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El uso de gráficos tridimensionales en aplicaciones interactivas está cada
vez más extendido en campos cotidianos como los juegos, la enseñanza, los
entornos de aprendizaje, la realidad virtual o el cine. Los escenarios mostrados
en las aplicaciones interactivas tienden a presentar mundos y personajes deta-
llados, intentando ser lo más realistas posibles. Los modelos tridimensionales
detallados usados en este tipo de aplicaciones requieren mucha complejidad
geométrica. Sin embargo, no siempre el hardware disponible es capaz de sopor-
tar y manejar toda esta geometŕıa manteniendo una visualización suave para
los usuarios. Los métodos de simplificación intentan solucionar este problema,
generando versiones simplificadas de los modelos, los cuales presentan menos
geometŕıa que los originales. Esta simplificación se ha de llevar a cabo con
un criterio razonable, con el fin de mantener lo máximo posible la apariencia
de los modelos originales. Sin embargo, no únicamente la geometŕıa es impor-
tante en los modelos tridimensionales, ya que éstos normalmente están también
compuestos de atributos adicionales, los cuales son muy importantes para el
aspecto final de los modelos. Existe mucho trabajo previo de simplificación, sin
embargo aún existen numerosos puntos sin una solución eficiente. Por lo tanto,
esta tesis se centra en técnicas de simplificación para modelos tridimensionales
normalmente usados en aplicaciones interactivas.

Objeto y objetivos de la investigación

Esta tesis se centra en presentar nuevas técnicas como solución para la sim-
plificación de objetos normalmente usados en aplicaciones interactivas tridi-
mensionales. Los últimos avances surgidos en la informática gráfica han permi-
tido presentar aplicaciones interactivas usadas diariamente con gráficos tridi-
mensionales. Estas aplicaciones son diariamente usadas en una gran variedad
de campos disciplinares y profesionales.
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Las escenas 3D se representan normalmente mediante el uso de mallas poli-
gonales. Una malla poligonal es una colección de vértices, aristas y caras que
definen la forma de un objeto tridimensional. Uno de los poĺıgonos más usados
para la composición de una malla poligonal es el triángulo. Por lo tanto, los
objetos tridimensionales pueden ser representados mediante triángulos inter-
conectados entre śı. El estudio de mallas poligonales es un amplio subcampo
de los gráficos por ordenador y el modelado geométrico.

Las nuevas tecnoloǵıas y los avances en los ordenadores han hecho posible
la aparición de escenas con entornos altamente detallados en las aplicaciones
interactivas. Algunas aplicaciones requieren el uso de escenas con apariencia lo
más realista posible, lo que conlleva el uso de objetos detallados en las escenas.
Aśı pues, las escenas necesitarán objetos con alta complejidad geométrica. Sin
embargo, el hardware disponible no siempre puede soportar y manejar toda la
geometŕıa de las escenas manteniendo una visualización suave.

Se han presentado distintas soluciones a este problema, siendo la simplifi-
cación de los objetos una de las más extendidas. Los métodos de simplificación
producen objetos menos detallados, reduciendo la complejidad geométrica de
los originales. Por lo tanto, los objetos simplificados están compuestos por
una menor cantidad de geometŕıa que los originales. Las aplicaciones interacti-
vas necesitan dibujar y manejar escenas tridimensionales con una visualización
suave. Por lo que el uso de objetos simplificados puede ayudar a conseguir esto,
debido a la reducción de información geométrica que producen.

Sin embargo, se necesita un criterio razonable a seguir para reducir la geo-
metŕıa de los objetos. Los métodos de simplificación buscan preservar la apa-
riencia visual de los objetos, ya que los objetos simplificados tienen que pre-
sentar una apariencia similar a los originales. Los objetos tridimensionales
usados en aplicaciones interactivas están normalmente compuestos por atri-
butos adicionales a su geometŕıa. Por tanto, en los métodos de simplificación
se puede considerar no únicamente la geometŕıa de los objetos, sino también
algunos atributos adicionales, como las normales y las coordenadas de textura.
Además, los modelos tridimensionales pueden estar compuestos de diferentes
subobjetos, como por ejemplo la mayoŕıa de objetos obtenidos en un proceso
de diseño asistido por ordenador [TBG09].

Hay también técnicas adicionales que ayudan a mejorar el aspecto de los ob-
jetos simplificados, como el uso de mapas de normales. Los mapas de normales
son imágenes con la información de las normales de modelos detallados, los
cuales, al ser aplicados sobre los objetos simplificados, dotan de una apariencia
más parecida a los objetos originales. Algunos art́ıculos de estudio de métodos
de simplificación pueden ser encontrados en la literatura [CMS98] [Lue01].

No únicamente el aspecto final en las escenas es importante, ya que hay veces
en que el tiempo empleado por ciertos métodos puede ser también determinante.
Durante los últimos años el hardware gráfico ha evolucionado mucho, y han
aparecido nuevas arquitecturas y capacidades del hardware. Por lo tanto, exis-
te la posibilidad de hacer uso de más herramientas y métodos cada vez más
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eficientes.
Pueden aparecer muchos problemas cuando se requiere una simplificación.

Se tienen que tener en cuenta muchas consideraciones, dependiendo de cada
problema particular. Quedan, por lo tanto, numerosos puntos a mejorar y es-
tudiar en el campo de la simplificación. Esta tesis presenta nuevas soluciones
para la simplificación de objetos normalmente usados en aplicaciones interac-
tivas.

Planteamiento y metodologı́a utilizados
Esta tesis tiene como objetivo la presentación de nuevas técnicas útiles

para la simplificación de modelos tridimensionales normalmente usados en
aplicaciones interactivas. Aśı pues, aqúı se presentan el planteamiento y la
metodoloǵıa utilizados.

Estado del arte

Como paso previo al desarrollo de cualquier técnica es necesario hacer un
estudio del estado del arte dentro del campo de investigación, a partir del cual
se puede plantear el problema y presentar nuevas soluciones.

Desarrollo de técnicas de simplificación de modelos tridimensionales normal-
mente usados en aplicaciones interactivas

Basándose en el estado del arte, se han planteado varios problemas rela-
tivos a la simplificación de modelos tridimensionales normalmente usados en
aplicaciones interactivas, a los cuales se les da solución con las aportaciones
presentadas.

Evaluación y comparación de los resultados

Dependiendo de los resultados, se han hecho evaluaciones cualitativas y
cuantitativas de los mismos. Además, estos resultados han sido comparados
con los obtenidos con otros métodos conocidos presentados en la literatura.

Aportaciones originales
Las aportaciones resumidas de esta tesis son:

Método de simplificación asistido por el usuario para mallas de triángulos
preservando fronteras

Los objetos obtenidos tras un proceso de diseño asistido por ordenador están
normalmente compuestos por muchos subobjetos interconectados entre śı. Esto
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puede presentar problemas en la simplificación si se usan algunos métodos bien
conocidos ([CMS98] [Lue01]), ya que pueden obtenerse agujeros. El usuario
puede requerir además que los subobjetos tengan cada uno un nivel de detalle
distinto al de los demás. Y esto puede también ser requerido mientras se
mantiene un número total de poĺıgonos para todo el objeto. Las herramientas
de simplificación existentes no presentan métodos de simplificación eficientes
para este tipo de objetos y no suelen hacer uso de las mejores métricas para
una simplificación geométrica. Es por ello que este proceso suele ser realizado
a mano por diseñadores, lo cual es un trabajo muy costoso y elaborado. Por
tanto, presentamos un método de simplificación asistido por el usuario para este
tipo de objetos. Este método preserva fronteras entre subobjetos y permite al
usuario manejar el nivel de simplificación de los subobjetos. Esto puede además
realizarse mientras un número total requerido de poĺıgonos es mantenido para
todo el objeto.

Extensión de métricas de error de métodos de simplificación basada en la
información de texturas

Las texturas son muy importantes en el aspecto final de los objetos sim-
plificados en aplicaciones interactivas. Sin embargo, existen muchos métodos
de simplificación que no tienen en cuenta la información de las texturas a la
hora de establecer el criterio de simplificación, lo cual puede producir grandes
distorsiones cuando se aplica la textura a los modelos simplificados. Por ello,
presentamos una extensión para las métricas de los métodos de simplificación
que no consideran la información de texturas, de modo que puedan tener en
cuenta esta información. Además, se ha hecho uso de esta extensión para
métricas para la consideración de otros atributos adicionales a la geometŕıa,
como las normales.

Simplificación basada en la segmentación para modelos con texturas

Presentamos un método de simplificación que considera la información de
las texturas en su métrica de error. Conocidos conceptos matemáticos, como la
entroṕıa y la información mutua [Sha48] y sus fórmulas generalizadas [Tsa88]
[HC67], han sido usados en este método. Considerando la información de la
textura en la métrica de error, los objetos simplificados presentan un aspecto
más parecido a los originales que aquellos objetos simplificados obtenidos con
métodos que no consideran la información de la textura. Los resultados han
sido también medidos cuantitativamente con una conocida métrica de error:
RMSE [LT00].

Aceleración por hardware de simplificación basada en el punto de vista

Los últimos avances del hardware gráfico permiten distribuir la carga entre
la CPU y la GPU. Además, CUDA [nVi09a] permite paralelizar instrucciones
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dentro de la misma GPU. Por lo tanto, hemos aplicado estos avances para
acelerar el tiempo de un método de simplificación basado en el punto de vista,
puesto que este tipo de métodos suele tener un alto coste temporal.

Generación de mapas de normales en la GPU

Un mapa de normales es una imagen 2D con información sobre las normales
de un objeto tridimensional. Aplicando el mapa de normales de un objeto ori-
ginal a una versión simplificada del mismo, obtenemos un objeto simplificado
con mayor apariencia al original. Los nuevos avances en el hardware gráfico
permiten acelerar algunas aplicaciones, programando código que será directa-
mente ejecutado en la GPU. Presentamos dos métodos de generación de mapas
de normales para objetos tridimensionales basados en la GPU.

Conclusiones obtenidas y futuras lı́neas de investi-
gación

Conclusiones

Las aplicaciones interactivas necesitan manejar las escenas con una visua-
lización suave para el usuario. Además, se requieren modelos con una buena
apariencia. Sin embargo, no siempre el hardware disponible puede soportar
y manejar toda la geometŕıa necesaria para ello. Una de las soluciones que
tratan este problema es el uso de métodos de simplificación ([CMS98] [Lue01]).
Estos métodos reducen la complejidad geométrica de los modelos, intentando
mantener la apariencia original de los mismos. Por lo tanto, en tesis se presen-
tan nuevas técnicas en el área de la simplificación para objetos normalmente
usados en aplicaciones interactivas.

En el Caṕıtulo 2 se presenta un estado del arte referente a los trabajos rea-
lizados en el campo de estudio en el que se enmarca esta tesis. Se puede observar
que se han realizado muchos trabajos y estudios relativos a la simplificación.
Sin embargo, aún existen diferentes puntos clave sin soluciones eficientes. Por
lo que en esta tesis se presentan varias soluciones dirigidas a algunos de estos
problemas.

Los modelos obtenidos tras un proceso de diseño asistido por ordenador sue-
len estar formados por un alto número de subobjetos. Si se simplifican estos
modelos con algún método de simplificación que no considere estas propiedades,
se pueden obtener grandes distorsiones y agujeros en los modelos simplifica-
dos. Las herramientas de simplificación existentes no presentan un proceso
automático eficiente para trabajar con mallas obtenidas de modelos CAD con
la posibilidad de simplificar los subobjetos a distintos niveles de detalle. Este
proceso suele ser elaborado y estas herramientas no siempre usan las mejores
métricas para la simplificación. En el Caṕıtulo 3 introducimos un nuevo método
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de simplificación asistido por el usuario para modelos obtenidos tras un pro-
cesos de diseño asistido por el ordenador. Este método permite obtener dis-
tintos niveles de simplificación en los distintos subobjetos de un modelo. El
método presentado es un método asistido por el usuario, ya que el usuario puede
manejar de manera independiente el nivel de simplificación de cada subobjeto,
simplificándolos más o dando más detalle a los ya simplificados. Además, el
usuario puede requerir un número total de poĺıgonos en el objeto final. Por lo
tanto, si el usuario cambia un nivel de simplificación de un subobjeto, otros
subobjetos serán modificados de manera automática para preservar el número
total de poĺıgonos. Todo ello se realiza mientras las fronteras son preservadas,
por lo que el método evitan la aparición de agujeros en el modelos simplificado.
También se consideran las normales y coordenadas de textura en el método. En
los resultados mostrados se puede observar que el método presentado soluciona
de manera satisfactoria la simplificación automática y asistida por el usuario
de este tipo de modelos.

No sólo la geometŕıa es importante para el aspecto final de los modelos.
Las texturas juegan un rol muy importante en la apariencia final de los obje-
tos para el usuario. Sin embargo, hay muchos métodos de simplificación que
no consideran esta información. Por lo tanto, los objetos simplificados pueden
presentar grandes distorsiones cuando se les aplica las texturas. En el Caṕıtulo
4 se presenta una extensión de métrica de error útil para tener en cuenta la
información de textura en aquellos métodos de simplificación que no la con-
sideran. Con esta extensión los métodos que no consideran las texturas en su
métrica pueden fácilmente tenerlas en cuenta. Se puede apreciar en los resul-
tados mostrados que se produce una gran mejora visual haciendo uso de nues-
tra extensión. Además, consideramos que este tipo de modelos normalmente
pueden tener vértices duplicados en las mismas coordenadas espaciales. Esto
se debe a que, muchas veces, se requieren en la misma posición diferentes atri-
butos, como normales o coordenadas de textura. Haciendo uso de la solución
presentada, se evitará la aparición de agujeros en los modelos simplificados,
permitiendo diferentes atributos en las mismas coordenadas espaciales. Se pre-
sentan también experimentos del uso de esta extensión para preservar otros
atributos, como las normales, pudiendo observarse mejores resultados visuales
aplicando nuestra métrica.

Además, la preservación de texturas se contempla también en el Caṕıtulo
5. En este caṕıtulo se presenta un método de simplificación que considera
la información de textura en su métrica de error y su aceleración, usando
nuevas tecnoloǵıas en el hardware gráfico. En la Sección 5.2 se presenta un
nuevo método de simplificación basado en la segmentación de las texturas para
definir su métrica de error. En este método se han usado conocidos conceptos
matemáticos de la Teoŕıa de Información [Sha48]. Estos conceptos permiten
presentar un método de simplificación robusto que preserva texturas. Se puede
apreciar en los resultados que se producen simplificaciones que preservan la
apariencia de las texturas. Estos resultados han sido medidos cuantitativa-
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mente con una conocida métrica de error (RMSE [LT00]). Este método es un
método de simplificación basado en el punto de vista. Este tipo de métodos
poseen normalmente un alto coste temporal. Por lo tanto, en la Sección 5.3
hemos implementado y evaluado técnicas para la aceleración de un método de
simplificación basado en el punto de vista, como el presentado en la Sección
5.2, usando CUDA. Se puede comprobar que se obtienen mejores resultados
temporales usando estos avances del hardware gráfico.

Una técnica comúnmente usada complementariamente a la simplificación
es el uso de mapas de normales. Los mapas de normales son imágenes 2D con
información sobre las normales de un modelo tridimensional. La aplicación
de los mapas de normales de modelos detallados sobre modelos simplificados
puede ayudar a dar más detalle sin necesidad de añadir geometŕıa adicional.
En el Caṕıtulo 6 se hace uso de los nuevos avances del hardware gráfico y se
presentan dos métodos diferentes para la generación de mapas de normales
basados en la GPU. Por un lado, el primer método presentado (Sección 6.2) es
muy rápido y es útil para modelos simplificados que preservan sus coordenadas
de textura y sus texturas abarcan todo el espacio de textura. Por otro lado, el
segundo método (Sección 6.3) está basado en el renderizado de las normales a
partir de los triángulos del modelo simplificado. Ambos métodos son rápidos
y presentan resultados con una calidad similar a la producida por los métodos
implementados en la CPU. Estos métodos pueden además ser usados para
obtener otros parámetros de la superficie de los modelos, como mapas de colores
o mapas de alturas.

Futuras lı́neas de investigación

En esta sección se sugiere y discute algunas de las posibilidades de trabajo
futuro relacionadas con esta tesis.

El estudio de tareas de paralelización ha sido objeto de investigación desde
hace años. Por lo tanto, el estudio de la paralelización de métodos como el
presentado en el Caṕıtulo 3 podŕıa ser posible. Este método es un método
de simplificación asistido por el usuario para modelos con las propiedades de
objetos normalmente obtenidos en un proceso de diseño asistido por ordenador.
Por tanto, sugerimos el estudio de la paralelización de la simplificación de
subobjetos.

Atributos adicionales a la geometŕıa, como las texturas y las normales,
son muy importantes para el aspecto final de modelos normalmente usados en
aplicaciones interactivas. En el Caṕıtulo 4 presentamos una extensión para las
métricas de error útil para aquellos métodos que no consideren la información
de las texturas, de modo que puedan tener en cuenta esta información en su
métrica. Sugerimos el estudio de nuevas posibilidades matemáticas para el
cálculo del coste de las aristas, basados en conceptos matemáticos importantes
(como en el método presentado en el Caṕıtulo 5), con el fin de poder contrastar
resultados. Además, se ha hecho uso de esta extensión para preservar otros
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atributos, como las normales. Por lo tanto, podŕıamos estudiar la posibilidad
de mezclar los valores de las coordenadas de textura y de las normales para
calcular el coste de error asociado a cada arista o bien considerar otros nuevos
atributos, como colores.

En el Caṕıtulo 5 presentamos un método de simplificación basado en la
segmentación de las texturas. Este método hace uso de importantes y conocidos
conceptos de la Teoŕıa de la Información y considera la información de la textura
en su métrica de error. Sugerimos el estudio de la posibilidad de considerar
otros atributos, como normales, en la métrica de error. Este proceso podŕıa ser
orientado a considerar otro atributo sin tener los demás en cuenta, o a obtener
una combinación de la información de todos los atributos, de modo que se
obtenga una métrica que contemple una mezcla de toda esta información. Otra
sugerencia es probar con otros conceptos matemáticos robustos para el cálculo
del coste de las aristas.

Con el fin de medir las mejoras visuales obtenidas con nuestras técnicas de
simplificación que preservan texturas, se ha hecho uso de una métrica conocida
(RMSE [LT00]). Esta métrica, sin embargo, podŕıa no ser la más apropiada
para algunos casos espećıficos. Esto se debe a que objetos simplificados con
una buena apariencia visual para el usuario y con texturas bien preservadas
podŕıan ser altamente penalizados por el RMSE debido a la eliminación de
algunas partes del contorno de los modelos. Por lo tanto, sugerimos el estudio
de nuevas métricas que puedan ser útiles para medir la calidad visual de los
modelos simplificados para el usuario.

El tiempo empleado por algunos métodos podŕıa ser importante. Los méto-
dos de simplificación basados en el punto de vista, como el presentado en la
Sección 5.2 implican normalmente un alto coste temporal. Debido a ello, en
la Sección 5.3 hemos presentado una aceleración del método presentado en
este caṕıtulo. Las tarjetas gráficas se encuentran en continuo avance. Por lo
tanto, otra sugerencia de trabajo futuro es estudiar las posibilidades de las
generaciones de tarjetas gráficas para obtener una aceleración más eficiente del
método.

La aplicación de estos mapas de normales sobre las versiones simplificadas
de los modelos dotará a los mismos de más detalles. En el Caṕıtulo 6 se
presentan dos nuevos métodos para la generación de mapas de normales basados
en la GPU. Sugerimos el estudio de métodos basados en la GPU que generen
mapas con otra información, como mapas de colores o mapas de alturas. Otra
sugerencia de estudio es el uso de la arquitectura CUDA para la aceleración
del método presentado en la Sección 6.3. Usando CUDA algunas tareas de la
generación de los mapas de normales podŕıan ser paralelizadas en la GPU.
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Preface

Abstract
Interactive applications with 3D graphics are used everyday in a lot of

different fields, such as games, teaching, learning environments and virtual
reality. The scenarios showed in interactive applications usually tend to present
detailed worlds and characters, being the most realistic as possible. Detailed
3D models require a lot of geometric complexity. But not always the available
graphics hardware can handle and manage all this geometry maintaining a
realistic frame rate. Simplification methods attempt to solve this problem,
by generating simplified versions of the original 3D models. These simplified
models present less geometry than the original ones. This simplification has
to be done with a reasonable criterion in order to maintain as possible the
appearance of the original models. But the geometry is not the only important
factor in 3D models. They are also composed of additional attributes that are
important for the final aspect of the models for the viewer. In the literature we
can find a lot of work presented about simplification. However, there are still
several points without an efficient solution. Therefore, this thesis focuses on
simplification techniques for 3D models usually used in interactive applications.

Keywords: simplification methods, user-assisted simplification, CAD mod-
els, normal map, attribute preservation, graphics hardware, GPU-based meth-
ods.
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CHAPTER 1
Introduction

1.1 Background and Motivation

3D computer graphics uses a three-dimensional representation of geomet-
ric data and they are under continuous study and improvement. Computer
graphics advances have enabled three-dimensional graphics to be present in a
large number of applications in everyday use. Three-dimensional graphic ap-
plications are commonly employed in different fields, such as virtual reality,
teaching, interactive worlds, computer-aided design and cinema.

Three-dimensional scenes are usually represented with polygonal meshes.
A polygonal mesh is a collection of vertices, edges and faces that defines the
shape of a three-dimensional object. One of the polygon types that is most
often used for this purpose is the triangle. Thus, three-dimensional objects can
be represented with interconnected triangles. The study of polygonal meshes
is a large subfield of computer graphics and geometric modeling. Figure 1.1
depicts a three-dimensional polygonal object.

New technologies and computing advances have made it possible to create
scenes with very detailed environments. Some applications require realistic
scenes which entails highly detailed objects in the scene. Therefore, the scene
will need objects with high geometric complexity. However, the available graph-
ics hardware cannot always handle all the geometry of the scene with a high
frame rate, without slow transitions in the visualization.

Different solutions have been presented to this problem. One of these solu-
tions is the simplification of the objects. Simplification methods produce less
detailed objects, by reducing the geometric complexity of the original ones. In-
teractive applications need to render and manage 3D scenes with a high frame

1
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2 Chapter 1 Introduction

Figure 1.1: Three-dimensional polygonal object

(a) (b) (c)

Figure 1.2: The original racing car object (a), a simplification of it to 25%
of its original geometry and a simplification to 10% of its original geometry

rate. Thus, the use of simplified objects can help to achieve this, because of
the reduction of the geometric information. In Figure 1.2 an original object
and two simplified versions of it are depicted.

Interactive applications can use simplified models when these models do not
have a great importance in the scene, for example, when they are far away from
the viewer. However, a reasonable criterion is needed to reduce the geometry
of the objects. Simplification methods attempt to preserve the appearance of
objects, meaning that the simplified objects must have to present a similar
appearance than the original ones. The simplification operation and the error
metric used in a simplification method will establish, respectively, how and
when each part of the geometry is simplified.
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(a) (b) (c)

Figure 1.3: Original turtle model (a) and its simplification to 25% without
considering texture information (b) and considering it (c)

Three-dimensional objects used in interactive applications are usually com-
posed of attributes in addition to their geometry. Therefore, in simplification
methods, not only the geometry of the objects could be considered, but also the
additional attributes, such as normals and texture coordinates. The consider-
ation of these attributes will produce simplified objects with a more accurate
preservation of these attributes and, consequently, the viewer will see them as
more similar to the original objects. If these additional attributes are not con-
sidered, the viewer may see simplified objects with great distortions. However,
there are many simplification methods that do not consider this information.
An example of this is shown in Figure 1.3, which depicts an original model
and its simplification to 25% of its original geometry are depicted. This sim-
plification has been performed by the method presented in [CSCF08], which
does not consider the texture information in its error metric, and with one of
the solutions presented in this thesis (Chapter 4). It can be appreciated that
the consideration of these additional attributes helps to present better visual
results.

Moreover, three-dimensional objects can also be composed of different sub-
objects as is the case with the vast majority of objects created in a computer-
aided design [TBG09]. The simplification of objects composed of different
subobjects can present difficulties with many simplification methods presented
in the literature, such as the appearance of holes or undesired distortions in the
boundaries of the subobjects (Figure 1.4). In Figures 1.1 and 1.2 the subobjects
are represented by different colors.

A lot of simplification techniques, based on different criteria, have been
presented in the literature. There are simplification methods that consider
only the geometry of the objects. There are also viewpoint-driven simplification
methods. These methods take not only the geometric information into account,
but also the visual information by, for example, simplifying first those parts
of the objects that are not going to be visible to the user. Considering only
the geometric information of the objects in the error metric can produce good
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(a) (b) (c)

Figure 1.4: Simplifications of X-wing model without considering the prop-
erties of the meshes obtained after a computer-aided design process. Orig-
inal model (a) and simplifications to 50% (b) and 30% (c) without consid-
ering the subobject information.

(a) (b) (c)

Figure 1.5: Normal mapping example: an original model (a), a simplified
version of it (b) and the simplified version with the normal map of the
original model applied (c)

geometric simplifications, but the consideration of the additional attributes to
the geometry could be necessary in order to avoid possible visual distortions.
Some surveys of simplification work can be found in [CMS98] [Lue01].

A common technique additional to the simplification algorithms is the use
of normal maps. A normal map is an image of RGB elements that contains
the information about the normals of a three-dimensional object. By applying
the normal map of a detailed object to a simplified version of it, more detail
is obtained. This is because it enables the use of correct per-pixel lighting.
Therefore, more detail can be obtained in the simplified models without adding
more geometry. Figure 1.5 shows the effect of applying a normal, extracted
from a highly detailed model, onto a coarser mesh that is used for rendering
the model in real-time without losing hardly quality.

The final appearance of the models in the scenes is not the only important
requirement in interactive applications. The runtime requirements can also
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be important. Great advances in graphics hardware have been made during
the last few years. New architectures and hardware capabilities have appeared,
allowing the parallelization of tasks between the CPU and the GPU. Therefore,
more possibilities are offered and more efficient methods can be implemented.

A lot of problems can appear when a simplification is needed. Different
considerations have to be taken into account, depending on each particular
problem. We have considered all the above-mentioned problems and presented
different solutions.

1.2 Contributions and Overview

1.2.1 Contributions

The main aim of this thesis is to present different techniques for the sim-
plification of three-dimensional objects usually used in interactive applications.
In this section we provide a brief description of each contribution.

User-assisted Simplification Method for Triangle Meshes Preserving Bound-
aries Many three-dimensional objects are composed of different subobjects.
An example can be the objects obtained from a computer-aided design process.
This kind of object is composed of a lot of different subobjects. The simplifi-
cation of this kind of object can present problems in the simplification when
using well-known simplification methods ([CMS98] [Lue01]). Holes or artifacts
can be produced. There are existing tools that allow the simplification of this
kind of meshes. However, these tools do not use the best error metrics, used in
simplification methods that can be found in the literature. Moreover, they do
not always enable the possibility of simplifying the subobjects of the models
to different levels of detail to be presented to the user. This is why automatic
simplification processes are not usually employed for this purpose and the re-
duction of geometry is most commonly done by hand by the designers. This is
a very elaborate process.

Therefore, a user-assisted simplification method for this kind of object is
presented. This method preserves boundaries between subobjects and allows
the user to manage the level of simplification of the subobjects. This can also
be performed while maintaining a total number of polygons in the simplified
object. This is very useful for obtaining simplified objects with some parts
more or less simplified than others. The user can test with different levels of
simplification at any time (for the whole object and each subobject) in order
to find a simplification that satisfies his or her requirements.

A Texture-based Metric Extension for Simplification Methods Many interac-
tive applications make use of three-dimensional textured objects. Textures are
very important in the final appearance of the simplified objects in interactive
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applications. If the texture information is not taken into account in the simpli-
fication process, good geometric results can also be obtained, but the simplified
objects may be greatly distorted when the textures are applied to them. This
will produce a dramatic visual difference between the original objects and the
simplified ones.

Some interactive applications may need to use simplified objects with an ac-
curate texture appearance. However, there are a lot of simplification methods
that do not consider the texture information in order to establish the simplifi-
cation criterion.

We present a texture-based metric extension that takes texture information
into account in order to establish the simplification criterion. This extension
can be very useful for the metric of those simplification methods that do not
consider the texture information. This work is based on the detection of the
borders of the textures of the models. This extension can be used with any
error metric that makes use of the edge collapse operation.

By applying this metric extension, more accurate texture appearance is
obtained in the simplified objects. This metric extension will modify the order
in which the polygons are simplified, attempting to simplify first those parts of
the object that will produce less distortion in the texture.

Moreover, the consideration of this work for preserving other attributes,
such as normals, is also exposed.

Segmentation-based Simplification for Textured Models In the literature, we
can find different simplification methods, such as [CSCF07], that make use
of concepts of the Information Theory in order to establish the simplification
criterion of the methods.

We present a simplification method that considers texture information in
its error metric, using well-known concepts of Information Theory, like entropy
[Sha48], generalized entropy [Tsa88], mutual information [Sha48] and gener-
alized mutual information [HC67]. This is a view-dependent simplification
method and it is based on the idea of the segmentation of the textures. In this
method, we calculate how much the appearance of a textured model will change
after each possible simplification step. This calculation is measured with these
important concepts of Information Theory. The main idea is to obtain the
simplification order that minimizes the change of the visual appearance for the
viewer after simplifying each polygon.

Viewpoint-driven Simplification Acceleration by Hardware The visual results
are not only the important factor in the simplification methods. The time
taken by some methods can also be important. View-dependent methods are
usually slower than those based only on the geometry of the objects. This is
because view-dependent methods usually perform a lot of renders in order to
obtain the visual changes in the objects after each simplification step.
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Graphics hardware is continuously improving. In recent years, new architec-
tures and capabilities have appeared in the most recent generations of graphics
cards. These improvements enable new and more efficient simplification meth-
ods, making use of these graphics hardware advances.

As one of the latest graphics hardware advances a new architecture called
CUDA was introduced by nVidia [nVi09a]. This architecture enables the par-
allelization of instructions on the GPU. Therefore, we have used these new
capabilities on the graphics hardware to speed up a viewpoint-driven simplifi-
cation method. The use of these graphics hardware advances enables processing
time to be significantly reduced.

GPU-based normal map generation A normal map is an image with informa-
tion about the normals of a three-dimensional object. The use of normal maps
can help to present simplified objects with a more similar appearance to the
original ones. By applying the normal map of an original object to a simplified
version of it, we obtain a simplified object with the normals of the original one.
Therefore, it will present a more detailed shape, similar to the original object.

New graphics hardware advances enable some applications to be sped up,
by programming code that will be executed directly on the GPU. Therefore,
we have made use of these hardware advances in order to implement normal
map generation methods.

We present two GPU-based methods for obtaining a normal map of a three-
dimensional object. The first one is a very fast method that is useful for
simplified models with some texture restrictions. The second method renders
the normals of the detailed model through the triangles of the coarse model.

1.2.2 Overview
The rest of this thesis is structured as follows:

• Chapter 2. Previous Work: In this chapter, we introduce some work in the
literature related to this thesis. First, we introduce some basic concepts
of simplification. Then, we present a classification based on the simplifi-
cation operation and the error metric used in the simplification methods.
We also present the previous work on CAD model simplification, the par-
allelization of the simplification and the simplification methods based on
the GPU. Finally, we introduce the previous work on the generation of
normal maps and we finish this chapter with our conclusions.

• Chapter 3. User-assisted Simplification Method for Triangle Meshes
Preserving Boundaries: In this chapter our user-assisted simplification
method for meshes composed of several subobjects is presented. This
method allows the subobjects to be simplified with different levels of de-
tail while preserving the boundaries. Several experimental results are
explained in order to present the different possibilities of the method.
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• Chapter 4. A Texture-based Metric Extension for Simplification Meth-
ods: In this chapter we present our metric extension that is useful for
considering the texture information of the models in those simplification
methods that do not already consider it. Moreover, geometric aspects
of the models most commonly used in interactive applications are also
considered. The results have also been measured with a well-known error
metric (RMSE) [LT00].

• Chapter 5. Segmentation-based Simplification for Textured Models: In
this chapter we present our simplification method for textured models
based on well-known mathematical concepts. Different metrics have been
applied and compared. Moreover, a speed-up, making use of the latest
graphics hardware advances, for viewpoint-driven simplification methods
is also presented.

We also present a quantitative study using different possibilities of the
concepts of Information Theory. This quantitative study is measured
with a well-known error metric (RMSE) [LT00].

• Chapter 6. GPU-based normal map generation: In this chapter we
present our work related with the speed-up of the generation of normal
maps. Two different GPU-based normal map generation methods are pre-
sented. First, we introduce a very fast normal map generation method for
simplified models with texture correspondence. And secondly, we present
another method that requires fewer restrictions to be accomplished in the
models.

• Chapter 7. Conclusions and Future Work: Finally, we present our overall
conclusions discussing the advantages and drawbacks of the presented
work, and future work, proposing new ideas.
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CHAPTER 2
Previous Work

2.1 Introduction

Polygonal models are commonly used in computer graphics, due to their
mathematical simplicity. However, three-dimensional scenes are usually rep-
resented with a high degree of polygonal complexity. Thus, models used in
three-dimensional scenes are usually composed of a great number of polygons.
But the available hardware cannot always handle all this geometry with a high
frame rate. Therefore, in interactive applications the accuracy of the models
and the time required to process them must be taken into account.

In recent years, different solutions have been developed for interactive appli-
cations. One of these solutions is the simplification of the objects, which intends
to reduce their polygonal complexity while maintaining the appearance of the
final objects as much as possible. Therefore, simplification methods allow the
amount of geometry needed to represent an object to be reduced, which benefits
the performance of the GPU. This is performed by the simplification methods,
attempting to maintain the aspect of the objects for the viewers. Many arti-
cles about simplification techniques have appeared in the literature and some
surveys of such works can be found in [HG97] [PS97] [CMS98] [Gar99] [Lue01],
including simplification methods for CAD models [TBG09].

The models commonly employed in interactive applications are polygonal
meshes. In three-dimensional computer graphics, polygonal meshes are objects
that represent their surfaces with a mesh of polygons. A mesh M could be
composed of submeshes (S). Each submesh s ∈ S is composed of their corre-
sponding vertices, edges and faces. Information about the connectivity between
these components of the geometry is commonly stored in a model. The geom-

9
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10 Chapter 2 Previous Work

etry of a three-dimensional model can also be complemented with additional
attributes, such as normals and texture coordinates.

In this chapter the previous work about simplification algorithms is pre-
sented. A lot of work has been realized during the last years. However, de-
pending on the criteria of the simplification methods and the user’s require-
ments about the simplification, different algorithms could be used. Therefore,
we classify the previous work about simplification methods depending on their
main characteristics.

First of all, we introduce some concepts in order to clarify some ideas about
mesh simplification. Simplification concepts can be found in the literature
[LRC+02].

A mesh is manifold when every edge is shared by exactly two faces. A mesh
is manifold with boundaries when it can also have edges that pertain to only
one face. Figure 2.1 depicts an example of a manifold mesh with boundaries,
while Figure 2.2 shows some examples of non-manifold meshes.

Topology is an area of mathematics that deals with spatial properties, like
the continuity and other concepts derived from it, regardless of the size and
shape of the models. A simplification algorithm is a topology-preserving algo-
rithm if it maintains connectivity and does not close holes. Some algorithms are
simply topology tolerant, that is, they only simplify those parts of the models
that are manifold.

Figure 2.1: Example of a manifold mesh

A simplification method makes use of a simplification operation and an error
metric. The simplification operation will define the way in which the geometry
is removed in the simplification process. The error metric will establish the
order of the simplification steps, assigning different simplification costs to the
different parts of the geometry of the model. This order usually attempts
to minimize the visual changes for the viewer after each simplification step.
Therefore, we present a classification of simplification methods depending on
their simplification operation (Section 2.2) and on their error metric (Section
2.3).

We classify in three groups the methods depending on their error metric.
We first introduce those that consider only geometric information in their error
metrics (Section 2.3.1). Then, those that take also visual aspects for the viewer
depending on the user’s point of view (Section 2.3.2). And those that consider
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Figure 2.2: Example of non-manifold meshes

additional attributes to the geometry of the models (Section 2.3.3).
Meshes obtained after a computer-aided design process present special prop-

erties, because they are usually composed of a lot of subobjects that are not
necessarily interconnected. Therefore, a section about CAD models simplifica-
tion methods is presented in Section 2.4.

The visual appearance of the simplified models is not the only important
factor in a simplification process. The time employed by the methods could
also be important. We explain some new trends in simplification methods with
parallel architectures (Section 2.5) and GPU programming (Section 2.6).

Finally, we expose some works in normal maps (Section 2.7), as a post-
process additional to the simplification. With normal maps a final appearance
in the simplified models more similar to the original ones is obtained.

2.2 Simplification operation

The simplification operation is the operation that is performed at each sim-
plification step in order to remove geometry. Algorithms for mesh simplifica-
tion can be classified according to the simplification operations. Simplification
operations can be classified into local simplification operations and global sim-
plification operations. Local simplification operations work with a small part
of the geometry of the models. However, global simplification operations are
more complex than local simplification operations and work by modifying the
topology of the meshes in a controlled fashion.

Some of the most used local simplification operations are:

• Vertex decimation [CCMS97][Sch97]. These methods are based on the
removal of vertices from the mesh. Once a vertex is removed, all the faces
using that vertex are also removed and then the hole is re-triangulated.



“tesis” — 2010/6/14 — 17:42 — page 12 — #42i
i

i
i

i
i

i
i
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Due to the way it creates triangles, this kind of algorithm is limited to
manifold meshes. An example can be seen in Figure 2.3.

Figure 2.3: Example of vertex decimation operation

• Vertex clustering [LT97][RB97]. These methods are based on an inclusion
box divided into several cells. All vertices that are included in a cell are
collapsed into one single vertex and the triangles that share the removed
vertices are updated. These methods tend to be very fast.An example
can be seen in Figure 2.4.

Figure 2.4: Example of vertex clustering operation

• Edge contraction [GH97]. These methods use an iterative selection of
edges to be removed in order to decrease the level of detail. At each step,
a single edge is selected for removal (or a pair of unconnected vertices). All
faces sharing that edge are also removed, and the faces which share just
one of the vertices of that edge are updated to cap the hole. Degenerated
faces and edges are also removed. An example can be seen in Figure 2.5.

And some of the global simplification operations are:

• Low-pass filtering [HHVW96]. These methods are useful for gradual elim-
ination of high frequency details. The idea is to convert the objects into
multiresolution volume rasters using a controlled filtering and sampling
technique and generate a multiresolution triangle-mesh hierarchy by ap-
plying the Marching Cubes algorithm [LC87].
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Figure 2.5: Example of edge contraction operation

• Morphological operations [NT03]. These methods apply morphological
operations (in contrast to volumetric objects), like erosion and dilation,
to decrease the level of detail of objects. Both operations are usually
used in conjunction with each other. Dilation increases the bounds of the
volume and erosion decreases them. These operations are usually used
in 2D images. They are very fast and tend to offer good results. An
example with 2D images is shown in Figure 2.6.

(a) (b)

Figure 2.6: Erosion (a) and dilation (b) operations

2.3 Error metric

The error metric of a simplification method is the metric employed in the
method in order to establish the order of the simplification steps. Many sim-
plification methods are based solely on the geometry of the models (subsection
2.3.1) and other methods are also based on the viewer’s point of view (sub-
section 2.3.2). Moreover, recent simplification methods attempt to preserve
attributes additional to the geometry of the models (subsection 2.3.3). Meth-
ods based on geometry take only this information into account in order to
establish the error metric that will give us the order of the simplification steps.
However, simplification methods based on the user’s point of view also take
visual information to compute the error metric, that is, they will, for example,
remove first those parts of the object that are not visible to the user.
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2.3.1 Geometry-based simplification methods

Schroeder et al. [SZL92] presented an algorithm to reduce the number
of triangles in a triangle mesh, generated by the marching cubes algorithm
[LC87]. The algorithm presented by Schroeder et al. works by removing
vertices and retriangulating the resulting holes. The decimation criterion is
based on vertex distance to plane or vertex distance to edge. This algorithm is
topology-tolerant. In [Sch97] they extended their work to make the algorithm
topology-modifying.

Rossignac and Borrell [RB97] proposed the idea of simplifying the mesh
by clustering. They define the relative perceptual importance of the vertices
by assigning weights. Then, they group the vertices into clusters and for each
cluster a representative vertex is computed. This method can achieve a high
data reduction rate with very low computational cost by omitting the preser-
vation of topology of the models. This method was extended in [KTKN05]
in order to make it topology-preserving. The work presented in [LT97] is a
thorough study of the vertex-clustering method with careful consideration of
approximation quality and smoothness in transitions between different levels
of simplification during interactive viewing.

The problems of compression/simplification and level-of-detail control have
been addressed by Turk [Tur92], Schroeder et al. [SZL92], Hoppe et al. [HDD+93],
Rossignac and Borrel [RB97] and Varsney [Var94]. Lounsbery [LDW97] devel-
oped a technique for creating multiresolution representations for meshes with
subdivision connectivity. Unfortunately, the meshes usually used in practice
typically do not meet this requirement. In [EDD+95] a method for solving this
requirement is presented. The method is based on the approximation of an
arbitrary initial mesh by another mesh that has subdivision connectivity. The
problem is that it is not always easy to find a base mesh.

The method proposed by He et al. [HHK+95] performs a gradual elimina-
tion of high frequency details by sampling and low-pass filtering the object into
multi-resolution volume buffers and applying the marching cubes algorithm to
generate a multi-resolution triangle-mesh hierarchy. This method presents poor
results for models with sharp edges and this algorithm is not topology-tolerant.

Hoppe [Hop96] presented progressive meshes, a new format for storing and
transmitting arbitrary triangle meshes. It makes use of edge collapse and vertex
split operations. With a series of edge collapse and vertex split operations, a
mesh can be simplified and returned to its original level of detail. An efficient
implementation of this method is found in [Hop98].

Cohen [CVM+96] presented a method based on the creation of envelopes
for guiding the simplification process. The envelopes cannot intersect and are
located around the original mesh. This method preserves the topology.

Some of the most widely extended methods for surface simplification [Gar99]
[HG97] [PS97] use techniques based on iterative edge contraction. These meth-
ods make it possible to contract edges and join vertices so that the connectivity
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of the mesh is preserved. A weight is assigned to each edge in a pre-process
that considers the geometric importance of that edge in the simplification.

One of the most important simplification algorithms is QSlim [GH97]. Qs-
lim computes the error metric by associating a set of planes with each vertex
of the model. The set of planes at a vertex is initialized to be the planes of
the triangles that meet at that vertex. The edges are stored in a heap ordered
according to their associated error and the edges with the lowest costs are the
first to be contracted. At each simplification step one edge of the model is
removed, as can be seen in Figure 2.5.

QSlim minimizes the function which gives the squared distance of a vertex
v from its associated set of planes, that is, those defined by the polygons that
contain this vertex. This function ∆(v) is defined as:

∆(v) =
∑

p∈planes(v)

(pT )2 =
∑

p∈planes(v)

vT (ppT )2v = vT

 ∑
p∈planes(v)

ppT

 v

(2.1)
Thus, the Qslim algorithm operates as follows:

1. A quadric error associated to each vertex is computed.

2. A collapse cost is associated to each edge.

3. The edges are stored in a queue according to their collapse cost.

4. The edge with the lowest cost is collapsed.

5. The costs of the adjacent edges are recalculated.

6. Repeat steps 4 and 5 until we obtain the desired level of detail.

In [DEGN99] the authors presented a topology-preserving method. They
introduced the link conditions. If these conditions are satisfied, the complex ob-
tained after an edge collapse is guaranteed to be homeomorphic to the original
one.

Velho [Vel01], inspired by his previous work on hierarchical 4-k meshes
[VC00], developed a simplification method for polygonal meshes that is use-
ful for variable simplifications. A fast implementation of this algorithm was
presented in [VTV+04].

Wu et al. [WHST01] introduced a mesh simplification scheme based on face
constriction. This work uses statistical measures to distinguish between rough
and flat parts in the models. This method marks a face constriction as illegal
if a triangle belongs to a boundary or is non-manifold.

In [KG03] Kho and Garland presented a user-guided simplification method
that extends Qslim in order to simplify the selected regions of the model.
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Wu et al. [WHC04] presented triangle mesh simplification method based
on a quadric error metric, which can preserve the global geometry features of
the original model in and efficient manner. After finding all global geometry
features by detecting the crease angles of two connecting faces, every edge
is assigned a weight according to the relationship between it and the global
geometry features. Then the quadric error metric is modified to postpone the
simplification of global geometry features by adding the assigned weight to the
contraction cost of every edge.

Garland and Zhou [GZ05] presented a method for simplifying simplicial
complexes of any type embedded in Euclidean spaces of any dimension.

Both the geometry of the object and also the texture frequencies were con-
sidered in [XSX05]. To make the method more precise, pixels are subdivided
into subpixels.

Vivodtzev et al. [VBLT05] presented a test for changes in the topology
after an edge collapse in meshes with embedded polylines. To do so, they
define the extended complex, which encodes both the topology of the mesh
and the topology of the embedded polylines.

Jong et al. [JTY06] presented a method that uses torsion detection to
improve the Quadric Error Metric of Vertex-Pair Contraction and retain the
physical features of the models.

In [TFC08] Tang et al. presented a method that can preserve some inter-
esting parts of the model with a high resolution, while the rest of the model is
simplified with a lower resolution.

Daniels et al. [DSSC08] introduced a simplification algorithm for meshes
composed of quadrilateral elements. Quadrilateral connectivity is maintained
during the simplification by an extension of a quadric error metric to quad
meshes.

Some works have been presented for very complex models composed of
a great amount of data. These works refer to out-of-core simplification. In
[WK03] input and output meshes of arbitrary sizes can be handled. The al-
gorithm reads the input from a data stream in a single pass and applies dec-
imation operations on the data kept in the main memory. In [ILGS03] the
authors show how out-of-core mesh techniques can be adapted to the process-
ing sequence paradigm ([IG03] [IGS03]). A processing sequence is an ordered
sequence of indexed triangles and vertices that represents a mesh. This repre-
sentation allows very large meshes to be streamed through main memory. At
any time, only a small portion of the mesh is kept in-core. Vo et al. [VC07]
proposed a two-step approach for streaming simplification of large tetrahedral
meshes.

2.3.2 Viewpoint-driven simplification methods

Different viewpoint-driven simplification methods can be found in the liter-
ature. Hoppe [Hop97], for instance, presented a viewpoint-driven version of the
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progressive meshes algorithm [Hop96]. The criterion of this method is based
on the view frustum, surface orientation, and screen-space. The first parts of
the object it simplifies are those that are not visible to the user.

Luebke et al. [LE97] presented Hierarchical Dynamic Simplification (HDS),
which works with a hierarchy of clusters of vertices. When a cluster occupies a
volume on the screen below a certain threshold, all vertices within that cluster
are collapsed.

Hoppe [Hop97] extended his previous work [Hop96] to selectively refine an
arbitrary progressive mesh, depending on view parameters. The refinement
criterion is based on the view frustum, surface orientation, and screen-space
geometric error.

El-Sana and Varshney [EsV99] performed view-dependent geometry and
topology simplifications using a view-dependent tree of general vertex-pair col-
lapses.

Lindstrom et al. [LT00] take a visual approach to deal with by creating
a purely image-based metric. Basically, their method determines the cost of
a collapse operation by rendering the model from a set of viewpoints. The
algorithm then compares the resulting images and adds the per-pixel error as an
extra value for each pixel. All edges are then sorted using this error information
so that the first edge collapses are those which have the least error.

Luebke et al. [LH01] presented a method for view-dependent simplification
using perceptual error metrics, where simplifications may be ordered according
to their perceptibility.

Zhang et al. [ZT02] proposed a new algorithm that takes visibility into
account. This work defines a new visibility function that considers the surface
of the model and a set of cameras located on the surface of a virtual sphere
surrounding the model. The number of cameras influences the precision and
the temporal cost of the algorithm. Luebke et al. used up to 258 cameras. To
guide the simplification process, they combined their visibility algorithm with
Garland’s quadric-based error metric [GH97].

Lee et al. [LVJ05] introduced the saliency concept as an error metric, which
was used for mesh simplification algorithms. Basically their work consists in
the generation of a saliency map to be used in the Qslim algorithm as in the
simplification algorithm described in [ZT02].

Recently, Castelló [CSCF07] presented a view-dependent method based on
the entropy from a viewpoint, a concept which is taken from the ”Theory of
Information” [Sha48][CT91]. The entropy of a viewpoint is obtained from the
distribution of the projected areas of the polygons of the mesh. Projected
areas are calculated by analyzing the frame buffer using a histogram. Mutual
information concept was used in [CSCF08].
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2.3.3 Attribute-preserving simplification methods

One of the most relevant improvements to the simplification methods is the
incorporation of vertex attributes, such as texture coordinates and normals,
into the simplification metric.

Hoppe extended his initial work [Hop96] by incorporating color and texture
coordinates [Hop99]. The authors of the Qslim [GH97] algorithm also extended
their metric so as to take this kind of information into account [GH98].

Cohen et al [COM98] developed an algorithm based on edge collapses which
converts vertex positions, diffuse colors and normals into texture and normal
maps. This algorithm is based on a texture deviation metric.

In [CMSR98] a general approach for preserving detail on simplified meshes
is presented. The high frequency information lost after simplification is encoded
through texture. This approach allows any attribute value defined on the high
resolution mesh to be preserved.

Erikson and Manocha presented a method called General and Automatic
Polygonal Simplification [EM98] that works on models that contain both non-
manifold geometry and surface attributes. This method uses a distance thresh-
old and surface area preservation to join unconnected regions of an object.

Sander et al. presented a method [SSGH01] that extended the work in-
troduced in [Hop96]. This method subdivides the surface in patches, on the
grounds of its coplanarity. It then generates parameterization minimizing the
stretch deviation. It calculates an adequate size for each object in the texture
domain and simplifies the mesh, minimizing the texture deviation [COM98]
and preserving the boundaries. And finally, it optimizes the parameterization
with a different objective function and regroups all the patches again.

Fahn et al. [FCS02] proposed a method based on the quadric error metric
introduced by Garland and Heckbert [GH97] to preserve face colors and bound-
ary edges during the simplification process, using a new constraint scheme.

The method presented in [CC06] recalculates a new texture for each sim-
plification step, using an indexing map to avoid loss of precision.

The main advantage of the metric used in the method presented by Lind-
strom et al. [LT00] is that it offers a good balance between the geometry of
the object and its vertex attributes in a natural way, without the user having
to assign any weight to them. Its main disadvantage is its high temporal cost.

Williams et al. [WLC+03] extended the method presented by Luebke et al.
[LH01] to shaded and textured meshes, and used parametric texture deviation
to bound the size of the changes in the simplification.

2.4 CAD model simplification

Different physics-based methods for CAD model simplification can be found
in the literature [TBG09]. These methods can be classified into different types
of techniques, like techniques based on surface entities [FRL00] [DKK+05],
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techniques based on volumetric entities [ABA02] [Lee05b] [Lee05a] [LL06] [LLK06],
techniques based on explicit features [DKKN06] [RHG+01] and techniques
based on dimension reduction [SFM05] [FLM03].

Fine et al. [FRL00] introduced idealization operators for Finite Element
Analysis. These idealizations are carried out through a vertex removal process
which transforms the geometry of a part while preserving it within a discrete
envelope defined around its initial geometry. Date et al. [DKK+05] for control-
ling the properties of a given multimaterial tetrahedral mesh for finite-element
analysis. The authors reported vertex and edge collapse based technique for
mesh model simplification and refinement.

Andújar et al. [ABA02] presented a method for generating coarse-level
approximations of topologically complex models. Lee et al. [Lee05b] [Lee05a]
[LL06] [LLK06] presented a feature-based non-manifold modeling system is
developed for CAD and CAE applications.

Date et al. [DKKN06] proposed a feature and resolution control method of
triangular meshes to realize efficient mesh uses. This method includes feature
recognition, mesh simplification and feature recovery. Ribelles et al. [RHG+01]
proposed a method for recognizing and suppressing features. This method
makes use of the face clustering operation.

Sud et al. [SFM05] presented an algorithm to compute a simplified medial
axis of a polyhedron. This simplification algorithm removes unstable features.
Moreover, it preserves the topological structure. In [FLM03] Foskey et al. used
the concept of θ-MAT for the simplification of polyhedral mesh models.

However, our work is included in the context of real-time rendering. Meshes
are obtained from CAD models after a meshing process [LC87] [Lun91] [WSO03].
Over the last few years many simplification methods for triangle meshes have
been developed. A survey of them can be found in [LH01]. But meshes ob-
tained from CAD models are usually composed of a great number of submeshes.
These submeshes are not necessarily interconnected. Simplification methods do
not always produce simplified models with the levels of detail of the different
subobjects required by the user. Moreover, some of these methods can pro-
duce undesired artifacts, such as holes or distortion, with meshes obtained
from CAD models because these models are normally composed of different
subobjects without any interconnection between them.

2.5 Parallel mesh simplification

A great number of simplification algorithms can be found in the literature
[HG97] [PS97] [CMS98] [Gar99] [Lue01]. These methods allow high compres-
sion ratios to be obtained, but, unfortunately, many of them suffer from ex-
cessive memory consumption and high execution times. One solution to solve
these limitations is provided by the use of scalable parallel computer systems.
Times can be improved by using systems with distributed memory. When con-
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sidering parallel model simplification algorithms, two key factors have to be
taken into account:

• The computation should be as fast as possible; often this is one of the
main reasons for parallelizing an application.

• The generation of high quality simplified models must be guaranteed.

An efficient data-parallel mesh simplification algorithm is presented in [SR00].
In this work the authors use the Adsmith-Library [LKF96] to simulate a dis-
tributed shared memory. The original mesh is partitioned into submeshes and
the method distributes each submesh to a child processor for parallel simplifi-
cation.

Langis et al. [LRD99] presented a parallel method for progressive mesh
simplification. This method works by considering the original mesh as a graph
and partitioning it. Each partition is sent to a processor of a parallel system
and all the partitions are converted in parallel into the progressive mesh format
using a serial algorithm on each processor. The results are then merged together
to produce a single large progressive mesh file, considering the borders. A
progressive mesh (PM) is a continuous mesh representation of a given 3D object
which makes it possible to efficiently access all mesh representations between
a low and a high level of resolution.

In [FS01] the authors present a fast algorithm for triangular mesh simplifica-
tion in parallel environments using vertex decimation operations. The authors
define an independent set of vertices to avoid critical sections.

Approaches that divide the models into a number of equally-sized chunks
and distribute them to a number of potentially heterogeneous workstations
are usually likely to fail. Brodsky et al. [BP03] proposed a general parallel
framework for simplification of very large meshes that provides an intelligent
partitioning of the model. They tested this framework by implementing a
parallel version of [Bro00].

2.6 GPU-based simplification methods

Recent advances in real-time rendering have provided a new way to speed up
the simplification rates by implementing simplification methods on the GPU.
The work can therefore be distributed between the CPU and the GPU, thereby
parallelizing the simplification tasks.

Recent GPUs execute shader programs, which allow operations in the graph-
ics pipeline. That is, a programmable graphics pipeline is obtained, and pro-
grammers can modify the traditional and static instructions performed by
the GPU. The vertex shader allows per-vertex computations to be performed.
Once the primitives to pixels have been converted into pixels, the pixel shader
can compute the colors of the fragments. This provides a way to parallelize
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arithmetic and texturing computations. The geometry shader is presented in
[Bly06], and allows per-face computations, since it has access to the adjacency
information. Figure 2.7 shows the architecture of the dynamic pipeline.

CUDA (Compute Unified Device Architecture) is a new compiler and tool
package developed by nVidia that allows some tasks to be parallelized in the
GPU. This architecture provides new possibilities of speeding up the simpli-
fication methods. For example, in [RO08] some methods that are useful for
mesh operations are implemented in CUDA. Figure 2.8 depicts the CUDA ar-
chitecture.

Figure 2.7: Dynamic graphics pipeline

Some methods for interactive visualization of large multiresolution geomet-
ric models at interactive rates, such as [SM05], make use of the GPU to perform
geomorphing to render the objects. These methods need a hierarchy of the lev-
els of detail.

Traditionally, CPU-based mesh simplification has been a slow operation,
performed as a pre-process on static meshes. The advances in the GPU pro-
gramming, for example [Bly06], have allowed GPU-based simplification meth-
ods to appear. The real-time mesh simplification method using the GPU
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Figure 2.8: CUDA architecture

presented in [DT08] uses cluster-quadric maps to encode the mapping from
cluster-cell index to cluster quadric in a render target. Moreover, it makes use
of non-uniform clustering using warping functions and probabilistic octrees.

Hjelmervik and León [HL07] presented a method based on the GPU for
meshes usually employed in mechanical-based applications. The method works
by performing the computations for all the vertices in parallel using graphics
hardware, and then utilizes the CPU to maintain the data structure represent-
ing the triangulation.

2.7 Normal maps

A normal map is an image with the information about the normals of a high
resolution model. This normal map can be applied to a low resolution model in
order to obtain a similar appearance to the more detailed one. A normal map
contains information about the surface of the object and so it may be altered
in order to modify the appearance of the object without changing its geometry.
In this way, the normal map can be used in the low resolution model, so that
it takes on the aspect of a high resolution one, thus avoiding the need to create
more triangles with the resulting savings in computational and temporal costs.

Some other authors have presented works about the generation of normal
maps for simplified meshes. [SSGH01] [SGR96] [CMSR98] generate an atlas for
the model so that they can sample the color and normal values of the surface
to be stored in a texture, which will be applied over a simplified version of the
same original model. However, these methods need the coarse version of the
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mesh to be a simplified version of the sampled mesh, which is a disadvantage.
Some applications for generating normal maps have already been presented,

but all of them generate the map by software with the corresponding CPU
usage, like the method presented in [TCRS00].

Although other authors’ [WFG02] implementations take advantage of graph-
ics hardware for the generation of normal maps, they do not exploit it com-
pletely as they only use the rasterizing stage of the GPU, performing other
tasks on the CPU. Moreover, this method has some limitations: it cannot gen-
erate the normals for faces that are occluded by other parts of the model, and
it does not take full advantage of the capabilities of the graphics hardware and
has to perform some read-backs from the color buffer.

Normal maps can be created by 3D edition programs, such as, for example,
3D Studio MAX 7 or Maya 6.0. Applications exclusively dedicated to the cre-
ation of normal maps also exist, examples being ATI’s NormalMapper [ATI02]
or nVidia Melody [nVi04a].

nVidia’s Melody is an independent program, which presents a simple inter-
face with different options to load and generate the normal map.

Ati’s Normal Mapper offers libraries and is managed by a command line.
The software applications by nVidia and ATI make use of the object at two

levels of detail, so that the normals are cast from the low resolution model to
the high resolution model, and the normal from the high resolution model is
taken from the point where they intersect in order to be applied to the low
resolution model. Their disadvantage is that they do not take advantage of the
graphics hardware. They allow the generation of normal maps in the object
and tangent spaces.

Later to the publication of our methods about the generation of normal
maps on the GPU appeared the method presented in [TI07]. Teixeira et al.
presented a generation of normal maps based on the GPU that works similar to
the methods presented in [nVi04a] [ATI02], by performing a ray-tracing from
the simplified model to the detailed one in order to find and assign the nearest
normals.

2.8 Conclusions

This chapter has presented a state-of-the-art review of this thesis. During
the last few years, a lot of simplification work has been presented and we have
analyzed the most relevant previous work.

First, we introduced some basic concepts in order to comprehend this work.
Then, we classified the previous work on simplification methods according to
their main criteria. Here, we have introduced the most commonly used simplifi-
cation operations and error metric criteria. We also introduced methods dealing
with CAD model simplification. Moreover, we studied new trends about paral-
lel simplification methods and methods performed using the new advances and
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capabilities of the graphics hardware. Finally, we have presented some previous
methods for generating normal maps.

Different solutions to simplification problems have been presented in previ-
ous work. However, there are still some points to be solved in the simplification
of the models that are usually used in interactive applications.

There is no automatic and user-assisted method that takes the properties of
meshes obtained after a CAD process into account. The existing simplification
tools do not use the best error metrics and do not allow a total control of
the level of simplification for each subobject and the whole object. Moreover,
simplification methods in the literature do not consider the properties of this
kind of mesh. This is why this process is usually made by hand by designers.
This is a difficult and elaborate process. The control of the different levels
of simplification in each subobject and an automatic process to maintain the
total number of triangles could be needed. This would save the designers from
having to do this complex process by hand. In this thesis we present a method
to solve this problem (Chapter 3).

Moreover, the models usually used in interactive applications, such as games,
virtual reality, teaching or interactive worlds, can have some geometric prop-
erties (like, for example, duplicated vertices) and additional attributes (like
normals and textures) that must be taken into account in order to obtain sim-
plified models with a similar appearance to the original ones. In this thesis, we
present several techniques that consider these properties and attributes. There
are a lot of simplification methods that do not consider texture preservation
and, therefore, great visual distortions are obtained when the texture is ap-
plied to the simplified models. We present an error metric extension useful for
considering the texture information in those methods that do not take it into
account (Chapter 4) and a method based on the segmentation of the textures
(Chapter 5). The results exposed in these chapters present a high improvement
in the texture preservation for simplification methods.

The visual aspect of the simplified models is important. However, the time
employed by these methods could also be an important factor. This is why we
also bear in mind the latest advances in graphics hardware in order to speed up
slow simplification methods, like the viewpoint-driven algorithms, and normal
map generation methods. Times are exposed in Chapters 5 and 6. It can be
observed that great temporal reductions are obtained.
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CHAPTER 3
User-assisted Simplification
Method for Triangle Meshes

Preserving Boundaries

3.1 Introduction

Nowadays 3D scenes are commonly represented with a high degree of polyg-
onal complexity and many of the objects used in the scenes are generated from
computer-aided design tools. Thus, polygonal models converted from CAD
models are usually composed of a great number of polygons. This conversion
to polygonal meshes (like X3D) is usually performed in order to render and
manage the models in interactive applications running in a network. The cur-
rent available hardware cannot however always handle all this geometry in a
realistic way. Therefore, in interactive applications the accuracy of the models
and the time required to process them must be taken into account.

In recent years, different solutions have been developed for interactive ap-
plications. One of these is the simplification of the objects, which attempts
to reduce their polygonal complexity, while maintaining the appearance of the
final object as much as possible. Simplification methods allow the amount of
geometry needed to represent an object to be reduced, trying to maintain the
visual quality, which benefits the performance of the GPU. Therefore, simpli-
fication methods produce objects with less geometry than the original ones.
Interactive applications need to render and manage 3D scenes with a realistic
framerate. Thus, the use of simplified objects can help to achieve this, because

25
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of the reduction of the geometric information. Many articles about simplifica-
tion techniques have appeared in the literature and some surveys of such works
can be found in [CMS98] [Lue01], including simplification methods for CAD
models [TBG09]. We can distinguish between different criteria for mesh sim-
plification, like geometry-based and viewpoint-driven simplification methods.
Many of them are based on geometric metrics to define the order of the simplifi-
cation steps. These methods are relatively fast and usually offer simplifications
with a good appearance. On the other hand, methods based on the user’s
point of view try to generate not only good geometric results, but also realistic
results for the viewer by removing, for example, parts of the object that are not
visible to the user. These methods are usually slower than methods based on
the geometry. A simplification method makes use of a simplification operation
and an error metric.

Complex shapes with several parts (subobjects) can be obtained from a
design process. These CAD models are converted to polygonal meshes to be
rendered and managed with a high framerate in interactive applications run-
ning in a network and subobjects are treated as submeshes. Different works
for meshing objects can be found in the literature [LC87] [Lun91] [WSO03].
Simplification of polygonal meshes obtained from CAD models requires special
attention. These meshes are usually composed of a great number of different
submeshes that are not necessarily interconnected. This is a difference between
this kind of mesh and other kind of mesh usually used in interactive applica-
tions, such as games. Therefore, if this characteristic is not taken into account
in the simplification process, undesired artifacts could be obtained with meshes
obtained from CAD models, such as holes or distortion between the subobjects.
Moreover, users can demand simplifications at different levels of detail of the
different subobjects of the model. That is, with different percentages of sim-
plification, usually given as the relation between the number of faces in the
simplified model and the original number of faces. For example, a wheel of a
car will need more level of detail than other parts of a car, because it usually
has a rounded shape in the original model and if it is very simplified a great
distortion could be obtained on it.

Simplification methods do not always present simplifications that satisfy the
user’s requirements about the total number of triangles in the simplified model
and the levels of detail of the different subobjects. For example, the user can
demand a total number of triangles in the simplified model while some parts of
the model are maintained or simplified to a specific percentage of simplification.
Simplification process is not usually used for this purpose, because this process
is usually done by hand by the designers. Moreover, simplification tools do not
present an automatic process to work with meshes generated from CAD models
with the possibility of simplifying the subobjects to different percentages of
simplification. It is usually an elaborate process and these applications do not
always use the best error metrics.

We present a user-assisted mesh simplification method applied to CAD mod-
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els converted to triangle meshes. This method allows the different subobjects
to be simplified at different levels of detail, avoiding the appearance of holes
and preserving the boundaries between the subobjects. This way, the user can
simplify the whole model and modify some parts, by simplifying more or by
refining the desired subobjects. This can be performed while the total number
of triangles in the simplified model is maintained. In the presented method any
metric based on edge collapse operation can be used. Therefore, the best and
new metrics can be integrated in the method. Textures and normals, that play
an important role in the final aspect of the model, are also considered.

This is a user-assisted method, because the user can test simplifying some
parts of the model or refining other simplified ones. The goal is to obtain a
simplified version of the model that satisfies the user’s requirements about the
total number of triangles in the simplified model and the levels of detail of the
different subobjects. Two different error metrics have been used in order to
present the results: a geometry-based error metric (QSlim quadrics [GH97])
and a viewpoint-driven error metric (VMI [CSCF08]).

The main contributions of the presented method are:

• The different parts (subobjects) of the models can be simplified with
different levels of detail. This is a user-assisted method because the user
can simplify the whole model and then modify the desired subobjects
(by simplifying more or by refining these parts). These modifications
can be done while the total number of triangles is maintained. Relative
simplifications can also be performed, by maintaining a subobject always
to a percentage of simplification of any other.

• Boundaries between subobjects are preserved and no distortion between
subobjects is produced in simplified models. The method prevents the
appearance of holes between the different subobjects in simplified models.

Models do not only consist of geometry, like vertices, edges and faces. They
also usually have associated properties that allow the model to present a more
realistic appearance, like normals or texture coordinates. These properties are
also taken into account in this method. We recalculate texture coordinates after
each simplification step and normals after the whole simplification process.
Moreover, any metric based on edge collapse operation can be used in the
presented method. The user can also choose the kind of edge collapse operation
to be performed.

3.2 Simplification method

The presented method receives a mesh obtained from a CAD model, gener-
ated by a meshing process. This mesh can be divided into different subobjects,
treated as submeshes. The data structure of the input meshes accepted by this
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method is detailed in subsection 3.2.1. In order to simplify a mesh obtained
from a CAD model without losing information about the model, we store the
following information:

• Subobject information: the vertices, edges and faces that pertain to any
particular subobject.

• Boundary information: we mark each edge that pertains to any boundary
as a boundary edge.

• Connectivity: information about the neighborhood of each edge of the
model.

This is the information that the method needs to work correctly. This way,
the different subobjects of the model can be simplified to different percentages
of simplification, while the coherence and connectivity between the subobjects
are maintained.

The method is divided into a pre-process that merges the model, an iter-
ative contraction phase and a post-process to split the model into its initial
subobjects. Figure 3.1 shows a general scheme of the process. All these steps
are detailed in subsection 3.2.2.

Figure 3.1: Scheme of the method

3.2.1 Terminology
This method works with meshes with the common structure of a mesh

defined in Section 2.1. In the method presented here any error metric based
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on edge collapse operation can be used. This operation is applied at each
simplification step and works by removing an edge and unifying its vertices.
The final vertex can be located at a new position. However, the operation
is called half edge collapse variant when one vertex is collapsed into another
one, that is, no new vertices are created because we always refer to an existing
vertex in order to compute the operation. As shown in Figure 3.2, an edge
with vertices v1 and v2 collapses into vertex v2, thus producing the simplified
mesh.

Figure 3.2: Example of half edge collapse operation

The presented method makes also use of split operation. A split operation
is the inverse operation of an edge collapse. That is, from one vertex a new
edge will be generated.

A percentage of simplification usually refers to the relation between the
number of faces in the simplified model (tfacessimpl) and the number of faces
in the original model (tfacesorig). And it is given by tfacessimpl

tfacesorig
∗ 100.

3.2.2 Simplification steps
The method receives the model with the information defined in section 3.2.1

and the different levels of simplification of the subobjects required by the user
as parameters. These levels of simplification represent the levels of detail of
the subobjects. The user can demand different levels of detail to the differ-
ent subobjects of the model. This will produce an automatic simplification,
preserving boundaries. The user can try giving different levels of detail until
a simplification that satisfies the user’s requirements is obtained. The user-
assisted capability of the method is explained in detail in section 3.2.7.

Pre-process

First of all, a pre-process step is performed, which merges all the submeshes
in a single virtual mesh, and stores all the information about the original con-
nectivity of the meshes. This is a virtual mesh because it is a temporal mesh
that will be deleted after the simplified model is obtained. This step is based on
the distance of the vertices of different meshes in the original object. Moreover,
the edges between two neighboring submeshes are marked as boundaries.
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Iterative simplification

Next, the mesh is simplified. To do so, we store the edges in their sim-
plification order (Figure 3.3). This order is obtained by the associated cost
given by the metric. Every stored edge will also have an associated identifier
of subobject to know to which subobject pertains the edge. And for every
subobject of the model we store the number of edges in both the original and
the simplified version. This way, when we have to simplify a subobject we
collapse the first edge with the identifier of the subobject. And we repeat this
process until the desired level of detail of the subobject is obtained. Thus, we
simplify each subobject to its associated level of detail. Moreover, after each
simplification step is performed, the texture coordinates of the affected vertices
are recalculated by a linear interpolation.

We have to take into account that the simplification of a submesh may affect
the neighboring submeshes. That is, if edge collapse operations are produced
near a boundary of a submesh, the edges of the boundaries will be moved and
consequently the neighboring submeshes will also need to be moved in order to
avoid generating a hole. But this will only be produced when the demanded
level of detail is very low, because we perform the algorithm explained in section
3.2.4 to preserve the boundaries. Consequently, these edges will be collapsed
in the last steps of the simplification process.

Figure 3.3: Example of simplification step. A collapse of an edge of the
subobject 1 is produced

The simplification of the subobjects at different levels of detail also offer
the possibility to the user of maintaining a relative simplification, that is, to
maintain some subobjects simplified to a multiple of the level of detail of other
subobjects.

The user can also require a total number of triangles (by giving a single
level of detail for the whole model), and then modifying the levels of detail of
the different subobjects. The total number of triangles will automatically be
preserved. This is explained in detail in section 3.2.7.
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Post-process

After simplifying the mesh, we recalculate all the normals of the model.
Here we have to take into consideration that, depending on the shape of the
different parts of the model, vertex normals or face normals will be needed.
Therefore, depending on the angle of the affected faces, the normals are calcu-
lated per vertex or per face.

Finally, we retrieve the simplified mesh and split it into different submeshes,
using the interconnectivity information about the original submeshes that was
stored in the pre-process step.

3.2.3 Decimation computation

This method sets a decimation factor for each edge. The decimation cost
reflects how much the appearance of the object will change, so that the edges
with lowest values are the first to be collapsed. The decimation cost computa-
tion depends on the error metric used.

For each edge contraction (v1, v2) → v the following steps are performed:

• Collapse the edge that contains the vertices v1 and v2.

• Remove all triangles that share the edge.

• Remap all triangles shared by v1 to v2.

• Recalculate the cost (decimation coefficient) for the vertex based on the
new connectivity information.

3.2.4 Boundary preservation

Using the information stored in the pre-process step, the implemented al-
gorithm allows us to preserve the boundaries between the different subobjects.
This technique is useful for any manifold model with boundaries. There are
different works in the literature that preserve boundaries in different fields
[SSGH01] [FCS02]. However, our method maintains the boundaries between
the subobjects, allowing the user-assisted simplification of the different subob-
jects.

The method marks an edge in the model as a boundary when it only has one
associated face. Two edges of different subobjects form a boundary between
these subobjects, when the distance between their corresponding vertices is
lower than a threshold. When an edge with a vertex in a boundary has to be
remapped, the other vertex will overlap the first one. To do this, an attribute
that indicates whether the vertex pertains to a boundary or is an internal vertex
is stored in the data structure of the vertices. By so doing, the original shape
of the boundary remains unchanged for as long as it is possible. A general
scheme to this approach can be seen in Algorithm 1.
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The user can select what kind of edge collapse will be performed, depending
on the user’s requirements and limitations. As we explain in Section 3.2.2 we
store the simplification sequence in order to be able to refine some simplified
parts of the model. Thus, for example, if the user wants to store less information
about the changes produced in the simplification process, half edge collapse
operation will be applied in order to not create new vertex positions. But if
the user wants optimal positions for the collapsed edge, a full collapse operation
will be performed. This operation will return a new vertex, located on a new
position depending on the criterion of the collapse. In this case, the new vertex
coordinates (or displacement relative to the originals) will be stored. Therefore,
the information relative to all the affected vertices and faces must be stored
(simplification sequence). With this information all the previous simplification
steps can be recovered.

Our boundary preservation technique preserves the boundaries between sub-
objects. The boundaries of the whole model (edges of a subobject that are not
connected to any other edges) are usually preserved by the metric of the simpli-
fication methods. For this consideration, this kind of edge could have assigned
by the metric a high simplification cost in order to be maintained until the last
simplification steps.

Algorithm 1 General algorithm for boundary preservation
vertex to move = None;
if mesh.boundaries.has vertex(v1) then

if mesh.boundaries.has vertex(v2) then
vertex to move = normal placement(v1,v2);

else
vertex to move = v2;

end if
else if mesh.boundaries.has vertex(v2) then

vertex to move = v1;
else

vertex to move = normal placement(v1,v2);
end if

If a vertex in the edge is classified as a boundary to be preserved, the
algorithm showed in Algorithm 1 is executed. If both vertices are in a boundary
(or different boundaries) we compute a normal vertex placement, that is, the
final vertex will be located to the position given by the metric. This position is
the one that minimizes the contraction cost. If only one vertex is in a boundary,
the other vertex of the edge is the one to be moved. Otherwise, if no vertices
are on a boundary, we also compute a normal vertex placement. This way, if
the user wants to modify the level of detail of any subobject, the algorithm will
perform the simplification operations, preserving automatically the boundaries
between subobjects.
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We must distinguish between this possibility and the option offered by some
simplification methods, like QSlim [GH97], that allows borders to be preserved.
Borders and boundaries are not the same concept. A border is an edge that
pertains to only one face of the model. However, a boundary between two
submeshes is an edge that pertains to two different faces, because we have
merged the whole model in a pre-process before the simplification steps are
performed.

The presented method preserves the boundaries, however the topology preser-
vation depends on the metric used.

3.2.5 Texture coordinates recalculation

At each simplification step texture coordinates for each modified vertex
need to be recalculated in order to maintain the mapping appearance. The
new texture coordinate is calculated based on the displacement of the mapped
vertex using a linear interpolation. An example of a modified triangle is shown
in Figure 3.4, where the vertex P2 is moved to the position Q.

Figure 3.4: Example of a modified triangle

To obtain the offset that must be applied to the texture coordinates of the
modified vertex, we propose the following system of equations:

Q′
x = αUx + βVx + γNx (3.1)

Q′
y = αUy + βVy + γNy (3.2)

Q′
z = αUz + βVz + γNz (3.3)

having ~Q′ = ~Q − ~P 1, ~U = ~P 2 − ~P 1, ~V = ~P 3 − ~P 1, where ~P 1, ~P 2, ~P 3 are
the three vertices of a modified triangle, ~Q is the new position of the modified
vertex and ~N is the triangle normal. α, β and γ are the coordinates of ~Q
expressed in the triangle coordinate system. They also express how much the
modified vertex has been moved in triangle coordinate system units, so that
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they can be used to calculate the perturbed texture coordinate for the modified
vertex. We use the following formula:

T res
u = α

(
T 2

u − T 1
u

)
+ β

(
T 3

u − T 1
u

)
+ T 1

u (3.4)

T res
v = α

(
T 2

v − T 1
v

)
+ β

(
T 3

v − T 1
v

)
+ T 1

v (3.5)

where ~T1, ~T2 and ~T3 are the original texture coordinates of the three vertices,
~T res is the new texture coordinate for the modified vertex and α and β are the

coefficients calculated from the equations 3.1, 3.2 and 3.3.
Note that we only use α and β because texture coordinates are two-dimensional

vectors contained in the plane formed by the triangle. As γ is the displacement
along the normal vector of the triangle, we do not need it.

In Figure 3.5 we can see an example of the use of this texture coordinate
interpolation. It can be observed that using texture recalculation more accurate
textures are obtained.

Figure 3.5: Original ball model (a), ball model simplified to 30% without
texture coordinate interpolation (b), and ball model simplification to 30%
with application of texture coordinate interpolation

This texture coordinates recalculation produce good results in the majority
of cases. However, it could produce artifacts if the textures of the models con-
tain various regions. Therefore, a work about region-based texture-preserving
simplification is presented in Chapter 5.

3.2.6 Normals recalculation
After simplifying the model we recalculate all the normals of the model.

Depending on the shape of the parts of the object, the normals will be calculated
per face or per vertex. This is because some parts of the models need to use
per-vertex normals (for example smooth and rounded parts) and other ones
need to use per-face normals (for example corners). To do this, we perform the
following algorithm:
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• We expand the model, so that each face will have different indices of
normals. Thus, we obtain the number of vertices as the number of faces
multiplied by three.

• The face normal is assigned to each vertex.

• For each vertex we review all the other vertices of the model. If any
vertex is located at the same spatial coordinate and the angle between
their respective faces is lower than a threshold angle given by the user
(we use 30 degrees) we add the normal of this vertex and the indices of
normals will be the same.

An example of the use of normals recalculation is shown in Figure 3.6. It
shows that a combination of per-face and per-vertex normals produce the best
results.

(a) (b) (c)

Figure 3.6: Part of a three-dimensional object with the per-face normals
(a), with the per-vertex normals (b) and taking into account the angle
between the faces (c)

3.2.7 User-assisted simplification

The presented method is user-assisted because the user can test simplifying
different parts of the model. Simplifying the whole model with a unique level of
detail does not always produce a simplification that satisfies the user’s require-
ments about the total number of triangles in the simplified model and the levels
of detail of the different subobjects. Our method gives the total control to the
user for giving different levels of detail to the different subobjects. This will
produce an automatic simplification that preserves the boundaries between the
subobjects, maintaining the coherence in the model. The user can change the
different levels of details until a desired simplification of the model is obtained.

A possible strategy for the user to simplify the model could be the next: if
the user wants a maximum number of triangles in the simplified model to be
rendered, it can be limited by giving a level of detail for the whole model. The
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model will be simplified to this level of detail. After that, the user can change
the level of detail of any subobject of the model. The user can give more level
of detail to a simplified subobject or simplify it more. This can be done until
a simplified model that satisfies the user’s requirements about the number of
triangles in the subobjects is obtained. If a level of detail for the whole model
was given, a change in a local level of detail will automatically affect to the
other local levels of detail in order to maintain the final number of triangles.
This will not affect to the subobjects that have an associated level of detail
introduced by the user, because these subobjects have exactly the number of
polygons that the user wants for them. Examples are discussed in Section 3.3.

In order to simplify the whole model with a single level of detail preventing
the appearance of holes between the different subobjects and preserving the
boundaries, we follow the same steps explained in section 3.2.2, but without
considering the subobject information associated to the edges (Figure 3.7). We
store the edges in the order of their simplification costs given by the error
metric. We then simplify normally with the simplification method extracting
the edges in a sequential order.

Figure 3.7: Example of simplification step. A collapse of an edge is pro-
duced

When the user demands to simplify more a specific subobject, this simplifi-
cation will be performed normally with the subobject simplification explained
in section 3.2.2. After this, the algorithm will add more faces to the simplified
model in order to maintain the required level of detail for the whole model. To
do that, the stored simplification sequence is used. Hence, the algorithm will
perform vertex split operations with the collapsed edges of the subobjects that
have not a required level of detail introduced by the user. With this operation
the vertex obtained after a collapse will produce the edge again and the affected
faces will be retriangulized. This is performed until the total level of detail is
obtained. A pseudo-code of this algorithm is presented in Figure 2. In this
Figure we can see that the vertex split operations are performed in order to
obtain the desired total level of detail. The extraction of a simplification step
from the simplification sequence will return the last collapse performed. Thus,
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the vertex split operations will undo the last collapse operations. The vertex
split operation is not performed if the extracted simplification step pertains to
a submesh that has an associated level of detail introduced by the user, because
this submesh has exactly the number of polygons that the user wants for it.

On the other hand, when the user refines a simplified subobject, this re-
finement will produce split operations in this subobject. For this purpose, the
simplification sequence will be used. This way, the last collapse operations
stored with the information of this subobject will be undone, generating the
edges that had been collapsed. This is performed until the desired level of
detail in the subobject is obtained. And more edge collapse operations from
other subobjects that do not have an associated local level of detail must be
performed in order to maintain the desired total number of triangles in the
final object. This is also considered in Algorithm 2.

If the user requires leaving a subobject intact, he only has to assign the
corresponding level of detail of this subobject to 100%. Therefore, the simpli-
fication will not affect to this particular subobject.

Algorithm 2 Pseudo-code for reobtaining the desired total number of triangles
after a modification in any submesh

function obtain totalLevelofDetail(Model m, LOD total lod,
SIMPL SEQUENCE simpl seq)

if totalLevelofDetail(Model) < total lod then
while gobalLevelofDetail(Model) 6= total lod do

simpl step= extract last simpl step(simpl seq)
if simpl step.submesh has not local level of detail assigned by the

user then
performSplit(simpl step.info, m)

end if
end while

else if totalLevelofDetail(Model) > total lod then
while gobalLevelofDetail(Model) 6= total lod do

edge= extract edge of subobject without associated level of detail
performCollapse(edge, m)

end while
end if

end function

An example is shown in Figures 3.8, 3.9 and 3.10. Figure 3.8 shows the
levels of detail of a model simplified with a total 50% percentage. The edges
have been collapsed in the order of their simplification costs, without taking
the subobject information into account. In Figure 3.9 we can see that the
first subobject has been simplified to 25%. The levels of detail of the other
subobjects have to be modified in order to maintain the total number of trian-
gles. Therefore, the other subobjects have been refined with the information
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stored in the simplification sequence. On the other hand, in Figure 3.10 the
first subobject has been refined to its 100% of its original geometry. Thus, the
other subobjects have been simplified in order to maintain the total number of
triangles.

Figure 3.8: Levels of detail of a model simplified to 50% of its original
geometry

Figure 3.9: Levels of detail of a model simplified to 50% of its original
geometry, simplifying the first subobject to 25%

3.3 Results
We have tested several models with our method and some examples are

exposed here. The different characteristics of the method are divided into sub-
sections. The models used to present the results are introduced in Figure 3.11
and their geometric details given in Table 3.1. The subobjects of the models
are represented with different colors. All the percentages of simplification are
relative to the number of triangles of the models.
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Figure 3.10: Levels of detail of a model simplified to 50% of its original
geometry, maintaining the level of detail of the first subobject at 100%

Table 3.1: Details of the models presented in the results subsections

Model Subfigure Triangles Vertices Subobjects
Casino 3.11(a) 315 357 10
Yacht 3.11(b) 532 352 11

Speaker 3.11(c) 5 202 5,276 184
X-wing 3.11(d) 8,716 10,026 1,004
Cellular 3.11(e) 11,728 14,259 1,541

Ball 3.11(f) 12,264 8 272 22
Racing car 3.11(g) 42,964 41,620 1,579

Toy car 3.11(h) 59,589 56,442 2,007

3.3.1 Simplification of subobjects

The presented method allows subobjects to be simplified at different levels
of detail. This way the user can simplify more some parts of a simplified model
or refine other ones by giving them more level of detail. Some examples are
shown in this subsection. In Figure 3.12 we can see the simplification of a
subobject of the speaker model. Figures 3.13 and 3.14 show a refinement of
some parts of the model in a simplified version. Figure 3.13 shows the racing
car model simplified to 10% and a refinement of the subobjects that make up
the wheel at different levels of detail. And Figure 3.14 shows the toy car model
simplified to 10% and a refinement of the subobjects that make up the steering
wheel at different levels of detail. In Figure 3.15 we can see a wheel of a model
refined with different levels of detail. In Subfigure 3.15a the original model is
shown, in Subfigure 3.15b the whole model has been simplified to 10% of its
original geometry, and in Subfigure 3.15c and Subfigure 3.15d a refinement of
the wheel has been performed. In Subfigure 3.15c the wheel is recovered at 50%
and in Subfigure 3.15d at 100% of its original geometry. It can be appreciated
that the boundaries between the simplified parts are preserved. In Figure 3.16
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.11: Models presented in the results subsections
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more than one subobject of the ball model are simplified at different levels of
detail. And Figure 3.17 shows a relative simplification in the ball model, where
a subobject is maintained to the half level of detail than other one.

Figure 3.12: Original speaker model (a) and simplifications of the front
subobject represented by a brown color to 50% (b), 30% (c) and 10% (d)

Figure 3.13: Original racing car model (a), model simplification to 10%
(b) and refinements of the subobjects that make up the wheel at 50% (c)
and 100% (d)
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Figure 3.14: Original toy car model (a), model simplification to 10% (b)
and refinements of the subobjects that make up the steering wheel at 50%
(c) and 100% (d)
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Figure 3.15: Example of subobject simplification with our method. In
(a) the original model is shown. In (b) the whole model is simplified to
10%. And in (c) and (d) the wheel of the model is refined to 50% and 100%
respectively of its original geometry
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Figure 3.16: Simplifications of the subobjects represented by the pink and
green colors. In (a) the pink subobject is simplified to 50% and the green
subobject is simplified to 30%. In (b) the pink subobject is simplified at
30% and the green subobject is simplified to 50%

Figure 3.17: Relative simplification. The subobject represented by the
green color is simplified to 80%, 40% and 20%, while the subobject repre-
sented by pink color is always maintained at the half level of detail, that is,
40%, 20% and 10%, respectively

3.3.2 Boundary preservation

In this subsection we justify why we unify the model and take boundaries
into account. If the model is not unified and boundaries are not taken into
account holes and distortion can be produced. We present some examples of
simplifying the models by applying QSlim [GH97] without unifying the models
(that is, generating a model with an unique subobject) and the simplifications
applying our method (Figures 3.18 and 3.19). We can appreciate that the
boundaries between subobjects have been preserved with our method. There-
fore, the unification of the models is done in order to avoid the appearance of
holes between the subobjects.
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Figure 3.18: Simplifications of X-wing model with QSlim to 50% (a), 30%
(b) and 10% (c) and with our method to 50% (d), 30% (e) and 10% (f)

Figure 3.19: Simplifications of cellular model with QSlim to 50% (a), 30%
(b) and 10% (c) and with our method to 50% (d), 30% (e) and 10% (f)
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3.3.3 Texture coordinates recalculation
Textures play an important role in the final appearance of a simplified

model. Therefore, a recalculation of the texture coordinates of vertices that
have been affected after a simplification step is performed. An example of this
recalculation was presented in Figure 3.5. In this figure we can see a simplifica-
tion applying the texture coordinates recalculation and a simplification without
applying it. It can be observed that the textures are more accurate with the
texture coordinate interpolation.

3.3.4 Normals recalculation
Normals are also an important attribute to be taken into account in order to

achieve a final appearance of the simplified model that is as similar as possible
to the original one. We have exposed a post-process method that considers
the angle between faces in order to calculate per-vertex or per-face normals. In
Figure 3.20 we can see two points of view of an object in which the normals have
been recalculated. In the parts of the model with angles between faces higher
than the threshold, normals have been calculated per face, as for example in
corners or the back lights of the model. And in the parts of the model with low
angles between faces normals have been calculated per vertex, as for example
in the wheels.

Figure 3.20: Toy car model simplified to 30%, in which the normals have
been recalculated

3.3.5 Using different error metrics
In the presented method any metric based on edge collapse operation can

be used. Here two different error metrics have been used in order to present
the results: a geometry-based error metric (QSlim quadrics [GH97]) and a
viewpoint-driven error metric (VMI [CSCF08]). The viewpoint-driven error
metrics usually produce better visual results for the viewer, but are slower than
the geometric-based metrics, due to the number of renders to be performed.
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Figures 3.21 and 3.22 show simplifications of the casino model and yacht models
using both metrics. We can observe that the simplified models maintain the
subobject information and the boundaries between them are preserved. Table
3.2 shows some statistics of these simplifications.

Figure 3.21: Original casino model (a) and simplifications of the model
to 60% with our method using QSlim quadrics (b) and VMI (c)

Figure 3.22: Original yacht model (a) and simplifications of the model to
50% with our method using QSlim quadrics (b) and VMI (c)

Table 3.2: Models presented in the results subsections

Model Triangles removed Error metric Time (sec)
Casino 189 QSlim 0.016

VMI 5.062
Yacht 266 QSlim 0.032

VMI 7.25

3.3.6 Temporal cost
The temporal cost introduced by this method during the simplification is

negligible. We state this because:

• The possibility of simplifying the different submeshes of the model with
different levels of detail does not introduce any temporal cost. The only
difference is the order in which the edges are extracted.
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• The computational and temporal cost introduced to maintain the bound-
aries is only the cost introduced by conditional operations.

• The computational and temporal cost introduced to recalculate the tex-
ture coordinates is only the cost introduced by a linear interpolation.

3.4 Conclusions

A user-assisted simplification method for triangle meshes generated from
CAD models has been presented. This kind of mesh normally consists of dif-
ferent and independent subobjects. These subobjects are not necessarily in-
terconnected. Thus, simplifications produced by some of the existing methods
would usually produce distortion and holes between the subobjects of the mod-
els. Simplification methods do not always present simplifications that satisfy
the users’ requirements about the total number of triangles in the simplified
model and the levels of detail of the different subobjects. Users can demand
different levels of detail in each submesh. Therefore, some parts of the mod-
els have to be modified. Simplification process is not usually used for this
purpose, because this process is done by hand by the designers. Moreover,
simplification tools do not offer an automatic process to manage this kind of
mesh with the possibility of simplifying the subobjects to different percentages
of simplification.

The presented method allows the different subobjects of the meshes ob-
tained from CAD models to be simplified with different levels of detail. It also
presents the possibility of simplifying whole models with a single level of detail.
Therefore, the user can simplify the whole model and then modify some parts,
by simplifying more or by refining the desired subobjects. This can be per-
formed while the total number of triangles is maintained. This way, the user
can try with different levels of detail of the subobjects to find a simplification
that satisfies the user’s requirements, while the total number of triangles in
the final object required by the user is maintained. Moreover, simplifications
with proportions between the levels of detail of different subobjects can be
performed. Boundaries are always preserved and no holes are produced in the
simplified objects. This method also takes into account the information of tex-
ture coordinates and normals, which are necessary to obtain an accurate visual
simplification. Any metric based on edge collapse operation and any kind of
edge collapse operation can be used in this method.

This method has been implemented for metrics based on edge collapse op-
eration. Hence, a possible option for future work is to extend this work in order
to be able to use any simplification operation.

We can see in the results set out in this section how our method accurately
preserves the boundaries and no holes are produced when we simplify either
the whole model or independent subobjects with different levels of details. We
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also present the final appearance of simplified models with texture coordinates
and normals recalculation.

Moreover, the temporal cost introduced by this extension during simplifica-
tion can be considered to be negligible in comparison to the total simplification
time.
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CHAPTER 4
A Texture-based Metric

Extension for Simplification
Methods

4.1 Introduction

A simplification process produces objects with less geometry than the orig-
inal ones, attempting to preserve the appearance of the original objects. How-
ever, the final geometry is not the only important factor in objects obtained
after a simplification process. Models usually consist of additional attributes to
their geometry. Interactive applications need to present the simplified models
with a good aspect. And textures play an important role on their appearance.
Therefore, good textured models must be presented in the scene.

There are a lot of simplification methods that do not consider texture in-
formation in the error metric. If texture information is not taken into account
in the error metric, the order of the simplification steps will be established
without considering the texture of the model. Therefore, simplified objects
can present a great distortion when the texture is applied. This will produce
unsuitable simplified models to be shown in interactive applications.

Moreover, meshes used for real-time applications are usually composed of
submeshes that contain vertices with different sets of attributes. To ensure
that every vertex has a single set of attributes, they need to duplicate vertices.
If these meshes were used directly by the current graphics pipeline architecture
a distorted final object would be obtained.
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We present a texture-based metric extension useful for those simplification
methods that do not consider the texture information in their error metric.
Moreover, a common geometric property of meshes usually used in interactive
applications (like the use of duplicated vertices at the same spatial coordinates)
is considered in this work. Moreover, the consideration of this work for preserv-
ing other attributes additional to the geometry of the models, such as normals,
is also presented.

The presented metric extension avoids the early collapse of edges that
crashes with no uniform regions of the texture. The detection of these regions
is performed by an edge detector method based on Canny [Can83] [Can86]. For
testing the new error metric extension, the simplification method presented in
[CSCF08], based on edge collapses, has been used. It can be observed that
simplified models with this new metric present more realistic results than be-
fore. This metric extension produces a modification in the order of the edge
collapses. It is very useful for multiresolution models. The computational cost
of this metric extension is negligible compared with the simplification time.

The error metric extension presented here is based on the different infor-
mation given by the texture image. It tries to distinguish the borders in the
texture and uses this information to modify the order of the collapses. This er-
ror metric extension has been tested with the simplification method presented
in [CSCF08], that is based on edge collapse operations. This method did not
originally take into account textured models. Thus, a simplified model usually
produced a great distortion on the texture. Trying to improve that, we have
extended the method with the presented error metric, preserving the textures.
This metric produces a later simplification of the regions of the model that
contain abrupt changes of the texture.

This extension is very useful for the generation of simplification sequences
of multiresolution models, commonly used in games. Multiresolution models
present the possibility of been rendered in the scene in different levels of detail,
depending on various factors such the distance of the object to the viewer, the
relative importance of the object in the scene, etc.

4.1.1 Motivation

It is very important to use a simplification that produces good textured
simplified objects, because of the visual importance of the texture.

There are a lot of simplification methods for three-dimensional models, but
only a few of them consider the texture information in its error metric [GH98]
[Hop99] [XSX05]. Therefore, the methods which do not consider the texture
information usually present simplified models with distorted textures. Usually,
the methods which consider this information use a specific metric only valid
for them.

Here we present a solution to this problem. So, the presented error metric
extension is useful for taking texture information into account in those methods
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that do not consider it in their error metric.

4.2 Error metric extension

We have developed a new texture-based error metric extension for simplifi-
cation algorithms which use edge collapse operation. It is based on the shape of
the texture, in order to present a more realistic aspect of the simplified model
when the texture is applied. Simplification methods which use edge collapses
assign a cost to each edge that determines the order of the collapses. Depending
on the borders of the texture, we modify the cost of each edge in order to pe-
nalize those edges that intersect these borders. We explain the steps performed
to do that.

First of all we detect the borders of the texture. This is done by an edge
detector method based on Canny [Can83] [Can86]. This edge detector works
in a multi-stage process. A Gaussian convolution is applied in order to smooth
the texture. Then, regions of the texture with high first spatial derivatives
are highlighted applying a simple 2D first derivative operator. Edges give rise
to ridges in the gradient magnitude image. Then, non-maximal-suppression is
applied, that is, all pixels that are not actually on the ridge top are set to zero.
These pixels would be drawn as a thin line in the output. Two thresholds are
used to apply hysteresis, allowing the continuity of noisy edges.

Depending on different factors, the quantity and thickness of output borders
can change:

• The size of the gaussian filter: Depending on how much the texture is
smoothed by the Gaussian convolution, fewer clear lines would be marked
as borders or not.

• Thresholds: the low and high thresholds would give to the algorithm
what we think is relevant information or not.

Figure 4.1 shows the difference obtaining the borders of a texture by using
different values for the parameters.

Once edges detection has been performed, we have as result an image with
these borders. We store in a matrix the values (white or black) of each pixel
of this image. Now, we have in a data structure the shape of the borders and
we can work with them. If we applied this image to the 3D model, we could
see which edges intersect with borders (see Figure 4.2). So, if an edge that
intersects any of these borders is collapsed a great distortion on the texture
would be obtained. Therefore, these edges must have a high cost of collapse.

We have to know which edges cross any border. In order to do that, we use
the texels of each edge of the model. So, we know how each edge is located
in the texture. With a few simple 2D operations we can determine whether
this edge rendered on the texture crosses any border. Let E be the set of these
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(a) (b) (c)

Figure 4.1: Borders of the texture of the robot model using the following
parameters: (a) size of gaussian filter = 0.1, low threshold = 0.1, high
threshold = 0.2; (b) size of gaussian filter = 0.9, low threshold = 0.1, high
threshold = 0.2; (c) size of gaussian filter = 0.9, low threshold = 0.8, high
threshold = 0.9

affected edges. Figure 4.2 shows the sphere model textured. In this model the
edges that have a part in one black region and other part in one white region
would pertain to E.

We store all the active edges in a heap, where each edge has an associated
cost. Therefore, edges with lower cost will be first collapsed. We then mod-
ify the previous costs of the edges that pertain to E, to be lately collapsed
(functions of Algorithm 3). Function getE(Texture, Model) returns the set
of the edges that intersect with any border of the texture. It is called in the
beginning of the process. And the cost of each edge is given by the function
computeEdgeCost(e,E).

The relative area of a region of the model is the area of this region divided
into the sum of the areas of all the triangles of the model. We add to the
previous cost of each edge the relative area of the triangles that contain the
edge that we are analyzing.

So, we define the total area of the model as the sum of the areas of all the
triangles of the model (4.1). Thus, for one specific edge the additional cost
will be the sum of the areas of the triangles which contain this edge divided
by the total area of the model (4.2). This way, the area of each triangle plays
an important role in the order of the edge collapses, causing that the triangles
with lower areas will be first removed than the triangles with similar previous
cost and higher areas (if the model is manifold, in an edge collapse one or
two triangles are removed). Therefore, the cost for each edge e ∈ E (cF ) is
calculated as follows:

AT =
n∑

i=1

ai (4.1)

being n the number of triangles of the model and ai the actual area of the
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triangle i.

cF = ce +
∑t

i=1 ai

AT
(4.2)

Figure 4.2: A textured sphere model. It can be seen that edges intersect
with borders

This extension metric is also useful for maintaining other attributes addi-
tional to the geometry of the model, like for example the normals. The idea is
the same. The only difference is the consideration of other images in order to
obtain the borders to assign the cost associated to each edge. In the particu-
lar case of the normals of the model, the normal map will be considered. An
example of the border detection in normal maps is shown in Section 4.4.2.

4.2.1 Justification of the metric
The extension is based on texture information and it is clear which edges

have to be penalized, but we have to know how to change their collapse cost.
We have chosen as error extension the relative area of the triangles that contain
the collapsed edge, because the more area has a triangle the more noticeable
will be its removal in the simplified object.

Another possible error metric extension that we have considered was the
relative area of these triangles in the texture domain, because we are taking
into account the texture information in this metric. The texture coordinates
of an object may not be uniformly distributed. So, small triangles in the 3D
space may be parameterized with a large triangle in the texture domain. An
example is shown in Figure 4.3, where the eye of the ninja model is almost such
large as any other part of the body. Therefore, good simplification results by
using this possibility will depend on the importance of the sizes in the texture
given by the designers.
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Algorithm 3 Pseudo-code of computing the cost of an edge
function getE(Texture, Model)

E = Ø
M = EdgeDetection(Texture)
for each e of the Model do

if e crashes with a border of M then
Insert(e, E)

end if
end for
Return E

end function

function computeTextureError(e, E)
if e in E then

t = getTriangles(e)
Ct = relativeArea(t)

else
Ct = 0

end if
Return Ct

end function

function computeEdgeCost(e, E)
Ce = computeEdgeCollapseError(e)
Ct = computeTextureError(e, E)
Return Ce+Ct

end function

Figure 4.3: Texture of the ninja model
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4.3 Submeshes consideration

We also consider a common geometric property of meshes used in interac-
tive applications. Meshes used in interactive applications often present different
vertices with the same spatial coordinates. This is necessary to represent ver-
tices with more than a single set of attributes (like the corners of a cube),
but causes invisible holes in the mesh. These holes will become visible if the
simplification method does not take that situation into account.

To solve this problem the simplification strategy can make use of three
names: real edge, twin edge and fake edge. Real edge refers to the collapsed
edge; the twin edge is the edge joining two vertices which have the same spa-
tial coordinates as the collapsed vertices. The meaning of fake edge is well
illustrated in Figure 4.4.

Figure 4.4 presents a simple example of a simplification step. This figure
shows a part of a mesh composed by different submeshes. The edge (va,vb) has
been chosen by the simplification algorithm as the edge to be collapsed (real
edge). After that, edge (vc,vd) is determined as the twin edge for (va,vb) and
must also be collapsed in order to avoid a hole. However, this is not always
sufficient to completely avoid holes in this kind of mesh because in some cases
there is not an edge that can be collapsed to cap the hole (see Figure 4.4 - b, c,
d). In these cases a new vertex (fake vertex) must be generated to create a fake
edge so that it can be collapsed to effectively cap the hole. This fake vertex
will be initially topologically disconnected and it will be used in the fake edge
collapse. The attributes (normal, texture coordinates, bone assignments, and
so forth) of the fake vertex will be calculated to reduce visual artifacts in the
simplified mesh.

Note that we only need to introduce fake vertices if we are restricted to
working only with indices (such as in some multiresolution algorithms [RC04]).
Other vertices are simply translated to cap the holes resulting in face elimina-
tion. A pseudo-code is presented in Algorithm 4.

This algorithm is very useful for submeshes because it prevents holes from
appearing in the joints of the submeshes when the simplification algorithm
collapses and edge of one of the two submeshes.

4.4 Results

Several models have been tested with the new error metric and it can be
observed in the results showed in this section that the texture in the simplified
models is more accurate to the original models than before. Moreover, we have
also tested with the border detection in normal maps in order to preserve the
normals of a model.

Therefore, in Section 4.4.1 a study of the use of the error metric extension
with different models is presented. Section 4.4.2 shows that this error metric
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Algorithm 4 Pseudo-code for edge contraction
while EdgeList 6= Ø do

realEdge=extract(EdgeList)
addSimplifList(realEdge)
if Twin(realEdge, EdgeList) then

twinEdge= Twin (realEdge, EdgeList)
addSimplifList(twinEdge)

end if
while disconnectedVert(realEdge, EdgeList) do

fakeVertex= disconnectedVert(realEdge, EdgeList)
fakeEdge= FakeEdge(realEdge, fakeVertex)
calculateAttributes(fakeVertex)
addVertexList(fakeVertex)

end while
end while

Figure 4.4: The edge collapse between va and vb (real edge) forces the
collapses of two other edges: the one formed by vc and vd (twin edge) and
the one formed by ve and vf (fake edge)

extension is also useful for preserving other attributes, such as the normals of
the models.

4.4.1 Texture preservation

The number of edges of the simplified models remains unaltered, but the
order of the simplification of these edges has been different. Now the edges that
crash in the texture domain with any border obtained by the edge detector
method have a higher error cost. Thus, those parts of the model that have
fewer edges crashing borders are more simplified than before. The border
detection process is performed as a pre-process. The borders detection time
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depends on the resolution of the texture, being a very fast process. Moreover,
the computational cost performed by this metric at each simplification step is
negligible compared with the simplification time.

The models have been simplified by the simplification method presented in
[CSCF08], based on edge collapse operations. We have chosen the parameters
of the edge detector method that we have considered appropriate to obtain the
most relevant borders of the texture. But giving other values to these param-
eters we would obtain more or fewer borders of the texture and, consequently,
more or fewer edges that have to be reordered in the collapse order.

Next, some simplified models are shown. Figure 4.5 shows the original eye
model. In Figure 4.6 the texture of this model and the borders of this texture
are shown. In Figures 4.7 and 4.8 it can be seen the difference between applying
the metric or not applying it in the eye model. Three levels of simplification
are shown (75%, 50% and 25%). In Figure 4.10 it can be seen the texture of
the ninja model and its borders detected by the edge detector method. Figures
4.11 and 4.12 show a 50% simplification of this model without applying the
new metric and applying it. First the original model is shown (left), then the
simplified model without applying the metric (centre) and then the simplified
model applying the metric (right). In Figure 4.14 the texture of the robot
model and its borders are shown. In Figures 4.15 and 4.16 it can be seen the
difference between applying the metric with the robot model and not applying
it in a simplification of 50%. Figure 4.18 shows the texture of the turtle model
and its obtained borders. Figures 4.19 and 4.20 show a simplification of 25%
of the geometry of the turtle model without applying the new metric and then
applying it. Better visual results are obtained with all the models.

Table 4.1 shows the number of polygons of each of these models. It can be
seen that this method preserves much better textures than methods that do
not take textures into account in the simplification process. We have used the
root mean square error (RMSE) of the pixel-to-pixel image difference [LT00] to
measure the mean visual error between the original and the simplified models.
This error was taken using 24 viewpoints and 512x512 resolution images; both
the number of viewpoints and the resolution were different from those used
to simplify all models. We must emphasize that each viewpoint was different
from the one used during the simplification process. The RMSE error values
for the simplified models applying and without applying our metric are showed
in Figures 4.9, 4.13, 4.17 and 4.21. We can appreciate in the results that better
visual results for the viewer always obtained by using our metric extension.
It can be observed that better quantitative results are obtained by applying
our metric with the models eye, ninja and robot. However, with the turtle
model we obtain higher values with our metric than without applying it. This
is because RMSE measures the difference between pixels in the images. The
user can observe a better visual aspect in the simplified version of the turtle
model by applying our extension (Figures 4.19 and 4.20), with a more accurate
texture appearance. However, RMSE penalizes a lot the parts of the silhouette
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that have disappeared in the simplification process, like for example the eyes
of the turtle model.

Table 4.1: Number of polygons of each model

Model Number of polygons
Robot 308
Turtle 640
Ninja 1,008
Eye 5,400

Figure 4.5: Original eye model

Figure 4.6: Borders of the eye model detected by the border detection
method with sigma = 0.75, low threshold= 0.5 and high threshold = 0.6
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Figure 4.7: eye model simplified at 75%, 50% and 25% without applying
our texture-based error metric

Figure 4.8: eye model simplified at 75%, 50% and 25% applying our
texture-based error metric

Figure 4.9: RMSE errors of the eye model obtained without our extension
and applying it for the simplifications to 75%, 50% and 25% of its original
geometry
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Figure 4.10: Borders of the ninja model detected by the border detection
method with sigma = 0.75, low threshold= 0.5 and high threshold = 0.6

Figure 4.11: Front of the ninja model. Original model (left) and the
model simplified at 50% without applying our texture-based error metric
(centre) and applying it (right)
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Figure 4.12: Back of the ninja model. Original model (left) and the model
simplified at 50% without applying our texture-based error metric (centre)
and applying it (right)

Figure 4.13: RMSE errors of the ninja model obtained without our ex-
tension and applying it for the simplifications to 75%, 50% and 25% of its
original geometry
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Figure 4.14: Borders of the robot model detected by the border detection
method with sigma = 0.75, low threshold= 0.5 and high threshold = 0.6

Figure 4.15: Front of the robot model. Original model (left) and the
model simplified at 50% without applying our texture-based error metric
(centre) and applying it (right)
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Figure 4.16: Back of the robot model. Original model (left) and the model
simplified at 50% without applying our texture-based error metric (centre)
and applying it (right)

Figure 4.17: RMSE errors of the robot model obtained without our ex-
tension and applying it for the simplifications to 75%, 50% and 25% of its
original geometry
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Figure 4.18: Borders of the turtle model detected by the border detection
method with sigma = 0.75, low threshold= 0.5 and high threshold = 0.6

Figure 4.19: Front of turtle model. Original model (left) and the model
simplified at 25% without applying our texture-based error metric (centre)
and applying it (right)

Figure 4.20: Back of turtle model. Original model (left) and the model
simplified at 25% without applying our texture-based error metric (centre)
and applying it (right)
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Figure 4.21: RMSE errors of the turtle model obtained without our ex-
tension and applying it for the simplifications to 75%, 50% and 25% of its
original geometry

4.4.2 Other attributes preservation

We have also applied this error metric extension for preserving other ad-
ditional attributes, such as normals. An example of this use is shown in this
section. Figure 4.22 shows the normal map of the robot model and the borders
obtained after applying the border detection method. The simplification result
of using this normals preservation is shown in Figures 4.23 and 4.24. In this
figure a simplification of the robot model to 45% of its original geometry is
shown without applying our extension and applying it. Better visual results
can be appreciated by applying our extension.

Figure 4.22: Normal map of the robot model (a) and its borders detected
by the border detection method with sigma = 0.7, low threshold= 0.5 and
high threshold = 0.6
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Figure 4.23: Front of the original robot model (left), its simplification to
45% without considering the border detection in normal maps (centre) and
considering it (right)

Figure 4.24: Back of the original robot model (left), its simplification to
45% without considering the border detection in normal maps (centre) and
considering it (right)
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4.5 Conclusions
In this chapter, a texture-based error metric extension for simplification

methods that uses edge collapse operations has been presented. With this
extension the texture information of textured models is also considered in those
simplification methods that did not take it into account before. The original
error and the new error based on texture information are both used in the
weighting of the edges.

When extending the previous error with this metric, the simplification order
of the regions that previously had a similar collapse cost may change. After
applying the metric, edge collapses would be produced earlier in the regions
with fewer changes in the texture. Thus, the regions with great changes in
the texture are simplified later than the others that have fewer changes in the
texture and a similar previous error. Therefore, this metric extension avoids the
early simplification of triangles which contain abrupt changes in the texture,
which prevents great texture distortions from appearing in simplified models.
Better visual results are obtained by applying our metric in comparison to
methods that do not consider the texture information in their error metric.
Results have also been tested with the metric RMSE [LT00].

This metric extension has also been tested for preserving other additional
attributes, such as normals, by obtaining the borders of the normal maps of the
models. Better visual results can also be appreciated by applying our extension
for this purpose.

The computational cost introduced by this metric is negligible in comparison
to the simplification cost.

Moreover, a common geometric property of meshes used in interactive ap-
plications is considered. This kind of mesh can have duplicated vertices in the
same spatial position in order to assign them different attributes, like normals
or texture coordinates. Simplifying these meshes without taking this property
into account can produce holes and great distortions in the simplified objects.
Therefore, a solution to consider this property has been also presented in this
chapter.

Thus, this contribution presents a new metric extension useful for extending
the error metric of the simplification methods in order to take the texture
information into account.
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CHAPTER 5
Viewpoint-driven Simplification

Using Textures

5.1 Introduction

In this chapter we present a simplification method with new metrics that
consider texture information in the simplification process (Section 5.2). As
explained before, textures play a very important role in the final aspect of the
objects for the viewer. Good geometric simplifications that do not consider
the texture information can produce great distortions when the objects are
textured. Therefore, the method presented here does not only consider the
changes of the geometry after each simplification step, but it also measures the
changes in the final aspect of the model with its texture applied on it. This
method is based on the segmentation of the texture images and makes use of
well-known concepts of the Information Theory.

The latest graphics hardware advances allow some applications to be ac-
celerated. Viewpoint-driven simplification methods are usually slow, due to
the number of renders necessary to complete the process. Therefore, the latest
graphics hardware capabilities have been used to speed up a viewpoint-driven
simplification method, like the one presented here (Section 5.3).

71
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5.2 Segmentation-based simplification for textured mod-
els

Here we present a new simplification method for triangle meshes that takes
texture shapes into account in its error metric.

The presented method is a viewpoint-driven simplification method and uses
edge collapse operation. An edge collapse is a simplification operation that
removes edges by merging the vertices of the edges. The final vertex can be
placed at one of the original vertices (half-edge collapse) or can be moved to
other spatial coordinates. Figure 5.1 shows an example of a half-edge collapse
operation.

Figure 5.1: The half-edge collapse operation. In this example the edge e
is collapsed into vertex u (see e(v, u)), but is also collapsed into v (see e(u,
v)). Triangles t10 and t5 are removed

We use different concepts from Information Theory, such as the discrete
entropy and mutual information defined by Shannon [Sha48], the generalized
entropy presented in [Tsa88] and generalized mutual information presented in
[HC67] in order to compute the error metric of the method. We can compare
the use of each of them. Therefore, we also present a quantitative comparison
of the use of each of them by obtaining the mean visual error given by the root
mean square error (RMSE) of the pixel-to-pixel image difference defined as in
[LT00].

Our method is a viewpoint-driven simplification method. Therefore, we
use some cameras around the object in order to obtain the cost associated
to each edge. These associated costs will give us the simplification order. In
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order to take the texture information into account, we use an image segmenta-
tion method. This will produce another image with different colored regions.
Considering texture information, edge collapses that produce a great change
in the texture will have a high associated cost. Therefore, we penalize those
edges that their collapse can produce great distortions in the final aspect of the
model. The main steps of this method are:

• The segmentation of the texture image, generating a new image with
some colored regions.

• The calculation of the initial costs associated to the edges of the model.
This will take into account the information obtained after the segmenta-
tion step.

• The simplification algorithm. After each simplification step, some costs
will be recalculated. This will also consider the segmentation information.

5.2.1 Simplification method

We propose a viewpoint-driven simplification method based on edge collapse
operation. Its metric makes use of the texture segmentation information to
assign the cost associated to each edge of the model.

The main parts of the method are the segmentation of the texture image,
the initial computation of edge costs and the iterative simplification process.
First, the method performs the segmentation of the texture. With this process,
a color-coded image with the most relevant regions of the model is obtained.
After that, it calculates the initial cost associated to each edge by using the
defined error metrics (Subsection 5.2.2). These error costs will establish the
simplification order. And, finally, the iterative simplification process is per-
formed. After each edge collapse, the cost of some specific edges in the affected
regions is recalculated. The method performs the edge collapse operations un-
til the desired level of simplification is obtained. A general workflow of the
method is shown in Figure 5.2.

The presented method considers texture shape in its metric. The algorithm
of simplification will produce simplified models considering the shape of the
texture applied on them. This way, great distortions in the applied texture of
simplified models will be avoided.

We divide the textures into regions. To do this, we perform a segmentation
of the texture image. We use the method presented in [FH04]. With this
method, a new color-coded image with the different regions of the texture is
obtained. The authors defined a predicate for measuring the evidence for a
boundary between two regions using a graph-based representation of the image
in order to produce the segmentation. Additionally, we have modified the color
selection in order to have a different color for each region. Therefore, we can
identify each region with a unique color.
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Figure 5.2: General workflow of the method

Figure 5.3 shows the segmentation of a texture image. This method accept
different parameters, such as σ (parameter of a Gaussian distribution used
in the segmentation process) and k (useful to compute a defined threshold
function). Depending on the value of these parameters, we will obtain different
segmentation results (see [FH04]).

Figure 5.3: Original texture of a turtle model (left) and the image after
the segmentation process (right)

In Section 5.2.2 we introduce the metrics presented here to consider the
texture information in the simplification process. And in Section 5.2.3 we
explain in detail the simplification steps.
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5.2.2 Error metrics
During the last years some authors have combined the idea of some Information-

theoretic measures of similarity with simplification methods ([LT00], [CSCF08]).
The results presented in [CSCF07] proved that this kind of measures can be
used with efficiency in the context of polygonal simplification. In this section we
present new measures to take textures into account in a simplification process.

Region viewpoint entropy

From the viewpoint entropy defined in [VFSW01] for polygonal models, we
present here the region viewpoint entropy. Applying the image obtained after
the segmentation process to the object, we can calculate the relative area of
the regions projected over the sphere of directions centered at viewpoint v.
Therefore, we define the region viewpoint entropy as

Hrv = −
Nr∑
i=0

ari

art
log

ari

art
, (5.1)

where Nr is the number of regions in the segmentation image, ari is the
area of the region i projected over the sphere, ar0 represents the projected area
of the background in open scenes, and art =

∑Nr

i=0 ari is the total area of the
sphere. Maximum entropy is obtained when a certain viewpoint can see all the
regions with the same projected area. The best viewpoint is defined as the one
that has maximum entropy.

Region viewpoint generalized entropy

We present here the region viewpoint generalized entropy. Entropy is
considered a particular case of the generalized entropy definitions proposed
by Rényi [R6́1] and Harvda and Charvát [HC67]. Tsallis [Tsa88] used the
Harvda-Charvát entropy in order to generalize the Boltzmann entropy in statis-
tical mechanics. Therefore, we have considered the so-called Harvda-Charvát-
Tsallis entropy in order to define the region viewpoint generalized entropy. The
Harvda-Charvát-Tsallis entropy is defined by

HT
α (X) = k

1−
∑

x∈X p(x)α

α− 1
. (5.2)

This entropy recovers the Shannon discrete entropy when α → 1.
Applying the image obtained after the segmentation process to the object,

we can calculate the relative area of the regions projected over the sphere of
directions centered at viewpoint v. Therefore, we define the region viewpoint
entropy is defined as

HrvT
α (X) = k

1−
∑Nr

i=0 (ari

art
)α

α− 1
, (5.3)
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where Nr is the number of regions in the segmentation image, ari is the
area of the region i projected over the sphere, ar0 represents the projected area
of the background in open scenes, and art =

∑Nr

i=0 ari is the total area of the
sphere. Maximum entropy is obtained when a certain viewpoint can see all
the regions with the same projected area. For extension, the best viewpoint is
defined as the one that has maximum entropy.

Note that the equation defined here can be also useful using the area of
the polygons of a model instead of the regions, like in the viewpoint entropy,
defined in [VFSW01].

Region viewpoint mutual information

From the viewpoint mutual information introduced in [VFSG06] [FSG09],
we present here the region viewpoint mutual information. The viewpoint mu-
tual information was introduced to select the best views. Taking the informa-
tion of the regions of the texture into account, an information channel V → R
between the random variables V and R is defined. This channel represents,
respectively, a set of viewpoints and the set of regions of a textured model.
Viewpoints are indexed by v and regions by r. The marginal probability dis-
tribution of V is given by p(v) = 1

Nv
, where Nv is the number of viewpoints.

That is, the same probability is assigned to each viewpoint. The conditional
probability p(r | v) = ar

at
is defined by the normalized projected area of region r

over the sphere of directions centered at viewpoint v. Conditional probabilities
fulfill

∑
r∈R p(r | v) = 1. Note that with this notation viewpoint entropy can be

rewritten as Hv = −
∑

r∈R p(r | v) log p(r | v). Finally, the marginal probabil-
ity distribution of R is given by p(r) =

∑
v∈V p(v)p(r | v) = 1

Nv

∑
v∈V p(r | v),

which represents the average projected area of region r, i.e., the probability of
a region r to be hit (seen) by a random ray cast from the viewpoint sphere.

From this channel, the mutual information between V and R, which ex-
presses the degree of dependence or correlation between a set of viewpoints
and the regions of the textured model, is given by

I(V ;R) =
∑
v∈V

p(v)
∑
r∈R

p(r | v) log
p(r | v)

p(r)
=

1
Nv

∑
v∈V

I(v;R), (5.4)

where

I(v;R) =
∑
r∈R

p(r | v) log
p(r | v)

p(r)
, (5.5)

called region viewpoint mutual information (RVMI), represents the degree
of correlation between the viewpoint v and the set of regions R, and it is a
measure of the quality of viewpoint v. Quality is considered here equivalent to
representativeness. The best viewpoint is defined as the one that has minimum
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RVMI. High values of the measure mean a high degree of dependence between
the viewpoint v and the object, indicating a highly coupled view. On the
other hand, low values correspond to the most representative or relevant views,
showing the maximum possible number of regions in a balanced way.

Region viewpoint generalized mutual information

We present here the region viewpoint generalized mutual information. Taneja
[Tan88] and Tsallis [Tsa98] introduced the generalized mutual information.
From the Harvda-Charvát-Tsallis mutual information and taking the regions
of the texture of a model into account, we define the region viewpoint gen-
eralized mutual information. The Harvda-Charvát-Tsallis mutual information
IT
α (X, Y ) between two discrete random variables X and Y is defined by

IT
α (X;Y ) =

1
1− α

1−
∑
x∈X

∑
y∈Y

p(x, y)α

p(x)α−1p(y)α−1

 . (5.6)

Therefore, similar to region viewpoint entropy (subsection 5.2.2), the gen-
eralized mutual information between V and R is given by

IT
α (V ;R) =

∑
v∈V

p(v)
1

α− 1

∑
r∈R

p(r | v)
(

p(r | v)α−1

p(r)α−1
− 1

)
, (5.7)

where

IT
α (v;R) =

1
α− 1

∑
r

p(r | v)
(

p(r | v)α−1

p(r)α−1
− 1

)
(5.8)

is the region viewpoint generalized mutual information. This definition
recovers the region viewpoint mutual information when α → 1.

Note that the equation defined here can be also useful using the area of
the polygons of a model instead of the regions, like in the viewpoint mutual
information, introduced in [VFSG06] [FSG09].

5.2.3 Simplification steps
The simplification process is divided into two main steps: the initial edge

cost computation and the iterative simplification process.

Initial edge cost computation

We perform an initial edge cost computation in order to assign a cost to
each edge. This will establish the order of the edge collapse operations. The
associated cost of an edge represents how the regions are going to change after
the collapse of this edge. The edges with high associated cost will be collapsed
in the last simplification steps. Therefore, the edges collapsed first will be those
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that will produce less change in the texture regions. This way, the method col-
lapses first the edges that will produce less distortion in the texture aspect in
the simplified model. The background is considered as another region. Thus,
models will also maintain their external geometric appearance by giving high
costs to those edges that their collapse will produce a great distortion in the
silhouette of the model, because the changes in the region formed by the back-
ground will also penalize these edge collapses. We use a histogram to calculate
the projected area of each region for each camera.

We define the cost associated to each edge as the sum of the differences,
before simplifying and after simplifying, of the metric used in the method. That
is,

ce =
∑
v∈V

| Mrv −M ′
rv | (5.9)

being Mrv and M ′
rv the actual and previous value of the metric used in the

method. In order to assign the initial cost associated to each edge, the method
works as follows:

• Step 1. Locate some cameras around the object. The distribution of these
cameras is based on platonic solids. That is, we place a camera at each
of the vertices of the selected platonic solid (for example, an icosahedron
will produce 12 cameras and a dodecahedron will produce 20 cameras).
The cameras will look at the center of the sphere formed by the solid.
We have used 20 cameras, like in ([LT00], [CSCF08]).

• Step 2. Render the model in the center of the sphere, textured with the
image obtained after the segmentation process. See Figure 5.4.

• Step 3. Calculate the initial Mrv for the model textured with the seg-
mented texture image.

• Step 4. Perform an edge collapse without an associated cost (initially,
there is no edge with an associated cost).

• Step 5. Calculate the actual Mrv and assign the difference with the
original Mrv to the collapsed edge.

• Step 6. Undo the edge collapse.

• Step 7. Until all the edges have an associated initial cost, go to Step 4.

Figure 5.4 shows an example of a model textured with the image obtained
after the segmentation of its texture. Some cameras are located around the
model.
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Figure 5.4: Model textured with the segmented texture image and cameras
around it

Iterative simplification process

After assigning the initial collapse costs to all the edges in the model, the
method will perform an iterative simplification process. Normally, the level of
simplification is indicated as the number of desired final faces. The method has
a count of the faces in the model at each moment. Therefore, the simplification
process will be performed until the desired level of simplification is obtained.
Edges are collapsed in the order given by their associated cost. Edges with a
low associated cost will be collapsed before than edges with a high associated
cost. After collapsing an edge, the cost of some edges must be recalculated.
These edges are the ones that are adjacent to the vertices adjacent to the vertex
resulting from a collapse (see Figure 5.5). This is because the regions of the
texture applied on the model, may change when the geometry is altered. To
do this, we create a viewport from each camera in order to analyze only these
edges. Therefore, we avoid recalculating the cost of all the edges in the model
again. The iterative simplification process works as follows:

• Step 1. Extract the edge E with the lowest associated cost.

• Step 2. Perform collapse of E.

• Step 3. Retriangulate the affected faces.

• Step 4. Recalculate cost of the affected faces.
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• Step 5. While the number of faces if greater than the desired number of
faces, go to Step 1.

Figure 5.5: Edges to be recalculated after an edge collapse. The red point
is the vertex obtained after the collapse. The red edges are the edges that
contain this vertex. The green edges are those that are adjacent to the
vertices adjacent to the vertex obtained after the edge collapse operation

5.3 Acceleration by hardware
Recent advances in real-time rendering have provided a new way to speed

up the simplification rates, by the GPU implementation of simplification meth-
ods. This way, the work can be distributed between the CPU and the GPU,
parallelizing the simplification tasks.

CUDA (Compute Unified Device Architecture) is a new compiler and tool
package developed by nVidia, which allows the parallelization of some tasks
in the GPU. This architecture provides new possibilities to speed up the sim-
plification methods. For example, in [RO08] some methods useful for mesh
operations are implemented in CUDA. Figure 5.6 depicts the CUDA architec-
ture.

View-dependent simplification methods are usually slower than methods
based on geometry. This is because they need to render several times the
object to be simplified. Here, we propose a way to use CUDA to speed up a
viewpoint-driven simplification method.

We have accelerated the method presented in Section 5.2, using the region
viewpoint entropy and region viewpoint mutual information as formulas to
compute the error metric.

Description of the acceleration

First, we have calculated the region viewpoint entropy and region viewpoint
mutual information with CUDA. This way we take profit of the capabilities of
new graphics hardware.
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Figure 5.6: CUDA architecture

In order to compute the region viewpoint entropy and region viewpoint
mutual information, the projected areas of the regions of the model have to
be calculated. To obtain the projected areas from different points of view, we
locate some cameras surrounding the object. The location of the cameras is
performed by a uniform distribution. We locate the cameras around the object
in the vertices of different platonic solids, like a dodecahedron (12 cameras) and
an icosahedron (20 cameras). We render the model from each camera, storing
all the data of each camera in a unique pixel buffer object. We make use of a
pixel buffer object [nVi04b] to transfer the data. This is the fast data transfer
to and from a graphics card through DMA (Direct Memory Access), without
involving CPU cycles.

Now the histograms from the different cameras can be obtained. nVidia
presented a method for computing histograms for nVidia CUDA compatible
devices [nVi07], but this works with a range of 64 or 256 bins. This is because
the shared memory is limited to 64 Kb. An efficient histogram for any number
of bins is presented in [SK07]. This work presents two possible implementations.
The first one allows atomic updates to be simulated in software, and the second
one avoids the collision updates.

For computing the histograms, the method presented in [SK07] is used.
This method allows atomic updates to be simulated in the shared memory of a
block. Note that this can also be performed directly with the last graphic cards
(from nVidia GTX generation). Therefore, this implementation could also be
performed by using atomic updates with this kind of graphic card. However, the
method presented in [SK07] works with any nVidia CUDA compatible device.
We store all the histograms in a same array, which will be used to perform the
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calculation of the region viewpoint entropy and the region viewpoint mutual
information.

In order to achieve the metric computation, we parallelize the calculation
by two different CUDA kernels. For the computation of the region viewpoint
entropy we just need the histograms already calculated. Atomic operations
are used in order to avoid conflicts in the same memory address. For the
calculation of the region viewpoint mutual information we have to take into
account that p(r | v) is an array calculated as the histogram values divided
into the resolution of the viewport. Moreover, p(r) can be calculated as the
mean histogram. This way, the computation of the region viewpoint mutual
information can also be parallelized, using atomic operations.

With the nVidia CUDA GPU occupancy calculator [nVi09b] we can adjust
the number of blocks and threads to be executed in each kernel, in order to
obtain the maximum performance

Figure 5.7 shows the workflow of the method.

Figure 5.7: Workflow of the accelerated method

5.4 Results

This section presents the results of the method. These results are divided
in two subsections. On the one hand, Subsection 5.4.1 presents the visual im-
provement of the simplified textured models produced by using our method. On
the other hand, Subsection 5.4.2 presents the temporal improvements produced
by the speed-up presented in Section 5.3.

5.4.1 Visual improvement

Several models have been tested with the presented method. We present
the results compared to another simplification method [CSCF07] which has
similar simplification steps, but without taking textures into account.
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This section shows some models and different simplifications of them. The
models are the shirt model (Figure 5.9), the head model (Figure 5.13), the
woman model (Figure 5.17) and the astroboy model (Figure 5.21). All these
models have been simplified with the method presented in [CSCF07] and differ-
ent configurations of our method. We present simplifications using the region
viewpoint entropy and mutual information using the definition presented by
Shannon [Sha48] in the error metric and with region viewpoint generalized
entropy and region viewpoint generalized mutual information using different
values of the alpha parameter. Therefore, the shirt model is simplified to 50%
of its original geometry (Figures 5.9), the head model is simplified to 50%
(Figures 5.13), the woman model is simplified to 50% (Figures 5.17) and the
astroboy model is simplified to 30% (Figures 5.21). Their original and seg-
mented textures are shown in Figures 5.8, 5.12, 5.16 and 5.20

It can be seen that this method preserves much better textures than meth-
ods that do not take textures into account in the simplification process. We
have used the root mean square error (RMSE) of the pixel-to-pixel image dif-
ference defined as in [LT00] to measure the mean visual error between the
original and the simplified models. This error was taken using 24 viewpoints
and 512x512 resolution images; both the number of viewpoints and the resolu-
tion were different from those used to simplify all models. We must emphasize
that each viewpoint was different from the one used during the simplification
process. It can be seen that lower values of the error are obtained with our
method. In general, considering the region viewpoint entropies as metric, bet-
ter values of the error are obtained by using the Shannon definition or with
values of the alpha parameter near to 1. Note that the generalized entropy
recovers Shannon discrete entropy when α → 1 (this is commented in Subsec-
tion 5.2.2). Using the region viewpoint mutual informations as metric better
results can be obtained than with the region viewpoint entropies in some cases,
depending on the model. Therefore, by using all the metrics proposed here
better results than without considering the texture information are obtained.
Thus, by using the different configurations of the metrics presented here, the
user can test and obtain simplifications that minimize the distortions of the
texture due to the simplification process.

Moreover, we present the evolution of the obtained RMSE for different
percentages of simplification of each model using the region viewpoint entropy
and the region viewpoint mutual information as error metrics. This can be seen
in Figures 5.11, 5.15, 5.19 and 5.23. In these graphics we can see that in some
cases the use of the region viewpoint entropy presents smoother transitions than
the region viewpoint mutual information. This could avoid abrupt changes
between two different levels of simplification of the models.

The temporal cost of this method is similar to the temporal cost obtained
in other viewpoint-driven simplification methods. This is because the main
difference is the way of computing the error metric, which is the calculation
of simple mathematical operations. Moreover, the texture image segmentation
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is a fast process. It depends on the resolution of the texture and it can be
considered as a pre-process.

Table 5.1 shows the geometric characteristics of the models used to present
the results.

Table 5.1: Details of the models presented in the results section

Model Triangles Vertices
Shirt 1,040 554
Head 2,872 1,438

Woman 4,130 2,460
Astroboy 4,822 2,474

(a) (b)

Figure 5.8: Original (a) and segmented (b) textures of the shirt model
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Original shirt model (a,d), simplifications to 50% without
considering textures in the metric (b,e) and with the region viewpoint gen-
eralized entropy with alpha=1,25 (c,f)

Figure 5.10: RMSE errors of the shirt model simplifications to 50% de-
pending on the alpha parameter
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Figure 5.11: RMSE errors of the senna model depending on the per-
centage of simplification using the region viewpoint entropy and the region
viewpoint mutual information as metrics

(a) (b)

Figure 5.12: Original (a) and segmented (b) textures of the head model
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: Original head model (a,d), simplifications to 50% without
considering textures in the metric (b,e) and with the region viewpoint Shan-
non entropy (c,f)

Figure 5.14: RMSE errors of the head model simplifications to 50% de-
pending on the alpha parameter
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Figure 5.15: RMSE errors of the head model depending on the percentage
of simplification using the region viewpoint entropy and the region view-
point mutual information as metrics

(a) (b)

Figure 5.16: Original (a) and segmented (b) textures of the woman model
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(a) (b) (c)

(d) (e) (f)

Figure 5.17: Original woman model (a,d), simplifications to 50% with-
out considering textures in the metric (b,e) and with the region viewpoint
generalized entropy with alpha=1,25 (c,f)
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Figure 5.18: RMSE errors of the woman model simplifications to 50%
depending on the alpha parameter

Figure 5.19: RMSE errors of the woman model depending on the per-
centage of simplification using the region viewpoint entropy and the region
viewpoint mutual information as metrics
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(a) (b)

Figure 5.20: Original (a) and segmented (b) textures of the astroboy
model

(a) (b) (c)

(d) (e) (f)

Figure 5.21: Original astroboy model (a,d), simplifications to 30% with-
out considering textures in the metric (b,e) and with the region viewpoint
generalized mutual information with alpha=0,75 (c,f)
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Figure 5.22: RMSE errors of the astroboy model simplifications to 30%
depending on the alpha parameter

Figure 5.23: RMSE errors of the astroboy model depending on the per-
centage of simplification using the region viewpoint entropy and the region
viewpoint mutual information as metrics
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5.4.2 Temporal improvement
We have tested the speed-up presented in Section 5.3 by using the region

viewpoint entropy and the region viewpoint mutual information as metrics with
several simplifications. We can see that we obtain improved temporal results
with this speed-up. In Table 5.2 we can see the times obtained with several
simplifications. All the times were obtained in an Intel Pentium 4 3GHz, 2GB
RAM with a nVidia GeForce 9800GTX+.

Table 5.2: Times using CPU implementations and times improved using
CUDA

Triangles Method Metric Simplification
removed time (sec)

654 Original Hrv 21.836
RVMI 21.451

Accelerated Hrv 12.874
RVMI 11.963

1,100 Original Hrv 43.391
RVMI 42.128

Accelerated Hrv 30.876
RVMI 29.684

3,569 Original Hrv 161.137
RVMI 147.194

Accelerated Hrv 121.169
RVMI 114.226

5,580 Original Hrv 302.157
RVMI 283.545

Accelerated Hrv 243.554
RVMI 221.718

5.5 Conclusions
We have presented a new segmentation-based viewpoint-driven simplifica-

tion method for textured triangle meshes in Section 5.2. Interactive appli-
cations tend to present models with a well-textured appearance. Therefore,
textures play an important role in this kind of application.

Simplification methods allow the applications to present models with less
geometry, reducing the GPU load. There are not many simplification methods
that consider texture information during the simplification process. If this
information is not taken into account, simplified models with great distortions
in their texture appearance can be produced. This method considers texture
information in its error metric. This way we obtain simplified models with a
more accurate texture appearance than with simplification methods that do
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not consider this information. Moreover, well-known mathematical concepts,
such as discrete and generalized entropies and mutual informations have been
used to formulate the error metric.

Results have been compared and measured with a well-known metric (RMSE).
The exposed results show the improvement in the texture appearance of the
simplified models using this method, compared with the methods that do not
consider texture information for simplifying the objects. Moreover, different
configurations of our method have also been compared. In general, using the
region viewpoint entropies as metric, better values of the error are obtained
by using the Shannon definition or with values of the alpha parameter near
to 1 (generalized entropy recovers Shannon discrete entropy when α → 1).
Better results could also be obtained by using the region viewpoint mutual
informations as metric. It depends on the models. Therefore, by using the dif-
ferent configurations of the metrics proposed here, different texture-preserving
simplifications of the models will be obtained.

The temporal cost of this method without applying any acceleration tech-
nique (like the one presented in Section 5.3) is similar than the temporal costs
of other viewpoint-driven simplification methods in the literature.

In Section 5.3, we have used CUDA architecture in order to speed-up a
viewpoint-driven simplification method, like the one presented in 5.2. Results
show a speed-up of the time employed performing all the instructions necessary
to calculate the metric. More advances in the architecture will allow us to
obtain still better results.
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CHAPTER 6
GPU-based normal map

generation

6.1 Introduction

A normal map is a two-dimensional image that contains RGB color elements
which are interpreted as three-dimensional vectors containing the direction of
the normal of the surface at each point. This is especially useful in real-time
applications when the normal map is applied to a three-dimensional simplified
model, because more detail in the simplified model can be specified without
needing more geometry. This feature enables the use of correct per-pixel light-
ing by using the Phong lighting equation.

Normal map generation is a key part in real-time applications, such as
video-games or virtual reality, due to the intensive use of techniques such as
normal-mapping, used to increase the realism of the scenes.

Compared to traditional per-vertex lighting, per-pixel lighting with normal
maps gives the rendered model a great amount of surface detail, which can be
appreciated through the lighting interactions of the light and the surface. This
technique gives detail to meshes without having to add real geometric detail.
Normal maps can be built in relation to three spaces: world space, object space
and tangent space.

• World space: each pixel stores its orientation in the world space, and no
additional computation is required to obtain the normal value. It works
correctly with static meshes.

95



“tesis” — 2010/6/14 — 17:42 — page 96 — #126i
i

i
i

i
i

i
i

96 Chapter 6 GPU-based normal map generation

• Object space: each pixel stores its orientation in the object space, so it
would be necessary to apply the object transformation matrix to obtain
the normal. It works correctly with moving objects.

• Tangent space: each pixel stores its orientation in relation to the face
that the pixel belongs to. It is ideal for deformable objects.

Figure 6.1 shows the normal map of a model in the world space.

(a) (b)

Figure 6.1: Original model (a) and its normal map in the world space (b)

Here we present two GPU-based methods for the generation of normal maps,
using vertex and pixel shaders. It involves a greater processing velocity than the
existing methods, because they make use of the CPU to generate the map. The
majority of present-day methods are generated by software by programming
the necessary instructions for the normal map generation so that the CPU
processes them. Traditional normal map generation methods [nVi04a] [ATI02]
use raytracing from the simplified model to generate the normal map. Then,
they apply as normal in the simplified model the normal in the detailed model
that is intersected by the ray. They offer the possibility of generating the
normal maps in the object and the tangent spaces.

Although normal maps can be easily generated when both the reference and
the working meshes use a common texture coordinate system, this is not always
the case and thus, it is not trivial to implement on the graphics hardware. This
is the reason why this kind of tools is often implemented in software.

The high programmability of current graphics hardware allows the imple-
mentation of these kinds of methods on the GPU. Therefore, the great scala-
bility of the graphics hardware, which is increased even more each year, can be
used to perform this task.
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Vertex and pixel shaders are used for the hardware generation of nor-
mal maps. Vertex shaders and pixel shaders are small fragments of pro-
grammable code, which state the way that the GPU uses the vertices and
pixels of the image. So, OpenGL sends the geometry of the object to the
graphics pipeline, which works with it. However, by using vertex shaders and
pixel shaders we can specify how the GPU has to work with this geometry.
Some works related with this topic exist in the literature, examples of which
are [EJRW96][HEG04][PAC97][Sch02][Vio02].

Here we present two methods for the generation of normal maps by hard-
ware: a very fast method for simplified models with texture correspondence
(Subsection 6.2) and a method that renders the normals of the detailed model
through the triangles of the coarse model (Subsection 6.3).

It must be said that after our publications a normal map generation based
on the GPU appeared in [TI07]. This method works by implementing the
traditional methods [nVi04a] [ATI02] on the GPU, that is, by performing a
ray-tracing from the low resolution model to the high resolution model and
assigning the nearest normals. Our methods, however, are based on ideas
that are easier to implement. Moreover, the times of the method presented in
Subsection 6.3 do not depend on the resolution of the normal map.

6.2 Fast GPU-based normal map generation for sim-
plified models with texture correspondence

Here we present a very fast hardware generation of normal maps that uses
vertex and pixel shaders. This idea involves a real-time normal map generation
of the object. This method is very fast and easy to implement.

It has to be considered that the presented method can present a more
realistic aspect of the object. This is due to the fact that software methods
perform operations to calculate the normal and the presented method apply
the real normal value. The difference in quality between the presented method
and the existing methods can be assessed as being almost negligible.

Although in this method two restrictions have to be accomplished:

• Texture coordinates have to be distributed so that the texture should
be correctly applied to both models. That is, the same texture can be
applied with good appearance in both models. Moreover, the texture
should occupy the whole texture space domain. That is, empty texture
space between different regions of the texture is not allowed.

• Two or more triangles should not share the same texel, otherwise the
colors generated for the normal map would superpose. However, this
requirement is studied in the literature [IC01][WB98], making emphasis
on the method presented in [SSGH01].
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(a) (b)

Figure 6.2: A detailed terrain model (a) and its texture (b)

In order to accomplish the first restriction the texture has to be expanded
occupying the whole texture space domain, without holes. Moreover, the orig-
inal texture coordinates must be valid for texturing correctly the simplified
model with the same texture. This method works perfectly for terrains and
walls, because these objects usually meet the requirements. An example is
shown in Figure 6.2. In this Figure we can see a detailed three-dimensional
terrain model and its texture. If the simplified versions of this model maintain
the original texture coordinates, the texture can be applied correctly to all
the simplified versions, even if the simplified model is a plane made up of two
triangles.

6.2.1 Description of the method

Unlike the majority of the normal map generation methods, the presented
method generates the maps by hardware, by making use of vertex and pixel
shaders. The idea is to generate the normal map of the high resolution model
in order to assign it to the low resolution model so that it takes on the aspect
of a more detailed object without increasing its geometry. The normal map
will be generated in the world space.

So, in order to generate a normal map with this method, a vertex shaders
and a pixel shaders will be used.

The enabled shaders here perform the following:

• The vertex shader flattens the image, so it transforms the coordinates of
each vertex depending on the texture coordinates. In other words, it is
taken as coordinates x=u, y=v, z=0, where (x,y,z) are the coordinates
of the object, and (u,v) are the coordinates of the texture. Moreover,
it passes the normal through the pipeline. The pseudo-code with these
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instructions is shown in Algorithm 5.

• The pixel shader generates the normal map so that it passes the normal
coordinates to the RGB components of the resulting color in this pixel.
For this purpose, it is necessary to convert the normal values into the
accepted range by the RGB plane, that is, [0,1]. Algorithm 6 shows the
pseudo-code of this pixel shader.

Algorithm 5 Vertex shader for normal map generation
result.pos.x = in.texcoord.u;
result.pos.y = in.texcoord.v;
result.pos.z = 0;
result.normal.x = in.normal.x;
result.normal.y = in.normal.y;
result.normal.z = in.normal.z;

Algorithm 6 Pixel shader for normal map generation
normal = in.normal.range(0, 1);
result.color.r = normal.x;
result.color.g = normal.y;
result.color.b = normal.z;

The result is directly stored in a texture so that it may be applied as a
normal map.

Although some methods exist that work by hardware in order to apply the
normal map to the low resolution model, this process is here commented. When
the normal map has been generated, the created texture is applied to the low
resolution model. This map will represent the virtual direction of the surface at
each point. This could be implemented with two shaders that work as follows:

• The vertex shader transforms the position of each vertex with the actual
transformation matrix (”Model-view-projection”, MVP) and passes the
texture coordinates (normal map) to the pipeline, and the position of
each vertex is transformed by the model transformation matrix (M) to
calculate the lightning in the pixel shader. Algorithm 7 shows the pseudo-
code of this vertex shader.

• The pixel shader obtains the color of each texture point, given by the
normal map. This normal map will be applied to the object. Moreover,
the pixel shader calculates the light direction, subtracting to the light
position the fragments position (candidate points as being pixels) of the
object. Finally, it converts the normals into the range [-1,1] and the
scalar product between the light direction and the normal is calculated
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to illuminate the object. Algorithm 8 shows the pseudo-code of this pixel
shader.

Algorithm 7 Vertex shader for normal map application
result.pos = MV P ∗ in.pos;
result.mpos = M ∗ in.pos;
result.texcoord = in.texcoord;

Algorithm 8 Pixel shader for normal map application
u = in.texcoord.u;
v = in.texcoord.v;
colortex = normalmap[u, v];
light.dir = in.mpos− in.light.pos;
light.dir.normalize();
normal = colortex.range(−1, 1);
color = light.dirnormal;
color = color.range(0, 1);
result.color = color;

6.2.2 Results
The presented method has been tested with some 3D models. The expected

results were obtained, so by using an object without a highly complex mesh,
an image of the object with a more detailed appearance is displayed.

The obtained times are not comparable with those of present-day software
methods, since a few milliseconds are taken by the presented method to gen-
erate the corresponding normal map.

The times with ATI NormalMapper [ATI02], nVidia Melody [nVi04a], and
the presented method using the tested models are shown in Table 6.1. Next,
several images are shown in order to compare the quality of this method with
the ATI’s and nVidia’s methods. For this purpose, the Tarrasque model at two
levels of detail (725 and 6 117 polygons) has been used.

Figure 6.3 shows the meshes of both the low resolution and high resolution
models, and the high resolution model rendered.

Figure 6.4 displays the normal map of Tarrasque model generated by our
method and the low resolution model with the normal map of the high reso-
lution model created by our method. Figures 6.5 and 6.5 display the normal
maps generated by ATI’s and nVidia’s methods and the corresponding low
resolution models with these normal maps applied.

The quality of our method is similar to that of the ATI’s and nVidia’s
methods, as seen in the images.
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Moreover, terrain and wall objects have been tested. The method works
perfectly for this kind of objects, because they usually meet the requirements
of this method. We show an example with Crater object. Figure 6.7 displays
the high resolution model (199 126 polygons), the low resolution model (9 079
polygons) and the plane meshes. Figure 6.8 displays the normal map of the
high resolution model of Crater. And Figure 6.9 shows the renders of the high
resolution model and both the low resolution model and the plane with the
normal map applied.

Figure 6.3: Low and high resolution model meshes of Tarrasque with the
rendered model

Figure 6.4: Normal map of the high resolution model generated by our
method and the low resolution model with it applied
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Figure 6.5: Normal map of the high resolution model generated by ATI’s
method and the low resolution model with it applied

Figure 6.6: Normal map of the high resolution model generated by
nVidia’s method and the low resolution model with it applied

(a) (b) (c)

Figure 6.7: High (a) and low (b) resolution model meshes of Crater and
a plane object (c)
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Figure 6.8: Normal map of the high resolution model of Crater

Figure 6.9: Renders of the high resolution model (above), low resolution
model with the normal map applied (left bottom) and the plane with the
normal map (right bottom)

Polygons of Time of Time of Time of
high res model our method ATI nVidia

1696 0.08 16850 16306
7910 0.53 24125 50589
48048 4.72 97704 160975
61644 6.02 129969 179569

Table 6.1: Table of times in milliseconds of the normal map generation
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6.3 Generalized GPU-based normal map generation
The method presented here generates the normal map completely on the

GPU, so that all the work is performed by the graphics hardware. This has
the advantage of taking profit of a highly parallelizable hardware which will
quickly increment its performance in the next years. Coarse versions of highly
detailed meshes are often modeled from scratch (as in the video game industry
for example), so we can not expect any correspondence between the two meshes
other than geometric proximity. Having this in mind, this method avoids the
requirement of generating the coarse mesh from the highly detailed mesh, and,
as a consequence, they can be modeled separately. Therefore, the restriction
about texture correspondence in the method presented in Section 6.2 is not a
requirement for this method.

6.3.1 Description of the method
We assume that the simplified version of a model is a good approximation

of it and that both are situated in the same spatial position, and have the same
sizes and orientation. To calculate the normal map the high resolution model
will be rendered for each triangle (T ) of the low resolution model. The high
resolution model will be rendered through the triangle T of the low resolution
model in the inverse direction of the normal of the triangle. We will use the
stencil buffer in order to discard all those parts of the model projected outside
of T .

For every fragment of the high resolution model projected through T , the
direction of the normal will be extracted and stored into the normal map. In
order to store this information, a transformation matrix must be calculated
at each render (detailed in this subsection). This matrix will transform the
triangle T to the two-dimensional triangle t that is formed by the texture
coordinates of T .

The algorithm is performed until all the triangles of the low resolution model
have been used to render the high resolution model and the information about
the normals for them have been stored.

Easily explained, the algorithm works as follows: the normals of all those
pixels of the high resolution mesh rendered through the window formed by the
triangle T will become the part of the normal map applied to T .

The only requirement of the method is that the texture coordinates of the
high resolution model must be fully unwrapped in a way that there are no
triangles overlapped in texture space.

Transformation matrices

For each iteration of the algorithm, a transformation matrix (which encap-
sulates the model, view and projection transformations) must be calculated.
This matrix transforms the triangle T (composed by the vertices v0, v1 and v2)
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to the two-dimensional triangle t (composed by the texture coordinates of T :
t0, t1 and t2). Figure 6.10 shows this process. Once obtained, this matrix will
be applied to every vertex of the high resolution model, so that all the triangles
visible through T will be projected onto the area defined by t.

Figure 6.10: The transformation matrix which converts the 3D triangle
T into a 3D triangle composed by the texture coordinates of T must be
calculated at each step

Model/View matrix calculation The model/view matrix (MV) is derived from
the three parameters that define a virtual camera which will be configured
so that its viewing direction is parallel to the normal of T, looking to the
center of the triangle and located at a certain distance of T. As we will use an
orthographic projection, the distance T will not affect the final projection.

To define a virtual camera, a third parameter is needed: the roll angle
usually specified as the up vector. This vector is calculated using its texture
coordinates.

Let (t1, t2, t3) be the texture coordinates of the three vertices of T (v1, v2, v3).
The vertical value on our two-dimensional space will be assumed to be the
vector (0,1) (see Figure 6.11). Having this in mind we can propose the following
equation system:

0 = α(t2x − t1x) + β(t3x − t1x)
1 = α(t2y − t1y) + β(t3y − t1y) (6.1)

Working out the values of α and β will let to calculate the desired vector
in the following way:

~UP =
∥∥∥α( ~v2 − ~v3) + β( ~v3 − ~v1)

∥∥∥ (6.2)

Projection matrix We will use a pseudo-orthogonal projection matrix to project
the vertices of the high resolution model. Similar to an orthogonal matrix, it
will not modify the X and Y coordinates depending on the value of Z. However,
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Figure 6.11: Calculation of the α and β parameters in order to obtain the
up vector

its behavior is not exactly the same of a common orthogonal matrix, as we will
explain later.

We need to calculate a projection matrix (P) which transforms the co-
ordinates of T into its texture coordinates t, so we propound the following
equations:

Pvi = ti ∀i ∈ {0, 1, 2} (6.3)

The problem here is that the matrix P is a homogeneous transform matrix
(it has 16 elements), and thus it can not be solved directly because we have
not enough equations.

As we are looking for a pseudo-orthogonal matrix which transforms the X
and Y coordinates of each vertex to the texture coordinates, our calculations
are based on the equation system of a orthogonal projection matrix. This
matrix is given by



2
r − l

0 0 −r + l

r − l

0
2

t− b
0 − t + b

t− b

0 0 − 2
f − n

−f + n

f − n
0 0 0 1


(6.4)

where f , n, r, l, t and b give the parameters of the frustrum.
Therefore, we calculate the value of the unknowns (Pn) shown in equation

6.5.
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P
′
=


PA PB 0 PC

PD PE 0 PF

0 0 − 2
f − n

−f + n

f − n
0 0 0 1
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z

1

 =


Ntix
Ntiy
0
1

 (6.5)

where f and n give the distance from the eye to the far and near clipping
planes, i refers to each one of the three vertices of T , and wi refers to those
vertices pre-multiplied by the MV matrix, as shown below:

MV ~vi = ~wi ∀i ∈ {1, 2, 3} (6.6)

Ntix and Ntiy are the normalized device coordinates for each one of the
transformed vertices. As after perspective division, the visible coordinates in
the screen are located in the range [-1,1]. Nevertheless, we want them to be
in the range [0,1] of the texture coordinates, then we have to take that into
account. They are calculated using the following formula:

(Ntix, Ntiy) = 2(tix, tiy)− 1 ∀i ∈ {1, 2, 3} (6.7)

After solving the equation system 6.5 we get the desired pseudo-orthogonal
matrix which projects every vertex of the high resolution model in a way that
all the triangles visible through T will be rendered inside the area formed by
the texture coordinates of T .

Framebuffer

As explained before, the number of renders of the high resolution model
needed to be performed is equal to the triangle count of the low resolution
model. However, we are only interested in the pixels which are inside the area
formed by the triangle T projected with the matrix MV P . Setting up the
stencil buffer to discard all pixels which are outside the projection of T , is a
very simple way to discard unwanted pixels and to protect those parts which
have been already rendered.

Finally, the pixel shader rescales every unmasked normal to the range [0,1],
so that the normal vector can be encoded as a color in the RGB space.

The auto-occlusion problem

Sometimes, there are some parts of the models that will cause this method
to fail. This happens when there is another part of the model between the
camera and the real target surface. This problem is clearly shown in Figure
6.12, where a part of the model is incorrectly occluding the desired surface
(colored in red), causing the normal map to be completely invalid.
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Figure 6.12: Auto-occlusion problem: the ear next to the camera is oc-
cluding the real desired geometry

To solve this problem we have developed a technique called vertex mirroring.
Basically we consider that if a pixel is going to be drawn more than once (some
parts of the model overlap in screen space), then the valid pixel will be that
one which is closer to T . This is similar to what raytracing-based normal map
generation algorithms do: if some polygons intersect the ray, take the one which
is closer to T .

Let Π be the plane containing T . Let N be the normal of Π, vi be each one
of the vertices of the high resolution model and ki be the distance between Π
and vi. Then the final position of vi is recalculated as follows:

~vi = ~vi − 2clamp(ki, 0, ki) ~N (6.8)

The function clamp(a, b, c) will trunk the value a inside the range [b, c].
This ensures that all vertices of MHR are in front of the plane Π, because those
vertex that are behind that plane are mirrored through it. After performing
this step, we can use the standard depth test to ensure that each rendered pixel
is the nearest possible to T .

This technique can be implemented in a vertex shader for optimal perfor-
mance, in a clear, elegant and efficient way.

Normal map border expansion

Once the previous process is over, the normal map is correctly calculated.
However, due to the texture filtering methods used in real-time hardware, nor-
mals could incorrectly interpolate with their neighboring ”‘empty”’ texels. To
solve this problem, we need to create an artificial region surrounding every part
of the normal map.

To detect those texels that do not contain a valid normal, an extra pass
rendering a full screen quad textured with the previously generated normal
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map will be performed. For each pixel, the pixel shader of the normal map
generator will check if the texel belonging to the pixel being processed has a
module lower than 1, which means that it does not contain a valid normal
(because all normal must be unitary). If that happens, the pixel must be filled
with the average normalized value of its neighboring texels which contain a
valid normal.

At the end of the process a 1-pixel sized frontier is created around all parts
of the normal map that did not contain a valid normal. This process can be
repeated with the resulting texture to expand the frontier to a user defined
size.

6.3.2 Results

All the tests were performed on an Intel Pentium 4 3GHz, 2GB RAM with
a nVidia GeForce 9800GTX+ and can be divided into two categories: perfor-
mance and quality tests. Table 6.2 shows a study of total times required to
generate the normal maps for two models with different polygonal complexity.
For each model (HRM , first column) different coarse approximations are used
(LRM , second column) to generate the normal map. The column on the right
shows the time in milliseconds needed to calculate the normal map for a certain
combination of meshes.

Table 6.2: Total times in milliseconds needed to generate the normal maps
for two different models, using a set of different coarse approximations

Triangles HRM Triangles LRM Time (ms)
250 77,05
500 146,85

69 451 1 000 276,72
2 000 558,91
2 500 682,51
3 000 848,53
250 15,14
500 31,89

16 843 1 000 59,13
2 000 101,47
2 500 119,18
3 000 145,34

Furthermore, some tests have been done to compare our results with a
software based approach, which is implemented in the nVidia Melody tool.
These results are not shown in a table because that tool does not display time
information. However, the times needed for the application to calculate the
normal maps for the same high resolution model used in our tests vary from 2
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to 6 seconds for the better and worst cases. These times are worse than our
results.

The other studied parameter is how the size of the normal map affects to
our method. As one can imagine, the bottleneck of our application is the huge
amount of vertices needed to be processed, because the pixel operations per-
formed are very light weight. Table 6.3 shows how our method is independent
of the size of the normal map.

Figure 6.14 shows the results of the generated normal maps for 2 different
models: the bunny and the monster. The column on the left shows the high
resolution models (HRM). The column on the centre shows the coarse versions
of each mesh (LRM) used to calculate the normal map. Finally, the column
on the right shows the final normal map applied to the coarse mesh, so one can
check the final visual quality of the normal map. Figure 6.13 shows the normal
maps generated for its use in Figure 6.14.

Table 6.3: Generation times at different resolutions
Triangles HRM / LRM Resolution Time (ms)

128x128 442
69 451 / 1 000 512x512 441

1 024x1 024 443

6.4 Conclusions

In this Chapter, we have presented two GPU-based methods for normal map
generation. A normal map is a two-dimensional image with the information
about the normals of a three-dimensional model. By applying a normal map of
a detailed model to a simplified version of it, more detail is obtained without
needing more geometry. The first presented method (Subsection 6.2) is a very
fast method and easy to implement. It is useful for simplified models with a
texture correspondence. The second presented method (Subsection 6.3) renders
the normals of the detailed model through the triangles of the simplified model.

The first method presented here is faster than the second one due to the
number of renders needed in the second method. However, the second method
avoids the requirement of the texture correspondence that is needed to be
accomplished in the first method.

As seen before, the second presented method (Subsection 6.3) is highly
dependent of the number of triangles of both models (the original and the sim-
plified ones). However, this limitation can be reduced by using some kind of
hierarchical culling method to discard most of the unneeded geometry. More-
over, reducing the number of renders needed by grouping triangles of low res-
olution model would also be possible. This would highly accelerate the total
generation times, although this has been left as future work.
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(a) (b)

(c)

Figure 6.13: Normal maps of the bunny (a) and monster (b) models

These methods exploit the graphics hardware in a way that it takes advan-
tage of the parallelization of the GPU in various ways. On the one hand, the
graphics hardware uses several shading processors in parallel, which is inherent
to the graphics pipeline. On the other hand, there is a parallelization between
the GPU and the CPU, which is useful to calculate matrices on the CPU while
the GPU is performing each render.

Although these two GPU-based methods for normal map generation have
been used to calculate the normals of a high resolution polygonal mesh, they
could also be used to obtain other surface parameters such as diffuse color
maps, height maps or specular maps.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.14: The column on the left show the high resolution models
(HRM). The column in the middle shows the coarse versions (LRM) of
those meshes. Finally, the column on the right show the resulting normal
map applied to the low resolution model (LRM)
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CHAPTER 7
Conclusions and Future Work

7.1 Conclusions

In this thesis, work on techniques related to three-dimensional objects sim-
plification for their use in interactive applications has been presented. Inter-
active applications need to manage scenes with a high frame rate. Moreover,
models with a good appearance are required. However, the available graphics
hardware cannot always handle all the geometry in the scene. One of the solu-
tions to this problem is the use of simplification methods ([CMS98] [Lue01]).
These methods reduce the geometric complexity of the models, attempting to
preserve the original appearance. Therefore, the main aim of this thesis is
to present new techniques in the area of mesh simplification for interactive
applications.

A state-of-the-art relative of work related to that presented in this thesis was
presented in Chapter 2. Many papers have been published about simplification,
but there are still several problems without efficient solutions. Therefore, in
this thesis several solutions for the simplification of the models usually used in
interactive applications have been presented, such as a user-assisted efficient
simplification for meshes obtained from a computer-aided design process, the
preservation of additional attributes to the geometry of the models and the
acceleration of methods making use of the latest graphics hardware advances.

Models obtained after a computer-aided design process are usually com-
posed of different interconnected subobjects. Simplifying this kind of model
with a simplification method that does not consider these characteristics can
produce simplified models with holes and great distortions. Moreover, simpli-
fication tools do not present an automatic and efficient process to work with
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meshes generated from CAD models with the possibility of simplifying the
subobjects to different percentages of simplification. It is usually an elaborate
process and these tools do not always use the best error metrics. This process
is usually done by hand by the designers. Therefore, in Chapter 3 we pre-
sented a new user-assisted simplification method for models obtained from a
computer-aided design process.

The method presented here is user-assisted because the user can indepen-
dently manage the level of simplification of each subobject, by simplifying them
more or adding more detail to the simplified ones. Moreover, the user can also
demand a total number of triangles in the simplified object. Therefore, when
the level of simplification of a subobject is changed by the user, other sub-
objects will automatically be modified in order to maintain the total number
of triangles. This is performed while preserving the boundaries between the
subobjects. Therefore, the method will avoid the appearance of holes in the
simplified object. Normals and texture coordinates are also taken into account
in this method.

Thus, the method presented in Chapter 3 solves an existing problem with
the meshes obtained after a computer-aided design process, presenting efficient
simplifications of this kind of model.

Geometry is not the only factor that is important for the final appearance
of the models. Interactive applications usually use models with additional at-
tributes, such as textures. Textures play a very important role in the final
appearance of the objects for the viewer. There are a lot of simplification
methods that do not consider the texture information. Therefore, simplified
objects can appear greatly distorted when textures are applied to them. In
Chapter 4 we presented an error metric extension that is useful for taking
texture information into account in those simplification methods that do not
already consider it. This extension enables methods that do not consider tex-
ture information to easily take it into account. More accurate textured models
are obtained by taking textures into account compared to the methods that do
not consider this information. In the presented results obtained by applying
our extension, great visual improvements can be appreciated compared with
the original methods that do not consider the texture information in their error
metrics. A quantitative study has also been done with a well-known metric:
RMSE [LT00]. The consideration of this work for the preservation of other
attributes, such as normals, has also been tested, presenting also better visual
results by using our extension.

Moreover, textures are also considered in the method presented in Chapter
5. This is a simplification method that takes texture information into account
in its error metric and its speed-up using new graphics hardware technologies.
Section 5.2 presents a brand new simplification method based on the segmen-
tation of the texture information. In this method, well-known mathematical
concepts from Information Theory have been used. These concepts enabled the
development of a robust simplification method that preserves textures. In the
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obtained results it can be observed that textures are maintained, producing
simplified models with a similar appearance to the original ones for the viewer.
These results have also been measured with the RMSE [LT00]. This quantita-
tive study shows that great improvements in the visual results are obtained by
using our method.

The visual appearance of the models is not the only important factor. Some-
times the time employed by some methods can also be important. Viewpoint-
driven simplification methods are usually slow. The last graphics hardware
advances enable some graphic applications to be sped up by programming code
that will be directly executed by the GPU. Therefore, in Section 5.3 we im-
plemented and tested techniques to speed up a viewpoint-driven simplification
method, like the one presented in Section 5.2, using CUDA. We can see in the
results that better times than those obtained with methods implemented only
in the CPU are obtained by using these graphics hardware advances.

A common technique employed as a post-process of the simplification meth-
ods is the use of normal maps. A normal map is a two-dimensional image with
the information about the normals of a model. By applying the normal map of
a detailed model to a simplified version of it, more detail is obtained without
needing more geometry. In Chapter 6 we made use of the new advances in
graphics hardware and two different GPU-based normal map generation meth-
ods were presented. The time taken by some methods can be important to the
users. The first method (Section 6.2) is very fast and it is useful for models with
a texture correspondence. It is very fast and easy to implement. The second
method (Section 6.3) renders the normals of the detailed model through the
triangles of the simplified model and avoids the correspondence requirement
of the first method. Both methods are fast and present good results. These
methods can also be used for obtaining other surface parameters such as diffuse
color maps, height maps or specular maps. We improve the times of methods
implemented on the CPU, obtaining normal maps with a similar appearance
and quality.

7.2 Future work

In this section we suggest and discuss some of the possibilities of future
research related to this thesis. Simplification techniques are continuously im-
proving, due to the appearance of new techniques and GPU advances.

The parallelization of tasks has been an object of research study for some
years. Therefore, the study of parallelization of methods like the one presented
in Chapter 3 could be possible. This method is a user-assisted simplification
method for models with the properties of the objects usually obtained in a
computer-aided design process. We suggest the study of parallelizing the sim-
plification of the different subobjects of the models by, for example, simulating
a distributed system.
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Additional attributes to the geometry, like textures and normals, are very
important in the final appearance of the models commonly used in interactive
applications. We presented an error metric extension useful for considering
the texture information in those simplification methods that do not already
take this information into account. We used the areas of the triangles as main
concept in order to penalize an edge by a greater or lesser amount. This gives
good results, as shown in Section 4.4. We have also tested this metric extension
for the preservation of other attributes, like normals. We can see in the results
presented in Section 4.4.2 that this extension is also useful and produces good
visual results for the normals preservation. However, we suggest the study of
new mathematical possibilities, based on well-known mathematical concepts
(like in the method presented in Chapter 5), in order to compare the extension
with other mathematical possibilities. More mathematical concepts could also
be tested in methods that consider textures in their error metric, like the one
presented in Chapter 5.

Moreover, another suggestion for study in techniques of texture preservation
is to consider the possibility of mixing the texture coordinates and the normals
values in order to determine the error cost associated with each edge. This could
also be oriented to considering another attribute (such as colors) without taking
the other ones into account, or to obtaining a combination of all the attributes
information in order to obtain an error metric that considers a mixture of all
this information.

In order to measure the visual improvements obtained with our texture-
preserving simplification techniques, we have used a well-known metric: RMSE
[LT00]. This metric, however, may not always be the best metric for some
specific cases. This is because it can greatly penalize some models that preserve
a good appearance (also with accurate textures) for the viewer, because of the
disappearance of some parts of their silhouette. Therefore, we propose the
study of new metrics for the visual perception of the models for the user.

The time taken by some methods may also be important. Viewpoint-driven
simplification methods, like the one presented in Section 5.2 are usually slow,
due to the number of renders that they need to perform. Therefore, in Section
5.3 we presented a speed-up for this kind of simplification methods. Graphic
cards are in continuously improving. Therefore, another suggestion for future
work is to study the possibilities of the future graphics card generations in
order to obtain a more efficient speed-up for similar methods.

Normal maps can help to give more detail to the simplified models without
adding more geometry. With these methods, images with the information of
the normals of original models are obtained. The application of these images
to the simplified versions of the models will give more details to the simplified
models. Graphics hardware advances enable us to speed-up and parallelize
several tasks that were once only performed on the CPU. Therefore, in Chapter
6 two GPU-based normal map generation methods were presented. We suggest
the study of GPU-based methods that generate maps with information of other
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attributes, like color maps or height maps. Another suggestion of study is the
use of the CUDA architecture for the acceleration of this kind of methods. By
using CUDA some tasks of the normal map generation could be parallelized on
the GPU.

7.3 Publications and Research Projects

7.3.1 Publications

The publications that support the contributions of this thesis are:

• Journals

– Carlos González, Jesús Gumbau, Miguel Chover, Francisco Ramos,
Ricardo Quirós. User-assisted simplification method for triangle
meshes preserving boundaries. Computer-Aided Design, 41(12):1095-
1106. 2009. ISSN: 0010-4485.

– Carlos González, Pascual Castelló, Miguel Chover, Mateu Sbert,
Miquel Feixas. Segmentation-based Simplification Method for Tex-
tured Polygonal Meshes. Submitted to Computer Graphics Forum.

• Conferences

– Carlos González, Pascual Castelló, Miguel Chover, Mateu Sbert,
Miquel Feixas. Viewpoint Entropy-driven Simplification Method
for Triangle Meshes. Proceedings of the Fifth International Con-
ference on Computer Graphics Theory and Applications. GRAPP
’10. 2010. pp. 30-37. ISBN: 978-989-674-026-9.

– Carlos González, Jesús Gumbau, Miguel Chover, Pascual Castelló.
Mesh Simplification for Interactive Applications. Proceedings of
the 16th International Conferences in Central Europe on Computer
Graphics, Visualization and Computer Vision. WSCG ’08. 2008.
pp. 87-94. ISBN: 978-80-86943-16-9.

– Jesús Gumbau, Carlos González, Miguel Chover. GPU-Based Nor-
mal MAP Generation. Proceedings of the Third International Con-
ference on Computer Graphics Theory and Applications. GRAPP
’08. 2008. Insticc. pp. 62-67. ISBN: 978-989-8111-20-3.

– Carlos González, Pascual Castelló, Miguel Chover. A Texture-Based
Metric Extension for Simplification Methods. Proceedings of the
Second International Conference on Computer Graphics Theory and
Applications. GRAPP ’07. 2007. Insticc. pp. 69-76. ISBN: 978-
972-8865-71-9.
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– Carlos González, Jesús Gumbau, Miguel Chover, Pascual Castelló.
Simplificación de mallas para juegos. XVII Congreso Español de
Informática Gráfica. CEIG ’07. 2007. Thomson. pp. 19-27. ISBN:
978-84-9732-595-0.

– Jesús Gumbau, Carlos González, Miguel Chover. Fast GPU-based
normal map generation for simplified models. Proceedings of the
14th International Conferences in Central Europe on Computer Gra-
phics, Visualization and Computer Vision. WSCG ’06. 2006. pp.
15-16. ISBN: 80-86943-04-6.

– Carlos González, Jesús Gumbau, Miguel Chover. Generación por
hardware de mapas de normales. XV Congreso Español de In-
formática Gráfica. CEIG ’05. 2005. Thomson. pp. 281-284. ISBN:
84-9732-431-5.

• Book chapters

– Carlos González, Jesús Gumbau. Introducción a OpenGL 2.0. Open-
GL en Fichas II: Aspectos Avanzados. Universitat Politècnica de
València. 2008. ISBN: 978-84-8363-352-6. pp. 167-174.

– Carlos González, Jesús Gumbau. Introducción a GLSL. OpenGL en
Fichas II: Aspectos Avanzados. Universitat Politècnica de València.
2008. ISBN: 978-84-8363-352-6. pp. 175-182.

– Carlos González, Jesús Gumbau. Ejemplos completos de Shaders.
OpenGL en Fichas II: Aspectos Avanzados. Universitat Politècnica
de València. 2008. ISBN: 978-84-8363-352-6. pp. 205-212.

7.3.2 Research Projects

The participation in research projects related to this thesis work is:

• VISUALCAD: desarrollo de un optimizador de diseños modelados en sis-
temas CAD para su visualización en tiempo real (FIT-350101-2004-15).
MINER (PROFIT).

• GameTools: Advanced Tools for Developing Highly Realistic Computer
Games. European Union (IST-2-004363).

• Interfaces Avanzadas para Campos de Luz Aumentados. Spanish Min-
istry of Education and Science (TIN2005-08863-C03-03).

• Nueva generación de aplicaciones para la gestión de riesgos medioambi-
entales: Gestión de incendios con infraestructuras de datos espaciales con
servicios de geoprocesamiento, visualización avanzada. Caja Castellón-
Bancaja Foundation (P1-1B2009-34).
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• Campos de luz avanzados para visualización autoestereoscópica interac-
tiva 3D. Spanish Ministry of Education and Science (TIN2009-14103-C03-
01)

• EUROGEOSS: A EUROPEAN APPROACH TO GEOSS. European Union
(ref. 226487).
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