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Resum

L’objectiu principal d’aquesta tesi és unificar dues teories conegudes i aparentment no rela-
cionades entre elles, que tracten l’acotació de l’operador de Hilbert, sobre espais amb pesos,
definit per

Hf(x) =
1

π
lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy,

quan aquest ĺımit existeix gairebé a tots els punts. Per una banda, tenim l’acotació de
l’operador H sobre els espais de Lebesgue amb pesos i la teoria desenvolupada per Calderón
i Zygmund. Per altra banda, hi ha la teoria de l’acotació de l’operador H desenvolupada al
voltant dels espais invariants per reordenació. El marc natural per unificar aquestes teories
consisteix en els espais de Lorentz amb pesos Λp

u(w) i Λp,∞
u (w), els quals van ser definits per

Lorentz a [68] i [67] de la següent manera:

Λp
u(w) =

{
f ∈M : ||f ||Λpu(w) =

(∫ ∞
0

(f ∗u(t))pw(t)dt

)1/p

<∞

}
, (1)

Λp,∞
u (w) =

{
f ∈M : ||f ||Λp,∞u (w) = sup

t>0
W 1/p(t)f ∗u(t) <∞

}
, (2)

on

f ∗u(t) = inf{s > 0 : u({x : |f(x)| > s}) ≤ t} i W (t) =

∫ t

0

w(s)ds.

Més concretament, estudiarem l’acotació de l’operador H sobre els espais de Lorentz amb
pesos:

H : Λp
u(w)→ Λp

u(w), (3)

i la seva versió de tipus dèbil

H : Λp
u(w)→ Λp,∞

u (w). (4)

Abans de descriure els nostres resultats, presentem una breu revisió històrica de l’operador
H. Aquest operador va ser introdüıt per Hilbert a [48] i [49]. Però, no va ser fins el 1924 quan
Hardy el va anomenar “operador de Hilbert” en honor a les seves contribucions (veure [43],
i [44]).

v
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L’operador H sorgeix en molts contextos diferents, com l’estudi de valors de frontera de
les parts imaginàries de funcions anaĺıtiques i la convergència de sèries de Fourier. Entre els
resultats clàssics, esmentem el teorema de Riesz:

H : Lp → Lp,

és acotat, quan 1 < p < ∞ (veure [85], i [86]). Tot i que l’acotació en L1 no és certa,
Kolmogorov va provar a [58] l’estimació de tipus dèbil següent:

H : L1 → L1,∞. (5)

Per a més informació en aquests temes veure [40], [94], [36], i [8].

Els resultats més rellevants que van servir per motivar aquest estudi són:

(I) Si w = 1, aleshores (3) i (4) corresponen a l’acotació

H : Lp(u)→ Lp(u), (6)

i la seva versió dèbil
H : Lp(u)→ Lp,∞(u), (7)

respectivament.
Aquestes desigualtats sorgeixen naturalment quan en el teorema de Riesz, la mesura sub-

jacent es canvia per una mesura general u. Aleshores, el problema és estudiar quines són les
condicions sobre u que permeten que l’operador H sigui acotat a Lp(u). Aquesta nova aproxi-
mació va donar naixement a la teoria de les desigualtats amb pesos, la qual juga un paper
important en l’estudi de problemes de valor de la frontera per l’equació de Laplace en domi-
nis Lipschitz. Altres aplicacions inclouen desigualtats vectorials, extrapolació d’operadors,
i aplicacions a equacions no lineals, de derivades parcials i integrals (veure [36], [41], [56],
i [57]).

L’estudi de (6) i (7) proporciona juntament amb l’acotació de l’operador maximal de
Hardy-Littlewood en els mateixos espais, la teoria clàssica de pesos Ap. L’operador sublineal
M , introdüıt per Hardy i Littlewood a [45], es defineix per

Mf(x) = sup
x∈I

1

|I|

∫
I

|f(y)|dy,

on el supremum es considera en tots els intervals I de la recta real que contenen x ∈ R. Per
a més referències veure [38], [36], [41], [40], i [94].

Diem que u ∈ Ap si, per a p > 1, tenim:

sup
I

(
1

|I|

∫
I

u(x)dx

)(
1

|I|

∫
I

u−1/(p−1)(x)dx

)p−1

<∞, (8)

on el supremum es considera en tots els intervals I de la recta real, i u ∈ A1 si

Mu(x) ≈ u(x) a.e x ∈ R. (9)
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Muckenhoupt va provar a [71] que, si p ≥ 1, la condició Ap caracteritza l’acotació

M : Lp(u) −→ Lp,∞(u),

i si p > 1 també caracteritza
M : Lp(u) −→ Lp(u).

Hunt, Muckenhoupt i Wheeden van provar a [54] que, si p ≥ 1, la condició Ap caracteritza
(7) i si p > 1 la mateixa condició caracteritza també (6). Per una prova alternativa d’aquests
resultats veure [26]. Per exponents p < 1 no hi ha cap pes u que compleixi (6) i (7).

(II) El cas u = 1 correspon a l’acotació de l’operador H en els espais de Lorentz clàssics,
i va ser solucionat per Sawyer a [90]:

H : Λp(w) −→ Λp(w). (10)

Una caracterització simplificada dels pesos pels quals l’acotació és certa, es presenta en
termes de la condició Bp ∩B∗∞ introdüıda per Neugebauer a [80]. Diem que w ∈ Bp si∫ ∞

r

(r
t

)p
w(t) dt .

∫ r

0

w(t)dt, (11)

per a tot r > 0, i (11) caracteritza l’acotació

M : Λp(w)→ Λp(w),

provat a [5]. La condició w ∈ B∗∞ és∫ r

0

1

t

∫ t

0

w(s)ds dt .
∫ r

0

w(s)ds, (12)

per a tot r > 0. Si p > 1 la condició Bp ∩B∗∞ caracteritza també la versió de tipus dèbil

H : Λp(w) −→ Λp,∞(w), (13)

mentre que el cas p ≤ 1, es caracteritza per la condició Bp,∞ ∩B∗∞. Diem que w ∈ Bp,∞ si, i
només si

M : Λp(w) −→ Λp,∞(w) (14)

es acotat. Precisament, tenim que:

(α) Si p > 1, Bp,∞ = Bp.

(β) Si p ≤ 1, aleshores w ∈ Bp,∞ si, i només si w és p quasi-concava: per a tot 0 < s ≤
r <∞,

W (r)

rp
.
W (s)

sp
. (15)
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(III) Recentment, Carro, Raposo i Soria van estudiar a [20] l’anàleg de la relació (3),
però per a l’operador M , en comptes de l’operador H

M : Λp
u(w)→ Λp

u(w),

i la solució és la classe de pesos Bp(u) definida com:

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) ≤ C max
1≤j≤J

(
|Ij|
|Sj|

)p−ε
, (16)

per a algun ε > 0 i per cada famı́lia finita d’intervals disjunts, i oberts (Ij)
J
j=1, i també cada

famı́lia de conjunts mesurables (Sj)
J
j=1, amb Sj ⊂ Ij, per a cada j ∈ J . Aquesta classe de

pesos recupera els resultats ben coneguts en els casos clàssics; és a dir, si w = 1 llavors (16)
és la condició Ap i si u = 1, llavors és la classe de pesos Bp (veure [20]). En el mateix treball
es va considerar la versió de tipus dèbil del problema,

M : Λp
u(w)→ Λp,∞

u (w). (17)

Tanmateix, la caracterització geomètrica completa de l’estimació (17) no es va resoldre per
a p ≥ 1.

En aquesta tesi, caracteritzem totalment les acotacions (3) i (4), quan p > 1, donant una
versió estesa i unificada de les teories clàssiques. També caracteritzem (17) per la condició
Bp(u) quan p > 1. Els resultats principals d’aquesta tesi proven que els enunciats següents
són equivalents per a p > 1 (veure el Teorema 6.19):

Teorema. Sigui p > 1. Els enunciats següents són equivalents:

(i) H : Λp
u(w)→ Λp

u(w) és acotat.

(ii) H : Λp
u(w)→ Λp,∞

u (w) és acotat.

(iii) u ∈ A∞, w ∈ B∗∞ i M : Λp
u(w)→ Λp

u(w) és acotat.

(iv) u ∈ A∞, w ∈ B∗∞ i M : Λp
u(w)→ Λp,∞

u (w) és acotat.

(iv) Existeix ε > 0, tal que per a cada famı́lia finita d’intervals disjunts, oberts (Ij)
J
j=1, i

cada famı́lia de conjunts mesurables (Sj)
J
j=1, amb Sj ⊂ Ij, per a cada j ∈ J , es verifica

que:

min
j

(
log
|Ij|
|Sj|

)
.
W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) . max
j

(
|Ij|
|Sj|

)p−ε
.
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En particular, recuperem els casos clàssics w = 1, i u = 1. A més, reescrivim els
nostres resultats en termes d’alguns ı́ndex de Boyd generalitzats. Lerner i Pérez van estendre
a [66] el teorema de Lorentz-Shimogaki en espais funcionals quasi-Banach, no necessàriament
invariants per reordenació. Motivats pels seus resultats, donem una extensió del teorema de
Boyd, en el context dels espais de Lorentz amb pesos (veure el Teorema 6.26).

També hem solucionat el cas de tipus dèbil, p ≤ 1 amb alguna condició addicional en w
(veure el Teorema 6.20).

Els caṕıtols són organitzats de la següent manera:

Per tal de dur a terme aquest projecte com a monografia auto-continguda, en el Caṕıtol 2
estudiem totes les propietats bàsiques dels espais de Lorentz amb pesos. Aquest caṕıtol
també conté un resultat de densitat nou: provem que l’espai de funcions C∞ amb suport
compacte, C∞c , és dens en els espais de Lorentz amb pesos Λp

u(w) en el cas que u i w no són
integrables (veure el Teorema 2.13). Això serà important per solucionar alguns problemes
tècnics de la definició de l’operador de Hilbert en Λp

u(w).

El Caṕıtol 3 recull totes les classes de pesos que apareixen en aquesta monografia. Primer
estudiem les classes de pesos Ap i A∞. A continuació, estudiem les classes de pesos Bp i Bp,∞
que caracteritzen l’acotació de M en els espais de Lorentz clàssics. Com ja hem mencionat,
la classe dels pesos Bp no és suficient per obtenir l’acotació de l’operador H sobre els espais
Λp
u(w), i es requereix també la condició B∗∞. Després, investiguem la condició Bp(u) i trobem

algunes expressions equivalents noves estudiant el comportament asimptòtic a l’infinit d’una
funció submultiplicativa (veure el Corol·lari 3.38). Finalment, definim i estudiem una classe
nova de pesos AB∗∞, que combina les classes A∞ i B∗∞ (veure Proposició 3.46 per a més
detalls).

En el Caṕıtol 4 trobem condicions necessàries per l’acotació de tipus dèbil de l’operador
H i obtenim algunes conseqüències útils. Si restringim l’acotació H : Λp

u(w) → Λp,∞
u (w) a

funcions caracteŕıstiques d’intervals, tenim:

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . (log
1 + ν

ν

)−p
,

per a cada ν ∈ (0, 1] (veure el Teorema 4.4). En particular, això implica u 6∈ L1(R) i
w 6∈ L1(R+) (veure la Proposició 4.5). A més a més si restringim l’ acotació de tipus dèbil a
funcions caracteŕıstiques de conjunts mesurables (veure el Teorema 4.8), obtenim

W (u(I))

W (u(E))
.

(
|I|
|E|

)p
,

i per això W ◦ u satisfà la condició doblant i w és p quasi-còncava. Finalment, l’acotació de
tipus dèbil implica, aplicant arguments de dualitat, que es compleix:

||u−1χI ||(Λpu(w))′ ||χI ||Λpu(w) . |I|,
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per a tots els intervals I de la recta real (veure el Teorema 4.16). Estudiem aquesta condició
i, en conseqüència, obtenim l’acotació de tipus dèbil de l’operador H en els espais Λp(w).

En el Caṕıtol 5 caracteritzem l’acotació de tipus dèbil en els espais de Lorentz clàssics
per a p > 0, sota la suposició que u ∈ A1:

H : Λp
u(w)→ Λp,∞

u (w)⇔ w ∈ Bp,∞ ∩B∗∞,

(veure el Teorema 5.2). A més a més provem que si u ∈ A1 i p > 1 tenim que

H : Λp
u(w)→ Λp

u(w)⇔ w ∈ Bp ∩B∗∞,

(veure Teorema 5.4), mentre en el cas p ≤ 1 tenim el mateix resultat amb una condició
addicional en els pesos (veure el Teorema 5.5). Per això, si u ∈ A1, l’acotació del tipus fort
(resp. del tipus dèbil) H : Λp

u(w) → Λp
u(w) (resp. H : Λp

u(w) → Λp,∞
u (w)) coincideix amb

l’acotació del mateix operador per u = 1.

El Caṕıtol 6 conté la solució completa del problema quan p > 1; és a dir, la caracterització
del tipus dèbil de l’acotació de l’operador H en els espais de Lorentz amb pesos (veure el
Teorema 6.13) i també la seva versió de tipus fort (Teorema 6.18). A més, les condicions
geomètriques que caracteritzen ambdós, les acotacions dels tipus dèbil i fort de l’operador H
en Λp

u(w) es donen per al Teorema 6.19 quan p > 1, i al Teorema 6.20 per l’acotació del tipus
dèbil en el cas p < 1. Finalment, reformulem els nostres resultats en termes del teorema de
Boyd (veure el Teorema 6.26).

Alguns dels resultats tècnics més significatius que hem utilitzat per provar els nostres
teoremes principals són els següents:

(a) Hem caracteritzat la condició A∞, en termes de l’operador H de la manera següent
(veure el Teorema 6.3): ∫

I

|H(uχI)(x)|dx . u(I),

i aix́ı obtenim que (4) implica la necessitat de la condició AB∗∞.

(b) Provem que si p > 1, llavors

H : Λp
u(w)→ Λp,∞

u (w)⇒M : Λp
u(w)→ Λp,∞

u (w),

(veure el Teorema 6.8) que, en particular, proporciona una prova diferent del fet ben conegut,
que correspon al cas w = 1:

H : Lp(u)→ Lp,∞(u)⇒M : Lp(u)→ Lp,∞(u),

sense fer servir expĺıcitament la condició Ap.

(c) Solucionem completament l’acotació de (17), si p > 1 i la solució és la classe Bp(u)
(veure el Teorema 6.17). En particular, mostrem que si p > 1, llavors

M : Lp(u)→ Lp,∞(u)⇒M : Lp(u)→ Lp(u),
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sense utilitzar la desigualtat de Hölder inversa.

Les tècniques que vam fer servir per obtenir la caracterització de l’acotació

H : Λp
u(w)→ Λp

u(w),

i la seva versió de tipus dèbil H : Λp
u(w) → Λp,∞

u (w), quan p > 1 ens permeten aconseguir
algunes condicions necessàries per l’acotació de tipus dèbil de l’operador H en el cas no
diagonal:

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1),

que serà també necessari per la versió de tipus fort H : Λp0
u0

(w0)→ Λp1
u1

(w1). En el Caṕıtol 7
estudiem aquestes condicions. En primer lloc, presentem una breu revisió en els casos clàssics,
on, per una banda, tenim el conegut problema de dos pesos per l’operador de Hilbert,

H : Lp(u0)→ Lp,∞(u1) i H : Lp(u0)→ Lp(u1),

que es va plantejar als anys 1970, però no s’ha resolt completament, i d’altra banda, tenim
el cas no-diagonal de l’acotació de l’operador H en els espais de Lorentz clàssics.

Finalment, presentem algunes aplicacions respecte a la caracterització de l’acotació

H : Lp,q(u)→ Lr,s(u),

per alguns exponents p, q, r, s > 0. En particular, completem alguns dels resultats obtinguts
a [25] per Chung, Hunt, i Kurtz.

Els resultats d’aquesta memoria están inclosos a [1, 2, 3].





Notations

Throughout this monograph, the following standard notations are used: The letterM is used
for the space of measurable functions on R, endowed with the measure u = u(x)dx. Moreover,
u and w will denote weight functions; that is, positive, locally integrable functions defined on
R and R+ = [0,∞), respectively. If E is a measurable set of R, we denote u(E) =

∫
E
u(x)dx

and we write W (r) =
∫ r

0
w(t)dt, for 0 ≤ r ≤ ∞. For 0 < p < ∞, Lp denotes the usual

Lebesgue space and Lpdec the cone of positive, decreasing functions belonging to Lp. The
limit case L∞ is the set of bounded measurable functions defined on R, while L∞0 (u) refers
to the space of functions belonging to L∞, whose support has finite measure with respect to
u. The letter p′ denotes the conjugate of p; that is 1/p + 1/p′ = 1. In addition, C∞c refers
to the space of smooth functions defined on R with compact support. We denote by S the
class of simple functions

S = {f ∈M : card(f(R)) <∞}.

The class of simple functions with support in a set of finite measure is:

S0(u) = {f ∈ S : u({f 6= 0}) <∞}.

Furthermore, we write Sc for the space of simple functions with compact support. The distri-
bution function of f ∈ M is λuf (s) = u({x : |f(x)| > s}), the non-increasing rearrangement
with respect to the measure u is

f ∗u(t) = inf{s > 0 : λuf (s) ≤ t},

and f ∗∗u (t) =
1

t

∫ t

0

f ∗u(s)ds. The rearrangement of f with respect to the Lebesgue measure is

denoted as f ∗(t). Finally, letting A and B be two positive quantities, we say that they
are equivalent (A ≈ B) if there exists a positive constant C, which may vary even in
the same theorem and is independent of essential parameters defining A and B, such that
C−1A ≤ B ≤ CA. The case A ≤ CB is denoted by A . B.

For any other possible definition or notation, we refer to the main reference books (e.g. [8],
[36], [40], [41], [87], [94]).
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Chapter 1

Introduction

The main purpose of this work is to unify two well-known and, a priori, unrelated theories
dealing with weighted inequalities for the Hilbert transform, defined by

Hf(x) =
1

π
lim
ε→0+

∫
|x−y|>ε

f(y)

x− y
dy,

whenever this limit exists almost everywhere. On the one hand, we have the Calderón-
Zygmund theory of the boundedness of H on weighted Lebesgue spaces. On the other hand,
there is the theory developed around the boundedness of H on classical Lorentz spaces in
the context of rearrangement invariant function spaces. A natural unifying framework for
these two settings consists on the weighted Lorentz spaces Λp

u(w) and Λp,∞
u (w) defined by

Lorentz in [68] and [67] as follows:

Λp
u(w) =

{
f ∈M : ||f ||Λpu(w) =

(∫ ∞
0

(f ∗u(t))pw(t)dt

)1/p

<∞

}
, (1.1)

and

Λp,∞
u (w) =

{
f ∈M : ||f ||Λp,∞u (w) = sup

t>0
W 1/p(t)f ∗u(t) <∞

}
. (1.2)

More precisely, we will study the boundedness of H on the weighted Lorentz spaces:

H : Λp
u(w)→ Λp

u(w), (1.3)

and its weak-type version
H : Λp

u(w)→ Λp,∞
u (w). (1.4)

Before describing our results, we present a brief historical review on the Hilbert transform.
This operator was introduced by Hilbert in [48] and [49], and named “Hilbert transform” by
Hardy in 1924, in honor of his contributions (see [43] and [44]). It arises in many different
contexts such as the study of boundary values of the imaginary parts of analytic functions

1
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and the convergence of Fourier series. Among the classical results, we mention Riesz’ theorem
which states that

H : Lp → Lp

is bounded, whenever 1 < p < ∞ (see [85] and [86]). Although the L1 boundedness for H
fails to be true, Kolmogorov proved in [58] the following weak-type estimate:

H : L1 → L1,∞. (1.5)

For further information on these topics see [40], [94], [36] and [8].

The following examples, involving weighted inequalities, have been historically relevant
to motivate our study.

(I) If w = 1, then (1.3) and (1.4) correspond to the boundedness

H : Lp(u)→ Lp(u), (1.6)

and its weak-type version
H : Lp(u)→ Lp,∞(u), (1.7)

respectively. These inequalities arise naturally when in the Riesz’ theorem, the underlying
measure is changed from Lebesgue measure to a general measure u. Then, the problem is
to study which are the conditions over u that allow the Hilbert transform to be bounded
on Lp(u). This new approach gave birth to the theory of weighted inequalities, which plays
a large part in the study of boundary value problems for Laplace’s equation on Lipschitz
domains. Other applications include vector-valued inequalities, extrapolation of operators,
and applications to certain classes of nonlinear partial differential and integral equations
(see [36], [41], [56], and [57]).

The study of (1.6) and (1.7) yield together with the boundedness of the Hardy-Littlewood
maximal function M , on the same spaces, the classical theory of the Muckenhoupt Ap
weights. The sublinear operator M , introduced by Hardy and Littlewood in [45], is de-
fined by

Mf(x) = sup
x∈I

1

|I|

∫
I

|f(y)|dy,

and the supremum is considered over all intervals I of the real line containing x ∈ R. For
further references see [38], [36], [40], [41], and [94].

We say that u ∈ Ap if, for p > 1, the following holds:

sup
I

(
1

|I|

∫
I

u(x)dx

)(
1

|I|

∫
I

u−1/(p−1)(x)dx

)p−1

<∞, (1.8)

and the supremum is considered over all intervals of the real line, and u ∈ A1 if

Mu(x) ≈ u(x) a.e x ∈ R. (1.9)

Muckenhoupt showed in [71] that, if p ≥ 1, the Ap condition characterizes the boundedness

M : Lp(u) −→ Lp,∞(u),
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and if p > 1 it also characterizes

M : Lp(u) −→ Lp(u).

Hunt, Muckenhoupt, and Wheeden proved in [54] that, for p ≥ 1, the Ap condition charac-
terizes (1.7) and for p > 1 it also characterizes (1.6). For an alternative proof of these results
see [26]. For p < 1 there are no weights u such that (1.6) or (1.7) hold.

(II) The case u = 1 corresponds to the boundedness of the Hilbert transform on the
classical Lorentz spaces, solved by Sawyer in [90]. A simplified characterization of the weights
for which the boundedness

H : Λp(w) −→ Λp(w) (1.10)

holds, whenever p > 0, is given in terms of the Bp∩B∗∞ condition, introduced by Neugebauer
in [80]. We say that w ∈ Bp if the following condition holds:∫ ∞

r

(r
t

)p
w(t) dt .

∫ r

0

w(t)dt, (1.11)

for all r > 0, and (1.11) characterizes the boundedness

M : Λp(w)→ Λp(w),

proved in [5]. The condition w ∈ B∗∞ is given by∫ r

0

1

t

∫ t

0

w(s)ds dt .
∫ r

0

w(s)ds, (1.12)

for all r > 0. If p > 1 the Bp ∩B∗∞ class characterizes also the weak-type version

H : Λp(w) −→ Λp,∞(w), (1.13)

whereas the case p ≤ 1 is characterized by the Bp,∞ ∩B∗∞ condition. We say that w ∈ Bp,∞
if and only if

M : Λp(w) −→ Λp,∞(w) (1.14)

is bounded. It holds that:

(α) If p > 1, Bp,∞ = Bp.

(β) If p ≤ 1, then w ∈ Bp,∞ if and only if w is p quasi-concave: for every 0 < s ≤ r <∞,

W (r)

rp
.
W (s)

sp
. (1.15)

(III) Recently, Carro, Raposo and Soria studied in [20] the analogous of relation (1.3),
but for the Hardy-Littlewood maximal function, instead of H

M : Λp
u(w)→ Λp

u(w),
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and the solution is the Bp(u) class of weights, defined as follows:

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) ≤ C max
1≤j≤J

(
|Ij|
|Sj|

)p−ε
, (1.16)

for some ε > 0 and for every finite family of pairwise disjoint, open intervals (Ij)
J
j=1, and

also every family of measurable sets (Sj)
J
j=1, with Sj ⊂ Ij, for every j. This class of weights

recovers the well-known results in the classical cases; that is, if w = 1 then (1.16) is the
Ap condition and if u = 1, then it is the Bp condition (see [20]). In the same work, the
weak-type version of the problem was also considered

M : Λp
u(w)→ Λp,∞

u (w). (1.17)

However, the complete geometric characterization of the estimate (1.17) was not obtained
for p ≥ 1.

In this work, we totally solve the problem of the boundedness (1.3) and its weak-type
version (1.4), whenever p > 1 giving a unified version of the classical theories. We also
characterize (1.17) by the Bp(u) condition, since it will be involved in the solution of (1.3)
and (1.4). We will see that this solution is given in terms of conditions involving both
underlying weights u and w in a rather intrinsic way. Summarizing, the main results of this
thesis prove that the following statements are equivalent for p > 1 (see Theorem 6.19):

Theorem. If p > 1, then the following statements are equivalent:

(i) H : Λp
u(w)→ Λp

u(w) is bounded.

(ii) H : Λp
u(w)→ Λp,∞

u (w) is bounded.

(iii) u ∈ A∞, w ∈ B∗∞ and M : Λp
u(w)→ Λp

u(w) is bounded.

(iv) u ∈ A∞, w ∈ B∗∞ and M : Λp
u(w)→ Λp,∞

u (w) is bounded.

(iv) There exists ε > 0, such that for every finite family of pairwise disjoint, open intervals
(Ij)

J
j=1, and every family of measurable sets (Sj)

J
j=1, with Sj ⊂ Ij, for every j ∈ J , it

holds that:

min
j

(
log
|Ij|
|Sj|

)
.
W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) . max
j

(
|Ij|
|Sj|

)p−ε
.

Furthermore, we reformulate our results in terms of some generalized upper and lower
Boyd indices. Lerner and Pérez extended in [66] the Lorentz-Shimogaki theorem in quasi-
Banach function spaces, not necessarily rearrangement invariant. Motivated by their results,
we define the lower Boyd index and give an extension of Boyd theorem, in the context of
weighted Lorentz spaces (see Theorem 6.26).
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Moreover, we have solved the weak-type boundedness of H on Λp
u(w) for p ≤ 1, with

some extra assumption on w (see Theorem 6.20).

The chapters are organized as follows:

In order to carry out this project as a self-contained monograph, we study in Chapter 2
all the basic properties of the weighted Lorentz spaces. This chapter also contains a new
density result: we prove that the C∞ functions with compact support, C∞c , is dense in
weighted Lorentz spaces Λp

u(w), provided u and w are not integrable (see Theorem 2.13).
This will be important in order to solve technical problems, since the Hilbert transform is
well-defined on C∞c .

In Chapter 3 we summarize all the classes of weights that appear throughout this work.
First we study the Muckenhoupt Ap class of weights and the A∞ condition. Then, we
study the Bp and Bp,∞ conditions that characterize the boundedness of M on classical
Lorentz spaces, introducing the Hardy operator. Since, as we have already mentioned, the
Bp (resp. Bp,∞) condition is not sufficient for the strong-type (resp. weak-type) boundedness
of the Hilbert transform on Λp(w), we introduce and study the B∗∞ condition. Next, we
investigate the Bp(u) condition, and find some new equivalent expressions studying the
asymptotic behavior of some submultilplicative function at infinity (see Corollary 3.38).
Finally, we define and study a new class of pairs of weights AB∗∞, that combines the already
known A∞ and B∗∞ classes (see Proposition 3.46 for more details). This new class of weights
is involved in the study of the boundedness of the Hilbert transform on weighted Lorentz
spaces (see Chapter 6).

In Chapter 4 we find necessary conditions for the weak-type boundedness of the Hilbert
transform on weighted Lorentz spaces and obtain some useful consequences. If we restrict the
weak-type boundedness of the Hilbert transform, H : Λp

u(w) → Λp,∞
u (w), to characteristic

functions of intervals, we have that

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . (log
1 + ν

ν

)−p
,

for every ν ∈ (0, 1] (see Theorem 4.4). In particular, this implies that u 6∈ L1(R) and w 6∈
L1(R+) (see Proposition 4.5). We also show that, if we restrict the weak-type boundedness
of H to characteristic functions of measurable sets (see Theorem 4.8), we obtain

W (u(I))

W (u(E))
.

(
|I|
|E|

)p
,

and hence W ◦ u satisfies the doubling condition and w is p quasi-concave. In particular
w ∈ ∆2. Thus, in what follows after Corollary 4.9, we shall assume, without loss of generality,
that

u 6∈ L1(R), w 6∈ L1(R+), and w ∈ ∆2.
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Finally, the weak-type boundedness of the Hilbert transform implies, applying duality
arguments, that

||u−1χI ||(Λpu(w))′||χI ||Λpu(w) . |I|,

for all intervals I of the real line (see Theorem 4.16).

In Chapter 5 we characterize the weak-type boundedness of the Hilbert transform on
weighted Lorentz spaces for p > 0, under the assumption that u ∈ A1:

H : Λp
u(w)→ Λp,∞

u (w)⇔ w ∈ Bp,∞ ∩B∗∞,

(see Theorem 5.2). Analogously, we prove that if u ∈ A1 and p > 1 we have that

H : Λp
u(w)→ Λp

u(w)⇔ w ∈ Bp ∩B∗∞,

(see Theorem 5.4), while in the case p ≤ 1 we have the same result under some extra
assumption on the weights (see Theorem 5.5). Hence, if u ∈ A1, the strong-type (resp.
weak-type) boundedness of the Hilbert transform H : Λp

u(w) → Λp
u(w) (resp. H : Λp

u(w) →
Λp,∞
u (w)) coincides with the boundedness of the same operator for u = 1.

Chapter 6 contains the complete solution of the problem in the case p > 1; that is, the
characterization of the weak-type boundedness of the Hilbert transform on weighted Lorentz
spaces (see Theorem 6.13) and also its strong-type version (see Theorem 6.18). Moreover,
the geometric conditions that characterize both weak-type and strong-type boundedness of
H on Λp

u(w) are given in Theorem 6.19 for p > 1, and in Theorem 6.20 for the weak-type
boundedness and p < 1. Reformulating the above results in terms of the generalized Boyd
indices, we give an extension of Boyd theorem in Λp

u(w) (see Theorem 6.26).

Some of the most significant technical results that we have used to prove our main
theorems are the following:

(a) We have characterized the A∞ condition, in terms of the Hilbert transform (see
Theorem 6.3), ∫

I

|H(uχI)(x)|dx . u(I),

and so we obtain that (1.4) implies the necessity of the AB∗∞ condition.

(b) We prove that if p > 1, then

H : Λp
u(w)→ Λp,∞

u (w)⇒M : Λp
u(w)→ Λp,∞

u (w),

(see Theorem 6.8) which, in particular, provides a different proof of the well-known fact,
that corresponds to the case w = 1:

H : Lp(u)→ Lp,∞(u)⇒M : Lp(u)→ Lp,∞(u),

without passing through the Ap condition.
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(c) We completely solve the boundedness of (1.17) when p > 1 and the solution is the
Bp(u) condition (see Theorem 6.17). In particular, we show that if p > 1, then

M : Lp(u)→ Lp,∞(u)⇒M : Lp(u)→ Lp(u),

without using the reverse Hölder inequality.

The techniques used to characterize the boundedness H : Λp
u(w)→ Λp

u(w), and its weak-
type version H : Λp

u(w)→ Λp,∞
u (w), whenever p > 1 allow us to get some necessary conditions

for the weak-type boundedness of H in the non-diagonal case:

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1),

which will be also necessary for the strong-type version H : Λp0
u0

(w0)→ Λp1
u1

(w1). In Chapter 7
we study these conditions. First, we present a brief review on the classical cases: On the
one hand, we have the well-known two-weighted problem for the Hilbert transform,

H : Lp(u0)→ Lp,∞(u1) and H : Lp(u0)→ Lp(u1),

posed in the early 1970’s, but still unsolved in its full generality. On the other hand, we
have the non-diagonal boundedness of H on classical Lorentz spaces.

Finally, we present some applications concerning the characterization of

H : Lp,q(u)→ Lr,s(u)

for some exponents p, q, r, s > 0. In particular, we complete some of the results obtained in
[25] by Chung, Hunt, and Kurtz.

The results of this monograph are included in [1], [2], and [3].

As far as possible, we have tried to provide precise bibliographic information about the
previously known results.





Chapter 2

Review on weighted Lorentz spaces

As we have pointed out in the Introduction, the main goal of this monograph is to study the
strong-type boundedness of the Hilbert transform on weighted Lorentz spaces

H : Λp
u(w)→ Λp

u(w),

and its weak-type version H : Λp
u(w) → Λp,∞

u (w). For this reason, we will briefly present
some basic properties of these spaces. Then, we prove a new density result: C∞c is dense
in weighted Lorentz spaces Λp

u(w), under some assumptions on the weights u and w (see
Theorem 2.13). This fact will be useful to solve some technical problems, since the Hilbert
transform is well defined on C∞c .

2.1 Weighted Lorentz spaces

Weighted Lorentz spaces Λp
u(w) (see Definition 2.1 below) are a particular class of linear

function spaces of measurable functions defined on R. These spaces were introduced and
studied by Lorentz in [68], and [67] for the measure space ((0, `), dx) and ` <∞. The func-
tional defining them depends on two measures: the non-increasing rearrangement is taken
with respect to the measure u and the integral is considered with respect to w defined on
R+. Both aspects provide measure-theoretical and functional-analytic properties, enriching
the theory developed by Lorentz. We present some of these well-known properties and prove
a new density result.

Definition 2.1. If 0 < p <∞, the weighted Lorentz spaces are defined as

Λp
u(w) =

{
f ∈M : ||f ||Λpu(w) =

(∫ ∞
0

(f ∗u(t))pw(t)dt

)1/p

<∞

}
,

and the weak-type weighted Lorentz spaces

Λp,∞
u (w) =

{
f ∈M : ||f ||Λp,∞u (w) = sup

t>0
W 1/p(t)f ∗u(t) <∞

}
.

9



2.1. Weighted Lorentz spaces 10

The weighted Lorentz spaces generalize many well-known spaces such as the weighted
Lebesgue spaces Lp(u) and the Lp,q spaces.

Example 2.2. In view of Definition 2.1, we have that

(α) If u = 1, w = 1, we recover the Lebesgue spaces, Λp
1(1) = Lp and Λp,∞

1 (1) = Lp,∞

respectively.

(β) If w = 1, we obtain the weighted Lebesgue spaces Λp
u(1) = Lp(u) and Λp,∞

u (1) = Lp,∞(u)
respectively.

(γ) If u = 1, we get the spaces Λp(w) and Λp,∞(w) respectively, that are usually called
classical Lorentz spaces.

(δ) If u = 1 and w(t) = t(q−p)/p, then Λq(t(q−p)/p) is the Lp,q space given by

Lp,q =

{
f ∈M : ||f ||Lp,q =

(∫ ∞
0

(f ∗(t))qtq/p−1dt

)1/q

<∞
}

and Λq,∞(t(q−p)/p) is

Lp,∞ = {f ∈M : ||f ||Lp,∞ = sup
t>0

t1/pf ∗(t) <∞}.

Observe that ||f ||Λpu(w) = ||f ∗u ||Lp(w). This allows us to extend the previous definition as
follows (see [20]).

Definition 2.3. For 0 < p, q ≤ ∞ set

Λp,q
u (w) =

{
f ∈M : ||f ||Λp,qu (w) = ||f ∗u ||Lp,q(w) =

(∫ ∞
0

((f ∗u(t))∗w)qtq/p−1dt

)1/q

<∞

}
. (2.1)

The functional defining the weighted Lorentz spaces Λp,q
u (w) can be expressed in terms of

the distribution function. In fact, it was proved in [22] that, for q > 0, and every decreasing
function g we have that∫ ∞

0

gq(s)w(s)ds =

∫ ∞
0

qtq−1W (u({x ∈ R : |g(x)| > t}))dt. (2.2)

Then, relation (2.2) gives several equivalent expressions for the functional || · ||Λp,qu (w), in
terms of W .
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Proposition 2.4. Let 0 < p, q <∞ and f measurable in R.

(i) ||f ||Λp,qu (w) =

(∫ ∞
0

qtq−1W q/p(u({x ∈ R : |f(x)| > t}))dt
)1/q

.

(ii) ||f ||Λpu(w) =

(∫ ∞
0

ptp−1W (u({x ∈ R : |f(x)| > t}))dt
)1/p

.

(iii) ||f ||Λp,∞u (w) = sup
t>0

tW 1/p(u({x ∈ R : |f(x)| > t})).

Remark 2.5. If w = 1 in (2.1), then by Proposition 2.4 (i) we obtain the Lp,q(u) spaces,

Lp,q(u) =

{
f ∈M : ||f ||Lp,q(u) =

(∫ ∞
0

(f ∗u(t))qtq/p−1

)1/q

<∞

}
. (2.3)

The Lorentz spaces are not necessarily Banach function spaces. Although, the study of
the normability requires certain operator estimates (see Chapter 3), they are quasi-normed
function spaces, provided a weak assumption on the weight w.

Definition 2.6. We say that w ∈ ∆2 if W (2r) . W (r), for all r > 0.

Theorem 2.7. [20] Let 0 < p < ∞ and 0 < q ≤ ∞. Then, the following statements are
equivalent:

(i) Λp,q
u (w) is a quasi-normed space.

(ii) w ∈ ∆2.

(iii) W (s+ t) . W (t) +W (s), for all s, t > 0.

Definition 2.8. A measurable function f is said to have absolutely continuous quasi-norm
in a quasi-normed space X if

lim
n→∞

||fχAn||X = 0,

for every decreasing sequence of sets (An) with χAn → 0 a.e. If every function in X has this
property, we say that X has an absolutely continuous quasi-norm.

Next theorem gives an equivalent property to the dominated convergence theorem for
the weighted Lorentz spaces.

Theorem 2.9. [20] If w ∈ ∆2 and f ∈ Λp
u(w) (resp. Λp,∞

u (w)), then the following statements
are equivalent:
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(i) f has absolutely continuous quasi-norm in Λp
u(w) (resp. Λp,∞

u (w)).

(ii) limn→∞ ||g − gn||Λpu(w) = 0, (resp. limn→∞ ||g − gn||Λp,∞u (w) = 0 ) if |gn| ≤ |f | and
limn→∞ gn = g a.e.

Theorem 2.10. [20] Let 0 < p <∞ and let w ∈ ∆2.

(i) If u(R) <∞, then Λp
u(w) has absolutely continuous quasi-norm.

(ii) If u(R) =∞, then Λp
u(w) has absolutely continuous quasi-norm if and only if w 6∈ L1.

Now, we prove that the space C∞c is dense in Λp
u(w), under the assumptions u /∈ L1(R)

and w /∈ L1(R+). In fact, we will need this density result to define the Hilbert transform on
weighted Lorentz spaces, but these assumptions are not restrictive, since we will show that
they are necessary in our setting (see Proposition 4.5). First we need the following technical
results.

Lemma 2.11. [52] Let K ⊂ R be a compact set and U ⊂ R an open set, such that K ⊂ U .
Then, there exists f ∈ C∞(U) such that f = 0 in U c, 0 ≤ f ≤ 1 and f = 1 in K.

Lemma 2.12. [20] Let w ∈ ∆2. Then S0(u) is dense in Λp
u(w).

Theorem 2.13. If u /∈ L1(R), w /∈ L1(R+) and w ∈ ∆2, then C∞c (R) is dense in Λp
u(w).

Proof. Observe that the space of simple functions with compact support, Sc(R) is dense in
Λp
u(w). Indeed, by Lemma 2.12, we have that S0(u) is dense in Λp

u(w). On the other hand,
given f ∈ S0(u), the sequence fn = fχ(−n,n) ∈ Sc(R) tends to f pointwise and hence, by
Theorem 2.10 (ii), it also converges to f in the quasi-norm || · ||Λpu(w).

Now, to prove the density of C∞c (R) in Sc(R) with respect to the topology induced by
the quasi-norm of Λp

u(w), it is enough to show that a characteristic function of a bounded
measurable set can be approximated by smooth functions of compact support. Thus, let E
be a bounded measurable set and let ε > 0. Take a compact set K ⊂ R and a bounded open
set U ⊂ R such that

K ⊂ E ⊂ U and u(U \K) ≤ δ,

for some small δ to be chosen. Then, by Urysohn’s Lemma 2.11, there exists a function
f ∈ C∞c (R) such that f |K = 1, f |Uc = 0, and 0 ≤ f ≤ 1. Then, since |χE − f | ≤ χU\K , we
get

||χE − f ||pΛpu(w)
≤ ||χU\K ||pΛpu(w)

=

∫ u(U\K)

0

w(x) dx ≤
∫ δ

0

w(x) dx.

Therefore, choosing δ small enough we obtain that ||χE − f ||Λpu(w) ≤ ε. �
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2.2 Duality

The dual and associate spaces of the weighted Lorentz spaces have been studied in [20],
whereas the definition in the context of Banach function spaces can be found in [8]. The
authors described in [20] the associate spaces of Λp

u(w) and Λp,∞
u (w) in terms of the so-called

Lorentz spaces Γ, and identified when they are the trivial spaces. It is out of our purpose to
make a complete presentation of the aforementioned subject, although we give the results
that will be necessary for our work.

Definition 2.14. Let || · || : M → [0,∞) be a positively homogeneous functional and
E = {f ∈M : ||f || <∞}. We define the associate norm

||g||E′ := sup
f∈E

∣∣∫
R f(x)g(x)u(x) dx

∣∣
||f ||

.

The associate space of E is then E ′ = {f ∈M : ||f ||E′ <∞}.

Definition 2.15. If 0 < p <∞ we define

Γpu(w) =

{
f ∈M : ||f ||Γpu(w) =

(∫ ∞
0

(f ∗∗u (t))pw(t)dt

)1/p

<∞

}
.

The weak-type version of the previous space is

Γp,∞u (w) =

{
f ∈M : ||f ||Γp,∞u (w) = sup

t>0
W 1/p(t)f ∗∗u (t) <∞

}
.

Theorem 2.16. [20] The associate spaces of the Lorentz spaces are described as follows:

(i) If p ≤ 1, then
(Λp

u(w))′ = Γ1,∞
u (w̃),

where W̃ (t) = tW−1/p(t), t > 0.

(ii) If 1 < p <∞, and f ∈M, then

||f ||(Λpu(w))′ ≈

(∫ ∞
0

(
1

W (t)

∫ t

0

f ∗u(s)ds

)p′
w(t)dt

)1/p′

+

∫∞
0
f ∗u(t)dt

W 1/p(∞)

≈

(∫ ∞
0

(
1

W (t)

∫ t

0

f ∗u(s)ds

)p′−1

f ∗u(t)dt

)1/p′

.
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(iii) If 0 < p <∞, then
(Λp,∞

u (w))′ = Λ1
u(W

−1/p).

A direct consequence of Theorem 2.16 is the characterization of the weights w such that
(Λp

u(w))′ = {0}.

Theorem 2.17.

(i) If 0 < p ≤ 1, then (Λp
u(w))′ 6= {0} ⇔ sup

0<t<1

tp

W (t)
<∞.

(ii) If 1 < p <∞, then (Λp
u(w))′ 6= {0} ⇔

∫ 1

0

(
t

W (t)

)p′−1

dt <∞.

(iii) If 0 < p <∞, then (Λp,∞
u (w))′ 6= {0} ⇔

∫ 1

0

1

W 1/p(t)
dt <∞.

One of the most important tools in the study of the boundedness of operators is the
interpolation theory. Among the results that can be found in the literature, we will be
interested in the Marcinkiewicz theorem adapted to the context of weighted Lorentz spaces
Λp,q
u (w). This has been one of the subjects studied in [20], in the setting of the K functional

associated to the weighted Lorentz spaces. For further information on this topic see [8], [9]
and [96].

Theorem 2.18. [20] Let 0 < pi, qi, p̄i, q̄i ≤ ∞, i = 0, 1, with p0 6= p1 and p̄0 6= p̄1 and assume
that w, w̄ ∈ ∆2. Let T be a sublinear operator defined in Λp0,q0

u (w) + Λp1,q1
u (w) satisfying

T : Λp0,q0
u (w)→ Λp̄0,q̄0

u (w̄),

T : Λp1,q1
u (w)→ Λp̄1,q̄1

u (w̄).

Then, for 0 < θ < 1, 1 < r ≤ ∞,

T : Λp,r
u (w)→ Λp̄,r

u (w̄),

where
1

p
=

1− θ
p0

+
θ

p1

,
1

p̄
=

1− θ
p̄0

+
θ

p̄1

.



Chapter 3

Several classes of weights

This chapter will be devoted to describe the classes of weights that characterize the strong-
type and weak-type boundedness of the Hardy-Littlewood maximal function and the Hilbert
transform on the known cases, focusing on the properties that we will need throughout
this monograph. For further information on these topics see [36], [41], [32] [38], and [94].
Moreover, we define and study a new class of weights, namely AB∗∞ that will be involved
in the characterization of the boundedness of the Hilbert transform on weighted Lorentz
spaces.

In the first section we present the Ap class of weights that characterizes the weak-type
boundedness of both operators in weighted Lebesgue spaces:

M,H : Lp(u)→ Lp,∞(u),

for p ≥ 1 and also the strong-type boundedness for p > 1. We study some of the classical
properties of the Ap weights that will be used in the forthcoming discussions.

In the second section we study the Bp and Bp,∞ classes of weights that characterize the
boundedness of the Hardy-Littlewood maximal function on classical Lorentz spaces

M : Λp(w)→ Λp(w),

and its weak-type version, respectively. We find equivalent conditions to Bp class, in terms
of the asymptotic behavior of some submultiplicative function W at infinity. In Chapter 2,
we mentioned that Λp

u(w) and Λp,∞
u (w), are not necessarily Banach function spaces and that

under the assumption w ∈ ∆2 they are quasi-normed. However, the Bp and Bp,∞ classes of
weights give us sufficient conditions for the normability.

The Bp condition does not characterize the boundedness of the Hilbert transform

H : Λp(w)→ Λp(w).

Another condition is, in fact, required, namely the B∗∞ condition, such that the Bp∩B∗∞ class
gives the solution to the above boundedness. For this reason, in the third section we present

15
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the well-known expressions equivalent to the B∗∞ condition, and studying the asymptotic
behavior of W at 0 we obtain some new expressions.

The analogue of our problem but for the Hardy-Littlewood maximal function,

M : Λp
u(w)→ Λp

u(w)

was studied in [20], and the solution is the Bp(u) class of weights. Some partial results were
obtained for its weak-type version M : Λp

u(w) → Λp,∞
u (w). In the fourth section we present

some of these results, that will be necessary throughout our work. Besides, extending the
function W u on [1,∞), such that it involves the weight u, and studying its behavior at
infinity, we obtain some equivalent expression to Bp(u).

When dealing with the boundedness of the Hilbert transform in weighted Lorentz spaces

H : Λp
u(w)→ Λp

u(w),

we note that the Bp(u) condition is not sufficient, since even in the case u = 1, the B∗∞
condition is also required. It is therefore natural to define a new class of weights, namely
AB∗∞, that extends the B∗∞ class and, as we will see later on, it turns out to be one of
the necessary and sufficient conditions for the strong-type and weak-type boundedness of
the Hilbert transform on weighted Lorentz spaces. Among other equivalent expressions, we
prove that w ∈ AB∗∞ is equivalent to u ∈ A∞ and w ∈ B∗∞.

3.1 The Muckenhoupt Ap class of weights

The characterization of the weak-type boundedness of the Hardy-Littlewood maximal func-
tion on weighted Lebesgue spaces, for p ≥ 1

M : Lp(u)→ Lp,∞(u),

led to the introduction of the Muckenhoupt Ap class of weights. If p > 1, it also characterizes
the strong-type boundedness of M (see [71]) and gives a solution to the boundedness of the
Hilbert transform on the same spaces (see [54] and [26]). Some references on these subjects
are [36], [41], [38], [32] and [94].

Definition 3.1. Let p > 1. We say that u ∈ Ap if

sup
I

(
1

|I|

∫
I

u(x)dx

)(
1

|I|

∫
I

u−1/(p−1)(x)dx

)p−1

<∞, (3.1)

where the supremum is considered over all intervals I of the real line and, u ∈ A1 if

Mu(x) ≈ u(x) a.e.x ∈ R. (3.2)
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The Ap class can be characterized as follows:

Theorem 3.2. [94] Let 1 < p <∞. Then, u ∈ Ap if and only if there exists ε > 0 such that

u(I)

u(S)
.

(
|I|
|S|

)p−ε
,

for all intervals I and measurable sets S ⊂ I.

If u ∈ Ap, there exists δ ∈ (0, 1) such that, given any interval I and any measurable set
S ⊂ I, then (

|S|
|I|

)p
.
u(S)

u(I)
.

(
|S|
|I|

)δ
. (3.3)

Definition 3.3. If a weight u satisfies the right hand-side inequality in (3.3), then we say
that u ∈ A∞.

The A∞ condition has the property of p-independence. However, the following classical
result shows its relation with the Ap classes. For further information concerning the A∞
condition see [36], [38], [94], and [41].

Proposition 3.4. If u ∈ A∞ there exists q ≥ 1 such that u ∈ Aq.

Proposition 3.5. The weight u ∈ A∞ if and only if there exist 0 < α, β < 1 such that for
all intervals I and all measurable sets S ⊂ I, we have

|S| ≤ α|I| ⇒ u(S) ≤ βu(I).

Remark 3.6. Note that if u ∈ A∞, then u is non-integrable. Indeed, let S = (−1, 1) and
I = (−n, n) in the right hand-side inequality of (3.3), then taking limit when n tends to
infinity, we get the non-integrability of u.

One of the main results of the theory of Ap weights, is the reverse Hölder inequality
proved in [26] and considered independently in [39] (for more details see also [41]). It states
that if u ∈ Ap for some 1 ≤ p <∞, then there exists γ > 0 such that(

1

|I|

∫
I

u(t)1+γdt

) 1
1+γ

.
1

|I|

∫
I

u(t)dt (3.4)

for every interval I. Among several applications, we mention that if u ∈ Ap, then u ∈ Ap−ε for
some ε > 0, which allows to prove that the weak-type boundedness of the Hardy-Littlewood
maximal function implies the strong-type one, whenever p > 1,

M : Lp(u)→ Lp,∞(u) ⇒ M : Lp(u)→ Lp(u).

We will see in Chapter 6 that similar results, but without using (3.4), hold in the case of the
boundedness of M on Λp

u(w).
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3.2 The Bp and Bp,∞ classes of weights

The Bp and Bp,∞ conditions characterize the boundedness of the Hardy-Littlewood maximal
function on the classical Lorentz spaces, that are,

M : Λp(w)→ Λp(w) and M : Λp(w)→ Λp,∞(w), (3.5)

respectively.

It is well-known that the decreasing rearrangement of Mf , with respect to the Lebesgue
measure, is pointwise equivalent (see [8]) to the Hardy operator acting on the rearrangement
of f with respect to the same measure, where the Hardy operator is defined as:

Pf(t) =
1

t

∫ t

0

f(s) ds,

for t > 0. Then, this relation states that,

(Mf)∗(t) ≈ Pf ∗(t), t > 0. (3.6)

Since every decreasing and positive function in R+ is equal a.e. to the decreasing rearrange-
ment of a measurable function in R we deduce that the boundedness (3.5) is equivalent to
the boundedness of the Hardy operator on Lpdec,

P : Lpdec(w)→ Lp(w) and P : Lpdec(w)→ Lp,∞(w), (3.7)

respectively. For further information on the subject see [84], [47], [46], [8], [60], and [61].

First, we introduce the Bp condition. Then, we will define the function W on R+ and
study its asymptotic behavior at infinity. This will give us a unified approach of the well-
known equivalent conditions to Bp. Finally, we present the Bp,∞ condition, which in fact
coincides with Bp, whenever p > 1.

3.2.1 The Ariño-Muckenhoupt Bp class of weights

We will see that the boundedness of the Hardy operator on Lpdec(w), and consequently the
boundedness of the Hardy-Littlewood maximal function on the classical Lorentz spaces, that
follows by (3.6), is characterized by the following Bp condition introduced in [5].

Definition 3.7. Let 0 < p <∞. We say that a weight w ∈ Bp, if∫ ∞
r

(r
t

)p
w(t) dt .

∫ r

0

w(t) dt,

for all r > 0.
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Theorem 3.8. ([5], [93]) Let 0 < p <∞. Then, the following statements are equivalent:

(i) w ∈ Bp.

(ii) P : Lpdec(w)→ Lp(w).

(iii) M : Λp(w)→ Λp(w).

(iv)

∫ r

0

1

W 1/p(t)
dt .

r

W 1/p(r)
, for every r > 0.

The Bp condition can be also given in terms of the quasi-concavity property defined as
follows:

Definition 3.9. A weight is said to be p quasi-concave if for every 0 < s ≤ r <∞,

W (r)

rp
.
W (s)

sp
. (3.8)

Theorem 3.10. ([5],[79]) A weight w ∈ Bp if and only if w is (p − ε) quasi-concave for
some ε > 0.

We present some consequences of theBp class and the p quasi-concavity condition in terms
of the associate spaces, that will be useful to get several estimates in the next chapters.

Proposition 3.11. For all measurable sets E, the following hold:

(i) If p ≤ 1 and w is p quasi-concave, then

||χE||(Λpu(w))′ ≈
u(E)

W 1/p(u(E))
.

(ii) If p > 0 and w ∈ Bp, then

||χE||(Λp,∞u (w))′ ≈
u(E)

W 1/p(u(E))
.

Moreover, under the assumptions of (i) and (ii) we have that (Λp
u(w))′ 6= {0} and also

(Λp,∞
u (w))′ 6= {0}, respectively.
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Proof. (i) By Theorem 2.16 (i) we get

||χE||(Λpu(w))′ = ||χE||Γ1,∞
u (w̃) = sup

t>0

∫ t
0
(χE)∗u(s)ds

W 1/p(t)
≤ sup

t>0
sup

A⊂E:u(A)=t

u(A)

W 1/p(u(A))

.
u(E)

W 1/p(u(E))
,

where w̃ is such that
∫ t

0
w̃ ≈ tW−1/p(t), for every t > 0, and the inequality is a consequence

of the p quasi-concavity of w. The opposite inequality is clear.
(ii) On the one hand, by Theorem 2.16 (iii) we obtain

||χE||(Λp,∞u (w))′ ≈ ||χE||Λ1
u(W−1/p) =

∫ u(E)

0

1

W 1/p(s)
ds .

u(E)

W 1/p(u(E))
,

where the inequality is a consequence of the condition w ∈ Bp and Theorem 3.8 (iv). On
the other hand, we have that

u(E)

W 1/p(u(E))
.
∫ u(E)

0

1

W 1/p(s)
ds,

since W is non-decreasing. �

Now, we will define the function W , which will be fundamental to prove equivalent
expressions to the Bp condition.

Definition 3.12. Define W : (0,∞)→ (0,∞) as

W (λ) := sup

{
W (t)

W (s)
: 0 < t ≤ λs

}
= sup

x∈[0,+∞)

W (λx)

W (x)
.

Note that W is submultiplicative: W (λµ) ≤ W (λ)W (µ), for all λ, µ > 0,

W (λµx)

W (x)
=
W (λµx)W (µx)

W (µx)W (x)
≤ W (λ)W (µ).

So, taking supremum in x ∈ [0,∞) we get the submultiplicativity. First, we will present
some basic facts about submultiplicative functions.

Lemma 3.13. Let ϕ : [1,∞) → [1,∞) be a non-decreasing submultiplicative function such
that ϕ(1) = 1. The following statements are equivalent:

(i) There exists µ ∈ (1,∞) such that ϕ(µ) < µp.

(ii) There exists ε > 0 such that ϕ(x) < (µx)p−ε, for all x ∈ (1,∞) and some µ ∈ (1,∞).
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(iii) lim
x→∞

ϕ(x)

xp
= 0.

(iv) lim
x→∞

logϕ(x)

log xp
< 1.

Proof. Clearly, (ii) ⇒ (iii) and (iii) ⇒ (i). We will show that (i) ⇒ (ii), and hence prove
the equivalence between (i), (ii) and (iii). If (i) holds, then there exists ε > 0 such that
ϕ(µ) < µp−ε. Let q = p− ε and define ψ(x) = ϕ(eαx) for every x ∈ (0,+∞), where α will be
chosen later. As ϕ is a non-decreasing submultiplicative function, ψ is also a non-decreasing
function and it satisfies:

ψ(x+ y) ≤ ψ(x) · ψ(y). (3.9)

Thus, it suffices to prove that
ψ(x) < µqeαxq.

By equation (3.9), we obtain that ψ(n) ≤
(
ψ(1)

)n
. Therefore, choosing α = log µ, we get

ψ(1) = ϕ(µ) < µq = eαq. Hence, for every n ∈ N we obtain ψ(n) < eαnq. So, given
x ∈ [1,+∞), if [x] denotes the integer part of x, then

ψ(x) ≤ ψ
(
[x] + 1

)
< eαq([x]+1) ≤ eαqeαqx = µqeαqx.

On the other hand, for x ∈ (0, 1) we get ψ(x) < ψ(1) = ϕ(µ) < µq = eαq ≤ eαqeαqx. Hence
(ii) holds.

Clearly (iv) ⇒ (i), and we complete the proof showing that (ii) ⇒ (iv). Indeed, if we
assume that ϕ(x) < (µx)p−ε, we have that

logϕ(x)

log µx
< p− ε.

Hence,

lim
x→∞

logϕ(x)

log xp
=

1

p
lim
x→∞

logϕ(x)

log µx

log µx

log x
≤ p− ε

p
< 1.

�

Corollary 3.14. The following statements are equivalent to the condition w ∈ Bp:

(i) lim
x→∞

W (x)

xp
= 0.

(ii) There exists µ ∈ (1,∞) such that W (µ) < µp.

(iii) There exists ε > 0 such that w is (p− ε) quasi-concave.

(iv) lim
x→∞

logW (x)

log xp
< 1.
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Proof. It is a consequence of Lemma 3.13 for ϕ = W . The equivalence between (iii) and the
Bp condition is given by Theorem 3.10. �

Remark 3.15. Condition (iv) of Corollary 3.14 can be related with the upper Boyd index
and the Lorentz-Shimogaki theorem. However, we will deal with this subject in Section 6.6.

3.2.2 The Bp,∞ class

The characterization of the weak-type boundedness P : Lpdec(w) → Lp,∞(w) motivates the
definition of the Bp,∞ class, introduced firstly as the Wp class in [79]. The notation Bp,∞
appeared in [17] and [20] and this class agrees with the Bp class for p > 1. We will also
study the case p ≤ 1.

Definition 3.16. Let 0 < p <∞. We write w ∈ Bp,∞ if

P : Lpdec(w)→ Lp,∞(w).

Theorem 3.17. [79] Let 1 < p <∞. Then, Bp = Bp,∞.

The condition that characterizes the case p ≤ 1 is expressed in terms of the p quasi-
concavity property.

Theorem 3.18. ([21], [17]) Let p ≤ 1. Then,

w ∈ Bp,∞ ⇔ w is p quasi-concave.

We have seen that the Bp,∞ condition coincides with Bp whenever p > 1. Now, we will
study how far is the Bp,∞ condition from Bp, when p ≤ 1. In fact, we will show that in

this case, the condition w ∈ Bp,∞ implies that either w ∈ Bp or W
1/p

is equivalent to the
identity.

Proposition 3.19. Let p ≤ 1. If w ∈ Bp,∞, then one of the following statements holds:

(i) w ∈ Bp.

(ii) W
1/p

(t) ≈ t, for all t > 1.
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Proof. If w ∈ Bp,∞, then for all s ≤ t

W 1/p(t)

t
.
W 1/p(s)

s
.

Hence, we have that

W
1/p

(µ) . µ, (3.10)

for all µ > 1. If now for all µ > 1 we have that W
1/p

(µ) ≥ µ, then we get (ii). In opposite

case there exists µ > 1 such that W
1/p

(µ) < µ. Hence, by Corollary 3.14 we conclude that
w ∈ Bp. �

As we have already mentioned, weighted Lorentz spaces Λp
u(w), Λp,∞

u (w) are not neces-
sarily Banach function spaces. However, if we make some assumption on w (like w to be
decreasing, or to satisfy any of the Bp, Bp,∞ conditions) we get sufficient conditions in order
to obtain the normability. Lorentz characterized when the functional defining the space is a
norm (see [68]), and other authors have studied this problem (see [59], [16], [42], [90], [17],
[93], and [20]), summarized in the following result:

Theorem 3.20. Let w = wχ(0,u(R)).

(i) If 1 ≤ p <∞, then || · ||Λpu(w) is a norm if and only if w is decreasing.

(ii) If 1 ≤ p <∞, then Λp
u(w) is normable if and only if w ∈ Bp,∞.

(iii) If 0 < p <∞, then Λp,∞
u (w) is normable if and only if w ∈ Bp.

The normability of Λp
u(w) and Λp,∞

u (w) can be characterized in terms of the associate
space of (Λp

u(w))′ and (Λp,∞
u (w))′, respectively, as follows (see Chapter 2 for more details):

Theorem 3.21. [20] Λp
u(w) (resp. Λp,∞

u (w)) is normable if and only if Λp
u(w) = (Λp

u(w))′′

(resp. (Λp,∞
u (w))′′), with equivalent norms. In particular, every normable weighted Lorentz

space is a Banach function space with norm || · ||(Λpu(w))′′ (resp. || · ||(Λp,∞u (w))′′).

3.3 The B∗∞ class

As we have previously pointed out, (Mf)∗(t) ≈ Pf ∗(t), for every t > 0. Besides, there exists
an analogue relation concerning the decreasing rearrangement of the Hilbert transform, with
respect to the Lebesgue measure, and the sum of the Hardy operator and its adjoint, where
the last operator is given by

Qf(t) =

∫ ∞
t

f(s)
ds

s
,
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for all t > 0. The aforementioned relation is the following:

(Hf)∗(t) . (P +Q)f ∗(t) . (Hg)∗(t), t > 0, (3.11)

where g is an equimeasurable function with f (see [7], [8]). Since every decreasing and
positive function in R+ is equal a.e. to the decreasing rearrangement of a measurable function
in R we deduce that the boundedness

H : Λp(w)→ Λp(w)

is equivalent to the boundedness

P,Q : Lpdec(w)→ Lp(w).

Throughout this section we will study the boundedness of the adjoint of the Hardy oper-
ator Q, characterized by the B∗∞ condition defined below. This condition is involved in the
boundedness of H on the classical Lorentz spaces solved by Sawyer [90] and Neugebauer [80].

Definition 3.22. We say that w ∈ B∗∞ if∫ r

0

1

t

∫ t

0

w(s)ds dt .
∫ r

0

w(s)ds, (3.12)

for all r > 0.

Neugebauer in [80] and Andersen in [4] studied the weak-type and the strong-type bound-
edness of the adjoint of the Hardy operator on the cone of decreasing functions. Both cases
are characterized by the B∗∞ condition. We present these well-known results and some new
ones that will be involved in the study of the Hilbert transform.

Theorem 3.23. ([4], [80]) If for some 0 < p < ∞, one of the following statements holds,
then they are all equivalent and hold for every 0 < p <∞.

(i) w ∈ B∗∞.

(ii) Q : Lpdec(w)→ Lp(w).

(iii) Q : Lpdec(w)→ Lp,∞(w).

(iv)
W (t)

W (s)
.
(

log
s

t

)−p
, for all 0 < t ≤ s <∞.

We characterize the following boundedness of the adjoint of the Hardy operator (see
also [93]).
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Proposition 3.24. If 0 < p <∞, then Q : Lp,∞dec (w)→ Lp,∞(w) is bounded if and only if∫ ∞
t

1

W 1/p(s)

ds

s
.

1

W 1/p(t)
. (3.13)

Proof. First observe that f(t) . ||f ||Lp,∞(w)W
−1/p(t), for all t > 0 and since f is non-

increasing we have that ||f ||Lp,∞(w) = supt>0 f(t)W 1/p(t). Then, if we assume the condition
(3.13), we obtain

Qf(t) . ||f ||Lp,∞(w)Q(W−1/p(t)) . ||f ||Lp,∞(w)W
−1/p(t).

Hence, we get that Qf(t)W 1/p(t) . ||f ||Lp,∞(w) for all t > 0 and, taking the supremum
over all t > 0 we get the result. On the other hand, by the boundedness of Q we get
supt>0W

1/p(t)Q(W−1/p(t)) . supt>0W
1/p(t)W−1/p(t) = 1, since W−1/p ∈ Lp,∞dec (w). There-

fore, we obtain (3.13). �

Remark 3.25. (i) Let p > q. Then, Wp ⊂ Wq, where Wp denotes condition (3.13). Indeed,
let ν > 0 such that 1

p
+ ν = 1

q
. Then, if a weight w satisfies Wp we get∫ ∞

t

1

W 1/q(s)

ds

s
=

∫ ∞
t

1

W 1/p+ν(s)

ds

s
≤ 1

W ν(t)

∫ ∞
t

1

W 1/p(s)

ds

s
.

1

W 1/q(t)
,

since W is a non-decreasing function.
(ii) If w is p quasi-concave, then condition (3.13) is equivalent to∫ t

0

1

s

(∫ s

0

w(r)dr

)1/p

ds .

(∫ t

0

w(r)dr

)1/p

. (3.14)

Indeed, if w is p quasi-concave then∫ ∞
t

1

W 1/p(s)

ds

s
&

1

W 1/p(t)
and

∫ t

0

1

s

(∫ s

0

w(r)dr

)1/p

ds &

(∫ t

0

w(r)dr

)1/p

.

Hence, we obtain the equivalence both in (3.13) and (3.14). Now, it suffices to prove that∫ ∞
t

1

W 1/p(s)

ds

s
≈ 1

W 1/p(t)
⇐⇒

∫ t

0

1

s

(∫ s

0

w(r)dr

)1/p

ds ≈
(∫ t

0

w(r)dr

)1/p

.

In fact, this is a consequence of a lemma proved by Sagher in [88]: if m is a positive function
and, for all r > 0, ∫ r

0

m(s)
ds

s
≈ m(r)⇐⇒

∫ ∞
r

1

m(s)

ds

s
≈ 1

m(r)
.
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If w is p quasi-concave, then for p = 1, the weak-type boundedness Q : Lp,∞dec (w)→ Lp,∞(w)
is equivalent to B∗∞ (see Remark 3.25 (ii)). In fact, we prove that this holds for all p > 0,
provided w ∈ ∆2. In order to see this, we have used some facts from the interpolation theory
on the cone of positive and decreasing functions (see [24]). For further references on this
topic see [9] and [8].

Theorem 3.26. Let 0 < p < ∞ and suppose that w ∈ ∆2. Then, the following statements
are equivalent:

(i) w ∈ B∗∞.

(ii) Q : Lp,∞dec (w)→ Lp,∞(w), for all 0 < p <∞.

Proof. (i) ⇒ (ii). If we assume that w ∈ B∗∞, then Q : L
pj
dec(w) → Lpj(w) hold, for j = 0, 1

and 0 < p0 < p1 < ∞, by Theorem 3.23. Then, using [24, pg. 245] we obtain that the
interpolation space between Lp0

dec(w) and Lp1

dec(w) is Lp,qdec, for p0 < p < p1 and q ≤ ∞,
provided w ∈ B∗∞ and w ∈ ∆2. Hence, the desired result follows considering q =∞.

(ii)⇒ (i). It is an immediate consequence of the continuous inclusion Lp(w) ⊂ Lp,∞(w).
In fact, we obtain that Q : Lrdec(w)→ Lr(w) for all 0 < r <∞. Applying Theorem 3.23 we
get (i). �

Now, studying the asymptotic behavior of the function W at 0, we obtain some equivalent
expressions to the B∗∞ condition. First we present the following technical result.

Lemma 3.27. Let ϕ : (0, 1]→ [0, 1] be a non-decreasing submultiplicative function such that
ϕ(1) = 1. The following statements are equivalent:

(i) There exists λ ∈ (0, 1) such that ϕ(λ) < 1.

(ii) There exists C > 0 such that ϕ(x) ≤ C
(

1 + log
1

x

)−1

, for all x ∈ (0, 1].

(iii) lim
x→0

ϕ(x) = 0.

(iv) Given p > 0, there exists C = C(p) > 0 such that ϕ(x) ≤ C
(

1 + log
1

x

)−p
, for all

x ∈ (0, 1].

(v) lim
x→0

logϕ(x)

log xp
> 0.
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Proof. We will show that (i) ⇒ (ii) and (i) ⇒ (iv). Then, since clearly (ii) ⇒ (iii) ⇒ (i),
and (iv)⇒ (i), we get the equivalences between (i), (ii), (iii) and (iv).

First we prove that (i) ⇒ (ii). Define ψ(x) = ϕ(e−αx) for every x ∈ [0,+∞), where
α = log(1/λ). As ϕ is a non-decreasing submultiplicative function, ψ is a non-increasing
function satisfying the inequality

ψ(x+ y) ≤ ψ(x) · ψ(y). (3.15)

It suffices to prove that there is a constant C > 0 such that

ψ(x) ≤ C

1 + αx
.

By equation (3.15), we obtain that ψ(n) ≤
(
ψ(1)

)n
. Therefore, as ψ(1) = ϕ(λ) < 1, there

exists a constant C0 > 0 big enough such that, for every n ∈ N

ψ(n) ≤ C0

1 + αn
.

So, given x ∈ [1,+∞) we have that

ψ(x) ≤ ψ
(
[x]
)
≤ C0

1 + α[x]
≤ (1 + α)C0

1 + αx
,

where in the last inequality we use that

1 + αx

1 + α[x]
≤ 1 + α[x] + α

1 + α[x]
≤ 1 + α.

On the other hand, for x ∈ [0, 1), ψ(x) ≤ ψ(0) = ϕ(1) = 1, as ϕ is submultiplicative and
non decreasing. So, in this case

ψ(x) ≤ 1 + α

1 + αx
.

Therefore, by taking C = (1 + α) max{1, C0} we get (ii). Applying the same arguments as
before, but for the function ϕ̃ = ϕ1/p, which is also non-decreasing, submultiplicative and
ϕ̃(λ) < 1 we obtain (i)⇒ (iv).

Clearly (v)⇒ (i) and it remains to prove that (i)⇒ (v). Note that for all n ∈ N we get
that

ψ(n) ≤ ψ(1)n = (ϕ(λ))n

where ϕ(λ) < 1. Hence, for all n ∈ N there exists c > 0 such that

log
(

1
ψ(n)

)
n

≥ c.
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If x ∈ [1,∞) we have

log

(
1

ψ(x)

)
≥ log

(
1

ψ([x])

)
≥ c[x] ≥ Cx,

since ψ is non-increasing. The function log(ψ) is subadditive, then by a result of Hille and
Phillips (see [50]) we have that

lim
x→∞

log
(

1
ψ(x)

)
x

= sup
1<x<∞

log
(

1
ψ(x)

)
x

≥ C.

Taking y = e−αx, we get

lim
y→0+

logϕ(y)

log y
> 0.

�

Corollary 3.28. The following statements are equivalent to the condition w ∈ B∗∞:

(i) W is not identically 1.

(ii)
W (t)

W (s)
.
(

1 + log
s

t

)−1

, for all 0 < t ≤ s.

(iii) For every p > 0,
W (t)

W (s)
.
(

1 + log
s

t

)−p
, for all 0 < t ≤ s.

(iv) W (0+) = 0.

(v) lim
x→∞

logW (x)

log xp
> 0.

(vi) For every ε > 0 there exists δ > 0 such that W (t) ≤ εW (s), provided t ≤ δs.

Proof. The proof is identical to that of Corollary 3.14. The equivalence between the condition
(iii) and B∗∞ follows by Theorem 3.23. �

The following result characterizes the strong-type boundedness of H on the classical
Lorentz spaces,

H : Λp(w)→ Λp(w), (3.16)

and its weak-type version H : Λp(w) → Λp,∞(w). It was proved by Sawyer in [90] and
Neugebauer in [80] (see also [97]). In fact, Sawyer showed a two-weighted version of (3.16).
However, Neugebauer characterized (3.16) by means of the condition w ∈ Bp∩B∗∞, for p > 1,
which is simpler than the conditions of Sawyer even in the diagonal case.
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Theorem 3.29. If p ≤ 1, then:

(α) The boundedness H : Λp(w)→ Λp(w) holds if and only if w ∈ Bp ∩B∗∞.

(β) The boundedness H : Λp(w)→ Λp,∞(w) holds if and only if w ∈ Bp,∞ ∩B∗∞.

And, if p > 1, the following statements are equivalent:

(i) H : Λp(w)→ Λp(w).

(ii) H : Λp(w)→ Λp,∞(w).

(iii) w ∈ Bp ∩B∗∞.

Proof. The above result is a consequence of the relation (3.11). The problem reduces to the
study of the boundedness of P and Q on Lpdec(w). �

Remark 3.30. Note that neither of the conditions Bp, B
∗
∞ is obtained from the other.

(i) If w(t) = χ(0,1)(t), then w 6∈ B∗∞. On the other hand, it can be proved that it belongs to
the Bp class for p > 1; that is,∫ ∞

r

w(x)

xp
dx ≤ cp

1

rp

∫ r

0

w(x) dx, ∀r > 0.

Indeed, if r > 1 the inequality is clearly true. If r ≤ 1,∫ ∞
r

w(x)

xp
dx =

∫ 1

r

1

xp
dx =

r−p+1 − 1

p− 1

and
1

rp

∫ r

0

w(x)dx =
1

rp

∫ r

0

dx = r−p+1.

Then, taking cp = 1
p−1

we get that w ∈ Bp.

(ii) The condition B∗∞ does not imply ∆2 condition. If w(t) = et, then, w ∈ B∗∞. Indeed,
by the mean value theorem there exists ξ ∈ (0, t) such that

et − 1

t
= eξ.

Taking into account that the exponential function is monotone, we have eξ ≤ et. Hence, the
following holds ∫ r

0

et − 1

t
dt ≤

∫ r

0

etdt = er − 1.

Besides, there is no constant such that e2t − 1 ≤ cet, hence w /∈ ∆2. In particular, observe
that this weight does not belong to Bp, whereas it belongs to B∗∞.



3.4. The Bp(u) and Bp,∞(u) classes of weights 30

3.4 The Bp(u) and Bp,∞(u) classes of weights

The boundedness of the Hardy-Littlewood maximal function on weighted Lorentz spaces

M : Λp
u(w)→ Λp

u(w),

has been characterized in [20] and its solution is the Bp(u) condition. Partial results have
been obtained for its weak-type analogue M : Λp

u(w) → Λp,∞
u (w). We will present some of

these results, which will be necessary for our study.

Definition 3.31. We say that w ∈ Bp(u) if there exists ε > 0 such that, for every finite
family of pairwise disjoint, open intervals (Ij)

J
j=1, and every family of measurable sets (Sj)

J
j=1,

with Sj ⊂ Ij, for every j ∈ J , we have that

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) . max
1≤j≤J

(
|Ij|
|Sj|

)p−ε
. (3.17)

Theorem 3.32. [20] If 0 < p <∞, then

M : Λp
u(w)→ Λp

u(w) if and only if w ∈ Bp(u).

Remark 3.33. Theorem 3.32 recovers the well-known cases w = 1 and u = 1. Indeed,
if w = 1, then the Bp(u) condition (see (3.17)) agrees with Ap, since the last condition is
equivalent by Theorem 3.2 to the existence of ε > 0 such that

u(I)

u(S)
.

(
|I|
|S|

)p−ε
,

for all S ⊂ I, for all intervals I. If u = 1, then the Bp(u) condition is equivalent to Bp by
Theorem 3.10.

Now, we extend the function W , such that it involves the weight u, yielding the function
W u. We study the asymptotic behavior of this function at infinity and obtain equivalent
expressions to the Bp(u) condition.

Definition 3.34. Define W u, for λ ∈ [1,∞) as follows:

W u(λ) := sup

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) : such that Sj ⊆ Ij and |Ij| < λ|Sj| for every j ∈ J

 ,

where Ij are pairwise disjoint, open intervals, the sets Sj are measurable and all unions are
finite.
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Remark 3.35. (i) Note that in the previous definition we could consider W u as follows:

Wu(λ) = sup

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) : such that Sj ⊆ Ij and
|Ij|
|Sj|

= λ, for every j ∈ J

 .

By the regularity of the measure u, the sets Sj can be considered as finite union of intervals.
(ii) Observe that if u = 1, then W u recovers W on [1,∞). Indeed, note that since

|Ij|/|Sj| = λ, for every j, we also have that

| ∪j Ij|
| ∪j Sj|

=

∑
j(|Ij||Sj|)/|Sj|∑

j |Sj|
= λ.

Hence, if t = | ∪j Ij| and r = | ∪j Sj|, then by (i) we have that

W u(λ) = sup

{
W (t)

W (r)
: t/r = λ

}
,

which is the function W (λ).

We will prove the submultiplicativity of the function W u. First we need a technical result.

Lemma 3.36. Let I be an interval and let S = ∪Nk=1(ak, bk) be a union of disjoint inter-
vals such that S ⊂ I. Then, for every t ∈ [ 1, |I|/|S| ] there exists a collection of disjoint
subintervals {In}Mn=1 satisfying that S ⊂ ∪nIn and for every n ∈ N:

t|S ∩ In| = |In|. (3.18)

Proof. Without loss of generality we can assume that I = (0, |I|) and a1 < a2 · · · < aN .
First observe that if J = ∪In we should in particular obtain t|S| = |J | applying (3.18). We
use induction in N . Clearly it is true for n = 1. Indeed, it suffices to consider 0 ≤ c ≤ a1 <
b1 ≤ d ≤ |I| such that t(b1 − a1) = d− c. Suppose that the results holds for all k < n. We
will prove that it also holds for n+ 1.
Case I: Let |I| − t|S| ≤ a1. Then, it suffices to consider I1 = (|I| − t|S|, |I|) = J . Hence,
the problem is solved with M = 1.
Case II: Let a1 < |I|− t|S|, and call Ī = (a1, |I|). Observe that t|S| < |Ī| and S ⊂ Ī. Hence
in this case we could assume without loss of generality that a1 = 0. Let now I1 = (0, c) such
that b1 ≤ c ≤ |I| and t|S ∩ I1| = c = |I1|. Note that c /∈ S. In fact, suppose that there
exists Sm = (am, bm) such that c ∈ Sm. Then, t|S ∩ [0, am)| > |[0, am)| which implies that
t|S ∩ [0, c)| > |[0, c)| = |I1|; that is a contradiction. Therefore, we obtain

t|S ∩ I1|+ t|S ∩ [c, |I|)| = t|S| < |I| = |I1|+ |[c, |I|)| = t|S ∩ I1|+ |[c, |I|)|,

and consequently t|S ∩ [c, |I|)| < |[c, |I|)|. Then, since [c, |I|) is the union of at most n − 1
disjoint intervals, we apply the inductive hypothesis to the intervals [c, |I|) and the set
S ∩ [c, |I|). Hence, we obtain the intervals I2, . . . , IM such that (3.18) is satisfied. �
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Theorem 3.37. The function W u is submultiplicative.

Proof. Consider a finite family of pairwise disjoint intervals Ij, and measurable sets Sj ⊆ Ij
such that |Ij| = λµ|Sj|, for every j and λ, µ ∈ [1,∞). By Remark 3.35 (i), each Sj can be
considered as a finite union of intervals. Then, by Lemma 3.36 and for each j, we can get a
set Jj such that it is a finite union of intervals, that we call Jji :

Sj ⊆ Jj ⊆ Ij, λ|Sj ∩ Jji| = |Jji|, and µ|Jj| = |Ij|.

So, we have that

W
(
u
(⋃

j Ij

))
W
(
u
(⋃

j Sj

)) ≤ W
(
u
(⋃

j Ij

))
W
(
u
(⋃

j Sj

))W
(
u
(⋃

j Jj

))
W
(
u
(⋃

j Jj

)) ≤ W u(λ)W u(µ).

Therefore, taking supremum over all the possible choices of intervals Ij and measurable
subsets Sj such that Sj ⊆ Ij and |Ij| = λµ|Sj|, we get that W u(λµ) ≤ W u(λ)W u(µ). �

Now, we will see equivalent expressions to the Bp(u) condition applying the submulti-
plicativity of the function W u(λ).

Corollary 3.38. The following statements are equivalent:

(i) There exists µ ∈ (1,∞) such that W u(µ) < µp.

(ii) w ∈ Bp(u).

(iii) lim
x→∞

W u(x)

xp
= 0.

(iv) lim
µ→∞

logW u(µ)

log µp
< 1.

Proof. It is a consequence of Lemma 3.13 and the fact that W u is submultiplicative and
increasing by Theorem 3.37. �

Remark 3.39. The condition (ii) has been studied in [20] by Carro, Raposo and Soria.
The conditions (iii) and (iv) already appeared in a work of Lerner and Pérez in [66], and
in Section 6.6 we will specially deal with (iv) in the setting of Boyd indices. Finally, the
condition (i) seems to be new.

On the other hand, the study of the weak-type version

M : Λp
u(w)→ Λp,∞

u (w),

motivates the definition of the Bp,∞(u) class introduced in [20].
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Definition 3.40. We say that w ∈ Bp,∞(u) if and only if M : Λp
u(w)→ Λp,∞

u (w).

Theorem 3.41. [20] If 0 < p <∞, then w ∈ Bp,∞(u) if and only if

(Mf)∗u(s) .

(
1

W (s)

∫ s

0

(f ∗u)p(r)w(r)dr

)1/p

,

for every t > 0 and f ∈M.

Theorem 3.42. [20] If 0 < p <∞, then the Bp,∞(u) condition implies that

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) ≤ C max
1≤j≤J

(
|Ij|
|Sj|

)p
, (3.19)

for every finite family of pairwise disjoint, open intervals (Ij)
J
j=1, and every family of mea-

surable sets (Sj)
J
j=1, with Sj ⊂ Ij, for every j.

Remark 3.43. It is known that if p < 1, then (3.19) is equivalent to Bp,∞(u) (see [20]),
while the case p ≥ 1 remained open. In Section 6.5 we will completely solve the problem,
for p > 1, showing that the Bp,∞(u) condition is equivalent to Bp(u).

3.5 The AB∗∞ class

We have seen that the Bp condition is not sufficient for the boundedness of the Hilbert trans-
form on the classical Lorentz spaces, since the B∗∞ condition is required (see Theorem 3.29).
When dealing with the boundedness

H : Λp
u(w)→ Λp

u(w),

and its weak-type version, it naturally appears a new class of weights, namely AB∗∞, which
in fact is equivalent to the B∗∞ and A∞ conditions.

Definition 3.44. We say that (u,w) ∈ AB∗∞ if for every ε > 0 there exists δ > 0 such that
for all intervals I and measurable sets S ⊂ I, we have

|S| ≤ δ|I| ⇒ W (u(S)) ≤ εW (u(I)).
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Remark 3.45. Note that if w = 1 in Definition 3.44, then u ∈ A∞ by Proposition 3.5 and
if u = 1, then by Corollary 3.28 we have that w ∈ B∗∞.

Now, we will prove that the AB∗∞ condition not only recovers the A∞ and B∗∞ conditions
in the classical cases, as shown in Remark 3.45, but also it is equivalent to these conditions.

Proposition 3.46. Let w ∈ ∆2. Then,

(u,w) ∈ AB∗∞ if and only if u ∈ A∞ and w ∈ B∗∞.

Proof. Assume that (u,w) ∈ AB∗∞. Let us prove that u ∈ A∞. Indeed, let ε = 21−k, k ∈ N
and ε′ < c−k, where c > 1 is the ∆2 constant. By definition, there exists δ = δ′(ε′) such that
|S| ≤ δ|I| implies,

W (u(S)) ≤ ε′W (u(I)) < c−kW (u(I)).

If
u(I)

u(S)
≤ 2k−1 we have that

W (u(S)) < c−kW

(
u(I)

u(S)
u(S)

)
≤ c−1W (u(S),

taking into account that w ∈ ∆2. Since c > 1, we obtain W (u(S)) < W (u(S)) which is a
contradiction. Hence,

u(S) ≤ 21−ku(I) = εu(I), (3.20)

which implies that u ∈ A∞. Now, we prove that w ∈ B∗∞. For every S ⊆ I there exists
λ ∈ (0, 1) such that

W (u(S))

W (u(I))
<

1

2
,

provided |S| < λ|I|. Since, u ∈ A∞, there exists q ≥ 1 such that u ∈ Aq. Let δ ∈ (0, 1) such
that u(S) < δu(I). Hence

|S|
|I|
≤ Cu

(
u(S)

u(I)

)1/q

= Cuδ
1/q.

Now, choose δ such that Cuδ
1/q < λ. Therefore, take 0 < t < δs and consider S ⊂ I such

that t = u(S) and s = u(I). Then, |S| ≤ Cuδ
1/q|I| < λ|I| and

W (t)

W (s)
=
W (u(S))

W (u(I))
≤ W u(λ) ≤ 1

2
< 1.

This implies that W (δ) < 1; that is equivalent to B∗∞ by Corollary 3.28.
Conversely, assume that w ∈ B∗∞, then by Corollary 3.28, for every ε > 0, there exists

β(ε) > 0 such that
t ≤ β(ε)r ⇒ W (t) ≤ εW (r). (3.21)
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Since u ∈ A∞, we have that for all β > 0 and in particular for β = β(ε) fixed above, we have
that there exists δ > 0 such that for S ⊂ I

|S| ≤ δ|I| ⇒ u(S) ≤ β(ε)u(I). (3.22)

Hence by (3.22) and (3.21), for every ε > 0, there exists δ > 0 such that

|S| ≤ δ|I| ⇒ W (u(S)) ≤ εW (u(I)). (3.23)

�

We will prove that the AB∗∞ condition holds also if we substitute the set S and the
interval I in Definition 3.44 by finite unions of sets Sj and intervals Ij, respectively, such
that Sj ⊂ Ij. To do this we define the function Wu, which is an extension of the function W
on (0, 1]. Then, we study the asymptotic behavior at 0, obtaining equivalent expressions to
AB∗∞.

Definition 3.47. We define the function Wu in (0, 1] as follows:

Wu(λ) := sup

W
(
u
(⋃J

j=1 Sj

))
W
(
u
(⋃J

j=1 Ij

)) : such that Sj ⊆ Ij and |Sj| < λ|Ij|, for every j

 ,

(3.24)
where Ij are pairwise disjoint, open intervals, the sets Sj are measurable and all unions are
finite.

Remark 3.48. Note that (3.24) is equivalent to

Wu(λ) = sup

W
(
u
(⋃J

j=1 Sj

))
W
(
u
(⋃J

j=1 Ij

)) : such that Sj ⊆ Ij and
|Sj|
|Ij|

= λ, for every j

 ,

and since the measure u is regular, every Sj can be considered as a finite union of intervals.
Moreover, as in Remark 3.35, we can show that Wu recovers W on (0, 1].

Theorem 3.49. The function Wu is submultiplicative.

Proof. The proof is similar to that of Theorem 3.37. Indeed, consider a finite family of
pairwise disjoint, open intervals Ij, and measurable sets Sj ⊆ Ij, such that |Sj| = λµ|Ij|,
where λ, µ ∈ (0, 1]. By Remark 3.48 we can consider Sj as a union of intervals. Then by
Lemma 3.36 and for each j obtain a set Jj such that it is a union of a finite number of
intervals, that we call Jji :

Sj ⊆ Jj ⊂ Ij, |Sj ∩ Jji| = λ|Jji|, and |Jj| = µ|Ij|.
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So, we have that

W
(
u
(⋃

j Sj

))
W
(
u
(⋃

j Ij

)) ≤ W
(
u
(⋃

j Sj

))
W
(
u
(⋃

j Ij

)) W
(
u
(⋃

j Jj

))
W
(
u
(⋃

j Jj

)) ≤ W u(λ)W u(µ).

Therefore, taking supremum over all the possible choices of intervals Ij and measurable
subsets Sj such that Sj ⊆ Ij and |Sj| = λµ|Ij|, we get that Wu(λµ) ≤ Wu(λ)Wu(µ). �

The following result is the weighted version of Corollary 3.28.

Corollary 3.50. The following statements are equivalent:

(i) Wu is not identically 1.

(ii) For every finite family of pairwise disjoint, open intervals (Ij)
J
j=1, and every family of

measurable sets (Sj)
J
j=1, with Sj ⊂ Ij, for every j we have that

min
j

(
1 + log

|Ij|
|Sj|

)
.
W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) .
(iii) Wu(0

+) = 0.

(iv) lim
λ→0

logWu(λ)

log λp
> 0.

Moreover, if w ∈ ∆2 they are all equivalent to the AB∗∞ condition.

Proof. The equivalences follow by Theorem 3.49 and Lemma 3.27. To see the last part,
observe that, since clearly (iii) implies the AB∗∞ condition, it is sufficient to show that AB∗∞
implies (i). Indeed, if AB∗∞ holds, then by Proposition 3.46 it is equivalent to w ∈ B∗∞,
and u ∈ A∞, since w ∈ ∆2. By the B∗∞ condition, in view of Corollary 3.28, there exists
α ∈ (0, 1) with

W (t)

W (s)
<

1

2
, (3.25)

provided 0 < t < αs. On the other hand, if Sj ⊂ Ij such that |Sj| < η|Ij|, with η > 0 to be
chosen later on, then we have that

u(
⋃
Sj
)

u(
⋃
Ij
) =

∑
j u(Sj

)∑
j u(Ij

) ≤ cu
∑
j

u(Ij
)
(|Sj|/|Ij|)r∑
j u(Ij

) ≤ cu

(
max
j

|Sj|
|Ij|

)r
= cuη

r,
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where r ∈ (0, 1) and cu > 0 are constants depending on the condition A∞. So, choose
η ∈ (0, 1) such that cuη

r < α. Let t = u(∪Sj) and s = u(∪Ij). Then, by (3.25)

W
(
u(
⋃
Sj
))

W
(
u(
⋃
Ij
)) <

1

2
.

This shows that Wu(η) < 1, which is (i). �





Chapter 4

Necessary conditions for the
boundedness of H on Λ

p
u(w)

Throughout this chapter we present necessary conditions on the weights u,w for the weak-
type boundedness of the Hilbert transform on weighted Lorentz spaces,

H : Λp
u(w)→ Λp,∞

u (w).

In the first section, we prove that if we restrict the boundedness H : Λp
u(w) → Λp,∞

u (w)
to characteristic functions of intervals, in particular we obtain

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . (log
1 + ν

ν

)−p
,

for every ν ∈ (0, 1] (see Theorem 4.4), which implies that u 6∈ L1(R) and w 6∈ L1(R+)
(see Proposition 4.5). The non-integrability of the weights u and w is important since we
have proved that under these assumptions, the space C∞c , where the Hilbert transform is
well-defined, is dense in Λp

u(w) (see Theorem 2.13).

If we restrict the boundedness H : Λp
u(w) → Λp,∞

u (w) to characteristic functions of
measurable sets (see Theorem 4.8), we obtain

W (u(I))

W (u(E))
.

(
|I|
|E|

)p
.

In particular, this implies that W ◦ u satisfies the doubling condition. Furthermore, w is p
quasi-concave (see Corollary 4.9). These results are proved in the second section.

In the third section, applying duality arguments, we have that

||u−1χI ||(Λpu(w))′ ||χI ||Λpu(w) . |I|,

for all intervals I of the real line (see Theorem 4.16).

39
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4.1 Restricted weak-type boundedness on intervals

Stein and Weiss proved in [95] that the distribution function of the Hilbert transform of the
characteristic function of a measurable set depends only on the Lebesgue measure of the set.
Precisely, they proved the following relation

|{x ∈ R : |HχE(x)| > λ}| = 2|E|
sinhπλ

, (4.1)

where E is a measurable set of finite Lebesgue measure and λ > 0 (for more details see [8]).
An alternative proof can be found in [27], based on an already known result established
in [10].

We calculate explicitly the distribution function of the Hilbert transform of a character-
istic function of an interval, with respect to a weight u, generalizing the relation (4.1) when
the set E is an interval.

If we consider the boundedness of the Hilbert transform on characteristic functions of
intervals, we find necessary conditions for the weak-type boundedness H : Λp

u(w)→ Λp,∞
u (w).

For this reason we start by defining the restricted weak-type inequality (p, p) with respect
to the pair (u,w) as given in [8].

Definition 4.1. Let p > 0. We say that a sublinear operator T is of restricted weak-type
(p, p) (with respect to (u,w)) if

||TχS||Λp,∞u (w) . ||χS||Λpu(w), (4.2)

where S is a measurable set of the real line. If S is an interval, then we say that T is of
restricted weak-type (p, p) on intervals.

The following lemma gives an explicit formula for the distribution function of the Hilbert
transform of the characteristic function of an interval.

Lemma 4.2. Let a, b ∈ R. For λ > 0,

u
({
x ∈ R : |Hχ(a,b)(x)| > λ

})
=

∫ a+ϕ(λ)

a−ψ(λ)

u(s) ds+

∫ b+ψ(λ)

b−ϕ(λ)

u(s) ds, (4.3)

where

ϕ(λ) =
b− a

1 + eπλ
and ψ(λ) =

b− a
eπλ − 1

. (4.4)
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Proof. A simple calculation shows that

Hχ(a,b)(x) =
1

π
log
|x− a|
|x− b|

,

where x ∈ (a, b) (for more details see [40]). Then, we obtain the following expression for the
level set of Hχ(a,b):

E = {x ∈ R : |Hχ(a,b)(x)| > λ} =

{
x ∈ R :

∣∣∣ 1
π

log
|x− a|
|x− b|

∣∣∣ > λ

}
=

{
x ∈ R :

|x− a|
|x− b|

> eπλ
}
∪
{
x ∈ R :

|x− a|
|x− b|

< e−πλ
}

= E1 ∪ E2.

Letting g(x) =
x− a
x− b

and taking into account that g tends to 1, when x tends to infinity, we

get

E1 = {x ∈ R : |g(x)| > eπλ} = {x ∈ R : g(x) > eπλ} ∪ {x ∈ R : g(x) < −eπλ}
= (b− ϕ(λ), b+ ψ(λ)),

where ϕ and ψ are given by g(b−ϕ(λ)) = −eπλ and g(b+ψ(λ)) = eπλ, respectively. Following
the same procedure for E2 and letting h = 1/g, we obtain

E2 = {x ∈ R : |h(x)| > eπλ} = {x ∈ R : h(x) > eπλ} ∪ {x ∈ R : h(x) < −eπλ}
= (a− ψ(λ), a+ ϕ(λ)).

Then,

u(E) = u(E2) + u(E1) =

∫ a+ϕ(λ)

a−ψ(λ)

u(s) ds+

∫ b+ψ(λ)

b−ϕ(λ)

u(s) ds.

�

Remark 4.3. If u is the Lebesgue measure on R, we recover the result of Stein and Weiss
when the set E is the interval (a, b); that is

|{x ∈ R : |Hχ(a,b)(x)| > λ}| = 2|b− a|
sinh πλ

,

with λ > 0 and a, b ∈ R . Indeed, if u = 1 then by (4.3) and (4.4) we have that

|{x ∈ R : |Hχ(a,b)(x)| > λ}| = 2(ϕ(λ) + ψ(λ)) =
2|b− a|
sinhπλ

.

Applying the above lemma, we find necessary conditions for the restricted weak-type
(p, p) inequality on intervals with respect to the pair (u,w).
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Theorem 4.4. Let 0 < p < ∞. If the Hilbert transform is of restricted weak-type (p, p) on
intervals with respect to the pair (u,w), then necessarily

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . (1 + log
1

ν

)−p
, (4.5)

for every ν ∈ (0, 1], and

sup
b>0

W
(∫ 0

−bν u(s)ds
)

W
(∫ b

0
u(s)ds

) . (log
1 + ν

ν

)−p
, (4.6)

for every ν > 0.

Proof. Let a, b ∈ R. Then, by hypothesis we have that

sup
λ>0

W
(
u({x ∈ R : |Hχ(a,b)(x)| > λ})

)
λp . W

(∫ b

a

u(s) ds

)
,

which, applying (4.3), is equivalent to

sup
λ>0

W

(∫ a+ϕ(λ)

a−ψ(λ)

u(s)ds +

∫ b+ψ(λ)

b−ϕ(λ)

u(s) ds

)
λp . W

(∫ b

a

u(s) ds

)
.

Let a = 0 and b > 0, then by the monotonicity of W , we necessarily obtain for every λ > 0

W

(∫ b

1+eπλ

b

1−eπλ

u(s) ds

)
λp . W

(∫ b

0

u(s) ds

)
. (4.7)

Since
b

1− eπλ
<

−b
1 + eπλ

< 0 <
b

1 + eπλ
we obtain that

W

(∫ b

1+eπλ

−b
1+eπλ

u(s) ds

)
λp . W

(∫ b

0

u(s) ds

)
.

Writing ν =
1

1 + eπλ
, we get

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . (log
1− ν
ν

)−p
, ν ∈ (0, 1/2). (4.8)



43 Chapter 4. Necessary conditions for the boundedness of H on Λp
u(w)

Now, by the monotonicity of W , for every ν ∈ (0, 1]

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) ≤ 1. (4.9)

So, (4.8) and (4.9) are equivalent to the following

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . min

{
1,

(
log

1− ν
ν

)−p}
≈
(

1 + log
1

ν

)−p
,

for every ν ∈ (0, 1/2). Moreover, by (4.9), we obtain

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) . 1 .

(
1 + log

1

ν

)−p
,

for every ν ∈ (1/2, 1]. By the two last relations we get (4.5).

Finally, equation (4.6) is a consequence of (4.7), taking ν =
1

eπλ − 1
. �

If we consider the boundedness of the Hardy-Littlewood maximal function

M : Λp
u(w)→ Λp,∞

u (w),

then u is necessarily non-integrable, whereas there are no integrability restrictions on w
(see [20]). However, we will prove that the boundedness of H on Λp

u(w) implies that both u
and w are non-integrable. If u = 1, this was already proved by Sawyer in [90].

In order to avoid trivial cases, we can assume that the weights satisfy the following condition:

W

(∫ +∞

−∞
u(x) dx

)
> 0. (4.10)

Proposition 4.5. If the Hilbert transform is of restricted weak-type with respect to the pair
(u,w) on intervals, then u 6∈ L1(R) and w 6∈ L1(R+).

Proof. Since w is locally integrable, it is enough to prove that

W

(∫ +∞

−∞
u(x) dx

)
= lim

t→∞
W

(∫ t

−t
u(x) dx

)
=∞. (4.11)
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Suppose that this limit is a finite number ` > 0. Since, by Theorem 4.4 we have that there
exists C > 0 such that, for all ν ∈ (0, 1],

sup
b>0

W
(∫ bν
−bν u(s) ds

)
W
(∫ b
−b u(s) ds

) ≤ C

(
log

1

ν

)−p
, (4.12)

taking ν > 0 small enough satisfying C
(
log 1

ν

)−p
< 1/2 we obtain that

lim
b→∞

W
(∫ νb
−νb u(s) ds

)
W
(∫ b
−b u(s) ds

) ≤ sup
b>0

W
(∫ νb
−νb u(s) ds

)
W
(∫ b
−b u(s) ds

) ≤ 1

2
.

Since we also have that

lim
b→∞

W
(∫ νb
−νb u(s) ds

)
W
(∫ b
−b u(s) ds

) =
`

`
= 1,

we get a contradiction. Hence, (4.11) holds. �

One could think that the boundedness

H : Λp
u(w)→ Λp

u(w)

holds if both the boundedness H : Lp(u) → Lp(u), for p > 1 (characterized by the Ap
condition) and the boundedness H : Λp(w)→ Λp(w) (characterized by w ∈ Bp ∩ B∗∞) hold.
However, the next result shows that in general these conditions (u ∈ Ap and w ∈ Bp ∩ B∗∞)
are not sufficient for the boundedness of H on Λp

u(w) for p > 1. In the next chapter we will
see that if we assume a stronger condition; that is u ∈ A1, then w ∈ Bp ∩ B∗∞ characterizes
the strong-type boundedness of Hilbert transform on Λp

u(w), for p > 1 (see Theorem 5.4
below) and also prove similar results for the weak-type version (see Theorem 5.2 below).

Proposition 4.6. If the Hilbert transform is of restricted weak-type (p, p) on intervals with
respect to the pair (|x|k, tl), then necessarily (k+1)(l+1) ≤ p, where k, l > −1. In particular,
there exist u ∈ Ap and w ∈ Bp∩B∗∞ such that the Hilbert transform is not bounded on Λp

u(w)
for p > 1.

Proof. By hypothesis, it holds (4.6), which implies that

(k + 1)(l + 1) ≤ p. (4.13)

Indeed, since u(x) = |x|k, w(t) = tl and k, l > −1 then by (4.6) we have that for q =
(k + 1)(l + 1)/p

νq log

(
1 +

1

ν

)
≤ C
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for all ν > 0. Hence q ≤ 1. Now, if we choose p and k = l such that
√
p < k + 1 < p, then

u(x) = |x|k ∈ Ap and w(t) = tk ∈ Bp ∩ B∗∞. However, such k = l > −1 contradicts the
condition (4.13) since p < (k+1)2. Hence, in this case, the Hilbert transform is not bounded
on Λp

u(w). �

4.2 Restricted weak-type boundedness

It is well-known that the boundedness of the Hilbert transform H : Lp(u)→ Lp,∞(u) implies
in particular that u is a doubling measure. Furthermore, if we consider H : Λp(w)→ Λp,∞(w)
we get w ∈ ∆2. We will see that if we assume the boundedness

H : Λp
u(w)→ Λp,∞

u (w)

we obtain that the composition W ◦ u satisfies the doubling property; that is,

W (u(2I)) . W ((u(I))), (4.14)

for all intervals I ⊂ R, where 2I denotes the interval with the same center than I and double
size-length. In fact, this is a consequence of a stronger result which also implies that w is p
quasi-concave. First we present the following known result.

Theorem 4.7. [20] Let 0 < p <∞. If M : Λp
u(w)→ Λp,∞

u (w), then it implies

W (u(I))

W (u(E))
.

(
|I|
|E|

)p
, (4.15)

for every interval I ⊂ R and S ⊂ I. Moreover, (4.15) implies that w is p quasi-concave and
in particular w ∈ ∆2.

Theorem 4.8. Let 0 < p <∞. If H is of restricted weak-type (p, p) with respect to the pair
(u,w), then (4.15) holds. In particular, W ◦ u satisfies the doubling property.

Proof. Let E be a measurable subset of the interval I and f = χE. Let I ′ be an interval of
the same size touching I. For every x ∈ I ′ we obtain

|HχE(x)| =
∣∣∣∣∫

R

χE(y)

x− y
dy

∣∣∣∣ ≥ |E|2|I|
. (4.16)

So, if λ ≤ |E|
2|I| , then I ′ ⊆ {x : |HχE(x)| > λ}. Therefore

W (u(I ′)) ≤ W (u({x : |HχE(x)| > λ})) . 1

λp

∫ ∞
0

(χE)∗u(t)w(t) dt ≈ 1

λp
W (u(E)),
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where the last step follows by the boundedness of H. As the above inequality holds for every
λ ≤ |E|

2|I| , we obtain that

W (u(I ′))

W (u(E))
≤ C

(
|I|
|E|

)p
. (4.17)

So, it only remains to prove that we can replace I ′ by the interval I. In fact, the quantities
W (u(I ′)) and W (u(I)) are comparable, since taking E = I in (4.17) we get

W (u(I ′)) . W (u(I)).

Interchanging the roles of I and I ′ we get the converse inequality

W (u(I)) ≤ C W (u(I ′)).

�

Corollary 4.9. Let 0 < p <∞. If H is of restricted weak-type (p, p) with respect to the pair
(u,w), then w is p quasi-concave. In particular, w satisfies the ∆2 condition.

Proof. It follows by Theorems 4.8 and 4.7. �

Remark 4.10. From now on, and taking into account Proposition 4.5 and Corollary 4.9,
we shall always assume that w ∈ ∆2, u 6∈ L1, and w 6∈ L1.

4.3 Necessary conditions and duality

By Remark 4.10 and Theorem 2.13, C∞c is dense in Λp
u(w), and hence we can give the following

definition.

Definition 4.11. We say that the Hilbert transform H : Λp
u(w)→ Λp,∞

u (w) if

||Hf ||Λp,∞u (w) . ||f ||Λpu(w),

for every f ∈ C∞c . Analogously, we write H : Λp
u(w)→ Λp

u(w) if we have that ||Hf ||Λpu(w) .
||f ||Λpu(w) for every f ∈ C∞c .

Then, H can be extended to Λp
u(w) in the usual way:

Hf = Λp,∞
u (w)− limHfn (4.18)

where (fn)n ⊂ C∞c and f = Λp
u(w)− lim fn.

Lemma 4.12. Let f be bounded and with compact support. Then, f ∈ Λp
u(w) and it holds

that

Hf(x) = Hf(x) := lim
ε→0

∫
|y|>ε

f(x− y)

y
dy, a.e. x ∈ R.
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Proof. The idea is to construct a sequence (fn)n of functions in C∞c such that f = Λp
u(w)−

lim fn and f = L1− lim fn. Then, we have that (4.18) holds and hence (see [20]) there exists
a subsequence such that

Hf(x) = lim
k
Hfnk(x), a.e. x ∈ R.

On the other hand, we know that Hf = L1,∞ − limkHfnk and that, in this case,

Hf(x) = lim
j
Hfnkj (x), a.e. x ∈ R, (4.19)

and the result follows.
Let us see now how to construct the sequence (fn). Let h ∈ C∞c such that

∫
h(x)dx = 1

and set hm(x) = mh(mx). Let gm = f ∗ hm. Then L1 − limm gm = f . Hence there exists a
subsequence fn = gmn such that limn fn(x) = f(x) for almost every x and since |fn| ≤ CχI for
some constant C and some interval I, we can apply the dominated convergence Theorem 2.10
(for more details see [20]) to conclude that f = Λp

u(w)− limn fn, as we wanted to see. �

Theorem 4.13. If 0 < p <∞ and

H : Λp
u(w) −→ Λp,∞

u (w)

then, for every 1 ≤ q <∞ and every f ∈ Lq ∩ Λp
u(w), Hf = Hf .

Proof. We clearly have that if f ∈ Lq ∩ Λp
u(w), then the sequence

fn(x) = f(x)χ{|f(x)|≤n}(x)χ(−n,n)(x)

satisfies that f = Lq − limn fn and f = Λp
u(w) − limn fn. Since fn are bounded functions

with compact support, Hfn = Hfn and the result follows using the same argument as in the
previous lemma. �

Remark 4.14. From now on we shall write Hf to indicate the extended operator and we
shall use the previous theorem whenever it is necessary.

Assuming the boundedness of the Hilbert transform on weighted Lorentz spaces

H : Λp
u(w)→ Λp,∞

u (w),

we are going to obtain necessary conditions that involve the associate spaces of the weighted
Lorentz spaces.

In [23] Carro and Soria studied the boundedness of the Hardy-Littlewood maximal func-
tion on weighted Lorentz spaces and obtained the following necessary condition:
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Theorem 4.15. [23] Let 0 < p <∞. If M : Λp
u(w)→ Λp,∞

u (w) then

||u−1χI ||(Λpu(w))′||χI ||Λpu(w) . |I|, (4.20)

for all intervals I.

Theorem 4.16. Let 0 < p <∞. If H : Λp
u(w)→ Λp,∞

u (w), then (4.20) holds. In particular,
(Λp

u(w))′ 6= {0}.

Proof. Let I and I ′ be as in Theorem 4.8. If f ≥ 0 is bounded and supported in I, fI =∫
I
f(x)dx and λ ≤ fI

2|I| , then for every x ∈ I ′ we have by Lemma 4.12 that

|Hf(x)| =
∣∣∣∣∫

R

f(y)

x− y
dy

∣∣∣∣ =

∣∣∣∣∫
I

f(y)

x− y
dy

∣∣∣∣ ≥ 1

2|I|

∫
I

f(y) dy. (4.21)

Therefore I ′ ⊆ {x : |Hf(x)| > λ} and so

W 1/p(u(I ′)) ≤ W 1/p(u({x : |Hf(x)| > λ})) . 1

λ
||f ||Λpu(w),

where the last step follows by the boundedness of H. As the above inequality holds for every
λ ≤ fI

2|I| , we obtain (
fI

||f ||Λpu(w)

)
W 1/p(u(I ′)) . |I|. (4.22)

If f is not bounded, then we set fn = fχ{|f(x)|≤n} and we can conclude, using the
dominated convergence theorem in Λp

u(w), that (4.22) holds for every f ∈ Λp
u(w). Considering

the supremum over all f ∈ Λp
u(w) and taking into account that

fI =

∫
R
f(x)(u−1(x)χI(x))u(x)dx,

we get that

||u−1χI ||(Λpu(w))′W
1/p(u(I ′)) . |I|.

Applying the monotonicity of W and then the doubling property for W ◦ u, that holds by
Theorem 4.8, it follows that

||χI ||pΛpu(w)
= W (u(I)) ≤ W (u(3I ′)) ≤ cW (u(I ′)).

Hence,

||u−1χI ||(Λpu(w))′||χI ||Λpu(w) . |I|.

In particular, u−1χI ∈ (Λp
u(w))′. �
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Theorem 4.17. If 0 < p <∞ and

H : Λp
u(w) −→ Λp,∞

u (w)

then, Λp
u(w) ⊂ L1

loc.

Proof. Let f ∈ Λp
u(w). Then, applying Hölder’s inequality and Theorem 4.16 we obtain that∫

R
|f(x)|χI(x)dx =

∫
R
|f(x)|u(x)u−1(x)χI(x)dx . ||f ||Λpu(w)||u−1χI ||(Λpu(w))′

. ||f ||Λpu(w)

|I|
W 1/p(u(I))

<∞.

�

As a consequence of (4.20), some necessary conditions on p, depending on w, were ob-
tained in [20]. Following their approach, we see that the same results can be obtained if
we assume the boundedness of the Hilbert transform on weighted Lorentz spaces. First, we
need to define the index pw:

Definition 4.18. Let 0 < p <∞. We define

pw = inf

{
p > 0 :

tp

W (t)
∈ Lp′−1

(
(0, 1),

dt

t

)}
,

where p′ =∞, if 0 < p ≤ 1.

Proposition 4.19. Let 0 < p < ∞. If H : Λp
u(w) → Λp,∞

u (w), then p ≥ pw. Moreover,
if pw > 1 then p > pw. In particular, if p < 1 there is no weight u for which it holds that
H : Lp(u)→ Lp,∞(u) is bounded.

Proof. See the proof of Theorem 3.4.2 and 3.4.3 in [20].

Since there exists an explicit description of the associate spaces of weighted Lorentz
spaces by Theorem 2.16, we can provide equivalent integral expressions to (4.20). For this
reason, it will be useful to associate to each weight u the family of functions {φI}I defined
as follows. For every interval I of the real line, we set

φI(t) = φI,u(t) = sup{|E| : E ⊂ I, u(E) = t}, t ∈ [0, u(I)). (4.23)

Then, we will study the function φ and find some equivalent expressions depending on u,
and also several concrete examples.



4.3. Necessary conditions and duality 50

Proposition 4.20. (i) If p ≤ 1, the condition (4.20) is equivalent to the following:

W 1/p(u(I))

|I|
.
W 1/p(u(E))

|E|
, E ⊂ I. (4.24)

(ii) If p > 1, the condition (4.20) is equivalent to the following expression:(∫ u(I)

0

(
φI(t)

W (t)

)p′
w(t)dt

)1/p′

.
|I|

W 1/p(u(I))
. (4.25)

Proof. (i) If p ≤ 1, the condition (4.20) is equivalent to

||u−1χI ||Γ1,∞
u (w̃)||χI ||Λpu(w) . |I|,

which, by Theorem 2.16 gives

sup
t>0

(u−1χI)
∗∗
u (t)W̃ (t)W 1/p(u(I)) . |I|,

where W̃ (t) = tW−1/p(t); that is equivalent to

sup
t>0

∫ t
0
(u−1χI)

∗
u(s)ds

W 1/p(t)
.

|I|
W 1/p(u(I))

. (4.26)

Taking into account that∫ ∞
0

f ∗u(s)g∗u(s)ds = sup
h∗u=g∗u

∫
f(x)h(x)u(x)dx

(see [8]) for every measurable functions f, g we obtain∫ t

0

(u−1χI)
∗
u(s)ds = sup

E⊂I,u(E)=t

|E| = φI(t), (4.27)

where t ≤ u(I). Hence

sup
t>0

∫ t
0
(u−1χI)

∗
u(s)ds

W 1/p(t)
= sup

t>0

supE⊂I:u(E)=t |E|
W 1/p(t)

= sup
E⊂I

|E|
W 1/p(u(E))

.

Therefore, (4.26) can be rewritten as

|E|
W 1/p(u(E))

.
|I|

W 1/p(u(I))
,

for all E ⊂ I.
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(ii) On the other hand, for p > 1 we obtain by Theorem 2.16 and the fact that w 6∈ L1,
which holds by Proposition 4.5, that the condition (4.20) is equivalent to[∫ ∞

0

(
1

W (t)

∫ t

0

(u−1χI)
∗
u(s)ds

)p′
w(t)dt

]1/p′

.
|I|

W 1/p(u(I))
. (4.28)

Applying the relation (4.27) we have that the condition (4.28) is equivalent to (4.25) whenever
t ≤ u(I). If t > u(I) then φI(t) = |I| and in this case we get that[∫ ∞

u(I)

(
1

W (t)

∫ t

0

(u−1χI)
∗
u(s)ds

)p′
w(t)dt

]1/p′

= |I|
[∫ ∞

u(I)

w(t)

W (t)p′
dt

]1/p′

≈ |I|
W 1/p(u(I))

.

�

In order to study the function φI , we fix the interval I = [a, b], where a < b and associate
to this interval the functions

U(s) =

∫ a+s

a

u(x)dx, V (s) =

∫ b

b−s
u(x)dx, (4.29)

for s ∈ [0, |I|]. We will see that if u is increasing (resp. decreasing) the function φI can be
expressed as the inverse function of U (resp. V ). Then, we analyze the function φI for a
general weight u and prove that it can be expressed in terms of the inverse function of

ψI(t) = sup{u(F ) : F ⊂ I and |F | = t}, t ∈ [0, |I|). (4.30)

Proposition 4.21. Let t ∈ [0, |I|].

(i) If u is an increasing function, then

φI(t) = U−1(t),

where U−1 is the inverse function of U defined in (4.29).

(ii) If u is a decreasing function, then

φI(t) = V −1(t),

where V −1 is the inverse function of V defined in (4.29).

(iii) In general,
φI(t) = |I| − ψ−1

I (u(I)− t),

where ψ−1
I is the inverse function of ψI defined in (4.30).
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Proof. (i) Note that the supremum defining the function φI is attained in an interval of the
form [a, a+s] since u is increasing, for some s ∈ [0, |I|] such that U(s) = t. Hence s = U−1(t)
which implies φI(t) = U−1(t).

(ii) In this case, the supremum defining the function φI is attained in an interval [b−s, s],
since u is decreasing, and s ∈ [0, |I|] is such that V (s) = t. Hence φI(t) = V −1(t).

(iii) First observe that

φI(t) = sup{|F | : F ⊂ [0, b− a] and (uχI)
∗(F ) = t}.

Taking into account that (uχI)
∗ is decreasing, we get by (ii)

φI(t) = V−1(t),

where

V(s) =

∫ |I|
|I|−s

(uχI)
∗(r)dr = u(I)− ψI(|I| − s) = t.

Hence φI(t) = |I| − ψ−1
I (u(I)− t). �

The condition (4.25) recovers the classical results when u = 1 and w = 1 (see [20]).
Besides, we show some new consequences: under some assumptions on the weight w (for
example let w be a power weight) the condition (4.25) implies that u belongs necessary to
the Ap class.

Proposition 4.22. [20] Let p > 1.

(i) If u = 1, (4.25) is equivalent to the condition w ∈ Bp,∞.

(ii) If w = 1, (4.25) is equivalent to the condition u ∈ Ap.

Proposition 4.23. Assume that w(t) = tα, α > 0. Then the condition (4.25) implies that
u ∈ Ap, for p > 1. In particular, if H : Lr,p(u)→ Lr,∞(u) and r < p, then u ∈ Ap.

Proof. If w(t) = tα, then the condition (4.25) is(∫ u(I)

0

(
φI(t)

tα+1

)p′
tαdt

)1/p′

.
|I|

u(I)(α+1)/p
. (4.31)

Let γ = α(p′ − 1). Since t ≤ u(I) and γ > 0, we obtain by (4.31)(∫ u(I)

0

(
φI(t)

t

)p′
dt

)1/p′

.

(∫ u(I)

0

(
φI(t)

t

)p′ (
u(I)

t

)γ
dt

)1/p′

= u(I)γ/p
′

(∫ u(I)

0

(
φI(t)

tα+1

)p′
tαdt

)1/p′

.
|I|

u1/p(I)
.
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It remains to show that the condition(∫ u(I)

0

(
φI(t)

t

)p′
dt

)1/p′

.
|I|

u(I)1/p
,

implies Ap. In fact, since

(u−1χI)
∗
u(t) ≤

1

t

∫ t

0

(u−1χI)
∗
u(s)ds =

φI(t)

t
,

then (∫ u(I)

0

(
(u−1χI)

∗
u(t)
)p′
dt

)1/p′

.
|I|

u(I)1/p
,

which is equivalent to the Ap condition. Indeed, (see [94])

u ∈ Ap ⇔
(

1

|I|

∫
I

u−p/p
′
(x)dx

)p/p′
.
|I|
u(I)

⇔
(∫

I

(u−1χI)
p′(x)u(x)dx

)1/p′

.
|I|

u1/p(I)

⇔

(∫ u(I)

0

((u−1χI)
∗
u(t))

p′dt

)1/p′

.
|I|

u1/p(I)
.

Finally, observe that if w(t) = tα and α > 0, then Λp
u(w) = Lr,p(u) and Λp,∞

u (w) = Lr,∞(u)
for r < p. Hence, by the previous argument we get that u ∈ Ap. �

We extend the previous result, considering more general weights.

Proposition 4.24. Let p > 1. If W (t)/t is increasing, then (4.25) implies that u ∈ Ap.

Proof. Note that if W (t)/t is increasing then w ∈ B∗∞ since∫ r

0

W (t)

t
dt . W (r), for every r > 0.

If w ∈ B∗∞ then, for every f decreasing we have, by Theorem 3.23, that

||Qf ||L1(w) . ||f ||L1(w),

which is equivalent to ∫ ∞
0

f(s)
W (s)

s
ds .

∫ ∞
0

f(s)w(s)ds.
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Hence (∫ u(I)

0

(
φI(t)

t

)p′
dt

)1/p′

=

(∫ u(I)

0

(
φI(t)

t

)p′
t

W (t)

W (t)

t
dt

)1/p′

.

(∫ u(I)

0

(
φI(t)

t

)p′
t

W (t)
w(t)dt

)1/p′

=

(∫ u(I)

0

(
φI(t)

W (t)

)p′ (
W (t)

t

)p′−1

w(t)dt

)1/p′

.

(
W (u(I))

u(I)

)1/p |I|
W (u(I))1/p

=
|I|

u(I)1/p
,

from which the result follows. �

If the Hardy-Littlewood maximal function is bounded on weighted Lorentz spaces

M : Λp
u(w)→ Λp,∞

u (w)

then it is bounded on the same spaces with u = 1 (see [20]). The following theorem establishes
a similar result, but for H instead of M .

Theorem 4.25. Let 0 < p <∞. If H : Λp
u(w)→ Λp,∞

u (w), then w ∈ Bp,∞.

Proof. Since by Theorem 4.16, the equation (4.20) holds, we can follow the same arguments
used in [20, Proposition 3.4.4 and Theorem 3.4.8]. �



Chapter 5

The case u ∈ A1

In the previous chapter we showed that the boundedness

H : Λp
u(w)→ Λp

u(w)

does not necessary hold even if we assume the following conditions (see Proposition 4.6):

(i) H : Lp(u)→ Lp(u), p > 1, characterized by the condition u ∈ Ap;

(ii) H : Λp(w)→ Λp(w) characterized by the condition w ∈ Bp ∩B∗∞.

However, in the first section we will prove that the situation is different if we assume the
condition u ∈ A1. In fact, we will show that under this assumption, for p > 1

H : Λp
u(w)→ Λp

u(w)⇔ w ∈ Bp ∩B∗∞.

Analogously, if u ∈ A1 and 0 < p <∞ we have that

H : Λp
u(w)→ Λp,∞

u (w)⇔ w ∈ Bp,∞ ∩B∗∞.

Hence, in this case, the boundedness of the Hilbert transform on weighted Lorentz spaces
Λp
u(w) coincides with the boundedness of the same operator for the weight u = 1.

The results of this chapter and part of Chapter 4 are included in [2].

It is known that under the assumption u ∈ A1, the boundedness of the Hardy-Littlewood
maximal function on Λp

u(w) is equivalent to the boundedness of the same operator for u = 1
(see [20]).

Theorem 5.1. [20] If u ∈ A1, and 0 < p <∞, then

M : Λp
u(w)→ Λp

u(w)⇔M : Λp(w)→ Λp(w),

and
M : Λp

u(w)→ Λp,∞
u (w)⇔M : Λp(w)→ Λp,∞(w).
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If we rearrange the Hilbert transform with respect to a weight u ∈ A1, we obtain a
generalization of (3.11); that is, if f ∈ C∞c (see [6]), then

(Hf)∗u(t) ≤ Pf ∗u(t) +Qf ∗u(t). (5.1)

Applying this relation, we characterize the boundedness of the Hilbert transform on weighted
Lorentz spaces.

Theorem 5.2. Let u ∈ A1 and let 0 < p <∞. Then

H : Λp
u(w)→ Λp,∞

u (w)⇐⇒ w ∈ Bp,∞ ∩B∗∞.

Proof. First we prove the necessary condition. By Theorem 4.25 we obtain that w ∈ Bp,∞.
Let us see now that it is also in B∗∞. Let 0 < t ≤ s < ∞. Then, since u /∈ L1(R) by
Proposition 4.5, there exists ν ∈ (0, 1] and b > 0 such that

t =

∫ bν

−bν
u(r) dr ≤

∫ b

−b
u(r) dr = s.

By Theorem 4.4 we obtain (4.5) and hence

W (t)

W (s)
.

(
1 + log

1

ν

)−p
.

Let S = (−bν, bν) and I = (−b, b). Since u ∈ A1, we obtain that

ν =
|S|
|I|
.
u(S)

u(I)
=
t

s

and therefore
W (t)

W (s)
.
(

1 + log
s

t

)−p
,

which is equivalent to the condition w ∈ B∗∞ by Corollary 3.28.
To prove the converse, we just have to use that if u ∈ A1 and f ∈ C∞c then we have (5.1).

Now, since w ∈ Bp,∞, we have that

sup
t>0

Pf ∗u(t)W (t)1/p . ||f ∗u ||Lp(w) = ||f ||Λpu(w),

and the condition w ∈ B∗∞ implies the same inequality for the operator Q; that is (see
Section 3.3)

sup
t>0

Qf ∗u(t)W (t)1/p . ||f ||Λpu(w),

and the result follows. �
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As a direct application we get the following known result (see [25]).

Corollary 5.3. Let q > 0 and p ≥ 1. If u ∈ A1,

H : Lp,q(u)→ Lp,∞(u). (5.2)

Proof. The boundedness H : Lp,q(u) → Lp,∞(u) can be rewritten as H : Λq
u(t

q/p−1) →
Λq,∞
u (tq/p−1). Observe that the weight tq/p−1 is in B∗∞ and if p ≥ 1, then tq/p−1 ∈ Bq,∞.

Indeed, if q ≤ 1, then by Theorem 3.18 we have that tq/p−1 ∈ Bq,∞ since it is q quasi-
concave. On the other hand, if q > 1, tq/p−1 ∈ Bq,∞ in view of Theorems 3.8 and 3.17.
Finally, applying Theorem 5.2 we obtain the result. �

With a completely similar proof and using the properties of the Bp class, we obtain the
following:

Theorem 5.4. Let u ∈ A1 and let 1 < p <∞. Then

H : Λp
u(w)→ Λp

u(w)⇐⇒ w ∈ Bp ∩B∗∞.

Proof. By Theorem 4.25 we obtain that w ∈ Bp,∞, which by Theorem 3.17 is equivalent to
the Bp condition for p > 1. The necessity of the B∗∞ condition is identical to the proof of
Theorem 5.2.

As for the converse, again u ∈ A1 and f ∈ C∞c imply (5.1). Then, since w ∈ Bp, we have
that

||Pf ∗u ||Λpu(w) . ||f ∗u ||Lp(w) = ||f ||Λpu(w),

and the condition w ∈ B∗∞ implies the same inequality for the operator Q; that is (see
Section 3.3)

||Qf ∗u ||Λpu(w) . ||f ||Λpu(w),

and the result follows. �

The strong-type boundedness of the Hilbert transform on Λp
u(w) for p ≤ 1 presents some

extra difficulties. Even though we show that the Bp ∩ B∗∞ condition is sufficient, provided
u ∈ A1, we prove the necessity, under some extra assumption on the function W .

Theorem 5.5. Let u ∈ A1 and let 0 < p ≤ 1.

(i) If w ∈ Bp ∩B∗∞, then H : Λp
u(w)→ Λp

u(w) is bounded.

(ii) The boundedness H : Λp
u(w)→ Λp

u(w) implies that w ∈ B∗∞ and, under the assumption

W
1/p

(t) 6≈ t, t > 1, we get that w ∈ Bp.
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Proof. The sufficiency of the conditions Bp and B∗∞ in (i), and the necessity of the condition
B∗∞ in (ii) are identical to the proof of Theorem 5.4. The necessity of the condition Bp is a
consequence of Theorem 4.25 and Proposition 3.19. �

Corollary 5.6. Let q > 0 and p > 1. If u ∈ A1,

H : Lp,q(u)→ Lp,q(u).

Proof. As in Corollary 5.3, H : Lp,q(u)→ Lp,q(u) can be rewritten as

H : Λq
u(t

q/p−1)→ Λq
u(t

q/p−1).

The weight tq/p−1 is in B∗∞ and if p > 1, then tq/p−1 ∈ Bq. The boundedness H : Lp,q(u) →
Lp,q(u) follows by Theorem 5.4 if q > 1 and, if q ≤ 1 it follows by Theorem 5.5. �



Chapter 6

Complete characterization of the
boundedness of H on Λ

p
u(w)

In the previous chapter we studied the boundedness of the Hilbert transform on weighted
Lorentz spaces whenever u ∈ A1, which, in general is not a necessary condition.

Throughout this chapter we completely characterize the weak-type boundedness of H,
as follows:

H : Λp
u(w)→ Λp,∞

u (w) ⇔ M : Λp
u(w)→ Λp,∞

u (w) and (u,w) ∈ AB∗∞,

for p > 1, whereas the case p ≤ 1 is partially solved. We also characterize the boundedness

M : Λp
u(w)→ Λp,∞

u (w),

which was open for p ≥ 1. In fact, we show that the solution for p > 1 is the Bp(u) class
of weights, which also characterizes the strong-type version M : Λp

u(w) → Λp
u(w). Hence

as in the classical cases, both the weak-type and strong-type boundedness of M on Λp
u(w)

coincide. The solution, which extends and unify the classical results for u = 1 and w = 1, can
be reformulated in the context of generalized Boyd indices, providing an extension of Boyd
theorem in the setting of weighted Lorentz spaces that are not necessarily rearrangement
invariant. Our main results are summarized in Theorem 6.19 for p > 1, and in Theorem 6.20
for p < 1. The results of this chapter are included in [3] and [1].

The sections are organized as follows:

In the first section we prove that the weak-type boundedness H : Λp
u(w) → Λp,∞

u (w)
implies that u ∈ A∞ (see Theorem 6.4). Moreover, we show a different characterization of
the A∞ condition, in terms of the following expression involving H (see Theorem 6.3),∫

I

|H(uχI)(x)|dx . u(I).

59
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In the second section we prove that the weak-type boundedness H : Λp
u(w) → Λp,∞

u (w)
implies that (u,w) ∈ AB∗∞ (see Theorem 6.6).

In the third section we prove that the weak-type boundedness of H implies that of M on
the same spaces:

H : Λp
u(w)→ Λp,∞

u (w) ⇒ M : Λp
u(w)→ Λp,∞

u (w),

if p > 1 (see Theorem 6.8). In particular, we recover the following well-known result

H : Lp(u)→ Lp,∞(u) ⇒ M : Lp(u)→ Lp,∞(u),

without passing through the Ap condition.

In the fourth section we prove the sufficiency of the conditions; that is:

M : Λp
u(w)→ Λp,∞

u (w) and (u,w) ∈ AB∗∞ ⇒ H : Λp
u(w)→ Λp,∞

u (w),

and

M : Λp
u(w)→ Λp

u(w) and (u,w) ∈ AB∗∞ ⇒ H : Λp
u(w)→ Λp

u(w),

for all p > 0 (see Theorem 6.10, and Corollary 6.11).

The fifth section contains our main results that are Theorem 6.19 for p > 1 and Theo-
rem 6.20 for p < 1. However, we first solve the boundedness of M : Λp

u(w)→ Λp,∞
u (w) when

p > 1 and the solution is the Bp(u) condition (see Theorem 6.17). In particular, we show
that if p > 1, then

M : Lp(u)→ Lp,∞(u) ⇒ M : Lp(u)→ Lp(u)

without using the reverse Hölder inequality.

In the sixth section we give an extension of Boyd theorem, reformulating our results in
terms of some generalized Boyd indices.

6.1 Necessary conditions involving the A∞ condition

In general, the Bp(u) condition, which characterizes the strong-type boundedness of the
Hardy-Littlewood maximal function on weighted Lorentz spaces does not imply that u ∈ A∞.
Indeed, if u(x) = e|x|, x ∈ R and w = χ(0,1), it was proved in [20] that

M : Λp
u(w)→ Λp

u(w),

is bounded, for p > 1, whereas u is a non-doubling measure.
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However, the situation is different when we consider the weak-type (and consequently
the strong-type) boundedness of the Hilbert transform on the weighted Lorentz spaces

H : Λp
u(w)→ Λp,∞

u (w), (6.1)

since we will prove that it necessarily implies that u ∈ A∞. In fact, we find a necessary
condition involving the operator itself,∫

I

|H(uχI)(x)|dx . u(I). (6.2)

Although our aim is to prove the equivalence between (6.2) and the A∞ condition, for
technical reasons, we first show that (6.1) implies the strong-type boundedness of the same
operator, for all r > p.

Theorem 6.1. Let p > 0. If H : Λp
u(w) → Λp,∞

u (w), then H : Λ2p,p
u (w) → Λ2p,∞

u (w).
Moreover, we have that H : Λr

u(w)→ Λr
u(w), for all r > p.

Proof. If f ∈ C∞c , then
(Hf)2 = f 2 + 2H(fHf), (6.3)

(see [40]), and taking into account that w ∈ ∆2, we have that

||Hf ||Λ2p,∞
u (w) = ||(Hf)2||1/2

Λp,∞u (w)
= ||f 2 + 2H(fHf)||1/2

Λp,∞u (w)

≤ C(||f 2||Λp,∞u (w) + 2||H(fHf)||Λp,∞u (w))
1/2

≤ (C||f ||2
Λ2p,∞
u (w)

+ 2Cp||fHf ||Λpu(w))
1/2,

where the last estimate is a consequence of the hypothesis.
Now, we will see that

(fHf)∗u(t) ≤ f ∗u(t1)(Hf)∗u(t2), (6.4)

for all t = t1 + t2. Indeed, let G = fHf and µ1 = f ∗u(t1), µ2 = (Hf)∗u(t2). Then, applying
properties of the decreasing rearrangements and distribution functions (see [40], and [8]) we
have that

G∗u(t) = G∗u(t1 + t2) ≤ G∗u(λ
u
f (µ1) + λu(Hf)(µ2))

= G∗u(λ
u
G(µ1µ2)) ≤ µ1µ2 ≤ f ∗u(t1)(Hf)∗u(t2).

Let t1 = t2 = 1/2 in (6.4). Then, since w ∈ ∆2 we obtain that

||fHf ||Λpu(w) .

(∫ ∞
0

(f ∗u(t))p((Hf)∗u(t))
pw(t)dt

)1/p

=

(∫ ∞
0

(f ∗u(t))p

W 1/2(t)
(W 1/2p(t)(Hf)∗u(t))

pw(t)dt

)1/p

≤
(∫ ∞

0

(f ∗u(t))p

W 1/2(t)

(
sup
t>0

W 1/2p(t)(Hf)∗u(t)

)p
w(t)dt

)1/p

= ||Hf ||Λ2p,∞
u (w)||f ||Λ2p,p

u (w).
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Therefore, we have that

||Hf ||Λ2p,∞
u (w) ≤ (C||f ||2

Λ2p,∞
u (w)

+ 2Cp||f ||Λ2p,p
u (w)||Hf ||Λ2p,∞

u (w))
1/2

and consequently

||Hf ||2
Λ2p,∞
u (w)

||f ||2
Λ2p,p
u (w)

≤ C
||f ||2

Λ2p,∞
u (w)

||f ||2
Λ2p,p
u (w)

+ Cp
||Hf ||Λ2p,∞

u (w)

||f ||Λ2p,p
u (w)

.

Using that Λ2p,p
u (w) ↪→ Λ2p,∞

u (w) (see [20, pg. 31]), then

||Hf ||2
Λ2p,∞
u (w)

||f ||2
Λ2p,p
u (w)

≤ C + Cp
||Hf ||Λ2p,∞

u (w)

||f ||Λ2p,p
u (w)

,

Thus, studying the quadratic equation we have that

||Hf ||Λ2p,∞
u (w) ≤

Cp + (C2
p + 4C)1/2

2
||f ||Λ2p,p

u (w). (6.5)

for every f ∈ Λp
u(w) (see Remark 4.14). Taking into account the hypothesis and (6.5), we

obtain by Theorem 2.18, that

H : Λr
u(w)→ Λr

u(w) for p < r < 2p.

Iterating this result we have that

H : Λr
u(w)→ Λr

u(w),

for all r > p. �

Theorem 6.2. Let p > 0. If H : Λp
u(w)→ Λp,∞

u (w), then∫
I

|H(uχI)(x)|dx . u(I), (6.6)

for all intervals I of the real line.

Proof. First note that the hypothesis implies the Bp,∞ condition by Theorem 4.25. If p > 1,
then Bp,∞ = Bp by Theorem 3.17, and by Proposition 3.11 (ii) we have that

||χE||(Λp,∞u (w))′ ≈
u(E)

W 1/p(u(E))
, (6.7)
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for every measurable set E. Let now In = {x ∈ I : u(x) ≤ n}. By duality arguments we
have that

||u−1H(uχIn)||(Λpu(w))′ = sup
f∈C∞c

|
∫
R u
−1(x)H(uχIn)(x)f(x)u(x)dx|

||f ||Λpu(w)

= sup
f∈C∞c

|
∫
RH(uχIn)(x)f(x)dx|

||f ||Λpu(w)

= sup
f∈C∞c

|
∫
R u(x)χIn(x)Hf(x)dx|

||f ||Λpu(w)

. sup
f∈C∞c

||χIn||(Λp,∞u (w))′ ||Hf ||Λp,∞u (w)

||f ||Λpu(w)

. ||χIn||(Λp,∞u (w))′ ,

where we have used the hypothesis. Hence,

||u−1H(uχIn)||(Λpu(w))′ . ||χIn||(Λp,∞u (w))′ . (6.8)

Then, applying Hölder’s inequality and taking into account (6.8) and (6.7) we obtain∫
In

|H(uχIn)(x)|dx =

∫
χIn(x)u(x)u−1(x)|H(uχIn)(x)|dx

. ||χIn||Λpu(w)||u−1H(uχIn)||(Λpu(w))′

. W 1/p(u(In))||χIn ||(Λp,∞u (w))′ . u(In) ≤ u(I).

Since hn = χIn|H(uχIn)| converges to h = χI |H(uχI)| in L1,∞, there exists a subsequence
hnk that converges almost everywhere to h, and so by Fatou’s lemma we have that∫

I

|H(uχI)(x)|dx ≤ lim inf
k→∞

∫
Ink

|H(uχInk )(x)|dx . u(I).

If p ≤ 1, then we apply the hypothesis and by Theorem 6.1 we obtain that H : Λr
u(w)→

Λr
u(w) for all r > p and so, in particular it holds for exponents bigger than 1. Hence, the

problem is reduced to the previous case. �

It is known that the following condition, involving the Hardy-Littlewood maximal∫
I

M(uχI)(x)dx . u(I) (6.9)

is equivalent to the A∞ condition (for more details see [55], [98], [99], [100], and [65]). We
prove the following similar result involving H.

Theorem 6.3. The condition (6.6) is equivalent to the condition u ∈ A∞.
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Proof. If u ∈ A∞ then condition (6.6) is satisfied. Indeed, if u ∈ A∞ there exists q ≥ 1 such
that u ∈ Aq. If q > 1, by Hölder’s inequality,∫

I

|H(uχI)(x)|dx =

∫
u(x)u−1(x)χI(x)|H(uχI)(x)|dx . ||u−1H(uχI)||Lq′ (u)||χI ||Lq(u)

=

(∫
|H(uχI)(x)|q′u1−q′(x)dx

)1/q′

u(I)1/q

.

(∫
(uχI)

q′(x)u1−q′(x)dx

)1/q′

u(I)1/q = u(I),

taking into account that u ∈ Aq if and only if u1−q′ ∈ Aq′ , which characterizes the bounded-
ness of the Hilbert transform on weighted Lebesgue spaces Lq

′
(u1−q′). If q = 1, then u ∈ A1

implies that u ∈ Ar, for all r > 1, hence this case is reduced to the previous one.
On the other hand, assume that condition (6.6) holds. It is well-known that if 0 ≤ f, f̃ ∈

L1[−π, π] then

||Mf ||L1[−π,π] . ||f ||L1[−π,π] + ||f̃ ||L1[−π,π], (6.10)

where f̃(θ) = 1
2π

∫ π
−π f(θ−ϕ) cot

(
ϕ
2

)
dϕ is the conjugate Hilbert transform (for more details

see [8]).
Now, we will show that if f,Hf ∈ L1[−π, π], then

||f̃ ||L1[−π,π] . ||Hf ||L1[−π,π] + ||f ||L1[−π,π]. (6.11)

Indeed, let

k(s) =
1

s
− 1

2
cot
(s

2

)
,

whenever 0 < |s| < π and 0 elsewhere. The function k is continuous and increasing on
(−π, π), hence bounded on the real line by 1/π. Now, if 0 < ε < π and |θ| ≤ π we obtain

|f̃ε(θ)| =
1

2π

∣∣∣∣∫
ε<|ϕ|≤π

f(θ − ϕ) cot
(ϕ

2

)
dϕ

∣∣∣∣
=

1

π

∣∣∣∣∫
ε<|ϕ|≤π

f(θ − ϕ)

[
1

ϕ
− k(ϕ)

]
dϕ

∣∣∣∣
.

1

π

∣∣∣∣∫
ε<|ϕ|≤π

f(θ − ϕ)
1

ϕ
dϕ

∣∣∣∣+
1

π

∫
|ϕ|≤π

|f(θ − ϕ)||k(ϕ)|dϕ

.
1

π

∣∣∣∣∫
ε<|ϕ|≤π

f(θ − ϕ)
1

ϕ
dϕ+

∫
|ϕ|≥π

f(θ − ϕ)
1

ϕ
dϕ−

∫
|ϕ|≥π

f(θ − ϕ)
1

ϕ
dϕ

∣∣∣∣
+

1

π
(|f | ∗ |k|)(θ)

.
1

π
(|Hεf(θ)|+ (|f | ∗ |g|)(θ) + (|f | ∗ |k|)(θ)) ,
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where g(ϕ) = 1
ϕ
χ{|ϕ|≥π}. We take the limit when ε tends to 0 and obtain

|f̃(θ)| . 1

π
(|Hf(θ)|+ (|f | ∗ |g|)(θ) + (|f | ∗ |k|)(θ)) .

Hence,
||f̃ ||L1[−π,π] . ||Hf ||L1[−π,π] + ||g||L∞||f ||L1[−π,π] + ||k||L∞ ||f ||L1[−π,π].

Therefore, if 0 ≤ f,Hf ∈ L1[−π, π], by (6.10) and (6.11)

||Mf ||L1[−π,π] . ||f ||L1[−π,π] + ||Hf ||L1[−π,π]. (6.12)

Now, we will show that

||M(uχI)||L1(I) . ||uχI ||L1(I) + ||H(uχI)||L1(I). (6.13)

Let Dag(x) = g(ax) and Tcg(x) = g(c + x) be the dilation and the translation operators
respectively, where a > 0, c ∈ R. It suffices to prove (6.13) for all dilations and translations
of [−π, π], since every interval I can be seen as composition of dilations and translations of
[−π, π]. First, let I = [−b, b], and a > 0 such that aπ = b. Since M and H are dilation
invariant operators, we have that∫

I

M(uχI)(x)dx =

∫ b

−b
D1/aMDa(uχI)(x)dx = a

∫ π

−π
M [(Dau)χ[−π,π]](x)dx, (6.14)

and ∫
I

|H(uχI)(x)|dx =

∫ b

−b
D1/a|HDa(uχI)(x)|dx = a

∫ π

−π
|H[(Dau)χ[−π,π]](x)|dx. (6.15)

If we take f = (Dau)χ[−π,π] then by (6.12), (6.14) and (6.15) we get∫
I

M(uχI)(x)dx .
∫
I

u(x)dx+

∫
I

|H(uχI)(x)|dx.

Let I = [c− π, c+ π]. Since M and H are translation invariant operators, we obtain∫
I

M(uχI)(x)dx =

∫ c+π

c−π
T−cMTc(uχI)(x)dx =

∫ π

−π
M [(Tcu)χ[−π,π]](x)dx, (6.16)

and ∫
I

|H(uχI)(x)|dx =

∫ c+π

c−π
T−c|HTc(uχI)(x)|dx =

∫ π

−π
|H[(Tcu)χ[−π,π]](x)|dx. (6.17)

Now if f = (Tcu)χ[−π,π], then by (6.12), (6.16) and (6.17) we have that∫
I

M(uχI)(x)dx .
∫
I

u+

∫
I

|H(uχI)(x)|dx.

Finally, applying the condition (6.6) we get∫
I

M(uχI)(x)dx . u(I) (6.18)

which implies the A∞ condition. �
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As a consequence of the previous theorem, we obtain that the weak-type, and conse-
quently the strong-type boundedness of the Hilbert transform on weighted Lorentz spaces
implies that u ∈ A∞, for all p > 0.

Theorem 6.4. Let 0 < p <∞. If H : Λp
u(w)→ Λp,∞

u (w), then u ∈ A∞.

Proof. By Theorem 6.2, the hypothesis implies relation (6.6) which is equivalent to the A∞
condition by Theorem 6.3. �

6.2 Necessity of the B∗∞ condition

We will prove that, if p > 0, the weak-type boundedness of the Hilbert transform,

H : Λp
u(w)→ Λp,∞

u (w),

implies that w ∈ B∗∞. We start by showing the following consequence of the restricted
weak-type boundedness of the Hilbert transform.

Proposition 6.5. Let u ∈ A∞. If the Hilbert transform is of restricted weak-type (p, p) on
intervals with respect to the pair (u,w), then w ∈ B∗∞.

Proof. Let 0 < t ≤ s <∞. Then, since u /∈ L1, there exists ν ∈ (0, 1] such that

t =

∫ bν

0

u(r) dr ≤
∫ b

0

u(r) dr = s, for some b > 0.

By the hypothesis we obtain (4.5). So,

W (t)

W (s)
≤ C0

(
log

1

ν

)−p
. (6.19)

Let S = (−bν, bν) and I = (−b, b). Since u ∈ A∞, we obtain that

ν =
|S|
|I|
≤ c

(
u(S)

u(I)

)1/q

= c

(
t

s

)1/q

,

for some q ≥ 1. Fix r > q, and let α = 1/q − 1/r > 0. Then

ν ≤ c

(
t

s

)α(
t

s

)1/r

.
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We consider the following two cases in order to estimate (6.19):

If

(
t

s

)α
≤ 1

c
, then

W (t)

W (s)
≤ C0

(
log

1

ν

)−p
≤ C0

(
1

r
log

s

t

)−p
= C0r

p
(

log
s

t

)−p
.

If
t

s
>

(
1

c

)1/α

= k > 0, then we choose C1 such that

W (t)

W (s)
≤ 1 ≤ C1

(
log

1

k

)−p
≤ C1

(
log

s

t

)−p
.

Therefore, taking C = max{C0r
p, C1} we get, for every 0 < t ≤ s,

W (t)

W (s)
≤ C

(
log

s

t

)−p
,

that is equivalent to B∗∞. �

Theorem 6.6. Let p > 0. If H : Λp
u(w)→ Λp,∞

u (w), then (u,w) ∈ AB∗∞.

Proof. The hypothesis implies that u ∈ A∞ by Theorem 6.4. Then, the B∗∞ condition is a
consequence of Proposition 6.5. Finally, since w ∈ ∆2, applying Proposition 3.46 we have
that (u,w) ∈ AB∗∞. �

6.3 Necessity of the weak-type boundedness of M

The main result of this section is to show that the weak-type boundedness of the Hilbert
transform on weighted Lorentz spaces

H : Λp
u(w)→ Λp,∞

u (w)

implies that of the Hardy-Littlewood maximal function on the same spaces, whenever p > 1,
while for the case p ≤ 1 an extra assumption is required. In particular, we give a different
proof of the following classical result:

H : Lp(u)→ Lp,∞(u) ⇒ M : Lp(u)→ Lp,∞(u),

for p > 1, that does not pass through the Ap condition.

First, we present a slightly modified version of the Vitali covering lemma (see [8], [40]).

Notation: The letter I will denote an open interval of the real line, and αI the interval
concentric with I but with side length α > 0 times as large.
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Lemma 6.7. Let K be a compact set of the real line. Let F be a collection of open intervals
that covers K. Then, there exist finitely many intervals, let say I1, . . . , In from F such that
101Ii are disjoint and

K ⊂
n⋃
i=1

303Ii.

Proof. By the compactness of K, there exists a finite subcover of open intervals of F . Hence,
we can assume that F is finite. Consider the collection F̃ of the dilations 101Ij of Ij ∈ F ,

and form the following subcollection F̃sub: let 101I1 be the largest interval, of F̃ . Let 101I2

be the largest disjoint than 101I1 open interval, let 101I3 be the largest disjoint than 101I1

and 101I2, open interval and so on. Since F is finite, and so is F̃ , the process will end after
let say n steps, yielding a collection of disjoint intervals F̃sub = {101Ii}i=1,...,n. Now, we will
see that

K ⊂
n⋃
i=1

303Ii.

Assume that some interval, let say 101Il, has not been selected for the subcollection F̃sub;
that is, there exists 101Im ∈ F̃sub such that 101Il ∩ 101Im 6= ∅. By the construction of F̃sub,
101Il should be smaller than 101Im, and hence it will be contained in 303Im. Similarly we
can show that the union of the non-selected intervals of F̃ is contained in the union of the
triples of the selected ones. �

Theorem 6.8. If any of the following conditions holds:

(i) p > 1,

(ii) p ≤ 1 and assume that W
1/p

(t) 6≈ t, t > 1,

and if H : Λp
u(w)→ Λp,∞

u (w), then M : Λp
u(w)→ Λp,∞

u (w).

Proof. (i) Assume that the Hilbert transform is bounded H : Λp
u(w) → Λp,∞

u (w), p > 1.
Fix λ > 0 and consider f ∈ C∞c non-negative. Let K be a compact set of Eλ = {x ∈ R :
Mf(x) > λ}. By the Calderón-Zygmund decomposition (see [36]) there exists a collection
of open intervals {Ii} such that their union covers K and

λ <
1

|Ii|

∫
Ii

f ≤ 2λ. (6.20)

By Lemma 6.7 there exist finitely many disjoint open intervals Ii from this collection, such
that they are far away from each other, concretely {101Ii}i are pairwise disjoint and

K ⊂
n⋃
i

303Ii. (6.21)
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Fix i ∈ {1, . . . , n}. If ji ∈ {−50, 50}, then Ii,ji denotes the interval with the same Lebesgue
measure as Ii, |Ii,ji | = |Ii|, situated on the left hand-side of Ii, if ji ∈ {−50,−1} and on the
right hand-side of Ii, if ji ∈ {1, 50} and such that d(Ii, Ii,ji) = (|ji| − 1)|Ii|. For ji = 0, both
Ii and Ii,ji coincide.

Claim: for each Ii there exists an interval Ii,ji such that, if x ∈ ∪iIi,ji we get

|H(fχ∪iIi)(x)| ≥ 1

5
λ. (6.22)

Assume that the claim holds. Let E = ∪iIi,ji , then by (6.22) and applying Hölder’s
inequality we get

λW 1/p(u(E)) . W 1/p(u(E))
1

u(E)

∫
E

|H(fχ∪iIi)(x)|u(x)dx

. W 1/p(u(E))
1

u(E)
||H(fχ∪iIi)||Λp,∞u (w)||χE||(Λp,∞u (w))′

. ||fχ∪iIi ||Λpu(w) ≤ ||f ||Λpu(w),

where in the third inequality we have used the hypothesis of the boundedness of the Hilbert
transform, and the fact that w ∈ Bp (see Theorems 4.25 and 3.17), which, by Proposition 3.11
(ii) implies

||χE||(Λp,∞u (w))′ .
u(E)

W 1/p(u(E))
. (6.23)

Now, by Theorem 6.4, the boundedness of the Hilbert transform implies that u ∈ A∞, hence
u is a doubling measure and then u(Ii) . u(Ii,ji) for every i = 1, 2, . . . , n. Then, by (6.21)
we have that

u(K) .
n∑
i

u(303Ii) .
n∑
i=1

u(Ii,ji).

Thus, since w ∈ ∆2 we obtain

W 1/p(u(K)) . W 1/p(u(E)).

Hence,

λW 1/p(u(K)) . ||f ||Λpu(w).

Since this holds for all compact sets of Eλ, by Fatou’s lemma we obtain that

λW 1/p(u(Eλ)) . ||f ||Λpu(w).

Proof of the claim: Fix 1 ≤ k ≤ n and define

Ck(x) =
k−1∑
i=1

∫
Ii

f(y)

x− y
dy +

n∑
i=k+1

∫
Ii

f(y)

x− y
dy.
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Let Ak =
⋃0
jk=−50 Ik,jk , hence Ak ⊂ 101Ik and note that Ak and Ii are disjoint for all

i ∈ {1, . . . , k − 1, k + 1, n}, since by construction, {101Ii}i=1,...,n is a family of pairwise
disjoint, open intervals.

We will prove that Ck is decreasing in Ak. Let x1, x2 ∈ Ak, such that x1 ≤ x2. If
1 ≤ i ≤ k−1 each interval Ii is situated on the left hand-side of Ak, and so 0 < x1−y ≤ x2−y,
where y ∈ Ii. Hence, ∫

Ii

f(y)

x1 − y
dy ≥

∫
Ii

f(y)

x2 − y
dy. (6.24)

If now k + 1 ≤ i ≤ n, each interval Ii is situated on the right hand-side of Ak, and so
y − x1 ≥ y − x2 > 0, where y ∈ Ii. Hence∫

Ii

f(y)

y − x1

dy ≤
∫
Ii

f(y)

y − x2

dy. (6.25)

Therefore by (6.24) and (6.25) we obtain

Ck(x1) =
k−1∑
i=1

∫
Ii

f(y)

x1 − y
dy +

n∑
i=k+1

∫
Ii

f(y)

x1 − y
dy

=
k−1∑
i=1

∫
Ii

f(y)

x1 − y
dy −

n∑
i=k+1

∫
Ii

f(y)

y − x1

dy

≥
k−1∑
i=1

∫
Ii

f(y)

x2 − y
dy −

n∑
i=k+1

∫
Ii

f(y)

y − x2

dy = Ck(x2)

If k = 1 we choose the left hand-side interval of I1; that is I1,−1. Hence, for x ∈ I1,−1 we
obtain

|H(fχ∪iIi)(x)| =

∣∣∣∣∣
n∑
i=1

∫
Ii

f(y)

x− y
dy

∣∣∣∣∣ =
n∑
i=1

∫
Ii

f(y)

y − x
dy ≥ 1

2|I1|

∫
I1

f(y)dy ≥ λ

2
.

If k = n we choose the right hand-side interval of In; that is In,1. Then, for x ∈ In,1 we get

|H(fχ∪iIi)(x)| =
n∑
i=1

∫
Ii

f(y)

x− y
dy ≥ 1

2|In|

∫
In

f(y)dy ≥ λ

2
.

If 1 < k < n fix α ∈ Ik,−25. Then, we consider the following two cases and the election of
Ik,jk will vary depending on the value of Ck(α).

Case 1: If Ck(α) ≤ λ

4
, then we choose jk = −1, that corresponds to the interval Ik,−1 ⊂ Ak,

situated on the right hand-side of Ik,−25. So, for x ∈ Ik,−1 we get Ck(x) < Ck(α) ≤ λ
4

since
Ck is decreasing. Moreover, if x ∈ Ik,−1 and y ∈ Ik we obtain 0 < y − x ≤ 1

2|Ik| , and hence

by (6.20)

Dk(x) =

∫
Ik

f(y)

y − x
dy ≥ 1

2|Ik|

∫
Ik

f(y)dy ≥ λ

2
.
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Then, since Dk(x) ≥ Ck(x) we obtain

|H(fχ∪iIi)(x)| = |Ck(x)−Dk(x)| = Dk(x)− Ck(x) ≥ λ

2
− λ

4
=
λ

4
.

Case 2: If Ck(α) >
λ

4
, then we choose jk = −50, that corresponds to the interval Ik,−50 ⊂

Ak, situated on the left hand-side of Ik,−25. So, for x ∈ Ik,−50 we obtain Ck(x) > Ck(α) > λ
4

since Ck is decreasing. In addition, if x ∈ Ik,−50 and y ∈ Ik we obtain 0 < y − x ≤ 1
49|Ik| ,

hence by (6.20)

Dk(x) =

∫
Ik

f(y)

y − x
dy ≤ 1

49|Ik|

∫
Ik

f(y)dy ≤ 2λ

49
<

λ

20
.

Then, since Dk(x) ≤ Ck(x)

|H(fχ∪iIi)(x)| = |Ck(x)−Dk(x)| = Ck(x)−Dk(x) ≥ λ

4
− λ

20
=
λ

5
.

Therefore, if x ∈ ∪ni Ii,ji , with the intervals Ii,ji chosen as before, we have proved that

|H(fχ∪iIi)(x)| ≥ λ

5
.

(ii) The proof is similar to that of (i). The only difference is the way we obtain the rela-
tion (6.23). In this case, H : Λp

u(w) → Λp,∞
u (w) implies that w ∈ Bp,∞, which taking into

account the assumption and Proposition 3.19, it also implies the condition w ∈ Bp. Hence,
applying Proposition 3.11 we obtain (6.23). �

6.4 Sufficient conditions

In this section, we will show that the boundedness of the Hardy-Littlewood maximal func-
tion on weighted Lorentz spaces, together with the AB∗∞ condition, are sufficient for the
boundedness of the Hilbert transform on the same spaces. In fact, we shall prove something
stronger since those conditions will imply the boundedness of the Hilbert maximal operator

H∗f(x) = sup
ε>0

∣∣∣∣∫
|y|>ε

f(x− y)

y
dy

∣∣∣∣ .
In 1974, Coifman and Fefferman proved in [26] the so-called good-λ inequality, that

relates the Hardy-Littlewood maximal function and H∗ in the following way:

u({x ∈ R : H∗f(x) > 2λ and Mf(x) ≤ γλ}) ≤ C(γ)u({x ∈ R : H∗f(x) > λ}), (6.26)
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provided u ∈ A∞ (see also [41]). In the classical theory of weighted Lebesgue spaces, the
good-λ inequality has been used to prove that the boundedness of the Hardy-Littlewood
maximal function implies that of H∗ on the same spaces. Although, we could apply (6.26)
to obtain sufficient conditions for H∗ to be bounded on Λp

u(w), with some extra condition
on w, we will use a somehow different approach proved in [6] by Bagby and Kurtz. In fact,
they replaced (6.26) by the following rearrangement inequality: if u ∈ A∞, then for every
t > 0, we have that

(H∗f)∗u(t) ≤ C(Mf)∗u(t/2) + (H∗f)∗u(2t). (6.27)

Iterating (6.27) the following result, involving the adjoint of the Hardy operator, is obtained.
For a non-weighted version of this inequality see also [7].

Theorem 6.9. Let u ∈ A∞. Then,

(H∗f)∗u(t) .
(
Q (Mf)∗u

)
(t/4), (6.28)

for all t > 0, whenever the right hand side is finite.

As a consequence we obtain the following result:

Theorem 6.10. Let 0 < p <∞.

(i) If (u,w) ∈ AB∗∞ and w ∈ Bp,∞(u) then, H∗ : Λp
u(w)→ Λp,∞

u (w).

(ii) If (u,w) ∈ AB∗∞ and w ∈ Bp(u) then, H∗ : Λp
u(w)→ Λp

u(w).

Proof. (i) If w ∈ Bp,∞(u) we have, by Theorem 3.41, that

(Mf)∗u(s) .

(
1

W (s)

∫ s

0

(f ∗u(r))pw(r)dr

)1/p

,

(see [20] for further details). Therefore, we obtain that∫ ∞
t

(Mf)∗u(s)
ds

s
.
∫ ∞
t

(
1

W (s)

∫ s

0

(f ∗u(r))pw(r)dr

)1/p
ds

s

. ||f ||Λpu(w)

∫ ∞
t

1

W 1/p(s)

ds

s
. ||f ||Λpu(w)

1

W 1/p(t)
<∞,

where the last inequality is a consequence of Theorems 3.24 and 3.26.
Then, by Theorem 6.9,

sup
t>0

W 1/p(t)(H∗f)∗u(t) . sup
t>0

W 1/p(t) (Q(Mf)∗u) (t/4) . sup
t>0

W 1/p(t) (Q(Mf)∗u) (t)

. sup
t>0

W 1/p(t)(Mf)∗u(t) .

(∫ ∞
0

(f ∗u(s))pw(s) ds

)1/p

,
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where the third inequality follows by the B∗∞ condition, in view of Theorem 3.26, and the
last step is a consequence of Bp,∞(u).

(ii) With a similar proof we obtain that, in this case,

||H∗f ||p
Λpu(w)

.
∫ ∞

0

(Q(Mf)∗u)
p (t/4)w(t) dt .

∫ ∞
0

(Q(Mf)∗u)
p (t)w(t) dt

.
∫ ∞

0

((Mf)∗u)
p (t)w(t) dt .

∫ ∞
0

(f ∗u( t))pw(t) dt,

where in the third inequality we have used the B∗∞ condition, taking into account Theo-
rem 3.23, and the last step follows by the strong-type boundedness of the Hardy-Littlewood
maximal function on weighted Lorentz spaces, that is characterized by Bp(u) in Theo-
rem 3.32. �

Using the standard techniques we obtain the following result:

Corollary 6.11. Under the hypotheses of Theorem 6.10, it holds that, for every f ∈ Λp
u(w),

there exists

lim
ε→0

∫
|y|>ε

f(x− y)

y
dy, a.e. x ∈ R.

Moreover,

(i) if (u,w) ∈ AB∗∞ and w ∈ Bp,∞(u) then, H : Λp
u(w)→ Λp,∞

u (w);

(ii) if (u,w) ∈ AB∗∞ and w ∈ Bp(u) then, H : Λp
u(w)→ Λp

u(w).

Remark 6.12. Under the hypothesis (i) of Theorem 6.10 we obtain H : Λp
u(w)→ Λp,∞

u (w).
Recall that H is well-defined in C∞c , and can be extended to H on Λp

u(w), by continuity (see
Section 4.3 for more details). We will see that for every f ∈ Λp

u(w)

Hf(x) = lim
ε→0

∫
|y|>ε

f(x− y)

y
dy, a.e. x ∈ R,

where the limit in the right-hand side exists by Corollary 6.11. Indeed, we have that for
every f ∈ Λp

u(w) there exists fn ∈ C∞c such that

lim
n→∞

||Hf −Hfn||Λp,∞u (w) = 0,

and so there is a partial fnk such that

lim
k→∞
|Hf(x)−Hfnk(x)| = 0, a.e. x ∈ R. (6.29)

On the other hand, we have that

||H∗(f − fnk)||Λp,∞u (w) . ||f − fnk ||Λpu(w),



6.5. Complete characterization 74

and so there exists a partial, which is denoted again by fnk , such that

lim
k→∞

H∗(f − fnk)(x) = 0, a.e. x ∈ R. (6.30)

Fix x ∈ R, satisfying (6.29) and (6.30). Hence, we have that for every η > 0 there exists
k > 0 such that

|Hf(x)−Hfnk(x)| < η

3
and H∗(f − fnk)(x) <

η

3
.

For this k, since fnk ∈ C∞c we have that

lim
ε→0
|Hfnk(x)−Hεfnk(x)| = 0. (6.31)

Therefore, for every η > 0 there exists δ > 0 such that for every ε ∈ (0, δ)

|Hfnk(x)−Hεfnk(x)| < η

3
.

Hence, for those x ∈ R satisfying (6.29) and (6.30), we have that for every η > 0, there
exists δ > 0 such that for every ε ∈ (0, δ)

|Hf(x)−Hεf(x)| ≤ |Hf(x)−Hfnk(x)|+ |Hfnk(x)−Hεfnk(x)|+ |Hεfnk(x)−Hεf(x)|

=
η

3
+
η

3
+ |Hε(fnk − f)(x)| ≤ 2η

3
+H∗(fnk − f)(x) ≤ 2η

3
+
η

3
= η,

and so
lim
ε→0

Hεf(x) = Hf(x).

6.5 Complete characterization

In this section, we will present our main results, namely, the complete characterization of
the weak-type and strong-type boundedness of the Hilbert transform on weighted Lorentz
spaces, whenever p > 1, whereas the case p ≤ 1 is solved under an extra assumption.

Although the following result characterizes totally the weak-type boundedness of the
Hilbert transform on weighted Lorentz spaces, one of the required conditions, namely, the
boundedness of the Hardy-Littlewood maximal on weighted Lorentz spaces

M : Λp
u(w)→ Λp,∞

u (w), (6.32)

remains open for p ≥ 1. For this reason, in the next subsection, we characterize (6.32) by
the Bp(u) condition, whenever p > 1. Then, since this is also a solution to the corresponding
strong-type version,

M : Λp
u(w)→ Λp

u(w), (6.33)

we give the solution to the strong-type boundedness of H on Λp
u(w).
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Theorem 6.13. If any of the following conditions holds:

(i) p > 1,

(ii) p ≤ 1 and assume that W
1/p

(t) 6≈ t, t > 1,

then, H : Λp
u(w)→ Λp,∞

u (w) if and only if (u,w) ∈ AB∗∞ and M : Λp
u(w)→ Λp,∞

u (w).

Proof. The sufficiency is given by Corollary 6.11. On the other hand, ifH : Λp
u(w)→ Λp,∞

u (w)
is bounded then by Theorem 6.6 we have that (u,w) ∈ AB∗∞. Finally, the necessity of the
boundedness of the Hardy-Littlewood maximal function is given by Theorem 6.8. �

Remark 6.14. Theorem 6.13 asserts that in particular if p ≤ 1, then under the condition

W
1/p

(t) 6≈ t we have that

H : Λp
u(w)→ Λp,∞

u (w) ⇔ (u,w) ∈ AB∗∞ and M : Λp
u(w)→ Λp,∞

u (w).

However, the assumption on the weight w is not necessary in general. For more details see
Remark 7.25 (ii) and Theorem 7.24 of Chapter 7.

6.5.1 Geometric conditions

We prove that the weak-type boundedness of the Hardy-Littlewood maximal function

M : Λp
u(w)→ Λp,∞

u (w),

implies the strong-type boundedness of the same operator, whenever p > 1 and hence, we
get the equivalence between the Bp,∞(u) and Bp(u) conditions. In particular, we recover the
following classical result,

M : Lp(u)→ Lp,∞(u) implies that M : Lp(u)→ Lp(u),

for all p > 1, without using the reverse Hölder’s inequality (see [36], [41]).
Furthermore, the equivalence between Bp(u) and Bp,∞(u) allows us to complete the

characterization of the strong-type boundedness of the Hilbert transform on weighted Lorentz
spaces. We also give some partial results for the case p ≤ 1.

We first need the following technical results:

Lemma 6.15. Let E be a subset of an interval I, which is a union of pairwise disjoint,
open intervals E = ∪Nk=1Ek. Then, there exists a function FI,E supported on I, with values
in [0, 1] such that for every λ ∈ [|E|/|I|, 1] the set

Jλ = {x : FI,E(x) > λ},
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can be expressed as union of pairwise disjoint, open intervals Jλ,k,

Jλ =
N ′⋃
k=1

Jλ,k, N
′ ≤ N,

and

|E ∩ Jk,λ| = λ|Jk,λ|, for every k. (6.34)

Proof. Let I = (a, b), E = (c, d) such that E ⊂ I and a ≤ c ≤ d ≤ b. Let e ∈ R be such

that b−e
d−e = e−a

e−c = |I|
|S| . Define the function fI,E as follows

fE,I(x) =


e− x
e− c

, if x ∈ (a, c],

1, if x ∈ [c, d],
x− e
d− e

, if x ∈ [d, b).

Then by construction and Thalis’ theorem we get that for every t ∈ [1, |I|/|E|] we have
that

|{x ∈ R : fI,E(x) < t}| = t|E|. (6.35)

Let FI,E(x) = 1/fE,I(x) for every x ∈ I and 0 elsewhere. Then, by (6.35) we have that for
every λ ∈ [|E|/|I|, 1]

λ|{x ∈ R : FI,E(x) > λ}| = |E|,

and so the property (6.34) holds for N = 1.

a bc de

1

|I|
|E|

|E|
|I|

FI,E

fI,E fI,E

Figure 6.1: Function FI,E

We will use induction to prove the general result. Assume that there exists a function
GI,S which satisfies (6.34) for S =

⋃N
k=1 Sk and N ≤ n, where Sk are pairwise disjoint, open
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intervals. We will prove that if a set E has n + 1 intervals; that is E =
n+1⋃
k=1

Ek, there exists

a function satisfying (6.34). For all k ≤ n+ 1, let Tk be open intervals such that

Ek ⊂ Tk ⊂ I and
|Ek|
|Tk|

=
|E|
|I|

.

Case I: If Tj are pairwise disjoint then

FI,E(x) = max

{
|E|
|I|

, FT1,E1(x), . . . , FTn+1,En+1(x)

}
, (6.36)

which implies that

{x ∈ I : FI,E(x) > λ} =
n+1⋃
k=1

{x ∈ I : FTk,Ek(x) > λ} =
n+1⋃
k=1

Jλ,k = Jλ,

and the property (6.34) holds for each Jλ,k as in the case of one interval.

Case II: If at least two consecutive Tj’s are not disjoint, let say Tj and Tj+1, then the cor-
responding functions FTj ,Ej and FTj+1,Ej+1

intersect at some point. Let λ0 be the supremum
of such points and let

Eλ0 = {x : FI,E(x) > λ0} =
N ′⋃
k=1

Eλ0,k,

where N ′ ≤ n. Then the function satisfying (6.34) is:

F I,E(x) =


FI,E(x) if x ∈ Eλ0

λ0GI,Eλ0
(x) if x /∈ Eλ0

0 elsewhere,

where GI,Eλ0
is obtained by the inductive hypothesis.

To see (6.34), observe that on the one hand, for the values between λ0 and 1, the functions
FTj ,Ej do not intersect for any j, since λ0 is the supremum of the intersecting values. Hence

F satisfies (6.34).
On the other hand, if λ ∈ [|E|/|I|, λ0], we have that

Jλ = {x : F I,E(x) > λ} = {x : λ0GI,Eλ0
(x) > λ} = J ′λ.

Indeed, if x 6∈ Eλ0 then by definition of F̄I,E we have that x ∈ Jλ if and only if x ∈ J ′λ.
Clearly, we have that x ∈ Eλ0 ∩Jλ = Eλ0 ⊂ J ′λ, and x ∈ Eλ0 ∩J ′λ = Eλ0 ⊂ Jλ as well. Now,
since λ0|Eλ0| = |E| we have that λ/λ0 ∈ [|Eλ0|/|I|, 1], which by the inductive hypothesis
implies that {

x : GI,Eλ0
(x) >

λ

λ0

}
= Jλ =

K⋃
k=1

Jλ,k and
|Jλ,k ∩ Eλ0|
|Jλ,k|

=
λ

λ0

, (6.37)
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E1 E2 E3

1

|E|
|I|

0

I

Eλ0,1 Eλ0,2

λ0

F̄I,E

x

Figure 6.2: Function F̄I,E

Eλ0,1 Eλ0,20

I

Eλ′0

λ0

λ0GI,Eλ0

x

|E|
|I|

λ′0

Figure 6.3: Function λ0GI,Eλ0

with K ≤ N ′ and N ′ ≤ n. Now we will show that for every λ ∈ [|E|/|I|, 1]

|Jλ,k ∩ E|
|Jλ,k|

= λ, for every k ≤ K.

Observe that the set Eλ0 can be expressed as a union of pairwise disjoint open intervals

Eλ0 =
M⋃
i=1

Eλ0,i, for M ≤ N ′,

and we also have that

λ0|Eλ0,i| = |E ∩ Eλ0,i| (6.38)

for every i ∈ Λ = {1, 2, . . . ,M}. Fix k ≤ K. Then the set Jλ,k, which will be also union
of intervals and will contain some of the intervals Eλ,i, let’s say

⋃
t∈Λk

Eλ,t, where Λk ⊂ Λ.
Then,

|Jλ,k ∩ Eλ0| = |
⋃
t∈Λk

Eλ0,t|.

Since E ⊂ Eλ0 we have that Jλ,k ∩ E = (Jλ,k ∩ Eλ0) ∩ E = (∪t∈ΛkEλ0,t) ∩ E. Hence we get
by (6.38)

|Jλ,k ∩ E|
|Jλ,k ∩ Eλ0|

=
|(∪t∈ΛkEλ0,t) ∩ E|
| ∪t∈Λk Eλ,t|

= λ0.

Finally, by (6.37) we have that

|Jλ,k ∩ E|
|Jλ,k|

=
|Jλ,k ∩ E|
|Jλ,k|

|Jλ,k ∩ Eλ0|
|Jλ,k ∩ Eλ0|

= λ.

�
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Lemma 6.16. Let E and I be as in Lemma 6.15. If s =
|I|
|E|

, then

1

|I|

∫
I

FI,E(x)dx =
1 + log s

s
.

Proof. Note that

|{x : FI,E(x) > λ}| =


|I|, if λ ∈ (0, 1/s),

|E|/λ, if λ ∈ [1/s, 1),

0, if λ ≥ 1.

Then,

1

|I|

∫
I

FI,E(x)dx =
1

|I|

∫ ∞
0

|{x : FI,E(x) > λ}|dλ =
1 + log s

s
.

�

The following proof is inspired by the fact that Bp,∞ implies Bp, for p > 1, proved by
Neugebauer in [79].

Theorem 6.17. If p > 1, then M : Λp
u(w)→ Λp,∞

u (w) implies that M : Λp
u(w)→ Λp

u(w). In
particular, Bp(u) = Bp,∞(u).

Proof. Let (Ij)
J
j=1 be a finite family of pairwise disjoint, open intervals, and let (Ej)

J
j=1 be

such that Ej ⊆ Ij, Ej is a finite union of disjoint, closed intervals and
|Ij|
|Ej|

= s for every j.

Let f : R→ [0, 1] be as follows

f(x) =
J∑
j=1

FIj ,Ej(x). (6.39)

By the weak-type boundedness of M we get for all t > 0

W
(
u({x ∈ R : Mf(x) > t})

)
.

1

tp
||f ||p

Λpu(w)
. (6.40)

On the one hand

||f ||p
Λpu(w)

=

∫ ∞
0

pλp−1W
(
u({x : f(x) > λ})

)
dλ

≤
∫ 1/s

0

pλp−1W
(
u({x : f(x) ≥ λ})

)
dλ+

∫ 1

1/s

pλp−1W
(
u({x : f(x) ≥ λ})

)
dλ

= (I) + (II).
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Using that

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1Ej

)) . max
1≤j≤J

(
|Ij|
|Ej|

)p
≈ sp,

we obtain

(I) .
∫ 1/s

0

pλp−1spW
(
u(∪Jj=1Ej)

)
dλ = W

(
u(∪Jj=1Ej)

)
.

Now we estimate (II). By Lemma 6.15, if λ ∈ (1/s, 1) and E = ∪jEj, then the set
Jλ = {x : f(x) ≥ λ} is the union of disjoint intervals Jλ,k such that

|Jλ,k|
|E ∩ Jλ,k|

=
1

λ
∀k,

and E ⊆ Jλ. Therefore

W (u (
⋃
k Jλ,k))

W (u (E))
=

W (u (
⋃
k Jλ,k))

W (u (
⋃
k E ∩ Jλ,k))

. max
k

(
|Jλ,k|
|E ∩ Jλ,k|

)p
= λ−p.

Hence

(II) .
∫ 1

1/s

pλp−1λ−pW (u (E)) dλ = p(1 + log s)W (u (E))

= p(1 + log s)W
(
u
(
∪Jj=1Ej

))
.

So, we have that
||f ||p

Λpu(w)
. (1 + log s)W (u

(
∪Jj=1Ej

)
). (6.41)

On the other hand, for every j

Ij ⊆

{
x ∈ R : Mf(x) >

1

2|Ij|

∫
Ij

f(y)dy

}
,

and by Lemma 6.16

1

|Ij|

∫
Ij

f(x)dx =
1

|Ij|

∫
Ij

FIj ,Ej(x)dx =
1 + log s

s
,

for every j. Hence,

W
(
u
(
∪Jj=1Ij

))
≤ W (u ({x ∈ R : Mf(x) > (1 + log s)/2s})) . (6.42)

Finally, if we fix t = (1 + log s)/2s in (6.40), and combine (6.41) and (6.42) we obtain

W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Ej

)) . (1 + log s)1−psp.
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Then, taking supremum, by Remark 3.35, we get

Wu(s) . (1 + log s)1−psp.

If we choose s big enough, we have that w ∈ Bp(u) by (i) of Corollary 3.38, and hence
M : Λp

u(w)→ Λp
u(w).

On the other hand, Bp(u) implies obviously Bp,∞(u) and so we have the equality between
the two classes of weights. �

Now, we deduce the strong-type characterization of the Hilbert transform on weighted
Lorentz spaces.

Theorem 6.18. Let p > 1. Then,

H : Λp
u(w)→ Λp

u(w) if and only if (u,w) ∈ AB∗∞ and M : Λp
u(w)→ Λp

u(w).

Proof. The sufficiency follows by Corollary 6.11. The necessity of the AB∗∞ condition and
the strong-type boundedness of the Hardy-Littlewood maximal function is a consequence of
Theorem 6.13, taking into account Theorem 6.17. �

In the following theorem, we summarize our main results, giving the complete character-
ization of the strong-type and weak-type boundedness of the Hilbert transform on weighted
Lorentz spaces, for p > 1. In particular, it recovers the classical cases w = 1 and u = 1.

Theorem 6.19. The following statements are equivalent for p > 1:

(i) H : Λp
u(w)→ Λp

u(w) is bounded.

(ii) H : Λp
u(w)→ Λp,∞

u (w) is bounded.

(iii) (u,w) ∈ AB∗∞ and M : Λp
u(w)→ Λp

u(w) is bounded.

(iv) (u,w) ∈ AB∗∞ and M : Λp
u(w)→ Λp,∞

u (w) is bounded.

(v) There exists ε > 0, such that for every finite family of pairwise disjoint open intervals
(Ij)

J
j=1, and every family of measurable sets (Sj)

J
j=1, with Sj ⊂ Ij, for every j ∈ J it

holds that:

min
j

(
log
|Ij|
|Sj|

)
.
W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) . max
j

(
|Ij|
|Sj|

)p−ε
.
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Proof. The equivalences (i)⇔ (iii) and (ii)⇔ (iv) are Theorems 6.18 and 6.13, respectively.
The equivalence (iii) ⇔ (iv) follows by Theorem 6.17. Finally, we have that (iii) ⇔ (v),
since the left hand-side of (v) is equivalent to the AB∗∞ condition by Corollary 3.50, and the
right hand-side of (v) is just the Bp(u) condition that characterizes both the boundedness
M : Λp

u(w)→ Λp
u(w) by Theorem 3.32 and also M : Λp

u(w)→ Λp,∞
u (w) by Theorem 6.17. �

If we consider the boundedness

H : Lp(u)→ Lp,∞(u),

then as we have already pointed out in the Introduction, there are no weights such that the
above boundedness holds for p ≤ 1, whereas the boundedness

H : Λp(w)→ Λp,∞(w),

is characterized by the Bp ∩ B∗∞ class of weights. Next theorem summarizes the partial
results obtained for the weak-type boundedness of H on the weighted Lorentz spaces and in
the following remark we discuss the strong-type boundedness of H on the weighted Lorentz
spaces for p ≤ 1.

Theorem 6.20. Assume that W
1/p

(t) 6≈ t for all t > 1. Then, the following statements are
equivalent for all p < 1:

(i) H : Λp
u(w)→ Λp,∞

u (w) is bounded.

(ii) (u,w) ∈ AB∗∞ and M : Λp
u(w)→ Λp,∞

u (w).

(iii) For every finite family of pairwise disjoint, open intervals (Ij)
J
j=1, every family of

measurable sets (Sj)
J
j=1, with Sj ⊂ Ij and for every j ∈ J it holds that:

min
j

(
log
|Ij|
|Sj|

)
.
W
(
u
(⋃J

j=1 Ij

))
W
(
u
(⋃J

j=1 Sj

)) . max
j

(
|Ij|
|Sj|

)p
.

Proof. The equivalence (i)⇔ (ii) is given in Theorem 6.13. The left hand-side inequality in
(iii) is equivalent to the AB∗∞ condition by Corollary 3.50 and the left hand-side estimate
in (iii) characterizes the boundedness M : Λp

u(w)→ Λp,∞
u (w) (see Remark 3.43). Hence, we

get the equivalence (ii)⇔ (iii). �
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Remark 6.21. (i) The first two statements of Theorem 6.20 hold also for p = 1.
(ii) We know that the conditions (u,w) ∈ AB∗∞ and M : Λp

u(w) → Λp
u(w) are sufficient

for the strong-type boundedness

H : Λp
u(w)→ Λp

u(w)

by Theorem 6.10 and also the condition AB∗∞ is necessary by Theorem 6.6. Nevertheless,
we do not know if the boundedness M : Λp

u(w)→ Λp
u(w) is also necessary for p ≤ 1.

(iii) Observe that Theorem 6.19 also holds for H∗. Namely,

H∗ : Λp
u(w)→ Λp

u(w)⇐⇒ (u,w) ∈ AB∗∞ and w ∈ Bp(u), p > 1,

where the sufficiency follows by Theorem 6.10 and the necessity by Fatou’s lemma and
Theorem 6.19. Similarly, we obtain that

H∗ : Λp
u(w)→ Λp,∞

u (w)⇐⇒ (u,w) ∈ AB∗∞ and w ∈ Bp,∞(u), p > 1,

and finally, under the assumption W
1/p

(t) 6≈ t, t > 1, and taking into account Theorem 6.20
we have that

H∗ : Λp
u(w)→ Λp,∞

u (w)⇐⇒ (u,w) ∈ AB∗∞ and w ∈ Bp(u), p ≤ 1.

6.6 Remarks on the Lorentz-Shimogaki and Boyd the-

orems

It is well-known that the boundedness of the Hardy-Littlewood maximal function and the
Hilbert transform on rearrangement invariant function spaces have been characterized in
terms of the so-called Boyd indices, leading to Lorentz-Shimogaki and Boyd theorems (see [69],
[91], and [12]), that will be presented later on. The aim of this section is to present a re-
formulation of our results in the context of the Boyd indices. Although, we have already
characterized the strong-type boundedness of H on Λp

u(w) in the previous sections, when-
ever p > 1, this new approach provides an extension of Boyd theorem for weighted Lorentz
spaces, that are not necessarily rearrangement-invariant.

Given any function f ∈M(R+), the dilation operator is defined by

Etf(s) = f(st) 0 < s <∞.

Let X be a rearrangement invariant Banach space and let hX(t) denote the operator norm
of Et from X̄ to X̄,

hX(t) = sup
||f ||X̄≤1

||Etf ||X̄ , t > 0,
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where X̄ is the corresponding rearrangement Banach invariant space over (0,∞) such that
||f ||X = ||f ∗||X̄ , in view of the Luxemburg representation theorem (for more details see [8]).

The upper (resp. lower) Boyd indices introduced by Boyd in a series of papers [11], [12],
[13], [14], and [15], are given by:

αX := inf
0<t<1

log hX(t)

log 1/t
= lim

t→0+

log hX(t)

log 1/t
, (6.43)

and

βX := sup
1<t<∞

log hX(t)

log 1/t
= lim

t→∞
log hX(t)

log 1/t
, (6.44)

respectively. The equality is proved by Hille and Phillips (see [50]). If X denotes a Ba-
nach rearrangement invariant space, then Lorentz and Shimogaki proved independently the
following result:

Theorem 6.22. ([69], [91]) It holds that

M : X → X ⇔ αX < 1. (6.45)

The boundedness of the Hilbert transform on X requires one more condition in terms
of the lower index and the characterization is given by the Boyd theorem, which states the
following:

Theorem 6.23. [12] It holds that

H : X → X ⇔ 0 < βX ≤ αX < 1. (6.46)

There exists a generalization of this result for quasi-Banach function spaces (see [70]).
Now, if X = Λp(w) and w is a decreasing function, Boyd proved in [15] that

hΛp(w)(t) =

(
sup
r>0

W (r)

W (rt)

)1/p

, t > 0. (6.47)

Hence, in this case

αΛp(w) = lim
µ→∞

logW (µ)

log µp
, (6.48)

and

βΛp(w) = lim
λ→0

logW (λ)

log λp
, (6.49)

for p ≥ 1.

Recently, Lerner and Pérez generalized in [66] the Lorentz-Shimogaki theorem for every
quasi-Banach function space, not necessarily rearrangement invariant. For this reason, they
defined a generalized Boyd index, which in the particular case of the weighted Lorentz spaces
is given in terms of the expression αΛpu(w) defined below. Analogously to the index αΛpu(w),
we define the generalized lower Boyd index βΛpu(w) in the context of the weighted Lorentz
spaces Λp

u(w), and for u = 1 both coincide with relations (6.48) and (6.49) respectively.
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Definition 6.24. We define the generalized upper (resp. lower) Boyd index associated to
Λp
u(w) as

αΛpu(w) = lim
µ→∞

logW u(µ)

log µp
,

and

βΛpu(w) = lim
λ→0

logWu(λ)

log λp
,

respectively.

We can state Theorems 6.22 and 6.23 in terms of these new indices. In Chapter 3, we
have proved equivalent expressions to the Bp(u) condition, that characterizes

M : Λp
u(w)→ Λp

u(w),

studying the asymptotic behavior of the function W u at infinity (see Corollary 3.38). Hence,
we can reformulate this result in terms the generalized upper Boyd index, reproving in a
different way the extended Lorentz-Shimogaki theorem for Λp

u(w) appeared in [66].

Theorem 6.25. If p > 0, then

M : Λp
u(w)→ Λp

u(w) ⇔ αΛpu(w) < 1. (6.50)

Proof. The boundedness M : Λp
u(w) → Λp

u(w) is characterized by the Bp(u) condition, in
Theorem 3.32. The equivalence of the Bp(u) condition and αΛpu(w) < 1 is a consequence of
Corollary 3.38 (iv). �

We have characterized the strong-type boundedness of the Hilbert transform on weighted
Lorentz spaces. We can reformulate this result in the context of Boyd theorem as follows:

Theorem 6.26. If p > 1, then

H : Λp
u(w)→ Λp

u(w) ⇔ 0 < βΛpu(w) ≤ αΛpu(w) < 1. (6.51)

Proof. By Theorem 6.18 we have that the boundedness H : Λp
u(w)→ Λp

u(w) is characterized
by the boundedness M : Λp

u(w) → Λp
u(w) and the AB∗∞ condition, whenever p > 1. On the

one hand, M : Λp
u(w) → Λp

u(w) is characterized by αΛpu(w) < 1, applying Theorem 6.25. On
the other hand, the AB∗∞ condition is characterized by the condition βΛpu(w) > 0, applying
Corollary 3.50 (iv). �





Chapter 7

Further results and applications on
Lp,q(u) spaces

In the previous chapter we characterized the strong-type diagonal boundedness of the Hilbert
transform on weighted Lorentz spaces H : Λp

u(w) → Λp
u(w), and its weak-type version

H : Λp
u(w) → Λp,∞

u (w), whenever p > 1 and we partially solved the case p ≤ 1. The
techniques used in order to obtain the solution allow us to get some necessary conditions for
the weak-type boundedness of H in the non-diagonal case:

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1), (7.1)

which will be also necessary for the strong-type version H : Λp0
u0

(w0)→ Λp1
u1

(w1). It is known
that the case u0 = u1 = 1 can be derived by the boundedness of the Hardy operator and its
adjoint. Nonetheless, this problem is still open when w0 = w1 = 1 and p0 = p1 = p ≥ 1 for
the weak-type inequality, and p0 = p1 = p > 1 for the strong-type inequality; that is

H : Lp(u0)→ Lp,∞(u1) and H : Lp(u0)→ Lp(u1),

respectively. This is the well-known two-weighted problem for the Hilbert transform, posed
in the early 1970’s, but still unsolved completely. In the first section we present a brief
survey on the efforts done towards the solution of the aforementioned problems and finally
we give some necessary conditions for (7.1).

The second section is devoted to the characterization of the boundedness of

H : Lp,q(u)→ Lr,s(u)

for some exponents p, q, r, s > 0. In particular, we complete some results obtained in [25] by
Chung, Hunt, and Kurtz.

87
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7.1 Non-diagonal problem

Throughout this section, we present a brief historical review on the strong and weak-type
boundedness of the Hilbert transform on weighted Lebesgue spaces

H : Lp(u0)→ Lp(u1) and H : Lp(u0)→ Lp,∞(u1),

respectively (mostly based in [32], [36], and [38]). We also discuss the boundedness of the
Hilbert transform on the classical Lorentz spaces (see [90])

H : Λp0(w0)→ Λp1(w1) and H : Λp0(w0)→ Λp1,∞(w1).

Then, we present the following results: If

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1), (7.2)

is bounded, we have that

sup
b>0

W
1/p1

1

(∫ bν
−bν u1(s) ds

)
W

1/p0

0

(∫ b
−b u0(s) ds

) . (log
1− ν
ν

)−1

, (7.3)

for every ν ∈ (0, 1/2] (see Theorem 7.9). In particular, we obtain that the weights u0, w0

are non-integrable, whereas u1, w1 could be integrable. As we have already mentioned, the
techniques are similar to the diagonal case, and in some cases we have to assume that the
composition of the weights W1 ◦u1 satisfies the doubling property. In this case, (7.2) implies
(7.3), for ν ∈ (0, 1]. Furthermore, under the doubling property, we have that (7.2) implies:

W
1/p1

1 (u1(I))

W
1/p0

0 (u0(E))
.
|I|
|E|

, (7.4)

for all measurable sets E ⊂ I, and all intervals I (see Theorem 7.12) and,

||u−1
0 χI ||(Λp0u0

(w0))′||χI ||Λp1u1
(w1) . |I|, (7.5)

for all intervals I (see Theorem 7.16). In particular, we reduce the range of indices p0 for
which (7.2) holds.

Finally we prove that if w1 ∈ Bp1 and u1 is a doubling measure, then,

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1)⇒M : Λp0
u0

(w0)→ Λp1,∞
u1

(w1),

(see Theorem 7.20). In particular, if p1 > 1 and u1 is a doubling measure we get that

H : Lp0(u0)→ Lp1,∞(u1)⇒M : Lp0(u0)→ Lp1,∞(u1).
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7.1.1 Background of the problem in the non-diagonal case

In [37], Fefferman and Stein proved the following estimate for M

sup
λ>0

λu({x ∈ R : |Mf(x)| > λ}) .
∫
R
|f(x)|Mu(x)dx, (7.6)

which can be seen as a precursor of the two-weighted problem for an operator, let’s say T ,

T : Lp(u0)→ Lp,∞(u1),

that consists on characterizing the pair of weights (u0, u1) such that the above holds.

The weighted-norm inequalities for the one-weight problem (u0 = u1) for the Hardy-
Littlewood maximal function and the Hilbert transform, have been solved in the setting of
the Ap theory. Thus, an immediate candidate for the solution of the two-weighted problem
for M and H was the two-weighted version of the Ap condition (see [32]). More precisely,
we say that the pair (u0, u1) ∈ Ap, for p > 1, if

sup
I

(
1

|I|

∫
I

u1(x)dx

)(
1

|I|

∫
I

u0(x)1−p′dx

)p−1

<∞, (7.7)

where the supremum is considered over all intervals I of the real line. We say that (u0, u1) ∈
A1 if

Mu1(x) ≤ Cu0(x), a.e. x ∈ R. (7.8)

Although the Ap condition characterizes the two-weighted weak-type boundedness of M ,
in 1976 Muckenhoupt and Wheeden proved that this is not a sufficient condition for the
Hilbert transform to be bounded (see [72]). In general, the two-weighted problem for H

H : Lp(u0)→ Lp(u1), (7.9)

and its weak-type version

H : Lp(u0)→ Lp,∞(u1) (7.10)

remains still unsolved completely. Furthermore, Muckenhoupt and Whedeen conjectured
(see [32]) that we could consider H, instead of M on the left hand-side estimate of (7.6),
but recently it has been disproved by Reguera and Thiele in [83] (for further information see
also the references therein).

In what follows, we present the characterization of the weak-type boundedness of M in
terms of the two-weighted Ap condition. This condition which is not sufficient for the strong-
type and weak-type boundedness of H, neither works for the strong-type boundedness of
M . In fact, the last one was solved in 1982, by Sawyer in terms of conditions involving M
(see [89]).
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Theorem 7.1. [71] If 1 ≤ p <∞, then

M : Lp(u0)→ Lp,∞(u1)⇔ (u0, u1) ∈ Ap.

Theorem 7.2. [89] Given 1 < p <∞, the following are equivalent:

(i) M : Lp(u0)→ Lp(u1).

(ii) The pair (u0, u1) satisfies: ∫
I

M(χIσ)p(x)u0(x)dx . σ(I), (7.11)

for all intervals I of the real line and σ = u1
1−p′.

Definition 7.3. The pair (u0, u1) satisfies the Sp condition if and only if (7.11) holds.

Corollary 7.4. Let u1 ∈ A∞.

(i) Let 1 ≤ p <∞. If (u0, u1) ∈ Ap, then H : Lp(u0)→ Lp,∞(u1).

(ii) Let 1 < p <∞. If (u0, u1) ∈ Sp, then H : Lp(u0)→ Lp(u1).

Proof. Conditions (i) and (ii) are consequences of Theorems 7.1 and 7.2 respectively, taking
into account the following result proved by Coifman and Fefferman in [26]: ||Hf ||Lp,∞(u1) .
||Mf ||Lp,∞(u1) and ||Hf ||Lp(u1) . ||Mf ||Lp(u1), provided u1 ∈ A∞. �

Currently, there are two relevant approaches of two-weighted norm inequalities, an area
of active research nowadays. On the one hand, we have the theory of the so-called “Ap
bump conditions”, related to the following result of Neugebauer who, in 1983 found a new
sufficient condition for the Hilbert transform to be bounded in terms of two-weighted Ap
condition (see [78]). On the other hand, we have the theory of “testing conditions” in the
context of Sawyer’s Sp conditions. For further information on these topics see [32].

Theorem 7.5. Let 1 < p <∞. If (ur0, u
r
1) ∈ Ap for some r > 1, then H : Lp(u0)→ Lp(u1).

Note that (ur0, u
r
1) ∈ Ap can be rewritten as

sup
I
||u1/p

1 ||rp,I ||u
−1/p
0 ||rp′,I <∞

(see [32]). Hence, in view of Theorem 7.5, if we replace the normalized Lp, Lp
′

norms in the
Ap condition by larger norms Lrp, Lrp

′
, that are called “power bumps”, we can get sufficient

conditions.
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In 2007, Cruz-Uribe, Martell and Pérez considered in [31] the question whether one could
replace the “power bumps” by other function space norms, larger than Lp, but smaller than
the “power bumps”, in order to get sufficient conditions for the Hilbert transform to be
bounded. Pérez first posed the same question for the Hardy-Littlewood maximal function,
for potential and maximal fractional type operators (see [81] and [82]). Other developments
towards this direction can be found in [31], [78], [34], [30], and [64], and for the weak-type
boundedness of the Hilbert transform see [33]. Another approach can be found in [73]. For
historical references and further information see [32].

On the other hand, Nazarov, Treil and Volberg characterized the two-weighted problem
for the Hilbert transform for p = 2 in [77], under some assumption on the weights. The
solution is given in the context of Sawyer’s S2 conditions and T1 conditions of David-Journé
(see [35]). Their approach involves techniques developed in [74], [75], and [76]. Later on,
Lacey, Sawyer and Uriarte-Tuero proved in [62] that the extra condition, assumed in [77], is
not necessary and applying similar techniques they provide the characterization with a new
weaker assumption.

It should be mentioned that Cotlar and Sadosky have given a necessary and sufficient
condition for the two-weighted boundedness of the Hilbert transform for p = 2 (see [28],
and [29]). However, their condition, related to Helson-Szegö theorem, is difficult to check as
it was observed in [89] and [31].

The boundedness of the Hilbert transform on the classical Lorentz spaces can be derived
from the study of two operators, the Hardy operator and its adjoint as proved by Sawyer
in [90].

Theorem 7.6. If p0, p1 > 0, then

H : Λp0(w0)→ Λp1(w1) if and only if P,Q : Lp0

dec(w0)→ Lp1(w1),

and
H : Λp0(w0)→ Λp1,∞(w1) if and only if P,Q : Lp0

dec(w0)→ Lp1,∞(w1).

Proof. The proof is based on the equivalence (3.11). Hence the study is reduced to the
characterization of operators P,Q as in the diagonal case. �

Remark 7.7. The characterization of the boundedness of the operators P, Q in the weak-
type case

P,Q : Lp0

dec(w0)→ Lp1,∞(w1)

is given in [4]. The strong-type boundedness of the Hardy operator P : Lp0

dec(w0)→ Lp1(w1)
is characterized by different authors:

(i) The cases 1 < p0 ≤ p1 <∞ and 1 < p1 < p0 <∞ have been characterized in [90].
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(ii) The case 0 < p1 < 1 < p0 <∞ has been solved in [97].

(iii) The case 0 < p0 ≤ p1 has been characterized in [22], and for 0 < p0 ≤ p1, 0 < p0 < 1
can be also found in [97].

(iv) The case p1 = 1 < p0 <∞ has been characterized in [19].

(v) The case 0 < p1 < 1 = p0 has been characterized in [92].

(vi) The case 0 < p1 < p0 ≤ 1 has been solved in [18].

The strong-type boundedness of the adjoint of the Hardy operator Q : Lp0

dec(w0) → Lp1(w1)
has been studied in [21] and in [22].

7.1.2 Basic necessary conditions in the non-diagonal case

Now, we study necessary conditions for the weak-type boundedness of H,

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1).

In particular, we obtain that the weights u0, w0 are non-integrable, whereas u1, w1 could
be integrable. The techniques are similar to the diagonal case, with some extra difficulties
that are solved assuming the doubling property on the composition of the weights W1 ◦ u1

(see (4.14)).

In what follows we assume that w0, w1 ∈ ∆2.

Definition 7.8. Let p > 0. We say that an operator T is of restricted weak-type (p0, p1)
(with respect to (u0, u1, w0, w1)) if

‖TχS‖Λ
p1,∞
u1

(w1) . ‖χS‖Λ
p0
u0

(w0), (7.12)

for all measurable sets S of the real line. If S is an interval, then we say that T is of restricted
weak-type (p0, p1) on intervals (with respect to (u0, u1, w0, w1)).

Theorem 7.9. Let 0 < p0, p1 <∞. If the Hilbert transform is of restricted weak-type (p0, p1)
on intervals with respect to (u0, u1, w0, w1) then

sup
b>0

W
1/p1

1

(∫ bν
−bν u1(s) ds

)
W

1/p0

0

(∫ b
−b u0(s) ds

) . (log
1− ν
ν

)−1

, (7.13)

for every ν ∈ (0, 1/2].
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Proof. The proof is similar to that of Theorem 4.4. �

Proposition 7.10. Let 0 < p0, p1 < ∞. If the Hilbert transform is of restricted weak-type
(p0, p1) on intervals with respect to (u0, u1, w0, w1), then u0 /∈ L1(R) and w0 /∈ L1(R+).

Proof. By Theorem 7.9 we get the relation (7.13). Let c > 0 such that W
1/p1

1 (u1(−c, c)) > 0.
Then fix ν = c/b. Therefore we obtain that

W
1/p0

0 (u0(−b, b))
W

1/p1

1 (u1(−c, c))
& log(b− 1), (7.14)

for all b ∈ (2c,∞). Since u1 ∈ L1
loc and w1 ∈ L1

loc we get that W
1/p1

1 (u1(−c, c)) = C. If we
take the limit when b tends to infinity, then

W
1/p0

0 (u0(−∞,∞)) & ∞. (7.15)

Thus, we obtain the result. �

Remark 7.11. (i) As in the diagonal case, since u0 /∈ L1 and w0 /∈ L1, and C∞c is dense in
Λp0
u0

(w0) by Theorem 2.13, we say that H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1), if

||Hf ||Λp1,∞u1
(w1) . ||f ||Λp0u0

(w0),

for every f ∈ C∞c . Then, H can be extended to Λp0
u0

(w0) as a bounded linear operator H,
which by Theorem 4.13 coincides with the Hilbert transform, for every function belonging
to f ∈ Lq ∩ Λp0

u0
(w0) and q ≥ 1. For further details see Section 4.3.

(ii) If the Hilbert transform is bounded

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1),

then it also satisfies that

H : Λp0
u0

(w0)→ Λp1,∞
u′1

(w′1),

where u′1 = u1χB(0,r), for some r > 0 such that u′1 is not identically 0, and w′0 = w0χ(0,t),
for some t > 0 and w′0 is not identically 0. Therefore, we see that w′1, u

′
1 are not necessary

integrable.

Theorem 7.12. Let 0 < p0, p1 <∞ and assume that W1 ◦u1 satisfies the doubling property.
If the Hilbert transform is of restricted weak-type (p0, p1) with respect to (u0, u1, w0, w1), then:



7.1. Non-diagonal problem 94

(i) For all measurable subsets E ⊂ I, it holds

W
1/p1

1 (u1(I))

W
1/p0

0 (u0(E))
.
|I|
|E|

. (7.16)

(ii) For all ν ∈ (0, 1], it holds

sup
b>0

W
1/p1

1

(∫ bν
−bν u1(s) ds

)
W

1/p0

0

(∫ b
−b u0(s) ds

) . (log
1 + ν

ν

)−1

. (7.17)

Proof. (i) As in Theorem 4.8 we obtain

W
1/p1

1 (u1(I ′))

W
1/p0

0 (u0(E))
≤ C

|I|
|E|

.

Applying the monotonicity of W1 and then the doubling property, we have that W1(u1(I)) ≤
W1(u1(3I ′)) ≤ cW1(u1(I ′)). Hence,

W
1/p1

1 (u1(I))

W
1/p0

0 (u0(E))
≤ C

|I|
|E|

.

(ii) By Theorem 7.9 we get

sup
b>0

W
1/p1

1

(∫ bν
−bν u1(s) ds

)
W

1/p0

0

(∫ b
−b u0(s) ds

) . (log
1− ν
ν

)−1

, (7.18)

for ν ∈ (0, 1/2]. Besides, by relation (7.16) and the monotonicity of W1, we obtain that

sup
b>0

W
1/p1

1

(∫ bν
−bν u1(s) ds

)
W

1/p0

0

(∫ b
−b u0(s) ds

) . sup
b>0

W
1/p1

1

(∫ b
−b u1(s) ds

)
W

1/p0

0

(∫ b
−b u0(s) ds

) . 1, (7.19)

for all ν ∈ (0, 1]. Then by (7.18) and (7.19) we obtain (7.17) for all ν ∈ (0, 1] (for more
details see the proof of Theorem 4.4). �

In [51], Hörmander proved that if a translation invariant, linear operator is bounded from
Lp to Lq, then necessarily p ≤ q. We prove that if H : Λp

u(w) → Λq,∞
u (w), then p = q, if

W ◦ u satisfies the doubling property.

Proposition 7.13. Let H : Λp
u(w) → Λq,∞

u (w), and W ◦ u satisfy the doubling condition.
Then, p = q.
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Proof. By Theorem 7.12 we obtain that

W 1/q(u(I))

W 1/p(u(E))
.
|I|
|E|

. (7.20)

Letting E = I we obtain that W 1/q−1/p(u(I)) ≤ C for all interval I. Since u 6∈ L1 we get
W 1/q−1/p(r) ≤ C for all r > 0. As limt→0W (t) = 0 we get that q ≤ p. On the other hand,
as w 6∈ L1, we have that limt→∞W (t) = ∞ and the inequality W 1/q−1/p(r) ≤ C holds only
if p = q. �

In Section 4.3 we studied a necessary condition for the boundedness of the Hilbert trans-
form in terms of the associate Lorentz spaces. Now we will prove that an analogue condition
holds in the non-diagonal case

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1),

under the assumption that W1 ◦ u1 satisfies the doubling property. First, we present the
non-diagonal version of the boundedness of the Hardy-Littlewood maximal function studied
by Carro and Soria in [23].

Theorem 7.14. [23] Let 0 < p0, p1 <∞. If M : Λp0
u0

(w0)→ Λp1,∞
u1

(w1), then

||u−1
0 χI ||(Λp0u0

(w0))′ ||χI ||Λp1u1
(w1) . |I|, (7.21)

for all intervals I.

Under some additional conditions on the weights w0, w1, condition (7.21) is also sufficient
for the boundedness of the Hardy-Littlewood maximal function (for more details see [23]).

Theorem 7.15. [23] Let 0 < p0, p1 < ∞. If there exists α > 0 such that αp1/p0 ≥ 1 and
for every sequence {tj}j we have that

Wα
1

(∑
j

tj

)
.
∑
j

Wα
1 (tj) (7.22)

and ∑
j

W
αp1/p0

0 (tj) . W
αp1/p0

0

(∑
j

tj

)
, (7.23)

then M : Λp0
u0

(w0)→ Λp1,∞
u1

(w1) if and only if condition (7.21) holds.

We will show that if W1 ◦ u1 satisfies the doubling property, then the boundedness of H,

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1)

implies (7.21).
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Theorem 7.16. Let 0 < p0, p1 <∞ and assume that W1 ◦u1 satisfies the doubling property.
If the Hilbert transform

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1)

is bounded, then condition (7.21) holds.

Proof. The proof follows the ideas of Theorem 4.8. Indeed, we have that

||u−1
0 χI ||(Λp0u0

(w0))′W
1/p1

1 (u1(I ′)) . |I|.

Now, by the doubling property it follows that

||χI ||1/p1

Λ
p1
u1

(w1)
= W1(u1(I)) ≤ W1(u1(3I ′)) ≤ cW1(u1(I ′)).

Hence,

||u−1
0 χI ||(Λp0u0

(w0))′ ||χI ||Λp1u1
(w1) . |I|.

�

Corollary 7.17. Let 0 < p0, p1 < ∞. Assume that W1 ◦ u1 satisfies the doubling property
and the weights w0, w1 satisfy the conditions (7.23) and (7.22) respectively. If

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1),

then

M : Λp0
u0

(w0)→ Λp1,∞
u1

(w1).

The necessary condition (7.21) implies some restrictions depending on w0 that reduce the
range of indices p0 for which the boundedness H : Λp0

u0
(w0) → Λp1,∞

u1
(w1) holds. We follow

the same approach as in [20].

Proposition 7.18.

(i) Let 0 < p1 < ∞ and assume that W1 ◦ u1 satisfies the doubling property. If H :
Λp0
u0

(w0)→ Λp1,∞
u1

(w1), then p0 ≥ pw0. If pw0 > 1, then p0 > pw0.

(ii) Let p0 < 1 and assume that u1 is a doubling measure. Then, there are no weights u0, u1

such that H : Lp0(u0)→ Lp1,∞(u1) is bounded, for 0 < p1 <∞.

Proof. We follow the same ideas as in [20, Theorem 3.4.2 and 3.4.3]. �
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It is known that the boundedness of the Hardy-Littlewood maximal function

M : Λp0
u (w0)→ Λp1,∞

u (w1)

implies the boundedness of the same operator on the same spaces with u = 1 (see [20]). We
will see that if W1 ◦u, satisfies the doubling property and the Hilbert transform satisfies the
weak-type boundedness

H : Λp0
u (w0)→ Λp1,∞

u (w1),

then we obtain the boundedness of the Hardy-Littlewood maximal function on the classical
Lorentz spaces,

M : Λp0(w0)→ Λp1,∞(w1).

Theorem 7.19. Let 0 < p0, p1 <∞. Assume that W1 ◦ u satisfies the doubling property. If
H : Λp0

u (w0)→ Λp1,∞
u (w1) then

M : Λp0(w0)→ Λp1,∞(w1).

Proof. By Theorem 7.16 we obtain the relation (7.21), taking into account the doubling
property. Then, we can follow the same arguments as in [20, Proposition 3.4.4 and Theo-
rem 3.4.8]. �

7.1.3 Necessity of the weak-type boundedness of M

In this section we prove that the boundedness of the Hilbert transform on weighted Lorentz
spaces implies the boundedness of the Hardy-Littlewood maximal function on the same
spaces, in the non-diagonal case.

Theorem 7.20. Let p1 > 1, w1 ∈ Bp1 and let u1 be a doubling measure. Then

H : Λp0
u0

(w0)→ Λp1,∞
u1

(w1)⇒M : Λp0
u0

(w0)→ Λp1,∞
u1

(w1).

Proof. The proof is identical to the proof of Theorem 6.8 in the diagonal case. Let E,Eλ
and K be as in the aforementioned theorem. Note that the condition w1 ∈ Bp1 implies by
Proposition 3.11

||χE||(Λp1,∞u1
(w1))′ .

u1(E)

W
1/p1

1 (u1(E))
. (7.24)
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Then, applying relation (6.22), Hölder’s inequality and the hypothesis, we have that

λW
1/p1

1 (u1(E)) . W
1/p1

1 (u1(E))
1

u1(E)

∫
E

|H(fχ∪iIi)(x)|u1(x)dx

. W
1/p1

1 (u1(E))
1

u1(E)
||H(fχ∪iIi)||Λp1,∞u1

(w1)||χE||(Λp1,∞u1
(w1))′

. ||fχ∪iIi ||Λp0u0
(w0) ≤ ||f ||Λp0u0

(w0).

Now, since u1 is a doubling measure and w1 ∈ ∆2, we have that

W
1/p1

1 (u1(K)) . W
1/p1

1 (u1(E)).

Hence,
λW 1/p(u(K)) . ||f ||Λpu(w).

Since this holds for all compact sets of Eλ, by Fatou’s lemma we obtain that

λW 1/p(u(Eλ)) . ||f ||Λpu(w).

�

Corollary 7.21. Assume that u1 is a doubling measure. Then, if p1 > 1

H : Lp0(u0)→ Lp1,∞(u1)⇒M : Lp0(u0)→ Lp1,∞(u1).

Remark 7.22. Corollary 7.21 has been already proved for p0 = p1 = p > 1, without
assuming the doubling property (see [72]).

7.2 Applications on Lp,q(u) spaces

It is known that the following condition

u(I)

|I|p
.
u(E)

|E|p
, E ⊂ I, (7.25)

characterizes the boundedness of M

M : Lp,1(u)→ Lp,∞(u),

for 1 ≤ p < ∞ (see for example [20]). In [25], Chung, Hunt, and Kurtz proved that
condition (7.25) is also sufficient for the boundedness of the Hilbert transform

H : Lp,1(u)→ Lp,∞(u), (7.26)
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for the same exponent 1 ≤ p < ∞. Throughout this section we study the boundedness of
the Hilbert transform on the Lorentz spaces Lp,q(u) and among other results, we show that
condition (7.25) characterizes also (7.26).

First we present the collection of the known results concerning the boundedness of the
Hardy-Littlewood maximal function

M : Lp,q(u)→ Lr,s(u),

such as it appears in [20], and then we study the boundedness of Hilbert transform on the
same spaces.

Theorem 7.23. ([71], [25], [20], [53], [63]) Let p, r ∈ (0,∞), q, s ∈ (0,∞].

(i) If p < 1, p 6= r or s < q, there are no weights u such that M : Lp,q(u)→ Lr,s(u).

(ii) The boundedness
M : L1,q(u)→ L1,s(u)

holds if and only if q ≤ 1, s =∞ and in this case a necessary and sufficient condition
is u ∈ A1.

(iii) If p > 1 and 0 < q ≤ s ≤ ∞ then the boundedness

M : Lp,q(u)→ Lp,s(u)

holds if and only if

(a) Case q ≤ 1, s =∞:
u(I)

|I|p
.
u(E)

|E|p
, E ⊂ I.

(b) Case q > 1 or s <∞: u ∈ Ap.

Theorem 7.24. Let p, r ∈ (0,∞) and q, s ∈ (0,∞].

(α) Let p = 1 and s =∞.

(i) If q ≤ 1, the boundedness

H : L1,q(u)→ L1,∞(u)

holds if and only if u ∈ A1.

(ii) If 1 < q ≤ ∞, the boundedness

H : L1,q(u)→ L1,∞(u)

does not hold for any u.
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(β) Let p > 1 and s =∞.

(i) If q ≤ 1, then the boundedness

H : Lp,q(u)→ Lp,∞(u)

holds if and only if
u(I)

|I|p
.
u(E)

|E|p
, for all E ⊂ I.

(ii) If 1 < q ≤ ∞, then the boundedness

H : Lp,q(u)→ Lp,∞(u)

holds if and only if u ∈ Ap.

(γ) If p > 1 and s = q > 1, then the boundedness

H : Lp,q(u)→ Lp,q(u)

holds if and only if u ∈ Ap.

(δ) If p < 1 or p 6= r, there are no doubling weights u such that

H : Lp,q(u)→ Lr,s(u)

is bounded.

Proof. Some of the proofs follow the same ideas of [20, Theorem 3.5.1]:

Case α: (i) The boundedness H : L1,q(u) → L1,∞(u) can be rewritten as H : Λq
u(t

q−1) →
Λq,∞
u (tq−1), and by (4.15) we get

u(I)

|I|
.
u(E)

|E|
, E ⊂ I,

which is equivalent to the A1 condition. On the other hand if u ∈ A1 then

H : L1,q(u)→ L1,∞(u),

by Corollary 5.3.

(ii) If H : L1,q(u)→ L1,∞(u) is bounded, we also have the boundedness of H : L1,r(u)→
L1,∞(u), for r < 1 and thus, by (i), we have that u ∈ A1. But in this case, Theorem 5.4
shows that w must be in Bq, while tq−1 /∈ Bq, if q > 1.

Case β: (i) First we prove the necessity: if q ≤ 1 and s = ∞, the weak-type boundedness
of the Hilbert transform

H : Lp,q(u)→ Lp,∞(u)
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can be rewritten as H : Λq
u(t

q/p−1)→ Λq,∞
u (tq/p−1), which by (4.15) implies

u(I)

|I|p
.
u(E)

|E|p
for

all E ⊂ I as we wanted to see. Conversely, if

u(I)

|I|p
.
u(E)

|E|p
, E ⊂ I,

we have that u ∈ A∞ and by Theorem 7.23 it implies the weak-type boundedness of the
Hardy-Littlewood maximal function M : Lp,q(u)→ Lp,∞(u). Rewriting the last estimate as
M : Λq

u(t
q/p−1)→ Λq,∞

u (tq/p−1) and taking into account that w(t) = tq/p−1 ∈ B∗∞ we have, by
Theorem 6.10, that H : Lp,q(u)→ Lp,∞(u).

(ii) Let q > 1. The boundedness H : Lp,q(u) → Lp,∞(u) can be equivalently expressed
by

H : Λq
u(t

q/p−1)→ Λq,∞
u (tq/p−1). (7.27)

Then, since tq/p−1 ∈ B∗∞, by Theorem 6.13 we have that (7.27) is equivalent to the bound-
edness of M on the same spaces, which by Theorem 7.23 (iii) is characterized by the Ap
condition.

Case γ: Since tq/p−1 ∈ B∗∞, we have by Theorem 6.13 that

H : Λq
u(t

q/p−1)→ Λq
u(t

q/r−1)

is bounded if and only if M is bounded on the same spaces, characterized by the Ap condition
in view of Theorem 7.23.

Case δ: Since Lr,s(u) ⊂ Lr,∞(u), if H : Lp,q(u)→ Lr,s(u) we would have that H : Lp,q(u)→
Lr,∞(u) is bounded, which is equivalent to having that H : Λq

u(t
q/p−1) → Λq,∞

u (tq/r−1) is
bounded. By Theorem 7.16, taking into account that u is non-doubling, we have that

u1/r(I)

|I|
.
u1/p(E)

|E|
, E ⊂ I. (7.28)

Then, by the Lebesgue differentiation theorem we get first that p ≥ 1. On the other hand,
if we take E = I, then (7.28) implies u1/r−1/p(I) . 1 and hence p = r, since u 6∈ L1 by
Proposition 4.5. �

Remark 7.25. (i) In [25] Chung, Hunt, and Kurtz proved the sufficiency of the case β, (i)
of Theorem 7.24 for the exponent q = 1. The necessity of the Ap condition in γ of Theorem
7.24 can be obtained directly, applying β of the same theorem and the continuous inclusion
Lp,q ↪→ Lp,∞.

(ii) In Chapter 6 we characterized the boundedness of the Hilbert transform on weighted
Lorentz spaces Λp

u(w), and for the case p ≤ 1, we solved the problem under the assumption

W
1/p

(t) 6≈ t, for all t > 1 (see Theorem 6.13). However, we will see that this assumption is
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not necessary in general. Indeed, consider the weight w(t) = tq−1, q ≤ 1. Although, it holds

that W
1/q

(t) = t, we have by α, (i) of Theorem 7.24 and Theorem 7.23 that

H : Λq
u(t

p−1)→ Λq,∞
u (tq−1) ⇔ M : Λq

u(t
p−1)→ Λq,∞

u (tq−1) ⇔ u ∈ A1,

and we also have by β, (i) of Theorem 7.24 and Theorem 7.23 that

H : Λq
u(t

p−1)→ Λq,∞
u (tq−1) ⇔ M : Λq

u(t
p−1)→ Λq,∞

u (tq−1) ⇔ u(I)

|I|p
.
u(E)

|E|p
, E ⊂ I.

We obtain the characterization of the boundedness

H : Lp0,q0(u0)→ Lq1,∞(u1)

under the additional hypothesis that u1 ∈ A∞. In fact, we will prove that it is equivalent
to the boundedness of the Hardy-Littlewood maximal function on the same spaces, which
follows as a special case of Theorem 7.15 (for more details see [23]).

Theorem 7.26. Assume that u1 ∈ A∞ and there exists α ≥ p0/p1, with q0/p1 ≤ α ≤ q1/p1

and max(p0, q0) ≤ q1. Then,

H : Lq0,p0(u0)→ Lq1,∞(u1)

if and only if
||u−1

0 χI ||Lq′0,p′0 (u0)
||χI ||Lq1,p1 (u1) . |I|, (7.29)

for all intervals I of the real line.

Proof. Assume that the operator H : Lq0,p0(u0) → Lq1,∞(u1) is bounded, which can be
rewritten as H : Λp0

u0
(tp0/q0−1)→ Λp1,∞

u1
(tp1/q1−1). Then, since the weights w0(t) = tp0/q0−1 and

w1(t) = tp1/q1−1 satisfy conditions (7.23) and (7.22) respectively, we obtain, by Corollary 7.17,
the boundedness of the Hardy-Littlewood maximal function M : Lq0,p0(u0) → Lq1,∞(u1)
which, by Theorem 7.15, is characterized by relation (7.29).

On the other hand, condition (7.29) implies the boundedness H : Lq0,p0(u0)→ Lq1,∞(u1)
provided w1(t) = tq1/p1−1 ∈ B∗∞ and u1 ∈ A∞ (similar to the proof of Theorem 6.10). �
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