manuscript. Section 1.2 introduces
the user to Sequence Alignment research, its applications, requirements and
constraints. Then, in Section 1.3, there is a brief summary of HPC to introduce
the reader to parallel and distributed systems as some of the most widely-used
techniques. Next, once the main terminology and concepts that make up
the context of this thesis have been explained, we present its main challenges
and motivations. Finally, this chapter ends with the main objectives of the
dissertation and details of how this manuscript is structured.

1.1 Bioinformatics

In general terms, bioinformatics is an interdisciplinary area that uses comput-
ers to solve problems in molecular biology. Therefore, the field of bioinfor-
matics involves the analysis and interpretation of various types of data, such

4 Introduction

as nucleotide and amino acid sequences, protein domains, and protein struc-
tures. The actual process of analyzing and interpreting data is referred to as
computational biology. Important sub-disciplines within bioinformatics and
computational biology include the development and implementation of tools
to enable efficient access to, use and management of various types of infor-
mation, and the development of new algorithms and statistics with which to
assess relationships among members of large data sets.

In summary, bioinformatics entails the creation and advancement of
databases, algorithms, computational and statistical techniques and theory to
solve formal and practical problems arising from the management and analysis
of biological data.

1.1.1 Molecular Biology

As defined above, bioinformatics is the computational branch of molecular
biology. For this reason, in this introduction, it is necessary to clarify some
molecular biology concepts.

Molecular biology is the branch of biology that deals with the molecular
basis of biological activity. This field overlaps with other areas of biology
and chemistry, particularly genetics and biochemistry. Molecular biology is
used to understand the interactions between the various systems in a cell, to
include the interactions between different types of DNA, RNA and protein
biosynthesis, as well as learning how these interactions are regulated.

In previous definitions, some molecular agents and processes were found.
In this section, all these concepts needed to understand the central dogma of
molecular biology, and used in this present thesis, are briefly explained.

1.1.1.1 Biological preliminaries

Before introducing the central dogma of molecular biology and the main topic
of this thesis, the following preliminary biological concepts should be explained:

• Cell: This is the basic structural and functional unit of all known living
organisms. It is the smallest unit that is classified as a living thing,
except for the viruses.

1.1 Bioinformatics 5

• Nucleic Acid sequences: Nucleic acid sequences are better known as
Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA).

– DNA sequences: These are chains of informational nucleic acids
molecules found in the nucleus, which encode the genetic instruc-
tions used in the development and functioning of all known liv-
ing organisms and many viruses. Their main function is the long-
term storage of information and they can be seen as the complete
blue-print of life, or the whole history book of evolution of life.
These molecules are packaged in long units known as chromo-
somes. DNA is made up of four types of molecules, which are
codified with four letters: Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T). As Figure 1.1a shows, most DNA molecules are
double-stranded helices. However, DNA is read from one strand
alone, as the other side can be predicted.

– RNA sequence: Like DNA, RNA molecules are nucleic acids, but
their purpose is to copy information from DNA selectively and to
bring it out of the nucleus. RNA serves as a messenger, which deliv-
ers the DNA’s genetic information to the place where proteins are
made. RNA contains four types of molecule: Adenine (A), Cytosine
(C), Guanine (G) and Uracil (U). Like DNA, RNA is assembled as
a chain of nucleotides, but is usually single-stranded (Figure 1.1b).

• Protein sequences: Proteins are large biological molecules manufac-
tured by cells, which consist of one or more chains of amino acids. Pro-
teins perform many functions within living organisms, including catalyz-
ing metabolic reactions, replicating DNA, responding to stimuli, and
transporting molecules from one location to another. Protein sequences
are shorter than most DNA sequences (an average of 100 characters
against 10000 characters) and are built from series of up to twenty dif-
ferent amino acids called residues, represented by letters: Alanine (A),
Arginine (R), Asparagine (N), Arspartic Acid (D), Cysteine (C), Glu-
tamine (Q), Glutamic acid (E), Glycine (G), Histidine (H), Isoleucine
(I), Leucine (L), Lysine (K), Methionine (M), Phenylalanine (F), Pro-

6 Introduction

(a) DNA double helix structure (b) RNA structure

Figure 1.1: Examples of DNA and RNA sequences

line (P), Serine (S), Threonine (T), Tryptophan (W), Tyrosine (Y) and
Valine (V). Proteins sequences, like the one shown in Figure 1.2, are
not linear chains of amino acids, and are twisted and folded into three-
dimensional structures forming a unique shape. These shapes are studied
at four levels: the primary, secondary, tertiary and quaternary.

Figure 1.2: 3D structure of the myoglobin protein

1.1 Bioinformatics 7

• Chromosomes: This is an organized structure of DNA and proteins
found in cells. For example, humans have 23 pairs of chromosomes.

• Genes: A gene is a molecular unit of heredity of a living organ-
ism. Genes are lengths of DNA that are specific regions of the genome
spread throughout the genome, sometimes contiguous, many times non-
contiguous. They are essential for specific functions, either in the devel-
opment of the organism or in maintaining a normal physiological func-
tion. A gene carries biological information in a form that must be copied
and transmitted from each cell to all its progeny. The set of genes of
a species is its genome. Figure 1.3 shows an example of a gene that
occupies a specific location in a chromosome.

• Genome: This is all the genetic material contained in the chromosomes
of a particular organism and represents all its hereditary information.
The genome includes both the genes and the non-coding sequences of
the DNA/RNA. For example, the human genome is composed of about
3,000 millions on nucleotides (A, C, T and G) and about 20,000 genes.

Figure 1.3: A gene that occupies a specific location in a chromosome

8 Introduction

1.1.1.2 Central Dogma of molecular Biology

The central dogma of molecular biology was first stated by Francis Crick in
1958 [Cri58]. The dogma is a framework for understanding the transfer of
sequence information between DNA, RNA and protein. The dogma classifies
the transfer into three types: general transfers, special transfers and unknown
transfers.

The general transfers, which are the most common and whose scheme is
shown in Figure 1.4, describe the flow of genetic information within a biological
system: DNA is duplicated into another DNA (DNA replication); then, this
DNA information is transcribed into the mRNA (transcription); and finally,
the mRNA travels to the protein production sites and it is synthesized into
proteins (translation) [Cri70]. The main operations in this biological process,
such as transcription, translation and duplication, are now introduced:

• Transcription: The goal of transcriptions is to make an RNA copy
of a gene. Specifically, transcription is the process by which the gene
information is transferred to a newly assembled piece of messenger RNA
(mRNA). This RNA can direct the formation of a protein or be used
directly in the cell.

• Translation: This is the process that converts an mRNA sequence into
a chain of amino acids that form a protein.

• DNA Duplication: DNA replication is the process of copying a double-
stranded molecule. DNA duplication is necessary to transmit the genetic
information between parents and progeny and repeat the transference
cycle.

1.1.2 Bioinformatic Research Areas

The primary goal of bioinformatics is to increase the understanding of biolog-
ical processes. To achieve this goal, bioinformatics is focused on developing
and applying computationally intensive techniques, such as pattern recogni-
tion, data mining, machine learning algorithm, HPC algorithms and visual-
ization. In this subsection, the major search areas are presented. These are

1.1 Bioinformatics 9

Figure 1.4: Central dogma of molecular biology scheme

where computer science, mathematics and statistics have been used to define
algorithms methods and systems capable of finding solutions or facilitating the
research.

• Sequence analysis: This consists of comparing DNA, RNA or protein
sequences to understand their features, function, structure, or evolution
[DEKM98]. Comparing new sequences to those with known functions is
a key way of understanding the biology of an organism from which the
new sequence comes. The most common sequence analysis methodolo-
gies are sequence alignment and searches against biological databases.
In molecular biology, sequence analysis includes the following relevant
topics:

– Comparison of sequences in order to find similarity between se-
quences and determine if these are related (homologous sequences).
Two or more sequences are homologous when two protein or gene se-
quences have the same ancestor, similar functions and similar struc-
tures.

– Identification of intrinsic features of the sequence, such as active
sites, post-translational modification sites, gene-structures, reading
frames, distributions of introns and exons and regulatory elements.

10 Introduction

– Identification of sequence differences and variations, such as muta-
tions and single nucleotide polymorphism (SNP), in order to obtain
the genetic marker.

– Revealing the evolution and genetic diversity of sequences and or-
ganisms.

– Identification of molecular structure from isolated sequences.

Nowadays, there are many tools and techniques that provide sequence
alignments and analyze the alignments produced to understand their
biology.

• Genome annotation: This is the process of marking the genes and
other biological features in DNA sequences. This process is divided into
three steps: First, the genome portions that do not code for proteins
are identified. Then, the gene prediction or gene finding is done. This
consists of identifying elements in the genome. Finally, the biological
information is attached to the sequences.

• Computational evolutionary biology: This is the study of the origin
and descen of species, as well as their changes over time. It consists
of building the tree of life that determines evolutionary relationships
between species.

• Literature analysis: This consists of using the computational and sta-
tistical linguistics to explore the huge number of published literature.

• Gene expression: This is the process whereby the information from
a gene is used in the synthesis of another functional gene product, nor-
mally a protein. This process is used by all known life forms to generate
macromolecular machinery for life. Micro-arrays are tiny chips used to
study gene expression.

• Gene regulation: This is a set of mechanisms used by cells to increase
or decrease the production of specific gene products (proteins or RNA).
Bioinformatic techniques have been applied to exploring various steps in
this process.

1.1 Bioinformatics 11

• Protein expression: This is a subcomponent of gene expression that
consists of the stages after DNA has been transcribed into messenger
RNA (mRNA). The mRNA is then translated into polypeptide chains,
which are ultimately folded into proteins. Protein expression is com-
monly used by researchers to denote the measurement of the presence
and abundance of one or more proteins in a particular cell or tissue. Pro-
tein micro-arrays and High Throughput (HT) Mass Spectrometry (MS)
[NMA+10] are techniques used in protein expression.

• Comparative genomics: This is the study of the relationship of
genome structure and function across different biological species or
strains.

• Modeling biological systems: This consists of developing and using
efficient algorithms, data structures, visualization and communication
tools with the goal of modeling biological systems with computers. It
involves the use of computer simulations of biological systems, like cel-
lular subsystems to both analyze and visualize the complex connections
of the cellular processes.

• High-throughput image analysis: This consists of using the com-
putational technologies to accelerate or fully automate the processing,
quantification and analysis of large amounts of high-information-content
biomedical imagery.

• Protein structure prediction: This is the prediction of the three-
dimensional structures of a protein from its amino acid sequence. It
consists of predicting the secondary, tertiary, and quaternary structure
from its primary structure.

• Molecular interaction: It is the study of the interactions among pro-
teins, ligands and peptides. For studying molecular interactions, docking
algorithms [LR96] are efficient algorithms, which consist of the dynamic
molecular simulation of the movement of atoms around rotatable bonds.

12 Introduction

1.2 Sequence Alignment

Nowadays, sequence alignment is by far the most common task in bioinfor-
matics. Given a set of DNA, RNA or protein sequences, sequence alignment
is a way of arranging the residues of these sequences to identify similarity
or divergence regions that could be consequence of functional, structural or
evolutionary relationships between sequences [Mou04].

Sequences are aligned to visualize the effect of evolution across sequences
that share a common ancestor. Similar regions in homologous protein se-
quences, called conserved regions due to the lack of substitutions or the pres-
ence of only very conservative substitutions, determine that this region is of
structural or functional importance. In DNA and RNA sequences, the conser-
vation can mean a similar functional or structural role. Otherwise, the precise
meaning of equivalence is generally context dependent: for the phylogeneti-
cist, equivalent residues have common evolutionary ancestry; for the structural
biologist, equivalent residues correspond to analogous positions belonging to
homologous folds in a set of proteins; for the molecular biologist, equivalent
residues play similar functional roles in their corresponding proteins.

On the other hand, mismatches between sequences can be interpreted as
insertion or deletion mutations. Mutations are changes in sequences and are
caused by radiation, viruses, transposons and mutagenic chemicals, errors that
occur during cell transcription process, and can also be induced by the organ-
ism itself. Insertion mutations are the addition of one or more bases or residues
into sequences, whereas deletions or gaps are mutations in which some bases
or residues are missing.

Alignments are represented both graphically and in text format. As Figure
1.5 shows, the sequences are written in rows arranged so that aligned residues
appear in successive columns. Gaps are spots in sequences where a residue or
a segment of residues is missing and is usually represented as indels. Aligned
columns containing identical or similar characters are indicated with a system
of conservation symbols.

Computational approaches to sequence alignment are classified into three
categories: global alignments, local alignments and a hybrid of these.

1.2 Sequence Alignment 13

Figure 1.5: MSA representation

• Global alignments: Global alignments consist of creating an end-to-
end alignment of the sequences by aligning every residue in every se-
quence (Figure 1.6). They are more useful when the sequences to be
aligned are similar in length and similar across their entire lengths. The
Needleman-Wunsch algorithm is the general global alignment technique
and is based on dynamic programming [NW70].

• Local alignments: Local alignments consist of describing the most
similar regions within the sequences to be aligned (Figure 1.6). They
identify regions of similarity within long sequences that are often widely
divergent overall and ignore the other regions. They are more useful for
analogous sequences that are suspected of containing regions of similarity
or similar sequence motifs. In this case, the Smith-Waterman algorithm
is the general local alignment and is also based on dynamic programming
[SW81].

• Semiglobal or glocal alignments: Glocal alignments are hybrids
of the global and local methods. They try to find the best possible
alignment that includes the start and end of one or the other sequence
[BMP+03].

Another categorization depends on the number of sequences to be aligned.

14 Introduction

Figure 1.6: Global and local alignment example

Sequence alignments can be classified into two types: Pairwise Sequence Align-
ments and Multiples Sequence Alignments. Next, these two categories are
briefly described, focusing on MSA which is the main topic of the present
study.

1.2.1 Pairwise Sequence Alignment

Pairwise Sequence Alignments are global or local alignments of two input se-
quences. Figure 1.7 shows an example of a Pairwise Sequence Alignment rep-
resentation. Pairwise Sequence Alignments are efficient to calculate and are
often used for methods that do not require extreme precision, such as database
searching.

Figure 1.7: Pairwise Sequence Alignment example

1.2.2 Multiple Sequence Alignment

Multiple Sequence Alignment (MSA) is an extension of Pairwise Sequence
Alignment to align more than two sequences at the same time (Figure 1.5).
The main objective of MSA is to assemble the sequences reflecting the biolog-
ical relationship between them. MSA gives the biologist relevant biological in-
formation as structural and functional information. Therefore, MSA is used in
identifying evolutionary relationships between sequences, searching conserved

1.2 Sequence Alignment 15

sequence motifs that play an important role in the function and structures of
a group of proteins, and predicting structures [Not02].

1.2.2.1 Applications

In bioinformatics, MSA is a useful tool used to visualize the effect of evolution,
identify conserved motifs or predict the secondary and tertiary structure. The
most common MSA uses are described below.

• Phylogenetic analyses: The MSA technique is essential for phylo-
genetic tree construction. Phylogenetic trees are used to classify the
evolutionary relationships between homologous genes represented in the
genomes of divergent species. In short, it determines the evolutionary
relationships between among various organisms from a tree that defines
the ancestors and descendants of the species.

• Identification of conserved motifs and domains: A sequence motif
is a nucleotide or amino-acid sequence pattern that is widespread and
has biological significance. Motif finding or profile analysis is a method
for searching sequence motifs in global MSAs. MSA techniques are used
in motif finding to identify motifs preserved by evolution that are es-
sential in the structure and function of a group of related nucleotides
or proteins. MSAs and known conserved motifs are powerful tools for
characterizing sequences with unknown functions combining these motifs
with experimental data.

• Structure prediction: This is an important application of MSA be-
cause of the close relationship between the structure and the function of
a protein. It consists of predicting its secondary and tertiary structure
from its primary structure.

1.2.2.2 Constraints and Requirements

Producing a suitable MSA is not trivial and is a complicated problem in both
biological and computational issues.

16 Introduction

From the biological aspect, it is difficult to ensure the biological correctness
of an alignment. Nowadays, methods define an objective function, which de-
fines the mathematical objective of the search. The main problem is that the
perfect objective function that defines the mathematically optimal alignment
is not guaranteed to be biologically optimal [KN09]. Furthermore, defining
this proper objective function is a highly non-trivial task and an important
research area.

In the computational issue, the computation of a mathematically optimal
alignment is an NP-Complete problem and therefore it is only possible to
produce small alignments [WJ94]. From a computational point of view, several
ways have been proposed to address the computational problem:

• The first was by developing faster heuristic algorithms that reduce com-
putational space for the most time-consuming tasks. Nowadays, the
most popular MSA methods are heuristic or probabilistic. These meth-
ods align the sequences by maximizing their similarity and none of them
guarantees a full optimization. However, the new data-intensive era has
made many of these heuristics obsolete due to runtime and memory con-
straints.

• The second is running these algorithms on specialized chips (bio-
accelerator). The runtime of progressive alignment programs is clearly
dominated by the first step (computation of pairwise sequence distance).
There are two basic approaches to parallelizing this step: one is based on
the systolisation of the pairwise distance computation algorithm (fine-
grained); the other is based on the distribution of the computation of
pairwise distances (coarse-grained). Systolic array architectures have
proved their high efficiency for pairwise sequence alignment using dy-
namic programming [AEAT+07].

• The third and the HPC solution consists of applying parallel computing
to these algorithms. The problem can be divided into smaller tasks and
processed in parallel by two or more microprocessors that can be used
simultaneously. This approach treats the MSA method from a coarse-
grained focus.

1.2 Sequence Alignment 17

1.2.2.3 Evaluation

The development of new MSA algorithms raises the need for an efficient way to
evaluate the alignment accuracy, in order to select the best alignment among
those produced by the available algorithms.

Nowadays, the common methods for validating MSA methods consist of
comparing an alignment against a reference alignment using reference sequence
alignment databases, such as Balibase [TPP99], Homstrad [MDBO98], Prefab
[Rob04] and SABmark [WLW05]. The benchmarking databases are usually
constructed using 3D protein structural alignments, and they are thus inde-
pendent of sequence alignment methods [EB06]. The quality of the MSA
programs has typically been assessed by a mathematical function that respec-
tively measures the proportion of correctly aligned residue pairs or alignment
positions in the alignment [TPP99]. However, the need for a reference align-
ment is a limitation for validating unknown sequences. For this reason, these
databases are used to validate or compare MSA applications.

Another way of evaluating alignments is to use an objective function as a
similarity measure. This method consists of maximizing the objective function,
which is based on sequence identity. These scoring metrics should incorporate
everything that is known about the sequences, including their structure, func-
tion and evolutionary history to make them more accurate. However, as is
known, a perfect scoring metric can determine the mathematically optimal
alignment, but this is not always the biologically optimal one.

1.2.2.4 Current Status

Due to the entry into the area of comparative genomics, the simultaneous
comparison of a large number of homologous sequences has become more and
more important and there is no doubt that MSA has come to play a key role
in molecular biology.

The number of available MSA methods has increased over the last 30 years.
However, only a minority of the methods proposed in the literature is regularly
used. The main reason for their failure is that there is no satisfactory theo-
retical framework in sequence analysis and improvements are driven by results

18 Introduction

and not theory.
Over the last ten years, MSA has undergone drastic evolutionary changes

with the introduction of several algorithms and evaluation methods. Instead
of the traditional progressive alignment, current trends are based on the use of
iterative optimization strategies, consistency-based scoring schemes and the in-
tegration of heterogeneous information, such as structures, results of database
searches, experimental data, etc. Due to the integration of this information,
new MSA methods are memory and CPU hungry.

For these reasons and the explosion of new data due to the genomic rev-
olution, currently known and future methods should be optimized and must
evolve to take new faster computational techniques and distributed systems
into account.

1.3 High Performance Computing

The term High-Performance Computing (HPC) can be defined as the use of
parallel processing for running advanced application programs efficiently, reli-
ably and quickly.

The history of HPC or Supercomputing dates back to the 1960s when a se-
ries of computers at Control Data Corporation were designed by Seymour Cray
to use innovative designs and parallelism to achieve superior computational
peak performance [Che09]. A supercomputer is a computer on the cutting
edge of current processing capacity, particularly speed of calculation. While
the supercomputers of the 1970s used only a few processors; in the 1990s,
machines with thousands of processors began to appear, and by the end of
the 20th century, massively parallel supercomputers with tens of thousands
of "off-the-shelf" processors were the norm [HT89][HJS00]. Supercomputers
in the 21st century can use over 100,000 processors, such as CPU or GPU,
connected by fast networks.

Although, the HPC community has its roots in solving computational prob-
lems in physics (such as fluid flow, structural analyses, and molecular dynam-
ics); traditional approaches to these problems, and to ranking HPC systems
based on the Linpack benchmark, may not be the optimal approach to HPC

1.3 High Performance Computing 19

architectures in computational biology. Many researchers are carefully consid-
ering the architectural needs of HPC systems to enable next-generation biology.
New HPC algorithms for biomedical research will require close integration of
computation with database operations and queries, along with the ability to
handle new types of queries that are highly dependent on irregular spatial or
temporal locality.

In this section, parallel and distributed computing systems, categorizations
and applications are briefly described.

1.3.1 Parallel Computing

Parallel computing is a form of computation in which many calculations are
carried out simultaneously, operating on the principle that large problems can
often be divided into smaller ones, which are solved concurrently [Fos95]. It
can also be defined as the simultaneous use of multiple processing elements
to solve a problem. Although parallelism has been used in HPC for many
years, the physical constraints preventing frequency scaling have led parallel
computing to become the dominant paradigm in computer architecture. Cur-
rently, parallel computing is used in a wide range of fields, from bioinformatics
(protein folding and sequence analysis) to economics (mathematical).

A parallel application represents a huge problem that has been divided
into multiple parts or tasks, so that each processing element can execute its
task in the algorithm simultaneously with the others. These tasks, called
threads or processes, can be completely independent or have dependencies
and hence, communication with other tasks. Parallel applications are often
classified according to how often their subtasks need to communicate with
each other, or the relative size of the units of computation that execute in
parallel (granularity).

• Fine-grained parallelism: Application tasks share many dependen-
cies; therefore, they must communicate many times per second and the
units of computation are small.

• Coarse-grained parallelism: Application tasks share few dependen-

20 Introduction

cies and do not communicate many times per seconds and thus the gran-
ularity is bigger.

• Embarrassingly parallel: Application tasks without dependencies
that rarely or never have to communicate. They are considered the
easiest to parallelize.

Common knowledge gained from working on parallel applications suggests
that obtaining an efficient parallel implementation is fundamental to achieving
a good distribution of both data and computations. In general, any parallel
strategy represents a trade off between reducing communication time and im-
proving the computational load balance. This balance is achieved by choosing
the most suitable task scheduling strategy for the problem.

Moreover, as Amdahl’s law states [Amd67], the improvement in perfor-
mance gained by the use of parallel computing depends very much on the
software algorithms used and their implementation. In particular, possible
gains are limited by the fraction of the software that can be run in parallel
simultaneously on multiple processors.

Another categorization is Flynn’s taxonomy classification [Fly72]. Flynn
classified programs and computers by whether they were operating using a
single or multiple sets of instructions, whether or not those instructions were
using a single or multiple sets of data.

• Single Instruction Singe Data (SISD): This classification is equiv-
alent to an entirely sequential program.

• Single Instruction Singe Multiple (SIMD): This is analogous to do-
ing the same operation repeatedly over a large data set. SIMD machines
consist of many simple processors, each with small local memory. Every
processor must execute the same instruction with different data in each
computing cycle. When a processor needs data stored on another pro-
cessor, an explicit communication must pass between them to transfer
this data to the local memory. The complexity and often the inflexibility
of SIMD machines, strongly dependent on the synchronization require-
ments, have restricted their use mostly to special-purpose applications,
such as signal processing applications.

1.3 High Performance Computing 21

• Multiple Instruction Single Data (MISD): This is a rarely used
classification. While computer architectures have been devised to deal
with this, such as systolic arrays, few applications that fit this class are
materialized.

• Multiple Instruction Multiple Data (MIMD): This is by far the
most common type of parallel program. In MIMD machines, each com-
putational process executes at its own rate in an asynchronous fash-
ion with complete independence of the other computational processes
[HX98]. The memory architecture has a strong influence on the global
architecture of MIMD machines, becoming a key issue for parallel exe-
cution, and frequently determines the optimal programming model.

1.3.1.1 Hardware

After introducing the term parallel computing and its main characteristics and
classifications, it is necessary to briefly describe and categorize the architec-
tures most commonly used for running parallel applications.

First of all, an important classification of parallel architectures is related to
the main memory. The main memory in a parallel computer is either shared
memory or distributed memory.

• Shared memory: A system is said to have shared-memory architecture
if any process, running in any processor, has direct access to any local or
remote memory in the whole system. Shared memory architecture brings
several advantages to bioinformatics applications as a single address map
simplifies the design of parallel programs. In addition, each element of
the main memory can be accessed with equal latency and bandwidth.
For these reasons, this kind of architecture is known as Uniform Memory
Access (UMA). The main disadvantage of shared memory is that it does
not scale well as the number of processors in the computer increases.

• Distributed memory: It refers to the fact that the memory is logically
distributed and each processor has its own private memory. These ar-
chitectures, which are known as Non-Uniform Memory Access (NUMA),

22 Introduction

scale very well. On the other hand, the lack of a single physical address
map for the memory incurs a time penalty for inter-process communica-
tion.

This memory and communications classification introduces the concept of
distributed computing. Sometimes, the terms of parallel computing and dis-
tributed computing overlap and there is no clear distinction between them.
However, parallel computing may be seen as a particular tightly-coupled form
of distributed computing, and distributed computing may be seen as a loosely-
coupled form of parallel computing. Nevertheless, it is possible to roughly clas-
sify concurrent systems roughly as parallel or distributed using the following
criteria:

• In parallel systems, all processors have access to a shared memory.
Shared memory can be used to exchange information between processors.
An example of a parallel systems is multicore processors or symmetric
multiprocessors (SMP).

A multicore processor is a processor that includes multiple execution
units, known as cores, on the same chip. A multicore processor can issue
multiple instructions per cycle from multiple instruction streams. On the
other hand, a symmetric processor is a computer system with multiple
identical processors that are connected to a single shared main memory
and are controlled by a single bus. Most common multiprocessor systems
today use an SMP architecture. In the case of multicore processors,
the SMP architecture applies to the cores, treating them as separate
processors.

• In distributed systems, each processor has its own private memory (dis-
tributed memory). Information is exchanged by passing messages be-
tween the processors. Such systems include computing clusters, Grids
and global computing systems gathering computing resources from in-
dividual PCs over the Internet. There are many reasons to explain the
continuous growth of distributed systems and distributed computing.
Their main characteristics and systems are explained below.

1.3 High Performance Computing 23

Distributed systems

Distributed computing is formally defined as “a computer system in which
several interconnected computers share the computing tasks assigned to the
system [IEE91]".

A distributed system consists of multiple computers that communicate
and coordinate their actions through a computer network by passing mes-
sages [DKC05]. Those computing technologies have recently emerged as new
paradigms for solving complex computational problems. These systems en-
able large-scale aggregation and sharing of computational data and other ge-
ographically distributed computational resources. In recent years, many re-
searchers have reported numerous advances and innovative techniques for such
paradigms, from theoretical design to the application development. Another
fact that has contributed strongly to the rapid development of large-scale appli-
cations in many fields of science and engineering is the continuous development
of high-speed networks and more especially, Internet.

The use of a distributed system in other applications would be beneficial
for many reasons. For example, in comparison with a single high-end com-
puter, it may be more cost-efficient to obtain better performance by using a
cluster of several low-end computers to avoid memory contention. As a dis-
tributed system has no single point of failure, it can also be more reliable than
a non-distributed system. A distributed system may even be cheaper, and
easier to expand and manage, than a supercomputing system with the same
performance.

Inside the category of distributed systems, one can find a wide range of
systems. Next, the most popular and those most closely related to the field of
interest of this thesis are briefly explained.

• Cluster computing: A cluster is defined as a collection of computing
resources that consists of a set of loosely independent connected com-
puters that work together so that in many aspects they can be viewed
as a single system. As Figure 1.8 shows, the cluster nodes are usually
interconnected to each other through fast local area networks (LAN) on
a single point, often using a switch. Each computing node runs its own

24 Introduction

Figure 1.8: Cluster environment structure

instance of the operating system and these are supervised within a single
administrative domain, usually residing in a single room and managed
as a single computer system.

Computer clusters emerged as a result of the convergence of a number of
computing trends, including the availability of low-cost microprocessors,
high-speed networks, and software for high-performance distributed com-
puting. Furthermore, not only are clusters made up of multicore desktop
PCs or workstations, but they can also take advantage of the resources
and properties obtained through such specialized hardware as Graphics
Processors Units (GPU), Field-Programmable Gate Arrays (FPGA) or
Vector processors.

Clusters are developed to improve performance and availability compared
with single computer. Moreover, clusters can be classified according to
their processing power, with these ranging from small business clusters
with few nodes to clusters whose performance reaches or surpasses the
fastest supercomputers in the world.

• Multi-Cluster computing: Amulti-cluster can be defined as the union
of a set of clusters using a dedicated communications network within an
organization or institution.

1.3 High Performance Computing 25

The main architectural feature that differentiates a multi-cluster from
other distributed computing environments, such as Grid or Peer-to-Peer,
is that the communications networks between clusters are connected by
dedicated links. This has two important implications: The first is that
multi-clusters have a reliable and predictable bandwidth between the re-
sources of different clusters [JAA06], unlike distributed systems, which
are connected over the Internet. The second is that the availability of
the resources are more predictable and controllable in multi-cluster sys-
tems, while the rest of these resources systems are very dynamic and
changeable, so nobody can guarantee their availability at any specific
time.

Figure 1.9 shows the basic architecture of a multi-cluster environment,
where a set of clusters is connected to a central switch by dedicated
network links.

• Grid computing: Grid is a distributed paradigm that appeared many
years ago as a real alternative to the expensive supercomputers for HPC.
Grid computing is defined as "coordinated resource sharing and problem
solving in large, multi-institutional virtual organizations". As in Figure
1.10 shows, a Grid system is a virtual joining of a large number of sepa-
rate computers, clusters or LANs workstations connected by a network,
usually the Internet.

Figure 1.9: Multi-Cluster environment structure

26 Introduction

Figure 1.10: Grid environment structure

One advantage of this distributed system is that it allows a larger amount
of computation that would be possible on a single computer or a single
cluster within a single institution. However, grid computing has some
disadvantages, such as the high complexity of management and adminis-
tration software (such as the Globus Toolkit [Fos05]) and the high man-
agement and maintenance cost.

• Peer-two-Peer computing (P2P): P2P computing originated as a
new paradigm after the traditional client-server computing that became
very popular for file sharing among internet between users (Napster,
Gnutella, BitTorrent, etc).

A P2P system is defined as a computer network in which each computer,
called node or peer, in the network can act as a client or server for
the other computers in the network, allowing shared access to various
resources, such as files, computing resources and sensors without the
need for a central server.

As Figure 1.11 shows, peers share a portion of their computational re-
sources with other peers through Internet, without a need for central
coordination by servers or stable hosts. In this kind of distributed
paradigm, it may be possible to construct cheap distributed systems on

1.3 High Performance Computing 27

Figure 1.11: P2P Network

Internet for parallel/distributed processing with management and energy
consumption at almost zero cost.

• Cloud computing: Cloud computing is a new paradigm that has
rapidly spread in recent time and consists of the use of computing re-
sources (hardware and software) that are delivered as a service over a
network, typically Internet. It is a multi-purpose paradigm that enables
efficient management of data centers, time-sharing and virtualization of
resources with a special emphasis on business models. The name comes
from the use of a cloud-shaped symbol, like the one shown in Figure 1.12,
as an abstraction for the complex infrastructure it contains in system di-
agrams.

Clouds can be viewed as a logical continuation from Grids by providing
a higher-level of abstraction [JMF09]. Therefore, the major idea of this
paradigm is the existence of infinite computing resources available on
demand and the ability to pay for the use of computer resources on
a short-term basis as needed. This allows companies to save costs by

28 Introduction

Figure 1.12: Cloud environment structure

having a limited set of resources that can be increased according to their
needs [AFG+09].

1.3.1.2 Software

The growth of parallel programming has led to the creation of many concurrent
programming languages, libraries, APIs, parallel programming models and new
task scheduling strategies.

Parallel languages can generally be divided into classes based on the mem-
ory architecture: shared memory or distributed memory.

• Shared memory programming languages communicate by manipulating
shared memory variables. POSIX Threads and OpenMP are two of most
widely used shared memory APIs.

• Distributed memory uses message passing between the computing nodes.
In this case, MPI and PVM are the most common ones for message-
passing system APIs.

Furthermore, there are specialized APIs for programming specialized sys-
tems, such as CUDA or OpenCL for the Graphics Processor Unit (GPU). The

1.4 Motivation 29

graphics processing unit (GPU) has become an integral part of today’s main-
stream computing systems. Over the past six years, there has been a marked
increase in the performance and capabilities of GPUs. The modern GPU is
not only a powerful graphics engine but also a highly-parallel programmable
processor featuring peak arithmetic and memory bandwidth that substantially
outpaces its CPU counterpart. The GPUs’ rapid increase in both programma-
bility and capability has spawned a research community that has successfully
mapped a broad range of computationally demanding, complex problems to
the GPU. This effort in general-purpose computing on the GPU, has positioned
the GPU as a compelling alternative to traditional microprocessors in high-
performance computer systems of the future [OHL+08]. Thus, in the fields of
sequencing and protein docking tasks, a large performance benefit is obtained
through the use of GPU computing. The amount of available data will grow
even further in the near future due to advances in high-throughput technolo-
gies, leading to a data explosion. Since GPU performance grows faster than
CPU performance, the use of GPUs for Bioinformatics will be a valid option.

1.4 Motivation

Although molecular biology and computer science were born at almost the
same time, they have grown explosively as separated disciplines. With the
growth of the information culture, efficient digital searches are needed to ex-
tract and abstract useful information from massive data. In the biological and
biomedical fields, massive data take the form of sequences plain files, 3D struc-
tures, motifs, 3D microscopic image files, huge databases, etc. However, while
genome projects and DNA arrays technology are constantly and exponentially
increasing the amount of data available, the ability to treat and process all
this information remains near constant.

Due to the recent evolution in computer processing speed, which has in-
creased exponentially (like some areas of knowledge in molecular biology), HPC
systems can handle the growing demand posed by bioinformatics applications.
The current literature has demonstrated that parallel computing is an effective
way of dealing with some of the hardest problems in bioinformatics. The use

30 Introduction

of parallel computing schemes expands resources to the size of the problem to
be tackled.

Currently, the use of HPC in molecular biology is widespread, and many
of the most complex algorithms and heuristics have already been studied, op-
timized and parallelized for execution in parallel or distributed systems. For
instance, NP-Complete dynamic programming algorithms for sequence align-
ment, such as Needleman and Wunsch algorithm, Smith and Waterman al-
gorithm, and other faster heuristics, have been parallelized. Besides, many
database search heuristics, such as those implemented in BLAST or FASTA,
have also been optimized to run in parallel. Even with current algorithms and
optimized heuristics, sequential programs may run for days, or even weeks, on a
larger data set. Therefore, computer scientists and bioinformatics technicians
have also focused their work on optimizing and accelerating whole applications,
such as MSA methods or phylogenetic tree construction programs.

However, several other challenges in bioinformatics remain unsolved as far
as parallel computing is concerned. These problems represent attractive chal-
lenges for biologists and computer scientists in the coming years.

With regard to MSA, which is the main topic of the present work, the
computation of optimal alignments is an NP-Complete problem, meaning that
only a few sequences can be aligned. Therefore, the use of sub-optimal heuris-
tics is more extended. In addition, the exponential growth of data and the size
of this, has made it intractable for traditional sequential algorithms that have
become obsolete as they simply cannot solve the problem, due to memory con-
straints, or are unable to do in a reasonable period of time. Moreover, it has
been seen that the improvements obtained by traditional parallelization tech-
niques are not enough to enable them to run these algorithms on distributed
systems, and sometimes, the problem is one of the design and complexity of
these algorithms. Thus, it is necessary for biologists and computer scientists
not only to apply parallel computing to these methods, but also to go into
detail and study deeply the methods in order to optimize the algorithms to be
implemented in parallel and successfully executed in distributed systems.

1.5 Thesis Objectives 31

1.5 Thesis Objectives

As mentioned above, owing to the exponential growth of data and the inabil-
ity to treat efficiently, the interrelation between biologist, bioinformatics and
computer scientist is ever more necessary. Therefore, from the beginning of
the present thesis, one of the main objectives was to provide a link between
such very different worlds as molecular biology and HPC. The idea is to dis-
cuss their problems and share knowledge in order to advance in the design
and implementation of algorithms and methods that overcome the existing
limitations and take advantage of new computing technologies and increasing
computer processing speed.

To achieve this, the present thesis is a collaborative work with a group from
the Centre for Genomic Regulation (CRG) from Barcelona. One of the topics
this group is working on is sequence alignment. Moreover, they are responsible
for the development of T-Coffee [NHH00], a leading MSA application.

T-Coffee, which is explained in greater detail in future chapters, is an ac-
curate multiple sequence aligner based on the progressive alignment heuristic
that introduces consistency information into the alignments. The improve-
ments in accuracy penalize its performance, restricting its ability to align many
sequences simultaneously and face the challenges of the new data-intensive era.
Therefore, the main objective of this thesis was focused on designing and de-
veloping alternative techniques and algorithms to solve the studied problems
and improve its performance, while trying to avoid affecting the biological ac-
curacy of the method negatively. However, the ultimate goal is not to limit
these proposed techniques to a single method, but rather to make it possible
to implement them in other programs to achieve similar performance results.

More specifically, to achieve this objective, three different points have been
worked on this thesis: Increasing scalability, improving parallelism, and im-
proving accuracy.

1. Increasing scalability. It is known that the introduction of consistency
information to improve the alignment accuracy increases the CPU and
memory requirements exponentially to the number of sequences and its
length. Consistency-based schemes reduce the scalability so limiting the

32 Introduction

number of sequences the method is able to align. Therefore, one target
of this work was to design a technique to reduce the runtime and mem-
ory constraints and thus, increase the scalability in order to enable the
method to treat more sequences.

2. Improving parallelism. Parallel or concurrent implementations have
shown scalability problems when the number of sequences increases, due
to data dependencies in the alignment process. For this reason, another
goal of this thesis was to design a technique to exploit the degree of par-
allelism in order to reduce the execution time and increase the scalability
of the parallel applications.

3. Improving accuracy. The accuracy of progressive alignment meth-
ods is very dependent on the order in which the sequences are aligned.
The last objective was to design and implement a new MSA method,
based on the studied methods, to improve the biological accuracy of the
alignments.

It is also necessary to say that, before considering possible solutions, the
first tasks and objectives of this thesis were to study and analyze the execution
time and memory requirements of T-Coffee, its parallel implementation, which
is called Parallel-TCoffee, and other MSA methods in order to model the major
problems and constraints.

1.6 Overview

This section describes the chapters in this thesis.

• Chapter 1: Introduction. This chapter introduces the thesis topic,
identifying the research questions and showing how these will be ad-
dressed. First, some important bioinformatic concepts are explained to
provide readers with some background. Secondly, sequence analysis is
introduced and its uses and main drawbacks are explained. Third, the
HPC concept is described and some classifications of the main architec-
tures and software used are detailed. After doing so, the motivation and

1.6 Overview 33

the main objectives of this thesis are presented and the chapter finishes
with a quick overview of the following chapters.

• Chapter 2: Related work. This chapter reviews the work done in
various areas related to the material covered in this thesis. The chapter
starts by describing the main features of MSA heuristics and methods.
Then, it explains the major HPC work done in the MSA field and its main
applications. Finally, it introduces the principal MSA benchmarking
tools and evaluating scores.

• Chapter 3: Balanced Guide Tree. This chapter presents a new
clustering method to increase the degree of parallelism in parallel or
concurrent implementations. First, it analyses the application studied
and models the problems. Then, it describes the main contributions
before presenting and evaluating the experimental results.

• Chapter 4: Consistency Library reduction. This chapter presents
a new technique for reducing the memory constraints of consistency-
based methods in order to improve scalability. Its structure is similar
to Chapter 3: First, the problem is introduced, then the proposal is
described and finally the experimental results are shown and discussed.

• Chapter 5: Multiples Trees Alignment. This chapter presents a
new MSA method for improving the accuracy of the alignments. More-
over, it also describes two new meta-scores obtained through genetic
algorithms for evaluating the accuracy of the alignments. As in previous
chapters, it introduces the final proposals and its main characteristics.
Finally, the experimental results are analyzed to discuss and compare
them with other proposals in the literature.

• Chapter 6: Conclusions and Future Work. This chapter reviews
the key points. The objectives and results of the entire research thesis
are summarized, special emphasis being placed on the scientific contri-
butions that have been introduced. At the end, some prospective points
for the future work on this research are provided. Furthermore, the main

34 Introduction

publications produced during the development of this thesis are also enu-
merated.

Chapter 2

Related Work

2.1 Introduction

Recently, Multiple Sequence Alignment (MSA) is the most important task in
bioinformatics. MSA consists of aligning more than two input DNA, RNA
or protein sequences at a time, allowing the biologist to identify similarity
or divergence regions with the objective of knowing relevant biological infor-
mation about the compared sequences. This biological information is useful
for identifying evolutionary or functional relationships between sequences and
predicting sequence structures [Not02].

In this chapter, the main works in the scientific community related to the
MSA are collected and analyzed. Section 2.2 briefly introduces Pairwise Se-
quence Alignments methodologies. Section 2.3 describes the most important
MSA heuristics and some of the most popular methods. Section 2.4 studies
the most important MSA benchmarking databases to validate and compare the
MSA methods and evaluate the alignment accuracy. Finally, Section 2.5 pro-
vides an overview of the application of High Performance Computing (HPC)
techniques to MSA in order to solve the MSA complexity problem and improve
its performance. This section describes some techniques that inspired us in the
development of some methods proposed during this thesis.

35

36 Related Work

2.2 Pairwise Sequence Alignment Methods

As explained in previous sections, a Pairwise Sequence Alignment consists of
aligning two sequences. Before introducing the main MSA heuristics and tools,
it is necessary to review briefly the most common Pairwise Sequence Alignment
techniques. Next, three Pairwise Sequence Alignment methods are described,
with special emphasis on Dynamic programming due to its importance in many
MSA techniques.

2.2.1 Dot-matrix Methods

A dot-matrix plot is a graphic method that allows the comparison of two
biological sequences and identifies regions of close similarity between them
[Mou07]. Dot plots, like the one shown in Figure 2.1, are used as a technique
for displaying information that permits certain sequences features, such as
insertions, deletions, repeats, to be identified visually.

To construct a dot-matrix plot, one of the sequences is written along the
x-axis, and the other along the y-axis of a two-dimensional matrix. Then a
dot is placed at any point where the characters in the appropriate columns
match. Once the dots have been plotted, these are combined to form lines.
The dot-matrix plot shows, as a single line along the main diagonal of the
matrix, the more similar related sequences.

The main problems of dot plots are noise, lack of clarity and non-
intuitiveness; making it difficult to identify the properties of the sequences.
Furthermore, these methods are limited to two sequences due to them being
time-consuming.

2.2.2 Dynamic Programming

Dynamic programming is an alignment technique to identify the globally com-
putation optimal alignment solution [Den03]. It can be applied to produce both
global and local alignments implementing the Needleman-Wunsch (N-W) or
Smith-Waterman (S-W) algorithms respectively [NW70][SW81].

Both algorithms work similarly, building a two-dimensional matrix where

2.2 Pairwise Sequence Alignment Methods 37

Figure 2.1: Example of a DNA dot plot of a human zinc finger transcription
factor

the sequence residues are written on the x-axis and the other sequence residues
on the y-axis. The two algorithms can be divided into the following three steps,
which can be seen as examples in Figure 2.2a for N-W algorithm and Figure
2.2b for S-W algorithm.

1. Initialize the matrix. This consists of filling the first row and first column
of the matrix, which they do not correspond to any residue of the two
sequences. For N-W, the first row and the first column of the score
matrix are filled as multiples of the opening gap penalty, while for S-W,
this row and column are filled with 0.

2. Fill the matrix cells from the top-left corner with the scores and gap
penalties to compare the matches or mismatches between the residues of
the two sequences.

For protein alignments, a substitution matrix is used to assign scores to
residue matches or mismatches. A protein substitution matrix is a sym-
metrical 20x20 matrix based on any property of amino acids [DS78]. The
most important matrices are evolutionary matrices, like the PAM [Alt91]
and BLOSUM [HH92] families. Both matrix families are derived from
the analysis of known alignments of closely related sequences, although

38 Related Work

(a) Neddleman-Wunsch algorithm example

(b) Smith-Waterman algorithm example

Figure 2.2: Dynamic Programming examples

2.2 Pairwise Sequence Alignment Methods 39

BLOSUM matrices are newer and considered better. Figures 2.3a and
2.3b show examples of a BLOSUM62 and PAM250 matrix respectively.
On the other hand, for DNA and RNA alignments, an identity matrix,
which is a more simple scoring scheme, is used. This scheme usually
consists of assigning a positive match score, a negative mismatch and a
negative gap penalty.

For gap penalties, a common extension to standard linear gap costs is the
use of two different gap penalties; for opening and for extending [VW94].

In this step, the difference between the N-W and S-W algorithms is that
in the S-W all the negative scores in the matrix are set to 0.

(a) BLOSUM62 substitution matrix (b) PAM250 substitution matrix

Figure 2.3: Substitution matrices examples

3. Produce the alignment from the matrix through a traceback process that
allows three movements: diagonally, up or left. This process consists of
maximizing identity by maximizing an objective function. The objective
function is usually the Weighted Sum-of-Pairs [AL89].

For the N-W algorithm, the traceback process starts at the bottom-right
corner of the matrix until it reaches the top-left corner. On the other
hand, the S-W algorithm starts from the maximum score and follows it
to a score of zero, aligning only a region of the sequences and discarding
the rest. In both algorithms the sequences are aligned backwards.

As mentioned above, dynamic programming guarantees finding the com-
putational optimal alignment given a particular objective function. However,

40 Related Work

the mathematically perfect objective function does not guarantee that this will
also be the biologically optimal.

2.2.3 Word Methods

Word methods, also called k-tuple methods, are heuristics used to identify a
series of short and non-overlapping subsequences, which are called words, in a
sequence, which are then matched to other sequences. The relative positions
of the word in the two compared sequences are subtracted to obtain an offset
value. If distinct words produce the same offset, this will be an alignment
region. If this region is detected, these methods apply more sensitive align-
ment criteria. If not, these unnecessary comparisons with sequences with no
appreciable similarity are eliminated.

These methods do not guarantee that an optimal alignment solution will be
found, but are significantly more efficient than dynamic programming. They
are useful in large-scale database searches and are implemented in such popular
database search tools as the FASTA and BLAST families [PL88][AGM+90].

2.3 Multiple Sequence Alignment Methods

MSAs are computationally more complex than Pairwise Sequence Alignments,
therefore MSAs require more sophisticated methodologies. Nowadays, most
commonMSA programs use heuristics rather than global optimization owing to
the identification of the optimal alignment between more than a few sequences
being computationally almost impossible.

Over recent years, hundreds of methods for producing MSAs have been
published based on different heuristics. In this section, the philosophy of some
of these heuristics and methods are briefly explained and they are divided
into different categories. However, many of the following methods include
characteristics of more than one category. First, global optimization or ex-
act methods and their constraints are presented. Then the most important
heuristics proposed in the literature are explained.

2.3 Multiple Sequence Alignment Methods 41

2.3.1 Exact Algorithms

Exact or global optimization algorithms are high-quality heuristics that are
able to build alignments very close to the optimal. The main problem of these
heuristics is their complexity, as they only allow a small number of sequences to
be aligned and are also limited to the Sum-of-Pairs objective function [WJ94].
Three different exact algorithm techniques are described below.

• Dynamic programming: The dynamic programming solution to Pair-
wise Alignment can be extended to align more than two sequences.
In this case, to align N sequences, the method must construct an N -
dimensional matrix increasing the search space exponentially by increas-
ing the N and the length (L) of these sequences. In summary, the com-
plexity of DP is O(LN), being a NP-complete problem that limits the
method to align just only three sequences [WJ94][Jus01].

• MSA program: This is a heuristic implementation of Carrillo and Lip-
man’s algorithm [CL88] for aligning protein, DNA and RNA sequences
[LAK89]. It attempts to produce an optimal MSA using a branch and
bound technique. The major idea is to identify in advance the portion
of the hyperspace that does not contribute to the solution and exclude
it from the computation. It minimizes the sum of the pairwise costs,
weighting the pairs using information derived from an evolutionary tree.
Therefore, MSA program reduces the computational demands of dynamic
programming, making it possible to align up to ten sequences. Despite
these improvements, MSA program is also limited in the number of se-
quences it can align because of its high memory and time requirements.
Furthermore, it is not guaranteed to find the mathematically optimal
alignment.

• DCA: This is a program for producing MSA of proteins, RNA, or DNA
sequences based on the Divide-and-Conquer algorithm [SMD97]. DCA
cuts the sequences into subsets of small segments. Then, these seg-
ments are aligned using the MSA program. Finally, the resulting sub-
alignments are reassembled by DCA. To avoid losing too much accuracy,

42 Related Work

the major trick is to cut the sequences at the right positions in order to
produce an alignment which remains as close as possible to the optimal.
Despite the improvements achieved by the application of the Divide-and-
Conquer algorithm to reduce the complexity problems, DCA using the
MSA program is still limited by the memory and time requirements, it
being unable to align many more sequences (20-30 sequences).

2.3.2 Progressive Alignment

The progressive alignment technique proposed by Hogeweg [HH84] and rede-
fined by Feng and Taylor [FD87][Tay88] is nowadays the most widely used
heuristic. It is based on the successive construction of pair-wise alignments,
building the alignment progressively. It starts by aligning the two most closely
related sequences, traditionally using dynamic programming, and then adds
sequences in order of increasing distance. The order for selecting the sequences
to be added is determined by a guide tree previously obtained from an initial
pair-wise alignment.

This heuristic has a great advantage of speed and simplicity combined
with reasonable sensitivity. On the other hand, the major disadvantage of
progressive methods is that they are very dependent on the initial alignments
and thus more likely to perform well for closely related sequences. Errors
made during any stage in the growth of MSA are then propagated to the final
alignment. For these reasons, progressive alignment heuristic is not guaranteed
to be globally optimal.

The most popular progressive alignment algorithm implementation is the
Clustal family [HS88], especially the weighted variant ClustalW which is pro-
vided by a large number of web portals [THG94]. Then there is ClustalX,
a variation of the Clustal family that implements a graphic user interface
[TGP+97]. Other progressive alignment implementations are MULTALIGN
[Cor88] and Kalign [LS05]. Finally, T-Coffee [NHH00] is another progressive
alignment implementation combined with a consistency-based scheme which
is more accurate, but slower, than ClustalW.

To explain the progressive alignment algorithm in greater detail and be-

2.3 Multiple Sequence Alignment Methods 43

cause it has been used during this work, the main steps in ClustalW are de-
scribed next.

ClustalW

ClustalW, from the Clustal family and proposed by Thompson in 1994
[THG94], is the most widely used alignment method. The ClustalW align-
ment process requires the three following main stages to produce the progres-
sive MSA (Figure 2.4):

1. The distance matrix is constructed from the relationships between se-
quences. A distance matrix is an NxN matrix, N being the number
of sequences, and it represents the pairwise distances between sequences
in sequence space. Initially, the pairwise distances between sequences
were obtained by doing all-against-all pairwise alignments between all
sequences, but nowadays, faster statistical algorithms can be used to
obtain these distance values, such as the KTUP distances.

Figure 2.4: Progressive Alignment algorithm

44 Related Work

2. The guide tree from the relationships between sequences defined by the
distance matrix is produced. The guide tree is built by a clustering
method to calculate distance trees, such as neighbor-joining [SN87] or
UPGMA [SM58], using the pairwise distances extracted from the dis-
tance matrix.

3. The MSA is built by aligning the sequences sequentially to the growing
MSA according to the order defined by the guide tree.

2.3.3 Iterative Alignment

As explained above, progressive methods improve efficiency at the cost of ac-
curacy. Iterative algorithms, proposed by Barton [BS87], attempt to improve
the heavy dependence on the accuracy of the initial pair-wise alignments ex-
hibited by progressive alignment. They are based on the idea that an accurate
alignment of a given set of sequences can be computed by modifying a preex-
isting non-optimal alignment. In the algorithm proposed by Barton, an initial
alignment is generated then one sequence is taken out and realigned to the re-
maining sequences. The process is repeated until all the sequences have been
realigned.

Although iterative methods generally give more accurate alignments than
progressive methods, the major disadvantages of iterative MSAs are inherited
from the optimization methods: the process can get trapped in a local mini-
mum and the improvement in the alignment accuracy comes at the expense of
a longer run time.

Iterative methods can be classified into stochastic or non-stochastic itera-
tive algorithms. In the former, the modifications are done using random pro-
tocols, while in the latter, non-stochastic, ones these are done using dynamic
programming. Some algorithms of each category are reviewed below.

2.3.3.1 Stochastic Iterative Algorithms

Stochastic algorithms attempt to refine alignments modifying them randomly
and trying to maximize an objective function. These methods try to model
the random behavior of evolutionary changes in sequences, such as mutations.

2.3 Multiple Sequence Alignment Methods 45

Simulated Annealing, Genetic Algorithm and Hidden Markov Models are
representative stochastic iterative techniques. Next, these algorithms are
briefly described.

Simulated Annealing

The Simulated Annealing technique (SA) [MRR+53] consists of refining an
existing MSA, produced by another method, and maximizing an objective
function as a Sum-of-Pairs. This process can be divided into four steps:

1. An initial sub-optimal alignment is generated using an MSA method.

2. The initial alignment is randomly modified rearranging the alignment.

3. The modified alignment is scored using an objective function.

4. The modified alignment is kept or discarded depending on a metaphorical
"temperature factor" that determines the rate at which rearrangements
happen and the likelihood of each rearrangement. Typical usage alter-
nates between periods of high rearrangement rates with relatively low
likelihood of exploring more distant regions of alignment space, with pe-
riods of lower rates and higher likelihoods of exploring local minimums
near the new regions.

5. The process continues until convergence is met.

The main disadvantage of SA is that it is too slow at producing alignments
and therefore can only be used to improve the accuracy of existing alignments.

This approach has been implemented in Multiple Sequence Alignment using
Simulated Annealing (MSASA) [KPC94].

Genetic Algorithms

The Genetic Algorithms (GA) [Hol92][Gol89] for MSA are a much faster alter-
native to SA. The idea is to use genetic algorithms to produce a refined MSA
simulating the evolutionary process.

46 Related Work

GAs are heuristics based on the principles of natural evolution and sur-
vival of the fittest described in Darwin’s theory of evolution. Solutions to
the problem are represented by an encoded string, analogous to chromosomes
in genetics. The algorithm starts with a number of random generated solu-
tions, the so-called population. Then a series of genetic operators (selection,
crossover, mutation and replacement) are applied to the solutions in the popu-
lation to produce a new population. It is based on the principle of the survival
of the fittest, which consists of measuring the fitness of each solution using an
objective function (fitness function), before the fittest solutions are chosen in
the selection stage to contribute to new solutions. New solutions are formed
by the crossover operation, where two of the chosen solutions are selected and
recombined to form new solutions. A small proportion of these new solutions
are then mutated, i.e. changed slightly in a random way. Once an appropriate
number of new solutions has been created, these replace an equivalent number
of old solutions, with some of the fitter old solutions surviving to the next gen-
eration. The process is continued for a number of generations until a solution
optimizing the objective function is found.

GAs for MSA are very useful as research tools, but their main disadvantage
is that they are too slow for large-scale projects or every-day use.

A popular application that uses a classic GA to refine an alignment is
SAGA [NH96]. SAGA randomly generates multiple MSAs of a given set of
sequences and evolves them under some selection pressure. Within SAGA,
fitness depends on maximizing an objective function, originally the Sum-of-
Pairs score. Therefore, alignments will die or survive over the generations
depending on their fitness. As stated before, alignments can also improve and
reproduce through genetic operators known as mutations and crossovers. In
SAGA, mutations randomly insert or shift gaps, while crossovers combine the
content of two alignments. The complete disconnection between the operators
and the original objective function made it possible to modify the original
fitness function Sum-of-Pairs score to COFFEE score [NHH98]. While SAGA
is used for protein sequences, an equivalent to SAGA, called RAGA [NOH97],
was designed for RNA sequences.

2.3 Multiple Sequence Alignment Methods 47

Hidden Markov Models

Hidden Markov Models (HMM) are probabilistic models that assign likelihoods
to all possible combinations of gaps, matches and mismatches to determine the
most likely MSA or set of possible MSAs [KBM+94][Edd95].

An HMM is a statistical Markov model, proposed by Andrey Markov
[Mar71], in which the system being modeled is assumed to be a Markov process
with unobserved or hidden states [BP66]. A Markov process is a stochastic
process where future states are only dependent on the choice of the current
state, not on the sequence of events that preceded it. HMM can be seen as a
finite state machine that moves through a series of states and produces some
kind of output, either when the machine has reached a particular state or
when it is moving from one state to another. The HMM generates a protein
sequence by emitting amino acids as it progresses through a series of states.
Each state has a table of amino acid emission probabilities. There are also
transition probabilities for moving from state to state.

Figure 2.5 shows the most popular topology in sequence analysis for a
HMM. Note that there are three kinds of states represented by three different
shapes. The squares are called match states, and the amino acids emitted
from them form the conserved primary structure of a protein. These amino
acids are the same as those in the common ancestor or, if not, are the result of
substitutions. The diamond shapes are inserted states and emit amino acids
that come from insertions. The circles are special silent states known as delete
states and model deletions. Transitions from state to state progress from left
to right through the model, with the exception of the self-loops in the diamond
insertion states. The self-loops allow deletions of any length to fit the model,
regardless of the length of other sequences in the family.

Any sequence can be represented by a path in the model. The probabil-
ity of any sequence is computed by multiplying the emission and transition
probabilities along the path.

An efficient search variant of the dynamic programming method, known
as the Viterbi algorithm [Vit67], is generally used to align the growing MSA
successively to the next sequence in the query set to produce a new MSA. The
Viterbi model tries to first to find the most probable path. The probability of

48 Related Work

Figure 2.5: A possible HMM model for the protein ACCY

the sequence obtained from the HMM model is then computed by multiplying
all probabilities along the path. What the algorithm basically does is that, at
every stage in its journey, it tries to figure out and select the most probable
path leading from one particular amino acid emission to another, after having
compared the probability scores corresponding to each path. The algorithm
does the above every time it wants to go from one amino acid to another.
The resulting path that stretches through the whole sequence of amino acids
is said to be the most probable path. However, like progressive alignment
methods, this technique can be influenced by the order in which the sequences
are integrated into the alignment, especially when the sequences are distantly
related.

HMMs are used to create both global and local MSAs from a set of un-
aligned sequences and to classify sequences. The most popular HMM imple-
mentations are POA [GL04], SAM [HK96] and HMMER [DEKM98].

2.3.3.2 Non-stochastic Iterative Algorithms

Non-stochastic iterative algorithms work similarly to progressive methods but
they consist of correcting the alignment later by repeatedly re-aligning an
initial MSA using standard dynamic programming. The MSA is re-iterated,
starting with the pair-wise re-alignment of sequences within subgroups, called
profiles, and then the re-alignment of these profiles. The procedure finishes

2.3 Multiple Sequence Alignment Methods 49

when iterations fail to improve the alignment.
An important step that affects the variability of the method is the way in

which sequences are divided into groups before being re-aligned. The choice
of subgroups can be made via sequence relations on the guide tree, random
selection, etc, depending on the implementation.

The most common non-stochastic iterative methods are Muscle [Rob04],
PRRN/PRRP [Got96], MAFFT [KMKM02] and ClustalΩ [SWD+11]. To un-
derstand what a non-stochastic iterative alignment is and how it works, the
process and the main stages used by MUSCLE to produce a refined alignment
are explained below.

Muscle

MUSCLE, proposed by Edgar in 2004 [Rob04], is an application for creating
multiple alignments of protein sequences. The basic strategy used by MUSCLE
is similar to that used by PRRP and MAFFT. A progressive alignment is built,
to which horizontal refinement is then applied. As shown in Figure 2.6, Muscle
can be divided into three stages. On completion of each stage, a multiple
alignment is available and the algorithm can be terminated.

1. The goal of the first stage is to produce an MSA, emphasizing speed
over accuracy. This is achieved by producing the progressive alignment
MSA using the kmer distances [Edg04]. This measure does not require
an alignment, giving a significant speed advantage. This stage is divided
into three more steps:

(1) The kmer distances are computed for each pair of input sequences,
giving a distance matrix.

(2) A distance matrix is clustered by UPGMA, producing a binary tree.

(3) A progressive alignment is constructed by following the branching
order of tree.

2. The second stage consists of improving the first MSA, correcting the
errors produced by the approximate kmer distance measure. MUSCLE
therefore re-estimates the tree using the Kimura distance [Kim80], which

50 Related Work

Figure 2.6: Muscle algorithm

is more accurate, but requires an alignment. This process consists of the
following three steps:

(1) The Kimura distances for each pair of input sequences are computed
from the MSA obtained in stage 1, giving another distance matrix.

(2) This new matrix is clustered by UPGMA, producing a binary tree.

(3) A progressive alignment is produced following the tree order, thus
generating an optimized MSA.

3. The third stage is a refinement process, where the tree obtained in the
second stage is modified to optimize the final MSA. The Muscle refine-
ment process consists of the following steps:

(1) An edge of the tree is chosen and then this tree is divided into two
subtrees by deleting the edge.

(2) Each subtree is aligned producing two profile alignments.

2.3 Multiple Sequence Alignment Methods 51

(3) A new MSA is produced by re-aligning the two profiles.

(4) This new MSA is evaluated using the Sum-of-Pairs score.

(5) If the SP score has improved, the new alignment is kept, otherwise
it is discarded.

(6) This refinement process is repeated until convergence or until a user-
defined limit is reached.

To sum up, MUSCLE demonstrates improvements in accuracy and reduc-
tions in computational complexity by exploiting a range of existing and new
algorithmic techniques.

2.3.4 Consistency-based Methods

Consistency-based methods were designed to overcome the accuracy limits
caused by the greediness problems of progressive and iterative aligners. As ex-
plained above, this problem consists of mistakes made early in the alignment
process being moved to the final alignment and which can be difficult to cor-
rect using iterative methods. The solution proposed by the consistency-based
approach, which was originally described by Gotoh in 1990 [Got90] and later
redefined by Vingron and Argos in 1991 [VA91], is to introduce the available
information about the sequences and use this to avoid mistakes in the align-
ment. The ideal situation is to use simultaneously all the information in the
sequences that lets these mistakes be avoided easily, but this goal is computa-
tionally unrealistic. The method must incorporate the necessary information
at a computational cost.

The common idea of consistency-based approaches is to evaluate pairwise
alignments though the comparison of third sequences. This consistency in-
formation can then be used to construct the alignments or evaluate them, de-
pending on the approach. The first combination of a consistency-based scoring
scheme with a progressive alignment algorithm was described by Notredame
in T-Coffee [NHH00]. Other common MSA programs that use consistency to
produce accurate alignments are Probcons [DMBB05], Probalign [RULD06],
and Dialign [MFDW98].

52 Related Work

Next, because T-Coffee has been the reference MSA application to study
during this work, it is introduced and its main stages described in order to
understand how a consistency-based method works.

T-Coffee

T-Coffee (TC), proposed by Notredame in 2000 [NHH00], is a multiple se-
quence aligner method that combines the consistency-based scoring function
COFFEE [NHH98] with the progressive alignment algorithm. T-Coffee pro-
vides an improvement in accuracy compared over most methods based on a
progressive strategy, as errors made in the initial alignments cannot be rec-
tified later as the rest of the sequences are added in. In contrast, T-Coffee
introduces a library generated using a mixture of pair-wise alignments in or-
der to reduce greediness and increase accuracy. However, the introduction of
these improvements has penalized T-Coffee in speed as compared to the most
commonly used alternatives. As can be seen in Figure 2.7, T-Coffee is divided
into three main stages:

1. Primary Library. The primary library contains a set of pairwise align-
ments from among all the sequences to be aligned. Originally, the library
was generated by combining the ten top-scoring non-intersecting local
alignments constructed with Lalign program [HM91] and all the global
pair-wise alignments obtained with ClustalW [THG94]. However, in the
current standard versions, the library is built from all against all pairwise
alignments computed with a pair of Hidden Markov Models algorithms.
In the library, each alignment is represented as a list of pairwise residue
matches. A sequence identity weight is assigned to each pair of aligned
residues in order to reflect the correctness of a constraint. This stage is
the most time and memory consuming, limiting its applicability to no
more than 200 sequences on a typical workstation.

2. Extended Library. The extended library allows the TC to reduce
errors made in the initial alignments. The extension of the library is a re-
weighting process where the new weights for a given pair of sequences also
depend on information from the other sequences in the set. Originally,

2.3 Multiple Sequence Alignment Methods 53

Figure 2.7: T-Coffee algorithm

54 Related Work

the library extension was an independent process, but in last versions, the
TC was improved by doing the extension online during the progressive
alignment stage using only the related sequences.

3. Progressive Alignment strategy. The MSA is produced by the pro-
gressive alignment strategy explained in Section 2.3.2. First of all, all-
against-all pairwise alignments are made to construct a distance matrix
between all the sequences. The distance matrix is then used to generate
the guide tree. Finally, the sequences are aligned progressively by follow-
ing the order of the guide tree. The main difference is that the alignments
are done with the dynamic programming technique and maximizing the
COFFEE objective function using the weights in the extended library
instead of using the substitution matrix weights and gap penalties.

2.3.5 Meta-aligners

The huge number of MSA methods and the lack of a globally accepted solu-
tion make it harder for biologist to choose a specific method. It is known that
there is a close dependency between the phylogenetic and structure modeling
in the chosen aligner [WSH08]. For example, phylogenetic trees may vary sig-
nificantly depending on the applications used to produce the alignment. Fur-
thermore, benchmarks also demonstrate that no method outperforms all the
others, and that it is almost impossible to predict which method will outper-
form all the others on a specific dataset with enough certainty. For example,
one method can outperform all the others in a specific dataset. However,
this may not happen in other datasets. Without enough structural data or
functional information, it is hard to compare different alignments, which are
obtained from the available methods, and select the best resulting alignment.

Meta-aligners are an attempt to address this issue. The main idea is to
use the output of some available MSA methods as information for computing
a consistent alignment that may be considered as some sort of the average of
all the alignments considered.

M-Coffee [WOHN06], from the T-Coffee package, was the first method
designed to be used as a meta-method. M-Coffee consists of computing al-

2.3 Multiple Sequence Alignment Methods 55

ternative MSAs from a given set of sequences using any selected method. By
default, M-Coffee combines eight of the most accurate and distinct MSA pack-
ages. Each of the resulting alignments is then turned into a primary library
and all of them are merged into the main T-Coffee library. The resulting
library is used to compute an MSA consistent with the original alignments.

2.3.6 Template-based Methods

Template-based MSA methods consist of using the information of a template
to enrich a sequence [Tay86]. This template information can be used to guide
the sequence alignment in a sequence independent fashion. A template can
either be a 3D structure, a profile or a prediction of some kind.

The use of structural or profile information increases the accuracy of the
resulting alignments. Depending on the nature of the template, one refers to
its usage as structural extension or homology extension.

Figure 2.8 shows the use of three possible types of templates (homology ex-
tension, structure and functional annotation) in T-Coffee package. Templates
are compared with a suitable method and the resulting alignment is mapped
onto the final alignment of the original target sequences. The residue pairs
thus identified are then incorporated into the primary library.

Structural extension

Given two sequences with a homolog in PDB, which is a structures database
[BWF+00], structural extension consists of superposing the PDB structures
accurately and mapping the resulting alignment onto the original sequences.
This protocol produces an alignment with all the properties of a structure-
based sequence alignment. Generally, structures are better conserved than
sequences, so the addition of structural information should provide a more
biologically significant MSA.

Structural extension only defines pairwise alignments, but was initially im-
plemented in 3D−Coffee [OSA+04] for protein alignments. Later, it was im-
plemented in several RNA MSA methods as T-Lara [BKR05], MARNA [SB05]
and R-Coffee [WHN08] using RNA secondary structures as templates.

56 Related Work

Figure 2.8: Template-based protocols in a T-Coffee primary library

2.4 Benchmarking 57

In the T-Coffee case, templates are used to accurately align the sequences
taking into account the predicted structures and then the resulting structure-
based pairwise alignments are combined into the T-Coffee primary library, as
explained above.

Homology extension

Homology extension works similarly to structural extension but uses profiles
rather than structures. In this case, sequences are replaced with profiles con-
taining homologs. Profiles are later used to progressively generate the MSA.
Although profiles could be built using any available technique, fast methods
like PSI-BLAST, [AGM+90] have been favored.

The purpose of introducing profile information is to obtain highly accurate
alignments, although the use of structural extension is the best way.

The first homology extension protocol was described in the PRALINE pack-
age [SH05]. Then, another popular homology extension methods like PRO-
MALS [PG07] and PSI-Coffee of T-Coffee package were implemented. Both
methods the sequences are associated to PSI-Blast profiles.

2.4 Benchmarking

Due to the fierce competition to become the most accurate MSA method, there
are nowadays multiple structure-based reference alignment databases to eval-
uate alignments and validate or compare new MSA methods. An alignment
produced by an MSA application is compared with the corresponding reference
alignment, giving an accuracy score. These reference alignments have usually
been constructed using 3D protein structural alignments, and are thus inde-
pendent of sequence alignment methods. The quality of the MSA programs
has typically been assessed by an accuracy score that measures the proportion
of correctly aligned residue pairs or alignment positions in the alignment.

A comprehensive evaluation and comparison of alignment programs re-
quires a large number of accurate reference alignments that can be used as
test cases. McClure in 1994 [MVF94] was the first to evaluate her alignments

58 Related Work

by assessing the correct alignment of pre-defined functional motifs. She demon-
strated that the performance of alignments programs depends on the number
and length of the sequences, the degree of similarity between sequences, the
number of insertions in the alignment, the existence of large insertions, N/C-
terminal extensions and over-representation of some members of the protein
family. Benchmarking datasets have to take these characteristics into account
to evaluate MSA programs correctly.

The use of MSA reference alignment collections for benchmarking is very
convenient because of its simplicity. However, a major problem is the heavy
reliance on the correctness of the reference alignment.

Next, the most common used databases are described, with greater empha-
sis placed on the ones used in this work.

• BAliBASE: BAliBASE was defined by Thompson in 1999 [TPP99] and
is a database of high-quality documented and manually refined reference
alignments based on 3D structural superpositions to identify the strong
and weak points of the alignment programs. In BAliBASE, the align-
ments are categorized by core blocks of conservation sequence length,
similarity, and the presence of insertions and N/C-terminal extensions.

Originally, BAliBASE consisted of 142 reference alignments, but in 2005
it was updated to 217 reference alignments to include new, more challeng-
ing test cases, representing the real problems encountered when aligning
large sets of complex sequences.

The accuracy of the alignments is measured with bali_score, an applica-
tion supplied with the database. It compares the user alignment against
a reference alignment and it returns two standard accuracy measures:
the Sum-of-Pairs score (SP) and the Total Column score (TCS). The SP
score is used to determine the extent to which the program succeeds in
aligning some of the sequences in an alignment. This score increases with
the number of sequences correctly aligned. The TCS score is a binary
score that tests the ability of the programs to align all the sequences
correctly.

• PREFAB: PREFAB was created by Edgar in 2004 [Rob04] and it is

2.4 Benchmarking 59

the main alternative to BAliBASE. Prefab is a very extensive collection
of 1,682 pairs of homologous structures gathered by PSI-BLAST. Prefab
test cases are generated by taking a pairwise alignment of sequences of
known 3D structures, and adding up to 24 high scoring homologues for
each sequence.

One of the main differences is that PREFAB is not an MSA collection
like BAliBASE since each dataset only contains one pair of structures.
Therefore, PREFAB is less stringent than BAliBASE, where accuracy
can be tested on entire multiple alignments columns rather than pairs of
residues.

PREFAB uses three accuracy measures: Quality score (Q), Total Col-
umn score (TCS) and APDB. Q score is the number of correctly aligned
residue pairs divided by the number of residue pairs in the reference
alignment, while TCS is the number of correctly aligned columns di-
vided by the number of columns in the reference alignment. TCS is the
same as BAliBASE TCS and it is equivalent to Q in the case of two
sequences. Finally, APDB is derived from the structures alone and no
reference alignment of the sequences or structures is required.

• HOMSTRAD: This is a protein alignment database from sets of se-
quences, published by Mizuguchi in 1998 [MDBO98], in which all the
members have a known 3D structure. HOMSTRAD contains 130 pro-
tein families and 590 aligned structures, which were selected on the basis
of the quality of the X-ray analysis and accuracy of the structure. It
was not specifically designed as a benchmark database, although it is
regularly employed as such.

• OXBench: This is a data set of reference alignments and software tools
for benchmarking pairwise and multiple alignment methods, developed
by Raghava in 2003 [RSA+03]. The benchmark data set is made up of
domain families obtained from the 3D database of protein structural do-
mains and it comprises three related datasets: The MASTER set test
cases that deal with isolated domains derived exclusively from sequences
with a known structure. Then the FULL set was generated from suitable

60 Related Work

MASTER test cases, using full-length sequence data. Finally, the EX-
TENDED set in which high scoring homologous sequences were added
to each MASTER test case to generate it.

• SABmark: This is a sequence alignment benchmark published by Van-
Walle in 2005 [WLW05] that provides sets of multiple alignment problems
derived from the SCOP classification.

It is divided into two subsets. Each test group in the SUPERFAMILY set
represents a SCOP superfamily, whose sequences are 25–50% identical.
Each test group in the TWILIGHT set represents a common SCOP fold
and sequences are 0–25% identical. In addition, these two subsets are
also provided with non-homologous (false positive) sequences included in
each group. Instead of a single alignment acting as a reference, SABmark
provides multiple pairwise references for each test, and it is the average
score from each of these references that is taken here as a score for each
test case.

• IRMBASE: IRMBASE was published by Subramanian in 2005
[SMKM05]. It is entirely different to the other benchmarks, because its
test cases contain a number of simulated motifs [SEM98] inserted into
otherwise random (unalignable) sequences. The test cases are designed
to examine whether a method is able to detect isolated motifs within
sequences, and so are tailored to a local alignment approach.

2.5 High Performance Computing in MSA

It is known that the computational cost of an optimal sequence alignment is
in the order of O(LN) given L, the length of each sequence, and N, the number
of sequences. This means that the exact solution to the problem is intractable
and it is only possible to align few sequences. However, although heuristic
approaches reach a sub-optimal solution in a reasonable time, nowadays large
data sets demand faster and more efficient algorithms.

Recently, several types of parallel algorithms have been implemented in
different parallel systems to address these computationally intensive problems.

2.5 High Performance Computing in MSA 61

Some of these algorithms are focused on solving dynamic programming com-
putational problems and the others are focused on parallelizing the whole MSA
heuristic.

2.5.1 Parallel Algorithms for Pairwise Alignment

The first parallel approximations were applied to the Pairwise Alignment, in an
attempt to parallelize the Needleman-Wunsch and Smith-Waterman dynamic
programming algorithms in order to align more than two sequences.

However, the main problem of these algorithms is the data dependencies
derived from the similarity matrix. Therefore, most of the parallel strategies
proposed in the literature by Chen [CS03], Driga [DLS+06] and Batista [BM06]
are based on the use of the wave-front method, since the similarity matrix
calculations, which can be done in parallel, evolve as waves on matrix diagonals
(see Figure 2.9).

2.5.1.1 Wavefront Approach

In the wavefront approaches, the dynamic programming matrix is evenly parti-
tioned into rectangular regions. Each region is assigned to a unique processor.
However, when this ends the region computation, it can process others. The
parallel processing starts with one processor computing the entries of the top-
left tile, meanwhile the remaining processors are idle. Next, all the region with
its up and right neighbor entries available can be calculated. In this sense, in
the first iteration region numbered with a "1" can be processed. In the second
iteration, two regions numbered with a "2" will be calculated, and so on.

As it can be see in figure 2.9, each diagonal of tiles labelled with the same
number forms a wavefront line. The parallelism degree depends on wavefront
size. At the P -step, all the P processors can work in parallel because the
wavefront line consists of exactly P regions.

2.5.1.2 Divide and Conquer Approach

Other approaches, like the one proposed by Rajko [RA04], use a divide-and-
conquer paradigm to distribute the calculation of the similarity matrix evenly

62 Related Work

Figure 2.9: Wavefront parallelism in Dynamic Programming alignments

among the processors. Another approach commonly used by other MSA meth-
ods is the Myers-Miller dynamic programming algorithm [MM88], which solves
the pairwise alignment problem by dividing the matrix into half and then scan-
ning from opposite corners towards the middle. This point becomes the corner
of two sub-blocks, which in turn are divided and scanned for midpoints. The
recursion continues until a trivial alignment is encountered. The forward and
backward scans can occur briefly in parallel, but they must join before deter-
mining the midpoint (Figure 2.10).

However, in these parallelization methods, scalability is limited by the
length of the sequences. Very long sequences are required in order to take
advantage of the high number of processors. All these parallel strategies are
implemented and tested in the literature for CPU, GPU or FPGA computing
systems [SM11][BLB09].

Figure 2.10: Divide and Conquer approach: first and final divisions.

2.5 High Performance Computing in MSA 63

2.5.2 Parallel Multiple Sequence Alignments

Furthermore, there are other approaches designed to improve the alignment
performance by parallelizing the whole MSA application. There are three
main approaches to increasing the performance of MSA tools: the shared-
memory parallel versions based on multi-threads or multi-processes, paral-
lelization based on the distributed memory paradigm that uses MPI, and fi-
nally the ones, like GPUs and Hadoop, that uses the new HPC architectures.

2.5.2.1 Multi-Threading and Multi-Process Parallel Aligners

Nowadays, many methods are being updated to be executed concurrently to
take advantage of multi-core machines, such as implementing each computa-
tional execution as an operating system process, or implementing the compu-
tational processes as a set of threads within a single operating system process.

Multi-Threading ClustalW

The easiest way to paralellize an application is to use the shared-memory
paradigm. It is for this reason, that firsts approaches for improving the aligner
performance are based on implementing the multi-threading or multi-process
version of these tools.

MT-ClustalW [CKT06] tool is the multi-threading version of ClustalW. In
this version, the neighbor-joining guide tree is built using multiple threads.
Therefore, each thread calculates a portion of the neighbor-joining distance
matrix. In the same way, all pairwise alignments and the progressive alignment
are calculated.

Although MT-ClustalW is able to improve the execution time of Clustal-
W, its scalability is very limited by the algorithm and computational resources
available on the computer.

Multi-Threading MAFFT

MAFFT [KMKM02] is another aligner that has opted to parallelize its code
using the multi-threading technique. All its three calculation stages, namely
the all-to-all comparison, the progressive alignment and iterative refinement,

64 Related Work

from the MAFFT MSA program were parallelized using the POSIX Threads
library.

• All-to-all comparison. Multiple threads process different pairwise
alignments simultaneously and independently, with little loss of CPU
time.

• The progressive alignment. In this stage, group-to-group alignment
calculations are performed along with a guide tree. This process is not
very suitable for parallelization, because the order of the alignment cal-
culations is restricted by the guide tree. That is, an alignment at a node
cannot be performed until all of the alignments in its child nodes have
been completed. Thus, the efficiency of this stage is very limited due to
these data dependencies.

• Iterative refinement process. In each step of the refinement, an
alignment is divided into two sub-alignments and then, the two sub-
alignments are realigned to obtain an alignment with a higher score. A
simple hill-climbing approach is implemented to assign random realign-
ments to multiple threads and perform them in parallel. When a new
alignment obtains a better score than the original one, it replaces the
original.

Cloud-Coffee

Cloud-Coffee [TOG+10] is a multi-process version of the popular T-Coffee
package. Cloud-Coffee executes the following stages concurrently:

• Template selection. T-Coffee automatically associates structural tem-
plates with user-provided sequences. Templates can either be identified
by running a BLAST against an appropriate database or produced by
modeling (i.e. RNA secondary structure prediction). This simple, but
computationally intensive, process of iterating on the list of sequences is
parallelized by Cloud-Coffee.

2.5 High Performance Computing in MSA 65

• Library computation. Library computation involves computing pair-
wise (or multiple) alignments using some pre-defined method. In this
phase, parallelization is achieved by grouping the alignment tasks into a
number of individual jobs equal to the number of available processors.
Jobs are then submitted simultaneously, and their output merged into a
single library by the master process.

• Library extension. The library extension involves re-evaluating the
score for aligning every residue pair. This operation is achieved by con-
sidering every pair of sequences in turn and subsequently updating the
library. It can therefore be parallelized using the library computation
strategy.

• Progressive alignment. The progressive alignment stage involves
aligning sequences (or profiles) two by two, while following the order
indicated by a binary guide tree. Parallelization is achieved by process-
ing all the independent nodes separately, with optimal speedup achieved
when dealing with perfectly balanced trees.

2.5.2.2 Distributed Memory Parallel Aligners

When using distributed memory HPC architectures, the most popular ap-
proaches are also implemented in the MPI library to be executed on clusters of
workstations. Thus, the main MSA methods have their own parallel versions,
like ClustalW-MPI [Li03], Parallel-TCoffee [ZYRA07], Dialign-P [SNKM04]
and Muscle [Rob04]. All of them share a similar parallel design based on the
division of the multiple alignment into three main stages that can be processed
separately:

1. Calculation of the distance matrix required to construct the guide tree,
with a complexity of O(N2L2), where N is the number of sequences and
L the typical sequence length.

2. Generation of the guide tree based on the neighbor-joining or UPGMA
clustering methods, with a complexity of O(N3).

66 Related Work

3. A Progressive alignment stage where all nodes in the guide tree without
dependencies are aligned in parallel, with a complexity of O(N3 +NL2).

The first and second stages, distance-matrix calculation and guide tree
generation, correspond to an allocating problem where the solution corresponds
to determining the best match between the time-independent tasks and the
computing nodes. Thus, these steps can be implemented by a master-worker
paradigm using fixed-size chunking [KW85] or guided self-scheduling strategies
[PK87]. The efficiency of the last stage, the parallel progressive alignment,
obviously depends on the topology of the tree. The problem with this method
is that an unbalanced tree can severely limit the number of parallel tasks. For
a well-balanced guide tree, the ideal speed-up can be estimated as N/ logN ,
where N is the number of nodes in the tree. However, even a balanced tree will
have limited parallelism near the root and guide trees are usually unbalanced.

ClustalW-MPI

ClustalW-MPI [Li03] is the distributed-memory parallel version of the popu-
lar aligner. The parallelization of ClustalW-MPI follows the general scheme
presented in the previous section. The distance-matrix calculation is paral-
lelized as independent tasks, achieving a consistent linear speed-up. The guide
tree generation has been optimized to decrease its complexity from O(N3) to
O(N2). Finally, the progressive alignment stage is parallelized using a mixed
fine-grain and coarse-grain approach. In the coarse-grain, all vertices in the
guide tree without data-dependences are aligned in parallel. The fine-grain
parallelism is applied to the profile-to-profile alignment, using the recursive
parallelism paradigm.

The performance and scalability of ClustalW-MPI is optimal in the first two
steps, but very limited in the progressive alignment stage. The impact of this
bottleneck on global performance can be a very limiting factor for large-scale
alignments.

2.5 High Performance Computing in MSA 67

Dialign-P

Dialign is a versatile tool for pair-wise and multiple alignment of nucleic acid
and proteins sequences [MFDW98]. The Dialign sequential algorithm performs
all respective optimal pair-wise alignments in order to build up a multiple
alignment in greedy fashion. This implies that, for a set of N input sequences,
N ∗ (N − 1)/2 pair-wise alignments must be calculated.

The parallel version, Dialign-P [SNKM04], takes advantage that these pair-
wise alignments are completely independent of each other. Thus, they can be
calculated in parallel, dividing the run time by the number of parallel proces-
sors. The most critical point in this approach is how to distribute the workload
evenly to the processors. The authors have opted to use a task mapping greedy
algorithm. This algorithm sorts the pairwise alignment tasks by their expected
run time (an estimated based on the sequence lengths) and then assigns the
tasks to the processors in a round-robin fashion, starting with the longest ones.

Parallel-TCoffee

Parallel-TCoffee (PTC) [ZYRA07] is a parallel version of T-Coffee (TC) that
allows the reporting of alignments of more than hundreds of sequences, which
is far beyond the capability of the sequential version. PTC is implemented on
version 3.79 of TC and supports most of the options provided by this.

The implementation of PTC uses a distributed master-worker architecture
and a message-passing paradigm employing one-sided communication primi-
tives. Basically, PTC parallelizes the library generation, the progressive align-
ment, which are the two main and most difficult stages of TC, and the distance
matrix computation.

• Distance Matrix Computation. In TC, the progressive alignment
strategy is guided by a neighbor-joining tree. This is generated using
some measure of sequence similarity expressed with a distance matrix.
The computation of the distance matrix requires

(
n
2

)
sequence compar-

isons and each comparison is a totally independent task. This is why
PTC parallelizes it through a master-worker paradigm and implements

68 Related Work

a Guided Self Scheduling method (GSS) [PK87] to distribute the com-
putations (tasks) among workers. Each worker computes its part of the
distance matrix, calculates the time required and returns the results to
the master.

• Library Generation. The library generation consists of three phases:

1. Generation of all pair-wise constraints. The method implemented
by PTC to parallelize this part is similar to the distance matrix
computation. PTC uses a modified GSS, where half of the total
number of pairwise alignments are distributed proportionally based
on worker efficiency, and the other part is distributed using GSS.
Finally, each worker stores the list of the corresponding constraints
in its local memory instead of returning the results to the master.
The efficiency of the workers is known due to the time it takes each
processor to compute its part of the distance matrix.

2. Deletion, association and re-weighting of duplicated pair-wise con-
straints. Each host merges its duplicate constraints locally using
the original TC method, and then PTC implements a parallel sort-
ing to group and merge all the repeated constraints that are found
by different workers.

3. Transformation of the library into a three-dimensional look-up ta-
ble. The library is turned into a three-dimensional look-up table,
where the rows are indexed by sequences and the columns indexed
by residues. PTC implements the table using one-sided remote
memory access mechanisms (RMA). Each worker creates a read-
only RMA window that presents its part of the table, and all the
workers share two indexing vectors to retrieve any address of any
entry in the table. Finally, each worker also implements a cache
system managed by a Last Recently Used policy to store all the
frequent requests to the remote memory.

• Progressive Alignment. The computations of the progressive align-
ment stage follow a tree order, and their parallelization can be reduced

2.5 High Performance Computing in MSA 69

to a Directed Acyclic Graph (DAG) scheduling problem. This is why
this stage is the most difficult to parallelize.

PTC implements a strategy similar to the HLFET (Highest Level First
with Estimated Times) algorithms [KA99]. It launches the graph nodes
that have no precedence dependencies and allow the earliest start time,
until all graph nodes (alignments) are computed.

2.5.3 GPUs based Parallel Aligners

More recently, different approaches use graphics processing units (GPUs) to
reduce the execution time of MSA applications [Jun09]. The development of
GPU-ClustalW [LSVMW06], MSA-CUDA [LSM09] or MUMmerGPU [TS09]
are examples of such applications.

GPU-ClustalW

The main advantage of GPUs compared to other accelerator architectures,
such as FPGAs, is that they are commodity components. In particular, most
users already have access to PCs with modern graphics cards. However, it is
necessary to reformulate the alignment algorithms and data structures using
computer graphics primitives (e.g. triangles, textures, vertices, fragments) in
order to facilitate efficient use of these resources. Furthermore, restrictions
of the underlying streaming architecture have to be taken into account, i.e.
random access writes to memory are not supported and no cross fragment
data or persistent state is possible.

GPU-ClustalW [LSVMW06] uses graphics processing units (GPUs) as a
computational platform to accelerate MSAs with ClustalW. As the distance
matrix calculation is the most expensive stage of ClustalW algorithm (con-
suming 90% of the execution time) the authors opted to reformulate this stage
in terms of computer graphics primitives. In this sense, they parallelize the
Smith-Waterman algorithm, taking advantage of the fact that all elements in
the same anti-diagonal of the distance matrix can be computed independently
in parallel.

70 Related Work

Although this solution achieves a speedup of 7, its scalability is very lim-
ited by the sequence lengths. They cannot take full advantage of the GPU
architecture due to the data dependencies of the Smith-Waterman algorithm.

MSA-CUDA

The MSA-CUDA [LSM09] is a parallel MSA program which parallelizes the
three stages of ClustalW, processing a pipeline using CUDA. This implemen-
tation achieves significant speedups compared to the sequential version.

The first stage is parallelized considering the pairwise distance computation
of one pair of sequences as a task. Then each task is assigned to exactly one
thread and dimBlock tasks are performed in parallel by different threads within
the thread block.

To parallelize the neighbor-joining tree, all the tree nodes are stored in
a vector and the relationship between nodes is maintained through vector
indices instead of pointers. Each node object stores the indices of itself, its
parent and its left and right children, and accesses them using the vector index.
One thread block is assigned to compute the difference value of the means of
the branch lengths on the left and right of one node, which is selected as
the reference. Every thread in the thread block is assigned to perform the
computation on a separate sub-set of leaf nodes. For each leaf node in a
subset, the corresponding thread identifies on which side of the selected node
this leaf node lies and computes the distance between this leaf node and the
selected node.

In MSA-CUDA, the progressive alignment is conducted iteratively in a
multi-pass way. For each pass, firstly, all undone alignments that can be
performed in this pass are identified by checking the flag words of their left
and right children stored in the flag-vector. If both of their left and right
children have been aligned, this alignment is added to the ready alignment
list managing all the alignments to be performed in this pass. Otherwise,
this alignment has to wait until both of its children have been aligned. After
the completion of the ready alignment list, the pairs of profiles corresponding
to those alignments are constructed. Secondly, the pairwise alignments of all
pairs of profiles are performed on the GPU in parallel. Thirdly, gaps are added

2.5 High Performance Computing in MSA 71

to the sequences corresponding to each pair of profiles by tracing back to its
optimal alignment. Finally, all the alignments performed in this pass will set
their flag words in the flag-vector to indicate that they are aligned.

The MSA-CUDA improves the performance of the previous GPUs versions
of ClustalW. It achieves similar speedups as the ClustalW-MPI executed in a
cluster with 32 CPU-node but using only a GPU (nVIDIA GeForce GTX 280
graphics card).

2.5.4 Conclusions

In the spite of the parallelization of the most popular aligners, using different
HPC paradigms and architectures its scalability and performance is very lim-
ited. Nowadays, large-scale alignments with thousands of sequences is still a
big challenge.

The main difficulties for its parallelization are the high data dependencies
that constrain the number of tasks that can be executed in parallel. Moreover,
as some methods, such as consistency-based ones like T-Coffee [NHH00] and
Dialing [MFDW98], are more time consuming than alternative applications,
the main challenge for their parallelization is the memory required to build the
consistency data structures. Therefore, the main efforts in the parallelization
of consistency-based methods are guided towards a shared-memory paradigm.
For example, Cloud-Coffee [TOG+10] is a new multi-process version of the
T-Coffee package or Parallel-TCoffee [ZYRA07], which is able to aggregate
the CPU and memory of a cluster of workstations using an RMA (Remote
Memory Access) mechanism to share the library between different processors.
However, neither the shared-memory nor message-passing approaches solve the
bottleneck that the library represents for the scalability of the consistency-
based methods.

Other key challenge in the parallelization of MSA tools is to maintain the
quality of the original methods. Performance cannot be changed by accuracy.
Therefore, take into consideration the continuous improvement of these pack-
ages, the parallel version needs to be integrated inside the original version
in order to take advantage of further improvements in the basis alignment

72 Related Work

algorithms.
Finally, is also important to provide easy access to the parallel software

and HPC infrastructure in order for biologist to be able to use these new
aligners. Sometimes the simplicity of utilization of a tool is more important
than accuracy or performance when users choose an aligner. In this sense,
such new HPC infrastructures as Cloud can be a determinant factor in the
popularization of parallel aligners.

Chapter 3

Balanced Guide Tree

3.1 Introduction

In spite of the improvement in speed introduced by heuristics, the com-
putational requirements for large-scale alignments (thousands of sequences)
clearly exceed the workstation performance. Therefore, parallel implementa-
tions based on the main heuristics, such as ClustalW-MPI, Parallel-TCoffee
or DialignP, were implemented. Although, as explained in Section 2.5.4, all
of these improve their original algorithm, these distributed methods exhibit
scalability problems when the number of sequences increases, as they are con-
strained by data dependencies that guide the alignment process.

This chapter introduces a new clustering algorithm, applied to progressive
alignment heuristics, in order to exploit the degree of parallelism in the final
alignment process. This goal is achieved by building a guide tree that in-
creases the number of available parallel alignments in order to take advantage
of increasing computer resources. To evaluate it, the algorithm presented was
implemented in both T-Coffee (TC) and its parallel version Parallel-TCoffee
(PTC). The first was used to test the performance in a multi-core workstation,
and the second one in a distributed system, such as a cluster.

This chapter is organized as follows: Section 3.2 introduces and analyzes
the scalability problems of parallel implementations. Section 3.3 is devoted to
the presentation of the proposed algorithm, its variations and its main features.
In Section 3.4, experimentation is performed to evaluate the effectiveness of

73

74 Balanced Guide Tree

the proposed algorithm. Finally, Section 3.5 summarizes the main conclusions
drawn from the experimental results.

3.2 Problem analysis

It is known that one of the problems of MSA parallel implementations is that
these methods do not scale when the number of sequences increases. Before
treating the problem, it is necessary to analyze these applications to find the
root of the problem.

This section is devoted to analyzing the scalability problems of parallel
progressive alignment methods when the number of sequences increases. This
study was done using PTC, the MPI version of TC and described in Section
2.5.2.2. Although it implements an old version of TC and thus does not obtain
current accuracy results, PTC allows the behaviour of the scalability in larger
sets of sequences to be visualized. However, the conclusions drawn from this
analysis can be extended to concurrent TC.

To analyze the scalability of PTC, some tests were carried out varying the
numbers of processors and using different sequence sets from the Pfam database
[SED97]. In the present manuscript, the results from the PF00231 dataset are
shown in Figures 3.1a and 3.1b. PF00231 is made up of 554 sequences and a
maximum length of 331 amino-acids. This experiment was run on a Cluster
using from 16 to 120 processors.

Figure 3.1a shows the time PTC required to perform the alignment as a
function of the number of processors used to execute the parallel alignment.
PTC improves the execution time as the number of processors increases. As we
can see, up to 64 processors, the speedup is nearly optimal, but with more than
64 processors, the speedup stopped increasing stuck, limiting the scalability of
PTC.

Figure 3.1b shows the same study but breaking down the execution time
of PTC in the five different stages of TC algorithm: Initialization, Distance
Matrix, Primary Library calculation, the extension of the consistency library
and finally, the Progressive Alignment. At first glance, we can notice that the
most time-consuming steps are the calculation of the Primary Library and the

3.2 Problem analysis 75

 0

 1000

 2000

 3000

 4000

 5000

 6000

 16 24 32 48 64 80 100 120

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Processors

Total Time

(a) PTC total execution time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 16 24 32 48 64 80 100 120

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Processors

Initialization
Distance Matrix
Primary Library

Extended Library
Progressive Alignment

(b) PTC stages execution time

Figure 3.1: PTC scalability analysis

76 Balanced Guide Tree

Progressive Alignment. These two stages consume more than the 98% of the
execution time. Figure 3.1b also shows that the only stage that is improved
is the library generation while the progressive alignment stage remains linear
with the number of processors, diminishing the scalability. That is because
the generation of the primary library can be divided into several completely
independent tasks, which is an ideal situation to be implemented by the master-
worker paradigm. Meanwhile, it is known that progressive alignment stage is
bounded by task dependencies extracted from the guide tree.

Given these results, we deduce that optimization must be focused on the
progressive alignment stage.

3.2.1 Progressive Alignment analysis

As explained above, this stage is driven by the neighbor-joining guide tree
(NJ) that determines the order of the partial alignments in the progressive
alignment. Therefore, the guide tree is the key that defines the dependences
among parallel tasks.

Figure 3.2 displays, as an example, a guide tree representation generated
by the NJ algorithm, implemented in both TC and PTC. The PT-nodes (in-
ternal nodes) define the progressive alignment tasks. The leaf nodes are the
different sequences to align (12 in this example) and the tree represents the
order in which such progressive partial alignments can be performed. From the
point of view of parallelism, only PT-nodes with all dependencies resolved (all
children nodes are leaves) can be executed as independent tasks. The example
has three initial tasks, grey PT-nodes, which can be executed in parallel. This
value defines the maximum number of tasks that can be launched in paral-
lel. Another important parameter in order for modeling the parallelization of
progressive alignment is the critical path, which is the longest path through
the guide tree to obtain the final alignment. The critical path defines the
number of sequential iterations that the algorithm has to perform. The more
sequential iterations there are, the lower parallelism, the lower the performance
and the higher the execution times. In the example, the maximum degree of
parallelism is 3 parallel tasks and the length of the critical path is 7 iterations.

3.2 Problem analysis 77

Figure 3.2: Guide tree generated with standard NJ heuristic

From this tree example, it can be deduced that the shortest critical path
and the larger degree of parallelism is achieved by a perfectly balanced tree.
In Table 3.1, this study is extended to different NJ guide trees obtained from
the PF00074, PF00200, PF00231, PF00349, PF01057 and PF08443 sequence
sets from the Pfam database. This study estimates the number of sequences,
the critical path (CP), the optimal critical path (OCP), (obtained from the
perfectly balanced tree), the maximum degree of parallelism (MPD), and the
optimal maximum parallelism degree (OMPD). The optimal critical path can
be estimated as the OCP = log2 N − 1 + 1, N being the number of sequences
to align. The optimal maximum parallelism degree is achieved in the first
iteration and can be estimated as OMPD = 2(OPC−2). These optimal values
can only be achieved when the tree is perfectly balanced, i.e. all the levels are
complete.

From this table, it can be deduced that the standard NJ algorithm builds
guide trees with long critical paths, compared to the optimum values (OCP),
and small degrees of parallelism if they are compared to the optimal maximum
degree of parallelism (OMPD). For instance, for the PF01057 sequence set, the
critical path length is 94 sequential iterations, while the optimal is only 10, and
the maximum parallelism degree is 71, while the optimal is 281. This behavior

78 Balanced Guide Tree

NJ Guide Trees
Sequences N seqs CP OCP MPD OMPD

PF00074 442 28 9 107 220
PF00349 515 23 10 143 257
PF00231 554 26 10 164 276
PF01057 563 94 10 71 281
PF00200 594 29 10 173 296
PF08443 749 68 10 215 374

Table 3.1: NJ guide tree features for some sequence sets from the Pfam
database

can be seen in the remainder of the tests. Therefore, as a conclusion it can be
stated that the NJ guide trees used in TC or PTC are very unbalanced.

To sum up, NJ guide trees are unbalanced, because they only take into
account the similarities between sequences to generate these trees. The prob-
lem of working with unbalanced trees during the progressive alignment stage
is that there are too many precedence relations between the tree nodes and
this generates longer critical paths. Unbalanced trees also affect the degree of
parallelism. The more unbalanced a tree is, the fewer the tasks that can be
launched in parallel and thus the lower the degree of parallelism is. In other
words, if we have a low degree of parallelism, full performance is not obtained
in the HFLET parallel strategy and many computing resources are not used.

3.3 Balanced Guide Tree

This section presents the Balanced Guide Tree (BGT) proposal designed to
solve the problems presented in section 3.2. BGT consists of modifying the
tree generation method to take into account not only the similarity between
sequences, but also balancing features. The aim is to generate better-balanced
guide trees than the ones generated with the original NJ heuristic, without
losing the alignment accuracy. Finally, the main goal of this balancing heuristic
is to reduce the number of precedence relations, decrease the critical path and
increase the degree of parallelism.

3.3 Balanced Guide Tree 79

3.3.1 Neighbor-Joining Algorithm

The NJ clustering algorithm consists of three steps:

1. Searching the nearest pair of sequences. The algorithm compares the
similarity of each distance matrix column to the other columns and se-
lects the two most similar columns.

2. Grouping this pair of sequences. The two closest sequences are grouped
and are linked by the same tree node in the guide tree. Each tree node
represents the alignment between the sequences of their child nodes.

3. Replacing pairs by joining similarity. One of the grouped columns is
deleted and the other column is filled with the new recalculated similarity
values. This recalculated column represents the joining similarity of the
group of aligned sequences.

Figure 3.3 shows an example of these three steps. In step 1, the method
applies a metric function that determines columns 4 and 5 as the two closest
sequences. Then, in step 2, these two sequences are joined with a tree node.
Finally, in step 3, row and column 5 are deleted to prevent this sequence being
taken into account in the following iterations. The the row and column 4 are
filled with a new value that represents the joining similarity of sequences 4
and 5. This method is repeated (#sequences - 3) iterations, and the last three
columns are linked directly with the root node.

Figure 3.3: Example of NJ Guide Tree generation

80 Balanced Guide Tree

3.3.2 Balancing Guide Tree Algorithm

The BGT NJ clustering algorithm is derived from the original NJ algorithm to
maintain similarity properties and balance the guide tree. BGT tries to join
the maximum number of pairs of sequences and locate them at the base of the
tree in order to reduce the number of tree levels and thus reduce the critical
path. In order to maintain the accuracy of the TC algorithm, the balancing
heuristic is only applied if two sequences are quite similar.

To decide when to apply the BGT or the original heuristic, we use the
similarity threshold. This threshold is obtained by calculating the mean dis-
tance among all the sequences to be inserted into the guide tree. This average
defines a similarity threshold in the sense that the BGT method will not group
any pair of sequences whose distance is bigger than this value (i.e. low-related
sequences).

To implement the BGT heuristic, the main key changes performed to the
original heuristic are:

1. Calculating the similarity threshold. This is the average value between
the similarity values of the upper diagonal in the distance matrix (Figure
3.4 step 1). It is used to decide which method to use to group a pair of
sequences: the BGT NJ heuristic or the original NJ heuristic.

2. Searching and grouping the nearest pair of sequences. Like the origi-
nal NJ algorithm, the nearest pair of sequences are grouped. The main
difference is that if the intersection value between the pair of sequences
in the distance matrix satisfies the constraint imposed by the similarity
threshold, this pair of sequences is grouped and their respective columns
and rows in the distance matrix are deleted (Figure 3.4 step 2). If not,
they are grouped using the original NJ heuristic. This stage is repeated
(#sequences - 3) iterations, and the last three columns are grouped di-
rectly with the root node.

3. Replacing pair by joining similarity. At each iteration, the joining sim-
ilarity values of these columns are calculated as the original method.
The similarity values will be replaced when one of these conditions is

3.3 Balanced Guide Tree 81

Figure 3.4: BGT Guide Tree generation example

achieved: 1) all the rows and columns have been deleted or, 2) the inter-
section value between the pair of sequences fails to satisfy the constraint
imposed by the similarity threshold.

Three different approaches were defined allowing the users to prioritize
which parts of the tree they want to balance, which parts they want to maintain
the similarity features in and which they want to use one heuristic or another
in. These three approaches are briefly explained below:

• AllBalancing: In this first approach, the BGT heuristic is used to gen-
erate the whole tree to obtain a balanced tree taking similarity features
into account.

• LeafBalancing: In this second approach, BGT is only used to generate
a percentage n of the sequences of the tree, and the rest of the tree is
generated with the original NJ heuristic. With this approach, the base
of the tree is balanced, taking similarity features into account and the
tree nodes near the root are unbalanced.

82 Balanced Guide Tree

• RootBalancing: In this last approach, BGT is only used to generate a
percentage n of the sequences of the tree, and the rest of the tree is gen-
erated using an approach that only considers balancing features. With
this approach, the base of the tree is balanced, taking similarity features
into account and the tree nodes near the root are perfectly balanced.

Figure 3.5 shows the same tree as Figure 3.2, but in this case, generated
with the AllBalancing BGT approach. This tree is better balanced than the
previous one. Thus, comparing it with the tree in Figure 3.2, it can be noticed
that the critical path is shorter and the degree of parallelism is greater. The
critical path length is reduced by 43%, from 7 to 4 iterations, and the degree
of parallelism is increased from 3 to 5 tasks, 66% greater.

Figure 3.5: Guide tree generated with the BGT-AB heuristic

Tables 3.2a and 3.2b show a similar study to the one in Table 3.1. However,
in this balancing study, the critical path and the maximum parallelism degree
of the original NJ clustering algorithm are compared to the three proposed
approaches: AllBalancing BGT (BGT-AB), LeafBalancing BGT using a per-
centage n of 25 (BGT-LB25), and RootBalancing BGT with a percentage n

of 25 (BGT-RB25).

3.3 Balanced Guide Tree 83

Sequences NJ BGT-AB BGT-LB25 BGT-RB25

PF00074 28 11 26 9
PF00349 23 19 23 9
PF00231 26 18 26 10
PF01057 94 14 93 9
PF00200 29 17 28 10
PF08443 68 29 62 10

(a) Critical path lengths

Sequences NJ BGT-AB BGT-LB25 BGT-RB25

PF00074 107 172 129 174
PF00349 143 252 183 257
PF00231 164 270 191 277
PF01057 71 187 122 191
PF00200 173 295 218 297
PF08443 215 365 278 374

(b) Maximum degree of parallelism

Table 3.2: The NJ and BGT approaches features for some sequence sets from
the Pfam database

The results in Tables 3.2a and 3.2b show that both BGT-AB and BGT-
RB25 are able to reduce the critical path length and increase the degree of
parallelism considerably, obtained better balanced trees. However, BGT-LB25
obtains similar characteristics to the original one, because only the base of
the tree is balanced. Furthermore, BGT-RB25 generates the guide trees with
the shortest critical path and the greatest degree of parallelism. On average,
this approach reduces the critical path by 71.92% and increases the degree of
parallelism by 91.57% compared to the NJ Trees. The extreme case appears
with the PF01057 data set, where BGT-RB25 reduces the critical path by
90.42% and increases the degree of parallelism by 196.01%. The reason for
these results is that in BGT-RB25, the base of the tree is balanced as in the
BGT-AB approach, however, the nodes near the root are perfectly balanced.

The conclusion extracted from these results is that guide trees generated
with BGT approaches are better balanced than guide trees obtained with the

84 Balanced Guide Tree

original NJ clustering algorithm.

Finally, BGT approaches were implemented in PTC, the method be-
ing called BalancedParallel-TCoffee (BP-TC), and also in TC, the resulting
method being called Balanced-TCoffee (B-TC). However, a standalone version
of BGT has also been implemented to take advantage of balanced trees in any
method that accepts a NJ tree as an input parameter. The main difference
between the integrated implementations and the standalone one is that while
integrated versions use the distance matrix from the TC or PTC methods, the
standalone version uses any distance matrix produced by any method. Fur-
thermore, the standalone version is also capable of rebalancing a guide tree,
which is introduced as an input parameter by the user.

3.4 Experimentation

This section presents the BGT experimental results to verify the improvement
in execution time due to balanced guide trees and validate that the proposed
approaches maintain the same level of biological accuracy as the original TC.
Therefore, this section is divided into the following studies: The first study,
which is presented in Section 3.4.1, is based on a performance comparison be-
tween the original PTC and TC methods and the BGT heuristic implemented
in both PTC (BP-TC) and TC (B-TC). In the second one, in section 3.4.2,
the biological quality of the alignments is analyzed.

3.4.1 Balanced Guide Tree Performance

The following experimentation presents the performance study of the proposed
methodology and its approaches compared to the standard one. In summary,
this study is divided into two parts depending on the method used. The first
one compares the execution times of the PTC to BP-TC approaches running
on a distributed machine, in order to analyze the performance improvements.
The second one is similar to the first one, but it compares the execution times
of TC to B-TC running on a multi-core machine.

3.4 Experimentation 85

3.4.1.1 BalancedParallel-TCoffee

This first experiment consisted of calculating the execution times of the BGT
approaches implemented in the PTC (BP-TC), increasing the number of pro-
cessors of the cluster. Then, these results were analyzed and compared to the
PTC execution times to study the performance and scalability improvements
of BP-TCoffee and its approaches, BGT-AB, BGT-LB25 and BGT-RB25. The
experiment was run on 8 to 100 processors in a cluster where each node was
an HP Proliant DL145-G1, with 2 processors AMD Opteron (1.6GHz/1MB)
and 1GB of RAM Memory. The experiment was executed different times us-
ing some sequence sets from the Pfam database and the average values were
calculated.

Figure 3.6a shows the comparison of the total execution time using only
the PF01057 data set. It can be seen that BGT-AB and BGT-RB25 improve
the PTC and BGT-LB25 execution times. With regards to PTC, the biggest
improvement was obtained with the higher number of processors used. With
100 processors, BGT-AB reduced the execution time of PTC by 68%. This
means that the higher level of degree of parallelism of our approaches can take
advantage of large parallel architectures.

It is also remarkable that although BGT-RB25 achieves the shortest critical
path and highest parallel degree, it does not obtain the best execution time.
This is due to the parallel tasks obtained being more computationally complex
which meant the parallelism benefits were reduced. Therefore, BGT-AB is the
approach chosen for further performance experiments because the performance
is good enough and the balancing is not as aggressive given that it takes
accuracy measures into account.

Figure 3.6b shows the average execution time of all the Pfam data sets used
in the experiment, which were the same as those used in Table 3.1. Note that
similar behaviour as Figure 3.6a was obtained. The total execution time using
BGT-AB and BGT-RB25 was lower than the PTC and BGT-LB25 times,
because the progressive alignment stage had been reduced. However, it was
observed that the percentage of improvement for all sets is up to 36%. This
reduction is attributable to the shorter size of some Pfam datasets, which
makes BGT less efficient due to less parallelism being required.

86 Balanced Guide Tree

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 8 16 32 48 64 80 100

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Processors

PTC
BGT-AB

BGT-LB25
BGT-RB25

(a) PF01057 sequence

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 8 16 32 48 64 80 100

T
im

e
 (

S
e
c
o

n
d
s
)

Number of Processors

PTC
BGT-AB

BGT-LB25
BGT-RB25

(b) Pfam database average

Figure 3.6: Comparison of the PTC and BP-TC execution times

3.4 Experimentation 87

On the other hand, BGT-LB25 did not improve PTC execution time be-
cause, as mentioned in previous sections, this approach only balances the nodes
near the base of the tree and the nodes near the root are kept in their original
form, i.e. unbalanced.

Figures 3.7a and 3.7b show the BGT-AB and PTC execution times for
each stage respectively. The results demonstrate that the BTG-AB and BGT-
RB25 improvement came from the higher degree of parallelism obtained by
the balanced tree. More precisely, BGT reduced the execution time of the
progressive alignment stage by more than 64% (from 1,560 to 572 seconds)
with 8 processors and more than 75% when the parallel version achieved its
best performance (from 1,334 to 329 seconds, in the range of 32-100 processors).

Although Figures 3.7a and 3.7b show that the BGT-AB progressive align-
ment stage was faster than the same stage in the PTC; from Figure 3.7a, one
can also see that the progressive alignment stage remained linear and did not
scale like the library stage. That is because the strong dependencies of the
tree limited the scalability to the degree of parallelism and also due to the
weaknesses in the PTC profile alignment algorithm that are explained in the
further sections below.

3.4.1.2 Balanced-TCoffee

The second performance study consisted of running the BGT-AB heuristic
implemented in concurrent TC (B-TC) on a multi-core machine and varying
the number of sequences. The execution times were then calculated and com-
pared to the TC in order to analyze its performance and constraints. This
experiment was run on a 24 cores workstation of 32 GB of RAM.

Figures 3.8a and 3.8b show the total execution time (Total Time) and pro-
gressive alignment stage time (PA Time) for TC and B-TC BGT-AB. These
tests were done using two prefabricated Pfam sequence sets and increasing the
number of sequences from 100 to 600 and from 100 to 500 respectively. While
Figure 3.8a shows slight performance improvements in the BGT-AB, espe-
cially when the number of sequences grows, Figure 3.8b shows that, with this
sequence datasets, the BGT-AB approach did not reduce the total execution
time because it did not decrease the progressive alignment time of TC.

88 Balanced Guide Tree

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 16 32 48 64 80 100

T
im

e
 (

S
e
c
o
n

d
s
)

Number of Processors

Initialization
Distance Matrix
Primary Library

Extended Library
Progressive Alignment

(a) BP-TC BGT-AB stages execution time

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 8 16 32 48 64 80 100

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Processors

Initialization
Distance Matrix
Primary Library

Extended Library
Progressive Alignment

(b) PTC stages execution time

Figure 3.7: Comparison of the stages of the execution times for the PF01057
sequence set

3.4 Experimentation 89

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100 200 300 400 500 600

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Sequences

TC Total Time
B-TC BGT-AB Total Time

TC PA Time
B-TC BGT-AB PA Time

(a) PF0007 sequence set

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100 200 300 400 500

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Sequences

TC Total Time
B-TC BGT-AB Total Time

TC PA Time
B-TC BGT-AB PA Time

(b) PF1057 sequence set

Figure 3.8: Comparison of the PTC and B-TC execution times

90 Balanced Guide Tree

These variable results do not show the improvements in the degree of paral-
lelism obtained by BGT because the pairwise profile alignment algorithm used
by TC and PTC to align two profiles during the progressive alignment stage
is not thought to treat balanced guide trees. Table 3.3 shows three tested
examples where the time to align two profiles, depending on the number of
sequences (Nseq Prf1 and Nseq Prf2) of each profile and the tree used (NJ or
BGT-AB), was compared. It can be seen that for this algorithm is more time
expensive for this algorithm to align a profile of 108 sequences to a profile of
299 sequences (407 sequences in total) than to align a profile of 12 sequences to
a profile of 368 sequences (380 sequences in total). The first one needs 201.08
seconds, while the second one needs only requires 41.39 seconds to align them.
This table demonstrates the argument stated above and thus, in the final steps,
sometimes it is sometimes more time expensive to align a balanced tree than
an unbalanced one.

NJ BGT-AB
Nseq Prf 1 Nseq Prf 2 Time (s) Nseq Prf 1 Nseq Prf 2 Time (s)

1 3 1.61 2 2 4.41
12 368 41.39 108 299 210.08
24 576 106.901 104 496 376.47

Table 3.3: Comparison of the TC and BGT-AB profile alignment times

To attempt to avoid or reduce the above-mentioned problems, Figures 3.9a
and 3.9b show the same experiment as Figures 3.8a and 3.8b, but using the
Myers and Miller algorithm to align the profiles instead of the default algo-
rithm. The Myers and Miller [MM88] is a linear-space algorithm for producing
optimal sequence alignments. Both Figures show that the BGT-AB approach
improves the TC execution time due to the improvement in the progressive
alignment stage time. For instance, in Figure 3.9b with 500 sequences, B-TC
is 12% faster than TC, because BGT-AB improves the progressive alignment
stage time by 26%.

3.4 Experimentation 91

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500 600

T
im

e
 (

S
e
c
o
n

d
s
)

Number of Sequences

TC Total Time
B-TC BGT-AB Total Time

TC PA Time
B-TC BGT-AB PA Time

(a) PF0007 sequence set

 0

 500

 1000

 1500

 2000

 2500

 100 200 300 400 500

T
im

e
 (

S
e
c
o
n
d
s
)

Number of Sequences

TC Total Time
B-TC BGT-AB Total Time

TC PA Time
B-TC BGT-AB PA Time

(b) PF1057 sequence set

Figure 3.9: PTC and B-TC execution times compared using the Myers-Miller
algorithm

92 Balanced Guide Tree

3.4.2 Balanced Guide Tree Accuracy

This experiment evaluates the biological quality of the alignments generated
using BGT guide tree approaches. It then compares the accuracy results
achieved with the TC ones, in order to check that the proposals presented
do not lose too much biological quality and to validate these. The results were
not compared to the parallel version PTC, because the latter implemented an
old version of TC and the obtained accuracy values obtained are obsolete.

To validate the presented proposal, the multiple alignment benchmarks
BAliBASE and PREFAB were used. Both BAliBASE and PREFAB, which
are explained in more detail in Section 2.4, are used to identify the strong
and weak points of the alignment programs. While BAliBASE compares the
reference alignment to the user alignment and calculates the Sum-of-Pairs (SP)
and the Total Column score (TCS), PREFAB does the same but using the Q
score.

Table 3.4 compares the accuracy comparison of the three BGT approaches
with TC using BAliBASE. In BAliBASE, the results are divided into the nine
references and a last category for total results. In each of these divisions, the
average of both SP and TCS was calculated. The accuracy scores demon-
strate that the quality of the alignments generated with BGT approaches was
maintained in comparison with TC. In particular, the total TCS row shows
that BGT-AB and BGT-LB25 improved the alignment quality of TC by more
or less 1%; while BGT-RB25 obtained the same average accuracy as TC. In
summary, the differences in accuracy between TC with BGT-AB were in the
interval [−0.002,+0.008].

On the other hand, Table 3.5 displays the same comparison as Table 3.4,
but using the PREFAB benchmark. The PREFAB results are divided into
four ranges depending on the percentage of sequence identity, and a fifth one
to show the total average results (0-100). In this case, Table 3.5 indicates
that, on average, the BGT proposals maintain or are close to, the alignment
accuracy of TC. For instance, BGT-AB improved the total accuracy results of
TC by 0.14%, while BGT-LB25 and BGT-R25 worsened these by 0.30% and
0.40% respectively. Regarding B-TC BGT-AB, the accuracy differences with
TC were in the interval [−0.001,+0.006].

3.4 Experimentation 93

In conclusion to the results shown in this experiment, the proposal pre-
sented did not diminish the accuracy. Finally, we conclude that the best ap-
proach is BGT-AB because it provides a good compromise between time and
quality.

Reference TC BGT-AB BGT-LB25 BGT-RB25

Ref1 SP 0.764 0.764 0.765 0.764
TCS 0.579 0.581 0.584 0.581

Ref2 SP 0.878 0.876 0.878 0.874
TCS 0.363 0.366 0.370 0.365

Ref3 SP 0.785 0.784 0.789 0.782
TCS 0.392 0.400 0.406 0.380

Ref4 SP 0.802 0.806 0.806 0.803
TCS 0.420 0.430 0.430 0.426

Ref5 SP 0.787 0.790 0.788 0.787
TCS 0.423 0.429 0.421 0.424

Ref6 SP 0.806 0.809 0.811 0.807
TCS 0.419 0.417 0.418 0.424

Ref7 SP 0.805 0.811 0.809 0.797
TCS 0.359 0.365 0.364 0.354

Ref8 SP 0.701 0.701 0.700 0.700
TCS 0.179 0.180 0.181 0.176

Ref9 SP 0.741 0.741 0.745 0.741
TCS 0.484 0.484 0.487 0.486

Total SP 0.785 0.787 0.788 0.784
TCS 0.402 0.406 0.407 0.402

Table 3.4: BAliBASE accuracy analysis

Reference TC BGT-AB BGT-LB25 BGT-RB25

0-15 Q 0.421 0.427 0.417 0.419
15-25 Q 0.721 0.721 0.719 0.717
25-35 Q 0.876 0.875 0.876 0.866
35-100 Q 0.951 0.954 0.950 0.952
0-100 Q 0.709 0.710 0.707 0.706

Table 3.5: PREFAB accuracy analysis

94 Balanced Guide Tree

3.5 Balanced Guide Tree Conclusions

In summary, we proposed and evaluated a new Balanced Guide Tree heuristic
(BGT), based on the neighbor-joining clustering algorithm, for the construc-
tion of a guide tree that can achieve a more balanced tree, resulting in a
significant reduction in the critical path and an important rise in the number
of tasks that can be executed in parallel. This proposal is designed to eliminate
the bottleneck generated by the high dependencies between different iterations
of the progressive alignment step.

As a result, BalancedParallel-TCoffee can take advantage of large high per-
formance computing infrastructures to reduce the execution time of MSA ap-
plications. Furthermore, Balanced-TCoffee is able to improve the performance
of T-Coffee and exploit the computing resources of a multi-core workstation.

The experimental results obtained in a cluster of 100 processors showed
that BalancedParallel-TCoffee reduced the execution time of previous Parallel-
TCoffee by 68%. Moreover, on a 24 multi-core workstation, Balanced-TCoffee
improved the execution time of T-Coffee by 12%. Finally, this performance was
achieved while maintaining the biological accuracy of the resulting alignment.

Chapter 4

Consistency Library Optimization

4.1 Introduction

The novelty of T-Coffee (TC) is the combination of the consistency-based scor-
ing function COFFEE with the progressive alignment algorithm. TC intro-
duced a library generated using all-against-all pairwise alignments computed
with a pair Hidden Markov Models (HMM) in order to reduce the greediness
and increase the accuracy compared with most methods based on a progressive
strategy. However, the introduction of these improvements increased the CPU
and memory consumption exponentially to the number of sequences being pro-
cessed. In order to reduce the CPU execution time, from version 8.0 on, TC
implements multi-core capabilities. Thus, TC is able to obtain the alignment
results in less time. However, the library does not diminish because the num-
ber of constraints to be stored in the memory is maintained exponential to the
number of sequences to be aligned O(N2L), N being the number of sequences,
and L their average length.

This chapter introduces a new library building methodology to optimize
and reduce the library size. Library optimization reduces the amount of con-
sistency data stored, allowing a reduction in the execution time for the same
number of sequences to be aligned, and an improvement in the scalability
of TC by treating a large number of sequences. Furthermore, the proposed
methodology tries not to lose all the accuracy improvements gained by the
consistency-based scheme and it adapts to the the users’ needs.

95

96 Consistency Library Optimization

The remaining sections are organized as follows: Section 4.2 introduces
and analyzes the memory and runtime constraints of TC. Section 4.3 presents
and describes the proposed methodology. In Section 4.4, experimentation is
performed to evaluate the effectiveness of the strategy and finally, the main
conclusions are summarized in Section 4.5.

4.2 Problem analysis

TC, which is explained in more detail in Section 2.3.4, is one of the most accu-
rate Multiple Sequence Alignment tool (MSA) that combines the consistency-
based scoring function COFFEE with the progressive alignment algorithm.
While progressive methods tend to offer a good compromise between quality
and time, these methods are far from obtaining an optimal solution due to the
propagation of errors made in the early stages of alignment. The solution pro-
posed by TC is to use a consistency-based scheme to correct the misalignments
of the progressive alignment heuristics. Consistency-based methods are widely
recognized as an important development in the field of MSA, but this im-
provement comes at a cost. These methods have increased CPU and memory
consumption exponentially to the number of sequences being processed.

In TC, the consistency-based scheme is achieved through a collection of
pairwise alignments called library. The library is obtained by previous align-
ments of all sequences using third-party aligners. This is one of the strengths
of TC because the library can be produced from several pairwise alignment
methods or by combining different MSA tools. Finally, the library is turned
into an MSA using a position-specific scoring scheme (COFFEE) derived from
the library.

The library, L, can be represented by a NxN matrix (see figure 4.1), where
there is a list in position L(i, j) of pairwise residue matches for sequences i and
j (i 6= j), called constraints. Each entry/constraint is a 3-tuple {Sx

i , S
y
j ,Wi,j},

where Sx
i denotes the residue x of sequence i, there is some pairwise alignment

or other evidence supporting the alignment of Sx
i with Sy

j , and Wi,j is the
weight of the constraint. The weight, Wx,y, used to identify the correctness of
a constraint is the sequence identity, which is known to be a good indicator

4.2 Problem analysis 97

Figure 4.1: Library structure.

of accuracy when aligning sequences with more than 30% identity [SS91]. TC
assigns this weight to each constraint in order to give more priority to the
most reliable residue pairs. If different pairwise alignment sources are used,
then duplicate entries can appear. These duplicated pairs are merged into
a single entry that has a weight equal to the sum of the two weights. Pair
residues that did not occur have no entry in the constraint list.

The generation of the library requires (N2 − 1) / 2 pairwise alignments,
where N is the number of the sequences. In addition, the progressive alignment
stage requires N−1 partial multiple alignments to build the MSA, where each
partial alignment can be computing-intensive because the library information
is used at this stage. The increasing complexity of the progressive alignment
phase, added to the increase in computing due to the generation of all pairwise
alignments to build the library, means that the CPU execution time increases
significantly, turning T-Coffee into a very slow method compared with other
MSA tools and restricting its use to aligning a small number of sequences. For
example, T-Coffee is not capable of aligning more than 200 sequences of 500
residues on a standard desktop computer.

98 Consistency Library Optimization

Figure 4.2 displays the increase in execution time depending on the number
of sequences. It can be seen that runtime requirements also grow quadratically
with the number of sequences, demonstrating what is stated above about T-
Coffee being a very slow method due to the library construction and progressive
alignment stages.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 100 200 300 400 500 600 700 800

T
im

e
 (

S
e
c
o

n
d

s
)

Number of sequences

TC Time

Figure 4.2: Analysis of the TC execution time

On the other hand, the size of the library is proportional to N2 ∗L, where
L is the average length of the input sequences. Figure 4.3 shows the growth of
the memory requirements based on the number of sequences and their length.
It can be seen that memory requirements grow quadratically with the number
of sequences and their length, turning TC into a non-scalable method that is
incapable of aligning large numbers of long sequences without saturating the
memory.

4.2.1 T-Coffee scalability solutions

In order to reduce the wallclock time requirements, from version 8.0 on, cer-
tain stages of TC, like the library generation and progressive alignment, have
been parallelized using a multi-process implementation that takes advantage
of shared-memory multi-processor/multi-core architectures [TOG+10]. The li-

4.2 Problem analysis 99

Figure 4.3: Analysis of the TC memory requeriments

brary parallelization is implemented using a master-worker strategy where all
the alignment tasks are divided into a number of individual jobs equal to the
number of available processors. Jobs are then submitted simultaneously, and
their output merged into a single library by the master process. Otherwise,
the progressive alignment stage is parallelized by identifying all partial align-
ment tasks (nodes) in the guide tree that do not depend on other tasks and
then processing all these independent nodes in parallel until the final MSA is
obtained. This new concurrent version is capable of reducing the execution
time, but does not improve the scalability of the method because it does not
solve the problem of memory consumption.

TC also incorporates a new library generation method that reduces memory
requirements using BLAST [AGM+90] to build it instead of all-against-all
pairwise alignments (TC-BLAST). BLAST identifies the most representative
sequences for building the library and thus reduces the number of pairwise
alignments and the memory requirements. However, as will be seen in the
experimentation section (Section 4.4), this approach reduces the quality of the
alignments considerably.

In conclusion, TC is not a scalable MSA tool because of its high memory

100 Consistency Library Optimization

and CPU time requirements, which are introduced by the consistency-based
scheme, it being impossible to align large number of sequences. In the next
section, a new algorithm to optimize and reduce the high memory demand in
order to decrease the CPU execution time and also improve the scalability of
TC is presented.

4.3 Library Optimization Proposal

To solve the problems presented in Section 4.2, we present a library-generation
optimization method capable of reducing the memory requirements, of the
original method in order to decrease the execution time, enhance the scalability
of the application, and thus increase the number of sequences that can be
aligned.

The methods described in the following subsections are developed in the
kernel of TC. As stated in previous sections, TC is a multi-core version where
the generation of the library and progressive alignment are divided into tasks
to be run in parallel. With the combination of the optimization library method
and concurrent execution, the objective is to compute both faster and larger
alignments than the standard multi-core TC. Moreover, as this optimization
is implemented in the kernel of TC, not only is the default T-Coffee tool able
to benefit from these performance improvements, but also all the important
tools of T-Coffee package tools, such as M-Coffee, R-Coffee and Expresso.

4.3.1 Library Construction

In current versions, the library is a collection of pairwise alignments obtained
from computing all-against-all pairwise alignments or multiple alignments us-
ing some predefined method.

The library generation proceeds in two phases: the Primary Library and
the Extended Library construction, presented in Algorithms 1 and 2 respec-
tively. The Primary Library provides information about the consistency of
each pair of sequences. Meanwhile, the Extended Library improves the con-
sistency, increasing the value of the information in the library by examining

4.3 Library Optimization Proposal 101

the consistency of each pair of residues with residue pairs from all the other
alignments.

The Primary Library construction, shown in Algorithm 1, evaluates all
pairs of sequences Si and Sj in order to calculate the W(x,y) weight for each
matched residue (x, y) (line 5). This weight corresponds to the ratio between
the number of matched residues (identical value), calculated by the OCCUR-
RENCE function; and the total aligned residues, calculated by the RESIDUES
function.

Algorithm 1 Primary Library construction

1. For each sequence Si ∈ S1..SN and Si 6= Sj

2. For each sequence Sj ∈ Si..SN where Si 6= SN

3. PAij=Pairwise-Alignment(Si, Sj)

4. For each residue x ∈ Si, y ∈ Sj| are aligned in PAi,j

5. W(x,y) =

∑
OCCURRENCE(PAi,j)

RESIDUES(PAi,j)

6. L(Sx
i , S

y
j) = L(Sx

i , S
y
j) ∪W(x,y)

7. end_for

8. end_for

9. end_for

Figure 4.4 presents an example of the W(x,y) calculation. In the first case, it
can be observed that the residues of SeqA and SeqB have the same value, G, in
column 1. This means that the residues are matched. However, in column 12,
the values of the residues compared are different. In some cases, the alignment
process inserts gaps, denoted by the symbol ’-’, to optimize the final result.
For this example, the sum of the OCCURRENCE function invocations returns
16 matches and the RESIDUES function returns 18. The gaps are not taken
into account in the calculation. For these reason, W(x,y) is 0.88.

The Extended Library construction, shown in Algorithm 2, is based on
checking the alignment of all pairs of two residues with residues from the re-

102 Consistency Library Optimization

Figure 4.4: Example of pairwise alignment

maining sequences (lines 1 and 2). The main idea is to apply the transitive
property to the Primary Library for each triplet of sequences i, j, k. If one
residue in sequence i and j is aligned, and the same residue in sequence j is
aligned with another in sequence k, then the residues of sequence i and k are
also aligned. This way, these residues are re-weighted. For instance, in Figure
4.5, looking at the alignment of sequence SeqA and sequence SeqB through
sequence SeqC, it can be seen that SeqA(G) and SeqC(G) are aligned, as are
SeqC(G) and SeqA(G). The algorithm concludes that there is an alignment of
SeqA(G) with SeqB(G) through sequence SeqC and it associates that align-
ment with a weight equal to the minimum of W1 = W (SeqA(G), SeqC(G))

and W2 = W (SeqC(G), SeqB(G)). Since W1 = 77 and W2 = 100, the re-
sulting weight is set at 77. In the Extended Library, this new value is added
to the previous one to give a total weight of 165 (i.e. 77 + 88) for the pair
SeqA(G), SeqB(G). The complete extension will require an examination of all
the remaining triplets.

Algorithm 2 Extended Library construction

1. For each sequence Si, Sj, Sk ∈ S1..SN and Si 6= Sj

2. For each pair of residues (x ∈ Si, y ∈ Sj, z ∈ Sk)

3. If Sx,y
i,j = Sy,z

j,k then

4. L(Sx
i , S

z
k) = L(Sx

i , S
z
k) + min(L(Sx

i , S
y
j), L(Sy

j , S
z
k))

5. end_if

6. end_for

7. end_for

4.3 Library Optimization Proposal 103

Figure 4.5: Example of triplet alignment

In summary, the weight associated with a pair of residues will be the sum
of all the weights gathered through the examination of all the triplets involving
that pair. The more intermediate sequences supporting the alignment of that
pair, the higher its weight.

4.3.2 Essential Library Method

The first proposed approach, applied in the Primary Library construction,
identifies the information that will be useful during the alignment stage and
the information that can be discarded without affecting the quality of the
alignment excessively. This consists of building the library in a similar way to
the standard method, but identifying those entries in the library that are less
representative during the next progressive alignment stage.

The proposed method, shown in Algorithm 3, interprets the sequence iden-
tity weight of a constraint (line 5) and compares it with other constraints from
the same residue in the library (line 6). If the constraint provides more accu-
rate consistency information, then it replaces the present one in the library.

This phase of the optimization of the library is done during its generation
and not after. This way, it builds a smaller library and so TC is able to
compute bigger alignments without collapsing the memory, and also reducing
the time for building the library and all the steps where the library is used.
On the other hand, if the optimization is done when the library has already
been built, TC will build a bigger library that may saturate the system before
the optimization step. For this reason, this approach is not as scalable as our
approach.

104 Consistency Library Optimization

Algorithm 3 Essential Library method

1. For each sequence Si ∈ S1..SN and Si 6= Sj

2. For each sequence Sj ∈ Si..SN where Si 6= SN

3. PAij=Pairwise-Alignment(Si, Sj)

4. For each residue x ∈ Si, y ∈ Sj| are aligned in PAi,j

5. W(x,y) =

∑
OCCURRENCE(PAi,j)

RESIDUES(PAi,j)

6. L(Sx
i , S

y
j) = max(L(Sx

i , S
y
j),W(x,y))

7. end_for

8. end_for

9. end_for

4.3.3 Threshold Library Method

In the Primary Library, there are a lot of constraints that have little influence
on the final alignment. The reason is that due to their weight being so small,
they do not provide so much consistency information. In order to identify
these constraints, we take the deviation of their weight with regard to the
maximum weight in the library into consideration. The deviation is calculated
by applying a percentage of this maximum, named threshold. The residues
with values lower than the one determined by the threshold are discarded.

In Algorithm 4, the threshold verification is applied in line 6. If the W(x,y)

is lower than the threshold weight, then it is discarded. However, if it is
greater, the same criterion will be applied as in the Essential Library Method.
This method allows a further reduction in the library and improves the TC
scalability.

It is known that reducing the information stored in the library could affect
the final biological quality of the alignment, but the proposed method is able to
find a good compromise between the quality and scalability of the application.
In addition, our proposed method allows the user to choose how aggressive

4.4 Experimental Study 105

the reduction of the library size can be. Our implementation allows memory-
reduction input parameters to be modified depending on the needs of the
moment. The bigger the reduction in the library, the faster it can be built and
the bigger, but less accurate the alignments that can be computed. Conversely,
the smaller the reduction of the library, the slower it is to build and the smaller
but more accurate the alignments can be computed. This relation between
performance and accuracy is analyzed in the following section.

Algorithm 4 Threshold Library method

1. For each sequence Si ∈ S1..SN and Si 6= Sj

2. For each sequence Sj ∈ Si..SN where Si 6= SN

3. PAij=Pairwaise-Alignment(Si, Sj)

4. For each residue x ∈ Si, y ∈ Sj| are aligned in PAi,j

5. W(x,y) =

∑
OCCURRENCE(PAi,j)

RESIDUES(PAi,j)

6. If (W(x,y) > threshold×maxL(∗, ∗)) then

7. L(Sx
i , S

y
j) = max(L(Sx

i , S
y
j),W(x,y))

8. end_if

9. end_for

10. end_for

11. end_for

4.4 Experimental Study

In this section, we show that our method is capable of enhancing the TC scala-
bility without seriously compromising the biological quality of the alignments.
To demonstrate these statements, the following experiments were carried out:

• The first study, which is presented in Section 4.4.1, analyzes the impact

106 Consistency Library Optimization

of reducing memory in our approach, comparing the results with TC and
TC using a library produced by the BLAST method (TC-BLAST).

• The second study is presented in Section 4.4.2 and is based on a perfor-
mance comparison between TC and one of our approaches.

• In the third and last study, which is presented in Section 4.4.3, the
biological quality of the alignments is analyzed. One of our approaches
was compared with other MSA tools.

4.4.1 Library Optimization study

The experiment analyzes the impact of the proposed method by varying the
input parameters, and it compares the results against the TC and TC-BLAST
results. The following input parameters in our method were tested:

• Essential-Library (E-Library): The less representative constraints of each
residue are deleted. This method is the least aggressive reduction mode.

• Threshold-Library (T-Library): This configuration tries to remove the
less representative constraints from the library, defining a threshold to
determine the level of optimization. In this experiment, the levels used
are 25, 50 and 75 (T-Library25, T-Library50 and T-Library75), where
the smaller this threshold is the lower the reduction in memory will be.
In these configurations, the E-Library method is also applied.

This experiment was done by averaging or summing all the results of align-
ing all the sequences sets provided by the PREFAB benchmark. More specifi-
cally, it compares the sum of the size of all the libraries, the length of time to
obtain all the alignments and the average quality of each approach.

Figure 4.6 shows the library memory requirements for all the methods
analyzed. We can see how the original TC method requires more than 50GBs
of aggregate memory for the library for all PREFAB alignments. It is clear
that TC-BLAST is the method that requires less memory, 15,000 MB for all
the alignments, improving the original TC by an average of 70%.

4.4 Experimental Study 107

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

TC TC-Blast E-Library T-Library25 T-Library50 T-Library75

S
iz

e
 (

M
b

)

Figure 4.6: Memory requirement analysis

With regards to the optimized methods, we can see that the least drastic
one, E-Library, achieves a memory reduction of 61.82% (down to 21 GB).
Using both E-Library and T-Library methods together, further optimization
can be reached, reducing the needed memory to 18 GB, 16 GB and 14 GB
depending on the user level of threshold. It is important to note that T-
Library50 is able to obtain the same memory requirements as TC-Blast and T-
Library75 improves its requirements by 6.67%. The most drastic configuration
only requires 1/4 part of the memory of the original T-Coffee.

Figure 4.7 shows the execution time for the different tests. These results
show that our optimization approaches improve the total alignment time of T-
Coffee by 27% while TC-BLAST has a more impressive performance, reducing
the execution time by 73%. This improvement in performance is because
TC-BLAST only needs to perform all-against-all pairwise alignments among
a subset of the sequences (the most representative) to calculate the library,
while the other methods require all the pairwise alignments to be performed.

Figure 4.8 shows the average accuracy of all these tests. Here we can
notice the impact of the library on the quality of the final results. It shows
that TC with the completed library obtains the best quality, 0.709 on average.
However, the accuracy of the optimized library approaches is not so bad. For
all our approaches, the quality ranges from a maximum of 0.699 to a minimum

108 Consistency Library Optimization

of 0.687. Therefore, in the worst case, the reduction in quality is 3%. The
TC-BLAST results are the worst, with a quality of 0.609 and a reduction of
14%.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

TC TC-Blast E-Library T-Library25 T-Library50 T-Library75

T
im

e
 (

S
e

c
o
n
d

s
)

Figure 4.7: Execution time analysis

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

TC TC-Blast E-Library T-Library25 T-Library50 T-Library75

Q
 S

c
o
re

Figure 4.8: Biological accuracy analysis

As conclusion, the results presented demonstrate that our approaches (E-
Library, T-Library25, T-Library50 and T-Library75) are capable of reducing
the size of the library of TC and thus they also reduce the execution time

4.4 Experimental Study 109

without losing too much alignment accuracy. We believe that the quality lost
by TC-BLAST does not compensate for the improvements in time and size.

4.4.2 Scalability study

In this experiment, the scalability of our method was analyzed and compared
with TC. The experiments were run on HECToR, the United Kingdom Na-
tional Supercomputer Service and currently the 35th in the top500 list. The
HECToR service consists of a Cray XE6 supercomputer, a high-performance
parallel file system (esFS), a GPU testbed machine and an archive facility.
Each computing node contains two AMD 2.1 GHz 12-core processors giving
a total of 44,544 cores, offering a theoretical peak performance of around 373
Tflops. There is presently 32 GB of main memory available per node, which is
shared between its twenty-four cores. The total memory is 58 TB. Specifically,
a shared memory parallel machine is needed to test the T-Coffee multi-process
version. Thus, the experiments consisted of running different sequence sets in
a HECToR node, with 24 cores and 32 GB of memory, varying the number
of sequences and their length to test the performance improvements of the
T-Library50 approach.

Figures 4.9a and 4.9b show the comparison of the number of constraints
in the library and its size in Mb respectively, with the number of sequences
increasing from 100 to 2000. It can be seen that T-Library50 significantly re-
duces the number of constraints and the library size compared with TC. With
1000 sequences, T-Library50 reduces the number of constraints and the size
of the TC default library by 75%. Due to this reduction in memory require-
ments, it can be appreciated that with the library optimization approach, TC
is capable of aligning up to 2000 sequences while the standard TC is only able
to align 1000.

Figures 4.10a and 4.10b show the comparison of the total execution time,
the Primary Library (PL) and the Progressive Alignment (PA) times between
T-Library50 and TC. It can be seen that our approach is faster than the
standard method (Figure 4.10a) because it is able to reduce the PL and PA
execution times (Figure 4.10b). With 1000 sequences, TC using T-Library50

110 Consistency Library Optimization

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 200 400 600 800 1000 1250 1500 1750 2000

N
u
m

b
e
r

o
f
c
o
n
s
tr

a
in

ts

Number of sequences

TC
T-Library50

(a) Analysis of the number of constraints

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 200 400 600 800 1000 1250 1500 1750 2000

S
iz

e
 (

M
b
)

Number of sequences

TC
T-Library50

(b) Memory requirements analysis

Figure 4.9: Analysis of the memory requirements

4.4 Experimental Study 111

 0

 5000

 10000

 15000

 20000

 25000

 30000

 200 400 600 800 1000 1250 1500 1750 2000

T
im

e
 (

S
e
c
o
n
d
s
)

Number of sequences

TC Time
T-Library50 Time

(a) Analysis of the total execution times

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 400 600 800 1000 1250 1500 1750 2000

T
im

e
 (

S
e
c
o
n
d
s
)

Number of sequences

TC PA Time
T-Library50 PA Time

TC PL Time
T-Library50 PL Time

(b) Analysis of the stage execution times

Figure 4.10: Scalability study

112 Consistency Library Optimization

reduces the execution time of default TC by 92%. We can also see that most of
the improvement in the execution times comes from the progressive alignment
stage. T-Library50 is able to reduce the execution time of this stage by 92.20%,
reducing it from more than 10,832 seconds to only 845 seconds. Meanwhile,
the improvement in the library building is not so spectacular as both methods
need to calculate all-against-all pairwise alignments. The improvement shown
in the graph is mainly due to the data management, which is quicker when the
library is more compact.

According to these results, the proposed optimization method reduces the
memory and CPU time requirements, thus improving the scalability of TC.
Therefore, the resulting method is able to align large numbers of longer se-
quences.

4.4.3 Biological Accuracy study

This experiment evaluates the quality of the alignments generated with the
T-Library50 approach. The results are compared with other related MSA
tools, such as the standard T-Coffee (TC), T-Coffee-BLAST (TC-BLAST),
ClustalW, Muscle and ClustalΩ. The prepared alignments and the evaluation
scores of BAliBASE, PREFAB and HOMSTRAD benchmarks were used to
compare the biological quality between the alignments. BAliBASE calculates
the Sum-of-Pairs score (SP) and the Total Column score (TCS), and the re-
sults are divided into the nine references and a further category for the total
average results. PREFAB uses the Q score to evaluate the alignments and the
results are divided into four ranges depending on sequence identity percent-
age, and a fifth one to show the total average results. Finally, the accuracy of
HOMSTRAD alignments is calculated with the Column Score (CS) using the
aln_compare program from T-Coffee package.

Tables 4.1, 4.2 and 4.3 show the average accuracy results of the methods
described above using the BAliBASE, PREFAB and HOMSTRAD benchmarks
respectively. It can be seen that the behaviour of our method is similar in the
three benchmarks. T-Library50 loses little accuracy compared to the standard
method (TC) due to the reduction in the library, but still remains above all

4.5 Library Optimization Conclusions 113

the remaining MSA methods, except the new ClustalΩ method, taking into
account that this method is only capable of aligning protein sequences. For
instance, from PREFAB total average results, it can be inferred that the T-
Library50 alignments are respectively 14% and 13% less accurate than those
in TC and ClustalΩ, but they are 11% and 1.5% more accurate than ClustalW
and Muscle. Moreover, we can also observe that the quality of the results
of the T-Library50 were significantly better than those of TC-BLAST. For
BaliBASE, the total average SP score improved by 8% and TCS score by 15%.
With PREFAB, total Q is improved by 13%, and for HOMSTRAD, the total
CS is improved by 9%.

In summary, these results demonstrate that the approach presented rep-
resents a better alternative to TC-BLAST for aligning a large number of se-
quences with the T-Coffee package.

Reference T-Coffee TC-BLAST T-Library50 ClustalW Muscle ClustalΩ

Ref1 SP 0.763 0.630 0.721 0.667 0.714 0.691
TCS 0.577 0.429 0.530 0.455 0.519 0.492

Ref2 SP 0.876 0.841 0.864 0.822 0.853 0.859
TC 0.365 0.240 0.334 0.260 0.303 0.336

Ref3 SP 0.783 0.686 0.766 0.684 0.750 0.767
TCS 0.382 0.238 0.361 0.248 0.309 0.386

Ref4 SP 0.773 0.739 0.755 0.695 0.759 0.799
TCS 0.409 0.341 0.385 0.302 0.338 0.428

Ref5 SP 0.773 0.739 0.755 0.695 0.759 0.747
TCS 0.417 0.327 0.383 0.266 0.325 0.355

Ref6 SP 0.787 0.724 0.759 0.670 0.732 0.868
TCS 0.383 0.259 0.333 0.307 0.315 0.572

Ref7 SP 0.801 0.683 0.772 0.845 0.787 0.909
TCS 0.355 0.224 0.318 0.516 0.316 0.624

Ref8 SP 0.698 0.673 0.690 0.710 0.685 0.840
TCS 0.177 0.130 0.168 0.155 0.143 0.437

Ref9 SP 0.741 0.696 0.726 0.701 0.715 0.726
TCS 0.487 0.457 0.464 0.449 0.453 0.476

Total SP 0.778 0.693 0.752 0.717 0.745 0.767
TCS 0.455 0.356 0.421 0.367 0.399 0.461

Table 4.1: Analysis of BAliBASE accuracy

4.5 Library Optimization Conclusions

T-Coffee is one of the best tools for multiple sequence alignment due to the
use of consistency to reduce error propagation in the different steps of the

114 Consistency Library Optimization

Reference T-Coffee TC-BLAST T-Library50 ClustalW Muscle ClustalΩ

0 - 15 0,421 0,228 0,379 0,289 0,365 0.395
15 - 25 0,721 0,604 0,695 0,605 0,684 0.708
25 - 35 0,876 0,847 0,865 0,816 0,860 0.878
35 - 100 0,951 0,961 0,956 0,941 0,951 0.965
0 - 100 0,709 0,609 0,687 0,617 0,677 0.700

Table 4.2: Analysis of PREFAB accuracy

HOMSTRAD T-Coffee TC-BLAST T-Library50 ClustalW Muscle ClustalΩ

Total CS 76.317 68.865 74.992 74.243 75.169 75.766

Table 4.3: Analysis of HOMSTRAD accuracy

progressive alignment. However, the memory and CPU time requirements to
implement consistency sometimes discourages users from using this tool to
align large numbers of sequences.

In summary, a library optimization method is proposed that improves the
scalability and performance of T-Coffee considerably. The proposed method
provides the user with greater flexibility to choose how aggressive the reduction
of the library can be in order to trade off between alignment time and quality.
The library optimization was developed in the kernel of the T-Coffee alignment
tool. This mean that not only is the default T-Coffee tool able to benefit from
these improvements but also the performance and scalability of all the package
tools, like M-Coffe, R-Coffee and Expresso, can be improved.

Furthermore, experimental analysis showed that the method allows larger
alignments to be performed than those that can be managed by the original
T-Coffee. The improvement presented can widen the range of scenarios in
which T-Coffee can be efficiently used as an alignment tool.

Chapter 5

Multiple Tree Alignment

5.1 Introduction

In progressive alignments methods, as explained in Section 2.3.2, the order
in which the alignments are performed is determined by a heuristically-build
guide tree. Although this heuristic provides a great advantage of speed and
simplicity, progressive methods are very dependent on the initial alignments,
and several studies have shown that the alignment may be sensitive to errors
in the guide tree [PPL+10].

This chapter presents Multiples Tree Alignment (MTA). MTA is a new
Multiple Sequence Alignment (MSA) method that consists of creating, aligning
and evaluating multiple guide trees in parallel. The main objective of MTA is
to cope with the errors from the progressive alignment due to guide tree, in
order to improve the biological accuracy. Therefore, MTA is similar to non-
stochastic iterative methods as it tries to correct an alignment, but instead
of repeatedly re-aligning an initial alignment, MTA aligns multiple modified
guide trees simultaneously.

Owing to the fact that MTA produces multiple alignments from multiple
guide trees, one of the biggest challenges of this new method is to choose the
best alignment. We carried out an extensive comparison study to analyze
different evaluation metrics in order to decide which one provides a better cor-
relation between the computational score and biological quality. As a result of
this study, this chapter also presents two meta-scores built from a combination

115

116 Multiple Tree Alignment

of existing metrics by using a genetic algorithm, with the aim of enhancing the
correlation between these metrics and thus improving the results of the MTA.

The remaining sections are organized as follows: Section 5.2 introduces the
MTA algorithm and its features. Section 5.3 studies the feasibility of MTA and
presents the most common scoring functions. Section 5.4 describes the genetic
algorithm and the training process for obtaining the two proposed meta-scores.
In Section 5.5, experimentation is performed to compare the presented scor-
ing metrics and validate the improvements in accuracy and scalability of the
proposed method. Finally, Section 5.7 outlines the main conclusions.

5.2 Multiples Tree Alignment Algorithm

MTA is a MSA method that is able to align multiple guide trees by using an
existing MSA program, evaluate them and finally select the one that provides
the most accurate results. The MTA method can be applied to any progressive
aligner that accepts guide trees as an input parameter. For these aligners,
MTA is capable of improving their accuracy without modifying the original
methods. In addition, the method also allows different evaluation metrics for
selecting the best guide tree. The aim of this approach is to find a variation
of the original tree that provides a more accurate alignment than the original.
Figure 5.1 shows the algorithm scheme of our proposal. It is made up of
four main steps: the Distance Matrix building, the neighbor-joining guide tree
generation, the alignment stage and the evaluation phase.

1. Distance Matrix construction step. This first step consists of con-
structing the Distance Matrix (DM), a K×K two-dimensional array, K
being the number of sequences. To build it, first, all the distances be-
tween all the input sequences have to be calculated. Although there
are different methods for calculating distances, the most widely-used one
is to perform all pairwise alignments between all sequences. However,
KTUP distance heuristic is used because, despite being less sensitive, it
is faster than the others. Then, these distances are organized forming the
DM, which is needed during the next step to build the neighbor-joining
guide trees (NJ).

5.2 Multiples Tree Alignment Algorithm 117

Figure 5.1: Multiple Tree Alignment algorithm scheme

118 Multiple Tree Alignment

2. Guide tree generation step. During this step, the method produces
N guide trees, N being defined by the user. The algorithm generates
multiple guide trees based in the NJ clustering algorithm. Each tree
corresponds to a variation of the original obtained by NJ but adding
some noise in the distances in order to introduce some variability. This
random noise is low enough to maintain the distance criteria but sig-
nificant enough to provide the necessary flexibility to generate multiple
alternative trees.

3. Alignment step. The alignment stage consists of aligning the different
guide trees. The method calls an external MSA application that accepts
a predefined NJ tree as input parameter. Currently, the alignments are
built using two popular progressive alignment applications, namely T-
Coffee (MTA-TC) and ClustalW (MTA-CLW). The user is able to select
one of them taking the execution time or alignment accuracy criteria
into account. T-Coffee (TC) is slower and consumes more memory than
ClustalW (CLW), however, it is more accurate as it introduces consis-
tency information to the alignments. MTA is able to share information
between any aligner invocations, thus when the selected aligner is TC,
the consistency library is calculated once and shared by all the aligner
invocations. This optimization allows the execution time required for
aligning N guide trees to be reduced and also requires less memory.

4. Evaluation step. During the evaluation step, the obtained alignments
are scored using an evaluation function/metric in order to identify the
best alignment that corresponds to the best guide tree. The alignment
with the best score is the final result of the MTA method. As in the align-
ment step, the method calls an external evaluation score. This allows
the user to choose between different evaluation functions. A meta-score,
composed of a combination of metrics and generated by a genetic algo-
rithm, can also be used. This part of the algorithm is crucial to achiev-
ing improvements in the alignment accuracy, but it is still a challenge
to solve for the biologist. Section 5.3 describes the main characteristics
and constraints of this step, and then introduces the evaluation metrics

5.3 Evaluation Metrics Analysis 119

implemented in the literature. Finally, Section 5.4 presents two proposed
meta-scores obtained from a combination of existing metrics through a
genetic algorithm training.

In contrast with iterative methods, that evaluate the different trees sequentially
(one-after-another), the proposed method could evaluate all trees in parallel,
thus limiting the time consumed by the method. For this reason, in these early
versions, MTA is also implemented to provide an option to run in parallel on
a cluster of computers. The guide tree generation, alignment and evaluation
steps are parallelized with MPI using the Master-Worker paradigm so they
can be implemented as independent tasks. Thus, the master sends the input
sequences and the DM to the workers. Each worker then builds a guide tree,
aligns this guide tree, evaluates the alignment and send the resulting score
to the master. Finally, the master selects the best alignment based on the
alignment scores received.

5.3 Evaluation Metrics Analysis

Since the success of the sequence analysis is highly dependent on the reliability
of the alignments, measures to assess the quality of the alignments are a high
requisite. Thus, in the literature, multiple scoring functions are being devel-
oped. Any scoring function needs to take into account that some positions
are better conserved than others, which is called position-specific scoring, and
that the sequences are biologically related through a phylogenetic tree.

However, as explained in Section 2.4, MSA programs are validated and
compared using reference sequence alignment databases. The alignment accu-
racy is assessed by comparing the test alignment with a reference alignment
and calculating a scoring function that measures the proportions of correctly
aligned residue pairs or alignment positions in the alignment.

Although some scoring functions introduce sequence structure or function
information to evaluate alignments, a perfect function can only determine the
mathematically optimal alignment, but not always the biologically optimal
one. Therefore, the lack of proper alignment validation methods that could

120 Multiple Tree Alignment

be used without reference alignments is a disadvantage in benchmarking the
MSA programs or in determining the best one from a set of alignments.

So, a crucial challenge for the proposed method is to identify the best
alignment among those obtained by MTA. However, it is possible that the
best alignment chosen through an evaluation metric is not the same as the
best biological alignment.

In this section, a study is done first to validate whether the designed
methodology in MTA is able to enhance the alignment accuracy. Then, the
most common scoring functions are introduced to indicate finally which ones
should be implemented in MTA.

5.3.1 Multiple Tree Alignment validation

To reveal the potential of MTA method to increase accuracy, an experiment
was conducted in which it was always able to select the best guide tree by
using a benchmark score. The experiment showed the best accuracy that
MTA could achieve in function of the number of trees evaluated. It is known
that benchmarking scores cannot be used in MTA alignments because they
are based on reference alignments, which are not always available. However,
the use of this benchmarking scores is useful for validating the MTA method,
because they allow to determine the maximum degree to which the quality of
the alignments can be improved, depending on the number of trees evaluated.

The experiment (Figure 5.2) shows the alignment accuracy evolution de-
pending on the number of trees treated for both MTA-TC and MTA-CLW.
This experiment tries to quantify the error introduced by the guide tree. Both
methods used the PREFAB Q Score as the selection metric to determine the
best alignment. The experiment consisted of evaluating up to 300 trees and
using the whole PREFAB datasets as the input sequences and Q score as the
validation score to measure the improvements in accuracy. Moreover, when
only a guide tree is used, the first graph value corresponds to the accuracy
obtained by the default T-Coffee and CustalW respectively.

Figure 5.2 indicates that, in both MTA configurations, the average align-
ment accuracy rises as the number of trees analyzed increases. Specifically, it is

5.3 Evaluation Metrics Analysis 121

0.600

0.650

0.700

0.750

0.800

 1 50 100 150 200 250 300

Q

S

c
o
re

Number of trees

MTA-CLW Average Q
MTA-TC Average Q

Figure 5.2: MTA validation using Q benchmark score as evaluation metric

shown that, evaluating 300 trees, MTA-TC is able to improve the Q accuracy
from 0.709 to 0.759. Furthermore, MTA-CLW improves the CLW alignment
accuracy from a Q of 0.617 to 0.779. However, if 5.2 is analyzed in more de-
tail, it can be seen that the largest increase in the accuracy of alignments is
achieved with 10 trees. Specifically, in MTA-CLW the accuracy grows from
0.617 to 0.701 and in MTA-TC from 0.709 to 0.737. Then, up to 50 trees, the
quality grows progressively, and from this point, the improvement in quality
is smaller, at the same time that the number of trees analyzed increases.

Analysing these results, we can conclude that the error introduced by
the guide tree is worse in non-consistent methods like ClustalW than in
consistency-based methods like T-Coffee. Therefore, consistency is able to
correct guide tree building errors. Non-consistency-based methods gap can
be estimated at around 13% of the final alignment quality. Another interest-
ing remark is that without taking the error generated by the guide tree into
consideration (for example, using MTA with 300 trees), ClustalW, without
consistency, is able to produce a better alignment than T-Coffee.

Finally, these results demonstrate that the MTA method is able to improve
the quality of an alignment obtained from an MSA method by redefining the
guide tree. So now, the major challenge is to find a suitable evaluation metric,

122 Multiple Tree Alignment

without using references, that is able to identify the best tree. Next, the most
common evaluation functions implemented in MTA are briefly described to
then present the proposed meta-scores.

5.3.2 Scoring Functions

It was demonstrated in Section 5.3.1 that MTA is capable of improving the
accuracy of the alignments using an appropriate evaluation metric for discrim-
inating alignments. In the previous test, MTA used the Q score, which needs
a reference alignment. Therefore, this cannot be used and a scoring function
without reference alignments is necessary to evaluate MTA alignments.

A scoring function is an objective function that assigns a real value to each
alignment which should reflect the quality of the alignment. Furthermore,
many MSA heuristics work by maximizing an implemented scoring function
in order to try to find the optimal alignment. However, as stated in previous
chapters, a perfect scoring metric can determine the mathematically optimal
alignment, although this is not always the biologically optimal one. Therefore,
in our approach, a metric must be found that provides the best correlation
between the computational score and the biological quality of the alignment.

Before introducing the most common scoring methods, some of which are
implemented in MTA, two different scoring schemes need to be introduced.
There are two ways to quantify the sequence similarity: a similarity measure
and a distance measure.

• Similarity scoring scheme: A similarity scoring scheme is a function
that measures the similarity of sequences. In it, the residue-residue pairs
are scored with a similarity substitution matrix and residue-space pairs
are scored with gap penalties.

An identity matrix is adequate for nucleic acid alignment. Identity matri-
ces give fixed scores for matches and mismatches. Otherwise, for protein
sequences, substitution matrices are used (BLOSUM, PAM, etc). These
similarity-based matrices do not contain evolutionary information.

The gap penalty function is very important since it has a great influence
on the distribution of spaces in the alignment, which subsequently affects

5.3 Evaluation Metrics Analysis 123

the overall alignment. In biology, insertion or deletions cause big gaps
in an alignment, therefore the most widely used gap penalty model en-
courages the extension of gaps rather than the introduction of new gaps.
This model defines a gap opening penalty and a gap extension penalty,
where the gap opening value is always bigger than the gap extension
value.

• Distance scoring scheme: A distance-scoring scheme, has become
more and more important. It is a function that measures the difference
between sequences. A key challenge in this approach is how to define a
distance function that satisfies the metric property and reflects the evolu-
tionary information between sequences as well. Instead of using a similar-
ity substitution matrix, this scheme uses a distance function to include
evolutionary information. For example, Metric PAM250 (mPAM250)
consists of a reworking the mathematics of PAM 250 to make its values
reflect evolution information from a distance perspective [XM04].

Furthermore, there are many different scoring functions based on using
various properties of the sequences to evaluate them. Scoring functions can
incorporate the sequences structure, function and evolutionary history to be
more accurate.

In the next section, the main scoring functions are briefly described divided
into two categories: scoring functions without using structural information and
scoring functions using structural information.

5.3.2.1 Scoring Functions without Structural Information

This category introduces some of the most common scoring functions that not
use structural sequence information to evaluate alignments.

• Sum-of-Pairs score (SP): SP is a pairwise base function introduced
by Pearson in 1988 [PL88] and it is the standard method for scoring an
alignment. A score is calculated for each pair of sequences in the multiple
alignments based on the similarity between the sequences. The score for
the multiple alignments is then taken to be the sum of all the pairwise

124 Multiple Tree Alignment

scores. The score of each pairs of sequences is determined by a similarity
substitution matrix and gap penalties.

Although the SP score is easy to work with, it is widely used and the
results are reasonably good, there is no probabilistic justification for it
and each sequence is treated as if it were directly related to all other
N-1 sequences, where in fact it is very probably only directly related to
one of them. This problem arises because SP does not take advantage of
phylogenetic trees.

To compensate for these disadvantages, Carrillo and Lipman proposed a
weighted SP score [CL88]. These weights change the importance given
to different pairs of sequences and try to reflect known evolutionary dis-
tances.

• NorMD score: Introduced by Thompson in 2001 [TPR+01], NorMD
is a column-based objective scoring function for MSA, based on the
Mean Distance (MD) score, that combines the advantages of the column
scoring techniques with the sensitivity of methods incorporating residue
similarity scores using substitution matrices. MD scores are based on
the mean pairwise distance between sequences in a continuous sequence
space. NorMD normalizes it to take into account the set of sequences to
be aligned.

The NorMD process consists of calculating a score for each column in
the alignment using the concept of continuous sequence space introduced
by Vingron and Sibbald [VS93]. The column scores are then summed
over the full length of the alignment. In addition, NorMD incorporates
sequence information, such as the number and length of the sequences
in the alignment set, and the potential sequence similarity.

• COFFEE score: The COFFEE score (Consistency based Objective
Function For alignmEnt Evaluation) proposed by Notredame in 1998
[NHH98] is a pairwise base function that calculates the correlation be-
tween a multiple sequence alignment and a previously defined library of
pairwise alignments.

5.3 Evaluation Metrics Analysis 125

The COFFEE score requires two components: a set of pairwise refer-
ence alignments, such as a TC library, and the objective function that
evaluates the consistency between an MSA and the pairwise alignments
contained in the library.

The COFFEE function presents some similarities with the Weighted SP.
As well as SP, COFFEE considers all the pairwise substitutions in the
multiple alignments, and weighs these in a way that reflects the rela-
tionships between the sequences. However, in this case, the library plays
the role of the substitution matrix. Moreover, a big difference between
COFFEE and Weighted SP is that no extra gap penalties are applied in
the COFFEE scheme, since this information is already contained in the
library.

COFFEE was the score that TC maximized for generating and evalu-
ating the alignments. However, nowadays TC implements another score
that also uses consistency information from the library, called TRIPLET
Score.

5.3.2.2 Scoring Functions with Structural Information

This category describes some of the most common scoring functions that incor-
porate structural sequence information to evaluate the accuracy of the align-
ments.

• Root-Mean-Square Deviation score (RMSD): RMSD is a measure
for evaluating the quality of an alignment by using available structural in-
formation about the sequences in the alignment [Kab76][Kab78]. RMSD
estimates the mean square distance between the equivalent alpha carbons
of the two superposed structures.

In principle, RMSD could also be used as an MSA benchmarking method.
It has two advantages over standard methods: no dependence on a ref-
erence alignment and the possibility of quantifying the structural cor-
rectness of any protein sequence alignments. However, one serious dis-
advantage is the requirement for a superposition, which is itself a diffi-
cult problem. Moreover, other disadvantages are the way that RMSD

126 Multiple Tree Alignment

measures behave with different degrees of sequence divergence and its
sensitivity to local or global alignment differences.

• APDB score: APDB (Analyze alignments with PDB) is a method
proposed by O’Sullivan [OZH+03] to evaluate the quality of an alignment
by using available tertiary structures of the sequences in the alignment. It
is designed to evaluate how consistent an alignment is with the structural
superposition this alignment implies.

APDB measures the quality of the structural superposition induced by
the input alignment given any structures available for the sequences it
contains. By treating the alignment as the result of some sort of struc-
tural superposition, it simply measures the fraction of aligned residues
whose structural neighborhoods are similar.

Like RMSD, this method can be used as an MSA benchmarking method.
In APDB, it is possible to avoid the use of reference alignments when
PDB structures are available for at least two homologous sequences in a
test alignment. Using this method it should become possible to bench-
mark or train multiple sequence alignment methods systematically using
all known structures, completely automatically. Moreover, APDB solves
the major disadvantages of the RMSD score for use as a benchmarking
method.

• IRMSD score: IRMSD is a redesigned RMSD measure proposed by
Notredame in 2006 [AMKN06] to make it independent from any structure
superposition procedure. IRMSD is an RMSD based on intra-molecular
distance comparisons.

The iRMSD is a follow up of the APDB measure designed to evaluate
alignments for their compatibility with the structural superposition they
imply. While APDB was a complex measure depending on three semi
arbitrary parameters, the new iRMSD algorithm only requires one pa-
rameter.

Finally, iRMSD was normalized (NiRMSD) in order to take into account
the superposition accuracy and the extent of the alignment, making it

5.3 Evaluation Metrics Analysis 127

useful for evaluating the accuracy of structure based sequence alignments.

• STRIKE score: STRIKE (Single sTRucture Induced Evaluation), pub-
lished by Kemena in 2011 [KTKN11], is a method that determines the
relative accuracy of two alternative alignments of the same sequences
using a single structure.

Given an alignment between a sequence with a known structure (Tem-
plate) and a sequence with an unknown structure (Target), the STRIKE
score is estimated by projecting all the contacts measured on the Tem-
plate onto the Target. The scores of these induced contacts are then
summed and normalized by the total number of contacts within the Tem-
plate. The contact score can be further normalized by dividing its value
with that of the Template sequence. This measure gives an indication
of whether the overall score of the target sequences is significantly lower
(<1), comparable (=1) or higher (>1) than that of the only known struc-
ture.

5.3.2.3 Multiple Tree Alignment Scoring Functions

As explained in Section 5.2, MTA does not implement any scoring function,
but it calls them externally to evaluate the alignments and select the most
accurate. In early versions, MTA uses the following single scores to evaluate
the alignments: SP, NoRMD, COFFEE, TRIPLET, iRMSD and STRIKE.

Furthermore, MTA has been developed to allow the user to modify any
parameters of the metrics used; for example, in the case of the SP score, it is
possible to choose the substitution matrix and modify the gap penalty values.

Finally, besides the mentioned metrics, MTA also proposes the use of two
meta-scores obtained through genetic algorithms: the Weighted-Score chromo-
some (WSC) and the Meta-score Code Chromosome (MCC). The main idea
of these meta-scores is to combine the main characteristics of various metrics
with the goal of improving the evaluation step in order to find more accurate
alignments. In the next section, the design of the genetic algorithm, input
data used, and genetic algorithm training process to define the two proposed
meta-scores are explained in detail.

128 Multiple Tree Alignment

5.4 Genetic Algorithm Meta-Score

In this section, two heuristic meta-score functions based on a genetic algorithm
(GA) are proposed. These algorithms use the information obtained by different
quality scores to determine a more realistic method for evaluating the quality of
the obtained alignment. Assuming that there is no direct correlation between
a scoring metric and the biological quality, we use evolutionary computation
(genetic algorithms) from Artificial Intelligence (AI) to search for alternative
correlations. To do so, GAs were used to search for the combination of scores
that best estimate the biological quality of an alignment. Then, it was analyzed
whether this new score could improve the quality of the alignment tools. The
approach presented is quite different from such previous ones as SAGA [NH96],
which used GAs to build the alignment.

This section presents the design of both GAs, the main aspects of the im-
plementation, the parameter configuration tests to tune the evolution scheme
and finally, it presents the GA training process to obtain the two proposed
meta-scores.

5.4.1 Genetic Algorithm Design

Genetic algorithms are heuristics based on the principles of natural evolution
and survival of the fittest [Hol92]. Solutions are represented by a string en-
coding, analogous to chromosomes in genetics, and are usually referred to as
individuals. The algorithm starts with a number of solutions, the so-called
population, which is usually randomly generated. Then, a series of genetic
operators (selection, crossover, mutation and replacement) are then applied
to the solutions in the population to produce a new population. One full se-
quence of these operators is called a generation and the process is continued
for a number of generations until a stopping criterion is met.

The principle of survival of the fittest guides the search towards good so-
lutions as follows. A suitable target function is used to measure the fitness
of each solution. The fitter a solution is, the more likely it is to be chosen in
the selection stage to contribute to new solutions. New solutions are formed
by the crossover operation, where two of the chosen solutions are selected and

5.4 Genetic Algorithm Meta-Score 129

recombined to form new solutions. A small proportion of these new solutions
are then mutated, i.e. changed slightly in a random way. Once an appropriate
number of new solutions have been created, they replace an equivalent num-
ber of old solutions, with some of the fitter old solutions surviving to the next
generation [Gol89].

To design the GA scheme, it is necessary to define the following structures
for each meta-score:

1. The chromosome that encodes the solutions space for our optimization
problem.

2. The fitness function to evaluate the goodness of any solution in the
population.

3. The behaviour of the main evolution operators, like selection,
crossover, mutation or replacement, applied to produce a new population
in our scheme.

Next, two proposed meta-score are presented by defining their chromosome,
fitness function and evolution operators.

5.4.1.1 Weighted-Score Chromosome

As a first approach, we assume the simplest combination of metrics, which is a
weighted scheme among several scoring functions (WSC). Thus, the objective
of our chromosome is to select the weight that has to be assigned to each metric
in order to maximize the correlation with the biological quality.

In this sense, the chromosome is defined as an array of M genes, M being
the number of metrics that we are studying. The ith gene of the chromosome
is an integer that represents the weight ∈ [0, 100] of the ith metric in the
combined scoring function. For example, the chromosome string (100, 0, 0, 50,
25) represents a combined scoring function based on 100% of metric 1, 50% of
metric 4 and 25% of metric 5.

The final solution of the GA will inform us about the best weight among
all the metrics to achieve the best correlation.

130 Multiple Tree Alignment

Fitness Function

Ideally, the fitness function has to be able to evaluate the capability of the
combined scoring function defined by a chromosome to estimate the biological
quality of an alignment. However, it is highly improbable to find a computa-
tional scoring function capable of estimating the biological quality quantita-
tively. Therefore, we opted to search for a scoring function with the power to
distinguish qualitatively between good and bad alignments taking the biolog-
ical quality into consideration. This approach is considered for designing our
fitness function. Therefore, the function will evaluate the ability of the meta-
score function to select the best biological alignment from a set of solutions
derived from aligning the same sequences using different guide trees.

The training is done with several input sequence-sets from the PREFAB
database. Multiple alignments are calculated for each input set using the MTA
proposal to vary the guide tree. Finally, all the score metrics are calculated for
each alignment together with the biological quality score obtained using the Q
metric.

This dataset is the foundation of our fitness function. The fitness of each
chromosome is calculated by selecting the best alignment for each dataset,
which is the one that maximizes the meta-scoring function defined by the
chromosome. From the selected alignment, its biological quality (PREFAB Q
value) is saved. This procedure is applied to all the input datasets, obtaining
the average Q score (i.e. the average biological quality) for the chromosome.
Therefore, the goal of the optimization problem is to maximize the average Q
value.

Genetic Operators

The proposed WSC GA scheme defines its own mutation operator, while the
rest of the operators are the traditional ones. The evolution operators are:

• Crossover. Crossover is a reproduction technique that takes two parent
chromosomes and produces two child chromosomes. The scheme pro-
posed uses the one-point crossover method. In this method, both par-
ent chromosomes are split into left and right sub-chromosomes, where

5.4 Genetic Algorithm Meta-Score 131

the left sub-chromosomes of each parent are the same length, as are
each parent’s right sub-chromosomes. Then each child receives its left
sub-chromosome from one parent and the right sub-chromosome from
the other. The split position is called the crossover point. For exam-
ple, if the parent chromosomes are (20,0,15,99,100) and (5,15,25,35,45)
and the crossover point is between genes 2 and 3, then the children are
(20,0,25,35,45) and (5,15,15,99,100).

• Selection. The selection operator is used to choose which individuals
should mate. The selection proposed method picks an individual based
on its fitness score compared to the rest of the population. The higher
the score, the more likely an individual is to be selected. Any individual
has a probability s of being chosen, where s is equal to the fitness of the
individual divided by the sum of the fitnesses of each individual in the
population.

• Mutation. Mutation is a common reproduction operator used to find
new points to evaluate in the search space. When a chromosome is chosen
for mutation, a random choice is made of some of its genes, and these
are modified. In the case presented, we work with the following two
approaches:

– Bit-level Mutation, where all the bits in the chromosome string can
mutate individually. In this case, the mutation means that the
corresponding bit is flipped (from 0 to 1 or from 1 to 0), changing
the value of the corresponding weight.

– Gene-level Mutation, where the whole gene, ith metric weight,
changes if the mutation takes place. To change the genes, a random
number between 0 and 100 is generated.

In both cases, a defined mutation probability p is applied to each muta-
ble element (bit or gene). Then, the algorithm randomly decides if the
mutation happens and, if so, it changes the element.

• Replacement. The replacement policy depends on the selection and
mutation scheme. Each generation creates a new population of individ-

132 Multiple Tree Alignment

uals by selecting from the previous population then mating to produce
offspring for the new population. Moreover, the best chromosomes from
each generation are carried over to the next generation to accelerate the
convergence.

5.4.1.2 Meta-Score Code Chromosome

The previous WSC Chromosome have some limitations because they are unable
to establish relations between scores and other metrics in the sense of "if score
1 is bigger than the average of score 1 then it is a good alignment.". This
limits the improving capacity of the genetic algorithm. We therefore opted to
design a more complex and promising evolution scheme based on calculating
the meta-score through a program code that can evolve to maximize the fitness
function.

A brief language for coding the chromosome programs (MCC) is defined.
This grammar is shown in Algorithm 5 in BNF format. Basically, the meta-
score program is composed of several conditional sentences with the corre-
sponding assignment statements. The conditionals define the relations between
the score metrics, score statistics and numeric constants that must be satisfied
in order to execute the statement. The statements modify the METASCORE
variable through different arithmetical and assignation operations. Algorithm
6 shows an example of these MCC programs.

Algorithm 5 BNF grammar of chromosome code
< pgm >::= {< sentece >} ’END’
< sentence >::=< if > | < if >< sentence >
< if >::=< enabled > ’IF’ ’(’ < condition > ’)’ ’THEN’ < statement >
< enabled >::= ’On’ | ’Off’
< condition >::=< term > {< opr_comp >< term >}
< term >::=< score > | < statistics > | < NUMBER >
< score >::= Score1 | Score2 | .. | ScoreN
< statistics >::= Statistc1 | Statistc2 | .. | StatistcN
< opr_comp >::= ’==’ | ’ !=’ | ’>=’ | ’<=’
< opr_cond >::= ’&&’ | ’||’
< statement >::= ’METASCORE’ < opr_asig >< term > {< opr_arit >< term >} ’;’
< opr_asig >::= ’==’ | ’+=’ | ’>=’ | ’<=’
< opr_arit >::= ’+’ | ’-’ | ’*’ | ’/’ | ’;’

5.4 Genetic Algorithm Meta-Score 133

Algorithm 6 Meta-score code example
On If (Score1>50 && Score2>50 && Score3>50 && Score4>50) then METASCORE += 100;
On If (Score1<50 && Score2<50 && Score3<50 && Score4<50) then METASCORE -= 100;
Off If (Score1>GlobalMean || Score2>GlobalMean) then METASCORE += Score1 + Score2;
On If (Score1==GlobalMax && Score1!=GlobalMin) then METASCORE += Score1 * 2;
Off If (Score1>MeanScore1) then METASCORE += Score1;
On If (Score2>MeanScore2) then METASCORE += Score2;
On If (Score3>MeanScore3) then METASCORE += Score3;
END

Each chromosome is a program coded with this language. This code can
be mutated and reproduced during the evolution. The program is executed
by its own parser each time that the fitness function needs to evaluate an
alignment. As a result of the execution, the program returns a representative
meta-score of the quality of the alignment. To delimit the solution search
space, the program bytecode size is limited to only 256 bytes. However, this
is big enough to obtain a good meta-score metric.

MCC introduces several changes performed on the genetic to deal with the
new chromosome. The fitness function is the same as for the first scheme. The
only difference is that the meta-score is not obtained through a weighting of
different scores, but by executing the chromosome program.

Genetic Operators

The selection and replacement operators have not changed from WSC version.
However, the crossover and mutation operators need to be modified. These
operators work with the program bytecode, respecting the following rules:

1. Changes produced in the code have to be syntactically and semantically
correct, in order for the resulting program to be executed without errors.

2. The size of the programs has to be controlled to avoid unlimited growth.

The behavior of the modified operators is the following:

• Crossover. The program merging is only done at the level of full sen-
tences. We use a two-point crossover method to choose a fragment of
the chromosome A program and a fragment of the chromosome B code

134 Multiple Tree Alignment

that will be exchanged to create the two child chromosomes. The frag-
ment of code is defined by selecting the starting and ending sentence
lines randomly.

• Mutation. In order to guarantee the syntax of the new program, the
mutation operations are only performed with certain symbols and re-
specting the constraints defined by the grammar. Some symbols, like
’end ’ of program, ’then’ or ’;’ cannot be changed.

5.4.2 Genetic Algorithm implementation

The MCC and WSC GAs are implemented using a specialized library called
GAlib [Wal96]. GAlib is a C++ library of GAs components that includes tools
for use to develop any genome using any representation and genetic operators.

For the GA training, it was first necessary to generate all the input data.
The input data is a list of n alignments of a range of sequence sets evaluated
with different metrics. Some PREFAB sequence sets were used to build it.
Each sequence set was an experiment and these were aligned using MTA-CLW
to obtain n alignments for each experiment. Then, the n alignments were
evaluated using different score metrics. These scores are used by the GA to
evaluate the goodness of each chromosome meta-score and develop it to find a
good combination between them. The metrics used as input data were NorMD,
COFFEE, TRIPLET, STRIKE, NiRMSD and the following three variations
of SP score found in the literature:

• An SP score using BLOSUM62 as a substitution matrix with a gap-
opening penalty of -11 and a gap-extension penalty of -1 (SP B62-1).

• An SP score using BLOSUM62 as a substitution matrix with a gap-
opening penalty of -6.6 and a gap-extension penalty of -0.9 (SP B62-2).

• An SP score using PAM250 as a substitution matrix with a gap-opening
penalty of -13.8 and a gap-extension penalty of -0.2 (SP G250).

The next step was to implement the chromosome designed in Section 5.4.1,
which represents the population, to evolve and define the fitness function. The

5.4 Genetic Algorithm Meta-Score 135

proposed fitness function, where g(i) is a gene i and SCi is an input score,
evaluates each chromosome for all the input score list in each experiment and
tries to obtain the maximum value that returns a Q score. Finally, the average
Q score from all the experiments is obtained.

The GA is started by initializing each chromosome of the initial population.
Then, the evolution is performed over successive generations until the fitness
score converges. The convergence consists of defining a percentage c and the
number g of previous generations to compare against. The convergence stops
the evolution when the best-score during the last g generations is within c of
the current generation’s best individual score.

5.4.3 Genetic Algorithm training process

A GA must be trained with a specific data set to find the fittest new scoring
functions. Before that, the GAs must be configured to tune all the parameters
and thus find the improved fittest solution. This section shows the experiments
focused on setting the GA implementations. It then presents the evolution
process and the two meta-scores obtained from running the refined GAs.

The MSA PREFAB benchmark was used to provide sets of sequences to
use as experiments for running the GAs and analysing the biological quality of
the alignments using the Q score. In order to avoid the over-fitting problem,
the validation methodology used two disjointed data sets. Although both used
the PREFAB benchmark, the experiments used for GA training differed from
those used in further sections to validate MTA with the proposed meta-scores.
For the training process, 100 of 1682 sequence sets (experiments) were used,
and for each experiment, 100 alignments were evaluated. The configuration
and training process were run on a Intel(R) Xeon(R) E5462 2.80 GHz with 8
cores and 16 GB of RAM.

5.4.3.1 Genetic Algorithm configuration

The GA setting study attempted to determine the best parameter configura-
tion for both the WSC and MCC algorithms in order to balance the algorithm
execution time and the obtained accuracy. Thus, the parameters to be studied

136 Multiple Tree Alignment

were: the population number, the population size, the mutation probability
and finally the crossover probability. The results obtained from this study are
applied to find the two meta-scores used by MTA to evaluate alignments and
find the most accurate one.

The first parameter, population number, is evaluated in Figures 5.3a and
5.3b in the range from 1 to 5. For all the tests, it can be seen that the execution
time for the MCC algorithm remained stable while WSC varied from 700 to
900 seconds. Observing the accuracy analysis, the best results for the MCC
came from the population number equal to 2. For WSC the best accuracy
was obtained with 5 populations, but at the cost of increasing the execution
time by 32%. Therefore, two populations were adopted as a good compromise
between accuracy and execution time for the WSC GA.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5

T
im

e
 (

S
e

c
o

n
d

s
)

Population number

WSC GA time
MCC GA time

(a) Execution time varying the population number

 0.76

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

 1 2 3 4 5

Q

S
c
o

re

Population number

WSC GA accuracy
MCC GA time

(b) Accuracy analysis varying the population number

Figure 5.3: Genetic Algorithm configuration study: Population number

5.4 Genetic Algorithm Meta-Score 137

The population size parameter was evaluated in the range from 50 to 500,
as shown in Figures 5.4a and 5.4b. The execution time and alignment accuracy
increased with the population size in both WSC and MCC, and with a pop-
ulation size of 500, the alignment accuracy was good enough to choose these
values in further executions.

The next parameter, the mutation probability was expanded from 0.01 to
0.1. In this case, both WSC and MCC execution times increased with the
mutation probability grows. Thus, the accuracy results were obtained with a
probability of 0.09 for WSC and 0.03 for MCC.

Finally, Figures 5.6a and 5.6b show the crossover probability study, from
0.1 to 1. For WSC, the runtime grew slightly when the crossover probability
increased, while the runtime behaviour for the MCC was irregular. In this
case, the best quality result was with a probability of 0.9 for WSC and 0.4 for
MCC.

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 200 300 400 500

T
im

e
 (

S
e
c
o
n
d
s
)

Population size

WSC GA time
MCC GA time

(a) Execution time varying the population size

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

 0.795

 0.8

 100 200 300 400 500

Q

S

c
o
re

Population size

WSC GA accuracy
MCC GA time

(b) Accuracy analysis varying the population size

Figure 5.4: Genetic Algorithm configuration study: Population size

138 Multiple Tree Alignment

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
im

e
 (

S
e
c
o
n
d
s
)

Mutation probability

WSC GA time
MCC GA time

(a) Execution time varying the mutation probability

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

 0.795

 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Q

S

c
o
re

Mutation probability

WSC GA accuracy
MCC GA time

(b) Accuracy analysis varying the mutation probability

Figure 5.5: Genetic Algorithm configuration study: Mutation probability

Table 5.1 shows the configuration values obtained for both WSC and MCC.
As a conclusion, we can state that a good configuration for future tests for
WSC is to use 2 populations of 500 individuals with a mutation probability
of 9% and a crossover probability of 90%. The best set-up for MCC is to
use 2 populations of 500 individuals with a mutation probability of 3% and a
crossover probability of 40%.

Parameter WSC MCC

Population number 2 2
Population size 500 500
Mutation probability 9% 3%
Crossover probability 90% 40%

Table 5.1: WSC and MCC configuration parameters

5.4 Genetic Algorithm Meta-Score 139

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
im

e
 (

S
e
c
o
n
d
s
)

Crossover probability

WSC GA time
MCC GA time

(a) Execution time varying the crossover probability

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

 0.795

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q

S

c
o
re

Crossover probability

WSC GA accuracy
MCC GA time

(b) Accuracy analysis varying the crossover probability

Figure 5.6: Genetic Algorithm configuration study: Crossover probability

5.4.3.2 Genetic Algorithm evolution

After configuring the genetic algorithm for both WSC and MCC, the two
settings obtained were then used to evolve both meta-score schemes. The GA
evolution was done using the same hardware infrastructure and training data
sets as in previous experiments.

Figure 5.7 shows the evolution process for both GA proposals. It can be
seen how the biological quality achieved using WSC and MCC was enhanced
in function of the number of GA generations. In both schemes, the quality
improved rapidly in the early generations. For WSC, note that it reached its
maximum quality of 0.774 after only 150 generations. In comparison, MCC
required 1,500 generations to achieve its best quality because its search-space
was bigger than that of WSC. However, this higher complexity of MCC was

140 Multiple Tree Alignment

 0.755

 0.76

 0.765

 0.77

 0.775

 0.78

 0.785

 0.79

 0.795

 0.8

 1 10 100 1000 10000

Q
 S

c
o
re

Generations number

WCS GA accuracy
MCS GA accuracy

Figure 5.7: MCC and WSC GA accuracy evolution study

offset by better quality results. MCC quality increased up to 0.799, as it was
able to identify more accurate alignments than WSC.

Finally, after the evolution process, the resulting GA meta-scores for both
WSC and MCC were:

• WSC meta-score: The GA score weights obtained running WSC GA
were (1, 14, 1, 0, 37, 1, 98). These weights represent a combined scoring
function based on 1% of SP B62-1, 14% of SP B62-2, 1% of SP G250,
37% of STRIKE, 1% of TRIPLET and 98% of NiRMSD. These results
show that more weight was given to both structural scores (NiRMSD
and STRIKE) because they were more sensitive.

• MCC meta-score: The MCC results were achieved using the meta-
score function obtained from the GA evolution. This resulting program
code is shown in Algorithm 7. This algorithm shows all the resulting
conditionals that define the relations between the score metrics and have
to be satisfied to calculate the METASCORE variable used to evaluate
the alignments. In the code, Score1 corresponds to SP B62-1, Score2 to
SP B62-2, Score3 to SP G250, Score4 to NorMD, Score5 to STRIKE,

5.5 Multiple Tree Alignment Experimentation 141

Algorithm 7 Meta-score code program
On if (Score6 > 105 || Score7 > Score1 || MaxScore1 > 212 || Score7 > Score7 || 214 >
MinScore3) then METASCORE *= MaxScore2;
On if (MaxScore4 > Score6 && MaxScore7 < Score1 && MeanScore4 < 242 || Score3 ! =
MaxGlobal || 227 != Score3) then METASCORE += Score5;
On if (36 > Score4 || Score3 > 37) then METASCORE += MinGlobal + Score2;
On if (Score3 == Score4 || Score4 > 103) then METASCORE /= 78 / MaxScore4;
On if (Score2 < 29) then METASCORE /= Score3;
On if (Score2 ! = 97) then METASCORE += Score7;
On if (Score1 ! = 91) then METASCORE += 246;
On if (Score5 ! = MeanScore4) then METASCORE += MaxScore2;
On if (Score2 ! = MeanScore4) then METASCORE += MeanScore5;
On if (Score1 ! = 6) then METASCORE -= 26;
Off If (133 ! = MaxScore3) then METASCORE /= 149;
On if (MinScore3 < Score4) then METASCORE += MaxScore2;
Off If (Score7 ! = MeanGlobal) then METASCORE /= MinScore4;
On if (MeanScore5 ! = 71) then METASCORE -= Score4;
On if (Score3 > 10) then METASCORE -= 33;
END

Score6 to TRIPLET and Score7 to NiRMSD. Of course, there are sen-
tences that have no effect on the METASCORE value (for example,
sentences 11 and 13) and only a few lines are significant (in bold in the
algorithm). For instance, line 1 increases the meta-score if the NiRMSD
score is greater than the SP B62-1. The last instruction decreases the
meta-score if the SP G250 score is lower than 10%. The most significant
conditionals, which are highlighted in bold, contribute to modifying and
finally obtaining a METASCORE, which, by combining the properties of
the compared metrics, is capable of evaluating alignments and obtaining
results closer to the biological quality.

5.5 Multiple Tree Alignment Experimentation

This section presents the experimental results focused on first validating the
proposed GA meta-scores, comparing them to the other existing metrics, and
then analyzing the accuracy and scalability improvements of the proposed
method, MTA. To this end, the following experiments were carried out:

• In the first study, presented in Section 5.5.1, the biological quality of the
alignments chosen with the new GA meta-scores were compared with the
quality of the same alignments chosen using other existing metrics.

142 Multiple Tree Alignment

• The second study, presented in Section 5.5.2, shows the accuracy of the
alignments obtained by MTA proposal and it compares them against
other MSA programs found in the literature.

• In the third study, presented in Section 5.5.3, the performance and scal-
ability of the parallel version of MTA is analyzed.

5.5.1 Comparison of the Evaluation Metrics

This experiment evaluated the ability of standard metrics (SP, NoRMD,
STRIKE, COFFEE, TRIPLET, NiRMSD) and the proposed evaluation met-
rics (WSC and MCC) to choose good alignments, identify which score was able
to make the best selection and finally compare them against the original MSA
method alignment.

The experiment was done using two MTA configurations fixing the MSA
program and varying the evaluation metric (Tables 5.2, 5.3). The MSA applica-
tions used by MTA were ClustalW (MTA-CLW) and T-Coffee (MTA-TC), the
number of evaluated trees being 300 for MTA-CLW and 100 for MTA-TC. The
input metrics compared were SP, NoRMD, STRIKE, COFFEE, TRIPLET,
NiRMSD and the proposed meta-scores WSC and MCC. The input datasets
used were the whole PREFAB benchmark sequence sets divided into five groups
according to the percent identity of the sequences. The accuracy results were
obtained by using PREFAB Q score comparing the resulting alignments with
the reference ones. In each table, the columns identify the range of identity,
the rows identify the evaluation metric selected, the first one being the result
for the original aligners, and the second one, in red, the optimal accuracy result
using PREFAB Q score as the selection metric.

Table 5.2 is related to the MTA-CLW configurations. As can be observed,
MTA-CLW MCC obtained the highest average accuracy in each PREFAB
category, except in the range of 35-100, where MTA-CLW NiRMSD was the
most accurate. In total, MTA-CLW MCC was the best configuration, being
15.40% more accurate than the original MSA method, ClustalW (0.712 vs
0.617). In spite of the improvement, there were further potential gains until the
optimal quality was reached (MTC-CLW Q row). Regarding the WSC meta-

5.5 Multiple Tree Alignment Experimentation 143

Aligner 0 - 15 15 - 25 25 - 35 35 - 100 0 - 100

ClustalW 0.289 0.605 0.816 0.941 0.617
MT-CLW Q 0.552 0.787 0.908 0.976 0.779
MTA-CLW SP 0.345 0.637 0.837 0.953 0.649
MTA-CLW NorMD 0.350 0.641 0.826 0.950 0.649
MTA-CLW STRIKE 0.392 0.688 0.857 0.954 0.686
MTA-CLW TRIPLET 0.369 0.672 0.850 0.949 0.670
MTA-CLW COFFEE 0.369 0.673 0.852 0.954 0.671
MTA-CLW NiRMSD 0.422 0.711 0.870 0.957 0.705
MTA-CLW WSC 0.427 0.718 0.870 0.950 0.708
MTA-CLW MCC 0.434 0.720 0.875 0.950 0.712

Table 5.2: Comparison between different MTA-CLW configurations varying
the evaluation metric

score, MT-CLW WSC was the second most accurate configuration, improving
the alignment accuracy of ClustalW by 14.75% (0.708 vs 0.617). If we do not
take the GA meta-scores into consideration, the best score was NiRMSD that
surpassed the remaining single scores.

The results obtained for the MTA-TC are shown in Table 5.3, these being
on average better for the MTA-TC configurations, and more accurate than the
alignments built with TC. In total, the MTA-TC MCC and MTA-TC NiRMSD
configurations were the most accurate, improving the alignment quality of T-
Coffee by 3.10% (0.731 vs. 0.709). It is seen that the MCC total average
accuracy result was the same as the one for NiRMSD one. Moreover, the WSC
accuracy results were very close to those from NiRMSD (0.730 vs. 0.731).

From Table 5.3, it can also be deduced that, regarding T-Coffee, improve-
ments in MTA-TC were less significant than those in MTA-CLW regarding
ClustalW. This is because T-Coffee introduces consistency information into
the alignments, correcting the errors caused by the guide tree in progressive
alignments. Also, we can observe that on average GA meta-scores were unable
to achieve better results than those for NiRMSD. This is due to the NiRMSD
score clearly surpassing all the remaining scores. Therefore, the meta-score
cannot provide a better quality than NiRMSD alone.

The above results prove that the best evaluation score is the MCC heuristic.
This is a consequence of MCC being a meta-score obtained by GA training

144 Multiple Tree Alignment

Aligner 0 - 15 15 - 25 25 - 35 35 - 100 0 - 100

T-Coffee 0.421 0.721 0.876 0.951 0.709
MT-CLW Q 0.509 0.778 0.902 0.959 0.759
MTA-TC SP 0.427 0.722 0.876 0.953 0.711
MTA-TC NorMD 0.430 0.726 0.875 0.953 0.714
MTA-TC STRIKE 0.435 0.726 0.875 0.950 0.715
MTA-TC TRIPLET 0.430 0.723 0.877 0.950 0.712
MTA-TC COFFEE 0.426 0.725 0.875 0.953 0.712
MTA-TC NiRMSD 0.470 0.743 0.885 0.953 0.731
MTA-TC WSC 0.457 0.748 0.888 0.944 0.730
MTA-TC MCC 0.459 0.748 0.889 0.944 0.731

Table 5.3: Comparison between different MTA-TC configurations varying the
evaluation metric

and it consists of a program code that combines the properties of different
evaluation metrics.

It is important to note that, with MCC-CLW and MCC-TC, all MTA
configurations produce a significant improvement in the alignment quality, in-
dependently of the score selected to evaluate the multiple alignments. It is also
remarkable, that scores with structural information like STRIKE (0.686 and
0.715) and NiRMSD (0.705 and 0.731) obtain better results than traditional
scores like COFFEE (0.671 and 0.712).

Another MTA feature is that the error associated with the guide tree is
bigger when the sequences are less correlated. This effect can be validated
with the percentage of improvement achieved in the different PREFAB dataset
categories. With low related sequences (0-15 column) the improvement reaches
50% with ClustalW and 11% with T-Coffee. However, with high correlated
sequences (the remaining columns) the improvement is less than 20% and 3%
respectively.

5.5.2 Alignment Accuracy analysis

Table 5.4 presents the comparison of alignment accuracy between the pro-
posed method using ClustalW and T-Coffee, which obtained the best con-
figurations in subsection 5.5.1 (MTA-CLW MCC, MTA-TC MCC, MTA-TC

5.5 Multiple Tree Alignment Experimentation 145

NiRMSD), and some of the most common consistency-based, iterative or pro-
gressive alignment MSA applications found in literature (MSAProbs [LSM10],
MAFFT [KMKM02], Probalign [RULD06], ProbCons [DMBB05], ClustalΩ
[SWD+11], Muscle [Rob04], Dialign-tx [SHS+10] and FSA [BRS+09]). All the
MSA methods were run using the default parameters. The experiment was
carried out using the whole PREFAB benchmark sequence sets divided into
five groups according to the percent identity of the sequences. The accuracy
results were obtained by using the PREFAB Q score. In the table, the columns
identify the range of identity and the rows identify the method compared. The
last column indicates whether the method used consistency or not.

The results show that the consistency-based methods (MSAProbs,
MAFFT, Probalign, MTA-TC MCC, MTA-TC NiRMSD, ProbCons and T-
Coffee) are the most accurate. This is because consistency-based methods
incorporate a larger share of information into the evaluation. However, the
construction of this information increases the execution time for these meth-
ods, limiting them reduced sets of alignments. As it is seen in Subsection 5.5.1,
MTA-TC MCC and MTA-TC NiRMSD improve the alignments accuracy of
T-Coffee by 3.10% . However, they are also more accurate than ProbCons by
2.09%, Probalign by 1.67% and MAFFT by 0.97%; becoming the second and
third most accurate methods. Moreover, it can be noticed that when sequences
are not highly correlated (the first column in Table 5.4), MTA-TC NiRMSD is
able to improve the quality of MSAProbs by 3.52%, it being the best method in
such conditions. Regarding MTA-TC MCC, the alignments of this first column
are 1.1% more accurate than the ones obtained with MSAProbs. This feature
is especially important for large-scale alignments (ten thousands of sequences)
where the correlation of the sequences is lower.

On the other hand, the MTA-CLW MCC approach shows great improve-
ments since not only is it more accurate than all non-consistency methods, but
also it is able to overcome the consistency-based method, namely T-Coffee.
MCC-CLW MCC improves the alignment quality of the original ClustalW by
15.40%, Dialign-tx by 12.22%, Muscle by 5.17%, ClustalΩ by 1.71% and T-
Coffee by 0.42%. This converts it into the seventh most accurate method,
although it does not introduce consistency information.

146 Multiple Tree Alignment

Aligner 0 - 15 15 - 25 25 - 35 35 - 100 0 - 100 Con

MSAProbs 0.454 0.756 0.900 0.961 0.738 Yes
MTA-TC MCC 0.459 0.748 0.889 0.944 0.731 Yes
MTA-TC NiRMSD 0.470 0.743 0.885 0.953 0.731 Yes
MAFFT 0.431 0.743 0.887 0.958 0.724 Yes
Probalign 0.424 0.732 0.891 0.962 0.719 Yes
ProbCons 0.425 0.729 0.888 0.956 0.716 Yes
MTA-CLW MCC 0.434 0.720 0.875 0.950 0.712 No
T-Coffee 0.421 0.721 0.876 0.951 0.709 Yes
ClustalΩ 0.395 0.708 0.878 0.965 0.700 No
Muscle 0.365 0.684 0.860 0.951 0.677 No
Dialign-tx 0.290 0.617 0.824 0.955 0.625 No
ClustalW 0.289 0.605 0.816 0.941 0.617 No
FSA 0.110 0.467 0.805 0.957 0.516 No

Table 5.4: Comparison of the accuracy of MSA methods

There is the appraisal that the consistency effect, obtained with a cost in
time and memory requirements, can be partially solved by the correct con-
struction of the guide tree. Moreover, we believe that, over recent years, the
impact of the guide tree over the alignment quality has been underestimated.

Overall, our proposed methods are not only more accurate than T-Coffee
and ClustalW, but also more accurate than other MSA aligners. To date,
two versions have been developed: one with a consistent method (TC) to
produce more accurate alignments, and the other, faster (CLW) to build larger
alignments. However, this method can be implemented using any MSA aligner
that accepts any guide tree as an input parameter. Furthermore, in line with
Figure 5.2, these results can be improved by developing an evaluation function
capable of finding the best guide tree.

5.5.3 Scalability study

This experiment presents a scalability study to compare the running time of our
proposed methods against the running time of the applications used to align
the CLW and TC trees (Figure 5.8a, 5.8b). Naturally, the serial version of our
proposals cannot compete with other MSA aligners on executing time, because
the trees have to be aligned serially using the aligners. However, owing to the

5.5 Multiple Tree Alignment Experimentation 147

fact that each individual alignment is independent and can be done separately
from the others, MTA was developed to be capable of aligning the alignments
in parallel on a distributed system. Therefore, Figures 5.8a and 5.8b in this
section show the scalability study of the parallel version implemented with
MPI and run on a cluster. The cluster used was made up of 24 computing
nodes. Each computing node contained a 2,4 GHz Intel Core 2 Quad and 8GB
of RAM, giving a total of 96 cores.

Two prefabricated sets of sequences from the Pfam database were used to
do this experiment. A bigger one was made up of 1,000 sequences to test
MTA-CLW and a smaller one of 200 sequences to test MTA-TC, because TC
is not capable of aligning large sets of sequences.

The parallel implementation followed the master-worker paradigm, where
1 task is responsible for creating the N guide trees and also selecting the best
alignment; and N tasks that perform the alignment in parallel. Thus we
require a total of N + 1 tasks, N being the number of different guide trees we
want to align. In the experimentation we used a cluster with 96 computation
nodes, therefore, we could align up to N=95 guide tress in parallel, which is
the optimal configuration in such infrastructure.

Figure 5.8a shows the runtime comparison of MTA-CLW with the number
of cores increasing from 8 to 96. First of all, the parallel version of MTA-CLW
is a scalable method capable of reducing the running time by 92% when the
number of cores increases. With 32 cores, MTA-CLW has already improved
the CLW runtime, and in the best case (96 cores), MTA-CLW is 75% faster
than CLW. The reason why our proposal is faster than CLW is because the
CLW distance matrix is built from full dynamic programming alignments using
two gap penalties and a full amino acid weight matrix, while our proposal is
built from the statistical ktup method, which is less sensitive but faster.

Figure 5.8b, related to MTA-TC, shows that it is capable of reducing the
running time by 87% when the number of nodes increases from 8 to 96. In
this case, MTA-TC does not improve the TC, and in the best case, MTA-TC
is 68% slower than TC. These results are due to the time penalty introduced
by the consistency scheme. In the case of TC, consistency is achieved through
a library of alignment, so the increase in runtime is due to the master having

148 Multiple Tree Alignment

to create this library and then individual workers having to read it to obtain
the alignments.

As a conclusion, the MTA proposals are scalable as the number of proces-
sors increases, as long as the number of processors is less than N−1. Moreover,
parallel MTA is generally able to produce alignments in a similar time as the
original MSA methods.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 8 16 32 48 64 80 96

T
im

e
 (

S
e
c
o
n
d
s
)

Number of cores

MTA-CLW
ClustalW

(a) MTA-CLW execution time with an increasing number of processors

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 8 16 32 48 64 80 96

T
im

e
 (

S
e
c
o
n

d
s
)

Number of cores

MTA-TC
T-Coffee

(b) MTA-TC execution time with an increasing number of processors

Figure 5.8: Parallel MTA Scalability study

5.6 Integration of Consistency Library Optimization with MTA149

5.6 Integration of Consistency Library Opti-

mization with MTA

In this section, we present the integration study of the consistency library
optimization approach with the MTA method. This consists of aligning the
multiple guide trees with T-Coffee (TC) using the consistency library opti-
mization method presented in Chapter 4. One objective is to compensate the
loss in alignment quality caused by the reduction in consistency information
by aligning a more accurate tree. Furthermore, another goal is to reduce the
execution time of MTA-TC using memory optimization approaches.

To study the behavior of MTA-TC with the optimized library, some of
the experiments, shown in Chapter 4 and 5, were repeated. Specifically, the
following experiments were carried out:

• The first study, presented in Section 5.6.1, compared the alignment accu-
racy of different MTA-TC using different consistency library optimization
approaches in order to select the most appropriate.

• The second study, presented in Section 5.6.2, showed the accuracy of
the alignments obtained by MTA-TC using the consistency library op-
timization approaches, which were chosen in the first study, and these
alignments were compared with other MSA programs found in the liter-
ature.

• In the third study, presented in Section 5.5.3, the performance and scal-
ability of the sequential and the parallel version of optimized MTA were
analyzed.

5.6.1 Consistency Optimization configuration

This experiment evaluated MTA-TC alignments using different consistency
optimization configurations in order to find a TC library optimization that
provides a good compromise between time and alignment accuracy.

The experiment was done using MTA-TC and the Threshold-Library opti-
mization approach (T-Library) varying the threshold value from 10% to 80%.

150 Multiple Tree Alignment

Table 5.5 shows the comparison of the alignment quality of the different MTA-
TC optimization approaches with MTA-TC without consistency information
and the standard TC. Furthermore, the table also shows the comparison be-
tween the sum of the total execution time taken by the optimized TC to align
the best alignments and the execution time of TC. The input metric for se-
lecting the best alignment was NiRMSD and 100 guide trees were analyzed.
The input datasets, used to validate the accuracy, were only fourteen PRE-
FAB benchmark sequence sets divided into five groups according to the percent
identity of the sequences. In the table, the first four columns identify the range
of identity, and the last column identifies the total execution times. Other-
wise, the rows identify the different T-Library approaches selected, the first
one being the result for the standard TC, and the second one, the MTA-TC
without library optimization.

The results, shown in Table 5.5, determine that, with only fourteen se-
quence sets from PREFAB database, MTA-TC T-Library10 is the best ap-
proach because it was able to increase the alignment accuracy of TC by 5.98%
while reducing the execution time by 26.12%. Furthermore, it did not lose
accuracy compared with MTA-TC without optimization, but increased it by
0.12%, because if the quality of consistency information is sometimes poor, it
may worsen the quality of the alignment. It can also be seen that the align-
ment accuracy and the execution time are slightly reduced as the consistency
optimization increases. Specifically, since T-Library70, the alignment accu-
racy of MTA-TC is worse than the standard TC. It is also assumed that the

Aligner 0 - 15 15 - 25 25 - 35 35 - 100 0 - 100 Time (s)

TC 0.235 0.833 0.896 0.981 0.736 1646
MTA-TC NiRMSD 0.394 0.846 0.896 0.981 0.779 1646
MTA-TC T-Library10 0.402 0.850 0.886 0.982 0.780 1216
MTA-TC T-Library20 0.385 0.851 0.886 0.982 0.776 1210
MTA-TC T-Library30 0.365 0.845 0.883 0.982 0.769 1198
MTA-TC T-Library40 0.336 0.840 0.879 0.983 0.759 1190
MTA-TC T-Library50 0.319 0.840 0.878 0.983 0.755 1184
MTA-TC T-Library60 0.337 0.817 0.871 0.981 0.752 1176
MTA-TC T-Library70 0.238 0.826 0.879 0.981 0.731 1171
MTA-TC T-Library80 0.179 0.824 0.873 0.978 0.713 1163

Table 5.5: Comparison between different MTA-TC T-Library configurations
varying the level of optimization

5.6 Integration of Consistency Library Optimization with MTA151

small reduction in time as the optimization threshold increases is because the
prefab sequence sets are small, and this difference will increase with large sets
of sequences

According to these results, the MTA-TC T-Library10 was chosen for further
experiments. However, in some experiments, the MTA-TC T-Library50 was
also used to compare to T-Library10 because its alignments are also better than
the standard TC alignments and it provides a higher memory optimization
scheme.

5.6.2 Alignment Accuracy analysis

Table 5.6 shows the same experiment as the one shown in Table 5.4, but in this
case it presents a comparison of the alignment accuracy between MTA-TC T-
Library10 and T-Library50 using NiRMSD as a selection metric, with some of
the most common consistency-based, iterative or progressive alignment MSA
applications. The experiment was done using the whole PREFAB benchmark
sequence sets divided into five groups according to the percent identity of the
sequences. The accuracy results were obtained by using the PREFAB Q score.
The columns in the table identify the range of identity and the rows identify
the method compared. The last column indicates whether the method used
consistency or not.

Aligner 0 - 15 15 - 25 25 - 35 35 - 100 0 - 100 Con

MSAProbs 0.454 0.756 0.900 0.961 0.738 Yes
MTA-TC NiRMSD 0.470 0.743 0.885 0.953 0.731 Yes
MAFFT 0.431 0.743 0.887 0.958 0.724 Yes
MTA-TC T-Library10 NiRMSD 0.449 0.733 0.878 0.946 0.720 Yes
Probalign 0.424 0.732 0.891 0.962 0.719 Yes
ProbCons 0.425 0.729 0.888 0.956 0.716 Yes
MTA-CLW MCC 0.434 0.720 0.875 0.950 0.712 No
MTA-TC T-Library50 NiRMSD 0.428 0.723 0.877 0.948 0.711 Yes
T-Coffee 0.421 0.721 0.876 0.951 0.709 Yes
ClustalΩ 0.395 0.708 0.878 0.965 0.700 No
Muscle 0.365 0.684 0.860 0.951 0.677 No
Dialign-tx 0.290 0.617 0.824 0.955 0.625 No
ClustalW 0.289 0.605 0.816 0.941 0.617 No
FSA 0.110 0.467 0.805 0.957 0.516 No

Table 5.6: Comparison of the accuracy of optimized MTA-TC approaches with
other MSA methods

152 Multiple Tree Alignment

The results show that although the alignment accuracy of MTA-TC T-
Library10 is 1.5% worse than the same method without consistency optimiza-
tion (MTA-TC), its quality is still better than the standard TC, and is the
fourth most accurate method among the ones compared. Specifically, the MT-
TC T-Library10 is 1.55% more accurate than TC.

Regarding the MTA-TC T-Library50, as expected and due to the further
memory optimization, it is 2.74% less accurate than MTA-TC and 1.25% than
the MTA-TC T-Library10. However, its accuracy is still better than the stan-
dard TC by 0.28%, and is thus the eighth most accurate method.

5.6.3 Scalability study

In this experiment, the scalability study of the integration of the consistency
optimization scheme with MTA-TC was analyzed and compared with standard
MTA-TC and TC. This experiment was divided into two, the first one to
analyze the performance of the parallel version of MTA-TC integrating the
consistency library optimization approach and the second one, to study the
sequential version of memory optimized MTA-TC and compare it with TC.

5.6.3.1 Parallel Multiple Tree Alignment

This section presents the scalability study of the parallel version of MTA-
TC using the consistency library optimization scheme. To achieve this, the
scalability studies, presented in Sections 4.4.2 and 5.5.3, were repeated to
analise the reduction in the memory requirements and execution time, and the
improvements in the scalability of parallel MTA-TC.

Figure 5.9 show the same experiment as Figure 5.8b, but it presents the
runtime comparison of parallel MTA-TC T-Library10 and T-Library50 against
MTA-TC and TC, increasing the number of cores from 8 to 96. This experi-
ment was done using a sequence set made up of 200 sequences and it was run on
a cluster made up of 24 computing nodes. Each computing node contained a
2.4 GHz Intel Core 2 Quad and 8GB of RAM, giving a total of 96 cores. In this
experiment, 95 guide trees were analyzed because the cluster was composed of
96 cores, this being the optimal configuration in such infrastructure.

5.6 Integration of Consistency Library Optimization with MTA153

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 8 16 32 48 64 80 96

T
im

e
 (

S
e
c
o
n
d
s
)

Number of cores

T-Coffee
MTA-TC

MTA-TC T-Library10
MTA-TC T-Library50

Figure 5.9: MTA-TC T-Library execution times increasing the number of cores

It can be seen that the scalability behavior of both MTA-TC T-Library10
and MTA-TC T-Library50 was similar to MTA-TC and the execution time
fell when the number of cores was increased. It can also be seen that, in the
worst case (8 cores), the consistency optimization allowed the execution time
of MTA-TC to be reduced by 47.09% for MTA-TC T-Library10 and 80.06%
for MTA-TC T-Library50. However, in the ideal mapping case (96 cores), the
reduction in execution time was 39.15% for MTA-TC T-Library10 and 49.24%
for MTA-TC T-Library50. In other words, MTA-TC T-Library10 and MTA-
TC T-Library50 were respectively 47.93% and 37.58% slower than TC, while
MTA-TC was 68% slower. As explained in Section 5.5.3, this time penalty in
TC is due to each worker has to read the library created by the master.

The second experiment is the same as the one presented in Section 4.4.2,
but in this case we compared the scalability of parallel MTA-TC T-Library10
with TC T-Library10 and standard TC (Figures 5.10a, 5.10b, 5.10b). The ex-
periment was run on an 8-node cluster where each node comprised a 2.1GHz
AMD Opteron and 12.5GB of RAM. Thus, the experiments consisted of run-
ning first TC and TC T-Library10 on a node in the cluster, and then, launching
MTA-TC T-Library10 in parallel building 7 guide trees, which was the ideal
number of tasks because the cluster was made up of only 8 cores: a master
and 7 slaves. Sequences sets with varying the number of sequences were used

154 Multiple Tree Alignment

as input data.

Figures 5.10a and 5.10b show the comparison of the number of constraints
in the library and its size in Mb respectively, with the number of sequences
increasing from 100 to 900.

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 200 400 600 800 1000

N
u
m

b
e
r

o
f
c
o
n
s
tr

a
in

ts

Number of sequences

TC
TC T-Library10

MTA-TC T-Library10

(a) Analysis of the number of constraints

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 200 400 600 800 1000

S
iz

e
 (

M
b
)

Number of sequences

TC
TC T-Library10

MTA-TC T-Library10

(b) Analysis of the memory requirements

Figure 5.10: Study of the MTA-TC T-library memory requirements

5.6 Integration of Consistency Library Optimization with MTA155

As expected, the memory size and number of constraints was the same in
the TC T-Library10 and MTA-TC T-Library10 because both approaches use
the same optimization configuration. It can be seen that the MTA-TC T-
Library10 significantly reduced the number of constraints and the library size
compared with TC. With 900 sequences, the MTA-TC T-Library10 reduced
the number of constraints and the size of the TC default library by 69.31%.
This study also demonstrates that the MTA-TC T-Library10 is more scalable
than TC, because TC cannot align 1000 sequences while MT-TC T-library10
is able to align them. Moreover, as demonstrated in Section 4.4.2 and as seen
by the memory consumption in Figure 5.10, MTA-TC T-Library10 could align
up to twice as many sequences as can be aligned with TC.

Otherwise, Figure 5.11 shows the comparison of the total execution time
between the MTA-TC T-Library10, TC T-Library10 and TC. It can be seen
that the MTA-TC T-Library10 is faster than the standard TC, but it is slightly
slower than the TC T-Library10. Specifically, with 900 sequences, MTA-TC
using T-Library10 reduced the execution time of default TC by 76.05%. How-
ever, it was 11.6% slower than TC using the T-Library10 approach, due to the
same problem explained above that all workers have to read the library from
the master.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 200 400 600 800 1000

T
im

e
 (

S
e
c
o
n
d
s
)

Number of sequences

TC
TC T-Library10

MTA-TC T-Library10

Figure 5.11: Analysis of the MTA-TC T-library total execution times

156 Multiple Tree Alignment

5.6.3.2 Sequential Multiples Tree Alignment

After analyzing the parallel version of MTA, given the integration of the con-
sistency library optimization proposal with MTA-TC, it is necessary to study
the performance of the sequential version of MTA-TC and compare it to the
standard TC. Accordingly, this experiment presents the comparison of accu-
racy and execution time between the standard TC and the serial version of
MTA-TC aligning 5 trees. The reason for choosing 5 trees is that, as seen in
experimental tests, it is the maximum number of trees in that the execution
time of MTA-TC T-Library10 is below the TC runtime. Therefore, this exper-
iment seeks to demonstrate that, using the consistency optimization technique
from TC and aligning 5 trees, the sequential version of MTA is more accurate
and even less time expensive than the original TC method.

Table 5.6 presents the experimental results. For the accuracy results, the
average quality of the alignments of TC, MTA-TC T-Library10 and MTA-TC
T-Library50, were compared using NiRMSD as a selection metric. The exper-
iment was done using the whole PREFAB benchmark sequence sets, divided
into five groups according to the percent identity of the sequences, and the
Q score to measure the accuracy. For the runtime results, we compared the
execution time of these three approaches aligning a sequence set formed by 900
sequences. In the table, the first four columns identify the range of identity
and the last column indicates the total execution time.

The results show that, aligning only 5 trees, MTA-TC T-Library10 im-
proved the alignment accuracy of TC by 0.4% (0.712 vs. 0.709). However
T-MTA-TC T-Library50, aligning 5 trees, was not able to obtain the same
accuracy results as TC due to the reduction of consistency information, and
it was 0.84% less accurate (0.703 v. 0.709). Regarding the execution time re-

Aligner 0 - 15 15 - 25 25 - 35 35 - 100 0 - 100 Time (s)

T-Coffee 0.421 0.721 0.876 0.951 0.709 138251.223
MTA-TC T-Library10 0.429 0.722 0.876 0.955 0.712 130231.630
MTA-TC T-Library50 0.409 0.713 0.874 0.957 0,703 80695.930

Table 5.7: Accuracy and execution time analysis of the sequential MTA-TC
T-library approaches

5.7 Multiple Tree Alignment Conclusions 157

sults, Table 5.7 indicates that due to the memory optimization approach, even
aligning 5 trees in a sequential way, MTA-TC T-Library10 was 5.8% faster
than TC, while MTA-TC T-Library50, which implements a more aggressive
reduction of memory approach, was 41.63% faster. Therefore, there is still
capacity to increase the number of trees analyzed by MTA-TC T-Library50 in
order to improve its accuracy, without exceeding the execution time of TC.

Moreover, it is important to note that MTA-TC T-Library is more scalable
in both dimensions: the number of sequences to be aligned and the accuracy
of the final alignment. The factor of memory reduction can be increased to
align more sequences and to enable more guide trees to be generated in order
to improve the alignment.

In summary, this experiment demonstrates that the integration of the con-
sistency optimization approach in TC with the sequential version of MTA
method allows the alignment accuracy of TC to be increased without penal-
izing the execution time due to the completion of more alignments in a serial
way.

5.7 Multiple Tree Alignment Conclusions

In summary, this chapter presents MTA, a new MSA method designed to pre-
vent the problem of progressive alignment strategies caused by errors produced
by the guide tree. The proposed methodology consists of building multiple
guide trees from the same input sequences, aligning them with an existing
MSA program and finally evaluating the resulting alignments to select the
best one as the final result.

Although MTA accepts any progressive alignment program that allows
guide trees as the input parameter, the aligners used during the present work
were ClustalW (MTA-CLW) and T-Coffee (MTA-TC). Six single scores were
used to evaluate the resulting alignments. In addition, two heuristic meta-score
metrics (WSC and MCC) that were obtained by using genetic algorithms were
used to find a good combination between the previous six single metrics. While
WSC is a weighted scheme, where each input metric is assigned a weight to
maximize the correlation with the biological quality, MCC is a more complex

158 Multiple Tree Alignment

scheme that calculates the meta-score through a program code that takes the
relationships between the input metrics into account.

The scoring metrics study showed that the two meta-scores are the best
metrics for evaluating and selecting the appropriate alignment, followed by the
metrics that use structural information. The experimental results also showed
that using the best configurations of MTA-CLW and MTA-TC improved the
alignment accuracy by 3.10% and 15.40% over the original MSA methods re-
spectively. The scalability study demonstrated that the parallel version of
MTA is scalable with an increasing number of processors. Despite analysing
more guide trees, MTA is capable of producing the alignments in a similar
time to the original methods.

Regarding the integration of MTA with TC using the consistency library
optimization approach presented in Chapter 4, we demonstrated that the use
of MTA can recover the accuracy loss caused by the reduction in consistency
information. On the other hand, the use of TC with the memory optimization
approach allows a reduction in the execution time needed to align N trees in
MTA-TC. Furthermore, this integration also allows MTA to align more trees
in a serial way in order to improve the quality of TC, without increasing its
execution time and improving the scalability of T-Coffee.

Finally, although the accuracy results of our proposal are close to the max-
imum ones shown in Figure 5.2, none of the implemented scores is capable
of reaching the accuracy values obtained using a benchmark score as the se-
lection metric. This is because benchmarks use more information to evaluate
alignments, mainly their reference alignments. A major challenge in biology
is to find an evaluation score without reference able to choose the most accu-
rate of several alignments and obtain accuracy results similar to the maximum
accuracy values obtained in Figure 5.2.

Chapter 6

Conclusions and Future Work

This chapter describes the conclusions reached in this work, together with the
main contributions and publications. Moreover, it also explains the main open
lines that should be developed in the near future.

6.1 Conclusions

Due to the entry into the area of comparative genomics, the simultaneous com-
parison of a large number of homologous sequences has become increasingly
important. Therefore, there is no doubt that Sequence Alignment, in partic-
ular Multiple Sequence Alignment (MSA), is by far the most common task
in bioinformatics. MSA constitutes an extremely powerful means of revealing
the constraints imposed by structure and function on the evolution of a pro-
tein family. However, MSA is a complex problem, whose solution stands at a
crossroads between biology and computation.

The biological issue surrounding MSAs lies in the definition of correctness.
Most MSA methods define an objective function that defines the mathemat-
ical objective of the search. The main problem is that the perfect objective
function that defines the mathematically optimal alignment not guaranteed
to be biological optimal. Another important biological issue is that defining
the proper objective function is a highly non-trivial task and an important
research area.

Regarding the computational issue, the computation of a mathematically

159

160 Conclusions and Future Work

optimal alignment is a NP-Complete problem. For this reason, all the current
implementations of MSA algorithms are heuristics and none of them guarantees
a full optimization.

Progressive alignment is by far the most widely used heuristic. Progres-
sive methods assemble a multiple alignment by making a series of pairwise
alignments of sequences where sequences or alignments are added one by one,
depending on the order established by a guide tree. Although this heuris-
tic provides a great advantage of speed and simplicity, progressive methods
are very dependent on the initial alignments, and several studies have shown
that the alignment may be sensitive to errors in the guide tree. To correct
or minimize errors made in progressive alignment steps, two techniques are
frequently used: iterative refinement and consistency scoring. Iterative refine-
ment is based on carrying out a progressive alignment and then refining the
result by repeatedly dividing the aligned sequences into sub-alignments and
realigning the sub-alignments. On the other hand, consistency-based methods
use sequence information to avoid mistakes in the alignment. However, the
introduction of more information leads to increased memory requirements.

The new challenges in genomics, the exponential growth of biological data
and the inability to treat it efficiently have led to many of the existing meth-
ods becoming obsolete due to them not being capable of aligning thousands
or even hundreds of thousands of sequences. This problem has highlighted
the need for an interrelationship between biologists, bioinformatics and com-
puter scientists. Some MSA methods introduced High Performance Comput-
ing capabilities to take advantage of the new technologies and infrastructures.
However, all of these have exhibited scalability problems when the number of
sequences increases, as they are constrained by data dependencies that guide
the alignment process.

Through collaboration with a group at the Centre for Genomic Regula-
tion (CRG), we have worked with T-Coffee and its parallel version Parallel-
T-Coffee. T-Coffee is one of the most popular MSA methods that combines a
consistency-based scoring function with the progressive alignment algorithm.
Although the consistency-scheme reduces the errors caused by the guide tree
so obtaining more accurate alignments, it is known that the introduction of

6.1 Conclusions 161

consistency information increases the requirements for CPU time and memory
thus reducing the scalability and limiting the number of sequences the method
is able to align.

This thesis presents three proposals for minimizing the three problems pre-
sented above: The scalability problems of MSA parallel implementations be-
cause of data dependencies, the limited scalability of consistency-based meth-
ods due to huge memory requirements, and finally, the biological accuracy
problems caused by the high dependency of the guide tree order.

The first presented proposal, called Balanced Guide Tree (BGT), is de-
voted to solving the scalability problems of MSA parallel implementations
while maintaining the accuracy of the alignments. BGT is a new guide tree
construction heuristic, based on the neighbor-joining clustering algorithm, that
consists of modifying the tree generation method to take into account not only
the similarity between sequences, but also balancing features. BGT is designed
to produce more balanced guide trees in order to eliminate the bottleneck gen-
erated by the high dependencies between different iterations of the progressive
alignment step. Balancing studies demonstrated that our proposed method
generated more balanced guide trees than the standard one, resulting in a sig-
nificant reduction in the critical path and an important rise in the number of
tasks that can be executed in parallel.

The BGT is not only able to improve the performance of T-Coffee but also
does so without losing quality in the resulting alignment. In the majority of
the datasets analyzed, BGT obtained better accuracy.

Although BGT is designed to be used or implemented in any paral-
lel progressive alignment or iterative method that works with neighbor-
joining guide trees, in this thesis, BGT was implemented and evalu-
ated in concurrent T-Coffee (Balanced-TCoffee) and its parallel distributed-
memory version Parallel-TCoffee (BalancedParallel-TCoffee). We showed that
BalancedParallel-TCoffee can take advantage of large high-performance com-
puting infrastructures to reduce the execution time of MSA applications.
More specifically, the experimental results showed that on a 100-node cluster,
BalancedParallel-TCoffee reduced the execution time of Parallel-TCoffee by
68%. Regarding Balanced-TCoffee, the scalability study showed that it was

162 Conclusions and Future Work

also able to improve the performance of multi-process T-Coffee and exploit
the computing resources of a multi-core workstation. In particular, Balanced-
TCoffee, which was run on a 24 cores workstation, improved the execution
time of T-Coffee by 12%. Finally, the experimental results indicated that run-
time performance is achieved while maintaining the biological accuracy of the
resulting alignments.

This contribution led to the following publications:

[OCGM09] M. Orobitg, F. Cores and F. Guirado. Exploiting Performance on
Parallel T-Coffee Progressive Alignment by Balanced Guide Tree. Pro-
ceedings of the CMMSE 2009, vol. 3, pp. 793-805, 2009.

[OGNC09] M. Orobitg, F. Guidado, F. Cores and C. Notredame. Exploiting
Parallelism on Progressive Alignment Methods. Journal of Supercom-
puting, vol.58(2), pp. 186–194, 2009.

The second proposal presented focused on the huge memory and runtime
requirements presented of MSA consistency-based methods. The proposed
method consists of an optimization method for the T-Coffee library to reduce
the memory and CPU time requirements.

Two approaches to optimization were defined: The first one identifies the
information that will be useful during the alignment stage and the information
that can be discarded without affecting the quality of the alignment excessively.
The second one discards all the residues that are below a threshold defined by
the user. This second approach provides the user with greater flexibility to
choose how aggressive the reduction of the library can be in order to trade off
between alignment time and quality. Furthermore, the library optimization
approaches were developed in the kernel of T-Coffee alignment tool. This
means that not only is the default T-Coffee tool able to benefit from these
improvements but also the performance and scalability of all package tools,
like M-Coffe, R-Coffee and Expresso, can be improved.

The proposed solution was implemented in concurrent T-Coffee and eval-
uated by comparing T-Coffee using our optimized library with the standard
T-Coffee. The scalability results showed that the optimized library is able

6.1 Conclusions 163

to decrease the execution time, enhance the scalability and performance of
the application considerably, and thus increase the number of sequences that
can be aligned. For instance, the results of one test in the experimentation
showed that our optimization approach decreases the memory requirements
of T-Coffee by 75%, reduces the execution time by 92%, and finally, allows
T-Coffee to align 2000 sequences while the standard T-Coffee is only able to
align 1000 sequences. Regarding the accuracy results, the quality of the align-
ments obtained by T-Coffee using the optimization library algorithm is worse
than the original obtained with the standard T-Coffee because the consistency
information is reduced. However, this loss in quality is limited to less than
3%. Even with this, they are more accurate than other library optimization
methods and other MSA methods of the literature. Finally, the improvement
presented can widen the range of scenarios in which T-Coffee can be used
efficiently as an alignment tool.

This proposed method and its results were presented in the following pub-
lications:

[OCG+12b] M. Orobitg, F. Cores, F. Guirado, C. Kemena, C. Notredame and
A. Ripoll. Enhancing the scalability of consistency-based progressive mul-
tiplesequences alignment applications. Proceedings of the 26th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS), 2012.

Finally we proposed a new MSA method, called Multiple Tree Alignment
(MTA), designed to cope with the errors from the progressive alignment strate-
gies caused by the guide tree in order to improve the biological accuracy. The
proposed methodology consisted of building multiple guide trees from the same
input sequences, aligning them with an existing MSA program and finally eval-
uating the resulting alignments to select the best one as the final result.

Although MTA accepts any progressive alignment program that accepts
guide trees as input parameter, MTA was evaluated using ClustalW (MTA-
CLW) and T-Coffee (MTA-TC). The first one is faster for aligning larger align-
ments, while the second one is slower but more accurate.

To evaluate the resulting alignments, MTA used six single scores found in
the literature: two metrics that incorporate structural information to evaluate

164 Conclusions and Future Work

the alignment, and four that do not. However, in this thesis, two new heuristic
meta-score are proposed (WSC and MCC). These meta-scores were obtained
by using genetic algorithms to find a good combination between the previous
six single metrics. While WSC is a weighted scheme, where each input metric is
assigned a weight to maximize the correlation with the biological quality, MCC
is a more complex scheme that calculates the meta-score through a program
code that takes the relationships between the input metrics into account.

The study of the scoring metrics showed that both proposed meta-scores
are the best metrics for evaluating and selecting the appropriate alignment,
followed by metrics that use structural information. The accuracy results also
showed that our proposed methods not only are more accurate than T-Coffee
and ClustalW, but also more accurate than other MSA methods. For exam-
ple, using the best configurations of MTA-CLW and MTA-TC, the alignment
accuracy improved by 3.10% and 15.40% over ClustalW and T-Coffee respec-
tively. The scalability study demonstrated that the parallel version of MTA
is scalable with an increasing number of processors. Despite analyzing more
guide trees, MTA is capable of producing the alignments in a similar time to
the original methods.

The following two articles were published from the meta-scores work:

[OCG12a] M. Orobitg, F. Cores and F. Guirado. MSA score accuracy analysis
based on genetic algorithms. Proceedings of the CMMSE 2012, pp. 935-
946, 2012.

[OCG+13] M. Orobitg, F. Cores, F. Guirado, C. Roig and C. Notredame. Im-
proving Multiple Sequence Alignment biological accuracy through genetic
algorithms. Journal of Supercomputing, 2013.

The results from the MTA contribution are pending submission to the
following journal and are being reviewed:

Pending submission M. Orobitg, F. Guirado, J.Ll. Lerida, J. Lladós, C.
Notredame and F. Cores. MTA: A MSA method to increase alignment
accuracy by evaluating multiple guide trees. Bioinformatics.

6.2 Future Work 165

The last experiment consisted of integrating the last two proposals: MTA
with T-Coffee using the consistency library optimization approach. The re-
sults demonstrated that the use of MTA can not only recover the accuracy
loss caused by the reduction in the consistency information, but also be more
accurate than T-Coffee. On the other hand, the scalability study demonstrated
that the optimized memory MTA-TC is also a scalable method, and the use
of T-Coffee with the memory optimization approach allows parallel MTA-TC
to reduce the execution time of the standard MTA-TC. Furthermore, this run-
time analysis also indicated that the memory optimized MTA-TC is able to
align more trees serially to improve the quality of TC, without increasing its
execution time and maintaining the scalability.

Finally, through the collaboration and a research stay with the Centre for
Genomic Regulation group, two more publications have been developed:

[TOG+10] P.D. Tommaso, M. Orobitg, F. Guirado, F. Cores, T. Espinosa and
C. Notredame. Cloud-Coffee: Implementation of a parallel consistency-
based multiple alignment algorithm in the T-Coffee package and its bench-
marking on the Amazon Elastic-Cloud. Bioinformatics, col.26(15), pp.
1903-1904, 2010.

[TMX+11] P.D. Tommaso, S. Moretti, I. Xenarios, M. Orobitg, A. Montany-
ola, J.M. Chang, J.F. Taly and C. Notredame. T-Coffee: a web server
for the multiple sequence alignment of protein and RNA sequences using
structural information and homology extension. Nucleic acids research,
Web Server issue, vol. 39, W13–W17, 2011.

6.2 Future Work

At this point, we can say that this thesis has covered all its objectives. From a
research perspective, based on the extensive knowledge during its development,
this thesis has also opened some new challenges to be tackled.

1. New pairwise profile alignments. This issue can be considered as
one of the most important weaknesses of our proposed heuristic Bal-
anced Guide Tree. Existing pairwise profile alignments are not designed

166 Conclusions and Future Work

to treat balanced guide trees. It is more time expensive for this algorithm
to align two profiles with a similar number of sequences than to align two
unbalanced profiles. As is known, during the final progressive alignment
steps and due to the use of balanced trees, the method tends to obtain
large balanced profiles. In conclusion, these algorithms sometimes pe-
nalize the improvements obtained by increasing the degree of parallelism
of the balanced trees. Accordingly, new pairwise profile alignments are
needed to take advantage of the higher degree of parallelism of balanced
guide trees and thus improve the scalability of this progressive alignment
process.

2. New parallel algorithms for MSA. It is well known that the MSA
method has to be adapted to the new data-intensive era. For this reason,
not only do MSA methods have to be redesigned to take advantage of
increasing resources, but also new parallel techniques need to be designed
to take advantage of new parallel paradigms (mapreduce, CUDA), new
architectures (Hadoop, Cloud, P2P) or special hardware (GPUs).

3. New distributed consistency-based scheme. One of the main draw-
backs of consistency-based MSA methods is their huge memory require-
ments. These grow exponentially when the number of sequences and
their length increase. Nowadays, these methods have been discarded
for aligning large sequence sets and their future is limited to aligning
few sequences. An interesting work could be to redesign and implement
new techniques for adapting these consistency structures to distributed
memory environments, such as distributed databases.

4. New evaluation meta-scores. New improvements to the configura-
tion of genetic algorithm can be studied to improve the quality of the
evaluation function. The introduction of new scores, new conditions for
the evolution or improving the training data are possible new research
lines for developing new and more sensitive scores.

5. Large-Scale aligners. With the increasing performance of sequencing
hardware, it is not so far the necessity of aligning the genome of hundred

6.2 Future Work 167

or thousands of individuals. Taking the huge volume of information
required for this task into consideration, Large-Scale aligners will require
a drastic change in design. Some consistency may be mandatory to
guarantee a minimal quality for those alignments. However, to guarantee
scalability, their memory requirements have to be limited. The intensive
use of HPC infrastructures is required in order to address this problem.
Moreover, it is essential to facilitate the use of such infrastructures by
biologists and bioinformatics. Cloud platforms will carry out a leading
role on achieving this goal.

Bibliography

[AEAT+07] M. Abouellail, E. El-Araby, M. Taker, T. El-Ghazawi, and G.B.
Newby. Dna and protein sequence alignment with high perfor-
mance reconfigurable systems. In Adaptive Hardware and Sys-
tems, 2007. AHS 2007. Second NASA/ESA Conference on, pages
334 –341, aug. 2007.

[AFG+09] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Kon-
winski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria. Above the Clouds: A Berkeley View of Cloud Computing.
EECS Department, University of California, Berkeley, Feb 2009.

[AGM+90] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman.
Basic local alignment search tool. Journal of molecular biology,
215(3):403–410, October 1990.

[AL89] S. Altschul and D.J. Lipman. Trees, Stars, and Multiple Biologi-
cal Sequence Alignment. SIAM Journal on Applied Mathematics,
49(1):197–209, 1989.

[Alt91] S. Altschul. Amino acid substitution matrices from an infor-
mation theoretic perspective. Journal of Molecular Biology,
219(3):555–565, June 1991.

[Amd67] G.M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of
the April 18-20, 1967, spring joint computer conference, AFIPS
’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

169

170 BIBLIOGRAPHY

[AMKN06] F. Armougom, S. Moretti, V. Keduas, and C. Notredame. The
irmsd: a local measure of sequence alignment accuracy using
structural information. In ISMB (Supplement of Bioinformatics),
pages 35–39, 2006.

[BKML+11] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and
E.W. Sayers. GenBank. Nucleic acids research, 39(Database
issue):D32–D37, January 2011.

[BKR05] M. Bauer, G.W. Klau, and K. Reinert. Multiple structural
rna alignment with lagrangian relaxation. In Proceedings of the
5th International conference on Algorithms in Bioinformatics,
WABI’05, pages 303–314, Berlin, Heidelberg, 2005. Springer-
Verlag.

[BLB09] K. Benkrid, Y. Liu, and A. Benkrid. A highly parameter-
ized and efficient fpga-based skeleton for pairwise biological se-
quence alignment. IEEE Trans. Very Large Scale Integr. Syst.,
17(4):561–570, April 2009.

[BM06] R.B. Batista and A.C. Magalhaes. Z-align: An exact and par-
allel strategy for local biological sequence alignment in user-
restricted memory space. In Proceedings of the 2006 IEEE In-
ternational Conference on Cluster Computing, September 25-28,
2006, Barcelona, Spain. IEEE, 2006.

[BMP+03] M. Brudno, S. Malde, A. Poliakov, C.B. Do, O. Couronne,
I. Dubchak, and S. Batzoglou. Glocal alignment: finding rear-
rangements during alignment. Bioinformatics, 19(suppl 1):i54–
i62, July 2003.

[BP66] L.E. Baum and T. Petrie. Statistical inference for probabilistic
functions of finite state markov chains. The Annals of Mathe-
matical Statistics, 37(6):1554–1563, 1966.

BIBLIOGRAPHY 171

[BRS+09] R.K. Bradley, A. Roberts, M. Smoot, S. Juvekar, J. Do, C.N.
Dewey, I. Holmes, and L. Pachter. Fast statistical alignment.
PLoS Computational Biology, 5(5), 2009.

[BS87] C.J. Barton and M.J.E. Sternberg. Evaluation and improvements
in the automatic alignment of protein sequences. Protein Eng.,
1(2):89–94, 1987.

[BWF+00] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat,
H. Weissig, I.N. Shindyalov, and P.E. Bourne. The Protein Data
Bank. Nucleic Acids Research, 28(1):235–242, January 2000.

[Che09] S.J. Chen. Hardware Software Co-design of a Multimedia Soc
Platform. Springer, 2009.

[CKT06] K. Chaichoompu, S. Kittitornkun, and S. Tongsima. Mt-
clustalw: multithreading multiple sequence alignment. In Par-
allel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, page 8 pp., april 2006.

[CL88] H. Carrillo and D.J. Lipman. The Multiple Sequence Alignment
Problem in Biology. SIAM Journal on Applied Mathematics,
48(5):1073–1082, 1988.

[CN06] J.M. Claverie and C. Notredame. Bioinformatics For Dummies.
For Dummies, 2 edition, December 2006.

[Cor88] F. Corpet. Multiple sequence alignment with hierarchical clus-
tering. Nucl. Acids Res., 16(22):10881–10890, November 1988.

[Cri58] F.H.C. Crick. On Protein Synthesis. The Symposia of the Society
for Experimental Biology, 12:138–163, 1958.

[Cri70] F.H.C. Crick. Central Dogma of Molecular Biology. Nature,
227(5258):561–563, August 1970.

[CS03] C. Chen and B. Schmidt. Computing large-scale alignments on
a multi-cluster. In CLUSTER, pages 38–45, 2003.

172 BIBLIOGRAPHY

[DEKM98] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, July 1998.

[Den03] E.V. Denardo. Dynamic Programming: Models and Applications.
Dover Publications, Mineola, New York, dover books on com-
puter science edition, 2003.

[DKC05] J. Dollimore, T. Kindberg, and G. Coulouris. Distributed Sys-
tems: Concepts and Design (4th Edition) (International Com-
puter Science Series). Addison Wesley, May 2005.

[DLS+06] A. Driga, P. Lu, J. Schaeffer, D. Szafron, K. Charter, and I. Par-
sons. Fastlsa: A fast, linear-space, parallel and sequential algo-
rithm for sequence alignment. Algorithmica, 45(3):337–375, July
2006.

[DMBB05] C.B. Do, M.S. Mahabhashyam, M. Brudno, and S. Batzoglou.
ProbCons: Probabilistic consistency-based multiple sequence
alignment. Genome research, 15(2):330–340, February 2005.

[DS78] M.O. Dayhoff and R.M. Schwartz. Chapter 22: A model of evo-
lutionary change in proteins. In in Atlas of Protein Sequence and
Structure, 1978.

[EB06] R.C. Edgar and S.L. Batzoglou. Multiple sequence alignment.
Current opinion in structural biology, 16(3):368–373, 2006.

[Edd95] S.R. Eddy. Multiple alignment using hidden markov models.
Proc Int Conf Intell Syst Mol Biol, 3:114–120, 1995.

[Edg04] R.C. Edgar. Local homology recognition and distance measures
in linear time using compressed amino acid alphabets. Nucleic
Acids Res, 32(1):380–385, 2004.

[FD87] D.F. Feng and R.F. Doolittle. Progressive sequence alignment as
a prerequisite to correct phylogenetic trees. Journal of molecular
evolution, 25(4):351–360, 1987.

BIBLIOGRAPHY 173

[Fly72] M.J. Flynn. Some Computer Organizations and Their Effec-
tiveness. IEEE Transactions on Computers, C-21(9):948–960,
September 1972.

[Fos95] I. Foster. Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering. Parallel program-
ming / scientific computing. Addison-Wesley, 1995.

[Fos05] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented
Systems. In NPC, volume 3779 of Lecture Notes in Computer
Science, pages 2–13. Springer, 2005.

[GL04] C. Grasso and C. Lee. Combining partial order alignment
and progressive multiple sequence alignment increases alignment
speed and scalability to very large alignment problems. Bioin-
formatics, 20(10):1546–1556, July 2004.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition, 1989.

[Got90] O. Gotoh. Consistency of optimal sequence alignments. Bull
Math Biol, 52(4):509–525, 1990.

[Got96] O. Gotoh. Significant improvement in accuracy of multiple pro-
tein sequence alignments by iterative refinement as assessed by
reference to structural alignments. Journal of molecular biology,
264(4):823–838, December 1996.

[HH84] P. Hogeweg and B. Hesper. The alignment of sets of sequences
and the construction of phyletic trees: An integrated method.
Journal of Molecular Evolution, 20(2):175–186, June 1984.

[HH92] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices
from protein blocks. Proceedings of the National Academy of
Sciences of the United States of America, 89(22):10915–10919,
November 1992.

174 BIBLIOGRAPHY

[HJS00] M.D. Hill, N.P. Jouppi, and G. Sohi. Readings in Computer
Architecture. The Morgan Kaufmann Series in Computer Archi-
tecture and Design Series. Morgan Kaufmann, 2000.

[HK96] R. Hughey and A. Krogh. Hidden Markov models for sequence
analysis: extension and analysis of the basic method. Computer
applications in the biosciences : CABIOS, 12(2):95–107, April
1996.

[HM91] X. Huang and W. Miller. A time-efficient, linear-space local sim-
ilarity algorithm. Advances in Applied Mathematics, 12:337–357,
1991.

[Hol92] J.H. Holland. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. A Bradford Book, April 1992.

[HS88] D.G. Higgins and P.M. Sharp. CLUSTAL: a package for per-
forming multiple sequence alignment on a microcomputer. Gene,
73(1):237–244, December 1988.

[HT89] A.R. Hoffman and J.E. Traub. Supercomputers: directions in
technology and applications. National Academy Press, 1989.

[HX98] K. Hwang and Z. Xu. Scalable parallel computing: technol-
ogy, architecture, programming. Computer engineering series.
WCB/McGraw-Hill, 1998.

[IEE91] IEE. IEEE standard computer dictionary : a compilation of
IEEE standard computer glossaries. IEEE Computer Society
Press, New York, NY, USA, January 1991.

[JAA06] B. Javadi, M.K. Akbari, and J.H. Abawajy. A performance
model for analysis of heterogeneous multi-cluster systems. Par-
allel Comput., 32(11-12):831–851, December 2006.

[JMF09] S. Jha, A. Merzky, and G. Fox. Using clouds to provide grids
with higher levels of abstraction and explicit support for usage

BIBLIOGRAPHY 175

modes. Concurr. Comput. : Pract. Exper., 21:1087–1108, June
2009.

[Jun09] S. Jung. Parallelized pairwise sequence alignment using cuda on
multiple gpus. BMC Bioinformatics, 10(S-7), 2009.

[Jus01] W. Just. Computational complexity of multiple sequence align-
ment with SP-score. Journal of computational biology: a journal
of computational molecular cell biology, 8(6):615–638, 2001.

[KA99] Y. Kwok and I. Ahmad. Benchmarking and comparison of the
task graph scheduling algorithms. J. Parallel Distrib. Comput.,
59(3):381–422, 1999.

[Kab76] W. Kabsch. A Solution for the Best Rotation to Relate Two Sets
of Vectors. Acta Crystallographica, 32:922–923, 1976.

[Kab78] W. Kabsch. A discussion of the solution for the best rotation
to relate two sets of vectors. Acta Crystallographica Section A,
34(5):827–828, September 1978.

[KBM+94] A. Krogh, M. Brown, I.S. Mian, K. Sjölander, and D. Haussler.
Hidden Markov models in computational biology. Applications
to protein modeling. Journal of Molecular Biology, 235(5):1501–
1531, February 1994.

[Kim80] M. Kimura. A simple method for estimating evolutionary rates
of base substitutions through comparative studies of nucleotide
sequences. Journal of Molecular Evolution, 16(2):111–120, De-
cember 1980.

[KMKM02] K. Katoh, K. Misawa, K. Kuma, and T. Miyata. MAFFT: a
novel method for rapid multiple sequence alignment based on
fast Fourier transform. Nucleic Acids Research, 30(14):3059–
3066, July 2002.

176 BIBLIOGRAPHY

[KN09] C. Kemena and C. Notredame. Upcoming challenges for multiple
sequence alignment methods in the high-throughput era. Bioin-
formatics (Oxford, England), 25(19):2455–2465, October 2009.

[KPC94] J. Kim, S. Pramanik, and M.J. Chung. Multiple sequence align-
ment using simulated annealing. CABIOS, 10(4):419–426, July
1994.

[KTKN11] C. Kemena, J.F. Taly, J. Kleinjung, and C. Notredame. Strike:
evaluation of protein msas using a single 3d structure. Bioinfor-
matics, 27(24):3385–3391, 2011.

[KW85] C.P. Kruskal and A. Weiss. Allocating independent subtasks on
parallel processors. IEEE Trans. Software Eng., 11(10):1001–
1016, 1985.

[LAK89] D.J. Lipman, S.F. Altschul, and J.D. Kececioglu. A tool for mul-
tiple sequence alignment. Proceedings of the National Academy
of Sciences, 86(12):4412–4415, June 1989.

[Li03] K. Li. Clustalw-mpi: Clustalw analysis using distributed and
parallel computing. Bioinformatics, 19(12):1585–1586, 2003.

[LR96] T. Lengauer and M. Rarey. Computational methods for
biomolecular docking. Curr Opin Struct Biol, 6(3):402–406, June
1996.

[LS05] T. Lassmann and E. Sonnhammer. Kalign - an accurate and fast
multiple sequence alignment algorithm. BMC Bioinformatics,
6(1):298+, 2005.

[LSM09] Y. Liu, B. Schmidt, and D.L. Maskell. Msa-cuda: Multiple se-
quence alignment on graphics processing units with cuda. In
ASAP, pages 121–128. IEEE, 2009.

[LSM10] Y. Liu, B. Schmidt, and D.L. Maskell. Msaprobs: multi-
ple sequence alignment based on pair hidden markov models

BIBLIOGRAPHY 177

and partition function posterior probabilities. Bioinformatics,
26(16):1958–1964, 2010.

[LSVMW06] B. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig. Gpu-
clustalw: Using graphics hardware to accelerate multiple se-
quence alignment. In Yves Robert, Manish Parashar, Rama-
murthy Badrinath, and Viktor K. Prasanna, editors, HiPC, vol-
ume 4297 of Lecture Notes in Computer Science, pages 363–374.
Springer, 2006.

[Mar71] A. Markov. Extension of the Limit Theorems of Probability The-
ory to a Sum of Variables Connected in a Chain. In R. Howard,
editor, Dynamic Probabilistic Systems (Volume I: Markov Mod-
els), chapter Appendix B, pages 552–577. John Wiley & Sons,
Inc., New York City, 1971.

[MDBO98] K. Mizuguchi, C.M. Deane, T.L. Blundell, and J.P. Overington.
HOMSTRAD: a database of protein structure alignments for ho-
mologous families. Protein science : a publication of the Protein
Society, 7(11):2469–2471, November 1998.

[MFDW98] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN:
finding local similarities by multiple sequence alignment. Bioin-
formatics, 14(3):290–294, April 1998.

[MM88] E.W. Myers and W. Miller. Optimal alignments in linear space.
Computer applications in the biosciences : CABIOS, 4(1):11–17,
March 1988.

[Mou04] D.W. Mount. Bioinformatics: Sequence and Genome Analysis,
Second Edition. Cold Spring Harbor Laboratory Press, 2nd edi-
tion, July 2004.

[Mou07] D.W. Mount. Dot Matrix Pairwise Sequence Comparison. Cold
Spring Harbor Protocols, 2007(24), 2007.

178 BIBLIOGRAPHY

[MRR+53] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller,
and E. Teller. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics, 21(6):1087–1092,
1953.

[MVF94] M.A. McClure, T.K. Vasi, and W.M. Fitch. Comparative anal-
ysis of multiple protein-sequence alignment methods. Mol. Biol.
Evol., 11(4):571–592, 1994.

[NH96] C. Notredame and D.G. Higgins. SAGA: sequence alignment by
genetic algorithm. Nucleic acids research, 24(8):1515–1524, April
1996.

[NHH98] C. Notredame, L. Holm, and D.G. Higgins. COFFEE: an objec-
tive function for multiple sequence alignments. Bioinformatics,
14(5):407–422, June 1998.

[NHH00] C. Notredame, D.G. Higgins, and J. Heringa. T-Coffee: A novel
method for fast and accurate multiple sequence alignment. Jour-
nal of molecular biology, 302(1):205–217, September 2000.

[NMA+10] T. Nilsson, M. Mann, R. Aebersold, J.R. Yates, A. Bairoch, and
J.J Bergeron. Mass spectrometry in high-throughput proteomics:
ready for the big time. Nature methods, 7(9):681–685, September
2010.

[NOH97] C. Notredame, E.A. O’Brien, and D.G. Higgins. RAGA: RNA
sequence alignment by genetic algorithm. Nucleic acids research,
25(22):4570–4580, November 1997.

[Not02] C. Notredame. Recent progress in multiple sequence alignment:
a survey. Pharmacogenomics, 3(1):131–144, January 2002.

[NW70] S.B. Needleman and C.D. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48(3):443–453, March
1970.

BIBLIOGRAPHY 179

[OCG12a] M. Orobitg, F. Cores, and F. Guirado. Msa score accuracy anal-
ysis based on genetic algorithms. In CMMSE’12: 12th Interna-
tional Conference Computational and Mathematical Methods in
Science and Engineering, pages 935–946, 2012.

[OCG+12b] M. Orobitg, F. Cores, F. Guirado, C. Kemena, C. Notredame,
and A. Ripoll. Enhancing the scalability of consistency-
based progressive multiple sequences alignment applications. In
IPDPS’12: 26th International Parallel and Distributed Process-
ing Symposium, 2012.

[OCG+13] M. Orobitg, F. Cores, F. Guirado, C. Roig, and C. Notredame.
Improving multiple sequence alignment biological accuracy
through genetic algorithms. The Journal of Supercomputing,
pages 1–13, 2013.

[OCGM09] M. Orobitg, F. Cores, F. Guirado, and A. Montañola. Exploit-
ing performance on parallel t-coffee progressive alignment by bal-
anced guide tree. In CMMSE ’09: 9th International Conference
Computational and Mathematical Methods in Science and Engi-
neering, pages 793–805, 2009.

[OGNC09] M. Orobitg, F. Guirado, C. Notredame, and F. Cores. Exploiting
parallelism on progressive alignment methods. The Journal of
Supercomputing, 58(2):186–194, 2009.

[OHL+08] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and
J.C. Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879
–899, may 2008.

[OSA+04] O. O’Sullivan, K. Suhre, C. Abergel, D.G. Higgins, and
C. Notredame. 3D-Coffee: combining protein sequences and
structures within multiple sequence alignments. Journal of
molecular biology, 340(2):385–395, July 2004.

[OZH+03] O. O’Sullivan, M. Zehnder, D.G. Higgins, P. Bucher, A. Grosdi-
dier, and C. Notredame. Apdb: a novel measure for benchmark-

180 BIBLIOGRAPHY

ing sequence alignment methods without reference alignments.
In ISMB (Supplement of Bioinformatics), pages 215–221, 2003.

[PG07] J. Pei and N.V. Grishin. PROMALS: towards accurate multiple
sequence alignments of distantly related proteins. Bioinformat-
ics, 23(7):802–808, April 2007.

[PK87] C.D. Polychronopoulos and D.J. Kuck. Guided self-scheduling:
A practical scheduling scheme for parallel supercomputers. IEEE
Trans. Computers, 36(12):1425–1439, 1987.

[PL88] W.R. Pearson and D.J. Lipman. Improved tools for biological
sequence comparison. Proceedings of the National Academy of
Sciences, 85(8):2444–2448, April 1988.

[PPL+10] O. Penn, E. Privman, G. Landan, D. Graur, and T. Pupko. An
alignment confidence score capturing robustness to guide tree
uncertainty. Mol Biol Evol, 27(8):1759–67, 2010.

[RA04] S. Rajko and S. Aluru. Space and time optimal parallel sequence
alignments. IEEE Trans. Parallel Distrib. Syst., 15(12):1070–
1081, December 2004.

[Rob04] E. Robert. MUSCLE: a multiple sequence alignment method
with reduced time and space complexity. BMC Bioinformatics,
5(1):113+, August 2004.

[RSA+03] G.P.S. Raghava, S. Searle, P. Audley, J. Barber, and G. Bar-
ton. OXBench: A benchmark for evaluation of protein multiple
sequence alignment accuracy. BMC Bioinformatics, 4(1):47+,
October 2003.

[RULD06] Roshan, Usman, Livesay, and R. Dennis. Probalign: multiple se-
quence alignment using partition function posterior probabilities.
Bioinformatics, 22(22):2715–2721, November 2006.

BIBLIOGRAPHY 181

[SB05] S. Siebert and R. Backofen. MARNA: multiple alignment and
consensus structure prediction of RNAs based on sequence struc-
ture comparisons. Bioinformatics, 21(16):3352–3359, August
2005.

[SED97] E.L. Sonnhammer, S.R. Eddy, and R. Durbin. Pfam: a com-
prehensive database of protein domain families based on seed
alignments. Proteins, 28(3):405–420, July 1997.

[SEM98] J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence
families. Bioinformatics, 14(2):157–163, January 1998.

[SH05] V.A. Simossis and J. Heringa. PRALINE: a multiple sequence
alignment toolbox that integrates homology-extended and sec-
ondary structure information. Nucleic acids research, 33(Web
Server issue):W289–W294, July 2005.

[SHS+10] A.R. Subramanian, S. Hiran, R. Steinkamp, P. Meinicke,
E. Corel, and B. Morgenstern. Dialign-tx and multiple protein
alignment using secondary structure information at gobics. Nu-
cleic Acids Research, 38(Web-Server-Issue):19–22, 2010.

[SM58] R.R. Sokal and C.D. Michener. A statistical method for evalu-
ating systematic relationships. University of Kansas Scientific
Bulletin, 28:1409–1438, 1958.

[SM11] E.F. Sandes and A.C.M.A Melo. Smith-waterman alignment of
huge sequences with gpu in linear space. In Parallel Distributed
Processing Symposium (IPDPS), 2011 IEEE International, pages
1199 –1211, may 2011.

[SMD97] J. Stoye, V. Moulton, and A.W. Dress. DCA: an efficient imple-
mentation of the divide-and-conquer approach to simultaneous
multiple sequence alignment. Computer applications in the bio-
sciences : CABIOS, 13(6):625–626, December 1997.

182 BIBLIOGRAPHY

[SMKM05] A. Subramanian, J.W. Menkhoff, M. Kaufmann, and B. Morgen-
stern. DIALIGN-T: An improved algorithm for segment-based
multiple sequence alignment. BMC Bioinformatics, 6(1):66+,
2005.

[SN87] N. Saitou and M. Nei. The neighbor-joining method: a new
method for reconstructing phylogenetic trees. Molecular biology
and evolution, 4(4):406–425, July 1987.

[SNKM04] M. Schmollinger, K. Nieselt, M. Kaufmann, and B. Morgenstern.
Dialign p: Fast pair-wise and multiple sequence alignment using
parallel processors. BMC Bioinformatics, 5:128, 2004.

[SS91] C. Sander and R. Schneider. Database of homology derived pro-
tein structures and the structural meaning of sequence alignment.
Proteins: Struct. Funct. Genet., 9:56–68, 1991.

[SW81] T.F. Smith and M.S. Waterman. Identification of common molec-
ular subsequences. Journal of Molecular Biology, 147(1):195–197,
March 1981.

[SWD+11] F. Sievers, A. Wilm, D. Dineen, T.J. Gibson, K. Karplus,
W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J.D.
Thompson, and D.G. Higgins. Fast, scalable generation of
high-quality protein multiple sequence alignments using Clustal
Omega. Molecular Systems Biology, 7(1), October 2011.

[Tay86] W.R. Taylor. Identification of protein sequence homology by
consensus template alignment. Journal of Molecular Biology,
188(2):233–258, March 1986.

[Tay88] W.R. Taylor. A flexible method to align large numbers of bio-
logical sequences. Journal of Molecular Evolution, 28:161–169,
1988.

[TGP+97] J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, and
D.G. Higgins. The CLUSTAL_X windows interface: flexible

BIBLIOGRAPHY 183

strategies for multiple sequence alignment aided by quality anal-
ysis tools. Nucl. Acids Res., 25(24):4876–4882, December 1997.

[THG94] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W:
improving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic acids research, 22(22):4673–
4680, November 1994.

[TMX+11] P.D. Tommaso, S. Moretti, I. Xenarios, M. Orobitg, A. Mon-
tañola, J-M.M. Chang, J.F. Taly, and C. Notredame. T-Coffee:
a web server for the multiple sequence alignment of protein and
RNA sequences using structural information and homology ex-
tension. Nucleic acids research, 39(Web Server issue):W13–W17,
July 2011.

[TOG+10] P.D. Tommaso, M. Orobitg, F. Guirado, F. Cores, T. Espinosa,
and C. Notredame. Cloud-Coffee: Implementation of a parallel
consistency-based multiple alignment algorithm in the T-Coffee
package and its benchmarking on the Amazon Elastic-Cloud.
Bioinformatics, 26(15):1903–1904, 2010.

[TPP99] J.D. Thompson, F. Plewniak, and O. Poch. BAliBASE: a bench-
mark alignment database for the evaluation of multiple alignment
programs. Bioinformatics, 15(1):87–88, January 1999.

[TPR+01] J.D. Thompson, F. Plewniak, R. Ripp, J.C. Thierry, and
O. Poch. Towards a reliable objective function for multiple se-
quence alignments1. Journal of Molecular Biology, 314(4):937–
951, December 2001.

[TS09] C. Trapnell and M.C. Schatz. Optimizing data intensive gpgpu
computations for dna sequence alignment. Parallel Computing,
35(8-9):429–440, 2009.

184 BIBLIOGRAPHY

[VA91] M. Vingron and P. Argos. Motif recognition and alignment for
many sequences by comparison of dot-matrices. J. Mol. Biol.,
218:33–43, 1991.

[Vit67] A. Viterbi. Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm. IEEE Transactions on
Information Theory, 13(2):260–269, April 1967.

[VS93] M. Vingron and P.R. Sibbald. Weighting in sequence space: a
comparison of methods in terms of generalized sequences. Proc
Natl Acad Sci U S A, 90(19):8777–81, 1993.

[VW94] M. Vingron and M. Waterman. Sequence alignment and penalty
choice: Review of concepts, case studies and implications. Jour-
nal of Molecular Biology, 235(1):1–12, January 1994.

[Wal96] M. Wall. GAlib: A C++ library of genetic algorithm compo-
nents. Mechanical Engineering Department, Massachusetts In-
stitute of Technology, 1996.

[WHN08] A. Wilm, D.G. Higgins, and C. Notredame. R-Coffee: a method
for multiple alignment of non-coding RNA. Nucleic acids re-
search, 36(9), May 2008.

[WJ94] L. Wang and T. Jiang. On the complexity of multiple sequence
alignment. Journal of computational biology : a journal of com-
putational molecular cell biology, 1(4):337–348, 1994.

[WLW05] I.V. Walle, I. Lasters, and L. Wyns. SABmark–a benchmark
for sequence alignment that covers the entire known fold space.
Bioinformatics (Oxford, England), 21(7):1267–1268, April 2005.

[WOHN06] I.M. Wallace, O. O’Sullivan, D.G. Higgins, and C. Notredame.
M-Coffee: combining multiple sequence alignment methods with
T-Coffee. Nucleic Acids Research, 34(6):1692–1699, 2006.

BIBLIOGRAPHY 185

[WSH08] K.M. Wongaren, M.A. Suchard, and J.P. Huelsenbeck.
Alignment Uncertainty and Genomic Analysis. Science,
319(5862):473–476, January 2008.

[XM04] W. Xu and D.P. Miranker. A metric model of amino acid sub-
stitution. Bioinformatics, 20(8):1214–1221, 2004.

[ZYRA07] J. Zola, X. Yang, A. Rospondek, and S. Aluru. Parallel-tcoffee: A
parallel multiple sequence aligner. In Ghulam Chaudhry and Soo-
Young Lee, editors, ISCA PDCS, pages 248–253. ISCA, 2007.

Acknowledgements/Credits

• Miquel Orobitg is funded by the CUR of DIUE of GENCAT.

• This thesis was supported by the Ministry of Education and Science
of Spain under contract TIN2011-28689-C02-02, TIN2010-12011-E and
Consolider CSD2007-00050.

• This thesis has received a grant for linguistic revision from the Linguistic
Service at the University of Lleida (2013 call).

187

	1.pdf
	HPC_on_SA_Orobitg.pdf

