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mitad de la mañana y además lo comparten conmigo.
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Abstract

Traffic modeling is one of the most useful tools on traffic planning that permits, among

others, evaluating the behavior of traffic networks and the adequacy of mobility programs

before implanting them. For that reason, the development of new tools that solve new

problems and model a wide variety of situations is important.

Several models have been proposed in the literature in order to solve problems with

different characteristics. In this thesis, we also deal with various topics and we provide

some statistical and mathematical tools to solve them.

This thesis provides the reader the following contributions:

• Literature review. A literature review about existing traffic problems and the

most widely used models to solve them is done. In particular, the static traffic as-

signment, the matrix estimation, the observability and the dynamic network loading

problems are dealt with. Some of these models are illustrated with examples for a

better understanding of the main concepts and ideas.

• A percentile traffic assignment model. We first solve a conjecture proposed by

Nie (2011) on the permutability of percentile and partial derivatives of route travel

times with respect to route flows. Secondly, a percentile system optimal model is

proposed, including both with and without path enumeration versions.

• A traffic assignment model including overtaking classes. A static traffic

assignment model including overtaking classes is provided which is based on a new

family of travel time functions. We also present equivalent optimization problems

with and without path enumeration.

• A Bayesian matrix estimation model. We present a hierarchical optimization

model to estimate the origin-destination flow matrix by means of link flow counts.

This model, which is based on Bayesian statistical techniques, assumes that path

flows, and hence link, node and origin-destination flows, belong to the Gamma dis-

tribution.

• Upper bound of the number of sensors required for total observability.

The minimum set of links to be equipped with sensors in order to get total link

v



vi ABSTRACT

observability by means of link flows is derived. It is shown that this number is the

rank of the link-path incidence matrix.

• A model for the continuous dynamic network loading problem with over-

taking class users. A model for the continuous dynamic network loading problem

including overtaking classes is proposed. This model considers different class users

depending on their overtaking preferences and takes into account the interaction of

flows of all paths and classes and their coincidence at different times and locations.

The effect of downstream links, and hence of physical queues, is also considered.

• Graphical methods to analyze traffic trajectories with and without over-

taking. Some graphical methods to analyze traffic trajectories with and without

overtaking are given. We study the graphical characteristics of trajectories plots,

such as slope or curvature, and explain their physical meaning, i.e., speed, accelera-

tion, etc. We also analyze the plots obtained when trajectories of several overtaking

classes are superimposed, producing color bands when overtaking takes place.

• Practical application. All the proposed methods are applied to fictitious and real

networks in order to analyze their characteristics and performances, together with

the associated computational requirements.

• Program codes. We present the computational implementations of the models

presented in this thesis, which have been used to obtain the mentioned examples.
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1.1 Motivación

Millones de personas se desplazan a diario por motivos de trabajo, estudios, ocio, etc.

dando lugar a atascos, contaminación, retrasos y accidentes. Por lo tanto, seŕıa interesante

poder contar con alguna herramienta que nos permita eliminar, o al menos minimizar, estos

problemas derivados del tráfico. La ingenieŕıa de tráfico es una herramienta de ese tipo

mediante la cual se puede evaluar el estado de los sistemas de tráfico.

Tradicionalmente, los ingenieros de tráfico se han concentrado en mejorar los sistemas

de tráfico a través de la construcción de nuevas infraestructuras. No obstante, ahora la

tendencia consiste en evaluar los sistemas actuales para mejorarlos en términos de eficien-

cia, seguridad, rapidez, comodidad y sostenibilidad. Además, las técnicas de ingenieŕıa de

tráfico permiten evaluar los programas de movilidad antes de llevarlos a cabo para predecir

3
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su utilidad, reduciendo aśı los costes de manera sustancial.

Entre otros campos de la ingenieŕıa de tráfico, podemos destacar la predicción de

viajeros, la cual requiere la definición y predicción de: la generación de viajes (cuántos

viajes van a originarse), la distribución de los viajes (dónde se dirigen los viajeros), la

elección del modo (qué modo de transporte utilizan) y la asignación de tráfico (qué rutas

van a elegir).

Para resolver estas cuestiones es importante contar con información sobre el estado

de los sistemas de tráfico. Por ello, se están desarrollando actualmente nuevos sistemas

dinámicos que reciben el nombre de Sistemas Inteligentes de Transporte (más conocidos

por sus siglas en inglés ITS). Estos sistemas incluyen sensores y detectores de velocidad

y flujo de veh́ıculos que se emplean para obtener información en tiempo real que permita

tomar las decisiones adecuadas sobre el control del tráfico. Las ventajas derivadas del

uso de los ITS no se limitan a reducir los tiempos de viaje o mejorar los flujos, sino

que también incluyen la reducción de los accidentes, del consumo de combustibles y del

impacto medioambiental.

El proceso de planificación y evaluación de los sistemas de tráfico requiere de herramien-

tas que sean capaces de reproducir la realidad. Una herramienta muy útil son los modelos

matemáticos y estad́ısticos, en los cuales se centra esta tesis. Por tanto, el principal obje-

tivo de esta tesis es la implementación de modelos y herramientas estad́ıstico-matemáticas

que reflejen la realidad de los sistemas de tráfico, incorporen la información disponible y

produzcan resultados fáciles de interpretar.

1.2 Contenido

En la literatura se han propuesto una gran variedad de modelos para resolver los diferentes

problemas derivados de los sistemas de tráfico. En esta tesis, se abunda en la problemática

y se proponen algunas herramientas estad́ıstico-matemáticas para su resolución. Todos

los métodos propuestos están acompañados de ejemplos ficticios o reales, lo que permite

analizar las caracteŕısticas y el comportamiento de los modelos.

El contenido de esta tesis está dividido en:

• Revisión de la literatura. Se realiza una revisión de la literatura que incluye

algunos de los problemas de tráfico existentes, aśı como los modelos más utilizados

para su resolución. En particular, se explican los siguientes problemas: asignación de

tráfico, estimación de matrices, observabilidad de redes de tráfico y recarga dinámica

de la red. Algunos de estos modelos son ilustrados con ejemplos para una mejor

comprensión de los principales conceptos e ideas.

• Un modelo de asignación de tráfico percentil. En primer lugar se resuelve

una conjetura propuesta por Nie (2011) sobre la permutación de los percentiles y

las derivadas parciales de los tiempos de ruta con respecto a los flujos de éstas. A
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continuación, se propone un modelo de asignación de tráfico percentil, incluyendo

las versiones con y sinh enumeración de rutas.

• Un modelo de asignación de tráfico que incluye adelantamientos. Se pro-

pone un modelo estático de asignación de tráfico que incluye adelantamientos basado

en una nueva familia de funciones de tiempo de viaje, aśı como dos problemas de

optimización equivalente con y sin enumeración de rutas.

• Un modelo bayesiano de estimación de matrices. Presentamos un modelo

jerárquico de optimización para estimar matrices de flujo origen-destino a partir

de arcos escaneados o aforados. Este modelo, que se basa en técnicas estad́ısticas

bayesianas, asume que los flujos de las rutas, y por tanto también los flujos en arcos,

nodos y pares origen-destino, siguen una distribución Gamma.

• Ĺımite superior del número de sensores necesario para una observabilidad

total. Se calcula el mı́nimo conjunto de arcos que debe ser equipado con sensores

para obtener observabilidad total a partir de los flujos en arcos. Se demuestra,

además, que este número coincide con el rango de la matriz de incidencia arco-ruta.

• Un modelo continuo para el problema dinámico de recarga de red in-

cluyendo adelantamientos. Se propone un modelo continuo para el problema

dinámico de recarga de red incluyendo adelantamientos. Este modelo considera dis-

tintas clases de usuarios dependiendo de su inclinación al adelantamiento y tiene

en cuenta la interacción en los arcos de los flujos de las distintas clases y rutas en

distintos instantes y localizaciones. También se considera el efecto de los arcos aguas

abajo y, por tanto, de las colas f́ısicas.

• Métodos gráficos para analizar trayectorias de tráfico con y sin adelan-

tamiento. Se desarrollan algunos métodos para analizar trayectorias de tráfico con

y sin adelantamiento. Analizamos las carateŕısticas de los gráficos de trayectorias

(como son la pendiente y la curvatura) y explicamos su significado f́ısico (veloci-

dad, aceleración, etc.). También estudiamos los gráficos obtenidos al superponer

trayectorias de distintas clases, dando lugar a bandas de distintos colores cuando los

adelantamientos tienen lugar.

• Implementación computacional. Finalmente, presentamos la implementación

computacional de los modelos propuestos en esta tesis y que han sido utilizados para

obtener las aplicaciones prácticas ya mencionadas.

1.3 Contribuciones

Las principales contribuciones de esta tesis son: una revisión de la literatura, un modelo

de asignación de tráfico percentil, un modelo de asignación de tráfico que incluye adelan-
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tamientos, un modelo bayesiano de estimación de matrices, el ĺımite superior del número

de sensores necesario para una observabilidad total, un modelo continuo para el problema

dinámico de recarga de red incluyendo adelantamientos y algunos métodos gráficos para

analizar trayectorias de tráfico con y sin adelantamiento. En los siguientes apartados se

ofrece una descripción detallada de las contribuciones mencionadas.

1.3.1 Revisión de la literatura

El propósito de esta parte es ubicar la tesis en el contexto de la modelización del tráfico

y presentar un resumen del estado del arte de los modelos de tráfico, lo que representa la

base de las soluciones propuestas en los caṕıtulos restantes. En particular, esta parte está

formada por cuatro caṕıtulos: el problema de asignación de tráfico estático, el problema

de estimación de matrices origen-destino, el problema de observabilidad de tráfico y los

modelos dinámicos de tráfico.

En cada uno de los caṕıtulos se detalla el problema y se exponen algunos de los mo-

delos propuestos para su resolución. De esta forma, se proporciona al lector un mejor

conocimiento del problema y una idea general de las soluciones ya propuestas en la lite-

ratura. Por último, dedemos destacar que los caṕıtulos de la revisión de la literatura se

corresponden con los caṕıtulos posteriores de forma que los primeros pueden verse como

una introducción a los segundos.

1.3.2 Un modelo de asignación de tráfico percentil

En este caṕıtulo nos centramos en el problema de fiabilidad del tiempo de viaje y resolvemos

una cuestión planteada por Nie (2011) sobre la permutación de percentiles y derivadas

parciales de los tiempos de viaje en rutas con respecto a los flujos en las rutas. A partir de

una familia de contraejemplos, se demuestra que las operaciones: (a) obtener percentiles

y (b) derivar parcialmente los tiempos de viaje en ruta, no son intercambiables.

A continuación, proponemos un modelo que asume que los tiempos de viajes en las

rutas pertenecen a una familia de localización y escala, cuyas medias y varianzas pueden

ser evaluadas en términos de los tiempos de viaje de los arcos. Esto permite evitar el

uso del teorema central del ĺımite y de convoluciones. En oposición a la mayoŕıa de

los modelos que requieren enumeración de rutas, presentamos un modelo percentil de

optimización del sistema incluyendo dos versiones con y sin enumeración de rutas. Este

modelo puede considerarse como un modelo de fiabilidad del tiempo de viaje puesto que

asume la existencia de clases de viajeros según su deseo de puntualidad. Por último, se

muestran dos ejemplos de aplicación, uno de ellos real, para ilustrar la potencia del método

propuesto.
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1.3.3 Un modelo de asignación de tráfico que incluye adelantamientos

Este caṕıtulo está dedicado al problema de asignación de tráfico cuando el adelantamiento

está permitido. Presentamos una nueva familia de funciones de tiempo de viaje que

permite reproducir el adelantamiento. Más concretamente, la nueva familia de funciones

cumple una propiedad importante: reproduce el hecho de que las altas congestiones hacen

imposible el adelantamiento pero proporciona distintos tiempos de viaje para usuarios

de distintas clases cuando el nivel de congestión es bajo. Esta familia de funciones está

basada en combinaciones lineales convexas de otras funciones de tiempo de viaje.

Recurrimos a dos problemas de desigualdad variacional (VIP) para modelizar el pro-

blema de asignación de tráfico uno con y otro sin enumeración de rutas. Además, se

proponen dos problemas de optimización aquivalentes basados en una función de discre-

pancia, los cuales pueden ser resueltos a través de softwares generales de optimización. Se

presenta también un conjunto de ejemplos que incluye la red real de Ciudad Real (España)

para ilustrar los métodos propuestos. Entre dichos ejemplos, destacamos el caso analizado

en el que automóviles y motos comparten la red bajo condiciones de baja y alta congestión.

1.3.4 Un modelo bayesiano de estimación de matrices

En este caṕıtulo se propone un modelo jerárquico de optimización generado a partir de

un método bayesiano de estimación para la predicción de matrices origen-destino.

El problema puede considerarse como un sistema de ecuaciones en el que tres de

ellas son, a su vez, problemas de optimización: (1) un modelo de Wardrop de mı́nima

varianza, que es utilizado para determinar las probabilidades de elección de las rutas, (2)

un problema de mı́nimos cuadrados, utilizado para obtener la muestra de flujos de los

pares origen-destino, y (3) un problema de máxima verosimilitud para estimar la moda a

posteriori. Para resolver el modelo se propone un enfoque iterativo que permite resolver

el problema multiobjetivo en pocas iteraciones.

Para finalizar, se muestran dos ejemplos de aplicación que permiten ilustrar el fun-

cionamiento del método propuesto. Además, se incluye una comparación con otras técnicas

existentes, las cuales producen resultados similares, probando aśı la validez de los métodos

propuestos.

1.3.5 Ĺımite superior del número de sensores necesario para una ob-

servabilidad total

Se demuestra que el número mı́nimo de sensores necesario para conocer los flujos en todos

los arcos de una red de tráfico puede determinarse sólo si se posee información sobre

las rutas. No obstante, no es necesaria la enumeración de todas las rutas, sino de un

subconjunto que defina el rango rW de la matriz de incidencia arco-ruta W. Si el rango

de dicha matriz para un subconjunto reducido de rutas es m − n, donde m es el número
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de arcos y n, el número de nodos no centroides, se puede concluir que es suficiente con

m − n sensores. Es importante determinar el mı́nimo número de sensores puesto que la

observación de más arcos de los estrictamente necesarios, puede provocar redundancia e

incluso problemas de incompatibilidad.

También se muestra que el conjunto de todas las rutas puede obtenerse como las aristas

de un cono y que las fórmulas que permiten determinar los flujos de los arcos dependientes

en función de los independientes pueden obtenerse a partir de los enfoques basados en

nodos y rutas, dando lugar a iguales resultados siempre que rw = m− n.

Finalmente, se propone un algoritmo para la obtención de conjuntos de rutas lineal-

mente independientes. Los métodos propuestos son ilustrados sobre la red paralela pro-

puesta por Hu et al. (2009).

1.3.6 Un modelo continuo para el problema dinámico de recarga de red

incluyendo adelantamientos

En este caṕıtulo se presenta un modelo para resolver el problema dinámico de recarga de

red cuando se asumen tipos de usuarios según su inclinación al adelantamiento, pero no

se permite el adelantamiento entre usuarios del mismo tipo.

El modelo calcula las funciones de tiempo de viaje en los arcos en un conjunto finito

de instantes igualmente espaciados, que son empleados para interpolar los tiempos de

viaje en los instantes restantes. El modelo considera funciones de tiempo de viaje no

lineales en los arcos que dependen del flujo en el propio arco, aśı como en los arcos aguas

abajo, y toma en consideración el hecho de que los tiempos de viaje (y por consiguiente

sus velocidades) deben coincidir para todas las clases cuando existe una alta congestión.

Además, se consideran colas f́ısicas al tener en cuenta el tiempo necesario para que se

disipen las mismas.

Las demandas de las rutas en los nodos origen se asumen conocidas y se reproducen

como combinaciones lineales de funciones de densidad. Las leyes de conservación son

utilizadas para determinar la evolución de la onda asociada al flujo en rutas en toda la

red.

Para finalizar, se fusiona toda la información disponible para hacer compatibles los

tiempos de viaje a partir de un método iterativo hasta que se alcanza la convergencia. De

nuevo, los métodos se ilustran a partir de ejemplos, algunos de ellos reales. Los resultados

obtenidos reflejan las tendencias observadas en la realidad y los tiempos de computación

son razonables, permitiendo su aplicación en redes reales de mayor tamaño.

1.3.7 Métodos gráficos para analizar trayectorias de tráfico con y sin

adelantamiento

Este caṕıtulo presenta algunos métodos gráficos para analizar trayectorias, esto es, t0-

familias de trayectorias x = f(t; t0) que representan la ubicación del usuario x en el
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instante t cuando su tiempo de salida es t0.

También trabajamos con la función inversa que representa el tiempo de llegada

t = g(x; t0) a la localización x de un usuario que ha iniciado el viaje en el instante

t0. Diferenciamos entre dos tipos de gráficos: igualmente espaciados, en los cuales cada

banda representa periodos idénticos de tiempo; y de flujos iguales, cuyas bandas represen-

tan igual número de usuarios. Se investiga la interpretación de las familias de curvas, sus

inversas y las primeras y segundas derivadas parciales con respecto a la hora de salida,

tiempo y ubicación, de forma que puedan conocerse estos valores a partir de los gráficos

de trayectorias.

Por último, analizamos la superposición de trayectorias de distintas clases de usuarios y

las bandas de colores que se producen como consecuencia de esta superposición. Asimismo,

proponemos algunas normas para elegir el mejor instante para comenzar un viaje basado

en los distintos gráficos. Los métodos propuestos se ilustran a través de su aplicación a

una red sencilla.
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2.1 Introduction

Every day, millions of people move from one place to another because of work, studies,

leisure, etc. leading to congestion, pollution, delays and accidents. Therefore, it would

be interesting to have a tool that helps reducing these negative aspects of traffic. Traffic

engineering is such a tool as it permits evaluating traffic systems.

Traditionally, traffic engineering has been focused on road improvements by means of

building additional infrastructure. However, nowadays it is more centered in evaluating

traffic systems so as to optimize them in terms of efficiency, safety, rapidness, comfortabil-

ity, economy and environment. Moreover, traffic engineering techniques permit evaluating

the adequacy of mobility programs ahead of their implantation in order to predict their

usefulness and, thus, reducing costs.

Among other aspects of traffic, forecasting of passenger travel is an important area of

13
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traffic engineering. It usually involves an urban transportation planning model, requiring

the estimation of trip generation (how many trips for what purpose), trip distribution

(destination choice, where is the traveler going), mode choice (what mode is being taken),

and route assignment (which streets or routes are being used).

To solve all this problems, information on the state of the traffic system is impor-

tant. For that reason, new dynamic systems, collectively called intelligent transportation

systems, are being developed. These include automatic sensors, interconnected, guidance

systems to manage traffic (for example, traffic signs which open a lane in different direc-

tions depending on the time of day). Also, traffic flow and speed sensors are used to obtain

real-time information that is processed and decisions about traffic control are made. The

advantages are not limited to decreasing the travel times or improving the traffic flow,

but to congestion, accidents or fuel reduction, and avoiding or reducing environmental

problems, etc.

The process of planning and evaluating traffic systems is usually made by means of

mathematical and statistical models, that are capable of reproducing reality and hence are

a very useful tool. This thesis focuses on this last point, i.e. implementation of different

mathematical and statistical tools capable of reproducing traffic reality taking into account

available data and providing easy to interpret results. There are many different models

according to the objectives, namely, short or long term analysis, predicting or estimation,

etc. A good engineering answer to these problems must be as simple as possible, but it

must give a practical solution to the main problem in each case.

In the remaining of the thesis some statistical and mathematical models and tools are

developed that serve to solve the aforementioned problems. In order to illustrate those

tools, we apply them to illustrative and real networks (such as the Ciudad Real and Cuenca

networks, which are medium size Spanish cities).

2.2 Contributions

The main contributions of this thesis are: a literature review, a percentile traffic assign-

ment model, a traffic assignment model including overtaking classes, a Bayesian matrix

estimation model, the computation of the upper bound of the number of sensors required

for total observability, a model for the continuous dynamic network loading problem with

overtaking class users and some graphical methods to analyze traffic trajectories with and

without overtaking. A detailed description of each of these contributions is given in the

following sections.

2.2.1 Literature review

The aim of this part is to locate this thesis on the transport modeling and to present

a general summary of the state-of-the-art transport models, which is the basis of the
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main proposed solutions. In particular, four chapters conform this part: the static traffic

assignment problem, the matrix estimation problem, the traffic observability problem and

the dynamic traffic models.

In each of these chapters the problem, as well as the models proposed to solve it, is

presented. This way, we get the reader to have a better knowledge of the problem in study

and a general idea of the solutions provided in the literature.

The literature review serves as an introduction to the models presented in the second

part of the thesis, where the original contributions are explained. Chapter 3 introduces the

static traffic assignment model, while Chapters 7 and 8 provide extensions to this topic.

In Chapter 4 we explain several models proposed in the literature to solve the matrix

estimation problem and in Chapter 9 we present a new model to solve the same problem.

Chapter 5 summarizes recent studies on the link observability problem based on link flows

and Chapter 10 proves that some of them can be improved. Finally, a new model for the

dynamic network loading problem stated in Chapter 6 is given in Chapter 11.

2.2.2 A percentile traffic assignment model

In this chapter we deal with the travel time reliability problem and we answer an open

question raised by Nie (2011) about the permutability of percentiles and partial derivatives

of route travel times with respect to route flows. A family of counterexamples is given to

demonstrate that the two operations: (a) obtain percentiles and (b) partial derivation of

route travel times do not commute.

Next, we propose a model that assumes a location-scale family for the path travel times,

whose means and variances are evaluated in terms of link travel times. This avoids the use

of the central limit theorem and convolutions providing a flexible and simple alternative.

Contrary to most existing models that require path enumeration or an iterative method

to add paths sequentially, we present a PSO (percentile system optimization) alternative

in its two versions: with and without path enumeration. This model can be classified into

the travel time reliability problem as it assumes that there exist classes of users depending

on their desire of punctuality. Two examples of applications, one of them is real, are used

to illustrate the power of the proposed method.

2.2.3 A traffic assignment model including overtaking classes

This chapter is devoted to the traffic assignment problem when overtaking of vehicles is

permitted. A new family of link travel time functions is presented that allows reproducing

overtaking. In particular, this family of travel time functions have a very important

property: to reproduce the fact that high congestions impede overtaking, it produces the

same behavior of several overtaking classes under high congestion, but different travel times

under mild congestion. This family is generated based on local linear convex combinations

of travel time functions.
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Two variational inequality problems (VIP) are used to solve the traffic assignment

problem, one with and another without route enumeration. Equivalent optimization prob-

lems based on a gap function are provided, which can be solved by means of general opti-

mization software. A set of examples including a real one (the city of Ciudad Real) is used

to illustrate the proposed methods and techniques. In particular, a case in which cars and

motorcycles share the network is analyzed under congested and uncongested conditions in

order to see how congestion provokes equal travel times for all classes.

2.2.4 A Bayesian matrix estimation model

A hierarchical optimization problem generated by a Bayesian method for estimating origin-

destination matrices, based on Gamma models, is given in this chapter.

The problem can be considered as a system of equations in which three of them are

optimization problems: (1) a Wardrop minimum variance (WMV) assignment model,

which is used to derive the route choice probabilities, (2) a least squares problem, used

to obtain the Origin Destination pair flow sample data, and (3) a maximum likelihood

problem to estimate the posterior modes. A multi-level iterative approach is proposed to

solve the multi-objective problem that converges in a few iterations.

Finally, two examples of applications are used to illustrate the proposed methods and

procedures, a simple and the medium size Ciudad Real networks. A comparison with

existing techniques, which provide similar flows, seems to validate the proposed methods.

2.2.5 Upper bound of the number of sensors required for total observ-

ability

It is demonstrated that the minimum number of sensors required to know all link flows

in a traffic network can be determined only if path information is available. However,

not all paths need to be enumerated but a subset defining the rank rW of the link-path

incidence matrix W. If this rank for a reduced subset of paths is already m−n, where m

and n are the number of links and non-centroid nodes, respectively, we can conclude that

m−n counters are sufficient. It is important to determine the minimum number of sensors

because observation of more links than those strictly necessary produce redundancy and

this is known to lead to incompatibility problems.

It is also shown that the set of all paths can be obtained as the edges of a cone, and

that the formulas providing the dependent link flows in terms of the independent link flows

can be obtained by the node-based or the path-based approaches, with the same results

only when the rank of the link-path incidence matrix is m− n.

Finally, an algorithm to obtain sets of linearly independent path vectors is given. The

methods are illustrated by the parallel network example in Hu et al. (2009).
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2.2.6 A model for the continuous dynamic network loading problem

with overtaking class users

This chapter presents a model for solving the continuous loading network problem when

different class users interact in the traffic network so that overtaking among different class

users is permitted but the FIFO rule is satisfied for the same class users.

The model calculates the link travel time functions at a basic finite set of equally

spaced times which are used to interpolate a monotone spline for all other times in order

to preserve monotonicity and guarantee that the FIFO rule is satisfied at all points for the

same class users. The model assumes non-linear link travel time functions of the link vol-

umes including those ahead of the link being considered, takes into account that different

class functions must be asymptotically coincident for high congestions and considers link

physical-queues.

The path origin demands are reproduced as linear combinations of density functions

and the conservation laws are used to determine the path flow wave evolution throughout

the network. Different path flow waves are mixed together and a congestion equation is

used to determine the link travel times.

Finally, all information is combined to make it compatible in times and locations using

an iterative method until convergence. The method is illustrated by some examples of

illustrative and real networks. The results seem to reproduce the observed trends closely.

The resulting required cpu times are reasonable so that the method seems to be applicable

to real networks.

2.2.7 Graphical methods to analyze traffic trajectories with and without

overtaking

This chapter presents some graphical methods to analyze traffic trajectories, that is, t0-

families of trajectories x = f(t; t0) representing the user location x at time t when its

departure time is t0.

We also deal with the inverse function that represent arrival time t = g(x; t0) at

location x of a user whose departure time is t0. We distinguish between equally delayed

plots, that represent trajectory bands corresponding to identical periods of time, and

equal flow plots, whose bands represent equal number of users. The interpretations of the

trajectory family curves and their inverse functions first partial derivatives (slopes) with

respect to departure time, time or space and the corresponding second partial derivatives

are given, so that the relative values of these derivatives and their physical meanings can

be known by taking a look at the trajectory plots.

The superposition of trajectories of different classes, and the color bands that are

produced consequently, are also studied. We also propose some rules to determine the

best moments to start a journey based on different trajectory plots. Finally, the proposed

methods are illustrated by their application to a simple traffic network.
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2.3 Outline of the thesis

This thesis is organized as follows. Part II summarizes the fundamentals and relevant

literature model of the problems considered. In Part III the original contributions are

presented. Chapter 7 solves the conjecture proposed by Nie (2011) and provides a Per-

centile System Optimal model. In Chapter 8 a model to solve the static traffic assignment

including overtaking classes and following Wardrop’s first principle is given. In Chap-

ter 9 the proposed methods for the estimation of OD-pair flows based on link counts and

bayesian techniques are introduced. The upper bound on the number of link count sensors

required for total link observability is derived in Chapter 10. Chapter 11 deals with the

dynamic network loading problem and includes a model with overtaking classes to solve

it. Some graphical methods to analyze traffic trajectories with and without overtaking are

presented in Chapter 12. Finally, Part IV provides some conclusions and suggests future

works and the Appendix includes the programming codes of the presented models.
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3.1 Introduction

The traffic assignment problem is one of the most studied problems in the field of trans-

portation engineering, that has become a very useful tool for predicting traffic flow in

congested areas. Given the graph representation of the transportation network, the asso-

ciated link performance functions1 and an origin-destination flow matrix, the aim of the

problem is to find the flow of the paths2 and, hence, of the network links. In other words,

the issue is how to assign the OD matrix onto the network.

1A link performance function is a function that relates the flow on a link with the time required to

travel through it. Some examples of performance function are given in Appendix A.
2Note that finding the flow of paths is equivalent to find the paths chosen by users. If the flow on a

path is null, it means that no one has chosen it.
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In this chapter, we consider the deterministic traffic assignment problem, in the sense

that we assume that the distribution of the flow among alternatives is given by a certain

analytical function. Contrary, stochastic models assume that the users behave in a random

manner with a given density function.

It is also remarkable that the traffic assignment problem is static as it does not take into

account the changes in the OD matrix that may occur with time. Because of this reason,

traffic assignment models may be defined for short periods of time (such as morning peak

hour, evening peak hour or midday) and assuming that the origin-destination flows within

the period being studied is constant (so this problem must not be applied in situations

where large demand fluctuations occur). Nevertheless, it is important to realize that the

period of analysis cannot be very small since it has to be longer than the typical duration

of trips at that time. Finally, traffic assignment models can be used for longer periods

(such as a day or a week) when road users go through their routines repeatedly and at

regular intervals (for example, the frequency of work-trips and the origin and destination

of it are fixed).

To solve the traffic assignment problem, knowledge of the rules that users follow to

choose their paths is required. The three existing principles to model route choice include:

• User-Equilibrium (UE) wherein no user can improve his/her travel time by unilat-

erally changing routes.

• System-Optimal (SO) wherein the total travel time of the system in minimized.

• Stochastic User-Equilibrium (SUE) wherein no user can uniterally change routes to

improve his/her perceived travel times.

In this chapter we will focus on the User-Equilibrium approach and will describe the

different methods used in the literature to solve this problem. The chapter is structured

as follows. In Section 3.2 we introduce the User Equilibrium principle and analyze several

formulations of this problem, namely, mathematical programming formulations in Section

3.2.1, nonlinear-complementary problems (NCP) in Section 3.2.2 and variational inequality

problems (VIP) in Section 3.2.3. Section 3.3 is devoted to the System-Optimal approach

and the conditions under which the UE and the SO approach are equivalent. Finally, in

Section 3.4 the problem of user equilibrium with heterogeneous users is dealt with.

3.2 User Equilibrium (UE)

Suppose that the number of drivers who want to travel between a given origin-destination

(OD) pair is known and that these OD-pairs are connected by several possible paths. The

question, as it has been indicated in the previous section, is how drivers will be distributed

among the different paths. If all of them chose the same shortest path, then congestion

would develop on it. As a result, the travel time on this path might increase to a point
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where it is no longer the minimum travel-time path. Some of the drivers would then use

an alternative path that can, however, be congested too. This process can continue until

an equilibrium situation is reached. This kind of equilibrium is called User-Equilibrium

(UE) (or Wardrop’s first principle) and, based on the ideas of the economic theory of

supply-demand equilibrium, was first introduced by Wardrop (1952):

Definition 1 (User Equilibrium (UE)) A user-equilibrium is reached when no vehicle

can improve its travel time by uniterally changing routes.

Obviously, this definition of UE implies that every user has knowledge about the effect

that his transfer onto a new route has upon travel time. To make this principle suitable

for a mathematical formulation, Wardrop proposed an analogous law stated as:

“The journey times on all the paths actually used are equal, and less than those which

would be experienced by a single vehicle on any unused path.”

Mathematically, the UE principle can be stated as

fksr(cksr − πks) = 0; ∀r, ks, (3.1)

cksr − πks ≥ 0; ∀r, ks, (3.2)

where fksr is the flow on path r with origin-destination ks, cksr is the travel cost associated

with route r with origin-destination ks and πks is the equilibrium cost to travel from origin

k to destination s.

Condition (3.1) forces that when the travel time of route r is longer than the shortest

travel time of routes of the same OD, the flow on that route is zero, and when the travel

time is equal to the shortest travel time of routes of the same OD, its flow is equal or

greater than zero. On the other hand, condition (3.2) forces that the travel time of any

route is greater or equal to the shortest travel time of the routes of the same OD.

The first attempt to solve this problem was proposed in Wardrop (1952)3: Suppose

that τks is the flow traveling from node k to node s and that the performance function,

that is, the function that gives the travel time tr of route r, is a function of the route

flow fr given by tr = t0rϕr(fr), where t0r is the free flow time of route r and ϕr(fr) is a

monotone normalized function. Assume also that πks is the minimum travel time of OD

ks. In that case, routes whose free travel time t0r are bigger that πks, cannot be used.

Rewriting the performance function in its inverse form, we get

fr = ϕ−1
r

(
πks
t0r

)
; ∀r|t0r ≤ πks.

3It is important to emphasize that this first attempt does not take into account the fact that the travel

time on a path is influenced by the flow on different paths, i.e. it assumes that travel times of different

paths are independent.
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Non-linear complementary model 

Variational inequality model 

Additive and symmetric 
cost function 

Beckmann et al. model 
Ferris et al. model 
Castillo et al. model 

Lo and Chen model 

Positive cost 
function 

Figure 3.1: UE models equivalent to conditions (3.1)-(3.2) and the conditions that must

hold.

Summing over the used routes gives:

τks =
∑

r|t0r≤πks

fr =
∑

r|t0r≤πks

ϕ−1
r

(
πks
t0r

)
.

This equation gives the value of τks for which πks is the appropriate travel time. If

τks is calculated for each value of πks, it is possible to find the solution of the problem by

picking out the value of πks which corresponds to the given τks.

This procedure to solve the traffic assignment problem is not efficient and does not

take into account the interactions between users of different routes. For this reason and in

order to extend the problem, many different models have been proposed in the literature.

Generally, the proposed methods can be classified in one of these groups: (i) mathematical

programming (MP), (ii) nonlinear-complementary problem (NCP) and (iii) variational in-

equality problem (VIP). The following subsections are devoted to each of these approaches.

Figure 3.1 shows a summary of the models that will be explained and the conditions that

must hold so these models are equivalent to the UE conditions (3.1)-(3.2).
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3.2.1 Mathematical programming approach

The Beckmann model

Some years after the UE principle was first stated, Beckmann et al. (1956) proposed to

solve the traffic assignment problem (3.1)-(3.2) by means of the following optimization

problem:

Consider a strongly connected network4 (N ,A), where N is the set of nodes and A is

the set of links `ij. For certain origin-destination node pairs, k, s ∈ OD, where OD is a

subset of N ×N , there are given positive demands τks and a set R of routes joining them.

Then, the traffic assignment problem can be stated as:

Minimize
f ,w

Z(w) =
∑

`ij∈A

∫ wij

0
cij(s)ds =

∑

`ij∈A
Cij (wij) (3.3)

subject to

∑

r∈R
ξksrfr = τks : ηks, ∀k, s ∈ OD (3.4)

∑

r∈R
frδijr = wij : λij , ∀`ij ∈ A (3.5)

fr ≥ 0 : µr ∀r ∈ R, , (3.6)

where `ij is the link joining nodes i and j, cij(·) is the travel time function associated with

link `ij , Cij(·) is the integral of the travel time function associated with link `ij , fr is the

flow on route r, wij is the flow on link `ij , δijr is the link-route incidence matrix (δijr = 1

if link `ij belongs to path r, and 0 otherwise), ξksr is the OD-route incidence matrix and

ηks, λij and µr are the dual variables of problem (3.3)-(3.6).

Theorem 1 (Equivalence) The mathematical program (3.3)-(3.6) is equivalent to the

UE principle (3.1)-(3.2).

Proof. This equivalence can be proved by means of the Karush-Kuhn-Tucker (KKT)

conditions (see Sheffi (1985)).

The Lagrangian function of the problem (3.3)-(3.6) is

L(w, f ,λ,η,µ) =
∑

`ij∈A
Cij(wij) +

∑

k,s∈OD
ηks

(
τks −

∑

r∈R
ξksrfr

)

+
∑

`ij∈A
λij

(∑

r∈R
frδijr − wij

)
−
∑

r∈R
µrfr,

(3.7)

4A network is strongly connected if for any OD pair ks with positive demand, there is at least one path

joining nodes k and s.
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and the associated Karush-Kuhn-Tucker conditions are:

∂L
∂wij

= cij(wij)− λij = 0; ∀`ij ∈ A (3.8)

∂L
∂fr

= −
∑

k,s∈OD
ηksξksr +

∑

`ij∈A
λijδijr − µr = 0; ∀r ∈ R, (3.9)

∑

r∈R
ξksrfr = τks; ∀k, s ∈ OD (3.10)

∑

r∈R
frδijr = wij ; ∀`ij ∈ A (3.11)

fr ≥ 0; ∀r ∈ R, (3.12)

frµr = 0; ∀r ∈ R, (3.13)

µr ≥ 0; ∀r ∈ R. (3.14)

From (3.8) we get

cij(wij) = λij , ∀`ij ∈ A, (3.15)

that is, the dual variable λij is the travel time of link `ij . From Equations (3.9) and (3.15)

we have

µr = −
∑

k,s∈OD
ηksξksr +

∑

`ij∈A
λijδijr

=
∑

`ij∈A
cij(wij)δijr −

∑

k,s∈OD
ηksξksr

= cr −
∑

k,s∈OD
ηksξksr; ∀r ∈ R,∀k, s ∈ OD, (3.16)

where cr is the travel time of route r.

In addition, due to (3.13), if fr > 0, then µr = 0 and cr =
∑

k,s∈OD
ηksξksr, implying

that ηks = πks is the equilibrium travel time from origin node k to destination node s.

Finally, (3.13),(3.14) and (3.16) lead to

fr(cr −
∑

k,s∈OD
ηksξksr) = 0; ∀r ∈ R, (3.17)

cr −
∑

k,s∈OD
ηksξksr ≥ 0; ∀r ∈ R, (3.18)

which are the UE equations (3.1) and (3.2) in terms of fr.

Note that the dual variables µr are associated with the overcost of route r with respect

to the minimum cost, that is, if route r is being used (fr > 0), its travel time is minimum

and, then, the overcost is zero (µr = 0).
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Once we have proved that the solutions to the mathematical program (3.3)-(3.6) follow

the UE principle (3.1)-(3.2), another important issue of this problem is the uniqueness of

solution.

Theorem 2 (Uniqueness of solution) The problem (3.3)-(3.6) has unique solution in

terms of link flows wij if the link performance function cij is strictly monotone.

Proof. In order to show that a minimization program has unique solution, it is sufficient

to prove that the objective function and the feasible region are convex. The feasible region

of the UE problem is given by constraints (3.4)-(3.6), which are all linear, implying that

the feasible region is convex.

To prove that the objective function (3.3) is also convex, we need to see if the Hessian is

positive definite. Since
∂Z(w)

∂wij
= cij(wij),

∂Z(w)

∂2wij
= c′ij(wij) and

∂Z(w)

∂wij∂wi′j′
= 0; ∀`ij 6=

`i′j′ , the Hessian becomes

∇2Z(Wij) =




c′ij(wij) 0 · · · 0

0 c′i′j′(wi′j′) · · · 0
...

...
. . .

...

0 0 · · · c′i′′j′′(wi′′j′′)



, (3.19)

and since cij(wij) has been assumed strictly monotone with respect to link flows

(c′ij(wij) > 0), the Hessian is positive definite, and therefore, the solution to the mathe-

matical problem in terms of link flows is unique.

On the contrary, we can have multiple solutions with respect to path flows. Follow-

ing an analogous process to the one in the previous proof and taking into account that

cij(wij) = cij

(∑
r∈R

frδijr

)
we can realize that the link performance function is not strictly

monotone with respect to path flows fr
5, and therefore, there are multiple solutions to the

problem (3.3)-(3.6) in terms of path flows.

The previous model has a practical inconvenience: it is necessary to have route infor-

mation. Path enumeration is a hard and time-consuming task that may become impossible

for large networks. For that reason, some authors have developed models without route

enumeration, based on the disaggregation of link flows. In the following subsections, two

models without route enumeration are presented.

The Ferris, Meeraus and Rutherford model

In Ferris et al. (1999) a multicommodity formulation is used to solve the static traffic

assignment problem and it is shown that it can be implemented using standard modeling

5If the flow on a path that does not contain the link `ij is augmented, the cost of this link will remain

constant meaning that the link performance function is not strictly monotone.
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software. The idea is to associate a “commodity” with each destination such that the

variables vijs represent the flow passing through link `ij with destination s. Considering

again a network (N ,A) where N is the set of nodes, A is the set of links and D is the set

of destination nodes, the mathematical problem suggested by Ferris et al. (1999) is:

Minimize
v

Z(v) =
∑

`ij∈A
Cij

(∑

s∈D
vijs

)
(3.20)

subject to

∑

j|`ij∈A

vijs −
∑

j|`ji∈A

vjis = τis : ηis, ∀i ∈ N , ∀s ∈ D, i 6= s (3.21)

vijs ≥ 0 : µijs ∀`ij ∈ A, ∀s ∈ D, (3.22)

where τis are the OD flows going from origin node i to destination node s and ηis and

µijs are the dual variables associated with the optimization problem. We note that the

balance equation for i = s has no sense because origin and destination do not coincide.

In order to show that this problem is also equivalent to the UE conditions, we will use

the Karush-Kuhn-Tucker conditions. The Lagrangian of the problem is:

L(w,η,µ) =
∑

`ij∈A
Cij

(∑

s∈D
vijs

)
+
∑

i∈N
s∈D
i 6=s

ηis


τis −

∑

j|`ij∈A

vijs +
∑

j|`ji∈A

vjis


−

∑

s∈D
`ij∈A

µijsvijs,

(3.23)

and the associated KKT conditions are

cij

(∑

s∈D
vijs

)
− (1− δ′is)ηis + (1− δ′js)ηjs − µijs = 0; ∀`ij ∈ A, ∀s ∈ D, (3.24)

∑

j|`ij∈A

vijs −
∑

j|`ji∈A

vjis = τis; ∀i ∈ N , ∀s ∈ D, i 6= s (3.25)

vijs ≥ 0; ∀`ij ∈ A, ∀s ∈ D, (3.26)

vijsµijs = 0; ∀`ij ∈ A, ∀s ∈ D, (3.27)

µijs ≥ 0; ∀`ij ∈ A, ∀s ∈ D, (3.28)

where δ′is is the Kronecker delta whose value is one if i = s and zero, otherwise. Note that

the Kronecker deltas in (3.24) have been included to take into account that the second

summation in (3.23) does not include the case i = s.

From Equations (3.24) and (3.26)-(3.28) we get

cij

(∑

s∈D
vijs

)
+ ρis ≥ ρjs; `ij ∈ A, s ∈ D; ⊥ vijs ≥ 0, (3.29)
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where ρis = (1 − δ′is)ηis and ⊥ represents complementary slackness i.e., both conditions

must be satisfied but at least one with equality. Note that (3.29) shows that ρis are the

minimum travel times between nodes i and s, and therefore, if cij

(∑
s∈D

vijs

)
= ρjs − ρis,

link `ij is in one of the least expensive path between nodes i and s and users traveling

between those nodes can use link `ij (vijs > 0). Finally, µijs represent the difference

between the travel cost cij(·) of link `ij and the cost associated with traveling between

nodes i and j through the minimum cost path.

We end this section by saying that a traffic model analogous to (3.20)-(3.22) can be

obtained disaggregating the link flows by their origin nodes instead of the destination ones.

However, none of these alternatives (disaggregating by origin or by destination) permits

obtaining the routes that users have chosen.

The Castillo et al. model

In this section we propose a model for disaggregating link flows by their origin and des-

tination nodes that will permit obtaining the paths actually used without the need of

previous enumeration.

Given the origin-destination (OD) traffic flows, τks, we can estimate the link flows

associated with the different OD-pairs vijks, using the following optimization problem,

which corresponds to the Wardrop equilibrium problem

Minimize
v

Z =
∑

`ij∈A
Cij

( ∑

ks∈OD
vijks

)
(3.30)

subject to

τks(δ
′
ik − δ′is) =

∑

`ij∈A
vijks −

∑

`ji∈A
vjiks : λiks; ∀i ∈ N ; ks ∈ OD, (3.31)

0 ≤ vijks : µijks; ∀`ij ∈ A, ks ∈ OD (3.32)

where δ′ik are the Kronecker deltas (δ′ij = 0, if i 6= j and δ′ii = 1). We have assumed that

the cost on a link depends only on the flow on that link.

The problem (3.30)-(3.32) is a statement of the Beckmann et al. formulation of the

Wardrop equilibrium problem, but stated for each OD pair (see Wardrop (1952) and

Beckmann et al. (1956)). Note that equation (3.31) represents the flow balance associated

with the OD-pair ks, for all nodes.

Once the values of the OD link flows vijks have been estimated using the optimization

problem (3.30)-(3.32), we can easily calculate important flow information. Thus, the

statement of the flow problem using the set of variables vijks has the following important

advantages:

1. It avoids path enumeration.
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2. The flows xijk coming from a given origin node k and using link `ij can be calculated

as:

xijk =
∑

s∈D
vijks. (3.33)

3. The flows yijs going to a given destination node s and using link `ij can be obtained

as:

yijs =
∑

k∈O
vijks. (3.34)

4. The total flow wij through link `ij is given by:

wij =
∑

ks∈OD
vijks. (3.35)

5. The flow ziks going from origin node k to destination node s and passing through

node i is

ziks =
∑

i:`ij∈A
vijks. (3.36)

6. We can identify and/or enumerate the flow paths very easily. To enumerate paths of

an OD-pair (k, s), we can simply build the tree with accessible (with non-null flow

vijks in some solution) branches (links) starting from the origin node k and ending

with the destination node s.

7. Equations (3.33) to (3.36) and the selected variables vijks for the optimization prob-

lem (3.30)-(3.32) allow us incorporating new estimation techniques, based on infor-

mation about xijk, yijs, ziks and/or vijks, which are not possible for other methods.

This has important practical implications because new information based on traffic

surveys (information about xijk, yijs, ziks and/or vijks data in Equations (3.33) to

(3.36)) can be incorporated to the traffic flow estimation procedures.

We note that though the problem (3.30)-(3.32) has a unique solution in terms of total

link flows, it can have infinitely many solutions in terms of vijks, that is, in terms of path

flows, though they are equivalent in terms of link costs (they have the same link costs)6.

The dual variables. Since it is important for practical purposes and for a better un-

derstanding of the next models, we will now analyze the meaning of the dual variables of

problem (3.30)-(3.32).

6The proof of this statement can be made analogously to the one in Theorem 2.
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The Lagrangian function of the problem is

L(w,λ,µ) =
∑

`ij∈A
Cij


 ∑

(k,s)∈OD

vijks


−

∑

`ij∈A
(k,s)∈OD

vijksµijks

+
∑

i∈N
(k,s)∈OD

λiks


∑

`ij∈A
vijks −

∑

`ji∈A
vjiks − τks(δ′ik − δ′is)


 ,

(3.37)

and the associated KKT conditions:

∂L
∂vijks

=
∑

`ij∈A
cij


 ∑

(k,s)∈OD

vijks


− µijks + λiks − λjks = 0;

∀`ij ∈ A, ∀ks ∈ OD (3.38)

τks(δ
′
ik − δ′is) =

∑

`ij∈A
vijks −

∑

`ji∈A
vjiks; ∀i ∈ N ; ∀k 6= s, (3.39)

vijks ≥ 0; ∀`i,j ∈ A, ∀k, s ∈ OD, (3.40)

µijksvijks = 0; ∀`i,j ∈ A, ∀k, s ∈ OD, (3.41)

µijks ≥ 0; ∀`i,j ∈ A, ∀k, s ∈ OD. (3.42)

Analogously to dual variables of the Ferris et al. (1999) model, λiks − λjks represent

the minimum cost between nodes i and j. If link `ij is in one of the minimum cost paths

between nodes k and s, then, its cost cij(·) equals the minimum cost between nodes i and j

(λjks−λiks) and, therefore, it must be in use (vijks > 0). Furthermore, µijks represents the

overcost of traveling from node i to j through link `ij instead of using the least expensive

path.

Looking for uniqueness

Following the ideas of the previous model, Castillo et al. (2008f) propose a model with

unique solution, called the Wardrop-Minimum Variance equilibrium model (WMV). This

model, which corresponds to a mixture of the Wardrop equilibrium and the minimum

variance problems, can be stated as:

Minimize
v

Z =
∑

`ij∈A
Cij

( ∑

ks∈OD
vijks

)
+
κ

m

∑

`ij∈A

∑

ks∈OD
(vijks − µ)2 (3.43)

subject to

τks(δ
′
ik − δ′is) =

∑

`ij∈A
vijks −

∑

`ji∈A
vjiks; ∀i ∈ N ; ks ∈ OD, (3.44)

µ =
1

m

∑

`ij∈A

∑

ks∈OD
vijks, (3.45)

0 ≤ vijks; ∀`ij ∈ A, ks ∈ OD (3.46)
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where κ > 0 is a weighting factor, µ is the mean of the vijks variables, and m is its cardinal.

The problem (3.43)-(3.46) for κ = 0 becomes a pure Wardrop problem and has unique

solution in terms of total link flows, but it can have infinitely many solutions in terms

of vijks. Note that any exchange of users between equal cost subpaths does not alter the

link flows nor the corresponding costs. So, given an optimal solution to the problem,

exchanging different OD users from one subpath to the other leads to another optimal

solution with different vijks values, though the same link flows wij . To solve this problem,

one can choose small, but non-zero, value of κ (e.g., κ = 0.000001).

In this case, when κ > 0, (3.43) is strictly convex and the system (3.44)-(3.46) is

compatible and convex. As a consequence, the problem (3.43)-(3.46) has a unique solution,

which in addition is a global optimum.

We shall remark that in the problem (3.43)-(3.46) two objective functions are used

(the two terms in (3.43)) and that they have a clear hierarchy, that is, the first term is

the main function and the second term is the secondary function. Note also that we could

have considered this problem in two steps: in the first step the first term could have been

minimized, and in the second step we could have minimized the second term subject to

no change in the first one. The selection of a very small value of κ permits us solving the

problem in a single step.

In this case, the problem has a unique solution. The rationale of the problem (3.43)-

(3.46) above consists of selecting among all the solutions of the pure Wardrop problem

those minimizing the variance. This is achieved by using a very small value of κ, so that

first a very low value of the first term in (3.43) is obtained, and next, a small (because

κ is small) further improvement of the objective function is obtained by minimizing the

variance (second term in (3.43)).

The Lo and Chen model

Although avoiding path enumeration is an important feature of the previous models, spe-

cially for large networks in which the number of routes is larger than the number of links,

there are some cases where working with routes becomes necessary. This is the case of

considering route costs as nonadditive, that is, the route costs are not the direct sum of

link costs (e.g., in situations where people value travel time nonlinearly or in networks with

nonlinear toll or fare structures) or when the travel cost function is not symmetric (e.g.,

when the link travel time depends not only on its own link flow but also on others link

flows). An example of general cost route (Lo and Chen (2000) and Gabriel and Bernstein

(1997)) is

cksr = γksr +
∑

`ij

ρ1δijrξrkscij + ϕksr


∑

`ij

δijrξrkscij


 , (3.47)

where γksr denotes the financial costs (such as tolls) specific to route r, ρ1 is the operating

costs per travel time (e.g., fuel consumption), and ϕksr is a function describing the value
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of time for route r, which could be non linear.

In Lo and Chen (2000) this problem is discussed and a mathematical programming

formulation with a smooth and convex gap function is developed. Furthermore, in order

to avoid the procedure of exhaustive route enumeration, they proposed to work with a set

of a priori paths based on travelers’ preferences or interviews, which has the advantage

of explicitly identifying those routes that would likely be used. In this section, we will

explain Lo and Chen model but before we need to define what a gap function is.

Definition 2 (Gap function) Let Ω be the set of solutions of a non-necessarily linear

system of equations. A function G : Rn+ → R1
+ is a gap function for the system of equations

if

(i) G(x) = 0⇔ x ∈ Ω,

(ii) G ≥ 0.

In essence, the gap function provides a measure of convergence of the system of equa-

tions at any point x. By minimizing G over x, a point in Ω is obtained.

Facchinei and Soares (1995) suggested three desirable properties of a gap function:

(i) smooth (or differentiable),

(ii) convex: every stationary point is a global solution,

(iii) bounded.

These properties are important from a computational point of view. If they are sat-

isfied, the Mathematical Programming (MP) formulation can be solved efficiently by one

of the existing optimization algorithms.

There are several examples of gap functions in the literature but they all failed in

one of the previous properties. For example, Hearn (1982) proposed this gap function:

G(ṽ) = max s(ṽ)T · (ṽ − v), where v, ṽ, s(ṽ) are, respectively, any set of link flows, the

set of link flows at equilibrium, and the set of link travel times at equilibrium. This

MP involves solving the minimax problem minṽ maxv s(ṽ)T · (ṽ − v), which in general is

not a smooth and convex programming problem. Smith (1983) used this gap function:

G =
∑
ks

∑
r
{fksr[cksr − cksl]+}m,where r and l are two paths between OD pair ks and

[cksr − cksl]+ = max{0, cksr − cksl}. The Smith’s gap function is not convex and, as

[cksr − cksl]+ is nondifferentiable, the term {fksr[cksr − cksl]+} is raised to the second or

higher powers (i.e., m ≥ 2) to make G differentiable.

Lo and Chen (2000) reformulate the traffic assignment problem (3.1)-(3.2) (including

the demand constraint (3.4)) as:

Minimize
f ,π

G(fksr, πks) =
∑

k,s∈OD

∑

r∈R
fksr (cksr − πks) (3.48)
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subject to

∑

r∈R
fksr = τks; ∀k, s ∈ OD (3.49)

cksr − πks ≥ 0; ∀r ∈ R, ∀k, s ∈ OD (3.50)

πks ≥ 0; ∀k, s ∈ OD, (3.51)

fksr ≥ 0; ∀r ∈ R, ∀k, s ∈ OD, (3.52)

where G(fksr, πks) is the proposed gap function.

Proposition 1 (Equivalency between models) Let Ω be the set of solutions to the

UE conditions (3.1), (3.2), (3.4) with non-negative variables fksr and πks. Function

G(fksr, πks) : Rn+ → R1
+ is a gap function for these conditions.

Proof.

(i) This gap function G satisfies the condition: G(x) = 0⇔ x ∈ Ω, where x = (f ,π), f

denotes the vector of {fksr}, and π denotes the vector of {πks}.
Necessity. Given the UE condition fksr(cksr − πks) = 0, summing it for all ks and

for all r yields that G = 0.

Sufficiency. Constraints (3.50)-(3.52) ensure that each term fksr(cksr − πks) of G

is nonnegative. If G = 0, then each term fksr(cksr − πks) = 0, which is the UE

condition.

(ii) The gap function satisfies this second condition: G(x) ≥ 0, as ensured by constraints

(3.50)-(3.52).

Furthermore, this gap function G satisfies the three desirable properties recommended

by Facchinei and Soares (1995), as shown in Lo and Chen (2000).

Proposition 2 The objective function of the mathematical program (3.48)-(3.52) is

(i) differentiable,

(ii) convex, and

(iii) bounded,

if the route cost function is convex and monotonic with respect to path flows.

Proof. First we remind the reader of the mathematical definition of convexity and mono-

tonicity.
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• The route cost function n is convex with respect to path flows f if

n(θ · f1 + (1− θ) · f2) ≤ θ · n(f1) + (1− θ) · n(f2). (3.53)

• The route cost function n is monotonic with respect to path flows f if7

(f1 − f2)T · (n1 − n2) ≥ 0,

or simplifying,

f1
T · n2 + f2

T · n1 ≤ f1
T · n1 + f2

T · n2. (3.54)

(i) The partial derivatives of G are
∂G

∂fksr
= (cksr − πks) +

∑

mn

∑

l

fmnl

(
∂cmnl
∂fksr

)
and

∂G

∂πks
=
∑

r

fksr = τks. For differentiable route travel cost functions, (i.e.,
∂cmnl
∂fksr

is

smooth), G is differentiable with respect to fksr. Moreover, G is differentiable with

respect to πks if τks is a differentiable function. For the fixed-demand case, τks is a

given constant which is differentiable.

(ii) To prove that G is convex, we separate G into two parts, so that G = G1 +G2:

G1 =
∑

k,s∈OD

∑

r∈R
fksrcksr, G2 = −

∑

k,s∈OD

∑

r∈R
fksrπks. (3.55)

G is convex if both G1 and G2 are convex (since the sum of convex functions is

convex). G1 is the total travel time of all the route flows which is a function of route

flows only and equivalent to the total system cost. By definition of convexity, G1 is

convex if

G1(θ · f1 + (1− θ) · f2) ≤ θ ·G1(f1) + (1− θ) ·G1(f2), (3.56)

where f1, f2 are two route flow vectors satisfying constraints (3.49) and (3.52), and

0 ≤ θ ≤ 1. Since G1 = fT · n, the left-hand side (LHS) of (3.56) can be written as

LHS = [θ · f1 + (1− θ) · f2]T · n(θ · f1 + (1− θ) · f2). (3.57)

Using (3.53) and (3.54), equation (3.57) can be written as

LHS ≤ [θ · f1 + (1− θ) · f2]T · [θ · n1 + (1− θ) · n2]

= θ2 · f1T · n1 + (1− θ)2 · f2T · n2 + θ(1− θ)[f1T · n2 + f2
T · n1]

≤ θ · f1T · n1 + (1− θ) · f2T · n2 = θ ·G1(f1) + (1− θ) ·G1(f2) = RHS.

(3.58)

7For notational simplicity, let n(f1)=n1 and n(f2)=n2.
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This proves the convexity of G1. Next, we prove that G2 is convex. Using the

demand constraint (3.49), note that

G2 = −
∑

k,s∈OD

∑

r∈R
fksrπks = −

∑

k,s∈OD
πks

∑

r∈R
fksr = −

∑

k,s∈OD
πksτks = −πT · q.

(3.59)

Therefore, G2 is a function only of π with q being a set of given demands. G2 is

convex if

G2(θ · π1 + (1− θ) · π2) ≤ θ ·G2(π1) + (1− θ) ·G2(π2), (3.60)

where π1, π2 are two arbitrary vectors of nonnegative {πks}. The LHS can be written

as

LHS = −[θ · π1 + (1− θ) · π2]T · q = [−θ · π1
Tq− (1− θ) · π2

Tq]

= [θ ·G2(π1) + (1− θ) ·G2(π2)] = RHS,
(3.61)

which satisfies (3.60). This proves the convexity of G2 and, hence, of G.

(iii) G is bounded if every term fksr(cksr − πks) is. The upper bound value of each term

is obtained by loading the entire demand on the longest route and taking πks = 0.

That is, fksr(cksr − πks) ≤ τksc̃ksr, where c̃ksr is the longest route cost. Thus, there

is always a large enough constant α such that τksc̃ksr ≤ α.

For computational efficiency, this formulation puts three requirements on the route

cost function: smoothness, monotonicity and convexity. A basic route cost function which

fulfills this requirements is one with additive link costs (e.g. the one used in the previous

models), such as cksr =
∑

`ij
δijrψksrcij , where the route cost function is monotonic and

convex if the link flow functions are. Nevertheless, as stated in Lo and Chen (2000), the

real benefit of this formulation is its ability to model nonlinear or general route costs. The

general route cost in (3.47) is a money based function but other kind of functions, based

on time, have been proposed. For instance, Larsson et al. (2002) proposed the following

function:

cksr =
∑

`ij

δijrψksrcij + φksr (mksr) , (3.62)

where mksr is the monetary outlay (e.g., route-specific financial cost which is allowed to

vary according to route) and the function φksr converts money into time.

Although both function (3.47) and (3.62) may look similar, it has been noted by

Bernstein and Wynter (2000) that even if one chooses φksr = ϕ−1
ksr in (3.62), this will not

make the two formulations equivalent.
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3.2.2 Nonlinear-complementary problems

As it has been said in Section 3.1, several different formulations have been proposed in the

literature to solve the traffic assignment problem. In Section 3.2.1, some mathematical

programming approaches have been shown. In this section, we will focus on Nonlinear

Complementary Problems (NCP), that were first used to state the traffic assignment

problem in Aashtiani (1979). Before continuing with this section, we remind the reader of

the UE equations in Section 3.2:

fr(cr − πks(r)) = 0; ∀r, ks, (3.63)

cr − πks(r) ≥ 0; ∀r, ks, (3.64)
∑

r∈R
ξksrfr = τks; ∀k, s ∈ OD (3.65)

∑

`ij∈A
cijδijr = cr; ∀r ∈ R, (3.66)

fr ≥ 0; ∀r ∈ R, (3.67)

πks ≥ 0; ∀ks ∈ OD, (3.68)

Definition 3 (Non-linear Complementary Problem (NCP)) Let F (x) =

(f1(x), f2(x), . . . , fn(x)) be a vector-valued function F : Rn → Rn. Then a vector

x ∈ Rn is called a complementary solution of the NCP if it satisfies the following

conditions:

x · F (x) = 0, (3.69)

F (x) ≥ 0, (3.70)

x ≥ 0. (3.71)

In this section we show that the traffic equilibrium problem (3.63)-(3.68) has a com-

plementary nature and, hence, can be stated by means of a nonlinear complementary

problem. It is clear that equations (3.63), (3.64) and (3.67) are complementary in nature

but it is not the case for the remaining equations. Therefore, we now show that the rest

of the equations can also be expressed in a complementary form.

First, we need to do some simplification in the formulation, using the notation in

Aashtiani (1979). Let x = (f ,π) ∈ Rn where n = n1 + n2, n1 = |R| is the number of

routes, n2 = |OD| is the number of OD pairs, f denotes the vector of {fr}, and π denotes

the vector of {πks}. Furthermore, let

pksr(x) = cr(f)− πks, ∀r ∈ R, ∀ks ∈ OD and gks(x) =
∑

r∈R
ξksrfr − τks(π), ∀ks ∈ OD,
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where τks(π) is the demand function that depends on the minimum travel time8 and we

have added the argument to the route cost function cr(f) in order to clarify its dependence

structure. Finally, let F (x) = (pksr(x) ∀r ∈ R , ∀ks ∈ OD; gks(x) ∀ks ∈ OD) ∈ Rn. Once

F is defined as a vector-valued function from Rn into itself, we can write the UE problem

as the following nonlinear complementary problem:

x · F (x) = 0, (3.72)

F (x) ≥ 0, (3.73)

x ≥ 0. (3.74)

Theorem 3 Suppose that for all `ij ∈ A, cij : Rn1
+ → R1

+ is a positive function and, for

all ks ∈ OD, τks : Rn2
+ → R1

+ is a nonnegative function. Then, the user equilibrium system

(3.63)-(3.68) is equivalent to the nonlinear complementary system (3.72)-(3.74).

Proof. The proof of this theorem consists of two parts: any solution to the user-

equilibrium system (3.63)-(3.68) is a solution to the nonlinear complementary system

(3.72)-(3.74); and, any solution to (3.72)-(3.74) is a solution of (3.63)-(3.68). But before

continuing with the demonstration, note that the only equation of the system (3.72)-(3.74)

that is not included in (3.63)-(3.68) is πks(
∑
r∈R

ξksrfr − τks(π)) = 0 (which can be drawn

from equation (3.72)). Therefore, the proof can be restated as proving that: 1) every

solution to (3.63)-(3.68) fulfills gks(x)πks = 0; and 2) any solution to (3.72)-(3.74) is a

solution of (3.63)-(3.68).

(i) Since gks(x) =
∑
r∈R

ξksrfk − τks(π) = 0 in the user equilibrium because of equation

(3.65), it is obvious that any solution to (3.63)-(3.68) is a solution to (3.72)-(3.74).

(ii) We will use here the proof by contradiction. Suppose that there is a x = (f ,π)

satisfying (3.72)-(3.74), but that gks(x) = (
∑
r∈R

ξksrfr − τks(π)) > 0 (and hence it is

not a solution to (3.63)-(3.68)). Then gks(x)πks = 0 implies that πks = 0. Also, since

τks is non-negative
∑
r∈R

ξksrfr > τks(π) ≥ 0 which implies that fr > 0 for some r.

But, for this particular r, equation pksr(x)fr = 0 implies that pksr = cr(f)− πks = 0

and, hence, cr(f) = πks. But, since πks = 0, cr =
∑
`ij∈A

cijδijr = 0 which contradicts

the assumption cij > 0.

Remark 1 For the constant demand function case, τks is also a non-negative function

and, hence, this theorem is also applicable.

8In the previous sections, the demand function has been assumed constant (τks(u) = τks). Nevertheless,

in the rest of this section it will be considered variable and results to the constant case will be extended.
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Next, we study the existence and uniqueness of solutions of the complementary problem

(3.72)-(3.74). Note that, as this problem is equivalent to the UE problem, the conclusions

drawn in the following pages about the existence and uniqueness of solutions must agree

with the ones in Section 3.2.1. For the following results we will need to introduce some

concepts.

Definition 4 (Monotonicity) Let F : D → En, D ⊂ En.

(i) The function is said to be monotone on D if, for every pair x ∈ D and y ∈ D, we

have

(x− y) (F (x)− F (y)) ≥ 0.

(ii) F is said to be strictly monotone on D if for every pair x ∈ D and y ∈ D with x 6= y,

we have

(x− y) (F (x)− F (y)) > 0.

Theorem 4 (Existence of solution) Suppose that (N ,A) is a strongly connected net-

work. Suppose that for all `ij ∈ A, cij : Rn1
+ → R1

+ is a nonnegative function and, for all

ks ∈ OD, τks : Rn2
+ → R1

+ is a continuous function that is bounded from above. Then, the

nonlinear complementary problem (3.72)-(3.74), and hence the user equilibrium system

(3.63)-(3.68), has a solution.9

Proof. This proof has two parts: 1) the NCP has a solution, 2) the user equilibrium

system has also a solution. The first part of the proof can be found in Aashtiani (1979)

and, once that the nonlinear complementary problem has been shown to have a solution,

with the equivalence Theorem 3, the existence of solutions to system (3.63)-(3.68) becomes

proved.

Remark 2 For the constant demand function case, τks is obviously a continuous and

bounded from above function. Thus, this theorem is also applicable and the problem (3.72)-

(3.74) when the demands are constant has also a solution.

As it has been shown in Section 3.2.1, the solution to the user equilibrium problem is

not unique in terms of path flows but it is in terms of link flows. In the following theorem

we will prove that this is also the case when the UE approach is stated as a NCP. The

reason why in terms of path flows the solution is not unique is based on the fact that the

link travel time function is not strictly monotone with respect to route flows. Note that

the cost of a link cij

(∑
r∈R

frδijr

)
will remain unchanged if the flow of a route that does

9Note that these assumptions are not restrictive as the link travel cost functions are always nonnegative,

and the demand function is bounded from above as the users willing to travel between an OD pair is always

finite.
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not contain that link is augmented. On the contrary, if the link cost function is stated in

terms of link flows wij , then this cost function cij(wij) is strictly monotone.

For the following theorems, we need to introduce some new notation. Let w be the

vector of link flows wij , c(w), the vector of volume delay functions10 and τ (π), the vector

of demand functions. Let also ∆ = (δijr) and Γ = (ξksr) be the arc-path and path-OD

incidence matrices, respectively. Then, the system (3.63)-(3.68) can be restated as:

(
∆T · c (∆f)− Γ · π

)
· f = 0 (3.75)

∆T · c (∆f)− Γ · π ≥ 0 (3.76)

ΓT · f − τ (π) = 0 (3.77)

f ≥ 0 (3.78)

π ≥ 0 (3.79)

Now, let G(x) = (c (∆f) ,−τ (π)),where x = (f ,π) and G : Rn+ → Rm+ with n = n1 +n2

and m = |A|+ n2, and

∆̄ =

(
∆ 0

0 I

)
and Γ̄ =

(
0 −Γ

ΓT 0

)
,

with dimensions m×n and n×n, respectively, and I is the identity matrix with dimensions

n2 × n2. Then, the corresponding nonlinear complementary problem can be written as

follows:

(
∆̄TG

(
∆̄x
)

+ Γ̄x
)
x = 0 (3.80)

∆̄TG
(
∆̄x
)

+ Γ̄x ≥ 0 (3.81)

x ≥ 0. (3.82)

It is easy to show that ∆̄TG
(
∆̄x
)

+ Γ̄x = F (x) where F is the one used in equations

(3.72)-(3.74). Therefore, (3.80)-(3.82) is equivalent to (3.72)-(3.74). The following lemma

has been proved in Aashtiani (1979).

Lemma 1 Let K ⊂ Rn, let B be an m × n matrix and let L = {Bx|x ∈ K} ⊂ Rm.

Suppose that g : L → Rm is strictly monotone on L. Let A be an n × n positive semi-

definite matrix. Define f : Rn → Rm by f(x) = BT g(Bx) + Ax. Then, Bx has the same

value for all of these solutions.

Proof. Suppose that x1 and x2, x1 6= x2, solve the nonlinear complementary problem,

i.e.,

xi ≥ 0, f(xi) ≥ 0, and xif(xi) = 0, for i = 1, 2,

10Note that c(w) = c(f) as there exist formulas providing w from f.
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then

x2f(x1) ≥ 0 , x1f(x2) ≥ 0,

and consequently {(
x2 − x1

)
f
(
x1
)
≥ 0

(
x1 − x2

)
f
(
x2
)
≥ 0

which implies that (
x1 − x2

) (
f
(
x1
)
− f

(
x2
))
≤ 0

or (
x1 − x2

) (
BT g(Bx1) +Ax1 −BT g(Bx2)−Ax2

)
≤ 0

or (
x1 − x2

)
[BT

(
g(Bx1)− g(Bx2)

)
] +
(
x1 − x2

)
A
(
x1 − x2

)
≤ 0.

Since A is positive semi-definite,
(
x1 − x2

)
A
(
x1 − x2

)
≥ 0, implying that

(
x1 − x2

)
[BT

(
g(Bx1)− g(Bx2)

)
] ≤ 0,

or (
Bx1 −Bx2

) (
g(Bx1)− g(Bx2)

)
≤ 0. (3.83)

But g is strictly monotone on L, therefore Bx1 = Bx2. This concludes the proof.

Theorem 5 (Uniqueness) For a strongly connected network (N ,A), suppose that c is

the vector of the volume delay functions, and −τ , the vector of the negative demand

functions, are strictly monotone. Then, the arc volumes, w, and the vector of travel times

in equilibrium, π, are unique.

Proof. With the notation explained previously, we have that G = (c,−τ ) is strictly

monotone on L = {∆̄x = (w,π) : x = (f ,π) ∈ Rn} and that Γ̄ is a positive semi-definite

matrix. Thus, with g = G, f = F , B = ∆̄ and A = Γ̄, by Lemma 1, ∆̄x = (w,π) is

unique for the nonlinear complementary system (3.72)-(3.74) which implies that the arc

volumes w and the travel times in equilibrium πks are unique for the user equilibrium

problem (3.63)-(3.68).

Note that both of the functions c and −τ are required to be strictly monotone to

insure the uniqueness of (w,π). In the next theorem we show that this restriction can be

relaxed, and that uniqueness of π is maintained if either c or −τ is strictly monotone.

Theorem 6 Suppose that c and −τ are monotone functions. If either of c or −τ is

strictly monotone, then π is unique. Also, if c is strictly monotone, then (w,π) is unique.
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Proof. Suppose that x1 = (f1,π1) and x2 = (f2,π2), x1 6= x2, are two solutions. As in

Lemma 1, with g = G, f = F , B = ∆̄ and A = Γ̄, we have by equation (3.83)
(
∆̄x1 − ∆̄x2

) (
G(∆̄x1)−G(∆̄x2)

)
≤ 0.

But G = (c,−τ ) is monotone as it has monotone components, i.e.,
(
∆̄x1 − ∆̄x2

) (
G(∆̄x1)−G(∆̄x2)

)
≥ 0.

Therefore, (
∆̄x1 − ∆̄x2

) (
G(∆̄x1)−G(∆̄x2)

)
= 0, (3.84)

that can be rewritten as
(
∆f1 −∆f2

) (
c
(
∆f1

)
− c

(
∆f2

))
+
(
π1 − π2

) (
−τ

(
π1
)

+ τ
(
π2
))

= 0. (3.85)

But both c and −τ are monotone functions, thus each term in (3.85) is zero; that is,
(
∆f1 −∆f2

) (
c
(
∆f1

)
− c

(
∆f2

))
= 0 (3.86)

−
(
π1 − π2

) (
τ
(
π1
)
− τ

(
π2
))

= 0. (3.87)

If −τ is strictly monotone, then equation 3.87 implies that π1 = π2 and, therefore, π is

unique.

Now, suppose that c is the strictly monotone function. Then, equation (3.86) implies

that w1 = ∆f1 = ∆f2 = w2, or that the arc volume vector w is unique. But uniqueness of

the arc volume vector implies that the travel times, cij(w), on each arc are unique, which

obviously implies that π is unique.

Remark 3 For the constant demand function case, τks is a monotone and continuous

function so, if c is strictly monotone on link flows, Theorem 6 is applicable, and both w

and π are unique.

3.2.3 Variational inequality problems

In the previous sections different approaches (including mathematical programming and

nonlinear complementary problems) to solve the static traffic assignment problem have

been discussed. In this section, we will present the Variational Inequality Problems (VIP)

that were first used to solve the traffic assignment problem in Dafermos (1980). VIPs

can be seen as an extension to nonlinear complementary problems, as we will show later.

Therefore, we give only a brief introduction to variational inequality problems and some

demonstrations will be skipped because of its similarity to the NCP ones.

Definition 5 (Variational Inequality Problem (VIP)) A variational inequality

problem, VI(F,K), is to determine a vector x∗ ∈ K ⊂ Rn, such that

〈F (x∗)T ,x− x∗〉 ≥ 0, ∀x ∈ K, (3.88)

where F is a given continuous function from K to Rn and K is a given closed convex set.
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In geometric terms, variational inequality (3.88) states that F (x∗)T is orthogonal to

the feasible set K at the point x∗.

The main advantage of the variational inequality formulation is that it allows for a

unified treatment of equilibrium problems. Indeed, many mathematical problems, such

as optimization or nonlinear complementary problems, can be formulated as variational

inequality problems (see Nagurney (1999)) .

Theorem 7 (Equivalence between VIP and MP) Let x∗ be a solution to the varia-

tional inequality problem:

〈F (x∗)T ,x− x∗〉, ∀x ∈ K, (3.89)

where F is a continuously differentiable function whose Jacobian matrix (∇F (x)) is sym-

metric and positive semi-definite and K is closed and convex. Then x∗ is also a solution

to the optimization problem:

Minimize f(x)

subject to: x ∈ K,
(3.90)

where f is a convex function from K to R1 that satisfies ∇f(x) = F (x).

The contrary (if x∗ is a solution to the optimization problem (3.90), then x∗ is a

solution to V I(F,K)) also holds.

Proof. Firstly, we have to emphasize that, because of symmetry and positive semi-

definiteness assumptions, it follows that f(x) =
∫
F (x)dx. This proof has two parts (see

Nagurney (1999)):

(i) If x∗ is a solution to (3.90), then it is also a solution to (3.89). Let φ(t) = f(x∗ +

t(x − x∗)), for t ∈ [0, 1]. Since φ(t) achieves its minimum at t = 0, 0 ≤ φ′(0) =

〈∇f (x∗)T ,x− x∗〉 = 〈F (x∗)T ,x− x∗〉, that is, x∗ is a solution to (3.89).

(ii) If x∗ is a solution to (3.89), then it is also a solution to (3.90). Since f (x) is convex,

f (x) ≥ f (x∗) + 〈∇f (x∗)T ,x− x∗〉, ∀x ∈ K. (3.91)

But 〈∇f (x∗)T ,x − x∗〉 ≥ 0, since x∗ is a solution to V I(∇f,K) ≡ V I(F,K).

Therefore, from (3.91) it follows that

f (x) ≥ f (x∗) , ∀x ∈ K,

that is, x∗ is a minimum point of the mathematical problem (3.90).
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Note that Theorem 7 implies that a variational inequality problem can be reformulated

as a convex optimization problem, only when the symmetry condition and the positive

semi-definiteness condition hold.

Historically, many equilibrium problems have been formulated as optimization prob-

lems under such a symmetry assumption (this is the case of the Beckmann et al. (1956)

model presented in Section 3.2.1). The assumption, however, in terms of applications

is restrictive and excludes the more realistic modeling of multiple modes or class users.

Moreover, the objective function that results is often artificial, without a clear interpreta-

tion. These are some of the reasons why alternative approaches different from optimization

problems have been proposed.

Next, we will see that the complementary problem shown in Section 3.2.2 is a special

case of the variational inequality problem.

Theorem 8 V I(F,Rn+) and nonlinear problem (3.69)-(3.71) have precisely the same so-

lution.

Proof. Again, this demonstration has two parts (see Nagurney (1999)):

(i) If x∗ satisfies V I(F,Rn+), then it also satisfies the complementary problem (3.69)-

(3.71). Substituting x = x∗+ ei into V I(F,Rn+), where ei denotes the n-dimensional

vector with 1 in the i-th position and 0, elsewhere, one concludes that F (x∗) ≥ 0.

Substituting now x = 2x∗ into the variational inequality, one obtains

〈F (x∗)T ,x∗〉 ≥ 0. (3.92)

Substituting then x = 0 into the variational inequality, one obtains

〈F (x∗)T ,−x∗〉 ≥ 0. (3.93)

(3.92) and (3.93) together imply that 〈F (x∗)T ,x∗〉 = 0.

(ii) Conversely, if x∗ satisfies the complementary problem, then

〈F (x∗)T ,x− x∗〉 ≥ 0

since x ∈ Rn+ and F (x∗) ≥ 0.

Theorem 8 states the equivalence between NCP and VIP in the case that x is positive.

As in the traffic problems, we usually assume that the flows are positive, in practice, there

would be no big differences between NCP and VIP in our case. For that reason, we will

only give a general idea on VIP in this section and we will not develop all demonstrations.

In the remaining of the section, we will give some results on existence and uniqueness of

solutions of variational inequality problems and the equivalent UE problem in terms of

VIP.
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Theorem 9 If K is a compact convex set and F (x) is continuous on K, then the varia-

tional inequality problem admits at least one solution x∗.11

Proof. The demonstration of this theorem can be found in Nagurney (1999).

Theorem 10 Suppose that F (x) is strictly monotone on K. Then the solution is unique,

if one exists.

Proof. Suppose that x1 and x∗ are both solutions and x1 6= x∗. Then, since x1 and x∗

are solutions, they must satisfy:

〈F
(
x1
)T
,x′ − x1〉 ≥ 0, ∀x′ ∈ K (3.94)

〈F (x∗)T ,x′ − x∗〉 ≥ 0, ∀x′ ∈ K. (3.95)

Equation (3.95) is equivalent to 〈−F (x∗)T ,x∗ − x′〉 ≥ 0. Adding this last equation to

(3.94), one obtains:

〈
(
F
(
x1
)
− F (x∗)

)T
,x∗ − x1〉 ≥ 0. (3.96)

But inequality (3.96) is in contradiction of strict monotonicity (Definition 4 (ii)). Hence,

x∗ = x1.

To end this section, we will show the equivalent UE variational inequality formulation.

Theorem 11 The user equilibrium system (3.63)-(3.68) is equivalent to the following

variational inequality problem:

〈c (f∗) , f − f∗〉, f ∈ K, (3.97)

where f∗ is the equilibrium flow pattern and K = {f ≥ 0 :
∑
r∈R

ξksrfksr = τks}.

Proof. (see Ran and Boyce (1996)) Firstly, we have to remark that equation (3.97) is

equivalent, by definition, to

∑

r∈R

∑

ks∈OD
c∗ksr[fksr − f∗ksr] ≥ 0. (3.98)

This proof has two parts: (i) any solution to (3.63)-(3.68) satisfies (3.98); and (ii) any

solution to (3.98) also satisfies (3.63)-(3.68).

(i) For any route r, a feasible flow is

fksr ≥ 0. (3.99)

11Note that the conditions for the VIP to have a solution are the same as for the NCP.
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Multiplying equilibrium condition (3.2)12 by the above equation, we have

fksr[c
∗
ksr − π∗ks] ≥ 0, ∀r, k, s. (3.100)

We subtract equation (3.1) from equation (3.100) and obtain

[fksr − f∗ksr][c∗ksr − π∗ks] ≥ 0, ∀r, k, s. (3.101)

Summing equation (3.101) for all routes r and all OD pairs ks, it follows that

∑

r∈R

∑

ks∈OD
[fksr − f∗ksr][c∗ksr − π∗ks]

=
∑

r∈R

∑

ks∈OD
[fksr − f∗ksr]c∗ksr −

∑

ks∈OD
π∗ks

∑

r∈R
[fksr − f∗ksr]

=
∑

r∈R

∑

ks∈OD
[fksr − f∗ksr]c∗ksr ≥ 0,

(3.102)

where the flow conservation equation

∑

r∈R
fksr =

∑

r∈R
f∗ksr = τks

holds for each OD pair. Note that equation (3.102) is the VIP equation proposed

(3.98), which concludes this part of the proof.

(ii) We need to prove that any solution f∗ksr to variational inequality (3.98) satisfies UE

conditions (3.1)-(3.2). We know that (3.2) holds by definition, therefore, we need to

prove that condition (3.1) also holds.

Assume that condition (3.1) does not hold only for a route p in OD pair zn, i.e.,

f∗znp > 0 and c∗znp − π∗zn > 0.

Since condition (3.1) holds for all routes other than p, it follows that

∑

r∈R

∑

ks∈OD
f∗ksr[c

∗
ksr − π∗ks] > 0. (3.103)

On the contrary, for each OD pair KS, we can always find one minimal actual travel

time route l, where route l was evaluated under the optimal flow pattern f∗. For this

route l, condition (3.2) becomes an equality by definition. It follows that:

c∗ksl − π∗ks = 0, ∀l, k, s.
12In this demonstration the superscript ∗ has been added in equations (3.1)-(3.2) to denote the value of

the variables when the equilibrium has been reached.



3.2. User Equilibrium (UE) 45

Next, we need to find a set of feasible route flows so that the following equation

f∗ksr[c
∗
ksr − π∗ks] = 0, ∀r, k, s (3.104)

always holds. For each OD pair ks, we assign OD departure flow τks to the minimal

travel time route l, which was evaluated under the optimal flow pattern f∗. This

generates a set of feasible route flows f which always satisfy (3.104) because flows

are not assigned to routes with non-minimal travel times. Summing equation (3.104)

for all routes and OD pairs, it follows that

∑

r∈R

∑

ks∈OD
fksr[c

∗
ksr − π∗ks] = 0. (3.105)

We subtract equation (3.103) from equation (3.105) and obtain

∑

r∈R

∑

ks∈OD
[fksr − f∗ksr][c∗ksr − π∗ks]

=
∑

r∈R

∑

ks∈OD
[fksr − f∗ksr]c∗ksr −

∑

ks∈OD
π∗ks

∑

r∈R
[fksr − f∗ksr]

=
∑

r∈R

∑

ks∈OD
[fksr − f∗ksr]c∗ksr < 0,

(3.106)

where again the flow conservation equation

∑

r∈R
fksr =

∑

r∈R
f∗ksr = τks

holds for each OD pair. The above equation contradicts VIP (3.98), thus, any optimal

solution f∗ to variational inequality (3.98) satisfies condition (3.1).

Theorems 9 and 11 imply that VIP (3.97) has always a solution as long as the route

cost function is continuous, as K is always compact and convex. Furthermore, VIP (3.97)

has a unique solution if the route cost function is strictly monotone.

Finally, note that all the conditions imposed to the cost function in order to have

uniqueness are the same (i.e. strictly monotone cost functions), independently of the

approach used to model the UE traffic assignment problem, which is consistent with the

fact that all approaches are equivalent.

In Section 3.2 different approaches to solve the User Equilibrium problem have been

explain in order to show that different mathematical tools can be used to solve this prob-

lem. Figure 3.2 shows a scheme of the existing relations between the models presented and

the conditions that have to hold for this equivalences. This wide variety of models have

permitted modeling different versions of the classical UE problem, such as equilibrium

between modes (see Aashtiani (1979)) or different class users (see Nie (2011)).
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OPTIMIZATION 
PROBLEM 

(Beckmann et al model) 

NONLINEAR 
COMPLEMENTARY 

PROBLEM 

VARIATIONAL 
INEQUALITY  

PROBLEM 

Figure 3.2: Equivalence relations of the models presented in Section 3.2.

3.3 System-Optimal (SO)

As mentioned in Section 3.1, the UE approach is not the only one to solve the static

traffic assignment problem. In fact, the first Wardrop’s principle does not lead to the

best possible use of the network. It assumes that users behave individually in their own

interest, but not necessarily in the interest of the system as a whole. For that reason,

Wardrop (1952) proposed his second principle:

“The total (or average) travel time should be minimized”,

that leads to the so called system optimal (SO) formulation, which can be formulated

mathematically as a minimization problem of the total travel time spent by all users in

the network:

Minimize
f ,w

Z(w) =
∑

`ij∈A
wijcij (wij) (3.107)

subject to

∑

r∈R
ξksrfr = τks : ζks, ∀k, s ∈ OD (3.108)

∑

r∈R
frδijr = wij : ψij , ∀`ij ∈ A (3.109)

fr ≥ 0 : µr ∀r ∈ R. (3.110)

Under the system-optimal, some travels may be assigned to routes that have travel

costs higher than the minimal that they could achieve by deciding by themselves
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independently. For that reason, the flow pattern that minimizes the total travel time

does not generally represent an equilibrium situation (i.e., users may be able to decrease

their travel time by uniterally changing routes). Such situation is unlikely to sustain itself

and consequently the SO flow pattern is not stable and should not be used as a model

of actual behavior and equilibrium. Nevertheless, the SO model is frequently used as a

bound in many mathematical programs dealing with network design.

The dual variables. As in the UE case, the dual variables of the SO problem (3.107)-

(3.110) have a physical meaning which will be explained next. The Lagrangian function

of the problem (3.107)-(3.110) is:

L(w, f , ζ,ψ,µ) =
∑

`ij∈A
wijcij (wij) +

∑

ks∈OD
ζks

(
τks −

∑

r∈R
ξksrfr

)

+
∑

`ij∈A
ψij

(∑

r∈R
frδijr − wij

)
−
∑

r∈R
µrfr,

(3.111)

and the associated Karush-Kuhn-Tucker conditions are:

∂L
∂wij

= cij (wij) + wijc
′
ij (wij)− ψij = 0; ∀`ij ∈ A (3.112)

∂L
∂fr

= −ζksξksr +
∑

`ij∈A
ψijδijr − µr = 0; ∀r ∈ R (3.113)

∑

r∈R
ξksrfr = τks; ∀ks ∈ OD (3.114)

∑

r∈R
frδijr = wij ; ∀`ij ∈ A (3.115)

fr ≥ 0; ∀r ∈ R (3.116)

frµr = 0; ∀r ∈ R (3.117)

µr ≥ 0; ∀r ∈ R, (3.118)

where c′ij (wij) is the first derivative of the link cost function cij (wij). From the previous

KKT conditiones, we can draw the following conclusions:

1. The dual variable ψij can be interpreted as the marginal contribution of an infinites-

imal additional traveler on link `ij to the total travel time on this link (equation

(3.112)).

2. If the flow on route r is not null (fr > 0), then (because of equation (3.117))

the dual variable µr equals zero. In that case, from equation (3.113) we get that

ζksξksr =
∑
`ij∈A

ψijδijr, in other words, ζks can be interpreted as the route marginal

contribution to total travel time in the network of an additional traveler.



48 Chapter 3. The traffic assignment problem

3. All the used routes of the same OD have the same marginal contribution to the total

cost of the system of a new user. This contribution is larger for non-used routes (see

equations (3.113) and (3.118)).

4. The dual variable µr can be interpreted as the over-cost on the minimum marginal

contribution of route r For that reason, for used routes µr equals zero, meaning that

the marginal contribution is minimal for that route.

Finally, we will see under what circumstances the User Equilibrium approach and the

System Optimal one coincide.

Theorem 12 Wardrop’s first and second principle lead to the same solution for uncon-

gested networks (see Sheffi (1985)).

Proof. We will next prove that for uncongested networks, i.e. when congestion effects

are ignored, both UE and SO programs ((3.3)-(3.6) and (3.107)-(3.110), respectively) will

produce identical results. First, we remark that for uncongested networks the link travel

times are not a function of the flow on that (or any other) link, i.e., cij (wij) = cij . Then

the objective function (3.3) can be rewritten as:

∑

`ij∈A

∫ wij

0
cijds =

∑

`ij∈A
cij

∫ wij

0
ds =

∑

`ij∈A
wijcij , (3.119)

which is identical to the SO objective function (3.107) when cij (wij) = cij . Since the

constraints are common for both problems, they coincide and, hence, they share the same

optimal solution.

Finally, we note that the SO problem can be stated without path enumeration using

disaggregated link flow variables, as it is done in the Castillo et al. model in Section 3.2.1.

Example 1 (UE and SO models) With the purpose of illustrating the proposed con-

cepts and methods, they are applied to the well known Nguyen-Dupuis network (see Nguyen

and Dupuis (1984)). We use an example of bidirectional flows. It consists of 13 nodes

and 38 links and we assume the existence of symmetric links, i.e. any pair of nodes i and

j are connected in both directions by links `ij and `ji (see Figure 3.3). In this example

we use the BPR (Bureau of Public Roads (1964)) cost function (see the Appendix for a

review of cost functions):

tij = t0ij

[
1 + βij

(
wij
qij

)γij]
,

where for a given link `ij, tij refers to its travel time, t0ij is the travel time associated

with free flow conditions, wij is the flow on that link, qij is a constant measuring the flow

producing congestion, and βij and γij are constants defining how the cost increases with

traffic flow.
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Figure 3.3: The Nguyen-Dupuis network.

The network data used in this example are βij = 1, γij = 3, ∀`ij and the t0ij and qij
travel cost constants used for every link `ij are in Table 3.1. In this section, we illustrate

the traffic assignment problem, i.e., the OD-pair flows are given, and the flows fr are

to be determined. In particular, we solve the traffic assignment problem from the user

equilibrium and the system optimum perspectives. We consider the following OD-pair

flows:

τ12 = 350 τ13 = 448 τ42 = 336 τ43 = 210

The UE problem is solved using the different models explained previously obtaining

the same results, as it was expected given that they are all equivalent. First, it is solved

without path enumeration using the Castillo et al. model so the utilized paths can be

obtained. Afterwards, some paths are added to the set of paths and the problem is solved

using the remaining models. The resulting link flows disaggregated by OD are shown in

the even columns of Table 3.3.

Furthermore, the SO solution is also computed and its link flows disaggregated by OD

are shown in the remaining columns of Table 3.3. Note that the results of both perspectives

are different. Some links are used in a solution but not in the other. It is also remarkable

that the total travel time (defined as the sum of the travel times of all users) associated

with the UE and SO models is 61238.034 and 59178.625, respectively. As expected, the

total travel time is lower under the SO, but it leads to an overcost for some users that

is incompatible with the equilibrium idea, as it has been mentioned before. Finally, the
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Link t0ij qij Link t0ij qij
7 - 11 and 11- 7 9 700 1 - 5 and 5 - 1 7 700

8 - 2 and 2 - 8 9 700 1 - 12 and 12- 1 9 560

9 - 10 and 10- 9 10 280 4 - 5 and 5 - 4 9 560

9 - 13 and 13- 9 9 280 4 - 9 and 9 - 4 12 280

10- 11 and 11- 10 6 700 5 - 6 and 6 - 5 3 420

11- 2 and 2 - 11 9 280 5 - 9 and 9 - 5 9 420

11- 3 and 3 - 11 8 560 6 - 7 and 7 - 6 5 700

12- 6 and 6 - 12 7 140 6 - 10 and 10- 6 5 280

12- 8 and 8 - 12 14 560 7 - 8 and 8 - 7 5 700

13- 3 and 3 - 13 11 560

Table 3.1: Network parameters for the Nguyen-Dupuis network.

used routes can be observed in Figure 3.4. The upper figure corresponds with UE problem,

whereas the lower correspond to the SO. Again, note that the used routes do not coincide

for both types of solution. Finally, the costs associated with the used paths are shown in

Table 3.2. We emphasize again the fact that the SO model implies some costly paths to

be used. It is the case of paths 6, 7, 8 and 12. In a real situation, users in more expensive

paths will tend to change their path to get lower travel times and, hence, in the long term,

an equilibrium situation may be reached.

3.4 User Equilibrium with heterogeneous users

The problem of user interaction in traffic networks where travelers compete for space

(traffic assignment problem) has been dealt with in the existing literature for several

decades, as it has been shown in the previous section. The most common approach

assumes that users behave in a homogeneous way in the sense that all of them behave

in the same form or assume a mean behavior (speed, travel time, etc.). However, recently,

some heterogeneous cases have arisen as is the case of the travel time reliability problem

(see Asakura and Kashiwadani (1991), Lo and Tung (2003), Lo et al. (2006) or Nie and Wu

(2009)), in which different users perceive the problem from a different perspective. This

occurs when travelers are concerned about reaching the destination on time because of

possible consequences in terms of prestige, money losses, etc. but the perception of these

consequences is not the same for all of them, so that they can be grouped in different

classes. Consequently, users in different classes choose different routes based on different

criteria and we face heterogeneity. Apart from the travel time reliability problem, in its

multiple versions, traffic problems with heterogeneous users are not very frequent in the

existing literature. This section is devoted to the travel time reliability problem showing

some of the models proposed in the literature.
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OD Routes path links UE SO

1 - 2 1 1 5 7 9 11 44.338 39.894

1 - 2 2 2 18 11 43.414 42.144

1 - 3 3 1 5 7 10 16 45.539 42.766

1 - 3 4 1 5 8 14 16 45.539 40.516

1 - 3 5 2 17 8 14 16 45.539 45.016

1 - 3 6 1 6 12 14 16 45.539 48.766

1 - 3 7 1 6 13 19 45.539 45.766

1 - 3 8 2 17 7 10 16 45.539 47.266

4 - 2 9 3 5 7 9 11 46.501 42.753

4 - 2 10 3 5 7 10 15 46.501 45.753

4 - 2 11 3 6 12 14 15 46.501 51.753

4 - 2 12 4 12 14 15 46.501 47.253

4 - 3 13 3 6 13 19 47.702 48.625

4 - 3 14 3 5 8 14 16 47.702 43.375

4 - 3 15 4 13 19 47.702 44.125

Table 3.2: Used routes for the UE and SO model classified by OD for the Nguyen-Dupuis

network. Used routes are boldfaced.

The travel time reliability problem was introduced in order to overcome one of the

major limitations of the classic traffic assignment: it ignores the uncertainties that take

place in transportation systems. Transportation systems are affected by uncertainties of

various sorts, which can de broadly classified as those affecting the supply of transportation

(e.g. weather, incidents, works) and those associated with the demand for transportation

(e.g. travel and activity behavior, special events). The first type of uncertainties is

associated with the impossibility to predict the real capacity of the link, whereas the

last is associated with the variability in the number of users of the network. Generally,

travel time reliability models are concerned with the first type of uncertainties and, hence,

the capacity of the arcs in the network are considered as random.

These uncertainties lead to unpredictable traffic conditions on the available paths to

reach the desired destinations and, therefore, users are not able to know in advance the

travel time of their trips leading to undesired delays or early arrivals. In that scenario

and in order to avoid delays and early arrivals, users are concerned about the reliability

of the different paths, in the sense that they would prefer paths that reduce the risk of

arriving late, rather than to minimize the expected travel time. Empirical studies (Jackson

and Jucker (1981), Hall (1983) and Abdel-Aty et al. (1995)) have shown that travelers’
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OD:1 - 2 OD:1 - 3 OD:4 - 2 OD:4 - 3

Link UE SO UE SO UE SO UE SO

1 -5 - 14.09 398.64 369.74 - - - -

1 -12 350.00 335.91 49.36 78.26 - - - -

4 -5 - - - - 260.32 296.55 44.81 43.34

4 -9 - - - - 75.68 39.45 165.19 166.66

5 -6 - 14.09 283.96 282.79 260.32 178.57 44.81 29.39

5 -9 - - 114.68 86.94 - 117.98 - 13.95

6 -7 - 14.09 133.47 212.82 260.32 178.57 - -

6 -10 - - 199.85 148.24 - - 44.81 29.39

7 -8 - 14.09 - - 214.98 160.04 - -

7 -11 - - 133.47 212.82 45.35 18.53 - -

8 -2 350.00 350.00 - - 214.98 160.04 - -

9 -10 - - 22.45 18.08 75.68 157.43 - -

9 -13 - - 92.24 68.87 - - 165.19 180.61

10-11 - - 222.30 166.32 75.68 157.43 44.81 29.39

11-2 - - - - 121.02 175.96 - -

11-3 - - 355.76 379.13 - - 44.81 29.39

12-6 - - 49.36 78.26 - - - -

12-8 350.00 335.91 - - - - - -

13-3 - - 92.24 68.87 - - 165.19 180.61

Table 3.3: UE and SO models. Link flows disaggregated by OD for the Nguyen-Dupuis

network.

decisions are known to be largely influenced by travel time variability and reliability, which

have been recognized by users as two of the main criteria for route choice. Specifically,

Abdel-Aty et al. (1995) noted that about 54% of the responders of the survey indicated

that travel time reliability was either the most important or second most important reason

for choosing their paths. Nevertheless, there exist different types of users depending on

their attitude towards risk and the trip purpose. Risk-averse users (or users whose trip

purpose is important, e.g. interviews or exams) will tend to choose very reliable paths

even if that means choosing slower paths, whereas risk-prone users will tend to choose less

reliable paths that will provide them the chance of arriving before13.

The models defined in the area of travel time reliability postulate various user behav-

13Note that in the classic traffic assignment problem, all users are supposed to be risk-neutral.
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iors when facing uncertainties and propose different models that take into account that

behavior. For example, Lo and Tung (2003) postulate that drivers would select routes to

lower their travel time variabilities, just as they would to lower their mean travel times.

Meanwhile, Watling (2006) postulates that travelers are more likely to make the routing

decisions based on a latest acceptable arrival time.

The Lo and Tung model

As already mentioned, Lo and Tung (2003) postulate that drivers would select routes to

lower their travel time variabilities, just as they would to lower their mean travel times.

Overtime, users learn the routes’ travel time variabilities based on past experiences, factor

such variabilities into their route considerations, and settle into a long-term equilibrium

pattern, named by the author as Probabilistic User Equilibrium (PUE).

Assuming that the capacities Qij are independent random variables (and hence the

link and path travel times in the network are random variables too), they define the PUE

solution as the vector of flows f = {fr}r∈R such that:

(i) The flow fr on route r is positive if its mean travel time is equal to the minimum

mean OD ks travel time πks, defined as the minimum of the mean travel times of

all paths joining OD ks. Furthermore, all unused routes have equal or higher mean

travel times. Mathematically:

fr[E(Tr)−
∑

ks∈OD
ξksrπks] = 0, ∀r ∈ R (3.120)

E(Tr) ≥
∑

ks∈OD
ξksrπks, ∀r ∈ R, (3.121)

where Tr is the travel time random variable of route r and E(Tr) is its mean.

(ii) The travel time of a used route satisfies the following reliability condition:

P (−ε
∑

ks∈OD
ξksrπks ≤ Tr −

∑

ks∈OD
ξksrπks ≤ ε

∑

ks∈OD
ξksrπks) ≥ ρ, ∀r ∈ R, (3.122)

where ε is the fractional derivation from πks and ρ is the OD travel time reliability

measure. ε and 0 ≤ ρ ≤ 1 are performance related positive parameters.

The second condition imposes dispersion to be small so, routes with mean travel time

equal to πks will not be used if their variabilities are higher than specified in part (ii).

Likewise, routes with small variabilities will remain unused if their mean travel times are

larger than specified in (i). If one desires the travel time of a network to be very reliable,

then a small ε and a large ρ should be defined. For example, let ε = 1% and ρ = 99%

then, we will require that the travel times of the used routes have a probability of at least
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99% of lying within a 1% deviation from the minimum mean OD travel time. Operating

and simplifying equation (3.122), the following equivalent condition is obtained:

cov(Tr) ≤ λ, (3.123)

where cov(Tr) is the coefficient of variation of the route travel time random variable and

λ is a performance parameter that can be established in terms of ε and ρ. Indeed, a

small value of λ correspond to a small ε or a large ρ and hence a tighter route travel

time distribution. So, a vector of route flows f is a PUE solution if it is a solution to the

following system of equations:

∑

r∈R
ξksrfr = τks, ∀ks ∈ OD,

∑

r∈R
frδijr = wij ; ∀`ij ∈ A,

fr[E(Tr)−
∑

ks∈OD
ξksrπks] = 0, ∀r ∈ R,

E(Tr) ≥
∑

ks∈OD
ξksrπks, ∀r ∈ R,

fr(cov(Tr)− λ) ≤ 0, ∀r ∈ R,
fr ≥ 0, ∀r ∈ R.

Assuming that the capacities Qij follow a uniform distribution and making use of the

Central Limit Theorem (CLT), the authors determine that the route travel times belong

to the normal family, compute the expressions for the mean travel times and coefficients

of variation and apply the model to the Nguyen-Dupuis network.

This model does not reproduce heterogeneity among users the way it was defined by the

authors but establishes the basic ideas of the travel time reliability problem. Nevertheless,

the model can be generalized to the case of heterogeneous users by introducing different

values of λ for the user classes based on their risk aversion. In that case, each user class

would choose its own routes taking into account the route variabilities, i.e. one route might

be too risky for one user class but be suitable for another leading to different configuration

of paths for the different risk classes.

The Lo et al. model

Following the ideas of Lo and Tung (2003), Lo et al. (2006) extend the concept of PUE by

defining the term travel time budget. As the transportation system is subject to relative

minor events of stochastic link capacity variations, the link travel times are not deter-

ministic anymore and users cannot know a priori their trip travel times. In that case,

Lo et al. (2006) postulate that, to hedge against uncertainty, users generally add a travel

time margin to the expected trip time to form their travel time budget. In other words,
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the travel time budget is the travel time allocated to travel between an origin-destination

pair. The travel time budget is a function of several factors: (a) the probability required

to reach destination on time (which depends on the risk aversion of the users and the trip

purpose), referred to as within budget time reliability (WBTR) and (b) the variability

of the paths in the network (very unreliable paths will have large associated travel time

budgets). Anyway, regardless of their required WBTR, all travelers want to reduce their

travel time budgets.

Again, the authors assume independent and random link capacities Qij and develop

the formulas for the travel time budget in the case of BPR performance function and

uniform capacities. Making use of the CLT, Lo et al. (2006) conclude that the route travel

times belong to normal distributions with parameters that depend on link flows and that

degenerate properly into the typical deterministic form when the link capacity is assumed

deterministic.

As it has been said, the key part of this model is the travel time budget, that the

authors define as

[Travel Time Budget] = [Expected Travel Time] + [Travel Time Margin]. (3.124)

Mathematically, the travel time budget associated with path r, br, can de expressed

as

br = E(Tr) + λσTr , ∀r ∈ R, (3.125)

where λ is a parameter and E(Tr) and σTr are the mean and standard deviation of the

random variable of the travel time on route r, Tr, respectively. The parameter λ is related

to the requirement on punctuality. For trips that have a high penalty for lateness, λ is

expected to be large as the margin is defined to cover possible delays. Formally, the value

of λ can be related mathematically with the on-time probability as

P{Tr ≤ br} = P{Tr ≤ E(Tr) + λσTr} = ρ, (3.126)

where ρ is the probability that the travel time is within the travel time budget and is

referred to as the within budget time reliability (WBTR). Under normality assumptions,

as is the case of the paper, λ is given by

λ = Φ(ρ), (3.127)

where Φ is the CDF of the standard normal distribution. As stated before, for a large

WBTR, a large value of λ is obtained and, hence, a larger travel time budget. It is also

assumed that there are different types of users, each one with a different WBTR, and,

hence, a different value of λ.

Lo et al. (2006) also postulate that all the users seek to minimize their travel time

budget and, therefore, a long-term equilibrium will be reached where all the used routes

for a class of users have equal and minimal associated travel time budget, whereas unused
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routes have equal or higher travel time budget. Note that PUE is an extension to classical

UE when stochastic fluctuations are considered.

Let H be the set of user classes and let α label their different degree of risk aversion.

The model can be defined via a gap function as discussed in Lo and Chen (2000) as:

Minimize
f ,w,π

g =
∑

α∈H

∑

r∈R
fαr

(
bαr −

∑

ks∈OD
ξksrπ

α
ks

)
(3.128)

subject to

∑

r∈R
ξksrf

α
r = ταks, ∀k, s ∈ OD, ∀α ∈ H, (3.129)

∑

α∈H

∑

r∈R
fαr δijr = wij , ∀`ij ∈ A, (3.130)

bαr −
∑

ks∈OD
ξksrπ

α
ks ≥ 0, ∀r ∈ R, ∀α ∈ H, (3.131)

fαr ≥ 0, ∀r ∈ R, ∀α ∈ H, (3.132)

where bαr is the travel time budget of a user of class α, fαr is the flow on route r of users

of class α and ταks is the flow of users of class α that travel between node k and s.

The solution of this nonlinear mathematical program (3.128)-(3.132) provides the route

choice pattern and the corresponding travel time budgets that satisfy the equilibrium

complementary conditions and the within budget time reliability requirements. As it has

been shown in Section 3.2, the objective function (3.128) is smooth and convex. Therefore,

the mathematical program (3.128)-(3.132) can be solved easily using software packages.

Furthermore, in the case of deterministic link capacities, this formulation will fall back

nicely into the classical UE.

Finally, Lo et al. (2006) state a very important property of the previous formulation.

Proposition 3 In the mathematical program (3.128)-(3.132) with multi-class travelers,

if a set of routes (with at least two routes) is used by more than one user class, then all

the routes in the set have the same mean travel time and standard deviation.

Proof. Consider that two different classes with associated parameters λ1 and λ2 use

routes 1 and 2 of the same OD pair. At equilibrium, the travel time budget of each class

must be the same for both routes:

E(T1) + λ1σT1 = E(T2) + λ1σT2 (3.133)

E(T1) + λ2σT1 = E(T2) + λ2σT2 . (3.134)

Subtracting (3.134) from (3.133) we get:

(λ1 − λ2)σT1 = (λ1 − λ2)σT2 =⇒ σT1 = σT2 . (3.135)
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Substituting (3.135) into (3.133), we obtain:

E(T1) + λ1σT1 = E(T2) + λ1σT1 =⇒ E(T1) = E(T2). (3.136)

Corollary 1 Two or more different user classes do not share more than one route unless

the shared routes have the same mean travel time and standard deviation.

As the WBTR is defined in terms of path travel times14, a path-based approach is

required. As the authors mention, for large networks pre-enumerating all the paths can

be computationally exhausted, so some simplifications should be done. For instance, they

suggest to use a priori path set through interviews, as routes actually in use has been

shown to be limited. This has the additional benefit of producing more real results as

they will be based on users actual preferences.

The Watling model

A different point of view of how users choose their paths when facing variability is proposed

by Watling (2006). In this case, an extension of the classical user equilibrium approach,

termed as Late Arrival Penalized UE (LAPUE), is developed. Instead of assuming a

disutility function depending only on the expected travel time, a penalty term based on

preferred arrival time is added.

Whereas in the previous model, the capacity of the links are assumed to be random

variables, Watling (2006) assumes that the link travel times are the source of variability.

Therefore, the arc travel times Tij are represented as random variables and it is supposed

that the joint density of arc travel times T = {Tij}`ij∈A has a known distributional form15

which is parameterized by a function % of the arc flow vector w that also gives the mean

link travel times. Furthermore, the path travel times Tr are also random variables given

by

Tr =
∑

`ij∈A
δijrTij , ∀r ∈ R,

where δijr is the link-path incidence matrix.

The key difference of this model is the introduction of a latest acceptable arrival time

κks associated with each OD pair that is defined as the longest possible travel time for a

journey which, if exceeded, would incur some inconvenience. This new concept permits

defining a path disutility function ur as:

ur = θ0dr + θ1E[Tr] + θ2E[max(0, Tr − κks)], ∀r ∈ R, (3.137)

14Note that the definition of travel time budget involves the use of path standard deviation which can

not be computed as the sum of the link standard deviations.
15It should be emphasized that this assumption permits including a dependency structure among the

links by choosing an appropriate joint distribution.
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where dr represents the attributes that are independent of time/flow, such as tolls or

distance, θ0 is the value placed on this attributes, θ1 is the value of time, and θ2 reflects

the value of being one time unit latter than acceptable. If ϑr denotes the marginal density

function of Tr, then (3.137) can be written

ur = θ0dr + θ1E[Tr] + θ2

∫ ∞

κr

(t− κks)ϑr(t)dt, ∀r ∈ R. (3.138)

It should be noted that this disutility function permits reflecting:

1. The user’s valuation of path’s attributes (distance, expected travel time, tolls, etc.).

2. The extent to which the path is likely to satisfy a traveler in achieving an acceptable

arrival time at destination.

Making use of the expected disutility functions ur(f) in (3.138), Watling (2006) de-

fines the Late Arrival Penalized User Equilibrium (LAPUE) using a variational inequality

problem formulation and proves the existence and uniqueness of solutions.

Definition 6 (LAPUE) A path flow vector f∗ is termed a Late Arrival Penalized User

Equilibrium, if f∗ is a Wardrop equilibrium based on path cost functions ur(f). Math-

ematically, if u(f) denotes the vector with elements ur(f), then f∗ is a LAPUE if and

only if:

u(f∗)′(f − f∗) ≥ 0, ∀f ∈ D, (3.139)

where D =

{
f :

∑
r∈R

ξksrfr = τks, ∀k, s ∈ OD and fr ≥ 0 ∀r ∈ R
}

.

Proposition 4 Suppose that the functions Fr =
∫∞
κr

(t− κks)ϑr(t)dt exist and are contin-

uous and that %(w) is a continuous mapping. Then LAPUE solutions exist.

Proof. The proof to this proposition is based on the proof of Smith (1979) and can be

found in Watling (2006).

Proposition 5 Suppose that the conditions of existence hold and that in (3.138), θ1 > 0

and θ2 ≥ 0. Suppose further that the arc travel time functions % are strictly monotone (as

defined in Definition 4 (ii)). Finally, suppose that the functions Fr are non-decreasing.

Then, there is a unique induced LAPUE arc flow solution.

Proof. Consider any two LAPUE solutions f and g, with distinct induced arc flows, i.e.

∆f 6= ∆g. Consider the function ∆′%(∆f) that gives the mean path travel times from the

path flows. Then, for such f and g,

(
∆′%(∆f)−∆′%(∆g)

)′
(f − g) = (%(∆f)− %(∆g))′ (∆f −∆g) > 0,
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since % is strictly monotone and by hypothesis ∆f 6= ∆g. Since the mean path travel times

are, then, strictly monotone and, by assumption, the functions Fr are non-decreasing, and

θ1 > 0 and θ2 ≥ 0, then the path disutility functions u(f) also satisfies strict monotonicity:

(u(f)− u(g))′(f − g) > 0, ∀f ,g ∈ D. (3.140)

On the other hand, consider the following expression:

u(f)′(f − g) = u(g)′(f − g) + (u(f)− u(g))′(f − g) > 0, (3.141)

where the > 0 condition holds because the first term is non-negative since g is a LAPUE

solution and the second term is positive by (3.141). But since f is also a LAPUE solution,

u(f)′(g − f) ≥ 0, i.e. u(f)′(f − g) ≤ 0, implying that the original hypothesis, of two

LAPUE solutions must be false.

Once the LAPUE model has been defined, and its existence and uniqueness of solutions

discussed, the next question is how to compute this kind of solutions. In general, the

expected disutility function (3.138) is not expressible as a sum of arc disutilities and, as a

consequence, standard shortest path methods cannot be applied and storage of path flows

cannot be avoided. Following the ideas of Lo and Chen (2000), Watling (2006) propose

to solve the LAPUE problem via a smooth gap function, which allows using standard

algorithms for unconstrained optimization.

Let x and F (x) be two |R|+ |OD| vectors such that:

x =

(
f

y

)
, F (x) =

(
F f (x)

F y(x)

)
,

where y is the vector of minimum OD disutilities, F f (·) is the vector of elements ur(f)−
yks, and F y(·) is the vector of elements

∑
r∈R

ξksrfr − τks.
LAPUE solutions may then be determined by minimizing the gap function:

G(x) =

|R|+|OD|∑

i=1

ι(xi, Fi(x)), where ι(a, b) =
1

2

(√
a2 + b2 − (a+ b)

)2
. (3.142)

The author also develops the formulas for the cases of multivariate normal distribution

and mixture of normal distributions as the joint density of arc travel times. The advantages

and disadvantages of these distributions are discussed and some numerical results are

shown. It is noted that both distributions lead to unique solutions as they follow the

assumptions of the proposition and that when the acceptable times tend to infinity or the

variabilities of the path travel times tend to zero, the LAPUE solutions converge to the

UE ones.

Finally, it must be said that this formulation can be generalized to the case of different

user classes (with different trip purposes or different levels of risk aversion), each one with
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a different latest acceptable time. In that case, the actual ODs can be divided into a

larger number of virtual OD pairs with different values of κ and proceed as usual. This

generalization has not been develop earlier as it would have made the notation more

complex.

The Nie model

Similarly to Lo et al. (2006), Nie (2011) proposes an extension to the UE model, called

multi-class percentile UE, where all the used routes have the same percentile travel time16.

In this case, link capacities are assumed to be random variables and are called Service

Flow Rates (SFR). The main advantages of this model are that it permits assuming

any theoretical distribution, does not make use of the CLT and enables flow-dependent

stochasticity, i.e. random road capacity distribution may vary with congestion levels. The

model further assumes that link travel times are independent random variables and, thus,

route travel times can be expressed as the sum of its link travel times.

It is supposed that the link capacities (or SFR) Qij are random variables with FQij
being its cumulative distribution function (CDF). It is also assumed that travel time on

a link Tij is strictly increasing with link volume wij and strictly decreasing with service

flow rate Qij . Tij also depends on a vector of other parameters θij , written as Tij =

g(wij , Qij ,θij), where g(·) is the link performance function. Therefore, the CDF of the

link travel times can be obtained as:

FTij (y) = P{Tij ≤ y} = P{g(wij , Qij ,θij) ≤ y} = P{g−1(wij , y,θij) ≤ Qij}
= 1− FQij (g−1(wij , y,θij)).

(3.143)

As mentioned, this model is based on percentiles. The α-percentile link travel time

and α-percentile link SFR can be computed as: tαij = F−1
Tij

(α) and qαij = F−1
Qij

(1 − α),

respectively. An important property of these percentiles is given in Proposition 6.

Proposition 6 Given a CDF FQij (y) and a link performance function g(·), the α-

percentile link travel time is given by: tαij = g(wij , q
α
ij ,θij).

Proof. Note that tαij = F−1
Tij

(α) and, hence,

α = FTij (t
α
ij) = 1− FQij (g−1(wij , t

α
ij ,θij)).

Thus, we have

g−1(wij , t
α
ij ,θij) = F−1

Qij
(1− α)⇒ tαij = g(wij , F

−1
Qij

(1− α),θij) = g(wij , q
α
ij ,θij).

16It should be mentioned that, as shown in Wu and Nie (2011), the percentile travel time is equivalent

to the travel time budget such as discussed in Lo et al. (2006) when the travel time is normally distributed.
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Proposition 6 suggests that the α-percentile link travel time can be computed using a

deterministic link performance function with a nominal SFR that reflects the reliability

requirements. Furthermore, it permits proving the following proposition.

Proposition 7 The derivative of the α-percentile link travel time is the corresponding

α-percentile derivative of link travel time.

Proof. The derivative of the α-percentile link travel time is given by

∂tαij
∂wij

= g′(wij , q
α
ij ,θij).

On the other hand, the derivative of the link travel time is

∂Tij
∂wij

= g′(wij , Qij ,θij),

and, similarly to the result in Proposition 6, the α-percentile derivative of link travel time

can be computed as

(
∂
Tij
∂wij

)α
= g′(wij , q

α
ij ,θij). This concludes the proof.

We shall next define the model in Nie (2011). Let Υα
r be the α-percentile route travel

time of path r. If, as mentioned before, all the users were to minimize their percentile

route travel time to their own α, the UE conditions imply that any used path has the

identical and minimum percentile route travel time, i.e.,

fαr > 0⇒ Υα
r =

∑

ks∈OD
ξksrπ

α
ks; Υα

r ≥
∑

ks∈OD
ξksrπ

α
ks, ∀r ∈ R, ∀α ∈ H,f ∈ Ω,

(3.144)

where Ω = {f | ∑
r∈R

ξksrf
α
r = ταks, f ≥ 0}. This route flow pattern is called a multi-class

percentile UE solution.

Once the model has been defined, we need to focus on the computation of the α-

percentile route travel times. Let Tr be the random travel time on path r. Clearly the

CDF of Tr can be constructed from the CDFs of its path links:

Tr =
∑

`ij∈A
δijrTij =

∑

`ij∈A
δijrg(wij , Qij ,θij). (3.145)

Assuming that all Qij are independently distributed, FTr can be evaluated recursively

by convolution. Let r̂ be a subpath of r, that is, r = `ij ∪ r̂ where `ij is the first link on

path r. Then,

FTr(y) =

∫ y

0
νTij (z)FTr̂(y − z)dz, (3.146)

where νTij is the link travel time pdf. Furthermore, we have Υα
r = F−1

Tr
(α), that is not

available in closed form but can be evaluated numerically17 using (3.146).

17Note that the main contribution of this work is the use of convolutions to compute the CDF of the

path travel times, instead of relying on the CLT.



62 Chapter 3. The traffic assignment problem

It is also demonstrated in Nie (2011) that the percentile route travel time mapping

function is monotone under very strong conditions, i.e., when all routes are separable (in

other words, when routes that shared one or more links do not exist). Therefore, the

author postulates that monotonicity does not hold in general and, hence, uniqueness of

solutions cannot be dealt with.

Finally, Nie (2011) develops a gradient projection algorithm to solve the multi-class

percentile UE problem. This implies that gradients, that is, partial derivatives of route

travel time percentiles with respect to route flows need to be calculated. This algorithm

is based on the idea that, as it happens with link travel times in Proposition 7, percentiles

and derivatives of path travel times permute, i.e., the derivative of the α-percentile route

travel time coincides with the α-percentile of the path travel time derivative. The author

postulates that this relation holds but leaves it as an open question. However, as mentioned

in the paper, the quality of the algorithm largely depends on the validity of that conjecture.

There are multiple ways to model the reliability problem in the literature. As it has

been explained, not all of them coincide or have the same philosophy. In this section, we

have explained four different models but other models such as the ones in Nie and Wu

(2009), Uchida and Iida (1993) or Szeto et al. (2006) must be mentioned.

Example 2 (Travel time reliability) With the purpose of showing the differences be-

tween the proposed travel time reliability models, they are applied to the Nguyen-Dupuis

network (Figure 3.1). Again, the BPR travel time function is assumed and the parameters

and OD flows are the ones in Example 1. As all the proposed models are path based, a set

of paths is needed. The one used in this example is shown in Table 3.4.

We have solved the travel time reliability problem by means of the Lo and Tung (2003),

Lo et al. (2006) and Watling (2006) models18. For the sake of simplicity, only one class of

users has been assumed in all the models. For the three models, different parameters have

been assumed. For the Lo and Tung (2003) model, λ = 0.07; for Lo et al. (2006), ρ = 0.95

and hence λ = 1.645 and for Watling (2006), dr = 0, ∀r ∈ R, θ1 = 1 and θ2 = 0.4. As

it can be seen, the value of the parameters are associated with risk averse users. We have

decided to choose them in order to show bigger differences with respect to the classical UE

model.

In Table 3.5 the used routes for the different models (including the classical UE) and

the values of their corresponding measures are shown. Note that the path configuration

is different for all the models as the objective pursued by each of them is not the same.

For example, Lo and Tung (2003) postulate that paths will be used if they have minimum

mean travel time and variance under a threshold. For that reason, path 5 and 14 are

not in use even if they have minimum mean travel times. Lo et al. (2006) propose to

18The Nie (2011) model has not been solved as it is equivalent to the Lo et al. (2006) when normal

distributions are assumed.
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OD Routes path links OD Routes path links

1 - 2 1 1 5 7 9 11 4 - 2 9 3 5 7 9 11

1 - 2 2 2 18 11 4 - 2 10 3 5 7 10 15

1 - 3 3 1 5 7 10 16 4 - 2 11 3 6 12 14 15

1 - 3 4 1 5 8 14 16 4 - 2 12 4 12 14 15

1 - 3 5 2 17 8 14 16 4 - 3 13 3 6 13 19

1 - 3 6 1 6 12 14 16 4 - 3 14 3 5 8 14 16

1 - 3 7 1 6 13 19 4 - 3 15 4 13 19

1 - 3 8 2 17 7 10 16

Table 3.4: Routes used for the travel time reliability model for the Nguyen Dupuis network.

minimize the budget travel time (which under certain circumstances is equivalent to the

percentile). Paths 5 and 6 have bigger travel time budgets than the other paths in the same

OD. For that reason, there is no flow on them. Finally, Watling (2006) seeks to minimize

a function that takes into account the mean travel time plus a penalization term on the

expected time over a latest acceptable travel time. For that reason, paths with large mean

travel times or big variabilities will not be in use. That is the case of paths 1 and 11.
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OD Routes Wardrop (1952) Lo & Tung (2003) Lo et al. (2006) Watling (2006)

1 - 2 1 44.338 48.965 52.534 44.383

1 - 2 2 43.414 48.965 52.534 43.516

1 - 3 3 45.539 50.575 54.350 45.669

1 - 3 4 45.539 50.575 54.350 45.669

1 - 3 5 45.539 50.575 54.425 45.675

1 - 3 6 45.539 50.575 54.579 45.669

1 - 3 7 45.539 50.575 54.350 45.669

1 - 3 8 45.539 50.575 54.350 45.669

4 - 2 9 46.501 51.734 55.666 46.538

4 - 2 10 46.501 51.734 55.666 46.538

4 - 2 11 46.501 51.734 55.666 46.709

4 - 2 12 46.501 51.734 55.666 46.538

4 - 3 13 47.702 53.345 57.494 47.931

4 - 3 14 47.702 53.345 57.482 47.930

4 - 3 15 47.702 53.345 56.821 47.916

Table 3.5: Route variables for the different models classified by OD for the Nguyen-Dupuis

network. Used routes are boldfaced.
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Figure 3.4: The Nguyen-Dupuis example. Used routes by different OD pairs for UE and

SO models, respectively.
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Appendix

A Link performance function

In this section, some link performance functions (also called volume-delay functions) that

have been proposed in the literature are explained. In most traffic assignment methods,

the effect of road capacity on travel times is specified by means of the so called volume-

delay or link travel time functions t(v/q) which express the travel time on a link as a

function of the link traffic volume v and q is related to the link capacity. Many different

types of volume-delay functions have been proposed and used in practice in the past. A lot

of link cost-flow functions were developed during the 1960s− 70′s but as shown in Boyce

and Janson (1981), different link congestion functions should be used depending on the

city, region or country, and most importantly, depending on the assignment procedure.

One of the most common link travel time formulas is the Bureau of Public Roads

(BPR) (Bureau of Public Roads (1964)) cost function

tBPR(v; t0, β, γ, q) = t0

[
1 + β

(
v

q

)γ]
, (3.147)

where for a given link, t0 is the travel time associated with free flow conditions, v is the

flow on that link, q is a constant measuring the flow producing congestion, and β and γ

are constants defining how the cost increases with traffic flow. Some examples of the BPR

functions are given in the left graph of Figure 3.5.

One alternative to the BPR function is the Spiess cost function (see Spiess (1990)):

tSpiess(v; ρ, q) = t0


−2ρ− 1

2ρ− 2
− ρ

(
1− v

q

)
+

√
(2ρ− 1)2

(2ρ− 2)2
+ ρ2

(
1− v

q

)2

+ 2


 , (3.148)

where ρ is a constant. Some examples of the Spiess functions are given in the right graph

of Figure 3.5 for ρ = 2, 3, 4, 5, 6, 10, 15, 20.

Other formulas have been developed in the transportation field. A lot of them are

empirical and others result from experimental works.

For example, Mosher (1963), suggested the following logarithmic and hyperbolic func-

tions:

tMosher1(v) = t0 + ln(q/(q − v)); v ≤ q, (3.149)

tMosher2(v) = t0 − ρ+ ρq/(q − v); v ≤ q, (3.150)

where ρ is a parameter and q is the traffic volume leading to traffic collapse.

These functions predict travel times that would be infinite for some feasible link flows.

That is why the functions must be limited by v < q.
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Figure 1: Some examples of the BPR and Spiess link travel time functions.

where the argument x = v/c of f(·) is the congestion ratio, i.e., a measure of the link degree of
saturation.

Many different types of volume-delay functions have been proposed and used in practice in the
past. One of the most common link travel time formulas is the Bureau of Public Roads (BPR) cost
function

t(v/c; t0, β, γ) = t0

(
1 + β

(v
c

)γ)
, (2)

that corresponds to
fBPR(x;β, γ) = [1 + βxγ ] , (3)

where β and γ are constants.
Some examples of the BPR functions are given in the left graph of Figure 1.
One alternative to the BPR function is the Spiess cost function (see Spiess (1990)):

fSpiess(x; ρ) =

(
−2ρ− 1

2ρ− 2
− ρ(1− x) +

√
(2ρ− 1)2

(2ρ− 2)2
+ ρ2(1− x)2 + 2

)
, (4)

where ρ is a constant.
Some examples of the Spiess functions are given in the right graph of Figure 1.
Other formulas have been developed in the transportation field. A lot of them are empirical

and others result from experimental works.
For example, Mosher (1963), suggested the following logarithmic and hyperbolic functions:

t(v) = t0 + ln(q/(q − v)); v ≤ q, (5)

t(v) = t0 − k + kq/(q − v); v ≤ q, (6)

where k is a parameter and q is the traffic volume leading to traffic collapse.
These functions predict travel times that would be infinite for some feasible link flows. That is

why the functions must be limited by v ≤ q.
The Traffic-Research-Corporation (1966) proposed the following function to relate journey per

unit distance and flow on links of the Winnipeg’s streets network:

t(v) = ρ+ β(v − γ) +
√

[β2(v − γ)2 + δ], (7)

where ρ, β, γ and δ are parameters to be estimated from data.
This is a complicated formula which can, in fact, be replaced by the BPR function (2) with

little loss of accuracy (see Branston (1976)).

4

Figure 3.5: Some examples of the BPR (β = 1; γ = 2, 3, 4, 5, 6, 7) and Spiess (ρ =

2, 3, 4, 5, 6, 10, 15, 20) link travel time functions.

The Traffic-Research-Corporation (1966) proposed the following function to relate jour-

ney per unit distance and flow on links of the Winnipeg’s streets network:

tTRC(v) = ρ+ β(v − γ) +
√

[β2(v − γ)2 + q], (3.151)

where ρ, β, γ and q are parameters to be estimated from data.

This is a complicated formula which can, in fact, be replaced by the BPR function

(3.147) with little loss of accuracy (see Branston (1976)).

Davidson (1966), proposed a link congestion function that includes a delay parameter

k, and he assumes that it varies with route type and location in a metropolitan area. The

link travel time function is:

tDavidson(v) = t0

[
1 + ρ

(
v

q − v

)]
, (3.152)

where ρ is a parameter that varies from 0.01 to 0.5, depending on the type of road.
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B Notation

α risk class.

β cost function parameter.

βij parameter of the BPR function.

γ cost function parameter.

γij parameter of the BPR function.

γksr parameter of a cost function associated with route r with origin-destination ks.

Γ OD-route incidence matrix.

∆ path-link incidence matrix.

δijr element of the link-route incidence matrix.

δ′ij Kronecker delta.

ε parameter associated with risk aversion.

η vector with elements ηks.

ηis dual variable.

ηks dual variable.

`ij link joining nodes i and j.

θ0 cost function parameter.

θ1 cost function parameter.

θ2 cost function parameter.

θij vector of parameters associated with link `ij .

ϑr marginal density function of Tr.

κ weighting factor.

κks latest acceptable arrival time associated with OD pair ks.

λ parameter associated with risk aversion.

λ vector with elements λij .

λij dual variable.

λiks dual variable.

µ mean of the vijks variables.

µ vector with elements µr.

µijs dual variable.

µijks dual variable.

µr dual variable.

ξrks element of the OD-route incidence matrix.

πks equilibrium cost to travel from origin k to destination s.

ρ parameter.

ρ1 cost function parameter.

ρis auxiliary variable associated link `ij and destination s.

%(·) arc travel time function.

σTr standard deviation of the random variable of the travel time on route r.
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τks flow traveling from node k to node s.

Υα
r α-percentile route travel time of path r.

φksr(·) function converting money into time.

ϕksr function describing the value of time for route r.

ϕr(·) monotone normalized function.

ζks dual variable.

ψij dual variable.

A set of links.

br travel time budget associated with path r.

cij(·) cost associated with traversing link `ij .

Cij(·) integral of the travel time function associated with link `ij .

cksr travel cost associated with route r with origin-destination ks.

c̃ksr longest route cost.

cr travel time of route r.

c′ij(·) first derivative of cij(·).
D set of destination nodes.

dr parameter of a cost function.

f vector of route flows.

fksr flow on path r with origin-destination ks.

FQij cumulative distribution function of Qij .

fr flow on path r.

f∗ equilibrium flow pattern.

G(·) gap function.

gks(·) auxiliary function associated with origin-destination ks.

H set of user classes.

i link begin node.

I identity matrix.

j link end node.

k origin node.

K set of feasible route flows.

ks origin-destination pair from nod k to nodes.

l route.

m cardinal of the vijks variables.

mksr cost function parameter associated with route r with origin-destination ks.

n route cost vector.

N set of nodes.

n1 number of routes.

n2 number of OD pairs.

O set of origin nodes.

OD set of origin-destination pairs.
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pksr(·) auxiliary function associated with route r with origin-destination ks.

q cost function parameter.

q vector of flow demands.

qij parameter of the BPR function.

Qij random variable associated with the capacity on link `ij .

r route.

R set of real numbers.

R set of routes.

s destination node.

t0r free flow time of route r.

t0ij parameter of the BPR function.

Tij travel time random variable of link `ij .

tαij α-percentile link travel time of link `ij .

tr performance function of route r.

Tr travel time random variable of route r.

ur path disutility function.

vijks flow through link i, j with origin node r and destination node s.

vijs flow passing through link `ij with destination s.

w vector of link flows.

wij flow through link `ij .

xijr. flow coming from a given origin node r and using link `ij .

yijs flow going to a given destination node s and using link `ij .

Z(·) objective function.

zirs flow going from origin node r to destination node s and passing through node i.
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4.1 Introduction

The Origin-Destination (OD) flow matrix is a fundamental input for most problems re-

garding planning and management of transportation systems, e.g., the assignment problem

dealt with in the previous chapter. In practice, the “true” OD matrix is seldom, if ever,

available and various methods can be used for its estimation (see, for example, Bell (1983),

Ashok and Ben Akiva (2000), Zhou and Mahmassani (2006), Nie and Zhang (2008), or

the review of Praskher and Bekhor (2004)). According to Cascetta (1984) and Doblas

and Beńıtez (2005), the matrix estimation (ME) models can be divided into the following

categories:

(a) Direct sample estimation, such as home-based or roadside surveys.

(b) Traffic counts based methods, such as the least squares or maximum entropy models.

Among the above two approaches, the first one yields the most accurate results, as

it deals with very informative data, but it is very expensive and time consuming and

71



72 Chapter 4. Origin-Destination matrix estimation models

cannot be undertaken frequently. The second alternative is the one that has received more

attention in the literature because of the great economic advantages it offers, which are

derived from the carrying out of flow measurements instead of the more expensive surveys.

The aim of this chapter is to review some models of the second category developed in the

literature.

The chapter is organized as follows. Section 4.2 introduces the notation and concepts

of traffic count based methods and develops some of the models presented in the literature

to solve the ME problem, namely, generalized least squares based methods are dealt with

in Section 4.2.1, entropy or information based methods in Section 4.2.2 and statistical

based methods in Section 4.2.3. Finally, Section 4.3 is devoted to the bi-level problem.

4.2 Traffic count based methods

Since the number of OD pairs is normally much larger than the number of links, this

problem (estimate OD flows based on link flows) is under-specified, i.e., there is an infinite

set of solutions for the OD pair flows satisfying the conservation laws (see Castillo et al.

(2008b)) and many of them can be far from the actual ones. Since we look for OD flow

estimates close to the real ones, more information is needed. To this end, we normally use

a prior (or out-of-date) OD matrix and contemplate, as a reasonable set of solutions, the

set of matrices close to it.

To obtain the OD flow estimates there exist a wide range of possibilities. However, all

of them can be formulated, in general, as follows (see Yang et al. (1992) and Doblas and

Beńıtez (2005)):

Minimize
W,T

Z = F1(T, T̄) + F2(W,W̄) (4.1)

subject to

W = M(T), (4.2)

where T is the OD matrix to be estimated, T̄ is the reference (or prior) OD matrix, W

is the vector containing the link flows to be estimated, W̄ is the vector containing the

observed link flows, and F1(T, T̄) and F2(W,W̄) are functions of a generalized distance

measurement, or errors between T and T̄, and W and W̄, respectively. Functions F1 and

F2 might already include factors which relative weight one function over the other. M(T)

refers to the assignment map1, which describes the relationship (not necessarily linear)

between the predicted link flows (W) and OD matrix (T).

If the route choice proportions are determined independently from the estimating pro-

cess, proportional assignment is employed and constraint (4.2) reduces to the linear equa-

tion system:

W = BT, (4.3)

1M assigns the OD flows T to the different links in the network W. A kind of assignment map is the

User Equilibrium explained in Chapter 3.
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where B = [βijks] is the assignment proportion matrix whose elements βijks denote the

proportion of trips in the OD pair ks using link `ij . If a model with path enumeration is

being used, B can be replaced by ∆P , where P is a matrix defining the probabilities of

the users to select the different paths associated with all OD pairs, and ∆ is the path-link

incidence matrix.

On the other hand, if link counts are assumed error free, the above formulation reduces

to:

Minimize
T

Z = F1(T, T̄) (4.4)

subject to

W = BT, (4.5)

because the observed flows can be considered as the true ones, and hence F2(W,W̄) = 0.

It should be emphasized that this formulation is only valid for full observability of link

flows.

However, the assumption of a linear assignment map has inherent shortcomings, as

stated by Yang et al. (1992):

“Because the OD matrix is estimated from observed link flows with fixed route

choice proportions, and the OD matrix is assigned to the network making use

of the user equilibrium concept, there is an inconsistency in using one set of

route choice proportions to obtain an OD matrix from link flows, and another

to obtain the link flow distribution by assigning the OD matrix to the network”.

Furthermore, if a linear assignment map is assumed, congestion effects would not be

taken into account correctly. These deficiencies are overcome by many researchers by re-

lating matrix B (or P) to travel demands in an iterative manner of assigning pre-estimated

OD matrices to the network from which a proportion matrix is obtained exogenously and

to proceed to the OD matrix estimation problem, repeating this loop till convergence is

reached. This approach is called bi-level model2 and is developed in Section 4.3.

Based on the link flow observations and the prior matrix, the OD matrix estimate can

be obtained by many different methods. In particular, generalized least squares methods

(GLS), entropy or information based methods and statistical based methods.

4.2.1 Generalized least squares based methods

The generalized least squares (GLS) method seeks to estimate the OD flows by minimizing

the sum of squares of the differences between the predicted and the prior OD trip matrices,

2The bi-level models combine the OD matrix estimation and the network equilibrium assignment into

one process so that, the effects of traffic congestion on travel times and on route choices are taken into

account explicitly.
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correcting or weighting by the variances and covariances of each flow. The GLS problem

can be formulated as:

Minimize
W,T

ZGLS = (T̄−T)′U−1(T̄−T) + (W̄ −W)′Y−1(W̄ −W) (4.6)

subject to

W = BT, (4.7)

where ZGLS is the objective function to be minimized, the apostrophe stands for the

transpose, U−1 and Y−1 are the precision (inverse variance-covariance) matrices of T̄ and

W̄, respectively; and T, T̄, W and W̄ are as defined previously.

These methods have been discussed by many authors such as Cascetta (1984), Cascetta

and Nguyen (1988) or Doblas and Beńıtez (2005), and have important advantages because

of their good statistical bases, which also allows us treating them from a statistical point

of view. Under the hypothesis that the target trip and traffic counts are unbiased, the

generalized least squares estimator, also called Aitken estimator, is the best linear unbiased

estimate (BLUE) of the OD matrix. Moreover, if those random vectors can be considered

distributed according to a multivariate normal, the Aitken estimator coincides with the

maximum likelihood one.

Other authors add more constraints to the generalized least squares method, as, for ex-

ample, Doblas and Beńıtez (2005), Bell (1991) and Carey and Revelli (1986). In particular,

Doblas and Beńıtez (2005) suggest to add the following ones:

lks ≤ tks ≤ uks, ∀k, s ∈ OD (4.8)

lOk ≤
∑

s

tks ≤ uOk , ∀k ∈ O (4.9)

lDs ≤
∑

k

tks ≤ uDs , ∀s ∈ D (4.10)

l ≤
∑

k

∑

s

tks ≤ u, (4.11)

where lks, l
O
k , l

D
s , l and uks, u

O
k , u

D
s , u are the lower and upper bounds of different magni-

tudes, respectively. More precisely, Equation (4.8) refers to the number of trips between

OD pairs; Equation (4.9), to the number of trips generated in each zone (origin); Equation

(4.10), to the number of trips attracted by each zone (destination); and, Equation (4.11),

to the total number of trips in the network. The rationale behind these constraints is to

preserve as much information as possible from the target matrix, and not only the trip dis-

tribution between pairs of transport zones. Furthermore, Doblas and Beńıtez (2005) state

that there are not universal values for the bounds and they will depend on the features of

the real problem to be solved.
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4.2.2 Entropy or information based methods

Analogously to the generalized least squares methods, they optimize an objective function

subject to constraints, which try to measure how reasonable and close to reality are the

different OD matrices (Castillo et al. (2008g)). In this case, they determine the optimal

OD flow matrix that is consistent with the information contained in the observed link flow

data, by maximizing the entropy or minimizing the information with respect to a prior

matrix3. Relevant contributions in this group are those of Willumsen (1978), Van Zuylen

(1978), Van Zuylen and Willumsen (1980), and Rossi et al. (1989).

Since the information available in the traffic counts on the links is insufficient to deter-

mine a complete matrix, Van Zuylen (1978) proposes to choose the OD matrix that adds

as little information as possible, using Brillouin (1956)’s information measure. Therefore,

the ME problem can be stated as4:

Minimize
T

ZINF =
∑

`ij

∑

ks

tksβijks loge
tksSij
wij t̄ks

(4.12)

subject to

wij =
∑

ks

βijkstks, ∀`ij ∈ A (4.13)

where wij are the link flows and Sij =
∑

ks βijkst̄ks.

Similarly, Willumsen (1978) proposes to solve the problem following an entropy maxi-

mizing approach. According to the definition of entropy, the most likely OD matrix is the

one having a greatest number of micro-states associated with it. The entropy maximization

model can be stated as (Brenninger-Gothe and Jornsten (1989)):

Minimize
W,T

ZENT = γ1

∑

ks

tks

(
loge

tks
t̄ks
− 1

)
+ γ2

∑

`ij

wij

(
loge

wij
w̄ij
− 1

)
(4.14)

subject to

wij =
∑

ks

βijkstks, ∀`ij ∈ A (4.15)

where γ1 and γ2 are the weighting factors of the OD matrix and the traffic counts, respec-

tively. For example, both factors can be the inverse of the variance of t̄ks and w̄ij , which

are natural measures of uncertainty. Finally, note that only one weighting factor, i.e. γ1,

could be used if the other is set equal to γ2 = 1. In that case, γ1 would represent the

relative weight of the first term in Equation (4.17) over the second term.

3According to Van Zuylen and Willumsen (1980), further tests with real data are required to settle the

question of which model (entropy or information based models) is superior; and according to Brenninger-

Gothe and Jornsten (1989), there is no valid theoretical argument that can be used to give preference to

either of the two models.
4Note that in this case, error free link counts have been assumed.
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4.2.3 Statistical based methods

All the methods explained up to this point have been developed with the aim of reproduc-

ing the observed data. However, there could be sampling and measurement errors in the

data that lead to inconsistencies. By introducing the concept of population parameters,

which are defined as the expected values across the transportation network, statistical

models can accommodate the variations or errors in the observed link flows. Furthermore,

statistical models recognize the stochastic nature of the data and supply information on

the variability of the estimates, in the form of probability or credibility intervals. These

models conform the largest group and can be classified into two subgroups: Classical and

Bayesian methods.

Classical methods

They assume that the traffic flows are multivariate random variables from a given family

that satisfy some convenient properties (reproductivity, positive domain, positive skew-

ness, etc.), such as multivariate normal, Poisson or Gamma. For example, Vardi (1996),

Lo et al. (1996) and Hazelton (2000) calculate the likelihood from the data based on the

assumption that link and OD flows are independent Poisson random variables.

Assuming that the link flows are sufficiently large, these authors approximate the joint

distribution of W by an appropriate multivariate normal distribution:

W ∼ N (∆PT,ΣW ) , (4.16)

where the variance-covariance matrix of the link flows is ΣW = ∆diag(PT )∆′.

The corresponding optimization problem based on the log-likelihood is:

Minimize
W,T

ZEST =
1

2

(
W̄ −∆PT

)′
Σ−1
W

(
W̄ −∆PT

)
(4.17)

subject to

W = ∆PT . (4.18)

Although they all propose similar optimization problems, these authors make some

different assumptions, e.g. Vardi (1996) assumes fixed routing, that is, only one given

route between each OD pair is used. As noted by Hazelton (2000), this procedure is not

particularly appropriate for traffic systems as Vardi (1996) was principally interested in

inference for computer networks. Moreover, Lo et al. (1996) and Hazelton (2000) assume

that the traffic system under study remains uncongested and, hence, the probabilities of

choosing the different paths can be regarded as independent of traffic flow.

Finally, it should be noted that other authors use constrained maximum likelihood to

estimate the model parameters, such as Spiess (1987) and Cascetta and Nguyen (1988),

or Bayesian networks, such as Sun et al. (2006) and Castillo et al. (2008g).
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Bayesian methods

Bayesian methods are well known statistical tools that consider parametric families of

distributions whose parameters are themselves random variables. For example, Tebaldi

and West (1998) consider Poissonian flows, Maher (1983) combines a multivariate normal

distribution with a multivariate normal prior and Mahmassani and Sinha (1981) deal with

the problem of updating trip generation parameters.

According to Cascetta and Nguyen (1988), in the Bayesian inference framework, a

priori information on the trip matrix T is expressed as a prior probability function g(T).

On the other hand, the traffic counts represent an additional source of information about

T with given probability p(W̄|T). Bayes’s theorem allows these two sources of information

to be combined to provide the posterior probability function f(T|W̄), i.e., the probability

of observing T conditional to the traffic count W̄:

f(T|W̄) =
p(W̄|T)g(T)∫
p(W̄|T)g(T)dT

∝ p(W̄|T)g(T). (4.19)

When the families of priors and posteriors coincide, we say that this family and the

likelihoods are conjugate. In this case, the posterior parameters can be easily obtained

in terms of the prior parameters and the sample values. Maher (1983) makes use of

this property assuming multivariate normal (MVN) distribution for the traffic counts

and the prior distribution. Therefore, the posterior distribution of the OD flows T is

MVN(µT,ΣT), where:

µT = T̄ + ΣT̄ (∆P)′
(
ΣW̄ + (∆P)ΣT̄(∆P)′

)−1
(W̄ − (∆P)T̄) (4.20)

ΣT = ΣT̄ − ΣT̄ (∆P )′
(
ΣW̄ + (∆P )ΣT̄(∆P )′

)−1
(∆P )ΣT̄, (4.21)

ΣT̄ and ΣW̄ are the variance-covariance matrices of the prior and traffic counts distribu-

tions, respectively (see Maher (1983) for more details on the computation of the posterior

distribution parameters). As it can be seen, the use of conjugate families permits updating

the parameters of the posterior distribution in a simple fashion.

It should be noted that Maher (1983) states that, as the random variables are concerned

with counts, the true distribution is some multivariate form of the Poisson distribution.

Nevertheless, for counts with means which are not too small5, the multivariate normal

provides an accurate approximation. As already explained, the assumption of normal

distribution permits the use of conjugate distributions. Similarly to Maher (1983), Tebaldi

and West (1998) consider Poissonian flows but make use of Markov Chain Monte Carlo

(MCMC) simulations to compute the posterior distribution, as posterior computation are

analytically difficult.

5This condition can always be ensured by increasing the period of study so as to have larger traffic

counts.
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Figure 4.1: The elementary example network used for illustrative purposes, showing the

nodes and links.

On the other hand, Hazelton (2001) makes an interesting and deep distinction between

reconstruction and estimation of OD pair flows, and indicates that both techniques are

useful for estimation purposes, though he mentions that the dissimilarities between both

solutions can be very large if the data contradicts the prior information. In particular, ac-

cording to Hazelton (2001), the aim of the OD matrix reconstruction is to try and pinpoint

the actual number of trips between each OD pair that occurred during the observational

period; whereas, the aim of mean OD trip count estimation is to estimate the expected

number of OD trips. In that sense, the author classifies the firsts models explained as

reconstruction methods (e.g., Bell (1983), Van Zuylen and Willumsen (1980) or Cascetta

(1984)) and the statistical models as estimation methods (e.g., Vardi (1996), Lo et al.

(1996), Maher (1983) or Tebaldi and West (1998)).

Example 3 (Matrix estimation models) In order to illustrate the methods described

above, we apply them to a simple network. It consists of 4 nodes and 6 links (see Figure

4.1).

Table 4.1 shows the 3 OD pairs considered and the corresponding 6 paths used in this

example. For the sake of simplicity, it is assumed that they are the only possible OD pairs

and paths.

The Bureau of Public Roads (BPR) cost function (see Equation (3.147) in the Appendix

of Chapter 3) has been used where the parameter t0ij and qij are shown in Table 4.2,

together with real and prior flows for OD pairs and link flows, and parameters βij = 1 and

γij = 4 for all the links in the network.

Table 4.3 contains the ∆ and P matrices. To obtain the elements of P , a System
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OD path code (r) Links

1-4
1 2

2 1 3

3-4

3 6

4 5 3

5 4 2

2-4 6 3

Table 4.1: Set of 3 OD pairs and 6 paths considered in the simple example.

OD matrix

OD pair Real Prior (T̄)

1 100 70

2 120 84

3 80 56

Link parameters and real flows

Link t0ij qij Real flows

1 3 50 30

2 2 40 70

3 3 100 180

4 2 70 0

5 1 50 70

6 1 20 50

Table 4.2: Data of the matrix estimation example.

∆ matrix

Link
Path

1 2 3 4 5 6

1 0.00 1.00 0.00 0.00 0.00 0.00

2 1.00 0.00 0.00 0.00 1.00 0.00

3 0.00 1.00 0.00 1.00 0.00 1.00

4 0.00 0.00 0.00 0.00 1.00 0.00

5 0.00 0.00 0.00 1.00 0.00 0.00

6 0.00 0.00 1.00 0.00 0.00 0.00

P matrix

OD pair
Path

1 2 3 4 5 6

1 0.753 0.247 0.000 0.000 0.000 0.000

2 0.000 0.000 0.399 0.570 0.031 0.000

3 0.000 0.000 0.000 0.000 0.000 1.000

Table 4.3: ∆ and P matrices used in the matrix estimation example.

Optimal assignment model has been used (see Section 3.3 for details on this kind of as-

signment).

Consider that flows on links 2, 3 and 5 have been observed, which values are the true

flows shown in Table 4.2 and assume a coefficient of variation of 0.1. With these data we

can obtain the Y−1 and γ2 values for the Generalized Least Squares (GLS) and Entropy

(ENT) based methods, i.e. the inverse of the variance-covariance matrices of link flows.
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Estimated OD flows

OD pair GLS ENT CLA BAY

1 82.85 82.66 89.07 93.52

2 111.68 112.95 102.79 101.52

3 64.97 59.69 63.90 65.68

RMSE 8.09 9.21 8.66 8.09

Estimated link flows

Link GLS ENT CLA BAY

1 20.46 20.42 22.00 23.10

2 65.85 65.74 69.05 73.57

3 149.10 144.49 161.21 146.65

4 3.46 3.50 1.98 3.15

5 63.66 64.38 36.43 57.87

6 44.56 45.07 25.50 40.51

RMSE 5.64 6.32 7.73 6.28

Table 4.4: OD matrix and link flows resulting from the different matrix estimation

methods.

For U−1 and γ1, we have considered the elements of the prior OD matrix with a coefficient

of variation of 0.3. In both cases, for the sake of simplicity, independence among OD pairs

and link flows have been assumed.

The estimated flows with the different matrix estimation methods are shown in Ta-

ble 4.4, together with the corresponding root mean squared errors (RMSE). This error is

defined as:

RMSE =

√∑
i(t̄i − ti)2

N
,

where N is the number of OD pairs or links. It allows us to compare the estimated OD and

link flows with the real ones. For example, Table 4.4 shows that the best estimates6 come

from the Bayesian Methods (BAY), although the results obtained from the GLS model are

also very precise. On the other hand, the Entropy based methods (ENT) lead to the worst

results.

As already mentioned, the main shortcoming of Matrix Estimation methods is that they

work with a fixed P matrix. If this matrix is far from the real one, the results will not

reproduce the reality correctly. In the example, the values in this matrix make the models

lead to positive flows on link 4 when the real flow through this link is null, as it can be

seen in Tables 4.2 and 4.4. This kind of problems can be solved when the bi-level methods,

explained in the next section, are applied.

6Note that the aim of these models is to predict the OD matrix so, in order to determine the quality of

the predictions, the RMSE values associated with the OD matrix are more important than those of the

link flows.
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4.3 Bi-level models

As already explained, ME models assume that route choice proportions are given constants

but, in a network with realistic congestion levels, this assumption does not hold. In order

to overcome this deficiency, bi-level models have been developed which combine the OD

matrix estimation and the network equilibrium assignment into one process. While the

models above are appropriate for uncongested networks (where flows do not significantly

impact on travel times), when the elements of T are sufficiently large, congestion need to

be taken into account as matrix P (or B) depends on T.

For that purpose, ME models have been extended by switching from the linear as-

signment map to a user equilibrium assignment map. The resulting formulation has the

form of a bi-level optimization problem where the upper level seeks to minimize the sum

of distance measurements, while the lower level represents a user equilibrium assignment

which guarantees that the estimated OD matrix and corresponding link flows satisfy the

user equilibrium conditions. We shall remark that in this case, the output of the model

consist of, not only the trip flow matrix, but also the route choice proportions and link

flows.

Yang et al. (1992), following Bard (1988), define a bi-level programming problem as:

Min
x
F (x, y) (4.22)

subject to

G(x, y) ≤ 0, (4.23)

where y is obtained by solving the problem

Min
y
g(x, y) (4.24)

subject to

g(x, y) ≤ 0. (4.25)

In game theory, this problem is called a Stackelberg game. It has a hierarchical struc-

ture in which an upper-level (the leader) and a lower-level (the follower) decision makers

must select their strategies in order to optimize their objective functions, respectively. It

is assumed that the leader is given the first choice and selects an x in accordance, while

taking into account the reaction of the follower. Finally, in light of this decision, the fol-

lower selects a y so as to minimize his objective function f . This kind of games has been

widely used to model transportation systems.

Nguyen (1977) was the first to propose a method to estimate OD matrices from traffic

counts when congestion effects are considered. The model proposed permits estimating an

OD matrix that reproduces observed travel costs, that are derived from traffic count data

in conjunction with link cost functions. However, the objective function of the problem
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is not strictly convex and, hence, the solutions are not unique. Moreover, it requires a

complete set of link traffic counts.

Since then, alternative user equilibrium based estimation techniques have been devel-

oped by a number of authors. Fisk (1988) proposes an extended version of the entropy

maximizing model of Van Zuylen and Willumsen (1980) where a new constraint is added

that represents the UE conditions. The author suggests different formulations of the

problem, including the NCP formulation of the UE problem explained in Section 3.2.2.

Nevertheless, the observed link flows are included in the model as deterministic and, there-

fore, existence of a trip matrix solution is not guaranteed as there may be inconsistencies

on the link flows.

Yang et al. (1992) show how the generalized least squares (GLS) and entropy function

(ENT) models can be integrated with an equilibrium traffic assignment in the form of a

convex bi-level optimization problem. According to the authors, by combining the GLS

and UE subproblems, we obtain the following bi-level optimization problem:

Minimize
T

ZBI−GLS = (T̄−T)′U−1(T̄−T) + (Ŵ −W)′Y−1(Ŵ −W) (4.26)

subject to

T ≥ 0, (4.27)

where W solves7

Minimize
f ,w

∑

`ij∈A

∫ wij

0
cij(s)ds (4.28)

subject to

∑

r∈R
ξrksfr = tks, ∀k, s ∈ OD (4.29)

∑

r∈R
frδijr = wij , ∀`ij ∈ A (4.30)

fr ≥ 0 ∀r ∈ R. (4.31)

In the case of the entropy function, the bi-level optimization problem presents a similar

scheme:

Minimize
T

ZBI−ENT = γ1

∑

ks

tks

(
loge

tks
t̄ks
− 1

)
+ γ2

∑

`ij

wij

(
loge

wij
w̄ij
− 1

)
(4.32)

subject to

tks ≥ 0, ∀k, s ∈ OD (4.33)

where W solves (4.28) subject to (4.29)-(4.31).

7The UE formulation used in this model corresponds to the Beckmann model explained in Section 3.2.1.
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It should be pointed out that any model that fit into the ME category (such as the

minimum information model) can be used as the upper-level objective function of the

bi-level optimization model presented.

As the upper-level objective functions in both problems are strictly convex with re-

spect to T and W and, for T fixed, the lower level objective function of UE problem is

also strictly convex with respect to its decision variables W, these bi-level optimization

methods are convex and, hence, have a unique feasible solution. Furthermore, they do not

require full observability of link flows.

We note that the model in Fisk (1988) can be seen as a special case of model (4.32)-

(4.1). If the observed link flow pattern is at equilibrium and a large enough parameter γ2

is chosen, we get the extreme case where no deviation between W and Ŵ is allowed, and

therefore the model will produce the same results as Fisk’s model.

As the bi-level models make use of the UE models, something must be said about the

non-uniqueness of solutions in terms of path flows. As already explained in the previous

chapter, UE models lead to unique solutions in terms of link flows (see Theorem 2), but

generally not in term of path flows. In that sense, the model has a flaw as matrix P is

constructed from path flows that are not uniquely determined. However, the value of the

upper-level objective function is defined by vectors T and W and, hence, is independent

of the values of path flows.

Bi-level programming problems are generally difficult to solve because evaluation of

the upper-level objective function requires solving the lower-level optimization problem.

For that reason, a heuristic solution approach has been considered that involves iteratively

solving the ME and UE problems in sequence until convergence (see Fisk (1988, 1989) or

Yang et al. (1992)). This heuristic is a close representation of the actual decision making

process in terms of a Stackelberg game. The general scheme of the algorithm is described

as follows (see, for example, Castillo et al. (2008b), Yang (1995) for more details8).

Algorithm 1 (Bi-level heuristic) This algorithm consists of solving the lower-level and

upper-level problems iteratively.

INPUT. A prior OD matrix, the observed link flows and the link cost functions.

OUTPUT. The estimated OD matrix, link flows and route choice proportions (matrix

P).

Step 0: Initialization. Initialize T0. This initial trip matrix can normally be the prior

OD matrix (T0 = T̄).

Step 1: Lower level solution. Given the matrix T0, obtain P0 solving the UE assignment

problem.

8Yang (1995) presents some other heuristic algorithms for the bi-level origin destination matrix estima-

tion problem.
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Estimated OD flows

OD pair GLS ENT

1 78.19 81.24

2 112.98 111.92

3 74.82 68.77

RMSE 7.83 7.77

Estimated link flows

Link GLS ENT

1 7,24 11,24

2 70,95 70,01

3 151,48 148,93

4 0,00 0,00

5 69,42 68,92

6 43,56 43,00

RMSE 6.18 6.16

Table 4.5: OD matrix and link flows resulting from the different bilevel methods.

Step 2: Upper level solution. Using P0, the observed link flows and the prior OD matrix,

obtain the OD matrix T.

Step 3: Testing convergence. Compute the error by means of

ε = (T0 −T)′(T0 −T).

If the error ε is less than a given tolerance, stop the process and return the values of

T and W. Otherwise, update the initial matrix (T0 = T), and go to Step 1.

The following example, where the previous algorithm is applied, illustrates the de-

scribed bi-level methods.

Example 4 (Bi-level models) In order to show how these methods work, we apply them

on the network used in Example 3. The same parameters, prior OD matrix and real flows

are used.

The algorithm explained before has been implemented with a convergence tolerance of

10−6 and the results obtained are shown in Table 4.5.

In this case, the best results come from the entropy model but both models perform

similarly. In general, the results are better than those obtained by the matrix estimation

procedures (see Table 4.4). Specifically, note that these models, contrary to the ME ones,

lead to a null flow for link 4, which is the real flow on that link. This is due to the fact

that the P matrix is updated in each iteration of the algorithm and the choice proportions

are calculated depending on the level of demand; in other words, the congestion effects are

included in the model. Finally, as the level of congestion is not high in this network, the

difference in the RMSE between conventional and bi-level models is not very large. If the

network in study is highly congested, the gain in terms of RMSE can be larger.
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Appendix

A Notation

βij parameter of the BPR function.

βijks proportion of trips in the OD pair ks using link `ij .

γ1 weighting factor.

γ2 weighting factor.

γij parameter of the BPR function.

∆ path-link incidence matrix.

δijr element of the link-route incidence matrix.

ε convergence error.

`ij link joining nodes i and j.

µT mean of the multivariate normal distribution of T.

ξrks element of the OD-route incidence matrix.

ΣW variance-covariance matrix of the link flows.

ΣT variance of the multivariate normal distribution of T.

ΣT̄ variance-covariance matrix of the prior distribution.

ΣW̄ variance-covariance matrix of the traffic counts distribution.

A set of links.

B assignment proportion matrix.

cij cost associated with traversing link `ij .

D set of destination nodes.

f(T|W̄) posterior probability function.

F1(T, T̄) function of a generalized distance measurement between T and T̄.

F2(W,W̄) function of a generalized distance measurement between W and W̄.

fr flow on route r.

g(T) prior probability function.

i link begin node.

j link end node.

k origin node.

ks origin-destination pair from nod k to nodes.

l lower bound.

lks lower bound associated with OD ks.

lOk lower bound associated with origin node k.

lDs lower bound associated with destination node s.

M(T) assignment map.

O set of origin nodes.

OD set of origin-destination pairs.

p(W̄|T) probability function of traffic counts.
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P matrix defining the probabilities to select the different paths

associated with all OD pairs.

qij parameter of the BPR function.

r route.

R set of routes.

s destination node.

T OD matrix to be estimated.

T̄ prior OD matrix.

t0ij parameter of the BPR function.

T0 initial matrix for the algorithm.

tks OD flow associated with OD pair ks; element of matrix T.

t̄ks element of matrix T̄.

u upper bound.

U variance-covariance matrix of T̄.

uks upper bound associated with OD ks.

uOk upper bound associated with origin node k.

uDs upper bound associated with destination node s.

W vector containing the link flows to be estimated.

W̄ vector containing the observed link flows.

wij flow through link `ij .

w̄ij observed flow through link `ij .

Y variance-covariance matrix of W̄.

Z objective function.
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5.1 Introduction

One of the aims of traffic models is to estimate traffic flows. These can be link flows,

origin-destination flows (as the models explained in Chapter 4), path flows, node flows,

etc. The observability problem, dealt with in this chapter, consists of determining if a

given subset of available flow measurements is sufficient to estimate another subset of

traffic flows (not necessarily of the same type).

Observability analysis is a previous step to flow estimation. It addresses the question:

do we have enough information to estimate the flows in a network?

Note that the flow values themselves are not needed to solve the observability problem.

One wants to know only if knowledge of these flows would provide enough information to

obtain all or a given subset of flows (link, path or OD flows), i.e., if the subset is observable.

If a traffic network is observable, it is relevant to identify critical measurements, that

is, measurements that, if missing, make the network unobservable. In other words, to

identify measurements whose elimination lead to non-observability. On the contrary, if

the state of the system is unobservable, it is relevant to identify the flow subsets that can

be estimated.

As done in Castillo et al. (2010) and Castillo et al. (2011), we classify the observability

problem on the basis of the target parameters (OD, route and link flows):

87
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OD-pair flow observability: The most common observability problem in the traffic

literature is the OD-pair observability problem, in which the OD-pair flows are es-

timated in terms of other flows. Because the number of independent OD-pair flows

is much larger than the number of independent link flows, the problem normally

becomes under-specified. In this case, the OD flow observability problem has an

infinite set of solutions satisfying the conservation laws, as already seen in Chapter

4. In this case of under-specification, the only possibility of solving the problem and

get a unique solution consists of adding extra information, which normally comes

in the form of a combination of prior information of OD-pair flows together with

some optimization property (maximum entropy or generalized least squares, among

others).

However, there are other ways to deal with this problem of under-specification. In

particular, some authors, such as Castillo et al. (2007) or Castillo et al. (2008c), dealt

with the unusual case of over-specification, that is, when the number of independent

link flows is larger than the number of independent OD-pair flows; which is not a

very realistic situation. Finally, another way to overcome the problem of under-

specification is to make use of scanned links, which supply more information than

the counted link flows, this is the case of Anagnostopoulos et al. (2006) and Castillo

et al. (2008e). By scanned links we mean links on which a camera has been installed

to capture the plate number of the circulating cars, providing information on the

links traversed by the vehicles.

Route flow observability: A more difficult observability problem is the route flow

observability problem in which we aim to observe all route flows. Due to the fact that

knowledge of the route flows immediately leads to the knowledge of the OD pairs and

link flows, through the conservation or balance equations, the observability problem

of route flows can be considered as the full observability problem. However, it is the

most difficult of the observability problems as it requires the maximum amount of

information. Thus, the route flow observability problem presents the same under-

specification difficulties as does the OD pair observability problem. Similarly to

the OD pair observability problem, methods to solve this problem include the use of

prior information or more powerful techniques, such as the plate scanning technique.

Link flow observability: The simplest observability problem is the link observability

based on link flows. This problem consists of observing all or a subset of link flows

on the basis of the observation of the flows on a subset of them. An important

property of this problem, which distinguishes it from the other problems considered

above, is that a solution always exists; that is, any subset of link is observable on

the basis of a subset of links, which, in some extreme cases, can be the subset itself.

In spite of its simplicity, this problem, on which we focus in the remaining of the
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chapter, has been suggested recently by Hu et al. (2009). Nevertheless, a somehow

different problem is dealt with in Bianco et al. (2001, 2006), who analyze the ob-

servability of all arcs in a network based on known turning ratios and observed node

flows and discuss the associated complexity.

According to the type of technique used to solve the observability problem, it can

also be classified as follows: (a) algebraic, which considers the algebraic relations between

all flows and operate them algebraically to draw observability conclusions (see Monticelli

and Wu (1985a,b), Abur and Gómez Expósito (2004), Gomez Exposito and Abur (1998),

Castillo et al. (2008c)); and (b) topological, which considers only qualitative relations

among flows (mainly through the use of graph theory) to derive observability conclusions

(see Clements and Wollenberg (1975), Nucera and Gilles (1991), Castillo et al. (2008c),

Castillo et al. (2007)). Methods in the first group normally supply more information, but

those in the second are faster and require less memory and CPU resources.

For example, Castillo et al. (2008c) present an algebraic model to solve the observability

problem and a topological version of it. The algebraic approach makes use of matrix B1

and presents and algorithm that permits expressing the observable flows in terms of the

actually observed flows. Contrary, the topological approach requires modifying matrix

B by replacing any non-zero value by 1, such a way that qualitative dependencies are

considered but quantitative dependencies are not. Since the topological version works with

binary number, it has no numerical problems and requires less memory, making it useful

for large networks. The main limitation of these models is that they require knowledge

of matrix B, which is generally unknown, so by selecting these data some errors can be

included in the model.

Since all these techniques are based on mathematical properties of the system of equa-

tions and have the same structure for traffic problems, these approaches applied to “phys-

ical” networks are equally applicable to traffic networks.

In the next section some algebraic models on link flow observability on the basis of

counted link flows are explained, which will be useful for a better understanding of Part

IV.

5.2 Some algebraic link flow observability models

As already seen, the link flow observability problem consists of determining whether a

subset of link flows is sufficient to estimate another given subset of link flows. This

apparently simple problem was first stated by Hu et al. (2009).

In practical applications, the installation of sensors on all links is generally unrealistic

because of budgetary constraints. Therefore, it is interesting to know the smallest subset

1We remind the reader that B = [βijks] is the assignment proportion matrix whose elements βijks
denote the proportion of trips in the OD pair ks using link `ij , used in Chapter 4.
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of links in a network on which to locate sensors that enables the accurate estimation of

traffic flows on all links of the network under steady-state conditions. Furthermore, in the

presence of measurement errors, duplicity of information would lead to incompatibilities.

Hu et al. (2009) propose a simple linear algebra based method to identify the minimum

subset of links to be equipped with sensors so as to estimate the flows on all links. Their

model does not require the knowledge of matrix B, which is an important advantage

because it does not impose any assumptions on the O-D matrices, turning ratios or route

choice behavior, but make use of the link-path incidence matrix ∆. The proposed model is

based on the idea of basis of the vector space generated by the link-path incidence matrix.

The basis of the vector space associated with matrix ∆ consists of z2 linearly inde-

pendent column vectors, and the links corresponding to these columns are called the basis

links. The remaining links in the network are called the non-basis links. If the flows on

the basis links are observed using sensors, then by definition of algebraic basis, the flow

on all links can be inferred through linear combinations of the basis link flows.

In order to determine the rank of matrix ∆, i.e. the minimum number of counted

links, Hu et al. (2009) propose to obtain the reduced row echelon form3 (RREF) of matrix

∆ via the Gaussian elimination algorithm, and take r as the number of nonzero rows.

Furthermore, the links to be counted are those associated with a unit column vector and

the coefficients of the linear combinations that relates non-basis with basis link flows are

those shown in the RREF of the link-path incidence matrix.

Because any minor submatrix with the same rank leads to a subset of independent link

flows, this means that there can be several solutions. Due to the steps of the Gaussian

elimination algorithm, the column positions of the links in matrix ∆ can decide the set

of basis links, giving priority to the links associated with the leftmost columns. Hence, if

some links were to be prioritized over others for some external reasons, the higher priority

links should be assign to the leftmost columns of the link-path incidence matrix, giving

rise to the same network link flows.

Finally, Hu et al. (2009) perform a sensitivity analysis on the effects of network topology

and number of OD-pairs and paths on the minimum subset of links to be installed with

vehicle sensors and conjecture, as a result, that “there may be an upper bound on the

number of basis links that is governed by the network topology irrespective of the total

number of links in the network”.

2Note that z is the rank of the link-path incidence matrix ∆.
3A matrix is said to be in its reduced row echelon form if it satisfies:

1. Any row containing a nonzero entry precedes any row in which all the entries are zero (if any).

2. The first nonzero entry in each row is the only nonzero entry in this column.

3. The first nonzero entry in each row is 1 and it appears in a column to the right of the leading 1 in

any preceding row. By definition, if the first nonzero number in a row is 1, it is called leading 1.
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Figure 5.1: The parallel highway network in Hu et al. (2009), showing the nodes and links.

Example 5 (The parallel highway network) In this example we will apply the

method proposed by Hu et al. (2009) to the parallel highway network presented in Hu

et al. (2009) and shown in Figure 5.1. It consists of 9 nodes, 14 links and four OD-pairs.

Nodes 1 and 2 are trip origin nodes, whereas nodes 8 and 9 are the destination nodes.

Tables 5.1 and 5.2 illustrate the link-path incidence matrix for the network and its RREF,

respectively. The matrix in Table 5.2 has 9 nonzero rows and, hence, the rank of the

link-path incidence matrix and the number of links to be counted is 9. The basis links cor-

respond to the 9 columns in the table that denote unit columns (for a better understanding,

they have been boldfaced) and represent the links on which to install vehicle sensors.

Note also that all non-basis link flows can be inferred through linear combinations of

the basis link flows using as coefficients the values in the associated column of the RREF

matrix. For example, the flow through links 6 and 14, which are non-basis links, can be

computed as:

w6 = w1 + w3 − w5

w14 = w2 + w4 + w5 − w9 − w13.

Finally, note that all links need not be equipped with sensors in order to estimate the

flows on all links. In this example, we need to install vehicle sensors on 64% of the links.

Motivated by the work of Hu et al. (2009), Castillo et al. (2010) and Castillo et al.

(2011) present some theorems and algorithms to solve the observability problem. For

example, Castillo et al. (2010) present a theorem and several algorithms to solve the

following problems:

Problem 1: Given a subset V0
2 of traffic-flow observations and another subset V0

1 of flows

on the network, determine the subset V1 of flows in V0
1 that can be calculated from

those in V0
2 and provide formulas to perform these calculations.

Problem 2: Given a subset V1 of traffic flows and another subset V0
2 of flows on the

network, determine a minimum subset V2 of flows in V0
2, such that all flows in

V1 can be calculated from those in V2, and provide the formulas to perform these

calculations.
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Path (by nodes)
Link number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1− 3− 6− 8 1 0 0 0 0 1 0 0 0 0 1 0 0 0

1− 3− 5− 7− 8 1 0 0 0 1 0 0 0 0 1 0 0 1 0

1− 4− 7− 8 0 1 0 0 0 0 0 1 0 0 0 0 1 0

1− 3− 6− 9 1 0 0 0 0 1 0 0 0 0 0 1 0 0

1− 3− 5− 6− 9 1 0 0 0 1 0 0 0 1 0 0 1 0 0

1− 4− 7− 9 0 1 0 0 0 0 0 1 0 0 0 0 0 1

2− 4− 5− 6− 8 0 0 0 1 0 0 1 0 1 0 1 0 0 0

2− 4− 7− 8 0 0 0 1 0 0 0 1 0 0 0 0 1 0

2− 3− 6− 8 0 0 1 0 0 1 0 0 0 0 1 0 0 0

2− 4− 5− 6− 9 0 0 0 1 0 0 1 0 1 0 0 1 0 0

2− 4− 7− 9 0 0 0 1 0 0 0 1 0 0 0 0 0 1

2− 3− 6− 9 0 0 1 0 0 1 0 0 0 0 0 1 0 0

Table 5.1: Link-path incidence matrix of the parallel highway network.

Path (by nodes)
Link number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1− 3− 6− 8 1 0 0 0 0 1 0 0 0 0 0 1 0 0

1− 3− 5− 7− 8 0 1 0 0 0 0 0 1 0 0 0 0 0 1

1− 4− 7− 8 0 0 1 0 0 1 0 0 0 0 0 1 0 0

1− 3− 6− 9 0 0 0 1 0 0 0 1 0 0 0 0 0 1

1− 3− 5− 6− 9 0 0 0 0 1 -1 0 0 0 1 0 -1 0 1

1− 4− 7− 9 0 0 0 0 0 0 1 -1 0 1 0 0 0 0

2− 4− 5− 6− 8 0 0 0 0 0 0 0 0 1 -1 0 1 0 -1

2− 4− 7− 8 0 0 0 0 0 0 0 0 0 0 1 -1 0 0

2− 3− 6− 8 0 0 0 0 0 0 0 0 0 0 0 0 1 -1

2− 4− 5− 6− 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2− 4− 7− 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2− 3− 6− 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5.2: RREF of link-path incidence matrix of the parallel highway network.

As it can be seen, these problems refer not only to link flow, but to any kind of flow

(link, OD, node, etc.). The authors consider that all flows can be written in terms of

route flows and work with the path-link incidence matrix, path-OD incidence matrix,

etc. A very interesting theorem, which is the basic tool for the proposed algorithms, is

demonstrated that states the necessary and sufficient conditions for a subset of flows to

be linearly dependent on another subset of flows.
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Theorem 13 (Observability theorem) Assume that the column matrices V1 and V2

are a subset of unobserved flows and a subset of observed flows, respectively, which can be

written in terms of route flow columns R1 and R2. More precisely, assume that:

(
V1

V2

)
=

(
A11 A12

A21 A22

)(
R1

R2

)
, (5.1)

where A11,A12,A21 and A22 are the corresponding matrices of coefficients, and R1 and

R2 are a partition of all route flows.

If A21 is invertible, then the necessary and sufficient conditions for the flows in V1 to

be observable in terms of V2 is that

A11A−1
21 A22 −A12 = 0, (5.2)

where 0 is the zero matrix, and this condition guarantees that the flows in V1 can always

be calculated in terms of the flows in V2 as

V1 = A11A−1
21 V2. (5.3)

Proof. Sufficiency. We assume that A21 is invertible and that (5.1) and (5.2) hold. In

this case, from (5.1) we have

V1 = A11R1 + A12R2 (5.4)

V2 = A21R1 + A22R2 (5.5)

and if A21 is invertible, from (5.5), we have

R1 = A−1
21 V2 −A−1

21 A22R2 (5.6)

and replacing into (5.4) and considering (5.2), we get

V1 = A11A−1
21 V2. (5.7)

Sufficiency. We assume that V1 is observable in terms of V2, A21 is invertible and (5.1)

holds. If V1 is observable in terms of V2, then there exists a matrix K such that

V1 = KV2 (5.8)

and from (5.4) and (5.5), we obtain

V1 = A11R1 + A12R2 = KV2 = K(A21R1 + A22R2) (5.9)

that is

(KA21 −A11)R1 + (KA22 −A12)R1 = 0 (5.10)
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which, due to the fact that the route flows are linearly independent, implies

KA21 = A11 KA22 = A12. (5.11)

If A21 is invertible, then from (5.11), we get K = A11A−1
21 , and finally, using (5.11),

(5.2) again leads to

A11A−1
21 A22 −A12 = KA22 −A12 = 0. (5.12)

Theorem 13 can be used to test observability when solving Problems 1 and 2 stated

previously, as condition (5.2) provides the necessary and sufficient conditions for the flows

in V1 to be observable in terms of V2. Based on this result, Castillo et al. (2010) develop

different algorithms to solve the observability problem and show some example of appli-

cation. Among this examples, the authors apply their methods to the problem stated by

Hu et al. (2009), leading to the same results.

Castillo et al. (2011) also propose several algorithms to solve some observability prob-

lems. In this case, they present two algorithms to solve the observability problem on the

basis of counted links and scanned links, respectively. The second algorithm is based on

the information contained in scanned data.

The authors state that the first algorithm is equivalent to Hu et al. (2009)’s reduced

row echelon form methods but, in addition to determining the subset of independent link

flows, it allows determining the subset of observable routes and OD-pairs. It is based on

the pivoting strategy explained in Castillo et al. (2008c).

Castillo et al. (2011) apply the methods to several networks and, in particular, to the

parallel highway network obtaining the same results in terms of link flows as Hu et al.

(2009) and Castillo et al. (2010). Nevertheless, their method offers information about

the observable routes and OD-pairs. In the example, it is shown that no OD-pais flows

are observable in terms of the link flows {w1, w2, w3, w4, w5, w7, w9, w11, w13} but route

flows r2 and r5 are. In particular, the algorithm permits obtaining these route flows as:

r2 = w5 + w7 − w9 and r5 = w9 − w7.

As noted by Castillo et al. (2011), the methods proposed by Hu et al. (2009), Castillo

et al. (2010) and themselves have one possible limitation: they require full path enumer-

ation, which implies that they are hardly applicable for large-sized networks. Ng (2012)

analyzes the contributions of those works and argues that:

1. The problem is particularly elegant because of its assumption-free character. More

specifically, it does not impose any assumptions on the O-D matrices, turning ratios

or route choice behavior.

2. The approach used relies on full path enumeration and this is infeasible in real-world

networks, unless we resort to simplifying assumptions such as “most likely paths”

destroying the assumption-free nature of the problem.
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3. A node-based approach can be used to solve the problem.

4. The conjecture made in Hu et al. (2009) that “there may be an upper bound on the

number of basis links that is governed by the network topology irrespective of the

total number of links in the network” does not hold.

5. This upper bound is m−n, where m and n are the number of links and non-centroid

nodes, respectively, which is dependent on the total number of links and nodes but

not on the network topology.

Ng (2012) proposes to solve the link observability problem making use of the modified

node-link incidence matrix A. Firstly, the author proposes to divide the set of nodes

into centroids and non-centroids. Centroid nodes are the nodes where traffic originates/is

destined to, and non-centroid nodes denote all other nodes in N . The set of all non-

centroid nodes is denoted N ∗. Furthermore, the cardinality of sets N ∗ and A are n and

m, respectively. Finally, let O(i) and I(i) denote, respectively, the set of outgoing and

incoming links at node i ∈ N . The node-link incidence matrix A∗ is defined as the matrix

with entries given by:

A∗ij =





−1 if j ∈ O(i)

1 if j ∈ I(i)

0 otherwise.

The modified node-link incidence matrix A (henceforth simply referred to as node-link

incidence matrix) is obtained by deleting the rows in the node-link incidence matrix A∗

associated with the centroid nodes. The proposed node based approach is based on the

notion of flow conservation at non-centroid nodes, which can be simply expressed as:

Aw = 0, (5.13)

where w denotes the vector of link flows. Now suppose that A and w can be partitioned

into two subsets, i.e., one can find an invertible matrix B, a matrix N and vectors wB

and wN such that (5.13) can be rewritten as:

(
B N

)(wB

wN

)
= 0, (5.14)

or equivalently,

BwB = −NwN .

Since B is invertible,

wB = −B−1NwN . (5.15)

That is, if one observes wN through sensor measurements, the link flows wB become

observable.
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The following proposition, proved by Ng (2012), states that, assuming that there are

at least one centroid node and n < m, it is always possible to partition A into matrices

B and N.

Proposition 8 (Existence of B) It is always possible to partition A into two matrices

B and N, where B is an n-by-n invertible matrix.

Proof. From the network optimization literature, it is well known that the deletion of

one row from A∗ will result in a matrix of full rank (see Ahuja et al. (1993) for details).

As A consists of a strict subset of the rows of A∗, all rows in A are linearly independent.

Combining this with the fact that rank(A) ≤ min{m,n}, it follows that rank(A) = n,

completing the proof.

In order to find a matrix B, Ng (2012) adopts the same technique as in Hu et al.

(2009): use Gaussian elimination, put A in its reduced row echelon form and determine B

by inspection. That is, matrix B is constituted by the columns in A that form an n-by-n

identity matrix. The flows on the links associated with the columns in B can thus be

inferred by from the sensor measurements on the remainder of the links via (5.15). It is

important to remark that in Ng (2012)’s model the link flows associated with the basis

matrix B are to be inferred from other sensor measurements, whereas in Hu et al. (2009),

Castillo et al. (2011) and Castillo et al. (2010) basis links are to be equipped with sensors

themselves.

Finally, Ng (2012) solves Hu et al. (2009)’s conjecture: “there may be an upper bound

on the number of basis links that is governed by the network topology irrespective of the

total number of links in the network”. In the following proposition it is demonstrated that

the first part of the conjecture is correct but the second part is not.

Proposition 9 (Minimum number of sensors for full observability) In order to

have full observability, at a minimum, sensors need to be installed on m− n of the links.

Proof. From the previous proposition, it follows that at most n links flows can be inferred

from sensor measurements. Hence, at least m− n link flows need to be measured.

As it can be seen, Ng (2012) shows that it is possible to derive an explicit expression

for the upper bound on the number of links to be counted (proving the first part of the

conjecture) and that this upper bound is dependent on n and m (disproving the second

part of the conjecture).

Example 6 (The parallel highway network) We will now apply the methods pro-

posed by Ng (2012) to the parallel highway network in Figure 5.1. We note first that

the number of links and non-centroid nodes is 14 and 5, respectively. Following Proposi-

tion 9, a total of 14 − 5 = 9 links need to be measured, the same value obtained by Hu

et al. (2009), Castillo et al. (2011) and Castillo et al. (2010).
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Link number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node 3 1 0 1 0 -1 -1 0 0 0 0 0 0 0 0

Node 4 0 1 0 1 0 0 -1 -1 0 0 0 0 0 0

Node 5 0 0 0 0 1 0 1 0 -1 -1 0 0 0 0

Node 6 0 0 0 0 0 1 0 0 1 0 -1 -1 0 0

Node 7 0 0 0 0 0 0 0 1 0 1 0 0 -1 -1

Table 5.3: Node-path incidence matrix of the parallel highway network.

Link number

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node 3 1 0 1 0 0 0 1 0 0 -1 -1 -1 0 0

Node 4 0 1 0 1 0 0 -1 0 0 1 0 0 -1 -1

Node 5 0 0 0 0 1 0 1 0 -1 -1 0 0 0 0

Node 6 0 0 0 0 0 1 0 0 1 0 -1 -1 0 0

Node 7 0 0 0 0 0 0 0 1 0 0 0 0 -1 -1

Table 5.4: RREF of the node-path incidence matrix of the parallel highway network.

Tables 5.3 and 5.4 show the modified node-link incidence matrix and its RREF, respec-

tively. It can be seen that the columns in A associated with links 1, 2, 5, 6 and 8 constitute

a possible B since their corresponding columns in the Table 5.4 form a 5-by-5 identity

matrix (shown in bold). The flows on these links can thus be inferred from the sensor

measurements on the remainder of the links via (5.15).

Finally, it should be noted that the resulting links without sensors do not coincide with

those in Hu et al. (2009) (their solution determines that sensors are not installed on links

6, 8, 10, 12 and 14). However, as matrix B is not unique, the same solution can be reached

using the same modeling approach but rearranging the columns in A, placing the columns

associated with the links obtained by Hu et al. (2009) at the left most positions.
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Appendix

A Notation

βijks proportion of trips in the OD pair ks using link `ij .

∆ link-path incidence matrix.

`ij link joining nodes i and j.

A set of links.

A modified node-link incidence matrix.

A∗ node-link incidence matrix.

A11 matrix of coefficients.

A12 matrix of coefficients.

A21 matrix of coefficients.

A22 matrix of coefficients.

A∗ij elements of matrix A∗.

B assignment proportion matrix.

B invertible matrix.

i link begin node.

I(i) set of incoming links at node i.

j link end node.

k origin node.

K generic matrix.

ks origin-destination pair from nod k to nodes.

m cardinality of A.

n cardinality of N ∗.
N set of nodes.

N ∗ set of non-centroid nodes.

N generic matrix.

O(i) set of outgoing links at node i.

r route.

R1 partition of all route flows.

R2 partition of all route flows.

rr flow through route r.

s destination node.

V1 set of traffic flows.

V0
1 set of traffic flows.

V2 set of traffic flows.

V0
2 set of traffic flows.

w vector of link flows.

wB vector of link flows.
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w`ij flow through link `ij .

wN vector of link flows.

z rank of the link-path incidence matrix.
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Dynamic traffic models
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6.1 Introduction

Dynamic traffic models (also referred to as dynamic traffic assignment) consist of describ-

ing the time-varying traffic flows on each road of a traffic network. They can be seen as a

generalization of the static traffic assignment problem dealt with in Chapter 3 when given

a set of time-varying origin-destination demands is known. They are a very useful tool in

the development of real time traffic control techniques, as they consider the traffic flow

patterns over time and space.

These problems present two components: (i) the travel choice principle (see, for ex-

ample, Janson (1991), Smith (1979), Friesz et al. (1993), Lo and Szeto (2002), Ban et al.

(2008) or Ran et al. (1996)) and (ii) the traffic-flow component (see, for example, Hopf

(1950) or Friesz et al. (2011)). The travel choice principle models travelers’ propensity

to travel, and if so, how they select their routes, departure times, modes or destinations.

Contrary, the traffic-flow component depicts how traffic propagates on a transport network

and hence governs the network performance in terms of travel time.

The commonly adopted travel choice principle is the dynamic extension of Wardrop

(1952)’s first principle called the Dynamic User Optimal (or Dynamic User Equilibrium)

principle. However, under certain assumptions, a solution under the DUO principle may

101
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not exist and other principles, such as the tolerance-based DUO principle where the travel

time of used routes is required to be within a tolerance from the minimum OD travel

time, must be applied (see Szeto (2003) or Szeto and Lo (2006)). Some authors aim

at finding only the used routes (Lo and Szeto (2002) or Lam and Huang (1995)) whereas

others propose simultaneous route and departure time choice models (Szeto and Lo (2004),

Bernstein et al. (1993) or Huang and Lam (2002)).

Several types of approaches have been adopted to model the DUO problem: math-

ematical program-based (see Janson (1991) or Janson and Robles (1995)), variational

inequality-based (see Ran et al. (1996) or Friesz et al. (1993)), and optimal control-based

(see Ran et al. (1993)) approaches.

Among the traffic-flow component models, also called Network Loading Problem

(NLP), we can distinguish between two categories: the simulation-based and the

analytical-based approaches. The simulation-based approach emphasizes each individ-

ual driver’s behavior and hence the microscopic traffic flow characteristics (see Chandler

et al. (1958), Gazis et al. (1961) or Wagner et al. (1996)). One advantage of the simula-

tion approach is its detailed description of traffic phenomena. However, it implies a great

computational effort and lacks well-defined solution properties, as it sheds no light on the

relationship between user choices and path flow times and volumes.

The analytical-based approach concerns the average driver’s behavior, and is essentially

macroscopic. This approach has well-defined properties in terms of optimal conditions.

In this group we can mention the following models: the hydrodynamic, the Merchant-

Nemhauser, the cell transmission and the point and physical queue models. This chapter

is devoted to the analytical network loading problem.

On the other hand, dynamic models can be classified as discrete and continuous, de-

pending on the way space and time are dealt with. Since in reality both magnitudes are

continuous, those models that consider the traffic evolution as continuous functions (e.g,

the hydrodynamic model) are the most adequate. However, they are also the most com-

plex. In order to simplify the models, in many cases they are discretized in time, in space

or in both variables (e.g. the cell transmission model). A very interesting way of treating

this problem is proposed by Castillo et al. (2012), where they work with discretized times

but make use of monotone splines in order to obtain continuous results. The rationale

behind the use of monotone splines is that the FIFO (First In First Out) condition is

ensured.

In summary, existing analytical and continuous type methods dealing with dynamic

traffic flow lead to complicated problems that involve a lot of computations and make

them not very appropriate for real networks. Thus, discrete or simplified versions of these

models have been suggested.

The remaining of the chapter is structured as follows. In Section 6.2 we present some

basic concepts that are necessary to treat the dynamic traffic approach. In addition, we

define the FIFO rule, providing a mathematical way to observe this principle. In Section
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6.3 we review some of the network loading models proposed in the literature, focussing on

the cell transmission and the point and physical queue models.

6.2 Dynamic traffic flow concepts

This section describes some basic concepts needed for a better understanding of dynamic

traffic models.

Let uij(t) and vij(t) be the inflow and outflow rates for link `ij at time t, respectively,

and Uij(t) and Vij(t) their corresponding cumulative variables. By definition, it holds

that:

Uij(t) =

∫ t

0
uij(s)ds, or uij(t) =

∂Uij(t)

∂t
, (6.1)

Vij(t) =

∫ t

0
vij(s)ds, or vij(t) =

∂Vij(t)

∂t
. (6.2)

The flow conservation condition requires the number of vehicles on a link (link

occupancy) at a particular time to be equal to the total inflow at the entry of that link at

that time minus the corresponding total outflow at the exit. Mathematically,

xij(t) = Uij(t)− Vij(t), (6.3)

where xij(t) is the number of vehicles on link `ij at time t. By taking derivatives to both

sides of Equation (6.3) we get the following alternative expression:

∂xij(t)

∂t
= uij(t)− vij(t). (6.4)

Assuming that vehicles leave links in the same order as they enter (i.e., the FIFO rule

is assumed), we can derive the link travel times of each vehicle by means of the cumulative

inflows and outflows. The vehicle entering link `ij at time t1 exits this link at time t2 if

and only if

Uij(t1) = Vij(t2). (6.5)

As no overtaking is allowed due to the FIFO condition, the link travel time of a vehicle

is equal to the link exit time minus the corresponding entry time. Mathematically,

Uij(t) = Vij(t+ τij(t)), or (6.6)

τij(t) = V −1
ij [Uij(t)]− t, (6.7)

where τij(t) is the travel time on link `ij at time t. Taking derivatives of (6.7) and

rearranging gives:

vij(t+ τij(t)) =
uij(t)

1 +
dτij(t)

dt

. (6.8)
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t

Uij(t)
Vij(t) Uij(t) Vij(t)

uij(t1)

vij(t1)

tij(t1)

t1 t2= t1+tij(t1)

Jth vehicle

0

xij(t1)

Figure 6.1: Relationships among inflow rate (uij), outflow rate (vij), travel time (τij),

occupancy (xij), cumulative inflow (Uij) and cumulative outflow (Vij).

Equations (6.7) and (6.8) show the relationship among inflow rate, outflow rate and

travel time and is known as time-flow consistency condition or flow propagation con-

dition.

Figure 6.1 shows the relationships explained throughout equations (6.1)-(6.8). In par-

ticular, the vertical distance between the cumulative inflow and outflow curves gives the

number of vehicles in the link at that particular moment. Furthermore, the horizontal

distance between both cumulative curves is the link travel time of a vehicle entering the

link at that precise moment.

Most traffic models assume flow conservation and time-flow consistency conditions but

those are not the only considerations made on the traffic flow component. FIFO, causality

and queue spillback are three important properties also proposed in the literature.

6.2.1 Causality, FIFO rule and queue spillback

Causality refers to the property that the link travel times for traffic entering at time t1
only depend on the traffic entering at time t2 ≤ t1. This property means that the speed

and travel time of a vehicle on a link is affected by the speed of vehicles ahead but not by

vehicles behind.

FIFO (First In First Out) rule (at the link or path level) means that users who

enter a link (or path) earlier will leave it sooner. The FIFO rule is also defined at the
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origin-destination level. In that case, OD FIFO is satisfied if users on the same OD

pair who depart the origin earlier, reach the destination sooner. Link FIFO can prevent

unrealistic situations such as the fast traffic jump over the preceding slow traffic (Carey

and Subrahmanian (2000)). Although FIFO does not allow any realistic overtaking on

a microscope level, in reality, road traffic tends to behave in a FIFO manner. Traffic

which embarks on a road first will on average exit first (Carey (1992)). In particular, on

a single-lane road and in a queue, no overtaking can be occurred and capturing FIFO is a

mandatory.

The FIFO condition can be stated mathematically in several ways. In the following

lines, we explain how it can be observed in terms of the link travel time τij(t).

Theorem 14 The FIFO rule is equivalent to (Carey (2004)):

τ ′ij(t) > −1. (6.9)

Proof. We start by demonstrating that equation (6.9) is necessary. Let ω > 0, then the

FIFO condition for two vehicles that enter the link at times t and t + ω, respectively, in

terms of link exit times can be written as:

t+ τij(t) < t+ ω + τij(t+ ω), (6.10)

that is,

τij(t+ω)− τij(t)>−ω ⇔
τij(t+ ω)− τij(t)

ω
>−1 ⇔ τ ′ij(t)= lim

ω→0

τij(t+ ω)− τij(t)
ω

>−1.

(6.11)

Condition (6.9) is sufficient too. If τ ′ij(t) > −1, then we have

τij(t+ ω) = τij(t) +

∫ t+ω

t
τ ′ij(s)ds > τij(t) +

∫ t+ω

t
−1ds = τij(t)− ω, (6.12)

which implies (6.10).

FIFO rule is an important condition imposed and studied in a large number of works.

In particular, Friesz et al. (1993) prove that the FIFO condition is satisfied whenever the

arc traversal time functions are affine1. Carey (2004) demonstrates that causality, time-

flow consistency and FIFO are independent, i.e., capturing one in the model does not

imply capturing the other.

Finally, queue spillback (or junction blockage) refers to the end of queue spilling

backwards in the network. When the queue spills backward passing the junction, the

1A function is affine if it is of the form:

f(x) = ax+ b, a, b ≥ 0.
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junction gets blocked. When the streets are short and the demand for them is high, queue

spillback often occurs and this phenomenon must be captured in the models.

Although the five considerations explained (flow conservation, time-flow consistency,

causality, FIFO and queue spillback) are important to be captured in the dynamic traffic

models, only flow conservation (expressed in Equation (6.3)) is considered in every traffic

model.

6.3 The Network Loading Problem

As already explained, the network loading problem consists of determining, given some

path departure rate functions, the arc and path traversal functions. Note that the time-

dependent flows in every path are known and, thus, the path flows do not depend on the

costs resulting from the solution to the NLP.

The analogies of fluid and gas dynamics with traffic flow has led engineers to model

traffic flow using well known equations from hydraulics leading to macroscopic models for

traffic simulation. More precisely, we can assume that the links are channels and that the

traffic flow is replaced by a fluid (see Lax (1954), Lighthill and Whitham (1955), Richards

(1956)). The key postulate of these models (also referred as to LWR) is that there exists

some functional relation between the flow q and the density (or concentration) k, where the

flow is defined as the rate at which vehicles pass some point and the density is the number

of vehicles per unit length of road. It is also assumed that the following conservation

equation (also called equation of continuity) holds

∂k(x, t)

∂t
+
∂q(x, t)

∂x
= 0.

The LWR model is based on partial differential equations that follow from the equa-

tion of continuity. As noted by Newell (1993a) and Daganzo (1994), the solution to the

differential equations is tedious and can lead to multiple solutions. Moreover, it does not

take into account the downstream occupancy.

An important alternative to these models is in the Newell’s kinematic wave trilogy

Newell (1993a,b,c), in which instead of using the Lighthill-Whitham-Richards theory to

evaluate flows or densities, the cumulative flow past any point at any time is evaluated.

The proposed model studies the variation of traffic flow at one end of the link from the

behavior of traffic at the other end, without evaluating the behavior at intermediate points.

The main advantage of this model is that it requires less computer memory.

Due to the fact that fluid-based models have important limitations, some modifications

proposed by several authors, led to complex models that involved well known equations,

such as the Burgers (see Whitham (1974)), the Boltzmann (see Prigogine and Herman

(1971) or Paveri Fontana (1975)) and the Navier-Stokes like equations (see Stokes (1845)).

A complete state of the art corresponding to the initial and most active period of macro-

scopic models is provided by Helbing (1996).
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However, since very complex models are required to reproduce the real and complicated

traffic flow behavior and there are no analytical solutions for the general Navier-Stokes

equation, simplified versions of the Navier-Stokes equation or complicated numerical meth-

ods must be used to deal with traffic problems. The final consequence is that they are not

practical for real traffic networks.

Merchant and Nemhauser (1978a,b) proposed a model based on an exit-flow function

that determines the share of the number of users leaving the link during a time interval.

Their model was formulated as a discrete time, non linear and nonconvex mathematical

programming problem.

The cell transmission model (see Daganzo (1994, 1995)) was developed as a discrete ap-

proximation to the hydrodynamic theory of traffic flow to reproduce some observed traffic

situations, such as the processes of initiation, propagation, and dissipation of physical-

queues that occur in real practice. The cell transmission model (CTM) seems to strike

an appropriate balance between capturing sufficient details for modeling queue dynamics

while leaving out microscopic features that would slow down computation. Some impor-

tant extensions of the cell transmission model including the assignment problem are in Lo

(1999), Lo and Szeto (2002), Szeto and Lo (2004) and Szeto and Lo (2006).

The queue models (point or physical) allow us to simulate the delay due to link satura-

tion. Moreover, physical queue models include the shock-wave effect on this delay (Carey

and Srinivasan (1993), Huang and Lam (2002) and Szeto and Lo (2005)).

In the following subsections the cell transmission and some point and physical models

will be described more in detail.

6.3.1 The Cell Transmission model

The Cell Transmission model, which was proposed by Daganzo (1994, 1995), consists of

evaluating flow at a finite number of carefully selected intermediate points of the links.

As in Newell’s model, the difference equations that form the basis for this procedure are

discrete approximations to the differential equations of the hydrodynamic theory, as it is

proved by the author.

Under the CTM, the road is divided into homogeneous sections (or cells) and time into

intervals such that the cell length is equal to the distance traveled by free-flowing traffic

in one time interval. If, for the sake of simplicity, we assume that we deal with a single

road2 and, hence, the cells can be numbered consecutively starting with the upstream end

of the road, the system’s evolution obeys:

nc(t+ 1) = nc(t) + yc(t)− yc+1(t), (6.13)

where nc(t) is the number of vehicles in cell c at time t and yc(t) is the inflow of cell c at

2The results presented can be extended to more complex traffic networks following the ideas in Daganzo

(1995).
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time t and is given by:

yc(t) = min{nc−1(t), Qc(t), Nc(t)− nc(t)}, (6.14)

where Nc(t) is the maximum number of vehicles that can be present in cell c at time t and

Qc(t) is the maximum number of vehicles that can flow into cell c when the clock advances

from t to t+ 13.

Equation (6.13) permits calculating the number of vehicles in cell c at time t + 1 as

the cell occupancy of that cell at time t, plus the inflow minus the outflow.

Moreover, (6.14) expresses that the number of vehicles that can flow from cell c − 1

to cell c for the time interval after t is the smallest quantity among: (i) the number of

vehicles in cell c− 1 at time t (nc−1(t)), (ii) the capacity flow into cell c for time interval

t (Qc(t)), and (iii) the amount of empty space in cell c at time t (Nc(t) − nc(t)). This

equation permits incorporating queueing in the model as queues would form whenever a

cell has reached its capacity and no more vehicles can flow into it.

The occupancy constraint yc(t) ≤ Nc(t)− nc(t), derived from equation (6.14), is con-

servative because it assumes that no vehicles leave cell c at time t. This is equivalent to

assume that density waves propagate backwards at free flow speed, as the time intervals

are defined by means of the free flow speed. This is somewhat unrealistic because in reality

waves move much more slowly than free flow traffic, changing the manner in which vehicles

approach the bottleneck. Taking this into account, Daganzo proposes an extension to the

original CTM model such that Equation (6.14) is replaced by:

yc(t) = min{nc−1(t), Qc(t), κ[Nc(t)− nc(t)]}, (6.15)

where κ = 1 if nc−1(t) ≤ Qc(t) and δ = w/v, otherwise, with v and w being the free

flow speed and the backward wave speed (the speed with which disturbances propagate

backwards when traffic is congested), respectively.

The cell transmission model as recently defined offers four degrees of freedom: the

free flow speed, the maximum flow, the jam density and the wave speed. As pointed

by several authors, these are the most important determinants of traffic evolution and

it is very unlikely that in any practical application an engineer would have reliable data

beyond these parameters. Therefore, the CTM is a sufficiently flexible model that permits

modeling a wide variety of traffic networks.

Example 7 Finally, in order to illustrate the cell transmission model, we will show an

example taken from Daganzo (1994). We consider a 1.25 mile homogeneous road with free

flow speed of 50 mph and maximum flow capacity of 3000 vph. If we choose a 6 second clock

tick (1/600th of an hour), then the length of a cell must be 1/12 mile and there will be 15

3Note that constants Nc(t) and Qc(t) are allowed to vary with time to be able to model traffic incidents

that would reduce the capacity of the cells.
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cells. The cell constants are: N = 15 and Q = 5. Initially, each cell contains four vehicles

(nc(0) = 4, ∀c) and a constant flow of four vehicles enters the road (Q0(t) = 4, ∀t).

In order to see how the CTM models the queue spillback phenomena, we will assume

that an incident occurs in cell 11 at the beginning of the period in study lasting two minutes.

This incident effectively reduces flow capacity to 20% of the maximum and is modeled by

limiting the capacity of that cell for the first two minutes: Q11(t) = 1, t ≤ 20.

With this information, Equations (6.13) and (6.14) are solved iteratively and the results

are presented in the upper graph of Figure 6.2, where the cell occupancy levels along time

are shown. Traffic propagates in the direction of vertical axis, whereas the horizontal axis

is for time. The intensities of the shades correspond to the occupancy levels, as shown in

the legend on the right side of the plot. It can be seen that a queue starts forming in cell 11

at the beginning of the period and spills back through the upstream cells until the incident

is over (t = 20). At that moment, the queue spills back as more vehicles can leave the

conflictive cell. It is interesting to note the low density in the downstream cells during the

incident as only one vehicle can leave cell 11 at each clock tick.

Finally, the results obtained from the cell transmission model are compared with those

resulting from the simplified CTM (SCTM), which ignores the storage capacity term in

the CTM (i.e., N = ∞). The SCTM can be seen as a point queue model, which will be

further studied in the following subsection, as it assumes that the queue has no length4

and, hence, it cannot spill backwards. The results obtained from the SCTM can be found

in the lower graph of Figure 6.2. A very high congestion can be found on cell 11, due to

the fact that there are more vehicles entering than exiting the cell. This congestion gets

worse up to time 20 when the incident disappears and the situations starts improving. It

is important to note that no queue is generated under the point queue paradigm but the

low congestion in the downstream cells during the incident is still present.

From these figures, one can see how introducing storage capacity affects the occupancies

over time and queueing locations. The point-queue paradigm does not consider storage

capacity when queues form, and hence cannot capture queue spillback, whereas the physical-

queue paradigm considers that effect and hence queue spillback.

6.3.2 Point and Physical Queue models

In this subsection we will focus on the point and physical queue models5. In the previous

example (Example 7) two versions of the cell transmission model with both kinds of queues

have been solved in order to show the main differences between them. As already ex-

plained, the point-queue representation treats vehicles as points without physical lengths,

4Actually, the model assumes that the cells have infinity capacity and, thus, all vehicles can enter the

link avoiding queues in the upstream cells.
5Note that the Cell Transmission Model and the Simplified CTM can also be classified as physical and

point queue models, respectively.
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whereas the physical-queue representation considers the vehicle lengths. Therefore, only

the physical-queue representation can capture junction blockage and queue spillback.

• In the point queue model there exist three general formulations, namely, (a) the

exit flow function approach (e.g., Carey and Srinivasan (1993), Lam and Huang

(1995)), where the inflow rates and occupancies are given and the outflow rates

are determined by the flow conservation condition (6.4) according to the predefined

exit flow function and then, the travel time is calculated using the flow propagation

condition (6.7); (b) the travel time function approach (e.g., Xu et al. (1999), Huang

and Lam (2002)), where we determine the travel times based on the flow conservation

(6.4) and the travel times functions, given the link inflows and occupancies and then,

the outflow rate can be obtained by the flow propagation condition (6.7); and (c) the

mixed approach (e.g., Yang and Huang (1997)), where we require both predefined

travel time functions and exit flow functions, the travel times and the outflow rates

are determined separately by their corresponding equation and the flow conservation

condition (6.4), without satisfying the flow propagation condition (6.7).

• In the physical queue model there exist two general formulations, namely, (a) the exit

flow function approach (e.g., Szeto and Lo (2004)), which is similar to the exposed

exit flow function approach, but considers the storage capacity in the exit flow func-

tion to capture the effects of physical queues; and (b) the combined approach (e.g.,

Rubio-Ardanaz et al. (2001)), which divides a link into a running segment (based

on the travel time function) and a queuing segment (based on an exit flow function,

which considers the downstream storage capacity), combining flow conservation and

propagation conditions.

Table 6.1 shows a comparative study of the solution properties of the point and physical

queue model, according to Szeto and Lo (2005, 2006).

Finally, we will give a brief explanation of one point-queue model, namely, the one

proposed by Huang and Lam (2002).

A point queue model: Huang and Lam (2002)

Huang and Lam (2002) propose a network loading model with discrete time that follows

the FIFO rule at intersections. The model does not consider the physical queue length

effects (or spillback effects) on link capacities. It is assumed that the time needed to pass

through a capacity-constrained bottleneck can be modeled as a deterministic queueing

process and, then, the link queue would develop linearly when the inflow rate exceeds

capacity.

Let us consider that the time period T of interest is discretized to a finite set of time

intervals, L = {l : l = 1, . . . , L}. Let δ be the interval length such that δL = T . The value
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Solution properties Point-queue problems Physical-queue problems

Causality

May or may not satisfy causality,

depending on the choice of travel

time or exit flow functions.

Obey causality

Link FIFO

May or may not satisfy Link

FIFO, depending on the choice

of travel time or exit flow func-

tions.

May or may not satisfy Link

FIFO, depending on whether ad-

dition variables are introduced to

capture Link FIFO.

Route FIFO Satisfy Route FIFO if they satisfy Link FIFO.

OD FIFO
Satisfy this property under the DUO condition and certain as-

sumptions, but not satisfy under the Stochastic DUO conditions.

Continuity w.r.t. route

flows

Continuous under mild assump-

tions.
Possibly discontinuous.

Monotonicity w.r.t.

route flows
Usually non-monotonic.

Differentiability w.r.t.

route flows

Differentiable under differen-

tiable link travel time functions

and non-differentiable under

continuous exit flow functions.

Possibly non-differentiable.

Continuity of OD

travel time w.r.t.

demands

Continuous under mild assump-

tions
Possibly discontinuous.

Solution Existence Must exist. May not exist.

Solution Uniqueness Non-unique in terms of route flows and link flows.

Table 6.1: Comparison of the properties between Point-queue and Physical-queue dy-

namic models.

of δ is chosen to be small enough so that the proposed discrete-time model is close to its

continuous-time counterpart.

Next, the equations used in the model to solve the network loading problem are ex-

plained.

Let Uij(l) be the cumulative inflow of link `ij up to interval l. Assuming constant flow

rates during each interval, we have

Uij(l) = Uij(l − 1) + δuij(l), `ij ∈ A, l ∈ L, (6.16)

where uij(l) is the inflow rate on link `ij during interval l.

It is also supposed that the departure rates are constant during each interval and,

hence,

Vij(l + tij(l)) = Vij(l − 1 + tij(l − 1)) + δ [l + tij(l)− (l − 1 + tij(l − 1))] vij(l + tij(l)),

`ij ∈ A, l ∈ L,
(6.17)
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where vij(l) denotes the departure rate from link `ij during interval l, Vij(l) denotes

the cumulative departures from link `ij up to interval time l, and tij(l) is the travel

time on link `ij for users entering this link at interval l. Equation (6.17) represents that

the users that enter the link at interval l − 1 leave that link before the end of interval

l− 1 + tij(l− 1). Moreover, the flows entering at next interval, l, will leave the link during

[l − 1 + tij(l − 1), l + tij(l)] by the constant departure rate vij(l + tij(l)).

Under the FIFO rule, a vehicle must leave link `ij in the same order as its order of

arrival at the link `ij . So, Uij(l) = Vij(l+ tij(l)). This condition, together with (6.16) and

(6.17), leads to:

uij(l) = vij(l + tij(l)) [1 + tij(l)− tij(l − 1)] . (6.18)

It is further assumed that at the end of each link there is a bottleneck with the

maximum exit rate, sij , `ij ∈ A. Then, the travel time of traversing link `ij for users

entering at interval l can be computed as

tij(l) = t0ij +
qij(l)

δsij
, `ij ∈ A, l ∈ L, (6.19)

where t0ij is the free-flow travel time of link `ij and qij(l) is the queue size experienced by

vehicles entering link `ij at interval l.

By applying (6.19) into (6.18), we have

uij(l) = vij(l + tij(l))

[
1 +

qij(l)− qij(l − 1)

δsij

]
. (6.20)

According to the deterministic queueing theory, the outflow rate on link `ij is evaluated

as follows:

vij(l + tij(l)) =

{
sij if tij(l) > t0ij or uij(l) > sij

uij(l) otherwise.
(6.21)

Combining (6.20) and (6.21) with the non-negativity constraint qij(l) ≥ 0, we get

qij(l) = max{qij(l − 1) + δ(uij(l)− sij), 0}. (6.22)

Finally, equation (6.22) shows that if qij(0) and uij(l) for all l are given6, then the

queues for all l can be obtained recursively. Therefore, the link travel times and the

outflow rates for all l can be determined by (6.19) and (6.20), respectively, solving the

network loading problem.

6uij(l) for the links starting at origin nodes are given and for the remaining links can be computed as

uij(l) = vj′i(l), where it is assumed that link j′i is the link prior to link ij.
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Figure 6.2: Occupancy plots under the physical and point queue cell transmission models.
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Appendix

A Notation

δ time interval length.

κ auxiliary parameter.

`ij link joining nodes i and j.

τij(t) travel time on link `ij at time t.

ω time index.

A set of links.

c cell.

N set of nodes.

i link begin node.

j link end node.

k traffic density.

l time interval.

L last time interval.

L set of time intervals.

nc(t) number of vehicles in cell c at time t.

Nc(t) maximum number of vehicles that can be present in cell c at time t.

q traffic flow.

Qc(t) maximum number of vehicles that can flow into cell c when the clock

advances from t to t+ 1.

qij(l) queue size experienced by vehicles entering link `ij at interval l.

sij link `ij maximum exit rate.

t time index.

T time period.

t0ij free-flow travel time of link `ij .

tij(l) travel time on link `ij for users entering the link at interval l.

uij(t) inflow rate for link `ij at time t.

Uij(t) cumulative inflow rate for link `ij at time t.

v free flow speed.

vij(t) outflow rate for link `ij at time t.

Vij(t) cumulative outflow rate for link `ij at time t.

w backward wave speed.

x space index.

xij(t) number of vehicles on link `ij at time t.

yc(t) inflow of cell c at time t.
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A Percentile Traffic Assignment
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7.1 Introduction

The problem of user interaction in traffic networks where travelers compete for space has

been dealt with in the existing literature for several decades. The most common approach

assumes that users behave in a homogeneous way. However, recently, some heterogeneous

cases have arisen as is the case of the travel time reliability problem, in which different

users perceive the problem from a different perspective. This occurs when travelers are

concerned about reaching the destination on time because of possible consequences in

terms of prestige, money losses, etc., but the perception of these consequences is not the

same for all of them, so that they can be grouped in different classes. It is common to

measure travel time reliability as the probability that a trip can be completed on time (for

a review of traffic assignment models, including traveling time reliability ones, see Chapter

3). Consequently, users reduce the risk of late arrival and decide to start the trip with

117
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sufficient time to guarantee a high probability of success (arrive at the target on time)

according to their classes. However, making this decision is not easy because travel times

are random in nature and its statistical properties are not well known.

In the existing literature there have been some approaches to solve the travel time

reliability problem. Important references on this issue are Lo and Tung (2003), Lo et al.

(2006), Nie and Wu (2009) or Nie (2011). To model the effects of the travelers risk averse

route choice, these models assume that travelers choose routes to minimize the percentile

travel time, i.e. the travel time budget that ensures their preferred probability of on-time

arrival; in doing so, they drive the system to a percentile user equilibrium (PUE), which

can be viewed as an extension of the classic Wardrop equilibrium, where travel times are

replaced by α-percentile travel times, with α values that depend on the user class.

In order to reproduce the stochastic character of flows, some authors, such as Lo et al.

(2006), provide a method in which they assume a probability distribution for the link

travel time and based on the central limit theorem, they obtain route travel times as

normally distributed random variables. Other authors, as Uchida and Iida (1993), assume

link travel times as normally distributed and get normally distributed route travel times

as a consequence. Finally, other authors, as Nie (2011), let the distribution of link travel

times free and obtain route travel times by convolutions.

The problem arises because the distributional assumptions are made at the link level

and then we must proceed to the route level. A good alternative consists of making a

weak distributional assumption at the route level, but considering the fact that the route

mean and variances can be written in terms of link means and variances, even in the case

of dependent link travel times.

In this chapter we present a model in which the route travel times are assumed to belong

to a location-scale family of distributions, which can be considered as a weak assumption,

at least when compared with the assumption of normal random variables. So, we use

neither the central limit theorem nor the assumption of normal random variables. We

note that assuming satisfaction of the central limit theorem implies two inconveniences:

(a) forcing the route travel time to be normally or approximately normally distributed,

and (b) assuming a large number of links in all routes, which does not need to be true in

real cases.

Nie (2011) proposes a gradient projection method to solve the variational formulation

of the percentile UE problem. This implies that gradients, that is, partial derivatives of

route travel time percentiles with respect to route flows need to be calculated. To this

end he assumes that link travel times are independent random variables and suggests to

calculate route travel times by an approximation through recursive convolution, which is

of general application, but time consuming.

Since partial derivatives of link travel times with respect to route flows and percentiles

permute (see Proposition 7 in Chapter 3), Nie (2011) conjectures that this property also

holds for routes, though he states that the validity of this relation is an open question.
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Motivated by this challenge, we have studied this problem and in this chapter we solve

this question in the negative sense by providing a collection of counter examples. All

existing methods dealing with the traffic assignment problem with travel time reliability

considerations are path oriented, that is, they require a path enumeration, a path gener-

ation module or an algorithm to iteratively add routes leading to the smallest travel time

percentiles. In this chapter, we also present a method that, to our knowledge, is the first

that can be used without path enumeration. It must be mentioned that avoiding path

enumeration is very difficult or impossible in some of this kind of problems, due to the

presence of a square root in the formula that provides the path travel time α-percentile in

terms of link variances.

The paper is organized as follows. In Section 7.2, we introduce the open question and

give a solution to it. In Section 7.3, we introduce the PSO problem, which can be stated in

terms of path travel times or link travel times, so that path enumeration can be avoided.

In Section 7.4, we illustrate the proposed method by its application to the Nguyen-Dupuis

and the Ciudad Real networks.

7.2 Open question raised by Nie (2011)

In this section we solve the open question in the negative sense. First, we introduce the

question with some precision and next we solve it.

7.2.1 Statement of the open question

First, for the sake of clarity we introduce the problem using the material in Nie (2011).

Consider a network consisting of a set of nodes N , a set of links A, and a set of OD

pairs OD ⊂ N 2. Each OD pair ks ∈ OD is connected by a set of routes Rks. Let

R = ∪ks∈ODRks denote the set of all routes, and let m = |A|, o = |OD| and n = |R|
denote the cardinalities of A, OD andR, respectively. Let the matrix (∆ = [δijr]) ∈ IRm×n

denote the link-route incidence matrix; here δijr = 1 if link `ij is on route r and δijr = 0

otherwise. Further, travelers with the same on-time arrival reliability α are grouped into

class α ∈ H, where h = |H|. We use column vectors (f = [fα]) ∈ IRn×h, (ξ = [ξα]) ∈ IRn×h

and (w = [wα]) ∈ IRm×h to denote the route flow, the percentile route travel time and the

link flow, respectively, where (fα = [fαr ]) ∈ IRn, (ξα = [ξαr ]) ∈ IRn and (wα = [wαij ]) ∈ IRm

are the corresponding column vectors for class α. Finally, let fαrks and ξαrks denote the

flow and the associated percentile travel time for class α travelers from OD pair ks on

route r, respectively. If all travelers choose routes based on the percentile route travel

time according to their own α, the user equilibrium (UE) conditions imply that any used

route has the identical and minimum percentile route travel time παks, i.e.,

fαrks > 0→ ξαrks = παks; ξαrks ≥ παks, r ∈ R, ks ∈ OD, α ∈ H; f ∈ Ω, (7.1)
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where Ω = {f |∑
r
δijrf

α
rks = wαij , f

α ≥ 0, α ∈ H}.
Let tij = g(wij , qij ,θij) be the `ij link travel time, g(wij , qij ,θij) the link performance

function and tαij = g(wij , q
α
ij ,θij) its α percentile, where θij and qij are deterministic and

random parameters, respectively, and qαij is the α percentile of qij . Then, Nie (2011)

obtains the relation

ταij =
dg(wij , q

α
ij ,θij)

dwij
=

dtαij
dwij

, (7.2)

where ταij is the α percentile of the derivative
∂g(wij , qij ,θij)

∂wij
.

Relation (7.2) expresses that percentile and partial derivatives of link travel time with

respect to link flow operations permute (Proposition 7 in Chapter 3 states and demon-

strates this interesting property). Whether or not this property holds also for routes is

the problem raised by Nie (2011).

7.2.2 Solving the open question

In this section we solve the open question1. In the following lines we assume, the BPR

function in (3.147) and normal and independent link travel time random variables. Let

ξrks be the random travel time on route r ∈ Rks, then we have

ξrks =
∑

`ij

δijrg(wij , qij ,θij) =
∑

`ij

δijrt0ij

[
1 + βij

(
wij
qij

)γ]

=
∑

`ij

δijrt0ij +
∑

`ij

δijr
t0ijβijw

γ
ij

qγij
= Mr +

∑

`ij

αijr
wγij
qγij

, (7.3)

where t0ij is the free travel time on link `ij , and βij and γ are non-negative parameters of

the BPR function, and

Mr =
∑

`ij

δijrt0ij , (7.4)

αijr = δijrt0ijβij . (7.5)

Taking derivatives in (7.3) with respect to route r′ we get

∂ξrks
∂fr′ks

=
∑

`ij

∂ξrks
∂wij

∂wij
∂fr′ks

=
∑

`ij

αijrγw
γ−1
ij

qγij
δijr′ =

∑

`ij

ρijrr′
wγ−1
ij

qγij
, (7.6)

where

ρijrr′ = δijr′αijrγ = δijr′δijrt0ijβijγ. (7.7)

1To demonstrate that the conjecture does not hold, it is sufficient to prove it for any particular case.
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If the random variable χij = 1/qγij is assumed to be normal N(µij , σ
2
ij) and we assume

that the χij variables are independent, we have

ξrks ∼ N


Mr +

∑

`ij

αijrw
γ
ijµij ,

∑

`ij

(αijrw
γ
ijσij)

2


 , (7.8)

∂ξrks
∂fr′ks

∼ N


∑

`ij

ρijrr′w
γ−1
ij µij ,

∑

`ij

(
ρijrr′w

γ−1
ij σij

)2


 . (7.9)

Since the α-percentile xα of a normal random variable N(µ, σ) is xα = µ+σzα, where

zα is the α-percentile of the N(0, 1), the α-percentile ξαrks of ξrks is

ξαrks = Mr +
∑

`ij

αijrw
γ
ijµij + zα

√√√√
∑

`ij

(
αijrw

γ
ijσij

)2
(7.10)

and the α-percentile ψαrr′ks of
∂ξrks
∂fr′ks

is

ψαrr′ks =
∑

`ij

ρijrr′w
γ−1
ij µij + zα

√√√√
∑

`ij

(
ρijrr′w

γ−1
ij σij

)2

=
∑

`ij

αijrγw
γ−1
ij µijδijr′ + zα

√√√√
∑

`ij

(
δijr′αijrγw

γ−1
ij σij

)2
. (7.11)

Finally, the partial derivative of the α-percentile ξαrks in (7.10) with respect to the route

flow fr′ks becomes

∂ξαrks
∂fr′ks

=
∑

`ij

[
∂ξαrks
∂wij

∂wij
∂fr′ks

]

=
∑

`ij



αijrγw

γ−1
ij µijδijr′ + zασ

2
ij

α2
ijrγw

2γ−1
ij δijr′√

∑
`ij

(
αijrw

γ
ijσij

)2




=
∑

`ij


αijrγw

γ−1
ij µijδijr′ + zασ

2
ij

t20ijβ
2
ijγw

2γ−1
ij δijrδijr′√∑

`ij

δijrt20ijβ
2
ijw

2γ
ij σ

2
ij


 . (7.12)

In order ψαrr′ks and
∂ξαrks
∂fαr′ks

to be identical, according to (7.11) and (7.12), the following



122 Chapter 7. A Percentile Traffic Assignment model

functional equation must be satisfied2

∑

`ij

δijrδijr′ν
2
ijw

2γ−1
ij =

√√√√√


∑

`ij

δijrν2
ijw

2γ
ij




∑

`ij

δijr′δijrν
2
ijw

2γ−2
ij


, (7.13)

where νij = t0ijβijσij , which holds only when routes r and r′ have no links in common

(in such a case, the partial derivatives (7.6) and (7.12) are null) or when r ⊆ r′ and route

r has a single link (a very special case). Thus, the two operations: (a) obtain percentiles

and (b) partial derivation of route travel times do not commute in general.

In addition, even though Nie’s algorithm uses only diagonal elements (r = r′), it has

been proved that this algorithm must be modified in general, because it is valid only in

very special cases.

7.3 Proposed PSO model

In this section we will propose a traffic assignment model called the Percentile System

Optimal (PSO). Let ψαks be the mean travel time of all users of OD ks and class α and φr
the path r travel time. Then, we have

ψαks =
∑

r∈ks

fαr
tαks
φr =

∑

r∈ks

fαr
tαks

∑

`ij∈r
tij =

∑

`ij∈r

∑

r∈ks

fαr
tαks
tij

=
∑

`ij∈A

∑

r∈ks

fαr
tαks
δijrtij =

∑

`ij∈A

(∑

r∈ks

fαr
tαks
δijr

)
tij ,

(7.14)

where tij is the `ij link travel time and tαks are the class OD travel demands.

From Equation (7.14) we obtain:

E [ψαks] =
∑

`ij∈A

(∑

r∈ks

fαr
tαks
δijr

)
E[tij ], (7.15)

and

V ar [ψαks] =
∑

`ij∈A

(∑

r∈ks

fαr
tαks
δijr

)2

V ar[tij ], (7.16)

where for the sake of simplicity, we have used the independence assumption.

If now we assume that the ψαks belong to a location-scale3 and infinitely divisible

family H(µ, σ), where µ and σ are the mean and standard deviation parameters, that is,

2Functional equations are dealt with, for example, in Aczél (1966), Castillo and Ruiz (1992) and Castillo

et al. (2005).
3This is equivalent to assume that the total tαksψ

α
ks belong to the same location-scale family.
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the location and scale parameters, respectively4, the ψαks α-percentile ξαks becomes:

ξαks =
1

tαks



∑

`ij∈A

∑

r∈ks
fαr δijrE [tij ] + zα

√√√√√
∑

`ij∈A

(∑

r∈ks
fαr δijr

)2

V ar [tij ]


 , (7.17)

where assuming the BPR function in (3.147) and taking into account that,

E [tij ] = t0ij + t0ijβijx
γ
ijµij (7.18)

V ar [tij ] =
(
t0ijβijx

γ
ijσij

)2
, (7.19)

where xij = wij/qij , leads to

ξαks =
1

tαks



∑

`ij∈A

(
t0ij(1 + βijx

γ
ijµij)

∑

r∈ks
fαr δijr

)
+ zα

√√√√√
∑

`ij∈A

(
t0ijβijx

γ
ijσij

)2
(∑

r∈ks
fαr δijr

)2

 .

(7.20)

Finally, since we aim at a global decision of all users in class α, we propose to minimize

the sum of percentiles ξαks of all users in all classes, that is, the following PSO optimization

problem:

min
x,f

∑

k,s,α



∑

`ij∈A

(
t0ij(1 + βijx

γ
ijµij)

∑

r∈ks
fαr δijr

)
+ zα

√√√√√
∑

`ij∈A

(
t0ijβijx

γ
ijσij

)2
(∑

r∈ks
fαr δijr

)2



(7.21)

subject to:

xij =
∑

r,α

fαr δijr; `ij ∈ A (7.22)

tαks =
∑

r∈ks
fαr ; k, s ∈ OD, α ∈ H (7.23)

fαr ≥ 0; r ∈ R, α ∈ H, (7.24)

which is a path based model and the function (7.21) is not convex.

7.3.1 Avoiding path enumeration

As indicated in the introduction, avoiding path enumeration is crucial for the methods

to be useful for large or very large networks. In this section we state the above model

without path enumeration.

4If the H(µ, σ) family is reproductive, in the case of independent link travel times this assumption is

equivalent to assuming that the link travel times belong to family H(µij , σ
2
ij). One particular case of these

families is the normal distribution family, but other families have this property too.
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To this end, we realize that making the following change of variables

vαijks =
∑

r∈ks
fαr δijr, (7.25)

where vαijks is the α-class flow through link `ij with origin node k and destination node

s, and rewriting constraints (7.22) and (7.23) in terms of vαijks, we get the following PSO

optimization problem:

Minimize
v

Z =
∑

k,s,α




∑

`ij∈A
vαijks(t0ij + t0ijβijx

γ
ijµij) + zα

√√√√
∑

`ij∈A

(
vαijkst0ijβijx

γ
ijσij

)2





(7.26)

subject to

tαks(δ
∗
ik − δ∗is) =

∑

`ij∈A
vαijks −

∑

`ji∈A
vαjiks; i ∈ N ; k, s ∈ OD; α ∈ H (7.27)

xij =
∑

k,s,α

vαijks; `ij ∈ A (7.28)

vαijks ≥ 0; `ij ∈ A; k, s ∈ OD; α ∈ H, (7.29)

where δ∗ij are the Kronecker delta.

Since (7.26) is non-convex, solvers can provide undesirable local minima instead of

global minima. To avoid this problem, we can add the extra constraint

Z ≤ zbound, (7.30)

and solve the optimization problem (7.26)–(7.30) several times, starting with zbound =∞
and making zbound = Z∗− ε with ε a small number after each iteration, until unfeasibility

is obtained. Then, the last feasible solution obtained can be taken as the global optimum.

Our experience with this method reveals that a very few iterations (2 or 3) are normally

required.

Note that the problem (7.26)-(7.29) avoids path enumeration and since (7.14) can be

written as

ψαks =
1

tαks

∑

`ij

(∑

r∈ks
fαr δijr

)
tij =

1

tαks

∑

`ij

vαijkstij , (7.31)

the objective function (7.26) using (7.18) and (7.19) could have been obtained directly

avoiding path enumeration too.

We note that the formulation without path enumeration requires large number of

constraints. The number of constraints is roughly in the order of |N |× |OD|× |H|, where

|N | is the number of nodes, |OD| is the number of OD pairs, and |H| is the number of

user classes. For a real-sized network in the current practice, the number of constraints

can be very large. Thus, the proposed formulation would work fine for small to medium

size problems (with hundreds of nodes and OD pairs). For large instances, other ad hoc

algorithms such as those proposed by Nie (2011) would be more promising.
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7.4 Examples of applications

The proposed method is illustrated by its application to some networks.

7.4.1 The Nguyen-Dupuis network

In order to understand the behavior of the proposed methods, consider the Nguyen-Dupuis

network topology, with 13 nodes and 38 bidirectional links as shown in Figure 3.3. A total

of 11 OD pairs are considered, whose origins and destination nodes are provided in Table

7.1 together with the corresponding total OD flows.

OD O D OD flow OD O D OD flow

1 1 2 210 7 3 1 430

2 1 3 430 8 3 4 110

3 1 8 320 9 3 12 40

4 2 1 210 10 4 2 320

5 2 4 320 11 4 3 110

6 2 12 50

Table 7.1: OD pairs and corresponding flows used in the Nguyen-Dupuis example.

The link parameters used in this example are those shown in Table 7.2 and the con-

sidered 43 routes for solving the Problem (7.21)-(7.24) are shown in Table 7.3.

Four classes of users are considered with on-time arrival probabilities α = 0.1, 0.5, 0.7

and 0.9, respectively. We use identical flow share for all classes, that is, 0.25, 0.25, 0.25

and 0.25.

The optimization problems with path enumeration (7.21)-(7.24) and without path

enumeration (7.26)-(7.29) have been implemented in GAMS using the IPOPT solver. The

cpu times required were 0.19 sec and 0.86 sec, respectively, on a HP Z200 Workstation,

Intel Core i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB).

Table 7.4 shows the percentile PSO solutions for the Nguyen-Dupuis example. It

includes the ξαks OD travel time percentiles and the corresponding OD flows. It also

includes the resulting path travel time percentiles and flows. We can see that different α

users utilize the same or different routes of the same OD, and that some classes can use

several routes and ignore other of the same OD. Note that when only one path is used in

one OD, the OD and the path α travel time percentiles coincide.

It is interesting to see that paths 16, 20, 38, 41 and 43 are not used by any user. It is

also important to realize that the model (7.26)-(7.29) without path enumeration permits

identifying the used paths by any class user.

Figure 7.1 shows the resulting paths used by different classes corresponding to a se-

lected set of ODs (2, 4, 5 and 7). Each group of 4 graphs (one per class) corresponds to
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Link i j t0ij qij βij γij

1 1 5 7.00 700 1.00 2

2 1 12 9.00 560 1.00 2

3 2 8 9.00 700 1.00 2

4 2 11 9.00 280 1.00 2

5 3 11 8.00 560 1.00 2

6 3 13 11.00 560 1.00 2

7 4 5 9.00 560 1.00 2

8 4 9 12.00 280 1.00 2

9 5 1 7.00 700 1.00 2

10 5 4 9.00 560 1.00 2

11 5 6 3.00 420 1.00 2

12 5 9 9.00 420 1.00 2

13 6 5 3.00 420 1.00 2

14 6 7 5.00 700 1.00 2

15 6 10 5.00 280 1.00 2

16 6 12 7.00 140 1.00 2

17 7 6 5.00 700 1.00 2

18 7 8 5.00 700 1.00 2

19 7 11 9.00 700 1.00 2

Link i j t0ij qij βij γij

20 8 2 9.00 700 1.00 2

21 8 7 5.00 700 1.00 2

22 8 12 14.00 560 1.00 2

23 9 4 12.00 280 1.00 2

24 9 5 9.00 420 1.00 2

25 9 10 10.00 280 1.00 2

26 9 13 9.00 280 1.00 2

27 10 6 5.00 280 1.00 2

28 10 9 10.00 280 1.00 2

29 10 11 6.00 700 1.00 2

30 11 2 9.00 280 1.00 2

31 11 3 8.00 560 1.00 2

32 11 7 9.00 700 1.00 2

33 11 10 6.00 700 1.00 2

34 12 1 9.00 560 1.00 2

35 12 6 7.00 140 1.00 2

36 12 8 14.00 560 1.00 2

37 13 3 11.00 560 1.00 2

38 13 9 9.00 280 1.00 2

Table 7.2: Parameters of the Nguyen-Dupuis network.

one OD, which have been sorted from top to bottom and left to right with increasing α

values (0.1, 0.5, 0.7, 0.9).

These figures illustrate that users with smaller α values are more selective in using

paths (they use one or very few paths) while users with large α values have no problem

in using several path alternatives.

Finally, we indicate that, as expected, the two problems: with (7.21)-(7.24) and with-

out path enumeration (7.26)-(7.29) lead to exactly the same solution.

7.4.2 The Ciudad Real network

To test the proposed models in a real network, we have used the Ciudad Real network

used in Castillo et al. (2008g) and shown in Figure 7.2, which consists of 218 links, 105

nodes, 380 OD pairs, and 590 routes. The results are very similar to those described for

the Nguyen-Dupuis network, but we cannot show all of them because of its size and the

lack of space. The cpu times required to reach the solution with four α classes were 19 sec

and 58 min, for the problems (7.21)-(7.24) and (7.26)-(7.29), respectively on a HP Z200

Workstation, Intel Core i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB).
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Route (r) Links (`)

OD pair 1

1 1 11 14 18 20

2 2 35 14 18 20

3 2 36 20

4 1 12 25 29 30

5 1 11 15 29 30

6 2 35 15 29 30

OD pair 2

7 1 11 14 19 31

8 1 11 15 29 31

9 1 12 25 29 31

10 1 12 26 37

11 2 35 14 19 31

12 2 35 15 29 31

OD pair 3

13 1 11 14 18

14 2 35 14 18

15 2 36

OD pair 4

16 3 21 17 13 9

17 3 22 34

OD pair 5

18 3 21 17 13 10

19 4 33 28 23

OD pair 6

20 3 21 17 16

21 3 22

Route (r) Links (`)

OD pair 7

22 5 32 17 13 9

23 5 32 17 16 34

24 5 33 27 13 9

25 5 33 27 16 34

26 5 33 28 24 9

27 6 38 24 9

28 5 32 18 22 34

OD pair 8

29 5 33 28 23

30 6 38 23

31 5 32 17 13 10

OD pair 9

32 5 32 17 16

33 5 33 27 16

34 5 32 18 22

OD pair 10

35 7 11 14 18 20

36 8 25 29 30

37 7 11 15 29 30

38 7 12 25 29 30

OD pair 11

39 8 25 29 31

40 8 26 37

41 7 12 25 29 31

42 7 11 15 29 31

43 7 12 26 37

Table 7.3: Set of OD-pairs and routes considered in the Nguyen-Dupuis network.

Table 7.5 shows some of the percentile PSO solutions for the Ciudad Real example.

The results are very similar to those obtained in Table 7.4 for the Nguyen-Dupuis example.

Figure 7.3 shows the resulting paths used by different classes corresponding to a se-

lected set of ODs (46, 192, 193 and 206). Each group of 4 graphs (one per class) corresponds

to one OD, which have been sorted from top to bottom and left to right. This figure al-

lows us to understand better the results in Table 7.5 and how users with smaller α values

are more selective in choosing routes than users with larger α values. Path origins and

destinations have been indicated by green and blue circles, respectively, and used paths

are indicated by thick red segments. The remaining links and nodes are shown by thin
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Figure 7.1: Routes used by different α classes corresponding to ODs 2, 4, 5 and 7 in the

Nguyen-Dupuis example obtained without path enumeration.

segments and small circles, respectively.

It is interesting to see that most paths are not used by any user. This is due to the

fact that most streets are one-way and changing the shortest path implies increasing the

path length. It is also important to realize that the model (7.26)-(7.29) without path

enumeration permits identifying the few paths used by any class user.
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Figure 7.2: Ciudad Real traffic network used in the Example of application.



130 Chapter 7. A Percentile Traffic Assignment model

O-D Route (α =, 0.10) (α = 0.50) (α = 0.70) (α = 0.90)
Flow Percentile Flow Percentile Flow Percentile Flow Percentile

1 -2 2 - - - - 14.34 45.85 13.00 46.10
3 - - - - - - 0.03 48.70
5 - - - - 7.27 46.52 5.55 46.76
7 - - - - 10.41 53.52 14.10 53.70
11 - - - - - - 1.18 50.13
12 - - - - - - 0.03 52.73
14 - - - - - - 1.05 50.79
17 52.50 45.25 52.50 46.71 20.48 48.17 17.55 48.46

OD 52.50 45.25 52.50 46.71 52.50 47.95 52.50 48.67
1 -3 4 - - 39.82 46.48 19.22 47.73 17.84 47.97

6 107.50 43.26 4.16 44.52 14.07 45.79 13.04 46.04
8 - - - - - - 2.32 52.97
9 - - 63.52 49.06 42.17 50.26 40.35 50.50
13 - - - - 18.41 51.78 19.85 52.00
15 - - - - 13.63 49.84 14.09 50.07

OD 107.50 43.26 107.50 47.93 107.50 49.01 107.50 49.31
2 -1 20 52.50 39.72 52.50 40.55 52.50 41.39 52.50 41.56
OD 52.50 39.71 52.50 40.55 52.50 41.39 52.50 41.56
2 -4 18 80.00 41.56 60.26 42.54 25.14 43.53 23.45 43.73

21 - - - - 8.96 46.03 7.50 46.20
22 - - - - 6.40 44.13 4.04 44.30
23 - - 19.74 46.30 39.51 47.20 33.88 47.37
24 - - - - - - 11.13 51.23

OD 80.00 41.55 80.00 43.47 80.00 45.39 80.00 46.24
3 -1 25 - - 50.07 43.85 30.95 44.83 26.91 45.02

28 - - - - 10.83 48.70 16.14 48.85
29 107.50 40.88 11.36 41.90 12.44 42.92 11.32 43.12
32 - - - - 7.12 46.80 8.84 46.96
36 - - 46.07 46.36 46.17 47.37 44.30 47.56

OD 107.50 40.88 107.50 44.86 107.50 45.92 107.50 46.23
3 -4 26 - - - - 8.92 46.52 8.55 46.71

30 - - - - 3.94 44.61 3.39 44.81
33 - - - - 1.27 47.69 2.36 47.88
34 - - - - - - 0.91 51.80
35 27.50 42.61 27.50 43.82 13.37 45.03 10.98 45.27
37 - - - - - - 1.31 49.26

OD 27.50 42.61 27.50 43.82 27.50 45.25 27.50 45.89
3 -12 27 10.00 36.33 5.83 37.06 6.81 37.80 6.81 37.94

31 - - 4.17 35.11 3.19 35.91 3.19 36.06
OD 10.00 34.32 10.00 36.57 10.00 37.16 10.00 37.30
4 -2 38 80.00 43.41 68.09 44.56 35.72 45.71 33.79 45.93

41 - - - - - - 5.82 53.45
44 - - 11.91 48.26 44.28 49.30 40.39 49.50

OD 80.00 43.41 80.00 45.11 80.00 47.38 80.00 47.89
4 -3 39 - - - - 6.60 47.58 6.28 47.80

40 - - - - 3.67 45.64 2.73 45.87
42 - - - - - - 1.95 52.74
43 - - - - - - 2.29 50.32
45 - - - - 4.61 48.57 5.32 48.77
46 27.50 43.41 27.50 44.71 12.62 46.01 8.92 46.27

OD 27.50 43.41 27.50 44.71 27.50 46.40 27.50 47.39

Table 7.4: Percentile PSO solution for the Nguyen-Dupuis example.
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O-D Route (α =, 0.10) (α = 0.50) (α = 0.70) (α = 0.90)
Flow Percentile Flow Percentile Flow Percentile Flow Percentile

3 -9 79 11.25 6.24 4.91 6.28 4.30 6.33 4.30 6.34
82 - - - - 1.77 5.92 1.52 5.93
85 - - - - 1.01 6.00 1.26 6.01
89 - - 6.34 5.79 4.17 5.83 4.17 5.84

OD 46 11.25 6.23 11.25 6.00 11.25 6.03 11.25 6.04
4 -14 95 - - - - - - 0.14 4.29

96 - - - - - - 0.14 4.45
97 - - - - 1.08 4.46 2.74 4.47
10 7.50 3.85 7.50 3.88 3.64 3.91 2.35 3.92
10 - - - - 2.78 4.08 2.13 4.08

OD 70 7.50 3.85 7.50 3.88 7.50 4.05 7.50 4.18
10-3 25 - - - - 0.38 7.17 0.49 7.18

26 - - - - 0.78 6.93 0.89 6.94
26 - - - - 0.54 7.08 0.66 7.10
27 3.75 6.72 3.75 6.78 2.05 6.84 1.72 6.86

OD 174 3.75 6.72 3.75 6.78 3.75 6.92 3.75 6.95
11-2 27 - - - - 0.01 2.95 0.10 2.95

27 - - - - 0.02 2.90 0.17 2.91
27 - - 0.93 2.80 0.91 2.82 0.81 2.83
29 - - - - 0.08 2.90 0.17 2.91
29 2.00 2.81 1.07 2.83 0.98 2.86 0.75 2.86

OD 192 2.00 2.81 2.00 2.81 2.00 2.84 2.00 2.85
11-3 28 - - - - 0.37 6.94 0.40 6.95

28 2.00 6.62 0.93 6.66 0.57 6.70 0.54 6.71
29 - - - - 0.40 6.98 0.44 6.99
30 - - 1.07 6.70 0.66 6.74 0.62 6.75

OD 193 2.00 6.60 2.00 6.67 2.00 6.79 2.00 6.81
11-8 27 - - - - 1.78 4.09 2.20 4.09

27 - - - - 1.07 4.00 1.08 4.01
27 - - - - 1.88 4.01 2.23 4.02
28 - - - - 2.50 4.04 2.31 4.05
29 11.25 3.91 7.07 3.93 1.30 3.96 1.10 3.96
30 - - 4.18 3.94 2.72 3.97 2.34 3.97

OD 198 11.25 3.92 11.25 3.94 11.25 4.01 11.25 4.02
11-17 28 - - - - 0.22 5.33 0.66 5.34

28 - - 3.43 5.26 4.48 5.30 4.05 5.31
29 - - - - 0.23 5.37 0.67 5.38
30 10.00 5.26 6.57 5.30 5.07 5.34 4.62 5.35

OD 206 10.00 5.26 10.00 5.29 10.00 5.32 10.00 5.33
11-20 28 - - - - 0.61 6.34 0.66 6.35

28 - - 1.44 6.06 0.92 6.10 0.87 6.11
29 - - - - 0.66 6.38 0.72 6.38
30 3.25 6.06 1.81 6.10 1.06 6.14 1.00 6.15

OD 209 3.25 6.05 3.25 6.07 3.25 6.20 3.25 6.21

Table 7.5: Percentile PSO solution for the Ciudad Real example.
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OD 46 class 1 OD 46 class 2

OD 46 class 3 OD 46 class 4

OD 192 class 1 OD 192 class 2

OD 192 class 3 OD 192 class 4

OD 193 class 1 OD 193 class 2

OD 193 class 3 OD 193 class 4

OD 206 class 1 OD 206 class 2

OD 206 class 3 OD 206 class 4

Figure 7.3: Routes used by different α classes corresponding to the ODs 46, 192, 193 and

206 in the Ciudad Real example obtained without path enumeration. Path origins and

destinations have been indicated by green and blue circles, respectively, and used paths

are indicated by thick red segments. The remaining links and nodes are shown by thin

segments and small circles, respectively.
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Appendix

A Notation

α class.

αijr auxiliary parameter associated with route r and link `ij .

βij BPR parameter associated with link `ij .

γ BPR exponent parameter.

∆ link-route incidence matrix.

δ∗ij Kronecker delta.

δijr element of the link-route incidence matrix.

ε small scalar.

θij deterministic parameters.

µ mean of the normal distribution.

µij mean of the Normal distribution associated with link `ij .

νij auxiliary parameter associated with link `ij .

ξ percentile route travel time vector.

ξα percentile route travel time vector associated with class α.

ξαks α-percentile of ψαks.

ξαr percentile route travel time of route r associated with class α.

ξrks random travel time on route r of OD pair ks.

ξαrks percentile route travel time of route r of OD pair ks associated with class α.

παks minimum travel time of class α and OD ks.

σ standard deviation of the normal distribution.

σij standard deviation of the Normal distribution associated with link `ij .

ταij α percentile of the partial derivative of tij with respect to wij .

φr path r travel time.

χij inverse of the link capacity random variable.

ψαks mean travel time of all users of OD ks and class α.

ψαrr′ks α-percentile of
∂ξrks
∂fr′ks

.

Ω set of feasible path flows.

A set of links.

f route flow vector.

f vector of route flows fαr .

fα route flow vector associated with class α.

fαr r route flow of class α.

fαrks flow through route r of OD pair ks associated with class α.

g(·) link performance function.

h cardinality of set H.
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H set of all α classes.

i link begin node.

j link end node.

k origin node.

`ij link joining nodes i and j.

m cardinality of set A.

Mr auxiliary parameter associated with route r.

n cardinality of set R.

N set of nodes.

o cardinality of set OD.

OD set of all OD-pairs.

qij random link capacity.

qαij α percentile of qij .

r route.

Rks set of routes joining OD pair ks.

s destination node.

t0ij link free travel time associated with link `ij .

tij `ij link travel time.

tαij travel time α percentile on link `ij .

tαks α-class OD flow.

v vector of disaggregated class link flows vαijks.

vαijks α-class flow through link i, j with origin node k and destination node s.

w link flow vector.

wα link flow vector associated with class α.

wαij flow through link `ij associated with class α.

xα α-percentile of a normal random variable N(µ, σ).

xij congestion ratio in link `ij .

Z objective function.

zα α-percentile of the standard normal distribution.

zbound bound for the objective function.
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8.1 Introduction

The problem of traffic assignment in which different travelers compete for space in a net-

work has been treated in the existing literature for a long time (for a review of traffic

assignment models see Chapter 3). Normally, models assume homogeneous users in the

sense that all of them behave in the same form or assume a mean behavior (speed, travel

time, etc.), but in reality we face a different situation because users are essentially hetero-

geneous. However, traffic problems with heterogeneous users are not very frequent in the

existing literature.

One of the problems in which heterogeneous users have been considered is in the

135
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travel time reliability problem dealt with in Section 3.4, in which different users perceive

the traffic from different perspectives. This occurs when travelers are concerned about

punctual arrivals, so that we can classify users in different classes depending on this

perception (see Asakura and Kashiwadani (1991), Lo and Tung (2003) or Nie and Wu

(2009)). Consequently, users in different classes choose different routes based on different

criteria and we face heterogeneity.

Another interesting case that we study in this chapter arises when we consider over-

taking and include classes of users who are prone to overtake, classes of users who avoid

overtaking and intermediate classes. It is clear that the possibility of overtaking depends

on the existing degree of congestion in the corresponding links (those in the user path),

so that users choose route accordingly in order to reduce travel time variability and re-

liability. Overtaking is related to travel time reliability because if some undesired delays

occur, overtaking offers a possibility to recover partially or totally these delays.

A model without consideration of overtaking is able to provide mean travel times but

is not realistic. Consequently, incorporating the possibility of overtaking among users is

needed if a more precise knowledge of real traffic is pursued. All these considerations have

been the main motivation for this study.

The connection between travel time and flow on a road depends on the possibilities

of overtaking (see Svensson (1978) and Buric and Janovsky (2007)). Overtaking can only

take place when there is a sufficiently large gap in the oncoming traffic and when the

sight distance is large enough. However, under high degrees of congestion overtaking is

impossible. All these facts are considered by users, who choose routes that best satisfy their

expectations (in our present case overtaking possibilities). Thus, mathematical models

must reflect this type of user behavior. In particular, impossibility of overtaking under

congestion must be considered in travel time functions of class users. This has been done

in the models proposed in this paper.

This chapter is devoted to the overtaking problem at the macro level. Different class

of users are considered and overtaking is permitted among users of different classes, but

it is assumed forbidden for the same class users, who must respect the FIFO1 rule. The

main original contributions are:

1. The overtaking problem is dealt with at the macro level for static assignment.

2. A new family of link travel time functions specially designed for overtaking is pre-

sented based on the BPR functions. This family has a sufficient number of parame-

ters to reproduce a wide range of cases.

3. It is shown that due to the asymmetric character of the problem, a Beckman state-

ment of the Wardrop approach is not possible for the overtaking problem.

1The FIFO rule establishes that the first user entering a link must be also the first exiting that link

and, hence, overtaking is not possible.
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4. Two variational approaches are formulated to solve the overtaking problem with and

without path enumeration, and alternative problems are provided.

5. A discussion of existence and uniqueness of solutions is included.

6. Some examples of applications are given. They include both homogeneous and het-

erogeneous overtaking classes of users.

The chapter is organized as follows. In Section 8.2, we introduce a new travel time

function to consider the particular case of overtaking. In Section 8.3 we introduce two

approaches to solve the overtaking problem with and without path enumeration and sug-

gest alternative equivalent problems to solve them. Finally, in Section 8.4 we illustrate

the proposed methods and methodology by its application to the Nguyen-Dupuis network

for homogeneous and heterogeneous users, and to the Ciudad Real network.

8.2 The proposed link travel time function

An adequate definition of link travel time functions is crucial in the overtaking problem.

As already seen, the effect of road capacity on travel times is specified by means of the

link travel time functions t(v/q), which express the travel time on a link as a function of

the link traffic volume v and its capacity q.

Many different types of volume-delay functions have been proposed and used in practice

in the past. One of the most common link travel time formulas is the Bureau of Public

Roads (BPR) but other examples are the ones defined by Spiess (1990), Mosher (1963)

or Davidson (1966) (see Appendix A in Chapter 3 for a review on these and other link

performance functions).

Most existing traffic assignment models consider that there is no overtaking, that is,

that the FIFO rule holds. In this paper we assume that we have different classes of users

who have different mean velocities and thus, we permit vehicle overtaking. Since conges-

tion affects overtaking, this effect must be considered in the link travel time functions of

the different users.

Overtaking is possible and frequent under free flow conditions but becomes difficult or

impossible under high congestion. However, the associated difficulties depend on the type

of vehicle. For example, motorcycles have less overtaking difficulties than cars, and cars

less than trucks. All these features must be included in the mathematical models. From

an overtaking point of view, we can consider different classes for bicycles, motorcycles, cars

and trucks, but we can also consider different classes for each of these types of vehicles

due to the fact that not all users in the same class behave in the same manner. However,

congestion usually produces no differences among these classes.

In this section we propose a travel time function family that satisfies an important

condition from the overtaking point of view. This property consists of producing different
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travel times for the different classes for mild congestion, but the same asymptotic behavior

when a high congestion is present. To reproduce this situation, we propose the following

link travel time function formula for the α class users:

hα(x) = t(x; t0, β0, γ0)F (x) + t(x; tα, βα, γα)(1− F (x)), (8.1)

where t(x; tα, βα, γα) is a BPR link travel time function specific for each α class that

reproduces the class user behavior under mild congestion, t(x; t0, β0, γ0) is a common

link travel time function for all classes that represents the common asymptotic behav-

ior under high congestion of all users, F (x) is a cumulative distribution function (cdf),

t0, tα, β0, βα, γ0 > 1, γα > 1 are constants, and we make the following assumptions

t0 > tα > 0; β0 ≥ βα > 0; γ0 ≥ γα > 0, (8.2)

that guarantees that the function

g(x) = t(x; t0, β0, γ0)− t(x; tα, βα, γα) (8.3)

is nonnegative, strictly increasing and convex, that is,

g(x) > 0, g′(x) > 0; and g′′(x) > 0, x > 0, (8.4)

three interesting properties to be used later.

Due to the fact that in this case we have different types of users and all of them

contribute to congestion, the congestion ratio x must take this into account. So, we

assume that there are some weights wα that allow calculating congestion. In other words,

we evaluate the congestion level x as follows:

x =

∑
α
wαvα

q
, (8.5)

where vα is the traffic volume of class α and q is the link capacity.

For example, we can assume that a car, the reference vehicle with w1 = 1, is equivalent

to w2 = 1.25 trucks, to w3 = 0.7 motorbikes or to w4 = 2 lorries, in terms of congestion2.

Since the BPR functions are particular cases of (8.1), they are generally recognized as

physically valid and the cdf F (x) offers a high degree of freedom, we consider that the

newly proposed family of link travel time functions are physically valid too. However,

since we have no real data or literature based support for this statement, an experimental

check in the future would be necessary. Just as BPR functions have been validated and

used in practice for decades, we have reasons to believe that this set of newly proposed link

time functions can be validated and calibrated. If overtaking is not an important feature

2We take the car as the reference vehicle because the BPR function has been designated and calibrated

mostly for cars.



8.2. The proposed link travel time function 139
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Figure 8.1: Illustration of how the proposed link travel time function is obtained from two

BPR functions BPR0 and BPRα.

for the scenario, the new link travel time functions will fall back nicely into existing BPR

functions.

It is also convenient to calibrate model (8.1) with the above constraints by select-

ing adequate families of cdfs and fitting the corresponding parameters by running the

corresponding experiments. However, this is not the aim of this study.

Figure 8.1 illustrates how the proposed link travel time function is obtained from two

BPR functions BPR0 (t(x; t0, β0, γ0)) and BPRα (t(x; tα, βα, γα)).

The rationale behind (8.1) is that for each congestion ratio x = v/q, the travel time

is a linear convex combination of two travel time functions but the weights change with

x going from 0 to 1 as x increases. Using the same t0, β0 and γ0 values and different

tα, βα and γα parameters, we obtain travel time functions that practically coincide for

high congestion levels (in fact they converge to the BPR function t(x; t0, β0, γ0)).

One interesting particular case is obtained when F (x) corresponds to the normal dis-

tribution, that is,

hα(x) = t(x; t0, β0, γ0)Φ

(
x− µα
σα

)
+ t(x; tα, βα, γα)

(
1− Φ

(
x− µα
σα

))
. (8.6)

The rationale behind the use of the normal distribution is that it has an infinite range

and it is smooth, so that the linear combinations in (8.6) become smooth if the link travel

time functions are smooth too. The normal distribution has some advantages and some
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Figure 3: Some illustrative examples of the proposed link travel time function based on BPR functions.

These conditions are satisfied by the Spiess conical volume-delay functions, and the BPR func-
tions satisfy conditions 1 to 5.

3.2.1 Properties of the proposed link travel time functions

Next, we provide conditions under which our proposed functions in (9) satisfy these requirements
or are close to it.

1. hα(x);x > 0 is strictly increasing. Since the two components t(x; t0, β0, γ0) and t(x; tα, βα, γα)
are strictly increasing, then any linear convex combination of increasing functions is increasing:

h′α(x) = t′(x; θ0)F (x) + t(x; θ0)F ′(x) + t′(x; θα)(1− F (x))− t(x; θα)F ′(x),

= (t′(x; θ0)− t′(x; θα))F (x) + (t(x; θ0)− t(x; θα))F ′(x) + t′(x; θα)

= g′(x)F (x) + g(x)F ′(x) + t′(x; θα), (14)

where for the sake of notation simplicity we have denoted θα = (tα, βα, γα), from which we
conclude that h′α(x) > 0, because according to (12) all its terms and factors are non-negative.

2. hα(0) = c and hα(1) = 2c. This condition has no meaning in our case. However, we have

hα(0) = t0F (0) + tα(1− F (0)) (15)

hα(1) = t0(1 + β0)F (1) + tα(1 + βα)(1− F (1)), (16)

that for F (0) ≈ 0 and F (1) ≈ 1 and β0 = 1 leads to

hα(0) ≈ tα; hα(1) ≈ 2t0. (17)

7

Figure 8.2: Some illustrative examples of the proposed link travel time function based on

BPR functions.

disadvantages. The motivation described earlier suggests that an elegant choice of F (x)

should be such that at free flow h(0) = BPR1(0), i.e. that F (0) = 0. This is not the exact

case for the normal distribution, although values fairly close can be easily obtained as

those in the examples of the following sections. Perhaps a non-negative distribution, such

as the exponential, gamma or the beta distributions, would fit here more naturally. The

same observation could be done for the congested part of the curve, in the sense that all

classes should have the same function when the congestion is larger than a certain value

and not only asymptotically equal.

Figure 8.2 shows some examples of these curves for different parameter values and

t0 = 1; tα = 1, 0.9, 0.8 and 0.7 based on BPR functions. The examples have been obtained

for normal F (x) (Expression (8.6)) functions with mean and standard deviations shown

in the corresponding figures.

The link travel time function models some type of interaction between vehicles that

can be quantified by the cdf F (x) function (8.1) or the cdf Φ(x) in (8.6). This permits

locating the start of the interaction, its level and the behavior in the congestion zone by

playing with the mean and the standard deviation of F (x) or µ and σ in the case of the

normal distribution case.
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Other type of interaction is included in the link travel time function due to congestion,

since we add the link volumes of all class users. A different weight could be given to the

different users, but we have left this for a future study.

8.2.1 Some convenient properties of link travel time functions

According to Spiess (1990) the requirements for a well behaved congestion function are:

1. t(x) must be strictly increasing. This is a necessary condition for the assignment to

converge to a unique solution.

2. t(0) = t0 and t(1) = (1 + β)t0. These conditions are convenient in order to facilitate

a comparison with the BPR functions. The travel time for a congestion ratio x =

v/b = 1 must be (1 + β) times the free travel time t0.

3. t′(x) is strictly increasing. This ensures the more than desirable property of convexity

of the congestion function, because congestion causes not only an increase of the link

travel time but an increase of its derivative too. This is an engineering condition,

which is not required from a mathematical point of view.

4. The evaluation of t(x) should not take much more computing time than the evalua-

tions of the corresponding BPR functions take.

5. t′(x) < Mα, where M is a positive constant. The steepness of the congestion curve

is limited. This limits the travel time functions not to get too high when congestion

ratios x = v/q become much higher than 13. It has no physical sense to have

congestion ratios larger than a given value, say 5, for example. In such a cases, the

traffic becomes blocked.

6. t′(0) > 0. This condition guarantees uniqueness of the link volumes. It also renders

the assignment stable. We note that the BPR does not comply with this condition,

but still the optimization is strictly convex, so the solution is unique.

These conditions are satisfied by the Spiess conical volume-delay functions (Equation

3.148), and the BPR functions (Equation 3.147) satisfy conditions 1 to 4.

8.2.1.1 Properties of the proposed link travel time functions

Next, we provide conditions under which our proposed functions in (8.1) satisfy these

requirements or are close to it. However, we note that some requirements though important

are not relevant to the models proposed.

3The BPR function derivative is not bounded.
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1. hα(x);x > 0 is strictly increasing. Since the two components t(x; t0, β0, γ0) and

t(x; tα, βα, γα) are strictly increasing, then any linear convex combination of increas-

ing functions is increasing:

h′α(x) = t′(x; θ0)F (x) + t(x; θ0)F ′(x) + t′(x; θα)(1− F (x))− t(x; θα)F ′(x),

= (t′(x; θ0)− t′(x; θα))F (x) + (t(x; θ0)− t(x; θα))F ′(x) + t′(x; θα)

= g′(x)F (x) + g(x)F ′(x) + t′(x; θα), (8.7)

where for the sake of notation simplicity we have denoted θα = (tα, βα, γα), from

which we conclude that h′α(x) > 0, because according to (8.4) all its terms and

factors are non-negative.

2. hα(0) = t0 and hα(1) = (1 + β)t0. This condition has no meaning in our case.

However, we have

hα(0) = t0F (0) + tα(1− F (0)) (8.8)

hα(1) = t0(1 + β0)F (1) + tα(1 + βα)(1− F (1)), (8.9)

that for F (0) ≈ 0 and F (1) ≈ 1 and β0 = 1 leads to

hα(0) ≈ tα; hα(1) ≈ 2t0. (8.10)

3. hα(x) is convex, that is, h′′α(x) > 0;x > 0. For the case of normal distributions

(F (x) = Φ((x− µ)/σ)), it is demonstrated in Appendix A that this property holds

for x ≤ xmax if

σ2 ≥ g(xmax)

t′′(xmax; θα)
√

2eπ
.

However, a better bound for σ can be immediately obtained by solving the problem:

Minimize
σ,x

σ (8.11)

subject to

g′′(x)Φ((x− µ)/σ) + 2g′(x)Φ′((x− µ)/σ)

+ g(x)Φ′′((x− µ)/σ) + t′′(x; θα)
≥ 0 (8.12)

x ≤ xmax. (8.13)

If σ∗ is the optimum of this problem, then for any σ > σ∗, hα(x) satisfies convexity.

4. The evaluation of hα(x) should not take more computing time than the evaluations

of the corresponding BPR functions take. In our case we need to evaluate two BPR

functions and the normal cdf.
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5. h′α(x) < Mγ, where M is a positive constant. This property holds for x < xmax,

where xmax is a finite bound of x4.

6. h′α(x) > 0 if x > 0. According to (8.1) we have

h′α(x) = (t′(x; θ0)− t′(x; θα))F (x) + (t(x; θ0)− t(x; θα))F ′(x) + t′(x; θα),

(8.14)

where, according to (8.2) and (8.3), all terms and factors are non-negative and

t′(0; θα) is positive, which guarantees that h′α(x) > 0. However, h′α(0) can be zero.

8.2.2 Estimation of the model parameters from data

Since our proposed travel time function hα(x) for class α is a local convex combination of

two BPR functions, one for low congestion and one for high congestion, we can use this

property in the estimation process. Our proposal consists of:

1. Estimate the parameters tα, βα and γα for small congestion data using only class α

users.

2. Estimate the parameters t0, β0 and γ0 for large congestion data using all classes.

3. Estimate µα and σα using intermediate congestion data of class α users.

To estimate the model parameters it is necessary to have some real data. For that

purpose, the methods proposed in Soriguera et al. (2007), Soriguera et al. (2010) and

Soriguera and Robusté (2011) are very useful tools that permits obtaining travel time

measurements. This important problem of estimating and validating the models requires

a detailed analysis and deserves a whole study (see, for example, Kalaee (2010), Suh and

Kim (1990)).

8.3 The proposed models

In this section we propose two equivalent models for solving the traffic assignment problem,

that is, determining the used routes and the link flows for the different overtaking class

users.

8.3.1 A model with path enumeration

Consider a network (N ,A), where N is the set of nodes and A is the set of links. Given

the origin-destination OD traffic flows ταks, where k is the origin node, s is the destination

4The bound xmax is easy to choose because it is the maximum congestion ratio with a physical meaning

(say 5, for example).
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node and α is the user class5, we can obtain the link flows associated with the different

OD-pairs and class users solving the following nonlinear complementary problem (NCP):

∑

`ij∈A

[
cαij

(∑

α1,r1

fα1
r1 δijr1

)
δijr

]
−
∑

ks

ραksξrks − µαr = 0; r ∈ R, α ∈ H (8.15)

∑

r

fαr ξrks = ταks; k, s ∈ OD, α ∈ H (8.16)

fαr ≥ 0; r ∈ R, α ∈ H (8.17)

µαr f
α
r = 0; r ∈ R, α ∈ H (8.18)

µαr ≥ 0; r ∈ R, α ∈ H, (8.19)

where `ij is the link joining nodes i and j, cαij(x) ≡ t(x) is the travel time function for

class α associated with a traffic volume x, fαr is the route flow r of class α, δijr is the

link-route incidence matrix (δijr = 1 if link `ij belongs to path r, and 0 otherwise), ραks are

the travel times associated with all used routes r of OD rs, ξrks is the OD-route incidence

matrix, µαr are travel time excesses over the minimum travel times ρks of route r of OD

rs and class α, and ταks is the demand of the OD pair ks and class α. We note that δijr
and ξrks do not need α subindex or superindex because the same set of candidate routes

have been assumed for all classes no matter whether they are used or not for the different

class users.

Since the first term in Equation (8.15) is the route r travel time of a user of class α,

this equation together with equation (8.18) expresses that this travel time is the same for

all users in the same class and all used routes in the same OD if µαr = 0.

Equation (8.16) is the route flow balance considering all classes and Equation (8.17)

forces the non-negativity of route flows for all classes.

Equation (8.18) forces µαr to be null when fαr > 0 and fαr to be null when µαr > 0 for

all routes and classes. Finally, Equation (8.19) forces the non-negativity of route travel

time excesses for all routes and classes, i.e., all route travel times must be larger or equal

that the corresponding OD travel time (ραks).

According to Ran and Boyce (1996), the system (8.15)-(8.19) is equivalent to the

following variational inequality problem (VIP) (see Theorem 11 in Chapter 3):

(f − f∗)T · n(f∗) ≥ 0; ∀f ∈ Ωf , (8.20)

where f is the vector of route flows fαr , n(f∗) =
∑
`ij∈A

[
cαij

(
∑
α1,r1

fα1
r1 δijr1

)
δijr

]
is vector of

route costs, and

Ωf =

{
f

∣∣∣∣∣
∑

r

fαr ξrks = ταks; ∀k, s, α; fαr ≥ 0; ∀r, α
}
. (8.21)

5The set of all OD pairs and α classes are OD and H, respectively.
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The VIP (8.20)-(8.21) for the proposed travel time functions has the following prop-

erties:

1. The function n(f) is continuous and monotone in the fαr variables.

2. The feasible set Ωf is convex, bounded and closed (compact).

Unfortunately, since n(f) is not strictly monotone6, it normally has infinitely many

solutions. However, the solution is unique in the ρ variables (see Lo and Chen (2000) and

theorems 5 and 6 in Chapter 3).

The problem (8.15)-(8.19) cannot be stated as a Beckmann et al. (1956) formulation

of a Wardrop equilibrium problem because the lack of symmetry of the Jacobian of the

function n(f) (see Wardrop (1952), Beckmann et al. (1956) and Nagurney (1999)).

Once the VIP (8.15)-(8.19) is solved, that is, the values of fαr have been obtained, the

OD α-class link flows can be obtained as:

vαijks =
∑

r

fαr δijrξrks `ij ∈ A, k, s ∈ OD, α ∈ H (8.22)

which is a class-specific link flow related to a single OD pair.

Expressions (8.15) and (8.18) show that:

1. Used routes of the same OD and class share the same travel time.

2. Unused routes have associated travel times larger than used routes.

8.3.1.1 Alternative model

The NCP (8.15)-(8.19) has the practical inconvenience of having multiplicity of solutions,

which is a serious inconvenience in practice. Thus, we suggest solving the alternative

problem (this is what we have done in all the examples presented later):

∑

`ij∈A

[
cαij

(∑

α1,r1

fα1
r1 δijr1

)
δijr

]
+ η

∑

r1,α1

fα1
r1 log(fα1

r1 + ε)

−
∑

ks

ραksξrks − µαr
= 0; r ∈ R, α ∈ H (8.23)

∑

r

fαr ξrks = ταks;
k, s ∈ OD,
α ∈ H

(8.24)

fαr ≥ 0; r ∈ R, α ∈ H (8.25)

µαr f
α
r = 0; r ∈ R, α ∈ H (8.26)

µαr ≥ 0; r ∈ R, α ∈ H,(8.27)

6If two routes have no common links, it is possible that a positive change in one of of the route flows

produces no change in the other route travel time.
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where η is a very small, with respect to the fαr values, positive number such that constraint

(8.23) is practically no modified, and ε is a small value to guarantee log fαr to be bounded.

The entropy function
∑
r,α
fαr log(fαr + ε) has been added to constraint (8.23) in order to

get strict monotonicity. Note that because η has been assumed very small the resulting

link flows in Problems (8.15)-(8.19) and (8.23)-(8.27) are identical, that is, the entropy

term does not imply a change in link flows.

The VIP (8.23)-(8.27) has the following properties:

1. The function
∑
`ij∈A

[
cαij

(
∑
α1,r1

fα1
r1 δijr1

)
δijr

]
+ η

∑
r1,α1

fα1
r1 log(fα1

r1 + ε) is continuous

and strictly monotone in the fαr variables.

2. The feasible set defined by (8.24) and (8.25) is convex, bounded and closed (com-

pact).

Thus, according to Theorem 10 in Chapter 3 the VIP (8.23)-(8.27) has a unique solution.

The Problem (8.23)-(8.27) is equivalent to the optimization problem (see Lo and Chen

(2000)):

Minimize
fαr ,µ

α
r ,ρ

α
ks

∑

r,α

µαr f
α
r (8.28)

subject to (8.23)-(8.25) and (8.27), where (8.28) is convex if the route travel time function

is convex and monotone with respect to route flows but not always the constraint (8.27)

is convex (see Lo and Chen (2000)).

Note that the objective function (8.28) replaces the constraint (8.26) and has a zero

optimal value of the objective function if the problem (8.23)-(8.27) has a solution. This

can be seen as a gap function (see Lo and Chen (2000) or the section devoted to their

model in Chapter 3).

Proposition 10 Path flows of two classes that share two or more routes are not unique.

Proof. Suppose that the path flows fα1
r1 , f

α2
r1 , f

α1
r2 , f

α2
r2 corresponding to two different

classes of users α1, α2 and two different paths r1, r2 are not null, in other words, that

classes α1 and α2 share paths r1 and r2.

In that case, path flows fα1
r1 , f

α2
r1 , f

α1
r2 , f

α2
r2 are not unique as it is possible to find new

path flows f ′α1
r1 , f

′α2
r1 , f

′α1
r2 , f

′α2
r2 that satisfy constraints (8.23)-(8.25) and (8.27) and lead

to the same value of the objective function (8.28). Those new path flows must be of the

form

f ′
α1
r1 = fα1

r1 + ε, f ′
α1
r2 = fα1

r2 − ε, f ′
α2
r1 = fα1

r2 − ε, f ′
α2
r2 = fα2

r2 + ε,

where |ε| < min(fα1
r1 , f

α2
r1 , f

α1
r2 , f

α2
r2 ).
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8.3.2 A model without path enumeration

Since path enumeration is complicated in practice, in this section we state a problem for

which the path enumeration is not required. This has evident practical advantages.

The problem (8.15)-(8.19) can be stated without the need of path enumeration as

follows:

0 = cαij


 ∑

k1,s1,α1

vα1
ijk1s1


+λiksα − λjksα − µijksα;

`ij ∈ A; α ∈ H;

k, s ∈ OD
(8.29)

ταks(δ
∗
ik − δ∗is) =

∑

`ij∈A
vαijks −

∑

j|`ji∈A

vαjiks; i ∈ N ; k, s ∈ OD; α ∈ H (8.30)

0 ≤ vαijks ≤ ταks; `ij ∈ A; k, s ∈ OD; α ∈ H (8.31)

µijksαv
α
ijks = 0; `ij ∈ A; k, s ∈ OD; α ∈ H (8.32)

µijksα ≥ 0; `ij ∈ A; k, s ∈ OD; α ∈ H, (8.33)

where vαijks is the α-class flow through link `ij with origin node k and destination node

s, λiksα are dual variables which allow obtaining the link `ij travel time as λjksα − λiksα,

µijksα are the link travel time excesses over the minimum, and δ∗ij are the Kronecker deltas.

We note that though constraint (8.31) is not necessary it is convenient to accelerate the

numerical solution of the problem.

Equations (8.30) represent the flow balance associated with the OD-pair k, s, for any

node, that includes input node k, output node s, and all intermediate nodes i (i different

from nodes k and s). It is a compact form of writing the balance equations for three

different types of nodes: input, output and intermediate nodes.

Note that if the link travel time function cij(·) can be expressed as λiksα − λjksα,

then the route travel times, which are the sums of the corresponding link travel times,

are dependent only on their origins and destinations. Consequently, Equation (8.29) for

µijksα = 0 together with (8.32) imply that all used routes of the same OD share the same

travel time.

According to Ran and Boyce (1996), the system (8.29)-(8.33) is equivalent to the

following variational inequality problem (VIP):

(v − v∗)T ·m(v∗) ≥ 0; ∀v ∈ Ωv, (8.34)

where v is the vector of disaggregated class link flows vαijks, m(v) is the vector of class

link costs mα
ij = cαij

(
∑

k,s,α1

vα1
ijks

)
, and

Ωv =





v

∣∣∣∣∣∣∣

ταks(δik − δis) =
∑

`ij∈A
vαijks −

∑

j∈`ji

vαjiks; i ∈ N ; k, s ∈ OD;

0 ≤ vαijks ≤ ταks; `ij ∈ A; k, s ∈ OD; α ∈ H




. (8.35)
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The VIP (8.34)-(8.35) has the following properties:

1. The function m(v) is continuous and monotone in the vαijks variables.

2. The feasible set Ωv is convex, bounded and closed (compact).

Unfortunately, since the function m(v) is not strictly monotone, it normally has in-

finitely many solutions. However, it has unique solutions for the link flows.

Again, the problem (8.34)-(8.35) cannot be stated as a Beckmann et al. formulation

of a Wardrop equilibrium problem because the lack of symmetry of the Jacobian of the

function m(v).

Equations (8.29)-(8.33) lead to

cαij


 ∑

k1,s1,α1

vα1
ijk1s1


 ≥ λjksα − λiksα ⊥ vαijks ≥ 0; `ij ∈ A; k, s ∈ OD; α ∈ H (8.36)

ταks(δ
∗
ik − δ∗is) =

∑

`ij∈A
vαijks −

∑

j|`ji∈A

vαjiks; i ∈ N ; k, s ∈ OD; α ∈ H (8.37)

From (8.32) and (8.36) for used links we have:

cαij


 ∑

k1,s1,α1

vα1
ijk1s1


 = λjksα − λiksα; `ij ∈ A; α ∈ H (8.38)

and this permits obtaining the minimum cost (travel time) qαij from a node i to a node j

based on the λiksα variables, when the corresponding path exists, as follows:

qαij = λjksα − λiksα; (i, j) ∈ N ×N ; ∀α. (8.39)

The existence of these dual variables is based on the fact that the costs to reach a

destination node s from another origin node k is independent on the chosen used path.

This means that all paths from k to s have the same associated costs for a given α-class.

Once the values of the OD link flows vαijks have been estimated solving the VIP problem

(8.29)-(8.33), we can easily calculate important flow information. Thus, the use of this

statement of the flow problem using the set of variables vαijks has the following important

advantages:

1. It avoids path enumeration.

2. One can easily calculate the flows xαijk, y
α
ijs, w

α
ij , z

α
iks, already defined in Chapter 3.

3. One can identify and/or enumerate the used flow paths very easily assuming that

the used paths do not include directed loops. To enumerate paths of an OD-pair

k, s for α-class users, one can simply build the tree with non-null flow (vαijks = 0)
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branches (links) starting from the origin node k and ending with the destination

node s (see Figures 8.4, 8.6, 8.7 and 8.8, for example, to see how simple is to obtain

all used paths associated with a given OD pair by combining the used links in all

possible forms).

4. The problem can be solved as a standard non-linear programming problem using

software packages as GAMS, for example, without the need of a bi-level technique.

We have used GAMS and the results were very precise. However, the methods must

be checked with large networks before concluding that they will have the same prop-

erties for these networks. In particular, a comparison with other existing algorithms

in efficiency and/or accuracy, as the established methods of Frank-Wolfe or the more

recent origin-based methods of Bar-Gera (2002) must be done in future work.

8.3.2.1 Alternative model

Since the VIP (8.29)-(8.33) has the practical inconvenience of having multiplicity of solu-

tions, we suggest solving the NCP:

0 = cαij


 ∑

k1,s1,α1

vα1
ijk1s1


+ η

∑

i1j1k1s1α1

vα1
i1j1k1s1

log(vα1
i1j1k1s1

+ ε)

+λiksα − λjksα − µijksα; `ij ∈ A; k, s ∈ OD; α ∈ H (8.40)

ταks(δik − δis) =
∑

`ij∈A
vαijks −

∑

j∈`ji

vαjiks; i ∈ N ; k, s ∈ OD; α ∈ H (8.41)

0 ≤ vαijks ≤ ταks; `ij ∈ A; k, s ∈ OD; α ∈ H (8.42)

µijksαv
α
ijks = 0; `ij ∈ A; k, s ∈ OD; α ∈ H (8.43)

µijksα ≥ 0; `ij ∈ A; k, s ∈ OD; α ∈ H, (8.44)

where the entropy term
∑
ijksα

vαijks log(vαijks + ε) has been added to constraint (8.40). After

this, the new function

cαij


 ∑

k1,s1,α1

vα1
ijk1s1


+ η

∑

i1j1k1s1α1

vα1
i1j1k1s1

log(vα1
i1j1k1s1

+ ε)

is strictly monotone, and then, similarly to the previous cases, we have uniqueness of

solution for the Problem (8.40)-(8.44).

We note that the problem (8.15)-(8.19) is not equivalent to the problem (8.40)-(8.44)

due to the use of a different entropy term in their objective function. However, an equiv-

alent entropy link formulation could be formulated based on Akamatsu (1997).
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Similarly to the case with path enumeration, we can replace Problem (8.40)-(8.44) by

the following equivalent optimization problem:

Minimize
v,µ,λ

Z =
∑

`ij∈A;k,s∈OD;α

µijksαv
α
ijks (8.45)

subject to (8.40)-(8.42) and (8.44).

The equivalence of Problems (8.29)-(8.33) and (8.45) subject to (8.40)-(8.42) and (8.44)

relies on the fact that the objective function (8.45) must be non-negative and at the same

time null because of (8.41).

8.3.3 Measuring relative accuracy

To examine the convergence of the solution procedure we use the aggregate “relative

duality gap” (see Murchland (1969), Rose et al. (1988), Janson (1991)):

relgap =

∑
r,α
fαr c

α
r −

∑
k,s,α

ταksρ
α
ks

∑
k,s,α

ταksρksα
, (8.46)

where cαr is the travel time of a user of class α traveling route r, ταks is the OD flow

associated with OD ks and user of class α, and ραks is the minimum travel time of OD ks

and class α.

Some authors have suggested that this relative gap needs to be smaller than 10−5 in

order to validate the results. This measure has been widely used to test the convergence

of iterative UE procedures. In our case, it permits knowing if the solutions follow the

equilibrium conditions. In the examples we have computed this measure in order to check

the accuracy of the results.

8.4 Example of applications

In this section we present two examples to illustrate the proposed methods and show their

power and suitability for practical applications. We start with a simple example and end

with a real case network example.

8.4.1 The Nguyen-Dupuis network

With the purpose of illustrating the proposed methods, they are applied to the well known

Nguyen-Dupuis network previously used, which is shown in Figure 8.3. In this case, we

consider unidirectional links and, hence, the network has 13 nodes and 19 links. We have

selected this simple example in order to be able to show the results in form of tables and

figures of reasonable size.
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Figure 8.3: The Nguyen-Dupuis network with unidirectional links.

Link ν0 c Link ν0 c

1 -5 7.00 700.00 8 -2 9.00 700.00

1 -12 9.00 560.00 9 -10 10.00 280.00

4 -5 9.00 560.00 9 -13 9.00 280.00

4 -9 12.00 280.00 10-11 6.00 700.00

5 -6 3.00 420.00 11-2 9.00 280.00

5 -9 9.00 420.00 11-3 8.00 560.00

6 -7 5.00 700.00 12-6 7.00 140.00

6 -10 5.00 280.00 12-8 14.00 560.00

7 -8 5.00 700.00 13-3 11.00 560.00

7 -11 9.00 700.00

Table 8.1: Parameters of the Nguyen-Dupuis network.

8.4.1.1 Homogeneous users

The data used in this example are shown in Table 8.1, where ν0 (to be defined) and

capacity c constants used for each link `ij are shown.

Initially, for illustration purposes, we have selected the following OD and OD flows:

τ12 = 200; τ13 = 256; τ42 = 192; τ43 = 120,

which have been distributed equally among all classes.

We have used the link travel time functions (8.1) with µα = 0.5, σα = 0.25, β0 = βα =

1, γ0 = γα = 3, t0 = 1 and the qα values in the heading of Table 8.3, where we have
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With path enumeration

Problem I

overtaking

Problem no yes

(8.28) subject to 0.016 0.035

(8.23)-(8.25) and (8.27); η = 10−10

Problem II

overtaking

Problem no yes

(8.28) subject to 0.062 0.078

(8.23)-(8.25) and (8.27); η = 0

Without path enumeration

Problem I

overtaking

Problem no yes

(8.45) subject to 0.218 3.791

(8.40)-(8.42) and (8.44); η = 10−10

Problem II

overtaking

Problem no yes

(8.45) subject to 0.094 0.234

(8.40)-(8.42) and (8.44); η = 0

Table 8.2: Homogeneous users example. Cpu times required to solve the problems indi-

cated by their objective function equation number for the overtaking problems and the

classical approaches (no overtaking).

assumed that the free link travel times tα are given by tα = ν0qα. This implies that qα
is a factor that provides the free link travel times of a class with respect to the reference

class α0, for which qα0 = 1.

In Table 8.2 we provide a list of the solved problems using GAMS with the CONOPT

solver and the corresponding cpu required times on a HP Z200 Workstation, Intel Core

i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB). We have solved this example using

two different problems. Instead of solving the Problem (8.23)-(8.27), we have solved the

Problem I: (8.28) subject to (8.23)-(8.25) and (8.27), and instead of solving the Problem

(8.40)-(8.44), we have solved the Problem II: (8.45) subject to (8.40)-(8.42) and (8.44).

In order to compare the times required for several classes (with overtaking) with the

times required for a single class (no overtaking), we have run the problem with only

one class too. As expected the cpu times for the overtaking cases are larger or equal
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to the models without overtaking. Similarly, the cpu times for the models without path

enumeration are larger or equal to the models with path enumeration.

We note that both problems I and II led to exactly the same solution for all cases,

indicating that for this example they are equivalent.

Table 8.3 shows the total link flows (column 2), the link flows disaggregated by OD

and α-classes (columns third to eighteenth)7 and the travel times of each OD and user

class (last row), where we can observe the following facts:

1. Different class users of the same OD pair not necessarily use the same routes. For

example, in OD 4− 3, all class users utilize the same route, while in the remaining

OD pairs, some users choose different routes.

2. The link flows appear disaggregated by OD and classes, which is an important in-

formation.

3. The used routes are identified from the set of all possible routes without the need

of a previous enumeration. A very reduced number of routes is normally obtained,

unless we have a high congestion.

4. The OD travel times for all classes, shown in the last row, are different and they

increase with increasing tα.

Figure 8.4 shows the used routes corresponding to different OD pairs and class users.

The interesting result is that emphasizing the links with non-null flow, we can identify all

used routes of each OD pair and overtaking user class.

Table 8.4 shows the route travel times classified by OD and α-classes for the Nguyen-

Dupuis network. The used routes have been boldfaced. Note that they correspond to

minimum values of travel times in the same class and OD and that they coincide with the

OD travel times given in Table 8.3 (last row).

Note also that when a class uses more than one route, the associated travel times are

identical.

8.4.1.2 Cars and Motorcycles

In this section we illustrate the case of two types of users (cars and motorcycles), such

that congestion does not take place at the same congestion ratio. This is for example the

case of cars and motorcycles, because motorcycle users normally use the road shoulders

to travel when congestion is very high.

The parameters used in the example for the selected 6 classes (three for cars and three

for motorcycles) are given in Table 8.5. We assume that when congestion is low cars

7Only one decimal place is shown because of lack of space, but the precision is larger than seven decimal

digits.
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OD: 1 -2 OD: 1 -3 OD: 4 -2 OD: 4 -3

qα

Link Flow 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70 1.00 0.90 0.80 0.70

1 -5 275.0 19.0 - - - 64.0 64.0 64.0 64.0 - - - - - - - -

1 -12 181.0 31.0 50.0 50.0 50.0 - - - - - - - - - - - -

4 -5 169.8 - - - - - - - - 48.0 48.0 48.0 25.8 - - - -

4 -9 142.2 - - - - - - - - - - - 22.2 30.0 30.0 30.0 30.0

5 -6 423.4 19.0 - - - 64.0 64.0 64.0 42.5 48.0 48.0 48.0 25.8 - - - -

5 -9 21.5 - - - - - - - 21.5 - - - - - - - -

6 -7 231.4 19.0 - - - - - - 42.5 48.0 48.0 48.0 25.8 - - - -

6 -10 192.0 - - - - 64.0 64.0 64.0 - - - - - - - - -

7 -8 188.9 19.0 - - - - - - - 48.0 48.0 48.0 25.8 - - - -

7 -11 42.5 - - - - - - - 42.5 - - - - - - - -

8 -2 369.8 50.0 50.0 50.0 50.0 - - - - 48.0 48.0 48.0 25.8 - - - -

9 -10 22.2 - - - - - - - - - - - 22.2 - - - -

9 -13 141.5 - - - - - - - 21.5 - - - - 30.0 30.0 30.0 30.0

10-11 214.2 - - - - 64.0 64.0 64.0 - - - - 22.2 - - - -

11-2 22.2 - - - - - - - - - - - 22.2 - - - -

11-3 234.5 - - - - 64.0 64.0 64.0 42.5 - - - - - - - -

12-6 0.0 - - - - - - - - - - - - - - - -

12-8 181.0 31.0 50.0 50.0 50.0 - - - - - - - - - - - -

13-3 141.5 - - - - - - - 21.5 - - - - 30.0 30.0 30.0 30.0

Travel time 34.1 31.8 29.5 27.3 34.9 33.2 31.5 29.4 35.9 33.9 31.9 29.9 34.9 32.8 30.7 28.6

Table 8.3: Mixed BPR model. Link flows disaggregated by OD and α-classes and OD

travel times for the Nguyen-Dupuis network.

OD Routes path links Classes

1 2 3 4

1- 2 1 1 5 7 9 11 34.103 32.318 30.534 28.749

1- 2 2 2 18 11 34.103 31.826 29.548 27.270

1- 3 3 1 5 7 10 16 36.267 33.968 31.668 29.368

1- 3 4 1 5 8 14 16 34.869 33.190 31.510 29.831

1- 3 5 1 6 13 19 37.765 34.966 32.167 29.368

4- 2 6 3 5 7 9 11 35.930 33.914 31.898 29.881

4- 2 7 4 12 14 15 38.752 35.795 32.838 29.881

4- 3 8 4 13 19 34.910 32.811 30.713 28.614

Table 8.4: Route travel times classified by OD and α-classes for the Nguyen-Dupuis net-

work. Used routes are boldfaced.

travel at higher speeds than motorcycles, and that in the presence of high congestion, cars

get blocked and motorcycles still can continue traveling until a larger congestion ratio is

reached.
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Figure 5: The NGuyen-Dupuis example. Used routes by different OD pairs and class users.

class q β γ µ σ t0

1 1 3 5 0.5 0.25 1

Cars 2 0.9 3 5 0.5 0.25 1

3 0.8 3 5 0.5 0.25 1

4 1.4 1 3 0.5 0.5 1.4

Motos 5 1.3 1 3 0.5 0.5 1.4

6 1.2 1 3 0.5 0.5 1.4

Table 4: Parameters used in the cars-motorcycles example.

For the uncongested case we have selected the same OD pairs and OD flows as in the ho-
mogeneous example above. For the congested case, we have assumed the following OD and OD

16

Figure 8.4: The Nguyen-Dupuis example. Used routes by different OD pairs and class

users.

Figure 8.5 shows the link travel times for the six class users, three for cars and three

for motorcycles with different associated saturation ratios. It is interesting to see that for

a congestion ratio 0.80, cars have serious difficulties in traveling, while motorcycles still

can run.

We have analyzed two different situations: (a) an uncongested case, and (b) a congested

one.

For the uncongested case we have selected the same OD pairs and OD flows as in the

homogeneous example above. For the congested case, we have assumed the following OD
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class q β γ µ σ t0 wα

1 1 3 5 0.5 0.25 1 1

Cars 2 0.9 3 5 0.5 0.25 1 1

3 0.8 3 5 0.5 0.25 1 1

4 1.4 1 3 0.5 0.5 1.4 0.5

Motos 5 1.3 1 3 0.5 0.5 1.4 0.5

6 1.2 1 3 0.5 0.5 1.4 0.5

Table 8.5: Parameters used in the cars-motorcycles example.
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class q β γ µ σ t0 wα

1 1 3 5 0.5 0.25 1 1

Cars 2 0.9 3 5 0.5 0.25 1 1

3 0.8 3 5 0.5 0.25 1 1

4 1.4 1 3 0.5 0.5 1.4 0.5

Motos 5 1.3 1 3 0.5 0.5 1.4 0.5

6 1.2 1 3 0.5 0.5 1.4 0.5

Table 4.5: Parameters used in the cars-motorcycles example.

Cars: Μ=0.5; Σ=0.25; Γ=5

Motos: Μ=0.5; Σ=0.5; Γ=3

0.0 0.2 0.4 0.6 0.8

1.0

1.5

2.0

2.5

x

hHx
L

Figure 4.4: Cars and motorcycles example. Link travel times for the six class users, three

for cars and three for motorcycles with different associated saturation ratios.

solver and the corresponding cpu required times on a HP Z200 Workstation, Intel Core

i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB).

In order to compare the times required for the congested and uncongested cases, we

have run the problems for both cases. As expected the cpu times for the congested cases

are larger or equal to the models for uncongested cases. Similarly, the cpu times for the

models without path enumeration are larger or equal to the models with path enumeration.

We note that both Problems I and II led to exactly the same solution for all cases,

indicating that for this example they are equivalent.

Table 4.7 shows the total link flows (column 2), the link flows disaggregated by OD

Figure 8.5: Cars and motorcycles example. Link travel times for the six class users, three

for cars and three for motorcycles with different associated saturation ratios.

and OD flows:

τ12 = 575; τ13 = 736; τ42 = 552; τ43 = 345,

which have been distributed equally among all classes.

In Table 8.6 we provide a list of the solved problems using GAMS with the CONOPT

solver and the corresponding cpu required times on a HP Z200 Workstation, Intel Core

i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB).

In order to compare the times required for the congested and uncongested cases, we

have run the problems for both cases. As expected the cpu times for the congested cases
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With path enumeration

Problem I

Congestion

Problem no yes

(8.28) subject to 0.188 0.219

(8.23)-(8.25) and (8.27); η = 10−10

Problem II

Congestion

Problem no yes

(8.28) subject to 0.031 0.093

(8.23)-(8.25) and (8.27); η = 0

Without path enumeration

Problem I

Congestion

Problem no yes

(8.45) subject to 14.259 22.511

(8.40)-(8.42) and (8.44); η = 10−10

Problem II

Congestion

Problem no yes

(8.45) subject to 0.047 0.733

(8.40)-(8.42) and (8.44); η = 0

Table 8.6: Cars and motorcycles example. Cpu times required to solve the problems

indicated by their objective function equation number for the congested and uncongested

problems.

are larger or equal to the models for uncongested cases. Similarly, the cpu times for the

models without path enumeration are larger or equal to the models with path enumeration.

We note that both Problems I and II led to exactly the same solution for all cases,

indicating that for this example they are equivalent.

Table 8.7 shows the total link flows (column 2), the link flows disaggregated by OD

and α-classes (columns third to twentysixth) and the travel times of each OD and user

class (last row) for the uncongested case. We can see that, as expected, cars travel times

are smaller than motorcycles travel times because we have no congestion. We also see that

different classes of cars and motorcycles use not necessarily the same routes but the travel

times are different.

Table 8.8 shows the route travel times classified by OD and α-classes. The used routes

have been boldfaced. Note that they correspond to minimum values of travel times in the
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OD: 1 -2 OD: 1 -3 OD: 4 -2 OD: 4 -3

Link Flow 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20

1-5 356.0 - - - 33.3 33.3 33.3 42.7 42.7 42.7 42.7 42.7 42.7 - - - - - - - - - - - -

1-12 100.0 33.3 33.3 33.3 - - - - - - - - - - - - - - - - - - - - -

4-5 183.5 - - - - - - - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -

4-9 128.5 - - - - - - - - - - - - - - 8.5 - - - 20.0 20.0 20.0 20.0 20.0 20.0

5-6 517.2 - - - 33.3 33.3 33.3 42.7 42.7 20.4 42.7 42.7 42.7 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -

5-9 22.3 - - - - - - - - 22.3 - - - - - - - - - - - - - - -

6-7 283.5 - - - 33.3 33.3 33.3 - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -

6-10 233.7 - - - - - - 42.7 42.7 20.4 42.7 42.7 42.7 - - - - - - - - - - - -

7-8 283.5 - - - 33.3 33.3 33.3 - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -

7-11 0.0 - - - - - - - - - - - - - - - - - - - - - - - -

8-2 383.5 33.3 33.3 33.3 33.3 33.3 33.3 - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -

9-10 8.5 - - - - - - - - - - - - - - 8.5 - - - - - - - - -

9-13 142.3 - - - - - - - - 22.3 - - - - - - - - - 20.0 20.0 20.0 20.0 20.0 20.0

10-11 242.2 - - - - - - 42.7 42.7 20.4 42.7 42.7 42.7 - - 8.5 - - - - - - - - -

11-2 8.5 - - - - - - - - - - - - - - 8.5 - - - - - - - - -

11-3 233.7 - - - - - - 42.7 42.7 20.4 42.7 42.7 42.7 - - - - - - - - - - - -

12-6 0.0 - - - - - - - - - - - - - - - - - - - - - - - -

12-8 100.0 33.3 33.3 33.3 - - - - - - - - - - - - - - - - - - - - -

13-3 142.3 - - - - - - - - 22.3 - - - - - - - - - 20.0 20.0 20.0 20.0 20.0 20.0

Cars Motos Cars Motos Cars Motos Cars Motos

uα 32.3 29.6 27.0 44.7 42.8 41.0 34.3 32.4 30.5 45.6 43.8 42.0 35.3 33.0 30.8 47.2 45.2 43.2 32.5 30.0 27.6 46.5 44.3 42.2

Table 8.7: Cars and motorcycles example. Mixed BPR model. Link flows disaggregated

by OD and α-classes for the Nguyen-Dupuis network (uncongested case).

OD Routes path links Classes

1 2 3 4 5 6

1- 2 1 1 5 7 9 11 33.342 31.336 29.330 44.661 42.846 41.031

1- 2 2 2 18 11 32.317 29.645 26.974 45.838 43.576 41.314

1- 3 3 1 5 8 14 16 34.305 32.383 30.460 45.554 43.773 41.991

1- 3 4 1 6 13 19 36.395 33.428 30.460 51.744 49.200 46.655

1- 3 5 2 17 7 10 16 38.086 34.664 31.242 53.714 50.814 47.914

1- 3 6 2 17 8 14 16 36.312 33.472 30.631 51.080 48.611 46.141

4- 2 7 3 5 7 9 11 35.260 33.008 30.756 47.235 45.236 43.238

4- 2 8 4 12 14 15 37.213 33.985 30.756 52.671 49.909 47.147

4- 3 9 3 5 8 14 16 36.224 34.055 31.886 48.128 46.163 44.197

4- 3 10 4 13 19 32.485 30.022 27.559 46.468 44.338 42.207

Table 8.8: Cars and motorcycles example. Route travel times classified by OD and α-

classes for the Nguyen-Dupuis network (uncongested case). Used routes are boldfaced.

same class and OD and that they coincide with the OD travel times given in Table 8.7.

Figure 8.6 shows the used routes corresponding to different OD pairs and class users

for the uncongested case. The upper three graphs of each quadrant correspond to cars

and the lower three to motorcycles.
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OD:1 -2 OD:1 -3 OD:4 -2 OD:4 -3
Link Flow 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20
1 -5 356.0 - - - 33.3 33.3 33.3 42.7 42.7 42.7 42.7 42.7 42.7 - - - - - - - - - - - -
1 -12 100.0 33.3 33.3 33.3 - - - - - - - - - - - - - - - - - - - - -
4 -5 183.5 - - - - - - - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -
4 -9 128.5 - - - - - - - - - - - - - - 8.5 - - - 20.0 20.0 20.0 20.0 20.0 20.0
5 -6 517.2 - - - 33.3 33.3 33.3 42.7 42.7 20.4 42.7 42.7 42.7 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -
5 -9 22.3 - - - - - - - - 22.3 - - - - - - - - - - - - - - -
6 -7 283.5 - - - 33.3 33.3 33.3 - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -
6 -10 233.7 - - - - - - 42.7 42.7 20.4 42.7 42.7 42.7 - - - - - - - - - - - -
7 -8 283.5 - - - 33.3 33.3 33.3 - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -
7 -11 0.0 - - - - - - - - - - - - - - - - - - - - - - - -
8 -2 383.5 33.3 33.3 33.3 33.3 33.3 33.3 - - - - - - 32.0 32.0 23.5 32.0 32.0 32.0 - - - - - -
9 -10 8.5 - - - - - - - - - - - - - - 8.5 - - - - - - - - -
9 -13 142.3 - - - - - - - - 22.3 - - - - - - - - - 20.0 20.0 20.0 20.0 20.0 20.0
10-11 242.2 - - - - - - 42.7 42.7 20.4 42.7 42.7 42.7 - - 8.5 - - - - - - - - -
11-2 8.5 - - - - - - - - - - - - - - 8.5 - - - - - - - - -
11-3 233.7 - - - - - - 42.7 42.7 20.4 42.7 42.7 42.7 - - - - - - - - - - - -
12-6 0.0 - - - - - - - - - - - - - - - - - - - - - - - -
12-8 100.0 33.3 33.3 33.3 - - - - - - - - - - - - - - - - - - - - -
13-3 142.3 - - - - - - - - 22.3 - - - - - - - - - 20.0 20.0 20.0 20.0 20.0 20.0

uα 32.3 29.6 27.0 44.7 42.8 41.0 34.3 32.4 30.5 45.6 43.8 42.0 35.3 33.0 30.8 47.2 45.2 43.2 32.5 30.0 27.6 46.5 44.3 42.2

Table 7: Cars and motorcycles example. Mixed BPR model. Link flows disaggregated by OD and
α-classes for the Nguyen-Dupuis network (uncongested case).
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Figure 7: The cars and motorcycles example of the Nguyen-Dupuis example (uncongested case). The
upper three graphs of each quadrant correspond to cars and the lower three to motorcycles.

20

Figure 8.6: The cars and motorcycles example of the Nguyen-Dupuis example (uncon-

gested case). The upper three graphs of each quadrant correspond to cars and the lower

three to motorcycles.

Table 8.9 shows the total link flows (column 2), the link flows disaggregated by OD

and α-classes (columns third to twentysixth) and the travel times of each OD and user

class (last row) for the congested case. We can see that, as expected, cars travel times

are bigger than motorcycles travel time because we have high congestion. Furthermore,

travel times of both types of users are closer than in the uncongested case. We also see

that different classes of cars and motorcycles use not necessarily the same routes but the

travel times are different.

Table 8.10 shows the route travel times classified by OD and α-classes. The used routes

have been boldfaced. Note that they correspond to minimum values of travel times in the

same class and OD and that they coincide with the OD travel times given in Table 8.9.

Though in Tables 8.4, 8.8 and 8.10 we show three decimal digits, the coincidence of the

minimum travel times is in at least seven digits. The precision accuracies for these cases

are relgap = 2.34 × 10−10 and relgap = 2.17 × 10−10 for the saturated and non-saturated

cases, respectively. These values, that are smaller than the 10−5 recommended, show that

the results follow the UE conditions.
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OD: 1 -2 OD: 1 -3 OD: 4 -2 OD: 4 -3

Link Flow 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20

1-5 759.8 - - - 95.8 75.3 - 122.7 98.0 - 122.7 122.7 122.7 - - - - - - - - - - - -

1-12 551.2 95.8 95.8 95.8 - 20.5 95.8 - 24.7 122.7 - - - - - - - - - - - - - - -

4-5 645.9 - - - - - - - - - - - - - 45.8 92.0 92.0 92.0 92.0 - 2.1 57.5 57.5 57.5 57.5

4-9 251.1 - - - - - - - - - - - - 92.0 46.2 - - - - 57.5 55.4 - - - -

5-6 1071.7 - - - 95.8 75.3 - - - - 122.7 122.7 122.7 - 43.7 40.3 92.0 92.0 92.0 - - - 57.5 57.5 57.5

5-9 334.0 - - - - - - 122.7 98.0 - - - - - 2.1 51.7 - - - - 2.1 57.5 - - -

6-7 771.8 - - - 95.8 75.3 - - 24.7 122.7 - - 93.2 - 43.7 40.3 92.0 92.0 92.0 - - - - - -

6-10 447.3 - - - - - - - - - 122.7 122.7 29.5 - - - - - - - - - 57.5 57.5 57.5

7-8 490.9 - - - 95.8 75.3 - - - - - - - - 43.7 - 92.0 92.0 92.0 - - - - - -

7-11 280.9 - - - - - - - 24.7 122.7 - - 93.2 - - 40.3 - - - - - - - - -

8-2 894.7 95.8 95.8 95.8 95.8 95.8 95.8 - - - - - - - 43.7 - 92.0 92.0 92.0 - - - - - -

9-10 273.8 - - - - - - 81.8 - - - - - 92.0 48.3 51.7 - - - - - - - - -

9-13 311.3 - - - - - - 40.8 98.0 - - - - - - - - - - 57.5 57.5 57.5 - - -

10-11 721.1 - - - - - - 81.8 - - 122.7 122.7 29.5 92.0 48.3 51.7 - - - - - - 57.5 57.5 57.5

11-2 232.3 - - - - - - - - - - - - 92.0 48.3 92.0 - - - - - - - - -

11-3 769.7 - - - - - - 81.8 24.7 122.7 122.7 122.7 122.7 - - - - - - - - - 57.5 57.5 57.5

12-6 147.4 - - - - - - - 24.7 122.7 - - - - - - - - - - - - - - -

12-8 403.8 95.8 95.8 95.8 - 20.5 95.8 - - - - - - - - - - - - - - - - - -

13-3 311.3 - - - - - - 40.8 98.0 - - - - - - - - - - 57.5 57.5 57.5 - - -

Cars Motos Cars Motos Cars Motos Cars Motos

uα 63.9 63.1 62.2 66.3 65.1 63.7 95.7 94.7 93.6 69.4 68.3 67.1 98.5 97.9 97.0 71.1 69.8 68.5 100.5 99.7 98.7 74.2 73.0 71.8

Table 8.9: Cars and motorcycles example. Mixed BPR model. Link flows disaggregated

by OD and α-classes for the Nguyen-Dupuis network (congested case).

8.4.2 The Ciudad Real network

To test the proposed models in a real network, we have used the Ciudad Real network

used in Section 7.4 in Chapter 7 and shown in Figure 7.2, which consists of 218 links, 105

nodes, 218 OD pairs, and 321 routes. The results are very similar to those described for

the Nguyen-Dupuis network, but we cannot show all of them because of its size and the

lack of space. The cpu time required to reach the solution with four α classes were 104.56

sec for the problem (8.28) subject to (8.23)-(8.25) and (8.27) with η = 10−10 on a HP

Z200 Workstation, Intel Core i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB).

Table 8.11 shows the route travel times of some selected OD pairs and all α-classes.

The used routes have been boldfaced. Note that they correspond to the minimum travel

times of all routes in the same OD pair and class.

Figure 8.8 shows the used routes corresponding to two selected OD pairs for the four

class users in the Ciudad Real example.

The resulting precision accuracy was smaller than relgap = 1× 10−10.

Appendix

A Convexity of the travel time function hα(x)

In this appendix we demonstrate the following theorem that permits obtaining convex

travel time functions of the form (8.1).
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OD:1 -2 OD:1 -3 OD:4 -2 OD:4 -3
Link Flow 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20 1.00 0.90 0.80 1.40 1.30 1.20
1 -5 759.8 - - - 95.8 75.3 - 122.7 98.0 - 122.7 122.7 122.7 - - - - - - - - - - - -
1 -12 551.2 95.8 95.8 95.8 - 20.5 95.8 - 24.7 122.7 - - - - - - - - - - - - - - -
4 -5 645.9 - - - - - - - - - - - - - 45.8 92.0 92.0 92.0 92.0 - 2.1 57.5 57.5 57.5 57.5
4 -9 251.1 - - - - - - - - - - - - 92.0 46.2 - - - - 57.5 55.4 - - - -
5 -6 1071.7 - - - 95.8 75.3 - - - - 122.7 122.7 122.7 - 43.7 40.3 92.0 92.0 92.0 - - - 57.5 57.5 57.5
5 -9 334.0 - - - - - - 122.7 98.0 - - - - - 2.1 51.7 - - - - 2.1 57.5 - - -
6 -7 771.8 - - - 95.8 75.3 - - 24.7 122.7 - - 93.2 - 43.7 40.3 92.0 92.0 92.0 - - - - - -
6 -10 447.3 - - - - - - - - - 122.7 122.7 29.5 - - - - - - - - - 57.5 57.5 57.5
7 -8 490.9 - - - 95.8 75.3 - - - - - - - - 43.7 - 92.0 92.0 92.0 - - - - - -
7 -11 280.9 - - - - - - - 24.7 122.7 - - 93.2 - - 40.3 - - - - - - - - -
8 -2 894.7 95.8 95.8 95.8 95.8 95.8 95.8 - - - - - - - 43.7 - 92.0 92.0 92.0 - - - - - -
9 -10 273.8 - - - - - - 81.8 - - - - - 92.0 48.3 51.7 - - - - - - - - -
9 -13 311.3 - - - - - - 40.8 98.0 - - - - - - - - - - 57.5 57.5 57.5 - - -
10-11 721.1 - - - - - - 81.8 - - 122.7 122.7 29.5 92.0 48.3 51.7 - - - - - - 57.5 57.5 57.5
11-2 232.3 - - - - - - - - - - - - 92.0 48.3 92.0 - - - - - - - - -
11-3 769.7 - - - - - - 81.8 24.7 122.7 122.7 122.7 122.7 - - - - - - - - - 57.5 57.5 57.5
12-6 147.4 - - - - - - - 24.7 122.7 - - - - - - - - - - - - - - -
12-8 403.8 95.8 95.8 95.8 - 20.5 95.8 - - - - - - - - - - - - - - - - - -
13-3 311.3 - - - - - - 40.8 98.0 - - - - - - - - - - 57.5 57.5 57.5 - - -

uα 63.9 63.1 62.2 66.3 65.1 63.7 95.7 94.7 93.6 69.4 68.3 67.1 98.5 97.9 97.0 71.1 69.8 68.5 100.5 99.7 98.7 74.2 73.0 71.8

Table 9: Cars and motorcycles example. Mixed BPR model. Link flows disaggregated by OD and
α-classes for the Nguyen-Dupuis network (congested case).
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Figure 8: The cars and motorcycles example of the Nguyen-Dupuis example (congested case). The
upper three graphs of each quadrant correspond to cars and the lower three to motorcycles.
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Figure 8.7: The cars and motorcycles example of the Nguyen-Dupuis example (congested

case). The upper three graphs of each quadrant correspond to cars and the lower three to

motorcycles.

Theorem 15 (Convexity of the travel time functions hα(x)) The travel time func-

tion

hα(x) = t(x; t0, β0, γ0)Φ

(
x− µ
σ

)
+ t(x; tα, βα, γα)

(
1− Φ

(
x− µ
σ

))
, (8.47)

is convex in the interval [0, xmax], where xmax <∞, if σ2 ≥ g(xmax)

t′′(xmax; θα)
√

2eπ
.

Proof.

First, we remind the reader that

−Φ′′((x− µ)/σ) ≤





0 if x < µ
1

σ2
√

2eπ
∀x (8.48)

and since the function g(x) given in (8.3) is bounded in the finite interval [0, xmax], let G

be an upper bound of function g(x) in (8.3), that is,

g(x) < G; x ∈ [0, xmax] (8.49)
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OD Routes path links Classes

1 2 3 4 5 6

1- 2 1 1 5 7 9 11 93.782 92.906 92.029 66.333 65.085 63.837

1- 2 2 2 18 11 63.946 63.077 62.208 66.468 65.085 63.702

1- 3 3 1 5 7 10 16 96.415 95.234 94.053 70.101 68.622 67.144

1- 3 4 1 5 8 14 16 98.608 97.958 97.309 69.435 68.289 67.144

1- 3 5 1 6 12 14 16 95.745 94.899 94.053 89.752 88.153 86.555

1- 3 6 1 6 13 19 95.745 94.749 93.753 80.066 78.543 77.021

1- 3 7 2 17 7 10 16 95.901 94.749 93.597 84.220 82.566 80.912

4- 2 8 3 5 7 9 11 98.782 97.887 96.991 71.147 69.830 68.512

4- 2 9 3 5 7 10 15 99.479 98.222 96.964 75.562 73.950 72.338

4- 2 10 3 6 12 14 15 98.809 97.887 96.964 95.213 93.481 91.749

4- 2 11 4 12 14 15 98.543 97.887 97.230 87.205 85.800 84.395

4- 3 12 3 5 8 14 16 103.608 102.939 102.270 74.249 73.034 71.819

4- 3 13 3 6 13 19 100.745 99.730 98.715 84.880 83.288 81.695

4- 3 14 4 13 19 100.479 99.730 98.980 76.871 75.606 74.341

Table 8.10: Cars and motorcycles example. Route travel times classified by OD and

α-classes for the Nguyen-Dupuis network (congested case). Used routes are boldfaced.

and then

−g(x)Φ′′((x− µ)/σ) <
G

σ2
√

2eπ
; x ∈ [0, xmax]. (8.50)

From (8.7) we get

h′′α(x) = g′′(x)Φ((x− µ)/σ) + 2g′(x)Φ′((x− µ)/σ) + g(x)Φ′′((x− µ)/σ) + t′′(x; θα),

(8.51)

where g(x) is given in (8.3).

Since, according to our assumptions in (8.4),

g′′(x)Φ((x− µ)/σ) + 2g′(x)Φ′((x− µ)/σ) + t′′(x; θα) > 0

there exists a lower bound H > 0, such that

g′′(x)Φ((x− µ)/σ) + 2g′(x)Φ′((x− µ)/σ) + t′′(x; θα) > H, (8.52)

and then, choosing a sufficiently large value of σ, we have

g′′(x)Φ((x−µ)/σ)+2g′(x)Φ′((x−µ)/σ)+t′′(x; θα) > H >
G

σ2
√

2eπ
> −g(x)Φ′′((x−µ)/σ),

(8.53)
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which proves that h′′α(x) > 0 if σ2 ≥ g(xmax)

t′′(xmax; θα)
√

2eπ
and x ≤ xmax, where we have

taken into account that G = g(xmax) and H = t′′(xmax; θα).
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OD Routes path links Classes

1 2 3 4

3- 9 1 6 203 35 184 12 17 197 194 191 38 140 142 6.87 6.56 6.25 5.94

3- 9 2 6 204 205 207 208 211 60 58 19 105 129 131 134 135 7.06 6.79 6.52 6.24

3- 9 3 6 204 205 207 209 213 58 19 105 129 131 134 135 7.13 6.83 6.52 6.21

3- 9 4 6 204 205 207 210 216 47 45 54 172 162 134 135 6.85 6.64 6.43 6.21

4-14 5 7 65 64 201 86 78 76 81 4.50 4.26 4.03 3.79

4-14 6 7 65 64 201 86 78 77 118 94 95 4.61 4.32 4.04 3.75

4-14 7 7 65 64 201 86 80 179 180 88 92 95 4.62 4.32 4.03 3.73

4-14 8 7 66 190 74 75 85 76 81 4.21 4.06 3.92 3.77

4-14 9 7 66 190 74 75 85 77 118 94 95 4.32 4.12 3.93 3.73

10- 3 10 19 105 129 132 169 170 56 217 214 212 166 7 65 63 71 42 8.61 8.34 8.07 7.80

10- 3 11 19 105 129 132 169 170 56 218 215 2 206 67 70 71 42 8.51 8.28 8.05 7.82

10- 3 12 19 105 130 165 57 56 217 214 212 166 7 65 63 71 42 8.57 8.31 8.06 7.80

10- 3 13 19 105 130 165 57 56 218 215 2 206 67 70 71 42 8.46 8.25 8.04 7.83

10-20 14 19 105 129 132 169 170 56 217 214 212 166 7 65 63 71 8.00 7.76 7.53 7.29

10-20 15 19 105 129 132 169 170 56 218 215 2 206 67 70 71 7.89 7.70 7.51 7.31

10-20 16 19 105 130 165 57 56 217 214 212 166 7 65 63 71 7.95 7.73 7.52 7.30

10-20 17 19 105 130 165 57 56 218 215 2 206 67 70 71 7.85 7.67 7.49 7.32

11- 2 18 20 126 129 131 134 137 161 174 52 3.34 3.18 3.03 2.88

11- 2 19 20 126 129 132 169 170 55 53 3.30 3.16 3.02 2.89

11- 2 20 20 126 130 165 57 55 53 3.25 3.13 3.01 2.89

11- 2 21 20 127 131 134 137 161 174 52 3.29 3.15 3.02 2.88

11- 2 22 20 127 132 169 170 55 53 3.26 3.13 3.01 2.89

11- 3 23 20 126 130 165 57 56 217 214 212 166 7 65 63 71 42 7.84 7.54 7.23 6.92

11- 3 24 20 126 130 165 57 56 218 215 2 206 67 70 71 42 7.74 7.47 7.21 6.94

11- 3 25 20 127 132 169 170 56 217 214 212 166 7 65 63 71 42 7.85 7.54 7.23 6.91

11- 3 26 20 127 132 169 170 56 218 215 2 206 67 70 71 42 7.74 7.47 7.20 6.94

11- 8 27 20 126 129 131 134 136 139 192 195 196 4.49 4.25 4.01 3.78

11- 8 28 20 126 129 131 134 137 161 175 177 196 4.45 4.23 4.01 3.80

11- 8 29 20 126 129 132 169 171 173 175 177 196 4.46 4.23 4.01 3.79

11- 8 30 20 127 131 134 136 139 192 195 196 4.45 4.23 4.00 3.78

11- 8 31 20 127 131 134 137 161 175 177 196 4.41 4.20 4.00 3.80

11- 8 32 20 127 132 169 171 173 175 177 196 4.41 4.20 4.00 3.79

11-17 33 20 126 130 165 57 55 53 4 50 14 185 6.22 5.98 5.73 5.49

11-17 34 20 126 130 165 57 56 218 215 1 6.01 5.81 5.60 5.39

11-17 35 20 127 132 169 170 55 53 4 50 14 185 6.22 5.98 5.73 5.48

11-17 36 20 127 132 169 170 56 218 215 1 6.01 5.81 5.60 5.39

11-20 37 20 126 130 165 57 56 217 214 212 166 7 65 63 71 7.23 6.96 6.69 6.41

11-20 38 20 126 130 165 57 56 218 215 2 206 67 70 71 7.13 6.90 6.66 6.43

11-20 39 20 127 132 169 170 56 217 214 212 166 7 65 63 71 7.23 6.96 6.68 6.41

11-20 40 20 127 132 169 170 56 218 215 2 206 67 70 71 7.13 6.90 6.66 6.43

Table 8.11: Route travel times classified by OD and α-classes for the Ciudad Real network.

Used routes are boldfaced.
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Figure 10: The Ciudad Real example. Used routes corresponding to two selected OD pairs (4 − 14
(upper plots) and 11− 2 (lower plots)) and the four classes.
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Figure 8.8: The Ciudad Real example. Used routes corresponding to two selected OD

pairs (4− 14 (upper plots) and 11− 2 (lower plots)) and the four classes.
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B Notation

α class.

β parameter.

β0 BPR parameter of the reference class α0.

βα parameter associated with class α.

γ exponent parameter.

γ0 BPR parameter of the reference class α0.

γα exponent parameter associated with class α.

δ∗ij Kronecker delta.

δijr element of the link-route incidence matrix.

ε small scalar.

η a very small scalar.

θα vector parameter (tα, βα, γα).

λiksα dual variables.

µ mean of the normal distribution.

µα mean of all links flows in class α.

µαr dual variable.

µijksα dual variable.

ν0 free travel time of the reference class α0.

ξrks element of the OD-route incidence matrix.

ρ vector of ραks variables.

ραks minimum travel time of class α and OD ks.

σ standard deviation of the normal distribution.

σ∗ optimum value of σ.

σα standard deviation associated with class α.

ταks α-class OD flow.

Φ(·) cumulative distribution function of the normal distribution.

Ωf set of all feasible route flows.

Ωv set of all feasible link flows.

A set of links.

cαij link travel time function for class α.

cαr travel time of a user of class α traveling route r.

F (·) cumulative distribution function.

f vector of route flows fαr .

fαr r route flow of class α.

g(x) difference of two link travel time functions.

g′(·) first derivative of function g(·).
g′′(·) second derivative of function g(·).
H set of all α classes.
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hα(x) proposed link travel time function.

i link begin node.

j link end node.

k origin node.

`ij link joining nodes i and j.

M large scalar.

mα
ij cost associated with a user of class α traveling through link `ij .

m(v) vector of class link costs.

N set of nodes.

n(f) vector of route costs.

OD set of all OD-pairs.

q link capacity.

qα factor that provides the free link travel times of a class with respect to

the reference class α0.

r route.

s destination node.

t0 link free travel time.

t(x) link travel time function.

tα link free travel time for class α.

v traffic volume.

v vector of disaggregated class link flows vαijks.

vα traffic volume associated with class use α.

vαijks α-class flow through link i, j with origin node k and destination node s.

wα weight associated with class user α.

x congestion ratio.

xmax number of users producing a unit link congestion ratio.

xαijk flow coming from a given origin node k and using link `ij associated

with class α.

yαijs flow going to a given destination node s and using link `ij associated

with class α.

zαiks flow going from origin node k to destination node s and passing

through node i associated with class α.
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9.1 Introduction

In this chapter we deal with the problem of estimating origin-destination trip matrices

(ME) based on link flows, which is stated from a hierarchical optimization point of view.

Hierarchical optimization was introduced by Bracken et al. (1973, 1974) and refers

to a class of optimization problems characterized by constraints that themselves contain

optimization problems.

Hierarchical optimization of a sequence of objective functions (indexed in order of

priority) involves a sequential optimization procedure in which nonuniqueness arising from

169
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the optimization of some functions is exploited to optimize other functions. It may be

successfully applied provided: 1) the design objectives can be ranked in order of importance

and 2) nonunique optimizers exist for the high-priority objectives, and the corresponding

solution sets are parameterized in a simple way.

The problem to be dealt with in this work can be stated in several different forms. In

fact, we can consider it as a system of equations in which some of them are optimization

problems. However, we can choose any of these constraints and use them as objective

functions. It is well known that some constraints can be replaced by the objective function

obtaining an equivalent problem (see Conejo et al. (2005)).

As already seen in Chapter 4, the ME problem consists of estimating origin-destinations

(OD) flow matrices based on some observed link flows. Since the number of OD pairs is

normally much larger than the number of links, this problem is under-specified, i.e., it has

infinitely many solutions Since we look for OD flow estimates close to the real ones, more

information is needed. To this end, we normally use a prior OD matrix and contemplate,

as a reasonable set of solutions, the set of matrices close to it. To obtain the OD flow

estimates there exist a wide range of possibilities (see Chapter 4 for a summary of these

methods).

Under a classical point of view, in the ME problem the route choice proportions, or

equivalently the link flows in the road network, are assumed to be the input data and the

trip flow matrix, the output. Contrary, in the traffic assignment problem, the trip flow

matrix is the input and the route choice proportions, the output. However, since some

inconsistencies in the flow solutions of both problems may appear, they have been coupled

together, in which both the trip flow matrix and the route choice proportions or link flows

become the output, and they have been solved using bi-level approaches (see Section 4.3).

This kind of techniques can in fact be considered as hierarchical methods where in the

upper-level the ME problem is solved and the traffic assignment problem is dealt with in

the lower-level.

In this chapter we present a hierarchical optimization problem generated by a Bayesian

method, for estimating origin-destination matrices, based on Gamma models. This model

certainly facilitates the process of updating parameter estimates when new information

becomes available, as it is based on conjugate families.

The chapter is organized as follows. Section 9.2 describes the Gamma distribution,

and some of their properties and the associated Bayesian learning problem, including the

corresponding conjugate distributions. In Section 9.3 we show how Gamma models can

be used for trip matrix estimation. The proposed hierarchical approach of the problem

is formulated and an efficient algorithm to solve it is proposed in Section 9.4. Finally, in

Section 9.5 two examples of application are used to illustrate the proposed methods and

methodology.
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9.2 Some statistical background on the Gamma models

In this section we introduce the reader to Gamma models, which is the statistical material

required to understand the following sections.

Let (X1, . . . , Xk+1) be independent random variables having Gamma distributions

G(θ1, 1), . . . , G(θk+1, 1), with probability density function (pdf)):

g(x; θ) =
xθ−1e−x

Γ(θ)
, x > 0, (9.1)

where Γ(θ) is the Gamma function, which for integer values of θ coincides with (θ − 1)!.

The mean and variance of the Xi are E[Xi] = θi and V ar[Xi] = θi, respectively.

9.2.1 Learning Gamma models by Bayesian methods

In this section we address the problem of learning Gamma models, i.e., learning their

parameter values. To this end, we use the Bayes’ rule

f(θ; η|p) =
f(p|θ)f(θ; η)∫

θ

f(p|θ)f(θ; η)dθ
∝ f(p|θ)f(θ; η), (9.2)

where f(θ; η) is the prior distribution, f(θ; η|p) is the posterior distribution given the data

p, η are the hyperparameters, and f(p|θ) is the likelihood of the data.

As it is well known, the Bayesian approach consists of the following steps:

1. Select the likelihood family.

2. Select the family of priors (normally a conjugate family).

3. Assess the prior distribution on the parameters.

4. Obtain the sample data.

5. Calculate the posterior distribution.

6. Estimate the parameters by the posterior mean or mode and their variabilities using

the posterior distributions.

9.2.2 Conjugate of a Gamma Distribution

Bayesian statisticians often work with conjugate priors, which are parametric families

of distributions such that their associated posteriors belong to the same families. The

parameters η of the conjugate family are referred to as hyperparameters.

Arnold et al. (1993) and Arnold et al. (1996) justify and suggest the following conjugate

family as the most general conjugate for the Gamma family with active parameters:

q(θ|η)=̇ exp [η1θ − η2 log Γ (θ)] , (9.3)
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where the posterior hyperparameters η̂ become

(η̂1, η̂2) =

(
η1 +

n∑

`=1

log x`, η2 + n

)
, (9.4)

n is the sample size, and {x` : ` = 1, 2, . . . , n} is the sample. Note that Expression

(9.4) is the updating formula for this model, that is, it allows us to obtain the posterior

hyperparameter values in terms of the corresponding prior values and the sample.

Since
n∑
`=1

log x` and n tend to ∞, as n → ∞, the effect of prior information (η1, η2)

vanishes as n→∞. In fact, for an infinitely large sample, the model based upon random

costs leads to a deterministic flow pattern.

Due to its complexity (exponential and Gamma functions appear in it), the mean of

the Gamma conjugate distribution (9.3) cannot be obtained in closed form. Thus, as an

alternative to the means, we use the mode of (9.3) to estimate the Gamma parameters,

i.e., we maximize (9.3), with respect to the θ’s, to estimate the θ-parameters.

Note that using the mean as the Bayesian estimate is due only to the use of quadratic

utility functions. So, using the mode (the most probable) could not be considered as

a worst criteria, mainly when the maximum likelihood criterion is generally accepted in

Statistics.

To avoid precision problems we do the following:

• Maximize the logarithm of (9.3) instead of (9.3) itself (note that the Gamma function

can take very large values).

• Use a numerical procedure for the direct evaluation of the logarithm of the Gamma

function instead of evaluating the Gamma function and taking the logarithm.

• Use parameters λ2
i = θi to guarantee non-negativity of the parameters.

• For the initial θ-estimates, which are required by any non-linear maximization pro-

cedure, we can use moment estimators or the sample itself.

The prior assessment is a very important step of the method, because the results of

the proposed method for small samples depend strongly on it. Some practical methods

for the prior assessment are given in Section 9.3.2.

9.3 Gamma models for estimating OD matrices

In this section we explain how the Gamma model described in Section 9.2 can be applied

to solve the problem of OD matrix estimation. First, we start discussing the assumptions.
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9.3.1 Assumptions and derived properties

1. The random number of users fksr choosing route r of OD pair ks (i.e. those travelers

who go from node k to node s using route r) follows a Gamma distribution in the

family1:

F ≡ {G(θ, 1)|θ > 0},

i.e.,

fksr ∼ G(θksr, 1).

We note that this family of Gamma distributions has good properties, because the

associated random variables are positive (as the number of users), it is reproductive

(the sum of Gamma distributions in F belongs to F), and it is infinitely divisible.

2. All components of the multivariate Gamma random variable Uks =

(fks1, fks2, . . . , fksRks), where Rks is the number of routes of OD ks, are inde-

pendent. The independence of path flows means that users decide to use different

paths independently of each other. This means that they have preferences but that

they are not affected by others’ opinions. This assumption does not imply a fixed

number of travelers in each path, nor a total number of travelers in all paths. Thus,

it is reasonable.

3. The multivariate random variables U1, U2, . . . , UI , where I is the number of OD pairs,

are independent. This implies that the users of different OD-pairs act independently.

The first assumption is original, but the other two are common in the existing litera-

ture. These assumptions lead to the following derived properties.

1. The random number of users tks =
∑
r
fksr traveling through the OD pair ks follows

a Gamma distribution G (νks, 1), where νks =
∑
r
θksr, which belongs to family F

too.

2. The number of users vijks using link `ij and traveling the OD ks is a Gamma distri-

bution G (θijks, 1), where θijks =
∑
r
θksrδ

ks
ijr, which belongs to family F and δksijr is 1

if link `ij belongs to a route r of the pair ks and 0 otherwise.

3. The number of users wij =
∑
ks

vijks using link `ij is a Gamma distribution

G

(∑
ks

θijks, 1

)
, which belongs to family F2.

1We approximate the integer variable number of users fksr by a real variable Gamma distributed.
2The reason for using a Gamma G(θ, 1) is that it leads to the same flow family for OD, links and vijks

flows. If the second parameter is not the same for all routes, this property does not hold anymore.
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9.3.2 Practical implementation of the proposed method

In this section we introduce the Gamma model based on the tks Gamma random variables.

Due to the fact that observations are usually in terms of link flows, an additional procedure

is proposed in order to get some estimates of the OD flows. Gamma models based on wij
link flows or the vijks flows could also be used, but because of uniqueness problems in the

OD flows calculation, the Gamma model below seems to be more adequate. In addition,

Gamma models are convenient, because they reproduce the positive skewness of traffic

data, that other models, such as the normal model, cannot reproduce.

For the proposed method to be valid, we need informative priors in order to obtain

good results. This is a consequence of the under-specification of the ME problem. Thus,

uninformative priors are discarded.

The prior assessment can be done by the following methods:

1. Assessment of priors for the Gamma model based on an imaginary sample. Fol-

lowing Klieter (1992), the prior can be assessed by means of an imaginary sample,

i.e., we can ask a human expert to provide a virtual sample t̄ks` of size m as the

most representative of his/her knowledge. Once this sample is known, the prior

hyperparameters can be obtained using (9.4), that is:

ηks1 =

m∑

`=1

log t̄ks` (9.5)

ηks2 = m. (9.6)

Note that according to (9.4), a sample modifies the η-parameters by adding
n∑
`=1

log tks` and m to the previous values.

2. Prior assessment based on an out-of-date trip matrix. Another possibility consists

of using a prior or out-of-date trip matrix. Then hyperparameters are given by

ηks1 = m log t̄ks (9.7)

ηks2 = m, (9.8)

where t̄ks is the out-of-date sample.

9.3.3 Obtaining posteriors for the Gamma model based on the tks
Gamma random variables.

Because normally we have no observations of the OD-flows tks, but we have some link

observations {w̄ij |`ij ∈ A}, we must do something to get some estimates t̂ks of tks. To get
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these estimates we solve the optimization problem

Minimize
t̂,w

Z = ρ
∑

ks

(
t̂ks − t̄ks
t̄ks

)2

+
∑

`ij∈A

(
wij − w̄ij
w̄ij

)2

(9.9)

subject to

wij =
∑

ks

βijkst̂ks; `ij ∈ A (9.10)

νks ≥ 0; k ∈ O, s ∈ D, (9.11)

where βijks is a prior estimate of the proportion of OD flows using link `ij , ρ is a weight

factor and t̂ks are the OD flows associated with the observed sample. Then, the posterior

η̂ hyperparameters can be calculated in terms of the prior η parameters as

η̂ks1 = ηks1 + n log νks (9.12)

η̂ks2 = ηks2 + n. (9.13)

It should be noted that the objective function in (9.9) involves two terms, one related

to OD flows and one related to link flows. In addition, the ρ ≥ 0 coefficient permits us

to provide higher or lower hierarchy to any one of them. If ρ → ∞ the first occupies the

higher level and the prior becomes the start, and if ρ→ 0, the second (the observed flows)

becomes the most relevant one.

Note that, m/n measures the relative weight of the human expert or prior information

with respect to the information contained in a real sample of size n. For example, if m = n,

they have the same associated information.

Related to this latter issue is the link between the precision of the estimates arising

and the quality of (i) the prior and (ii) the count data. The prior information can have a

large weight compared with the observed sample data or vice versa. As indicated a small

weight of the prior is not recommendable.

The updating formulas (9.4) provide a clear information about this relative weight. In

fact, a comparison of η1, η2 with η̂1, η̂2 provides this relative weight.

9.3.4 Bayesian estimates of OD flows

The proposed model for OD flow estimation uses the family of conjugate distributions for

the Gamma family F associated with tks, taking into account that we select the posterior

mode for estimating the parameters, and the νks parameters are estimated by solving the

following optimization problem, one per each OD:

Maximize
νks

η̂ks1νks − η̂ks2 log Γ (νks) ; ∀k, s, (9.14)
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where we have assumed a prior with independent components for the OD flow parameters.

As it has been pointed out above, unfortunately, we have no observations of the OD-

flows, and therefore the proposed alternative in subsection 9.3.3 is used.

The congestion problem is dealt with by solving the Wardrop-Minimum Variance equi-

librium model (WMV)(see Section 3.2.1), which together with the iterative process cor-

responding to the bi-level approach takes into account the interaction of traffic flows. To

this end, we use the following bi-level algorithm, that takes into account the congestion

problem by means of the BPR function and the iterative process.

9.4 Hierarchical approaches to solve the problem

Based on the above discussion, our traffic problem can be stated as solving the following

system of equations:

v = arg min



∑

`ij∈A

∫
(∑
k,s

vijks

)
0

Cij(v)dv +
κ

m

∑

`ij∈A

∑

k,s

(vijks − µ)2


 , (9.15)

0 = νks(δ
′
ik − δ′is)−

∑

`ij∈A
vijks +

∑

`ji∈A
vjiks, ∀i, ∀k 6= s, (9.16)

µ =
1

m

∑

`ij∈A

∑

k,s

vijks, (9.17)

vijks ≥ 0, `i,j ∈ A, ks ∈ OD, (9.18)

(̂t,w) = arg min


ρ
∑

ks

(
t̂ks − t̄ks
t̄ks

)2

+
∑

`ij∈A

(
wij − w̄ij
w̄ij

)2

 , (9.19)

wij =
∑

ks

vijkst̂ks
tks

, `ij ∈ A (9.20)

t̂ks ≥ 0, ks ∈ OD, (9.21)

η̂ks1 = ηks1 + n log t̂ks, ks ∈ OD, (9.22)

η̂ks2 = ηks2 + n, ks ∈ OD, (9.23)

νks = arg max (η̂ks1νks − η̂ks2 log Γ (νks)) , ks ∈ OD. (9.24)

Since the system of equations (9.15)-(9.24) contains optimization problems as con-

straints, it can be considered as a hierarchical optimization problem. On the other hand,

due to the presence of several objective functions, it can also be considered as a multi-

objective optimization problem.

In addition to see this problem as a system of equations, we can see it from a different

point of view if we convert any of the constraints (not only those involving optimization
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problems) in objective functions (see Conejo et al. (2005)). For example, minimize the

following objective function in (9.15)

∑

`ij∈A

∫
(∑
k,s

vijks

)
0

Cij(v)dv +
κ

m

∑

`ij∈A

∑

k,s

(vijks−µ)2 (9.25)

subject to (9.16)-(9.24) or minimize

ρ
∑

ks

(
t̂ks − t̄ks
t̄ks

)2

+
∑

`ij∈A0

(
wij − w̄ij
w̄ij

)2

, (9.26)

subject to (9.15)-(9.18) and (9.20)-(9.24).

Note that in both objective functions (9.25) and (9.26) we have a hierarchy associated

with the values of
κ

m
and ρ, respectively.

Since we have many possible alternatives to state the problem, many solution

approaches can be used to solve it. The following efficient algorithm provides one of these

alternatives.

Algorithm (Gamma model multi-level algorithm)

INPUT. The data of the algorithm consists of the network topology, an out-of-date or

virtual OD matrix, and the set of link flow observations.

OUTPUT. The predictions of the OD and link flows given the observed link flows.

1. For each OD pair of the network assess a prior distribution of the form

qks(θ|η)=̇ exp [η1ksθ − η2ks log Γ (θ)] ,

using the out-of-date OD matrix t̄ to determine

ηks1 = m log t̄ks

ηks2 = m.

2. Solve the WMV assignment problem

Minimize
v

Z =
∑

`ij∈A

∫
(∑
k,s

vijks

)
0

Cij(v)dv +
κ

m

∑

`ij∈A

∑

k,s

(vijks−µ)2

subject to

t̄ks(δik − δis) =
∑

`ij∈A
vijks−

∑

`ji∈A
vjiks, ∀i; k 6= s,

µ =
1

m

∑

`ij∈A

∑

k,s

vijks,

vijks ≥ 0 ∀i, j, k, s,
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and calculate the βijks proportions as:

βijks =
vijks
t̄ks

.

3. Solve the optimization problem

Minimize
t̂ks,w

Z = ρ
∑

ks

(
t̂ks − t̄ks
t̄ks

)2

+
∑

`ij∈A0

(
wij − w̄ij
w̄ij

)2

subject to

wij =
∑

ks

βijkst̂ks; `ij ∈ A

t̂ks ≥ 0; k ∈ O, s ∈ D,

to obtain the t̂ks OD flows associated with the observed sample.

4. Obtain the posterior hyperparameters:

η̂ks1 = ηks1 + n log t̂ks

η̂ks2 = ηks2 + n.

5. For each OD solve the optimization problem

Maximize
ν

η̂ks1νks − η̂ks2 log Γ (νks) ; ∀k, s,

to estimate the parameters νks.

6. Compute the actual error:

error =
∑

k∈O,s∈D
(t̄ks − νks)2,

and if the error is less than the tolerance, return the values of νks and wij , and stop.

Otherwise, let t̄ks = νks and continue with Step 1.

9.5 Example of application

To illustrate the above proposed models and methods, we have selected two examples: the

Nguyen-Dupuis example and the real network of Ciudad Real in Spain.
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9.5.1 The Nguyen-Dupuis network

We start with a simple example, so that all the results have a small size to be shown.

Consider the Nguyen-Dupuis network previously used and shown in Figure 8.3. Again,

in this case we consider unidirectional links and, hence, the network has 13 nodes, 19 links

and four OD pairs3. Suppose that we are interested in making inference about the OD

and link flows. So, we decide to apply the Gamma model described in Section 9.3 and

aim at estimating its parameters and predicting the OD flows. To this end, we apply the

Gamma model and the proposed algorithm indicated in section 9.4.

link t0ij qij βij γij

1 -5 7 70 1 4

1 -12 9 56 1 4

4 -5 9 56 1 4

4 -9 12 70 1 4

5 -6 3 42 1 4

5 -9 9 42 1 4

6 -7 5 70 1 4

6 -10 5 28 1 4

7 -8 5 70 1 4

7 -11 9 70 1 4

link t0ij qij βij γij

8 -2 9 70 1 4

9 -10 10 56 1 4

9 -13 9 56 1 4

10-11 6 70 1 4

11-2 9 56 1 4

11-3 8 56 1 4

12-6 7 14 1 4

12-8 14 56 1 4

13-3 11 56 1 4

Table 9.1: Parameters of the Nguyen-Dupuis network in Figure 8.3

In this example we have used the BPR cost function explained in the Appendix of

Chapter 3. The values used for the parameters in the Nguyen-Dupuis network example

are shown in Table 9.1 and κ = 0.000001 has been used.

To illustrate, we have used the prior OD flows shown in Table 9.3 and solved the WMV

problem (3.43)-(3.46) to get the prior link flows, which appear in Table 9.2 column 3.

Keeping the prior values constant, we have assumed as true flows those resulting from

the WMV model (3.43)-(3.46) using as OD the prior t̄ks values multiplied by independent

random uniform numbers U(1.0, 1.3). In other words, we have assumed different true

values in each simulation. This assumption can be observed by comparing columns 2 and

3 in Tables 9.2 and 9.3, and corresponds to having an old OD pair flow matrix and an

increasing flow up to a 30%.

For a given simulation, in Table 9.2 we show: the links, the true link simulated values,

the link priors (identical for all simulations), and the link flows resulting from our algorithm

for four different combinations of sizes (m and n) of virtual prior and real samples.

The set of link observations is the one boldfaced in column two of Table 9.2, associated

3For the sake of simplicity and in order to reduce the size of the resulting tables, we have considered

only four OD pairs, but there is no problem in considering more OD pairs.
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with a subset of four observed links.

Case 1 Case 2 Case 3 Case 4

LINK True Prior m = 100 m = 10 m = 1 m = 1 LS

n = 1 n = 10 n = 10 n = 100

1 -5 71.15 67.27 67.71 69.76 71.59 71.96 72.51

1 -12 57.74 52.73 53.37 55.34 57.02 57.35 58.99

4 -5 25.28 21.74 21.86 22.62 23.19 23.29 25.67

4 -9 66.15 58.26 59.21 61.86 63.96 64.37 66.92

5 -6 64.00 59.25 59.71 61.35 62.72 62.99 64.77

5 -9 32.43 29.76 29.86 31.03 32.05 32.26 33.42

6 -7 57.34 50.95 51.53 53.92 55.89 56.27 58.38

6 -10 20.89 21.03 21.02 20.87 20.78 20.77 20.82

7 -8 23.43 21.74 21.86 22.62 23.19 23.29 23.35

7 -11 33.92 29.21 29.67 31.30 32.70 32.98 35.03

8 -2 66.93 61.74 62.39 64.51 66.26 66.60 67.90

9 -10 43.14 38.26 38.70 40.67 42.26 42.56 44.18

9 -13 55.44 49.76 50.37 52.22 53.76 54.06 56.16

10-11 64.03 59.28 59.71 61.54 63.04 63.33 65.00

11-2 42.87 38.26 38.70 40.67 42.26 42.56 44.14

11-3 55.08 50.24 50.69 52.18 53.48 53.75 55.89

12-6 14.23 12.73 12.84 13.45 13.95 14.05 14.44

12-8 43.51 40.00 40.53 41.89 43.07 43.31 44.55

13-3 55.44 49.76 50.37 52.22 53.76 54.06 56.16

Table 9.2: True, prior and resulting link flows when the proposed algorithm is used

for four different cases of relative weight of the prior and the sample with respect to

information. The boldfaced values corresponds to the observed link flows

To illustrate the role played by the prior and the observed sample in terms of infor-

mation, four different cases have been studied (see Tables 9.2 and 9.3):

Case 1. m = 100 and n = 1: A strongly informative prior and a weak sample. As

expected, the mean flow estimates are very close to the prior mean flow estimates,

due to the high value of m with respect to n. The observed flows are a little far from

their estimated values (the estimates are on the prior side).

Case 2. m = 10 and n = 10: Same information in the prior and the sample. As

expected, the estimated mean values are intermediate to prior and observed flows.

Case 3. m = 1 and n = 10: Weak informative prior and a informative sample. The

mean estimated flows are closer to the observed ones than in the previous case.
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Case 1 Case 2 Case 3 Case 4

OD True Prior m = 100 m = 10 m = 1 m = 1 LS

n = 1 n = 10 n = 10 n = 100

1 -2 43.51 40.00 40.53 41.89 43.07 43.31 44.55

1 -3 85.38 80.00 80.55 83.21 85.54 86.01 86.95

4 -2 66.30 60.00 60.56 63.29 65.45 65.86 67.45

4 -3 25.14 20.00 20.51 21.19 21.70 21.80 25.11

Table 9.3: True, prior and resulting νks values (OD mean flow estimates) when the

proposed algorithm for four different cases of relative weight of the prior and the sample

with respect to information. A comparison with an standard Least Squares (LS) method

is provided

Case 4. m = 1 and n = 100: Weak informative prior and strongly informative sample.

The mean estimated flows are much closer to their observed values. In this case, the

sample is given a high relative weight.

The algorithm converged in 5, 7, 8 and 8 iterations for Cases 1 to 4, respectively, which

implies a fast convergence. The computer programs were run on a Dell Optiplex 755

computer with 4 Gb of memory and a processor Intel Core 2 Quad Q6700 (2.66 GHz, 8

MB de cache L2, 1066 MHz FSB). The corresponding cpu times were 1.39, 2.11, 2.37 and

2.56 sec., respectively.

To illustrate the influence of an erroneous prior, we have modified the fictitious sample

by multiplying the flows by a constant coefficient 1.3, and analyzed how the results are

corrected when one observes the sample. The results appear in Table 9.4, where we have

also shown the original prior. Note that the posterior estimates are very close to the

real values, showing the power of the method to correct erroneous priors by means of

informative samples.

OD Prior Mod. prior
Posterior

(m = 1;n = 100)

1 -2 40.00 52.00 45.12

1 -3 80.00 104.00 87.69

4 -2 60.00 78.00 67.63

4 -3 20.00 26.00 25.73

Table 9.4: Modified prior and resulting νks values (OD mean flow estimates) when solving

the gamma model.



182 Chapter 9. A Bayesian Matrix Estimation Model

9.5.1.1 A comparison with other models

In order to compare our method with a standard one, we have used a standard bi-level

procedure based on the Least Squares (LS) method (9.9)-(9.11) and the WMV problem

(3.43)-(3.46)4, and the results appear in the last column of Tables 9.2 and 9.3. As it can be

seen, the point estimates are comparable with those of the proposed method, which in some

cases outperforms the existing methods. Since the estimated link and OD flows are very

similar to those given by other recognized methods, the proposed method can be validated.

However, our Bayesian proposed method permits including prior information, which is

important when sufficient data is not available, as it usually happen when estimating OD

flows.

Since we have assumed the true flow values, we can evaluate the quality of the proposed

method by providing the relative Root Mean Square Errors (RMSEs) of the OD estimates.

A simulation study (100 trials) has been done and the relative RMSEs evaluated. The

results indicate that the Bayesian method is good and equivalent in terms of quality to

that of the LS method (see Table 9.5).

Relative RMSE

OD Bayesian method LS method

1-2 0.02458 0.02034

1-3 0.01812 0.01146

4-2 0.02541 0.01765

4-3 0.08192 0.10471

Table 9.5: Relative RMSE of the OD estimates for the proposed and LS methods.

9.5.2 The Ciudad Real network

In this section we use the Ciudad Real network to illustrate the proposed methods. It

consists of 555 OD pairs, 412 links and 183 nodes, which means the representation of 90%

of the city streets. This network is shown in Figure 9.1, where the subset of observed link

flows appears outlined.

The proposed Gamma model and methods have also been used to predict the Ciudad

Real OD flows and estimate the parameters, using the proposed algorithm described in

section 9.3.4.

As in the previous example, the prior is generated with the sample resulting from

applying the method described in subsection 9.3.3 with κ = 0.000001.

The flows resulting from the WMV problem are also used to calculate the flow pro-

portions matrix βijks, of OD flows tks using link `ij .

4This model can be seen as a simple extension of Yang et al. (1992)’s model explained in Section 4.3.
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Figure 9.1: The Ciudad Real network showing the link count location and the origin-

destination nodes.

For calculating the posterior hyperparameters and the OD and link flows we have

used the proposed algorithm. Figure 9.2 shows some of the prior and resulting ν̂ks values

(OD mean flow estimates) when solving the algorithm for four different cases of relative

weight of the prior and the sample with respect to information. In addition, the results

are compared with the Bayesian Network BN-WMV method proposed in Castillo et al.

(2008g).

An analysis of the results (see Table 9.6 and Figure 9.2) leads to the fact that they are

not very far from each other, but the prior OD matrix seems to have more weight in the

Gamma models.

As expected, when a strong informative prior is supposed (m = 100 and n = 1), the

resulting flows are very similar to the prior ones.

When a weak informative prior is supposed (m = 1 and n = 100 and also m = 1
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Figure 9.2: Some OD flows calculated using the Bayesian network and the Gamma

Bayesian methods.

and n = 10), the resulting flows are usually closer to those predicted using the BN-WMV

method. Note that in this last case, the predictions, using both weight coefficients, are

very similar. This suggests that for large networks, the relation m/n need not be bigger

than 1/10. Note also that the estimated flows using m = 10 and n = 10, as expected, are

values which are intermediate to the prior and those predicted using m = 1 and n = 100.

In summary, an analysis of Figure 9.2 and Table 9.6 leads to the same conclusions as

those in the simple example of the previous section. Even though, in this figure only a

fraction of the results are shown, due to space limitations, the conclusions are valid for all

of them. In addition, since the predicted flows are similar to those corresponding to the

LS method, they seem to be a satisfactory estimation of the traffic flows.

The computation times required to solve Problems (3.43)-(3.46) and (9.9)-(9.11) on

the indicated computer (see the Nguyen-Dupuis example) were around 400 seconds and

0.03 seconds for this network, while the computational times to solve Problem (9.14) was

negligible (GAMS reports zero time, which means a time smaller than 0.01 sec.).
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LINK True Prior
m = 100 m = 10 m = 1 m = 1

LS BN-WMV
n = 1 n = 10 n = 10 n = 100

1 -65 239.70 176.33 182.58 203.03 217.35 219.97 215.98 236.62
2 -10 63.21 64.90 64.00 62.08 63.86 64.21 61.79 62.84
7 -106 21.73 19.80 21.28 21.92 22.42 22.53 21.07 21.66
9 -19 41.49 37.80 39.31 40.35 41.24 41.42 39.95 41.34
9 -116 39.51 37.80 39.31 41.15 43.34 43.85 42.44 39.44
16 -96 257.79 223.80 222.85 231.01 238.06 239.55 240.05 254.47
24 -168 11.34 10.80 11.30 11.54 11.76 11.81 11.32 11.32
25 -42 12.20 10.80 11.79 12.24 12.63 12.70 11.73 12.15
31 -73 104.03 97.20 99.71 94.23 103.37 103.71 101.28 106.30
31 -153 197.67 194.25 191.54 183.11 183.57 185.30 184.02 193.17
32 -157 81.64 54.33 60.85 65.09 68.42 69.06 62.90 82.15
34 -32 27.55 27.00 27.50 27.73 27.91 27.95 27.46 27.53
45 -27 584.36 559.32 563.79 567.15 570.00 570.86 566.17 575.12
46 -39 624.47 516.60 522.04 545.38 566.00 570.21 565.75 620.11
54 -55 248.49 208.69 212.37 220.73 227.59 229.86 228.36 243.18
56 -177 71.54 68.51 67.57 71.33 73.89 73.67 72.77 75.13
58 -29 230.60 212.47 211.08 214.20 219.23 220.30 217.94 229.43
66 -67 253.99 222.15 226.43 236.72 246.69 248.78 245.31 253.42
67 -82 42.86 9.75 10.93 15.92 22.76 24.39 23.25 42.24
90 -87 154.13 136.78 138.47 142.54 144.77 145.40 143.86 152.33
98 -5 112.42 87.16 87.10 91.67 98.06 99.60 98.29 114.04

106 -172 68.04 146.83 134.40 116.73 90.44 86.50 82.62 66.75
107 -102 193.78 183.60 187.13 189.72 193.72 194.56 191.82 193.24
112 -96 148.90 153.76 155.03 151.89 151.30 151.36 148.39 146.19
115 -118 67.34 54.00 55.08 59.23 62.97 63.76 62.79 66.80
116 -84 31.99 16.20 16.76 20.21 23.65 24.40 23.99 32.46
126 -7 149.54 80.26 93.70 108.40 128.91 132.28 128.80 151.62
130 -11 64.74 55.80 56.85 59.82 62.42 62.95 62.02 64.38
131 -104 299.07 277.20 279.81 285.31 290.00 290.94 288.56 297.66
134 -173 184.63 129.35 135.65 147.31 153.88 155.54 151.19 191.56
142 -127 340.36 342.85 344.44 342.58 340.71 340.39 340.16 335.23
143 -144 126.49 68.12 73.87 82.00 97.10 100.86 96.37 130.22
146 -80 110.37 97.20 98.81 104.23 108.82 109.70 108.58 109.83
158 -85 322.37 290.31 294.32 312.59 323.93 324.18 319.83 315.91
161 -170 131.46 113.77 115.44 117.12 118.40 120.61 119.89 132.42
168 -24 252.87 228.60 231.78 241.37 249.77 251.29 250.11 251.89
169 -168 30.25 14.73 17.92 23.43 27.20 28.13 25.55 30.49
172 -173 86.49 58.61 63.67 69.73 73.16 74.31 70.46 86.89
178 -180 27.16 21.60 22.14 24.12 25.91 26.28 25.83 26.94

Table 9.6: Observed, prior and resulting link flows when the proposed algorithm is used

for four different cases of relative weight of the prior and the sample with respect to

information. The two last columns correspond with the results using the standard LS

bi-level and BN-WMV approaches, respectively.
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Appendix

A Notation

βij parameter of the BPR function.

βijks proportion of trips in the OD pair ks using link `ij .

γij parameter of the BPR function.

Γ(·) Gamma function.

δ′ij Kronecker delta.

δksijr element of the link-route-OD incidence matrix.

η prior hyperparameters.

η̂ posterior hyperparameters.

η1 first component of the prior hyperparameters η.

η2 second component of the prior hyperparameters η.

η̂1 first component of the posterior hyperparameters η̂.

η̂2 second component of the posterior hyperparameters η̂.

`ij link joining nodes i and j.

θ scale parameters of the Gamma function.

θijks scale parameter of the Gamma distribution associated with variable vijks.

θksr scale parameter of the Gamma distribution associated with variable fksr.

κ weighting factor.

λ2
i auxiliary parameter.

µ mean of the vijks variables.

νks scale parameter of the Gamma distribution associated with variable tks.

ρ weighting factor.

A set of links.

cij cost associated with traversing link `ij .

Cij(·) integral of the travel time function associated with link `ij .

D set of destination nodes.

F family of Gamma distributions.

f(θ; η) prior distribution.

f(θ; η|p) posterior distribution.

fksr random number of users choosing route r of OD pair ks.

f(p|θ) likelihood of the data.

g(x; θ) probability density function.

G(θι, 1) Gamma distribution with parameters θι and 1.

i link begin node.

I number of OD pairs.

j link end node.

k origin node.
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ks origin-destination pair from nod k to nodes.

m size of the virtual sample and weight of the prior information.

n sample size.

O set of origin nodes.

OD set of origin-destination pairs.

p generic vector containing the data.

q(θ|η) general conjugate for the Gamma family.

qij parameter of the BPR function.

r route.

R set of routes.

Rks number of routes of OD ks.

s destination node.

t0ij parameter of the BPR function.

tks random number of users traveling through OD pair ks.

t̄ks prior OD flow associated with OD pair ks.

t̂ks OD flows associated with the observed sample.

t̄ks` element of the virtual sample.

Uks multivariate Gamma random variable associated with OD ks.

v vector of link flows vijks.

vijks random number of users using link `ij and traveling the OD ks.

W vector containing the link flows to be estimated.

wij random number of users using link `ij .

w̄ij observed flow through link `ij .

Xι random variable.

x` element of the sample.
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10.1 Introduction

In this chapter we will focus on the observability problem in traffic models. As already

explained in Chapter 5, the observability problem consists of determining if a given subset

of available flow measurements is sufficient to estimate another subset of traffic flows. In

particular, we deal with the problem of link flow estimation based on link flow observations.

In Hu et al. (2009), Castillo et al. (2010), Castillo et al. (2011) and Ng (2012) the problem

of determining the smallest number of counting sensors to be installed to infer the flows

of all other non-equipped links in a traffic network is discussed (see Chapter 5 for more

details on these works). Obtaining the exact number of links required to be equipped

with sensors is relevant because it is well known that redundant information can lead to

incompatibility problems (in the presence of error measurements or model inadequacy).

189
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Ng (2012) proposes a node-based approach to solve the problem whose main advan-

tage is that path enumeration is not required. Furthermore, the author proves that the

conjecture made in Hu et al. (2009) that “there may be an upper bound on the number

of basis links that is governed by the network topology irrespective of the total number

of links in the network” does not hold. Moreover, the upper bound is demonstrated to be

m−n, where m and n are the number of links and non-centroid nodes, respectively, which

is dependent on the total number of links and nodes but not on the network topology.

Therefore, the problem raised by Ng (2012) is:

“Given that only link flow information is permitted, what is the minimum num-

ber of links to be equipped with sensors in order to have full link observability

(knowledge of all link flows)?”

Contrary, in this chapter we answer the following question:

“If we relax the limitation of link flow information, does a better bound for

the minimum number of links to be equipped with sensors in order to get full

observability of link flows exist?”

In this chapter we demonstrate that:

1. The upper bound of the number of counting sensors to be installed to infer the flows

of all other non-equipped links proposed by Ng (2012) can be improved if partial

path information (a subset of linearly independent paths) is used.

2. The approaches of Hu et al. (2009), Castillo et al. (2010) and Castillo et al. (2011)

can be improved to work without enumeration of all paths. In fact, the number of

required paths is low and bounded by the upper bound given by Ng (2012).

3. The exact number of links to be equipped with sensors for the inference of all link

flows can be obtained only from path information and this number, which is known

to be the rank of the link-path incidence matrix (see Hu et al. (2009)), can be more

than 16% less than the m− n bound.

The chapter is structured as follows. In Section 10.2 we discuss the node-based ap-

proach and comment on its main disadvantages. In Section 10.3 we introduce some impor-

tant concepts of linear algebra, such as cones and dual cones, that are needed to understand

the following sections. In Section 10.4 we deal with the path-based approach. In Section

10.5 the problem of obtaining non-basis link flows in terms of basis link flows is solved for

the path-based approach. In Section 10.6 we provide an algorithm to obtain a minimum

set of linearly independent paths. Finally, in Section 10.7 we give some recommendations

for the observability problem.
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10.2 The node-based approach

Ng (2012) in his node-based approach considers as the only constraints to be satisfied by

the link flows, the flow conservation equations at the non-centroid nodes

Aw = 0, (10.1)

where A is the modified node-link incidence matrix of dimension n×m, n is the number

of non-centroid nodes (ordinary nodes), m is the number of links and w is the matrix of

all link flows.

We note that the set of solutions of (10.1) is a linear space:

w = Kρ, (10.2)

where K is a matrix of column vectors (the basis of the linear space) and ρ is a column

vector of real numbers (the coefficients of the linear combinations). Unfortunately, this

set of flow solutions includes negative flows. Thus, we need to consider the non-negativity

of link flows, which is crucial1. In fact, Equation (10.1) must be replaced by the system

of equalities and inequalities

Aw = 0, w ≥ 0. (10.3)

The set of solutions of (10.3) is a polyhedral convex cone, which contains only non-

negative link flows.

As it will be seen in Section 10.3, the cone definition differs from the definition of linear

space only in the non-negativity of the coefficients involved in the linear combinations.

Example 8 (The parallel network) Consider the parallel network used in Hu et al.

(2009) and Ng (2012) and reproduced in Figure 5.1. We recall that this network has four

centroid nodes {1, 2, 8, 9} and five non-centroid nodes {3, 4, 5, 6, 7}.
In this case considering the flow balance at each of the regular nodes, the system (10.1)

becomes




1010−1−1 0 0 0 0 0 0 0 0

0101 0 0−1−1 0 0 0 0 0 0

0000 1 0 1 0−1−1 0 0 0 0

0000 0 1 0 0 1 0−1−1 0 0

0000 0 0 0 1 0 1 0 0−1−1







w1
w2
w3
w4
w5
w6
w7
w8
w9
w10
w11
w12
w13
w14




=




0
0
0
0
0


 (10.4)

1This condition needs to be included explicitly in the mathematical flow model not only because link

flows must be non-negative, but in order to avoid negative flows that can arise if some errors in data or

model imprecisions exist.
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with solution (see Castillo et al. (2000)) including negative flows, which have no sense:

w = Kρ =




−1 0 −1 0 1 1 1 0 0
0 −1 1 0 −1 0 0 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 −1 1 1 0 0 0 0
0 0 0 −1 0 1 1 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 1 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1







ρ1

ρ2

...

ρ9



, (10.5)

where K is a matrix and ρ is a column vector of arbitrary real numbers (coefficients of

the linear combinations).

10.3 Some algebraic required background

In order to understand the mathematical derivations in this paper some mathematical

background is needed. In particular the concepts of cone, edges of a cone and dual cone

are relevant. Important applications of cones and dual cones can be seen in Castillo and

Jubete (2004) and Castillo et al. (2002).

Similar to linear spaces, which are sets of vectors generated by linear combinations

(with real coefficients) of basis vectors, we can define cones, which are non-negative linear

combinations of basis vectors. The reason for limiting the coefficients to be non-negative

is that the linear coefficients here are link or route flows and they cannot be negative.

This explains that the set of feasible link flows is given by (10.3) and not by (10.1).

The role played by a basis, as a minimal subset of vectors able to generate all vectors

in a linear space is played by the set of edges in a cone, which is a minimal subset of

vectors able to generate all vectors in a cone (using non-negative linear combinations).

Thus, knowing the edges of a cone is as important as knowing a basis in a linear space.

Definition 7 (Polyhedral convex cone) Given a set of vectors {m1,m2, . . . ,mr} the

set of all vectors that can be obtained from this set by non-negative linear combinations of

them is called the polyhedral convex cone generated by this set of vectors. We denote as

Mπ to the cone generated by the columns of matrix M. We will use π to refer to non-

negative real numbers used in the non-negative linear combinations to differentiate them

from the real numbers ρ used in linear spaces.

It is interesting to know that any linear subspace is a cone, but not every cone is a

linear subspace (see Castillo et al. (1999) or Castillo et al. (2000)).
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Definition 8 (Dual or polar cone of a given cone) Given a cone Mπ, the set of vec-

tors defined as

{u ∈ En|u · v ≤ 0;∀v ∈Mπ}, (10.6)

that is, the dual cone is the set of vectors of the Euclidean space En of dimension n such

that their dot products with all vectors of the cone Mπ are non-positive.

We indicate that the dual cone is an extension of the concept of orthogonal linear

subspace to a given linear subspace, because if Mπ is a linear subspace, its dual cone is

its orthogonal set (linear subspace).

To find the set of all solutions of the system of Equations (10.3) it is sufficient to realize

that the system of these two equations can be written as2

Aw = (A| −A| − I)Tw ≤ 0, (10.7)

which expresses that w is the dual cone of the cone generated by the rows of the partitioned

matrix A = (A| −A| − I)T , where I is the identity matrix.

To find this dual cone defined in (10.3), which is the solution of the system (10.3), we

can use the techniques described in Castillo and Jubete (2004) (the Γ-algorithm) to obtain

w =
r∑

i=1

rihi = Hr, (10.8)

where {hi; i = 1, 2, . . . , r} is the set of cone generators, that are associated with the set of

all paths, {ri; i = 1, 2, . . . , r} is the set of all path (non-negative) flows and r is the column

matrix of all non-negative path flows.

Definition 9 (Path) A path is a set of links that satisfy the following conditions3:

1. One of the links starts at one centroid node.

2. One of the links ends at one centroid node.

3. The set of links is connected (with the exception of the first and last links all other

links share only one node with other links in the path).

Definition 10 (Path vector) A path vector is a vector of m components which has all

zero elements but those associated with the links of a given path, that are ones.

The reason to make these elements equal to one is that we are interested in the coeffi-

cients ri in (10.8) to be the path flows.

2The A and −A matrices arise because we have replaced the equation Aw = 0 by the two inequations

Aw ≤ 0 and Aw ≥ 0.
3We exclude paths with cycles, because they are not very common and distort the problem. However,

this is not a limitation of the proposed methods and has not a practical relevance.
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This means that one link must start at a centroid, one link must end at a centroid and

all other links must be connected (the origin node of a link must coincide with the end

node of another link).

It is clear that a path vector is a solution of the system (10.3), because all its com-

ponents are non-negative ((10.3b) is satisfied) and each node either has no links in the

associated path or exactly two links (one entering the node and one exiting the node),

which implies that (10.3a) holds.

It is initially surprising to see that the set of generators of the cone (cone edges) is the

set of all paths, but a deep reflection lead us to the conclusion that it must be that way.

Thus, we can obtain the set of all paths by obtaining the dual cone of the cone generated

by the rows of matrix A. The following theorem proves this important property.

Theorem 16 (Edges of the cone (10.3)) The path vectors are the only vectors in the

cone (10.3) that cannot be obtained by linear convex combinations of any other two vectors,

that is, they are the edges of the cone (10.3).

Proof. Assume that a path p vector is a convex linear combination of other two vectors

u and v in cone (10.3), then we have

p = αu + (1− α)v; 0 < α < 1; α ∈ IR .

If one component of p is null (one), the corresponding components of u and v must be

null (one). This means that u, v and p are the same vectors. Thus, p, u and v must be

edges of the cone.

Example 9 (The parallel network) If we consider the parallel network in Figure 5.1

and the associated system of equations (10.3), we conclude that its general solution for the

link flows is:

w = Hr =




1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0







r1r2r3r4r5r6r7r8r9r10r11r12r13r14r15r16r17r18r19r20r21r22r23r24




, (10.9)
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where each column of matrix H corresponds to one path starting and ending at the centroid

nodes, the row numbers refer to the link numbers in Figure 5.1, and the ri; i = 1, 2, . . . , 24

values of the column matrix r contains the (non-negative) path flows.

Note that the matrix in (10.9) is in fact the link-path incidence matrix considering all

topologically feasible paths. However, it is clear that the subset of link flows generated in

(10.9) is not the same subset of link flows generated in (10.5). Nevertheless, any subset

of link flows of the form (10.9) can be written in the form in (10.5).

10.4 The path-based approach

First of all we indicate that, as in the node approach, we assume static flow, that is, we

assume that the network conditions considered are static.

Equation (10.9) is the model to be used if all topologically possible paths are considered.

However, since not all paths are always considered in real cases, we need to give a precise

indication of which paths are considered and which ones are not.

Once the list of considered paths (a submatrix H0 of H) and the corresponding path

flows (submatrix r0 of r) have been given, the traffic network problem is completely defined.

This means that our set of link flows will be given by the cone

w = H0r0, (10.10)

where H0 and r0 are submatrices of matrices H and r, respectively, and matrix H0 contains

as columns only the actual path vectors (not all feasible paths).

Since Equations (10.3) do not define completely our traffic problem because it does

not necessarily include all paths, we can ask: what are the set of equations defining it? or

in other words, what are the equations of the cone w = H0r0? This set of equations can

be obtained by calculating the dual cone of the cone H0.

Equation (10.9) expresses the link flows in terms of the path flows, which are the

relations used by Hu et al. (2009) and Castillo et al. (2010). However, in order to determine

the minimum set of links to be equipped with sensors, we do not need the whole H0

matrix but a submatrix providing its rank, that by definition must satisfy the constraint

rh = rank(H0) ≤ min (m, r), where m is the number of links and r is the number of paths,

and after the contribution of Ng (2012) we know that rw = rank(H0) ≤ min (m− n, r∗),
where r∗ is the number of linearly independent columns of matrix H0, which proves that

r∗ ≤ m − n independent routes are required to work with the methods proposed by Hu

et al. (2009) and Castillo et al. (2010), but the number of linearly independent routes can

be even less if rh < m− n.

It is important to observe linearly independent link flows, because if we observe linearly

dependent link flows we can have inconsistencies if some errors are present. In other words,

linearly dependent links can be a problem. Thus, it is important to obtain the right upper

bound of links to be observed.
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Figure 10.1: Illustration of the four paths used in the example.

Example 10 (The parallel network revisited) If in the parallel network we consider

only the four paths shown in Figure 10.1 and given by:

{1, 6, 11}, {2, 7, 10, 13}, {4, 8, 14}, {3, 5, 9, 12}

we can write

w = H0r0 =




w1
w2
w3
w4
w5
w6
w7
w8
w9
w10
w11
w12
w13
w14




=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







r1

r2

r3

r4


 , (10.11)

which shows that we need to install only 4 sensors, for example, in links 1, 2, 3 and 4, even

though m = 14, n = 5 and m − n = 9. Thus, the bound rank rh = 4 of matrix H is a

better bound (the exact value) than m−n = 9 and does not depend directly on the network

topology nor on the number of links or nodes of the network. This new bound implies a

saving of 55.56% in the number of required links to be equipped with sensors.

The equations defining this set can be obtained, as indicated above, by obtaining the

dual of the cone (10.11), using the Γ-algorithm described in Castillo and Jubete (2004)
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and Castillo et al. (2002). These equations are:



0 0 −1 0 1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 1




w = 0 (10.12)




1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0


w ≥ 0. (10.13)

Thus, (10.11) and (10.12)-(10.13) are equivalent and both define the set of feasible link

flows, the first by an explicit expression and the last two by its equations.

Equation (10.12) simply expresses that the flows in all links of the same four paths

(see Figure 10.1) must be the same, and condition (10.13) forces the flows of links 1 to

4 to be non-negative. Finally, note that (10.12)-(10.13) together force all link flows to be

non-negative. Of course, these very restrictive conditions refer only to the very special

case of this example.

The case in this example has been selected on purpose to show that the number of

required links can be much smaller (in percentage) than the one resulting from the m− n
bound. However, it is clear that in real large networks the difference will not be so large.

We have selected a case in which the number of paths is smaller than the number

of links, because the example needs to be simple to be illustrated. However, finding an

example in a real case with many more paths than links is very easy, because the number

of linearly independent paths is very large to choose from.

The following example shows that the bound obtained when using the proposed model

is far from the bound obtained from the node-based approach.

Example 11 (The Ciudad Real and Cuenca networks) In order to see the rele-

vance of path-based upper bound compared with the node-based bound, in Table 10.1 we

show the characteristics of the Ciudad Real and Cuenca networks (see Figures 7.2 and

10.2, respectively) and the resulting bounds.

As you can see, the savings can reach important values such as more than 16% in the

number of required links to be equipped with sensors, and more than 80% in the number of

paths to be enumerated. For very large networks this savings can increase further.

Note that even though the number of paths selected is large4 (2190 for Cuenca and

4The Ciudad Real and Cuenca routes were selected using the Castillo et al. model explained in Section

3.2.1 which does not require path enumeration.
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Network
links

nodes
non-centroid

paths rank(H) m− n
% savings in

(m) nodes (n) link counts path enumeration

Cuenca 672 232 164 2190 422 508 16.92% 80.73%

Ciudad Real 423 183 133 1141 248 290 14.48% 78.26%

Table 10.1: Illustration of the improvement of the path-based with respect to the node-

based bounds and associated savings.

1141 for Ciudad Real), the number of linearly independent paths is small (422 and 248,

respectively).

Figure 10.2: Cuenca traffic network used in the Example of application.

 Fuente documento base: Google maps
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10.5 Obtaining non-basis in terms of basis link flows

Ng (2012) provides a formula to obtain non-basis in terms of basis link flows, as follows.

After proving that the rank of matrix A is n, he partitions matrix A and writes (10.1) as

(B|N)

(
wB

wN

)
= 0, (10.14)

where B is a regular matrix of dimension n×n and N is a matrix of dimensions n×(m−n).

Next, from (10.14) he gets

wB = −B−1NwN , (10.15)

which is the expression relating non-basis wB and basis wN link flows.

However, there is another alternative to obtain this relation based on partitioning the

link-path incidence matrix H0 in (10.10), that can be written as

w =

(
w′B
w′N

)
=

(
C D

E F

)(
r1

r2

)
= H0r0, (10.16)

where w′B and w′N are the non-basis and basis link flow vectors with dimensions n′ × 1

and (m − n′) × 1, respectively, H0 is the matrix in (10.10), E is an invertible matrix of

dimension (m − n′) × (m − n′), C, D and F are matrices of dimensions n′ × (m − n′),
n′× (r−m+ n′) and (m− n′)× (r−m+ n′), respectively, and r is the number of routes.

We note that in principle, the basis flows wN and w′N need not be equal, and conse-

quently, non-basis flows wB and w′B need not be equal either.

Since E is invertible, we can use a result from Castillo et al. (2010) (see Theorem 13

in Chapter 5) to obtain

CE−1F = D, (10.17)

and using (10.16) and (10.17) we get

w′B = Cr1 + Dr2

= Cr1 + CE−1Fr2

= C
(
E−1Er1 + E−1Fr2

)

= CE−1 (Er1 + Fr2)

= CE−1w′N , (10.18)

which is the new relation between the non-basis w′B and the basis flows w′N .

The question we can raise is: can the same relations be obtained from both methods?

If not, under what conditions does this equivalence hold? The following theorem answers

this question.

Theorem 17 (Equivalence of node and path-based approaches) If wB = w′B,

then (10.15) and (10.18) are equivalent.
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Proof. If wB = w′B, then wN = w′N and n = n′. As both wN and w′N form a basis, wB

and w′B can be determined uniquely from them through equations (10.15) and (10.18),

respectively. In other words, matrices B−1N and CE−1 are unique. Therefore, taking

into account that wB = w′B, wN = w′N it follows that

B−1N = −CE−1, (10.19)

where (10.19) proves that the solutions in (10.15) and (10.18) are the same.

Corollary 2 (Reconstructing information) Matrices −CE−1, E and F permit recon-

structing matrices C and D.

Proof.

From Equations (10.17) and (10.19) we get

C = −B−1NE = CE−1E (10.20)

D = CE−1F. (10.21)

Corollary 2 is an interesting result with immediate practical applications because it

allows saving memory when storing all paths. This means that matrices C and D need

not be stored if −CE−1, E and F are saved.

The following example illustrates the equivalence of the node and the path approaches

to obtain non-basis link flows in terms of basis link flows.

Example 12 (The parallel network with all paths) If we partition matrix A in

(10.4) and w as follows

Aw =
(

B N
)( wB

wN

)
, (10.22)

where

wB = (w6, w8, w10, w12, w14)′

wN = (w1, w2, w3, w4, w5, w7, w9, w11, w13)′

B =




−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

1 0 0 −1 0

0 1 1 0 −1




; N =




1 0 1 0 −1 0 0 0 0

0 1 0 1 0 −1 0 0 0

0 0 0 0 1 1 −1 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 0 0 −1
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we get the transformation wB = −B−1NwN , that is,




w6

w8

w10

w12

w14


 =




1 0 1 0 −1 0 0 0 0

0 1 0 1 0 −1 0 0 0

0 0 0 0 1 1 −1 0 0

1 0 1 0 −1 0 1 −1 0

0 1 0 1 1 0 −1 0 −1







w1

w2

w3

w4

w5

w7

w9

w11

w13




. (10.23)

In this case, the following set of nine link flows {w1, w2, w3, w4, w5, w7, w9, w11, w13}
are sufficient to calculate all other links {w6, w8, w10, w12, w14}.

If, alternatively, we partition matrix H in (10.9) as in (10.16) with

H =

(
C D

E F

)
=




1 0 1 0 0 0 0 1 0 | 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 1 | 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0 0 | 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1

1 0 1 0 0 0 1 0 0 | 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1 0 0 0 | 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

−−−−−−−−−|−−−−−−−−−−−−−−−
1 0 0 0 1 0 1 1 0 | 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0 1 | 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0 | 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 | 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1

0 0 0 0 1 0 1 0 0 | 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0 | 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 0 1 0 0 | 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 | 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 | 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1




; (10.24)

r1 = (r1, r2, r3, r4, r5, r7, r9, r13, r19)′ ;

r2 = (r6, r8, r10, r11, r12, r14, r15, r16, r17, r18, r20, r21, r22, r23, r24)′ ;

we get

CE−1 =




1 0 1 0 −1 0 0 0 0

0 1 0 1 0 −1 0 0 0

0 0 0 0 1 1 −1 0 0

1 0 1 0 −1 0 1 −1 0

0 1 0 1 1 0 −1 0 −1




which is exactly the matrix in (10.23).

This means that we do not need the 24 paths. In fact, it is sufficient with the nine

paths {1, 2, 3, 4, 5, 7, 9, 13, 19}.
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We note that we can obtain matrices C and D by multiplying the matrix −B−1N by

E and F, respectively, and then we have not to store those matrices.

Example 13 (The parallel network with only four paths) However, if we use

(10.11) and partition the matrix in this expression as in (10.16) with

E =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 ; C =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




,

where D = F = ∅ and ∅ is the empty matrix, we get the transformation




w5

w6

w7

w8

w9

w10

w11

w12

w13

w14




= CE−1 =




0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1







w1

w2

w3

w4


 ,

which is a transformation different from (10.23). In this case four

link flows {w1, w2, w3, w4} are sufficient to generate all other link flows

{w5, w6, w7, w8, w9, w10, w11, w12, w13, w14}.

10.6 Obtaining a set of independent paths

Since a set of linearly independent paths is all we need to obtain the minimum number of

links to be equipped with sensors to infer all link flows, it is convenient to have a tool to

identify these subsets of linearly independent paths. The following algorithm (see Castillo

et al. (2000)) is such a tool.

The practical relevance of this algorithm is high because it can save a lot of work due

to the fact that the number of linearly independent paths is smaller or equal (normally

far) than the number of links, which is normally much smaller than the number of paths.

In other words, only a very small fraction of paths need to be enumerated, what is very

important for very large networks. In addition, it facilitates the obtention of linearly

independent paths.
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Algorithm 2 (Obtaining a set of linearly independent paths) The algorithm is

as follows:

INITIALIZATION STEP. Let I be the identity matrix of dimension m (the number

of links). Let j = 1 and choose a path vector rj.

REGULAR PROCESS.

1. Step 1. Obtain dot products. Multiply matrix rTj and I to obtain the dot products

t = rTj I of rj by all column vectors of I.

2. Step 2. Choose a pivot. Choose one tp 6= 0. This means that the path vector rj
is linearly independent of the previously selected path vectors.

3. Step 3. Update matrix I. First, divide the pivot column Ip by the pivot value tp
and next, transform the non pivot columns Ik; k 6= p of I by

I∗k = Ik − tkI∗p; k 6= p,

where I∗k and I∗p refer to the transformed columns of Ik and Ip, respectively. Note

that if tp = 0 then we have I∗k = Ik.

4. Step 4. Remove pivot column. Remove the pivot column Ip from matrix I.

5. Step 5. Choose a path vector linearly independent of the previously

selected paths. To choose a path vector rj+1 linearly independent of the previous

ones, that is, such that rj+1 · I1 6= 0 we analyze the non-null elements of column

matrix I1 and select path vectors with some unit elements (corresponding to the path

links) in the same positions5. If this path vector does not exist, choose the following

column of I until a path vector rj+1 and one index p such that tp = rj+1 · I1 6= 0 is

found. If there is no tp 6= 0, this means that the path rj is a linear combination of all

previously selected path vectors. Otherwise, it is linearly independent of them. If no

rj+1 can be found after using all columns of matrix I, stop the process because your

list of j already selected path vectors is the maximum number of paths satisfying this

linear independence property. Otherwise, let j=j+1 and continue with Step 1.

The complexity and the number and type of operations of this algorithm are exactly the

same as in the Gaussian elimination, which has been studied for very long. This implies

that the method can be applied to very large networks. Even more, we have no numerical

problems because we have integer numbers as coefficients and almost all times ones, zeroes

and minus ones (see Table 10.2).

5The ones (links in the path) must be selected such that the dot product be different from zero.
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Figure 10.3: One set of 9 linearly independent path vectors of the parallel highway network

of Hu et al. (2009).

Example 14 (Linearly independent paths (parallel example)) To illustrate our

algorithm, we apply it to the parallel network. We have chosen the set of path vectors

{1, 2, 3, 4, 5, 7, 9, 13, 19},

which is shown in Figure 10.3. In Table 10.2 we show the evolution of matrix I and the dot

products as the algorithm advances. In the first column of Iteration 1 we have indicated

the order used for the links.

In Figure 10.4 we show what happens at Iteration 9, where the last path (path vector

9) is selected based on its pivot column (boldfaced). The links associated with the non-null

elements of I5 (fifth column of I) have been emphasized in Figure 10.4(a). To facilitate

the selection of the last linearly independent path vector 9, the links associated with value

1 appear in red and with a + sign, while the links associated with a value −1 appear in

green and a − sign. In order to have a path vector which dot product with the column

vector Ii is non-null, we must have a path passing through links having the + or − signs

but not both. One such a path is the path vector {2, 8, 13}, but other path vectors are also

valid, such as {4, 8, 13}, {4, 7, 10, 13} and {2, 7, 10, 13}. This illustrates how the algorithm

facilitates the linearly independent path selection.

Finally, the graphs (b) to (f) in Figure 10.4 illustrate columns one to five of matrix

I in the final iteration. It is easy to see that it is impossible to find new paths providing

a non-null dot product. If we focus on graphs (b) and (c) we can see that any path must

contain links 1, 2, 3 or 4. In addition, if it contains 1 or 3, it must contain links 5 or 6,

and if it contains 2 or 4 must contain links 7 or 8. Note that under these constraints, it is

impossible to satisfy the condition of a non-null dot product with those columns. A similar

analysis can be made with graphs (d) to (f), concluding that no path linearly independent

with the previously selected ones can be found.
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Figure 10.4: Illustration of how to select a new path vector in iteration 9 based on its

pivot column (boldfaced).

10.7 Some recommendations

Based on the analysis of this chapter, we can make the following recommendations:

1. To determine the minimum number of counting sensors to be installed to infer the

flows of all other non-equipped links in a traffic network we must look not for all

paths but for linearly independent paths, considering that the number of linearly

independent paths is at most m− n.

2. To obtain the transformation providing the dependent link flows in terms of the

independent link flows we can use two alternatives: (a) the node-based approach or

(b) the path-based approach. The first is more conservative but simpler, but only

the second provides a minimum sensor solution if rW < m− n and most times it is

smaller.
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Iteration 1
r1v1

1v
1
2v

1
3v

1
4v

1
5v

1
6v

1
7v

1
8v

1
9v

1
10v

1
11v

1
12v

1
13v

1
14

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
t1 1 0 0 0 0 1 0 0 0 0 0 1 0 0

Iteration 2
r2v2

1v
2
2v

2
3v

2
4v

2
5v

2
6v

2
7v

2
8v

2
9v

2
10v

2
11v

2
12v

2
13

0 0 0 0 0 -1 0 0 0 0 0 -1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1
t2 1 0 0 0 0 0 1 0 0 0 0 0 1

Iteration 3
r3v3

1v
3
2v

3
3v

3
4v

3
5v

3
6v

3
7v

3
8v

3
9v

3
10v

3
11v

3
12

0 0 0 0 -1 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 -1 0 0 0 0 0 -1
1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1
t3 1 0 0 1 0 0 0 0 0 1 0 0

Iteration 4
r4v4

1v
4
2v

4
3v

4
4v

4
5v

4
6v

4
7v

4
8v

4
9v

4
10v

4
11

0 0 0 -1 0 0 0 0 0 -1 0 0
0 0 0 0 0 -1 0 0 0 0 0 -1
0 0 0 -1 0 0 0 0 0 -1 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1
t4 1 0 0 0 1 0 0 0 0 0 1

Iteration 5
r5v5

1v
5
2v

5
3v

5
4v

5
5v

5
6v

5
7v

5
8v

5
9v

5
10

1 0 -1 0 0 0 0 0 -1 0 0
0 0 0 0 -1 0 0 0 0 0 -1
0 0 -1 0 0 0 0 0 -1 0 0
0 0 0 0 -1 0 0 0 0 0 -1
1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1
t5 1 -1 0 0 0 1 0 -1 0 1

Iteration 6
r6v6

1v
6
2v

6
3v

6
4v

6
5v

6
6v

6
7v

6
8v

6
9

0 -1 0 0 0 0 0 -1 0 0
1 0 0 -1 0 0 0 0 0 -1
0 -1 0 0 0 0 0 -1 0 0
0 0 0 -1 0 0 0 0 0 -1
0 1 0 0 0 -1 0 1 0 -1
0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1
t6 0 1 -1 0 1 0 0 0 0

Iteration 7
r7v7

1v
7
2v

7
3v

7
4v

7
5v

7
6v

7
7v

7
8

1 -1 0 0 0 0 -1 0 0
0 0 -1 0 0 0 0 0 -1
0 -1 0 0 0 0 -1 0 0
0 0 -1 0 0 0 0 0 -1
1 1 0 0 -1 0 1 0 -1
0 1 0 0 0 0 0 0 0
0 0 1 0 -1 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
t7 0 0 1 -1 0 1 0 -1

Iteration 8
r8v8

1v
8
2v

8
3v

8
4v

8
5v

8
6v

8
7

1 -1 0 0 0 -1 0 0
0 0 -1 0 0 0 0 -1
0 -1 0 0 0 -1 0 0
0 0 -1 0 0 0 0 -1
0 1 0 -1 0 1 0 -1
1 1 0 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 -1 0 1
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
t8 0 0 0 1 -1 0 0

Iteration 9
r9v9

1v
9
2v

9
3v

9
4v

9
5v

9
6

0 -1 0 0 -1 0 0
1 0 -1 0 0 0 -1
0 -1 0 0 -1 0 0
0 0 -1 0 0 0 -1
0 1 0 -1 1 0 -1
0 1 0 0 0 0 0
0 0 1 -1 0 0 0
1 0 1 0 0 0 0
0 0 0 1 -1 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
1 0 0 0 0 1 0
0 0 0 0 0 0 1
t9 0 0 0 0 1 -1

Final
v1v2v3v4v5

-1 0 0 -1 0
0 -1 0 0 -1
-1 0 0 -1 0
0 -1 0 0 -1
1 0 -1 1 -1
1 0 0 0 0
0 1 -1 0 0
0 1 0 0 0
0 0 1 -1 1
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

Table 10.2: Illustration of the different steps of the algorithm showing the different I

matrices, the dot products and the pivot columns (boldfaced).
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Appendix

A Notation

α auxiliary parameter.

ρ column vector of real numbers.

A modified node-link incidence matrix.

B regular matrix of dimension n× n.

C matrix of dimensions n′ × (m− n′).
D matrix of dimensions n′ × (r −m+ n′).

E invertible matrix of dimension (m− n′)× (m− n′).
En Euclidean space of dimension n.

F matrix of dimensions (m− n′)× (r −m+ n′).

K generic matrix of column vectors.

H matrix of cone generators.

H0 submatrix of matrix H.

hi cone generator vectors.

I identity matrix.

I matrix used in the algorithm.

I∗k transformed column of matrix I.

m number of links.

M generic matrix of column vectors.

mi columns of matrix M.

Mπ cone generated by the columns of matrix M.

n number of non-centroid nodes.

N matrix of dimensions n× (m− n).

n′ number of non-basis link flows.

p path vector.

r number of paths.

r column matrix of path flows.

IR set of real numbers.

r0 submatrix of matrix r.

r1 partition of route flows.

r2 partition of route flows.

rh rank of matrix H0.

ri flow on path i.

r∗ number of linearly independent columns of matrix H0.

t vector of dot products.

tp component of vector t.

u path vector.
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v path vector.

vji column i of iteration j of matrix I in the algorithm.

w vector of link flows.

wB set of non-basis link flows.

w′B set of non-basis link flows.

wN set of basis link flows.

w′N set of basis link flows.
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11.1 Introduction

Most traffic models used in practice are static in nature (see Chapter 3), that is, they are

concerned on total link, OD-pair or path flows during given periods of time (hour, day,

week, etc.).

However, for solving most real traffic problems total flows are not sufficient so that

knowledge of the time evolution of traffic flows is required. Thus, dynamic traffic models

are needed to reproduce the real traffic flow behavior. These models (see, for example,

Zhou and Mahmassani (2006)) aim at predicting how the traffic intensities evolve with

time, given the traffic intensities at the origins. These problems present two components:

(i) the assignment strategy, i.e., how the travelers select their nodes, destinations and

209
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routes (see, for example, Janson (1991), Smith (1979), Friesz et al. (1993), Lo and Szeto

(2002), Ban et al. (2008) or Ran et al. (1996)) and (ii) the network loading, i.e., how traffic

propagates on a transport network and hence governs the network performance in terms

of travel time (see, for example, Hopf (1950) or Friesz et al. (2011)).

The network loading is a process that is used to calculate how flows distribute over

a network with a given route inflow profile for each origin-destination pair. In general,

we can distinguish between two categories: the simulation-based and the analytical-based

approaches. The simulation-based approach emphasizes each individual driver’s behavior

(see Chandler et al. (1958), Gazis et al. (1961) or Wagner et al. (1996)) and thus it implies

a great computational effort. The analytical-based approach concerns the average driver’s

behavior, and is essentially macroscopic. In this group we can mention the following

models: the hydrodynamic, the Merchant-Nemhauser, the cell transmission and the point

and physical queue models (see Chapter 6 for a review on these models).

11.1.1 Overtaking

In the traffic assignment problem travelers compete for space in a network and choose

paths depending on congestion. This problem has been treated in the existing literature

for many years assuming homogeneous users in terms of speed, travel time, etc. However,

recently, the travel time reliability problem has given place to heterogeneous behaviors, in

which different users perceive punctual arrivals from a different perspective. This means

that we can classify users in different class users who choose different routes.

It has been recognized in the existing literature (see Section 3.4) that travelers’ deci-

sions (route choices) are largely influenced by travel time variability and reliability, that

is, they are the two main criteria for route choice.

Another interesting case of heterogeneity that we consider in this paper arises when

we consider overtaking and include classes of users which are prone to overtake, classes

of users who avoid overtaking and intermediate classes (see Svensson (1978), Buric and

Janovsky (2007) and Castillo et al. (submitted)).

Overtaking can only take place when there is a large enough gap in the oncoming traffic.

However, overtaking is not possible under high congestion. Users choose routes that best

satisfy their expectations (overtaking possibilities). Consequently, traffic models must

reflect real situations and, in particular, the impossibility of overtaking under congestion.

Though most of the existing traffic assignment methods consider that the link travel

time for all users is the same and assume the FIFO rule (see Daganzo (1994), Nie and Zhang

(2005) or Castillo et al. (2012)), we introduce the possibility of overtaking. In Chapter

8, we have also included the possibility of overtaking in the static traffic assignment,

analyzed the convenient properties of link travel time functions from the point of view

of overtaking and derived Wardrop type models for traffic assessment with and without

traffic enumeration.
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The main original contribution of this chapter consists of providing for the first time

a dynamic loading network model that includes different classes of users from the point of

view of overtaking. Furthermore, the model used can be considered as a physical-queue

model and, therefore, it takes into account the queue spill back and junction blockage

effects. To illustrate, some examples of applications are given.

The chapter is organized as follows. In Section 11.2, some existing link travel time

functions are discussed and a new function to consider the particular case of overtaking

is selected. In Section 11.3 the proposed model is described by enumerating all used

assumptions. In Section 11.4 the model assumptions are discussed in some detail. Finally,

in Section 11.5 the proposed methods and methodology is illustrated by its application to

a simple network and the Sioux-Falls and the Cuenca network.

11.2 Link travel time functions

In most traffic assignment models, the effect of road capacity on travel times is specified

by means of the so called volume-delay or link travel time functions t(v/c) which express

the travel time of a link as a function of the traffic volume v and its related link capacity

c, as it has been already explained (see Appendix A in Chapter 3 for a review on some

link performance functions).

Most existing traffic models consider that there is no overtaking, that is, that the

FIFO rule holds. In this paper we assume that we have different classes of users who have

different mean velocities and thus, we permit vehicle overtaking.

Since congestion affects overtaking, this effect must be considered in the link travel

time functions of the different users. Overtaking is possible and frequent under free flow

conditions but becomes difficult or impossible under high congestion. However, the as-

sociated difficulties depend on the type of vehicle. For example, motorcycles have less

overtaking difficulties than cars, and cars less than trucks. All these features must be

considered in the mathematical models. From an overtaking point of view, we can con-

sider different classes for bicycles, motorcycles, cars and trucks, but we can also consider

different classes for each of these types of vehicles due to the fact that not all users in the

same class behave in the same manner. However, a high congestion usually produces no

differences among these classes.

In this chapter we will use the travel time function family proposed in Chapter 8. This

volume-delay functions permit producing different travel times for the different classes for

mild congestion, but the same asymptotic behavior when a high congestion is present.

The proposed link travel time function for the α class users is given by:

wα(x) = t(x; t00, β
0, γ0)F (x) + t(x; tα0 , β

α, γα)(1− F (x)), (11.1)

where t(x; tα0 , β
α, γα) is a link travel time function specific for each α class that reproduces

the class user behavior under mild congestion, t(x; t00, β
0, γ0) is a common link travel
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time function for all classes that represents the common asymptotic behavior under high

congestion of all users, F (x) is a cumulative distribution function (cdf), t00, t
α
0 , β

0, βα, γ0 >

2, γα > 2 are constants, and we make the following assumptions

t00 > tα0 > 0; β0 ≥ βα > 0; γ0 ≥ γα > 0. (11.2)

The well-known BPR function has been used in this study because of its simplicity and

its wide spread use. However, as noted by Spiess (1990), it has some inherent drawbacks.

In particular, the BPR function can be improved under congested traffic flow conditions,

i.e., when the ratio v/c is higher than one. Spiess (1990) proposed the following conical

link travel time function to overcome some of the BPR shortcomings:

fSpiess(x; ρ, β) = 2 +
√
ρ2(1− x)2 + β2 − ρ(1− x)− β, (11.3)

where β is given as

β =
2ρ− 1

2ρ− 2

and ρ is any number larger than 1.

The versatility of the proposed function in (11.1) permits working with any desired

link travel time function and does not limit to BPR functions. Therefore, the link travel

time function can be chosen depending on the nature of the problem under study. In

the remaining of the paper the BPR function will be utilized with the exception of one

example in which the Spiess function has been used (section 11.5.2).

The rationale behind (11.1) is that for each congestion ratio x = v/c, the travel time

is a linear convex combination of two travel time functions but the weights change with x

from 0 to 1 as x increases. Using the same t00, β
0 and γ0 values and different tα0 , β

α and γα

parameters, we obtain travel time functions that practically coincide for high congestion

levels (in fact they converge to the BPR0 function t(x; t00, β
0, γ0)).

To illustrate the different concepts and methods introduced in this paper, we consider

a traffic network (N ,A) where A is a set of links and N is a set of nodes, from which one

can distinguish two subsets O and D, of origins and destinations, respectively, and we use

the simple illustrative example shown in Figure 11.1. It consists of 6 nodes, 9 links and 9

paths as indicated in Table 11.1, where its three columns contain the OD-pairs defined by

their origin and destination nodes, the path number and the path links, respectively.

In the example, we have used three class users: cars, trucks and motorbikes. Figure 11.2

shows the link travel time functions for three selected links: 6, 7 and 8. The examples have

been obtained for normal F (x). Note that cars approach the truck congestion asymptote

before than motorbikes1.

1For illustrative purposes, we have assumed 30% of truck with respect to the cars. This high percentage

has been selected in order to be able to show the effect of congestion and the class differences in the figures.
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Figure 11.1: The elementary example network used for illustrative purposes, showing the

nodes and links.

OD Path number (r) Arcs

1-4 1 1 5 8

1-4 2 2 8

1-4 3 3 9

1-4 4 3 6 8

1-4 5 4 7 9

1-4 6 4 7 6 8

2-4 7 5 8

3-4 8 7 6 8

3-4 9 7 9

Table 11.1: Set of 3 OD–pairs and 9 paths (defined by its end nodes and links) in the

elementary example.

11.3 Proposed model

The proposed model is based on the following assumptions:

1. α classes. We consider different α classes of users with a different overtaking

behavior.

2. Path origin flow intensity functions. Since we face a dynamic loading problem,

we assume that routes have been already selected by users, that is, we assume that

the route flows at their origins are given. In our model we propose path origin flow
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Figure 11.2: Some illustrative examples of the proposed link travel time function based

on BPR functions used in our example to follow.

intensity functions of the form

hαr (t) =

nr∑

l=1

hαrlq
α(t; η̄αrl), (11.4)

where hαr (t) is the inflow traffic intensity (veh/hour) associated with path r and class

user α at its origin and time t, nr is the number of function components, qα(t; η̄αrl)
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Figure 11.3: Illustrative example. Path flow intensities at the path origins as a function

of time for the illustrative example, showing that trucks start trips earlier than cars and

motorbikes in the morning, and later in the afternoon.

is a parametric family of probability density functions2, with vector parameter η̄αrl,

and hαrl > 0 (component total flow) are the coefficients of the linear combination.

A simple example results if two normal densities are considered for each path (see

Figure 11.3).

We define the cumulative inflow rate Hα
r (t) of class α at the origin of path r at time

t as

Hα
r (t) =

t∫

0

hαr (t)dt =

nr∑

l=1

hαrl

t∫

0

qα(t; η̄αrl)dt

=

nr∑

l=1

hαrlQ
α(t; η̄αrl), (11.5)

where Qα(t; η̄αrl) are cumulative distribution functions (cdf).

2Note that we have used probability density functions in order to have a total flow hαrl associated with

each component.
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3. FIFO rule. Users of the same class α satisfy the FIFO rule, that is, there is no

overtaking among users of the same class.

4. Congestion effect. We consider the congestion effect at the adequate time and

location, i.e. our model evaluates the congestion effect taking into account the

interaction of flows of all paths and their coincidence at different times and locations.

However, since we have several class users, the total link congestion ratio sij(t) is

obtained by adding the contributions to total congestion of all class users, that is,

sv(t) =
∑

α

xαv (t)

xαmaxij

, (11.6)

where xαij(t) is the number of vehicles of class α on link `ij at time t and xαmaxij is the

number of vehicles on link `ij leading to a travel time tα0ij(1 +βij) and, as indicated,

sij(t) is a sum of dimensionless ratios measuring the degree of congestion for all class

users at link `ij .

The link travel time function for the α class of users is assumed to be of the form:

Dα
ij(t) = wα(sv(t)) + tα0ijδ

α
ij max
`ji′∈S(`ij)

(sji′(t))
γ , (11.7)

where wα(·) is given in (11.1), δαij is a parameter used to take into account the

congestion ahead of the link `ij being considered, tα0ij and γ are the free travel time,

and saturation parameters, respectively, associated with link `ij and class α, S(`ij)

is the set of all links downstream link `ij in all its routes. All these parameters must

be calibrated based on real data.

We note that δαij << βαij (see (11.1)) because the influence of the degrees of saturation

of downstream links on the `ij link travel time must be smaller than the influence of

its own degree of saturation. Note that the term δαij max`ji′∈S(`ij) (sji′(t))
γ measures

the saturation effect in link `ij due to downstream congestion for class α users.

The number of vehicles on link `ij at time t that appears in (11.6) and used in (11.7)

can be calculated by:

xαij(t) = Eαij(t
αout
ij (t))− Eαij(t) ∀`ij ,∀t, α, (11.8)

where tαoutij (t) is the link exit time of a user of class α who enters link `ij at time t,

and the accumulated number of vehicles that has left the link `ij at time t is given

by

Eαij(t) =
∑

r

Hα
r

(
θrαij (t)

)
, (11.9)

where θrαij (t) is the departure time from the origin of path r of a user of class α who

exits link `ij at time t.
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5. Continuous model. We deal with a continuous model for real traffic networks,

which seems more convenient than a discretized version of the real continuous prob-

lem. To this end, we approximate these functions by monotone cubic splines whose

number of parameters remains finite and small.

6. Path link exit time functions. Path link exit time functions θrαij (t) are evaluated

based on link exit-entry time functions ταij(t).

7. Approximation of the ταij(t) function by monotone cubic splines. We con-

sider a set of discrete times tk; k = 1, 2, . . . ,m, which are used to approximate the

continuous link entry-exit time functions ταij(t) by monotone cubic splines. There

are several reasons to use monotone spline functions to approximate the link travel

time function:

(a) To obtain a continuous link travel time approximation instead of a discretized

function.

(b) To guarantee the FIFO rule for users of the same α class. The monotone spline

functions guarantee that if the basic points reveal an increasing trend, the whole

spline is increasing, that is, the FIFO rule holds for all interpolated points (see

the Fritsch and Carlson reference Fritsch and Carlson (1980) or the Matlab

manual for pchip function).

8. Conservation law. We consider the conservation law for each class α users as:

t2∫

t1

grαij (t)dt =

θrαij (t2)∫

θrαij (t1)

hαr (θrαij (t))dθrαij (t), (11.10)

where grαij (t) is the outflow rate of link `ij and class α at time t due to path r, which

implies

grαij (t) = hαr (θrαij (t))
dθrαij (t)

dt
, (11.11)

9. Arc and node flow intensities. The traffic flow intensity of a user of class α at

the exit of link `ij is given by adding the flow intensities of the corresponding paths

(flow conservation constraints), that is,

gαij(t) =
∑

r∈Rij

grαij (t) =
∑

r∈Rij

hαr
(
θrαij (t)

) dθrαij (t)

dt
, (11.12)

where Rij is the set of paths containing link `ij . Similarly, the node flow intensities

excluding origin path intensities can be calculated by adding the flow intensities of
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the corresponding paths (flow conservation constraints), that is, by means of the

formula

rαi (t) =
∑

`ij∈A(i)

gαij(t), (11.13)

where rαi (t) is the flow intensity of a class α user at node i and time t and A(i) is

the set of links entering node i.

10. The link physical-queues. The link exit time tαoutijk associated with an entering

time tk is obtained as follows:

tαoutijk = max
{
tk +Dα

ij(tk), t
αout
ak−1 +Qαijk

}
, (11.14)

where Qαijk, is the physical-queue dissipation time at link `ij for class α at time t

added in order to include the traffic jam effect, as follows,

Qαijk =
[
Eαij(t

αout
ijk )− Eαv (tαoutijk−1)

] tα0ij(1 + βαij)

kαcongx
αmax
ij

, (11.15)

where kαcong is a speed dissipation physical-queue factor for class α that takes values

smaller than one.

The rationale behind the kαcong factor is as follows. According to (11.7) and neglecting

the downstream effect, if link `ij holds xαmaxij users, the link travel time becomes

tα0ij(1 + βαij), which implies a link evacuation speed of

uα
evac

ij =
xαmaxij

tα0ij(1 + βαij)
, (11.16)

which corresponds to a congestion level associated with a certain service level pre-

vious to queue generation. Since the queue condition can be assumed worse than

this service level, the queue dissipation speed will be kαcongu
αevac
ij , where kαcong < 1.

Consequently, the time required to dissipate a queue of
[
Eαij(t

αout
ijk )− Eαij(tαoutijk−1)

]

users becomes (11.15).

11. Iteration scheme. We use an iterative scheme. At a given iteration, we first de-

termine the link travel times associated with a carefully selected discrete set of users

based on a previous iteration cubic-spline approximation of link travel time functions

and later we update the monotone cubic splines, fitting them to the updated travel

times. The process is iterated until convergence.

It is important to remark that the proposed model is an extension of the Dynamic

Network Loading model proposed by Castillo et al. (2012) and explained in detail in

Chapter 7 in Nogal (2011). For that reason, some details may be skipped, but can be

found in those published works.
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11.4 A more detailed discussion of model assumptions

Next, the above assumptions are discussed in more detail. Each subsection correspond to

one assumption.

α classes.

This is the key difference between the proposed model and previous existing models, that

allows results to be more realistic. The introduction of overtaking classes is made by

means of the overtaking travel time function in (11.1). To illustrate we assume that in

our example we have three classes: motorbikes, cars and trucks.

Path origin flow intensity functions.

An important item of information for dynamic models of traffic flow consists of a function

that gives the corresponding path flow intensities at their origin as a function of time, i.e.,

the time evolution of the users entering the network. As indicated, these functions are

assumed to be known.

Since a function has infinite degrees of freedom and then arbitrary functions cannot be

dealt with, a good way of defining path flow functions is by means of parametric families

of functions that are defined by a finite number of parameters. In this way, a small set of

real numbers provides the required information for each path function. In this paper we

propose path origin flow intensity functions of the form (11.4).

In summary, route intensity functions are assumed linear combinations of a basic set

of probability density functions (pdf).

Example 15 (Normal densities) Since in most cases the path flows normally present

two relative maxima and decay at night hours, we can reproduce with sufficient precision

the traffic intensity of each path by a linear combination of normal densities (flow waves),

which total area is the total path flow hαrl, that is:

hαr (t) =

nr∑

l=1

hαrlfN(µαrl,σ
α
rl)

(t), (11.17)

where nr is the number of components (normally two), hαr (t) is the traffic intensity

(veh/hour) associated with path r and class α at time t, fN(µαrl,σ
α
rl)

(t) is the probability

density function (pdf) of the normal distribution associated with class α, hαrl is the daily

flow associated with the normal density N(µαrl, σ
α
rl), and µαrl and σαrl are the time associated

with the mean and the corresponding standard deviation, that measures the traffic spread

of flow wave l of path r, respectively.

The time dependent path flow functions hαr (t) are basic to build the functions giving

the evolution of flows in all links and nodes of the network.
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For illustrative purposes, in Table 11.2 and Figure 11.3 we present one example of the

assumed path flow functions for the illustrative example in Figure 11.1. Note that cars

and motorbikes exhibit two relative maxima around 9.00 and 16.00 hours, and that trucks

exhibit maxima at 8.00 and 18.00 hours, which are assumed to be the corresponding peak

hours, though different shapes modeled by using different standard deviation parameters

σαrl. Note that the number of car volumes are larger than the motorbike volumes, and these

larger than the track volumes.

The values of µαrl, σ
α
rl and total volumes have been simulated randomly.

FIFO rule.

We assume that overtaking is not permitted among users of the same class, but it is among

users of different classes. This provides a flexibility not available in other existing models.

Congestion effect.

To consider the congestion effect, we must take into account that we have several class

users traveling at different speeds and that overtaking among different classes is permitted.

We analyze the congestion in order to determine how the link volume varies with time. To

this end, we define Dα
ij(t) as the link travel time for vehicles of class α entering link `ij at

time t when no physical-queue exists. To evaluate the Dα
ij(t) function we must take into

account the network congestion. Traffic models normally assume a relation between the

traffic intensity and the travel time, taking into account that the larger the congestion,

the smaller the velocity or larger the travel time.

In this paper, the travel time Dα
ij(t) of a vehicle of class α that enters link `ij at time t

when no physical-queue exists is assumed to be a function of the number of vehicles xαij(t)

(link volume) of all possible classes α at link `ij and time t and in order to reproduce the

upstream shock wave due to congestion, we also assume that it depends on the immediate

downstream route link volumes. More precisely we use the extension to the BPR function

in Equation (11.7).

The travel time function (11.7) is an important part of the overall dynamic network

loading (DNL) model. The first term penalizes the number of cars inside link `ij at entry

time t, and the second term penalizes high congestions on any route immediately ahead

of link `ij and permits propagating congestion upstream of link `ij .

Table 11.3 provides the parameters used in the congestion function (11.7) for the

network in Figure 11.1. Note that the capacity xαmax6 is much smaller than the values

for other links to analyze the effect on the traffic flow, and that the capacity of link 8 is

larger because most routes use it. We have assumed a free flow speed of 120 Km/hour for

class 1 (cars), 80 Km/hour for class 2 (trucks) and 130 Km/hour for class 3 (motorbikes).

Finally, we have assumed that the β3 and δ3 parameters of class 3 (motorbikes) are much

smaller, because they behave in a different way under congestion.
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Class 1: Cars

route µ1
r1 σ1

r1 h1
r1 µ1

r2 σ1
r2 h1

r2 Route flow

1 8.56 1.90 3263 16.00 1.71 3234 6497

2 8.61 2.30 3228 15.30 1.72 3206 6434

3 8.25 1.85 3244 14.94 2.49 3233 6477

4 8.75 2.07 3207 15.56 1.63 3238 6445

5 8.09 1.81 3245 15.01 1.85 3237 6481

6 8.08 1.92 3264 14.62 2.06 3234 6498

7 8.46 1.93 3251 15.29 1.75 3278 6529

8 8.01 1.94 3220 15.37 2.31 3201 6421

9 8.98 1.51 3212 16.12 1.81 3235 6447

Class 2: Trucks

route µ2
r1 σ2

r1 h2
r1 µ2

r2 σ2
r2 h2

r2 Route flow

1 7.57 2.00 1220 17.96 2.20 1229 2449

2 7.50 1.88 1232 17.95 2.00 1239 2472

3 7.49 1.80 1234 17.80 2.45 1201 2435

4 7.73 1.65 1240 18.55 2.47 1207 2446

5 7.45 1.75 1213 17.39 1.81 1223 2435

6 7.94 2.28 1201 18.44 2.23 1220 2422

7 7.31 1.69 1217 17.09 2.35 1203 2420

8 7.66 2.07 1228 17.60 2.08 1220 2448

9 7.95 1.53 1219 18.18 1.91 1215 2435

Class 3: Motorbikes

route µ3
r1 σ3

r1 h3
r1 µ3

r2 σ3
r2 h3

r2 Route flow

1 8.78 2.18 1146 15.68 1.98 1144 2290

2 8.32 2.29 1134 15.02 1.58 1134 2268

3 8.84 1.90 1138 16.08 1.58 1129 2266

4 8.27 2.03 1147 16.10 1.55 1137 2284

5 8.60 1.88 1147 15.52 1.80 1140 2287

6 8.17 1.91 1124 15.23 2.31 1124 2249

7 8.47 1.65 1147 15.50 1.90 1138 2286

8 8.96 1.88 1147 15.54 2.19 1133 2280

9 8.15 1.70 1146 14.61 2.10 1127 2273

Table 11.2: Parameters used in route flows of the illustrative example.

Continuous model.

Though link travel time functions involve infinite degrees of freedom, we approximate

these functions by monotone cubic splines whose number of parameters remains finite and
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Class 1: Cars

Arc t10ij β1
ij δ1

ij γ x1max
ij

1 1.86 1.00 0.40 2.00 100.00

2 1.86 1.00 0.40 2.00 100.00

3 1.86 1.00 0.40 2.00 100.00

4 1.86 1.00 0.40 2.00 100.00

5 1.18 1.00 0.40 2.00 100.00

6 1.67 1.00 0.40 2.00 50.00

7 1.18 1.00 0.40 2.00 100.00

8 1.86 1.00 0.40 2.00 200.00

9 1.86 1.00 0.40 2.00 100.00

Class 2: Trucks

Arc t20ij β2
ij δ2

ij γ x2max
ij

1 2.80 1.00 0.40 2.00 40.00

2 2.80 1.00 0.40 2.00 40.00

3 2.80 1.00 0.40 2.00 40.00

4 2.80 1.00 0.40 2.00 40.00

5 1.77 1.00 0.40 2.00 40.00

6 2.50 1.00 0.40 2.00 20.00

7 1.77 1.00 0.40 2.00 40.00

8 2.80 1.00 0.40 2.00 80.00

9 2.80 1.00 0.40 2.00 40.00

Class 3: Motorbikes

Arc t30ij β3
ij δ3

ij γ x3max
ij

1 1.72 0.50 0.05 2.00 250.00

2 1.72 0.50 0.05 2.00 250.00

3 1.72 0.50 0.05 2.00 250.00

4 1.72 0.50 0.05 2.00 250.00

5 1.09 0.50 0.05 2.00 250.00

6 1.54 0.50 0.05 2.00 125.00

7 1.09 0.50 0.05 2.00 250.00

8 1.72 0.50 0.05 2.00 500.00

9 1.72 0.50 0.05 2.00 250.00

Table 11.3: Parameters used in the congestion function. The values µ1 = µ2 = 0.5,

µ3 = 0.65, σ1 = σ2 = σ3 = 0.25 were also used in the example.

small. To this end we determine the link travel times of all class users at a given discrete

set of fixed times, and use these data to directly approximate the link travel time functions

by monotone cubic splines (continuous functions).

Path link exit time functions.

Path link exit time functions, which are a very large number of functions (number of

classes×number of paths×mean number of links per path), are evaluated based on link
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exit-entry time functions, which are a small number (the number of links), by means of

θrαij (t) = ταijn(ταij(n−1)(. . . τ
α
i j(t))), (11.18)

where ij1, ij2, . . . , ijn are the sorted links of path r and ταij(t) is the entry time of a user

that exits link `ij at time t.

We note that the above process requires the knowledge of the functions θrαij (t). There

are two possible options to deal with these functions:

1. Use monotone cubic splines to fit these functions. This option requires fitting a

high number of splines (number of routes×mean number of links per route), which

is memory and time consuming.

2. Build these functions based on the ταij(t) functions. This process requires only to fit

as many functions as links, but has the inconvenience that each evaluation is more

costly.

Nevertheless, with respect to required computer time and resources, the second alter-

native is more convenient. For this reason, we recommend the second option, which is the

one used in the examples in this chapter and in the MatLab computer implementation

that has been developed for the examples.

We note that spline functions have been used before by other authors to approximate

travel time functions, but not all spline functions are necessarily monotone (see Rubio-

Ardanaz et al. (2003)).

Note that the times required to cross nodes are assumed to be null. This implies that

the link exit time functions can be built directly from the link travel functions alone.

Example 16 (Normal densities) Figure 11.4 shows the θrαij (t) functions obtained after

using a cubic-spline interpolation between the selected discretized times with the units being

hours. The number of colored bands coincides with the number of links per path. The link

exit-entry time functions have been obtained by adding the departure time function f(t) = t

and the corresponding link travel time functions for all routes with the corresponding link.

Note that the fact that motorbikes travel faster than cars and cars faster then trucks is

revealed in the corresponding band widths in Figure 11.4.

The plots show that there is a high congestion level only in link 6 (shown by its irregular

band width). The lack of congestion in other links is revealed by the almost constant width

of the corresponding bands in the figure. Consequently, only paths 4 and 6, which include

link 6, show congestion.

Approximation of the ταij(t) function by monotone cubic splines.

To approximate the ταij(t) functions, we partition an extended day (of 32 hours say) into

m − 1 disjoint and exhaustive intervals (tk, tk+1); k = 1, 2, . . . ,m − 1, where t1 = 0 and
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Figure 11.4: Illustrative example. Link exit time functions obtained by adding the depar-

ture time function f(t) = t and the corresponding link travel time functions for all routes

with the corresponding link. θrαij (t) is the departure time from the origin of path r of a

user of class α who exits link `ij at time t.

tm = 32, and we evaluate the travel times of all links when the link travels are started at

times tk; k = 1, 2, . . . ,m. In other words, we analyze users who enter the links at discrete

times t1, t2, . . . , tm and calculate the number of link users xαij(t) at the time of arrival to

the link. With this information, we use the conservation law and the congestion equation

(11.7) to obtain the times Dα
ij(tk) required for these users to travel each path link. Finally,
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ij (t2)θ rα

ij

Figure 11.5: Illustrative example. Illustration of how the traffic flow wave satisfies the

conservation law and the function θrαij (t).

the set of points {(tαoutijk , tk);∀k} is used to fit the monotone cubic splines to approximate

the link travel time functions for each link `ij and class α.

In order to satisfy the FIFO rule, we work with monotone functions ταij(t), i.e., the

necessary and sufficient condition for the FIFO condition to hold. These monotone func-

tions are monotone cubic splines, the monotonicity of which is guaranteed by means of

two conditions: (a) a set of monotone increasing basic points {(tαoutijk , tk)|k = 1, 2, . . . ,m}
used to fit the splines, and (b) the use of interpolating monotone cubic splines preserving

its increasing character at all points.

In other words, we approximate the ταv (t) function by means of

ταij(t) ≈ splineαij(t; (tαout
ij , t)), (11.19)

where tαout
ij = (tαout

ij1 , tαout
ij2 , . . . , tαout

ijm ) and t = (t1, t2, . . . , tm) are a set of discrete entry

times where the exit times to link `ij are evaluated. Note that identical entry times t are

selected for all links.

To be more precise, within each iteration we fit new splines to the new set of basic

points (tαout
ij , t), where only tαout

ij is recalculated from iteration to iteration.

Conservation law.

In order to see how the individual path flow waves progress throughout the path, we need

to apply the conservation law. In Figure 11.5 we show the traffic flow wave at two given

locations: (a) the path origin and (b) the end of link `ij of path r, and we show the

associated time intervals corresponding to the same users. We also illustrate the θrαij (t)

function, which provides the departure time from the origin of path r of a user who exits

link `ij of path r at time t.
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Figure 11.6: Illustrative example. Evolution of the flow wave at the origin node and at the

ends of all links of path 6 for cars, trucks and motorbikes together with the time evolution

of three users one from each class with the same path departure time.

If grαij (t) is the outflow rate of link `ij and class α at time t due to path r, since the

area associated with a time interval and below the intensity function is the number of

users that pass through that location, the mass balance constraint leads to the following

equation that expresses the coincidence of the number of users in the time intervals (t1, t2)

and (θrαij (t1), θrαij (t2)), (see the graph in Figure 11.5 and Friesz et al. (2001)). This leads

to Equation (11.11).

Note that the argument θrαij (t) of function hαij(·) models the local stretching or enlarg-

ing of the flow wave, and that
dθrαij (t)

dt
modifies the traffic intensity (flow wave height)

accordingly.

We point out that there exists a different θrαij (t) function for each link `ij of each path

r and class α. Consequently, the progression of the individual path flow wave throughout

their paths can be known as soon as the function θrαij (t) is known and the resulting flow

wave form is given by Equation (11.11).

Equation (11.11) guarantees that the global mass balance constraint holds, that is,

Equation (11.10), which can be used to derive θrαij (t) when hαr (t) is given.

In Figure 11.6 we show how the path flow waves for the different class users progress
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through path 6 and evolve with time. The upper plot corresponds to the origin node traffic

intensities and the other four plots indicate how these flow waves move due to time and

deforms due to increasing congestion. This implies that the traffic intensities decrease and

the travel times increase with increasing congestion. More precisely, once each path flow

enters the network, it progresses as a flow wave that stretches or enlarges, depending on

the degree of congestion of the traversed links, as shown in Figure 11.6. Note that at earlier

times in the day the route congestion is nonexistent or low (upper plot in Figure 11.6),

but later it increases due to the presence of users of other routes, producing a decrease in

the traffic intensities, that is, an enlargement of the traffic flow wave (intermediate and

lower plots in Figure 11.6). It is easy to see that trucks traveling at night time have a

larger mean speed.

The areas below these curves are the number of users of the corresponding path, so

that these areas must be identical at all times for all individual path flows.

Note that the flow wave trend generated at the congested link 6 is transmitted and

propagated throughout link 8 with almost no deformation.

In Figure 11.6 we can also observe the time evolution of three users one from each class

with the same path departure time (10.00 hours), as indicated in the upper plot. Since

motorbikes are faster than cars, and these faster than trucks, the travel times increase

in this order and the differences increase with time. We point out that the travel times

associated with cars, trucks and motorbikes are 10.6, 12.6 and 9.0 hours, respectively,

which have been calculated by subtracting the times in the lower and upper plots.

Arc and node flow intensities.

Since the flows corresponding to each path mix with other path flows and all together

generate a mixed flow function, we can obtain the link and node flows by combining the

path flows adequately, that is, as indicated by Equations (11.8) and (11.9). Note that

in Expression (11.8) we use the θrαij (t) function, which must be known in order Equation

(11.8) to be applicable. In our iterative approach, to be explained later, we use an actual

version of this function which is updated until convergence.

Illustrative examples of the link and node flow intensities is given in the following

examples.

Example 17 (Normal densities) Figure 11.7 illustrates Expression (11.8) showing the

flow intensity curves for all links and class users at the end of the iterative process, that

is, after convergence, where the different colors refer to the different path components. We

can easily see that they correspond to the sum of the flows of all paths, taking into account

the delays associated with each path. Note that the appearance of peaks corresponds to

peaks of the different paths. In some cases, as in link 6, some peaks disappear due to

congestion.
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Figure 11.7: Illustrative example. Arc flow intensity curves showing the corresponding

path components for the case of the illustrative example.

It is interesting to point out the following facts (see Figure 11.7): (a) we have similar

plot trends for cars and motorbikes and different trends for trucks, (b) a physical-queue is

generated in link 6 (see the constant (horizontal) flow densities in this link after t=27.00),

and (c) the flow intensity curve shapes generated at link 6 propagate with practically no

deformation throughout link 8.

Figure 11.8 shows the traffic intensity entering the different nodes at the end of the

iterative process, that is, after convergence, where the different colors refer to the different

path components. A detailed analysis of these curves allows us to identify the route inter-

actions and their effect on congestion. Note that the plots are similar to those in Figure

11.7, so that similar conclusions can be drawn.
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Figure 11.8: Illustrative example. Node flow evolution and the corresponding path flow

contributions.

The link physical-queues.

Note that in fact (11.14) can imply an increase of the link travel time due to physical-

queues if the second term (a queuing term) tαoutij(k−1) + Qαijk is greater than the first term

tk +Dα
ij(tk).

Note also that preventing vehicles from overtaking means queueing the correspond-

ing vehicles behind other vehicles, and this is what expression (11.14) does. A detailed

explanation of Expression (11.14) can be seen in Castillo et al. (2012).

Note the high congestion in link 6 (see Figure 11.9). An associated light upstream

congestion propagation can be observed at link 7.

To approximate the link travel time curves by monotone cubic splines, we select a
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Figure 11.9: Illustrative example. Link travel time evolution of the different class users.

discrete set of points {(tαoutijk , tkα); k = 1, 2, . . . ,m}, where tk = (k− 1)δ with m = 32/δ+ 1

and δ can take different values, for example δ = 0.1, 0.2, 0.5 or 1 if the network congestion

wants to be evaluated every 6 minutes, 12 minutes, 30 minutes or one hour.

Iteration scheme.

Since, as indicated previously, the xαij(t) and Dα
ij(t) functions are interrelated, and they

are dependent on congestion which is not known initially, we need to iterate the process

until convergence. In other words, we need to assume an initial degree of congestion at

the different links, and according to it we evaluate the link travel times, and with this

information we update the congestion degrees, and repeat the process until convergence

of the process.

The main problem is that initially we do not know the number of vehicles xαij(t) inside

link `ij , and we need to make an initial guess to later iterate until convergence.

In other words, ταij(t) is a function of xαij(t), and xαij(t) is a function of ταij(t), so that

we need an iterative process until convergence.

Eleven iterations were required for convergence in our illustrative example.

11.5 Examples of application

In this section the illustrative example is completed and the proposed method is used to

solve more complicated examples to show that it is applicable in real practice.
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11.5.1 Illustrative example

We start by mentioning that the cpu time required to solve the illustrative problem on a

HP Z200 Workstation, Intel Core i7-870 2.93 8MB/1333 QC, RAM: 8GB (2x4GB), was

73.00 sec.

In Figure 11.4 we saw the evolution of the different θrαij (t) time functions for every path.

Each of them permits us to identify the instant at which a traveler reaches the end of the

path and the end of every link during the journey. Note that it is easy to identify when

is the worst time to start the path travel. At the same time it is interesting to underline

that in all graphs the time needed for covering the journey is very similar for people who

start at the first and the last hours of the day, because of the lack of congestion.

In this case, the different graphs in Figure 11.6 show an important distortion due to

the congestion produced at link 6 when the link intensity is higher than xαmaxij . More

precisely, it maintains its shape (flow wave length and height) at links 4 and 7 due to lack

of congestion. At link 6 the flow wave suffers two different processes: (a) an elongation,

due to congestion, roughly between 22 and 26 hours, and (b) a stretching (flow wave length

reduction and height increase) after 26 hours on, due to the end of congestion produced

by arrival to destinations of users from other paths. Finally, since link 8 is not congested

it does not deform further the flow wave shape.

Figure 11.7 shows the flow intensity curves at the different links. We have accumulated

the flow intensities corresponding to each path so that each color corresponds to a unique

path. In this way it is possible to see the combined effect of all of them at each link, and

the contribution of each path to the total link flow intensity, but it is a bit more difficult

to analyze the evolution of each path independently, because both limits are curved lines

with the exception of the first path with flow.

Figure 11.9 shows that for high congestion levels all class users have the same link

travel time (see the link 6 plot around t = 26.00), but different for low level congestions

(see, for example, the link 6 plot around t = 5.00).

11.5.2 The Sioux-Falls example

In this section we use the well known Sioux Falls network in Figure 11.10 to illustrate the

proposed method. It consists of 24 nodes and 76 links. A total of 161 paths and three class

users (Cars1, Cars2 and Motorbikes sorted by increasing speed) have been considered.

Moreover, the Spiess function in (11.3) has been considered in this example. Due to

this assumption, Equation (11.15) becomes

Qαijk =
[
Eαij(t

αout
ijk )− Eαij(tαoutij(k−1))

] 2 tα0ij
kαcongx

αmax
ij

. (11.20)

The rationale behind this modification is as follows: if link `ij holds xαmaxij users, the link

travel time becomes 2 tα0ij .
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Figure 11.10: Sioux-Falls network.

Class α ραij δαij γ xαmaxij µα σα µαr1 µαr2

1 3.00 0.33 1.00 100.00 0.5 0.25 20 95

2 3.00 0.33 1.00 100.00 0.5 0.25 25 95

3 2.00 0.10 1.00 250.00 0.6 0.25 3 5 105

Table 11.4: Sioux-Falls. Parameters used in the congestion function and the path origin

flow intensity curves.

Table 11.4 shows the parameters used in the congestion function and the mean values

of the peak instants used to generate the random path origin flow intensity curves. Since

all data cannot be displayed, a small selected part of them are shown. Some of the assumed

path flow intensities at their origins are shown in Figure 11.11 and a study period of two

hours have been selected (from 0 to 120 minutes in the figures). A value of m = 120 has

been used, which is equivalent to a discretization every minute. The cpu time required

was 20 minutes.

Figure 11.12 shows the evolution of the flow wave throughout path 15. The upper

plot corresponds to the flow intensity at the origin node and the other plots show the

flow intensity at the ends of all links of path 15 for Cars1, Cars2 and Motorbikes users.

In addition, the time evolutions of three users one from each class with the same path
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Figure 11.11: Sioux-Falls example. Path flow intensities at the path origins as a function

of time for the Sioux-Falls example and the corresponding three class users.

departure time are shown. As expected motorbikes show smaller link travel times than

Cars2, and Cars2 smaller than Cars1. This is revealed in all link plots, where it is shown

that the time difference among the three users increases with time.

Figure 11.13 shows the link travel time (in minutes) evolution of the different class

users for the links in path 15. It can be seen that links 4, 15 and 25 have small congestion,

but link 13 reaches a high degree of congestion, which is revealed by the almost coincidence

of the link travel times of the Cars1 and Cars2 users from time 35 minutes and for the

three classes from time 115 minutes. Contrary, in links 4, 15 and 25 the travel times are

different for the three users.

11.5.3 The Cuenca example

Since the two examples dealt with in the previous sections are small in size and were

selected with the aim of illustrating the proposed methods, in this section the proposed

method is applied to the Cuenca (Spain) network, with 127 nodes, 672 links, and 219

paths (see Figure 10.2). In this case two class users and a period of 20 minutes have been

considered. The resulting CPU time was 39 minutes.

The observed flow trends corresponding to this example were very similar to those

presented before for the small networks. Due to space limitations, we show only a few

graphs.

Figure 11.14 shows the evolution of the flow wave at the origin node and at the ends

of all links of path 90 for the Cars1 and Cars2 users together with the time evolution of
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Figure 11.12: Sioux-Falls example. Evolution of the flow wave at the origin node and at

the ends of all links of path 15 for the Cars1, Cars2 and Motorbikes users together with

the time evolution of three users one from each class with the same path departure time.
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Figure 11.13: Sioux-Falls example. Link travel time (in minutes) evolution of the different

class users in path 15.

two users one from each class with the same path departure time. Since link 622 is highly

congested, the link travel time difference between Cars1 and Cars2 users is very small

(4.78 and 4.79 minutes, respectively).

Figure 11.15 shows the link travel time (in minutes) evolution of the different class

users in path 90, where it can be seen that links 622 and 352 are highly congested as



11.5. Examples of application 235

0 5 10 15 20
0

0.2
0.4 Path 90

t

h r(t)

t = 4.4
t = 4.4 Cars1

Cars2

0 5 10 15 20
0

0.2
0.4 Link 622

t

g ij(t) t =
 4.

78

Cars1
Cars2

0 5 10 15 20
0

0.2
0.4

Link 349

t

g ij(t)

t =
 5.

74

t =
 5.

61
Cars1
Cars2

0 5 10 15 20
0

0.2
0.4

Link 352

t

g ij(t)

t =
 6.

07

t =
 5.

90

Cars1
Cars2

0 5 10 15 20
0

0.2
0.4

Link 348

t

g ij(t) t =
 6.

56

Cars1
Cars2

0 5 10 15 20
0

0.2
0.4

Link 416

t

g ij(t) t =
 7.

73

Cars1
Cars2

t =
 4.

79

t =
 6.

86

t =
 8.

38

Figure 11.14: The Cuenca network. Evolution of the flow wave at the origin node and

at the ends of all links of path 90 for the Cars1 and Cars2 users together with the time

evolution of two users one from each class with the same path departure time.

indicated by the almost coincidence of the link travel times for both users.
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Figure 11.15: The Cuenca network. Link travel time (in minutes) evolution of the different

class users in path 90.
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Appendix

A Notation

α class.

β parameter of the travel time function.

β0
ij . link travel time function parameter associated with asymptotic class α

and link `ij .

βαij link travel time function parameter associated with class α and link `ij .

γ exponent link travel time function parameter.

γ0 exponent link travel time function parameter for asymptotic class.

δαij saturation parameter of the travel time function of link `ij and class α.

η̄αrl vector of parameters.

`ij link joining nodes i and j.

µα mean of the normal distribution for class α.

µαrl mean parameter of the l-th component of path r and class α.

ρ parameter of the travel time function.

σα standard deviation of the normal distribution for class α.

σαrl standard deviation parameter of the l-th component of path r and class α.

ταij(t) entry time of a user that exits link `ij at time t and class α.

θrατ (t) departure time from the origin of path r of a user of class α who exits

link `τ of path r at time t.

A set of links.

A(i) set of links whose tail node is node i.

c link capacity.

D set of node destinations.

Dα
ij(t) link `ij travel time at time t for class α when no physical-queues exists.

Eαij(t) cumulative flow associated with the exit of link `ij of class α by time t.

f(x) normalized congestion function.

fN(µ,σ)(t) probability density function (pdf) of the normal distribution with mean µ

and standard deviation σ.

F (x) cumulative distribution function.

gαij(t) traffic flow intensity of class α at the exit of link `ij at time t.

grαij (t) outflow rate of link `ij at time t due to path r and class α.

hαr (t) inflow rate at the origin of path r at time t and class α.

hαrl coefficients of the linear combination to generate hαr (t).

Hα
r (t) cumulative inflow rate at the origin of path r and class α at time t.

i link begin node.

j link end node.

kαcong speed dissipation physical queue factor for class α.
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m number of discrete times considered.

nr number of function components.

N set of nodes.

O set of node origins.

qα(t; η̄αrl) parametric (η̄αrl) family of probability density functions of class α.

Qαijk physical-queue dissipation time at link `ij and class α at time tk.

r path.

rαi (t) flow intensity of class α users at node i and time t.

Rij set of paths containing link `ij .

S(`ij) set of all links downstream link `ij in all its routes.

sij(t) link `ij congestion ratio.

t time.

t00 free travel time for the asymptotic class.

t(·) link travel time function.

tα0ij free-flow travel time of link `ij for class α.

tα0 link free travel time for class α.

tk set of discrete times to be considered for k = 1, . . . ,m.

tαoutijk link exit time of a user of class α who enters link `ij at time tk.

uαevacij link evacuation speed of link `ij and class α.

v traffic volume.

wα(x) proposed link travel time function for class α users and congestion ratio x.

x congestion ratio v/c.

xmax maximum expected congestion ratio.

xαij(t) number of vehicles of class α on link `ij at time t (link traffic volume).

xαmaxij number of vehicles on link `ij leading to a travel time tα0ij(1 + βij).
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12.1 Introduction

With the appearance of dynamic traffic models (see Chapter 6 for a review on these

models), we need to deal with data that incorporate spatial and time coordinates at the

same time (see Caceres et al. (2012)). Thus, sometimes it is difficult to understand such

complex data. Based on the adage “A picture is worth a thousand words”, we want to

show that complex relations can be easily understood with the help of simple but very

informative graphics. As it is well known, one of the main goals of visualization consists

in making the understanding of large amounts of data possible and quickly.

One simple way to represent the traffic behavior consists in plotting the trajectories

239
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of vehicles, that is, the two-dimensional diagrams (x, t), where x is the location and t

is a reference time (local time). However, in many occasions we need to compare users

who have departed from the origin at different times. In those cases another variable t0,

which represents the departure time, is needed. Thus, three variables {x, t, t0} must be

represented. However, since three dimensional plots are difficult to analyze, we resort to

two-dimensional trajectory plots, and we plot a family of curves that represent trajectories

of users corresponding to a given set of different departure times. One decision to be made

is how this set of trajectories is selected because the interpretation of the corresponding

plots depends on how this selection has been made.

When different class vehicles are dealt with, we also need to superimpose trajectories

and make the corresponding interpretation. In this paper and for the sake of illustration we

have considered several class users whose speeds are different, and then we have considered

the overtaking problem.

The interpretation of families of trajectories in terms of traffic behavior is not trivial

and needs some study. If these trajectories correspond to different users, the problem

complicates even more.

In this chapter the problems of plotting trajectories and how to interpret them for the

different criteria used are analyzed. To our knowledge, the main original contributions

are:

1. We introduce new concepts and measures to analyze the traffic behavior, such as

“slowness”, “promptness distance gain”, “promptness time gain”, “distance-gain

promptness”, “speed promptness rate”, “slowness promptness rate”, etc. They pro-

vide different means to identify interesting and useful properties of traffic flow. In

particular, these measures permit, among others, to analyze what we gain or lose in

terms of travel time if we advance or delay our departure time.

2. We distinguish between equally delayed plots and equal flow trajectory plots and

indicate their practical relevance.

3. We provide rules to identify in trajectory plots how these measures or properties

change with time and location.

4. We suggest the superposition of trajectories of different class users to characterize

the overtaking frequencies and its spatial and time changes.

5. We provide some trajectory plots based rules to choose departure times in order to

reduce travel times and congestions.

To illustrate the problem we have used the simple network1 and data simulated with

the model described in Chapter 11.

1The simple network is shown in Figure 11.1. It consists of 6 nodes, 9 links and 9 paths as indicated in

Table 11.1.
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The chapter is organized as follows. In Section 12.2 the information that can be

extracted from trajectories is studied. In Section 12.3 the equally delayed and equal flow

single class trajectory plots and how can they be interpreted are discussed. In Section 12.4

double class trajectory plots are introduced and an interpretation to the appearing bands

in terms of overlapping is given. In Section 12.5 multiple trajectory plots are analyzed.

Finally, in Section 12.6 we give some recommendations.

12.2 Information available from trajectories

In this section we analyze some interesting information that can be obtained from the

trajectory profiles.

In this section we use two different plots: equally delayed plots and equal flow trajectory

plots. In both plots we do not represent all user trajectories but only a fraction of them.

In the first plot consecutive trajectories correspond to users whose departures are equally

delayed, that is, the departure times differences are identical. We note that this does not

mean that users depart at equally delayed times. In the second type of plot the number

of users between any two consecutive plotted trajectories are the same.

As we will see, new concepts arise that require a name for which some proposals are

made. However expert support is needed in order to assign them the most appropriate

names2.

12.2.1 Speed, slowness, acceleration and slowness distance and slowness

time rates

Let x = f(t; t0) be the user location x, referred to its departure location, at time t when

its departure time is t0 and t = g(x, t0) be the time t to reach location x for a vehicle

departed at time t0. Since the speed (traveled length per unit time) at time t of a user whose

departure took place at time t0 is
∂f(t, t0)

∂t
, the trajectory slopes are the corresponding

speeds and the
∂g(x, t0)

∂x
are the inverses of the speeds. We will use the term slowness (time

required to travel a unit distance) to refer to this inverse. So, the steeper the trajectory

slope, the smaller the speed and the larger the slowness. We have another two first partial

derivatives:
∂f(t, t0)

∂t0
, denoted promptness distance gain (traveled distance at time t per

2To understand the need of new terminology, we use a simple example. The fuel consumption in the

US and Europe is measured in two different ways: (a) miles per gallon and (b) liter per Km. These

two concepts are one the inverse of the other and consequently they have different units, but both are

useful to measure consumption. However, the European term is more appropriate, because an increase of

consumption implies an increase in the measure. This is not the case for the American term, that should

be called fuel efficiency. As we will see, speeds, accelerations, etc. can also be measured by different terms.
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Figure 12.1: Trajectories of three users with gap departures ∆ and locations reached at

time t.

unit departure time change) and
∂g(x, t0)

∂t0
, denoted promptness time gain (time required

to reach x per unit departure time change).

Since
∂2f(t, t0)

∂t2
is the acceleration (speed rate), the trajectory curvature gives informa-

tion about the acceleration associated with each time-location pair. A positive curvature

means deceleration and a negative curvature means acceleration.

12.2.1.1 Interpretation of
∂2f(t, t0)

∂t20

The second derivative
∂2f(t, t0)

∂t20
measures the change increment in

∂f(t, t0)

∂t0
per unit

change in departure time and will be called distance-gain promptness rate. According

to Figure 12.1, f(t, t0) − f(t, t0 + ∆) is the distance at time t between two users whose

departure times were t0 and t0 + ∆, respectively, and f(t, t0−∆)− f(t, t0) is the distance

at time t between two users whose departures were t0 −∆ and t0, respectively.

Since both distances correspond to the same time departure difference ∆, if

f(t, t0)− f(t, t0 + ∆) < f(t, t0 −∆)− f(t, t0),

the distance to vehicle ahead is larger than distance to vehicle behind (we refer to vehicles

equally delayed at departure time).

Since

∂2f(t, t0)

∂t20
= lim

∆→0

f(t, t0 + ∆)− 2f(t, t0) + f(t, t0 −∆)

∆2
,
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the second partial derivative
∂2f(t, t0)

∂t20
provides an indication of how the traffic conditions

change with t0. A positive value of
∂2f(t, t0)

∂t20
implies that the distance to vehicle ahead is

larger than distance to vehicle behind. Contrary, a negative value implies that the distance

to vehicle ahead is smaller than the distance to vehicle behind.

These interpretations are valid only when equally delayed plots are used.

In the particular case of free flow conditions we have:

∂2f(t, t0)

∂t20
= h′′0(t− t0),

where h0(t − t0) gives the position of a user circulating at the free flow speed and whose

departure time is t0 at time t (see Section 12.2).

12.2.1.2 Interpretation of
∂2f(t, t0)

∂t∂t0

The second derivative
∂2f(t, t0)

∂t∂t0
measures the change in speed due to a unit change in

departure time (what we win in speed if we delay our departure a unit time) and will be

called speed lateness rate.

According to Figure 12.2, the distance traveled by a user whose departure time is t0+α

from t to t+ ∆ is f(t+ ∆, t0 +α)− f(t, t0 +α) and the distance traveled by a user whose

departure time is t0 from t to t+ ∆ is f(t+ ∆, t0)− f(t, t0). Thus, the difference between

these two distances is:

f(t+ ∆, t0 + α)− f(t, t0 + α)− f(t+ ∆, t0) + f(t, t0). (12.1)

A different interpretation of (12.1) is possible, as follows. The distance of two users

whose departure times are t0 and t0 +α at time t are f(t, t0)−f(t, t0 +α) and the distance

of two users whose departure times are t0 and t0 +α at time t+ ∆ are f(t+ ∆, t0)− f(t+

∆, t0 + α). The difference of both is (12.1) (see Figure 12.2).

Since

∂2f(t, t0)

∂t∂t0
= lim

∆,α→0

f(t+ ∆, t0 + α)− f(t, t0 + α)− f(t+ ∆, t0) + f(t, t0)

α∆
,

the second partial derivative
∂2f(t, t0)

∂t∂t0
provides information about the sign and magnitude

of this difference with t and t0. Positive values mean that we win in speed if we delay our

departure, and negative values that we lose in speed if we delay our departure.
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Figure 12.2: Trajectories of two users with gap departure α and locations reached by both

at times t and t+ ∆.

12.2.1.3 Interpretation of
∂2g(x, t0)

∂x2

The second derivative
∂2g(x, t0)

∂x2
measures the change in slowness

∂g(x, t0)

∂x
per unit change

in traveled distance x. We note that
∂2g(x, t0)

∂x2
is not the inverse of the acceleration. We

propose to call this second derivative the slowness distance rate. According to Figure

12.3, the time required for a user whose departure time is t0 to travel from x to x + δ is

g(x+δ, t0)−g(x, t0), and the time required to travel from x−δ to x is g(x, t0)−g(x−δ, t0).

Thus, its difference is the increase in time to travel the same distance δ with x, and since

∂2g(x, t0)

∂x2
= lim

δ→0

g(x+ δ, t0)− 2g(x, t0) + g(x− δ, t0)

δ2
,

the second partial derivative
∂2g(x, t0)

∂x2
provides information on how the slowness increases

with x. A positive value implies a slowness increase (deterioration) and a negative value

a slowness decrease (improvement).

12.2.1.4 Interpretation of
∂2g(x, t0)

∂t20

The second derivative
∂2g(x, t0)

∂t20
measures the change increment in the promptness time

gain
∂g(x, t0)

∂t0
per unit change in departure time t0 and will be called time-gain promptness
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Figure 12.3: Trajectory of a user departuring at t0 and times required to reach locations

x− δ, x and x+ δ.

t0

t0+ ∆

g(x ,t0+ ∆)

g(x ,t0)
g(x ,t0+ ∆) − g(x ,t0)

t0 -  ∆

g(x ,t0- ∆)

g(x ,t0) − g(x ,t0- ∆)

x

Figure 12.4: Trajectories of three users with gap departures ∆ and times required to reach

location x.

rate.

According to Figure 12.4, g(x, t0 + ∆)−g(x, t0) and g(x, t0)−g(x, t0−∆) are the time

differences required to travel a distance x from the origin of three users whose departure

times are t0 −∆, t0 and t0 + ∆, respectively.
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Since

∂2g(x, t0)

∂t20
= lim

∆→0

g(x, t0 + ∆)− 2g(x, t0) + g(x, t0 −∆)

∆2
,

the second partial derivative
∂2g(x, t0)

∂t20
is a measure of how these time differences change

with t0. A positive value of
∂2g(x, t0)

∂t20
implies a speed decrease (traffic deterioration) (it

is better an earlier departure) and a negative value a speed increase.

These interpretations are valid only when equally delayed plots are used.

In the particular case of free flow conditions we have (see (12.3)):

∂2g(x, t0)

∂t20
= 0,

which implies a stationary traffic for all x and t0.

12.2.1.5 Interpretation of
∂2g(x, t0)

∂x∂t0

The second derivative
∂2g(x, t0)

∂x∂t0
measures the change increment in slowness

∂g(x, t0)

∂x
per

unit change in departure time t0 and will be called slowness promptness rate.

According to Figure 12.5, g(x + β, t0 + ∆) − g(x + β, t0) and g(x, t0 + ∆) − g(x, t0)

are the gaps (time differences) corresponding to two users whose departures were t0 and

t0 + ∆, when passing throughout locations x+ β and x, respectively.

If

g(x+ β, t0 + ∆)− g(x+ β, t0) < g(x, t0 + ∆)− g(x, t0)

the time gap (delay) between two users decreases with x, and since

∂2g(x, t0)

∂x∂t0
= lim

∆,β→0

g(x+ β, t0 + ∆)− g(x, t0 + ∆)− g(x+ β, t0) + g(x, t0)

∆β
,

the second partial derivative
∂2g(x, t0)

∂x∂t0
measures the time gap increment between two close

locations. A positive value of
∂2g(x, t0)

∂t20
implies a gap increase (traffic deterioration) and

a negative value, a gap decrease (traffic improvement) (it is better an earlier departure).

Table 12.1 illustrates the different first and second partial derivatives of functions

f(t, t0) and g(x, t0) together with what they compare, the physical meaning, the trajectory

field feature and what they permit to evaluate for the cases of equally delayed and equal

flow trajectories. All these helps interpreting the plots and extracting valuable information

on the traffic behavior and how it evolves with time.
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t0

t0+ ∆

g(x ,t0+ ∆)

g(x ,t0)

x x + β

g(x + β,t0+ ∆)

g(x + β,t0)

g(x ,t0+ ∆) − g(x ,t0)

g(x + β,t0+ ∆) − g(x + β,t0)

g(x + β,t0+ ∆) 
−g(x ,t0+ ∆)

g(x + β,t0)
− g(x ,t0)

Figure 12.5: Trajectories of two users with a gap departure ∆ and time differences to

reach locations x and x+ β.

12.3 Single class trajectory plots

This type of plots consists of trajectories (traveled distance x from the origin versus time

t) of individual users all of the same class. Since it has been assumed that there is no

overtaking among users of the same class, this set of trajectory profiles does not intersect.

Let x be the distance traveled from the origin at time t by a user who has departed

from the origin at time t0. We are interested in knowing the relation x = f(t, t0) that

provides the distance x traveled by a user as a function of t and t0.

In this paper two different types of single class trajectory plots are considered:

1. Free flow plots.They correspond to the hypothetical case of a user traveling alone

throughout the network.

2. Equally delayed plots. They reproduce the trajectories of users whose departure times

are equally delayed. This produces bands (sets of users between two trajectory lines)

corresponding to the same departure time increment.

3. Equal flow plots. They reproduce the trajectories of users such that the accumulated

number of users with previous departure defer in a constant. This produces bands

(regions between two consecutive trajectories) associated with the same number of

users.
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Partial deriva-

tive
Compares

Physical mean-

ing

Trajectory field

feature

Equally delayed flow tra-

jectories

Equal flow trajec-

tories

∂f(t, t0)

∂t

Traveled distances of a

single user at two differ-

ent very close times

Speed (distance

rate)
Slope The steeper the slope, the slower the speed.

∂f(t, t0)

∂t0

Traveled distances of

two users whose de-

parture times are very

close

Promptness

distance gain

Horizontal dis-

tance between

consecutive

equally delayed

trajectories.

The larger the horizontal distance with the

following trajectory, the larger the prompt-

ness distance gain.

∂g(x, t0)

∂x

Passing times of a sin-

gle user by two different

very close locations

Slowness (time

distance rate)
Inverse slope

The steeper the slope, the larger the slow-

ness

∂g(x, t0)

∂t0

Passing times of two

users by the same lo-

cation whose departure

times are very close

Promptness

time gain

Vertical distance

between consecu-

tive equally de-

layed trajectories.

The larger the vertical distance with the

following trajectory, the larger promptness

time gain.

∂2f(t, t0)

∂t2

Traveled distances of a

single user at three dif-

ferent very close times

Acceleration

(speed rate)

Curvature

(changed sign)
A positive curvature means deceleration.

∂2f(t, t0)

∂t20

(see Figure 12.1)

Traveled distances at

time t of three users

whose departures times

where equally delayed

(∆ delay) and very close

to t0

Distance-gain

promptness

rate

Horizontal dis-

tance between

consecutive tra-

jectories.

The larger the horizon-

tal distance to the pre-

ceding trajectory is with

respect the horizontal

distance with the fol-

lowing trajectory, the

larger the distance-gain

promptness rate is.

—

∂2f(t, t0)

∂t∂t0

(see Figure 12.2)

Distances between two

users with departure

time very close to t0 (α

delay) at two times very

close to t (∆ delay)

Speed lateness

rate

Horizontal band

width

The larger the horizontal band width, the

larger the speed promptness rate.

∂2g(x, t0)

∂x2

(see Figure 12.3)

Time gaps associated

with three equally

spaced (δ distance)

locations very close to

x for a single user with

departure time t0

Slowness dis-

tance rate

Curvature of the

inverse function

A positive curvature means positive slow-

ness distance rate.

∂2g(x, t0)

∂t20

(see Figure 12.4)

The two time gaps at lo-

cation x associated with

three users whose depar-

ture times were equally

delayed (∆ delay) and

very close to t0

Time-gain

promptness

rate

Vertical distances

between consecu-

tive trajectories.

The larger the vertical

distance to the preced-

ing trajectory is with re-

spect the vertical dis-

tance with the follow-

ing trajectory, the larger

the time-gain prompt-

ness rate is.

—

∂2g(x, t0)

∂x∂t0

(see Figure 12.5)

Time gaps at two lo-

cations (separated by a

distance β) very close to

x between two users who

departed very close to t0
(delayed ∆)

Slowness

promptness

rate

Vertical band

width

The larger the vertical band width, the

larger the slowness promptness rate.

Table 12.1: Illustration of the different first and second partial derivatives of functions

f(t, t0) and g(x, t0) together with what they compare, the physical meaning, the trajectory

field feature and what they permit to evaluate for the cases of equally delayed and equal

flow trajectories.

12.3.1 Free flow single class trajectories

A particular example is the case of free flow trajectories, that can be written in terms of

a single argument function, as shown by the following theorem.



12.3. Single class trajectory plots 249

Theorem 18 (Free flow trajectories) The free flow trajectories are given by

x = f(t, t0) = h0(t− t0), (12.2)

where h0(·) is an arbitrary increasing function such that h0(t − t0) gives the position of

a user circulating at the free flow speed and whose departure time is t0 at time t, or its

inverse

t = g(x, t0) = h−1
0 (x) + t0. (12.3)

Proof. The following property must be satisfied by free flow users:

x = f(t, t0) = f(t+ ∆, t0 + ∆); ∀t, t0 ≥ 0, (12.4)

which expresses that under free flow conditions, the distance traveled at time t by a user

whose departure was t0 must be identical to the distance x traveled at time t + ∆ by

another user whose departure was t0 + ∆, that is, the same travel time t− t0.

Equation (12.4) is a functional equation with one unknown f(t, t0), which is easy to

solve. To this end, we replace first t0 = 0 in (12.4), next t by t − t0 and then ∆ by t0 to

get

x = f(t− t0, 0) = f(t, t0) = h0(t− t0), (12.5)

which is (12.2).

Note that Equation (12.5) expresses a property of free flow users, that is equivalent

to (12.4). This property says that the traveled distance is a function only on the traveled

time t− t0.

From (12.5) we can immediately obtain the time t as a function of x and t0, that is,

Equation (12.3).

As indicated, the previous theorem states that the free flow trajectories can be given

in terms of t− t0. In other words in terms of a single argument (t− t0) function h0(·). This

is an important result, because once a trajectory is known, all of them can be immediately

obtained.

The previous theorem shows that the free flow trajectories are parallel lines. They

correspond to an unrealistic condition, because at least one user must be traveling, but it

is the limit of a real case in which the number of traveling users tends to zero. Finally,

free flow equally delayed plots lead to parallel and equally delayed trajectories, while free

flow equal flow plots lead to parallel but evenly spaced trajectories.

However, in the case of congestion, the trajectories are not parallel anymore.

12.3.2 Single class equally delayed trajectory profiles under congestion

In Figure 12.6 we consider two sets (bands) of users associated with departures in the

two intervals of identical time amplitude (t1 − t, t1) and (t2 − t, t2). These users follow
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Path 6

0 location

Link 1 Link 2 Link 3
time

t1- t

t1

t2- t

t2

I1

I2

I3

I4
t4

t3

n2 users

n1 users

A

l1

D2

D4

D3

D1

l2

l4

l3

Figure 12.6: Illustration of the meaning of traffic intensity ratios (local flow rates) for two

trajectory bands in the case of equally delayed trajectories.

trajectories in the shadowed regions in Figure 12.6 and reach the location A at times

within time intervals of amplitudes t3 and t4, respectively.

If we assume that the FIFO rule is satisfied, from Figure 12.6 we can see that the

traffic intensities at the two locations, the path origin O and location A, associated with

the two bands of users are

I1 =
n1

t
; I2 =

n2

t
; I3 =

n1

t3
; I4 =

n2

t4
, (12.6)

where n1 and n2 are the number of users traveling in the first and second band, respectively.

This means that the traffic flow intensities for users traveling from O to A change from

I1 to I3 and from I2 to I4 for users of the first and second band, respectively. Thus, the

evolution of traffic intensities for the two bands can be measured by the intensity ratios

(local flow rates) r1 = I3/I1 and r2 = I4/I2, respectively, which has the virtue of being

dimensionless.

In addition, according to (12.6), we have

R =
I4/I2

I3/I1
=
r2

r1
= t3/t4.

Consequently, the time ratio R = t3/t4 is useful to compare the traffic intensity ratios for

different departure intervals of the same width.
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For example, if t3 > t4 (R > 1) the intensity ratio of band 2 is larger than the intensity

ratio of band 1 (r2 > r1). In other words, the lighter the zone, the smaller the traffic

intensity ratios. All this shows that the plots in Figure 12.6 cannot be interpreted in

terms of intensities, but in terms of intensity ratios.

Similarly, if as before we assume that the FIFO rule is satisfied, from Figure 12.6 we

can see that the traffic densities at the two locations associated with the two bands of

users are

D1 =
n1

`1
; D2 =

n2

`2
; D3 =

n1

`3
; D4 =

n2

`4
. (12.7)

Then, we get
D3

D1
=
`1
`3

;
D4

D2
=
`2
`4
. (12.8)

So, the length ratios
`1
`3

and
`2
`4

are good to compare traffic densities within the same

bands.

However,
D2

D1
=
n2`1
n1`2

;
D4

D3
=
n2`3
n1`4

, (12.9)

that is, it is not convenient to compare traffic densities of bands associated with the same

width departure time intervals.

In Figure 12.7 we can see the separate trajectories of vehicles of the three classes:

cars, trucks and motorbikes (one color for each class) corresponding to equally delayed

departure times (user band associated with 12 minutes). The curves shown at the left

(departure) and right (arrival) sides of each plot are the travel time excesses (measured as

the difference between the trajectory travel time and the free flow travel time) associated

with the different trajectories. In addition, the fastest and slowest path trajectories are

shown and they correspond to midnight (smallest path travel time) and around 16 hours,

where the largest travel time is attained.

It is interesting to see that the congested zones can be identified by an increase of

the trajectory slope. This is easy because during the night hours the slopes correspond

to free flow. For instance, in links 4, 7 and 8 the trajectories are almost parallel to the

free flow trajectories. However, in link 6, the slopes increase with time and later decrease.

Consequently, congested time-location pairs correspond to points in the graph with a high

relative slope with respect to the free flow slope.

For example, point B in the figure corresponds to congestion because the slope of the

trajectory passing throughout it has a slope larger than the slope of point A. On the

contrary, point C is a non-congested time-location pair, because its slope is similar to that

of point A.

In this case, link 6 is congested and produces a speed reduction, which is practically

maintained constant with time in link 8.
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If users are forced to travel with departures in the range from 10 to 15 hours, the

figures permit to choose the best trajectory in terms of travel time, using the right and

left curves, which indicate that the optimal option is between 12 and 13 hours and depends

on the user class (see the marked trajectories with departure time between 10 to 15 hours

in each of the three plots in Figure 12.7), which correspond to a relative minimum of the

travel time excess curves.

Suppose a motorbike user wants to arrive at a given hour, say 30 h, then the figure

permits to calculate the travel time (8 h) and the departure time, which in this case is 22

h. However, the figure also allows us to see that a delay of one hour in the arrival time

(31 h) implies a departure at 24 h, that is, a saving of one hour in the travel time (see the

dashed lines in the lower plot in Figure 12.7).

It is important to remark that congestion corresponds to large slope trajectories (low

speed) but that large slope trajectories do not necessarily imply congestion, because the

free flow speed can be small. So, what is important is the relative slope small slope compare

to slope at other times in the same location.

Finally, to illustrate the role and physical meaning of some of the partial derivatives

described in Section 12.2, the velocity, acceleration and
∂2g(x, t0)

∂x∂t0
(slowness promptness

rate) contours are shown on the cars, trucks and motorbikes plots, respectively. In the cars

and trucks plots we can see the velocities and accelerations (in relative values), respectively,

associated with the different location-time pairs, what provides a valuable information

about the traffic behavior. In the motorbikes plot we can see the relative changes of
∂2g(x, t0)

∂x∂t0
which provide information about how the vehicles joint (negative value contours)

or separate apart (positive value contours) at the different location-time pairs.

12.3.3 Single class equal flow trajectory profiles under congestion

In this interpretation the number of users between two consecutive trajectories is the same

as indicated in Figure 12.8.

If as before we assume that the FIFO (first in first out) rule is satisfied, from Figure

12.8 we can see that the traffic intensities at the two locations, the path origin O and

location A, associated with the two bands of users are

I1 =
n

t01
; I2 =

n

t02
; I3 =

n

t3
; I4 =

n

t4
, (12.10)

where n is the common number of users of the two bands.

This means that the traffic flow intensities for users traveling from O to A change from

I1 to I3 and from I2 to I4 for users of the first and second band, respectively. Thus, to

compare the traffic intensities of the two bands we can use the intensity ratio:

r =
I4

I3
=
t3
t4
, (12.11)
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Suppose a motorbike user wants to arrive at a given hour,
say 30 h, then the figure permits to calculate the travel time (8
h) and the departure time, which in this case is 22 h. However,
the figure also allows us to see that a delay of one hour in
the arrival time (31 h) implies a departure at 24 h, that is, a
saving of one hour in the travel time (see the dashed lines in
the lower plot in Figure 10).

It is important to remark that congestion corresponds to
large slope trajectories (low speed) but that large slope trajec-
tories do not necessarily imply congestion, because the free
flow speed can be small. So, what is important is the relative
slope small slope compare to slope at other times in the same
location.

Finally, to illustrate the role and physical meaning of some
of the partial derivatives described in Section IV, the velocity,

acceleration and
∂2g(x, t0)

∂x∂t0
contours are shown on the cars,

trucks and motorbikes plots, respectively. In the cars and trucks
plots we can see the velocities and accelerations (in relative
values), respectively, associated with the different location-
time pairs, what provides a valuable information about the
traffic behavior. In the motorbikes plot we can see the relative

changes of
∂2g(x, t0)

∂x∂t0
which provide information about how

the vehicles joint (negative value contours) or separate apart
(positive value contours) at the different location-time pairs.

C. Single class equal flow trajectory profiles under congestion

In this interpretation the number of users between two
consecutive trajectories is the same as indicated in Figure 11.

If as before we assume that the FIFO (first in first out)
rule is satisfied, from Figure 11 we can see that the traffic
intensities at the two locations, the path origin O and location
A, associated with the two bands of users are

I1 =
n

t01
; I2 =

n

t02
; I3 =

n

t3
; I4 =

n

t4
, (12)

where n is the common number of users of the two bands.
This means that the traffic flow intensities for users traveling

from O to A change from I1 to I3 and from I2 to I4 for users
of the first and second band, respectively. Thus, to compare
the traffic intensities of the two bands we can use the intensity
ratio:

r =
I4
I3

=
t3
t4
, (13)

showing that this type of plots is useful to interpret relative
intensities of different bands.

For example, if t3 > t4 (r > 1) the intensity of band 2 is
larger than the intensity of band 1 (I4 > I3). In other words,
the lighter the zone, the smaller the traffic intensity ratios.

However, according to (12), we have

R =
I4/I2
I3/I1

=
r2

r1
=
t02t3
t01t4

,

which shows that the ratio R = t3/t4 is not useful to compare
the traffic intensity ratios for different departure intervals of
the same flow.

Similarly, if as before we assume that the FIFO (first in first
out) rule is satisfied, from Figure 11 we can see that the traffic
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Fig. 10. Trajectories of vehicles of the three classes: cars, trucks and
motorbikes corresponding to equally delayed departure times (12 minutes),
and travel times of the different trajectories located at the departure and arrival
locations. The fastest and slowest trajectories are shown together with an
alternative for a user willing to reach the destination at 31 h. The velocity,

acceleration and
∂2g(x, t0)

∂x∂t0
contours are shown on the cars, trucks and

motorbikes plots, respectively.

densities at the two locations associated with the two bands
of users are

D1 =
n

`1
; D2 =

n

`2
; D3 =

n

`3
; D4 =

n

`4
. (14)

Then, we get

D3

D1
=
`1
`3

;
D4

D2
=
`2
`4

;
D2

D1
=
`1
`2

;
D4

D3
=
`3
`4
. (15)

So, the horizontal length ratios
`i
`j

are good to compare traffic

densities within the same or different bands.
Figure 12 shows the separate trajectories of vehicles of the

three classes: cars, trucks and motorbikes corresponding to

Figure 12.7: Trajectories of vehicles of the three classes: cars, trucks and motorbikes corre-

sponding to equally delayed departure times (12 minutes), and travel times of the different

trajectories located at the departure and arrival locations. The fastest and slowest trajec-

tories are shown together with an alternative for a user willing to reach the destination at

31 h. The velocity, acceleration and slowness promptness rate contours are shown on the

cars, trucks and motorbikes plots, respectively.
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Figure 12.8: Illustration of the meaning of traffic intensity ratios for two trajectory bands

in the case of equal flow trajectories.

showing that this type of plots is useful to interpret relative intensities of different bands.

For example, if t3 > t4 (r > 1) the intensity of band 2 is larger than the intensity of

band 1 (I4 > I3). In other words, the lighter the zone, the smaller the traffic intensity

ratios.

However, according to (12.10), we have

R =
I4/I2

I3/I1
=
r2

r1
=
t02t3
t01t4

,

which shows that the ratio R = t3/t4 is not useful to compare the traffic intensity ratios

for different departure intervals of the same flow.

Similarly, if as before we assume that the FIFO (first in first out) rule is satisfied, from

Figure 12.8 we can see that the traffic densities at the two locations associated with the

two bands of users are

D1 =
n

`1
; D2 =

n

`2
; D3 =

n

`3
; D4 =

n

`4
. (12.12)

Then, we get
D3

D1
=
`1
`3

;
D4

D2
=
`2
`4

;
D2

D1
=
`1
`2

;
D4

D3
=
`3
`4
. (12.13)



12.4. Double class trajectory plots 255

So, the horizontal length ratios
`i
`j

are good to compare traffic densities within the same

or different bands.

Figure 12.9 shows the separate trajectories of vehicles of the three classes: cars, trucks

and motorbikes corresponding to equal number of vehicles in each band and the travel

times of the different trajectories located at the departure and arrival locations. The

trajectories corresponding to the maximum and minimum travel times are indicated by

thick lines.

It is important to note the difference between Figures 12.7 and 12.9, which correspond

to equally delayed and same flow bands, respectively, because the interpretation of the

plots must be done adequately.

As expected, in Figure 12.9 the assumed mixture of normal densities for the flow de-

mand at the origin of the route becomes apparent and is propagated through the path

though modulated by the interaction with other flows and mainly because of the conges-

tion.

When looking to the trajectory plots we can perceive several things, such as the trajec-

tory slope, the trajectory curvature, the concentration of trajectories in a given zone, the

number of vehicles traveling between consecutive trajectories, the time interval associated

with two consecutive trajectories, etc. However, we must be careful when interpreting

the different trajectory profiles mentioned in this paper: equally delayed or equal flow

trajectories. For example, in the equally delayed departure plots the number of users

traveling between consecutive trajectories are not the same, and the light and dark areas

(concentration of trajectories in a given zone) cannot be interpreted as areas of low and

high density or intensity, respectively.

12.4 Double class trajectory plots

Since interactions among different classes cannot be easily detected by separate class tra-

jectories, in this section we combine several classes. This type of plots consists of trajec-

tories (traveled distance x versus time t) of two different class users. Since it has been

assumed that there is no overtaking among users of the same class but overtaking is per-

mitted for different class users, the set of trajectories does not intersect for the same class,

but produces intersections for users of different classes.

In order to see how the traffic behaves with respect to the different class users, in

Figure 12.10 the trajectories of vehicles of the three classes: cars, trucks and motorbikes

are superposed with those of a virtual class of users who are assumed to circulate at the

free flow speed of each class and with the same departure times as the regular users. The

travel time excesses with respect to free travel time of the different trajectories are shown

at the departure and arrival locations, and the fastest and slowest trajectories are shown

too. In other words, we compare each class trajectory with its corresponding free flow
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Fig. 12. Trajectories of vehicles of the three classes: cars, trucks and
motorbikes corresponding to equal number of vehicles in each band, and
travel times of the different trajectories located at the departure and arrival
locations. The fastest and slowest trajectories are shown.

of the three classes: cars, trucks and motorbikes and free
flow speed truck trajectories corresponding to equally delayed
departure times (12 minutes), and travel times of the different
trajectories located at the departure and arrival locations. The
fastest and slowest trajectories are also shown.

Since motorbikes have been assumed faster than cars and
cars faster than trucks, the number of white bands present in
the corresponding plots in Figure 14 increase from motorbikes
to cars and trucks. Thus, in order to optimize, a trajectory must
intersect as least as possible white bands (the least times you
need to overtake the best).

Figure 15 shows the superposition of the trajectories of
vehicles corresponding to all combinations of two classes for
equally delayed arrival times and with the same departure
times for both classes. In addition, the trajectories of five pairs
of class vehicles departing at the same time are emphasized in
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Fig. 13. Superposition of trajectories of vehicles of the three classes: cars,
trucks and motorbikes and their free flow speed trajectories corresponding
to equally delayed departure times (12 minutes), and travel times of the
different trajectories located at the departure and arrival locations. The fastest
and slowest trajectories are shown.

order to illustrate their different travel times all over the path.
Note that forcing the departure times of the different class

users to coincide implies forcing a vertical white band at
departure (where the different class vehicles coincide at the
same time).

Since in this case we do not use the virtual free flow
trajectories but the real trajectories of two classes of users,
these plots refer to relative behavior of the corresponding
classes and must be used with this aim. In particular, the white
bands correspond to overtaking between the associated classes.

It is easy to see that some trajectories imply a high number
of overtakes and that other produce a reduced number because
of the congestion, in which the speeds of all class users
coincide or almost coincide (parallel or almost parallel tra-
jectories). One example of this occurs in link 6 (the congested

Figure 12.9: Trajectories of vehicles of the three classes: cars, trucks and motorbikes

corresponding to equal number of vehicles in each band, and travel times of the differ-

ent trajectories located at the departure and arrival locations. The fastest and slowest

trajectories are shown.

trajectory.

It is worthwhile mentioning that some white bands appear in the pictures, whose
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meaning is explained next. Since the two sets of trajectories (the one corresponding to the

user and the associated free flow set) are plotted on a white paper, when these trajectories

intersect the white background is shown. Thus, each white band corresponds to a virtual

overtaking of a vehicle of the corresponding class user by the virtual vehicle circulating

at the free flow speed. Consequently, the number p of white bands intersected by a given

trajectory indicates that the corresponding vehicle would have been overtaken by all virtual

vehicles with a departure produced p times 12 minutes after its departure time (because

trajectories correspond to users delayed 12 minutes).

Since motorbikes are affected by congestion less than cars and cars less than trucks,

the number of white bands present in the corresponding plots in Figure 12.10 increase

from motorbikes to cars and trucks.

Figure 12.11 shows the superposition of trajectories of vehicles of the three classes:

cars, trucks and motorbikes and free flow speed truck trajectories corresponding to equally

delayed departure times (12 minutes), and travel times of the different trajectories located

at the departure and arrival locations. The fastest and slowest trajectories are also shown.

Since motorbikes have been assumed faster than cars and cars faster than trucks, the

number of white bands present in the corresponding plots in Figure 12.11 increase from

motorbikes to cars and trucks. Thus, in order to optimize, a trajectory must intersect as

least as possible white bands (the least times you need to virtually overtake, the best).

Figure 12.12 shows the superposition of the trajectories of vehicles corresponding to all

combinations of two classes for equally delayed arrival times and with the same departure

times for both classes. In addition, the trajectories of five pairs of class vehicles departing

at the same time are emphasized in order to illustrate their different travel times all over

the path.

Note that forcing the departure times of the different class users to coincide implies

forcing a vertical white band at departure (where the different class vehicles coincide at

the same time).

Since in this case we do not use the virtual free flow trajectories but the real trajectories

of two classes of users, these plots refer to relative behavior of the corresponding classes

and must be used with this aim. In particular, the white bands correspond to overtaking

between the associated classes.

It is easy to see that some trajectories imply a high number of overtakes and that

other produce a reduced number because of the congestion, in which the speeds of all class

users coincide or almost coincide (parallel or almost parallel trajectories). One example

of this occurs in link 6 (the congested link) where practically no overtake occurs, with the

exception of early and late hours.

Note that the number of white bands is related to the different speeds of the two corre-

sponding classes. Since the maximum speed difference is between trucks and motorbikes,

the intermediate plot shows the largest number of white bands.

We point out that congestion means that the white bands deform (see link 6), while
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Fig. 12. Trajectories of vehicles of the three classes: cars, trucks and
motorbikes corresponding to equal number of vehicles in each band, and
travel times of the different trajectories located at the departure and arrival
locations. The fastest and slowest trajectories are shown.

of the three classes: cars, trucks and motorbikes and free
flow speed truck trajectories corresponding to equally delayed
departure times (12 minutes), and travel times of the different
trajectories located at the departure and arrival locations. The
fastest and slowest trajectories are also shown.

Since motorbikes have been assumed faster than cars and
cars faster than trucks, the number of white bands present in
the corresponding plots in Figure 14 increase from motorbikes
to cars and trucks. Thus, in order to optimize, a trajectory must
intersect as least as possible white bands (the least times you
need to overtake the best).

Figure 15 shows the superposition of the trajectories of
vehicles corresponding to all combinations of two classes for
equally delayed arrival times and with the same departure
times for both classes. In addition, the trajectories of five pairs
of class vehicles departing at the same time are emphasized in
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Fig. 13. Superposition of trajectories of vehicles of the three classes: cars,
trucks and motorbikes and their free flow speed trajectories corresponding
to equally delayed departure times (12 minutes), and travel times of the
different trajectories located at the departure and arrival locations. The fastest
and slowest trajectories are shown.

order to illustrate their different travel times all over the path.
Note that forcing the departure times of the different class

users to coincide implies forcing a vertical white band at
departure (where the different class vehicles coincide at the
same time).

Since in this case we do not use the virtual free flow
trajectories but the real trajectories of two classes of users,
these plots refer to relative behavior of the corresponding
classes and must be used with this aim. In particular, the white
bands correspond to overtaking between the associated classes.

It is easy to see that some trajectories imply a high number
of overtakes and that other produce a reduced number because
of the congestion, in which the speeds of all class users
coincide or almost coincide (parallel or almost parallel tra-
jectories). One example of this occurs in link 6 (the congested

Figure 12.10: Superposition of trajectories of vehicles of the three classes: cars, trucks

and motorbikes and their free flow speed trajectories corresponding to equally delayed

departure times (12 minutes), and travel times of the different trajectories located at the

departure and arrival locations. The fastest and slowest trajectories are shown.

lack of congestion implies maintaining the shapes (see links 4, 7 and 8).

Figure 12.13 shows the superposition of the trajectories of vehicles corresponding to
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Fig. 14. Superposition of trajectories of vehicles of the three classes: cars,
trucks and motorbikes and free flow speed truck trajectories corresponding
to equally delayed departure times (12 minutes), and travel times of the
different trajectories located at the departure and arrival locations. The fastest
and slowest trajectories are shown.

link) where practically no overtake occurs, with the exception
of early and late hours.

Note that the number of white bands is related to the
different speeds of the two corresponding classes. Since the
maximum speed difference is between trucks and motorbikes,
the intermediate plot shows more white bands.

We point out that congestion means that the white bands
deform (see link 6), while lack of congestion implies main-
taining the shapes (see links 4, 7 and 8).

Figure 16 shows the superposition of the trajectories of
vehicles corresponding to all combinations of two classes for
equally delayed departure times (12 minutes) and with the
same arrival time for both classes. In addition, the trajectories
of five pairs of class vehicles arriving (reaching the path end)
at the same time are emphasized in order to illustrate their
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Fig. 15. Superposed trajectories of vehicles of all combination of two
classes corresponding to equally delayed departure times (12 minutes). The
trajectories of some pair of class vehicles departing at the same time are
emphasized.

different travel times all over the path.
The conclusions are similar to those derived from the

previous figure but now a white band has been forced at the
arrival (where the different class vehicle coincide at the same
time).

VII. MULTIPLE CLASS TRAJECTORY PLOTS

This type of plots consists of trajectories (traveled distance
x versus time t) of all different class users. Since it has been
assumed that there is no overtaking among users of the same
class but overtaking is permitted for different class users, the
set of trajectories does not intersect for the same class, but
produces intersections for users of different classes.

Figure 17 shows the superposition of the trajectories of
the three classes of vehicles corresponding to equally delayed
departure (upper plot) and arrival (lower plot) times.

Figure 12.11: Superposition of trajectories of vehicles of the three classes: cars, trucks

and motorbikes and free flow speed truck trajectories corresponding to equally delayed

departure times (12 minutes), and travel times of the different trajectories located at the

departure and arrival locations. The fastest and slowest trajectories are shown.

all combinations of two classes for equally delayed departure times (12 minutes) and with

the same arrival time for both classes. In addition, the trajectories of five pairs of class
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Fig. 14. Superposition of trajectories of vehicles of the three classes: cars,
trucks and motorbikes and free flow speed truck trajectories corresponding
to equally delayed departure times (12 minutes), and travel times of the
different trajectories located at the departure and arrival locations. The fastest
and slowest trajectories are shown.

link) where practically no overtake occurs, with the exception
of early and late hours.

Note that the number of white bands is related to the
different speeds of the two corresponding classes. Since the
maximum speed difference is between trucks and motorbikes,
the intermediate plot shows more white bands.

We point out that congestion means that the white bands
deform (see link 6), while lack of congestion implies main-
taining the shapes (see links 4, 7 and 8).

Figure 16 shows the superposition of the trajectories of
vehicles corresponding to all combinations of two classes for
equally delayed departure times (12 minutes) and with the
same arrival time for both classes. In addition, the trajectories
of five pairs of class vehicles arriving (reaching the path end)
at the same time are emphasized in order to illustrate their
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Fig. 15. Superposed trajectories of vehicles of all combination of two
classes corresponding to equally delayed departure times (12 minutes). The
trajectories of some pair of class vehicles departing at the same time are
emphasized.

different travel times all over the path.
The conclusions are similar to those derived from the

previous figure but now a white band has been forced at the
arrival (where the different class vehicle coincide at the same
time).

VII. MULTIPLE CLASS TRAJECTORY PLOTS

This type of plots consists of trajectories (traveled distance
x versus time t) of all different class users. Since it has been
assumed that there is no overtaking among users of the same
class but overtaking is permitted for different class users, the
set of trajectories does not intersect for the same class, but
produces intersections for users of different classes.

Figure 17 shows the superposition of the trajectories of
the three classes of vehicles corresponding to equally delayed
departure (upper plot) and arrival (lower plot) times.

Figure 12.12: Superposed trajectories of vehicles of all combination of two classes corre-

sponding to equally delayed departure times (12 minutes). The trajectories of some pair

of class vehicles departing at the same time are emphasized.

vehicles arriving (reaching the path end) at the same time are emphasized in order to

illustrate their different travel times all over the path.

The conclusions are similar to those derived from the previous figure but now a white
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Fig. 16. Superposed trajectories of vehicles of all combination of two classes
corresponding to equally delayed arrival times. The trajectories of five pairs
different class vehicles arriving at the same time are emphasized.

Since three classes of users are considered, three overtake
types appear (motorbikes overtake cars, motorbikes overtake
trucks and cars overtake trucks). For this reason the light
bands have now different colors. A white band indicates that
motorbikes and cars simultaneously overtake trucks, a green
band indicates that motorbikes overtake trucks, and a magenta
band indicates that motorbikes overtake cars.

VIII. CONCLUSIONS AND RECOMMENDATIONS

The main conclusions drawn from this paper are:
1) Several new concepts and measures are required to fully

understand the time and spatial traffic behavior. Since
users are not familiar with these concepts, an effort is
required to fully understand their physical meaning and
how these measures can be derived from the different
trajectory plots.
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Fig. 17. Superposed trajectories of vehicles of the three classes corresponding
to equally delayed departure (upper plot) and arrival (lower plot) times.

2) User trajectories are an important source of information
about the dynamic traffic behavior because they permit
identifying relevant aspects of traffic flow and how they
change with time and location.

3) The magnitude of the first derivatives of the f(t, t0) and
g(x, t0) functions can be obtained by taking a look at the
trajectory slopes and their time evolution. This means
that speeds, slowness, slowness distance and slowness
time rates can be identified at all location-time pairs
from trajectory plots.

4) The signs and orders of magnitude of the second partial
derivatives of f(t, t0) and g(x, t0) functions with respect
to t0 can be derived only from equally delayed plots.

5) The signs and orders of magnitude of all other second
partial derivatives of f(t, t0) and g(x, t0) can be derived
from both, equally delayed and equal flow plots.

6) Plotting the contours of the different partial derivatives
of functions f(t, t0) and g(x, t0) facilitates the interpre-
tation of the plots and permits understanding the traffic
behavior and how it evolves with time and location.

7) Superposition of the trajectories of different class users
provide a useful information about the overtaking possi-
bilities at different times and locations by means of the
appearing bands.

Finally, we provide the following recommendations to be
considered when plotting and interpreting traffic graphs:

1) Be careful in distinguishing individual trajectories from
group trajectories and how the groups have been defined.
For example, the interpretation is different if equally

Figure 12.13: Superposed trajectories of vehicles of all combination of two classes cor-

responding to equally delayed arrival times. The trajectories of five pairs different class

vehicles arriving at the same time are emphasized.

band has been forced at the arrival (where the different class vehicle coincide at the same

time).
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Fig. 16. Superposed trajectories of vehicles of all combination of two classes
corresponding to equally delayed arrival times. The trajectories of five pairs
different class vehicles arriving at the same time are emphasized.

Since three classes of users are considered, three overtake
types appear (motorbikes overtake cars, motorbikes overtake
trucks and cars overtake trucks). For this reason the light
bands have now different colors. A white band indicates that
motorbikes and cars simultaneously overtake trucks, a green
band indicates that motorbikes overtake trucks, and a magenta
band indicates that motorbikes overtake cars.

VIII. CONCLUSIONS AND RECOMMENDATIONS

The main conclusions drawn from this paper are:
1) Several new concepts and measures are required to fully

understand the time and spatial traffic behavior. Since
users are not familiar with these concepts, an effort is
required to fully understand their physical meaning and
how these measures can be derived from the different
trajectory plots.
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Fig. 17. Superposed trajectories of vehicles of the three classes corresponding
to equally delayed departure (upper plot) and arrival (lower plot) times.

2) User trajectories are an important source of information
about the dynamic traffic behavior because they permit
identifying relevant aspects of traffic flow and how they
change with time and location.

3) The magnitude of the first derivatives of the f(t, t0) and
g(x, t0) functions can be obtained by taking a look at the
trajectory slopes and their time evolution. This means
that speeds, slowness, slowness distance and slowness
time rates can be identified at all location-time pairs
from trajectory plots.

4) The signs and orders of magnitude of the second partial
derivatives of f(t, t0) and g(x, t0) functions with respect
to t0 can be derived only from equally delayed plots.

5) The signs and orders of magnitude of all other second
partial derivatives of f(t, t0) and g(x, t0) can be derived
from both, equally delayed and equal flow plots.

6) Plotting the contours of the different partial derivatives
of functions f(t, t0) and g(x, t0) facilitates the interpre-
tation of the plots and permits understanding the traffic
behavior and how it evolves with time and location.

7) Superposition of the trajectories of different class users
provide a useful information about the overtaking possi-
bilities at different times and locations by means of the
appearing bands.

Finally, we provide the following recommendations to be
considered when plotting and interpreting traffic graphs:

1) Be careful in distinguishing individual trajectories from
group trajectories and how the groups have been defined.
For example, the interpretation is different if equally

Figure 12.14: Superposed trajectories of vehicles of the three classes corresponding to

equally delayed departure (upper plot) and arrival (lower plot) times.

12.5 Multiple class trajectory plots

This type of plots consists of trajectories (traveled distance x versus time t) of all different

class users. Since it has been assumed that there is no overtaking among users of the same

class but overtaking is permitted for different class users, the set of trajectories does not

intersect for the same class, but produces intersections for users of different classes.

Figure 12.14 shows the superposition of the trajectories of the three classes of vehicles

corresponding to equally delayed departure (upper plot) and arrival (lower plot) times.

Since three classes of users are considered, three overtake types appear (motorbikes

overtake cars, motorbikes overtake trucks and cars overtake trucks). For this reason the

light bands have now different colors. A white band indicates that motorbikes and cars

simultaneously overtake trucks, a green band indicates that motorbikes overtake trucks,

and a magenta band indicates that motorbikes overtake cars.
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12.6 Final recommendations

Finally, we provide the following recommendations to be considered when plotting and

interpreting traffic graphs:

1. Be careful in distinguishing individual trajectories from group trajectories and how

the groups have been defined. For example, the interpretation is different if equally

delayed or same number of users are the grouping criteria, as it has been shown in

this paper.

2. Plotting many different lines in a single plot causes confusion. Thus, sometimes it

is better to represent the trajectories of some representative users or group them.

3. Look at the slopes and curvatures of single trajectories to detect changes in speed,

slowness and acceleration.

4. Look at the horizontal and vertical distances and their evolutions between consecu-

tive trajectories when equally delayed plots are used to determine the effect of earlier

or later departure (promptness).

5. Compare trajectories, slopes and curvatures of close users to see the time and location

evolution of traffic.

6. Look at overtaking bands to decide the best times to travel. The larger the number

of bands crossed, the smaller the travel times.
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In this chapter we will enumerate the conclusions than can be drawn form the models

developed in the thesis. Moreover, some possible lines of future work are included.

It is important to remark that the computer programs have been implemented without

a sufficient optimization effort to reduce the cpu times. Therefore, the programs should be
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reviewed in depth in order to implement more efficient programs. For instance, they could

be written in different computer languages to compare their performances, and parallel

computing could be implemented.

13.1 A Percentile Traffic Assignment model

This section provides some concluding remarks and some possible future work related to

the topics dealt with in Chapter 7, where the Percentile Traffic Assignment problem is

treated.

13.1.1 Conclusions

1. The Nie (2011) conjecture on permutability of partial derivatives of route travel

times with respect to route flows and percentiles does not hold, and then it cannot

be used as a simplification.

2. A location-scale statistical model which makes assumptions at the path or OD in-

stead of the link level, has been proposed. In particular, the route or OD travel

times are assumed random variables of a infinitely divisible location-scale family.

However, the path travel time means and variances are evaluated in terms of the

mean and variance-covariance matrices of link travel times, allowing the considera-

tion of dependent link travel times. This alternative model requires neither direct

assumption of normal distributions for link travel times nor use of the central limit

theorem. This assumption could improve the practical applicability of some path

based existing models.

3. A Percentile System Optimal (PSO) model has been proposed, where the sum of the

α-percentiles of the total travel time for each OD-pair is minimized.

4. Contrary to most existing models that require path enumeration or an iterative

method to add paths sequentially, we have presented a PSO alternative in its two

versions: (a) with and (b) without path enumeration. In fact, by solving the (b)

version we can identify very easily the set of paths used by any class user.

5. The proposed methods have been applied to solve two practical examples: the

Nguyen-Dupuis and the Ciudad Real network. These examples show that the method

is applicable not only to simple but to complex and real size networks.

6. For not very large networks standard packages, such as GAMS, can be used to solve

the problem without the need of developing ad hoc special computer programs or

methods.
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13.1.2 Future work

The following are two possible lines of future work:

PUE model without path enumeration. Because of its difficulty, a Percentile User

Equilibrium model without path enumeration has not been proposed yet in the

literature. We have proposed a PSO model but it would be interesting to develop

also models based on the ideas of Lo et al. (2006) and Nie (2011) that does not

require path enumeration and, hence, their practical applicability can be improved.

Dynamic Percentile Traffic Assignment. It would be convenient to propose models

that deal with the problem of Dynamic Percentile traffic assignment extending the

work presented in this thesis and in Lo et al. (2006) and Nie (2011).

13.2 A Traffic Assignment problem including overtaking

classes

This section provides a concluding overview and some possible future work related to the

models developed in Chapter 8, where the traffic assignment problem including overtaking

has been dealt with by means of optimization and Variational Inequality (VIP) problems.

13.2.1 Conclusions

1. Vehicle overtaking can be taken into account in traffic models at macro level in a

simple form by adequately modifying the link travel time functions.

2. A link travel time family of functions has been proposed that permits reproducing the

same asymptotic congestion behavior of several overtaking classes, while reproduces

different class link travel times under mild congestion.

3. The link travel time family of functions proposed is based on convex linear combi-

nations of link travel time functions and, thus, any desired link travel time function

can be applied. Furthermore, it has a large number of parameters that makes it

applicable to a wide range of problems.

4. Two nonlinear complementary (NCP) and variational inequality (VIP) equivalent

problems, one with and another without route enumeration have been proposed to

solve the traffic assignment problem considering different overtaking classes.

5. Alternative problems have been proposed that can advantageously replace the orig-

inal NCP and VIP problems.
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6. The proposed models (8.40)-(8.44) and (8.45) subject to (8.40)-(8.42) and (8.44) do

not require route enumeration and permit identifying the used routes by all class

users.

7. The reported examples prove that different class users use different routes in order

to fulfill their overtaking tendencies.

13.2.2 Future work

Some possible future works related to this line of research, i.e. to traffic assignment

problem including overtaking classes, are:

Estimation and validation of the proposed link travel time function. It is

important to validate and test the proposed link travel time function with real data

to determine if it really can take into account the overtaking behavior. It would be

also interesting to develop a procedure that permits estimating the parameters of

this new link travel time function. Some general ideas on this topic has been given

in Section 8.2.2 but a more specific procedure should be developed.

Percentile traffic assignment problem including overtaking classes. As already

seen, most models in the literature assume that users behave in a homogeneous

way. However, this is generally not the case and much more realistic and, hence,

complicated models should be developed. One interesting possibility is to take into

account the travel time reliability problem and the overtaking classes at the same

time, that is, to develop a traffic assignment model including users that choose their

paths according to the reliability (i.e., the variability) and overtaking possibilities of

those paths.

13.3 A Bayesian Matrix Estimation Model

This section provides a concluding overview some suggestions about future work related

to Chapter 9, where the Matrix Estimation (ME) problem has been treated.

13.3.1 Conclusions

1. The problem of traffic flow estimation based on Gamma variables in a Bayesian con-

text is a hierarchical optimization problem in which five different objective functions

are used. The hierarchy of four of these functions is clear, but two of the functions

can be given different hierarchies depending on the relative weight given to the prior

information with respect to the field observations.
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2. A simple Gamma G(θ, 1) model for route flows, which has interesting properties in

the sense that the random link, node and OD flows belong to the same family of

Gamma distributions, has been proposed.

3. A Bayesian method with its most general conjugate family of prior-posterior distri-

butions has been utilized for learning the Gamma model. This leads to very simple

and closed formulas for the exact updating of uncertainty.

4. The difficulties in calculating the posterior means is avoided by considering the

posterior modes instead, which can be easily calculated by standard optimization

procedures.

5. The Gamma model combined with the Wardrop-minimum variance optimization

problem permits assigning traffic flows without the need of enumerating route paths

of the different OD pairs using a multi-level technique.

6. A multi-level algorithm has been proposed as an efficient alternative to solve the

hierarchical optimization problem discussed in this paper.

7. Since the computational requirements for the examples shown are low, because the

GAMS software is very powerful, and the implied functions behave well, we should

not expect computational problems for moderately large networks.

8. The methods have been applied to two examples of applications for illustration

purposes and compared with a standard bi-level LS method. The results of this

analysis give close results, which seem to validate the proposed method.

13.3.2 Future work

The following lines of future research on this topic are suggested:

Bayesian Matrix Estimation Model assuming other distributions. An interest-

ing line of future research is to assume that the path travel times belong to other

families of distributions different from the Gamma. For example, the Generalized

Gamma distribution would be a good option as it includes the Weibull, Gamma and

Log-normal distributions as particular cases and it is then suitable for a large range

of scenarios.

Extend the bi-level methods to traffic assignment with heterogeneous users.

Bi-level methods were developed in order to take into account the congestion effect

in the estimation procedure. It would be interesting to introduce the new traffic

assignment equations with heterogeneous users (travel time reliability or overtaking)

in the lower level of the bi-level problem. In that case, more realistic estimations

could be obtained.
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13.4 Upper bound of the number of sensors required for

total observability

This section provides a concluding overview and some possible future work related to the

topics dealt with in Chapter 10, where the link observability problem is treated.

13.4.1 Conclusions

The main conclusions are:

1. The upper bound given by Ng (2012) is right, but can be improved using partial

path information (a subset of linearly independent paths).

2. Path information is needed to know the smallest number of link sensors to be installed

to infer the flows of all other non-equipped links in a traffic network.

3. Not all paths are required to determine the upper bound. If a set of paths with

rank m−n is already available, no more paths are needed to get this sharpest upper

bound, which is m− n.

4. The upper bound given by Ng (2012) is the sharpest one only when the rank of the

link-path incidence matrix is rw = m−n. In this case, the transformations providing

inferred non-basis link flows from basis link flows obtained from the node-link balance

matrix (10.1) and from the link-path incidence matrix (10.10) are identical.

5. As indicated by other authors (see, for example Hu et al. (2009)) the minimum

number of links to be equipped with sensors in order to ensure observability of all

link flows is the rank rw of the link-path incidence matrix A, which depends on m

and n only when it reaches its maximum possible value rw = m− n.

6. We have provided a method to obtain minimum subsets of linearly independent path

vectors that facilitates the application of the proposed method to real cases. We note

that this set is very limited and that at most it coincides with the number of links.

7. Though the upper bound produced by the node-based approach can be close to

the real bound produced by the proposed method, the fact that they are different

is relevant because observation of more links than those strictly necessary produce

redundancy and this is known to lead to incompatibility problems. In other words,

if we observe the number of links indicated by the node-based approach we can have

incompatibility problems due to redundant observations. On the contrary, if we

observe the number of links indicated by the path-based approach we will not have

incompatibility problems.
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13.4.2 Future work

Some suggestions for future work are:

Dynamic observability problem. In Chapter 10 we have assumed static flow, that

is, we assume that the network conditions considered are static. Future research is

needed for the dynamic case, which is much more complicated.

New methods for the observability problem. We have developed an algebraic

model to solve this problem. However, it would be interesting if other types of

models (such as topological or graphical) are available.

13.5 Continuous Dynamic Network Loading model with

Different Overtaking Class Users

This section provides some concluding remarks and some possible future work related to

the topics dealt with in Chapter 11, where the a Continuous Dynamic Network Loading

model including overtaking classes is proposed.

13.5.1 Conclusions

The main conclusions drown from this chapter are:

1. The proposed method is a continuous method in which different class users from the

point of view of travel speed and overtaking are considered.

2. The link exit-entry time functions ταij(t) are approximated by monotone cubic-spline

functions and path origin flow functions are assumed to be linear combinations of a

basic set of functions.

3. The model permits determining how the flow waves associated with different class

users progress throughout the links of the network and stretch or enlarge due to

congestion.

4. The model takes into account that overtaking is not permitted for high congestion

levels by considering a family of link travel time functions with a common asymptote.

5. The family of link travel time functions has been assumed to be based on the BPR

function, but other link travel time functions can be used, depending on the nature

of the network.

6. Instead of using different functions for determining the origin departure times of

users of different paths, they are evaluated recursively from link exit-entry time

functions.



274 Chapter 13. Conclusions, future work and publications

7. Link physical-queues are considered to take into account high congestion levels.

8. Monotone cubic splines are used for reproducing the link exit-entry time functions.

This guarantees satisfaction of the FIFO rule for the same class users at the inter-

polated points if the base points already satisfy this rule.

9. The treatment of traffic congestion can be easily done by means of an iterative

process: first, we evaluate traffic congestion based on the actual link travel time

functions, and later, we update the link travel time functions based on congestion.

The process can be started by assuming no congestion in the first iteration, and

correcting this in successive iterations. We have obtained convergence in 3 or 4

iterations for no congestion and no more than 15 iterations when some congestion

is present.

10. Because path flow intensities are used as the basic time functions, and the link and

node flow intensities are obtained from them based on the network topology, the

conservation laws are satisfied over all the network.

13.5.2 Future work

The following lines of future research on this topic are suggested:

Estimation of the parameters. The parameters of the proposed model need to be

estimated and the model tested with real data. To this end, the standard counter in-

formation is not valid and observability methods (see Castillo et al. (2008a), Castillo

et al. (2010)) and more sophisticated ones, such as the plate scanning (Mı́nguez

et al. (2010), Castillo et al. (2008d)), GPS or mobile phones (Caceres et al. (2007),

Herrera et al. (2010)) based techniques must be used.

Calibration of the model. Future research is needed to reproduce the link congestion

and calibrate the model.

13.6 Graphical Methods to Analyze Traffic Trajectories

with and without Overtaking

This section provides a concluding overview and some possible future work related to

the topics dealt with in Chapter 12, where some graphical methods to analyze traffic

trajectories with and without overtaking are proposed.

13.6.1 Conclusions

The main conclusions are:
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1. Several new concepts and measures are required to fully understand the time and

spatial traffic behavior. Since users are not familiar with these concepts, an effort is

required to fully understand their physical meaning and how these measures can be

derived from the different trajectory plots.

2. User trajectories are an important source of information about the dynamic traffic

behavior because they permit identifying relevant aspects of traffic flow and how

they change with time and location.

3. The magnitude of the first derivatives of the f(t, t0) and g(x, t0) functions can be ob-

tained by taking a look at the trajectory slopes and their time evolution. This means

that speeds, slowness, slowness distance and slowness time rates can be identified at

all location-time pairs from trajectory plots.

4. The signs and orders of magnitude of the second partial derivatives of f(t, t0) and

g(x, t0) functions with respect to t0 can be derived only from equally delayed plots.

5. The signs and orders of magnitude of all other second partial derivatives of f(t, t0)

and g(x, t0) can be derived from both, equally delayed and equal flow plots.

6. Plotting the contours of the different partial derivatives of functions f(t, t0) and

g(x, t0) facilitates the interpretation of the plots and permits understanding the

traffic behavior and how it evolves with time and location.

7. Superposition of the trajectories of different class users provide a useful information

about the overtaking possibilities at different times and locations by means of the

appearing bands.

13.6.2 Future work

The following are two possible lines of future work:

Continue analyzing trajectory plots. Much more work is needed to fully understand

the information reported by trajectory plots.

Selection of appropriate terms. Work is needed in providing appropriate names

to the different concepts and measures introduced and to clarify how they can be

useful in traffic trajectory interpretation.
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Program codes
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A.1 Gams codes for the Probabilistic System Optimal mode . . . . . . . . . . 279
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A.2.1 Gams code for the Traffic Assignment problem including overtak-
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A.1 Gams codes for the Probabilistic System Optimal model

This section deals with the GAMS implementation of the Probabilistic System Optimal
model presented in Chapter 7, Section 7.3. The codes for the models with and without
overtaking are shown for the Nguyen-Dupuis example.

$Title PSONGUYENDUPUIS

******************************************************************************************

* The output files are defined

******************************************************************************************

file out/PSONGUYENDUPUIS.out/;

file out1/PSOMathematicaNGUYENDUPUIS.out/;

file out2/PSOTablasNGUYENDUPUIS.out/;

put out;

******************************************************************************************

* The solver is chosen

******************************************************************************************

OPTION nlp=IPOPT;
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SCALAR

CRITICALFLOW critical value for a non-null flow /0.001/

iii auxiliary counter

cbound bound for the objective function

Qaref parameter used to make dimensionless capacities

Tref parameter used to make dimensionless times

nlinks number of links

ilink counter for the links

nOD number od OD pairs

iAA counter for the alpha-classes

iOD counter for the OD pairs

aux auxiliary scalar

mm auxiliary scalar

indic auxiliary scalar

gamma BPR parameter /2/

incre epsilon value /0.001/

done binary scalar indicating the convergence

;

SETS

iter set of iterations /1*20/

PATH set of paths /1*46/

SS set of links in a path /1*5/

AA classes /1*4/

I set of nodes /1*13/

Origin(I) set of origin nodes

Destination(I) set of destination nodes

LINK(I,I) set of links

LINK1(I,I) copy of the set of links

OD(I,I) set of OD pairs

OD1(I,I) copy of the set of OD pairs

;

ALIAS(I,J,K,S,I1,J1);

ALIAS(AA,AA1);

ALIAS(PATH,PATH1);

TABLE

pathlinks(PATH,SS) paths by its links

1 2 3 4 5

1 1 11 14 18 0

2 1 11 14 18 20

3 1 11 14 19 30

4 1 11 14 19 31

5 1 11 15 29 30

6 1 11 15 29 31

7 1 12 25 29 30
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8 1 12 25 29 31

9 1 12 26 37 0

10 2 35 14 18 0

11 2 35 14 18 20

12 2 35 14 19 30

13 2 35 14 19 31

14 2 35 15 29 30

15 2 35 15 29 31

16 2 36 0 0 0

17 2 36 20 0 0

18 3 21 17 13 10

19 3 22 0 0 0

20 3 22 34 0 0

21 4 32 17 13 10

22 4 33 27 13 10

23 4 33 28 23 0

24 4 33 28 24 10

25 5 32 17 13 9

26 5 32 17 13 10

27 5 32 17 16 0

28 5 32 17 16 34

29 5 33 27 13 9

30 5 33 27 13 10

31 5 33 27 16 0

32 5 33 27 16 34

33 5 33 28 23 0

34 5 33 28 24 10

35 6 38 23 0 0

36 6 38 24 9 0

37 6 38 24 10 0

38 7 11 14 18 20

39 7 11 14 19 31

40 7 11 15 29 31

41 7 12 25 29 30

42 7 12 25 29 31

43 7 12 26 37 0

44 8 25 29 30 0

45 8 25 29 31 0

46 8 26 37 0 0

;

PARAMETER

XX(I,J) flow on a link

pathorigin(PATH) origin node of a path

pathdestination(PATH) destination node of a path

order(I,J) number associated with a link

classalpha(AA) alpha-percentiles of the standard normal for the classes

/1 -1.64

2 0
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3 1.64

4 1.96/

traveltime(I,I,AA) traveltime of a OD associated with a class

eta(I,J) BPR function parameter

delta(I,I) Kronecker delta

nu(I,J) free link travel time

/ 1.5 7

1.12 9

2.8 9

2.11 9

3.11 8

3.13 11

4.5 9

4.9 12

5.1 7

5.4 9

5.6 3

5.9 9

6.5 3

6.7 5

6.10 5

6.12 7

7.6 5

7.8 5

7.11 9

8.2 9

8.7 5

8.12 14

9.4 12

9.5 9

9.10 10

9.13 9

10.6 5

10.9 10

10.11 6

11.2 9

11.3 8

11.7 9

11.10 6

12.1 9

12.6 7

12.8 14

13.3 11

13.9 9

/

Qa(I,J) link capacities in BPR function

/

1.5 700

1.12 560
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4.5 560

4.9 280

5.6 420

5.9 420

6.7 700

6.10 280

7.8 700

7.11 700

8.2 700

9.10 280

9.13 280

10.11 700

11.2 280

11.3 560

12.6 140

12.8 560

13.3 560

/

T0(I,J) OD flows

/

1.2 210

1.3 430

1.8 320

2.1 210

2.4 320

2.12 50

3.1 430

3.4 110

3.12 40

4.2 320

4.3 110

/;

delta(I,I)=1;

eta(I,J)=1;

Qa(I,J)=max(Qa(J,I),Qa(I,J));

******************************************************************************************

* Identify arcs using free travel time parameter

******************************************************************************************

LINK(I,J)=no;

LINK(I,J)$(nu(I,J)>0)=yes;

LINK1(I,J)=LINK(I,J);

nlinks=SUM(LINK,1);

******************************************************************************************

* Associate a number with each link

******************************************************************************************

aux=0;
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LOOP(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0/;aux=aux+1;order(I,J)=aux

);

******************************************************************************************

* Check if the routes are well defined and print the errors

******************************************************************************************

put "CHECKING ROUTES"/;

loop((PATH,PATH1)$(ord(PATH)<ord(PATH1)),

aux=sum(SS$(pathlinks(PATH,SS)=pathlinks(PATH1,SS)),1);

if(aux=card(SS),put "ERROR ROUTES ",PATH.tl:3:0," AND ",

PATH1.tl:2:0," ARE IDENTICAL"/;);

);

loop(PATH,

loop(SS$(ord(SS)<card(SS) and pathlinks(PATH,SS)>0 and pathlinks(PATH,SS+1)>0),

loop((LINK(I,J),LINK1(I1,J1))$(order(LINK)=pathlinks(PATH,SS)

and order(LINK1)=pathlinks(PATH,SS+1) and ord(J)<>ord(I1)),

put "ERROR in PATH ",PATH.tl:4:0," LINK ",order(LINK):4:0,

" IS NOT CONNECTED WITH LINK ",order(LINK1):4:0/;

);

);

);

******************************************************************************************

* Definition of the parameters of the chi normal variables

******************************************************************************************

PARAMETER

mua(I,J) mean of the chi variables

sigmaa(I,J) standard deviation of the chi variables

;

Loop(LINK(I,J),

mua(LINK)=(1/Qa(LINK))**gamma;

sigmaa(LINK)=0.1*mua(LINK);

);

put "mu_ij and sigma_ij"/;

loop(LINK,

put mua(LINK):8:3,sigmaa(LINK):8:3/;

);

******************************************************************************************

* Make parameters dimensionless

******************************************************************************************

tref=smax(LINK,nu(LINK));

Qaref=smax(LINK,Qa(LINK));

nu(LINK)=nu(LINK)/tref;

Qa(LINK)=Qa(LINK)/Qaref;

mua(LINK)=mua(LINK)*(Qaref**gamma);

sigmaa(LINK)=sigmaa(LINK)*(Qaref**gamma);
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******************************************************************************************

* Converts the OD flows to dimensionless values

******************************************************************************************

T0(i,j)=T0(i,j)*1;

T0(i,j)=T0(i,j)/Qaref;

******************************************************************************************

* Generates ODs based on flows

******************************************************************************************

OD(I,J)=no;

OD(I,J)$(T0(I,J)>0)=yes;

nOD=SUM(OD,1);

******************************************************************************************

* Makes copies of ODs

******************************************************************************************

OD1(I,J)=OD(I,J);

PARAMETER

T00(I,J,AA) OD flows by alpha class

Frequencies1(I,I,I,I,AA) auxiliary parameter for the mathematica codes;

******************************************************************************************

* Distribute flows among classes

******************************************************************************************

T00(OD,AA)=T0(OD)/(card(AA));

T00(OD,’1’)=T0(OD)-sum(AA$(ord(AA)>1),T00(OD,AA));

put "T00"/;

loop(OD(K,S),

put K.tl:3:0,"-",S.tl:3:0;

loop(AA,

put T00(OD,AA):8:3;

);

put /;

);

******************************************************************************************

* Determine origins and destinations and print them

******************************************************************************************

Origin(I)=no;

loop(OD(K,S),

Origin(I)$(ord(K)=ord(I))=yes;

);

Destination(I)=no;

loop(OD(K,S),

Destination(I)$(ord(S)=ord(I))=yes;

);

put "Origins"/;
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loop(Origin(I),

put I.tl:3:0/;

);

put "Destinations"/;

loop(Destination(I),

put I.tl:3:0/;

);

put "PATH ORIGINS AND DESTINATIONS"/;

loop(PATH,

loop(LINK(I,J)$(order(LINK)=pathlinks(PATH,’1’)),

pathorigin(PATH)=ord(I)

);

loop(SS,

loop(LINK(I,J)$(pathlinks(PATH,SS)>0 and order(LINK)=pathlinks(PATH,SS)),

pathdestination(PATH)=ord(J)

);

);

put "PATH ",PATH.tl:3:0," ORIGIN ",pathorigin(PATH):3:0," DESTINATION "

,pathdestination(PATH):3:0/;

);

******************************************************************************************

* Define scalars for the mathematica codes

******************************************************************************************

SCALAR

nn

umin

umax

vmin

vmax

plotsize/10/;

PARAMETERS

FI22(I,J,AA) alpha percentile of the mean travel time for an OD pair and class

FI11(PATH,AA) alpha percentile of the mean travel time for a route and class

XX1(I,J) flow on a link

QQ1(I,J,K,S,AA) flow on a link disagreggated by OD and class

FF1(PATH,AA) flow of a class on a path

QQ(I,J,K,S,AA) flow on a link disagreggated by OD and class

delta1(I,J,PATH) link-path incidence matrix

U(I) abscisa of node I

/1 0

2 9.3

3 9.3

4 1.9

5 3.6

6 5.5

7 7.4
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8 9.3

9 5.5

10 5.5

11 7.4

12 1.8

13 7.4/

V(I) ordinate of node I

/1 3.8

2 2

3 0

4 0

5 2

6 3.8

7 3.8

8 5.8

9 0

10 2

11 2

12 5.8

13 0/;

******************************************************************************************

* Determine max and min network coordinates

******************************************************************************************

umin=Smin(I,U(I));

umax=Smax(I,U(I));

vmin=Smin(I,V(I));

vmax=Smax(I,V(I));

******************************************************************************************

* Normalize coordinates

******************************************************************************************

U(I)=(U(I)-umin)/(umax-umin)*plotsize;

V(I)=(V(I)-vmin)/(vmax-vmin)*plotsize;

******************************************************************************************

* Compute the link-path incidence matrix

******************************************************************************************

delta1(LINK(I,J),PATH)=0;

loop((PATH,SS,LINK),

if(order(LINK)=pathlinks(PATH,SS),delta1(LINK,PATH)=1;);

);

******************************************************************************************

* The variables are defined

******************************************************************************************

VARIABLES

z objective variable for models

;
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POSITIVE VARIABLES

Q(I,J,K,S,AA) disagreggated link flow

F(PATH,AA) path flow

X(I,J) link flow

;

EQUATIONS

******************************************************************************************

* Equations for the initial problem

******************************************************************************************

z3def objective function

******************************************************************************************

* Equations for solving the problem with path enumeration

******************************************************************************************

z1def objective function

balance1 balance flow equations

Xdef1 link flow definition

bound1 virtual constarint to ensure global optimality

******************************************************************************************

* Equations for solving the problem without path enumeration

******************************************************************************************

z2def objective function

balance2 balance constraints

Xdef2 link flow definition

bound2 virtual constarint to ensure global optimality

;

******************************************************************************************

* The equations are defined

******************************************************************************************

z3def..z=e=SUM((OD,AA),SUM(LINK(I,J),Q(LINK,OD,AA)));

z1def..z=e=SUM((OD(K,S),AA),(SUM(LINK(I,J),Sum(PATH$(ord(K)=pathorigin(PATH) and

ord(S)=pathdestination(PATH)),F(PATH,AA)*delta1(LINK,PATH))*(nu(I,J)*(1+eta(I,J)*

power(X(LINK),gamma)*mua(LINK))))+classalpha(AA)*sqrt(SUM(LINK(I,J),power(Sum(

PATH$(ord(K)=pathorigin(PATH) and ord(S)=pathdestination(PATH)),F(PATH,AA)*delta1(

LINK,PATH))*nu(I,J)*eta(I,J)*power(X(LINK),gamma)*sigmaa(I,J),2)))));

balance1(OD(K,S),AA)..T00(OD,AA)=e=SUM(PATH$(ord(K)=pathorigin(PATH) and ord(S)=

pathdestination(PATH)),F(PATH,AA));

Xdef1(LINK)..X(LINK)=e=SUM((PATH,AA),F(PATH,AA)*delta1(LINK,PATH));

bound1..SUM((OD(K,S),AA),(SUM(LINK(I,J),Sum(PATH$(ord(K)=pathorigin(PATH) and

ord(S)=pathdestination(PATH)),F(PATH,AA)*delta1(LINK,PATH))*(nu(I,J)*(1+eta(I,J)*

power(X(LINK),gamma)*mua(LINK))))+classalpha(AA)*sqrt(SUM(LINK(I,J),power(Sum(

PATH$(ord(K)=pathorigin(PATH) and ord(S)=pathdestination(PATH)),F(PATH,AA)*delta1

(LINK,PATH))*nu(I,J)*eta(I,J)*power(X(LINK),gamma)*sigmaa(I,J),2)))))=l=cbound;

z2def..z=e=SUM((OD,AA),(SUM(LINK(I,J),Q(LINK,OD,AA)*nu(I,J)*(1+eta(I,J)*power(X(LINK),gamma)

*mua(LINK)))+classalpha(AA)*sqrt(SUM(LINK(I,J),power(Q(LINK,OD,AA)*nu(I,J)*
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eta(I,J)*power(X(LINK),gamma)*sigmaa(I,J),2)))));

balance2(I,OD(K,S),AA)..T00(OD,AA)*(DELTA(I,K)-DELTA(I,S))=e=SUM((LINK(I,J)),Q(LINK,OD,AA))

-SUM((LINK(J,I)),Q(LINK,OD,AA));

Xdef2(LINK)..X(LINK)=e=SUM((OD,AA),Q(LINK,OD,AA));

bound2..SUM((OD,AA),(SUM(LINK(I,J),Q(LINK,OD,AA)*nu(I,J)*(1+eta(I,J)*power(X(LINK),gamma)*

mua(LINK)))+classalpha(AA)*sqrt(SUM(LINK(I,J),power(Q(LINK,OD,AA)*nu(I,J)*

eta(I,J)*power(X(LINK),gamma)*sigmaa(I,J),2)))))=l=cbound;

MODEL InitialPSO/z3def,balance2,Xdef2/;

MODEL PSOwith/z1def,balance1,Xdef1,bound1/;

MODEL PSOwithout/z2def,balance2,Xdef2,bound2/;

******************************************************************************************

* The inicial model is solved to get initial values

******************************************************************************************

F.l(PATH,AA)=1;

SOLVE InitialPSO USING lp MINIMIZING z;

put "InitialPSO=",z.l:12:3," modelstat=",InitialPSO.modelstat," solvestat=",

InitialPSO.solvestat," resusd=",InitialPSO.resusd:12:8/;

******************************************************************************************

* The model without path enumeration is solved

******************************************************************************************

cbound=INF;

OPTION reslim=55000;

done=0;

loop(iter$(done=0),

put "PSOwithout: iter=",ord(iter):3:0/;

PSOwithout.optfile = 1;

SOLVE PSOwithout USING nlp MINIMIZING z;

put "PSOwithout=",z.l:12:3," modelstat=",PSOwithout.modelstat," solvestat=",

PSOwithout.solvestat," resusd=",PSOwithout.resusd:12:8/;

if(PSOwithout.modelstat<>2 or PSOwithout.solvestat<>1,

done=1;

);

cbound=z.l-incre;

);

QQ1(LINK,OD,AA)=Q.l(LINK,OD,AA);XX1(LINK)=X.l(LINK);

FI22(OD,AA)=(SUM(LINK(I,J),Q.l(LINK,OD,AA)*(nu(I,J)*(1+eta(I,J)*power(X.l(LINK),gamma)*

mua(LINK))))+classalpha(AA)*sqrt(SUM(LINK(I,J),power(Q.l(LINK,OD,AA)*nu(I,J)*

eta(I,J)*power(X.l(LINK),gamma)*sigmaa(I,J),2))))/T00(OD,AA);

Q.l(LINK,OD,AA)=QQ1(LINK,OD,AA);

XX(LINK)=XX1(LINK);

******************************************************************************************

* The model with path enumeration is solved

******************************************************************************************
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cbound=INF;

done=0;

loop(iter$(done=0),

put "PSOwith: iter=",ord(iter):3:0/;

PSOwith.optfile = 1;

SOLVE PSOwith USING nlp MINIMIZING z;

put "PSOwith=",z.l:12:3," modelstat=",PSOwith.modelstat," solvestat=",

PSOwith.solvestat," resusd=",PSOwith.resusd:12:8/;

if(PSOwith.modelstat<>2 or PSOwith.solvestat<>1,

done=1;

else

FF1(PATH,AA)=F.l(PATH,AA);XX1(LINK)=X.l(LINK););

cbound=z.l-incre;

);

******************************************************************************************

* Convert the dimensionless parameter to their initial dimensions

******************************************************************************************

nu(LINK)=nu(LINK)*tref;

Qa(LINK)=Qa(LINK)*Qaref;

mua(LINK)=mua(LINK)/(Qaref**gamma);

sigmaa(LINK)=sigmaa(LINK)/(Qaref**gamma);

FF1(PATH,AA)=FF1(PATH,AA)*Qaref;

FI22(OD,AA)=FI22(OD,AA)*tref;

XX1(LINK)=XX1(LINK)*Qaref;

XX(LINK)=XX(LINK)*Qaref;

Q.l(LINK,OD,AA)=Q.l(LINK,OD,AA)*Qaref;

T00(OD,AA)=T00(OD,AA)*Qaref;

F.l(PATH,AA)=FF1(PATH,AA);

X.l(LINK)=XX1(LINK);

FI11(PATH,AA)=SUM(LINK(I,J),delta1(LINK,PATH)*(nu(I,J)*(1+eta(I,J)*power(X.l(LINK),gamma)*

mua(LINK))))+classalpha(AA)*sqrt(SUM(LINK(I,J),delta1(LINK,PATH)*power(nu(I,J)*

eta(I,J)*power(X.l(LINK),gamma)*sigmaa(I,J),2)));

QQ(LINK,OD(K,S),AA)=Sum(PATH$(ord(K)=pathorigin(PATH) and ord(S)=pathdestination(PATH))

,F.l(PATH,AA)*delta1(LINK,PATH));

traveltime(OD(K,S),AA)=balance2.m(S,K,S,AA)-balance2.m(K,K,S,AA);

Frequencies1(LINK,OD,AA)=Q.l(LINK,OD,AA);

Frequencies1(LINK,OD,AA)=0;

Frequencies1(LINK,OD,AA)$(Q.l(LINK,OD,AA)>CRITICALFLOW)=order(LINK);

******************************************************************************************

* MATHEMATICA PLOT NETWORK
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******************************************************************************************

put out1;

put "Arrowpos = 0.4;"/;

put "ArrowSize = 0.15;"/;

put "FontSize1 = 12;"/;

put "Radious = 0.4;"/;

put "Points = {";

loop(I,if(ord(I)<card(I),put "{",U(I):7:3,",",V(I):7:3,"},"/;

else put "{",U(I):7:3,",",V(I):7:3,"}};"/;););

put /;

nn=0;

nn=0;

put "LinkNodes = {";

loop(LINK(I,J),nn=nn+1;if(nn<nlinks, put "{",ord(I):3:0,",",ord(J):3:0,"},"/;

else put "{",ord(I):3:0,",",ord(J):3:0,"}}"/; ););

put "bb = NetworkPlot[Points, LinkNodes, Arrowpos, ArrowSize, FontSize1, Radious];"/;

put "Show[bb, ImageSize -> 360, Axes -> False, AxesLabel -> None, AxesStyle -> False];"/;

nlinks=SUM(LINK,1);

put "nlinks=",nlinks:5:0/;

put "Frequencies1={";

ilink=0;

loop(LINK,

ilink=ilink+1;

put "{";

iOD=0;

loop(OD,

iOD=iOD+1;

put "{";

loop(AA,

if(ord(AA)=card(AA),

if(iOD=nOD,

if(ilink=nlinks,

put Frequencies1(LINK,OD,AA):8:4,"}}};"/;

else

put Frequencies1(LINK,OD,AA):8:4,"}},"/;

);

else

put Frequencies1(LINK,OD,AA):8:4,"},"/;

);

else

put Frequencies1(LINK,OD,AA):8:4,","/;

);

);

);

);

mm=0;

iAA=0;
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Loop(AA,

iAA=iAA+1;

iOD=0;

loop(OD(K,S),

iOD=iOD+1;

put "OriginNode=",K.tl:5:0,";"/;

put "DestinationNode=",S.tl:5:0,";"/;

mm=mm+1;

nn=0;

indic=0;

nlinks=SUM(LINK$(Frequencies1(LINK,OD,AA)>CRITICALFLOW),1);

loop(LINK(I,J)$(Frequencies1(LINK,OD,AA)>CRITICALFLOW),

if(nn=0,

indic=1;

put "LinkNodes1= {";

);

nn=nn+1;

if(nn<nlinks,

put "{",ord(I):3:0,",",ord(J):3:0,"},"/;

else

put "{",ord(I):3:0,",",ord(J):3:0,"}};"/;

);

);

if(indic=1,

put "ff = Table[Frequencies1[[i,",iOD:5:0,",",iAA:5:0,"]],

{i, 1,", SUM(LINK,1):5:0,"}]"/;

put "a[",mm:5:0,"]=NetworkPlot2[Points, LinkNodes, LinkNodes1,

Arrowpos, ArrowSize, FontSize1, Radious,ff];"/;

);

);

);

aux=0;

loop(OD, aux=aux+1;

put "Show[GraphicsGrid[{{a[",aux:3:0,"], a[",(aux+nOD):3:0,"]}, {a[",(aux+2*nOD):3:0,

"], a[",(aux+3*nOD):3:0,"]}}], ImageSize -> 800,Axes -> False, AxesLabel ->

None, AxesStyle -> False]"/;

);

******************************************************************************************

* Create latex codes for showing the results in tables

******************************************************************************************

put out2;

put /;

put "\begin{table}[h]"/;

put "\small\centering"/;

put "\renewcommand{\tabcolsep}{0.2cm}"/;

put "\renewcommand{\arraystretch}{0.9}"/;

put "\begin{tabular}{cc}"/;
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put "\begin{tabular}{|c|l|}"/;

put "\hline"/;

put " Route ($r$)& \multicolumn{1}{|c|}{Links ($\ell$)} \\"/;

put "\hline"/;

aux=0;

loop(OD(K,S),aux=aux+1;

put "OD pair ",aux:3:0," & \\"/;

loop(PATH,

if(ord(K)=pathorigin(PATH) and ord(S)=pathdestination(PATH),

put PATH.tl:3:0," & ";loop(SS$(pathlinks(PATH,SS)>0),

put pathlinks(PATH,SS):4:0;);put "\\"/;);

);

put "\hline"/;

);

put "\hline"/;

put "\end{tabular}"/;

put "\end{tabular}"/;

put "\caption{Set of ${\cal OD}$-pairs and routes (routes) considered in the

Nguyen-Dupuis network.}"/;

put "\end{table}"/;

put /;

put "{\small"/;

put "\begin{table}"/;

put "\centering"/;

put "\renewcommand{\tabcolsep}{1mm}"/;

put "\renewcommand{\arraystretch}{0.8}"/;

put "\begin{tabular}{ccrcrcrcrc}"/;

put "\hline"/;

put "O-D & Route & \multicolumn{2}{c}{($\alpha=$, 0.10)} & \multicolumn{2}{c}

{($\alpha=$ 0.50)} & \multicolumn{2}{c}{($\alpha=$ 0.70)} &

\multicolumn{2}{c}{($\alpha=$ 0.90)}\\"/;

put "& & Flow & Percentile & Flow & Percentile & Flow & Percentile & Flow &

Percentile \\"/;

put "\hline"/;

loop(OD(K,S),put K.tl:2:0,"-",S.tl:2:0;loop(PATH$(ord(K)=pathorigin(PATH) and

ord(S)=pathdestination(PATH) and sum(AA,F.l(PATH,AA))>0.001),put " & ",

PATH.tl:2:0;loop(AA,if(abs(F.l(PATH,AA))>0.001,put " & ",F.l(PATH,AA):8:2,

" & ",FI11(PATH,AA):8:2; else put " & ","-":8:2,"& ","-":8:2;););put "\\"/;)

;put "\hline"/;put "OD & ";loop(AA,put " & ",T00(OD,AA):8:2," & ",

FI22(OD,AA):8:2;);put "\\"/;put "\hline"/;);

put "\hline"/;

put "\end{tabular}"/;

put "\caption{\label{}Percentile PSO solution for the Nguyen-Dupuis example.}"/;

put "\end{table}"/;

put "}"/;
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A.2 Codes for the Traffic Assignment problem including over-

taking classes

A.2.1 Gams codes for the Traffic Assignment problem including overtak-

ing classes

This section is devoted to the GAMS implementation of the Traffic Assignment problem
including overtaking classes presented in Chapter 8, Section 8.3. The codes for the models
with and without overtaking are shown for the Nguyen-Dupuis example in the case of
heterogeneous users (cars and motorcycles) with high congestion.

$Title DupuisEquilibriumMixed

******************************************************************************************

*The output files are defined

******************************************************************************************

file out/DupuisEquilibriumMixed.out/;

file out1/DupuisEquilibriumMixedMathematica.out/;

file out2/DupuisEquilibriumMixedLatex.out/;

file out3/DupuisEquilibriumMixedMathlab.out/;

put out;

OPTION nlp=CONOPT;

SCALAR

CRITICALFLOW critical value for a non-null flow /0.000001/

epsilon small scalar added to the logarithm /0.0000001/

eta weight of the entropy term /0.00000000001/

ilink counter for the links

nOD number of OD pairs

iAA counter for the classes

iOD counter for the OD pairs

aux auxiliary scalar

mm auxiliary scalar

indic auxiliary scalar

gamma gamma parameter of the BPR function for the reference class /3/

;

SETS

AA classes/1*6/

I set of nodes /1*13/

LINK(I,I) set of links

LINK1(I,I) copy of set of links

LINK2(I,I) copy of set of links

OD(I,I) set of OD pairs

OD1(I,I) copy of set of OD pairs

OD2(I,I) copy of set of OD pairs

Origin(I) set of origin nodes

Destination(I) set of destination nodes
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PATH set of paths /1*14/

SS set of links in a path /1*5/;

ALIAS(I,J,K,S);

ALIAS(AA,AA1,AA2);

ALIAS(PATH,PATH1,PATH2);

TABLE

pathlinks(PATH,SS)

1 2 3 4 5

1 1 5 7 9 11

2 1 5 7 10 16

3 1 5 8 14 16

4 1 6 12 14 16

5 1 6 13 19 0

6 2 17 7 10 16

7 2 18 11 0 0

8 3 5 7 9 11

9 3 5 7 10 15

10 3 5 8 14 16

11 3 6 12 14 15

12 3 6 13 19 0

13 4 12 14 15 0

14 4 13 19 0 0

;

set param arc cost table headers / a, b, k /

table arc_cost(I,I,param) arc cost data

a b k

1.5 7 7 700

1.12 9 9 560

4.5 9 9 560

4.9 12 12 280

5.6 3 3 420

5.9 9 9 420

6.7 5 5 700

6.10 5 5 280

7.8 5 5 700

7.11 9 9 700

8.2 9 9 700

9.10 10 10 280

9.13 9 9 280

10.11 6 6 700

11.2 9 9 280

11.3 8 8 560

12.6 7 7 140

12.8 14 14 560

13.3 11 11 560

;
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option arc_cost:4;

display arc_cost;

PARAMETER

Weight(AA) weight given to cars and motos

/1 1

2 1

3 1

4 0.5

5 0.5

6 0.5/

LinkCost(I,J,AA)

classalpha(AA) value of q_alpha

/1 1

2 0.9

3 0.8

4 1.4

5 1.3

6 1.2/

classalpha0(AA) free flow time for each class

/1 1

2 1

3 1

4 1.4

5 1.4

6 1.4/

mualpha(AA) mean of the normal distribution

/1 0.5

2 0.5

3 0.5

4 0.5

5 0.5

6 0.5/

sigmaalpha(AA) standard deviation of the normal distribution

/1 0.25

2 0.25

3 0.25

4 0.5

5 0.5

6 0.5/

gammaalpha(AA) parameter of the BPR function

/1 5

2 5

3 5

4 3

5 3

6 3/

betaalpha(AA) parameter of the BPR function
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/1 3

2 3

3 3

4 1

5 1

6 1/

traveltime(I,I,AA)

routecost(path,aa)

LINKFLOWS(I,I,AA)

Ca(I,J) uncongested link costs

Qa(I,J) link capacities

delta(I,I) kronecker delta

potentials(I,K,S) dual variable

order(I,J) order given to the links

;

******************************************************************************************

*Identify arcs using flow cost parameter a

******************************************************************************************

Ca(i,j) = arc_cost(i,j,"a");

LINK(i,j)=Ca(i,j);

Qa(I,J)= arc_cost(i,j,"k");

aux=0;

LOOP(LINK(I,J),put I.tl:3:0,"-",J.tl:3:0/;aux=aux+1;order(I,J)=aux);

TABLE T0(i,j) trip matrix from i to j

1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 500 640

2 0

3 0

4 480 300 0

;

******************************************************************************************

* Multiply the OD flows for the congested case

******************************************************************************************

T0(i,j)=T0(i,j)*1.15;

******************************************************************************************

* Generate ODs based on flows

******************************************************************************************

OD(I,J)=no;

OD(I,J)$(T0(I,J)>0)=yes;

******************************************************************************************

* Make copies of LINKS and ODs

******************************************************************************************

OD1(I,J)=OD(I,J);

OD2(I,J)=OD(I,J);

LINK1(I,J)=LINK(I,J);



298 Appendix

LINK2(I,J)=LINK(I,J);

PARAMETERS

pathorigin(PATH) origin node of each path

pathdestination(PATH) destination node of each path

delta1(I,J,PATH) link-path incidence matrix

delta2(I,J,PATH) OD-path incidence matrix

F0(PATH,AA)

Q0(I,I,I,I,AA)

T00(I,J,AA)

Frequencies1(I,I,I,I,AA);

******************************************************************************************

* Compute the incidence matrices and the origin and destination of paths

******************************************************************************************

loop(PATH,

loop(LINK(I,J)$(order(LINK)=pathlinks(PATH,’1’)),pathorigin(PATH)=ord(I));

loop((SS,LINK(I,J))$(pathlinks(PATH,SS)>0 and order(LINK)=pathlinks(PATH,SS)),

pathdestination(PATH)=ord(J));

);

delta(I,I)=1;

loop((PATH,SS,LINK)$(order(LINK)=pathlinks(PATH,SS)),delta1(LINK,PATH)=1;);

loop((PATH,OD(K,S))$(pathorigin(PATH)=ord(K) and pathdestination(PATH)=ord(S)),

delta2(OD,PATH)=1);

******************************************************************************************

* Distributes flows among classes

******************************************************************************************

T00(OD,AA)=T0(OD)/(card(AA));

T00(OD,’1’)=T0(OD)-sum(AA$(ord(AA)>1),T00(OD,AA));

******************************************************************************************

* Determines origins and destinations

******************************************************************************************

Origin(I)=no;

loop(OD(K,S),Origin(I)$(ord(K)=ord(I))=yes;);

Destination(I)=no;

loop(OD(K,S),Destination(I)$(ord(S)=ord(I))=yes;);

******************************************************************************************

* Prints origins and destinations

******************************************************************************************

put "Origins"/;

loop(Origin(I),put I.tl:3:0/;);

put "Destinations"/;

loop(Destination(I),put I.tl:3:0/;);

******************************************************************************************

* Define scalar and parameters needed to make the figures

******************************************************************************************
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SCALAR

nn

nlinks number of links

umin

umax

vmin

vmax

plotsize/10/;

PARAMETERS

U(I) abscisa of node I

/1 0

2 9.3

3 9.3

4 1.9

5 3.6

6 5.5

7 7.4

8 9.3

9 5.5

10 5.5

11 7.4

12 1.8

13 7.4/

V(I) ordinate of node I

/1 3.8

2 2

3 0

4 0

5 2

6 3.8

7 3.8

8 5.8

9 0

10 2

11 2

12 5.8

13 0/;

******************************************************************************************

* Determine max and min network coordinates

******************************************************************************************

umin=Smin(I,U(I));

umax=Smax(I,U(I));

vmin=Smin(I,V(I));

vmax=Smax(I,V(I));

******************************************************************************************

* Normalize coordinates

******************************************************************************************

U(I)=(U(I)-umin)/(umax-umin)*plotsize;
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V(I)=(V(I)-vmin)/(vmax-vmin)*plotsize;

******************************************************************************************

* The variables are defined

******************************************************************************************

VARIABLES

z objective variable for models

lambda(I,I,I,AA) dual variable

rho(I,J,AA) minumum OD travel time for each class

;

POSITIVE VARIABLES

Q(I,J,K,S,AA) disgregated link flow

muu(I,I,I,I,AA) dual variable

mu(PATH,AA) dual variable

f(PATH,AA) path flow

;

Q.up(LINK,OD,AA)=T00(OD,AA);

EQUATIONS

******************************************************************************************

* Equations for solving the problem without path enumeration

******************************************************************************************

zdef objective function

balance balance constraints

KKT cost function equation

******************************************************************************************

* Equations for solving the problem with path enumeration

******************************************************************************************

zdef_paths objective function

ODflow OD flow constraint

KKT_paths cost function equation

;

******************************************************************************************

* The equations are defined

******************************************************************************************

zdef..z=e=SUM((LINK,OD,AA),muu(LINK,OD,AA)*Q(LINK,OD,AA));

balance(I,OD(K,S),AA)..T00(OD,AA)*(DELTA(I,K)-DELTA(I,S))=e=SUM((LINK(I,J)),Q(LINK,OD,AA))

-SUM((LINK(J,I)),Q(LINK,OD,AA));

KKT(LINK(I,J),OD(K,S),AA)..Ca(I,J)*(classalpha0(AA)*(1+betaalpha(AA)*(SUM((OD1,AA1),

Weight(AA1)*Q(LINK,OD1,AA1))/Qa(I,J))**gammaalpha(AA))*errorf((SUM((OD1,AA1),

Weight(AA1)*Q(LINK,OD1,AA1))/Qa(I,J)-mualpha(AA))/sigmaalpha(AA))+(classalpha(AA)

+classalpha(AA)*betaalpha(AA)*(SUM((OD1,AA1),Weight(AA1)*Q(LINK,OD1,AA1))/Qa(I,J))

**gammaalpha(AA))*(1-errorf((SUM((OD1,AA1),Weight(AA1)*Q(LINK,OD1,AA1))/Qa(I,J)-

mualpha(AA))/sigmaalpha(AA))))+eta*sum((AA2,LINK2,OD2),Q(LINK2,OD2,AA2)*

log(Q(LINK2,OD2,AA2)+epsilon))+lambda(I,OD,AA)*(1)-lambda(J,OD,AA)*(1)
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-muu(LINK,OD,AA)=e=0;

zdef_paths..z=e=SUM((PATH,AA),mu(PATH,AA)*f(PATH,AA));

ODflow(OD,AA)..T00(OD,AA)=e=SUM(PATH,f(PATH,AA)*delta2(OD,PATH));

KKT_paths(PATH,AA)..0=e=SUM(LINK(I,J),Ca(I,J)*(classalpha0(AA)*(1+betaalpha(AA)*(SUM(

(PATH1,AA1),Weight(AA1)*f(PATH1,AA1)*delta1(LINK,PATH1))/Qa(I,J))**gammaalpha(AA))

*errorf((SUM((PATH1,AA1),Weight(AA1)*f(PATH1,AA1)*delta1(LINK,PATH1))/Qa(I,J)

-mualpha(AA))/sigmaalpha(AA))+(classalpha(AA)+classalpha(AA)*betaalpha(AA)*(SUM(

(PATH1,AA1),Weight(AA1)*f(PATH1,AA1)*delta1(LINK,PATH1))/Qa(I,J))**gammaalpha(AA))

*(1-errorf((SUM((PATH1,AA1),Weight(AA1)*f(PATH1,AA1)*delta1(LINK,PATH1))/Qa(I,J)

-mualpha(AA))/sigmaalpha(AA))))*delta1(LINK,PATH))+eta*SUM((AA2,PATH2),f(PATH2,AA2)

*log(f(PATH2,AA2)+epsilon))+SUM(OD,rho(OD,AA)*delta2(OD,PATH))-mu(PATH,AA);

******************************************************************************************

* The models are defined

******************************************************************************************

MODEL WARDROPnoPATH/zdef,balance,KKT/;

MODEL WARDROPpaths/zdef_paths,ODflow,KKT_paths/;

******************************************************************************************

* Calculate initial values for the path flows and solve the problem

******************************************************************************************

F0(PATH,AA)=SUM(OD,T00(OD,AA)*delta2(OD,PATH))/sum(OD$(delta2(OD,PATH)=1),SUM(PATH1,

delta2(OD,PATH1)));

F.l(PATH,AA)=F0(PATH,AA);

SOLVE WARDROPpaths USING nlp MINIMIZING z;

put "WARDROPpaths=",z.l:12:3," modelstat=",WARDROPpaths.modelstat," solvestat=",

WARDROPpaths.solvestat," resusd=",WARDROPpaths.resusd:12:8/;

******************************************************************************************

* Calculate the disaggregated link flows and link travel times for each class

******************************************************************************************

Q.l(LINK,OD,AA)=sum(PATH,F.l(PATH,AA)*delta1(LINK,PATH)*delta2(OD,PATH));

LinkCost(LINK(I,J),AA)=Ca(I,J)*(classalpha0(AA)*(1+betaalpha(AA)*(SUM((OD1,AA1),Weight(AA1)

*Q.l(LINK,OD1,AA1))/Qa(I,J))**gammaalpha(AA))*errorf((SUM((OD1,AA1),Weight(AA1)

*Q.l(LINK,OD1,AA1))/Qa(I,J)-mualpha(AA))/sigmaalpha(AA))+(classalpha(AA)+

classalpha(AA)*betaalpha(AA)*(SUM((OD1,AA1),Weight(AA1)*Q.l(LINK,OD1,AA1))

/Qa(I,J))**gammaalpha(AA))*(1-errorf((SUM((OD1,AA1),Weight(AA1)

*Q.l(LINK,OD1,AA1))/Qa(I,J)-mualpha(AA))/sigmaalpha(AA))));

put "LINK COSTS"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

loop(AA,

put LinkCost(I,J,AA):8:3;

);

put /;
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);

put "Q values"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

loop(OD,

loop(AA,

put Q.l(LINK,OD,AA):7:3;

);

put " |";

);

put /;

);

put "Total Q values"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

put (SUM((OD,AA),Q.l(LINK,OD,AA))/Qa(I,J)):7:3;

put /;

);

put "Route costs"/;

loop(AA,

put "AA=",AA.tl:3:0/;

loop(PATH,

routecost(path,aa)=SUM(SS$(pathlinks(PATH,SS)>0),SUM(LINK$

(order(LINK)=pathlinks(PATH,SS)),linkcost(LINK,AA)));

PUT routecost(path,aa):8:3;

);

put /;

);

******************************************************************************************

* Compute the relative duality gap

******************************************************************************************

traveltime(OD(K,S),AA)=smin(PATH$(delta2(OD,PATH)=1),routecost(path,aa));

Scalar

DualityGap;

DualityGap=(sum((PATH,AA),routecost(path,aa)*F.l(PATH,AA))-sum((OD,AA),traveltime(OD,AA)

*T00(OD,AA)))/sum((OD,AA),traveltime(OD,AA)*T00(OD,AA));

put "Duality Gap =", DualityGap:20:18/;

******************************************************************************************

* Create the LATEX tables

******************************************************************************************

put out2;

put /;

put "\begin{table}"/;
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put "{\scriptsize"/;

put "\centering"/;

put "\renewcommand{\tabcolsep}{1mm}"/;

put "\renewcommand{\arraystretch}{1.2}"/;

put "\begin{tabular}{|c|c|";loop(OD,loop(AA,put "c";);put "|";);put "}"/;

put "\hline"/;

put " & ";loop(OD(K,S),put "& \multicolumn{",card(AA):3:0,"}{|c|}{OD:",K.tl:3:0,"-",

S.tl:3:0,"}";);put "\\"/;

put "\cline{3-",(sum(OD,1)*card(AA)+2):4:0,"}"/;

put "Link & Flow ";loop(OD(K,S),loop(AA,put " & ",classalpha(AA):4:2;););put "\\"/;

put "\hline"/;

loop(LINK(I,J),

put I.tl:2:0,"-",J.tl:2:0," & ",SUM((OD,AA),Q.l(LINK,OD,AA)):6:1;loop(OD(K,S),

loop(AA,put " & ";if(Q.l(LINK,OD,AA)<0.01,put "-":6:0; else

put Q.l(LINK,OD,AA):6:1;);););put "\\"/;

);

put "\hline"/;

put "\multicolumn{2}{|c|}{$u_\alpha$} ";loop(OD(K,S),loop(AA,put " & ",

traveltime(OD,AA):6:1;););put "\\"/;

put "\hline"/;

put "\end{tabular}"/;

put "\caption{Cars and motorcycles example. Mixed BPR model. .

Link flows disaggregated by OD and $\alpha$-classes for the Nguyen-Dupuis

network (congested case).}"/;

put "}"/;

put "\end{table}"/;

put /;

put "\begin{table}"/;

put "\centering"/;

put "\begin{tabular}{|c|c|";loop(SS,put "c";);put "|";loop(AA, put "c";);put "|}"/;

put "\hline"/;

put " OD & Routes & \multicolumn{",card(SS):2:0,"}{|c|}{path links} &

\multicolumn{",card(AA):2:0,"}{|c|}{Classes}\\"/;

put " & & \multicolumn{",card(SS):2:0,"}{|c|}{} ",loop(AA,put " & ",ord(AA):2:0;);

put " \\"/;

put "\hline"/;

aux=0;

loop(OD(K,S), loop(PATH$(pathorigin(PATH)=ord(K) and pathdestination(PATH)=ord(S)),

aux=aux+1;put ord(K):2:0,"-",ord(S):2:0 "&";put aux:3:0;

loop(SS, if(pathlinks(PATH,SS)>0,put " & ",pathlinks(PATH,SS):3:0;else put " & ";););

loop(AA,if(abs(traveltime(OD,AA)-routecost(path,aa))<0.00001, PUT " & {\bf ",

routecost(path,aa):12:3,"}"; else PUT " & ",routecost(path,aa):12:3;););PUT "\\"/;);

put "\hline"/;

);

put "\end{tabular}"/;

put "\caption{Cars and motorcycles example. Route travel times classified by OD and

$\alpha$-classes for the Nguyen-Dupuis network (uncongested case).
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Used routes are boldfaced.}"/;

put "\end{table}"/;

put out;

******************************************************************************************

* Compute initial values for the disaggregated link flows

******************************************************************************************

Q0(LINK,OD,AA)=T00(OD,AA)/8;

Q.l(LINK,OD,AA)=Q0(LINK,OD,AA);

******************************************************************************************

* Solve the problem without path enumeration

******************************************************************************************

SOLVE WARDROPnoPATH USING nlp MINIMIZING z;

put "WARDROPnoPATH=",z.l:12:3," modelstat=",WARDROPnoPATH.modelstat," solvestat=",

WARDROPnoPATH.solvestat," resusd=",WARDROPnoPATH.resusd:12:8/;

Frequencies1(LINK,OD,AA)=Q.l(LINK,OD,AA);

Frequencies1(LINK,OD,AA)=order(LINK)*sign(Q.l(LINK,OD,AA));

******************************************************************************************

* Compute and print some interesting variables

******************************************************************************************

put "LINK COSTS"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

loop(AA,

LinkCost(I,J,AA)=Ca(I,J)*(classalpha0(AA)*(1+betaalpha(AA)*(SUM((OD1,AA1),

Weight(AA1)*Q.l(LINK,OD1,AA1))/Qa(I,J))**gammaalpha(AA))*

errorf((SUM((OD1,AA1),Weight(AA1)*Q.l(LINK,OD1,AA1))

/Qa(I,J)-mualpha(AA))/sigmaalpha(AA))+(classalpha(AA)

+classalpha(AA)*betaalpha(AA)*(SUM((OD1,AA1),Weight(AA1)

*Q.l(LINK,OD1,AA1))/Qa(I,J))**gammaalpha(AA))*(1-errorf(

(SUM((OD1,AA1),Weight(AA1)*Q.l(LINK,OD1,AA1))/Qa(I,J)

-mualpha(AA))/sigmaalpha(AA))));

put LinkCost(I,J,AA):8:3;

);

put /;

);

put "Q values"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

loop(OD,

loop(AA,

put Q.l(LINK,OD,AA):7:3;

);

put " |";
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);

put /;

);

put "mu values"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

loop(OD,

loop(AA,

put muu.l(LINK,OD,AA):7:3;

);

put " |";

);

put /;

);

put "mu*Q values"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

loop(OD,

loop(AA,

put (muu.l(LINK,OD,AA)*Q.l(LINK,OD,AA)):7:3;

);

put " |";

);

put /;

);

put "Total Q values"/;

loop(LINK(I,J),

put I.tl:3:0,"-",J.tl:3:0;

put (SUM((OD,AA),Q.l(LINK,OD,AA))/Qa(I,J)):7:3;

put /;

);

put "Route costs"/;

loop(AA,

put "AA=",AA.tl:3:0/;

loop(PATH,

routecost(path,aa)=SUM(SS$(pathlinks(PATH,SS)>0),SUM(LINK$(order(LINK)=

pathlinks(PATH,SS)),linkcost(LINK,AA)));

PUT routecost(path,aa):8:3;

);

put /;

);

traveltime(OD(K,S),AA)=smin(PATH$(delta2(OD,PATH)=1),routecost(path,aa));
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******************************************************************************************

* Create the LATEX tables

******************************************************************************************

put out2;

put /;

put "\begin{table}"/;

put "{\scriptsize"/;

put "\centering"/;

put "\renewcommand{\tabcolsep}{1mm}"/;

put "\renewcommand{\arraystretch}{1.2}"/;

put "\begin{tabular}{|c|c|";loop(OD,loop(AA,put "c";);put "|";);put "}"/;

put "\hline"/;

put " & ";loop(OD(K,S),put "& \multicolumn{",card(AA):3:0,"}{|c|}{OD:",K.tl:3:0,"-",

S.tl:3:0,"}";);put "\\"/;

put "\cline{3-",(sum(OD,1)*card(AA)+2):4:0,"}"/;

put "Link & Flow ";loop(OD(K,S),loop(AA,put " & ",classalpha(AA):4:2;););put "\\"/;

put "\hline"/;

loop(LINK(I,J),

put I.tl:2:0,"-",J.tl:2:0," & ",SUM((OD,AA),Q.l(LINK,OD,AA)):6:1;loop(OD(K,S),

loop(AA,put " & ";if(Q.l(LINK,OD,AA)<0.01,put "-":6:0;

else put Q.l(LINK,OD,AA):6:1;);););put "\\"/;

);

put "\hline"/;

put "\multicolumn{2}{|c|}{$u_\alpha$} ";loop(OD(K,S),loop(AA,put " & ",

traveltime(OD,AA):6:1;););put "\\"/;

put "\hline"/;

put "\end{tabular}"/;

put "\caption{Cars and motorcycles example. Mixed BPR model. Link flows disaggregated by

OD and $\alpha$-classes for the Nguyen-Dupuis network (congested case).}"/;

put "}"/;

put "\end{table}"/;

put /;

put "\begin{table}"/;

put "\centering"/;

put "\begin{tabular}{|c|c|";loop(SS,put "c";);put "|";loop(AA, put "c";);put "|}"/;

put "\hline"/;

put " OD & Routes & \multicolumn{",card(SS):2:0,"}{|c|}{path links} &

\multicolumn{",card(AA):2:0,"}{|c|}{Classes}\\"/;

put " & & \multicolumn{",card(SS):2:0,"}{|c|}{} ",loop(AA,put " & ",ord(AA):2:0;);

put " \\"/;

put "\hline"/;

aux=0;

loop(OD(K,S), loop(PATH$(pathorigin(PATH)=ord(K) and pathdestination(PATH)=ord(S)),

aux=aux+1;put ord(K):2:0,"-",ord(S):2:0 "&";put aux:3:0;

loop(SS, if(pathlinks(PATH,SS)>0,put " & ",pathlinks(PATH,SS):3:0;else put " & ";););

loop(AA,if(abs(traveltime(OD,AA)-routecost(path,aa))<0.00001, PUT " & {\bf ",

routecost(path,aa):8:3,"}"; else PUT " & ",routecost(path,aa):8:3;););PUT "\\"/;);
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put "\hline"/;

);

put "\end{tabular}"/;

put "\caption{Cars and motorcycles example. Route travel times classified by OD and

$\alpha$-classes for the Nguyen-Dupuis network (uncongested case).

Used routes are boldfaced.}"/;

put "\end{table}"/;

putclose out1;

******************************************************************************************

* Print the codes to create the figures in Mathematica

******************************************************************************************

put out1;

put "Arrowpos = 0.4;"/;

put "ArrowSize = 0.15;"/;

put "FontSize1 = 12;"/;

put "Radious = 0.4;"/;

put "Points = {";

loop(I,if(ord(I)<card(I),put "{",U(I):7:3,",",V(I):7:3,"},"/; else put "{",U(I):7:3,",",

V(I):7:3,"}};"/;););

put /;

nn=0;

nn=0;

nlinks=SUM(LINK,1);

put "LinkNodes = {";

loop(LINK(I,J),nn=nn+1;if(nn<nlinks, put "{",ord(I):3:0,",",ord(J):3:0,"},"/;

else put "{",ord(I):3:0,",",ord(J):3:0,"}}"/; ););

put "bb = NetworkPlot[Points, LinkNodes, Arrowpos, ArrowSize, FontSize1, Radious];"/;

put "Show[bb, ImageSize -> 360, Axes -> False, AxesLabel -> None, AxesStyle -> False];"/;

nlinks=SUM(LINK,1);

put "nlinks=",nlinks:5:0/;

nOD=SUM(OD,1);

put "Frequencies1={";

ilink=0;

loop(LINK,

ilink=ilink+1;

put "{";

iOD=0;

loop(OD,

iOD=iOD+1;

put "{";

loop(AA,

if(ord(AA)=card(AA),

if(iOD=nOD,

if(ilink=nlinks,

put Frequencies1(LINK,OD,AA):8:4,"}}};"/;

else

put Frequencies1(LINK,OD,AA):8:4,"}},"/;
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);

else

put Frequencies1(LINK,OD,AA):8:4,"},"/;

);

else

put Frequencies1(LINK,OD,AA):8:4,","/;

);

);

);

);

mm=0;

iAA=0;

Loop(AA,

iAA=iAA+1;

iOD=0;

loop(OD(K,S),

iOD=iOD+1;

put "OriginNode=",K.tl:5:0,";"/;

put "DestinationNode=",S.tl:5:0,";"/;

mm=mm+1;

nn=0;

indic=0;

nlinks=SUM(LINK$(Frequencies1(LINK,OD,AA)>0),1);

loop(LINK(I,J)$(Frequencies1(LINK,OD,AA)>0),

if(nn=0,

indic=1;

put "LinkNodes1= {";

);

nn=nn+1;

if(nn<nlinks,

put "{",ord(I):3:0,",",ord(J):3:0,"},"/;

else

put "{",ord(I):3:0,",",ord(J):3:0,"}};"/;

);

);

if(indic=1,

put "ff = Table[Frequencies1[[i,",iOD:5:0,",",iAA:5:0,"]],

{i, 1,", SUM(LINK,1):5:0,"}]"/;

put "a[",mm:5:0,"]=NetworkPlot2[Points, LinkNodes, LinkNodes1,

Arrowpos, ArrowSize, FontSize1, Radious,ff];"/;

);

);

);

put "Show[GraphicsGrid[{{a[1], a[5], a[9]}, {a[13], a[17], a[21]}}], ImageSize -> 800,

Axes -> False, AxesLabel -> None, AxesStyle -> False]"/;

put "Show[GraphicsGrid[{{a[2], a[6], a[10]}, {a[14], a[18], a[22]}}], ImageSize -> 800,

Axes -> False, AxesLabel -> None, AxesStyle -> False]"/;

put "Show[GraphicsGrid[{{a[3], a[7], a[11]}, {a[15], a[19], a[23]}}], ImageSize -> 800,
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Axes -> False, AxesLabel -> None, AxesStyle -> False]"/;

put "Show[GraphicsGrid[{{a[4], a[8], a[12]}, {a[16], a[20], a[24]}}], ImageSize -> 800,

Axes -> False, AxesLabel -> None, AxesStyle -> False]"/;

putclose out2;

******************************************************************************************

* Print the Matlab codes to compute the paths used in the model without path enumeration

******************************************************************************************

put out3;

SCALAR iii;

put "maxss=",card(SS):3:0,";"/;

put "QQQ=zeros(",nlinks:3:0,",",nOD:3:0,",",card(AA):3:0,");"/;

iii=0;

loop(OD,iii=iii+1;loop(LINK(I,J),

put "QQQ(",order(LINK):3:0,",",iii:3:0,",:)=[";

loop(AA,if(Q.l(LINK,OD,AA)>CRITICALFLOW,put sign(Q.l(LINK,OD,AA)):2:0; else put 0:2:0;););

put "];"/;);

);

put "Links=["/;

loop(LINK(I,J),put I.tl:5:0,J.tl:5:0,";"/;);

put "];"/;

put "U=["/;

loop(I,put U(I):8:3," "/;);

put "];"/;

put "V=["/;

loop(I,put V(I):8:3," "/;);

put "];"/;

put "ORIGIN=["/;

loop(ORIGIN(I),put I.tl:5:0," "/;);

put "];"/;

put "DESTINATION=["/;

loop(DESTINATION(I),put I.tl:5:0," "/;);

put "];"/;

put "ODExtremes=["/;

loop(OD(K,S),put K.tl:3:0,",",S.tl:3:0/;);

put "];"/;

putclose out3;

A.2.2 Matlab code for the program of path enumeration

This section deals with the Matlab code for the program of path enumeration. This pro-

gram permits obtaining the used paths by all classes when the assignment model without

path enumeration ((8.45) subject to (8.40)-(8.42) and (8.44))is applied. The set of paths

obtained by this program coincides with the set of used paths obtained with the approach

with path enumeration.
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Main program

clc

clear all

clear

close all

global maxss;

global NodeLinks;

global TestedLinks;

global TotalNodeLinks;

global ActualPath;

global ActualNode;

global PreviousNode;

global ActualLink;

global PreviousLink;

global Links;

global UsedNode;

global OriginNode;

global DestinationNode;

global Paths;

global ODLINKS;

global nPaths;

global nlinks;

global PathNodes;

global PathLinks;

global nodesinpath;

global linksinpath;

global aa;

global nclasses;

global OD;

global QQQ;

dataNGuyenDupuisMixed;

[nOD,nn]=size(ODExtremes);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Prints all ODs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for OD=1:nOD
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fprintf(’OD %3.0f : %3.0f - %3.0f\n’,OD,ODExtremes(OD,1),ODExtremes(OD,2));

end

[nlinks,nn]=size(Links);

nNodes=max(max(Links));

Paths=zeros(1,nlinks);

ODPaths=zeros(1,nlinks);

TestedLinks=zeros(1,nNodes);

TotalNodeLinks=zeros(1,nNodes);

for i=1:nlinks

TotalNodeLinks(Links(i,1))=TotalNodeLinks(Links(i,1))+1;

NodeLinks(Links(i,1),TotalNodeLinks(Links(i,1)))=i;

end

alllinks=1:nlinks;

nclasses=length(QQQ(1,1,:));

numberofPaths=zeros(nOD,nclasses);

nPaths=0;

fprintf(’Start process\n’);

ODlist=[1,2,3,4];

for ii=1:length(ODlist)

OD=ODlist(ii);

for aa=1:nclasses

ODLINKS=zeros(nlinks);

PathNodes=zeros(1,nNodes);

nodesinpath=0;

linksinpath=0;

ActualPath=zeros(1,nlinks);

UsedNode=zeros(1,nNodes);

OriginNode=ODExtremes(OD,1);

DestinationNode=ODExtremes(OD,2);

ActualNode=OriginNode;

TestedLinks(ActualNode)=0;

PreviousLink=0;

ActualLink=0;

done=0;

started=0;

while done==0 && ActualNode>0

if ActualNode==DestinationNode

nodesinpath=nodesinpath+1;
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PathNodes(nodesinpath)=ActualNode;

linksinpath=linksinpath+1;

ActualPath(linksinpath)=ActualLink;

StoresPath;

for i=1:linksinpath

if ActualPath(i)>0

ODLINKS(ActualPath(i))=ActualPath(i);

end

end

BackNodeEnd;

NewNode;

elseif ActualNode==OriginNode && started==1

done=1;

else

UsedNode(ActualNode)=1;

nodesinpath=nodesinpath+1;

PathNodes(nodesinpath)=ActualNode;

if ActualLink>0

linksinpath=linksinpath+1;

ActualPath(linksinpath)=ActualLink;

end

started=1;

NewNode;

end

end

numberofPaths(OD,aa)=nPaths;

end

end

previous=1;

for OD=1:nOD

for aa=1:nclasses

fprintf(’class %3.0f OD %5.0f\n’,aa,OD);

PrintPaths(previous,numberofPaths(OD,aa));

previous=numberofPaths(OD,aa)+1;

end

end

fprintf(’%9.0f paths found\n’,length(Paths(:,1)));

UniquePaths=union(Paths,Paths,’rows’);



Appendix 313

length(UniquePaths);

Generatepathlinks(UniquePaths);

fprintf(’%9.0f Unique paths found\n’,length(UniquePaths(:,1)));

Function Backnode

function Backnode

global TestedLinks;

global ActualPath;

global ActualNode;

global PreviousNode;

global ActualLink;

global PreviousLink;

global UsedNode;

global PathNodes;

global nodesinpath;

global linksinpath;

TestedLinks(ActualNode)=0;

UsedNode(ActualNode)=0;

if nodesinpath>1

ActualNode=PathNodes(nodesinpath-1);

else

ActualNode=0;

end

PathNodes(nodesinpath)=0;

nodesinpath=nodesinpath-1;

if nodesinpath>1

PreviousNode=PathNodes(nodesinpath-1);

end

if linksinpath>0

ActualPath(linksinpath)=0;

end

linksinpath=linksinpath-1;

if linksinpath>0

ActualLink=ActualPath(linksinpath);

end

if linksinpath>1

PreviousLink=ActualPath(linksinpath-1);
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end

NewNode;

Function NewNode

function NewNode

global NodeLinks;

global ActualLink;

global PreviousLink;

global Links;

global ActualNode;

global TestedLinks;

global UsedNode;

global PreviousNode;

global TotalNodeLinks;

global ActualPath;

global PathNodes;

global nodesinpath;

global linksinpath;

global aa;

global nclasses;

global OD;

global QQQ;

if ActualNode>0

ss=TestedLinks(ActualNode)+1;

if ss>TotalNodeLinks(ActualNode)

BackNode;

else

TestedLinks(ActualNode)=ss;

TemptativeLink=NodeLinks(ActualNode,ss);

if QQQ(TemptativeLink,OD,aa)==1

TemptativeNode=Links(TemptativeLink,2);

if UsedNode(TemptativeNode)==0

PreviousNode=ActualNode;

ActualNode=TemptativeNode;

PreviousLink=ActualLink;

ActualLink=TemptativeLink;

else
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NewNode

end

else

NewNode;

end

end

end

Function BacknodeEnd

function BacknodeEnd

global NodeLinks;

global TestedLinks;

global ActualPath;

global ActualNode;

global PreviousNode;

global ActualLink;

global PreviousLink;

global UsedNode;

global PathNodes;

global nodesinpath;

global linksinpath;

TestedLinks(ActualNode)=0;

UsedNode(ActualNode)=0;

if nodesinpath>1

ActualNode=PathNodes(nodesinpath-1);

else

ActualNode=0;

end

PathNodes(nodesinpath)=0;

nodesinpath=nodesinpath-1;

if nodesinpath>1

PreviousNode=PathNodes(nodesinpath-1);

end

ActualPath(linksinpath)=0;

linksinpath=linksinpath-1;

if linksinpath>1

ActualLink=ActualPath(linksinpath);
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else

ActualLink=0;

end

if linksinpath>1

PreviousLink=ActualPath(linksinpath-1);

else

PreviousLink=0;

end

Function Generatepathlinks

function Generatepathlinks(UniquePaths)

filename=’pathlinks.gms’;

fid=fopen(filename,’w’);

fprintf(fid,’TABLE\n’);

fprintf(fid,’pathlinks(PATH,SS)\n’);

[m,n]=size(UniquePaths);

jmax=0;

for i=1:m

for j=1:n

if UniquePaths(i,j)>0

jmax=max(jmax,j);

end

end

end

fprintf(fid,’ ’);

for j=1:jmax

fprintf(fid,’%4.0f’,j);

end

fprintf(fid,’\n’);

for i=1:m

fprintf(fid,’%-4.0f’,i);

for j=1:jmax

fprintf(fid,’%4.0f’,UniquePaths(i,j));

end

fprintf(fid,’\n’);

end
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fprintf(fid,’;\n’);

fclose(fid);

Function PrintPaths

function PrintPaths(n1,n2)

global nPaths;

global Paths;

global nlinks;

fprintf(’Paths\n’);

for i=n1:n2

for j=1:nlinks

if Paths(i,j)>0

fprintf(’%4.0f’,Paths(i,j));

end

end

fprintf(’\n’);

end

Function StoresPath

function StoresPath

global ActualPath;

global nPaths;

global Paths;

global nlinks;

global ActualLink;

global PathNodes;

global ActualNode;

global nodesinpath;

global linksinpath;

global ODLINKS;

nPaths=nPaths+1;

for i=1:linksinpath

Paths(nPaths,i)=ActualPath(i);

end
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DupuisEquilibriumMixedMathlab

The following code is generated by the GAMS code in the previous section and it is the

input for the enumeration paths program.

maxss= 5;

QQQ=zeros( 5, 4, 6);

QQQ( 1, 1,:)=[ 0 0 0 1 1 0];

QQQ( 2, 1,:)=[ 1 1 1 0 1 1];

QQQ( 3, 1,:)=[ 0 0 0 0 0 0];

QQQ( 4, 1,:)=[ 0 0 0 0 0 0];

QQQ( 5, 1,:)=[ 0 0 0 1 1 0];

QQQ( 6, 1,:)=[ 0 0 0 0 0 0];

QQQ( 7, 1,:)=[ 0 0 0 1 1 0];

QQQ( 8, 1,:)=[ 0 0 0 0 0 0];

QQQ( 9, 1,:)=[ 0 0 0 1 1 0];

QQQ( 10, 1,:)=[ 0 0 0 0 0 0];

QQQ( 11, 1,:)=[ 1 1 1 1 1 1];

QQQ( 12, 1,:)=[ 0 0 0 0 0 0];

QQQ( 13, 1,:)=[ 0 0 0 0 0 0];

QQQ( 14, 1,:)=[ 0 0 0 0 0 0];

QQQ( 15, 1,:)=[ 0 0 0 0 0 0];

QQQ( 16, 1,:)=[ 0 0 0 0 0 0];

QQQ( 17, 1,:)=[ 0 0 0 0 0 0];

QQQ( 18, 1,:)=[ 1 1 1 0 1 1];

QQQ( 19, 1,:)=[ 0 0 0 0 0 0];

QQQ( 1, 2,:)=[ 1 1 0 1 1 1];

QQQ( 2, 2,:)=[ 0 1 1 0 0 0];

QQQ( 3, 2,:)=[ 0 0 0 0 0 0];

QQQ( 4, 2,:)=[ 0 0 0 0 0 0];

QQQ( 5, 2,:)=[ 0 0 0 1 1 1];

QQQ( 6, 2,:)=[ 1 1 0 0 0 0];

QQQ( 7, 2,:)=[ 0 1 1 0 0 1];

QQQ( 8, 2,:)=[ 0 0 0 1 1 1];

QQQ( 9, 2,:)=[ 0 0 0 0 0 0];

QQQ( 10, 2,:)=[ 0 1 1 0 0 1];

QQQ( 11, 2,:)=[ 0 0 0 0 0 0];

QQQ( 12, 2,:)=[ 1 0 0 0 0 0];

QQQ( 13, 2,:)=[ 1 1 0 0 0 0];

QQQ( 14, 2,:)=[ 1 0 0 1 1 1];

QQQ( 15, 2,:)=[ 0 0 0 0 0 0];
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QQQ( 16, 2,:)=[ 1 1 1 1 1 1];

QQQ( 17, 2,:)=[ 0 1 1 0 0 0];

QQQ( 18, 2,:)=[ 0 0 0 0 0 0];

QQQ( 19, 2,:)=[ 1 1 0 0 0 0];

QQQ( 1, 3,:)=[ 0 0 0 0 0 0];

QQQ( 2, 3,:)=[ 0 0 0 0 0 0];

QQQ( 3, 3,:)=[ 0 1 1 1 1 1];

QQQ( 4, 3,:)=[ 1 1 0 0 0 0];

QQQ( 5, 3,:)=[ 0 1 1 1 1 1];

QQQ( 6, 3,:)=[ 0 0 1 0 0 0];

QQQ( 7, 3,:)=[ 0 1 1 1 1 1];

QQQ( 8, 3,:)=[ 0 0 0 0 0 0];

QQQ( 9, 3,:)=[ 0 1 0 1 1 1];

QQQ( 10, 3,:)=[ 0 0 1 0 0 0];

QQQ( 11, 3,:)=[ 0 1 0 1 1 1];

QQQ( 12, 3,:)=[ 1 1 1 0 0 0];

QQQ( 13, 3,:)=[ 0 0 0 0 0 0];

QQQ( 14, 3,:)=[ 1 1 1 0 0 0];

QQQ( 15, 3,:)=[ 1 1 1 0 0 0];

QQQ( 16, 3,:)=[ 0 0 0 0 0 0];

QQQ( 17, 3,:)=[ 0 0 0 0 0 0];

QQQ( 18, 3,:)=[ 0 0 0 0 0 0];

QQQ( 19, 3,:)=[ 0 0 0 0 0 0];

QQQ( 1, 4,:)=[ 0 0 0 0 0 0];

QQQ( 2, 4,:)=[ 0 0 0 0 0 0];

QQQ( 3, 4,:)=[ 0 1 1 1 1 1];

QQQ( 4, 4,:)=[ 1 1 0 0 0 0];

QQQ( 5, 4,:)=[ 0 0 0 1 1 1];

QQQ( 6, 4,:)=[ 0 1 1 0 0 0];

QQQ( 7, 4,:)=[ 0 0 0 0 0 0];

QQQ( 8, 4,:)=[ 0 0 0 1 1 1];

QQQ( 9, 4,:)=[ 0 0 0 0 0 0];

QQQ( 10, 4,:)=[ 0 0 0 0 0 0];

QQQ( 11, 4,:)=[ 0 0 0 0 0 0];

QQQ( 12, 4,:)=[ 0 0 0 0 0 0];

QQQ( 13, 4,:)=[ 1 1 1 0 0 0];

QQQ( 14, 4,:)=[ 0 0 0 1 1 1];

QQQ( 15, 4,:)=[ 0 0 0 0 0 0];

QQQ( 16, 4,:)=[ 0 0 0 1 1 1];

QQQ( 17, 4,:)=[ 0 0 0 0 0 0];
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QQQ( 18, 4,:)=[ 0 0 0 0 0 0];

QQQ( 19, 4,:)=[ 1 1 1 0 0 0];

Links=[

1 5 ;

1 12 ;

4 5 ;

4 9 ;

5 6 ;

5 9 ;

6 7 ;

6 10 ;

7 8 ;

7 11 ;

8 2 ;

9 10 ;

9 13 ;

10 11 ;

11 2 ;

11 3 ;

12 6 ;

12 8 ;

13 3 ;

];

U=[

0.000

10.000

10.000

2.043

3.871

5.914

7.957

10.000

5.914

5.914

7.957

1.935

7.957

];

V=[

6.552
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3.448

0.000

0.000

3.448

6.552

6.552

10.000

0.000

3.448

3.448

10.000

0.000

];

ORIGIN=[

1

4

];

DESTINATION=[

2

3

];

ODExtremes=[

1 ,2

1 ,3

4 ,2

4 ,3

];

A.3 Gams code for the Bayesian matrix estimation model

In this section the GAMS programming codes of the Bayesian Matrix Estimation Model
presented in Chapter 9, Section 9.4 is shown. In particular, we show the program codes
for the Nguyen-Dupuis example (including its data).

$Title Gamma Bayesian model

******************************************************************************************

*The output file is defined

******************************************************************************************

file out/gamma.out/;

file out1/gammaLatex.out/;

put out;

OPTION nlp=CONOPT;
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SETS

simul number of simulations/1*100/

iter maximum number of Global iterations /1*100/

iter_2 maximum number of iterations for DTRUE smulation /1*2/

I set of nodesnodes /1*13/

LINK(I,I) set of links

OBSERVED(I,I) observed links /1.5,12.8,9.10,9.13/

OD(I,I) set of OD pairs

KK terms of gamma function/1*6/

case cases for m and n values/1*5/

param link parameters table headers / a, k /;

ALIAS(I,J,K,S);

SCALARS

m Sample size of fictitious sample

n sample size of the observed sample

lambda wighting factor for WMV model /0.000001/

rho relaxation factor to control the OD matrix updating /0.5/

etaOD weight factor for least squares OD estimation /0.2/

epsilon1 auxiliary scalar/0.000000000001/

epsilon2 auxiliary scalar/0.000000000001/

nn auxiliary scalar

mmm auxiliary scalar

error error in bayes OD flows updating

tol tolerance error for bayes OD flows updating /0.01/

iteration scalar for iteration control

phi auxiliary scalar

e1 auxiliary value of the first component of the hypermarater

e2 auxiliary value of the second component of the hypermarater;

PARAMETERS

simulatedOD4(simul,I,I) vector of estimated OD flows by simulation for case 4

simulatedODLS(simul,I,I) vector of estimated OD flows by simulation for LS method

simulatedTrue(simul,I,I) vector of true OD flows by simulation

cputime(case) vector of CPU times by case

Ca(I,J) uncongested link costs

Qa(I,J) link capacities

alpha(I,J) link proportionality constants for the BPR function

GAMMA(I,J) link power constants for the BPR function

delta(I,I) kronecker’s delta matrix

DTRUE(I,J) true OD flows

D(I,J) OD flows

D0(I,J) prior OD flows

D00(I,J) stored prior OD flows

D1(I,J) modified prior OD flows

DLS(I,J) OD flows estimated by LS method

eta1(I,J) eta1 hyperparameters

eta2(I,J) eta2 hyperparameters
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etapost1(I,J) posterior eta1 hyperparameters

etapost2(I,J) posterior eta1 hyperparameters

BETA(I,J,K,S) beta matrix

WREAL(I,I) real link flows obtained from the WMV model

W(I,I) total link flow

W0(I,I) prior total link flow

WLS(I,I) link flows estimated by LS method

LINKA(case,I,I) auxiliary parameter to store the estimated link flows by case

TA(case,I,I) auxiliary parameter to store the estimated OD flows by case

OBSERVATION(I,J) observed link flows

COEFF(KK) Gamma funcion parameters

/1 76.18009172947146

2 -86.50532032941677

3 24.01409824083091

4 -1.231739572450155

5 0.001208650973866179

6 -0.000005395239384953/

;

******************************************************************************************

*The parameters for the BPR function for each link are defined

******************************************************************************************

table arc_cost(I,I,param) link parameter data

a k

1.5 7 70

1.12 9 56

4.5 9 56

4.9 12 70

5.6 3 42

5.9 9 42

6.7 5 70

6.10 5 28

7.8 5 70

7.11 9 70

8.2 9 70

9.10 10 56

9.13 9 56

10.11 6 70

11.2 9 56

11.3 8 56

12.6 7 14

12.8 14 56

13.3 11 56

;

Ca(i,j) = arc_cost(i,j,"a");

******************************************************************************************

*The links are defined using the parameter a in arc_cost table
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******************************************************************************************

LINK(i,j)=Ca(i,j);

Qa(i,j) = arc_cost(i,j,"k");

alpha(LINK(I,J)) = 1;

GAMMA(LINK)=4;

delta(I,I)=1;

TABLE

D0(I,J) prior trip matrix

1 2 3 4

1 0.4 0.8

4 0.6 0.2;

D0(I,J)=D0(I,J)*100;

D00(I,J)=D0(I,J);

******************************************************************************************

*The set of OD pairs are defined using the prior OD matrix

******************************************************************************************

OD(I,J)=no;

OD(I,J)$(D0(I,J)>0)=yes;

******************************************************************************************

*The link parameters and the prior OD matrix are printed

******************************************************************************************

mmm=0;

put "LINK PARAMETERS"/;

put " ca alpha qa gammaa"/;

loop(Link(I,J),mmm=mmm+1;put I.tl:2:0,"-",J.tl:1:0,

Ca(I,J):7:1, alpha(I,J):7:1, Qa(I,J):7:1, gamma(I,J):7:1/;);

put /;

put "Total number of links=",mmm:6:0/;

put /;

put "PRIOR OD FLOWS"/;

loop(I,put I.tl:2:0;loop(J,put D0(I,J):6:2;);put/;);

put /;

******************************************************************************************

*The variables are defined

******************************************************************************************

VARIABLES

Z objective variable for models

med mean of the disaggregated link flows;

POSITIVE VARIABLES

V(I,J,K,S) disssagregate link flows

T(K,S) OD flows associated with the observed sample

WW(I,I) link flows

TT auxiliary variable to compute the mode;

EQUATIONS
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******************************************************************************************

*Equations for solving the start problem

******************************************************************************************

zstart objective function for start model (obtains a feasible solution)

******************************************************************************************

*Equations for solving the WMV problem

******************************************************************************************

zWMV objective function for WMV model

balance1 flow balance at each node

mean definition of the mean of the disaggregated link flows

******************************************************************************************

*Equations for solving the Least Squares model

******************************************************************************************

zLS objective funtion for Least Squares model

propor flow conservation function

******************************************************************************************

*Equations for solving the Gamma Bayesian model

******************************************************************************************

zGBay numeric equivalent objective function to compute the mode of the Gamma model;

******************************************************************************************

*The equations are defined

******************************************************************************************

zstart..z=e=SUM((LINK,OD),V(LINK,OD));

zWMV..z=e=SUM(LINK,(Ca(LINK)*((SUM(OD,V(LINK,OD))*(1+ALPHA(LINK)*(SUM(OD,V(LINK,OD))/

Qa(LINK))**(GAMMA(LINK))/(GAMMA(LINK)+1))))))

+SUM((LINK,OD),SQR(V(LINK,OD)-med))*lambda/sum((LINK,OD),1);

balance1(I,OD(K,S))$(ord(K) ne ord(S))..D(OD)*(delta(I,K)-delta(I,S))=e=

SUM(LINK(I,J),V(LINK,OD))-SUM(LINK(J,I),V(LINK,OD));

mean..med=e=SUM((LINK,OD),V(LINK,OD))/sum((LINK,OD),1);

zLS..z=e=etaOD*SUM(OD,sqr((T(OD)-D0(OD))/D0(OD)))

+SUM(LINK$(OBSERVATION(LINK)>0),sqr((WW(LINK)-OBSERVATION(LINK))/OBSERVATION(LINK)));

propor(LINK)..WW(LINK)=e=SUM(OD,BETA(LINK,OD)*T(OD));

zGBay..z=e=e1*TT-e2*(-(TT + 5.5) + (TT + 0.5)*log(TT + 5.5)

+log(2.506628274631*(1.00000000019 + Sum(kk,Coeff(kk)/(TT + ord(kk))))/max(TT,epsilon1)));

******************************************************************************************

*The models are defined

******************************************************************************************

MODEL start/zstart,balance1/;

MODEL WMV/zWMV,balance1,mean/;

MODEL LS/zLS,propor/;

MODEL GammaBayes/zGBay/;

******************************************************************************************
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*The true OD flows are simulated

******************************************************************************************

loop(simul,

D0(OD)=D00(OD);

loop(iter_2,D(OD)=uniform(1,1.3)*D0(OD););

put "REAL OD FLOWS"/;

loop(I,put I.tl:2:0;loop(J,put D(I,J):6:2;);put/;);

put /;

DTRUE(OD)=D(OD);

******************************************************************************************

*Solves the start problem to obtain a feasible solution

******************************************************************************************

SOLVE start USING lp MINIMIZING z;

put "zstart=",z.l:12:3," modelstat=",start.modelstat," solvestat=",start.solvestat,"

resusd=",start.resusd:12:8/;

******************************************************************************************

*Solves the WMV problem with the real OD flows to obtain the real link flows (observed)

******************************************************************************************

SOLVE WMV USING nlp MINIMIZING z;

put "WMV=",z.l:12:3," modelstat=",WMV.modelstat," solvestat=",WMV.solvestat,

" resusd=",WMV.resusd:12:8/;

******************************************************************************************

*The observed link flows are stored

******************************************************************************************

OBSERVATION(LINK)=0;

WREAL(LINK)=SUM(OD,V.l(LINK,OD));

OBSERVATION(OBSERVED)=WREAL(OBSERVED);

put "OBSERVATIONS"/;

loop(OBSERVED(I,J),put I.tl:4:0,"-",J.tl:4:0,OBSERVATION(OBSERVED):9:2/;);

******************************************************************************************

*The prior OD flows are stored and printed

******************************************************************************************

D(OD)=D0(OD);

put "PRIOR OD FLOWS"/;

loop(I,put I.tl:2:0;loop(J,put D(I,J):6:2;);put/;);

put /;

******************************************************************************************

*Solves the start problem to obtain a feasible solution

******************************************************************************************

SOLVE start USING lp MINIMIZING z;

put "zstart=",z.l:12:3," modelstat=",start.modelstat," solvestat=",start.solvestat,

" resusd=",start.resusd:12:8/;

******************************************************************************************

*Solves the WMV problem with the prior OD flows to obtain the prior link flows

******************************************************************************************

SOLVE WMV USING nlp MINIMIZING z;

put "WMV=",z.l:12:3," modelstat=",WMV.modelstat," solvestat=",

WMV.solvestat," resusd=",WMV.resusd:12:8/;

W(LINK)=SUM(OD,V.l(LINK,OD));
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W0(LINK)=W(LINK);

******************************************************************************************

*Beginning the case iterations

******************************************************************************************

loop(case,

******************************************************************************************

*The cases for m and n values are defined

******************************************************************************************

if(ord(case)=1,m=100;n=1;phi=0;);

if(ord(case)=2,m=10;n=10;phi=0;);

if(ord(case)=3,m=1;n=10;phi=0;);

if(ord(case)=4,m=1;n=100;phi=0;);

if(ord(case)=5,m=1;n=100;phi=0.3;);

put "CASE=",case.tl:5:0, " m=" m:3:0, " n=" n:3:0/;

******************************************************************************************

*The prior hyperparameters are calculated

******************************************************************************************

D0(OD)=(1+phi)*D0(OD)

if(ord(case)=5, D1(OD)=D0(OD););

eta1(OD)=m*log(max(D0(OD),epsilon1));

eta2(OD)=m;

put "PRIOR HYPERPARAMETERS"/;

loop(OD(I,J), put I.tl:3:0, "-", J.tl:3:0, eta1(OD):6:2, eta2(OD):6:2;

put /;);put/;

******************************************************************************************

*The prior OD flows are stored for each case iteration and the error is defined

******************************************************************************************

error=1000;

D(OD)=D0(OD);

******************************************************************************************

*Beginning the convergence iterations

******************************************************************************************

cputime(case)=0;

loop(iter$(error>tol),

iteration=ord(iter);

put "CASE=",case.tl:5:0, " m=" m:3:0, " n=" n:3:0,

" iter= " iteration:4:0/;

******************************************************************************************

*The WMV model is solved with the actual OD flows

******************************************************************************************

SOLVE WMV USING nlp MINIMIZING z;

put "WMV=",z.l:12:3," modelstat=",WMV.modelstat," solvestat=",

WMV.solvestat," resusd=",WMV.resusd:12:8/;

cputime(case)=cputime(case)+WMV.resusd;

******************************************************************************************

*The Beta matrix is calculated

******************************************************************************************

loop(OD,if(D(OD)>0,BETA(LINK,OD)=V.l(LINK,OD)/D(OD);
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else BETA(LINK,OD)=0;););

******************************************************************************************

*The total link flows are calculated to be used as initial values

******************************************************************************************

WW.l(LINK)=SUM(OD,V.l(LINK,OD));

******************************************************************************************

*The LS problem is solved to obtain the "observed" OD flows T.l(OD)

******************************************************************************************

SOLVE LS USING nlp MINIMIZING z;

put "LS=",z.l:12:3," modelstat=",LS.modelstat," solvestat=",

LS.solvestat," resusd=",LS.resusd:12:8/;

cputime(case)=cputime(case)+LS.resusd;

put "OD FLOWS"/;

loop(I,put I.tl:2:0;loop(J,put T.l(I,J):6:2;);put/;);

put /;

******************************************************************************************

*The posterior hyperparameters are calculated

******************************************************************************************

etapost1(OD)=eta1(OD)+n*log(max(T.l(OD),epsilon1));

etapost2(OD)=eta2(OD)+n;

put "POSTERIOR HYPERPARAMETERS"/;

loop(OD(I,J),put I.tl:3:0,"-",J.tl:3:0,etapost1(OD):6:2,

etapost2(OD):6:2; put /;);

put/;

******************************************************************************************

*The Gamma Bayesian models are solved to obtain the OD mode estimates

******************************************************************************************

loop(OD(I,J),

TT.l=D(OD);

e1=etapost1(OD);

e2=etapost2(OD);

SOLVE GammaBayes USING dnlp MAXIMIZING z;

put "GammaBayes z=",z.l:15:8," modelstat=",

GammaBayes.modelstat," solvestat=",GammaBayes.solvestat,

" resusd=", GammaBayes.resusd:12:8/;

cputime(case)=cputime(case)+GammaBayes.resusd;

T.l(OD)=TT.l;

);

******************************************************************************************

*The results are stored for the corresponding case

******************************************************************************************

TA(case,OD)=T.l(OD);

LINKA(case,LINK)=SUM(OD,T.l(OD)*BETA(LINK,OD));

******************************************************************************************

*The current OD flows are compared with the previous

******************************************************************************************

put "PREVIOUS OD FLOWS "/;

loop(I,put I.tl:2:0;loop(J, put D(I,J):6:2;);put/;);

put /;
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put "CURRENT OD FLOWS "/;

loop(I,put I.tl:2:0;loop(J, put T.l(I,J):6:2;);put/;);

put /;

******************************************************************************************

*The error is calculated to control the convergence process

******************************************************************************************

error=SUM(OD,sqr(D(OD)-T.l(OD)));

put "ERROR IN THE CURRENT ITERATION:"/;

put "iter=",iter.tl:4:0," error=",error:12:9," tol=",tol:12:8/;

******************************************************************************************

*Update the OD flows stimation

******************************************************************************************

D(OD)=rho*D(OD)+(1-rho)*T.l(OD);

******************************************************************************************

*End of the convergence procedure

******************************************************************************************

);

******************************************************************************************

*The resulting flows are printed

******************************************************************************************

put "Resulting flows"/;

put "m=" m:3:0/;

put "n=" n:3:0/;

put " True Prior and Estimated OD flows "/;

loop(OD, put DTRUE(OD):8:2, D0(OD):8:2, D(OD):8:2/;);

put/;

put " True Prior and Estimated link flows "/;

loop(LINK, put WREAL(LINK):8:2, W0(LINK):8:2, SUM(OD,T.l(OD)*

BETA(LINK,OD)):8:2/;);

put/;

put "*****************************************************************"/;

******************************************************************************************

*End of the case iteration

******************************************************************************************

);

put "cputime(case)"/;

loop(case,put case.tl:3:0,cputime(case):12:5/;);

T.l(OD)=D0(OD);

******************************************************************************************

*The problem is solved using a standard LS-bilevel procedure

******************************************************************************************

error=1000;

D(OD)=D0(OD);

loop(iter$(error>tol),

iteration=ord(iter);

put "CASE= LS procedure"/;

******************************************************************************************

*The WMV model is solved

******************************************************************************************
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SOLVE WMV USING nlp MINIMIZING z;

put "WMV=",z.l:12:3," modelstat=",WMV.modelstat," solvestat=",

WMV.solvestat," resusd=",WMV.resusd:12:8/;

******************************************************************************************

*The Beta matrix is calculated

******************************************************************************************

loop(OD,if(D(OD)>0,BETA(LINK,OD)=V.l(LINK,OD)/D(OD);else BETA(LINK,OD)=0;););

******************************************************************************************

*The total link flow is calculated and the LS problem solved

******************************************************************************************

WW.l(LINK)=SUM(OD,V.l(LINK,OD));

SOLVE LS USING nlp MINIMIZING z;

put "LS=",z.l:12:3," modelstat=",LS.modelstat," solvestat=",

LS.solvestat," resusd=",LS.resusd:12:8/;

put "Standard Method OD FLOWS"/;

loop(OD, put T.l(OD):8:2/;);

put /;

******************************************************************************************

*The error is calculated to control the convergence process

******************************************************************************************

error=SUM(OD,sqr(D(OD)-T.l(OD)));

put "ERROR IN THE CURRENT ITERATION:"/;

put "iter=",iter.tl:4:0," error=",error:12:9," tol=",tol:12:8/;

******************************************************************************************

*Update the OD flows

******************************************************************************************

D(OD)=rho*D(OD)+(1-rho)*T.l(OD);

);

******************************************************************************************

*End of the standard iteration

*The OD flow estimations using LS method are stored

******************************************************************************************

DLS(OD)=D(OD);

WLS(LINK)=WW.l(LINK);

simulatedOD4(simul,OD)=TA(’4’,OD);

simulatedODLS(simul,OD)=DLS(OD);

simulatedTrue(simul,OD)=DTRUE(OD);

);

******************************************************************************************

*End of the simul iteration

******************************************************************************************

put "SIMULATED OD ESTIMATES"/;

loop(simul,loop(OD,put simulatedOD4(simul,OD):12:5,simulatedODLS(simul,OD):12:5;);put /;);

put "RMSE"/;

loop(OD(K,S), put K.tl:1:0,"-",S.tl:1:0;

put sqrt(sum(simul,power((simulatedOD4(simul,OD)-simulatedTrue(simul,OD))/simulatedTrue

(simul,OD),2))/card(simul)):12:5,sqrt(sum(simul,power((simulatedODLS(simul,OD)-
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simulatedTrue(simul,OD))/simulatedTrue(simul,OD),2))/card(simul)):12:5/;

);

******************************************************************************************

*Link flows obtained for different cases are printed

******************************************************************************************

put "PRIOR AND POSTERIOR LINK FLOWS"/;

put " LINK Observed Prior m=100 m=10 m=1 m=1"/;

put " n=1 n=10 n=1 n=100"/;

loop(LINK(I,J),put I.tl:2:0,"-",J.tl:2:0;if(OBSERVATION(LINK)=0,put " - ":6:0;

else put " ", OBSERVATION(LINK):6:2;); put " ",W0(I,J):6:2," ",

LINKA(’1’,I,J):6:2," ", LINKA(’2’,I,J):6:2," ", LINKA(’3’,I,J):6:2," ",

LINKA(’4’,I,J):6:2/;

);

put /;

put "PRIOR AND POSTERIOR OD FLOWS"//;

put " ";

loop(J,put" ", J.tl:3:2;);put /;

put "_________________________________________________________________________"/;

loop(I,put I.tl:2:0; put " Prior ";loop(J, put" ", D0(I,J):6:2;);put/;

put "_________________________________________________________________________"/;

put " ";put " m=10, n=1 ";loop(J, put" ", TA(’1’,I,J):6:2;);put /;

put " ";put " m=10, n=10";loop(J, put" ", TA(’2’,I,J):6:2;);put /;

put " ";put " m=1, n=1 ";loop(J, put" ", TA(’3’,I,J):6:2;);put /;

put " ";put " m=1, n=10 ";loop(J, put" ", TA(’4’,I,J):6:2;);put /;

put "_________________________________________________________________________"/;);

put /;

put /;

put "MODIFIED PRIOR AND POSTERIOR OD FLOWS"//;

put " Case ";loop(J,put" ", J.tl:3:2;);put/;

put "___________________________________________________________________________"/;

loop(I,put I.tl:2:0; put " Prior ";loop(J, put" ", D0(I,J):6:2;);put/;

put "___________________________________________________________________________"/;

put " ";put " Mod. prior ";loop(J, put" ", D1(I,J):6:2;);put /;

put " ";put " Posterior ";loop(J, put" ", TA(’5’,I,J):6:2;);put /;

put "___________________________________________________________________________"/;);

******************************************************************************************

*Results are printed in tables for latex

******************************************************************************************

put out1;

put "PRIOR AND POSTERIOR LINK FLOWS"//;

put "\begin{table}"/;

put "\centering"/;

put "\begin{tabular}{|c|c|c|c|c|c|c|c|}"/;

put "\hline "/;
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put " LINK & True & Prior & $m=100$ & $m=10$ & $m=1$ & $m=1$ & LS \\"/;

put " & & & $n=1$ & $n=10$ & $n=10$ & $n=100$ & \\"/;

put "\hline"/;

loop(LINK(I,J),put I.tl:2:0,"-",J.tl:2:0;if(OBSERVATION(LINK)=0,put "&", WREAL(LINK):6:2;

else put " & {\bf ", WREAL(LINK):6:2,"}";); put " & ",W0(I,J):6:2," & ",

LINKA(’1’,I,J):6:2," & ", LINKA(’2’,I,J):6:2," & ", LINKA(’3’,I,J):6:2," & ",

LINKA(’4’,I,J):6:2," & ", WLS(I,J):6:2,"\\"/;

);

put "\hline";

put "\end{tabular}"/;

put "\caption{\label{}True, prior and resulting link flows when the proposed algorithm is used"/;

put " for four different cases of relative weight of the prior and the sample with

respect to information."/;

put " The bolfaced values corresponds to the observed link flows}"/;

put "\end{table}"/;

put /;

put "PRIOR AND POSTERIOR OD FLOWS"//;

put "\begin{table}"/;

put "\centering"/;

put "\renewcommand{\arraystretch}{0.9}"/;

put "\begin{tabular}{|c|c|c|c|c|c|c|c|}"/;

put "\hline "/;

put " OD & True & Prior & $m=100$ & $m=10$ & $m=1$ & $m=1$ & LS \\"/;

put " & & & $n=1$ & $n=10$ & $n=10$ & $n=100$ & \\"/;

put "\hline"/;

loop(OD(K,S),put K.tl:2:0,"-",S.tl:2:0;put " & ",DTRUE(K,S):6:2, " & ",D00(K,S):6:2," & ",

TA(’1’,K,S):6:2," & ", TA(’2’,K,S):6:2," & ", TA(’3’,K,S):6:2," & ", TA(’4’,K,S):6:2, " & ",

DLS(K,S):6:2"\\"/;);

put "\hline"/;

put "\end{tabular}"/;

put "\caption{\label{} True, prior and resulting $\nu_{ks}$ values (OD mean flow estimates)

when the proposed algorithm"/;

put " for four different cases of relative weight of the prior and the sample with respect

to information. A comparison with an standard LS method is provided.}"/;

put "\end{table}"/;

put /;

put /;

put "PRIOR AND POSTERIOR OD FLOWS"//;

put "\begin{table}"/;

put "\centering"/;

put "\renewcommand{\arraystretch}{0.9}"/;

put "\begin{tabular}{|c|c|c|c|}"/;

put "\hline "/;

put " \multirow{2}{*}{OD} & \multirow{2}{*}{Prior}& \multirow{2}{*}{Mod. prior} & Posterior \\"/;

put " & & & ($m=1;n=100$)\\"/;

put "\hline";

loop(OD(K,S),put K.tl:2:0,"-",S.tl:2:0;put" & ",D00(K,S):6:2, " & ",D1(K,S):6:2,
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" & ", TA(’5’,K,S):6:2,"\\"/;);

put "\hline"/;

put "\end{tabular}"/;

put "\caption{Modified prior and resulting $\nu_{ks}$ values (OD mean flow estimates)

when solving the gamma model.}"/;

put "\end{table}"/;

A.4 Mathematica code for the Observability problem

This section is devoted to the Mathematica implementation of the algorithm explained in

Chapter 10, Section 10.6, based on the Γ-algorithm of Castillo and Jubete (2004). This

algorithm permits testing if a set of paths is linearly independent and hence, it can be

used to find a set of linearly independent paths. In particular, the following codes permit

obtaining the results in Table 10.2.

Procedures;

(*Procedure to find a non-null pivot*)

FindPivot[t_, type_] :=

Module[{i = 1, p = 0, done = False, m = Length[type]},

While[! done && i <= m,

If[t[[i]] != 0 && type[[i]] == 0, p = i; done = True]; i++];

Return[p]

]

(*Procedure to remove a row (or column)*)

RemoveRow[A_, j_] :=

If[j > 0 && j <= Length[A],

Join[Take[A, {1, j - 1}], Take[A, {j + 1, Length[A]}]], A]

(*Procedure to print the tables of the algorithm in Latex*)

PrintTable[T_, a_, label_, t_, p_, ort_, filename_, tablenumber_, m1_,

h_, type_] :=

Module[{i, j, s1 = "", s2 = "", s3 = "", aux, ivcont, iwcont, m},

WriteString[ttt, "\\renewcommand{\\tabcolsep}{-0.02cm}\n"];

WriteString[ttt, "\\renewcommand{\\arraystretch}{0.7}\n"];

WriteString[ttt, "\\begin{tabular}{|c|"];

WriteString[ttt, StringJoin[Table["c", {j, 1, Length[T]}]]];

WriteString[ttt, "|}\n\hline\n\multicolumn{"];

WriteString[ttt, ToString[Length[T] + 1]];

WriteString[ttt, "}{|c|}{{\\bf ", label, "}} \\"];

WriteString[ttt, "\\ \n\hline\n"];

If[h != 0, WriteString[ttt, "${\\bf a}_{", ToString[h], "}$ "]];

aux = If[h != 0, StringJoin["^{", ToString[h], "}"], aux = ""];

ivcont = 0; iwcont = 0;

Do[If[type[[j]] == 1, iwcont += 1;

WriteString[ttt, "& ${\\bf w}", aux, "_{", ToString[iwcont],

"}$ "], ivcont += 1;
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WriteString[ttt, "& ${\\bf v}", aux, "_{", ToString[ivcont],

"}$ "]], {j, 1, Length[T]}];

WriteString[ttt, "\\\\\n\\hline\n"];

Do[If[h != 0, WriteString[ttt, a[[i]]], WriteString[ttt, ""]];

Do[WriteString[ttt, " & "];

If[j == p, WriteString[ttt, "{\\bf "]];

WriteString[ttt, T[[j, i]]];

If[j == p, WriteString[ttt, "}"]], {j, 1, Length[T]}];

WriteString[ttt, " \\"];

WriteString[ttt, "\\\n"], {i, 1, Length[a]}];

WriteString[ttt, "\hline\n"];

If[h != 0, WriteString[ttt, " ${\\bf t}^{", ToString[h], "}$"];

Do[WriteString[ttt, " & "]; If[j == p, WriteString[ttt, "{\\bf "]];

WriteString[ttt, t[[j]]];

If[j == p, WriteString[ttt, "}"]], {j, 1, Length[T]}];

WriteString[ttt, " \\"];

WriteString[ttt, "\\\n"];

WriteString[ttt, "\hline\n"]];

m = Length[ort];

Size = Max[Table[Length[ort[[j]]], {j, 1, m}]];

T2 = Table["", {i, 1, Size}, {j, 1, m}];

Do[T2[[i, j]] = ToString[ort[[j, i]]], {j, 1, m}, {i, 1,

Length[ort[[j]]]}];

Print[MatrixForm[T2]];

If[Size > 0, WriteString[ttt, " $I", aux, "$ "]

Do[

Do[WriteString[ttt, " & ", T2[[i, j]]] , {j, 1, m} ];

WriteString[ttt, "\\\\ \n"]

, {i, 1, Size}];

WriteString[ttt, "\hline\n"]

];

WriteString[ttt, "\\end{tabular}\n"];

]

(*Procedure for the Gamma-algorithm *)

DualConeLatex2[B1_, C1_, filename_] :=

Module[{h, n1, n2, m1, m2, n, m, type, ort, T, T1, p, pivot, i, j,

Iplus, Iminus, I0, Candidates, Cand},

(* Printing in Latex *)

DeleteFile[filename];

ttt = OpenWrite[filename];

WriteString[ttt,

"\\documentclass{article}\n\\newtheorem{example}{Example}\n\

\\oddsidemargin -2cm\n\evensidemargin -2cm\n\\begin{document}\n\

\\begin{center}\n"];

(* End printing in Latex *)

h = 1; n1 = 0; n2 = 0;

m1 = Length[B1];

If[m1 > 0, n1 = Length[B1[[1]]]];
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m2 = Length[C1];

If[m2 > 0, n2 = Length[C1[[1]]]];

n = Max[n1, n2];

m = n;

If[n == 0, Return[]];

T = IdentityMatrix[n];

type = Table[0, {n}];

ort = Table[{}, {n}];

Do[

Print["m=", m];

If[m > 0,

Print["h=", h];

(* Dot products *)

If[h <= m1, a = B1[[h]], a = C1[[h - m1]]];

t = Flatten[T.Transpose[{a}]];

p = FindPivot[t, type];

pivot = t[[p]];

Print[MatrixForm[{type}]];

Print[MatrixForm[a] MatrixForm[Transpose[T]]];

Print[t];

Print[ort];

label = StringJoin["Iteration ", ToString[h]];

tablenumber = 1;

PrintTable[T, a, label, t, p, {}, filename, tablenumber, m1, h,

type];

If[p > 0,

(* Gamma I *)

T[[p]] /= -pivot;

Do[If[i != p, T[[i]] = T[[i]] + t[[i]]*T[[p]];

AppendTo[ort[[i]], h]]

, {i, 1, m}];

If[h <= m1, T = RemoveRow[T, p]; ort = RemoveRow[ort, p];

type = RemoveRow[type, p]; m = m - 1, type[[p]] = 1];

(* Gamma II *)

, Do[If[t[[i]] == 0, AppendTo[ort[[i]], h]], {i, 1, m}];

Iplus = {}; Iminus = {}; I0 = {}; T1 = {}; mm = 0; ort1 = {};

type1 = {}; ort0 = {};

Do[If[t[[i]] > 0 , AppendTo[Iplus, i],

If[t[[i]] < 0, AppendTo[Iminus, i],

If[type[[i]] != 0, AppendTo[I0, i];

AppendTo[ort0, ort[[i]]]]]], {i, 1, m}];

Print["Iplus=", Iplus, " Iminus=", Iminus, " I0=", I0];

Do[If[(t[[i]] < 0 && h > m1) || t[[i]] == 0, mm += 1;

AppendTo[T1, T[[i]]]; AppendTo[ort1, ort[[i]]];

AppendTo[type1, type[[i]]]], {i, 1, m}];

If[Iplus != {},

Candidates = {};

Do[ii = Iplus[[i]]; jj = Iminus[[j]];

AppendTo[
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Candidates, {Join[

Intersection[ort[[ii]], ort[[jj]]], {h}], {ii, jj}}]

, {i, 1, Length[Iplus]}, {j, 1, Length[Iminus]}];

Print["Candidates=", Candidates];

Print["ort0=", ort0];

Cand = {}; rem = {};

Do[aux = Intersection[Candidates[[i, 1]], Candidates[[j, 1]]];

If[aux == Candidates[[i, 1]], AppendTo[rem, i]];

If[aux == Candidates[[j, 1]] && aux != Candidates[[i, 1]],

AppendTo[rem, j]], {i, 1, Length[Candidates]}, {j, 1, i - 1}];

Print["**Remove=", rem];

Do[aux = Intersection[Candidates[[i, 1]], ort0[[j]]];

If[aux == Candidates[[i, 1]], AppendTo[rem, i]], {i, 1,

Length[Candidates]}, {j, 1, Length[ort0]}];

rem = Sort[Union[rem]];

Print["Remove=", rem];

Do[

Candidates = RemoveRow[Candidates, rem[[i]]], {i, Length[rem],

1, -1}];

Print["Candidates=", Candidates];

Do[mm += 1;

AppendTo[T1,

Abs[t[[Candidates[[i, 2, 2]]]]]*T[[Candidates[[i, 2, 1]]]] +

Abs[t[[Candidates[[i, 2, 1]]]]]*T[[Candidates[[i, 2, 2]]]]];

AppendTo[type1, 1];

AppendTo[ort1, Candidates[[i, 1]]], {i, 1, Length[Candidates]}];

m = mm;

ort = ort1;

type = type1;

T = T1]

], T = {0}; ort = {}; type = {}]

, {h, 1, m1 + m2}];

(* Printing in Latex *)

If[m > 0, label = "Final";

PrintTable[T, a, label, t, 0, {}, filename, tablenumber, m1, 0,

type], WriteString[ttt,

"The dual cone is the zero vector. \n\\end{center}\n\

\\end{document}\n"]];

WriteString[ttt, "\n\\end{center}\n\\end{document}\n"];

Close[ttt];

(* End printing in Latex *)

Return[{T, ort, type}]

]

Nine linearly independent paths example

H = {

{1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1},

{0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0},
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{0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1},

{1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1},

{0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1},

{1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0},

{1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0},

{0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0}}

filename = "C:\gammaalgorithmtables.tex";

OUTPUT = DualConeLatex2[H, {}, filename];

A.5 Matlab code for the Network Loading Model including

overtaking

This section is devoted to the Matlab implementation of the iterative algorithm used to

solve the Network Loading Model including overtaking classes explained in Chapter 11.

We will show the codes for the case of BPR and normal cumulative distribution functions.

For the sake of brevity, only the main program and the more important functions will be

shown (which contains the most important differences with respect to the model proposed

by Castillo et al. (2012)), omitting the plot and reading data functions (for the complete

list of functions, see Nogal (2011)).

Main program

global alpha;

global congestcoeff;

global correctcontrol;

global colors;

global DATA;

global delta;

global deviation;

global error;

global fbeta;

global gamma;

global GrapOption

global Ii;

global increment;

global labels;

global linklength;

global links;

global linksplotted;

global linkroutes;

global linksatmax;

global m;

global MaxIi;

global maxtime;

global mean;

global muroutes;
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global nclasses;

global nlinks;

global nlinkroutes;

global nfigures;

global nmaxlinks;

global nnodes;

global nodesplotted;

global nPath;

global nroutelinks;

global Nroutes;

global OpenFig;

global pathsLinks;

global Points;

global pp;

global ProjectName;

global rho;

global S;

global samax;

global satur;

global saturationmax;

global selectedroute;

global sigmaroutes;

global tsize1;

global tsize;

global t;

global TA1;

global tmax;

global ttt;

global XAmax;

% INITIALIZATION OF VARIABLES

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tiempo0=clock;

maxtimepermitted=5000;

nmaxnodelinks=6; %maximum number of links exiting from a link

nmaxlinkroutes=100;

itermax=100;

tol=0.1;

rho=1.0; % relax coefficient

ReadingDATA;

% Calculates the output links of each node (outputnodelinks)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nnodes=max(max(links));

Oi=zeros(nnodes,nmaxnodelinks);

MaxOi=zeros(1,nnodes);

actualnmaxnodelinks=0;

for i=1:nnodes
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kk=0;

for j=1:nlinks

if links(j,1)==i

kk=kk+1;

Oi(i,kk)=j;

if actualnmaxnodelinks<kk

actualnmaxnodelinks=kk;

end

end

end

MaxOi(i)=kk;

end

% Calculates the input links of each node (outputnodelinks)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ii=zeros(nnodes,nmaxnodelinks);

MaxIi=zeros(1,nnodes);

for i=1:nnodes

kk=0;

for j=1:nlinks

if links(j,2)==i

kk=kk+1;

Ii(i,kk)=j;

if actualnmaxnodelinks<kk

actualnmaxnodelinks=kk;

end

end

end

MaxIi(i)=kk;

end

% Calculate the number of routes per each link (linkroutes)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

linkroutes=zeros(nlinks,nmaxlinkroutes);

nlinkroutes=zeros(nlinks,1);

for r=1:nPath

for j=1:nroutelinks(r)

l=pathsLinks(r,j);

nlinkroutes(l)=nlinkroutes(l)+1;

linkroutes(l,nlinkroutes(l))=r;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% SPLINE MONOTONE HERMITE CALCULATION

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if ~DATA.SMH.calculated

% Estimated congestion control
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

res=zeros(nlinks,1);

for i=1:nlinks

suma=0;

if nlinkroutes(i)>0

for j=1:nlinkroutes(i)

for class=1:nclasses

vol=sum(Nroutes(class,:,:),3)./tmax;

suma=suma+vol(linkroutes(i,j))/XAmax(class,i);

end

end

end

res(i)=suma;

end

control=1;

if control

% Spline initialization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ttt=zeros(nclasses,nlinks,tsize);

TA1=zeros(nlinks,tsize);

for i=1:tsize

TA1(:,i)=t(i); % link enter time

end

for class=1:nclasses

for i=1:nlinks

ttt(class,i,:)=t(:)+alpha(class,i); % initial link exit time associated to TA1

end

end

satur=zeros(nlinks,length(t));

% Starts iterative program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ppp=pchip(t,t);

S=zeros(nclasses,nlinks);

for class=1:nclasses

pp{class}=struct(ppp);

for ll=1:nlinks

% initial spline (exit time, enter time)

pp{class,ll}=pchip(ttt(class,ll,:),TA1(ll,:));

end

for ll=1:nlinks

S(class,ll)=alpha(class,ll)*congestcoeff*(1+fbeta(class,ll))/(XAmax(class,ll));

end

end

error=100*tol;

iter=0;

maxtime=maxtimepermitted/2;
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crack=0;

while error>tol && iter<itermax && maxtime<maxtimepermitted

iter=iter+1;

updatesplines; %update the splines

if maxtime<maxtimepermitted

fprintf(’iteration = %3.0f cc=%2.0f error=%12.6f saturationmax=%8.3f

linksatmax=%5.0f, cpu=%4.5g\n’,iter,correctcontrol,error,

saturationmax,linksatmax,etime(clock,tiempo0));

else

fprintf(’The proposed flow blocks the network with maxtime=%9.2f

exceeding maxtimepermitted=%9.2f\n’,maxtime,maxtimepermitted);

crack=1;

break;

end

end

% If the results are obtained correcty, we save them

if crack==0

DATA.SMH.calculated=1;

DATA.SMH.pp=pp;

DATA.SMH.TA1=TA1; % link enter time

DATA.SMH.ttt=ttt; % initial link exit time associated to TA1

DATA.SMH.maxtime=maxtime;

DATA.SMH.control=control;

tiempo1=clock;

fprintf(’\n Tiempo de cpu : %0.5g segundos\n’,etime(tiempo1,tiempo0));

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Graphic Output

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nfigures=0;

OpenFig=[];

control=DATA.SMH.control;

if and(DATA.SMH.calculated==1,control)

pp=DATA.SMH.pp;

TA1=DATA.SMH.TA1; % link enter time

ttt=DATA.SMH.ttt; % initial link exit time associated to TA1

maxtime=DATA.SMH.maxtime;

if GrapOption(7)

PlotNetwork(SpecialLinks); % network with the special links highlighted

end

if GrapOption(1)

plotroutes(routesplotted); % flow at the origin of each path

end
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if GrapOption(2)

plotlinks(linksplotted); % traffic flow intensity at the exit each link

end

if GrapOption(3)

plotnodes(nodesplotted); % flow intensity at each node with the time

end

if GrapOption(4)

plotRouteFlow(selectedroute,GrapOption(9)); % Link flow evolution

end

if GrapOption(5)

plotlinksN(linksplotted2); % Link travel time evolution

end

if GrapOption(6)

plotintensity(routesplotted2); % route start time with the link exit time of each path

end

if GrapOption(8)

plotTTF(linksplotted3); % route start time with the link exit time of each path

end

end

fprintf(’END OF PROGRAM\n’);

Function updatesplines

This function permits updating the splines for each iteration.

function updatesplines

global nlinks;

global error;

global maxtime;

global pp;

global TA1;

global ttt;

global nclasses;

global tsize;

GenerateXA; % link exit time of each link (ttt)

error=0;

for class=1:nclasses

for ll=1:nlinks

coeff0=pp{class,ll}.coefs;

pp{class,ll}=pchip(ttt(class,ll,:),TA1(ll,:));

error=error+max(max(abs(coeff0-pp{class,ll}.coefs)));

end

end

maxtime=max(max(max(ttt)));
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Function GenerateXA

This function calculates the link exit time of each link.

function GenerateXA

global nPath;

global t;

global nlinks;

global nroutelinks;

global pathsLinks;

global TA1;

global ttt;

global tsize;

global alpha;

global gamma;

global rho;

global XAmax;

global saturationmax;

global linksatmax;

global fbeta;

global XA;

global correctcontrol;

global S;

global satur;

global delta;

global nclasses;

global mean;

global deviation;

saturationmax=0;

XA=zeros(nclasses,nlinks,tsize);

E=zeros(nclasses,nlinks,length(t));

correctcontrol=1;

Numbercorrections=0;

for kk=1:length(t)

for ll=1:nlinks

E0=zeros(1,nclasses);

XA0=zeros(1,nclasses);

sat=0;

for p=1:nPath

found=0;

j=1;

while j<=nroutelinks(p) && found==0

a=pathsLinks(p,j);

if a==ll

for class=1:nclasses

tkk(class)=ttt(class,ll,kk); % link exit time

tkk1=TA1(ll,kk); % link enter time associated with tkk
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% starting time of a user who reaches the end of link

% of a route p at time tkk

tt0=theta(class,ll,p,tkk(class));

% starting time of a user who reaches the end of link

% of a route p at time tkk1

tt1=theta(class,ll,p,tkk1);

%cumulative flow at origin node of the path p at tt0

[NI,c0]=qroute(class,p,tt0,1);

%cumulative flow at origin node of the path p at tt1

[NI,c1]=qroute(class,p,tt1,1);

% cumulative flow at the link exit by the time ttk

E0(class)=E0(class)+c0;

% number of vehicles inside the link

XA0(class)=XA0(class)+c0-c1;

found=1;

if j<nroutelinks(p)

% saturation of upstream links

sat=max(sat,satur(pathsLinks(p,j+1),kk));

end

end

end

j=j+1;

end

end

E(:,ll,kk)=E0(:);

XA(:,ll,kk)=XA0(:);

aux2=sum(XA0(:)./XAmax(1:nclasses,ll)); % link ll congestion ratio at time kk

satur(ll,kk)=aux2;

if saturationmax<aux2

saturationmax=aux2;

linksatmax=ll;

end

% link ll travel time for a user who enters in this link at time kk

tau=alpha(nclasses+1,ll)*(1+fbeta(nclasses+1,ll)*aux2^gamma)*normcdf(aux2,mean’,

deviation’)+alpha(1:nclasses,ll).*(1+fbeta(1:nclasses,ll)*aux2^gamma).*

(1-normcdf(aux2,mean’,deviation’))+alpha(1:nclasses,ll).*delta(1:nclasses,ll)

*sat^gamma/3;

if kk==1

Q=E(:,ll,kk).*S(:,ll);

else

% queue dissipation time at link ll at time kk

Q=(E(:,ll,kk)-E(:,ll,kk-1)).*S(:,ll);

end

for class=1:nclasses

tkk(class)=tkk1+tau(class); % updates the link exit time

if tau(class)<0.00000001

fprintf(’tau=%12.9f\n’,tau(class));

end
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if kk>1 && (ttt(class,ll,kk-1)+Q(class)>tkk(class))

Numbercorrections=Numbercorrections+1;

if correctcontrol==1

fprintf(’Corrects kk=%3.0f and link=%3.0f ttt(ll,kk-1)=%8.3f

tkk=%8.3f Q=%8.3f\n’,kk,ll,ttt(class,ll,kk-1),tkk(class),Q(class));

correctcontrol=0;

end

% updates the link exit time with the queue dissipation term

tkk(class)=ttt(class,ll,kk-1)+Q(class);

end

if kk>1 && (Q(class)<0)

fprintf(’Error kk=%3.0f and link=%3.0f ttt(ll,kk-1)=%8.3f

ttt(ll,kk)=%8.3f Q=%8.3f\n’,kk,ll,ttt(class,ll,kk-1),tkk(class),Q(class));

end

ttt(class,ll,kk)=rho*tkk(class)+(1-rho)*ttt(class,ll,kk);

if kk>1

if ttt(class,ll,kk)-ttt(class,ll,kk-1)==0

fprintf(’Q(class)=%15.8f tau(class)=%15.8f\n’,Q(class),tau(class));

end

end

end

end

end

if Numbercorrections>0

fprintf(’Numbercorrections=%3.0f \n’,Numbercorrections);

end

Function theta

This function returns the starting time of a user who reaches the end of link a of route p
at time tt.

function tt1=theta(class,a,p,tt)

global nroutelinks;

global pathsLinks;

global pp;

found=0;

tt1=tt;

for j=nroutelinks(p):-1:1

ll=pathsLinks(p,j);

if a==ll

found=1;

end

if found==1

tt1=ppval(pp{class,ll},tt1);

end

end
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Function qroute

This function calculates the cumulative flow and flow intensity at origin node.

function [z,cumflow]=qroute(class,route,tt,option)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% option = 1 : calculates cumulative flow at origin node

% option = 2 : calculates flow intensity at origin node

% option > 2 : calculates both cumulative flow and flow intensity at origin node

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global Nroutes;

global muroutes;

global sigmaroutes;

global m;

z=0;

cumflow=0;

for i=1:m

if option>1

% normal distribution of the m waves

z=z+Nroutes(class,route,i)*normpdf(tt,muroutes(class,route,i),sigmaroutes(class,route,i));

end

if option==1 || option>2

cumflow=cumflow+Nroutes(class,route,i)*(normcdf(tt,muroutes(class,route,i),

sigmaroutes(class,route,i)));

end

end

A.6 Matlab code for the trajectory plots

This section is devoted to the Matlab codes used to generate the trajectory plots shown

in Chapter 12. As already noted, the data used for the plots comes from the Dynamic

Network Loading Model with Overtaking classes explained in Chapter 11 and which Mat-

lab codes are shown in Section A.5 in this Appendix. Thus, the plots are obtained from

a function which is executed from the Main program. Other functions that are needed to

obtain the plots are also included.

Function plottrajectories

This function generates the plots shown in the corresponding chapter depending on the
options chosen.

function plottrajectories(p)

global nroutelinks;

global pathsLinks;
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global pp;

global t;

global linklength;

global ProjectName;

global nfigures;

global OpenFig;

global nclasses;

global class;

global lllink;

global tttt1;

global increment;

global labels;

global alpha;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OPTIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% classindices=1:nclasses;

classindices=[1 2 3];

% --- GENERAL

optiondeparture=0; % 0. equal delayed 1. equal flow

bbmax=1; % 1/2: without/with wide lines of some trajectories

Optionreverse=0; % second figure;

% --- FREE FLOW TRAJECTORIES

together=0; % 0/1: trajectories combined without/with free flow trajectories

referenceclass=3; % class whose free flow trajectories are plotted

optionsplinefree=0; % 0/1: free flow trajectories plotted without/with splines

onlyfree=0; % 0/1: Not/yes plot only free flow trajectories

% --- LATERAL PLOTS

plotmaxmin=0; % lateral plots

optionoriginplot=0; % left plot: 0. travel time evolution 1. flow evolution

factor=10; % factor for travel time lateral plot

factorflow=0.06; % factor for flow lateral plot

% --- TRANSPARENCY

optiontrans=0; % 0/1: opaque/transparent lines

transp=0.5; % transparent level

transflinewidth=60; % transparent trajectories width

% --- BANDS

optionplotcruce=1; % 0/1: Not/yes plot the overtaking bands

ClassOvertak=3; % class to compare with other ones when there are three classes

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if length(classindices)>1

plotmaxmin=0;

end

txt=cell(1,length(classindices));

for iclass=1:length(classindices)

class=classindices(iclass);

txt{1,iclass}=labels{class};
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end

colors=GenColor(nclasses, 1711);

ts=t(1:1:end);

ntotal=length(ts);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Direct trajectories

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nfigures=nfigures+1;

h=figure(’Name’,[ProjectName ’_trajectories’]);

OpenFig=[OpenFig h];

es=0.001;

imax=100;

leg=zeros(1,length(classindices));

maxy=ts(end);

disc=200;

for bb=1:bbmax

if bb==2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Select particular trajectories to be plotted and their colors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ts=t([1,33,54,77,96]);

ntotal=length(ts);

linewidth=4;

arrivaltimes=zeros(ntotal);

colors(1,:)=[11/255 104/255 11/255];

colors(3,:)=[36/255 17/255 211/255];

else

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Select all trajectories to be plotted

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ts=t(1:1:end);

ntotal=length(ts);

linewidth=1.5;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculates travel times to end of all links

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x=zeros(1,nroutelinks(p)+1);

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

if j==1

x(j+1)=linklength(j);

else

x(j+1)=x(j)+linklength(j);

end

end

xmin=min(x);
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xmax=max(x);

%---Intersections

BVx=x(end):-(x(end)-x(1))/disc:x(1); % bands: vector x

BMy1=zeros(ntotal,disc+1); % bands: matrix y1

BMy2=zeros(ntotal,disc+1); % bands: matrix y2

BMy3=zeros(ntotal,disc+1); % bands: matrix y3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initializes xxa, xxaflow, yya0 and yya1 variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xxa=zeros(length(classindices),ntotal);

xxaflow=zeros(length(classindices),ntotal);

yya0=zeros(length(classindices),ntotal);

yyaflow0=zeros(length(classindices),ntotal);

yya1=zeros(length(classindices),ntotal);

for iclass=1:length(classindices)

class=classindices(iclass);

if bb==1

if optiondeparture==1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculates departure times associated with a given subset

% of

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[~,qqqmax]=qroute(class,p,ts(end),1);

[~,qqqmin]=qroute(class,p,ts(1),1);

qqq=qqqmin:(qqqmax-qqqmin)/ntotal:qqqmax;

ntotal=length(qqq);

tss=zeros(1,ntotal);

for ii=1:ntotal

[tss(ii),~,~]=qrouteinverse(class,p,qqq(ii),ts(1),ts(end),es,imax);

end

else

tss=ts;

end

else

tss=ts;

end

for k=1:ntotal

if together==1 && bb==1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plots free traveltime trajectories

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

yyy(1)=tss(k);

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

yyy(j+1)=yyy(j)+alpha(referenceclass,ll);

end

if yyy(end)<=t(end)-0.001
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if optionsplinefree==1

xxxi=x(end):-(x(end)-x(1))/disc:x(1);

yyyi=pchip(x,yyy,xxxi);

%---Intersections

BMy2(k,:)=yyyi; % bands: matrix y2

%---

fillLine(xxxi,yyyi,linewidth,transflinewidth,colors(class,:),

transp,optiontrans);

else

%---Intersections

[~, VectY0]=Interpolate(x,yyy,disc+1);

BMy2(k,:)=fliplr(VectY0); % bands: matrix y2

%---

fillLine(x,yyy,linewidth,transflinewidth,colors(class,:),

transp,optiontrans);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

y=zeros(1,nroutelinks(p)+1);

y(1)=tss(k);

tttt1=y(1);

lll=1;

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

lllink=ll;

[tttt1 ea iter]=Bisectiontau(t(1),t(end),es,imax);

lll=lll+1;

y(lll)=tttt1;

end

xx=x;

minaax=min(x);

maxaax=max(x);

yy=y;

xxi=x(end):-(x(end)-x(1))/disc:x(1);

if onlyfree

yyi(1)=tss(k);

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

yyi(j+1)=yyi(j)+alpha(iclass,ll);

end

%---Intersections

[~, VectY0]=Interpolate(x,yyi,disc+1);

if iclass==1

BMy1(k,:)=fliplr(VectY0); % bands: matrix y1

elseif iclass==2

BMy2(k,:)=fliplr(VectY0); % bands: matrix y2

else

BMy3(k,:)=fliplr(VectY0); % bands: matrix y3
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end

%---

leg(iclass)= fillLine(x,yyi,linewidth,transflinewidth,

colors(class,:),transp,optiontrans);

plotmaxmin=0;

else

yyi=pchip(x,yy,xxi);

if yyi(1)<=t(end)-0.001

xxa(iclass,k)=yyi(1)-yyi(end);

[xxaflow(iclass,k),~]=qroute(class,p,yyi(end),2);

yya1(iclass,k)=yyi(1);

yya0(iclass,k)=yyi(end);

%---Intersections

if iclass==1

BMy1(k,:)=yyi; % bands: matrix y1

elseif iclass==2

BMy2(k,:)=yyi; % bands: matrix y2

else

BMy3(k,:)=yyi; % bands: matrix y3

end

if class==ClassOvertak

iClassOvertak=iclass;

end

%---

leg(iclass)= fillLine(xxi,yyi,linewidth,transflinewidth,

colors(class,:),transp,optiontrans);

maxy=max(maxy,max(yyi));

end

end

hold on;

if bb==2 && iclass==1

arrivaltimes(k)=y(end);

end

end

yyaflow0=yya0;

if plotmaxmin==1

xxa=xxa(xxa>0);

yya0=yya0(xxa>0);

yya1=yya1(xxa>0);

minxxa=min(xxa(iclass,:));

xxa=xxa-minxxa;

minaax=min(min(factor*(-xxa)-0.02*(xmax-xmin)));

maxaax=max(max(factor*(xxa)+1.02*(xmax-xmin)));

xxa0=factor*(-xxa)-0.02*(xmax-xmin);

xxaflow0=factorflow*(-xxaflow)-0.02*(xmax-xmin);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determines trajectories associated with min and max travel times

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[minxxa0 k0]=max(xxa0);
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[maxxxa0 k1]=min(xxa0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plots trajectories associated with k0 and k1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for kk=[k0 k1]

y(1)=tss(kk);

tttt1=tss(kk);

lll=1;

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

lllink=ll;

[tttt1 ea iter]=Bisectiontau(t(1),t(end),es,imax);

lll=lll+1;

y(lll)=tttt1;

end

xx=x;

yy=y;

xxi=x(end):-(x(end)-x(1))/100:x(1);

yyi=pchip(x,yy,xxi);

plot(xxi,yyi,’color’,’r’,’LineWidth’,3*linewidth);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plots traffic flows at the path origin

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if optionoriginplot==0

[yya0,xxa0]=preparefill(yya0,xxa0);

fill(xxa0,yya0,colors(class,:));

plot(xxa0,yya0,’LineWidth’,linewidth);

minyya0=yya0(k0);

maxyya0=yya0(k1);

minxxa00=min(xxa0(1),xxa0(end));

plot([minxxa0 minxxa00],[minyya0 minyya0],’r’,’LineWidth’,2*linewidth);

plot([maxxxa0 minxxa00],[maxyya0 maxyya0],’r’,’LineWidth’,2*linewidth);

plot(minxxa0,minyya0,’ko’,’MarkerSize’,10,’MarkerFaceColor’,’r’,

’LineWidth’,1.75)

plot(maxxxa0,maxyya0,’ko’,’MarkerSize’,10,’MarkerFaceColor’,’r’,

’LineWidth’,1.75)

else

yyaflow0=[0 yyaflow0(yyaflow0>0)];

xxaflow0=[xxaflow0(1) xxaflow0(yyaflow0>0)];

[yyaflow0,xxaflow0]=preparefill(yyaflow0,xxaflow0);

fill(xxaflow0,yyaflow0,colors(class,:));

plot(xxaflow0,yyaflow0,’LineWidth’,linewidth);

end

xxa0=factor*(xxa)+1.02*(xmax-xmin);

[yya1,xxa0]=preparefill(yya1,xxa0);

fill(xxa0,yya1,colors(class,:));

plot(xxa0,yya1,’LineWidth’,linewidth);
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[minxxa0 k0]=min(xxa0);

[maxxxa0 k1]=max(xxa0);

minyya0=yya1(k0);

maxyya0=yya1(k1);

minxxa00=min(xxa0(1),xxa0(end));

plot([minxxa0 minxxa00],[minyya0 minyya0],’r’,’LineWidth’,2*linewidth);

plot([maxxxa0 minxxa00],[maxyya0 maxyya0],’r’,’LineWidth’,2*linewidth);

plot(minxxa0,minyya0,’ko’,’MarkerSize’,10,’MarkerFaceColor’,’r’,’LineWidth’,1.75)

plot(maxxxa0,maxyya0,’ko’,’MarkerSize’,10,’MarkerFaceColor’,’r’,’LineWidth’,1.75)

end

end

if bb==2

for ii=1:length(ts)

text(0.98*min(x)+0.02*max(x),ts(ii)+increment,[’T’ num2str(ii)],

’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’BackgroundColor’,

[.8 .8 .8],’FontSize’,16);

end

end

set(legend(leg,txt),’Location’,’SouthEast’,’FontSize’,16);

end

for j=2:nroutelinks(p)

plot([x(j) x(j)], [0 maxy],’-.r’,’LineWidth’,1.5);

text((x(j)+x(j-1))*0.5,0.97*maxy,[’Link ’ num2str(pathsLinks(p,j-1))],’HorizontalAlignment’,

’center’,’FontWeight’,’bold’,’BackgroundColor’,[.8 .8 .8],’FontSize’,16);

text(0.5*max(x),0.04*maxy,[’Path ’ num2str(p)],’HorizontalAlignment’,’center’,

’FontWeight’,’bold’,’BackgroundColor’,[.8 .8 .8],’FontSize’,16);

end

j=nroutelinks(p)+1;

text((x(j)+x(j-1))*0.5,0.97*maxy,[’Link ’ num2str(pathsLinks(p,j-1))],’HorizontalAlignment’,

’center’,’FontWeight’,’bold’,’BackgroundColor’,[.8 .8 .8],’FontSize’,16);

axis([1.01*min(min(xx),minaax)-0.01*max(max(xx),maxaax) -0.01*min(0,minaax)+

1.01*max(max(xx),maxaax) 0 max(maxy)]);

xlabel(’x’,’fontsize’,16);

ylabel(’t’,’Rotation’,0,’fontsize’,16);

%---Intersections

if optionplotcruce

colors1=GenColor(nclasses, 1605);

if length(classindices)>2

switch iClassOvertak

case 1

plotcruce(BVx,BMy1,BMy2,colors1(2,:))

plotcruce(BVx,BMy1,BMy3,colors1(3,:))

case 2

plotcruce(BVx,BMy2,BMy1,colors1(1,:))

plotcruce(BVx,BMy2,BMy3,colors1(3,:))

case 3

plotcruce(BVx,BMy3,BMy1,colors1(1,:))
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plotcruce(BVx,BMy3,BMy2,colors1(2,:))

end

else

plotcruce(BVx,BMy1,BMy2,colors1(1,:))

end

end

%---

print(h,’-dpdf’,’-r600’,sprintf(’%s.pdf’,[ProjectName ’_trajectories’]))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reverse trajectories

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if Optionreverse

nfigures=nfigures+1;

h=figure(’Name’,[ProjectName ’_trajectories’]);

OpenFig=[OpenFig h];

colors=GenColor(nclasses, 1711);

for bb=1:bbmax

if bb==2

ts=arrivaltimes;

ntotal=length(ts);

linewidth=4;

colors(1,:)=[11/255 104/255 11/255];

colors(3,:)=[36/255 17/255 211/255];

else

ts=t(1:1:end);

ntotal=length(ts);

linewidth=1.5;

end

for iclass=1:length(classindices)

class=classindices(iclass);

if bb==1

if optiondeparture==1

[~,qqqmax]=qroute(class,p,ts(end),1);

[~,qqqmin]=qroute(class,p,ts(1),1);

qqq=qqqmin:qqqmax/ntotal:qqqmax;

ntotal=length(qqq);

tss=zeros(1,ntotal);

for ii=1:ntotal

[tss(ii),~,~]=qrouteinverse(class,p,qqq(ii),ts(1),ts(end),es,imax);

end

else

tss=ts;

end

else

tss=ts;

end

for k=1:ntotal

x=zeros(1,nroutelinks(p)+1);
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y=zeros(1,nroutelinks(p)+1);

y(1)=tss(k);

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

if j==1

x(j+1)=linklength(j);

else

x(j+1)=x(j)+linklength(j);

end

end

tt1=y(1);

lll=1;

for j=nroutelinks(p):-1:1

ll=pathsLinks(p,j);

tt1=ppval(pp{class,ll},tt1);

lll=lll+1;

y(lll)=tt1;

end

xx=x(end:-1:1);

yy=y(end:-1:1);

xxi=x(end):-(x(end)-x(1))/disc:x(1);

yyi=pchip(x,yy,xxi);

leg(iclass)= fillLine(xxi,yyi,linewidth,transflinewidth,

colors(class,:),transp,optiontrans);

maxy=max(maxy,max(yyi));

hold on;

end

end

if bb==2

for ii=1:length(ts)

text(0.02*min(x)+0.98*max(x),ts(ii)-5*increment,[’T’ num2str(ii)],

’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’BackgroundColor’,

[.8 .8 .8],’FontSize’,16);

end

end

set(legend(leg,txt),’Location’,’NorthWest’,’FontSize’,16);

end

for j=2:nroutelinks(p)

plot([x(j) x(j)], [0 maxy],’-.r’,’LineWidth’,1.5);

text((x(j)+x(j-1))*0.5,0.03*maxy,[’Link ’ num2str(pathsLinks(p,j-1))],

’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’BackgroundColor’,[.8 .8 .8],’FontSize’,16);

text(0.5*max(x),0.96*maxy,[’Path ’ num2str(p)],’HorizontalAlignment’,’center’,

’FontWeight’,’bold’,’BackgroundColor’,[.8 .8 .8],’FontSize’,16);

end

j=nroutelinks(p)+1;

text((x(j)+x(j-1))*0.5,0.03*maxy,[’Link ’ num2str(pathsLinks(p,j-1))],

’HorizontalAlignment’,’center’,’FontWeight’,’bold’,’BackgroundColor’,

[.8 .8 .8],’FontSize’,16);
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axis([0 max(xx) 0 maxy]);

xlabel(’x’,’fontsize’,16);

ylabel(’t’,’Rotation’,0,’fontsize’,16);

print(h,’-dpdf’,’-r600’,sprintf(’%s.pdf’,[ProjectName ’_trajectories’]))

yyy(1)=tss(k);

for j=1:nroutelinks(p)

ll=pathsLinks(p,j);

yyy(j+1)=yyy(j)+alpha(class,ll);

end

plot(x,yyy,’color’,colors(class,:),’LineWidth’,linewidth);

hold on;

end;

Function fillLine

This function permits plotting filled lines.

function leg=fillLine(x,y,linewidth,transflinewidth,color,transp,option)

if option==1

n=length(x);

deltax=max(x)-min(x);

deltay=max(y)-min(y);

a=deltay^2;

b=deltax^2;

u=(x(1:n-1)+x(2:end))/2;

v=(y(1:n-1)+y(2:end))/2;

u2=x(2:end)-x(1:n-1);

v2=(y(2:end)-y(1:n-1));

u1=-b/a*v2./u2;

v1=ones(1,n-1);

m=sqrt(a*u1.^2+b*v1.^2);

aux=transflinewidth./(2*m);

x1=u+u1.*aux;

y1=v+v1.*aux;

x2=u-u1.*aux;

y2=v-v1.*aux;

X=[x1 fliplr(x2)];

Y=[y1 fliplr(y2)];

leg=fill(X,Y,color,’EdgeColor’,’none’);

hold on;

alpha(transp)

axis square;

else

leg=plot(x,y,’Color’,color,’LineWidth’,linewidth);
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end

Function interpolate

This function transforms vector V ectX0 in ’dim’ equally spaced points and computes the
associated value in the curve (V ectX0, V ectY 0).

function [VectX, VectY]= Interpolate (VectX0, VectY0, dim)

VectX=linspace(VectX0(1),VectX0(end),dim);

VectY=zeros(1,dim);

for i=1:dim-1

xc=VectX(i);

[~,pos2]=find(VectX0>xc,1,’first’);

pos1=pos2-1;

yc=VectY0(pos1)+(xc-VectX0(pos1))*(VectY0(pos1)-VectY0(pos2))/(VectX0(pos1)-VectX0(pos2));

VectY(i)=yc;

end

VectY(end)=VectY0(end);

Function Bisectiontau

This function obtains the bisection between points xl and xu.

function [Bisect ea iter]=Bisectiontau(xl,xu,es,imax)

global class;

global lllink;

global tttt1;

global pp;

iter=0;

fl=tttt1-ppval(pp{class,lllink},xl);

ea=2*es;

xr=xl;

while ea>es && iter<=imax

xrold=xr;

xr=(xl+xu)/2;

fr=tttt1-ppval(pp{class,lllink},xr);

iter=iter+1;

if xr ~= 0

ea=abs((xr-xrold)/xr)*100;

end

test=fl*fr;

if test<0

xu=xr;

else if test>0

xl=xr;

fl=fr;
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else

ea=0;

end

end

end

Bisect=xr;

Function qrouteinverse

This function computes the inverse of the qroute function.

function [Bisect ea iter]=qrouteinverse(class,route,tt,xl,xu,es,imax)

iter=0;

[~,fl]=qroute(class,route,xl,1);

fl=fl-tt;

if abs(fl)>es

[~,fr]=qroute(class,route,xu,1);

if abs(fr)>es

ea=2*es;

xr=xl;

while ea>es && iter<=imax

xrold=xr;

xr=(xl+xu)/2;

[~,fr]=qroute(class,route,xr,1);

fr=fr-tt;

iter=iter+1;

if xr ~= 0

ea=abs((xr-xrold)/xr)*100;

end

test=fl*fr;

if test<0

xu=xr;

else if test>0

xl=xr;

fl=fr;

else

ea=0;

end

end

end

Bisect=xr;

else

Bisect=xu;

ea=es;

iter=1;

end

else

Bisect=xl;

ea=es;
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iter=1;

end

Function plotcruce

This function plots the intersections, i.e., the moments when overtaking takes place.

function plotcruce(vecX,matY1,matY2,color)

%--- Sort the vectors and matrices

vecX=fliplr(vecX);

matY1=fliplr(matY1);

matY2=fliplr(matY2);

%--- Check the speeds and correct them

if matY1(1,2)>matY2(1,2)

aux=matY1;

matY1=matY2;

matY2=aux;

end

%--- Compute the points where they cross and save them

[dim,~]=size(matY1);

Rxcruce=zeros(dim,dim);

Rycruce=zeros(dim,dim);

xant=0;

yant=0;

for i=1:dim

for j=i+1:dim

if max(matY1(j,:))>0 && max(matY2(i,:))>0

%--- Eliminate the final zeros

len=min(length(matY1(matY1(j,:)>0)),length(matY2(matY2(i,:)>0)));

X=vecX(1:len);

Y1=matY1(j,1:len);

Y2=matY2(i,1:len);

%---

if i>1 && abs(Rxcruce(i-1,j-1))<999999999

xant=Rxcruce(i-1,j-1);

yant=Rycruce(i-1,j-1);

end

[Rxcruce(i,j),Rycruce(i,j)]=cruce(X,Y1,Y2,xant,yant);

end

end

end

for i=1:ceil(sqrt(dim))

vx=diag(Rxcruce(1:dim-i,1+i:dim));

vy=diag(Rycruce(1:dim-i,1+i:dim));

aux=vx;

auy=vy;

q=1;

while q
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p=find(aux==0,1,’first’);

plot(aux(1:p-1),auy(1:p-1),’Color’,color,’linewidth’,4)

aux=aux(p:end);

auy=auy(p:end);

q=find(aux>0,1,’first’);

aux=aux(q:end);

auy=auy(q:end);

end

end
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Caceres, N., Romero, L. M., Beńıtez, F. G., and del Castillo, J. M. (2012). Traffic flow estimation models

using cellular phone data. IEEE Transactions on Intelligent Transportation Systems, 13(3):1430–1441.

Caceres, N., Wideberg, J., and Benitez, F. (2007). Deriving origin-destination data from a mobile phone

network. Journal of Intelligent Transportation Systems, 1(1):15–26.



BIBLIOGRAPHY 363

Carey, M. (1992). Nonconvexity of the dynamic traffic assignment problem. Transportation Research Part

B , 26:127–133.

Carey, M. (2004). Link travel times i: Desirable properties. Network and Spatial Economics, 4:257–268.

Carey, M. and Revelli, R. (1986). Constrained estimation of direct demand functions and trip matrices.

Transportation Science, 20:3:143–152.

Carey, M. and Srinivasan, A. (1993). Externalities, average and marginal costs, and tolls on congested

networks with time-varying flows. Operations Research, 41:217–231.

Carey, M. and Subrahmanian, E. (2000). An approach to modeling time-varying flows on congested

networks. Transportation Research Part B , 34:157–183.

Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data: a generalized least

squares estimator. Transportation Research, Part B , 18:289–299.

Cascetta, E. and Nguyen, S. (1988). A unified framework for estimating or updating origin/destination

matrices from traffic counts. Transportation Research, Part B , 22:437–455.

Castillo, E., Calviño, A., Sánchez-Cambronero, S., and Lo, H. (submitted). A user equilibrium approach

considering overtaking. Transportation Research Part B .

Castillo, E., Cobo, A., Jubete, F., and Pruneda, R. (1999). Orthogonal Sets and Polar Methods in

Linear Algebra: Applications to Matrix Calculations, Systems of Equations and Inequalities, and Linear

Programming . John Wiley and Sons, New York.

Castillo, E., Cobo, A., Jubete, F., Pruneda, R. E., and Castillo, C. (2000). An orthogonally based

pivoting transformation of matrices and some applications. SIAM Journal on Matrix Analysis and

Applications, 22:666–681.
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Esta tesis presenta los siguientes modelos matemático-estad́ısticos originales:

' Dos modelos estáticos de asignación de tráfico con usuarios heterogéneos que permiten obtener

los flujos de las rutas y los arcos, conocidos los flujos entre pares origen-destino. Dichos mo-

delos consideran distintas clases de usuarios según su deseo de puntualidad y adelantamiento,

respectivamente.

' Un modelo bayesiano de estimación de matrices origen-destino basado en técnicas de opti-

mización jerárquica. Las estimaciones se obtienen a partir de la información ofrecida por arcos

escaneados.

' Se calcula el mı́nimo conjunto de arcos que debe ser equipado con sensores para obtener ob-

servabilidad total a partir de los flujos en arcos.

' Un modelo continuo para el problema dinámico de recarga de red incluyendo adelantamientos

que proporciona los flujos y tiempos de viaje en los arcos de la red en cualquier instante del

intervalo de tiempo en estudio.

' Algunos métodos gráficos para analizar trayectorias de tráfico con y sin adelantamiento, que

permiten analizar el estado de una red (velocidad, aceleración, etc.) a partir de las carac-

teŕısticas f́ısicas de los gráficos de trayectorias (pendiente, curvatura, etc.).

Todos los modelos han sido evaluados en redes de tráfico ficticias y reales (las ciudades españolas

de Cuenca y Ciudad Real), con el fin de analizar sus caracteŕısticas y evaluar la validez de los

resultados.

Asimismo, se incluye una revisión de la literatura que permite contextualizar los modelos origi-
nales propuestos en esta tesis.
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