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Abstract

In this thesis we present an alternative approach to the usual finite element formulation based on
edge elements and double-curl Maxwell equations. This alternative approach is based on nodal
elements and regularized Maxwell equations. The advantages are that, without adding extra un-
knowns (such as Lagrange multipliers), it provides spurious-free solutions and well-conditioned
matrices. Besides, its integral representation involves a less singular kernel (order 1 instead of 3),
which makes this approach best suited to hybridization with integral numerical techniques. On the
other hand, a new set of difficulties arises that were not present in the classical formulation. The
main drawback is that a globally wrong solution is obtained when the electromagnetic field has a
singularity in the problem domain. Also, boundary conditions and field discontinuities are more
laborious to implement. This work explains how to overcome these difficulties and demonstrates
that accurate solutions can be obtained with nodal elements and the regularized formulation.

We also present ERMES, the C++ implementation of the finite element approach depicted
above and the main deliverable of this work. We compute with ERMES the scattering parameters
of microwave filters and the specific absorption rate induced in a body when exposed to elec-
tromagnetic fields. ERMES is also the computational tool used in two novel numerical models
introduced in this thesis. The first one characterizes electromagnetic metal forming processes and
the second one the transfer impedance of cable shields.

The electromagnetic metal forming model calculates the driving Lorentz force and estimates
the optimum frequency at which it is attained the maximum workpiece deformation. The main
advantage of the approach is that it provides an explicit relation between the capacitance of the
capacitor bank and the frequency of the discharge, which is a key parameter in the design of an
electromagnetic forming system. The successful application of the regularized formulation in this
model reveals its excellent behavior in the low-frequency (quasi-static) regime.

The second numerical model introduced in this work computes the transfer impedance of ca-
ble shields. The model reproduces the high frequency behavior of the transfer impedance more
accurately than the approaches found in the literature and, moreover, it is able to analyze a wider
variety of geometries and materials.

Keywords finite element method, regularized Maxwell equations, nodal elements, scattering pa-
rameters, microwave engineering, specific absorbtion rate, antenna design, electromagnetic form-
ing, optimum capacitance, transfer impedance, shielded cables, electromagnetic compatibility.
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Chapter 1

Introduction

This chapter exposes the motivation for writing this thesis and how the thesis is organized.

1.1 Motivation

The main contribution of this work is the development, implementation and application of a fi-
nite element formulation based on nodal elements and the regularized Maxwell equations. The
generality and flexibility of this formulation allows its application in a wide variety of situations
such in microwave engineering, specific absorption rate computations, antenna design, eddy cur-
rents, electromagnetic metal forming, cable shielding modeling, etc. This formulation offers, in
principle, well-conditioned matrixes, an easier hybridization with integral numerical techniques
and an easier multi-physics coupling with other numerical models that also use nodal elements.
These features makes the regularized formulation an ideal choice to solve most of the problems
encountered in the electromagnetic projects in which CIMNE was involved. Moreover, its study
opens new paths and broadens the current knowledge in computational electromagnetism.

The finite element formulation developed in this thesis has been implemented in a C++ code
called ERMES. This code is a user-friendly computational tool that has been applied to the above
mentioned problems successfully. But, why develop another finite element code?, why not use the
available commercial software?. The answer to the these questions is that, sometimes, you need
to obtain results that the available commercial codes do not provide. In such a situations, you
have two options, to adapt an existent software tool or to make a new one from scratch. To adapt
an existent software requires full access to the internal algorithms of the tool and, usually, that is
only possible with an in-house code. Furthermore, an in-house code is a cheaper option, it allows
to know exactly the mathematical formulation behind it and it permits to test new algorithms.
Therefore, to modify an in-house code or to make a new one from scratch, even although you
can end up with a code less efficient than the commercial ones, is an advantageous option for the
numerical methods research community.

15



16 CHAPTER 1. INTRODUCTION

1.2 Thesis outline

Because of the heterogenous nature of this thesis, each chapter has its own introduction and liter-
ature review. The thesis is organized as follows:

Chapter 2 briefly reviews the fundamentals of the classical electromagnetic theory. Its main
objective is to introduce the notation and the basic formulas that will be used throughout the thesis.

Chapter 3 presents the main contribution of this work, i.e. the finite element formulation based
on nodal elements and regularized Maxwell equations. It exposes its advantages and drawbacks
and explains how to overcome the new difficulties that this formulation arises. The method is
validated here computing the fields and scattering parameters of microwave filters and comparing
the results with measurements and other numerical technigues.

Chapter 4 applies the formulation of chapter 3 to the computation of the specific absorbtion
rate (SAR). It proves the applicability of the method for solving real-life problems. This chapter
shows the SAR induced in an ellipsoidal phantom inside rectangular waveguide, a human dummy
near an antenna installed on a motorbike and a dummy head near a PMR antenna. Also, at the
end of the chapter, it is studied the thermal effects induced by a RFID antenna in vials filled with
blood plasma.

Chapter 5 presents a numerical model for electromagnetic metal forming processes. It shows
how the model calculates the driving Lorentz force and estimates the optimum frequency and
capacitance at which it is attained the maximum workpiece deformation for a given set of coill,
workpiece and initial energy. This chapter reveals the applicability of the regularized formulation
to low-frequency (quasi-static) problems.

Chapter 6 presents a numerical model for computing the transfer impedance of a cable shield.
It validates the model for perforated tubes and shows that it reproduces the high frequency behavior
of the transfer impedance more accurately than the approaches found in the literature.

Chapter 7 summarizes the main conclusions of this thesis and the futures lines of research and
development.

Finally, in the appendixes, it is shown the user manual of ERMES, a list of publications re-
sulting from this thesis and a list of research projects in where the results of this thesis have been
applied.



Chapter 2

Electromagnetic theory

This chapter briefly reviews the fundamentals of the classical electromagnetic theory. Only the
portions of the electromagnetic theory needed to understand the developments of the following
chapters will be presented here. If it is desired a more detailed information on the fundamentals
of electromagnetic theory we recommend the books [42, 30, 91, 56, 102, 112, 90]. For more
advanced topics and specific applications in frequency domain we recommend [2, 35, 12].

2.1 Maxwell's equations

In the second half of the 19th century James Clerk Maxwell established in [61, 62] a set of twenty
equations with twenty unknowns that summarized all the electromagnetic phenomena known in
those days. This set of equations was later reduced by Oliver Heaviside [37, 68], who simplified
and transformed the original set with the help of the vector notation developed by himself concur-
rently with Josiah Willard Gibbs [115, 114]. The teiaxwell's equationss nowadays applied

to the simplified version due to Heaviside:

V.D = p, (2.1)
oD

H- —— = 2.2

V x 5 J, (2.2)
0B

V-B =0, (2.4)

where the vector functioris, D, B andH are usually called (although there is no universal agree-
ment and different names can be found in the literature):

E: electric field(volt/meter),

D: electric displacement fiel(koulomb/meter?),

17



18 CHAPTER 2. ELECTROMAGNETIC THEORY

B: magnetic inductiorjtesia),
H: magnetic field ampere/meter).
The sources that generate these electromagnetic fields are:
J: electric current densityampere/meter?),
p: electric charge densitftoulomb/meter?),
which are related through the continuity equation

op
V~J+E—O. (2.5)

The above relation express the law of conservation of charge. This law can be deduced from
equations (2.2) and (2.1) using the fact that, for any vector funétjés satisfied

V- (VxF)=0. (2.6)
The symbolsv- andV x correspond to the divergence and the curl, respectively. The divergence

is defined by

V-thml?{F-ﬁdS, @2.7)
V—0 S

whereF is a vector function, V is an arbitrary volume, S is the surface of that volume, and the
integral, is a surface integral with being the outward normal to the surface S. In a cartesian
coordinates system, witf = F,x + F,,y + F.z, the divergence takes the form

+ = (2.8)

The curl, in the direction given by the unit vectyis defined by

1
(VxF)-a=lim—= ¢ F-dr, (2.9)
S—0 C
whereF is a vector function, and the integral, is a line integral along the boundary C of the area S,
which is perpendicular ta. In a cartesian coordinates system, vilith= F,x + F,,y + F.z, the
curl takes the form

_[(OF, OFy\ . oF, OF.\ . 0F, O0F.\ .
V><F_<ay 8z>x+<8z 8x>y+(8x ay)z. (2.10)

In principle, it is recognized that Maxwell’s equations are always valid, and that, if a vector func-
tion satisfies them, it is a possible electromagnetic field. This statement is, of course, subject to
the assumption that the boundary conditions, source distribution and material’'s properties are co-
herent and have physical meaning. We must keep in mind that the Maxwell’'s equations are not
more than the mathematical expression of some experimental results, that is:
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(2.1) summarizes Coulomb’s law of forces plus the effects of matter,
(2.2) represents an extension of Ampere’s circuital law,

(2.3) represents Faraday’s law of induction,

(2.4) proclaims the non-existence of magnetic monopoles.

Under these circumstances, Maxwell's equations can not be demonstrated, but its applicability
can be verified experimentally. Therefore, as a result of an extensive experimental work, it is
considered that these set of equations can be applied to almost all macroscopic situations and
they are used as guiding principles in the same way as we use the conservation of energy or the
conservation of the linear momentum.

2.1.1 Lorentz force

To have a complete description of the electromagnetic phenomena we must add to the Maxwell’s
equations thé&orentz force law This law relates electromagnetism with mechanics and it is given
by the equation

f=p(E+vxB), (2.11)

wheref is the force densitynewton/meter?), v is the velocity of the electric charge density
(meter/second) and x represents the cross product.
Using the continuity equation (2.5), it can be shown that an electric charge density moving
with a velocityv satisfies
J=pv. (2.12)

With this relation we can express the Lorentz force by
f=pE+Jx B, (2.13)
and the power per unit volunge(watt/meter?) delivered by the Lorentz force by
p=f-v=p(E+vxB).-v=E-J. (2.14)

Lorentz force acting on a charged patrticle

To obtain the electromagnetic force acting on a charged particle we use the electric charge density
p(r) = qd(r —rg), (2.15)

where q is the total electric charge of the partidle; — ry) is the Dirac’s delta function and is
the position of the particle. With (2.15) and (5.11) we can write

F=¢q(E+vxB), (2.16)

whereF is the total forcgnewton) acting on the particle.
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2.1.2 Constitutive relations

Maxwell’s equations cannot be solved until the relatidrs D[E,B] andH = H[E,B] are known.
These connections are callednstitutive relationsnd can be expressed as

D=¢E+P, (2.17)
1

H=—B-M, (2.18)
Ho

where

P: polarization(coulomb/meter?),
M: magnetizatioriampere /meter),
€p: vacuum permittivity(ﬁ 1079 famd/meter),
[o: vacuum permeabilit3(47r . 10_7hem“y/meter).

The quantityP represents the macroscopically averaged electric dipole moment per unit volume
of a material medium. The quantily represents the macroscopically averaged magnetic dipole
moment per unit volume of a material medium. Higher order multipole moments are negligible
in most materials, therefore, the knowledgePoind M is usually enough to have a complete
characterization of a macroscopic media from the standpoint of the electromagnetic tReory.
andM are functions of the fields, position and time and can not be predicted by the macroscopic
electromagnetic theory, but they are accepted as an external information. These relations can be
very complex and its determination are left to experiment or to be calculated theoretically from
microscopic models.

To complete the description of matter we should add a third constitutive equatiol E,B],
which also has to be known experimentally, or theoretically, and represents the electric current
density induced on the media.

Linear isotropic materials

There is a tremendous diversity in the electric and magnetic properties of matter but, in this work,
we are only interested in linear isotropic materials. Linear materials are those in which the consti-
tutive relationD = D[E,B], H = H[E,B] andJ = J[E,B] are linear. Isotropic materials are those

in whichD is related tcE, B is related tdH, and the induced current densitys related tde, with

the field direction in each pair aligned. Inside a linear isotropic material (time-invariant and local
in space) the constitutive relations have the general form [12]:

D(r,t) = /Oo e(r,t)E(r,t —t') dt’, (2.19)
B(r,t) = /OO p(r, tYH(r,t —t') dt’, (2.20)
I(e,t) = / " o(e B, L — )i, (2.21)
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wheree, 1 ando are scalars functions denominated
e: electric permittivity( farad/meter),
w: magnetic permeabilityhenry/meter),
o electric conductivity( siemens/meter).

The assumed time-invariant property reveals a non-instantaneous response of the material to an
applied field. This property allows to express the linear constitutive relation by means of a convo-
lution in time. The assumed locality in space property is a valid approximation when the spatial
variation of the applied fields has a scale that is large compared with the dimensions involved in
the creation of the atomic or molecular polarization. For visible light, or electromagnetic radia-
tion of longer wavelength, it is often permissible to neglect the non-locality in space [42]. For
conductors, however, the presence of free charges with macroscopic mean free paths makes this
assumption to break down at much lower frequencies. Nevertheless, in this work, it is assumed
that the constitutive relation betweé@randE is local in space.

If we apply to (2.19)-(2.21) the Fourier transform defined by

F(w) = / f(t)e “tdt, (2.22)
we obtain, considering the spatial coordinates as parameters, the following equations:
D(r,w) = €(r,w) E(r,w), (2.23)
B(r,w) = pu(r,w) H(r,w), (2.24)
J(r,w) = o(r,w) E(r,w), (2.25)

whereD(r,w), B(r,w), J(r,w), E(r,w) andH(r, w) are the Fourier transform in time Bf(r, ¢),

B(r,t), J(r,t), E(r,t) and H(r,t), respectively. Alsog(r,w), u(r,w) ando(r,w) are the
Fourier transform in time ot(r,t¢), u(r,t) ando(r,t), respectively. A linear isotropic mate-

rial is completely characterized, from the standpoint of the macroscopic electromagnetic theory,
whene, 1 ando are known, either in time domain or in frequency domain.

2.2 Potentials

Using Helmholtz's theorem and the equations (2.4) and (2.3) it can be shown that there exist a
scalar function®, called the electric potential, and a vectorial functincalled magnetic vector
potential, such as

B=VxA, (2.26)

oA
E=-Vo— . (2.27)
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If we replace the above equations into (2.1) and (2.2), we obtain

1
V2<I>+aatV-A:€0(pV~P), (2.28)

92A oL oP

2 —_ —_— . —_— e — JRN—
VA — upeo 92 \Y% (V A + ppeg ot ) 1o (J +V xM+ ot > , (229)

where we have take into account the general expressions for the constitutive relations (2.17) and
(2.18). The operato¥’?, when applied to a scalar function in a cartesian coordinate system, is
defined by

0’d  9’® 0%
Ox? + Oy? + 022
and, when it is applied to a vectorial function in a cartesian coordinate system, is defined by

V2P =

(2.30)

VZA = VZA, %+ V?A, § + VA, 2. (2.31)

The equations (2.28) and (2.29) plus the definitions (2.26) and (2.27) are a set of equations totally
equivalent to the set (2.1)-(2.4). If we are able to find a solution of (2.28) and (2.29) then, the fields
E andB obtained with (2.26) and (2.27), will satisfy automatically all the Maxwell's equations
(2.1)-(2.4).

There are different choices &fand® which give the samg andB. In fact, if y is an arbitrary
scalar function, any potential of the form

At = A+ Vy, (2.32)
X
+_gp_ X
oF =0, (2.33)

will give the same field& andB. This happens because any scalar functicatisfy
V x (Vx) =0, (2.34)
where the operatdV represents a gradient which, in a cartesian coordinate system, is defined by

Ox ., 0. Ox,
== = = 7. 2.35
VX=Xt 5y ¥ T 52 (2:35)
To have a unique solution in (2.28) and (2.29) we must impose an extra conditior cvea
®. This extra condition is call thgaugeand there are several options. The most used gauge

conditions are th€oulomb gauge

V-A=0 (2.36)
and theLorenz gaugés, 70]
0P
V-A+ [L()EOE =0. (2.37)

In some situations, thanks to the gauge freedom, a suitable chofcamd® can simplify equa-
tions (2.28) and (2.29) and make them easier to solve than the Maxwell’'s equations (2.1)-(2.4)
itself.
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2.3 Time-harmonic Maxwell’'s equations

In this work we are mainly interested in electromagnetic fields with a sinusoidal time depen-
dance and in a steady-state condition. These fields are taieeharmonicand, although a pure
monochromatic time-harmonic steady-state electromagnetic field is a mathematical idealization,
this assumption is a good approximation in most of the situations we can find in microwave engi-
neering, antenna design or scattering problems. Time-harmonic fields are properly represented in
phasor notation

E (r,t) = Real [Ec(r)e '], (2.38)
D(r,t) = Real [D.(r)e "], (2.39)
B(r,t) = Real [B.(r)e ™", (2.40)
H(r,t) = Real [Hc(r)e '], (2.41)

wherei = /-1 is the imaginary unite=“! = cos(wt) — isin(wt) is the Euler's formula
modified by a signw is a positive real numbet(€ R andw > 0), Real|.] denotes the real part

of the expression in brackets ailit}(r), D.(r), B.(r) andH.(r) are vector complex functions

that only depend on position. Other authors choose a time dependanat&. 0Df course, the
choice is arbitrary, and provided it is used consistently, produces no difficulties. It also assumed a
sinusoidal time dependance for the sources which, in phasor notation, are represent as

J(r,t) = Real [Jo(r)e™"], (2.42)
p(r,t) = Real [pc(r)e_i“’t] : (2.43)

If the expressions (2.38)-(2.43) are substituted into equations (2.1)-(2.4) it is obtained the so-called
time-harmonic Maxwell’'s equations

V- De(r) = pe(r), (2.44)
V x Hy(r) + iwD,(r) = J.(r), (2.45)
V x E(r) — iwB,(r) = 0, (2.46)
V B(r) =0 (2.47)

To reach these equations we use the fact that for an arbitrary complex fuhgtient;. + i F; is
satisfied

Real [Fee ™' =0 Vt & F,=0,F =0 (2.48)
and 5
En (Fcefi‘”t) = —iwF,e ™!, (2.49)

Observing the expressions (2.44)-(2.47) we see that an obvious benefit of the phasor notation is
that we can manipulate field quantities without involving the sinusoidal time dependence. Only



24 CHAPTER 2. ELECTROMAGNETIC THEORY

vector complex functions which depend exclusively on the position are present in the time-harmo-
nic Maxwell’s equations. When the calculations are complete, we can return to the physical solu-
tion in time domain using

F(r,t) = Real [(F,(r) +iF;(r))e "] = F,(r) cos(wt) + F;(r) sin(wt), (2.50)

whereF is any electromagnetic field. Another benefit of the phasor notation is that we can find
easily the time average of the dot and cross product of two quantities. This is often of interest when
dealing with power and energy. The time average of the dot and cross product of the quantities
F(r,t) = Real [F.(r)e~™'] andG(r,t) = Real |G.(r)e~**] can be calculated as

1 [T 1 _
(F(r,t) - G(r,t) ) = T/o F(r,t) - G(r,t) dt = 3 Real [Fe(r) - Ge(r)], (2.51)

e 1 _
(F(r,t) x G(r,t) ) = T/o F(r,t) x G(r,t) dt = 3 Real [Fe(r) x Ge(r)], (2.52)

being G. the complex conjugate @&, andT = 27 /w the period. For the specific case where
F. = G. we have

Fo(r) - Fo(r) = = | Fe(r) | (2.53)

N | —

(F(r,t)-F(r,t) ) = ([F(r,t)*) =

2.3.1 Time-harmonic Maxwell’s equations in linear isotropic media

Inside a linear isotropic material (time-invariant and local in space) the constitutive relations have
the general form given in (2.19)-(2.21). If we assume the presence of time-harmonic electromag-
netic fields and replace expressions (2.38)-(2.41) in equations (2.19)-(2.21), we obtain

D.(r) = € (r) Ec(r), (2.54)
B.(r) = pc(r) He(r), (2.55)
Je (I‘) = O¢ (I‘) E. (I‘) ) (2.56)

whereE., D., B. andH. are the complex valued vectorial functions defined in (2.38)-(2.41) and
€c, 1t ando, are the complex conjugate of the Fourier transform in time of the functi@ns),
wu(r,t) ando(r,t) defined in (2.19)-(2.21). In other words eifr, w), u(r,w) ando(r,w) are the
functions given in (2.23)-(2.25) ardr, w), ji(r,w) anda(r, w) are its complex conjugates, then

€. = €(r,w), (2.57)
He = ﬂ(rvw)v (2.58)
o. = o(r,w), (2.59)

wherew is the frequency at which the fields are oscillating. Since the response of materials to
alternating fields is characterized by a complex value, we can separate its real and imaginary parts
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in the following way:

€ = ¢ —i—ieﬁ, (2.60)
po =1 +ip (2.61)
0o =0 +io . (2.62)

The imaginary parts’ andy’ and the real pa@’ accounts for the dissipation (or loss) of energy
within a medium. The real parts and ;' and the imaginary pad” are related to the stored
energy within the medium. For the frequencies of interest in this Work 100 GHz), we can
consider the imaginary part of the conductivity as been essentially zero [42].

If we substitute (2.54)-(2.56) into (2.44)-(2.47) we obtain the time-harmonic Maxwell's equa-
tions for linear isotropic media:

V- (eEe) = pe, (2.63)
V x H, + iwe.E, = I, (2.64)
V x E, — iwpH, = 0, (2.65)
V- (uHe) = 0, (2.66)

whereE., H., J., p., €. and u. are complex valued functions that only depend on position.
The termJ. in (2.64) includes all thdree current densities which are present in the problem
domain. By free current densities we mean all the currents densities except those produced by the
polarization and magnetization of the material. The currents densities produced by the polarization
and magnetization of the material are implicitjnrandp.. Free current densities are, for instance,

the diffusion of charged particles, the induced eddy currents in conductive materials, the impressed
currents that are independent of the fields, etc. Hence, we can write

J. =0 E,+JmP (2.67)

whereJ? represents all the free current densities except those induced by the electric field in
materials with conductivity. Substituting (2.67) into (2.64) gives

V x He + iw (ec +i %) E. = Jimp, (2.68)

If we apply the divergence to (2.68) and recall (2.6), we have

V- (ecEe) = pi"™, (2.69)
V x H, + iwe E. = J™MP, (2.70)
V x E. —iwpH, = 0, (2.71)

V- (/‘I’CHC) = 0, (272)
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where
Eczﬁc—i-i%:el—a—l—i(e"—l—(f) (2.73)
w w w
and
. 1 .
plP = —V - JUmP, (2.74)
w

In equations (2.69)-(2.72) the effect of the induced currents is included i@n the other hand,
in the equivalent set of equations (2.63)-(2.66), the effect of the induced currents must be detailed
explicitly as it is shown in (2.67).

2.4 Fields at the interface between two media

When solving electromagnetic problems we usually find that different materials are present in the
domain of study. It is expected that these materials will have different electromagnetic properties
and that these properties will change continuously in a narrow region between the two media
(transition laye)). This expectation is consistent with the assumption that the physical fields are
continuous and have a continuous derivative. However, in general, we are not interested in the
specific details of what actually happens in the transition layer. Therefore, it is customary to
replace the real situation by an idealized one in which the width of the transition layer tends to
zero and becomes a surface. Using Maxwell's equations can be demonstrated that, at this surface,
the fields must satisfy

ii- (D) — Dy) = p, (2.75)
A x (H; — Hy) = J,, (2.76)
fix (B; — Ey) =0, (2.77)

- (B; —By) =0, (2.78)

whereii is the unit normal to the surfa@(the idealized transition layer) and it points from region

2 into region 1 (see fig. 2.1)J, andp, represent, respectively, a surface current density and a
surface electric charge density locatedsat he fieldsE;, Dy, H; andB; denotes the limiting

values of the fields aSis approached from region 1. Analogoudis, D», Hy andBs denotes

the limiting values of the fields &is approached from region 2. The expressions (2.75)-(2.78)
are useful in solving Maxwell's equations in different adjacent regions and then connecting the
solutions to obtain the fields throughout all the space. In the presence of linear isotropic materials
and time-harmonic fields and sources we can use equations (2.69)-(2.72) to find that, at the surface
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S the fields must satisfy

i (e, Ee, — e,Eqy) = pei?, (2.79)
i x (H, — H,,) = JI?, (2.80)
fi x (B¢, — BEey) = 0, (2.81)
A - (pe, Hey, — pe,He,) = (2.82)

wheree., andyu,., are the complex permittivity and permeability of the material 1 as it is defined

in (2.73) and (2.55). Analogously., andy., are the complex permittivity and permeability of

the material 2. The complex vector functidils, andH,,, which are defined in (2.38) and (2.41),
denotes the limiting values of the fields &ss approached from region 1. Similarl}., and

H,, denotes the limiting values of the fields &8ss approached from region 2" and pgs”,

which are defined in (2.67) and (2.74), represent, respectively, an imposed surface current density
and an imposed surface electric charge density locat&dWsually J¢s” andpqs? are zero. In
(2.79)-(2.82) it is not necessary to include explicitly the surface charge density and surface current
density due to polarization, magnetization and conductivity of the material, because their effects
are implicit ine. and ..

Medium 1

B, Dy, Hy, By Medium 2

E,,D,,H,, B,

Figure 2.1: Interface between two media.

2.4.1 Perfect electric conductor

A perfect electric conductor (PEC) is a material in which the electric conductivity is considered
infinite. A remarkable feature of this idealized material is that, in its interior, any time-harmonic
field is zero. This can be seen, heuristically, using equations (2.56) and (2.65) and assuming that,
inside a PEC, the fields and the induced currents remain finite. From (2.56), if the conductivity is
infinite thenE,. must vanish to have a finitk.. On the other hand, from (2.65),H. is zero then
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H_. must also be zero. Equations (2.79)-(2.82) are deduced from (2.69)-(2.72) and they are valid
in time-harmonic regimen for linear isotropic materials with finite conductivity. Instead, when the
conductivity is infinite, we use (2.63)-(2.66) to obtain

n-eEe, = pes, (2.83)
A x He, = Jos, (2.84)
nxE;, =0, (2.85)

- pe He, =0, (2.86)

where we have consider in figure 2.1 that the medium 2 is a BEGndp.s represent, respec-
tively, a free surface current density and a free surface electric charge density conffhn&dam
(2.85) and (2.86) we can conclude that, outside a PEC, the electric field is normal to the Surface
and the magnetic field is tangential to surf&e

2.4.2 Imperfect electric conductor

If the material 2 in figure 2.1 is not a perfect conductor, but allows the fields to penetrate a small
distance, then a time-harmonic electric fiel®Baatisfies approximately the relation [96, 97]

1 e\ - .
—hnx (VxE;)+ (z’w 52) nx (nxE,)=0. (2.87)
Mcl IU’CQ
Analogously, a time-harmonic magnetic fieldSdatisfies approximately the relation
1 c2 \ A N
g—ﬁ x (V x He,) + <z’w ’;”) nx (h x He,)=0. (2.88)
c1 Cc2

In the above expressiornE,., andH,, denotes the limiting values of the fields &8 approached
from region 1,e., and ., are the complex permittivity and permeability of the imperfect con-
ductor ande., and ., are the complex permittivity and permeability of the material outside the
imperfect conductor. The relations (2.87) and (2.88) are calledintpedance boundary condi-
tions

2.5 Radiation condition

To ensure the unigueness of the solution of the time-harmonic Maxwell's equations (2.69)-(2.72)
on problems where the domain is unbounded, we must specify some boundary condition at infinite
[12]. Assuming all the sources and objects at a finite distance from the origin of the coordinate
system and immersed in an infinite linear, isotropic, homogeneous and lossless medium (charac-
terize by the real parameter,sandy.,.), it is required that the time-harmonic electric and magnetic
fields satisfy

lim r [V x E. — iw/&n, (Tt X E.)] =0, (2.89)
lim 7 [V x H, — iw /€11, (f x He)] = 0, (2.90)

T—00



2.6. WAVE EQUATION 29

wherer = |r| = /22 4+ y? + 22 and# = r/|r|. Equations (2.89) and (2.90) are the well-known
outgoingSilver-Muller radiation conditiong63].

2.6 Wave equation

Applying the curl operator to (2.71) and using (2.70) to elimirHteit is obtained the equation

1 )
V x (Mv X E) — w?e E. = iwJm?, (2.91)
Applying now the curl operator to (2.70) and using (2.71) to elimiftét is obtained the equa-
tion . .
V x <v X H> —w?uH, =V x <ngp) . (2.92)
Ee Ec
These expressions are inbomogeneous electromagnetic vector wave equat@rsne-harmo-
nic fields in linear isotropic media. Equations (2.91) and (2.92) are very useful because the fields
are decoupled, which means that, to calculateandH,, we only need to solve (2.91) and then
find H, with .
H =—(VxE,.), (2.93)
W e
or, equivalently, we can solve instead the equation (2.92) and theE&fimdth
1 ,
E.= (P —V x He) . (2.94)

TWE

2.7 Poynting theorem

If we make the dot product & with equation (2.2) and the dot productldfwith equation (2.3)
and then subtract both expressions, we obtain

oD OB
—E-J_<E-8t+H-8t>+v-(ExH), (2.95)

where we have used the identity
V- FxG)=G-VxF-F -V xG. (2.96)

If we now integrate (2.95) over a volumé delimited by a surfac& and apply the divergence
theorem to the las term in the right-hand side, we arrive at the expression

—/E-JdV:/<E-6D+H-6B>dV+7{(ExH)~dS, (2.97)

which is known as th@oynting's theoreniB4]. This theorem states the conservation of energy for
the electromagnetic fields. The left-hand side of equation (2.97) can be recognized as the power
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delivered against the Lorentz force (2.14) or, in other words, as the rate at which energy is supplied
to the fields by the currents. The first term of the right-hand side accounts for the the rate at which
energy is stored in the electromagnetic fields and for the power dissipated within a material. This
dissipation is produced by a time lag between the field applied to the medium and the resulting
polarization or magnetization of the atoms. Finally, the last term of the right-hand side represents
the power radiated out of the volunvethrough the surfacg&.

If the fields are time-harmonic we are usually more interested in the time-average of the ex-
pression (2.97). Using (2.51), (2.52) and (2.49), we can express the time-average of (2.97) for
time-harmonic fields as

—;/ Real [E.- 3] dV = — ;’/ Imag [E.- D, + H,-B,] dV
v v (2.98)

1
+ 3 jé Real [Ec X HC] -dS,

wherelmag|.] denotes the imaginary part of the expression in brackets. If the materials present
are linear and isotropic we can use the definitions (2.53)-(2.56), (2.60)-(2.62) and (2.67), to obtain

1 = 1 /
—/Reaz[Ec.ngp] dv = / o |Ec > dV
2 Jv 2 Jv

w " 2 " 2
+2/V(6|Ec\ v |H, | )dv (2.99)
+1]éReaz [E. x 0] - dS,

2 Js

where the left-hand side represents the time-average power delivered by the imposed sources, the
first and second term of the right-hand side account for the time-average power dissipated as heat
in the volumeV due to conductivity, dielectric and magnetic losses and, finally, the last term of
the right-hand side, represents the time-average power transmitted through the Surface

2.8 Summary

In this chapter we have made a review of the equations of the electromagnetic theory that will be
used throughout this thesis. Henceforth, we will omit the subindex c¢ from all the complex valued
electromagnetic fields, sources and material properties. Also, as it is mentioned in subsection
2.3.1, we will consider the imaginary part of the electrical conductivityas been essentially zero

and, thereforeg. = o = o.



Chapter 3

Regularized Maxwell equations and
nodal finite elements

This chapter presents an alternative approach to the usual finite element formulation based on
edge elements and double-curl Maxwell equations. This alternative approach is based on nodal
elements and regularized Maxwell equations. The advantage is that, without adding extra un-
knowns (such as Lagrange multipliers), it provides spurious-free solutions and well-conditioned
matrices. The drawback is that a globally wrong solution is obtained when the electromagnetic
field has a singularity in the problem domain. The main objective of this work is to obtain accurate
solutions with nodal elements and the regularized formulation, even in the presence of electromag-
netic field singularities. The work described in this chapter has been presented in [76, 73, 72] and
it is part of the project SANTTRA (Sistema de ANTenas para Transceptores de RAdio), Spanish
MCIT PROFIT, ref.: FIT-330210-2006-44, framed in the project SMART (SMart Antennas sys-
tem for Radio Transceivers), European Commission EUREKA, ref.: PIDEA+ Prdjedt161.

This work has also been partially founded by the project CaRDiA&ld@o de Radiaéin elec-
tromagretica en presencia de Daadtricos mediante Aadisis Nurrérico), Spanish MCI National

R+D Plan 2008-2011, ref.: CIT-370000-2008-10.

3.1 Introduction

The typical approach when solving a general electromagnetic problem with the finite element
method (FEM) is to use edge elements and double-curl Maxwell equations. These edge elements,
proposed by Mcelec [69], seem to be the answer to most of the drawbacks exhibited by FEM
when applied to electromagnetism [92, 44]. With edge elements, spurious-free solutions are ob-
tained, boundary conditions are easier to implement, and the normal discontinuity and tangential
continuity between different media are automatically satisfied. In addition, they present a better
behavior in nonconvex domains than Lagrangian elements [113]. However, using edge elements
with the double-curl formulation has also disadvantages [67, 66]. The most important flaw is the
matrices produced, which are ill-conditioned and, in problems with a high humber of unknowns,
can even be singular [53]. The use of potentials or Lagrange multipliers can improve the con-

31
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ditioning of the matrix [14, 39] or even be necessary [49, 54], but the number of unknowns is
increased by the presence of these scalar functions. Therefore, although edge elements present
several advantageous features, there can be trouble when trying to solve big problems where the
use of direct methods, or good preconditioning, can be limited by computer hardware. Because of
this, it would be desirable to explore alternative FEM formulations that provide matrices that are
easy to solve by means of iterative solvers.

The alternative approach proposed in this work is based on nodal elements and regularized
Maxwell equations [36, 17]. The good point of this proposal is that it provides spurious-free
solutions with well-conditioned matrices and, moreover, only the three compondaisréi are
the unknowns; that is, there is no need of extra functions such as Lagrange multipliers or scalar
potentials. Furthermore, its integral representation involves a less singular kernel (order 1 instead
of 3), which makes the regularized FEM formulation best suited to hybridization with integral
numerical techniques [36]. On the other hand, new difficulties arise that were not present in the
classical formulation. The main drawback is that if the electromagnetic field has a singularity in
the problem domain, globally wrongsolution is obtained. Also, boundary conditions and field
discontinuities are more laborious to implement. This chapter explains how to overcome these
difficulties. The main objective is to demonstrate that accurate solutions can be obtained using
nodal elements and the regularized formulation. The comparative performance of the classical
edge-double-cudormulation versus thaodal-regularizedormulation presented in this chapter
will be the topic of future work.

In the first two sections, the classical double-curl formulation and the regularized Maxwell
formulation are exposed, both adapted to electromagnetic problems in frequency domain. The
formulations are written to emphasize their differences in the differential and weak form and also
in the boundary conditions. This method can &ser H as the primary unknown but, in this
work, for simplicity, only theE field is used. The next section explains how to deal with field
discontinuities and nodal elements, not only how to solve problems with a discontinuity surface
present, but also how to work with the intersection of three or more different materials. Following
that, the problem of the singularities is described: why it is produced and how to overcome this
critical question. Finally, in the last sections, several examples in two and three dimensions are
shown to check the accuracy of the method.

3.2 Double-curl Maxwell equations and edge elements

The generic problem to be solved is to find the electric figlih a domainQ2 with boundaryoS2
produced by a divergence-free soudcdriven at a frequency. The equation thaE satisfies in
Q, the so-calledlouble-curl Maxwell equatiaris

1
v x <Mv x E) — w*E = iw], (3.1)
where, and e are, respectively, the complex magnetic permeability and the complex electric
permittivity defined in section 2.3.1. On the surface of a perfect electric conductor (PEC), the field
E satisfies the boundary condition

nxE=0. (3.2)
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On the surface of a perfect magnetic conductor (PMC), the Heddtisfies the boundary condition
nxVxE=0. (3.3)

In an open domain, the SilverMer radiation boundary condition must be added at infinity:

lim | x V xE + (iwy/eopo) E|J> =0. (3.4)
r—00 8Q,~
In a waveguide port, the boundary conditions will be adapted to take into account the specific
modes of the waveguide. For instance, in a rectangular waveguide port with only the fundamental
mode TE( propagating,
AXVXE=y(@AxaxE)+U (3.5)

holds, wherey is the propagation constant of the fundamental mode and

U= -2v(h xnx Ey), (3.6)

U=0
for the input and the output port, respectively [44]. The fi#lg is the incident mode Tk
imposed in the input port. The boundary condition (3.5) can also be adapted to represent the
behavior ofE on the surface of an imperfect conductor (see section 2.4.2) or to approximate the
Silver-Muller radiation boundary condition (3.4) with the first order absorbing boundary condition
(1st ABC), which is

nxV xE=iw/euo (h xixE). (3.7)

The above set of equations can be solved using an equivalent weak formulation, that is, if
Hy(curl; Q) := {F e L*Q) | VxF € L}Q), i x F =0 in PEC} (3.8)

is defined, solving equation (3.1) is equivalent to findiige Hy(curl;{2) such thatvF <
Hy(curl; Q) holds:

1 _ _ _
/(VXE)'(VXF)—WQ/SE‘F+B.C.|8Q:iu)/J'F, (3.9)
QM Q Q

where the bar over the magnitudes denotes its complex conjugatB.@rdy, is the term that
takes into account the radiation boundary conditions or the modes in a waveguide port. Its general
expression is
1 _
B.C.loa = / — (A xVxE)-F. (3.10)
an M

The weak formulation (3.9), discretized with edge elements, is the classical way to use the FEM
when applied to electromagnetic field problems. The advantages and disadvantages of this ap-
proach were cited in the introduction of this chapter.
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3.3 Regularized Maxwell equations and nodal elements

An alternative for solving equation (3.1) is to use an equivalent second-order differential equation,
the so-calledegularized Maxwell equation
1 1
V x (V X E) -V <V . (5E)) — w?eE = iwl. (3.11)
% gep
On the surface of a perfect electric conductor, the PEC boundary condition (3.2) must be extended
to take into account the regularization
V- (eE) =0,
(eB) (3.12)
nxE=0.

On the surface of a perfect magnetic conductor, the PMC boundary condition (3.3) must be also
adapted to the regularization

nxVxE=0,
. (3.13)
n-E=0.
In an open domain, the extended Silveitldr radiation boundary condition is
lim |fx V xE — iw/epo (i x i x B) ||> =0,
T—00 89
" (3.14)
lim |V -E — iw\/eomo (1 -E)|? = 0.

T—00 897
If we approximate the extended SilvertiNer radiation boundary condition with the 1st ABC then,
instead of (3.7), we have to use:
N xVxE=iw/eu (hxnxE),
V-E:iw Eouo(ﬁ-E).
On the surface of a rectangular waveguide port with only the fundamental mad@idpagating,
the boundary condition (3.5) is now extended to:
AxVxE=vy(hxixE)+U,
n-E=0.

(3.15)

(3.16)

The above differential equation can be solved using an equivalent weak formulation; that is, if

Hy(curl, div; Q) := {F € L*(Q) |V x F € L3(Q), V - (¢F) € L*(),

. . . . (3.17)
AnxF=0IinPEC4a-F=0inPMC}

is defined, solving (3.11) is equivalent to finding € Hy(curl, div;2) such thatVF ¢
Hy(curl, div; ©2) holds:

1 _ 1 L
/Qu (VXE)- (VxF) + /ng (V- (eE))- (V- (eF))

(3.18)
— w2/ eE-F + RB.Clsg = iw/ J.F,
Q Q
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whereR.B.C |5 is the term, properly adapted to the regularization, that takes into account the
radiation boundary conditions or the modes in a waveguide port. Its general expression is

1. _ 1 -
R.B.C.|ag_/m M(nxVxE)-F—/aQ E(V-E) (- F). (3.19)

In [36], the equivalence between thiassicalproblem (3.1)-(3.10) and thegularizedproblem
(3.11)-(3.19) is demonstrated. The regularized formulation has the characteristics required for an
efficient FEM simulation; that is, it calculates spurious-free solutions &igls the only unknown,

and it produces well-conditioned matrices. Nodal elements can be used as the finite element base,
being careful to explicitly consider the discontinuities between different media, as explained in the
next section.

Although equation (3.18) looks like a penalized method, the regularized formulation has no
undetermined constants, and with the help of the extra boundary conditions, the problem is well-
posed. It is worth emphasizing the importance of the extension of the boundary conditions in the
regularized formulation: if these extra boundary conditions are omitted, the number of iterations
needed for an iterative solver to achieve convergence can be severely increased or we can even
obtain spurious solutions.

3.4 Nodal elements and field discontinuities

As mentioned in the previous section, nodal elements are used along with the regularized formu-
lation. Due to the fact that these elements impose normal and tangential continuity, the disconti-
nuities between different media must explicitly be considered. To do so, the technique explained
in [83] is employed. This technique consists of defining two different nodes (one on each side of
the discontinuity) and during the assembly procedure, relate the two nodes as follows:

Ef xf + 1 n2n2§ n2n? E;
Ef | = E+1 n2n2 E; (3.20)
v eyt 5 VR v
£} nzns€ & nil+1 £
being
P ) Y

et +i(ot/w)

n = (ng,ny, n.) is the unit normal at the surface, and superscripts "+” and "-" denote each side
of the discontinuity surface. In this procedure, the node on side "+” is removed from the total
linear system with the help of (3.20), and only the unknowns on the side "-” are solved. No extra
unknowns are added, and the symmetry of the total FEM matrix is retained if the side "+” is
removed using (3.20) and its transpose [7].

Although this technique works well for discontinuity surfaces, a procedure is needed to deal
with the intersection of three or more different materials. An attempt was made in [82], but the
finite element bases appearing there do not belonH¢¢curl, div; ©2) and cannot be used to
discretize (3.18). The approach here to overcome this setback consists of a simple extension of the
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Figure 3.1: Intersection of four different materials. The interface between different materials is considered
as two separated surfaces related by equation (3.20). The vesigoms; andny; are the unit normal to

the surfaces limiting the volume of materials 2, 3, and 4, respectively. In the intersection, equation (3.20) is
applied to the pairs 2-1, 3-1, and 4-1.

method presented at the beginning of this section. For instance, in a situation like the one shown in
fig. 3.1, four different nodes at the center are defined. One of the nodes defined at the center plays
the role of ”-” in equation (3.20). In this case, the selected node is in material 1. Then, during
the assembly procedure, equation (3.20) is applied to the pairs 2-1, 3-1 and 4-1, with unit normals
ns1, n3; andny;, respectively. Nodes 2, 3, and 4 are removed from the total linear system, and
only the unknowns of node 1 are solved. The best choice for the role of ™-” is the node that is
in the material with the smalle$t + i (o/w) |. It was observed that this option always gives the
lowest number of iterations when solving the total FEM matrix with iterative solvers.

3.5 Regularized formulation and field singularities

In [36], it is shown that solving (3.18) analytically is equivalent to solving (3.9). However, care
must be taken when solving (3.18) numerically with nodal finite elements in a nonconvex polyhe-
dral domain. IfV, is the vectorial space spanned Bynodal basis functiond/;(r),

K K K
Vh = { up ‘ u = }ACZCxLNz(I‘) + S’ZC%Ni(I') + QZCZ,L.NZ'(I‘) , C; € (® }
i=1 =1 =1

and
OF OF OF

| ox’ Oy’ 0z <
itis clear thatV, is included inH} (€2). But, for nonconvex polyhedral domairdd} () is strictly
included inHy (curl, div; ) and, moreover} () is closed inHy(curl, div; ©2) [15, 17]. As a
consequence of this theorem Hf the analytical solution of (3.18), belongsHy (curl, div; 2)

but not toH}(€); then, it is impossible to approximate using nodal elements. In fact, such

an approximation is impossible using aHy -conforming finite element discretization [16]. This
situation happens, for instance, when the electric field is singular in the corners or edges of a PEC.
In other words, for nonconvex polyhedral domains,

H(Q) := {FELZ(Q) L*(Q), axF =0 in PEC},

V5, € HY(Q) € Hy(curl, div; Q).
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If the electric field is singular at some point of the domain, the analytical soliibelongs to
Hy(curl, div; Q) but not toH}(2). This means thaE can not be approximated with nodal ele-
ments and (3.18), because any approximatidp, oégardless of the element size or the polynomial
order used in the discretization, will belongkg($2). In fact, what is approximated using (3.18)
and nodal elements is the Garlekin projectionEobnto H}(92), which is, in general, globally
different toE. An example of this behavior is shown in figure 3.2.

Figure 3.2: Modulus of the electric field in a waveguide step discontinuity. Left: reference solution. Right:
same problem solved with the regularized formulation.

A good option to overcome the problem with the singularities in the regularized formulation is
to follow the weighted regularized Maxwell equations (WRME) method explained in [17]. There
are other possibilities, such as [20, 1] or [8], but the WRME method is more general and robust. In
the WRME method, the divergence term of (3.18) is multiplied by a geometry-dependent weight.
This weight tends to zero when approaching to a field singularity. To be more specific, the weight

Tis
- ( H r%). H e, (3.21)

corners edges

wherer and p are the distances from a point in the domain to the corner or edge where the

field is singular. The coefficientg. and~. only depend on the geometry and can be calculated
theoretically [17]. The WRME method defines the space

X::{uEHo(curl;Q) | 7(V-u) € L} (Q)}7

loc

and solves the problem of findifdg € X such thaty F € X holds

1 . T T
/Q,u (VXE)- (VxF) + /956M (V-(¢E))- (V- (¢F))

(3.22)
— w2/5E.F + W.RB.Clon = z‘w/J-
Q Q

=5

?
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whereW.R.B.C.|sq is the term, properly adapted to the weighted regularization, that takes into

account the radiation boundary conditions or the modes in a waveguide port. In [17], it is demon-
strated that solving (3.22) is equivalent to solving the Maxwell equations and alsH(@Y is

dense inX. These results imply that nodal elements converge to the right electromagnetic field
solution even in the presence of singularities.

The method proposed in this work is a simplification of the WRME method. Instead of (3.21),
the divergence term of (3.18) is multiplied by a weight which is equal to zero in the elements near
a singularity and equal to one in the rest. The same idea appears in [86] for eddy current problems
with the T — € formulation and also in [46] for magnetostatic problems with the potestial
formulation. It is worth to mention that the WRME method always needs finer meshes and more
iterations of the iterative solvers to achieve the same accuracy as the simplified formulation. This
was observed for the 2D problems in the next section. No testing of the WRME method for 3D
problems was performed.

Henceforth, when a problem is said to be solved with one ungauged layer (UL), it means that
only the elements with a node in contact with a singularity have a weight equal to zero. If a
problem is said to be solved with 2 ULs, it means that the weight is set to zero in the elements with
a node in contact with a singularity and also in the elements that have a node in contact with the
elements of the first layer. An equivalent definition is applied for 3 ULs, 4 ULs, and so on. Only
the elements in the UL have a weight equal to zero; for the rest, the weight is equal to one. These
ULs must be applied in all places where the field is singular. If a singularity point is kept without
this treatment, the simulation can give a globally wrong solution. To know the places where the
field is singular, analyze the geometry and look for [6]:

1) Reentrant corners and edges of PECs.
2) Corners and edges of dielectrics.
3) Intersection of several dielectrics.

Once these points are located, the number of ULs depends on the size and order of the elements,
as shown in the next sections. If, for some reason, very small elements are required around the
singularity, the number of ULs must be increased. Not doing so is equivalent to use (3.18) instead
of (3.22). To distinguish the simplified formulation from the WRME method, it is called RME-UL
(RegularizedMaxwell Equations withUngauged_ayers).

3.6 Validation examples in two dimensions

This section shows some 2D configurations used to check the accuracy of the RME-UL method.
The geometries employed represent four different discontinuities in a parallel-plate waveguide
(figures 3.3, 3.7, 3.11 and 3.15). The problems are driven by a current densityt A/m? at a
frequency ofv = 10 GHz. The walls of the waveguide are PECs. The discontinuous lines at the
sides of the geometries symbolize the application of the first-order absorbing boundary condition
(1st ABC). The graphs 3.5, 3.6, 3.9, 3.10, 3.13, 3.14, 3.17 and 3.18 show the modulus of the

electric field|E| = |/E? + E; calculated with three different approaches: Reference (reference
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solution), RME (regularized Maxwell equations) and RME-UL (regularized Maxwell equations
with ungauged layers).

The reference solutioB = (E,, E, ) is obtained with the method explained in [44, ch.4]. That
is, we solve with the FEM and a dense mesh of first order triangular nodal elements the equation

1 s 0 (1 o (1
vV - (E VH2> +w*uH, = ay (8 Jx> ~ <€Jy> , (3.23)
with
n- <i VHZ) =0 (3.24)

in the PEC walls of the waveguide and

1
fi- ( VHZ> = iw\ﬁ H, (3.25)
(3 13

in the discontinuous lines at the sides of the geometries (see figures 3.3, 3.7, 3.11 and 3.15). Once
H. is known, we comput® = (E,, E,) with

i i ( OH OoH
E:m(VxH—J):w<ayz—Jx,—a;+Jy>. (3.26)
In [45] is demonstrated that the numerical solution provided by this approach approximates to the
analytical solution for a sufficient dense mesh. In figures 3.4, 3.8, 3.12 and 3.16 is shown the
modulus of the electric field calculated with this method.

The RME solution is obtained from (3.18), (3.12) and (6.4) assuming that the z component of
the electric field and all the derivatives in the z direction are equal to zere-(&andd(-)/0z =
0). We used triangular nodal elements from first- to sixth-order and we treat the electric field
discontinuities at the material interfaces as it is explained in section 3.4. The unit normals at the
nodes placed in the corners are calculated as a geometric average and they are used in (3.20), or
in the PEC condition, like in any other node [7]. No special treatment is given to the points where
the field is singular.

The RME-UL solution is obtained in the same way that the RME solution but taking into
account the field singularities as it is explained in section 3.5. The RME-UL approach was also
tested with triangular nodal elements from first- to sixth-order. From third- to sixth-order elements
and 1 UL, accurate solutions were obtained even near the singularity. With second-order elements
and 3 ULs, correct solutions were also obtained. With first-order elements, it was not possible to
obtain accurate solutions even with 6 ULSs.

In the graphs of figures 3.5, 3.6, 3.9, 3.10, 3.13, 3.14, 3.17 and 3.18, it can be seen that
the reference solution and the RME-UL solution overlap perfectly, even in the neighborhood of
the singularity. On the other hand, the RME solution is completely different from the reference
solution. This shows graphically the consequences of using (3.18) without taking into account the
effect of the singularities.
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Figure 3.3: Step discontinuity in a parallel-plate waveguide.

(i

Figure 3.4: Modulus of the electric field in the parallel-plate waveguide step discontinuity of fig. 3.3.
Reference solution.
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Figure 3.5: Modulus of the electric field along the x-direction aty7.5 mm in the parallel-plate waveguide
configuration of fig. 3.3.

2000 -
Reference
RME
= RME-UL
1500 ., |
£
> 1000
w

500

0 L L L L L
0 5 10 15 20 25 30 35 40 45

x (mm)

Figure 3.6: Modulus of the electric field along the x-direction aty5 mm in the parallel-plate waveguide
configuration of fig. 3.3.
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Figure 3.7: Sheet singularity in a parallel-plate waveguide.

Gl

Figure 3.8: Modulus of the electric field in the parallel-plate waveguide configuration of fig. 3.7. Reference
solution.
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Figure 3.9: Modulus of the electric field along the x-direction aty7.5 mm in the parallel-plate waveguide
configuration of fig. 3.7.

T T T

Reference

2000

1500

1000

[E] (V/Im)

500

0 L L L L L
0 5 10 15 20 25 30 35 40 45

x (mm)

Figure 3.10: Modulus of the electric field along the x-direction aty5 mm in the parallel-plate waveguide
configuration of fig. 3.7.
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Figure 3.11: Dielectric € = 60¢g, o = 0 S/m) in a parallel-plate waveguide.

Figure 3.12: Modulus of the electric field in the parallel-plate waveguide configuration of fig. 3.11. Refer-
ence solution.
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Figure 3.13: Modulus of the electric field along the x-direction aty7.5 mm in the parallel-plate waveg-
uide configuration of fig. 3.11.
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Figure 3.14: Modulus of the electric field along the x-direction aty2.5 mm in the parallel-plate waveg-
uide configuration of fig. 3.11.
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Figure 3.15: Intersection of dielectrics in a parallel-plate waveguide. Materiad £ 5¢p, 0 = 0S/m.
Material 2:¢ = 10¢g, 0 = 0 S/m. Material 3:c = 20¢p, o = 1 S/m. Material 4. = 30¢p, o = 10 S/m.

Figure 3.16: Modulus of the electric field in the parallel-plate waveguide configuration of fig. 3.15. Refer-
ence solution.
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Figure 3.17: Modulus of the electric field along the x-direction at=y 8.75mm in the parallel-plate
waveguide configuration of fig. 3.15.
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Figure 3.18: Modulus of the electric field along the x-direction aty5 mm in the parallel-plate waveguide
configuration of fig. 3.15.



48 CHAPTER 3. REGULARIZED MAXWELL EQUATIONS AND NODAL FINITE ELEMENTS

3.7 Validation examples in three dimensions

This section presents some 3D configurations solved with the RME-UL approach. Figures 3.19,
3.21 and 3.23 display three microwave filters taken from [64], [60] and [48]. We computed the
scattering parameters of these microwave filters assuming that only the fundamental moe TE
propagating in the waveguide ports. We used the RME-UL method with the boundary condition
(3.12) in the PEC walls and the condition (3.16) in the waveguide ports. Once the electr field
was known, the scattering paramefg was obtained with [92]

_ fF1 (E X HlO) -1 dFl

Si1 mep -1, (3.27)
and the scattering parametgs; with [92]
E x Hyg) -0 dl
Sop = Jr, ( 10) 2 (3.28)

imp
Vi

whereT'; is the input portI's is the output portH is the magnetic field
Hy = zwlu (V x Eq), (3.29)
andV;"™ is given by the expression
Ve — /F (E1o x Hyg) - f dI';. (3.30)
1
The electric fieldE is the fundamental mode Tof a rectangular waveguide

2iwp
aby

Ejg=— sin(k.x) e’*y, (3.31)

wherea is the width of the rectangular waveguides its heightk. = 7/a and~ is the propaga-

tion constant of the mode T, which isy = +i\/kg — k2 whenky > k. andy = F/k2 — k3
whenky < k.. The sign ofy depends on the direction of propagation. We have considered that the
x-axis is along the width of the rectangular waveguide, the y-axis is along its height and the z-axis
is perpendicular to the xy-plane. For a more detailed information about rectangular waveguides
and microwave engineering see [85, 2].

The RME-UL results shown in figures 3.20, 3.22 and 3.24 were obtained with second-order
isoparametric tetrahedral nodal finite elements and 3 ULs. The same good results can also be ob-
tained with third-order tetrahedral nodal elements and 1 UL, but the computational cost is higher.
We were not able to obtain accurate and robust solutions with first-order elements, no mater the
number of ULs employed (it was tested up to 6 ULs). All the examples were solved using a quasi-
minimal residual (QMR) iterative solver [28] with a diagonal preconditioner. The convergence of
the solver was excellent, proving the well-conditioning of the matrix. It took less than 0.1-0.5%
of the total number of unknowns to reach a residyialxz — bl|/||b||) of less than 1e-4.
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Figure 3.19: Cylindrical cavity filter from [64].
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Figure 3.20: Modulus of the transmission coefficiefi$; of the cylindrical cavity filter shown in fig. 3.19
as a function of the frequenay. The results obtained with the RME-UL approach are compared with the
measurements performed in [64].
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Figure 3.21: Ridge waveguide from [60].
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Figure 3.22: Modulus of the transmission coefficiefit; of the ridge waveguide shown in fig. 3.21 as

a function of the frequency. The results obtained with the RME-UL approach are compared with the
measurements performed in [60].
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2b

Figure 3.23: Dielectric in a rectangular waveguide from [48, 13].
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Figure 3.24: Modulus of the reflection coefficier;; of the waveguide shown in fig. 3.23 as a function
of kob, whereky = w,/egpng andb is the height of the rectangular waveguide. The RME-UL approach is
compared with the method of orthogonal expansions of Katzier [48].
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3.8 Summary

It is demonstrated in this chapter that an accurate solution can be obtained with nodal finite ele-
ments and the regularized formulation even in the presence of electromagnetic field singularities.
To do so, a simplified version of the WRME method was used. This simplification consists of a
weight equal to zero applied in the elements near a singularity and equal to one in the rest. The
number of layers of elements whose weight is equal to zero depends on their size and order. For
a given element order, this number is fixed, but if for some reason, it is meshed with very small
elements near a singularity, this number must be increased to obtain a correct solution.

We tested several combinations of element order and ULs searching for accuracy and robust-
ness. We reached to the conclusion that the best option is to use second-order elements and 3
ULs. It can also be obtained accurate solutions with higher order elements and 1 UL, but the
computational cost is higher. On the other hand, it was not possible to attain a robust and accurate
combination with first-order elements.

It is necessary to further study the relationship between the number of elements with a weight
equal to zero and the element size, element order, and singularity order. Also, a deeper theoretical
knowledge of how this simplification affects the well-conditioning and convergence of the regular-
ized formulation is needed. In future work, a comparative performance of the RME-UL approach
with other methods will be given.



Chapter 4

Specific absorption rate computations

The specific absorption rate is a measure of the rate at which electromagnetic energy is absorbed
by a body when exposed to electromagnetic fields. The aim of this chapter is to validate the RME-
UL method when applied to the computation of this quantity. We will explain, through examples,
how to obtain the specific absorption rate with the RME-UL method and we will validate our ap-
proach by comparing the results with other numerical techniques. The work described here has
been presented in [78, 77, 74, 75] and it is part of the project SANTTRA (Sistema de ANTenas
para Transceptores de RAdio), Spanish MCIT PROFIT, ref.:. FIT-330210-2006-44, framed in the
project SMART (SMart Antennas system for Radio Transceivers), European Commission EU-
REKA, ref.. PIDEA+ Project P04-161. This work has also been partially founded by the project
CaRDiAN (Calculo de Radiaéin electromagetica en presencia de Degltricos mediante Aadisis
Numeérico), Spanish MCI National R+D Plan 2008-2011, ref.: CIT-370000-2008-10.

4.1 Introduction

The specific absorption rate (SAR) is the power per unit mass absorbed by a body when illuminated
by electromagnetic fields. This quantity is useful to determine, in combination with the heat
equation, the temperature increase produced by an incident electromagnetic radiation inside a
body. The SAR is also a quantity used for regulatory purposes. That is, before a mobile phone
is available for sale to the general public, it must shown that the SAR is below some limits. In
addition, a mobile phone with a high value of SAR imply that the energy is lost in unwanted
heating instead of being used to transmit information.

The measurement of the SAR is performed in specialized test houses with complex and sophis-
ticated systems. Besides, if you want your product complies with the government requirements,
you have to send it to an accredited test house to obtain the certification. This process is expensive
and time-consuming. Numerical simulations can save time and money predicting the value of the
SAR before certification and improving the design of the product before manufacturing it. Also,
in situations in which the measurement of the SAR is difficult, like in the measurement of the SAR
in living creatures, the numerical simulations are of valuable help.

53
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In the scenario present above, a volumetric, frequency domain, finite element formulation
like the RME-UL approach seems to be a good choice for the numerical simulations. This is so,
because it works naturally with complex geometries and materials and it can solve large problems
thanks to the fact that it produces well-conditioned matrices easy to solve with iterative Krylov
solvers.

The objective of this chapter is to validate the RME-UL method and assess its performance
when applied to the computation of the SAR. In section 6.2 we define formally the SAR. In
section 4.3 we present the numerical tool used for obtaining of the electromagnetic fields. In
sections 4.4, 4.5 and 4.6 we calculate the SAR in different scenarios and compare the results with
other numerical methods. In section 4.7, we make a numerical study of the the thermal effects
induced by a RFID antenna in vials filled with blood plasma. Finally, in section 6.5, we present
our conclusions.

4.2 Definitions

The Specific Absorption Rate (SAR) is defined as,

1"
0 + we

SAR (W/kg) = IE|? (4.1)

whereo is the electrical conductivitye” is the imaginary part of the electric permittivity (see
section 2.3.1)w is the frequencyp is the mass density arld is the electric field. This definition

comes from the expression (2.99) in chapter 2 and it represents the time-average power per unit
mass dissipated as heat due to conductivity and dielectric losses. We assume that there is no
magnetic losses(= ).

When the SAR is employed for regulatory purposes itis usually averaged either over the whole
body, or over a small sample volume (typically 1g or 10g of tissue). SAR limits for a radiating
object depends of the country, for instance, in United States, the Federal Communications Com-
mission (FCC) requires that phones sold for the general public have a SAR level at or below 1.6
W/kg taken over a volume of 1g of tissue with the shape of a cube. In the European Union, before a
mobile phone is available for sale, it must show compliance with the European Radio & Telecom-
munication Terminal Equipment (R&TTE) directive 1999/5/EC. This directive limits the human
exposure to radio frequency (RF) fields in accordance with the standard EN 50360:2001 (see table
4.1), developed by the European Committee for Electrotechnical Standardization (CENELEC).

User SARog(W/Kg)  SARwb (W/Kg)
General public 2 0.08
Occupational 10 0.40

Table 4.1: SAR limits specify by the CENELEC EN 50360:2001. SARs the average ovei0 g of tissue
with the shape of a cube. SARIs the average over the whole body.
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4.3 Numerical tool

The numerical tool used in this, and the following chapters, is called ERMES. ERMES stands for
Electric Regularizedviaxwell Equations withSngularities and it is the C++ implementation of the
RME-UL method. ERMES uses GiD [29] for geometrical modeling, meshing and visualization
of results. The user interface is detailed in appendix A.

The current version of ERMES is mono-processor and it runs in the operative system Win-
dows XP 64-bit. ERMES uses a quasi-minimal residual (QMR) iterative solver [28] with a di-
agonal preconditioner to solve the linear systems resulting from the finite element discretization.
The problems of this chapter were discretized with about 8e5-1e6 tetrahedral second order nodal
elements. The resulting liner systems had around 3e6-4e6 unknowns. The RAM memory required
was about 6-7 GB and the time needed to reach a redifiidal — b|| / ||b||) of less than 1e-3 varies
from 2 to 10 hours depending of the problem. These data are referred to a desktop computer with
a CPU Intel Core 2 Quad Q9300 at 2.5 GHz and the operative system Microsoft Windows XP
Professional x64 Edition v2003.

4.4 Ellipsoidal phantom in rectangular waveguide

In this validation example we compute the SAR in an ellipsoidal phantom placed inside a rectan-
gular waveguide. The SAR values obtained with ERMES are compared with measurements and
numerical simulations performed with the finite difference time domain method (FDTD).

4.4.1 Description of the problem

An ellipsoidal phantom, with a longer axis of 41 mm and a shorter axis of 30 mm, is filled with a
substance of electrical properties- 43¢ ando = 0.97 S/m. The phantom is placed at the center

of a rectangular waveguide WR-975 (24.7625 cm x 12.3825 cm) and it is illuminated with the
fundamental mode Tfg. The incident electric field has a frequencyof 900 MHz, a maximum

value of [E,n.,| = |E/v2| = 61.4V/m and a polarization parallel to the shorter axis of the
ellipsoid. The weight of the phantom i& = 20g. The weight and electrical properties of the
phantom are comparable to those of a mouse. An outline of the problem is shown in fig. 4.1. The
data for this example are taken from [52].

4.4.2 Finite element model

We computed the electric field inside the rectangular waveguide with the finite element model
explained in section 3.7 of chapter 3. In this case we do not have any field singularity in the
problem domain, then, we do not need to use any UL. The incidentHigldsee equation (3.31))

is multiplied by the constant = 61.4\/~ab/iwu = 0.4776 to accomplish with the requirement
that the maximum value dE;o| must be61.41/2 V/m. Once the electric field is calculated, we
obtain the SAR inside the ellipsoidal phantom with equation (4.1). The depsity M/V is
deduced using the formuld = 7 AB? /6 for the volume of the ellipsoid, whet4 is the length of

the mayor axis and the length of the minor axis.
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, 0.30cm

’ 12/38 cm

24.76 cm

Figure 4.1: Ellipsoidal phantom inside rectangular waveguide. Data from [52].

4.4.3 Results

In table 4.2 is showed the SAR averaged over the whole volume of the ellipsoidal phantom
(SARavg). This average SAR can be easily obtained experimentally by measuring the input and
the output power in the waveguide ports [52]. On the other hand, the SAR distribution inside the
phantom is more difficult to measure and this is where numerical simulations can be very helpful.
In figures 4.2 and 4.3 is shown the SAR distribution inside the ellipsoidal phantom. The pres-
ence of "hot spots” where the SAR values are several times bigger than the average can be clearly
observed with the help of the numerical simulation.

Method SARyg (W/KQ)
Measured 0.06
FDTD 0.05
ERMES 0.05

Table 4.2: SAR averaged over the whole volume of the ellipsoidal phantom aARThe SAR,q value
measured in [52] is compared with the FDTD simulation performed in [52] and the result obtained with
ERMES.
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o - ¢ v

Figure 4.2: SAR (W/Kg) inside the ellipsoidal phantom. Iso-surfaces.

Figure 4.3: SAR (W/Kg) inside the ellipsoidal phantom.

45 PROCOM MU9-XP4 antenna installed on motorbike

The objective of this validation example is to calculate the SAR inside a body produced by an
antenna installed on a motorbike. The results obtained with ERMES are compared with those
provided by a commercial software which implements the method of moments.

4.5.1 Description of the problem

A body with a mass density = 1000 Kg/m?® and electric properties= 41.3¢; ando = 0.58 S/m

is placed at a distance 0f6 m from a PROCOM MU9-XP4 antenna (see figures 4.4 and 4.5). The
antenna is fed by &0 (2 coaxial cable with?%), = 10 W (40 dBm) at a frequency of = 406 MHz.

The ground is located.22 m below the feeding point of the antenna and a luggage rack is placed
0.15m below the same feeding point.
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4.5.2 Finite element model

The finite element model used to solve numerically this problem is depicted in fig. 4.6. We
applied the PEC boundary condition (3.12) to the ground, antenna and luggage rack, the first order
absorbing boundary condition (3.15) to the exterior surface and the PMC boundary condition
(3.13) to the symmetry plane. The antenna is fed by a coaxial line (see fig. 4.8), in where it is
assumed that only the fundamental mode TEM is propagating. Then, we imposed the following
boundary condition at the coaxial port

AnxVxE=vy(MxnxE)+U,

4.2
n-E=0 4.2)
wherey = iw, /e is the propagation constant of the fundamental mode and
U= —27 (ﬁ X X ETEM)' (43)
The fieldEtgy is the incident field imposed in the input port:
_ [ S I
Erem = 27 In(b/a) ( r > " (4.4)

beingn = +/u/e, a the inner radius of the coaxiab, the exterior radius of the coaxiat, =
V&% +y? andt = (z/r,y/r). The port plane is in the xy-plane and the direction of propagation
is along the z-axis. In this case, we have that \/uo/€p, a = 1.25mm andb = 2.88 mm.
Therefore, the characteristic impedarieof the coaxial line is

Zo = QE In(b/a) = 50 Q. (4.5)
T
The geometry was meshed with 839360 tetrahedral second-order nodal elements (see fig. 4.7).
We used 3 ULs in the edges of the luggage rack and in the edges of the base and tip of the antenna.
Once the fieldE was computed, we multiplied the result by the constant
2P
a=|—), (4.6)
1—|S11]

where Py, = 10W and S is the reflection coefficient of the coaxial. The paramefer is
calculated as in (3.27), but wiBiygy instead ofE;o. We multiply the fields byx to impose that
all the power sent to antenna is radiated, which is the worst-case scenario.

45.3 Results

EADS Defense & Security [9] computed the problem described above in the frame of the project
SMART. They used the commercial software FEKO [25], which implements the method of mo-
ments (MoM). They modeled the feeding of the antenna with an impedance matching coil at its
base (see fig. 4.8). The results of the simulations performed with ERMES and FEKO are shown in
figures 4.9, 4.10 and 4.11 and in table 4.3. The maximum SAR value obtained with ERMES was
0.06 W/Kg, located in the neck. The maximum SAR value obtained with FEKO was 0.07 W/Kg,
also located in the neck. The SAR averaged over the 10g cube was 0.04 W/Kg in ERMES and
0.06 W/Kg in FEKO.
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Method SARnax (W/Kg) SARj0q (W/Kg)
FEKO 0.07 (neck) 0.06
ERMES 0.06 (neck) 0.04

Table 4.3: Maximum SAR (SAR.ax) and SAR averaged over the 10g cube (S4yrobtained with FEKO
and ERMES. The maximum SAR is located in the neck.

Figure 4.4: PROCOM MU9-XP4 antenna installed on a motorbike.

e

Figure 4.5: PROCOM MU9-XP4 antenna installed on a motorbike. CAD model.
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1st ABC

Figure 4.6: PROCOM MU9-XP4 antenna installed in a motorbike. FEM model.

Figure 4.7: PROCOM MU9-XP4 antenna installed on a motorbike. FEM mesh. The mesh is composed of
839360 tetrahedral second-order nodal elements.
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Figure 4.8: Coaxial feeding at the bottom of the PROCOM MU9-XP4 antenna. Left: Coaxial model used
by ERMES. Right: Coaxial model used by FEKO.

Figure 4.9: Iso-surfaces for SAR= 0.03 W/kg. Left: FEKO results. Right: ERMES results.



62 CHAPTER 4. SPECIFIC ABSORPTION RATE COMPUTATIONS

Figure 4.10: SAR distribution calculated by ERMES. Maximum value is 0.06 W/Kg, located in the neck.

o,

iy

Figure 4.11: SAR distribution calculated by FEKO. Maximum value is 0.07 W/Kg, located in the neck.
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4.6 PMR antenna near SAM head

In this validation example we compute the SAR produced by a professional mobile radio (PMR)
antenna in a specific anthropomorphic mannequin (SAM) head. The results obtained with ERMES
are compared with those provided by FEKO.

4.6.1 Description of the problem

A PMR antenna (see fig. 4.12) is placed near a SAM head as shown in fig. 4.13. The antenna is
fed with Py = 2W (33 dBm) at a frequency of = 400 MHz. The mass density of the SAM head

is p = 1000 Kg/m? and its electrical properties ate= 45.5¢; ando = 0.7 S/m. The electrical
permittivity of the GPS antenna substrate is 3¢.

Figure 4.12: PMR antenna (with a GPS antenna at its base) installed on handset. Prototype designed and
manufactured by Radiall [88].

4.6.2 Finite element model

We applied the PEC boundary condition (3.12) to the PMR antenna, GPS antenna and handset and
the first order absorbing boundary condition (3.15) fam diameter spherical surface centered

at the feeding point of the antenna. We fed the antenna with a current probe located at its base (see
fig. 4.14). The geometry was meshed with 838840 tetrahedral second-order nodal elements (see
fig. 4.15). We used 3 ULs in the edges of the handset, tip of the PMR antenna, edges of the GPS
antenna and edges of the dielectric substrate. We impose a radiated output pbyver BV by
multiplying the computed field by the constant

B 2P,
‘= \/—fs Real [E-J]’ 4.7)

wheres is the volume of the current probe.
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4.6.3 Results

EADS Defense & Security computed the problem described above with the commercial software
FEKO in the frame of the project SMART. They modeled the feeding of the antenna with a voltage
gap (see fig. 4.18). The results of the simulations performed with ERMES and FEKO are shown
in figures 4.16, 4.17 and 4.19 and in table 4.4. The differences in the results can be attributed to
the different geometries employed in the computations. We must take into account that the SAR
is very sensitive to the positioning of the handset with respect to the SAM head. For instance, if
we move the handsét4 cm closer to the surface of the SAM head then, the value of the SAR
averaged over the 10g cube obtained with ERMES rises to 3.36 W/Kg.

Method SARog (W/Kg)
FEKO 3.00
ERMES 2.82

Table 4.4: SAR averaged over the 10g cube (SR obtained with FEKO and ERMES.

%

Figure 4.13: Positioning of the PMR antenna. Left: Frontal view. Right: Lateral view. The distance
between handset and SAM hea® ism.
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Figure 4.16: SAR distribution calculated by ERMES and location of the 10g cube. The maximum SAR is
4.92 W/Kg. The SAR averaged over the 10g cube is 2.82 W/Kg.

=
£
EE

Figure 4.17: SAR distribution calculated by ERMES. Sections of the SAM head. Left: Frontal view. Right:
Upper view.
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Figure 4.18: Details of the geometry used by FEKO to model the PMR antenna. The antenna is fed by a
voltage gap.
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Figure 4.19: Location of the 10g cube by FEKO. The SAR averaged over the 10g cube is 3.00 W/Kg.
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4.7 RFID antenna near vials of blood plasma

This section contains a humerical study of the thermal effects induced by a commercial RFID
antenna in vials filled with blood plasma. The antenna is located under a conveyor belt which
transports cardboard boxes bearing test tubes or pooling bottles filled with blood plasma. The aim
of this study is to evaluate the worst-case scenario temperature increase produced by the RFID
antenna in the blood plasma contained in the vials. This study has been fostered by GRIFOLS
[31].

4.7.1 Description of the problem

RFID stands for Radio Frequency IDentification and it consists in the use of a tag incorporated
into a product, animal, or person for the purpose of identification using radio waves. There are
basically two types of RFID tags: active tags, which can transmit signals autonomously, and
passive tags, which require an external energy source to transmit signals. In this study we are only
interested in passive tags. The RFID process with passive tags is as follows. First, the tag receives
electromagnetic energy from the RFID reader. Then, the tag uses this energy to send back the
data stored in it. Finally, the reader receives the tag’s radio waves and interprets the signals. Part
of the electromagnetic energy that reaches the tag also penetrates into the object where the tag is
incorporated. The aim of this work is to study numerically the thermal effects induced in these
objects.

In our case, we have a RFID antenna under a conveyor belt. Cardboard boxes bearing test
tubes or pooling bottles filled with blood plasma are moved along the conveyor belt and pass
above the antenna. When the boxes are above the antenna, some of the electromagnetic radiation
that is used to read the tags is absorbed by the blood plasma contained in the vials. The absorbed
radiation heats the blood plasma and increases its temperature. The question we try to answer here
is how fast the temperature increases in the worst-case scenario. More specifically, we calculate
the time required to increase the temperatur@®, &t the point of maximum SAR, and under the
supposition that no mechanism of heat dissipation is acting during the excitation.

The heating induced by the RFID antenna was computed for blood plasma at room temperature
(+25°C) and frozen (-38C). The physical properties of the blood plasma at both temperatures are
summarized in table 4.5. The plasma is contained in test tubes or pooling bottles (see figures 4.20
and 4.26). These vials are carried inside cardboard boxes containing 96 test tubes or 15 pooling
bottles (see fig. 4.20). The cardboard boxes are transported by a conveyor belt passigove
the RFID antenna. The commercial RFID antenna used for tag identification is a CS-777 Bricyard
operating at a frequency of= 915 MHz and with an input power afy = 1 W.

4.7.2 Finite element model

The finite element model used in this study is depicted in figures 4.21 and 4.27. We applied the
PEC boundary condition (3.12) to the ground, the first order absorbing boundary condition (3.15)
to the exterior surface and the PMC boundary condition (3.13) to the symmetry planes. We do not
have any field singularity in the problem domain, then, we do not need to use ULs.
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The antenna CS-777 Bricyard is a segmented loop antenna [21, 87] designed for UHF near-
field RFID applications. This type of antenna produce a strong and uniform magnetic field distri-
bution in the near-field region, which ensures a good inductive coupling between the tag and the
antenna. Such a coupling system is the most appropriate to operate in the vicinity of liquids and
metals with low magnetic permeability. The characteristic field distribution of a segmented loop
antenna is achieved with an electrical current which is in-phase and has the same magnitude along
the loop. Therefore, we have modeled the CS-777 Bricyard as a circular current loop of constant
phase and magnitude. The loop has an internal diamef#rarfi and a rectangular section which
is 0.6 cm wide and).2 cm high. The current loop rests on a PEC plane to model the casing of the
antenna. We impose a radiated output powePpE= 1 W by multiplying the computed field
by the constant

- 2P,
‘= \/—fs Real [E-J]’ (4.8)

wheres is the volume of the current loop.

In fig. 4.21 is shown a quarter of the cardboard box containing 96 test tubes. The dimensions
of the box are detailed in fig. 4.20. Inside the box there are 8 rows of 12 test tubes. The distance
between tubes in the same rowli24 cm. The distance between rowsOs5cm. The box is
positioned 2 cm above the RFID antenna.

In fig. 4.27 is shown a quarter of the cardboard box containing 15 poling bottles. The dimen-
sions of the box are the same as for the test tubes case (see fig. 4.20). Inside the box there are 3
rows of 5 plasma pooling bottles. The distance between bottles in the same @deiis. The
distance between rows is al8d cm. The box is positione2lcm above the RFID antenna.

"

T (°C) e, (€ /eo) e (€' /eo) o (S/m) p (Kg/m?) ¢ (JIKgC)

+25 70 0 1.7 1025 3780
-30 3 0.3 0 920 2050

Table 4.5: Physical properties of the blood plasma at room temperatur@Gy2md frozen (-38C), being

e; the real part of the relative electric permittivitf/: the imaginary part of the relative electric permittivity,

o the electrical conductivityy the mass density andthe specific heat capacity at constant pressure. Data
extrapolated from [43, 24, 47, 38].

4.7.3 Results

The results of the simulations are shown in figures 4.22,4.23,4.24, 4.25,4.28 and 4.29. We can
see that the higher SAR is found in the vials positioned just atop the current loop of the antenna.
The values of the maximum SAR (SARJ) obtained in each case are summarized in table 4.6.
Once the SAR is known, we can estimate the time needed to increment of temperature of the
blood plasmaAT = 0.1°C. The relation of SAR with the temperature can be very complex
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if we take into account heat dissipation processes as conduction or convection. However, if we
want to calculate the increase of temperature in the worst-case scenario possible, where all the
electromagnetic energy is used to increase temperature, this relation is very simple,

AT ~ SARAL (4.9)

C

whereAT is the temperature increases the specific heat capacity add is the duration of the
electromagnetic radiation excitation. In table 4.7 is shown the tifx¥¢ (eeded to increase the
temperature of the blood plasmdl’ = 0.1 °C, at the point of maximum SAR, and assuming that

no mechanism of heat dissipation is present. As can be seen in the table 4.7, the shorter time is
At = 75s for the pooling bottle at room temperature (2% Then, since a typical read cycle
lasts 100 ms, it would take 750 continuous reading cycles to produce an incred¥e ib.the
worst-case scenario. So, we can conclude that, the RFID technology analyzed in this work, do
not alter the quality of the blood plasma in a standard situation of a few readings cycles, when the
vials are carried by a conveyor belt equipped with RFID antennas. The only scenario that would
present a problem would be a box left forgotten just above a RFID reader in continuous operation.
However, this situation is very unlikely because motion detectors are usually placed in the con-
veyor belt and the RFID readers are only activated when the belt is moving.

Test tube Pooling bottle

T(°C) SARmax (W/Kg) SARnmax (W/Kg)
+25 2.63 5.04
-30 0.43 0.52

Table 4.6: Maximum SAR (SARa)-

Test tube Pooling bottle
T(°C) At (S) At (S)
+25 144 75
-30 477 394

Table 4.7: Time (At) needed to increase the temperature of the blood pldsima: 0.1 °C, at the point of
maximum SAR, and assuming that no mechanism of heat dissipation is present.
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1.27 cm

-
0.9cm t.

8.4cm

Figure 4.20: Left: Dimensions of a test tube. Right: Dimensions of the cardboard box containing 96 test
tubes. The same box is also used to transport 15 pooling bottles.

Y

Figure 4.21: FEM model of the cardboard box containing 96 test tubes.
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Figure 4.22: SAR distribution in the box containing 96 test tubes with blood plasma at room temperature
(+25°C). Logarithmic scale.
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Figure 4.23: SAR distribution in the box containing 96 test tubes with blood plasma at room temperature
(+25°C). Detaill.
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Figure 4.24: SAR distribution in the box containing 96 test tubes with frozen blood plasm&Qj3Qog-
arithmic scale.
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Figure 4.25: SAR distribution in the box containing 96 test tubes with frozen blood plasma@)3Detail.
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84cm

23.5cm

Figure 4.26: Dimensions of a pooling bottle.

Figure 4.27: FEM model of the cardboard box containing 15 pooling bottles.
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SAR (W/kg )

Figure 4.28: SAR distribution in the box containing 15 pooling bottles with blood plasma at room temper-
ature (+28C).

SAR (W/kg )

Figure 4.29: SAR distribution in the box containing 15 pooling bottles with frozen blood plasma@)30
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4.8 Summary

In this chapter we have applied the RME-UL method to the computation of the SAR and we have
validated our approach by comparing the results with those obtained with other numerical meth-
ods. Although the RME-UL method is appropriate for solving SAR related problems there are
some scenarios in where its efficiency can be put in jeopardy: when there are too many reentrant
metallic or dielectric edges in the problem domain and when the source and the target are far away
from each other.

In the vicinity of reentrant metallic or dielectric edges we need to mesh with small elements to
catch the singular behavior of the fields. This fine meshing increases dramatically the number of
unknowns and, in consequence, the computational cost. Moreover, the presence of field singular-
ities in these edges worsen the condition number of the FEM matrix and we need more iterations
of the Krylov solvers to reach the solution. Therefore, we must improve the treatment of the field
singularities to make the RME-UL approach more efficient.

Another problem of the RME-UL approach is that it needs to calculate the electric field in
the space surrounding source (antenna) and target (dielectric body). Then, if the distance between
them is large, the volume needed to run the simulation is large and, as a result, the computational
cost is high. A possible solution in these cases is the implementation of hybrid methods (e.g.
FEM-MoM). Therefore, we must research how to hybridize the RME-UL approach with MoM or
asymptotic methods to improve its performance in electrically large problems.



Chapter 5

Electromagnetic metal forming

This chapter presents a numerical model for computing the Lorentz force that drives an electro-
magnetic forming process. This model is also able to estimate the optimum capacitance at which
it is attained the maximum workpiece deformation. The input data required are the geometry and
material properties of the system coil-workpiece and the electrical parameters of the capacitor
bank. The output data are the optimum capacitance, the current flowing trough the coil and the
Lorentz force acting on the workpiece. The main advantage of our approach is that it provides
an explicit relation between the capacitance of the capacitor bank and the frequency of the dis-
charge, which is a key parameter in the design of an electromagnetic forming system. The model
is applied to different forming processes and the results compared with theoretical predictions
and measurements of other authors. The work described in this chapter has been presented in
[79, 80] and it is part of the project SICEM (SImulaaoimultifisica para el didego de Conformado
ElectroMagtetico), Spanish MEC National R+D Plan 2004-2007, ref.: DP12006-15677-C02-01.

5.1 Introduction

Electromagnetic forming (EMF) is a high velocity forming technique that uses electromagnetic
forces to shape metallic workpieces. The process starts when a capacitor bank is discharged
through a coil. The transient electric current which flows through the coil generates a time-varying
magnetic field around it. By Faraday'’s law of induction, the time-varying magnetic field induces
electric currents in any nearby conductive material. According to Lenz’s law, these induced cur-
rents flow in the opposite direction to the primary currents in the coil. Then, by Ampere’s force
law, a repulsive force arises between the coil and the conductive material. If this repulsive force is
strong enough to stress the workpiece beyond its yield point then it can shape it with the help of a
die or a mandrel.

Although low-conductive, non-symmetrical, small diameter or heavy gauge workpieces can
not be suitable for EMF, this technique present several advantages. For example: no tool marks
are produced on the surfaces of the workpieces, no lubricant is required, improved formability, less
wrinkling, controlled springback, reduced number of operations and lower energy cost. In order
to successfully design sophisticated EMF systems and control their performance, it is necessary to

77
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advance in the development of theoretical and numerical models of the EMF process. This is the
objective of the present work. More specifically, we focus our attention on the numerical analysis
of the electromagnetic part of the EMF process. For a review on the state-of-the-art of EMF see
[22, 27, 58] or the introductory chapters in [65, 98, 19, 99], where it is given a general overview
about the EMF process and also abundant bibliography.

In this chapter we present a method to compute numerically the Lorentz force that drives an
EMF process. We also estimate the optimum frequency and capacitance at which it is attained the
maximum workpiece deformation for a given initial energy and a given set of coil and workpiece.
The input data required are the geometry and material properties of the system coil-workpiece and
the electrical parameters of the capacitor bank. With these data and the time-harmonic Maxwell’s
eguations we are able to calculate the optimum capacitance, the current flowing trough the coil
and the electromagnetic forces acting on the workpiece. The main advantage of this method is that
it provides an explicit relation between the capacitance of the capacitor bank and the frequency
of the discharge which, as it is shown in [41, 116, 34], is a key parameter in the design of an
EMF system. Also, our frequency domain approach is computationally efficient and it offers an
alternative to the more extended time domain methods.

In section 5.2 we summarize the coupling strategies which connect the electromagnetic equa-
tions with the other physical phenomena involved in an EMF process.

In section 5.3 we explain in detail the electromagnetic model employed in this work. We show
the general formulas and the assumptions we made to compute the intensity flowing through the
coil and the Lorentz force acting on the workpiece.

In section 5.4 we describe the numerical tools used to obtain the electromagnetic fields and
the deformation of the workpiece.

In section 5.5 and 5.6 we apply the method detailed in section 5.3 to the bulging of a metal
sheet and the bulging of a cylindrical tube. Our results are compared with theoretical predictions
and measurements found in the literature.

In section 5.7 we explain how to estimate the optimum frequency and capacitance at which it
is attained the maximum workpiece deformation for a given initial energy and a given set of coil
and workpiece.

Finally, in section 5.8 we apply the techniques detailed in section 5.7 to a tube bulging process
and to a tube compression process.

5.2 Coupling strategies

EMF is fundamentally an electro-thermo-mechanical process. Different coupling strategies have
been proposed to solve numerically this multi-physics problem, but they can be reduced to these
three categories: direct or monolithic coupling, sequential coupling and loose coupling.

The direct or monolithic coupling [103, 57] consists in solving the full set of field equations
every time step. This approach is the most accurate but it does not take advantage of the different
time scales characterizing electromagnetic, mechanical and thermal transients. Moreover, the
linear system resulting from the numerical discretization leads to large non-symmetric matrices
which are computationally expensive to solve and made this approach unpractical.
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In the sequential coupling strategy [27, 71, 109, 99, 34] the EMF process is divided into three
sub-problems (electromagnetic, thermal and mechanical) and each field is evolved keeping the
others fixed. Usually the process is considered adiabatic and it only alternates the solution of
the electromagnetic and the mechanical equations. That is, the Lorentz forces are first calculated
and then automatically transferred as input load to the mechanical model. The mechanical model
deforms the workpiece and, thereafter, the geometry of the electromagnetic model is updated and
so on. These iterations are repeated until the end of the EMF process. The advantages of this
method is that it is very accurate and it can be made computationally efficient.

In the loose coupling strategy [58] the Lorentz forces are calculated neglecting the workpiece
deformation. Then, they are transferred to the mechanical model which uses them as a driven
force to deform the workpiece. This approach is less accurate than the former methods but it is
computationally the most efficient and it can be very useful for estimating the order of magnitude
of the parameters of an EMF process, for experimentation on modeling conditions or for modeling
complex geometries. Also, it provides results as accurate as the other strategies when applied to
small deformations or abrupt magnetic pressure pulses. In [3, 108, 50] it is shown a comparative
performance of this approach with the sequential coupling strategy.

In this work we perform all the electromagnetic computations neglecting the workpiece de-
formation. This is done for clarity reasons and also because the results obtained with a static,
un-deformed workpiece are useful for a rough estimation of the parameters involved in an EMF
process. Moreover, the usual uncertainties in the knowledge of some parameters (mechanical
properties of the workpiece, electrical properties of the RLC circuit, etc) can overshadow any
improvement generated by the computationally more expensive sequential coupling.

On the other hand, if we have a precise knowledge of all the EMF parameters and we want
to improve the accuracy of the simulations then, we can consider our results as the first step
of a sequential coupling strategy. That is, we transfer the force calculated on the un-deformed
workpiece to the mechanical model. The mechanical model deforms the workpiece until it reaches
some prefixed value. Then, we input the new geometry into the electromagnetic model and so on.

In this sequential strategy is not necessary to solve the electromagnetic equations each time
step. It is only necessary to solve them when the deformation of the workpiece produces ap-
preciable changes in the electromagnetic parameters of the system coil-workpiece (inductance,
resistance and Lorentz force). Therefore, we do not have to worry about numerical instabilities
caused by a wrong choice of the time step.

5.3 Electromagnetic model

The electromagnetic model followed in the present work starts by solving the time-harmonic
Maxwell’s equations in a frequency interval. For each frequeneye compute the electromag-
netic fields inside a volume containing the coil and the workpiece. WiB\(r, w) andH(r,w)

we compute the inductande,,(w) and the resistanc®.,, (w) of the system coil-workpiece. With

L.y (w) and R.,,(w) we obtain the intensity(¢) flowing through the coil. Finally, with (¢) and

the magnetic field(r,w) on the surfaces of the workpiece we can calculate the Lorentz force
that drives the EMF process.
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In section 5.3.2 we explain how to compute the inductahGgw) and the resistancg..,, (w)
with the electromagnetic fieldS(r, w) andH(r,w).

In section 5.3.4 we show how to obtain the intengity) with the calculated values df..,, (w)
and Ry (w).

Finally, in sections 5.3.5 and 5.3.6 we compute the Lorentz force acting on the workpiece with
the Fourier transform of (¢) andH(r, w).

Figure 5.1: RLC circuit used to produce the discharge current. In the shadowed rectangle at the left is
represented the capacitor bank with capacitafige inductancel., and resistanc&,;. In the shadowed
rectangle at the right is represented the system formed by the coil and the metal workpiece. This system has
an inductancd..,, and a resistanc&,.,,. Between both rectangles are represented the cables connecting
the capacitor bank with the coil. These cables have an inductangeand a resistancg,.,,, .

5.3.1 Inputdata
The input data required for computing the Lorentz force are:
a) Geometry and material properties of the coil and the workpiece.

b) Electrical parameters of the capacitor bank (capacité@hgenductancel. ., resistance?.,
and initial voltagel}).

¢) Electrical parameters of the cables connecting the coil with the capacitor bank (inductance
L., and resistanc&..,).

From the data in a) we calculate the inductaii¢g and the resistancg,,, of the system coil-
workpiece as a function of the frequenecy With L., (w) and R, (w) and the data in b) and c)
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we find the intensity/ (¢) flowing through the RLC circuit of fig. 5.1. Finally, with(¢) and the
magnetic field calculated with the data in a) we obtain the Lorentz force acting on the workpiece.
In the following we analyze these steps in more detail.

5.3.2 Inductance and resistance of the system coil-workpiece

The repulsive force between the coil and the workpiece is a consequence of the time varying
currentI(t) generated in the RLC circuit of fig. 5.1. To calculdtg) we first need the values

of the inductancd..,, and the resistancg.,,. We do not take into account the capacitance of

the system coil-workpiece because it is negligible in the geometries and at the frequencies usually
involved in electromagnetic forming. The same is applicable to the capacitance of the cables
connecting the coil with the capacitor bank.

We consider the set coil-workpiece as a generic, two-terminal, linear, passive electromagnetic
system operating at low frequencies. We can imagine the coil and the workpiece inside a volume
v with only its input terminals protruding. Under these assumptions, the induclapcand the
resistanceR,.,, at the frequency can be calculated with [42]

L) = g | wiHGe) P, (5.1
Rew(w) = \Ii\Q/ o[ B(r, )[2 dv (5.2)

where I, is the current injected into the system through the input terminals,the magnetic
permeabilityH(r, w) is the magnetic fieldy is the electrical conductivity anB(r, w) is the elec-

tric field. The fieldsE(r, w) andH(r,w) are obtained after solving the time-harmonic Maxwell’s
eqguations at a given frequeney For each frequenay we have a different value df.,, andR,.,,.

The injected current, is a dummy variable that is only used to drive the problem. It can take any
value without affecting the final result of (5.1) and (5.2).

5.3.3 Intensity in the RLC circuit

In fig. 5.1 is shown a typical RLC circuit used in electromagnetic forming. This circuit has a
resistanceR, an inductancd. and a capacitana@ given by

R= Rcb + Rcon + Rcw;
L= ch + Lcon + Lcwv (53)
C =Cgy.

The values oR and L vary with time because of the deformation of the workpiece. In contrast, the
capacitanc€ remain constant during all the forming process. The interdsityfor all ¢ € [0, oo]
flowing through the circuit of fig. 5.1 satisfies the differential equation

d d, _dI 1
_a(RI)Jr%(L + =1, (5.4)

0 E)C
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with initial conditionsV (ty) = Vp andI(ty) = 0. The initial valuel; represents the voltage at
the terminals of the capacitor. This voltage is related with the energy of the disdAalye

1
Uy = §CV02. (5.5)

To find I(t) with (5.4) we have to know firsk(¢) and L(t) for all ¢ € [0, oc].

If we consider a loose coupling strategy, the functi&ts) andL(¢) are constants and equal to
the valuesR, and L calculated at the initial position with an un-deformed workpiece. Therefore,
we have thaR(t) = Ry andL(t) = Lg forall ¢ € [0, co]. Under these circumstances, the solution
of (5.4) is given by

_ Yo —Yot s
I(t) = oL e sin(wot), (5.6)
where
1 Ro \?

=2 =/ — | — 4
WO = AT \/LOC’ <2L0> ®.7)

and R

— 0

=55, (5.8)

If we consider a sequential coupling strategy then we solve (5.4) in time intétyals1]. This

time intervals correspond with the time periods between two successive calls to the electromag-
netic equations. We can assume thét) and R(t) are constants inside eaf, ;1] and equal

to the valuesk; and L; calculated with the deformed workpiecetat In a sequential coupling
strategy , the expression (5.6) is the solution of the first time intéryath |.

5.3.4 Capacitance and frequency

Equation (5.6) shows that if we want to know the intendity) we have to know first the values
of wg, C, Vi, Lo andRy. The capacitanc€ and the voltagé) are given data. The inductante
and the resistanck, can be obtained with the help of (5.1), (5.2) and (5.3). The only value that
remains unknown isy.

The frequency. is determined by the capacitan€g, for a given set of coil, workpiece and
connectors. The frequenay; is the solution of the implicit equation

CO(W) —Cop = 0, (5-9)
where the relatioi’y (w) is obtained after reordering expression (5.7)

. 4L0(w)
 4w?Lo(w)? + Ro(w)?’

C()(w) (510)

In the case of using a sequential coupling strategy, we must take into account that the functions
L;(w) and R;(w) are different in eacli;, t;1] and, as a consequence, the frequencis also
different in each time interval.
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5.3.5 Lorentz force on the workpiece

To calculate the electromagnetic force acting on the workpiece we made the following assump-
tions:

i) The dimensions of the system coil-workpiece are small compared with the wavelength of
the prescribed fields. The wavelengths involved in EMF are in the orderof 03 — 10° m
with frequencies in the order of ~ 103 — 10* Hz. As a consequence of this, we can
consider the displacement current negligibl® /0t ~ 0 and to treat the fields as if they
propagated instantaneously with no appreciable radiation [102, 42].

i) The workpiece is linear, isotropic, homogeneous and non-magneticq). These prop-
erties represent all the workpieces used in this work (aluminium alloys). If we want to con-
sider more complex materials, we must add to (5.11) the surface and volumetric integrals
described in [102].

i) The modulus of the velocity at any point in the workpiece is always much lesgthanc
107 m/s. In fact, the velocities involved in EMF are in the ordepdf~ 102 — 103 m/s. This
circumstance allows us to neglect the velocity terms that appear in the Maxwell’'s equations
when working with moving media [59].

Under hypothesis i)-iii) we can express the total force acting on the workpiece by [65]

F = /va dv :/(J x B) dv, (5.11)

v

wheref, is a volumetric force densityl = oE is the current density induced in the workpiece
andB = uoH is the magnetic flux density. If we use the vector identity

B><V><B=V<;|B|2>—(B'V)B, (5.12)

and recalling that, by hypothesis i) and ii), the Ampere’s circuital law is
V x B = pugd, (5.13)

we can write the force densify, as
1 5 1
f,=-V|—|B|"|+—(B-V)B. (5.14)
2410 1o

In EMF the last term of the right hand side is usually negligible compared with the first. This is so
because the field is almost unidirectional in the area of the workpiece just in front of the coil.

In this area is where the main contribution to the total force is produced and also where the higher
values of the Lorentz force are found. If a fidRlis unidirectional then, by the Gauss law for
magnetismV - B = 0), it will not change in the direction dB. If a field B only changes in the
directions perpendiculars 8 then we have thafB - V) B = 0. In other words, to neglect the
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last term of (5.14) is equivalent to neglect the compressive and expansive forces parallels to the
workpiece surface and to state that, in EMF, the Lorentz force is due to the change in magnitude
of the magnetic field along the thickness of the workpiece. Therefore, in EMF, we can simplify
(5.14) to

£~V <1 ]B\2> . (5.15)

240

Sometimes, the computational codes that solve the mechanical equations work more easily with
pressures than with volumetric forces densities. In such cases, it is advantageous to express the
force acting on the workpiece as a magnetic pressure applied on its surface. This magnetic pressure
is the line integral of (5.15) from a poimt placed on the workpiece surface nearest to the coil to
a pointr, placed on the opposite side of the workpiece. The path to follow is a straight line with
a direction defined by the surface normat@t The magnetic pressure is then given by

Pleot) = [ fds = 5 (1Bl O -~ [Bler.0)). (5.16)

ro

which it can be also expressed as a functiofafecalling that, by hypothesis (iB = poH

1
P(ro,t) = 5 po ([H(ro, ) — [H(r,, 0)). (5.17)
We can conclude from equation (5.17) that, under hypothesis i)-iii), we only need to|ki@wt)|
on the surfaces of the workpiece to characterize electromagnetically the EMF process.

5.3.6 Lorentz force in frequency domain

The fieldsH(r,¢) of (5.17) can be represented in frequency domain using the inverse Fourier
transform as follows

H(r,t) ! /Oo [H,(r,w) I(w)] “! dw, (5.18)

:g .

wherei = y/—1 is the imaginary unitH, (r,w) is the magnetic field per unit intensity at the
frequencyw and I(w) is the Fourier transform of the intensiti(¢) flowing through the RLC
circuit

I(w) = / I(t)e ™t (5.19)
If the intensityI(t) is given by (5.6) then the analytical expressior @b) is
1 1 1
(W)= = - 2
(@) 2<w—|—wo—i'yo w—wo—i70>’ (5.20)

wherewy is the frequency (5.7) ang is defined in (5.8). The magnetic field per unit intensity

H, (r,w) is defined by

H(r,w)
I, ’

whereH(r,w) and/,, are the same magnetic field and intensity as the ones appearing in (5.1).

H,(r,w) = (5.21)
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We can write the Fourier transform &f(r, ¢) as it is shown in (5.18) because, by hypothesis
i) and ii), we are in the quasi-static regime and in the presence of linear materials. This implies
that the magnetic field has almost a constant phase inside the system coil-workpiece and that
it is linearly related with the current intensity. Also, it implies that the magnetic field and the
current are in phase and, as a consequdfgér, w) is approximately a real numbef,, (r,w) ~
Real [H,(r,w)]. The advantage of usirll,, (r,w) is that we can know the magnetic field inside
the system coil-workpiece for any value of the current inten&jty) once it is known for,,.

5.4 Numerical analysis tools

Two different numerical tools are used to simulate the electromagnetic forming process. One
solves the electromagnetic equations and the other solves the mechanical equations. The input
data a)-c) (section 5.3.1) are provided to the electromagnetic code to obtain the magnetic pressure
(5.17) on the surfaces of the workpiece. Afterwards, this magnetic pressure is provided to the
mechanical code to obtain the deformation workpiece.

The electromagnetic equations are solved with the in-house code ERMES. The numerical
formulation behind ERMES is explained in detail in chapter 3. Its main features and user manual
are the objective of appendix A.

The mechanical equations are solved with the commercial software STAMPACK [101]. This
numerical tool has been applied to processes such as ironing, necking, embossing, stretch-forming,
forming of thick sheets, flex-forming, hydro-forming, stretch-bending of profiles, etc. It can solve
dynamic problems with high speeds and large strains rates, obtaining explicitly accelerations,
velocities and deformations. In this work, our emphasis is on the electromagnetic part of the EMF
process, then, we do not go further into the numerical formulation behind STAMPACK. For a
detailed information about this formulation see [11].

5.5 Application example I. Sheet bulging.

In this section we apply the electromagnetic model explained above to the EMF process presented
in [104]. This process consists in the free bulging of a thin metal sheet by a spiral flat coil.
Our objective is to find the magnetic pressure acting on the workpiece for the given value of the
capacitanc€’,, = 40 uF and the initial voltagé; = 6 kV.

5.5.1 Description of the system coil-workpiece

The spiral flat coil appearing in [104] can be approximated by coaxial loop currents in a plane.

Thus, the problem can be considered axis symmetric. The dimensions of the coil and the work-
piece are shown in fig. 5.2. The diameter of the wire, material properties and horizontal position-
ing of the coil are missed in [104]. We used the values given in [27], where the same problem is
treated and it is provided a complete description of the geometry.
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The coil is made of copper with an electrical conductivityyof 58¢6 S/m. The workpiece is
a circular plate of annealed aluminum JIS A 1050 with an electrical conductivity-086e¢6 S/m.
Itis assumed = ¢y andu = pyg in the coil and in the workpiece.

The RLC circuit has an inductandgy, + L., = 2.0 uH, aresistanc&., + Recon = 25.5 mQ2
and a capacitand€,, = 40 uF. The capacitor bank was initially charged with a voltagé/pt=
6 kV.

L, P |£,|
Y (P
06600

X | th | |
1 ! "
; I.int I i :
i I.ext I :
| pr 1

Figure 5.2: Dimensions of the system coil-workpiece. Data taken from [104, 27]. Number of turns of
the coil N = 5. Pitch or coil separatiop = 5.5mm. Diameter of the coil wired = 1.29mm (16
AWG). Maximum coil radius-.,; = 32 mm. Minimum coil radius-;,,; = 8.71 mm. Separation distance
between coil and metal shelet= 1.6 mm. Thickness of the sheet= 0.5 mm. Radius of the workpiece
Ryp = 55mm.

5.5.2 Finite element model

Although, undoubtedly, in this case the best option is to perform the computations with an axis
symmetric two-dimensional computational tool, we used the in-house three-dimensional code ER-
MES. The advantages are that we do not need to build a new tool and that we can solve more
general situations with the same software and the same file exchange interface between ERMES
and STAMPACK. On the other hand, for this specific problem, our tools are computationally less
efficient.

We employed the geometry shown in fig. 5.3 to compute the electromagnetic fields with
ERMES. The geometry is a truncated portion of a sphere with an angle®of\2@ drive the
problem with a current density uniformly distributed in the volume of the coil wires. In the
colored surfaces of fig. 5.3 we imposed the regularized perfect electric conductor (PEC) boundary
conditions (see chapter 3)

V- (eE) =0,

5.22
nxE=0. ( )

It is not necessary to impose more boundary condition if we apply in all the FEM nodes of the
domain a change of coordinates from cartegiép, F,, F.) to axis symmetric around the Y axis
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(E,, E,, Ey). That s, at the same time we are building the matrix, we enforce at each node of the
FEM mesh the following

B, #/p0 2/p\ [ Es
E, | =1—-2/p0x/p E, (5.23)
E, 0 10 E.

wherez and z are the cartesian coordinates of the node and /x2 + 22. We preserve the
symmetry of the final FEM matrix applying (5.23) and its transpose as it is explained in [7].

The advantage of using (5.23) is thdt = 0 andE, = 0 in axis symmetric problems. This
fact reduces by a factor of three the size of the final matrix and also the time required to solve
it. Therefore, we can improved noticeably the computational performance of ERMES in axis
symmetric problems with a simple modification of its matrix building procedure. In a desktop
computer with a CPU Intel Core 2 Quad Q9300 at 2.5 GHz and the operative system Microsoft
Windows XP, ERMES requires less than 30 s and less than 500 MB of memory RAM to solve
each frequency.

Figure 5.3: Geometry used in ERMES to compute the electromagnetic fields in the free bulging process of
a thin metal sheet by a spiral flat coil.



88 CHAPTER 5. ELECTROMAGNETIC METAL FORMING

5.5.3 Intensity through the RLC circuit

Once the initial geometry of system coil-workpiece is properly characterized, we have to find the
intensity I(¢) flowing through the RLC circuit. As it is mentioned in section 5.3.4, if we want
to know I(t) we have to calculate first the frequeney. This frequencywy is the solution of
equation (5.9) withC, = 40 uF. We solved (5.9) using the following iterative procedure:

1) We replace inCy(w) the frequency which satisfieds= 7, wherer is the thickness of the

workpiece and is the skin depth
=4/ ! . (5.24)
TV WO

2) We compareCy(w) with C,. If Co(w) > Cy then we must increase the valuewaf If
Co(w) < Cg then we must decrease the valuewflf Cy(w) = C, then we have found
the solutionuy.

3) If the solution is not achieved then we replacels(w) the new incremented/decremented
value ofw and go to step 2). The procedure is repeated until the solution is achieved.

In fig. 5.4 is shown the capacitan€g as a function of the frequenay and the solutiong =

16.35 kHz for the given capacitandg., = 40 uF. We have choose an initial frequency satisfying

0 = 7 because we have observed in the literature that the typical frequencies employed in EMF
lay in the interval

1)
0.5 < - < 1.5. (5.25)

In the present case, we have that the skin depih-isl.3 7.

As it is indicated in equation (5.10), we need to knfw(w) and Ry(w) to calculateCy(w).
These functions are defined in (5.3) and they represent the total inductance and the total resistance
of the RLC circuit of fig. 5.1. We assume that the given valligs + L.,, = 2.0 uH and
R, + Reon = 25.5mS2 do not change with the frequency. On the other hdng, andR,,, are
frequency dependant and they have to be calculated with the help of (5.1) and (5.2). In the volume
of the coil, equation (5.2) is replaced by

1 J|?
Rey(w) = |In|2/v Tdv (5.26)
wherelJ is the imposed current density ands the conductivity of the coil. We recall that if we
want to obtain a volume integral for all the space then we must multiply by 18 P£3&) any
volume integral calculated in the portion of truncated sphere of fig. 5.3. The values of the total
inductancel, and the total resistandg, as a function of the frequenayare shown in fig. 5.5
and in fig. 5.6.

If we substitute in equation (5.6) the calculated valuessof= 271y, Lo(wy) = 2.35 uH
and Ry(wp) = 38.1mf2 and the given values af’;, andV; then we obtain the intensity(¢)
flowing through the coil. In fig. 5.7 we compare the intensity calculated in [104] with the intensity
calculated in this work.
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Figure 5.4: Capacitance”, as a function of the frequenay for the un-deformed workpiece placed in
its initial position. The functionCy(v) is obtained from equation (5.10). If the capacitor bank has a
C., = 40 uF the oscillation frequency of the RLC circuitig = 16.35 kHz.
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Figure 5.5: Total inductancd.g = L., + Leon + Lew @s a function of the frequeneyfor the un-deformed
workpiece placed in its initial position. The inductance of the system coil-workgiggés calculated with
the equation (5.1). The value &t,, varies from0.86 ;H at the lower frequencies 35 pH at the higher
frequencies. We assumed that the inductance of the exterior drguit L., = 2.0 uH remains constant

in this frequency band.
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Figure 5.6: Total resistancé?y = R, + Rcon + Rew @s a function of the frequeneyfor the un-deformed
workpiece placed in its initial position. The resistance of the system coil-workpiggeés calculated with
equation (5.2) in the volume of the workpiece and with equation (5.26) in the volume of the coil. The value
of R.,, varies from8.4 m(} at the lower frequencies 3.2 m(2 at the higher frequencies. We assumed that
the resistance of the exterior circltt, + R.., = 25.5 M2 remains constant in this frequency band.

Takatsu et al.
251 = This work

50 100 150 200 250
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Figure 5.7: Intensity calculated in Takatsu et al. [104] compared with the intensity calculated in this
work. We have graphed expression (5.6) with= 6kV, C, = 40 uF, vy = 16.35kHz, wy = 271,
Lo =2.35uHandRy = 38.1 mQQ.
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5.5.4 Magnetic pressure on the workpiece

If we want to calculate the magnetic pressure (5.17) acting on the workpiece then we need the
fieldsH(ro, t) andH(r., t), wherer is located on the surface of the workpiece nearest to the coil
(Sp) andr is located on the surface of the workpiece farthest to the 89)l. (The fieldsH(r, ¢)
andH(r,,t) are obtained from (5.18) with the Fourier transform/¢f) and the magnetic fields
per unit intensityH,, (ro, w) andH,,(r;,w). In fig. 5.8 are showfH,,(ry,w)| and|H, (r,w))]
as a function of the frequeney In fig. 5.9 are showhH,, (ro, wo) I (w)|, |Hy(ro,w)) I(w)| and
|H,(r-,w)) I(w)| as a function of the frequeney It can be shown (see fig. 5.9) that, in this EMF
process, we have

H, (rg,wp) [(w) ~ Hy(rg,w) I (w),

(5.27)
[Hu (v, wo) I(w)] > [Hp(r7, w) I(w)].
If we use (5.27) in (5.18) and (5.17) then we can write the magnetic preBguset) as
1
P(ro,t) = 5 po|Hn(ro, wo) I(1)[*, (5.28)

2

This simplification of (5.17), which is possible when (5.27) is accomplished, is very useful in a
sequential coupling strategy. This is so because, in the next calls to the electromagnetic model, we
will only need to find the magnetic field for one frequency, which makes the computations more
efficient.
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Figure 5.8: Modulus of the magnetic fields per unit intensii§,, (rq,w)| and|H,,(r, w)| as a function of

the frequency. The pointr is located onS,. The pointr,, is located ornS’, on the opposite side of where
ro is placed.
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Figure 5.9: Modulus of the magnetic fieldd,, (ro, wo) I(w)|, [Hy(ro,w) I(w)] and |H, (r,,w) I (w)]
as a function of the frequenay. The constanH,,(ro,wy) is the magnetic field per unit intensity at the
frequencywy in the pointry. The pointry is located onSy. The functionl(w) is the Fourier transform
of the intensityI (¢). The analytical expression dfw) is given by (5.20). The functiobd,,(ro,w) is the
magnetic field per unit intensity at the poirf. The functionH,,(r,,w) is the magnetic field per unit
intensity at the point.. The pointr, is located onS.., on the opposite side of wherg is placed. In this
graph we can see thifl,, (ro,wo) I(w)| ~ |H, (ro,w) I(w)| and|H,, (ro,wo) I(w)| > |[H, (r;,w) I (w)].

In fig. 5.10 is shown the total magnetic force acting on the workpiece as a function of time.
The total magnetic force is the integral of the function (5.28) over the whole sufiacéVe
computed the total force using (5.28) wilh, (ry,wy) andI(t) calculated for the un-deformed
workpiece placed in its initial position.

In fig. 5.11 is shown the radial distribution of the magnetic pressure (5.28) when the coil
current reaches its maximufy,,, = 21.83kA att = 14.5us. In fig. 5.11 is also shown the
magnetic pressure obtained in [104] when the coil current calculated there reaches its maximum
att = 15.4 us. In fig. 5.11 we see that, apart from a difference in the positioning of the caoil, there
is a difference in the magnitude of the magnetic pressure. The same difference is also observed in
[100, 99], where this EMF process is simulated using two different approaches. One is based on
FDTD (Finite Difference Time Domain) and the other on FEM (Finite Element Method). In the
FDTD approach they used a similar procedure to that employed in [104]. In the FEM approach
they used the freeware software FEMM4.0 [26]. In fig. 5.12 and fig. 5.13 we show the components
of the magnetic flux densit§g, and B, calculated with FEMM4.0, FDTD and ERMES when the
coil currentisl = 20.81 KA. In these figures we see that the results given by both FEM codes are
similar between them but different from the results given by the FDTD method.
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Figure 5.10: Total magnetic force calculated in Takatsu et al. [104] compared with the total magnetic force
calculated in this work.
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Figure 5.11: Radial distribution of the magnetic pressure calculated in Takatsu et al. [104] when the coil
current reaches its maximum £ 15.4 us) compared with the radial distribution of the magnetic pressure

calculated in this work ., = 21.83 kA att = 14.5 us).
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Figure 5.12: Radial component of the magnetic flux density calculated in [100] with FEM (FEMM4.0)
and FDTD compared with the radial component of the magnetic flux density calculated in this work with
ERMES.
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Figure 5.13: Axial component of the magnetic flux density calculated in [100] with FEM (FEMM4.0)

and FDTD compared with the axial component of the magnetic flux density calculated in this work with
ERMES.
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The differences between the FDTD and the FEM approaches can be attributed to the use of a
coarse mesh in the FDTD method. To show this, we solved a problem similar to the one appearing
in this section (see fig. 5.2) but with a fixed workpiece of thickness 3.0 mm, gap distance
h = 2.9mm and initial voltagd/, = 2kV. We calculated in this set-up the radial component of
the magnetic flux densitys,. Then, we compared our results with the simulations performed in
[99] for different FDTD mesh sizes and also with the measurements of [104] (see fig. 5.14).

In fig. 5.14 we see that when the FDTD mesh is coarse (6 elements along the thickness of
the sheet) the results of the FDTD simulations are in good agreement with the measurements but
they are different from the results obtained with ERMES. On the hand, if we improve the FDTD
mesh to 20 elements along the thickness of the sheet, the results of the FDTD simulations are
similar to the results obtained with ERMES but they are different from the measurements. This
unusual behavior can be explained if we consider gt and L., are undervalued. If we add,
for instance, only 1 meter of 16 AWG copper witk(, = 13.2m¢2, L1, = 1.5 uH [32]) to the
total resistance and the total inductance of the RLC circuit then, the results obtained with ERMES,
and with the improved FDTD mesh, are in agreement with the measurements and also with the
fact that improving the mesh must improve the results.

1.5
1 -
- =
m® % 3
0 3
H 3
0.5+ O Measured 3
£ %
o FDTD ( 6x110) "\ O
- FDTD ( 20x110) %) o
—— ERMES
.................. ERMES (+1m wire) -

0 5 10 15 20 25 30 35 40 45
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Figure 5.14: Radial component of the magnetic flux densfty for the coil of fig. 5.2 with a fixed work-

piece of thickness = 3.0 mm, gap distancé = 2.9 mm and initial voltagd/;, = 2kV. Measurements are

from [104]. FDTD (6x110) represents the simulations performed in [99] with a FDTD mesh of 6 elements
along the thickness of the sheet and 110 elements along the radial direction. FDTD (20x110) represents the
simulations performed in [99] with a FDTD mesh of 20 elements along the thickness of the sheet and 110
elements along the radial direction. ERMES represents the simulations performed in this work. ERMES
(+1m wire) represents the simulations performed in this work adding the DC resistance and the inductance
of 1 meter of 16 AWG copper wireH;,,, = 13.2m, L, = 1.5 uH [32]) to the total inductance and the

total resistance of the RLC circuit.
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5.5.5 Deflection of the workpiece

We introduced in STAMPACK the magnetic pressure calculated in section 5.5.4 to obtain the de-
flection of the metal sheet. STAMPACK interprets the magnetic pressure as a mechanical pressure
which deforms the workpiece. The results are shown in fig. 5.15.

In STAMPACK is not available the mechanical model used in [104]. Therefore, we had to
adapt the parameters of the available model to reproduce the behavior of the material used in
[104]. We considered the workpiece as an aluminium alloy with a Young’s moduks59 GPa,
densityp = 2700 Kg/m? and Poisson’s ratio = 0.33. STAMPACK used the Voce hardening
law

Ocs = 0yo + (om — oyo) (1 — e7"7%) (5.29)

whereo, is the Cauchy stress, o = 34.9 MPa is the yielding tensile strength,, = 128.8 MPa

is the ultimate tensile strength, = 12.0 is the isotropic hardening parameter ang is the ef-

fective plastic deformation. STAMPACK also used a damping proportional to the nodal velocity
(F; = —m;v;) with n; = 2aM;, beinga = 138.6 and M; the lumped mass at the i-th node.

The constant parameters of the mechanical model were obtained introducing in STAMPACK the
magnetic pressure calculated in [104]. Then, we adjusted the parameters until achieve with STAM-
PACK the same deflection of the disk as the one measured in [104].
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Figure 5.15: Deflection of the workpiece at the positions= 0 mm andz = 20 mm as a function of time.
The results of this work are compared with the measurements of Takatsu et al. [104].
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5.6 Application example Il. Tube bulging.

In this section we apply the electromagnetic model of section 5.3 to the EMF process presented in
[116]. This process consists in the expansion of a cylindrical tube by a solenoidal coil. In [116]
is analyzed the tube bulging process under different working conditions but, here, our objective is
to find the magnetic pressure acting on the workpiece when the capacitarige=s160 uF, the

coil length is¢ = 200 mm and the initial charging energy & = 2 kJ.

5.6.1 Description of the system coil-workpiece

We take the geometrical description of the solenoidal coil and the tubular workpiece from [116].
The coil is approximated by coaxial loop currents, concentric with the workpiece and placed inside
it. Thus, the problem is considered axis symmetric.

The coil is made ofi = 2.0 mm diameter copper wire. The outer diameter of the coil is
D, = 37.0mm. The separation between each loop is= 3.0mm. The length of the coil is
approximately? = 200 mm and the number of turns 1§ = 68. We assume an electrical conduc-
tivity for copper ofo = 58e6 S/m.

The workpiece is a cylindrical tube made of annealed aluminum A1050TD with an outer
diameterD,,, = 40.0 mm and a thickness of = 1.0 mm. We assume an electrical conductivity
for the workpiece ot = 36e6 S/m. We also assume that= ¢y andu = g for workpiece and
coil.

In [116] is said thatlL., + L.o, and Ry, + Reo, are less thai.0 uH and 2.0 mS) respec-
tively. But, in [65], where it is used an EMF set-up similar to that used in [116], it is reached to
the conclusion that these quantities underestimate the inductance and the resistance of the wires
connecting the capacitor bank with the coil. In [65] is found thaf + L.,, = 2.5puH and
Ry + Reon, = 15.0mE are more realistic values. In this work we employ thg + L.,, and
Rep + Reon given in [65].

Figure 5.16: Geometry used in ERMES to compute the electromagnetic fields of the tube bulging process
analyzed in [116].
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5.6.2 Finite element model

The FEM model used for the tube bulging process is similar to that described in section 5.5.2. We
computed the fieldE(r,w) andH(r,w) in the geometry of fig. 5.16. The geometry represents a
truncated portion of one turn of the coil with an angle of.2The problem is driven by a current
density uniformly distributed in the volume of the wire. We applied the PEC boundary condition
(6.6) in the colored surface of fig. 5.16. We imposed the change of coordinates explained in
section 5.5.2 at each node of the FEM mesh. One of the advantages of using the geometry of fig.
5.16 is that we can obtaih,,, andR,,,, for any coil length. We only need to multiply the integrals
(5.1) and (5.2) performed in the volume of fig. 5.16 8y (360°/20°), whereN is the number of

turns of the caoil.

5.6.3 Intensity through the RLC circuit

We follow the steps given in section 5.5.3 to compute the intensity flowing trough the coil of length
¢ =200mm (V. = 68 turns) when the capacitances, = 160 uF and the initial charging energy
is Up = 2kJ. We found thaty = 4.6 kHz, Vy = 5kV, Ly = 6.9 uH and Ry = 101.1 mS2, being
LO = ch + Lcon + Lcw andRo = Rcb + Rcon + Rcw-

In [116] is measured the maximum current intensity for several coil lengths and capacitances
C« when the initial charging energy i§ = 1kJ. In fig. 5.17 we compare these measurements
with the results of this work.
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Figure 5.17: Maximum current intensity for several coil lengths and capacita@ggsThe initial charging
energy isUy = 1kJ in all the cases. The measurements from [116] are compared with the results of this
work.
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5.6.4 Magnetic pressure on the workpiece

In fig. 5.18 we show the modulus of the magnetic figHs, (ro, wo) I (w)|, |Hy(ro,w) I(w)| and

|H, (r,w) I(w)| as a function of the frequenay, where the notation used here is the same as

in section 5.5.4. In this case we can not apply the approximations (5.27) and (5.28) and we must
employ the equations (5.18) and (5.17) to calculate the magnetic pressure acting on the workpiece.

In fig. 5.19 we show the magnetic pressure calculated in this work compared with the magnetic
pressure calculated in [116]. We had to average the magnetic pressure over the surfaces of the
workpiece to compare our results with those provided by [116].

The differences shown in fig. 5.19 can be attributed to the features of each electromagnetic
model. In [116] is considered the movement of the workpiece, assumed a uniform current density
along all the the length of the coil and an exponential decay of the magnetic field from the inner
surface to the outer surface of the metallic tube. On the other hand, we neglected the workpiece
deformation, considered a more realistic coil geometry and calculated numerically the magnetic
field on the surfaces of the metallic tube.
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Figure 5.18: Modulus of the magnetic field¥1,, (v, wo) I (w)|, |Hn(ro,w) I(w)| and|H,, (r,,w) I (w)| as
a function of the frequency.

5.6.5 Deflection of the workpiece

We calculated the expansion of the workpiece using the mechanical model explained in section
5.5.5. The material properties and constant parameters are the same as in section 5.5.5 except for
the damping coefficient, which now iscc = 693.1.

The parameters of the mechanical model were obtained by introducing in STAMPACK the
magnetic pressure calculated in [116]. Then, we adjusted the parameters until reproduce the form-
ing velocity given in [116].
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Figure 5.19: Magnetic pressure calculated by Zhang et al. [116] compared with the magnetic pressure
calculated in this work.

In fig. 5.20 we compare the deflection of the workpiece deduced from [116] with the deflection
of the workpiece calculated in this work. In [116] is not provided the deflection of the workpiece,
we obtained it by integrating in time the forming velocity facilitated there.

.................. Zhang et al.
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Figure 5.20: Deflection of the workpiece as a function of time. The results of Zhang et al. [116] are
compared with the results of this work.
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5.7 Optimum frequency and optimum capacitance

The frequency at which the discharge current oscillates is a key parameter in the design of an
electromagnetic forming system. In [34, 116, 41] it is shown that, for a fixed eriég@nd a

given set of capacitor bank, connectors, coil and workpiece, there exist a frequgratywhich

the maximum deformation of the workpiece is achieved. The use of this optimum frequency saves
energy and prevents the premature wearing of the coil.

The frequency of the dischargeis controlled by the capacitancg,, for a given set of ca-
pacitor bank, connectors, coil and workpiece. The relationship bet@geandv is described
by equations (5.7) and (5.10). Therefore, the search for the optimum frequgnisyequivalent
to the search for the optimum capacitari¢g,. Usually, in EMF, there is only a discrete set of
capacitance§’, available in the capacitor bank. Then, once we have detern@igdve must
search for the closest availallg;. In this work, we will refer indistinctly to the available value
or to the theoretical value as the optimum capacitaiige

The optimum capacitance can be obtained computing the deformation of the workpiece for the
availableC,;, using the same initial charging energy in all the numerical simulations. There-
after, we select the capacitan€g, which produces the maximum deformation. This is the ap-
proach followed in [34, 116, 41]. We can reduce the number of electro-mechanical simulations if
we make an initial estimatio@;, close to the optimum valu€,,,. In fact, if C;, is close enough,
we can findC,, with only three simulations. For instance, suppose tgtfalls between two
available capacitance&$; andC,, beingC; < Cs. We make two electro-mechanical simulations
and obtain that the deflections of the workpiece satigfy< h,. Afterwards, we take a capaci-
tanceCs which is the lower value available such@s < Cjs. If we compute thahs > h3 then
(s is the optimum capacitance. In this case, we have required only three electro-mechanical sim-
ulations. On the other hand, /it < hs3, we must keep on testing with successivg until find a
n such ash,, > h,+1. When this happens, we have tligt is the optimum capacitance andt 1
the number of electro-mechanical simulations. Therefore, the lig{fes the less: + 1 is.

The simplest way to find an initial guess is derived from expression (5.25). As it is mentioned
in section 5.5.3, we have observed in the literature that the typical frequencies employed in EMF
lay in the interval (5.25). Therefore, we can consider an initial estimatjps the frequency
which satisfie® = 7.

We can improve the initial guess if we have prior knowledge about the workpiece. For instance,
in [34], itis stated that the optimum frequency for the compression of a tube of thickre@snm
made of aluminium AA3003 satisfidgs= 0.66 7. If we are going to use the same workpiece in
a different EMF process (different coil or capacitor bank) we can try the frequency which satisfy
0 = 0.66 7 as the initial guess. The same can be applied to the workpiece used in [116], where it
is found that the optimum frequency for the expansion of a tube of thicknesd mm made of
aluminium A1050TD satisfie§ = 0.9 7.

In the case we do not posses any prior knowledge about workpiece we propose a method to
find v;4. The idea is to look for the frequency which produces the maximum momeRtimthe
first n semi-periods, where a semi-period is half a pefig@ = 1/2v. That is, we look for the
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frequency which makes maximum the quantity

n

AP, — / Y P - dt, (5.30)
0

whereF,; is the total magnetic force acting on the workpiece &, is the momentum pro-
duced by this force in the first semi-periods. The numberdepends on the application and we
obtained the best results with the minimum natural number which accomplish

> 4L0 Voo ’
= RO

n

(5.31)

where Ly and Ry are the inductance and the resistance defined in section 5.3.3.at&lthe
frequency which makes maximum the quantt¥ ... The quantityAP ., is obtained whem —

oo in (5.30). Ly and Ry are evaluated at the frequengy,. The expression (5.31) comes from
reordering(n/2v) > (1/v0), wherey, is defined in (5.8), and it represents the minimum number
of semi-periods required to release more than 80% of the total momehiRuy.

In summary, we first locate the frequengy, which makes maximum the quantityP ..
Second, we compute with (5.31) atv,,. Finally, v;, is the frequency which makes maximum
AP, beingn the natural number calculated in the second step. All this process is performed
neglecting the workpiece deformation. We do not require any additional simulation. We are using
the data obtained in the initial frequency sweep of our electromagnetic model. It takes only a few
seconds to compute all the integrals and obtgin In the next section we apply this method to
two particular examples.

5.8 Optimum capacitance estimation

In this section we are going to obtain an initial gué$g for the tube bulging process analyzed in
[116] and for the tube compression process analyzed in [34]. We apply the method proposed in
section 5.7 to calculat€’,.

5.8.1 Tube bulging

In [116] is analyzed the expansion of a tube by a solenoidal coil under different working condi-
tions. They used several coils with lengths- {100, 200, 300, 400500} mm. They computed

for each coil the bulge height with the capacitance varying ftdm= 20 uF to C,, = 1600 uF.

They obtained the optimum capacitar@g, for each coil length and concluded that the optimum
frequency satisfy = 0.9 7 in all the cases.

We analyzed this problem with the geometry, material properties and FEM model detailed in
section 5.6. We found that the number defined in (5.3%) is 2 in all the cases. Then, the
initial guessC;, is the capacitance which makes maximum the quatiBs defined in (5.30). In
fig. 5.21 we show the momentuthP, as a function of the capacitancg, for the coil lengths
¢ = {200, 300, 400500} mm and the initial charging enerdyy = 2kJ. In Table 5.1 we show the
values ofC;, compared with the optimum capacitancgs, calculated in [116].
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In [116] is also analyzed a coil with = 100 mm andU, = 1kJ. They measure the bulge
height for the capacitanc&s,; = {24, 50, 100, 200, 400, 800,600} xF and they found that the
maximum height was i@, = 200 uF. They also calculated numerically the optimum capacitance
and they obtained a value 6f,, = 310 uF. We calculated the initial guess with the method of
section 5.7 and we found that, = 296 ..F.
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Figure 5.21: MomentumARP; as a function of the capacitancg, for several coil lengths. The initial
charging energy i8/, = 2kJ in all the cases. The initial gues}, is the capacitance which makes maxi-
mum the quantity\AP,. The values of’;; are shown in Table 5.1.

¢(mm) Cop (1F) Cig (1F)
200 160 161
300 100 108
400 70 83
500 40 67

Table 5.1: Optimum capacitance},,) and initial guess(;,) for different coil lengths ).

5.8.2 Tube compression

In [34] is analyzed the compression of a tube by a solenoidal coil for the capacitances{60,

120, 240, 360, 480, 600, 702, 720, 840, 960, 108M0} F and the initial charging energy

Up = 2.02kJ. They computed the radial displacement of the walls of the tube and they found that
the maximum displacement occurs wh@y), = 840 uF, v, = 4.97kHz andd = 0.66 7.
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We analyzed numerically this problem with the geometry of fig. 5.22. The geometry represents
half of the coil and the workpiece placed inside a truncated portion of a semi-sphere with an angle
of 20°. The FEM model used here is similar to that described in sections 5.5.2 and 5.6.2.

The workpiece is made of the aluminium alloy AA3003. The electrical conductivity is
29.4e6 S/m. The outer diameter of the workpiecellg,, = 50.0 mm. Its thickness is = 2mm
and its length i€ = 100.0 mm.

The solenoidal coil is approximated by coaxial loop currents, concentric with the workpiece
and placed outside it. The coil is made of copper with a conductivity ef 58¢6 S/m. The
inner diameter of the coil i®. = 56.0 mm. The separation between each loop is 6.25 mm.
The length of the coil i¥ = 100 mm and the number of turns i§ = 17. The dimensions of
the coil wires are not provided in [34]. We assumed a thicknegsof = 5 mm and a height of
Ay. = 3mm for each coil wire.

In [34] is assumed tha®y = R, + Reon + Rew = 13.03mQ andLg = Lep + Leon + Lew =
1.22 uH for all the frequencies. Therefore, for comparison purposes, we assumed the same.

We found that the maximum akP,, was inv,, = 13kHz. If we substitute/,, Ly and Ry
in (5.31), we have that = 5. Then,C;, is the capacitance which makes maximum the quantity
APs5. In fig. 5.23 we show the momentudPs; as a function of the capacitance;,. The
maximum is aC;; = 805 uF, v;; = 5kHz andd = 0.66 7.

Figure 5.22: Geometry used in ERMES to compute the electromagnetic fields of the tube compression
process analyzed in [34].
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Figure 5.23: MomentumAP;; as a function of the capacitan€g,. The initial guesg’;, is the capacitance
which makes maximum the quantityPs. The value of the initial guess &;, = 805 uF.

5.9 Summary

In this chapter we have presented a numerical model for the simulation of electromagnetic form-
ing processes. This method is computationally efficient because it only requires to solve the time-
harmonic Maxwell equations for a few frequencies to have completely characterized the EMF
system. The approach can be very useful for estimating the order of magnitude of the parameters
of an EMF process, for experimentation on modeling conditions or for modeling complex geome-
tries. Moreover, it can be easily included in a sequential coupling strategy without the worry of
numerical instabilities. The method provides an explicit relation between the capacitance of the ca-
pacitor bank and the frequency of the discharge. This allow us to estimate the optimum frequency
and capacitance at which it is attained the maximum workpiece deformation for a given initial
energy and a given set of coil and workpiece. Also, it offers an alternative to the more extended
time domain methods and a new insight into the physics of EMF. Finally, we have shown that the
numerical results provided by this method exhibit a good correlation with the measurements and
with the theoretical developments of other authors.






Chapter 6

Transfer impedance of cable shields

The transfer impedance of a cable shield is a parameter that characterizes its shielding effec-
tiveness. The aim of this chapter is to adapt a general-purpose finite element formulation to the
computation of this parameter. The advantage of using a numerical approach, instead of the usual
analytical or semi-empirical approaches, is that it reproduces more accurately the high frequency
behavior of the transfer impedance and that it can be applied to a wider variety of situations where
complex geometries and materials may be present. After the presentation of the numerical model
we will apply it to perforated tube shields and we will compare the results of our simulations with
analytical models and measurements found in the literature. The work described in this chapter
has been introduced in [81, 95] and it is part of the project HIRF-SE (High Intensity Radiated
Fields Synthetic Environment), European Community’s 7th Framework Programme FP7/2007-
2013, ref.: 205294.

6.1 Introduction

The transfer impedanc#, (also known as surface transfer impedance) characterizes the quality of
a cable shield. A lower transfer impedance indicates a good shielding against interfering electro-
magnetic fields. This concept was initially introduced by Schelkunoff in [94] and it is an intrinsic
parameter that represents, independently of environmental factors, the shielding effectiveness of a
cable shield. Also, the measurementAfis relatively easy to perform and the experimental setup
provides accuracy and repeatability (for a review of measurements methods see for instance [4]).
The knowledge of7, is important because it determines the coupling of interference to the
wires inside the cable shield. An interference current will be induced in the shield of a cable which
is exposed to an electromagnetic field, either because the cable acts as an antenna or because the
(grounded) shield is part of a loop in which an interference voltage is induced. In the latter case an
interference current will flow depending on the impedance of the loop. If the transfer impedance is
known the common mode voltage between the inner conductors and the shield can be determined.
Therefore, with the knowledge df;, we can estimate the effect produced by an external field in
the wires inside the cable, or reciprocally, we can also estimate the radiation leaked from inside
the cable to the environment.

107
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A number of analytical and empirical approaches have been formulated in the past to deter-
mine the transfer impedance of cable shields, specially to the most usual arrangement based on
braided metal wires [111, 55, 107, 93, 51, 33]. The low and medium frequency behavior of the
transfer impedance (DC resistance and skin depth) can be determined quite accurately with these
models. However, the behavior of the inductance of the metal braid is very complex. The accuracy
of the analytical and empirical models for the higher frequencies in which the inductance plays an
important role is sometimes poor. A numerical approach might provide a higher accuracy espe-
cially for the high frequency behavior. Also, it can be applied systematically to a wider variety of
situations where complex geometries and materials may be present.

The objective of this work is to develop a numerical model for the computation of the transfer
impedance of cable shields. This numerical model is based on the finite element method (FEM).
More specifically, it is based on the finite element formulation explained in chapter 3. Neverthe-
less, our numerical model can be easily adapted to any other FEM formulation. You only need to
calculate the electric field with your preferred formulation or a "black-box” commercial software
and then perform the surface integrals of section 6.2.

In section 6.2 we introduce the formal definition of transfer impedafice Then, we re-
expressZ; as a function of the electric field integrated on the exterior and transversal surfaces of
the shield.

In section 6.3 we adapt the general-purpose finite element formulation of chapter 3 to the
specific problem of computing;. The input data required in this process are the geometry and
the material properties of the shield. The output data is the electric field.

In section 6.4 we validate the numerical model by computing the transfer impedance of per-
forated tubes and comparing the results of our simulations with analytical methods and measure-
ments found in the literature. The reason for selecting perforated tubes shields instead of the more
usual braided wires shields is because the braided wires present some uncertainties which can hin-
der the validation process. This uncertainties are due mainly to the contact impedance between
adjacent and porpoising wires or changes in the properties because of aging and handling [10]. The
objective of the present work is to show that our finite element model can give accurate results. It
is left for a future work the application of the same numerical model to the study of braided wires
shields.

6.2 Definitions

The transfer impedandg; (£2/m) of a cable shield is defined as [94, 111]

10V

Ty = ——
K Iy 0z

(6.1)

wherel is the current flowing through the shield induced on its outer surfac&#&ii@:= is the
voltage per unit length on the inside of the shield. Definition (6.1) can be re-expressed as a function
of the electric field by means of the relations

oV 1
» - Ae//se E.ds, (6.2)
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Iy = // ol dS;, (6.3)
S;

where F is the modulus of the electric fieldy, is the modulus of the longitudinal component

of the electric field,S, is the inner surface of the cable shield, is its transversal surfacel,

is the area of5, ando is the electrical conductivity of the shield. Equation (6.2) represents the
transversal electric field averaged over the inner surface of the shield and equation (6.3) represents
the induced current going through it.

The transfer impedance can also be defined, by reciprocity, as the ratio between the voltage per
unit length on the outer surface of the shield and the current flowing through the shield induced
on its inner surface [10]. In this last casg, is the outer surface of the cable shield and (6.2)
represents the transversal electric field averaged over its outer surface (see fig. 6.1 and fig. 6.2).

and

Figure 6.1: Minimum portion of the shield shown in fig. 6.2 necessary to compute its transfer impedance.
If we know the value of the electric fielH in the surface$, and.S; we can compute,. We must integrate

E, overS, to obtain the longitudinal electric field averaged over the outer surface of the shield-ardZ

over S; to obtain a sixteenth of the total induced electric current going through the shield. We have only
a sixteenth of the total electric current becawysds a sixteenth of the whole transversal section of the
geometry in fig. 6.2. Therefore, to calculate the total current, we must multiply by sixteen the value of
the integral (6.3). On the other hand, the integral (6.2) does not need such a multiplication. Performing
the integral (6.2) over the surface give us the same result as if we performed the integral over the whole
outer surface of the shield.
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Figure 6.2: Geometry of the shield of a standard RG 58 coaxial cable tinned (section 6.4.3). This cable
shield was modeled as a perforated tube with rhomboidal holes. The thickness of the shrelgisbeing

d the diameter of the wires of the braid £ 0.12 mm). The external diameter of shieldlds,; = 3.5 mm.

The braid angle i® = 32.32. The numbers of carriers (8 = 16 and the number of wires in each carrier

is N = 7. The electrical conductivity is = 32.4e6 S/m, which is the average between the conductivity of
copper given in [106]4 = 56e6 S/m) and the conductivity of tiar & 8.8e6 S/m [105]).

6.3 Finite element model

From the expressions (6.2) and (6.3), it is clear that, to obtajrwe need first to compute the
transversal component of the electric field. In this section, we show how to calculate the electric
field in the cable shield with the help of the finite element formulation explained in chapter 3.

The first step is to take a portion of an infinitely long cable shield (see fig. 6.3 and fig. 6.4
or fig. 6.5 and fig. 6.6). Thanks to the special characteristics of our problem we only need to
compute the electric field in a portion of the shield. The only requirement to select this portion is
that it must have the capacity to generate the whole shield geometry after applying consecutively
a mirror symmetry at its faces.

The second step is to induce an electric current in the shield. This can be done by means of an
electric field coming from the outside of the shield. In this case, we will integrate the transversal
component of the electric field on the internal surface of the shield to oBtanother possibility
is, by reciprocity, to induce the electric current by means of a field coming from the inside of the
shield and integrate the electric field on its exterior surface. These two ways of solving the problem
are completely equivalent [10]. We have selected the second option. We produce the incoming
inner field by a longitudinal current densifiy placed along the centered inner cylinder shown in
fig. 6.4 and fig. 6.6.
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As a boundary conditions (see fig. 6.4 or fig. 6.6), we impose on the top surface a first order
absorbing boundary condition (1st ABC) adapted to the regularized formulation [36]

nxVxE=iw/euo(h xnxE),

6.4
V- E=iw Eouo(ﬁ-E), ( )

whereey and o are, respectively, the electric permittivity and the magnetic permeability of vac-
uum. On the longitudinal surfaces we impose the regularized perfect magnetic conductor (PMC)
condition [36]
nxVxE=0,
n-E=0.

Finally, on the transversal surfaces we impose the regularized perfect electric conductor (PEC)
condition [36]

(6.5)

V- (¢E) =0,
nxkE=0.

The application of these boundary conditions is possible thanks to the peculiar symmetry of the
electric field in the perforated tube geometries. The PEC condition indicates that the field is
normal to the transversal surfaces. The PMC condition represents that the field is parallel to the
longitudinal surfaces.

On the other hand, expressions (6.5) and (6.6) are not longer applicable when modeling braided
wires geometries. In that case we must use periodic boundary conditions. Also, the minimum por-
tion of geometry necessary to compute the transfer impedance is different. This portion must
have the capacity to generate the whole braided wire geometry after applying successive transla-
tion symmetries in the transversal surfaces and successive rotation symmetries in the longitudinal
faces of the problem domain. This model will be the topic of future work.

Summarizing, in the case of perforated tube shields, we are solving the problem of finding
E € Hy (curl, div; Q) such thaty F € Hy (curl, div; 2) holds

[ @B (VxE)+ [ (VB (V- () -t [ 2 (B-F)

1% Q MEE Q

_w‘/“’/ (E-F):iw/J-F,
Ho Joq, Q

wheref2 is the problem domairg(2,. is the surface where the 1st ABC condition has been applied,
E is the electric fieldw is the angular frequency, is the current density, is the magnetic per-
meability andk is the electric permittivitfe = € + io/w). The bar over the magnitudes denotes
the complex conjugate. The functional sp&fgcurl, div; ) is defined by

(6.6)

(6.7)

H, (curl, div; Q) := {F € H (curl,div; Q) |A x F=0 inPEC # - F =0 in PMC}. (6.8)

In the presence of a field singularity or a surface of discontinuity between two media, we apply
the techniques explained in chapter 3.

OncekE is known, we must return to the equations (6.2) and (6.3) to obtaithe integration
surfacesS. and.S; are shown in fig. 6.1S. is the surface just above the shield and also includes
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the holes.S; can be the forward or the backward surface in fig. 6.1. A third option to calculate
(6.3) consists in doing the integration over the forward and over the backward transversal surfaces
and then perform the geometric average between these two values. We must recall that the surface
S; shown in fig. 6.1 is only a fraction of the whole transversal section of the shield. Therefore, to
calculate the total intensity flowing through the shield, which is the magnitude required in (6.1),
we must multiply (6.3) by the number of times required to recover the whole transversal section.
For instance, in the case shown in fig. 6.1, which represents a sixteenth of the whole geometry of
fig. 6.2, we have to multiply (6.3) by sixteen. On the other hand, the integral (6.2) does not need
such a multiplication. Performing the integral (6.2) over the surfacef fig. 6.1 give us the same

result as if we performed the integral over the whole outer surface of the shield.

Figure 6.3: Perforated tube with 22 circular holes per meter. Each hole has a diafpet&.175 mm. The
thickness of the wall ig" = 1.683 mm. The external diameter of the tub®js.; = 15.875 mm. The tube is
made of brass with an electrical conductivitycof 13.32e6 S/m.

6.4 Validation

In this section we apply our numerical model to different cable shield configurations: a homoge-
neous tube, four different perforated tubes with circular holes and to a standard RG 58 coaxial
cable tinned. As mentioned in the introduction of this chapter, we have selected these configura-
tions because they present less uncertainties than the usual configurations based on braided wires.
Itis left for a future work the application of the present numerical model to the study of the transfer
impedance of braided wires shields.
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PMC

Figure 6.4: Detail of the geometry of the shield shown in fig. 6.3. This geometrical set-up was used
to compute the electric field with ERMES. In the two transversal surfaces is applied a perfect electric
conductor boundary condition (PEC). In the longitudinal surface is applied a perfect magnetic boundary
condition (PMC). In the exterior curved surface is applied a first order absorbing boundary condition (1st
ABC). The problem is driven by a volumetric current densitylocated along the central axis of the shield.

We employed the in-house code ERMES to find the numerical solution of the problems shown
here. ERMES is the C++ implementation of the formulation explained in chapter 3 and its main
features are displayed in appendix A. We used isoparametric tetrahedral second order nodal ele-
ments with 3UL (see chapter 3) and the resulting linear system was solved using a quasi-minimal
residual (QMR) iterative solver [28] with a diagonal preconditioner. In all the simulations per-
formed the convergence of the solver was excellent, proving the well-conditioning of the matrix.

In average, it were used around 200000 tetrahedral second order nodal elements which produced
a linear system with about 600000 unknowns. Around 700 iterations of the solver were necessary
to reach a residudl| Az — b|| / ||b]|) of less than 1e-4. The memory employed was approximately

1 GB and the time spent solving each frequency was around 400 seconds. These data are referred
to a desktop computer with a CPU Intel Core 2 Quad Q9300 at 2.5 GHz and the operative system
Microsoft Windows XP.
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Figure 6.5: Geometry of the shield of a standard RG 58 coaxial cable tinned (section 6.4.3). This cable
shield was modeled as a perforated tube with rhomboidal holes. In the areas where the carriers of the braid
overlap each other the thickness of the shielfl is2.5d [18], beingd the diameter of the wires of the braid

(d = 0.12mm). In the areas where the carriers of the braid do not overlap each other the thickness of the
shield isT = 1.5d. The external diameter of shieldi3,,; = 3.5 mm. The braid angle i = 32.32. The
numbers of carriers i€' = 16 and the number of wires in each carrieNis= 7. The electrical conductivity

is o = 32.4e6 S/m, which is the average between the conductivity of copper given in [£06] §6e6 S/m)

and the conductivity of tind = 8.8¢6 S/m [105]).

6.4.1 Homogeneous tube

In fig. 6.7 is shown the transfer impedance calculated with ERMES for a stainless steal tube with
an internal radius-;,; = 3.625 mm, wall thicknessl” = 0.91 mm and electrical conductivity

o = 1.1e6 S/m. In a homogeneous tube, only the current diffusion is important and the values of

Z are due to DC resistance modified by skin-effect screening. In this case, an analytical solution
can be obtained from the formula given in [110]

- L
Z= o2ma (sinh (v T)) ’ (6-:9)

where~ is the propagation constant in the shield materials the conductivity of the shield]
is its thickness and is its mean radiusa = r;,,; + 7//2). The analytical results were computed
usinga = 4.08mm,T = 0.91 mm ando = 1.1e6 S/m.

The measurements shown in fig. 6.7 were performed in [89]. The shield configuration con-
sisted in the core (inner conductor plus dielectric) of a URM 67 cable with a solid stainless steel
outer conductor 0.91 mm thick. In [89] is assumed an electrical conductivity of 0.8e6 S/m for
stainless steel at room temperature. This figure is too low compared to the values found in the lit-
erature (see for instance [105] or [23]). We adopted the more reasonable value dfle6 S/m
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PEC

Figure 6.6: Detail of the geometry of the shield shown in fig. 6.5. This geometrical set-up was used to
compute the electric field with ERMES. In the two transversal surfaces is applied a perfect electric con-
ductor boundary condition (PEC). In the two longitudinal surfaces is applied a perfect magnetic boundary
condition (PMC). In the upper curved surface is applied a first order absorbing boundary condition (1st
ABC). The problem is driven by a volumetric current densitylocated along the central axis of the shield.

for the simulations and the analytical calculations. If wedise 0.8e6 S/m we obtain the sanig

with ERMES and with the equation (6.9) but, these results are displaced upwards with respect the
measurements in [89]. The numerical results of fig. 6.7 were obtained considering vacuum in the
core of the tube. Nonetheless, simulations performed with ERMES adding a dialectic (polyethy-
lene,e, = 2.3) produced the same valuesAfthat the ones shown in fig. 6.7.

6.4.2 Perforated tubes with circular holes

Four different configurations of perforated tubes were simulated with ERMES. The first one,
shown in fig. 6.3, has 22 circular holes per meter, each hole with a diamete3.175 mm. The
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external diameter of the tubei$.,; = 15.875 mm and the thickness of the wallls= 1.683 mm.

The tube is made of brass with an electrical conductivity of 13.32¢6 S/m. The results of the
simulations with ERMES compared with measurements and analytical formulas are shown in fig.
6.8. The rest of the configurations consisted in three different copper tubes with one circular
hole per meter. The diameter of the hole in each tube was, respeciiyety,15.875 mm, d;, =

9.525 mm andd;, = 6.350 mm. All three tubes had the same external diamB{gf = 31.750 mm

and the same wall thickne§s= 1.504 mm. It was considered an electrical conductivity for cop-
per ofc = 58e6 S/m. In fig. 6.9 are compared the results of the simulations with measurements.
In fig. 6.10 the simulations and the measurements are compared with two different analytical
approaches. The analytical results of Vance [110] were obtained with the formula

g +iwo L2
o2ma (1 — 1) sinh (yT) 4m2a?’

Zy = (6.10)
wherew is the number of holes per unit length, is the polarizability of each hole; is the
transparency of the shield and the remainder symbols are the same as in (6.9). The first term of
(6.10) is equal to the transfer impedance of a solid shield (6.9) except for the scalaf factoy,

which represents the shield coverage. For a perforated shield containimiformly distributed
circular holes, each with a radiug, we have

r2

T=uvn, (6.11)
2a
The second term in (6.10) is a mutual inductance that depends on the number of opdnitigs
shield and the polarizability. of each opening. For a circle of radiug, the polarizability is
3
m = 2 (6.12)
3
The bad results given by (6.10) (see fig. 6.8 and fig. 6.10) are mainly due to the implicit assumption
made in (6.12) that the thickness of the shi€lg small compared to the radiug of the circular
apertures. On the other hand, in the model proposed by Kley [51] the effect of a non-negligible
thickness is considered. The expression provided in [51] for the transfer impedance of a solid
shield perforated with circular holes reads as follows:

Zy = Zr +iwvMpr + (1 +i)wvLgy, (6.13)

whereZy, is the transfer impedance of a solid shield;,;, is the hole inductance ands;, is the
skin inductanceZy, is equal to the first term of (6.10)

v
Zp = . 6.14
7 52ra (1 —7)sinh(yT) (6.14)

M is obtained by multiplying the inductance of a hole with negligible thickness by an attenua-
tion factor due to the "chimney effect”. The approximate formulaX6x;, is

0.87573 <—1.84T> (6.15)

MLL% 00— 5 €Xp
Hom3 202 T}



6.4. VALIDATION 117

Lg;, models the effect of the eddy currents induced in the walls of the hole. The approximate

formula for Lgy, is
T —2.30T
Lgp =~ "h exp g (6.16)
2a2 rh 20w

In fig. 6.8 and fig. 6.10 is clear the improvement introduced by Kley (6.16) with respect to Vance
(6.10).

The measurements in fig. 6.8, fig. 6.9 and fig. 6.10 were carried out in [40]. The data
provided in [40] for the tube withy = 22 holes/meter (fig. 6.8) wer®.,, = 15.875mm (5/8 in),
dp, = 3.175mm (1/8 in) and the material of the tube (brass, an alloy with an electrical conductivity
which can vary between 10e6 S/m and 30e6 S/m). The thickfiessl the conductivity were
not provided in [40] but we deduced them from fig. 6 in [40]. In the graph of fig. 6 [40] is
displayed the measured transfer impedance of the same tube, but without holes. Then, we can
infer T" ando with the help of equation (6.9). From fig. 6 [40] we know th&t|; ki, = 1 mQ/m
and|Z;|100kHz = 0.23mQ/m. If we solve (6.9) with these values|df,| we obtainl’ = 1.683 mm
ando = 13.32e6 S/m.

A similar situation is found for the three tubes with = 1holes/meter (fig. 6.9 and fig.
6.10). The data provided in [40] ai@.,; = 15.875mm (1-1/4 in),d, = 15.875mm (5/8 in),
dp, = 9.525mm (3/8 in),d;, = 6.350mm (1/4 in) and the material of the tubes (copper). We
assumed a conductivity for copper®of= 58¢6 S/m [105] and we deduced the thickness from fig.
2 in [40]. In the graph of fig. 2 [40] is shown the measured transfer impedance for the same tubes
but without holes. From fig. 2 [40] we know thgf;|; kn; = 0.12mQ/m. If we solve (6.9) with
this value of| Z;| we obtain a thicknesg = 1.504 mm.

6.4.3 Standard RG 58 coaxial cable tinned

The last validation example is the braided wire shield of a standard RG 58 coaxial cable in which
the wires were fused together with a tin solder dip [106]. The braided shield consiSts df6
interwoven carriers, each carrier having= 7 copper wires with a diameter= 0.12 mm. The
diameter of the shield i® = 3.5 mm. The angle between the cable direction and the wires, the
braid angled, is not provided in [106]. We derivel by considering that, in general, the optical
coverage of a RG 58 i& = 0.95 (95%) and its filling factor is less thar{ &' < 1). The definition
of the filling factor £ is [111]

CNd

~ 4racos (6)’

where(' is the number of carriersy is the number of wires per carriet,s the diameter of each
wire, € is the braid angle and is the mean radius of the shield & r;,; + d, wherer;,; is the
inner radius of the shield). The filling factér is related with the optical coveradé by means of
the equation

(6.17)

K =2F — F?. (6.18)

Imposing K = 0.95 andF' < 1 in (6.18) givesF' = 0.7764. If it is replaced this value & in
(6.17) withC' =16, N =7,d = 0.12 mm and: = 1.63 mm, it is finally obtained the braid angle
=32.32.
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The analytical results by Vance [111] shown in fig. 6.11 and 6.12 were obtained representing
the diamond-shaped holes of fig. 6.2 as elliptical holes. The expressirirothis case is similar
to (6.10) but with

T:U%f (6.19)
and ( 2) ,
i3 1—e%)e
7”:24<E@y—u—e%Kng>’ (6.20)

wherel, is the major axis of the equivalent elliptical hole, is the minor axise is the eccentricity
(e =4/1—- (we/le)z) and K (e) and E(e) are the complete elliptic integrals of the first and the
second kind, respectively, defined by

B 1
w0, = (6.21)
E(e) = /O2 \/1 — e2sin?(¢) d.

Equation (6.20) is valid whefi < 45°. The parameterg, w. andv can be deduced from the
known valuest, 6, N andd thanks to the relations [111]

F 2
v = 4masin(0) cos(0) (Nd) , (6.22)
(1-F)Nd
le = F'sin(#) (6.23)
(1-F)Nd

The bad results given by the Vance model in fig. 6.11 and fig. 6.12 can be attributed to same
reason as in the previous examples with circular holes, the non-depreciable thickness of the shield
to respect the size of the holes. Unfortunately, we had not found available in the literature any
adaptation of the Kley's model (6.16) to perforated solid tubes with diamond-shaped holes. Hence,
in fig. 6.11 and fig. 6.12, we employed (6.16) with = +/l.w¢/4, that is, we approximate the
rhomboidal holes as circular and with the same area as the equivalent elliptical hole. In this case,
the bad results given by Kley’s model can be attributed to a lack of a properly adaptation to the
new circumstances.

We simulated with ERMES the tinned RG 58 cable with two different geometrical models.
The first one is shown in fig. 6.2 and the results appear in fig. 6.11. We can see an excellent
resemblance with measured data in the high an low frequency range. The second geometrical
model is shown in fig. 6.5 and the results appear in fig. 6.12. This last model is more realistic and
it presents a better correlation with the measured data in all the frequency range. We must recall
that the determination of the electrical conductivity is an approximatios 32.4e6 S/m, which
is the average between the conductivity of copper and the conductivity of tin) and this makes also
approximate the value d; in the low and medium frequency range. On the other hand, at higher
frequenciesZ; is almost independent of.
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Figure 6.7: Transfer impedance of a stainless steal tube with an internal ragius= 3.625 mm, wall
thicknessT" = 0.91 mm and electrical conductivity = 1.1e6 S/m. Analytical results from [110]. Mea-

surements from [89].
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Figure 6.8: Transfer impedance of the perforated tube shown in fig. 6.3=(22 holes/meterd,
3.175mm, D,y = 15.875mm, T = 1.683mm andoc = 13.32¢6 S/m). Analytical results from Vance

[110] and Kley [51]. Measurements from [40].
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Figure 6.9: Transfer impedance of three copper tubes with 1 circular hole per meter. The diameter of the
hole in each tube is, respectively, = 15.875mm, d;, = 9.525 mm andd;, = 6.350 mm. All three tubes

have the same external diamefer,; = 31.750 mm and the same wall thicknegs = 1.504 mm. It is
considered an electrical conductivity for copperoof= 58¢6 S/m [105]. Measurement®, A, l) from

[40].
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Figure 6.10: Transfer impedance of two of the three copper tubes shown in fig. 6.9. The two tubes selected
are those with the maximum and the minimum hole diametgr<£ 15.875 mm andd;, = 6.350 mm).
Analytical results from Vance [110] and Kley [51]. Measurememtdl) from [40].
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Figure 6.11: Transfer impedance of the shield of a standard RG 58 coaxial cable tinned. This cable shield

was modeled as the perforated tube shown in fig. B2{= 3.5mm,d = 0.12mm, T = 2d, § = 32.32,
C =16,N =7 ando = 32.4e6 S/m). Analytical results from Vance [111] and Kley [51]. Measurements

from [106].
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Figure 6.12: Transfer impedance of the shield of a standard RG 58 coaxial cable tinned. For the analytical
computations with the formulas of Vance [111] and Kley [51] the shield was modeled as the perforated tube

shown in fig. 6.2, but with the value®).,; = 3.5mm,d = 0.12mm, T = 2.5/ [18], § = 32.32, C = 16,
N =7 ando = 32.4e¢6 S/m. For the simulations with ERMES the shield was modeled as it is shown in fig.

6.5. Measurements from [106].
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6.5 Summary

In this chapter we have presented a numerical model for the computation of the transferimpedance
of cable shields. This model has been validated on some specific geometries comparing simula-
tions with measurements. One of the advantages of the numerical approach is its flexibility and
its ability to deal with complex geometries and materials. Also, we had shown that our numerical
model reproduces more accurately the high frequency behavior of the transfer impedance than the
analytical approaches found in the literature.

In a future work the same numerical model presented here will be applied to a more real
geometries where interwoven wires will be considered. The numerical model developed for per-
forated tubes only needs minor changes to be adapted to this new situation. We only have to
change the PEC and PMC boundary conditions by periodic boundary conditions and use a differ-
ent minimum portion of the shield.

The major difficulty in solving braided wires rests in the generation of a computer aided design
(CAD) geometry ready to be used as input data for the finite element method. The generation of
a braided wire CAD geometry is a time consuming task (more than the computing time of the
transfer impedance itself), this is why we are currently developing a computer tool able to generate
automatically this kind of geometry after being informed of the relevant parameters. This task is
very important if we want to apply the numerical model to the wide variety of different braided
wires shields available in the market or if we want to design new ones.



Chapter 7

Conclusions and future work

This chapter summarizes the main conclusions of this thesis and the futures lines of research and
development.

7.1 Regularized Maxwell equations and nodal finite elements

It has been demonstrated that accurate solutions can be obtained with nodal finite elements and
the regularized Maxwell equations provided we take care of the singularities and discontinuities
of the fields. To take care of the field singularities, we must eliminate the divergence term of the
regularized weak form in the elements near the singularity (RME-UL). The number of layers of
elements whose divergence term must be eliminated (UL) depends on their order. We reached to
the conclusion that the optimal combination is second-order elements with 3 ULs. To take care of
the field discontinuities, we must define multiple nodes in the surfaces of discontinuity between
different media (one on each surface) and relate them explicitly.

We implemented the above formulation in a C++ code called ERMES. This code was used for
computing the scattering parameters of microwave filters and the SAR induced in a body when
exposed to electromagnetic fields. The results obtained were accurate but, if there are too many
field singularities in the problem domain, the computational cost is high. This is due to the need of
meshing with small elements near the singularity and the worsening of the condition number in the
resultant matrix. Therefore, it is necessary to further study the treatment of the field singularities
in the RME-UL approach to improve its efficiency. We need a deeper understanding of the relation
between the number of ULs and the element size, element order and singularity order. Also, we
need to study in more detail how the ULs affect the well-conditioning of the RME-UL matrix.

It is left for future work the improvement of ERMES capabilities. This includes the improve-
ments in the modelization of the electric field singularities, the implementation of better solvers
and preconditioners, parallelization, hybridization with integral numerical techniques, better ra-
diation and waveguide boundary conditions and the incorporation of new features (e.g. far field
radiation patterns, automatic detection of singularities and discontinuities). It is also left for fu-
ture work the comparative performance of the classical edge-double-curl formulation versus the
nodal-regularized formulation presented in this thesis.
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7.2 Electromagnetic metal forming

We had presented a numerical model for the simulation of electromagnetic metal forming pro-
cesses. The approach is computationally efficient and very useful for estimating the order of
magnitude of the parameters involved in the design of an EMF system. Also, it is able to estimate
the optimum frequency and capacitance at which it is attained the maximum workpiece deforma-
tion for a given set of coil, workpiece and initial energy. This model also reveals the excellent
behavior of ERMES when solving low-frequency problems.

Itis left for future work to implement a sequential coupling strategy with ERMES and STAM-
PACK. A sequential coupling strategy will improve the accuracy of our computations in problems
with large deformations and long magnetic pressure pulses. It is also left for future work to study
in more detail the influence of the frequency of the discharge in the deformation of the workpiece.

7.3 Transfer impedance of cable shields

We had presented a numerical model for the computation of the transfer impedance of cable
shields. This model has been validated for perforated tubes and we had shown that it reproduces
the high frequency behavior of the transfer impedance more accurately than the approaches found
in the literature.

The next step is to adapt the model to braided wires shields. The objective is to study how
the value of the transfer impedance is affected by the geometric disposition of the wires in the
braid. Once we know the influence of the path, shape and distance between wires in the same and
different carriers we will look for the arrangements with the lowest transfer impedance and the
minimum quantity of shielding material.

The numerical model developed for perforated tubes only needs minor changes to be adapted
to the new situation described above. We only have to change the PEC and PMC boundary con-
ditions by a periodic boundary condition. Currently, we are implementing the periodic boundary
condition in ERMES. Also, we are developing a plug-in module for ERMES able to generate
automatically braided wire geometries after being informed of the relevant parameters.



Appendix A

ERMES: Numerical tool for
electromagnetic field computations

This appendix is the user manual of ERMES. We explain step-by-step how to run a numerical
simulation with this computational tool.

A.1 Description of ERMES

The C++ implementation of the RME-UL method explained in chapter 3 is called ERHIE&(ic
RegularizedMaxwell Equations withSngularities). ERMES has a user-friendly interface based
on GiD [29]. GiD is employed for geometrical modeling, meshing and visualization of results.
The current version of ERMES is mono-processor and it runs in the operative system Windows
XP (64-bits and 32-bits). The graphic interface works with GiD 10 and lower versions.

A.2 Installation

ERMES is a problem type of GiD and, therefore, we only haveojoy&pastethe folderERMES
6.0in the folderproblemtype®f GiD to install it. ERMES is opened in the upper menu of GiD
Data— Problem type—~ ERMES 6.0~ ERMES(see fig. A.1). The ERMES menu bar appears at
the left side of GiD after clicking oERMES(see fig. A.2).

% GiD x64 Project: UNNAMED
Files “iew Geomekry Ukilities EsEEN Mesh  Calculate  Help
@ i | @@%| Problem type ERMES 6.0 ERMES
C;Q ] Transform..
s % Internet Betriewve. .

Figure A.1: ERMES is opened in the upper menu of Gilata— Problem type—~ ERMES 6.0~ ERMES

125



126 APPENDIX A. ERMES: NUMERICAL TOOL FOR ELECTROMAGNETIC FIELD COMPUTATIONS

A.3 Pre-Process

Before running a simulation with ERMES we need to create a geometry, define materials, apply
boundary conditions and set problem parameters. The geometry can be imported or created inside
GiD. It is important to remember that ERMES needs two different surfaces, joinedriact
elementsfor modeling the discontinuity of the fields in the surface of separation between two
media (chapter 3, section 3.4). The materials, boundary conditions and problem parameters must
be defined and assigned from the windows associated to the ERMES menu bar. In the following
subsections we describe these windows in detail. Once the problem is set up properly, we only
have to mesh the geometry (clicking on Benerate meshutton) and, finally, execute ERMES
(clicking on theCalculatebutton).

il GiD x64 Project: PMR-PreProcess
Files Wiew @eometry Utlities Data Mesh  Calculate  Help
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Figure A.2: ERMES menu bar.
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A.3.1 Materials

The windowMaterials (see fig. A.3) defines materials and assigns it to the volumes of the geom-
etry. The material properties required are:

e Electrical conductivity (S/melectrical conductivityr (S/m).
Electric permittivity real real part of the relative electric permittivity. (¢ /).

Electric permittivity img imaginary part of the relative electric permittiviey (¢ /eo).

Magnetic permeability realreal part of the relative magnetic permeabilzizt'y(u' /o).

Magnetic permeability imgmaginary part of the relative magnetic permeabicljfy(u”/yo).

=0 Ay Materials E|
|‘~.=’a|::uum - @ O % n? 7|

1

Electrical conductivity 0.0 =

Electric permittivity real 1.0
Electrc permittivity img 0.0
tagnetic permeahility real 1.0

Magnetic permeability img 0.0

Assign Draw Unassign  Exchange

Close

Figure A.3: Materialswindow.
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A.3.2 RWPort TE10
The windowRWPortTE1(Qsee fig. A.4) defines the rectangular waveguide ports. The parameters
required are:
e Port Type ID number. PortType = 0 for an input port.PortType > 0 for an output port.
e 00 X X coordinate of the lower left corner of the port.
e 00 Y: Y coordinate of the lower left corner of the port.
e 00 Z Z coordinate of the lower left corner of the port.
e high X X coordinate of the upper left corner of the port.
¢ high Y: Y coordinate of the upper left corner of the port.
¢ high Z Z coordinate of the upper left corner of the port.
¢ width X: X coordinate of the lower right corner of the port.
e width Y: Y coordinate of the lower right corner of the port.
e width Z Z coordinate of the lower right corner of the port.

I ©» rwport TE0 [X]

PwPort In APy 4 .

Foart Type 0.0
0o 0.0

00" 0.0

ooz oo
high =|0.0
high 0.0
high Z|0.0
wiclth 0.0
wichth |00
wiclth Z 0.0

Assign Dirane Unassign Exchange

Close

Figure A.4: RWPortTE1GQvindow.
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A.3.3 CoaxialPort TEM

The windowCoaxialPortTEM(see fig. A.5) defines the coaxial waveguide ports. The parameters
required are:

e Port Type ID number. PortType = 0 for an input port.PortType > 0 for an output port.

e 00 X X coordinate of the center of the coaxial waveguide port.

e 00 Y: Y coordinate of the center of the coaxial waveguide port.

e 00 Z Z coordinate of the center of the coaxial waveguide port.

e Inner radius a radius of the inner cylinder of the coaxial waveguide.

o Exterior radius b radius of the exterior cylinder of the coaxial waveguide.

e Electric permittivity real part of the relative electric permittivik;'; (¢ /o) of the medium
inside the coaxial waveguide.

e Magnetic permeability real part of the relative magnetic permeabiljts/(u//uo) of the
medium inside the coaxial waveguide.

sosll 1 CoaxialPort TEM (%]
|C|:|E|J-:iaIF"|:|rtIn - f@ E} % n? iF|

Fort Type 0.0

nox 0.0

0o |0.0

nozZoa

Inner radius a|0.0

Exterior radius b 0.0
Electrc permittivity 1.0
bagnetic permeability 1.0

Assigh Oraw  Unassign Exchange

Close

Figure A.5: CoaxialPortTEMwindow.
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A.3.4 Generic Robin Coefficients

The windowGeneric Robin Coefficien{see fig. A.6) defines the coefficienthat appears in the
boundary condition
AXVxE—~{HxnxE)=0. (A.1)

The parameters required are:

¢ Robin coef realreal part of the coefficient.
e Robin coef imgimaginary part of the coefficient.

2* i} Generic Robin Coefficients f'5_<|

|F‘i|:|l:|in coef 1 - @ C} % k2

Rohin coef real |0.0

Faohin coefimg (0.0

Assign Oraw  Lnassign Exchange

Close

Figure A.6: Generic Robin Coefficientgindow.
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A.3.5 Current Sources Properties

The windowCurrent Sources Propertigsee fig. A.7) defines the electric current densities. The
parameters required are:

Jx (A/n?): modulus of the X component of the electric current density.
Phase x (rad) phase of the X component of the electric current density.
Jy (A/n?): modulus of the Y component of the electric current density.
Phase y (rad) phase of the Y component of the electric current density.
Jz (A/n?): modulus of the Z component of the electric current density.
Phase z (rad)phase of the Z component of the electric current density.

Ja (A/n?): modulus of the angular component of an axis symmetric current density around
the Y axis.

Phase a (rad) phase of the angular component of an axis symmetric current density around
the Y axis.

-;‘.:,E #Ih Current Sources Properties E|
|J source - @ E} K w2 @
Cartesian
00 Am’
Fhase x (rad) n i
Jy 00 A

Fhase v (rad) 0 —
Jz|0.0 Am’

Fhase z (rad) 0 —

Axisyrmmetric

Jalon A

Fhase a (rad) 0 —

Assign D Unassign Exchange

Close

Figure A.7: Current Sources Propertiegindow.
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A.3.6 Dirichlet Conditions

The windowDirichlet Conditions(see fig. A.8) assigns the following conditions:

Singularity number ofUngaged Layerg¢see section 3.5) around to a point or line.
Electric Field PEC perfect electric conductor boundary conditighx E = 0).
Electric Field PMC perfect magnetic conductor boundary conditign E = 0).

Electric Field TE Port boundary conditiom - E = 0 for waveguide ports. It avoids the
geometric average of the boundary normals at the intersection of a port surface with a PMC
surface.

Correct Contact Normalsmakes coherent the definition of the normals at the surfaces of
discontinuity between two media (see section 3.4).

fll Dirichlet Conditions

il Dirichlet Conditions

a " '?
|Singu|arity > K2
Ungaged Layers 1.0

@ '”I:u'

Electic Field PEC - K24

Electric Field TE Fort
Correct Contact Mormals
Singularity

Assign Entities Draw  Unassign Assign Entities Drawe  Lnassign

Close Close

Figure A.8: Dirichlet Conditionswindow.
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A.3.7 Robin Conditions

The windowRobin Conditiongsee fig. A.9) assigns the boundary condition
AxXxVxE—-vy(MxnxE)=U, (A.2)
being the parameternsandU the following:

e RW Port TE10 Conditionsy is the propagation constant of the mode J.E
If PortType = 0thenU = -2~ (i x &i X Eq9).
If PortType > 0thenU = 0.
The rectangular waveguide ports are defined in the wind@WPortTE10
See sections 3.2, 3.3 and 3.7 for more details.

e Coaxial TEM Conditions~ is the propagation constant of the mode TEM.
If PortType = 0thenU = -2+ (i x fi X Etgwm).
If PortType > 0thenU = 0.
The coaxial waveguide ports are defined in the wind&waxialPortTEM
See section 4.5.2 for more details.

e Far Field Condition v = iw,/eguo andU = 0 (sections 3.2 and 3.3).
e Generic Robin Conditiany is defined in the windowgeneric Robin CoefficiensdU = 0.

mundB ‘I Robin Conditions

]
Ry Port TE10 Conditions - K2
By Pord TE10 Conditions
Coaxial TEM Conditions

Far Field Condition
Generic Robin Condition

Assign Entities D Lnassign

Close

Figure A.9: Robin Conditionsvindow.
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A.3.8 Current Sources

The window Current Sourcegsee fig. A.10) assigns to volumes the electric current densities
defined in the windowCurrent Sources Properties

fh Current Sources

FO Current Density - N7

Source  Jsource —

Assign Entities Dy Lnassign

Close

Figure A.10: Current Sourcesvindow.
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A.3.9 Modes Projection

The windowModes Projectior(see fig. A.11) selects the waveguide ports, surfaces and volumes
over which the computed fields are integrated:

¢ Projection RWTE10computes the scattering parametgy over the selected rectangular

waveguide port (see section 3.7).

e Projection CoaxialTEM computes the scattering parametgy over the selected coaxial

waveguide port (see section 4.5.2).

e Field Surface Integralintegrates the fields over the selected surface.

e Field Volume Integralintegrates the fields over the selected volume.

Frowection Coaxial TERM
Field Surface Integral

Assign Entities D

Close

IUnassign

il Modes Proyection

=0 (T

|Fie|d Yalume Integral

“olume to Integer Yolume 1

Assign

Entities D

Close

—

IUnassign

Figure A.11: Modes Projectiorwindow.
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A.3.10 Solving Parameters

The windowSolving Parametergsee fig. A.12) sets the problem parameters. It contains three
tabs:FrequencySolversandGeometric Data

TheFrequencytab sets the parameters:

e Frequency (Hz) problem frequency in Hz. If the checkbdxequency sweejs checked
then it is disabled.

e Frequency sweepfrequency sweep starting Htitial freq, ending atEnd freqand with a
stepStep freq If the checkboxXrrequency sweels unchecked then it is disabled.
The Solvergab sets the parameters:

e Solver selects the method for solving the linear system.

e Max iterations maximum number of iterations allowed for the iterative solver.

e Step iterationsthe value of the residudlb — Az||/||b]| is shown eventep iterations
e Tolerance solution is reached whelfb — Ax||/||b|| < Tolerance

e Preconditioner selects a preconditioner for the iterative solver.

¢ Initial guess reads a file with an initial guess for the iterative solver.

e Results in filewrites the solution of the linear system in a file.
If Results in file = Ndhen the option is disable.
If Results in file = Every stejen the solution is saved eveByep iterations
If Results in file = Final stephen the solution is saved when the solver finish.

e External solver pathif the optionExternal solveiis selected irBolverthen ERMES writes
the linear system in a file and execukedernal solver path

e Parametersparameters for the external solver.
The Geometric Datdab sets the parameters:

e DimensionslIf Dimensions = 3then ERMES solveE = (E,, E, E.) in all the domain.
If Dimensions = 3D-Exyhen ERMES solveE with £, = 0 in all the domain.
If Dimensions = 3D-Ethen ERMES solveE with £, = £, = 0 in all the domain.
If Dimensions = 3D-Eahen ERMES solveE = (E,, £, E,) with E, = E, = 0 in all
the domain (axis-symmetric problem around Y-axis).

e Length factor (m) multiplies all the lengths for the factor indicated:
If Length factor (m) = nthen the factor is 1.
If Length factor (m) = dnthen the factor is 10.
If Length factor (m) = cnthen the factor is 100.
If Length factor (m) = mnthen the factor is 1000.

e Normal type determines the type of smoothing for the boundary and contact normals.
e Order. order of the Lagrangian elements (1st, 2nd, 3rd or 4th).
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fll Solving parameters

Frequency | Salvers | Geometic data
Single_frequency
Frequency (Hz) 1e? —
Frequency_sweep

™ Freguency sweep

Initial freq |13 Hz
End freq |3ed Hz
Step freq 0129 Hz

il Solving parameters [ | % Solving parameters

Frequency Sohsers lGeometricdata] Frequency | Solvers Geometricdata

Sohver_type Geometry_parameters

Solver  Quasi Minimal Residual — Dimension 3D —

lterative_sokvers Length factar (m) m —

hax iterations  1eb —

Maormals

Step iterations 260 — MNormal type Areaweighted —

Element_order
Order 2nd —

Tolerance  le-d

Preconditioner Diagonal —

Initial_guess
Initial guess  Nilwector —
Results infile  Finalstep —

External_soker
External solver path | CMWMATLAB?,
Parameters -nosplash -not

Figure A.12: Solving Parametera/indow.
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A.3.11 Results

The windowResultgsee fig. A.13) selects the results to be displayed in the post process of GiD.
It contains three tabg$irequency domainTime domairandGeometric

E il Results

)

Frequency domain | Time domain | Geometric |
W E
W H
|

[ Joule heating
[ log{ mod(E) )
[ log{modiH))

il Results [X] | " Results E
a) 2

Frequency domain  Time domain | Geometric ] Frequency domain | Time domain  Geometric \

Initial time | Time step [~ Boundary normals

Final time |T [~ Contact normals

Time step T/32

[ Ef

[ Hify

[ i)

 Accept . Close  Accept | Close

Figure A.13: Resultsvindows.
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A.4 Post-Process

ERMES displays the results of the simulations in two different modegle frequencandfre-
guency sweegn the following subsections we explain the characteristics of these modes.

A.4.1 Single frequency

If the checkboxFrequency sweepf the windowSolving Parameters unchecked then ERMES
solves the problem for a single frequency and the results are stored in thdldNga.res This

file located in the foldek.gid. We can visualize the results by sending ttfeavia.resfile to the
GiD post processor. The frequency domain results are in the time step 0 dietheResults &
Deformationwindow that we can find in the upper menu of Gilindow— View results The
time domain results are in the time step9) of the same window. The time domain results are
obtained from the frequency domain results with the formula (see section 2.3):

F(r,t) = Real [(F,(r) + iF;(r))e "] = F,(r) cos(wt) + F;(r) sin(wt). (A.3)

In the file*.info, also located in th&.gid folder, we can retrieve information related to the solver
(residual, size of the problem, iterations, time spent) and the values of the integrals over the sur-
faces (ntSurf) and volumesitt\Vol) selected in the windowlodes Projection

A.4.2 Frequency sweep

If the checkboxFrequency sweepf the window Solving Parameterss checked then ERMES
solves the problem for the frequencies in the intertaitiél freq, End freq with a step ofStep
freq. The results for each frequency are stored in the fildat located in thef.gid folder. There

is a file for every volume or surface selected in Medes Projectiorwindow. The name of the
surfaces files ar&urfn.dat wheren is the ID of the surface. The name of the volume files are
Vn.dat wheren is the ID of the volume. These files store the values of the surface integials (
and volume integrals/) of E, H, J, |E|?, |H|? and|J|?. If the surface is a waveguide port then
the name iS1j.dat beingj = 1 for the input port angl= 2, 3, ... for the output ports. In the files
S1j.datare stored the values of the scattering parameigréor each frequency.
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Research projects

List of research projects in which the results of this PhD thesis have been used. The projects are
grouped by application.

C.1 Specific absorbtion rate computations

Acronym: CaRDIAN

Title: Calculo de Radiaéin electromagética en presencia de Deggtricos mediante Aadisis
Numeérico

Contractor: Ministerio de Ciencia e Innovéani

Program: Plan Nacional I+D (2008-2011), ref.: CIT-370000-2008-10

Partners: CIMNE, COMPASS, UPC

Duration: 01/10/2008 - 21/10/2011

Title: Safety of RFID technology when used for blood derivatives track and trace. Theoretical,
numerical, and experimental study of thermal effects of RFID on blood plasma

Contractor: GRIFOLS

Partners: The Information Highway Group, Pompeu Fabra University, CIMNE

Duration: 01/05/2009 - 30/06/2009

Acronym: SMART

Title: SMart Antennas system for Radio Transceivers

Contractor: European Commission

Program: EUREKA, ref.: PIDEA+ Projecff4-161

Partners: EADS SN, CNAM, Cyner Substrates, EADS CCR, CIMNE, LIONIX, NLR, RADIALL,
SRF MOYANO, University of Twente

Duration: 01/07/2005 - 30/09/2008
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Acronym: SANTTRA

Title: Sistema de ANtenas para TRAnsceptores de radio

Contractor: Ministerio de Industria, Turismo y Comercio

Program: PROFIT, ref.. FIT-330210-2006-44. Framed in the project EUREKA SMART, program
PIDEA+. Follow-up of the PROFIT project FIT-330210-2005-107

Partners: SRF Moyano, CIMNE

Duration: 01/01/2006 - 31/12/2007

C.2 Electromagnetic compatibility

Acronym: NET-EMC

Title: NEtwork Tool for ElectroMagnetic Compatibility

Contractor: European Comission

Program: Eurostars, ref.. Project E! 4648 NET-EMC

Partners: NEXIO, CIMNE, XLIM, COMPASS, ENTARES, UPC, ATALAN, APPLUS
Duration: 07/09/2009 - 31/03/2012

Acronym: HIRF SE

Title: High Intensity Radiated Fields Synthetic Environment

Contractor: European Commission

Program: 7th European Union Marco Program, ref.: 205294

Partners: ALA, L-UP, HAI, ONERA, AxesSim SAS, URM, DASSAV, UaY, AAEM, AW, BAeS,
BUT, CIMNE, CST, ECD, EMCC, EADS-CASA, EVEKTOR, FOI, GA, HISPANO-SUIZA,
ICCS, IDS-IT, INTA, ISMB, NLR, OKTAL-SE, PAI, POLITO, PZL, QWED, PRz, SPIRIT, THAYV,
TSA, THC, TUHH, TWENTE, UGR, UoM, UPC, UoN, IDS-UK, AMS

Duration: 01/12/2008 - 30/11/2012

Acronym: MIDAS.MN

Title: Modelos de Inmunidad electromaggita Distribuida en Autolviles. Simuladbn nuneérica
Contractor: Ministerio de Educam y Ciencia

Program: Plan Nacional I1+D (2004-2007), ref.: DP12004-07865-C02-020

Partners: CIMNE, UPC

Duration: 13/12/2004 - 12/12/2007

Acronym: IDEEA

Title: Interferencias electromagticas en la Distribuéin de Enerta Electrica en Autoraviles.
Analisis de los sistemas duales 14/42 voltios

Contractor: Ministerio de Ciencia y Tecnolag

Program: Plan Nacional I+D (2000-2003), ref.: DP12001-0897-C02-02

Partners: CIMNE, UPC

Duration: 13/12/2001 - 12/12/2004
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C.3 Electromagnetic metal forming

Acronym: SICEM

Title: SImulacbn multifisica para el dis& de Conformado ElectroMagtico
Contractor: Ministerio de Educdm y Ciencia

Program: Plan Nacional 1+D (2004-2007), ref.: DP12006-15677-C02-01
Partners: CIMNE, LABEIN

Duration: 01/10/2006 - 30/09/2009
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