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Abstract

Exocytosis is the cellular process whereby a product such as a hormone or a neuro-
transmitter is released as a response to stimulation. There are a lot of exocytotic
cells in mammals, and each cell type has their specific subcellular mechanisms, needed
to achieve the final substance release. Therefore, unveiling the role of subcellular
mechanisms in secretion processes is highly relevant to understand disease evolution
and possible therapies.

The efficiency of the coupling between stimulus and secretion is mainly managed
by an intracellular Ca2+ signal. In the present thesis, a modeling approach of Ca2+ -
triggered secretion is presented for some different cellular types. In particular, cells with
different characteristic time scales were chosen in order to discuss about a multiscale
approach for studying spatiotemporal features of secretion processes. The object of
this piece of research ranges from a short temporal scale (fast secretion) up to a long
temporal scale (slow secretion). The study also discuss the intermediate temporal
scale, and the joining point between theoretical methodologies. Cellular Ca2+ and
secretion dynamics have been studied in the abovementioned timescales for the calyx
of Held presynaptic terminal, the pancreatic alpha cell, and the adrenal chromaffin cell,
respectively.

The aim of this work has been twofold: first, to develop mathematical mod-
els that follow actual sub-cellular mechanisms involved in secretion, and second, to
make simulations on these models in order to reproduce the experimentally observed
Ca2+ and secretory behaviour. The ultimate goal is to propose common methodologies
and algorithms to support the theoretical approach for studying multiscale cellular
processes.

KEYWORDS: cellular secretion, exocytosis, modeling, simulation, com-
putational cell biology.





v

Preface

Calcium is mainly concentrated in teeth and bones in higher organisms as mammals,
and it is moved through the body as a divalent ion (Ca2+ ). This ion is the most
ubiquitous cell signaler that nature uses to trigger and control a lot of vital processes
such as muscular contraction, genetic transcription, cell proliferation and differentia-
tion, and regulated secretion of hormones and neurotransmitters, between many others
[193]. Ca2+ homeostasis is carefully kept inside the body to maintain fixed amounts of
Ca2+ in the intracellular and extracellular liquids. For example, in resting conditions,
the ratio between extracellular and intracellular calcium concentrations is of four orders
of magnitude i.e., ten thousand times. This difference guarantees an endless source
for cells, and at the same time, it makes cells highly sensitive to very small changes
(even of few ions) in the internal calcium ion concentration [48]. The huge gradient
of Ca2+ between both sides of a cell is kept thanks to a cell membrane that acts as
a barrier and to some specific mechanisms that work all the time to take out any
excess, named extrusion mechanisms. However, there are other mechanisms that allow
Ca2+ to enter into the cell in a selective manner, mainly calcium channels. Calcium
channels are proteins located across the cell membrane that are normally closed (i.e.,
not allowing Ca2+ to go from the outside to the inside), but they can open in response
to a specific stimulus (voltage, ligand or emptying of intracellular stores) [48]. Since
ions are charged particles, when some ions are crossing the cell membrane they can be
detected as an ionic (electric) current. Using two electrodes, one in the cell inside and
one in the external side, it is possible to measure an electrical current. It is common,
in biophysics experiments, that currents going from the exterior to the interior are
conceived as, and plotted as, negative currents.

In 1968, the term stimulus-secretion coupling was coined to describe the vital role
of Ca2+ as the coupling agent between the stimulus and the secretion process, based on
observations in neuroendocrine cells [37]. In other words, the particular physiological
process starts by producing an adequate stimulation that opens some calcium channels,
produces a calcium current, and consequently increases the intracellular calcium level.
As will be detailed in the next sections, the presence of incoming Ca2+ is decoded
to trigger secretion through its binding to specific Ca2+ sensors located in the cell
membrane and/or in the vesicles [11]. To always keep the vital calcium gradient, the
extrusion mechanisms will work constantly to take out all the extra Ca2+ which is
inside the cell. However, some ions will have time to diffuse into the cell core to trigger
other processes. Thus, the temporal dynamics of intracellular calcium concentration
([Ca2+]i ) is strongly related to the corresponding dynamics of those physiological
processes that such a behaviour activates, as is the case of Ca2+ -triggered secretion
(also named exocytosis) [193].

The optimal functioning of the nervous system strongly depends on neurotrans-
mision, that is, the whole process of passing a signal from one neuron (presynapse
or presynaptic) to another (postsynaptic) by releasing a substance (neurotransmitter)
into the synapse, i.e., the junction between them. The efficiency of neurotransmitter
release, depends in turn on the number of active zones (releasing areas) located in
the presynaptic neuron, as well as on the speed of vesicle fusion on time. Vesicles
are the small bags inside the cell that contain the releasing substance. Once the
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secretion process is started, it is finished when the vesicle fuses its membrane with
the cellular one, opening a pore through which its contents are released to the cell
exterior. Not only secretion depends on vesicles, but it is also influenced by the
organization of the exocytotic machinery, including Ca2+ channels and other relevant
proteins; they all shape the spatiotemporal dynamics of the stimulus-secretion coupling
[7]. Presynaptic terminals of the central nervous system are characterized for their high
efficiency because the secretory response appears just a few milliseconds after a single
action potential stimulates the presynaptic neuron. Fast secretion is possible thanks to
effective geometrical and physiological factors such as the spatial coupling of vesicles
and Ca2+ channels, and the availability of a pool of vesicles. Indeed, calcium channels
are known to play a key role in the control of neurotransmitter release, in particular,
those that open in response to cell depolarization (voltage-gated channels). Vesicles are
also important to have a fast response, but there needs to be enough of them and they
have to be ready to be fused, so as to have an efficient stimulus-secretion coupling [121].
Despite the great relevance of neurotransmitter release in the adequate functioning
of the nervous system in mammals, the study of the stimulus-secretion coupling has
enormous experimental restrictions since fast, microscopic, and not invasive systems are
needed to simultaneously record a stimulus and its corresponding response. Theoretical
modeling and simulation are very useful tools for complementing experimental studies
in such a way that their combination allows a more thorough interpretation of results.

It is important to emphasize that secretion is not only observed in the central
nervous system, where neurotransmitters such as glutamate or acetilcholine, are the re-
leased substances [157]. Neuroendocrine cells are peripheral cells that secrete hormones
needed to start vital process like glucose regulation, fat metabolism, stress control, etc.
In this case, secretion is also triggered by Ca2+ , in a similar manner to neurotransmitter
release. However, the main differences are: one, the time delay in-between stimulus
and release, which is much longer; two, the sources for [Ca2+]i elevations; and three,
the associated [Ca2+]i dynamics [130]. In neuroendocrine cells, Ca2+ elevations do not
occur as fast as in neurons, but they occur more slowly (lasting miliseconds to seconds),
or they even appear as oscillations (lasting seconds to minutes). On the other hand,
the intracellular calcium elevation could be due to the opening of calcium channels but
also to the release from intracellular stores in a variable proportion; this combination
may lead to calcium oscillations. Thus, the relevant time scales of Ca2+ dynamics
and release are in the range of seconds up to minutes and they frequently appear as
rythmic secretion levels [24]. Again, theoretical modeling and simulation may help
experimental studies to unveil how [Ca2+]i is being increased and how it is decoded to
trigger secretion, as well as which the main factors affecting the secretory response are.
Moreover, since dynamic variables are hard to be recorded in experiments, modeling
could serve for testing some experimental protocols to predict cellular responses to
stimulation. Also, experiments can be suggested by the model to test the possible
influence of a mechanism, or the benefits of a drug therapy.

Although synaptic terminals and neuroendocrine cells share the vital function of
Ca2+ -triggered exocytosis, some crucial differences have been found [130]: 1) Neuroen-
docrine cells can be considered approximately spherical but neurons and synapsis are
usually elongated (since they are branches of the axon); 2) Vesicle release in synapsis
has a very fast component, lasting below 3 ms, while neuroendocrine cells exhibit a
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delayed response at least 10 to 20 ms after they were stimulated; and 3) Distance
and correlation between Ca2+ channels and ready releasable vesicles are completely
different, being clustered and close in synapses, and being vesicles far away from
channels in neuroendocrine cells. These important differences in time scales and spatial
organization of the secretory machinery impose the need for defining the relevant time
periods for studying the stimulus-secretion coupling; defining specific models that
closely describe main mechanisms participating in exocytosis; converting models to
equations; choosing the adequate mathematical methods to solve models considering
time scales and experimental data; building algorithms to simulate real protocols that
complement experimental observations; and, sharing common models and algorithms,
and complementing results from them to reach a multiscale simulation. These have
been the main stages we have followed during the development of the present project in
order to reach the main goal: studying Ca2+ -triggered secretion processes in three cell
types (calyx of Held, chromaffin and alpha cells), which present time scale differences,
on the basis of a multiscale approach. Among many intermediate and interesting
objectives reached throughout the development of the present work, the ultimate goal
has been exploring solutions for diseases associated with impaired exocytosis in the
chosen cell types; that is, hearing impairment, related to the calyx presynaptic terminal
[174]; impaired adrenaline secretion, associated with adrenal chromaffin cells [58]; and
diabetes, partly due to alpha cells [141].
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CHAPTER 1

Introduction

Exocytosis, the process of releasing a substance contained inside vesicles or granules
out of the cell membrane, is tightly regulated by Ca2+ in many cells as is the case of the
cell types studied in this thesis. During the exocytotic pathway, vesicles traverse several
steps: trafficking or moving them through the intracellular space (cytosol) helped
by the cytoskeleton (the supporting structure of the cytosol); tethering or attaching
them near the membrane; docking or tightly attaching them to release sites; priming
or activating vesicles to be ready; fusion of vesicle membrane with cell membrane;
release of vesicle contents; and finally, vesicle membrane retrieval. In Ca2+ -regulated
exocytosis, Ca2+ participates in some of these steps along with other substances like
ATP [24]. For the present study, the main effort is made in order to study those stages
controlled by Ca2+ , namely, resupply or trafficking, priming, fusion and release. For
each cellular case examined in this thesis (the calyx of Held, the chromaffin cell and
the alpha cell), a model that includes one or more of these stages in a detailed manner,
connecting it to [Ca2+]i dynamics, is developed.

Models are becoming an important research tool in biology. Simulations based on
biological models can reveal relevant roles of microscopic mechanisms that affect macro-
scopic behaviour. The multiscale approach tries to connect the microscopic events to
the macroscopic physiological phenomenon by developing models and software tools,
which can cross the spatial and temporal scales [1]. One of the main steps to reach this
goal is to select the adequate mathematical and computational methods to solve each
particular model. These methods range from those suitable for simulating microscopic
events occurring in short time periods, as the discrete Monte Carlo methods, up to
those able to simulate more macroscopic issues taking place in longer intervals, as
continuous or deterministic methods [145]. In the present case, i.e., the study of
secretion in different cellular environments, the multiscale perspective allows us to
recognize similarities and relevant differences, towards sharing common models and
algorithms, in order to reach a multiscale simulation of cellular exocytosis.

As far as we know, there have been no previous multiscale studies of secretion
processes in several cell types. However, modeling works about secretion on a specific

1
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cell type have been reported. There are some works on synapses, where fastest secretion
(shortest timescale) takes place, which propose kinetic models for secretion and calcium
influx based on experimental data [59, 78, 86, 109, 172, 198]. There are some others
which study neurotransmitter release using Monte Carlo methods, but not in the
calyx of Held [60, 72, 84]. With regard to the calyx of Held, there are simulations
of neurotransmitter modulation to analyze possible channel-vesicle localizations in the
active zones [119, 120], and simulations that evidence the influence of Ca2+ influx in
neurotransmitter release [13, 163]. Nevertheless, there is no a global model which
considers all factors (vesicle population, channel-vesicle configuration, calcium influx,
secretion profiles and mobile buffers), that simulates glutamate release at a microscopic
level. On neuroendocrine chromaffin cells, secretion has been modeled as a compart-
mental process, or a kinetic reaction, assuming that vesicles belong to different pools
that are triggered by calcium to be fused, which is based on experimental findings [97].
There are modeling works on secretion that relate calcium concentrations to secretion
proposing kinetic models [98, 115, 189], and a microscopic study about channel-vesicle
localization in chromaffin cells [160]. There is also one simulation study using open
software environments [192]. Being a broadly used cell model for research on exocytosis,
chromaffin cells are still valuable to understand stimulus-secretion coupling. Moreover,
proposed models were developed for chromaffin cells in an animal species that may not
be applicable to other species. On pancreatic alpha cells, there is no modeling work
about glucagon secretion. In fact, the only modeling work about alpha cells is the one
reported by [34] that simulates electrical activity associated with glucagon secretion,
trying to predict glucose influence on secretion.

Objectives

The main goal of the present thesis is to study cellular secretion in various cell types
covering different time scales. For this purpose, the following aspects have been
considered:

• The choice of cellular types that exhibit secretion in different time scales, from
milliseconds to minutes i.e., from fast to slow secretion.

• The modeling of real mechanisms present in the cell and known to be strongly
involved in Ca2+ -controlled secretion.

• The modeling of secretion dynamics based on experimental findings.

• The simulation of intracellular calcium and secretion dynamics including spa-
tiotemporal cell features, using adequate numerical methods and algorithms.

Cellular secretion is mainly controlled by calcium in the studied cells, but displays
particular differences in the way it does. This hypothesis makes sense since calcium-
triggered secretion follows similar steps: An external stimulus is translated into an
intracellular calcium increase that initiates buffered calcium diffusion in the cytosol;
intracellular calcium triggers secondary processes like secretion. Secretion is activated
because the calcium sensor associated with exocytosis binds calcium ions, so vesicles
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are fused, and then, they release their contents to the extracellular medium. However,
crucial differences are found in each cell type: 1) The nature and characteristics of a
stimulus able to produce exocytosis; 2) The levels of intracellular calcium needed to
trigger secretion; 3) The localization, quantity and readiness of vesicles; and, 4) The
dynamic behaviour of intracellular calcium that determines the timescale of secretion.

The study of three cell types (calyx of Held, chromaffin cell, and alpha cell), compre-
hends exocytosis taking place in milliseconds, (fast secretion), seconds (intermediate
secretion), and minutes (slow secretion). This set of cases covers fast, intermediate
and slow dynamic behaviours of calcium and release, which requires to model an
active zone up to the whole cell, and that finally require short, medium and long
time scale simulations. Then, we will discuss a multiscale perspective of exocytosis.
The multiscale approach adds complementary tools that improve the simulating task
by sharing mathematical methods and algorithms suitable for each set of models.

Since the present thesis has been developed in the framework of a Biomedical
Engineering doctoral programme, our approach has been intended to cover goals in
two main areas of research: biomedicine and engineering. Within the former, the
present work addresses the cellular secretion topic that belongs to the Cell Biology
discipline; this discipline studies cell behaviour at different spatial and temporal levels.
Within the latter, this work makes use of mathematical and computational tools to
study the biomedical problem from a theoretical perspective. Therefore, the present
thesis is an example of an interdisciplinary study developed to integrate experimental
biomedical data to spatiotemporal models and simulations. The term Computational
cell biology was coined some years ago to describe this research area [167].



CHAPTER 2

Modeling tools and mathematical methods

2.1 Studying Ca2+ dynamics

Secretion is one of the most important and sophisticated processes in which a cell
can exhibit its magnificent capabilities. Theoretical studies on the spatiotemporal
Ca2+ dynamics in a cell are useful to predict main Ca2+ controlling processes, and
to understand their impact on secretion [129]. Ca2+ dynamics is severely affected by
Ca2+ buffers that slow down the free movement of incoming calcium ions, and each cell
type has its particular kind of buffers, each one with specific kinetic characteristics [14].
Moreover, in many experiments, external Ca2+ buffers are added to allow fluorescent
images (like Fura-2 fluorescent dye), or to study the Ca2+ -dependence of secretion (like
BAPTA or EGTA buffers) [173]. Thus, to predict a correct intracellular Ca2+ behaviour
along time and space, and to quantify how the presence of calcium ions start a secretion
process, it is necessary to consider the following mechanisms:

1. Calcium ions that enter into the cell, in response to a stimulus.

2. Calcium diffusion in the intracellular space.

3. Buffers (internal or external) and barriers that would modify intracellular calcium
diffusion.

4. Calcium binding by the Ca2+ sensor involved in vesicle fusion.

5. Calcium extrusion.

It is important to emphasize that each cell type will exhibit dramatic differences in
the spatiotemporal characteristics of these five processes. Moreover, depending on the
spatial and temporal scale of the theoretical study, some of these sub-cellular processes
may become more or less relevant for studying cell secretion.

Intracellular calcium dynamics can be modeled as a set of differential equations that
represent the spatiotemporal dependence of Ca2+ concentration. This set of differential
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equations should include equations that describe the particularities of the calcium influx
(to model point 1), the diffusion (point 2), the kinetic reactions leading to calcium
buffering (point 3), the calcium-binding steps associated with the vesicle calcium sensor
(point 4), and the extrusion of calcium (point 5). In terms of fluxes and following mass
conservation of Ca2+ , the rate of change of free calcium ions, in space and time, must
equal the algebraic sum of incoming and outgoing cellular fluxes and diffusion, as stated
in the following diffusion equation:

∂C(r, t)

∂t
= DCa∇2C(r, t) + Jin − Jon + Joff − Jout (2.1)

where C(r, t) denotes the quantity of free Ca2+ in the position described by the vector r
(in any coordinates) at time t; DCa is the diffusion coefficient of Ca2+ in the cytoplasm
and it is used to calculate the free diffusion term; ∇2 is the spatial Laplacian operator;
Jin is the influx generated by the incoming Ca2+ in response to a stimuli; Jout is the
efflux due to the Ca2+ -extrusion mechanisms; and Jon, Joff are the fluxes resulting
from the calcium binding and unbinding, respectively, associated with buffers and the
vesicle calcium sensor. As will be explained later, these fluxes could be modeled using
similar equations and solution methods considering them as biochemical reactions.

Each one of the fluxes included in Equation 1.1 could be described by one or more
equations. Thus, the complete set of equations to be solved includes all those needed
to calculate each specific flux coupled to all the others. The suitable method to solve
them depends on the characteristics of the solution we are interested in; for example:
1) The temporal and spatial dependence of each flux, including the relevant resolution
scales; 2) The time scale associated with the kinetic rates for the buffers and the
vesicle calcium sensor; 3) The homogeneity of the media; and, 4) The geometry shape
of the cellular area to be modeled. Although the combination of these conditions
may lead to many possibilities and also, to many suitable methods, two main families
of mathematical approaches have been used in the present work: The stochastic, in
particular, the Monte Carlo numerical methods, and the continuous or deterministic
numerical methods. In the following sections, there is a brief introduction for each
family of mathematical methods, including some up-to-date reported applications to
the cell biology area, and then, there is a detailed explanation of our approach to
solve the four points listed above, based on these methods. Notice that although we
separate the equations associated with each flux in sections, to be solved, they need to
be coupled i.e., to be solved together in each time step at each spatial point.

2.1.1 Modeling Ca2+ influx through voltage-dependent ionic
channels

Cell depolarization induces Ca2+ entrance from the external medium, which occurs via
two main pathways: influx from the extracellular medium through open Ca2+ channels
located in the plasma membrane, and release from internal stores to the cytoplasm [14].
An usual experimental protocol is to depolarize the cell with pulses of defined amplitude
and duration that provoke channels opening. Calcium influx due to depolarization
is mainly conducted through voltage-dependent Ca2+ channels [199], so to correctly
simulate intracellular Ca2+ dynamics it is necessary to pose a correct model for them.
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(a)
e0 e1

q01

q10

dPe0
dt

= q10Pe1 − q01Pe0 ,

dPe1
dt

= q01Pe0 − q10Pe1 .

(b)

e0 e1

e2

q01

q10

q02

q20

q12q21

dPe0
dt

= (q10Pe1 + q20Pe2)− (q01 + q02)Pe0 ,

dPe1
dt

= (q01Pe0 + q21Pe2)− (q10 + q12)Pe1 ,

dPe2
dt

= (q02Pe0 + q12Pe1)− (q20 + q21)Pe2 .

(c)

e0 e1

e2 e3

q01

q10

q02q20 q13q31

q32

q23

dPe0
dt

= (q10Pe1 + q20Pe2)− (q01 + q02)Pe0 ,

dPe1
dt

= (q01Pe0 + q31Pe3)− (q10 + q13)Pe1 ,

dPe2
dt

= (q02Pe0 + q32Pe3)− (q20 + q23)Pe2 ,

dPe3
dt

= (q13Pe1 + q23Pe2)− (q31 + q32)Pe3 .

Figure 2.1: State models for all channels used in simulations. (a) Two-state model for
potassium channels associated with IKDR

in alpha cells. e0 and e1 represent Open and
Closed channel states, respectively. (b) Three-state model for calcium channels found
in the calyx of Held, in chromaffin cells, and in alpha cells. e0, e1, e2 correspond to Open,
Closed and Inactive states, respectively. (c) Four-state model for sodium and potassium
channels associated with INaand IKA

currents in alpha cells. e0, e1, e2, e3 correspond to
Open but Inactive, Closed and Inactive, Open, and Closed states, respectively. The
system of ordinary differential equations corresponding to each state model is shown in
its right. The values for transition rates between states are given in the tables shown
in each chapter, since they are specific to each cell type.
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Ca2+ influx is managed by different Ca2+ channel subtypes, depending on the cell type
[26]. In the present thesis, we developed models for the L-type and P-type voltage-
dependent calcium channels, for the calyx and for bovine chromaffin cells, and for the
N-type and T-type, for pancreatic alpha cells.

For the above-mentioned cell types, we developed channel state models, and esti-
mated their parameters for those channels associated with secretion. Once the models
were developed and the related parameters established, a set of differential equations
for each model were obtained and solved using numerical methods, as we discuss later.
In this section we present a state-modeling approach for ionic channels, intended to
simulate the dynamics of ionic currents commonly measured in voltage-clamp experi-
ments, coupled to diffusion and other kinetic reactions involved in exocytosis. Voltage-
dependent ionic channels involved in the sequence of events leading to secretion could
be calcium, sodium and potassium channels [121]. They all exhibit some common
kinetic properties that make them suitable for a common modeling approach. First,
the activation of these channels usually increases as the cell becomes depolarized.
Second, the channels deactivate when depolarization disappears. Third, a strong or a
sustained depolarization induces channels inactivation (in some of them) i.e., the ionic
flux through the channel diminishes even when depolarization continues. However,
each ionic current exhibits its own dynamic behaviour, so it is necessary to propose a
specific model for each ionic channel.

There are two common approaches to model channel gating that produce ionic
currents: the Hodgkin-Huxley paradigm and the Markov state modeling [45]. The
former is widespread because of its capability to be managed and its ability to model
macroscopic phenomena so, there are different parameter estimation methods and
software based on it [195, 196]. However, this approach is unable to model single-
channel behaviour since it is based on continuous and deterministic principles [25,
82, 170]. Markov state models are an adequate methodology to combine experimental
information and mathematical modeling of single-channel behaviour [139] as each state
is trying to resemble the conformational changes suffered by the channel, in order to
reproduce whole-cell measurements. In this work we develop Markov state models
for channels (shown in Figure 1.1) towards: 1) Relating ionic channel properties
to secretion, and 2) Simulating ionic currents actually measured in depolarization
experiments. Notice that these channel models are suitable to be incorporated in
microscopic schemes capable of simulating high-resolution temporal and spatial events
related to exocytosis [61, 188].

On the assumption that transition rates could be interpreted as transition prob-
abilities per time unit, we propose a minimal state model for each ionic channel
and associate each transition rate between states (qij) to a channel property (Figure
1.1). Therefore, based on this minimal approach, each model contains just one Open
(and active) state and one or more Closed and Inactive states, in order to reproduce
the behaviour observed during depolarization experiments. The Open (active) state
is the only conducting one, so open probability is calculated based on the number
of channels that reach this state. Specifically, we understand Activation as those
transitions going to the Open state, and Deactivation as those transitions going to
Closed states. Activation and deactivation are both functions of membrane voltage in
a symmetrical manner. Since some channels also present Inactivation (i.e., no response
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under constant stimulation), we interpret it as transitions to Inactive states. There
are two possible channel inactivations: one, due to extreme depolarization (known as
voltage-dependent inactivation), and due to the accumulation of Ca2+ near the channel
mouth (known as calcium-dependent inactivation) [199]. Our models include both
cases, when appropriate, and the voltage or calcium dependence is included in the
definition of the transition rates to Inactive states, as shown in the corresponding tables
for model parameters. All transition rates follow the main idea of the Markov models,
i.e., transitions only depend on the present state [25, 155]. The minimal state models
proposed here are constrained to fit an experimental current-to-voltage (IV) function
and, at the same time, to adequately reproduce dynamic currents; when possible, we
also take into account other kinetic data such as steady-state inactivation curves, or
time constants. Our models are based on previously reported models, but are simplified
in order to have the minimum number of states to reproduce current dynamics suitable
to facilitate the understanding of intrinsic channel properties.

Following the idea that activation/deactivation are symmetrical exponential func-
tions of membrane potential difference [45], we define opening and closing rates as ex-
ponential functions. Inactivation rates are defined as sigmoidal functions of membrane
potential difference, considering that experimental data commonly shows that currents
inactivate in this manner. For N- and L-type Ca2+ channels, we also added calcium-
dependent inactivation since these channels exhibit this particularity, as discussed in
[199]. Finally, all other transition rates are fitted as time constants, as is the case
in many state models. Although there are other methods to estimate current kinetic
properties using the Hodgkin-Huxley approach [180], we favour the use of experimental
data, obtained in voltage-clamp protocols, to estimate model parameters.

Parameter estimation for channel models

Parameter estimation for each model was done using a Monte Carlo algorithm which
looks for a parameter set that fits an experimental IV curve with minimal error.
Although we are not following a formal methodology to fit kinetic parameters since
we have no numerical data for single currents, our algorithm considers the guidelines
discussed in [124] to estimate parameters; they are: 1) To fit the model several times
while randomly changing the parameters; 2)To fix some parameters to improve the
identifiability of the model; 3)To make the number of trials large enough (proportional
to parameter space) to improve confidence, and 4)To use a defined stimulation (like
a depolarizing pulse). Our main algorithm follows these steps (see Figure 1.2): First,
it determines the number of trials as a function of the number of parameters; sec-
ond, it generates random parameter combinations for the parameter space; thirdly,
it calculates the peak current at specific voltages by solving channel equations for
each parameter set; finally, it computes the chi square deviation of the simulated peak
currents to experimental ones, and finds out the set with minimal deviation. The
main algorithm calls a program that solves the system of differential equations derived
from each channel model, and shown at the right in Figure 1.1, at the steady state.
Specifically, this program obtains the peak current for each model at one membrane
voltage with the given parameter set. For example, for the two-state model (Figure
1.1(a)), the equations are
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Input data

Call randPar

Call channel

Call minChiDev

End of
simulation?

Stop

Next trial

yes

no

Figure 2.2: Flow diagram of the algorithm to find the parameter set that best fits
experimental peak currents for each channel model. It was used for all channel
models, just specifying the routine that solves the corresponding system of differential
equations. Routines are described in Appendix B.1.
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Figure 2.3: Example of the limitations of static parameter estimations to adequately
reproduce dynamic behaviour. (Left) Comparison of alpha-cell sodium currents
induced by two kind of depolarizations: strong (0 mV, large currents) and weak (-
40 mV, small currents). Currents were simulated using: 1)The static parameter set
obtained by fitting the IV curve (stars), and 2)The modified set (dots). As observed,
parameter modifications improve dynamic simulations; in this case, new parameter
values allow fast sodium current inactivation as found in alpha-cell experiments [9].
(Right) Comparison of IV curves: experimental read from [9] (triangles, error bars and
line), static best-fit (stars) and modified (dots). Notice that parameter modifications
do not significantly affect the IV curve fitting, since new values still follow steady-state
behaviour.
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dPe0
dt

= q10Pe1 − q01Pe0 ,
dPe1
dt

= q01Pe0 − q10Pe1 , (2.2)

where Pei
represents the probability that a channel is in state ei. An extra equation

refers to probability conservation i.e.,
∑

n Pen = 1. The solution to (Eq.1.2) for Pe0

and Pe1 at the steady-state (i.e., where each
dPei

dt
= 0), would be

Pe0 =
q10

q01 + q10
,

Pe1 =
q01

q01 + q10
,

(2.3)

which has two rates to be fitted, q10 and q01. For this two-state model, these transition
rates refer to the activation and deactivation of the channel, and as mentioned above,
they are exponential functions of the membrane potential. Indeed, there are two
parameters per exponential to be fitted (amplitude and time constant) so, for the
two-state model the parameter space is made of five parameters in total: four for the
rates, and one for the channel population. It is important to mention that the number
of channels is always considered to be a free parameter ranging between 100 and 10,000;
these limits are based on density values for the calyx (10 channels in 0.1 µm2) [158],
and for neuroendocrine and pancreatic beta cells (5 to 15 channels in 1 µm2) [98, 123].

The solution for the Open state probability (Pe0 in Eq.(1.3)) allows estimation of
the number of open channels. The total current is calculated multiplying the unitary
current by the open channel population, as described for L-type calcium channels in
[74]. Notice that the unitary current is specific to each channel, and it depends on
the membrane voltage and the single-channel conductance; these values are given in
the tables included in each chapter, as well as the fixed values used to estimate the
free parameters and to simulate the electrical currents. The estimated values for the
transition rates for each channel model, are also given in these tables.

Using an optimal set of parameters for each model, we simulate the dynamic
behaviour of a current by solving the ordinary differential equations for each multi-state
model. In this way, we try to reproduce the measured currents following experimental
protocols in a cell type. These protocols usually consist of fixing a resting condition
for the cell (at a very negative membrane potential), and then stimulating it with a
depolarization pulse. For our simulations, all channels are assumed to be closed as
initial condition, and then, they increment their opening probability as depolarization
increases. We compute the total current as the product of the number of channels in
the Open state by the unitary current, per each time step. To achieve this, we use
an adaptive time-step ordinary differential equation solver for stiff problems (ode15s)
implemented in Matlab (http://www.mathworks.com).

It is important to mention that there is a strong compromise between fitting an IV
curve, and correctly reproducing the current dynamic behaviour. On the one hand, the
IV curve is built from peak currents (as in experimental reports) which corresponds
to the maximal conductance of a channel population i.e., the maximum number of
channels that could be open due to the electrostatic force of the applied membrane
potential difference. This is calculated on the basis that Open probability rapidly
increases for membrane depolarizations, so peak current value is mainly due to steady-
state Open probability. On the other hand, the dynamic behaviour of the current

http://www.mathworks.com
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exhibits the rapid and transitory changes of the channel i.e., the transitions to/from one
state to another, including the Open state. These transitions are attributable not only
to membrane potential variations but also to stochastic transitions over time. Using this
approach, the set of parameters found for peak currents is a static approximation of this
behaviour. Therefore, it does not necessarily reproduce current dynamics, although it
provides a good set of starting values to restrict the model and the channel populations.

To overcome this limitation and bearing in mind that our main goal is to simulate
the real electrical activity observed in cells, we have taken the channel model param-
eter set obtained while fitting the IV curve, as described above, as a starting set of
parameters to simulate the corresponding current dynamics. After the simulations,
we observed that some dynamic properties, mainly deactivation and inactivation, were
underestimated. We tested different options in order to correctly simulate experimental
currents. The most suitable one was to fix deactivation parameters and to increase
inactivation amplitudes. Then we checked that the new IV curve was not far off
the expected values. Figure 1.3 shows an example of this methodology for sodium
currents, measured in alpha cells, where comparisons between the IV curves and the
underestimated vs. modified currents are demonstrated.

2.1.2 Modeling calcium diffusion

Diffusion (of ions or molecules) refers to the random spread of particles following the
concentration gradient direction, i.e., from high to low concentration regions. Buffered
diffusion refers to the case when the spread of particles is not free but it is modified
by the presence of a buffer (a molecule that can bind particles). In our case, modeling
calcium buffered diffusion means to calculate the quantity of free calcium ions that
is present in each place of the cell at each time, considering that some ions are
free, and some can be bound (or unbound) by a buffer. This calculation gives the
dynamical description of the calcium quantity considering its temporal and spatial
dependence, and this description is really complex since there are several intracellular
mechanisms that can act as buffers or barriers affecting free calcium diffusion, such
as the mitochondria, the endoplasmic reticulum, or the cytoskeleton, to cite some
examples [14]. In this section, we just discuss possible approaches to model free
diffusion that could be coupled to calcium buffering equations, which are discussed
in Section 1.1.3.

As shown in Equation 1.1, the free diffusion term (neglecting other fluxes) is
calculated based on the diffusion equation:

∂Cd(r, t)

∂t
= DCa∇2C(r, t), (2.4)

where Cd(r, t) now denotes the quantity of free Ca2+ in the position r at time t. In
the case of a spherical cell, the simplest approximation is to consider that ion diffusion
occurs in a homogenous sphere of radius R, where DCa is assumed to be constant, and
ions mainly travel in the radial direction (say x), so Equation 1.4 can be reduced to

∂Cd(x, t)

∂t
= DCa

∂2C(x, t)

∂x2 , (2.5)
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restricted by the boundary conditions ∂c
∂x

= 0 at x = 0 and x = R i.e., no flux at
the cell borders. This is a parabolic equation which can be solved by finite differences
schemes, such as the Crank-Nicholson method [28].

Models describing buffered diffusion based on differential equations need drastic
geometrical simplifications in order to be solved with ease. Depending on the geomet-
rical assumptions considered, the differential models lie within two categories: Shell
models, in which it is assumed that ions enter uniformly over the cell membrane, and
that only the radial diffusion is of relevance for spherical cells or domains (for example
[69, 153, 198]), and Microdomain models (for example [98]), which solve the reaction
diffusion equations in the vicinity of a channel pore, assuming azimuthal symmetry
around the pore; in this last case it is necessary to assume that all channel pores are
equidistant. We have applied this deterministic approach to develop our spherical cell
model described in Section 1.2.3, and called in this thesis, Shell model. This model
was used to study exocytotic dynamics in chromaffin cells, as discussed in Chapter 4,
and to estimate calcium distribution in alpha cells, as exposed in Chapter 6. However,
it is well known that ions do not enter uniformly given that the Ca2+ channels are not
regularly spaced. These departures from symmetry may have an important impact on
the functionality of the cells. In [66] it was described how channel clustering gives rise to
calcium profiles which cannot be obtained as a superposition of calcium concentrations
developed by individual channels. Moreover, non-uniform calcium influx and distribu-
tion may have a crucial influence on cell activity, in particular, on exocytosis, as in the
case of neurons where local calcium signals determine the quality of neurotransmitter
release [7].

Over this basis, a second option emerges to solve Equation 1.4 without neglecting
spatial dependence of diffusion, and taking into account the random nature of calcium
distribution. This task can be accomplished using a random-walk algorithm inside
a small domain that forms part of the cell. One possibility is to consider a cubic
microdomain where one or a fixed array of channels are located near a vesicle [13,
163]. Another approximation is to take a conical or cylindrical domain and to divide
it in small cubic compartments, where ions can randomly move in any direction of
the cubes. This approach allow a more robust method to calculate ion diffusion in
any cell geometry, but needs the implementation of stochastic methods which elevate
the computational time of the numerical simulation. Despite their complexity, these
stochastic schemes permit to study calcium dynamics with more flexible and more
realistic geometric parameters, as clearly discussed and implemented in [66]. In the
present thesis, the reported Monte Carlo scheme of Gil et al. has been extended to study
secretion in the calyx of Held, as discussed in Chapter 3, and to study cytoskeleton
influence on secretion in bovine chromaffin cells, as discussed in Chapter 4. Notice that
the random-walk algorithm defines a relationship between the time step ∆t (temporal
resolution), and the associated spatial discretization ∆x:

∆t = (∆x)2/4DCa, (2.6)

where DCa = 220µm2/s [2]. The implication of this equation is that if spatial resolution
is increased, i.e., ∆x is reduced, the time step will be also reduced in a quadratic
manner, so it will take much more iterations to end a simulation, increasing the
computational time.
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2.1.3 Modeling biochemical reaction kinetics

Chemical or reaction kinetics studies explore the reaction’s mechanism and transition
states that describe a particular reaction. This information allows the researcher
to build a mathematical model of the reaction as a sequence of steps governed by
reaction rates which may depend on the concentration of reactants, the temperature,
the presence or not of a catalyst, or any other parameter. Modeling biochemical
reactions through kinetic schemes is a useful tool to obtain differential equations, as
they relate main variables (usually, concentrations or quantity of matter) with time,
and they can be solved in order to obtain the dynamic behaviour of these variables.
This methodology has been widely used in biological problems, as reviewed in [95, 165].
Here, we present two specific sub-cellular phenomena described with kinetic schemes
and differential equations, which are included in our models.

The calcium buffers

Calcium ions are importantly buffered in the cytoplasm since there are many intra-
cellular proteins (enclosed as endogenous buffers) able to bind Ca2+ , such as parval-
bumin, calbindin, amongst many others [48]. Moreover, in many experiments calcium
dyes and exogenous buffers are added to record intracellular calcium dynamics, so they
should be taken into account [173]. Therefore, a correct model of Ca2+ diffusion in the
cytoplasm must include all the buffer molecules, endogenous and exogenous. A basic
scheme of representing the Ca2+ binding to a buffer molecule is

B + Ca
kon

�
koff

BCa, (2.7)

where B represents the free buffer molecule, and BCa represents the buffer molecule
bound to one Ca2+ . As represented in this kinetic or reaction scheme, the calcium
ion can be bound or unbound depending on the value of the kon and koff rates.
When several buffers are considered, the system of differential equations describing
the corresponding kinetic reactions, based on Equation 1.7, would be:

d[Ca]
dt

=
∑
i

(kioff [BiCa]− kion[Ca][Bi],∑
i

d[Bi]
dt

=
d[Ca]
dt

,
d[BiCa]
dt

= −d[Bi]
dt

,
(2.8)

where [Ca] is the concentration of free Ca2+ at time t, kion and kioff are the binding
and unbinding rates for buffer i, and [Bi] is the concentration of buffer i at time
t. These concentrations could be interpreted as continuous or discrete variables. As
a continuous variable, concentration would be quantity of mass per volume, usually
in Molar (mol per liter) units, as a function of time. This kind of formulation is
called Continuous Deterministic or classical Kinetics [77]. In contrast, in a discrete
interpretation, concentration is seen as the number of particles (ions or molecules) of
every species per volume unit, at a given time. The set of all concentrations in a time
is called a state, and the stochastic solution calculates the probability that the system
is in a particular state [77]. These two interpretations are really different since they
call for completely different methods to solve Equation 1.8, and more importantly,
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they are adequate for two unlike cases: many particles versus few particles. The
stochastic interpretation is specially suitable for few particles in the medium, and it
should converge to the continuous solution as the number of particles is increased [200].
However, the opposite is not always true; a continuous interpretation may not give an
accurate solution for all cases, as discussed in [55].

If there are few calcium ions and buffer molecules in a volume, the dynamics of the
variable [Ca] is highly influenced by the probability that Ca2+ could be bound or not at
each time interval (where this probability is in terms of kon and koff rates and the size of
the time interval ∆t), so its correct evaluation requires a stochastic numerical method,
as Monte Carlo algorithms; the implementation of buffer kinetics along with calcium
diffusion is clearly explained in [66]. These algorithms were extended and used, for the
present thesis, to study calcium dynamics in the calyx of Held, as discussed in Chapter
3, and to study cytoskeleton influence on spatial calcium dynamics in chromaffin cells,
as discussed in Chapter 4. On the other hand, if there are many calcium ions and
buffer molecules in a volume, the dynamics of [Ca] could be estimated as the average
quantity of ions at each time interval. This evaluation can be directly coupled to a
reaction-diffusion model, and solved by a numerical method, as explained in [73]. The
algorithms developed in this thesis were adapted and extended to estimate calcium
distribution in alpha cells, as exposed in Chapter 6, and to study calcium dynamics
in human chromaffin cells. In the latter case, we have combined both interpretations,
discrete and continuous, because secretion in human chromaffin cells may be explained
with them for rapid and intermediate secretion, respectively, as discussed in Chapter
5.

The calcium sensor for vesicle fusion

Calcium ions trigger exocytosis thanks to the existence of a calcium-binding protein
(calcium sensor) in the cytoplasm that activates the secretory machinery. Synapto-
tagmins are widely accepted calcium-sensor proteins involved in regulated exocytosis;
some Synaptotagmin subtypes are attached to the vesicle and some other are attached
to cell membrane, and each one exhibits a specific calcium affinity. It is known that
3 to 5 calcium ions could be bound to these proteins to activate them [171]. Calcium
binding leads to vesicle fusion and finally, to release; both these processes are commonly
described as biochemical reactions consisting of several steps [24].

The binding and unbinding of free calcium ions to the calcium sensor could be
represented as a kinetic scheme, which can be written as a set of ordinary differential
equations describing the temporal dependence of these cellular processes. For example,
if three Ca2+ needs to be bound to the calcium sensor (i.e., a sensor with 3 binding
sites) to trigger vesicle fusion and release, the kinetic scheme describing this process
could be

V
kf1

�
kb1

VCa1

kf2

�
kb2

VCa2

kf3

�
kb3

VCa3

p−→ VF , (2.9)

where V represents a vesicle with an empty sensor, VCai
are the states of the vesicle

with i calcium ions, and VF represents the fused vesicle. The transitions between
states are managed by the rates p, kfi and kbi , that are the fusion, the forward
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(activating) and the backward (deactivating) rates, respectively. Notice that some
of these rates are calcium-dependent since vesicle fusion is activated by Ca2+ , whereas
some other are just functions of time. Moreover, the forward and backward rates may
show cooperativity, that is, rates are increased upon the binding of each calcium ion.
Commonly, the vesicle states VCai

are called pools, and the dynamics of these pools is
what is understood as secretion dynamics.

Due to the Ca2+ -dependence of vesicle fusion, it is common to define the forward
rate as kfi

= (N − i + 1)kon[Ca], where N is the number of binding sites of the
calcium sensor i.e., the number of calcium ions needed to trigger vesicle fusion, kon is
the Ca2+ -binding rate of the sensor, and [Ca] is the Ca2+ concentration felt by the
sensor. The backward rate is defined in a similar manner: kbi = ikoff , where koff is the
Ca2+ -unbinding rate of the calcium sensor. The rates koff and kon are related with
the dissociation constant KD of the sensor by the equation KD = koff/kon, where KD

is a measure of the Ca2+ affinity for Ca2+ of exocytosis [171]. The above-mentioned
definitions for kf and kb assume that the calcium sensor involved in exocytosis does not
exhibit cooperativity with Ca2+ , so the states of the vesicle are sequential steps that
only depend on the quantity of Ca2+ near the sensor. These kind of kinetic models
are called non-cooperative schemes, and have been proposed to model the final stage
before vesicle fusion and release in synapses, with five binding sites (N=5) [20], and
in neuroendocrine cells with three binding sites (N=3) [85]. An alternative kinetic
model consider that the sensor has more affinity for Ca2+ at low concentrations, so
the backward rate includes a parameter b(i − 1) that stands for cooperativity; it was
proposed for the calyx of Held with N=5 [159]. There are other models intended to
explain asynchronous release observed in neurotransmitter release [109, 172]. In this
Project, we have mainly used the non-cooperative scheme for modeling secretion in
the calyx of Held (with N=5), and also in chromaffin and alpha cells (with N=3),
although we have done a comparison of release predictions of the non-cooperative and
cooperative models for the calyx of Held.

As noted before, to trigger vesicle fusion the sensor depends on the quantity of
Ca2+ in its vicinity. The limits for this vicinity are an important item to accurately
simulate Ca2+ -triggering of release. Indeed, fast secretion (as occurring in the calyx
of Held), is triggered by the very local Ca2+ concentration, so the implementation of
the kinetic model can affect the precision of simulations. In a homogenous media,
the Ca2+ dependence of the vesicle sensor could be seen as deterministic if the calcium
concentration near this sensor is almost stable in a time span. However, this dependence
needs a stochastic interpretation if the number of calcium ions near the sensor is
unstable, changes very fast, or is very low. In any of these cases, Ca2+ quantities
might be different for neighboring vesicles, and the simulation should take into account
these differences. These two different circumstances lead to completely distinct cellular
phenomena, then the kinetic model should be solved and implemented in a distinct
manner. Implementations may be deterministic or stochastic, as the solution methods,
similar to what happened with buffers.

In the case of an active zone, Ca2+ channels and vesicles are few and have specific
locations and organizations (clusters); these features require a stochastic implementa-
tion of the kinetic models for vesicle fusion, as we have done with the calyx of Held
and with fast secretion in chromaffin cells. In both cell types we used a statistical
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approximation for simulations: in order to have a significant number of fused vesicles
per time step, we consider that the whole sub-membrane region is full of vesicles. We
have done several tests comparing simulations with excessive vesicle population (M
vesicles) versus detailed simulations (k simulations with M/k vesicles each), and the
results show no statistically significant deviation. From a kinetic point of view, this
approximation is justified given that the kinetics of exocytosis is much slower than
the kinetics of buffers, as well as there are fewer vesicles than buffers. However, it is
important to mention that this approximation is valid only for high Ca2+ influx (as the
one induced with pulse depolarization experiments in the calyx), or for a non-very small
spatial resolution (as in neuroendocrine cells). This is not the case for the Ca2+ influx
induced by an action potential in a presynaptic terminal, for which it is necessary to
run a large number of simulations with few vesicles to obtain a correct estimation of
secretion dynamics [65].

2.1.4 Modeling calcium extrusion

Calcium extrusion is mainly done by pumps and transporters located at the cell
membrane, and they all help in keeping the adequate intracellular calcium concen-
tration, in particular, after stimulation periods. Pumps are active mechanisms (i.e.,
mechanisms that require ATP energy to function) that take calcium ions out of the
cell, no matter the calcium gradient. Transporters, on the other hand, are passive
mechanisms that follow the calcium gradient, so they expel calcium ions depending on
the electrochemical gradient. The most common pumps found in cells are the family
of Ca2+ -ATPases [201], and the most common transporters are the family of sodium-
calcium exchangers [177]. For the present thesis, these calcium-extrusion mechanisms
were included in the Shell model, used to study human chromaffin cells and alpha cells.
In both cases, we include the differential equation used in [138] to describe the rate of
calcium extrusion along time assuming that it exhibits Michaelis-Menten (sigmoidal)
kinetics, that is,

d[Ca]

dt
= −Vmax

A

V

[Ca]

[Ca] +Km

, (2.10)

where [Ca] is the intracellular calcium concentration at time t, Vmax is the maximal
speed of the pump, A is the whole-cell area, V is the volume of the outermost shell,
close to the pump, and Km is the half-maximal activating calcium concentration. This
equation was coupled to diffusion, calcium buffering, and the vesicle calcium-sensor, in
the Shell model.

2.2 Developed models

2.2.1 Active-zone model

The Active-zone model (AZ model) was intended to simulate Ca2+ -triggered exocyto-
sis, with high spatial and temporal resolution, in an active zone where calcium channels
and the secretory machinery could be located in specific positions. The AZ model
includes submodels for the Ca2+ channels, the buffered diffusion of Ca2+ , and the
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Figure 2.4: The Active-zone model repre-
sents an active zone where secretion occurs.
The cylindrical domain is mapped into
a 3-D grid made of cubic compartments
where Ca2+ ions, buffers and vesicles may
be found. Ca2+ channels and vesicles are
placed only in the first layer of the domain.
The included sub-cellular mechanisms are
Ca2+ influx, buffered diffusion, and vesicle
fusion.

kinetics for vesicle fusion. All these mechanisms are considered as stochastic processes
taking place in a domain (conical or cylindrical volume) that represents the active
zone, as shown in Figure 1.4. The base of the domain represents a cell membrane
patch that is embedded inside a larger portion of the membrane where Ca2+ channels
are, on average, uniformly distributed, so we can assume that the flux of ions and buffer
molecules through the lateral sides of the domain is zero. This simplification imposes a
simple boundary condition in the walls of the membrane: ions bounce back when they
encounter a wall. At the domain base, this condition is interpreted as reflection while,
on the domain lateral sides, reflection is equivalent to consider that the outgoing flux
equals the incoming flux, due to the symmetry of the geometry.

An orthogonal 3-D regular grid maps the domain of simulation with a distance
between grid points chosen by the user, as the spatial discretization (∆x). Each point of
the grid is associated with a cubic compartment of volume (∆x)3. Therefore, grid points
or cubic compartments are equivalent concepts. Calcium ions and buffer molecules
may move from one compartment to another due to diffusion, which is modeled as a
random walk process. The time scale for the random walk is calculated from the spatial
discretization, and the fastest diffusion coefficient of the system, following Equation
(1.6). Commonly, the Ca2+ diffusion coefficient imposes the limit for the time step
∆t. Ions will be moved every time step, ∆t, using a random walk algorithm, in which
each ion will have 50 % chance to remain in its initial position, and 25 % chance to
move either in the positive or negative direction, for each spatial dimension. In the
first slice of the domain, that represents the cell submembrane region, Ca2+ channels
and vesicles are distributed. Different distributions for both can be chosen: cluster,
correlated cluster or random. All equations representing sub-cellular mechanisms in
the active zone (shown in Figure 1.4) are solved using Monte Carlo methods, i.e.,
differential equations are interpreted in a stochastic manner, then the AZ model is
suitable to simulate short timescale Ca2+ and secretion dynamics (first milliseconds) in
presynapsis and neuroendocrine cells. The implemented algorithm to solve the model is
shown in Figure 1.8. This model does not consider main calcium-extrusion mechanisms
found in presynaptic terminals, such as the Na+ -Ca2+ exchanger and the Ca2+ pump,
since the former is not colocalized with release sites, and the latter has a slow extrusion
rate that is out of the simulation timescale [93]. Other phenomena not considered in the
AZ model are the effect of diffusion barriers, such as release granules or mitochondria,



Chapter 2. Modeling tools and mathematical methods 19

Figure 2.5: The Cytoskeleton-cage model
reproduces a prototypical cytoskeleton
cage found in bovine chromaffin cells.
The cylindrical domain (0.3 µm of radius
per 1 µm of height) contains 3 clusters
of Ca2+ channels (medium spheres), colo-
calized to one vesicle (big sphere) and its
secretory machinery (small sphere). The
figure shows the two studied configura-
tions: in the borders (1) and in the center
(2).

Figure 2.6: The Shell model represents a
spherical cell divided in concentric layers,
where the most internal one is the nucleus,
and the most external one is the cell mem-
brane. Ca2+ channels (entering arrows)
and the Ca2+ pump (outgoing arrows) are
localized in the cell membrane, whereas
buffers (u-shaped figures) are distributed in
the cytosol.

which were studied by A.Gil and collaborators in [160].

2.2.2 Cytoskeleton-cage model

The Cytoskeleton-cage model (CC model) was designed to study the cytoskeleton
influence on Ca2+ -triggered exocytosis in bovine chromaffin cells, as will be detailed in
Chapter 4. This model is a particular case of the AZ model, then, it includes the same
mechanisms (Ca2+ channels, buffers, diffusion, and vesicle fusion) acting in a cylindrical
domain, as shown in Figure 1.5. However, the CC model accounts for the participation
of L- and P-type calcium channels in each channel cluster. The implemented algorithm
to solve the CC model is the one shown in Figure 1.8, with the addition of a state model
for the L-type calcium channel, as a Monte Carlo algorithm, in program chanmod.

2.2.3 Shell model

The Shell model (S model) is intended to calculate the intracellular calcium con-
centration ([Ca2+]i ) over time, considering Ca2+ influx through voltage-dependent
Ca2+ channels, buffered diffusion, and extrusion. It is assumed that the starting
stimulus is a depolarization pulse applied at the cell membrane, as in voltage-clamp
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experiments. This model is a modified version of our previously developed Ca2+ -
regulation model [73]. The algorithm assumes that the cell can be approximated
as a homogeneous sphere divided in concentric layers, where the most internal one
represents the nucleus, and the most external one corresponds to the cell membrane,
and diffusion only occurs in the radial direction. The boundary conditions to solve
this system are: there is no calcium flux between the nucleus and the cytosol, and the
external concentration of calcium is infinite. Ca2+ channels and the Ca2+ pump are
localized in the most external layer, whereas the endogenous buffer is distributed in all
the cytosol. The algorithm calculates [Ca2+]i in time and space by solving Equations
1.5, 1.8, and 1.10, as well as a constant leak flux added to keep basal conditions in the
steady-state, using the Crank-Nicholson method (see Section 1.3.2).

2.3 Mathematical and numerical methods

When solving reaction-diffusion equations, several time scales get involved, such as
the diffusion time for each species, reaction rates, and buffering rates. In order to
accurately solve the set of differential equations, an appropriate time scale should
be taken considering that it is defined by the fastest process. This point imposes a
restriction that may bring out a multiscale problem. The main aspect involved in the
solution of a model for studying Ca2+ dynamics is the buffered Ca2+ diffusion problem.
In the present thesis, we have used stochastic and deterministic approaches to solve
this problem. A description of these approaches is given in the next two sections.

2.3.1 Stochastic methods

Monte Carlo methods

Monte Carlo methods are a class of mathematical methods, and its computational
algorithms, that rely on repeated random sampling to compute their results. They
usually make use of computers since they need a lot of calculations [112]. The name
is related to the city of Monte Carlo in Monaco, famous for its casinos and where the
roulette, the gambling game, is a random number (a number that is never predictable)
generator. These methods, which were originally developed by J. von Neumann and
S. Ulam [122], are specially useful: 1) To solve models of phenomena with uncertainty
in its inputs, reflected in the use of random numbers to calculate the solution, or 2)
To solve microscopic models where the main variables, acting as particles (ions or
molecules), may follow random movements (such as random walk [46] and Brownian
motion [135]).

Monte Carlo methods have proven to be very valuable to simulate the diffusion of
particles in a non-homogeneous media i.e., a media that presents spatial or temporal
dependence of the diffusion coefficient such as degradation or barriers, or in non-
symmetrical spaces [46]. In these cases, the random walk method is highly accurate,
since it evaluates the probability that each particle can move to any of its possible
trajectories (in one, two or three dimensions) in each time step, as depicted in Figure
1.7. Moreover, Monte Carlo methods find a solution in any geometrical domain, being
appropriate when particles are few and are non-homogeneously distributed in the do-
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Figure 2.7: A drawing about how the
Random-walk algorithm works in three di-
mensions: Each time step, a particle lo-
cated inside the cube may move to one of
the twenty-six neighbouring positions with
the indicated probabilities, or may stay in
its current position.

main. However, the main restriction of these methods is that they are computationally
expensive and time consuming, so they are suitable for short to median timescale
simulations, which in turn, implies small spatial domains.

In neurotransmitter secretion, exocytosis is started by few calcium ions [53, 60, 72],
and in neuroendocrine cells, the secretory machinery appears clustered in specific zones
[160]. These characteristics impose severe restrictions to the spatial dependence of
calcium diffusion and binding. To accurately estimate these two processes, stochastic
methods are the best option. Therefore, for the present thesis, the Monte Carlo method
was employed to solve the Active-zone and the Cytoskeleton-cage models that allow us
to simulate fast secretion in the calyx of Held and in bovine chromaffin cells. For both
models, the random walk algorithm was implemented to estimate calcium diffusion in
a three-dimension space, as shown in Figure 1.7.

Our random walk algorithm estimates the probability that a particle (a calcium ion
or a mobile buffer) may move or not at each time step. The whole domain (cylinder
or cone) is divided in cubes, each one identified by its three-dimension position. Inside
a cube, there may be one or more particles, and each particle may move to one of the
twenty-six neighbouring positions with the probabilities indicated in Figure 1.7, or may
stay in its current position. If the cube is located in the boundaries of the domain, it
is assumed that it will be reflected. Calcium ions diffuse faster than mobile buffers,
i.e., buffers have smaller diffusion times than calcium ions, then the algorithm moves
buffer particles less frequently than calcium particles.

In order to estimate the stochastic binding and unbinding of calcium ions due
to buffers and the vesicle sensor, a Monte Carlo algorithm was used. This algorithm
evaluates, each time step, the probability that a calcium ion may be bound or unbound
by a buffer or by the sensor. The corresponding probabilities are calculated based on
the binding and unbinding rates, kon and koff , as well as the time step, assuming
that binding process follows a binomial distribution, as clearly described in [63]. The
flow diagram of the computer programs developed to solve the AZ and the CC models
(Stochastic models) is shown in Figure 1.8, and the main steps are briefly described
below. All programs were implemented in Fortran 77 language for Linux Operating
System.
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Input dataExpert Presimulation

Call
makegrid

Call data
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chandis
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vesdis
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Figure 2.8: Flow diagram of programs that solve the Active-zone and the Cytoskeleton-
cage (Stochastic) models. Routines are described in Appendix B.2.
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Main input data:

• Domain type (cylindrical/conical)

• Channel distribution (random/cluster/correlated-cluster)

• Initial Ca2+ and buffer concentrations

• Depolarization pulse (voltage, duration)

• Simulation time

Presimulation stage:

• Transform the macroscopic input variables into microscopic quan-
tities (call Program data)

• Map the simulation domain into a 3-D orthogonal grid (call Pro-
gram makegrid)

• Distribute calcium channels over the upper layer of the domain
(call Program chandis)

• Distribute vesicles over the upper layer of the domain (call Pro-
gram vesdis)

• Distribute uniformly the initial number of calcium ions and buffers
over the whole domain (call Program districa)

Simulation stage: At each time step, ∆t, calculate the following values:

• Number of incoming calcium ions (call Program chanmod)

• New position of calcium ions and mobile buffers due to diffusion,
and increase one time step (call Program walk)

• Number of free and bound calcium ions due to kinetic reactions of
the buffers and the vesicle calcium sensor, as well as the number
of fused vesicles (call Program kineves)

Most programs shown in Figure 1.8 were written and tested by A. Gil and J. Segura
[64]. New programs developed for this thesis are: vesdis, which distributes vesicles;
chanmod, which calculates the number of calcium ions entering to the cell through
P-type and L-type Ca2+ channels with a Monte Carlo algorithm; and kineves, which
calculates the number of free and bound calcium ions resulting from the kinetic reac-
tions associated with buffering and vesicle fusion. The latter program also calculates
the number of fused vesicles (secretion) for non-cooperative and cooperative kinetic
schemes. Program chanmod is a Monte Carlo algorithm that solves the state model of
a calcium channel, as those models shown in Figure 1.1. Program kineves implements
a Monte Carlo solution to the kinetic schemes described in Section 1.1.3. All routines
are described in Appendix B.2.

2.3.2 Deterministic methods

A variety of deterministic numerical methods for solving differential equations, ordinary
and partial, can be found in almost any standard textbook of numerical analysis (see
for example [28]. The choice of a particular method will depend on: 1) The kind
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Figure 2.9: Flow diagram of the computer programs developed to solve the Shell
(Deterministic) model. Routines are described in Appendix B.3.
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of problem to be solved, that is, initial or boundary value problem; 2) The problem
stiffness, i.e., is it a smooth or a stiff problem? and, 3)The compromise we have between
accuracy and efficiency, which leads to choose simple or sophisticated methods. In
the present thesis, to simulate Ca2+ and secretion dynamics using the Shell model,
we have had to combine two deterministic methods: one for solving the reaction-
diffusion partial differential equations (a parabolic equation), and one for solving the
set of ordinary differential equations describing the kinetic scheme associated with
vesicle fusion. Reaction-diffusion is a process mainly managed by the Ca2+ diffusion
coefficient, whereas Ca2+ binding is governed by the kinetic rates associated with the
Ca2+ sensor, which call for a multiscale solution. Then, as a first approximation,
we decided to solve kinetic reactions separately from the reaction-diffusion process,
assuming that the Ca2+ binding by the vesicle sensor does not considerably affect
Ca2+ dynamics. This approximation is adequate for whole-cell Ca2+ concentrations as
those used with the Shell model, but could fail when dealing with low Ca2+ quantities.

In order to solve the reaction-diffusion process, i.e., the parabolic equation, we have
chosen the Crank-Nicholson method which consists of a convex combination of explicit
(in time) and explicit (in space) schemes [28]. This finite-differences method has the
advantage of being stable for any positive choice of discretization steps. Specifically,
we solve Equations 1.5, 1.8, and 1.10, as well as a constant leak flux, assuming that
diffusion occurs only in the radial direction of a homogenous sphere of radius R. This
sphere, that represents the cell, is divided in concentric layers of thickness ∆x. The
calcium concentration in the most external layer is affected by calcium influx due to
channels, calcium extrusion, leak flux and buffers, as well as diffusion. The most inter-
nal layer, representing the nucleus has no calcium influx or efflux. Ca2+ concentrations
in all other layers are influenced only by buffered diffusion. Boundary conditions are
∂C
∂x

= 0 at x = 0 and x = R, i.e., there is no flux at the cell limits, the nucleus and the

external medium, except through Ca2+ channels. These considerations are depicted in
Figure 1.6. Initial conditions, for all cells, are [Ca2+]i = 0.1µM , −80mV of resting
potential, and a specific endogenous buffer concentration.

On the other hand, to solve the kinetic reactions that model vesicle fusion, described
in Section 1.1.3, we have used an adaptive time-step numerical method of integration,
namely ode15s, as implemented in the Matlab software. Function ode15s belongs
to the set of algorithms that solves initial value problems for ordinary differential
equations, in particular, it is intended to be efficient and accurate for stiff problems.
This function integrates the coupled differential equations in a specified time span,
using the given initial conditions. For our purposes, we call this function to obtain
the number of vesicles present in each state, or pool, shown in the kinetic scheme
1.9, at each time; this makes up the vesicle pool dynamics along the simulation time.
In order to get these dynamic values, we assume an initial vesicle distribution which
represents the physiological basal organization of the vesicle pools. This organization
is a particular characteristic of each cell type, which in turn, determines the exocytotic
response.

Computer programs developed for the Shell model implement both numerical algo-
rithms, the Crank-Nicholson and the adaptive integrator in routines difb and secre,
respectively. The flow diagram of the whole main program is shown in Figure 1.9, and
the main steps are briefly described below. All programs were implemented in Matlab
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language for Windows and Linux Operating Systems.

Main input data:

• Cell radius

• Shell thickness

• Depolarization pulse (voltage, duration)

• Simulation time

Presimulation stage:

• Uniformly distribute the initial concentration of Ca2+ and endoge-
nous buffer in each shell

Simulation stage:
At each time step, ∆t, calculate the following values:

• Calcium influx (call Program ica)

• Free Ca2+ and buffer concentrations in each shell (call Program
difb)

• Calcium efflux due to the extrusion pump

• Leak flux

Calculate the number of fused vesicles (call Program secre)

The main algorithm shown in Figure 1.9 was written and tested by V. González-
Vélez [73]. For the present thesis, new routines were developed: An improved version of
Program difb that computes the concentration of endogenous buffer and free Ca2+ in
each shell; program ica that reads experimental data of Ca2+ current; and, program
secre that solves the kinetic reactions describing Ca2+ binding for vesicle fusion.
Routines are described in Appendix B.3.



CHAPTER 3

The calyx of Held presynapsis:
Studying fast secretion

3.1 Introduction

The calyx of Held is a U-shaped large synapse (Figure 3.1) widely used to study
stimulus-secretion coupling in neurotransmitter release, due to the fact that its huge
size allows experimentalists to simultaneously record the pre- and post-synaptic events.
It is located in the trajectory of the mammalian auditory central nervous system and
it has been related to high-frequency sound source localization [158]. The whole calyx
membrane area is about 2,500 square microns, from which about 40%, i.e., 1,000 square
microns are in contact with the principal (postsynaptic) neuron. The thickness of the
calyx is mostly less than 1 µm. In the contact area, which is the releasing area, there
are approximately 554 active zones of 0.1 µm2 each, and the center of any of them is
separated from the nearest one by a mean of 0.59 µm [150]. All these characteristics,
along with the limited diffusion of calcium ions inside the cytosol [119], support that

Figure 3.1: A simple diagram of the calyx
of Held presynaptic terminal and the main
postsynaptic neuron. The calyx is U-
shaped and in its internal side the active
zones are found. The diagram depicts that
calcium ions near docked vesicles trigger
glutamate release.
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secretion dynamics may be studied based on single active-zone models.
At rest, the calyx has a potential difference between the inner side and the outside

(named resting potential) around -75 mV [21]. Under stimulation, presynaptic action
potentials are generated and depolarize the calyx forcing voltage-gated Ca2+ channels
to open. Then, external calcium ions enter into the calyx forming calcium spots, named
micro or nanodomains depending on the distance to the channel [131]. These domains
can reach very high Ca2+ concentrations (up to tens or hundreds of micromolars) in
the close vicinity of calcium channels, which is usually much larger than the average
cytosolic calcium concentration [13, 32, 105].

Rapid and high elevations of [Ca2+]i partially explain the very efficient coupling
between the action potential stimulation and the initiation of glutamate release, delayed
about one millisecond [19]. Indeed, the incoming ions trigger fusion and release of those
docked and ready-to-be-fused vesicles (named RRP, Readily Releasable Pool, or IRP,
Immediately Releasable Pool vesicles), by binding to their calcium sensor. It has been
estimated that up to twenty calcium channels might open to trigger the two to five
RRP vesicles found in an active zone, in the range of 10 to 20 nm from the contact
area [150]. However, the fast and efficient secretion in the calyx is also due to the
presence of non-uniform arrangements of calcium-channel clusters and vesicles, and to
the Ca2+ affinity of the vesicle sensor [5].

Three subtypes of voltage-gated calcium channels have been described as the main
gates of presynaptic calcium currents in response to depolarization: the P-, the N-,
and the R-type [92, 100, 199]. Nevertheless, it had been observed that P-type channels
participate more effectively in triggering release for mature cells than the other two
types, probably because they are located closer to release sites [197] and/or because
they remain after cell maturation [91]. Calcium channels are critical not only to allow
Ca2+ influx that triggers secretion, but to physically interact with Synaptotagmin-1
protein that acts as the vesicle Ca2+ sensor. In fact, it has been argued that this
physical interaction is required to tether, dock and fuse vesicles, all steps required for
fast secretion [26].

An important and extensively used parameter for the study of calcium dependence
of release is the biochemical or kinetic cooperativity, which is the exponent of the non-
linear relationship between release and calcium influx [35]. Cooperativity refers to the
requirement for the binding of multiple Ca2+ ions to trigger fusion of presynaptic vesi-
cles. It is generally accepted that release is highly cooperative, and that cooperativity
values in the calyx are between two and five. These values have been measured using
flash Ca2+ photolysis [109, 172] and depolarization pulses [151, 152]. Experimental
findings also show that calcium cooperativity depends on the [Ca2+]i range: there
is low cooperativity for low [Ca2+]i (near basal values), and high cooperativity for
high [Ca2+]i , usually reached after a stimulus. A low Ca2+ cooperativity seems to
be functionally relevant because it prevents a large increase in asynchronous release
activity, as commented in [109]. Notice that spatial coupling of channel-vesicles as
well as cooperativity seem to suffer developmental transformations that affect release
efficiency [47].

The behaviour of Ca2+ dynamics in the calyx is started by calcium influx through
voltage-gated P-type calcium channels opening, and then to its buffered diffusion. The
latter behaviour is due to the action of efficient Ca2+ -reducing mechanisms such as the
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sodium-calcium exchanger, the calcium pump and the mitochondria [96]. All entering
calcium ions tend to diffuse into the cytosol along time, but free diffusion is also affected
by the calcium buffers present in the calyx [32, 49, 151]. Then, the time course and
the amplitude of local [Ca2+]i transients are the result of all these mechanisms working
simultaneously in the first few milliseconds after the appearing of the stimulus.

Some modeling works on exocytosis in the calyx and in other synapses have been re-
ported. They range from those studying synaptic transmission (depression/facilitation)
[78, 86, 117, 181], through those describing transmitter release [13, 15, 198], up to those
theoretical studies of neurotransmitter modulation at the calyx of Held [119, 120].
There are also works on kinetic models of release [20, 159] which fail, however, in
predicting the low cooperativity observed at low [Ca2+]i ; then, alternative and more
sophisticated models have been proposed [109, 172]. Some other works have studied
the influence of the dynamics of Ca2+ influx and the geometry of the active zones in
neurotransmitter release [13, 163]. However, the study of several relevant factors in
neurotransmitter release at a microscopic level (such as vesicle population, channel-
vesicle localization, calcium influx, and mobile buffers) has not been done, prompting
the work developed for the present thesis.

The two standard experimental protocols for studying Ca2+ cooperativity in the
calyx of Held are flash Ca2+ photolysis and pulse/action potential depolarization; in
both cases, the technique induces a [Ca2+]i increase which triggers neurotransmitter
release. Both methods commonly estimate the release rate by deconvolution of the
postsynaptic current, and evaluate the cooperativity by obtaining the slope of the best
Hill fit (n) for the curve of peak release rate versus [Ca2+]i (as in [20, 159]. Applying
depolarization pulses follows a more physiological approach since release is triggered
by presynaptic calcium currents, as when action potentials appear [151, 152], whereas
the Ca2+ uncaging technique avoids participation of calcium channels. Using calcium
uncaging cooperativity of release seems to be very high (∼ 4-5) for [Ca2+]i> 1µM ,
and to be much lower (2 or even less) below this value [109, 172]. Similarly, using
depolarization pulses, the estimated values of the kinetic cooperativity are also high
(∼ 3− 4) and the effect of exogenous buffers (commonly used in experiments, such as
BAPTA, EGTA or FURA) can also be studied [151, 152]. Based on the reported data
obtained in the calyx of Held about Ca2+ -triggered secretion, for the present work we
have simulated the presynaptic calcium currents induced by pulse depolarization, and
the corresponding secretion rates of glutamate.

3.2 Modeling

Neurotransmitter secretion in a presynapsis is a very fast process that takes place in a
few milliseconds after the appearance of the stimulus. The calcium ions that trigger this
process are those localized close to ready vesicles. Therefore, an adequate model should
be able to estimate calcium influx and vesicle fusion in a few milliseconds with high
spatial resolution. This can be achieved by proposing a small-sized model containing
the main features involved in secretion (channels, vesicles, buffers). Moreover, since the
simulation periods we are interested in fall in the range of milliseconds and an active
zone can be approximated as a cylinder of 0.1µm of radius, as found in microscope
data [150], it is feasible to use a microscopic model and to choose high spatial and
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temporal resolution. Therefore, in order to simulate presynaptic secretion occurring
in the calyx, the Active-zone model was chosen, and it was solved with Monte Carlo
methods explained in section 1.3.1. Inside the active zone, we include models for
calcium buffered diffusion, non-cooperative or cooperative calcium-binding schemes for
vesicle fusion, and P-type voltage-gated calcium channels. To model vesicle fusion,
we compare two different five binding-sites schemes, one assuming cooperativity [159],
and another one assuming there is no cooperativity [20], as will be discussed later. For
the P-type calcium channels, we have developed a three-state Markov model, following
the methodology detailed in Section 1.1.1, which allows us to simulate the calcium
influx observed during experimental protocols. Since this channel model was fitted to
reproduce the characteristics of calcium influx in the calyx, it is a specific model. Then,
particular details about this model are given in the following section. The whole set of
parameter values used to simulate calcium influx and secretion in the calyx are given
in Table 3.1.

3.2.1 P-type Ca2+ channel model

Following a previous three-state Markov model for L-type voltage-gated channels [74],
we propose a P-type channel model which includes voltage activation and deactivation,
as well as voltage- and Ca2+ -dependent inactivation, as reported for these channels
[199]. L- and P- type channels exhibit similar high-voltage activation, showing a fast ac-
tivation for depolarizations above -40 mV; additionally P-type channels exhibit a steep
voltage-dependent inactivation that follows the inward current profile, even though
internal calcium elevation can trigger some level of Ca2+ -dependent inactivation [27].
The current to voltage curve and the 3-states model for our P-type channel model are
shown in Figure 3.2. Expressions and values of the transition rates are given in table
3.1. In contrast to our previous L- channel model, the P- model considers inactivation
as a non-linear function of the membrane voltage, as well as the internal and external
Ca2+ concentrations. The latter is included in the model because it has been shown
that the external Ca2+ concentration affects the number of open calcium channels [59].
Also, the implementation of this model in our Monte Carlo simulation scheme has
the additional feature of considering the calcium concentrations in the compartments
located just below the channels which allows, in this way, for a correct evaluation of
the Ca2+ -dependent inactivation. For all simulations, we assume that the external
calcium remains constant at the common value for mammals (2 mM) [197].

3.3 Simulations

Our simulations calculate presynaptic calcium currents induced by pulse depolarization.
In order to activate this calcium influx, we simulate the application of a depolarizing
pulse lasting 4ms, and with different amplitudes. For all simulations we assume resting
conditions of 0.1µM as internal calcium concentration, and −80mV of cell voltage, as
in experimental protocols [21, 152]. All parameters used in the Monte Carlo scheme
for these simulations are given in Table 3.1.

To study Ca2+ -triggered secretion in the Calyx, we pose two main questions: 1)
How is the exogenous buffer kinetics affecting the fast release of glutamate?, and 2)
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Table 3.1: Parameter values used to simulate secretion in the calyx of Held, using the
Active-zone model

Parameter Value Reference

Input data

Domain type Cylindrical Experimental
Base radius (µm) 0.1 [120, 150]
Height (µm) 0.125 Proposed†
Number of vesicles 300 See Section 1.1.3
Number of channels 10 [120, 150]
Channel distribution Random/Cluster To test
Ca2+ concentration (µM) 0.1 [21]

Spatial and temporal data Chosen

Spatial resolution (nm) 10 †
Temporal resolution (µs) 0.11
Simulation time (ms) 10

Vesicle fusion schemes

Number of binding sites 5
Non-cooperative [20]
Forward binding rate (M−1s−1) kon = 3.108

Backward binding rate (s−1) koff = 3000
Fusion rate (s−1) p = 40000
Cooperative [159]
Cooperativity factor, b 0.25, 0.5
Forward binding rate (M−1s−1) kon = 9.107

Backward binding rate (s−1) koff = 9500
Fusion rate (s−1) p = 6000

P-type Ca2+ channel

Unitary conductance (pS) 9 [38, 121]
Transition rates (ms−1) Fitted

α 5 exp(0.06(V − 20))
β 0.02 exp(−0.07(V − 20))
ω 0.5
γ 0.15[Ca]i/ cosh((V − 40)/10)

†Similar to the distance taken by [150] to count docked vesicles in an active zone (200
nm).
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Figure 3.2: Current-to-voltage relationship
of our model for the P-type calcium channel
found in the calyx of Held. The activation
threshold is near -40 mV, and the peak
current is reached for membrane voltages
between 0 to 20 mV , as reviewed in [158].
In the inset, we show the proposed model,
a three-state (Open, Closed and Inactive)
Markov chain. Values of the transition
rates are given in Table 3.1.

Table 3.2: Continue from Table 3.1.

Parameter Value Reference

Endogenous Buffer [98]

Concentration (µM) 500
Forward binding rate (M−1s−1) 5.108

Dissociation constant (µM) 10

Exogenous Buffers

EGTA
Concentration (mM) 0.5, 0.05 [151, 152]
Forward binding rate (M−1s−1) 1.107 [128]
Dissociation constant KD = 0.15µM [128]
BAPTA
Concentration (mM) 0.5 [151, 152]
Forward binding rate (M−1s−1) 5.108 [42]
Dissociation constant (µM) KD = 0.2 [81]
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How do the vesicle-fusion kinetic scheme and the spatial channel organization influence
the estimation of Ca2+ cooperativity of release?. These questions are important since
fast release in the calyx is crucial to have an adequate transmission in the auditory
pathway, as explained in the Introduction. A deeper knowledge of those elements
affecting presynaptic stimulus-secretion coupling in any pathway of the nervous system
is still a matter of research [33]. Then, in the next three sections, we figure out these
two questions through the analysis of our dynamic simulations.

3.3.1 Influence of exogenous buffers on fast release

To study the influence of exogenous buffers on fast release, we consider that an ex-
ogenous buffer (EGTA or BAPTA) is present at a time, in the active zone, when a
depolarizing pulse appears to stimulate secretion, following experimental protocols as
described in [151, 152]. In this section, results were obtained using the Active-zone
model described in Section 1.2.1, and considering the non-cooperative kinetic scheme
for vesicle fusion, and a random distribution of calcium channels.

Figure 3.3 shows four simulations of the calcium influx (panels in first row) and
secretion profiles (lower panels) obtained with four different depolarizing pulses, and
including 0.5mM of EGTA or BAPTA. The amplitudes of the pulses were thought
to explore strong to weak stimulations that evoke release, as tried in experiments
[152]. Our simulations reproduce shape and magnitude of the experimentally measured
calcium influx through P-type channels in the calyx, and their corresponding release
profiles, as reported in [151, 152]. Our results for BAPTA, a fast Ca2+ chelator, show
that this exogenous buffer highly affects fast release as discussed in [21], increasing the
delay of the peak release rate. The delay, as can be seen in figure 3.4, is particularly
noticeable for extreme voltage pulses (weak (−20mV ) and 40mV ) that allow scarce
calcium influx. In this case, there is no local buffer saturation and the delay is reflecting
the faster binding rate of BAPTA in comparison to EGTA. Indeed, for these extreme
pulses the delay differences between the two buffers would be even bigger if we took
the EGTA binding rate used in [152] (2.7 × 106M−1s−1), which is about four times
smaller than the value we are using for our simulations (see Table 3.1). Notice that
delay divergences between both Ca2+ chelators are very small for pulses in the range
of [−5mV, 20mV ], that is, for high calcium influx.

In figure (3.5) we show a comparison of accumulated secretion without exogenous
buffer and with 0.5mM BAPTA, for two depolarizing pulses: from −80mV to 0mV
(to induce high influx) and from −80mV to −20mV (to induce low influx). In the case
of low influx, there is a considerable difference between the secretory responses with
and without exogenous buffering; this is not the case for high calcium entry. Then,
large calcium currents provoke fast local buffer saturation which reduces, in turn, the
effectiveness of BAPTA in blocking secretion.

From an experimental point of view, the effect of exogenous buffers on the exocytotic
response seems also to vary depending on the stage of maturation of the calyx, as
discussed and analyzed in detail in [99], being the probability of local buffer saturation
greater in mature terminals. This fact also supports a higher degree of organization in
older calyces which, as we will point out in the next section, could have a measurable
influence on estimations of the kinetic cooperativity for secretion.
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Figure 3.3: Influence of exogenous buffers (BAPTA and EGTA) on fast release.
Simulations show Ca2+ influx in number of Ca2+ ions (first row), secretion rates with
BAPTA (second row) and EGTA (third row), and the corresponding accumulated
secretion (fourth row), in response to four depolarizing pulses to−20mV (first column),
0mV (second column), 20mV (third column) and 40mV (last column), respectively.
The results were obtained using the Active-zone model (described in Section 1.2.1),
and considering the non-cooperative scheme for vesicle fusion as well as a random
distribution of Ca2+ channels.

Figure 3.4: Delay of peak release rates
obtained with EGTA (•) or BAPTA (×).
Delays were computed based on statistical
peak release rates. As expected, delay is
greater with BAPTA specially for very low
calcium influx, at -20 and 40 mV, corre-
sponding to the first and fourth columns of
Figure 3.3.
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Figure 3.5: Accumulated secretion without
exogenous buffer (lines), and with 0.5 mM
BAPTA (dotted lines) for two depolarizing
pulses: to 0mV (high Ca2+ influx), and to
−20mV (low Ca2+ influx).
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In all previous simulations, we have used a non-cooperative vesicle fusion scheme
with the parameters given in Table 3.1. However, under the same buffering conditions,
it is interesting to compare the influence of the kinetic scheme for the secretory vesicles
on the secretion time course. Figure 3.6 shows the comparison of the normalized
accumulated secretion for three kinetic schemes: the non-cooperative scheme (Scheme
1) suggested in [20], the cooperative scheme (Scheme 2) given in [159] and the same
cooperative scheme but with b = 0.5 (Scheme 3). The last scheme is considered a
control, since it has a higher cooperativity factor that should decrease the unbinding
probability. As can be observed in figure (3.6), the non-cooperative scheme provides a
slightly faster secretory response than the cooperative scheme due to its faster binding
rate. This results in a higher sensitivity to Ca2+ in comparison to the cooperative
model. Nevertheless, scheme 3 provides a faster secretory response than scheme 1 due
to the cooperativity factor, which decreases the probability of unbinding. Additional
information on the implications of the vesicle fusion kinetic scheme is provided in figure
(3.7). In this figure we show and compare the calcium thresholds for triggering secretion
using Scheme 1 and Scheme 2, in response to high calcium influx with 0.5mM EGTA.
We compute a calcium threshold, when an exocytotic event takes place, by averaging
the calcium concentration reached over those sub-membrane compartments sharing a
similar relative position with respect to the calcium channels. Note that since the
spatial resolution considered in the simulations is 10nm, thresholds were evaluated
using calcium concentrations between 0 to 10nm from the membrane surface. Results
obtained for Ca2+ thresholds are statistically summarized in figure (3.7) using boxplots.
These boxes have lines at the lower quartile, median, and upper quartile values of each
data sample. As a first comment, we observe that Ca2+ thresholds strongly depend
on Ca2+ influx (top versus bottom plots): the median values obtained for high influx
are in the interval [100µM, 150µM ], while for a low influx, median values are about
20µM . On the other hand, comparing data obtained with both kinetic schemes we find
that 25% of total vesicle population depletes for a significantly lower Ca2+ threshold
than the median value, when the non-cooperative kinetic scheme is considered. This
lower threshold, in comparison to other presynaptic terminals, seems to be consistent
with experimental data in calyx of Held, as discussed for instance in [20]. It is also
noticeable that vesicle fusion occurs at similar thresholds for both kinetic schemes (left
versus right plots).

3.3.2 Vesicle-fusion models and cooperativity of release

Within our simulation scheme, we now try to simulate an experimental study (based on
the application of depolarizing voltage pulses) for estimating the kinetic cooperativity
for secretion. Specifically, we calculate the number of vesicles released during the first
millisecond after the calcium current is switched on. The results obtained have been
normalized in order to obtain the release rate per vesicle (fpv). We then plot these
values as a function of the average number of ions per unit of diffusional time step
entering in the microdomain during this first millisecond. The data have been fitted
to a Hill function:

fpv =
Nn
Ca

Nn
Ca +Kn (3.1)
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Figure 3.6: Accumulated secretion with
three different vesicle-fusion kinetic
schemes: a non-cooperative (Scheme
1) [20], a cooperative (Scheme 2)
[159], and the cooperative scheme but
with an increased cooperativity factor
(b = 0.5) (Scheme 3). Values for all kinetic
parameters are given in Table 3.1.
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Figure 3.8: Release rates under 0.5mM EGTA buffering and considering a random
spatial arrangement of calcium channels. (Left) Release rate computed using the non-
cooperative scheme for secretion. The parameters of the Hill fit are n = 4.04 (95 %
confidence interval [3.82, 4.27]) and K = 0.19. (Right) Release rate computed using
the cooperative scheme for secretion. The parameters of the Hill fit are n = 3.81 (95 %
confidence interval [3.47, 4.14]) and K = 0.19. Hill fit follows equation 3.1.

where NCa represents the average number of ions entering in the active zone during
the first millisecond, K is the average number of ions producing half maximum release,
and n is the exponent of the function. The fitted value of the parameter n can be
interpreted as the kinetic cooperativity for secretion. In order to test the influence
on the estimated cooperativity values of the kinetic scheme used for vesicle fusion, we
have run simulations for both kinetic schemes, the cooperative and the non-cooperative
(described in Section 1.1.3), using the parameters given in Table 3.1.

Figure (3.8) shows the results obtained for the non-cooperative (left) and the
cooperative (right) kinetic schemes, using 0.5mM EGTA as exogenous buffer. For
the non-cooperative scheme, we obtain a fitted value for the kinetic cooperativity of
n = 4.04 ± 0.23, while for the cooperative scheme the fitted value is n = 3.81 ± 0.33.
The width of the 95% confidence intervals is similar in both cases and the estimated
value for the average number of ions producing half maximum release (K) is the same.
Note also that there are no apparent significant deviations of the fitted curve to the
data in the lower range of the abscissas axis.

3.3.3 Spatial channel organization and kinetic cooperativity

Previous results were obtained considering a random distribution of channels in the first
layer of the simulation domain, which represents the cell membrane. This should be un-
derstood as an average configuration compatible, somehow, with whole cell recordings
in the calyx. However, calcium channels seem to be organized in clusters associated
with vesicles [120]. On the other hand, the possibility of considering non-uniform
spatial distributions of calcium channels with ease is one of the key features of our
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Figure 3.9: Depiction of tested spatial dis-
tributions of Ca2+ channels (circles) and
vesicles (pentagons) in an active zone of
the calyx of Held. A random (left) and
a clustered (right) organization of channels
are shown.

Monte Carlo simulation scheme [66]. Then, we have determined the cooperativity
value for a non-uniform distribution of calcium channels, that is, when channels are
grouped forming a cluster. Figure (3.9) shows an example of a random spatial config-
uration versus a clustered configuration just to emphasize how different their spatial
distribution is. What we try to elucidate is if there could be any influence of this
distribution on the estimated value of n, in a hypothetical experiment based on the
application of depolarizing pulses at a microdomain level.

Figure (3.10) shows the results considering a cluster of channels and 0.5mM EGTA
as exogenous buffer, to be comparable to figure 3.8. In this case, the estimated value
of the parameter n of the Hill fit is n = 3.43± 0.30. The mean value for the estimated
kinetic cooperativity is also in the range of 3− 4, which is admissible according to the
experiments based on the application of depolarizing pulses, but the fitted curve shows
deviations in the lower range. In order to get a closer look at these results, figure
(3.11) shows a zoom of the release rate at very low calcium for the three different
configurations considered so far with 0.5mM EGTA: 1) A cluster configuration of
channels and a non-cooperative scheme for secretion (shown in figure 3.10), 2) A
random spatial distribution of channels and a non-cooperative scheme (shown in figure
3.8A), and 3) A random distribution of channels and a cooperative kinetic scheme for
secretion (shown in figure 3.8B). As observed in figure (3.11), the highest release rate
is obtained for the cluster configuration; this behavior can be fitted with a Hill curve
with n = 2.5, which represents a reduction of the previously estimated cooperativity
value of 27%. This apparent reduction of the kinetic cooperativity can be explained in
terms of calcium gradients, which become steeper near a cluster of calcium channels
than for dispersed channels. This observation suggests that a possible experiment using
depolarizing pulses for estimating the kinetic cooperativity of the calcium sensor could
also be used to extract information regarding the geometry of the system. In fact, the
possibility of a high degree of clustering in mature calyces, whose kinetic cooperativity
is smaller than the one estimated in young calyces, is suggested in the experimental
study of [47].

3.4 Discussion of results

The calyx of Held is a widely used system in the study of neurotransmitter release, due
to the fact that its size allows researchers to measure pre- and post-synaptic responses,
as well as presynaptic [Ca2+]i . Here, we have presented a study of the exocytotic
dynamics for a pool of readily releasable vesicles located in a model of one active zone
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Figure 3.10: Release rate un-
der EGTA buffering. A cluster
of calcium channels and a non-
cooperative kinetic scheme for
secretion are considered in the
simulations. The parameters of
the Hill fit (equation 3.1) are
n = 4.12 (95 % confidence inter-
val [3.67, 4.57]) and K = 0.18.
Notice deviations of the curve in
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Figure 3.11: Kinetic cooperativ-
ity at low Ca2+ influx for a ran-
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distribution of Ca2+ channels.
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scheme, and a random chan-
nel distribution, are also shown.
Two Hill fits are also drawn
(dotted lines): one with n =
3.43, which fits the random chan-
nel distribution, and another one
with n = 2.5, which fits the
clustered channel distribution.
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of the calyx. This model includes P-type calcium channels, endogenous and exogenous
(mobile) buffers, secretory vesicles, as well as the microscopic diffusion of mobile
buffers and calcium ions. As detailed in Chapter 1, the Active-zone model is suitable
to be solved with Monte Carlo methods. Neurotransmitter secretion is accurately
simulated with this method, on the one hand, because it takes into account the
inherent noise associated with the stochastic nature of voltage-gated calcium channels,
buffered diffusion and Ca2+ binding [66, 120, 199]. On the other hand, because the
calyx of Held can illustrate that, macroscopic descriptions obtained with differential
methods in homogeneous geometries, are not always valid or accurate. As shown in
our simulations, calcium concentrations at the low regime (low influx) are so small
that, for the spatial resolutions considered, just few calcium ions enter into the active
zone. Then, microscopic models, such as those based on Monte Carlo methods, are
more accurate and useful. Thus, the Active-zone model has been able to reproduce
the release triggered by calcium influx through voltage-gated P-type Ca2+ channels
opened by a brief pulse depolarization, as well as the release delays due to the presence
of exogenous buffers, such as EGTA or BAPTA. The effect on the secretory time course
of the kinetic vesicle-fusion model has also been illustrated, as well as its influence on
the average calcium thresholds to trigger secretion.

Kinetic cooperativity of secretion reflects the need that multiple Ca2+ ions be bound
to the vesicle Ca2+ sensor, in order to trigger vesicle fusion. We have found that
when channels are non-uniformly distributed, i.e. they are grouped in a cluster, and
stimulation induces low Ca2+ influx in an active zone of the calyx, there is a reduction
of the apparent value of the kinetic cooperativity. Our results suggest that future
experimental studies, based on depolarizing pulses to study secretion kinetics but at
a microdomain level, could reveal information about the spatial organization of the
subcellular mechanisms, such as Ca2+ channels and vesicles. Knowing this microscopic
organization, disposed by nature, will allow us to understand developing changes
suffered during maturation of the calyx of Held, and the whole auditory pathway in
mammals.



CHAPTER 4

Bovine chromaffin cells:
Studying spatiotemporal features

4.1 Introduction

The medulla inside the adrenal glands, which are situated over the kidneys, is composed
of chromaffin cells (figure 4.1). These cells have the very important role of releasing
adrenaline (also called epinephrine) and noradrenaline in response to fear, stress or
conflicts (usually named ”fight or flight” body response). In chromaffin cells, as in
other neuroendocrine cells, the exocytotic process is started by cell depolarization
that allows Ca2+ influx through high-voltage-activated (HVA) calcium channels. Then,
vesicle fusion is triggered by calcium ions and, finally, the release of hormones takes
place [58]. Chromaffin cells have been widely used to study neurosecretion since they
exhibit similar calcium dependence of several exocytotic steps as synaptic terminals do,
but having the enormous advantage of being neither as small or fast as neurons, nor as
slow as endocrine cells. Apparently, Ca2+ control of secretion is common for neurons
and neuroendocrine systems, but their differences are contrasted in detail in [130].
These differences allow the simultaneous study of exocytosis and [Ca2+]i dynamics that
is impossible in neurons, as well as other sub-cellular aspects of the stimulus-secretion

Figure 4.1: Adrenal glands are located
over the kidneys, and they secrete hor-
mones that control heart rate, blood
pressure, and metabolism in response to
stress. These glands have two distinct
structures: the cortex and the medulla.
Medulla is made of chromaffin cells.
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Figure 4.2: Spatial heterogeneity of the cytosolic Ca2+ elevation, and localization of
Ca2+ channel clusters in bovine chromaffin cells. (Left) Fluo-3 images of cytosolic
Ca2+ distribution in a chromaffin cell in response to a depolarizing stimuli that open
Ca2+ channels: (A) Resting level, (B) Peak level (maximum in pink), and (C) Sustained
level. (D) Ca2+ dynamics along time in fluorescence units. (E,F,G) Fluorescent calcium
ions (green dots) are found in the empty spaces of cytoskeleton. Arrows point out a
”cytoskeleton cage” that we take as a prototype cage for modelling. Real scales: 10 m
(in A) and 1 m (in E and G). (Right) Ca2+ channel clusters (green dots) are localized in
the borders of the F-actin cytoskeleton (red) but not in the empty zones. (A,B) P/Q-
type channels are marked, (C,D) L-type channels are marked. Real scale: 5 m. Images
recorded, and kindly shared, by the research group of Dr. Luis Miguel Gutiérrez,
Institute of Neuroscience, Universidad Miguel Hernández-CSIC, Alicante, Spain.

coupling [137]. One interesting aspect found in chromaffin cells, which is still under
research, is the influence of cytoskeleton structure on Ca2+ spatial distribution and on
secretion [62, 70]. Another relevant topic that is still under investigation is the influence
on secretion of the localization of calcium channels, vesicles and regulating proteins (all
together named secretory machinery) [67]. One other significant issue is the apparent
spatial mobility of the secretory machinery that may influence secretion kinetics [108].
Although all these topics have been explored using experimental techniques, models
are valuable to help understand the relevance of [Ca2+]i dynamics on secretion, as well
as the influence of the spatial localization of the secretory machinery in the efficiency
of the exocytotic response in neuroendocrine cells. Moreover, models developed for
chromaffin cells in an animal species may need to be modified to be applicable to other
species, so those models considering real cellular mechanisms may be able to highlight
specific differences between mammals.

4.2 Experimental data

Transmitted light has been proved a useful technique to visualize the organization of the
F-actin cytoskeleton in chromaffin cells, as described in [70]. Once Ca2+ enters in the
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cell, it has been observed using this technique, that calcium ions are heterogeneously
distributed in different zones of the cytoplasm. Among several factors contributing to
this non-homogeneous spatial distribution, the F-actin cytoskeletal network seems to
play a crucial role in this dynamic behaviour [71]. Cytoskeleton is a dynamic supporting
structure inside the cell that exhibits a very complex 3-D polygonal shape. It forms
walls and empty spaces in the cytosol where cell mechanisms can place or move along.
In chromaffin cells, it has been found that the highest levels of [Ca2+]i are found in
the interior of cytoskeletal cages, i.e. the empty spaces, whereas [Ca2+]i is low in the
cytoskeletal walls, as observed in experiments (Figure 4.2). Since cytoskeleton is not
a static structure, its complex dynamics would affect the [Ca2+]i spatial distribution
along time and finally, it would also have an impact on exocytosis. Moreover, evidence
indicating that Ca2+ channels are organized in clusters has been found. Likewise, it
has also been observed that they are positioned in the border of cytoskeletal cages
together with the secretory machinery, namely, secretory vesicles and SNARE proteins
[179]. Then, active zones for secretion, where release occurs, may be placed near empty
spaces of cytoskeletal cages, probably to improve exocytotic efficiency.

4.3 Modeling

In order to study the influence of cytoskeleton structure on the calcium signal, we based
on experimental observations demonstrating that calcium channels and the secretory
machinery are closely positioned, and that they both are localized in the borders of
the cytoskeleton, as shown in Figure 4.2. Therefore, the goal for the modeling task
was to propose an adequate model able to test the hypothesis that the cytoskeleton
may act as a physical barrier, and then, may modify the spatiotemporal behaviour of
[Ca2+]i after calcium channels have opened. The experimental group 1 envision a model
where calcium-channel clusters, vesicles and the secretory machinery are all located in
the borders of a cytoskeleton cage, so that, calcium ions might diffuse only into the
empty space of the cage (Figure 4.3A and B). Thus, we proposed a three-dimensional
model of a prototype cage (the Cytoskeleton-cage model), assuming it is an empty
cylinder whose boundaries are the cytoskeleton, i.e., the boundaries are the physical
barrier against free Ca2+ diffusion. The model contained three clusters of calcium
channels and vesicles on top of the cylinder (Figure 4.3C). This model allowed us to
compare the secretory response obtained with two different spatial localizations of the
cluster-vesicle arrangement.

In order to test the hypothesis about cytoskeleton could act as a physical barrier to
improve exocytosis, the Cytoskeleton-cage model described in Section 1.2.2 was used
with two different spatial locations of channel clusters and secretory machinery, at the
center and at the border, as shown in Figure 4.3C. Each cluster-secretory machinery
arrangement is composed of three clusters containing three calcium channels each, two
P/Q- plus one L-type, next to one vesicle. The interesting periods to be simulated are
in the range of tens of milliseconds (up to 50 ms), and the cage model has 0.3µm of
radius and 1µm of height, as found in fluorescence images [70]. Then, it was feasible to

1Research group leaded by Dr. Luis Miguel Gutiérrez, Institute of Neuroscience, Universidad
Miguel Hernández-CSIC, Spain
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Figure 4.3: Model of spatial arrangements of channel clusters and the secretory
machinery in chromaffin cells, proposed in [178]. (A,B) According to the experimental
data, cytoskeleton is envisioned as a structure where calcium-channel clusters, vesicles
and the secretory machinery are all located in association with its borders, so that,
calcium ions might diffuse only into the empty space of the cage. (C) Implemented
model of a cytoskeleton cage with two possible locations of channel clusters and the
secretory machinery: (1) At the cage limits, and (2) In the cage centre. (D) Three-state
model and current-to-voltage relationships of the P/Q- and L-type calcium channels,
both included in the channel clusters.
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solve the Cytoskeleton-cage model with Monte Carlo numerical methods explained in
section 1.3.1. The simulation scheme allows us to choose the microscopic location of the
arrangement, in order to simulate the local Ca2+ increases that may affect secretion.
Vesicle fusion was modeled as a non-cooperative process (described in Section 1.1.3).
The whole set of parameter values is given in Table 4.1.

4.3.1 L- and P/Q-type Ca2+ channel models

In bovine chromaffin cells, there are voltage-dependent P/Q-, L- and N-type calcium
channels, accounting for 50%, 20-38%, and 12-30% of the whole calcium current,
respectively [58, 110]. Since the first two types are preferentially localized in secretory
sites [67], we propose a specific model for each one. Both calcium channels (L and
P/Q) are high voltage activated channels (named HVA) but in bovine chromaffin cells,
the P/Q voltage threshold is slightly lower than L threshold. L-type channels exhibit
strong calcium inactivation, and have a peak current about 30 pA/pF for ∼ 10−20mV
and half maximal activation about -8 mV. On the other hand, P/Q-type channels
show almost no inactivation and a peak current near 200 pA between -5 and +5 mV.
With regard to conductances, L channels have been reported to have a higher unitary
conductance than P/Q ones.

Both calcium channel subtypes where modeled as three-state Markov processes,
with different transition rates to fit the particular current-to-voltage functions (shown
in Figure 4.3D), following the methodology explained in Section 1.1.1. Fixed values
defined to fit transition rates of the state models were: the threshold voltage (-30 mV
for the P/Q and -40 mV for the L), and the unitary conductance (2.5 pS for the P/Q
and 8.4 pS for the L). Estimated transition rates are given in Table 4.1.

4.4 Simulations

4.4.1 Spatio-temporal distribution of [Ca2+]i

In order to study the influence of cytoskeleton structure on the spatial distribution
of calcium elevations along time, we simulate a depolarizing pulse from −80mV to
20mV , to induce calcium-channel opening. On the hypothesis that cytoskeleton act as
a physical barrier to [Ca2+]i distribution, we run dynamic simulations using both cluster
localizations shown in Figure 4.3C. Figure 4.4 show the resulting spatial distribution
of [Ca2+]i at different times. For configuration 1, i.e. channel clusters at the cage
border, the obtained Ca2+ signal reaches high concentration values near the clusters,
and then diffuses into the empty space, to arrive at a heterogeneously distribution, 35
ms after. Indeed, this cluster location induces a more heterogeneous spatial distribution
of the calcium signal than the corresponding one obtained for configuration 2. Then,
simulated calcium dynamics seems to point out that channel clusters near the cage
border reproduces a non-homogeneous [Ca2+]i elevation, which is in better agreement
with experimental observations, as those shown in Figure 4.2.
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Table 4.1: Parameter values used to simulate secretion in bovine chromaffin cells, using
the Cytoskeleton-cage model

Parameter Value Reference

Input data

Domain type Cylindrical Experimental
Base radius (µm) 0.3 [70]
Height (µm) 1 Chosen
Number of vesicles 300 See Section 1.1.3
Number of channels 3L+ 6P/Q Experiments
Channel distribution 3 Clusters To test
Ca2+ concentration (µM) 0.1 Experiments

Spatiotemporal data Chosen

Spatial resolution (nm) 30
Temporal resolution (µs) 1
Simulation time (ms) 50

Vesicle fusion model [98]

Type Non-cooperative
Number of binding sites 3
Forward binding rate (M−1s−1) kon = 8.106

Dissociation constant (µM) KD = 13
Fusion rate (s−1) p = 40000

Calcium channel models

P/Q type

Unitary conductance (pS) 2.5 [156]
α (ms−1) 10 exp(0.05(V − 30))
β (ms−1) 0.02 exp(−0.08(V − 30))
ω (ms−1) 0.5
γ (ms−1) 0.05[Ca]i/ cosh((V − 40)/10)

L type
Unitary conductance (pS) 8.4 [22]

α (ms−1) 10 exp(0.05(V − 40))
β (ms−1) 0.02 exp(−0.08(V − 40))
ω (ms−1) 0.02
γ (ms−1) 4.4[Ca]i

Endogenous Buffer [98]

Concentration (µM) 500
Forward binding rate (M−1s−1) 5.108

Dissociation constant (µM) 10
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Figure 4.4: Simulations of the spatial Ca2+ distribution (in uM) along time using the
Cytoskeleton-cage model. Each set of four maps shows [Ca2+]i after 5, 15, 25 and 35
ms the depolarizing pulse appeared, i.e. after calcium channel opening. (Left) Spatial
dynamics obtained when channel clusters are localized in the borders of the cage model
(Figure 4.3C, configuration 1). (Right) Spatial dynamics when channel clusters are in
the center of the cage (Figure 4.3C, configuration 1). Note concentration differences
for each map, indicating that peak values are much higher when channels are in the
cage border than in the center of it.

Figure 4.5: Tested cluster-vesicle positions
used to investigate cytoskeleton influence
on secretion. (1) Located at the borders
of, and (2) Randomly distributed in, the
cytoskeleton cage. Clusters are formed
by three Ca2+ channels (circles), and are
co-localized with the secretory machinery
(crosses) in both arrangements.
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4.4.2 Modeling cytoskeleton influence on exocytosis

What will be the influence on exocytosis of a heterogenous calcium distribution, which
in turn corresponds to the role of cytoskeleton cages in secretion dynamics? To
answer this question, we simulated along with calcium distribution, the secretion events
occurring in the cytoskeleton cage for two different positions of the secretory machinery
(Figure 4.5): (1) At the borders of the cytoskeleton cage, and (2) Randomly distributed
inside the cage. The configurations also assume that three calcium-channels clusters,
comprising three calcium channels each as before, are located next to vesicles as found
in reported experiments [70]. To induce calcium influx and secretion, we simulated
a depolarizing pulse from -80 mV to 20 mV, lasting 20 ms, and calculate calcium
and secretion dynamics. Figure 4.6(a) shows the average calcium concentration in
the first 30 nm from the cell membrane, for both configurations. Figure 4.6(b) shows
the dynamics of the calcium ratio, defined as the calcium concentration close to a
vesicle [Ca2+]local over the average calcium concentration [Ca2+]aver shown in (a). In
our simulations, this ratio, which approximates the local calcium felt by the secretory
sensor, has a mean value of 1.98 for configuration 1 whereas it has a mean value of
1.76 for configuration 2. This value difference means that local calcium effects are
enhanced, in about 25%, when the secretory machinery is located in the borders of
the cytoskeletal cage. In Figure 4.6(c), the triggered secretion is plotted, for both
configurations, indicating that the higher local calcium concentration (corresponding
to Configuration 1) triggers a faster exocytotic response.

4.5 Discussion

The organization of cytoplasm in excitable cells has been a factor largely ignored
when mathematical models were developed to understand intracellular calcium and
secretory behaviour. Based on experimental data, obtained with a combination of
fluorescent evanescent and transmitted light microscopy [70], which explore the F-actin
cytoskeletal organization in the vicinity of secretory sites in cultured bovine chromaffin
cells, we applied the Cytoskeleton-cage model, solved by Monte Carlo methods, to study
cytoskeleton influence on calcium and secretion dynamics. Our model allows us to test
different spatial locations of calcium-channel clusters and the secretory machinery.
The calcium level and the secretory response were simulated with high spatiotemporal
resolution, able to perceive slight but important differences: 1) [Ca2+]i distribution
was calculated in a time scale below 35 ms, allowing to see concentration differences in
the micromolar range; 2) The secretory machinery was put in specific locations with
a resolution of 30 nm, about the size of a calcium channel; 3) Calcium concentration
differences were noticed in the vicinity of ±15 nm from the secretory machinery, which
are local concentrations that experimental techniques can hardly measure.

Our results indicate that calcium concentration and distribution is highly influenced
by the spatial position of the calcium channel clusters. Experimental data show
that chromaffin vesicles are associated with the borders of cortical cytoskeletal cages,
forming an intricate tridimensional network. In this sense, our results support the
hypothesis that calcium signal and triggered secretion are both enhanced when clusters
and secretory machinery are located in the borders of a cytoskeleton cage, improving the
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Figure 4.6: Ca2+ dynamics and secretion for the tested cluster-vesicle arrangements.
(a) Intracellular Ca2+ concentrations, between 0 to 30 nm from the cell membrane,
for configurations 1 and 2 shown in Figure 4.5. (b) Calcium concentration ratio
([Ca2+]local/[Ca

2+]aver) for the same configurations. Mean value is 1.98 for configu-
ration 1, and 1.76 for configuration 2. (c) Accumulated secretion events triggered by
calcium concentrations shown in (a).
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exocytotic response. The interface between the cytoskeleton wall and the cytoplasmic
space could be a subject of interest in the field of neurotransmission. Moreover, vesicles
seem to interact to, and remain associated with the cage walls during exocytosis [187].
Therefore, to consider the existence of such cytoskeletal organization appears as a
relevant factor to model calcium-triggered exocytosis.



CHAPTER 5

Human chromaffin cells:
Studying intermediate secretion

5.1 Introduction

Ca2+ triggered secretion in chromaffin cells is a relatively slow process when compared
to secretion of neurotransmitters in synapses [6, 104]. This is related to the distance
between calcium channels and vesicles: when this distance is small (10 to 20 nm)
then fast secretion is reached, whereas when this distance is longer (100 to 300 nm),
secretion occurs in a longer time scale [129]. In neuroendocrine cells, secretion starts
with a delay from short stimulus and lasts for several seconds [97]. At least three
phases of secretion have been recognized: one fast, one slow, and one sustained; the
kinetics of each phase strongly depends on the animal species, and is related to vesicle
pools present in the cell [58]. In general, it is accepted that the fast component of
secretion is due to a small pool of vesicles just waiting for Ca2+ to fuse and release
(named rapidly or immediately releasable pool [3]); the slow component seems to be
another pool of vesicles that can maturate to become ready, or that follow a slower
kinetic pathway; and the sustained phase is related to a depot or reserve pool with
much more vesicles that need Ca2+ and time to be primed and to move towards the
membrane [85, 97]. Vesicle pools in chromaffin cells can explain the experimental
observation of different exocytotic phases, and they are also a useful concept to propose
secretion models. There are some modeling works on secretion that cover different
aspects of exocytosis in diverse animal species of chromaffin cells. In bovine cells, some
works relate [Ca2+]i gradients along time with secretion using a shell model in order
to explore the importance of the various vesicle pools [98, 115], and some others study
the relevance of channel-vesicle localization in exocytosis using a microscopic model
[160]. In mouse cells, kinetic models that explicitly include various vesicle pools and
Ca2+ participation have been used to study exocytotic steps [189]. One simulation
study on the stimulus-secretion coupling in rat chromaffin cells, using public software
environments, has also been reported [192].
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Figure 5.1: Experimental equipment used for the ”patch-clamp” technique. This
technique, conceived to study ion channel functioning, uses a single electrode to record
ionic currents in response to a depolarization pulse and/or in response to a particular
drug.

5.2 Experimental data

The patch-clamp technique is commonly used by experimentalists to measure cell
secretion evoked by depolarizing pulses. This technique uses the equipment shown
in Figure 5.1 which allows researchers to stimulate cells with depolarizing pulses and,
simultaneously, to record evoked ionic currents and capacitance increments, as clearly
described in [130]. Experimental data shown in this chapter have been recorded by
the collaborating group 1 using this technique, and according to the method previously
reported by them [137]. It is important to emphasize that experimental studies on
human chromaffin cells are scarce since these cells come from adrenal glands of people
who died from cerebral haemorrhage, and therefore, relatives need to approve their
donation. In addition, glands must be immediately processed.

Figure 5.2 summarizes the measurements of Ca2+ currents and capacitance incre-
ments recorded in several human chromaffin cells. Cells were stimulated by depolar-
ization pulses lasting from 10 to 200 ms, and the evoked calcium influx and secretion
were recorded. The aim of our modeling work, described in the rest of this chapter,
was to help in understanding how Ca2+ is controlling exocytosis over time and space.
The main objective was to study the factors influencing the different secretion stages
or bursts. The study of these stages allows one to dissect the intracellular mechanisms
governing calcium-triggered exocytosis. Moreover, this study favors the discussion of

1Research group leaded by Dra. Almudena Albillos from the Faculty of Medicine, Universidad
Autónoma de Madrid, Spain.
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Figure 5.2: Experimental measurements of secretion and Ca2+ currents in response to
depolarization pulses, in human chromaffin cells. (a) Current-to-voltage relationship
of the calcium current (ICa. (b) Capacitance increments and (c) charge density, as
functions of pulse duration. (d) Capacitance increments plotted against the evoked
charge density. (e) Calcium currents and capacitance increments for pulses between 10
and 200 ms. Recorded, and kindly shared, by the research group of Dra. Almudena
Albillos from the Faculty of Medicine, Universidad Autónoma de Madrid, Spain.
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Figure 5.3:
Relationship between
cell secretion and
pulse duration. Two
exocytotic components
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exponential component
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that reaches a plateau
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species features by comparing results to similar studies carried out in mouse [190] and
bovine [98, 115] chromaffin cells.

5.3 Modeling

To initiate the study of exocytotic dynamics in human chromaffin cells, we looked
for a model able to reproduce the experimental capacitance increments measured for
different depolarization pulses. We firstly observed that exocytotic responses in human
chromaffin cells are larger than those reported for other species, although the rate of
capacitance increments is slower than those recorded in rat [87], bovine [68], and mouse
chromaffin cells [126]. However, secretion occurs in the same timescale, that is, from
milliseconds up to seconds [130]. Therefore, our first modeling approximation was
based on the coupling of the Shell model (described in Section 1.2.3), and a secretion
model similar to those proposed for other chromaffin cells [160, 98, 189]. Our aims
were to find the main differences between secretion in humans and other species, and
to analyze particular parameter values and spatiotemporal features that explain the
experimental data.

Experiments provide whole-cell Ca2+ currents and capacitance measurements in
response to depolarizing pulses of 10 to 200ms. Each cell exhibits different secretion
and current dynamics, and each one has its own cell size and vesicle population. Then,
in order to propose a secretion model able to reproduce our experimental recordings and
to explore exocytotic dynamics, we averaged and normalized cell sizes and capacitance
increments. The ”average cell” was related to the ”average capacitance increment”
for all depolarizing pulses, as shown in Table 5.1. Plotting the experimental secretion
versus pulse duration (Figure 5.3), we find two exocytotic components: an exponential
component for pulses up to 50 ms that reaches a plateau of ∼20.6 fF, and a linearly
increasing secretion for longer pulses. We assumed that the first component is due to
the depletion of a small rapidly releasable pool (RRP), and that the second component
represents the participation of a slowly releasable pool (SRP) replenished by a depot
pool along time, as proposed for mouse chromaffin cells [190, 189]. This analysis was
implemented in the kinetic model of Figure 5.4, and it can be translated into the
following kinetic scheme:

P1

r1
�
k−1

P2

k2
�
k−2

P3, P4
γs−→ PS, P5

γr−→ PR, (5.1)

where pools P4 and P5, which are the number of slowly and rapidly fused vesicles
over time, respectively, are calculated considering 3 Ca2+ -binding sites for the vesicle
sensor, that is:

V
3kon[Ca]

�
koff

VCa1

2kon[Ca]

�
2koff

VCa2

kon[Ca]

�
3koff

VCa3 , (5.2)

where V represents a vesicle with an empty sensor, and VCai
are the states of the

vesicle with i calcium ions. The transitions between states are managed by rates kon
and koff that are the binding and the unbinding rates, respectively, as well as the local
Ca2+ concentration ([Ca]).
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Table 5.1: Average data from experiments in human chromaffin cells

Parameter Values

Cell size 8.86 pF , 8.39 µm (radius)

Pulse duration Secretion (fF )
200ms pulse 78.4
100ms pulse 39.4
50ms pulse 18.38
20ms pulse 12.6
10ms pulse 7.1

Based on this three-pool kinetic scheme, we analyzed the exocyotic dynamics.
Notice that there are two ready-releasable pools that have distinct kinetic properties to
become fused. Transitions from the Docked to the SRP (r1) and from the SRP and RRP
to fusion kons, konr, are Ca2+ dependent processes, but going from the SRP to the RRP
pool and viceversa k2, k−2, do not have Ca2+ dependence. In our implementation, we
consider that resupply rate r1 is constant (as discussed further), whereas Ca2+ binding
rates kons, konr are functions of local calcium. This fact is a clue factor that allows
us to introduce the influence of spatial localization of vesicles on secretion rates.
Based on this view, we are assuming that releasable pools are triggered by the local
[Ca2+]i estimated by the models.

Increasing pulse duration commonly induce capacitance increments that seem to
reach a plateau for short pulses. In other species, this behaviour has been related
to fast secretion due to a small pool of releasable vesicles, named the Immediately
Releasable Pool (IRP), who are tightly coupled to Ca2+ channels [3]. Therefore, and
as done in other works [115, 190], we consider that the IRP size would correspond to the
asymptotic value of the best-fitted exponential function of the form f(t) = A

(
1− e−Bt

)
for secretion evoked by short pulses (Figure 5.3). In our case, this maximum is 20.6±
13fF which represents ∼ 25% of the exocytotic response evoked by the 200-ms pulse
(see Table 5.1). To be consistent with the secretory model, and assuming that the IRP
vesicles form part of the rapidly releasable pool, we will call RRP instead of IRP for
modeling purposes.

After fitting the rapid pool size, we tried to theoretically infer if all releasable
vesicles participating in the experimental secretory response are equally competent for
fusion; i.e., if releasable vesicle pools only differ in their proximity to Ca2+ channels,
but not in their kinetics. In other species this topic has been addressed experimentally
by using flash photolysis experiments [189], but this information is not yet available
in human cells. Simulations obtained on this basis indicate that if all vesicles followed
the rapid pathway, they would have to be triggered by very low Ca2+ levels, similar to
average cytoplasmic concentrations, to produce the second exocytotic component. This
finding could have different interpretations: a) the second pool of vesicles is located “far
away” from the cell membrane (about 800nm from Ca2+ channels); b) there are cell
features that act as physical barriers for diffusion of Ca2+ influx, so the calcium signal
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Figure 5.4: Depiction of the secretion model originally proposed for mouse chromaffin
cells [189].

around these vesicles is significantly weaken; c) these vesicles are kinetically different
from rapid vesicles. Possibility a) was excluded because it seems difficult to accept
that releasable vesicles in human cells are located so far away from the cell membrane,
when common distances in other species are about 300 nm [97]. Moreover, due to the
fact that there are no available data about cellular spatial characteristics in human
cells (as, for example in bovine, see Chapter 4), we take interpretation c) as modeling
hypothesis, although other possibilities cannot be excluded.

5.3.1 Intermediate secretion

Using the experimental Ca2+ current evoked by each pulse as the input to the Shell
model, we simulate how Ca2+ influx is distributed in the cytoplasm taking into account
buffered diffusion and calcium extrusion. Parameter values used with the Shell model,
in order to simulate [Ca2+]i dynamics in human chromaffin cells, are detailed in Table
5.3. Extrusion pump and endogenous buffer equations and parameters are based on
a previous model for chromaffin cells [98]. We added a leak flux to maintain basal
[Ca2+]i at the steady-state. Two dynamic [Ca2+]i values are estimated by the model:
[Ca2+]i at the sub-membrane region, i.e., the first layer in the Shell model (0-100nm),
and [Ca2+]i at the third layer (200-300nm). These Ca2+ dynamic values are used to
study pools dynamics, considering that rapid vesicles are triggered by sub-membrane
[Ca2+]i whereas slow vesicles are triggered by third-layer [Ca2+]i . This separation
comes from the discussion above.

Figure 5.5 shows an example of a dynamic simulation obtained with the Shell model
coupled to the secretion model: the experimental Ca2+ current (top panel) is used as
the input; then, the model estimates dynamic Ca2+ concentrations at several distances
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from the cell membrane (middle panel), as well as the corresponding secretion (bottom
panel). Parameter values used with the secretion model, are given in Table 5.2. These
models adequately estimate secretion for pulses between 50 and 200 ms, but they
underestimate fast secretion evoked by short pulses. Decreasing shell thickness to
50 nm or 25 nm does not improve results, indicating that vesicle fusion and release
are controlled by a non-homogeneous Ca2+ signal. This problem was also reported in
bovine chromaffin cells [115], where it was related to a non-uniform Ca2+ distribution
and to a co-localization of channels and vesicles, both influencing the fast secretion
component. Thus, fast secretion was studied with the Active-zone stochastic model,
as described following.

5.3.2 Fast secretion

We analyze the spatiotemporal features modulating fast secretion with the Active-
zone model. In order to achieve this microscopic study of the rapid pool, including
Ca2+ channels and rapid releasable vesicles, the Active-zone model is solved by Monte
Carlo methods to accurately evaluate local [Ca2+]i and secretion. However, this so-
lution method imposes computational restrictions (discussed in Section 1.3.1), so we
chose the 50-ms pulse as the point of convergence for results coming from both, the
Shell model and the Active-zone model. The spatial relationship between both models
is shown in Figure 5.7.

The relevance of local spatial factors in rapid secretion was firstly studied by testing
different vesicle-channel arrangements in the active zone. The involved geometrical
parameters are the calcium-channel density (ρ), and the relative distribution of vesicles
and channels. In regard of the former, we assume a similar topography of calcium
channels as in other species [51] (5 to 15 channels per µm2), and then test the associated
secretory responses. In the same way as with the Shell model we use the experimental
whole-cell current as the input to the model, thus, the algorithm calculated the unitary
current per channel for each density. Notice that a low channel density means that there
is some degree of channel clustering. This condition leads to pronounced Ca2+ gradients
in the vicinity of the clusters, as shown in Figure 5.8. The [Ca2+]i maps of this
figure emphasize that the presence of channel clusters induces heterogeneous spatial
distribution of [Ca2+]i , even though the number of channels and the total current
is the same in both cases. These irregular spatial [Ca2+]i distributions trigger very
different secretion dynamics since some vesicles would experience low calcium levels,
while others not. We have tested different levels of co-localization between channels and
vesicles, and concluded that an good agreement between theoretical and experimental
data for fast secretion is found if 75% of rapidly releasable vesicles are fully correlated
to calcium channels. This configuration accurately reproduces secretion for the 50-ms
pulse, and matches well with Shell-model results as shown in Figure 5.9.

5.4 Results

Figure 5.6 shows the results obtained for fast and intermediate secretion, using the Shell
and the Active-zone model, respectively. The experimental secretion is also shown to
emphasize the reliability of the models to reproduce experimental results. Notice that
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Table 5.2: Parameter values of the secretion model for human chromaffin cells.

Parameter Value Reference

Pools size
Depot 4000 vesicles [190]
IRP ∼14 vesicles (30 fF) See text

Kinetic constants [189]

Resupply rate r1=0.25s−1 Fitted
Reversal resupply rate k−1=0.05s−1

Transitions SRP-RRP-SRP k2 = k−2=0.1s−1

SRP fusion rate γs=20s−1

RRP fusion rate γr=1450s−1

Number of binding sites N=3
Slow Ca2+ binding rate kons=0.5µM−1s−1

Rapid Ca2+ binding rate konr=4.4µM−1s−1

Slow Ca2+ unbinding rate koffs=4s−1

Rapid Ca2+ unbinding rate koffr=56s−1

for pulses lasting 10, 20 and 50 ms, the secretion values are 7.1 fF , 12.6 fF and 18.38
fF , respectively (Table 5.1), which means that the secretory response for the 20-ms
and 10-ms pulses are 68.5% and 38.6% of the secretion for the 50-ms pulse. Stochastic
simulations show that a spatial resolution (∆x) of 100 nm gives theoretical values
below the experimental ones, especially for the 10-ms pulse, although in better than
deterministic predictions. Superior results for short pulses are obtained by reducing the
spatial resolution of the Active-zone model to 25 nm; in this case, secretion percentages
are 69% for the 20-ms pulse and 38% for the 10-ms pulse. It is well worth noting that
the need for increasing the spatial resolution means that vesicle calcium sensors are
very sensitive to local calcium quantities, which becomes crucial as calcium influx gets
smaller. Another interesting finding is that local calcium elevations, corresponding
to a correlated arrangement of channels and vesicles, are enough for reproducing the
experimental secretion for short pulses, and there is no evidence that other cellular
features could be incrementing the Ca2+ signal, such as calcium barriers found in mouse
cells [160], or such as cytoskeleton cages in bovine cells [187].

5.4.1 Multiscale aspects

Experimental data on Ca2+ currents and capacitance increments used in the present
study come from five human chromaffin cells, using the technique described in Section
5.2. From the individual data, we calculated the average values presented in Table 5.1,
and formulate two models that adequately predict secretion for short and prolonged
stimulation, that is, for fast and slow secretion. Therefore, it is interesting to discuss
the apparent stochastic and deterministic behaviour exhibited by secretion in these
cells, which may involve multiscale aspects. This study is consistent since we have
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Figure 5.5: Example of a dynamic simulation performed by the Shell model coupled
to the secretion model. The simulation corresponds to the average-cell response
evoked by the 200-ms pulse. (Top) Experimental Ca2+ current used as input to the
model. (Middle) Simulated [Ca2+]i concentration at the first and third layers, as well
as cytoplasmic concentration. (Bottom) Simulated secretion: rapid, slow, and total.
Total secretion matches the experimental measurement.
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Figure 5.6: Secretion predicted by our models for the average cell, and for pulses
between 10 and 2000 ms. Theoretical values are compared to experimental measures
(circles), in logarithmic scale, to emphasize that best predictions of our Shell-secretion
model are given for pulses above 50 ms (squares). The final model (triangles)
complements theoretical predictions, for pulses below 50 ms, with results coming from
the Active-zone model.
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Figure 5.7: Spatial relationship between the Shell (S) and the Active-zone (AZ) model
in human chromaffin cells. (Left) The S model is an homogeneous sphere representing
the whole chromaffin cell, which has about 225 active zones. The AZ model is a 3-
D cone representing a minimal cell patch where exocytosis takes place (active zone).
(Right) 2-D schematic representation of the AZ model. The 3-D cone is divided in
cubic compartments with side length of ∆x = 100nm. On top of the domain, i.e., the
first slice, Ca2+ channels and vesicles (dots) are located.

found that secretion evoked by short pulses cannot be predicted assuming the same
spatial considerations than we have taken to predict secretion evoked by longer pulses,
i.e., homogeneity. Different behaviour becomes evident for those time scales where the
Shell-secretion model was unable to reproduce the experimental release, but secretion
can be accurately predicted by the Active-zone model. Thus, for short pulses, it was
necessary to build a non-uniform vesicle distribution, and to assume some degree of
Ca2+ channel clustering, to be able to reproduce experimental secretion. However, a
uniform distribution of channels and vesicles, as implicitly defined in the Shell-secretion
model, was enough to explain secretion for longer pulses.

Figure 5.9 shows a comparison of the dynamic secretion (in percentage of released
vesicles) simulated with the stochastic (lines) and the deterministic (dashed lines)
models, for the 20-ms pulse and for five different cells (simulation time equal to 100 ms).
As we can see, for the total simulation time (100 ms), both methods give very similar
results; the largest error is seen for one cell, whose secretion is slightly overestimated
by the deterministic model. However, it is well worth noting that for smaller times,
secretion predicted by both models may have relevant differences since they are based
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Table 5.3: Parameter values used to simulate [Ca2+]i dynamics, in human chromaffin
cells, using the Shell (S) and the Active-zone (AZ) model

Parameter S value AZ value Reference

Input data

Cell radius (µm) 8.39 – From Table 5.1
Shell thickness (nm) 100 – According to ∆x
Ca2+ concentration (µM) 0.1 0.1 Experiments
Domain type – Conical AZ of a spherical cell
Cone-base radius (µm) – 1 [70]
Height (µm) – 8.39 Average cell radius
Channel density (per µm2) – 5 or 15 [51]
Channel distribution – Random

Spatio temporal data Chosen

Spatial resolution (nm), ∆x 100 100 and 25
Temporal resolution (µs), ∆t 11 11 and 0.71
Simulation time (ms) 500 ≤ 100 Experiments

Endogenous Buffer [98]

Concentration (µM) 500 idem
Forward binding rate (M−1s−1) 5.108 idem
Dissociation constant (µM) 10 idem

Calcium-extrusion pump

Maximal speed (pmolcm−2s−1) 5 – Fitted
Half-maximal constant (µM) 0.83 – [153]

Leak flux

Rate (µMs−1) 0.054 – Fitted

on discrete and continuous approximations to secretory events, which may not coincide
for very few events. Then, the stochastic model allows us to look into fast releasing
events occurring in the first milliseconds, and triggered by local [Ca2+]i that increases
as Ca2+ channels open. With the deterministic model, we lost these events since it
assumes homogeneity. Complementing both model predictions enables us to adequately
reproduce experimental responses, and to analyze the particular characteristics of the
subcellular mechanisms involved in exocytotic dynamics of human chromaffin cells.

5.5 Discussion

Experimental measurements of the exocytotic dynamics in human chromaffin cells
using the perforated-patch configuration of the patch-clamp technique, and theoretical
predictions of both, the Active-zone and the Shell model, were done. Cell capac-
itance increments evoked by depolarizing pulses of different durations, as well as
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Figure 5.10: Capacitance increments as a function of mean membrane Ca2+ . Mean
membrane Ca2+ is the average calcium concentration in the first 100 nm below the
membrane during the whole simulation time. Data was fitted with a Hill equation
(n=1.49, KD=10.9µM).

Ca2+ currents, were the experimental data for the modeling study. Our results point
out that secretion in human chromaffin cells could be predicted by a secretion model
constituted by three pools: one depot, one slowly releasable (SRP) and one rapidly
releasable (RRP). Rates connecting the pools and affinities for fusion, seem to be the
same to those proposed for mice [189] although some important differences appeared:
the resupply speed was smaller than those found in mice [189], and the estimated size
and spatial characteristics of the rapidly releasable pool are in closer agreement to an
immediately releasable pool, as defined in [3] .

Based on average experimental values for cell size and secretion, we were able to
simulate the [Ca2+]i dynamics during and after the depolarizing pulse, up to 500 ms.
Most simulations were obtained with the Shell model, which estimates cytoplasmic
and local Ca2+ at different radial distances from the membrane (multiples of 100 nm),
assuming homogeneity and uniform distribution of channels and vesicles. Based on
calcium dynamic concentrations, the secretion model define the dynamics of vesicle
pools for intermediate pulses (50-200 ms). Our simulations of [Ca2+]i dynamics support
that calcium gradients in human chromaffin cells do not have important participation of
Ca2+ depleting nor Ca2+ -releasing mechanisms in the first 500 ms, as found for bovine
chromaffin cells [116]. In regard of secretion, the Shell model was able to accurately
predict capacitance increments for intermediate pulses, but not for short pulses below
50 ms. Therefore, the study was complemented with the Active-zone model to reveal
the spatial features associated with fast secretion.

The secretion model was formed by three pools, but only two kinetic pathways
for secretion, the rapid and the slow. The rapid pathway would be followed by those
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vesicles tightly docked to the membrane, which would be the main responsible for the
secretion evoked by short pulses. In contrast, the slow pathway would be responsible
for the slower exocytotic component. Since flash photolysis experiments have not
yet been performed in human chromaffin cells, we cannot exclude the contribution of
vesicles kinetically equivalent to those forming the rapid pool but in a early maturation
state. For both kinetic pathways, we are assuming low Ca2+ affinity for vesicle fusion,
as proposed for other chromaffin cells [98, 189]. This assumption was based on the
finding that our secretion data exhibit a dependence on sub-membrane Ca2+ levels
that can be fitted with a low-affinity Hill function (see Figure 5.10). We noticed that
the value for KD does not change considerably if shell thickness is reduced to 50 or
25 nm, or if we take either the theoretical or experimental secretion values. Then, it
seems that exocytosis in human chromaffin cells is mainly managed by a low-affinity
Ca2+ sensor, for pulses up to 200 ms, as considered for other species [98, 189].

Pool contribution to secretion was also analyzed on the basis of model predictions
(Figure 5.11). We found that for the shortest pulses (10 and 20 ms), the pool of rapid
vesicles completely manage fast secretion, so local effects play a key role. As pulse
duration is incremented, the rapid pool is becoming depleted and slow vesicles partici-
pate more substantially on the secretory response. Our data indicates an immediately
releasable pool of 20.613 fF which follows the rapid kinetic pathway; this pool size is in
good agreement with pools estimated in bovine and rat [3]. Moreover, our simulations
indicate a close proximity of this pool of vesicles to Ca2+ channels, suggesting that
human chromaffin cells have a tight control of releasable vesicles following a rapid
kinetic pathway. Indeed, the best fitting for short pulses was obtained when 75% of
the rapid vesicles are co-localized to the calcium channels, at a maximum distance of
25 nm. On the other hand, the resupply does not have a relevant participation for
pulses below 100 ms.

Modeling the whole-cell calcium and secretion dynamics, complemented with the
microscopic study of a releasing area, allowed us to unveil the multiscale features that
manage exocytosis in human chromaffin cells. Assuming homogeneity and uniform
distribution of the main subcellular mechanisms, i.e., Ca2+ channels and vesicles, we
find that the Shell model can predict the exocytotic response for an intermediate
timescale (hundreds of milliseconds), but it underestimates the short timescale (tens
of milliseconds) response. The spatiotemporal features responsible for this discrepancy
were determined by the Active-zone model: there is some degree of Ca2+ channel
clustering, and there is a small pool of vesicles in close proximity to channels which
controls fast secretion.
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Figure 5.11: Contribution of
the Slowly (SRP) and Rapidly
(RRP) releasable pools to se-
cretion evoked by depolarizing
pulses.



CHAPTER 6

Alpha cells:
Studying slow secretion

6.1 Introduction

Pancreas, an organ of vertebrates that performs vital endocrine and exocrine functions,
releases glucagon, insulin and somatostatin hormones through its exocytotic cells α,
β and δ, respectively. These cells are grouped in areas called Islets of Langerhans,
which constitute about 2% of the whole pancreas (1 million of islets per human adult
pancreas). Glucagon secreted by the alpha cells of the pancreas induce mobilization of
hepatic glucose; this capability avoids that the organism reaches a hypoglycemic state
during long periods of glucose demand. Insulin, on the other hand, participates in
nutrient metabolism, particularly carbohydrate metabolism, resulting in a reduction of
glucose levels. The impaired secretion of glucagon hormone is related to type 2 Diabetes
which is also combined with a deficient insulin secretion [141]. Alpha cells constitute
15-20% of total islet cells. They are commonly found in the periphery of the islets,
especially in rodent, and are small-sized compared to beta cells. These characteristics
impose a severe restriction to make experiments on glucose-induced glucagon secretion
by α-cells, mainly in its isolated form [80]. Thus, research works are developed in intact

Figure 6.1: Location of pancreas within
the human body, that performs vital en-
docrine and exocrine functions. Pancreas
is made of Islets of Langerhans, which
release hormones like glucagon, insulin
and somatostatin through its exocytotic
cells α, β and δ, respectively.
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islets [83, 140], in isolated cells [143], or both [114, 142], or in cell lines [18].
From a physiological point of view, electrical activity exhibited by α-cells appears

when they are exposed to low glucose levels (below the physiological concentration,
i.e., 4 to 5 mM). In this situation, they generate action potentials simultaneously to
glucagon secretion, in a similar manner to beta cells. This electrical activity is supposed
to be triggered by a low ATP/ADP ratio, because of the absence of glucose [149]. In
these conditions, the KATP channels found in the cell membrane are open, allowing
K+ to go out; these ions produce an ionic current that depolarizes the cell, so action
potentials are generated. This electrical activity is possible thanks, on the one hand, to
the Ca2+ and Na+ channels that fire the depolarization stage, and on the other hand,
to the K+ channels that repolarize the cell [80, 141]. α-cell exocytosis in response to
electrical stimulation has been well characterized through experiments where the secre-
tory response is inferred from the associated increments in cell membrane capacitance
due to granule fusion [9, 83, 75, 79, 111]. In these experimental works, the common
protocol is to stimulate the cell with controlled depolarizing pulses from a fixed cell
membrane potential, and then to measure the produced ionic currents and capacitance
increments. Notice that data about Ca2+ currents involved in glucagon secretion
and coming from the above-mentioned experiments cover a short timescale, namely,
below one second. However, in physiological conditions, glucagon secretion could be
maintained for minutes and hours to avoid hypoglycemia. Therefore, secretion evoked
by depolarization reflects those control pathways mainly involved in the fast phase of
glucagon secretion, which may not coincide with those triggered by glucose-induced
secretion, which acts in a more physiological manner, and for a longer time scale.
Unfortunately, works that induce glucagon secretion by low-glucose media, and that
simultaneously record [Ca2+]i dynamics for long timescales are scarce [114, 143, 185].

Experimentally, measurements of glucagon secretion are commonly obtained by
incubating pancreatic islets in media with low glucose concentrations for several min-
utes. Under low-glucose levels (stimulated), the total amount of secreted glucagon in
mice ranges from 30 to 60 picograms per islet (pg/islet) in one hour, and this amount
is approximately twice the basal (non-stimulated) secretion that is seen at the high
glucose concentrations typically used in these experiments [83, 111, 154, 182]. These
quantities are inferred from measurements of the accumulated glucagon for a one hour
period from a large number of islets, each mouse islet containing on average, 400 ± 200
α-cells [141]. Such an stimulated glucagon secretion could be produced by a constant
rate of 0.5 to 1 pg/islet (or fF) per minute, as reported in one experimental work [83].

Glucagon secretion in alpha cells has been related to cytoplasmic calcium increases,
although there is no clear idea about how it works to activate exocytosis. An elevation
of Ca2+ , the messenger, is brought about by a low level of glucose in the extracellular
medium and often appear in the form of sustained oscillations [140]. The signal trans-
duction pathway leading to calcium increase appears to be rather complex, involving
both voltage-gated channels and store-operated calcium entry [103]. Opposite to what
happens in β-cells, that all of them undergo synchronized calcium oscillations upon
stimulation with high glucose levels [140], only 30 to 50% of the total islet α-cells
exhibit oscillations when exposed to low-glucose levels [114, 143]. These oscillations
are asynchronous and highly irregular. Oscillation frequency can go from 0.1 to 0.7 per
minute at 3mM glucose [16, 18, 140], up to 0.5 to 1 per minute at 0.5mM glucose [183].
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The amplitude of these oscillations runs from basal Ca2+ levels (near 100 nM) up to
two to five times this value [16, 44, 143]. Spontaneous Ca2+ oscillations are observed
under low-glucose conditions in islets [140], in isolated alpha cells [143], and also in
cell lines such as InR1-G9 glucagonoma cells [18] or αTC1-9 cells [183]. Nevertheless,
oscillatory electrical activity and its implication in glucagon exocytosis remains to be
documented. Moreover, a recent study shows that glucose inhibition of secretion may
be associated with a depression of granule trafficking or a mechanism of the exoytotic
machinery, and not to a [Ca2+]i reduction [114].

One of the clue open questions about alpha cells is how glucose controls glucagon
release. Elevations in extracellular glucose (up to 7 mM) seem to inhibit glucagon
secretion; above 7mM, where inhibition reaches a maximum, glucose seems to stimulate
glucagon release [154]. Moreover, α-cells, which are excitable cells, are not only
sensitive to glucose but to other neural and hormonal factors, as well as to nearby cells
(paracrine signaling) [80]. Indeed, insulin and/or zinc (cosecreted with insulin) appear
to determine glucagon secretion in islets through a paracrine pathway [90]. In summary,
there is no agreement about which are the main regulating factors involved in glucagon
secretion, and if they are intrinsic to the cell [185] or external (as reviewed in [80]).
Thus, and despite their physiological significance, the mechanisms that regulate α-cell
exocytosis are still poorly understood. Besides the scientific interest of elucidating the
molecular bases of the functional dynamics of glucagon release, this area of research
represents an important therapeutic challenge since abnormalities in glucagon secretion
are part of metabolic pathologies associated with type 2 Diabetes [141].

For the present thesis, we have accomplished a modeling study in α-cells, by dividing
our work in two main tasks: one that developed minimal models for those ionic channels
involved in glucagon secretion, and a second one that proposes a glucagon secretion
model based on glucose-induced Ca2+ oscillations. Although these two activities are
completely linked in the real α-cell, the mechanisms involved and the regulating path-
ways that allow this connection are still poorly understood. Moreover, there are few
experimental data about Ca2+ dynamics recorded simultaneously to exocytosis, and
few about secretion dynamics for a long timescale. Thus, although our modeling
work was done separately, we are still in collaboration with the experimental research
group, looking for new evidence that help unveiling regulation pathways of glucagon
exocytosis.

6.2 Experimental data

Experimental data on glucose-induced Ca2+ oscillations and secretion were recorded by
the collaborating group 1 with the following protocol: Mouse intact islets of Langerhans
are first exposed to low-glucose media (0.5 mM glucose, or 0.5G) at normal temperature
for one hour, and then secretion is stopped by refrigerating the preparation. Glucagon
is then quantified through RIA and then reported as the accumulated glucagon secreted
per islet, depending on the quantity of islets in the preparation (pg/islet/hour). Figure
6.2 shows some alpha cells identified by immunofluorescence of glucagon hormone;

1Research group leaded by Dr. Iván Quesada, at the Institute of Bioengineering, Universidad
Miguel Hernández, Elche, Spain.
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Figure 6.2: Immunofluorescence image of a
mouse α-cell identified by labeling glucagon
hormone in red. Image obtained, and
kindly shared, by the research group of Dr.
Iván Quesada from the Inst. Bioengineer-
ing, Universidad Miguel Hernández, Spain.

11mM  glucose0.5mM  glucose

Figure 6.3: Some experimental Ca2+ oscillations recorded following the protocol
described in Section 6.2: Islets are perfused with a solution containing 0.5 mM
glucose for the first 10 minutes, and then, solution is changed to one containing 11
mM glucose for the following 15 minutes. Oscillations, triggered by low and high
glucose concentrations, are highly irregular. The level of Ca2+ is indicated in arbitrary
fluorescence units. Data kindly shared by the research group of Dr. Iván Quesada from
the Inst. Bioengineering, Universidad Miguel Hernández, Spain.
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Figure 6.4: How the oscillation frequency in the first 10 min (low-glucose period) is
computed: The threshold (continuous line) is taken as twice the mean basal level at
high glucose, between minute 15 to 25 (dashed line). Peaks that overpass this threshold
with positive slope (dots) are counted if they are separated by at least half a minute,
in the stimulated period at 0.5mM glucose.

they are almost spherical, about 5µm of radius. For islets in low-glucose media
and 2.5mM external Ca2+ , alpha-cell calcium oscillations are detected and recorded
through confocal fluorescent microscopy. Oscillations appear spontaneously in these
conditions, and are used to detect alpha cells in the islet, which are usually found
in the peripheria. Oscillations evoked by alpha cells in perfused islets are recorded
for 25 minutes, 10 minutes under a 0.5G solution, and 15 minutes under a 11G
solution. Sampling rate is one data per 2 seconds, using FLUO4 marker that gives
normalized variations in luminiscence (arbitrary units). Following these methods, a
set of 14 calcium oscillation records lasting 25 minutes were obtained. Each record
corresponds to a single alpha cell found in the fist layer of the islet. In figure 6.3 four
Ca2+ oscillations are shown. Notice that the first five minutes at 11G (minute 10 to
minute 15) seem to be a transition period in which glucose levels are changing in the
bath, so they are not taken as valid data for the modeling work.

6.3 Modeling glucagon secretion based on calcium

oscillations

6.3.1 Frequency of oscillations

First, we measure the oscillation frequency since it has been observed in experiments
that, under high-glucose media, oscillations tend to be less frequent than under low-
glucose media [140]. Our experimental method to measure frequency is to consider an
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Figure 6.5: Stages proposed for glucagon secretion. Granules coming from the Reserve
pool resupply the Primed pool and then, upon binding 3 Ca2+ ions, granules become
Fused. The Releasable stage includes all primed granules with 0 to 3 bound Ca2+ .
r1 and r−1 are the forward and backward resupply rates, respectively. kon and koff
are the binding and unbinding rates, respectively, associated with the Ca2+ -sensor for
secretion. γ stands for the fusion rate that manages the last non-reversible step of
exocytosis.

oscillation each peak that was at least two times higher than the background oscillatory
noise in non-stimulated conditions. In order to systematize this procedure for 10-min
low-glucose periods, we developed an algorithm consisting of the following steps:

1. Fix a threshold at 1.5 to 2 times the mean Ca2+ level at 11 mM extracellular
glucose (11G).

2. Detect points crossing this threshold with positive slope if they are sufficiently
separated from the last one (minimum half a minute).

3. Count peaks and divide by ten to compute an average frequency per minute.

A graphical example of how this algorithm works is shown in Figure 6.4. Computed
frequencies will be shown in the Results section as they are related to secretion periods.
Qualitatively, we observe that frequencies at low-glucose periods are higher than at high
glucose.

6.3.2 Model description

Upon stimulation by low glucose, α-cells display two phases of glucagon release [83]: a
first phase lasting 3min during which the rate of release increases very fast, followed
by a sustained phase during which the rate of release remains elevated and unchanged.
This situation is reminiscent of what happens in adrenal chromaffin cells, although
the time scale is completely different, since the rapid and sustained phases in neu-
roendocrine cells occur in the milliseconds and the seconds timescales, respectively
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Figure 6.6: Example of cytoplasmic (experimental) and membrane (simulated)
[Ca2+]i in an alpha cell. Parameters for this simulation are given in Table 6.1.

[97, 160]. However, the time scales (but not the nature of the phases) observed in
α-cells are similar to those characterizing secretion in pancreatic β-cells [134]. We thus
hypothesized that glucagon secretion by α-cells can be described by a kinetic scheme
resembling the one already proposed for chromaffin cells.

Following the neuroendocrine secretion process discussed in [97], which was imple-
mented in a model proposed for mouse chromaffin cells [189], we hypothesize that
glucose secretion evoked by low-glucose stimulation is due to a pool of releasable
granules docked to the membrane, as well as to new granules coming from a reserve
pool. In contrast to Voets model which considered the existence of two different types
of pools characterized by different rates of fusion, we are just considering a minimal
kinetic scheme containing one reserve pool and one readily releasable pool (RRP), ready
to be triggered by Ca2+ , as shown in Figure 6.5. We consider that three Ca2+ ions
are needed to trigger granule fusion, as the above mentioned modeling work, and as
some models for β-cells [30, 136]. In our model, transition from the Reserve pool to
the RRP (r1) is defined as a function of cytoplasmic Ca2+ whereas Ca2+ -triggering
steps are functions of membrane [Ca2+]i . This distinction in Ca2+ values is based on
two observations for other exocytotic cells [8, 97]: 1) There are spatial differences on
[Ca2+]i (for example in beta cells local calcium quantities may be 10 times higher than
in the cytosol); 2) Granule fusion occurs close to the voltage-gated channels, that are
embedded in the plasma membrane and allow for Ca2+ entry. Another consideration,
which will be discussed later, is that the rate of pool resupply is a linear function of
glucose concentration. The rate of pool resupply is thus given by r1 = f(G) · f(CaC),
where f(G) is a proposed function of the extracellular glucose concentration G (as
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we discuss further below), f(CaC) is a Michaelis-Menten function of cytosolic calcium
concentration as proposed for other cells [30, 189]. Other kinetic steps schematized in
Figure 6.5 are described by mass action law kinetics. The number of secreted granules
in each time step (∆t) is then computed as the integral of γP3 over this time interval,
where P3 stands for the granule population with three bound Ca2+ ions, and γ is the
fusion rate.

The purpose of the secretion model is to quantitatively predict the level of secretion
induced by real Ca2+ oscillations in α-cells at different glucose levels. The oscillations
that will serve as an input to the secretion model are in arbitrary fluorescence units so,
to fit parameters in molar units we seek for a reliable equivalence. Our data have not
been calibrated but we simply compared them to those measured by other groups using
similar techniques [18, 143]. We indeed mainly focus on the Ca2+ dynamics for which
accurate calibration of the absolute Ca2+ levels are not necessary. We thus assume
that one fluorescent unit approximately corresponds to two or three nanoMolar units
of [Ca2+]i . On the basis of this empirical procedure, the values of cytoplasmic calcium
range between 30 to 400 nM, in agreement with values reported in the above mentioned
works.

Since oscillations reflect cytoplasmic Ca2+ concentration ([Ca2+]c ), we estimated
the corresponding dynamic values for the local Ca2+ concentration, just below the α-
cell membrane ([Ca2+]m ). In β-cells, it has been suggested than secretory granules
are exposed to very high levels of local calcium (up to 10 times higher than in the
cytosol) [8]. No data are available for α-cells probably due to the small size of these
cells. Then, considering that granule diameter is between 260 and 290 nm [9], and that
there are granules located below the plasma membrane [83], we performed simulations
to estimate local [Ca2+]i beneath plasma membrane and up to 300 nm. We used
our previously published model that estimates [Ca2+]i in concentric layers of specific
thickness for a spheric cell considering buffered diffusion [73]; to this model, we added
a Ca2+ -extrusion pump [138] and a compensating leak flux. Leak flux was adjusted
to obtain a steady-state cytoplasmic [Ca2+]i close to 0.1 µM . Assuming that an α-cell
could be approximated by a spherical cell of 5.3 µm of radius [9] with a large nucleus
(60% of the cytoplasm), we obtained that [Ca2+]m to [Ca2+]c ratio ranges between 1.26
to 1.29 depending on the spatial extent considered for the layer beneath the membrane
(from 10 to 300 nm). For all subsequent simulations we have taken 100 nm, where the
ratio equals 1.282. Parameter values used to estimate membrane Ca2+ concentration
([Ca2+]m ) are given in Table 6.1.

Parameter estimation

Using Ca2+ concentrations as inputs to the secretion model, we need to estimate the
adequate values for its parameters r1, r−1, kon, koff and γ (all shown in Figure 6.5). We
assume that, as in chromaffin and beta cells [30, 136, 189], granule fusion is triggered
by three calcium ions, so kon and koff are taken from [189]. Ca2+ oscillations data
have been obtained on a limited number of α-cells located mainly in the periphery of
intact islets, whereas accumulated glucagon secretion is measured per islet in one hour.
Therefore, to make adequate comparisons we have repeated six times our 10-min data
file of calcium concentrations to build a one-hour input file to the model. This was
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Table 6.1: Parameter values to estimate membrane Ca2+ concentration using the Shell
model.

Parameter Value Reference

Input data

Cell radius (µm) 5.3 [9]
Shell thickness (nm) 100 According to ∆x
Ca2+ concentration (µM) 0.1 Experiments

Spatial and temporal data Chosen

Spatial resolution (nm), ∆x 100
Temporal resolution (µs), ∆t 45
Simulation time (s) 10

Endogenous Buffer [98]

Concentration (µM) 500
Forward binding rate (M−1s−1) 5.108

Dissociation constant (µM) 10

Calcium-extrusion pump [138]

Maximal speed (pmolcm−2s−1) 2
Half-maximal concentration (µM) 0.83

Leak flux

Rate (µMs−1) 21.9 Fitted
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done for both sets of data (0.5G and 11G). Parameters were then fitted to reproduce
the experimental one-hour secretion per islet under both conditions, considering that
this secretion equals to the mean of the ensemble of individual secretions per hour
multiplied by 200 α- cells per islet.

In a first approach, we tried to fit parameters values to reproduce experimental
secretion levels with a resupply rate r1 independently of the glucose level. With such a
model, we could not find any set of parameter values that could correctly predict both
stimulated and non-stimulated secretion. That is, using the same parameter values
with our calcium data at 0.5 and 11G, we obtain at best a high glucose reduction
in secretion of ∼75%, while the experimentally observed reduction lies in the 50 to
60% range. This also happens for a constant [Ca2+]i level, equivalent to the mean of
oscillation data. On the other hand, if we fit in a separate manner the model parameters
to get appropriate secretion at 0.5G and at 11G, the two sets of parameter values lead to
drastically different steady-state granule distributions for constant calcium levels equal
to the corresponding average values. Indeed, we found that at low glucose 35% of total
granules are releasable, and the rest (65%) are in the Reserve pool. In contrast, at high
glucose, 66% are releasable granules whereas 34% are in the Reserve pool. Here, we are
naming releasable granules to those belonging to the Releasable stage (marked with
dashed line in the model of Figure 3), assuming that all of them are primed granules
with 0 to 3 bound Ca2+ ions. Thus, the 35% at low glucose comes from 33% in the
Primed pool plus 2% in the +1Ca pool; analogously, at high glucose, the 66% results
from 63% in the Primed pool plus 3% in the +1Ca pool. These particular granule
distributions are used as initial conditions, at both glucose levels, in order to solve the
model.

The above mentioned preliminary results forced us to look for a different set of
parameters (if possible) that could predict experimental secretion from Ca2+ oscillation
data. Then, we analyze model response and sensitivity to all parameters, keeping in
mind that the model should exhibit a reduction of 60% at most of stimulated secretion,
when working at high glucose. A list of possible parameter modifications is below; we
have tested all using a Monte Carlo algorithm that randomly generates values for the
parameter, in a fixed range, and calculates the corresponding secretion. Results are
plotted in Figure 6.7.

1. Smaller γ at 0.5G than at 11G.

2. Smaller resupply net rate at 0.5G than at 11G. This can be accomplished by:

(a) A higher r−1 at 0.5G.

(b) A reduced rmax at 0.5G.

(c) A reduced koff/kon of resupply at 11G.

3. A different apparent affinity KD of the binding sites.

4. A dependence on glucose concentration of the resupply rate r1, so resupply could
be smaller at 0.5G.

Results for tests of parameter estimations are shown in Figure 6.7. Notice that
options 1, 2(a), 2(b) and 2(c) are counter-intuitive since they would mean that the
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Figure 6.7: Tests done looking for the adequate parameter set that could predict
experimental secretion, at 0.5G and 11G, from Ca2+ oscillation data. Expected
predictions for both glucose levels are marked in dashed squares. Secretion predicted
for different γ (top), k−1 (center), and rmax (bottom) values.
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secretion machinery is ”more active” at 11G than at 0.5G. Moreover, the mechanism
responsible for providing new primed granules at 11G periods should be one different
from the mechanism activated at 0.5G, and it should not be working at 0.5G. These
ideas make it unfeasible to choose these options to explain experimental reduction on
secretion. Option 3 was tested, moving the unbinding rate koff . By decreasing its value
from 4 to 3 s−1 at high-glucose, the model predictions were correct. However, this
would mean that the Ca2+ -sensor responsible for high-glucose secretion is physically
different from that for low-glucose secretion, and that the former should have higher
affinity than the latter. This goes into unreal cellular conditions. Moreover, affinity
differences in Ca2+ sensors are not enough to think they could be two different proteins;
for example, two different subtypes of synaptotagmins, the most widely accepted
Ca2+ sensors [171]. Although none of the tests allows us to find one parameter value
that predicts the experimental high-glucose reduction, the plot at the right in Figure 6.7
indicates, interestingly, that the expected secretion could be obtained if the resupply
would have different maximal rates, being higher at high glucose.

Therefore, we tested option 4 which expresses the possibility that glucagon secre-
tion is influenced by glucose concentration through the resupply rate. This is the
most plausible hypothesis due to the existence of experimental evidence, reported
in a previous work [132], indicating that glucagon secretion is influenced by glucose
concentration not only through changes in cytosolic Ca2+ but also through granule
resupply, or granule mobilization. Hence, the equation for r1 should also include a
function of glucose concentration, that is r1 = f(G) Cac

CaC+KD
, where CaC is the cytosolic

Ca2+ concentration, and KD is the half saturation constant of this process. Here, f(G)
is proposed as a linear function of glucose, f(G) = 3G + 18.5, since we only have two
experimental glucose points to fit (G = 0.5 and G = 11); specifically, we estimate
function parameters considering that f(G = 0.5) should coincide with the estimated
value of refilling rate in α-cells under stimulation (20 granules per second) [8]. We
notice that this function can be tested experimentally in the future, and that our
consideration does not discard the possibility that glucose dependence of resupply may
behave differently for other glucose concentrations, as reported in [154]. Taking this
glucose and Ca2+ dependence into account, the model now correctly predicts secretion
values at low and high glucose by assuming that granule resupply increases from 20
granules per second at 0.5G up to 51.5 granules per second at 11G. In other words,
our proposed glucose dependence predicts that granule mobilization is increased about
2.6-fold for high glucose, which is in good agreement with the experimental estimation
of 3.3-fold reported in [132].

All parameters of the secretion model, used in simulations, are given in Table 6.2.
The granule equivalence in femtograms (fg) was obtained considering that one islet
contains about 2 nanograms of glucagon [90], and a minimum of 200 α-cells [141], so
each cell contains, at most, 10 picograms of glucagon. Taking an average cell radius of
5.3 µm [9], the average α-cell volume is 623.6 µm3; then considering a granule density
of 9.3 granules/µm3 [9], each α-cell would have about 5800 granules. Assuming that
each granule contributes with the same glucagon quantity, the granule content would
be 1.72 fg of glucagon; for simulations, we are taking a round value of 2 fg per granule.
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Table 6.2: Parameter values of the glucagon secretion model.

Parameter Value Reference

Glucose function f(G) 3G+ 18.5 Fitted, see text
Glucose concentration G 0.5, 11 mM Experiments
Ca2+ affinity of resupply KD 2.3 µM [189]
Backward resupply rate r−1 2.1 s−1 Fitted
Ca2+ -binding rate kon 0.5 µM−1s−1 [189]
Ca2+ -unbinding rate koff 4 s−1 [189]
Fusion rate γ 0.011 s−1 Fitted

Other values
Cellular volume 623.6 µm3 Computed
Granule density 9.3 granules µm−3 [9]
Granule equivalence 2 fg of glucagon Computed

6.4 Results

6.4.1 Secretion induced at low and high glucose

Secretion dynamics in 20-minute periods for 14 different α-cells are shown in Figures
6.8 and 6.9. The Ca2+ time-series (top panels) are used as inputs to the Shell and
the secretion model. The Shell model provides the values of [Ca2+]i at the membrane
and in the cytoplasm, which are used as inputs to the secretion model. The secretion
model, finally, calculate the secretion rate along time, as well as the accumulated
glucagon release. We notice high variability in individual secretory responses for low
and high glucose periods. In Figure 6.10 we summarize individual secretion rates
for 10 minutes at low, and then at high glucose, as well as the average rate. The
cytoplasmic Ca2+ oscillation induces a secretion rate per minute that seems to have a
delayed maximal response to low glucose. This delay corresponds to the time needed
by granules to become releasable, as most granules are in the reserve pool at resting
Ca2+ . Notice that steady-state secretion rate (after five minutes) at low-glucose is
greater than at high-glucose, on average.

Individual secretion rates induced by each of the 14 experimentally obtained Ca2+ time-
series were predicted using the one-hour files as inputs to the model, as explained in
section 6.3.2, using the parameters of Table 6.2. Then, mean secretion of the ensemble
in one hour was calculated to compare it to the measured experimental secretion.
In figure 6.11 we show the resulting individual secretion rate per hour, as well as
the average of all cells for low (0.241 pg/cell/hour) and high (0.103 pg/cell/hour)
glucose. From these values, a high-glucose-induced reduction of 58% was obtained.
Accumulated secretions predicted by the model would be 20.6 and 48.3 pg/islet in 1
hour at high and low glucose concentrations, respectively, considering 200 alpha cells
per islet; these accumulated values are in the range of experimental measurements [182].
From this figure, we also elicit from predictions that eight cells from fourteen (∼57%)
clearly secrete more glucagon at 0.5G than at 11G, five cells (∼36%) secrete almost
equal at both levels, and one cell (∼7%) secretes more glucagon at 11G than at 0.5G.
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Figure 6.8: To be continued.
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Figure 6.9: Individual secretion dynamics in 20-minute periods: from minute 0 to
10, cells were exposed to 0.5 mM glucose; from minute 11 to 20, cells were exposed
to 11 mM glucose. Each figure corresponds to one α-cell and has three panels: The
Ca2+ oscillation in a.u. (top panel), the individual secretion rate in pg per minute
(middle panel), and the total accumulated glucagon release in pg (bottom panel).
Notice the high variability in individual secretory responses.
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Figure 6.10: Summary of individual secretion rates (blue dots) in 20-minute periods:
from minute 0 to 10, cells were exposed to 0.5 mM glucose; from minute 11 to 20,
cells were exposed to 11 mM glucose. Average secretion rate in the whole period is
also indicated (red line). Secretion in pg/islet was obtained considering 400 α-cells per
islet.
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These results agree with reported ideas that discuss α-cells work in an asynchronous
manner, and about the unequal participation of each cell to whole-islet glucagon
secretion [114, 127].

6.4.2 Secretion induced by constant [Ca2+]i levels

In order to explore the impact of intracellular calcium oscillations on glucagon secretion
from a theoretical viewpoint, we also tested the secretion predicted by our model for a
constant [Ca2+]i level equal to the mean value of each oscillation. This approach makes
sense because it has been observed that only 30 to 50% of alpha cells exhibit oscillating
calcium levels [114, 143]. The effect of oscillations on various cellular responses has
indeed been modelled in other cell types. For example, it was predicted that calcium
oscillations in liver cells can potentiate glycogenolysis in response to low levels of
stimulation [56]. In other systems, where Ca2+ -calmodulin kinase II is involved, the
level of physiological response is encoded in the frequency of Ca2+ oscillations [40]. In
this sense, results about frequency (shown in next section) were thought to clarify if
this codification is present in our results.

In Figure 6.13 we show the individual secretion obtained for each mean [Ca2+]i level
shown in Figure 6.12. In this case, the predictions of the model are: seven cells of
fourteen (∼50%) clearly secrete more glucagon at 0.5G than at 11G, five cells (∼36%)
secrete almost equal at both levels, and two cells (∼14%) secrete more glucagon at
11G than at 0.5G. However, average secretion rate at low glucose (0.198 pg/cell/hr)
is still above the rate at high glucose (0.093 pg/cell/hr), i.e. there is still a 53%
high-glucose-induced reduction on secretion. In contrast, for low glucose concentration
-which most of the time induce Ca2+ oscillations- the secretion rate is higher for an
oscillatory Ca2+ signal (0.241 pg/cell/hour) than for a constant Ca2+ signal with the
same average (0.198 pg/cell/hour); that is, oscillations induce ∼21% more secretion.
Moreover, the distribution of individual participation to total release is different for a
constant than for an oscillatory calcium level, as summarized in Table 6.3. The model
thus predicts that upon low-glucose stimulation, α-cells that display Ca2+ oscillations
secrete more glucagon than those exhibiting an increase of steady-state Ca2+ with the
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Figure 6.13: Secretion rates at 0.5G (dots)
and 11G (triangles) induced by a constant
Ca2+ level corresponding to the individual
mean value of oscillations. Lines indicate
that average secretion rate at low glucose
(0.198 pg/cell/hr) is larger than at high
glucose (0.093 pg/cell/hr). In this case,
the model predicts that secretion rate is
reduced 53% at high glucose.

same average.

6.4.3 Effect of oscillation frequency and mean [Ca2+]i levels on
secretion

The results shown in the preceding sections argue that oscillations have a clear impact
on secretion. To unveil how oscillations are encoding relevant information for glucagon
secretion, we have looked for the relationship between frequency and mean Ca2+ level
of oscillations with individual glucagon release. In Figure 6.14 estimated frequencies
for all oscillations are shown. Values are within the experimentally measured range,
i.e., 0.3 to 1.6 per minute at 0.5mM glucose, with a mean value of 0.87 per minute
[183]. In Figures 6.15 and 6.16 we looked for possible correlations between secretion

Table 6.3: Distribution of individual α-cell secretion.

Percentage of cells

Ca2+ dynamics 0.5G > 11G 0.5G = 11G 11G > 0.5G

Oscillations 57% 36% 7%
Constant 50% 36% 14%
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Figure 6.14: Computed frequency for the
14 Ca2+ time-series at 0.5mM glucose. Fre-
quency was measured following the algo-
rithm described in Section 6.3.1. Dotted
line indicates the average frequency of all
oscillations (0.87 min−1).

and frequency and mean calcium level, respectively. Looking at these plots, we have
found that there is no correlation between secretion and frequency, but there seems to
be a correlation between secretion and mean [Ca2+]i level. This observation suggests
that there is no frequency coding phenomenon, which could be expected given the high
level of irregularity of oscillations. However, it supports the possibility that oscillations
allow the internal cell calcium level to go from time to time above a certain threshold
that favours secretion.

In Figure 6.16, computed rates of secretion are shown as a function of calcium
concentrations. The curves obtained at high and low glucose are different because
the rates of resupply depend on the glucose concentration, hence the secretion rates.
Interestingly, these curves are steep, which provides a clue to understand why oscilla-
tions favour secretion. Indeed, because of this highly non linear relationship between
Ca2+ concentration and secretion rate, a small increase in Ca2+ concentration produces
a large increase in secretion rate; thus, average secretion during oscillations is larger
than the dynamic secretion that would be obtained over the same period of time with
the average Ca2+ during oscillations. Such a type of oscillations-induced potentiation of
a Ca2+ -activated response has been demonstrated experimentally for gene expression
[36].

6.5 Discussion

In this study, we have developed a simple model that quantitatively reproduces the rates
of glucagon secretion by alpha-cells undergoing glucose-induced Ca2+ oscillations. We
have found that, although calcium oscillations are highly variable, the average secretion
rates predicted by the model fall into the range of values reported in the literature
both for high and low glucose. Besides providing a predictive tool to quantify glucagon
release in conditions that have not yet been tested experimentally, the model leads to
interesting hypotheses concerning the molecular mechanism that governs and regulates
glucagon release. In particular, the model predicts that, in contrast to chromaffin
cells, just one type of releasable pools manages glucose-induced glucagon secretion in
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Figure 6.16: Secretion rates induced by
Ca2+ oscillations at 0.5G (dots) and 11G
(triangles) are plotted against the mean
Ca2+ level of each cell. Best-fit curves
for data sets are power functions (n=3.69
for 0.5G, and n=3.41 for 11G, correlation
coefficients of 0.99). Notice that for a given
value of individual mean Ca2+ , the pres-
ence of low glucose (dot) induces a lower
secretion rate than the high glucose (trian-
gle), because of the glucose-dependence of
granule resupply.
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alpha cells. Besides that, the secretory process is very similar between both cell types,
involving three steps of Ca2+ binding. In both cases, a low affinity Ca2+ -sensing protein
(known as Synaptotagmin) mediates the fusion of the secretory granules to the plasma
membrane [97, 83]. This is similar to pancreatic beta cells as well [148].

Our modeling approach, however, suggests the existence of a regulation of the se-
cretory pathway that would be rather specific to α-cells. As a matter of fact, it predicts
that the resupply of releasable granules is not only controlled by cytoplasmic calcium,
as in neuroendocrine cells, but also by the level of extracellular glucose. Here, we
propose that resupply is a function of glucose concentration, which leads to a very good
agreement between model-predicted and experimentally-measured rates of secretion, as
well as resupply rates, at high and low glucose concentrations. Taking into account
the maximal resupply rate estimated for mouse α-cells under depolarization-induced
exocytosis (20 granules per second) [9], the model indeed predicts the observed steady-
state secretion rate of glucose-induced glucagon secretion (0.8 to 1 pg/islet/minute)
[83]. Moreover, glucose sensitivity of resupply also leads to a good estimation of
granule mobilization for basal (high-glucose) conditions, that seems to be higher than
for stimulated (low-glucose) conditions. We have found that granule mobilization, i.e.
resupply rate in our model, is increased about 2.5-fold for high glucose (up to 51.5
granules per second), which well agrees with the 3.3-fold reported in [132].

The population of releasable granules at basal conditions was estimated with a
constant calcium level corresponding to the average of all mean calcium levels observed
at 11 mM glucose (shown in Figure 6.12). The estimation of the releasable population
in the steady-state includes all primed granules in the Releasable stage (marked in
Figure 6.5). The population predicted by the model, at high-glucose, is 63% in the
Primed pool plus 3% in the +1Ca pool. The resultant percentage (66%) compares
well with the 55% measured as the population of submembrane granules located in the
first 300 nm below the plasma membrane in [83], suggesting that releasable granules
in non-stimulated α-cells would be located between this distance, as in neuroendocrine
cells [97]. In contrast, the predicted population of releasable granules at low-glucose
conditions is 33% in the Primed pool plus 2% in the +1Ca pool. In both cases, the
smallest percentage agrees well with estimations of the readily-releasable pool (RRP)
in alpha cells (1 to 2%) [8, 9], that is slightly larger than in beta cells (0.2 to 1%) [148].
On the other hand, the distribution of primed (63%) and reserved (34%) granules at
high glucose might be explained by the fact that under this condition, ATP levels
should be higher so the priming step is favored, since it is ATP-dependent [148].

It is worth emphasizing that the model, in fact, leads to the prediction that low
glucose levels have two counter-acting effects in α-cells. On the one hand, low glucose
stimulates calcium oscillations that induce glucagon release. On the other hand, low
glucose reduces the rate of resupply of the releasable pool. Our physiological inter-
pretation of this apparent paradox is the following: during low glucose periods, there
would be a well-controlled number of releasable granules refilled slowly from a huge
reserve pool to ensure a steady-state secretion rate that could last for several minutes
(as observed by [83]). This would be reasonable to avoid that α-cells would exhaust
the releasable pool of granules, and could mean also that the these cells have its own
glucose-sensing mechanisms, as discussed in some previous works [146, 185]. Therefore,
under normal functioning, the α-cell would be able to respond for long hypoglycemic
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periods, as speculated in some works [8], but under pathological conditions as in
diabetic patients, it may be unable to maintain the constant secretion rate probably
due to abnormal blood glucose levels that would affect granule mobilization.

Overall, the present results all emphasize the crucial role played by glucose on
the control of glucagon secretion in α-cells [185]. From our work, glucose control
occurs both via a direct pathway that directly affects the resupply of secretory gran-
ules and whose molecular mechanisms remain to be elucidated, and via a control of
[Ca2+]i dynamics. As happens with other previous studies [56, 36], our modeling ap-
proach of glucoseinduced glucagon secretion in α-cells also enlightens the potentiating
role of calcium oscillations versus constant levels with the same average, as summarized
in Table ??. Thus, at low glucose concentrations, whole-islet glucagon secretion may
be increased not only by a higher average [Ca2+]i in each α- cell, but also by the fact
that up to 50% of these cells will display an oscillating level of [Ca2+]i [114]. Such
an observation suggests new therapeutic targets as the level of secretion might be
manipulated by drugs affecting both, the levels and the dynamics of Ca2+ increases.



CHAPTER 7

Alpha cells:
Electrical activity related to glucagon secretion

7.1 Introduction

The modeling work described in this chapter deals with the electrical activity in pan-
creatic alpha cells, and it has been based on the available data about ionic currents and
channels. The usual experimental protocol to study electrical activity is to stimulate
the cell with depolarization pulses, and then to measure the produced ionic currents
[9, 75, 79].. However, from a physiological point of view, the electrical activity exhibited
by alpha cells is initiated when they are exposed to low glucose levels. In this situation,
the alpha cells generate action potentials (APs) which are related to glucagon secretion.
These APs are supposed to be triggered by a low ATP/ADP ratio, because of the
absence of glucose. In these ATP/ADP conditions, the KATP channels are opened
what produce an ionic current; in turn, this current changes the membrane potential
and APs are generated. This electrical activity chain is possible thanks to the Ca2+ and
Na+ channels that fire the depolarization stage of the APs. Then, cell depolarization
finally activates the K+ channels in order to repolarize the cell [80, 141].

7.2 Modeling ionic channels and electrical currents

relevant to glucagon secretion

In this part, we define minimal state models and estimate their parameters for each
ionic channel, towards simulating ionic currents associated with glucagon secretion in
α-cells. Currently, we are only considering the relevant currents measured in mice,
which are common animal models for alpha-cell experimentation, and which are the
animals used in the research group we are collaborating with. We present a state
modeling approach to simulate the dynamics of ionic currents commonly measured in
voltage-clamp experiments on alpha cells. Voltage-dependent electrical currents that

88



Chapter 7. Alpha cells:
Electrical activity related to glucagon secretion 89

Table 7.1: Fixed values for ionic channel models.

CaT CaN Na KA KDR

Unitary conductance (pS) 8.4,4.2,2† 13 12,4‡ 12 30
Activation voltage, Vact (mV) -60 -20 -30 -40 -20
Inactivation voltage, Vin (mV) -45 -31 -42 -68 —

†4.2pS if V > −60, 8.4pS if V ≤ −60, 2pS if V > 0. See also section 7.2.4.
‡12pS if V ≤ 10, otherwise 4pS. See also section 7.2.3.

Table 7.2: Fitted values for ionic channel models. All transition rates in ms−1.

Sodium A-type potassium

Model 4-state 4-state
NC 2554 1631
q01 0.44 exp(−0.06Vth) 6.83 exp(−0.02Vth)
q10 11.39 exp(0.05Vth) 30.77 exp(0.03Vth)*
q02 0.81* 8.5 10−5

q20 9.06/E0† 0.01/E0†*
q13 0.004* 0.008
q31 3.69/E0†* 0.12/E0†*
q23 0.8 exp(−0.06Vth) 0.8 exp(−0.02Vth)
q32 20.58 exp(0.05Vth) 3.6 exp(0.03Vth)*

T-type calcium N-type calcium DR-type potassium

Model 3-state 3-state 2-state
NC 694 202 251
q01 0.03 exp(−0.05Vth) 0.22 exp(−0.05Vth) 2.6 10−5 exp(−0.2Vth)
q10 13.06 exp(0.03Vth) 0.67 exp(0.04Vth) 0.7 exp(0.03Vth)
q02 0.001 – –
q20 8.94/E1† – –
q12 89.4/E1† 6.9(∆Ca†/E1)* –
q21 0.001 0.008* –

NC=Number of channels, Vth = V − Vact, Vi = V − Vin.

†∆Ca =
[Ca]i
[Ca]o

, E0 = 1 + exp(−0.01Vi), E1 = 1 + exp(−0.1Vi).

*Values modified to improve dynamic behaviour. See Section 1.1.1 for details.
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control the sequence of events leading to glucagon secretion are ICaT
, ICaN

, INa, IKA
and

IKDR
, and they all exhibit some common kinetic properties that make them suitable

for modeling, as discussed in Section 1.1.1 Hence, state models of ionic channels that
produce these currents, measured during electrophysiological experiments on alpha
cells, may be a useful tool to unveil how electrical activity is coupled to glucagon
secretion.

In what follows, we discuss the available experimental data for each ionic channel
and current, and how we have used this information to define a particular channel
model, having adopted the methodology detailed in Section 1.1.1. Tables 7.1 and 7.2
summarize the parameter values, fixed and fitted, of each state model proposed for
each ionic channel. Sodium and A-type potassium channels were proposed as 4-state
models, Ca2+ channels were proposed as 3-state models, and the DR-type potassium
channels were modeled as a 2-state chain. These models, the corresponding notation
for transitions between states, and the corresponding differential equations are shown
in Figure 1.1. The following sections will show the obtained simulations for each ionic
current, discussing briefly the available experimental information and the role of each
current in α-cells. The final current-to-voltage (IV) curves obtained for all channel
models using parameters given in Table 7.2, are shown in Figure 7.1.

7.2.1 A-type K+ channels

We have considered two voltage-dependent potassium currents in this work: the IKDR

and the IKA
. These currents are named ”outward currents” since channels allow K+ to

go out of the cell when they are open, in contrast to calcium and sodium currents which
are named ”inward currents”, IKA

is due to KV 4.3 channels, a voltage-gated potassium
channel type which is present in alpha cells, neurons and myocytes. In all these cell
types, IKA

plays a very important role since it regulates membrane potential and it
initiates repolarisation after action potentials [4, 141]. Some sophisticated models
simulate KV 4.3 channel behaviour in other cell types (not alpha cells) (see for example
[191]). In all of these models there are several Closed states, one Open state and several
Inactive states, including Open-Inactive and Closed-Inactive states. Because of its
kinetics, it resembles voltage-gated sodium currents: it activates at negative membrane
potentials, presents a sustained steady-state current and shows voltage-dependent rapid
inactivation. In accordance, we propose a four-state minimal model for IKA

(see figure
1.1(c)). In alpha cells, IKA

activates above -50 to -40 mV and exponentially increases
with depolarization. It exhibits voltage-dependent inactivation with half-maximum
point at -68 mV [76]. In other cell types (not α-cells) unitary conductance of KV 4.3
channels has been established between 12 to 19 pS, for asymmetrical internal and
external K+ concentrations [4], so we assume a value of 12 pS for our simulations since
alpha cells are commonly exposed to asymmetrical K+ quantities. In Figure 7.1(a) we
show the simulated IKA

currents obtained for the activation and deactivation voltages
proposed by [76], and with the parameters given in Table 7.2.
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7.2.2 DR-type K+ channels

IKDR
is produced by KV 2.1 channels which are potassium channels managed by voltage;

these channels are found both in alpha and beta cells [80]. In beta cells, the activation
threshold has been found at -20 mV and its IV curve shows that current grows as
depolarization increases [175]. This current does not exhibit any inactivation so we
propose a minimal two-state (Open-Close) model, as shown in Figure 1.1(a). The
unitary conductance of KV 2.1 channels has been estimated in 30.1±8.0 pS for neural
stem cells [169]. Figure 7.1(b) shows the simulated IKDR

currents produced with the
two-state model and the parameters given in Tables 7.1 and 7.2.

7.2.3 Na+ channels

Na+ channels are completely voltage driven, and they have been modelled with many
Closed and Inactive states in addition to one Open state, so that the channel may
inactivate from the Open or the Closed states [184]. Our minimal model then includes
four states: one Closed, one Open and two Inactive states, as shown in Figure 1.1(c).
Sodium channels activate and inactivate as a function of membrane potential with a
threshold voltage in the range of -30 to -20 mV [76, 9, 186]. Single channel properties
of these channels have not been estimated in α-cells. In Purkinje cells, a unitary
conductance of 12 pS using 140 mM of external sodium concentration, as well as a
channel population of 167 channels per square micron, have been estimated [164]. In
squid axon, unitary conductance was estimated as 14 pS, with a channel population of
180 per square micron [184]. In alpha cells, an activation voltage of -30 mV has been
reported as well as a half-maximal inactivation voltage of -42 mV [9]. This work also
reports that approximately 200 pA are obtained for a depolarization of -70 to 0 mV,
although a much larger current (about -545 pA) has been reported in other work [76].
On the basis of this, we take a unitary conductance of 12pS for voltages less than 10
mV, and 4 pS for greater voltages. Activation and inactivation voltages are taken from
[9]. Estimated parameters are given in Table 7.2. In Figure 7.1(c) we show simulated
INacurrents with these values taking into account that the model should reproduce
the fast activation-deactivation kinetics in a time scale below 5 ms, as observed in
alpha-cell experiments [9, 76].

7.2.4 T-type Ca2+ channels

Two types of Ca2+ channels are considered: the T- and the N-. The T-type channels
have been modelled as having one Open and many Inactive and Closed states, with
possible transitions from/to Inactive to/from Open and Closed states [161]. So, a
model should include Closed, Open and Inactive states, and should take into account
that the channel may inactivate from the Open and the Closed states. Since these
channels exhibit Open-state and Closed-state inactivation, and considering that both
inactive states reach a fast equilibrium [161], we are proposing a minimal 3-state model
(Figure 1.1(b) for which transitions to the Inactive state from the Open or the Closed
states are similar.

There are two different experimental observations for T- currents in alpha cells
concerning activation voltage: -40 mV [76, 101, 102] and -60 mV [101, 102]. Considering
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these experimental works in order to define the parameters of our model, we are
assuming that T-type calcium channels activate above -60 mV (in agreement with
the proposed role of pacemakers for T- channels [141, 199]), and that the peak current
(∼27 pA) is reached at -20 mV . We are taking the unitary conductances reported for
neurons: 4.2 pS for voltages above -60 mV (broader range), 8.4 pS below -60 mV, and
2 pS for positive voltages to obtain small currents [17].

It is well worth noticing that modeling inactivation for T- channels is not easy
since inactivation and recovery could bypass the Open state [161]. In alpha cells,
the ICaT

is transient, fast activated and seems to be rapidly inactivated in a voltage-
dependent manner [102]. Moreover, T- currents exhibit an overcrossing behaviour
over depolarization [17], so peak currents do not follow the hierarchy of steady-state
currents. Thus, to estimate parameters for the T- channel model we used a routine
channel that calculates dynamic solutions instead of steady-state values, considering
a half maximal inactivation at -45mV [76]. Deactivation has to be fixed to achieve
a transient behaviour in the first few milliseconds. Figure 7.1(d) shows the resultant
ICaT

currents obtained with the parameters shown in Table 7.2.

7.2.5 N-type Ca2+ channels

N-type calcium channels do not exhibit transitions from the Open to the Inactive
state, and they exhibit some calcium inactivation [94]. Hence, we propose a minimal
model with Open, Closed and Inactive states with possible transitions only from the
Open to the Closed and from the Inactive to the Closed, and viceversa, i.e., transitions
q02 and q20 are zero. An important dependence included in the inactivation rate is
∆Ca = Cao/Cai, which estimates the increase in the internal calcium concentration
([Ca2+]i ) compared to the external concentration ([Ca2+]o ). In this calculation we
are assuming that [Ca2+]o remains constant at 2.5mM, which is reasonable since the
external medium is four orders of magnitude greater than the internal concentration
(Basal [Ca2+]i∼ 0.1µM), and that [Ca2+]i is varying each time step. This is done
assuming local diffusion along 100 nm from the cell membrane without buffering.
We have made some tests with buffered diffusion and the results have shown that
inactivation only varies by a constant factor. So, it is valid to use our approximation
to estimate an upper limit for calcium-dependent inactivation.

ICaN
activates between -40 and -20 mV [94]. Single-channel data has been measured

in neurons (where unitary conductance is between 13 to 15 pS [94]) and in embryonic
kidney cell lines (where unitary conductance is 12 pS [50]). In alpha cells, the N-
current represents about one third of the total calcium current (the rest is L- and T-
current), and it has been estimated in ∼50 pA when the cell becomes depolarised from
-70 to +10 mV [111]. In the cited paper, the activation and inactivation voltage have
been estimated in -20 mV and -31 mV, respectively, so we take them as fixed values for
the model, as well as 13 pS of unitary conductance. Simulated ICaN

currents, obtained
with the parameters given in Table 7.2, are shown in Figure 7.1(e).
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Figure 7.1: (Top) Simulated current-to-voltage (IV) curves for all channels. (a) A-type potassium channels, (b) DR-type potassium
channels, (c) Sodium channels, (d) T-type calcium channels, and (e) N-type calcium channels. (Bottom) Simulated dynamic
currents following the experimental protocols reported in the references. Notice differences in time scales. (a) IKA

. Arrow over
the largest current indicates the value of our time constant (τ = 16ms) which is in agreement with experimental findings [76]. (b)
IKDR

[175]. (c) INa[9]. (d) ICaT
[102]. Currents overcross, as observed in experiments [17]. (e) ICaN

[111].
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Table 7.3: Estimated conductances and channel densities in α-cells

CaT CaN Na KA KDR

Estimated number of channels 694 202 2554 1631 251
Single-channel conductance (pS) 4.2 13 12 12 30
Max. Shell conductance (nS) 2.9 2.6 30.6 19.5 7.5
Density (channels per µm2) 2.2 0.6 8.1 5.2 0.8

Density was estimated considering a spherical alpha cell of radius=5 µm.

7.3 Discussion

The ionic currents simulated here are based on minimal state models for those ionic
channels related to glucagon secretion in pancreatic alpha cells [141]. The state model
approach for channel kinetics could highlight information about the main independent
variables controlling channel gating [155]. This is particularly interesting in relation
to alpha cells, as it could explain how electrical activity is related to glucagon release,
and how channel functioning could affect glucose regulation. In agreement with the
experimental observations we have considered that channel activation and deactiva-
tion are functions of the membrane voltage. Moreover, we have fixed deactivation
parameters for fast changing currents (ICaN

, ICaT
, INa, and IKA

), to efficiently estimate
model parameters. These constraints helped to improve model identifiability [124]. For
channel inactivation, we have assumed that channels inactivate in a sigmoidal manner,
considering the half-inactivation voltage values reported in alpha cell experiments. For
N-type calcium channels, we also found it necessary to include a dependence on external
and internal calcium concentrations to correctly simulate inactivation. This fact links
N- calcium current to a main role in calcium influx and calcium homeostasis. This is
interesting since this influx may trigger glucagon release, as discussed in [80, 141].

Another topic emerging from our analysis are whole-cell conductances and channel
populations in alpha cells. Shell conductances are estimated as the maximal number
of open channels multiplied by the unitary conductance. Although the unitary con-
ductance is an intrinsic channel property, the maximal conductance depends on the
cell type since it is a function of total channel population and opening probability.
Based on our estimations, maximal whole-cell conductances for an alpha cell seem to
be graded as follows: gNa ' gK � gCa, where each ion conductance gx is calculated
as the product of the estimated channel population and the unitary conductance, and
gCa = gCaT

+ gCaN
and gK = gKA

+ gKDR
(see Table 7.3). Our whole-cell conductance

values highly agree with those used in a modelling work for alpha cells based on the
Hodgkin-Huxley approach [34]. Our channel densities are also in the same magnitude
order than values found in chromaffin and beta cells and used by some modelling works
[98, 123]. We emphasize that our estimated conductances indicate that alpha cells are
highly permeable to sodium and potassium which mainly manage action potentials,
depolarising and repolarising the cell respectively [80]. Channel densities, as well as
single-channel currents in alpha cells, are still not known. This is probably because
these cells are scarce and it is difficult to isolate them [141]. To make a comparison, it
has been reported that mouse pancreatic beta cells contain less than 500 L-type calcium
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channels, which corresponds to a density of 0.9 channels per square micron [10]. It is
well worth noticing that our estimated channel population for N-type calcium channels
in alpha cells is in the same order, since we have ∼ 200, which would correspond
to a density of 0.6 (see Table 7.3). This finding is strongly relevant since both, L-
type and N-type calcium channels, play a main role in insulin and glucagon secretion,
respectively [10, 141].

The present work attempts to bridge the gap between electrophysiological record-
ings and modeling related to glucagon secretion. Our final aim is to simulate the
whole alpha-cell electrical activity observed during low-glucose periods, which involves
all channel models working together; this complex simulation will be better under-
stood keeping minimal models. These state models are able to simulate interesting
experimental conditions, such as channel knocking or specific therapeutic inhibitions
through changes in channel properties. Another interesting goal for the future is to
model zinc influence on the alpha-cell electrical activity. This is relevant since it has
been proposed that zinc ions, co-secreted with insulin from neighbouring beta cells,
might be involved in the suppression of glucagon secretion [168]. This suppressive effect
depends on the action of zinc on alpha-cell KATP channels, opening them and inducing
membrane potential hyperpolarization, which leads to the inhibition of glucagon secre-
tion. In order to study the electrical activity related to glucagon secretion following
physiological protocols, the state modeling approach is adequate because these models
are suitable to be used in microscopic simulations. These kind of simulations allow
to understand secretion in exocytotic zones as well as the role of channel clustering,
buffered Ca2+ diffusion and Ca2+ triggering in release, as discussed in Chapter 5, for
human chromaffin cells.



CHAPTER 8

Conclusions

Modeling cellular processes can be considered a powerful approach to study subcellular
mechanisms that underly the physiological functions observed in humans and other
animals. Cellular models allow researchers to link macroscopic behaviour with those
biological elements that may be studied using a model prediction [125]. During the
development of the present thesis, our main goals have been:

• To develop mathematical models, based on original or published experimental
data on Ca2+ in each of the studied cell types, which allows us to unveil the role
of main sub-cellular mechanisms in the observed Ca2+ behaviour.

• To implement models in an adequate geometry, based on experimental informa-
tion, to study local and average Ca2+ dynamics, Ca2+ influx, and Ca2+ distribution
in time and space.

• To simulate secretion occurring in specific time scales, and to relate vesicle or
granule fusion and release with the underlying cellular features associated with
Ca2+ signalling.

Models that study Ca2+ dynamics in simplified geometries as spheres or rectangular
compartments, in various cell types such as synapses [166], neuroendocrine cells [98],
and pancreatic beta cells [54], have been reported. In these geometries one may simulate
an accurate Ca2+ distribution only when the quantity of Ca2+ can be considered homo-
geneous in a certain space, and for a time span. However, geometric simplifications may
overlook realistic spatial Ca2+ distributions, that may lead to local secondary processes
triggered by Ca2+ . Thus, recent works have studied spatiotemporal behaviour of
intracellular Ca2+ considering inhomogeneous conditions [31]. For the studied cases
in this thesis, we have implemented our models considering both approaches: for
alpha cells, it was adequate to apply the Shell model for calculating [Ca2+]i near
the membrane, using the cytoplasmic Ca2+ concentration; for human chromaffin cells,
Ca2+ dynamics for a long time scale was adequately simulated considering the same
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approach, but this modeling tool was unable to explain the triggered secretion for a
short time scale; and for bovine chromaffin cells, we applied a cylindrical model with
non-homogenous distribution of subcellular mechanisms to reproduce the spatiotempo-
ral Ca2+ distribution observed in experiments, so it was necessary to use microscopic
models, as in the calyx of Held, to simulate fast secretion.

In a cell, when a Ca2+ channel opens in response to membrane depolarization, a
Ca2+ microdomain is formed around the channel. Inside this microdomain, elevations
of intracellular Ca2+ are steeper than in the cytosol, and these increments change very
fast in synapses, but not so fast in neuroendocrine cells [147]. In synapses, nanodomains
are formed because of the small distance (tens of nanometers) between channel clusters
and vesicles, whereas in neuroendocrine cells the distance between these subcellular
mechanisms is greater (hundreds of nanometers), leading to macrodomains. Nano-
and micro-domains have gained importance since they seem to be responsible for the
fast component of secretion evoked by action potentials [131]. Therefore, in order
to study Ca2+ -triggered secretion in both cell types, and even in endocrine cells,
models and computational implementations must be able to reproduce the actual
spatial organization, and the characteristic response times. For synaptic terminals
and for the fast secretion evoked in neuroendocrine cells, geometries that allow non-
uniform location of channels and vesicles are needed, as well as an implementation with
spatial resolution around nanometers, and temporal resolution around microseconds
[7]. In contrast to these features, slow secretion exhibited by neuroendocrine and
endocrine cells may be modeled in more regular geometries that cover the whole cell,
where uniform distributions of channels and vesicles are assumed, since slow Ca2+ -
triggered secretion is less sensitive to local Ca2+ increases, but more sensitive to the
spatiotemporal Ca2+ dynamics that includes other Ca2+ controlling mechanisms [113].
Indeed, slow secretion is commonly induced by substances such as glucose or hormones,
and this cellular process seems to be controlled by long timescale Ca2+ signals, i.e.,
Ca2+ oscillations [41, 142]. Then, models for slow Ca2+ and secretion dynamics could
be implemented with a spatial resolution around microns and a higher time step,
which open the possibility to simulate longer periods (up to minutes) in a reasonable
computational time.

With regard to fast secretion, the required model features are well achieved us-
ing Monte Carlo methods in small-sized geometries that emulate an active zone, or
a microdomain. Using these methods, some works simulate Ca2+ profiles close to
Ca2+ channels, and the associated Ca2+ -triggered secretion occurring in the vicinity
of Ca2+ channels in the time scale of microseconds [12, 13, 69, 72, 163]. However,
these works implement a cubic or spherical domain, and consider a single channel or
a uniform arrangement of channels and vesicles, which are not compatible with real
microdomains and channel-to-vesicle organizations found in synaptic terminals [162];
in particular, in the calyx of Held [120]. Therefore, our Active-zone and Cytoskeleton-
cage models are intended to improve these approaches by studying local Ca2+ dynamics
when Ca2+ channels and vesicles are not uniformly distributed, and even more, in
correlated locations. The implementation of our models in a three-dimensional grid
allows us to compute how many calcium ions are moving, in a nanometer size scale
and in a microsecond time scale. Local Ca2+ signal managed by channel organization
and its effects on fast secretion have been analyzed.
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For intermediate and slow secretion, an adequate model should incorporate not
only Ca2+ channels but other Ca2+ sources, such as endoplasmic reticulum, exchangers
or mitochondria. Depending on the particular cell type, each of these sources may
have more influence on the Ca2+ dynamics associated with exocytosis. Indeed, it
is important to define which steps of the exocytotic pathway will be modeled since
Ca2+ modulates not only the final steps leading to vesicle fusion, through Ca2+ binding
to the vesicle sensor (as discussed in Section 1.1.3), but it also participates in other
intermediate steps [24]. Temporal and spatial scales are linked to this decision because
if only the final steps are to be modeled, it can be enough to simulate the secretory
response of an active zone in a short time scale. On the one hand, the binding and
unbinding rates of the calcium sensor are in the order of tens to hundreds of reactions,
per micromolar and per second, meaning that if [Ca2+]i reaches one micromolar, then in
ten milliseconds the fastest reaction will take place. On the other hand, the Ca2+ signal
that triggers these reactions is mainly due to Ca2+ channels, so it is more important
to have high resolution than a large size. These time and size scales are associated
with the fast component of exocytosis in chromaffin cells, then, these cellular process
is suitable to be modeled with Monte Carlo methods. However, when secretion is
evoked by prolonged stimulations, and is mediated by a slow Ca2+ dynamics, many
other mechanisms and exocytotic steps come into great importance.

In alpha cells, glucagon secretion is induced by keeping a low glucose level for
several minutes, and the secretory response takes also some minutes to become stable,
as observed experimentally [83], and as supported by our modeling results shown in
Chapter 6. Then, the relevant simulation times are in the order of tens of minutes,
but the rate constants in our glucagon secretion model for granule resupply, and
Ca2+ binding and unbinding are in the order of 10 per second, and 1 per micromolar
per second, respectively. These values imply that, if [Ca2+]i reaches one micromolar,
at most one reaction will occur in one tenth of second, i.e., a time step below 0.1
seconds will be enough, although it will take above 6,000 time steps to simulate
just 10 minutes of secretion, without simulating the associated Ca2+ dynamics. The
computational time of the simulation grows rapidly if one considers that to correctly
simulate slow Ca2+ dynamics in alpha cells, i.e., Ca2+ oscillations, we may need to
include at least, Ca2+ channels, the Na+ -Ca2+ exchanger, the endoplasmic reticulum,
and the buffered diffusion of Ca2+ , which are the main mechanisms participating in
Ca2+ dynamics involved in β-cell secretion [29, 57]. As simulated and discussed in
Chapter 7, the maximal open probability for Ca2+ channels are in the order of 10−1

to 10−2 per millisecond (from Table 7.2), so an acceptable time step should be less
than 10 ms. Thus, if we try to couple the Ca2+ channel models to the secretion
model to study the whole stimulus-secretion pathway in alpha-cells, the simulation
of the same above-mentioned 10 minutes would take at least 60,000 time steps. Notice
that this coupling implies working with time scales with a difference of four orders
of magnitude (milliseconds to minutes). One of our future goals is intended to solve
this impediment, because stimulus-secretion coupling in α cells remains uncertain [80],
and it is interesting for the experimental group we are collaborating with. As a first
idea, we have run some uncoupled simulations of electrical currents produced during an
action potential, and some other simulations intended to unveil the main mechanisms
involved in the generation of glucose-induced Ca2+ oscillations.
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The study of secretion process in human chromaffin cells was highly remarkable
from a multiscale perspective. Secretion evoked by pulse depolarizations in these cells
shows two components, rapid and slow, as described for neuroendocrine cells in other
species [97], although the relevant times for each component does not coincide with
any of them. Our modeling study revealed that not only these two components can
be related to two different populations of vesicles, as reported for other species [190],
but they seemed to be influenced by different Ca2+ signals. Slow secretion could be
reproduced by our Shell model that assumes homogeneity and a uniform distribution
of Ca2+ channels and vesicles, but fast secretion was correctly predicted only by our
Active-zone model, considering a cluster organization of Ca2+ channels, close to a
small group of vesicles. For both models, the same basic Ca2+ -regulating mechanisms
were considered (diffusion, buffering, and Ca2+ -binding by the vesicle sensor), so the
differential equations to be solved were the same in both approaches. However, the
Shell and the Active-zone model interpret these equations differently, in a deterministic
and a stochastic manner, respectively, hence equations were solved with convenient
mathematical methods, as discussed in Section 1.2. This may be understood as cellular
secretion in this cell type is more influenced by stochastic or deterministic features of
the Ca2+ signal, depending on the stimulation level, as discussed for other cell types
[39].

Our results in human chromaffin cells indicate that the Ca2+ signals triggering the
two secretory components are influenced by two different spatiotemporal features: fast
secretion, by local Ca2+ elevations i.e., calcium microdomains, whereas slow secretion,
by global Ca2+ behaviour. Secretion in these neuroendocrine cells are a nice example
of a physiological phenomena underlying multiscale variables, making it necessary to
be modeled in two time and size scales: short time scale, in the order of milliseconds,
and long time scale, in the order of seconds. The time step used in most simulations
(11 microseconds) implies a spatial resolution of 100 nm, which means that a 100-ms
simulation takes about 10,000 time steps; but for a 5-s simulation, it takes 50 times
more, because of the timescale difference of one order of magnitude. Moreover, since
fast secretion evoked by the 10-ms pulse was accurately predicted only when the spatial
resolution was fixed at 50 nm, reducing the time step to 2.8 microseconds, the differ-
ences in time scales were incremented, and the computing times too. It is important
to emphasize that the same macroscopic behaviour exhibited by the cell in response
to stimulation, i.e., hormone release, may be regulated in very different manners by
mechanisms acting at different spatial levels, and with different characteristic times.

As discussed above, the study of three cell types, namely the calyx of Held, the
chromaffin cell, and the alpha cell comprehends secretion processes taking place in
milliseconds (fast secretion), seconds (intermediate secretion), and minutes (slow se-
cretion). These time scales of secretion correspond in turn to small (active zone) up to
large (whole cell) regions to be modeled, and lead finally to short up to long simulations.
In Table 8.1 we show the studied cell types and the corresponding developed models
for ionic channels. In Table 8.2 we summarize the proposed models, the subcellular
mechanisms, and the mathematical methods used to solve them, as discussed in Section
1.3. As expressed in this table, the Active-zone and the Cytoskeleton-Cage models
include Ca2+ channels, fixed and mobile buffers, and diffusion, in order to simulate
Ca2+ dynamics. These subcellular mechanisms were used to study the spatiotemporal
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aspects of exocytosis in the calyx of Held and in bovine chromaffin cells. In fact, the use
of Monte Carlo methods makes it feasible to evidence intracellular processes occurring
in the order of micro and milliseconds, as well as to study the spatial organization of
the secretory machinery at the size of nanometers, as expressed in Table 8.3. On the
other hand, the Shell model includes a fixed buffer, Ca2+ diffusion and Ca2+ extrusion,
as stated in Table 8.1, to adequately simulate Ca2+ dynamics in a long timescale. This
model was configured to simulate secretion in human chromaffin cells and in alpha
cells considering a whole cell level, in the scale of microns. Since the experimental data
in both cases range between seconds to minutes, useful simulations should be run in
the same time scale, so continuous methods (such as finite differences and integration
methods, named in Table 8.2) provide us an adequate way to solve the model in a
reasonable computing time . Hence, we were able to study vesicle pool dynamics in
human chromaffin cells in the scale of seconds, and to study glucose-induced glucagon
secretion in alpha cells in the scale of minutes, as expressed in Table 8.3.

The main hypothesis of this thesis was that cellular secretion, mainly controlled by
intracellular calcium dynamics, exhibit similitudes, even between different cell types,
which makes it possible to share models without forgetting particular cell characteris-
tics. Therefore, our proposed models were thought to cover: 1) The nature and charac-
teristics of the stimulus needed to trigger an exocytotic event in experiments, and, 2)
The dynamic behaviour of intracellular calcium, related to secretion, which determines
the relevant time and size scales. These two aspects comprehend the coupling between
the macroscopic phenomenon observed in experiments, where a particular stimulus
induces secretion, and the microscopic events leading to the observed response. Then,
the models would be acting as theoretical tools to infer knowledge about how the
stimulus-secretion coupling is achieved inside a cell. Our approach has been to propose
simple models that can be adapted to reproduce a specific experiment in a cell type, and
at the same time, to share models of subcellular mechanisms involved in the exocytotic
process. To follow this approach, we have chosen the mathematical methods to solve
the models under a multiscale perspective, since the couple of several spatiotemporal
scales need to be considered.

The process of creating a mathematical model, to be implemented on a computer,
which could be of relevance for the interpretation of experimental data and for enlight-
ening disease causes, requires several modeling tasks and feedback from experimental
researchers. Modeling tasks can be summarized as collecting data about the proposed
hypothesis (data mainly comes from experiments, databases and scientific papers),
integrating data, proposing models and estimating parameters, and finally, validating
the model, as suggested in [194]. Integration of biological models and solving methods
is a delicate task that requires the use of special description languages, frameworks,
and computational implementations. Moreover, when the biological phenomenon to
be studied involves many spatiotemporal levels, leading to different time and size
scales in model parameters. Some efforts have been reported, mainly in the recent
years, about integrating all modeling levels. The basic level is the model description;
to accomplish it, some description languages have been proposed to standardize the
representation of biological models at cellular or subcellular levels, and to facilitate
information exchange, such as SBML [88] and CellML [106]. At the second and third
level, some examples of formal frameworks have been implemented, ranging from those
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oriented to solve biochemical systems [133], cellular phenomena [107], and reaction
pathways [52], to those that implement Shell models [176] and Monte Carlo schemes
[118]. All these computational environments are nice examples of how diverse could
be data on biological research, and how important the implementation of the modeling
solution is. It is noticeable that all of them are general, user-friendly software developed
and supported by a team, and each one provides its own possibilities to model a
complex biological system. In contrast, our framework constitutes an original effort
because it is an expert-defined solution intended to study cellular secretion along with
Ca2+ dynamics, in a multiscale environment. As far as we know, there has been no
previous study on secretion in several cell types, covering different spatial and temporal
scales.

Integration of multiple spatiotemporal scales is also a clue factor to achieve data
integration and model design. In this sense, examples of research efforts can be found
on integrating multiscale physiology in the heart [23, 89], solving multiscale stochastic
kinetic reactions [43], and integrating multiscale models of angiogenesis [144]. For
the cell types studied in the present thesis, original data was produced following
experimental protocols that pose many questions on the stimulus-secretion coupling in
these cells. Each cell type was specific, with own values for size, secretion times, relevant
stimulation, and Ca2+ dynamics. Therefore, our basic modeling frameworks were suited
to fit these specifications and to simulate Ca2+ -triggered exocytosis. Up to now, we
have not used any description language, but have shared common subcellular models
between cells, and have used stochastic and deterministic solutions considering real
cellular behaviour and features. This makes the integration not an easy task, although
we have done it in a static manner, as a first step, giving priority to computational
speed. However, we have considered as a future goal, to achieve a dynamic integration
of models based on reported methodologies where a controlling module deals with
data exchanging, program running and schedule [144]. We keep in mind that our
biomedical engineering goal should be to participate along with experts to answer
the posed questions and hypothesis, based on modeling tools, towards a thorough
understanding of cellular secretion processes.
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Table 8.1: Studied cell types and modeled ionic channels

Cell type Channel types

Calyx of Held P-type Ca2+

Bovine chromaffin cells P- and L-type Ca2+

Human chromaffin cells —
Alpha cells Ca2+ (N- and T-type), Na+, K+ (A- and DR-type)

Table 8.2: Models and solving methods

Model Subcellular process Solving method

Active-Zone (AZ) and Ca2+ -channel influx Monte Carlo
Cytoskeleton-cage (CC) Ca2+ and buffer diffusion Random walk

Buffer kinetics† Monte Carlo
Vesicle-fusion kinetics Monte Carlo

Shell (S) Ca2+ diffusion Crank-Nicholson
Endogenous buffer kinetics Crank-Nicholson
Ca2+ extrusion Finite differences
Vesicle-fusion kinetics Integration

† Fixed and mobile buffers.

Table 8.3: Cell types, spatiotemporal scales, and models

Cell type Time scale Size scale Model

Calyx of Held Tens of milliseconds Nanometers AZ
Bovine chromaffin cells Hundreds of milliseconds Few microns CC
Human chromaffin cells First milliseconds Few microns AZ
Human chromaffin cells Seconds Some microns S
Alpha cells Seconds to minutes Some microns S



APPENDIX A

Publications derived from this thesis

Papers in peer-reviewed journals
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2. A. Gil, V. González-Vélez, J. Segura, Monte Carlo modelling and simulation of
cell exocytosis, SMO 08: Proc. WSEAS Simulation, Modelling and Optimiza-
tion, Math Comp Sci Eng (2008): 122-126.

Oral presentations, posters, and conferences

1. Modelado y simulación multiescala de la secreción celular controlada por Ca2+ .
Poster presented in the XXVIII Annual Congress of the Spanish Society
of Biomedical Engineering (CASEIB 2010).
Universidad Carlos III, Madrid, Spain.

2. Multiscale modelling of slow and fast exocytotic processes
Oral presentation in the Symposium on Interdisciplinary Approaches to
Calcium and Secretory Dynamics in Cells: Mathematical Models and
Experiments. (2009)
Universidad de Cantabria, Santander, Spain.

3. Simulation of cytoskeleton influence on spatial Ca2+ dynamics in neuroendocrine
cells
Poster presented in the Annual Computational Neuroscience Meeting(CNS
2009).
Academy of Sciences, Berlin, Germany.

4. Modelling the dynamics of calcium-triggered cell exocytosis: a Monte Carlo ap-
proach
Oral presentation in the Workshop and Advanced Course on Deterministic
and Stochastic Modeling in Computational Neuroscience and other
Biological Topics (2009)
Centre de Recerca Matematica, Universidad de Barcelona, Espaa.



Appendix A. Publications derived from this thesis 105

5. Dynamics of calcium-triggered cell exocytosis
Oral presentation in the 3rd ESF Conference on Functional Dynamics
(FUNCDYN 2009).
Cascais, Portugal.

6. Monte Carlo modelling and simulation of cell exocytosis
Oral presentation in the 8th WSEAS International Conference on Simu-
lation, Modelling and Optimization (2008).
Universidad de Cantabria, Santander, Spain.

7. El valor de la información experimental para el modelado de la regulación y la
exocitosis controlados por Ca2+

Conference given in the Instituto de Bioingenieŕıa, (2008).
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Algorithms

B.1 Routines for parameter estimation of channel

models

Figure 1.2 shows the main program used to find the best parameter set that fits
experimental peak currents for each channel model. The called routines are: randPar,
channel, minChiDev. Following, we describe the purpose and arguments of these
routine.

randPar(numPar).

Purpose: Generate random values for each parameter, including the number of
channels.

Arguments:

Inputs: numPar: Number of parameters.

Outputs: Array of random values for all parameters.

minChiDev(I,Iexp).

Purpose: Find the parameter set that gives minimal chi square deviation be-
tween the simulated and experimental currents.

Arguments:

Inputs: I: Array of simulated peak currents. Iexp: Array of experimental
peak currents.

Outputs: Index of the best parameter set.

channel(V,p(j)).

Purpose: Calculate peak current at each membrane voltage.
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Arguments:

Inputs: V: Array of membrane voltages. p(j): The jth parameter set.

Outputs: Array of simulated peak currents at each voltage.

B.2 Routines for the Stochastic models

Figure 1.8 shows the main program used to solve the Stochastic models. The called
routines are: data, makegrid, chandis, vesdis, districa, chanmod, walk, kineves.
Following, we describe the purpose and arguments of these routines.

makegrid(imicro,ncomps,ncomph,jl,il,numcom,nt).

Purpose: Routine to make the grid for a conical or a cylindrical domain.

Arguments:

Inputs: imicro: selects the geometry of the domain. If imicro=1, the
selected domain is conical while imicro=2 stands for a cylindrical do-
main. ncomps: number of grid points along the radius of the base of
the domain. ncomph: number of grid points along the depth of the
domain.

Outputs: jl(1:ncomph), il(1:ncomph,jl): range of the coordinates of the
grid points as a function of depth. numcom(1:ncomph): number of
compartments as a function of depth. nt: total number of compart-
ments of the domain.

data(deltax,difca,difbf,difbm,di0,fhz,tpulse,tsimul,nmaps,tmap) .

Purpose: transformation of the input data to microscopic quantities used in the
simulation and setting of the initial conditions.

Arguments:

Inputs: deltax: selected resolution for the simulation. difca: diffusion
coefficient of Ca2+. difbf: diffusion coefficient of buffer 1. difbm:
diffusion coefficient of buffer 2. di0: unitary current (per channel).
fhz: frequency of delivery of ionic pulses. tpulse: duration of each
pulse. tsimul: duration of the simulation. nmaps: number of 2-D
calcium maps. tmap(1:nmap): times at which the 2-D calcium maps
are obtained.

Parameters: charge: number of charges of one ion (default: charge=2).

chandis(iseed,ncha,ie,je).

Purpose: generation of a uniform and random distribution of channels.

Arguments:

Inputs: iseed: seed for the simulation. ncha: number of calcium channels
to be distributed.
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Outputs: ie(1:ncha),je(1:ncha): planar coordinates of each channel (the
depth coordinate is k = 1).

vesdis(iseed,nves,iev,jev).

Purpose: generation of a uniform and random distribution of vesicles.

Arguments:

Inputs: iseed: seed for the simulation. nves: number of secretory vesicles.

Outputs: iev(1:ncha),jev(1:ncha): planar coordinates of each vesicle
(the depth coordinate is k = 1).

districa(iseed,numcom,inica,nt,ni).

Purpose: distributes a given species of particle (ions, free buffer molecules,...)
all over the domain of simulation, being all compartments of the grid equally
probable.

Arguments:

Inputs: iseed: seed for the simulation. numcom(1:ncomph): number of
compartments of the domain as a function of the depth. inica: number
of particles to be distributed. nt: total number of compartments in the
domain.

Outputs: ni(-il(ncomph,jl):il(ncomph,jl),-jl(ncomph):jl(ncomph),ncomph):
initial number of particles in each compartment of the grid.

chanmod(V,pchan).

Purpose: calculate the number of calcium ions entering into each compartment
containing a channel.

Arguments:

Inputs: V: depolarization voltage. pchan: array of parameters for the
channel model.

Outputs: ienter(ie(1:ncha),je(1:ncha): number of ions for the compart-
ment located at coordinates ie,je (the depth coordinate is k = 1).

walk(iseed,ni).

Purpose: implementation of a 3-D random walk algorithm for the movement of
particles.

Arguments:

Inputs: iseed: seed for the simulation. ni(-il(ncomph,jl):il(ncomph,jl),-
jl(ncomph):jl(ncomph),ncomph): number of particles in each com-
partment of the domain.

Outputs: Updated input variables after the random walk has taken place.

kineves(iseed,ni,nb1,nb2,nbm1,nbm2,nbsf,nbsb,iev,jev).
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Purpose: implementation of the kinetic reactions of the buffers (buffer 1 and
buffer 2) and the vesicle sensor, in each compartment of the domain.

Arguments:

Inputs: iseed: seed for the simulation.
ni(-il(ncomph,jl):il(ncomph,jl),-jl(ncomph):jl(ncomph),ncomph):
number of calcium ions in each compartment of the domain.
nb1(-il(ncomph,jl):il(ncomph,jl),-jl(ncomph):jl(ncomph),ncomph):
number of free buffer molecules of type 1 in each compartment of the
domain.
nb2(-il(ncomph,jl):il(ncomph,jl),-jl(ncomph):jl(ncomph),ncomph):
number of free buffer molecules of type 2 in each compartment of the
domain.
nbm1(-il(ncomph,jl):il(ncomph,jl),-jl(ncomph):jl(ncomph),ncomph):
number of bound buffer molecules of type 1 in each compartment of the
domain.
nbm2(-il(ncomph,jl):il(ncomph,jl),-jl(ncomph):jl(ncomph),ncomph):
number of bound buffer molecules of type 2 in each compartment of the
domain.
nbsf(-il():il(),-jl():jl()): number of free binding sites for each secre-
tory vesicle.
nbsb(-il():il(),-jl():jl()): number of bound binding sites for each se-
cretory vesicle.
iev(1:nves),jev(1:nves): planar coordinates of vesicles (depth is 1).

Outputs: Updated input variables after kinetic reactions.

B.3 Routines for the Deterministic model

Figure 1.9 shows the main program used to solve the Deterministic model. The called
routines are: difb, ica, secre. Following, we describe the purpose and arguments of
these routines.

difb(cai,b,dt).

Purpose: Update free Ca2+ and buffer concentrations in each shell.

Arguments:

Inputs: cai: Array of last free Ca2+ concentrations in all shells. b: Array
of last free buffer concentration in all shells. dt: Time step.

Outputs: Updated cai and b arrays.

ica(dt,tsim).

Purpose: Read experimental data of Ca2+ current, and adequate it to the
specified time step and simulation time.

Arguments:

Inputs: dt: Time step. tsim: Simulation time.
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Output: Array of Ca2+ current values at each dt, computed using a spline
interpolation of experimental values.

secre(cap,tsim).

Purpose: Calculate the number of fused vesicles along the simulation time.

Arguments:

Inputs: cap: Cell capacitance. tsim: Simulation time.

Outputs: Arrays of fused vesicles and times.
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