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Los escenarios de exteriores en aplicaciones graficas incluyen general-
mente fenémenos naturales que son complicados de simular en tiempo
real. Asi, en el campo de la visualizacién interactiva se han propuesto
soluciones que son capaces de ofrecer realismo a un coste elevado. El
principal objetivo de esta tesis es presentar un conjunto de técnicas
para mejorar la visualizacién en tiempo real de estos fenémenos natu-
rales. Proponemos una solucién para facilitar la creacién y el control
de escenas de lluvia por medio de un nuevo método de nivel de de-
talle. Posteriormente, esta técnica se ha extendido para incluir el mane-
jo de colisiones de las gotas con el entorno y la simulacién de las salpi-
caduras. Como una mejora sobre las técnicas de simulacion de mar, se ha
desarrollado un nuevo algoritmo de teselaciéon dependiente de la vista,
explotando el hardware grafico actual y permitiendo el mantenimiento
de la coherencia entre las aproximaciones calculadas. Por tltimo, se ha
propuesto una aplicacién de sketching para disenar terreno, ofreciendo
una alternativa a los generadores de terreno que ofrecen un control al
usuario muy limitado. Estas distintas técnicas cubren la simulacién de
diferentes fenémenos naturales y ofrecen interesantes mejoras.



Objeto y objetivos de la investigacion

Esta tesis tiene como meta manejar modelos que son altamente com-
plejos para los que las técnicas tradicionales de modelado no son sufi-
cientes. El objetivo es desarrollar nuevos algoritmos de modelado pro-
cedural. Asi, en lugar de tener que especificar los detalles de un objeto
3D, podremos utilizar unos pocos pardmetros con los que un algoritmo
serd capaz de generar el objeto. El modelado procedural permite la gen-
eracién de escenas 3D con una interaccién minima por parte del usuario.
El usuario de este tipo de herramientas sera capaz de generar las escenas
requeridas mediante la especificacion de un conjunto de parametros, evi-
tando tener que dedicar muchas horas e incluso dias al modelado manual
del escenario.

En lo dltimos afios el drea de investigacién en modelado procedu-
ral ha recibido una gran atencién. Los trabajos més recientes intentan
aprovechar la tecnologia existente en el hardware grafico, haciendo posi-
ble que la geometria de la escena se genere en tiempo real en la propia
tarjea grafica.

Los trabajos desarrollados hasta la fecha en este campo se han en-
focado hacia la obtencién de objetos de forma automatica, mas que en
la sencillez de uso de las herramientas creadas. El objetivo de esta tesis
es acercar el modelado procedural a usuarios sin un gran conocimiento
en modelado de entornos, de forma que, ademads, la generacién de la
geometria se adapte al hardware grafico disponible.

Fendmenos Naturales

El modelado de fenémenos naturales ha estado siempre entre los
grandes retos de la informética gréafica. Escenas de exteriores que ofrez-
can realismo deben incluir este tipo de fendmenos para ofrecer al usuario
una experiencia inmersiva. El problema surge de la complejidad de estos
efectos, que a menudo necesitan algoritmos muy complejos y costosos
para simularlos de manera realista. En este sentido, es posible encontrar
una gran cantidad de investigacién en este campo, con el objetivo de
simular terreno, nubes, fuego, arboles, hierba y muchos otros.

Mientras los fisicos se esfuerzan en encontrar descripciones matema-
ticas validas para estos fendmenos, la comunidad de informética grafi-
ca intenta simular la belleza de esos efectos de la manera mas realista
posible. La dificultad de esta tarea no solo depende de la complejidad



y diversidad de objetos y fendmenos naturales interactuando, sino tam-
bién de la enorme cantidad de pequenos detalles que es necesario modelar
para obtener una visualizacién realista y correcta desde el punto de vista
fisico. Asi, todavia existe una necesidad de herramientas de modelado
interactivas y de técnicas de simulacién que sean capaces de manejar la
complejidad de las escenas sintéticas.

Los efectos atmosféricos varian mucho en sus propiedades fisicas y
en los efectos visuales que producen. Ademas, la simulacién del clima in-
cluye numerosos efectos visuales actuando al mismo tiempo. Basandonos
en sus diferencias, los efectos atmosféricos pueden clasificarse en estdticos
(niebla, neblina) o dindmicos (lluvia, nieve, granizo). La visualizacién
realista de efectos atmosféricos mejora las escenas de exteriores y son
un aspecto fundamental para crear entornos inmersivos. En concreto, el
problema de la visualizacién de precipitacion se ha intentado resolver
en numerosas ocasiones, no solo para la propia visualizacién de la llu-
via [1, 2] sino también para su interaccién con otras superficies [3, 4] o
incluso para la acumulacién de agua sobre la superficie [5]

La lluvia es un fenémeno natural extremadamente complejo. Mien-
tras que las particulas que causan otros efectos como la niebla o la bru-
ma, las gotas de lluvia son suficientemente grandes como para ser visibles
al ojo humano. Cada gota refracta y refleja la radiancia de la escena y la
iluminacién del entorno hacia el observador. La mayor parte de las solu-
ciones usan sistemas de particulas para simular lluvia. Estos sistemas
se han empleado satisfactoriamente en trabajos anteriores para simular
distintos tipos de fenémenos difusos como fuego o humo [6]. Sin embar-
go, el problema de las soluciones actuales es su alto coste de gestién ya
que es necesario procesar una gran cantidad de gotas para ofrecer un
resultado realista. Una posible soluciéon para superar las limitaciones de
los métodos de lluvia anteriores es la explotaciéon de las capacidades de
las tarjetas graficas actuales, cuya continua evoluciéon puede incremen-
tar el rendimiento final. Ademas, es interesante considerar la posibilidad
de aplicar técnicas de modelado por nivel de detalle a los sistemas de
particulas existentes.

Desde un punto de vista diferente, la simulaciéon de agua se ha es-
tudiado con detalle debido a los complejos fenémenos que tienen lugar
al mismo tiempo. Asi, la interaccién del agua con otras superficies y
sus propiedades épticas son muy importantes en aplicaciones 3D y en la
industria del cine. Dentro de los sistemas de simulacién de agua, las olas
del mar representan un complicado reto, ya que el mar estd compuesto



por diferentes elementos que conforman un sistema de alta complejidad.
Los procesos fisicos inherentes a la simulacién de mar se han analiza-
do en numerosas ocasiones, de manera que se han realizado diversas
propuestas que intentan simplificar estos procesos mientras se mantiene
un alto grado de realismo. Asi, se han desarrollado distintas técnicas para
manejar las mallas que simulan la superficie del mar, aunque presentan
problemas para simular grandes superficies de agua. Como posible solu-
cion, existen diversos métodos que presentan técnicas de teselacién en
el hardware grafico [7, 8, 9], aunque muy pocos investigadores han con-
siderado la utilidad del hardware grafico para teselar la superficie del
mar.

Por tdltimo, es importante considerar la simulaciéon de terreno. El
terreno en una escena es un elemento clave que puede disminuir la sen-
sacién de realismo si no se considera correctamente. Durante muchos
anos se ha investigado la visualizacion de terreno y es posible encontrar
muchas soluciones para su representacion realista e interactiva. Sin em-
bargo, mucho menos esfuerzo ha sido dedicado al desarrollo de técnicas
que simplifiquen la creacién del terreno. Las diferentes propuestas que
se han presentado para la generacién de terreno ofrecen, generalmente,
un control por parte del usuario muy complejo y muy reducido. Ademsés,
este control se suele basar en un conjunto de pardmetros que son dificiles
de manejar. En este sentido, existe una demanda de interfaces mas intu-
itivas, ya que disenadores y usuarios mas generales encuentran frustrante
la complejidad y falta de intuitividad de las herramientas de modelado
actuales.

Planteamiento y metodologia utilizados

Esta tesis tiene como objetivo fundamental el desarrollo de nuevas
técnicas de simulacién de fenémenos naturales que mejoren su manejo y
visualizaciéon en motores de juegos y aplicaciones interactivas.

Para ello, se propone realizar las tareas siguientes:

Estado del arte

Como paso previo al trabajo de la tesis, es necesario desarrollar un
estudio en profundidad de las técnicas consideradas en esta tesis. Asimis-
mo, se pretende analizar los fendmenos fisicos relacionados para poder
ofrecer una visualizacién acorde a cémo suceden en la Naturaleza.



Modelado de fendmenos naturales

Como ya se ha comentado previamente, el objetivo fundamental de
esta tesis es el desarrollo de nuevas técnicas que mejoren la eficiencia
en la visualizaciéon de estos fenémenos. Para ello se propone el estudio
de soluciones que estén totalmente integradas en el hardware grafico
existente y que tengan en cuenta todas las caracteristicas de las nuevas
tarjetas. Asimismo, se desea considerar el uso de librerfas como CUDA
que ofrecen una abstraccion de la propia programacién de la tarjeta
grafica, facilitando su programacién, ofreciendo mayor funcionalidad y
obteniendo un mayor rendimiento.

Integracion en motores de juegos

La necesidad de obtener unos resultados aplicables obliga a estudiar
las posibilidades de integracion de los modelos desarrollados en varios
motores de juegos, para poder comprobar su calidad en aplicaciones
reales y mejorar los aspectos que sean necesarios.

Evaluacion y comparacion de los modelos desarrollados

La verificacién y prueba de los resultados obtenidos se realizara sobre
el software de soporte a los proyectos de investigacién en los que se
enmarca el trabajo de esta tesis. Por supuesto, se pretende demostrar la
calidad de las soluciones propuestas frente a otras soluciones existentes
anteriormente. La calidad de los resultados de esta tesis se podra evaluar
en tests de usabilidad con usuarios reales, obteniendo informacién sobre
fallos, limitaciones y aspectos a mejorar.

Aportaciones originales

Como ya se ha comentado anteriormente, el objetivo de esta tesis es
mejorar la generacién y visualizacién de distintos fenémenos atmosféri-
cos. De esta manera, se pretende ofrecer al usuario final herramientas
para la creacién y gestién de estos fenémenos dentro de las aplicaciones
3D. Ademds, las caracteristicas del hardware mas reciente se han tenido
en consideracién a la hora de desarrollar las distintas técnicas para poder
ofrecer un alto rendimiento.

En el Capitulo 3 se propone una solucién para facilitar la creacién y
el control de las escenas de lluvia, mejorando los métodos anteriores y
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manteniendo la apariencia realista. Uno de los principales objetivos de
este capitulo es desarrollar una herramienta con la que se puedan gene-
rar ambientes lluviosos automaticamente, creando zonas de lluvia donde
miles de gotas son simuladas en tiempo real. Dentro de cada zona, simu-
lamos la lluvia mediante un sistema de particulas al que anadimos un
algoritmo multirresolucién. Los algoritmos multirresolucién se han apli-
cado satisfactoriamente para solucionar problemas en diversas éreas [10],
existiendo una gran cantidad de investigacion en este campo [11]. El uso
de técnicas de nivel de detalle nos permite incrementar el rendimiento
mientras reducimos la carga de las diferentes etapas de la pipeline grafi-
ca. Con este objetivo, incluimos técnicas multirresolucién para adaptar
el nimero de particulas, su ubicacién y su tamano a las condiciones de la
escena. Las propiedades fisicas también se tienen en cuenta para ofrecer
una solucién satisfactoria. Este método de simulacién esta totalmente
integrado en el hardware gréafico para ofrecer una visualizacién de lluvia
en tiempo real.

La solucién descrita en el Capitulo 4 presenta una mejora evoluti-
va de la técnica de simulaciéon de lluvia anterior. Esta nueva solucién
también se basa en el uso de sistemas de particulas para simular llu-
via, pero ofrece un sistema de deteccidn de colisiones. Asi, el sistema
es capaz de detectar colisiones de gotas sobre el escenario para simular
las salpicaduras. Ademds, la solucién se ha desarrollado de manera que
es capaz de reaccionar correctamente a los cambios de posicién de los
objetos en la escena. Este nuevo método de simulaciéon de lluvia obtiene
un alto rendimiento gracias al uso de CUDA, que permite realizar todos
los calculos de la simulacién de lluvia, colisiones y salpicaduras en una
sola pasada.

Respecto a la simulacién de mar, el Capitulo 5 presenta una nueva
técnica que utiliza un algoritmo de teselacién en la tarjeta grafica. Este
algoritmo ofrece una teselacion dependiente de la vista para incrementar
y reducir el nivel de detalle de la malla que simula la superficie del mar.
Con este método se evita la aparicion de agujeros en la malla y se explota
la coherencia entre aproximaciones, reutilizando la geometria extraida
al incrementar y decrementar el detalle. Para mejorar la visualizacion,
animamos las olas del mar mediante ruido de Perlin y consideramos la
reflexién y el fresnel para obtener una sensacién realista.

El principal objetivo del Capitulo 6 es ofrecer una herramienta para
la generacion de terreno que sea precisa y facil de usar, permitien-
do a usuarios no profesionales disefiar su propia isla. Nuestra meta



Figure 1: Sensacion de lluvia obtenida con la solucién propuesta en
una escena con un skybox texturizado con una imagen de Chicago.

es desarrollar métodos sencillos y practicos con los que crear modelos
de terreno. Intentamos mostrar que algoritmos relativamente simples
se pueden combinar para obtener resultados rapidos y satisfactorios.
En este capitulo consideramos tanto el algoritmo de generacién de te-
rreno como su integracion en una aplicacién de sketching. Esta apli-
cacion ofrece representaciones 2D y 3D del terreno, con el objetivo de
simplificar el interfaz y ofrecer mayor informacién sobre el terreno que se
estd generando. También presentamos distintas opciones que permiten
al usuario modificar y mejorar el terreno generado. Por ultimo, se con-
sidera la posibilidad de integrar los terrenos generados en aplicaciones y
motores de juegos reales.

Conclusiones

En el Capitulo 2 se ha descrito el trabajo previo relacionado con cada
fenémeno natural que se ha considerado. Asi, se ha presentado el estado
de arte en visualizacion de lluvia, donde se puede ver que las soluciones
existentes todavia presentan limitaciones para escenarios reales donde el
usuario se mueve muy rapido. Las fisicas relativas a la lluvia también se
describieron, ya que la solucién propuesta en esta tesis estd basada en
como se comportan las gotas de lluvia. Tras el estudio de la simulacién de
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lluvia, presentamos el trabajo relacionado con la visualizacién de escenas
de mar y las técnicas de teselacion que se aplican. En este caso pudimos
ver ¢cémo no existen demasiadas técnicas de teselacién basadas en el
hardware grafico. Por dltimo, el resto del capitulo introduce el trabajo
existente sobre la generacion de terreno, considerando soluciones como
las técnicas procedurales de generacion sintética de terreno. Este estudio
nos mostré que las soluciones para la generacién de terreno no ofrecen
un gran control sobre el resultado obtenido, resultando en muchos casos
complejas desde el punto de vista del usuario.

Tras analizar el estado del arte de los distintos fenémenos, pudimos
ver que todavia existia espacio de mejora. En este sentido, el Capitulo 3
presenta un conjunto de técnicas para crear y visualizar eficientemente
lluvia realista (ver Figura 1). La solucién propuesta ofrece distintas posi-
bilidades dependiendo de la relacién entre la localizacién del usuario y de
la zona de lluvia. Adema4s, se han incluido técnicas multirresolucién que
se ejecutan unicamente en la tarjeta grafica. Por otra parte, se ha pre-
sentado también un estudio de la generacién de particulas directamente
en el hardware. Los resultados obtenidos mejoran los conseguidos por
soluciones anteriores. El estudio realizado entre usuarios ha demostrado
que nuestro modelo es capaz de ofrecer sensaciones de una intensidad
de lluvia similares pero con muchas menos particulas. Ademas, la for-
ma que se ha elegido para el contenedor de lluvia evita que tengamos
que recolocar todo el contenedor continuamente, lo que suponia unas
de las principales desventajas de soluciones anteriores y que las hacia
inadecuadas para videojuegos u otras aplicaciones en las que el usuario
realiza movimientos de cdmara muy rapidos. Ofrecemos una solucién
que es rapida, simple, eficiente y facilmente integrable en entornos de
realidad virtual ya existentes.

Con el objetivo de extender la técnica de simulacién de lluvia presen-
tada y para ofrecer una mayor explotacion del hardware grafico actual,
el Capitulo 4 describe una técnica para detectar, procesar y simular coli-
siones de la lluvia sobre el escenario de una manera eficiente. Esta mejora
de la simulacién se ha realizado mediante el uso de CUDA, ya que su
flexibilidad nos permite ofrecer técnicas avanzadas como la deteccién de
colisiones. Asi, la eficiencia obtenida en las diferentes pruebas ha sido
posible gracias a la gran cantidad de particulas y salpicaduras que el
sistema es capaz de visualizar y procesar. Ademas, CUDA permite que
la aplicacién gréafica disminuya el uso de CPU en un 50 %, permitiendo
que la aplicacién dedique ese tiempo ahorrado en otros céalculos.



Desde una perspectiva diferente, el Capitulo 5 presenta una nueva
técnica de teselacién que se ha aplicado a la visualizacién de mar en
la tarjeta grafica. La solucién propuesta evita la aparicién de agujeros
y otros artefactos durante la animacion de la superficie. Otro aspecto
importante es la posibilidad de reutilizar la tltima teselacién calculada
cuando aumentamos o disminuimos el nivel de detalle. Asi, minimizamos
las operaciones a realizar en ambos casos, reduciendo el coste temporal
relacionado con el proceso de teselacion. El sistema propuesto considera
el uso de ruido de Perlin para animar la superficie del mar y la inclusién
de algunos efectos Opticos para contribuir al realismo de la escena sin
incrementar excesivamente el tiempo de visualizacién.

Finalmente, el Capitulo 6 describe de una manera detallada una
herramienta para la generacién de terreno que resulta interesante para
aquellos usuarios que desean tener un alto grado de control sobre el pro-
ceso de generacién del terreno. Esta herramienta se ha enfocado funda-
mentalmente al diseno de islas, aunque podria extenderse para trabajar
con otros tipos de terreno. La aplicacion es muy ficil de usar y requiere
una interfaz de usuario minima, donde todas las principales operaciones
se controlan a través de un ratén de dos botones. Por medio de esta
aplicacién el usuario puede afnadir, eliminar o dar forma a montanas
existentes. Ademads, es posible modificar la silueta de la isla y anadir
pequenas perturbaciones distribuidas aleatoriamente sobre el terreno
para darle mas realismo. Mediante un estudio de usabilidad que se ha
desarrollado entre personas de distintas habilidades informaéticas se ha
podido observar que la interfaz desarrollada es cémoda y adecuada en
la mayor parte de los casos.

Lineas futuras de investigacion

En esta tesis se presentan distintas mejoras en la simulacién de fe-
némenos naturales. La simulacién de fenémenos ambientales recibe una
gran atencion por parte de los investigadores ya que su inclusiéon en
juegos y peliculas de animacién por ordenador mejora el realismo de
las escenas obtenidas. En este sentido, estamos interesados en continuar
trabajando en estas lineas para mejorar el rendimiento y el realismo de
las diferentes soluciones presentadas en esta tesis.

En primer lugar, el modelo presentado para la simulacién de llu-
via podria mejorarse con métodos para simular la interaccién de la luz
con las gotas u otros efectos que se han presentado en el trabajo rela-



cionado. Ademads, nuestro interés se centra en la aplicacién del mode-
lado multirresolucién a estos efectos, con el objetivo de obtener una
simulacion maéds realista mientras se mantiene un bajo coste computa-
cional. También se podria aplicar el método propuesto a la simulacién
de nieve. Respecto a la solucién basada en CUDA, planeamos la uti-
lizacion de la deteccion de colisiones para ofrecer mayor realismo, por
ejemplo, mediante el calculo de la acumulacion de lluvia sobre el terreno.
Desde otro punto de vista, consideramos interesante el estudio de la al-
teracién de la precipitacién y las salpicaduras en situaciones de viento,
de manera que el sistema sea capaz de resolver correctamente situaciones
donde las gotas no caen de forma totalmente vertical.

En segundo lugar, y de una forma similar al caso de la lluvia, creemos
que seria adecuada la mejora de la simulacién de mar mediante la apli-
cacion de mdés efectos, mejorando la calidad visual percibida por el
usuario. Asi, la simulaciéon de agua poco profunda es interesante, ya que
el agua del mar se comporta de manera diferente cuando se aproxima a
la costa. En este sentido, nos gustaria considerar cémo las olas rompen,
produciendo espuma y salpicaduras. Ademas, el estudio de métodos que
ofrezcan interaccién de la superficie del mar con otros objetos es también
muy atractivo, ya que en un escenario real se suelen incluir objetos que
caen o flotan sobre el mar.

Por ultimo, el area de investigacion mas prometedora de nuestra he-
rramienta de generaciéon de terreno es la posibilidad de anadir mas carac-
teristicas a la aplicacion existente. Por ejemplo, seria interesante cambiar
la aplicacién de manera que el usuario pudiera marcar una zona de la
isla como playa o montana. De una manera similar se podria permitir
al artista incluir fenémenos atmosféricos, vegetacion y otros elementos
decorativos en el terreno. Una mejora que se podria incluir es la simu-
lacién de procesos fisicos, de manera que, por ejemplo, la altura de las
montanas de la isla no se determinara mediante una férmula matemética
sino por la manera que la lava fluye tras una erupcién volcanica. Asi, la
forma resultante podria verse afectada por el viento y la lluvia.
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Preface

Abstract

Realistic outdoor scenarios often include different natural phenome-
na which are difficult to simulate in real time. In the field of real-time
applications a number of solutions have been proposed which offer realis-
tic but costly solutions. The main aim of this dissertation is to present a
set of techniques which have been developed to improve the real-time vi-
sualization of these natural phenomena. We have proposed a solution to
facilitate the creation and control of rain scenes by means of a new level-
of-detail scheme. Later, this rain framework was extended to include the
management of collisions with the environment and the simulation of the
splashes. As an improvement on ocean simulation techniques, we have
also developed a new adaptive tessellation algorithm which exploits the
features of current GPUs to allow coherence among extracted approxi-
mations. Lastly, a sketching interface for designing terrain is proposed as
an alternative to those synthetic terrain generators which offer a limited
user control. These techniques cover the simulation of different natural
phenomena offering interesting improvements.

Keywords: Real-Time Rendering, GPU, Rain, Level-of-Detail, Ocean
Simulation, Tessellation, Terrain Synthesis, Sketching
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CHAPTER

Introduction

Virtual environments today require a deep interactive experience
with larger worlds to explore and with a higher degree of perceived re-
alism. In this new century virtuality is becoming reality. Life in virtual
worlds takes much of the time of many internet users, being their stay
in the virtual world in some occasions more real than their stay in the
real world. Nowadays, applications such as scientific simulations, virtual
reality or computer games are increasing the detail of their environments
with the aim of offering more realism. These environments are usually
large and highly detailed, being therefore very difficult to be modeled
by hand.

Nowadays the state of the art in the creation of virtual worlds de-
velops out of objects created by men, such as buildings or streets and
massive objects like grounds. All this kind of models are manually gener-
ated from the utilization of a 3D modeling program. The effort required
is huge and through the growing power of rendering platforms the hopes
of virtual world users is constantly increasing. Even so, more and more
costly, expensive and manual effort has to be invested in order to obtain
a creation of a more complex content.
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1.1.  Objectives of the Research

This thesis looks at models that are highly complex and for which
traditional modeling techniques are not sufficient. Our objective is to
develop new procedural modeling algorithms. Thus, instead of specifying
the details of a 3D object, we will use some parameters for a procedure
that will create the object. Procedural modeling allows the generation of
3D scenes with the minimum user interaction. The users of these tools
will be able to generate the required scenes by specifying some simple
parameters, without having to spend many hours or even days modeling
objects.

In the recent years the research area studying procedural modeling
has received a lot of effort and the latest works try to profit from the
new existing technology in graphics hardware, making it possible to the
geometry of a scene to be generated in rendering time in the graphics
card itself.

The works developed to date on this aspect focus on obtaining the
objects in an automatic way, rather than on the easiness of the creation
tools. The aim of this thesis is to make procedural modeling possible for
users without much knowledge on environment modeling and that the
objects generated can be adapted to the graphic hardware available.

1.2. Natural Phenomena

Modeling natural phenomena has always been among the most chal-
lenging problems in computer graphics. Realistic outdoor scenarios must
include these phenomena in order to offer an immersive experience. The
complexity of these effects usually requires very complicated algorithms
to simulate them realistically. In this sense, it is possible to find in the
literature a great amount of research on this topic, simulating terrain,
clouds, fire, trees, grass and many more.

While physicists put their efforts in finding valid mathematical de-
scriptions of the phenomena, the computer graphics community tries to
simulate the beauty of such effects as realistic as possible. The difficulty
in this aim depends not only on the complexity and diversity of ob-
jects and natural phenomena interacting together, but also on the huge
amount of small details that should be modeled to obtain realistic mod-
els and physically correct simulations. Therefore, there is still a need
for interactive modeling and simulation techniques capable for handling
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Figure 1.1: Rain simulation inside the commercial game Heavy Rain
(expected to be released in 2010).

complex synthetic sceneries.

Atmospheric effects vary widely in their physical properties and in
the visual effects they produce. Furthermore, weather simulation con-
sists of numerous visual effects interacting together. Based on their dif-
ferences, weather conditions can be broadly classified as steady (fog,
mist and haze) or dynamic (rain, snow and hail). Realistic rendering of
weather effects enhance outdoor scenes and they are compulsory features
for creating realistic immersive environments. The problem of depicting
atmospheric precipitations has been approached in numerous occasions,
not only for rain visualization [1, 2], but also for its interaction with
other surfaces [3, 4] or even for the accumulation of water on the ground
[5]. An example of the importance of these effects is the snapshot of
the Hard Rain videogame depicted in Figure 1.1, where an extremely
detailed rainy environment is shown. This commercial game has been
developed by the company Quantic Dream and it is expected to be re-
leased in 2010. The quality of the image shows how the inclusion of
atmospheric effects enhances the final renders, although rendering these
effects realistically is a hard problem, especially in real time.
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Figure 1.2: Ocean simulation inside the commercial game called
Crysis (released in 2007).

Rain is an extremely complex atmospheric natural phenomenon. Un-
like the particles that cause other weather conditions such as haze or fog,
rain drops are large and visible to the naked eye. Each drop refracts and
reflects both scene radiance and environmental illumination towards an
observer. Realistic-looking rain greatly enhances scenes of outdoor re-
ality, with applications including computer games and motion pictures.
Most solutions use a particle-system to simulate rain. These systems
have been employed successfully in previous works to simulate several
types of diffuse phenomena, such as smoke or fire [6]. Nevertheless, a
problem of the existing solutions is their high management cost as it
is necessary to process a great amount of raindrops to offer a realistic
visualization. A possible solution to overcome the limitations of previ-
ous rain simulation algorithms is the exploitation of the current GPU
possibilities, whose constant evolution can considerably increase the fi-
nal performance. Moreover, it is worth considering the possibilities of
applying multiresolution techniques to existing particle systems.

From a different point of view, water simulation has been thoroughly
investigated due to the complex phenomena that take place at the same
time. Thus, the interaction of water with other surfaces as well as its
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Figure 1.3: Terrain simulation inside the commercial game Rage
(projected release in 2010).

optical properties are very important in 3D applications and also for the
movie industry. Within the simulation of water, ocean waves represent
a very complicated challenge, as ocean is composed of different elements
that form a very complex system. The physics underlying ocean simu-
lation have been analyzed and many proposals have appeared that try
to simplify the complex processes that take place but offering a high
degree of realism. Figure 1.2 presents a screenshot of the game named
Crysis developed by the company Crytek, where natural phenomena are
thoroughly simulated, offering a very realistic look. Thus, different tech-
niques have been proposed to manage the meshes representing ocean
surfaces although they still present some limitations that prevent them
from simulating large ocean scenes. In this sense, it is possible to find
in the literature many solutions aimed at tessellating an initial mesh
while maximizing the use of GPU features [7, 8, 9]. Nevertheless, not
so many tessellation techniques which consider graphics hardware have
been applied to ocean surfaces.

Finally, it is important to mention the terrain simulation. Synthetic
terrain is a key element in many applications that can lessen the sense
of realism if it is not addressed correctly. In Figure 1.3 a terrain of the
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commercial game Rage presented by Id Software is shown, proving how
terrain can be a key element in some applications. For many decades
this issue has been considerer and it is possible to find in the literature
many solutions to its realistic and interactive rendering. Nevertheless,
not so many efforts have been dedicated to the development of techniques
that can ease the creation of terrain, as usually terrain is seen as the
background of the scene and its importance is often ignored. Different
proposals have been presented but they do not provide enough user
control and, moreover, the parameters are usually difficult to control. In
this sense, there is an increasing demand for more intuitive interfaces,
as many designers and more general users are often disappointed by
the complexity, difficulty and unintuitive nature of current modeling
interfaces.

1.3. Applied Metodology

The main aim of the presented Ph.D. work is to improve the ren-
dering of different natural phenomena. Hence, it is our objective to of-
fer the final user with easy tools for the creation and management of
these effects inside their applications. Additionally, the latest features
of graphics hardware have been considered in order to obtain a high
performance while offering a great realism.

We propose in Chapter 3 a solution to facilitate the creation and
control of rain scenes and to improve on previously used methods while
offering a realistic appearance of rain. One of the main objectives of our
model is to be able to generate rainy environments automatically by
creating raining areas where thousands of drops are simulated in real
time. Within each rain area, we will simulate rain with a particle system
in which we will include a new level-of-detail framework in order to im-
prove the performance. Multiresolution modeling has been successfully
applied to solve problems in many areas [10] and there is an important
body of literature on the subject [11]. The use of level-of-detail (LOD)
techniques increases the rendering efficiency by decreasing the work-
load on different stages of the graphics pipeline. With this objective,
we include multiresolution techniques in order to adapt the number of
particles, their location and their size according to the view conditions.
The physical properties of rain are incorporated into the final approach
that we propose. The presented method is completely integrated on the
GPU in order to render rain streaks in real time.
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The solution suggested in Chapter 4 is an improved evolution of the
rain simulation technique simulated in Chapter 3. Our approximation
is also based on the utilization of particle systems in order to simulate
rain, but includes a collision detection system. This system is able to
detect collisions of raindrops on the scenario and to simulate the splash-
es accordingly. Moreover, the solution has been developed so that the
system acts properly with objects that dynamically change their posi-
tion within the scene. This technique obtains a very high performance
through the use of CUDA, since it considerably frees the CPU from an
enormous load of operations. In this proposal one pass of the graphics
hardware is sufficient to make the calculations that update the positions
of particles, calculates collisions and creates splashes.

We propose in Chapter 5 a new technique for modeling and rendering
realistic ocean scenes. This technique consists in tessellating the ocean
surface on GPU. This algorithm introduces a new adaptive tessellation
scheme for increasing or decreasing the level of detail of the mesh sim-
ulating the ocean. This tessellation algorithm avoids the appearance of
T-vertices that can produce artifacts in an animated mesh like the ocean
surface. We exploit the geometry shader capabilities in order to reuse
the already calculated data. We also simulate reflection on the generated
sea and animate ocean waves by means of GPU-based Perlin noise.

The main goal of our work in Chapter 6 is to provide the final us-
er with an easy-to-use accurate terrain generation solution, which al-
lows nonprofessional users to design their own desired island. Our aim
consists in developing convenient and simple ways to create computer
models of terrain. We try to show that relatively simple algorithms can
be combined to provide fast and successful results. In this chapter we
introduce a simple terrain algorithm and we also consider its integration
into a sketching application. The application will offer both a 2D and a
3D representation of the terrain, in order to simplify the interface and
provide the user with more interactive feedback about the terrain that
has been designed. Moreover, once these terrains are generated, the tool
offers the possibility of adapting and adjusting the surface created to
obtain the results desired by the user. We also present the possibility of
importing the generated terrain generated into a game engine for its use
in a 3D scenario.
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1.4. Original Contributions

The Ph.D. thesis that is presented in this dissertation is organized
as follows:

= Chapter 2: Previous Work

We present the state-of-the-art on the different proposals present-
ed in this dissertation. Thus, we begin by considering the work
previously carried out on rain rendering and presenting a charac-
terization of the rain models. We also analyze the physics of rain.
Then, we describe GPU-based tessellation schemes applied to ren-
dering ocean surfaces, as well as the latest tendencies in realistic
ocean simulation. Lastly, we propose different sets of techniques
that can be used to sketch terrain.

= Chapter 3: Creation and Control of Rain in Virtual Envi-
ronments
We introduce a new framework to facilitate the creation and con-
trol of rain scenes and to improve on previously used methods
while offering a realistic appearance of rain. We accomplish this
objective in two ways. On the one hand, we create and define the
areas in which it is raining. On the other hand, we perform a suit-
able management of the particle systems inside them. We include
multiresolution techniques in order to adapt the number of parti-
cles, their location and their size according to the view conditions.
Furthermore, in this work the physical properties of rain are an-
alyzed and the presented method is completely integrated on the
GPU.

= Chapter 4: Rain Simulation on Dynamic Scenes
In this chapter we extend the previous solution by including, aside
from the rainfall simulation, a system for the detection and han-
dling of the collisions of particles against the scenario, which allows
for the simulation of splashes at the same time. This system ob-
tains a very high performance thanks to the use of CUDA.

= Chapter 5: Ocean Simulation
We propose a new technique for tessellating ocean surfaces on
GPU. This technique is capable of offering view-dependent ap-
proximations of the mesh while maintaining coherence among the
extracted approximations. This feature is very important as most
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solutions previously presented must re-tessellate from the initial
approximation while we can use the latest extracted one both when
refining and coarsening the mesh. This implementation also con-
siders fractal noise for wave animation and includes reflection and
fresnel term to enhance the final rendering.

Chapter 6: Automatic Terrain Generation

The main goal of this chapter is to provide the final user with
an easy-to-use accurate terrain generation solution, which allows
nonprofessional users to design their own desired island. The ap-
plication will offer both 2D and 3D representations of the terrain,
in order to simplify the interface and provide the user with more
interactive feedback about the terrain that has been designed.

Chapter 7: Conclusions and Future Work

Finally, this chapter summarizes the contributions and concludes
the work presented in this Ph.D. dissertation. In addition this
chapter offers a list of the publications related to this thesis, as
well as a list of research projects that have funded the work.
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CHAPTER

State of the Art

In recent years the development of graphics hardware and efficient
rendering algorithms enabled game developers to create and render large
landscapes with interactive rates. However, those scenes are still rough
approximations that do not reach the complexity of real nature.

Creating a good scene requires powerful modelling algorithms on
different aspects. These modeling techniques must be capable of offering
a realistic and fast visualization while respecting the underlying physics
which are necessary to obtain a simulation that fits the way these natural
phenomena behave in Nature.

In this chapter we will review the latest work on the natural phe-
nomena that we have considered in this Ph.D. dissertation:

= Rain simulation, focusing on those approaches oriented towards
the use of GPUs capabilities. Moreover, we also present a study of
rain physics that is important to be considered if we want to offer
a realistic simulation.

= Ocean simulation, concentrating in those approaches which use
tessellation on GPU to manage the detail of the ocean surfaces.

= Terrain generation, offering a review of the techniques that users
can use to create terrain and stressing the possibilities offered by
sketching.

11
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2.1. Related Work for Rain Rendering

During the last few years several approaches to render rainfall have
been developed in the field of computer graphics. Some of these methods
have been performed to add rain to a single image of a scene or to a
captured video with moving objects and sources, like [20] or [21].

From a different perspective, Garg et al. [22] carried out different
means to capture the whole environment in a drop. Thus, due to the
complex appearance of each raindrop these authors proposed the devel-
opment of rain databases, so that each raindrop reflects certain values
for lighting, viewpoint effects, reflection or refraction. In [23] the authors
have developed an image-based rendering algorithm that uses a streak
database to add rain to a single image or a captured video with moving
objects. This database includes raindrops under a wide range of different
viewing and lighting conditions.

Nevertheless, real-time rain has been traditionally rendered in two
ways, either as a camera-centered geometry with scrolling tertures or as
a particle system.

Scrolling textures

The basic idea of this approach is to use a texture that covers the
whole scene which is continuously scrolled following the direction of the
falling rain. Dynamic textures are sequences of images of moving scenes
that have also been applied for simulating sea-waves, smoke, foliage, or
whirlwinds. However, they exhibit certain properties that are stationary
in time [24]. To overcome this limitation, some authors [1] have devel-
oped more complex solutions which include several layers of rain for
simulating rainfall at different distances from the observer.

In [25], the authors present a novel technique for realistically and ef-
ficiently rendering precipitation in scenes with moving camera positions.
They map textures onto a double cone, and translate and elongate them
using hardware texture transforms. This technique is fast but it does
not allow interaction between rain and the environment. In fact, this
method fails to create a truly convincing and interesting rain impression
because of unrealistic rendering with the rain not reacting accurately
to scene illumination, such as lightnings or spotlights. Furthermore, the
results can appear to lack depth.
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Particle systems

This method has been successfully used to simulate certain fuzzy
phenomena which are difficult to visualize with conventional rendering
techniques. Traditionally, this has been the approach chosen for real-time
rendering of rain, even though particle systems tend to be expensive,
especially if we want to render heavy rain. As a consequence, authors of
previous methods have oriented their efforts toward making the use of
these systems cheaper.

Some of the first authors to simulate rain with particle systems were
K. Kusamoto et al. [26], who combined a particle system with a physical
motion model of the rain with no GPU acceleration or light interaction.
Later, Z. Feng et al. [27] introduced an efficient method to solve the prob-
lem of real-time rain simulation for 3D scenes with complex geometries
by taking advantage of the parallelism and programmability of GPUs.
They presented a collision detection method for raindrops in the particle
system and introduced a particle subsystem of raindrops splashing after
collision. When rendering scenes, the distance from the viewer was also
considered by applying depth of field (DOF) effects.

The work presented in [28] proposes a technique that consists of
two parts: off-line image analysis of rain videos and real-time particle-
based synthesis of rain. The proposed rendering technique is purely GPU
based. It consists of a hybrid approach transfers details from video of
real rain to a particle-based system. It is cost-effective, yet capable of
real-time realistic rain rendering. They consider rain fog, rain splatters
and other effects and either simulate them by hand or by extracting the
information from a video. Nevertheless, the authors acknowledge that
their system is not directly applicable for games as they do not interact
with the environment.

From a different perspective, the work developed by N. Tatarchuk
at ATI [1] presents a very detailed rainy environment, including rainfall
rendering, dripping raindrops, streaky reflections and accurate details,
such as the tire marks in puddles in the street. They provide a high
degree of artistic control for achieving the desired final look. They de-
veloped a hybrid system combining particle systems and scrolling tex-
tures. The particle-based subsystem is used to obtain effects for dripping
raindrops and splashes. The image-space method is used to actually sim-
ulate rain, by using multiple scrolling textures of falling raindrops in a
single compositing pass over the rendered scene. Therefore, to simu-
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late strong rainfall, they simultaneously use the concepts of individual
raindrop rendering and the principles of stochastic distribution for sim-
ulation of dynamic textures. All their techniques utilize a unified HDR
illumination model to allow the rain to respond dynamically and cor-
rectly to the environment lighting and viewpoint changes as well as the
atmospheric effects. The illumination system also provides integrated
support for dynamic soft shadows. This hybrid method is very powerful
but it requires 300 unique Shaders dedicated to rain alone and the pow-
erful Radeon X1800 graphics card. Another problem is that the camera
cannot change its angle, as the subsystem in charge of simulating rain
is based on scrolling textures.

Pierre Rousseau et al. [12] propose a realistic real-time rain rendering
method that simulates the refraction of the scene inside a raindrop. The
technique they present attempts to generate accurate results without a
high computational cost. In their real-time rendering method, their in-
tention is to have the physical properties of raindrops for high quality
results like in ray-tracing methods, but without increasing the computa-
tional cost. The scene is captured to a texture which is distorted accord-
ing to the optical properties of raindrops. This texture is mapped onto
each raindrop by means of a vertex shader. Their method also takes into
account retinal persistence where almost spherical raindrops appear as
streaks and interaction with light sources. Later, the authors extended
their work [29] to offer collision detection and wind interaction.

More recently, the method presented by nVidia proposes a realistic
rain application [30]. This sample presents a particle system approach for
animating and rendering rain streaks that works entirely on the GPU,
using new features of the Shader Model 4.0. Rain particles are animat-
ed over time and in each frame they are expanded into billboards to
be rendered using the Geometry Shader. Finally, the rendering of the
rain particles uses a library of textures stored in a Texture Array, which
encodes the appearance of different raindrops under different viewpoint
and lighting directions. These textures are obtained from the work pre-
sented in [23], which offers a data base of raindrop textures obtained
under different light conditions and camera angles that has been pre-
sented at the beginning of this section.

Additionally, the work presented in [2] introduces a new framework
which proposes a set of methods to model a raining scene following
physical mechanisms. More precisely, they thoroughly address physical
properties of rain, visual appearance, foggy effects, light interactions and
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scattering. The main drawback of this approach is that, despite offering
very realistic simulations, their method cannot render a scene with a
sufficient framerate to offer interactive walkthroughs.

The main constraint of all the methods described above is that they
are not suitable for scenarios where the user moves quickly, since adjust-
ing the particle system to the new camera condition is too expensive.

2.1.1. Characterization of Rain Models

Table 2.1 shows a summary of a comparison of the methods explained
in this review. The description takes into account several aspects:

= Authors: this indicates the author, the company or University and
the year.

= Techniques: this says whether the technique for rendering the rain
uses a particle system or scrolling textures.

= Collision: this indicates whether they consider that particles collide
with one another or with some other surface.

= GPU: this indicates whether the model analyzed uses any of the
shader capacities of current GPUs.

= Moving camera: whether the camera position or the camera angle
can be changed by the user.

= Reflection: whether the rain considers the reflection of light.
= Refraction: whether the rain takes into account the light refraction.

» Fog / Motion blur: this indicates whether they include fog or the
motion blur that occurs when a moving object streaks rapidly.

= Light: whether light interaction is considered in the scene.

= Wind: whether the wind is considered when rendering the direction
of the rain.

= Others: this includes different features that can be considered in
the different models, such as snow, splashes, which are like colli-
sions with a surface but with the proper water effect; the depth of
field (DOF) or the distance in front of and beyond the object; rip-
ples or surface waves on the water; water dripping from different
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Authors Techniques  Collision GPU Moving  Reflection  Refraction Fog / Light Wind Others
camera Motion blur
K.Kusamoto et al.
Yamaguchi Particle Yes - - - - - - - -
University system
2001 [26]
N.Wang et B.Wade
Microsoft Scrolling No Vertex Yes No No Blurriness No No Snow
Corporation textures
2004 [25]
Z.Feng et al.
Zhejiang Particle Yes Vertex / Yes No No Motion Yes Yes Splashes,
University system Pixel Blur DOF
2006 [27]
L.Wang et al.
Microsoft Particle No Vertex / Yes Yes Yes Fog Yes Yes Splashes,
Corporation system Pixel Ripples
2006 [28]
N.Tatarchuk Scrolling Splashes,
ATI textures / Yes Vertex / No Yes Yes Fog Yes Yes Ripples,
Corporation Particle Pixel Dripping,
2006 [1] system Puddles
P.Rousseau et al.
Limoges Particle No Vertex / Yes No Yes No Yes No Snow
University system Pixel
2006 [12]
S.Tariq
NVIDIA Particle No Vertex / Yes Yes Yes Fog Yes Yes Splashes,
Corporation system Pixel Texture
2007 [30] Geometry Arrays
P.Rousseau et al.
Limoges Particle Yes Vertex / Yes No Yes No Yes Yes Snow
University system Pixel
2008 [29]
C.Wang
Normal Particle No Vertex / Yes Yes Yes Fog Yes No Scattering,
University system Pixel Wet ground,
2008 [2] Rainbow

Table 2.1: Characterization of rain models.
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objects; puddles or small accumulations of water on surfaces; and
texture arrays used by the geometry shaders.

2.1.2. Physics of rain

Atmospheric sciences have studied the phenomenon of rain in depth
for many decades [31, 32]. Many of these studies analyze the appearance
of raindrops, describing their physical properties such as their shape,
size and velocity distributions. It is also possible to find meteorological
research that examines the visual properties of rainfall density, size,
speed of the raindrops and the direction of motion [33, 34].

Before addressing real-time rain simulation in following chapters, it
is important to analyze the features of real rain and the way rain behaves
in Nature.

Rain types

Rain occurs when moist air rises and cools. The cooling causes the
moisture to condense and fall as rain. There are three different mecha-
nisms that cause air to rise and each one gives a different type of rain
with its own distinct type of cloud and properties [35]. These three types
of rain are:

= Convection Rain: this happens when the ground is warm and there
is a low pressure. It tends to occur in the later part of the day
or early evening. The Sun warms the ground during the day. By
afternoon the moist is being forced to rise, producing very heavy
rain that arrives rapidly and does not last long.

= Relief or Orographic Rain: this occurs when the air moves along
the ground or over the sea, passes hills or mountains. These force
the air to rise in order to pass the obstruction. The rising air cools
and, as a consequence, clouds are formed and rain appears. Relief
rain is characterized by thick clouds with drizzly conditions.

= Frontal or Cyclonic Rain: this appears if a warm air mass meets a
cold air mass, the two air masses will generally not mix. The warm
air, being less dense, will gently slide over the cold air. As it rises,
it will cool and condense into clouds and rain. Rain begins slowly
and remains steady for several hours if not days.

17
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(a) Tear-shaped rain.

(b) Streak-shaped rain.

Figure 2.1: Rain appearance from the method of Rousseau et al.
[12]. Comparison between the original spherical raindrops and the
streaks perceived by a human eye or a camera.

Are raindrops shaped as tears?

It is worth mentioning that it is commonly believed that a raindrop
is shaped as a tear. This idea is not right due to our real perception, the
one that we obtain when we stare at the rain. Physically, raindrops are
either spherical or elliptical, depending on their size. Nevertheless, our
eye, as it happens with a camera, perceives the raindrops as streaks. In
both cases, when observing the rain a drop keeps falling during a small
time lapse that is not perceived neither by the retina nor the shutter.
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That effect is called retinal persistence when talking about the human
eye or motion blur regarding a camera. This effect has been simulated
in Figure 2.1. In Figure 2.1(a) we represent the original spherical drops
shape that should be perceived in a snapshot taken with a camera using
an extremely fast shutter. On Figure 2.1(b) we applied the motion blur
concept when rendering the rain. These elongated raindrops reflect more
accurately what we actually perceive when looking at a rainy scene.

Size and shape of raindrops

Above all, we can say that these different kinds of rainfall will contain
raindrops of different sizes. Small drops generally outnumber large drops,
but as the intensity of the rainfall increases, the number of larger drops
grows.

Figure 2.2: Shape of a drop [13]. From left to right droplets with
radius 0.5 mm, 1.0 mm, 3.0 mm and 4.5 mm.

It is important to note that small raindrops are almost spherical
while the bigger ones get flattened at the bottom, thus taking on an
ellipsoidal shape [13]. This shape is due to the equilibrium between the
surface tension and the aerodynamic pressure. The former attempts to
minimize the contact surface between air and raindrop and the latter
stretches the drop horizontally (see Figure 2.2). Small drops up to 0.5
mm are spherical and the bigger ones become ellipsoidal. It was found
that raindrop size follows an exponential two-parametric distribution
[36].

Speed of raindrops

It is also important to analyze the specific velocity associated with
drops of every shape. The speed at which a raindrop falls depends on
its radius and the terminal velocity depends on gravity and friction [13].
As it is depicted in Table 2.2, at ground level measurements have been
shown that a spherical drop with a radius from 0.1 mm to 0.45 mm
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Spherical Drops Ellipsoidal Drops
radius (mm) | speed (m/s) || radius (mm) | speed (m/s) || radius (mm) | speed (m/s)

0.1 0.72 0.5 4.0 2.5 9.2
0.15 1.17 0.75 5.43 2.75 9.23
0.2 1.62 1.0 6.59 3.0 9.23
0.25 2.06 1.25 7.46 3.25 9.23
0.3 2.47 1.5 8.1 3.5 9.23
0.35 2.87 1.75 8.58 3.75 9.23
0.4 3.27 2.0 8.91 4.0 9.23
0.45 3.67 2.25 9.11

Table 2.2: Speed of raindrops depending on their radii [13].

has a terminal velocity of between 0.72 m/s and 3.67 m/s. Otherwise,
an ellipsoidal drop with a radius from 0.5 mm to 4.0 mm, on the other
hand, has a terminal velocity between 4.0 m/s and 9.23 m/s.

Visual properties of raindrops

Rain drops that are large enough, with a radius from 1mm to 10mm,
can be individually detected by the camera and their motions produce
randomly varying spatial and temporal intensities in an image. A single
rain drop can be viewed as an optical lens that refracts and reflects light
from the environment towards an observer.

Raindrop

1st Refracted Ray
Incoming Ray

Surface Norma

Figure 2.3: Reflection and refraction of an incoming ray in a rain-
drop.

Light could be defined as a set of monochromatic rays that can refract
and reflect at interfaces among different propagation media. Figure 2.3
depicts the optical properties that affect a raindrop. In order to know the
direction of the reflected ray we apply Reflection’s law and to know the
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Figure 2.4: Refraction of the environment and reflection of light in
a drop [14].

direction of the refracted ray we can get it from Snell’s law. Fresnel factor
can give us the ratio between reflection and refraction (see Section 2.2.4).
In [37] there is a model for the equilibrium shape of raindrops. It has
been determined from Laplace’s equation using an internal hydrostatic
pressure with an external aerodynamic pressure based on measurements
for a sphere but adjusted for the effect of distortion.

Finally, the appearance of a drop refracts the inverted view of the
environment. The image perceived through a water-drop is a rotated and
distorted wide angle image of the background scene, as it is depicted in
Figure 2.4. It is possible to observe the refraction of the environment
over the surface of the whole raindrop and even how the reflection is
sited on the edge of the raindrop.

2.2. Related Work for Ocean Rendering

In this state of the art we will firstly present the techniques that have
been developed to offer a realistic visualization of the mesh simulating
the ocean, including wave animation and effects like foam, reflection,
objects interactions and so on. We do not review here papers dedicated
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to running water or rivers such as [38, 39], or the interaction of objects
with ocean surfaces [40]. Nevertheless, a more general state of the art
report can be found in [41].

Later, we will describe the tessellation techniques that have been
developed for rendering ocean scenes. Lastly, we will briefly describe
different physical effects that researchers consider when simulating real-
istic ocean surfaces.

2.2.1. Ocean Simulation

Common ocean waves, regardless of being big or small, are formed
due to:

s the interaction between wind and water.
» the interaction between water and land.

= the tide, mostly due to the effect of the Moon’s gravity on the
Earth.

Moreover, waves can interact and propagate far from their original
locations, resulting in a very complex system. In this section we present
a taxonomy of ocean simulation frameworks by following the type of
animation of the ocean, as this is a key aspect for offering a realistic
visualization. Following this classification we can distinguish between
five sets of models for modeling ocean surfaces:

Based on parametrical models

Parametric approaches [42, 43, 44, 45] represent the ocean surface as
a sum of periodic functions which describe waves as a motion of particles.

The physicist Gerstner presented a first theory in 1802 to approxi-
mate the solution to fluid dynamics by describing the surface in terms of
the motion of individual points on the surface [46]. Gerstner showed that
the motion of each water particle is a circle of radius r around a fixed
point, giving a wave profile that can be described by a mathematical
function called trochoid. The mathematical concept trochoid was a word
created by Gilles de Roberval for the curve described by a fixed point as
a circle rolls along a straight line (see Figure 2.5). The use of trochoids
with different radius allows us to obtain more or less sharpened and
crested waves.
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Figure 2.5: Waves generated with a trochoid.

2

One of the firsts descriptions of water waves in computer graphics
was presented by Fournier and Reeves [42], who modeled waves by us-
ing a water surface model based on Gerstner waves. In the same year,
Peachey proposed the generation of the height field by computing the
superposition of several long-crested waveforms [43]. This author used
particle systems to model the foam produced by wave breaking or col-
liding with obstacles. Later, [47] improved the wave simulation offered
by the work of Fournier and Reeves. Tso et al. [44] proposed a more
precise way to solve the propagation (wave tracing) by approximating
the resulting ocean surface with a Beta-spline surface, which the authors
claimed to offer advantages over a polygonal representation.

To sum up, we could say that all these approaches are very eflicient
although the scene is not very realistic. We must note that noise is
generally used in all the previous models in order to avoid the visual
regularity due to the fact that only one or two wave trains are simulated.
A wave train is a succession of waves arising from the same source, having
the same characteristics and propagating along the same path.

Based on physical models

Physical simulation is costly and that is the reason why many au-
thors resort to other techniques which are faster and they concentrate
on giving a final realistic look to the simulated ocean. Nevertheless, it is
our interest to address some classical physical solutions.

The Navier-Stokes equations offer a set of partial derivative equa-
tions which describe fluid movements. Kass [38] used simplified numeri-
cal methods to solve the Navier-Stokes equation for animation of water
waves. Stam [48] adopted Fast Fourier Transform (FFT) to simulate
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the waves. Foster [39] proposed a modified semi-Lagrangian equation to
simulate viscous liquids around objects. This later approach was applied
to simulate the "mud shower” in the animation film Shrek. More recent-
ly, Thurey et al. [49] proposed a simiplification of the Navier-Stokes
equations to offer real-time simulation of shallow water under some re-
strictions.

We could conclude that, all these approaches have a good quality of
waves, but the implementation of these theories is usually difficult and
simulating a large scene entails a long computation time. In the specific
case of the aforementioned film Shrek, the method presented in [39] re-
quired 3 minutes to render each frame of the animation. Nevertheless, it
is important to mention that these methods are mostly aimed at simu-
lating breaking waves and also interactions with objects floating on the
ocean surface.

Based on spectral models

This family of approaches, also known as statistical methods, is based
on oceanographic measures, synthesized by spectral analysis. Spectral
analysis assumes that the sea state can be considered as a combination
or superposition of a large number of regular sinusoidal wave components
with different frequencies, heights, and directions. As an example of these
oceanographic measures, in 1964, Pierson and Moskowitz [50] developed
a model for the spectrum of fully developed wind seas. This model was
based on 460 ship-recorded wave records selected from a data-base of
over 1000 records collected over five years.

Mathematically, spectral analysis is based on the Fourier Transform
of the sea surface. Hence, these methods represent the ocean surface as
a height field computed from a sum of sinusoids of various amplitudes
and phases; smallscale waves and ripples are modeled directly by adding
noise perturbation [51, 52].

This set of techniques has been widely used by researchers. Spectral
solutions were firstly introduced by Mastin et al. [53], who proposed a
realistic spectral solution by using wave synthesis based on empirical
observations of oceans with the Pierson-Moskowitz filter [50]. The ba-
sic idea is to produce a height field having the same spectrum as the
ocean surface. This approach computes the wave distribution by a FFT.
The main benefits of this approach are that many different waves are
simultaneously simulated, with visually pleasing results.
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Premoze [54] combined the physical models and oceanography mod-
els, but the obtained solution is only adequate for calm sea. They include
the apparition of foam on wave crests, which locally modifies the optical
properties of the ocean. The authors take also into account the turbid-
ity of the ocean, which can be understood as the opacity of the surface
depending on particles suspended in the water. This parameter allows
us to determine the amount of light scattered towards the surface, and
provides realistic simulations of several types of water.

Tessendorf [52] shows that dispersive propagation can be managed
and that the resulting field can be modified to yield trochoid waves.
A positive property of FFTs is its cyclicity, as it can be applied as a
tile which allows us to enlarge the simulation surface as long as the
repetitiveness is not obvious. The problem of FFTs is homogeneity: no
local property can exist, so no refraction can be handled. The realistic
images offered in this paper were possible with the help of Renderman.
This method was the one included to simulate the ocean in the Titanic
movie.

More recently, Mitchell from ATI [55] introduced a Fourier-based
GPU-synthesized height and normal maps. From a different perspective,
Gonzato et al. [40] proposed a semiautomatic method to reconstruct the
surface of the ocean from a video containing a real ocean scene.

Summarizing, these approaches ensure high realism, but they are not
easily controllable. Moreover, since the mathematic model and compu-
tation are very complex, these methods are more adequate for animation
than for real-time rendering.

Based on time-varying fractals

Fractals can be an adequate solution for simulating open sea, al-
though they would not be capable of simulating how waves break on
the seashore. A very general procedural technique for the simulation of
water surfaces by means of stochastic fractals was proposed in [56].

The versatility of Ken Perlin’s noise algorithm has been commonly
used in real-time and offline graphics applications, starting from its first
use in the film Tron. Perlin [57] used a noise synthesis approach to
simulate the appearance of the ocean surface seen from distance. It could
be considered as a particular kind of stochastic fractal that is generated
as an addition of several appropriately scaled and dilated copies of a
continuous noise function.
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Johanson [58] adopted this approach to simulate ocean waves, but
only a small area of the sea surface. In paper [59] the authors show that
vertex shaders can be exploited to interactively generate non-stationary
stochastic fractals, which are used to simulate the dynamics of water.
Later, in Yang et al. [60] the authors use Perlin noise to generate the
height field map of an unbounded ocean surface.

Although it has been shown that this particular kind of simulation
process is only well suited for a very limited kind of wave phenomena,
its ease and efficiency in implementation and the possibility to use this
process to simulate other phenomena make it a very appealing alterna-
tive.

Hybrid approaches

Most models that attempt to accurately represent the ocean surface
are usually based on parametric or spectral approaches. To overcome
the problems of each of these families of solutions, hybrid procedural
models were proposed.

Thon et al. [61] use a hybrid approach where the spectrum synthe-
sized using a spectral approach is used to control the trochoids. This is
only applicable in the calm sea case, where trochoids of small amplitude
are very similar to sines. Smaller scale waves are obtained by directly
tuning some extra Perlin noise.

Frechot [62] presents a new hybrid approach where the effort was
focused on wave animation and not in other effects like fresnel reflectiv-
ity or foam. The authors use classical oceanographic parametric wave
spectra to fit real world measurements, applying Gerstner parametric
equations and Fourier transform.

Improving on the work of Thon et al. [61] and inside the same re-
search group, Darles et al. [63] integrate a wave model defined as an
amount of trochoids waves into a unique data structure. This data struc-
ture allows them to consider spatial and temporal coherence as well as
reducing aliasing effects. To increase the realism of the generated scenes,
they also propose new formulations to integrate physically-based phe-
nomena such as second order scattering, foam and sprays, without signif-
icantly reducing performance. Their method was developed as a plug-in
for Autodesk Maya 6.5.
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2.2.2. Tessellation techniques

It is possible to find in the literature many solutions aimed at tes-
sellating an initial mesh, but in this section we will concentrate in those
techniques which exploit GPU features. Following this idea, it is possible
to find solutions which propose sending to the GPU a mesh at minimum
level of detail and applying later a refining pattern to every face of the
model [7, 64, 8, 65, 9]. Programmable graphics hardware has allowed
many surface tessellation approaches to migrate to the GPU, including
isosurface extraction [66], subdivison surfaces [67], NURBS patches [68],
and procedural detail [69, 70].

Tessellation techniques for ocean rendering

There have been several recent attempts to generate real-time water
surfaces on graphics hardware.

Schneider and Westermann [59] entirely perform visual simulation on
the GPU at interactive rates. They use OpenGL evaluators and NURB
surfaces to tessellate the geometry on GPU. Moreover, they also use
vertex shaders to generate the noise function that animates water simu-
lation. They also provide techniques for simulating refraction, reflection
and other optical characteristics.

Presenting a simple LOD management, the work described in [71]
offers a solution where the wave geometry is represented as a dynamic
displacement map for close areas (near patch) and a dynamic bump
map for farther areas (far patch). The nearest patch can change its
resolution according to the height of the viewpoint while the far patch is
pre-calculated and re-located during simulation. They use the spectral
method of Tessendorf [52] to animate the ocean surface and their work
is based on the use of vertex and pixel shaders.

Recently, adaptive schemes have successfully been used for efficient
modeling, rendering or animation of complex objects [72, 73, 74]. The
idea is to minimize the sampling of the geometry according to criteria
such as the distance from the viewpoint. Since the adaptive sampling
is done on the fly for each frame, this fits well with procedural surface
displacement, which can easily be animated.

Hinsinger et al. [75] rely on an adaptive sampling of the ocean surface,
dictated by the camera position. Moreover, their animation model is
also adaptive, since they filter the waves that cannot be observed from
the current viewpoint. The tessellation and waveform superposition is
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performed on the CPU and uploaded to the GPU each frame, which is
the bottleneck of their approach.

Johanson [58] presented the projected grid concept, which offers an
alternative way to render displaced surfaces which can be very efficient.
The idea is to create a grid whose vertices are even-spaced in post-
perspective camera space. This representation provides spatial scala-
bility and the possibility of developing a fully-GPU implementation is
described.

In paper [60], the authors offer adaptive GPU-based ocean surface
tessellation by using a previous adaptive scheme for terrain rendering.
Their tessellation scheme avoids the loading of vertex attributes from
CPU to GPU at each frame. Their main limitation is the fact that their
tessellation scheme uses a restricted quad-tree where two neighbouring
areas with different resolutions can only vary to a limited extent.

Also in [76], authors presented an ocean simulation which is adap-
tively tessellated and driven by both per-vertex waves and per-pixel
waves, using the Gerstner wave model for animating the ocean due to
its simplicity and non-periodicity. The tessellation occurs in eye space,
mapping a regular grid to the intersection of the ocean plane and the
camera viewport. This allows them to only simulate and render geome-
try that is seen and tessellates more finely in the foreground than in the
background.

Chiu et al. [77] offered an adaptive GPU-based ocean surface tessel-
lation, where the refinement took place in screenspace. Moreover, they
also provided optical effects for shallow water, and spray dynamics by
means of particle systems.

2.2.3. Characterization of Ocean Models

Table 2.3 presents a summary of a comparison of the most recent
methods from those that have been presented in this section. The columns
included in this table refer to:

= Authors: this indicates the author, the company or university and
the year.

= GPU usage: this indicates whether the model analyzed uses any of
the shader capacities of current GPUs.

» Tessellation: whether the technique for ocean rendering tessellates
the ocean surface in real time.
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= Animation technique: this indicates which type of animation tech-
nique is selected.

= Reflection: whether the ocean considers the reflection of light.
= Refraction: whether the ocean takes into account the refraction.

» Others: this includes different features that can be considered in
the different models, such as the fresnel factor or spray dynamics
(see Section 2.2.4).

2.2.4. Physics of Ocean

In many of the ocean simulation techniques proposed above different
sets of physical aspects were considered. Adding these effects to the final
simulations increases the realism of the obtained scenes and enhances
the simulation. In this section we will briefly address some of the main
physical aspects that have been considered in the aforementioned oceans
simulation frameworks.

Optical effects

In the oceanographic literature, ocean optics became an intensive
topic of research since the 1940s. Unfortunately for oceanographers, the
opacity of sea water makes the job of collecting optical images in the
ocean a difficult task. In this sense, Jaffe et al. [78] provide a brief history
of underwater optical imaging and the techniques and systems applied
to retrieve information.

Among the optical properties that can be considered when simu-
lating an ocean surface, reflection and refraction are key elements (see
Section 2.1.2). In addition, the Fresnel reflectance is a physically based
factor that is also very important to consider, above all when simulating
materials such as plastics, glass or water.

The Fresnel Term offers a reflection-refraction ratio. Augustin-Jean
Fresnel worked out the laws of optics in the early 19th century. His
equations give the degree of reflectance and transmittance at the border
of two media with different density. In this sense, the Fresnel term refers
to the increase of the reflective property of a surface when we look at
it with a grazing angle [79]. As a consequence, the reflectance we can
notice in this kind of surfaces depends on the viewing angle.
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Figure 2.6: Godrays in an underwater scenario (image courtesy of
John Langford [15]).

To finish with the main optical effects involved, it is worth men-
tioning the caustics. Caustics are due to the transport of light from a
specular to a diffuse surface. In the specific case of ocean simulation,
some authors consider the patterns created when moving water focuses
refracted light, especially in underwater scenes.

Other effects

It is possible to find many other enhancements that researchers add
to their approaches so that the simulation is more realistic.

Godrays are simulated in underwater scenarios and offer very impres-
sive results. These rays of light are visible when looking from underwater
towards a light source. This effect is due to the existence of small par-
ticles floating in the water, which can get between the observer and the
light source producing volumes of shadow (see Figure 2.6). As a conse-
quence, the patterns created are mostly due to the existence of rays of
darkness instead of rays of light.
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Figure 2.7: Whitecaps in an open ocean (image courtesy of Jeff
Johnson [16]).

From a different perspective, whitecap is an effect considered in many
simulation techniques. Whitecaps appear in open sea when the wind
blows the tops off the smaller waves, producing some noticeable bubbles
on sufficiently windy days (see Figure 2.7). Foam, although visually sim-
ilar, appears when the waves break. Lastly, it is important to mention
the spray, which usually is applied to refer to the small particles of water
that can be blown from the sea.

Lastly, some authors consider the interaction of objects within the
ocean surface. In the specific case of objects moving on the ocean surface,
we must consider the Kelvin wedge. Moving ships on open water create
specific patterns of waves that were first studied by Lord Kelvin. Two
kinds of waves can be noted inside the wedge: divergent waves, with V-
shaped fronts that move away from the ship$ path, and transverse waves
that tend to follow the ship [80]. Figure 2.8 depicts the V-shaped waves
created by a boat.

2.3. Related Work for Terrain Sketching

In this section we analyze and characterize the different approaches
that currently exist for terrain generation. After that we will consider the
different software tools which are available for creating artificial terrain.
Finally, we will give some basic ideas on sketching and its application to
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Figure 2.8: Kelvin wedge: V-shaped waves follwing a ship in move-
ment (image captured from Google Earth).

our purposes.

2.3.1. Terrain Generation

The literature offers a wealth of research on synthetic terrain gener-
ation. When generating artificial terrain, the techniques can be grouped
into three different categories:

Procedural Approaches

This category gathers those methods in which the terrain is gener-
ated automatically. These methods can be further separated into fractal
techniques and physically-based techniques.

= Fractal Landscape Terrain Generation. The most popular
procedural approach is fractal-based terrain generation [81], which
is efficient but difficult for users to control. It is possible to find a
review of recent fractal approaches in book [82] or in paper [83] .

= Physical Erosion Simulation. Physically-based techniques sim-
ulate the effects of physical processes such as erosion by streams
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[84], water [85] or wind [86]. A recent technique that combines
a non-expensive fluid simulation with an erosion algorithm is pre-
sented in [87]. It also supports effects like dissolving, transportation
and sedimentation of material in the process of erosion.

Fractal landscape terrain generation and physical erosion simulation
are both approaches that add terrain details through procedural refine-
ment. Nevertheless, modifying their parameters to obtain a desired ter-
rain may be a painstaking task.

Another proposal appears in [88], where the authors provide an al-
ternative method for terrain generation that employs a two-pass genetic
algorithm approach to produce a variety of terrain types using only in-
tuitive user inputs. The process is efficient but very difficult for a user
to control. In order to improve on genetic solutions, Frade et al. [89] de-
veloped a Genetic Terrain Programming approach which allowed users
to evolve their terrains under some aesthetic concept or desired feature.
Their presented the possibility of generating a family of terrains that
meets the users criteria, although the resulting terrain was difficult to
adjust.

Real Terrain Information

This approach groups the techniques from the Geographic Informa-
tion Systems (GIS), where elevation data come from real-world measure-
ments [90]. GIS data can be acquired from a number of sources [91], [92]
and in different formats, such as the U.S. Geological Survey’s Digital
Elevation Model (DEM) format [93]. Some authors use contour lines of
terrain to reconstruct the surfaces by interpolating the values between
the different lines [94]. Similarly, another possible source of information
could be the study of the extraction of terrain from photographs [95].

All these approaches have the advantage of offering highly realistic
terrains in very little time, but with little user control.

User Defined Approaches

This is the most flexible type of techniques, in which a human artist
creates the terrain manually, using an image editing program, 3D mod-
eling software, specialized terrain editor programs or the editors that are
included in game engines.
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For simplifying the modeling task, a solution that has been proposed
by several authors is the use of an image to define the features of the
desired terrain. The authors of [96] allow the user to control the terrain
generation process by using easily understood and predictable param-
eters. As input they receive an image generated by an image editing
program in order to perform their own terrain generation process.

2.3.2. Terrain Software

Among the user-defined approaches, specific terrain generation soft-
ware has received a great attention from the modeling community. In this
section we introduce some terrain tools for simulating artificial environ-
ments. In these applications the user sets parameters and the program
creates a pseudo-random landscape which meets those parameters. In
all of these programs, terrain is modeled and imported/exported as a
heightmap.

Among the existing software for terrain synthesis we highlight:

» CityScape [97] which is more oriented towards the development of
complete cities but includes interesting algorithms to offer smooth
deformations of the landscape in real time.

» Grome [98] which, like Terragen, uses a procedural creation of ge-
ometry. Like other applications, they offer the possibility of adding
objects to the scene, to offer a complete scene creation. This soft-
ware also includes natural erosion, procedural textures and the
possibility of working with layers to simplify the user experience.

» L3DT [99] is another software application that generates artificial
heightfields and exports their data to multiple formats including
the terrain format used by TGEA [100, 101].

= Mojoworld [102] offers a very detailed application where the user is
given the possibility of generating a complete planet, and presents
tools to apply transformations for the whole planet or just a small
portion of it. This company has thoroughly considered physics to
offer realistic processes.

» Terragen [103], which has evolved from a terrain generator to an
application with complex atmospheric effects, HDR lightning and
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Figure 2.9: Scene created with Terragen by Hannes Janetzko simu-
lating the Amazon River.

includes the possibility of importing your own objects. These fea-
tures enable the user to obtain complex environments which can
also be animated in time.

» Terraineer [104] offers the possibility of experimenting with differ-
ent height generation algorithms.

» Worldbuilder [105], which includes the possibility of adding vege-
tation, different water effects and complex materials, offering very
realistic final renders. Moreover, the authors provide the user with
an easy-to-use elevation editor.

= World Machine [106] is based on fractals and a complex graph sys-
tem to organize the different elements that give form to the ter-
rain. In this sense, this software includes the modeling of physical
weathering processes like wind, water and other natural processes

All of these systems have evolved in the latest years and are ca-
pable of offering very realistic terrains. This quality can be noticeable
in environments like the one depicted in Figure 2.9, obtained with the
commercial software Terragen. Nonetheless, this increase in visual qual-
ity also involves an increase in the complexity of the application.
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2.3.3. Sketching

Finally, we would like to present sketching as a very promising tool
for terrain generation. The sketching applications can offer a great amount
of user control for the terrain synthesis process.

Sketching is commonly understood as the process of rapidly execut-
ing freehand drawing where the obtained sketches are not considered
to be finished work. In the specific case of computer-aided modeling,
sketching on a piece of paper is often used in the prototyping stage,
before a experienced 3D modeler converts this ideas into a 3D model by
means of specific software like 3D Studio Max [107] or Maya [108]. This
kind of software follows usually the WIMP paradigm (Window, Icon,
Menu, Pointer), which is the approach followed by most software.

Sketch-Based Interfaces for Modelling (SBIM) appeared as an evo-
lution of the traditional WIMP paradigm. These interfaces combine the
quick and intuitive feel of paper with the advantages of working directly
in a computer. Obviously, it is necessary to develop adequate user in-
terfaces and processing algorithms to capture the input data and obtain
the 3D data. It is possible to find recent surveys on sketching [109, 110],
which cover many concepts and techniques related to this research area.

We could distinguish between two approaches in sketch-based mod-
eling. On the one hand we can find those solutions where the users
draw the sketches by means of a mouse, a pen or any other input device.
Afterwards, the system will interpret these drawings and output the cor-
responding 3D objects. In this sense, research has produced prototype
tools for interpreting sketches of abstract polyhedra [111, 112, 113]. On
the other hand, it is possible to find solutions which propose sketching
several drawings on a paper and scan them so that the software can
compute the 3D models [114]. Similarly, it is possible to fins proposals
for extracting models of buildings from photographs [115]. Note that the
converse problem (converting a photograph or even a CAD model into
a freehand sketch) has also been studied, as a way of teaching the skill
of field sketching to students of geography, biology and geology [116].

Mathematically, terrain is a freeform surface, so methods for creating
freeform surfaces are clearly of interest here. There have been some re-
cent developments on the automated interpretation of freeform surfaces
from sketches, but they either interpret the drawing as being that of a
single solid object [117, 118, 119, 120, 121] or leave the freeform surface
floating in mid-air as a patch, without continuing to the horizon in the
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manner of a landscape, this is the case of [122, 123].

However, interpreting a terrain sketch as a floating free-form patch
presents some problems. Qin et al [122] require the user to draw a grid
of quadrilaterals to represent the surface, and a trained neural network
is also needed to interpret it. In Kaplan and Cohen’s approach [123]
the boundary of the patch must be clear in the original input, either by
virtue of its obvious contrast with the background or by being specified
by the user. Their approach also requires user intervention to resolve
ambiguities.

More recently, a system for designing freeform surfaces with a col-
lection of 3D curves has been proposed in [124]. They are able to create
objects within a fairly easy-to-use interface, which is based on draw-
ing simple lines. By using a similar simple sketching interface, the work
presented in [125] introduces an over-sketching application for feature-
preserving surface mesh editing. This application allows simple yet re-
alistic mesh deformations to be obtained.

2.3.4. Sketching terrain

Sketching has been commonly applied to model general 3D objects,
although there have been proposals to model natural elements like plants
[126], clouds [127] or terrain [128, 129].

The Harold system [130] was an initial approach for sketching-based
modeling. The basic idea was to create a 3D world with the sketched
information but populating it with the sketches, so that the final image
is similar to the sketched one but allows the user to change the viewpoint
and interact with the scenario. With this objective the main primitive
of the Harold system was the billboard in which the strokes were stored.
Regarding terrain, the sketched lines of the user define bumps and hills
that are considered to lift the affected objects. This system was very
promising as it could capture a child’s drawing into a 3D world, although
the scenes observed from a different viewpoint usually included strange
artifacts. Nevertheless, their objective was not realistic rendering and
their results could not be outputted to be used in other applications.

Later, Watanabe et al. [128] proposed a Java-based application in
which the user could use simple line strokes to create the mountains.
Moreover, the user could add noise, textures or rivers to offer a more
realistic appearance. This initial work offered some promising results
although the terrain totally lacked realism and the operations allowed
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Figure 2.10: Image from the work of Zhou et al [17] were the shape
of the letters GT are used to define the terrain generation.

by the software were very limited.

The work developed by Zhou et al. proposed a solution from a totally
different perspective [17]. In their approach patches from sample terrain
(obtained from a DEM) were used to generate new terrain and the syn-
thesis was guided by a user-sketched feature map that specified where
terrain features occurred in the resulting synthetic terrain. Although the
results were very realistic, the user implication in the finally obtained
terrain was limited and complicated. The beautiful images (see Figure
2.10) offered by the authors were obtained with Terragen [103], although
later the proposal was included into the World Machine commercial ap-
plication [106] as a plug-in.

Following a similar technique, Belhadj [131] presented in the same
year a method for reconstructing terrain from Digital Elevation Models.
His approach uses fractal-based algorithms for performing the recon-
struction and enables the users to sketch details on the terrain or create
a new model from scratch.

Recently, Gain et al. proposed a new sketching application for terrain
modeling [129]. In this solution the authors offer the users the possibility
to sketch the silhouette of the heights of the mountains and also the area
of influence of this silhouette, widening or stretching the mountains.
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They also developed a fast multiresolution surface deformation so that
the mesh representing the terrain can adapt to those areas where the
surface is more detailed. Nevertheless, the proposed solution still requires
a complex interaction from the user where multiple views of the terrain
are needed in order to obtain the desired terrain. Moreover, intersecting
mountains can become difficult to work with as the user must decide if a
new mountain must be in front or behind an existing one while drawing
the silhouette.

Based on the graph theory, the method proposed by Rusnell et al.
[132] uses user-drawn strokes to define the main features of the terrain
and applies path planning to generate the terrain. Although the control
over the obtained terrain is slightly limited, they present nice visual
images by using the Terragen software [103].

2.4. Conclusions

This chapter has presented the state of the art on different aspects
of modeling natural phenomena. We have analyzed the latest solutions
developed for real-time rendering of rain and ocean and also for modeling
terrain.

Most techniques for rain rendering are oriented towards particle sys-
tems, as they can offer enough flexibility to model effects like light in-
teractions or collisions. A limitation of most solutions is the fact that
they are not suitable for scenarios where the camera moves very fast, as
re-locating the particle system to follow the movements of the user is
costly and poses a limitation for maintaining realism.

Regarding ocean rendering and animation, the latest approaches pro-
pose the use of animated heightmaps to model the ocean surface. Within
these surfaces, a large number of effects like reflection, refraction, fresnel
factor or collisions with other objects have been studied. Nevertheless,
the underlying geometry has received less attention and some tessella-
tion techniques have been proposed. Therefore it would be interesting
to develop new techniques which can adapt in real time the detail of the
surface mesh according to different parameters.

Lastly, for terrain generation we have described different sets of tech-
niques that have been proposed to offer highly realistic synthetic terrain.
The software community has commercialized many software tools that
can offer incredibly realistic environments. However, these software ap-
plications are usually very difficult to use and the artist is presented with



2.4 Conclusions 41

a large amount of tools to model the terrain. Therefore, usability is a
key element and sketching is a very promising solution that can simplify
the interface while still producing realistic terrain.
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CHAPTER

Creation and Control of Rain in
Virtual Environments

Realistic outdoor scenarios often include rain and other atmospheric
phenomena, which are difficult to simulate in real time. In the field of
real-time applications, a number of solutions have been proposed which
offer realistic but costly rain systems. Our proposal consists in developing
a solution to facilitate the creation and control of rain scenes and to
improve on previously used methods while offering a realistic appearance
of rain. Firstly, we create and define the areas in which it is raining.
Secondly, we perform a suitable management of the particle systems
inside them. We include multiresolution techniques in order to adapt the
number of particles, their location and their size according to the view
conditions. Furthermore, in this work the physical properties of rainare
incorporated into the final approach that we propose. The presented
method is completely integrated on the GPU.

3.1. Introduction
Rain is an extremely complex natural atmospheric phenomenon. Re-
search has been carried out in the area of computer graphics in order to

describe methods which define not only the rainfall [1, 2], but also their
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interaction with other surfaces [3, 133, 4] or even the water accumulation
[5].

Our interests focus on rendering rain streaks in real time. Most of the
previously proposed solutions can be classified into two groups: image-
based and particle-systems-based. Traditionally, authors have developed
rain simulation frameworks which are based on particle systems. A parti-
cle system is a collection of particles that have a set of properties that are
updated at discrete times, which creates a dynamic system that evolves
over time by modifying its properties when necessary [134]. These sys-
tems have been successfully used to simulate in real time different kinds
of fuzzy phenomena, like smoke or fire. Nevertheless, they present some
limitations due to the cost of translating and rendering the high amount
of raindrops that must be represented in order to offer a realistic rain
appearance.

Although these works describe methods for real-time rendering of
realistic rain, they are not easily applied in virtual environments. This
happens due to the fact that these techniques use nearly all the computer
resources available, leaving the rest of elements of the scene without
almost any resource. Due to this fact, recent games which incorporate
rain rendering still use simplistic approaches.

Some of the previous solutions attempt to take advantage of the capa-
bilities of current GPU, which use an architecture with a programmable
pipeline that allows it to be supplemented with vertez, geometry and piz-
el shaders running in the hardware [135]. Despite the constant evolution
of graphics hardware, there is still room for the development of a com-
plete system for real-time rain rendering in complex environments due
to the high computational cost of existing solutions and to the fact that
these solutions fail in interactive scenarios where the user moves contin-
uously, since adjusting the particle system to the new camera condition
is too expensive.

Level-of-detail modeling techniques have been proposed in many cas-
es as a solution to diminsh the geometry complexity of the scene to visu-
alize. As for the problem of rain rendering, we could apply level-of-detail
techniques to those methods based on particle systems. Nevertheless, lit-
tle research has been performed on multiresolution models for particle
systems. We could highlight the approach presented in [136] where the
authors propose a hierarchy of particles and consider the use of physical
properties as the criterion for switching among LODs in order to ob-
tain a higher resolution when necessary. More recently, Gundersen and
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Figure 3.1: Rain simulated by our algorithms in a scene with a tex-
tured skybox of the Limoges cathedral.

Tangvald [137] developed a non-GPU LOD strategy for fire simulation
where they altered the size and amount of particles when rendering the
scene.

The work presented in this chapter is proposed as a solution to ef-
ficiently design and visualize rainy scenes (see Figure 3.1). One of the
main objectives is to offer a rain scheme that is suitable for scenes where
the user keeps moving all the time, as happens in virtual reality envi-
ronments or computer games. To achieve this objective we propose a
method for automatically generating rain environments with the defi-
nition of rain areas and with an adequate management of the particles
created inside these areas. Furthermore, we include LOD techniques in
order to adjust the size and the number of particles to the conditions
of the scene, lessening the cost of managing and rendering the particle
systems.

The solution we are presenting includes the following features:

= Physically-based simulation of realistic rain, by considering some
of the features presented in the previous chapter, Section 2.1.2 to
develop a realistic rain simulation.

= Definition and management of rain zones, as well as methods for
obtaining smooth transitions between zones with different rain
conditions.
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= Multiresolution particle systems for rain.

= GPU implementation, exploiting vertex and pizel shaders and also
the more recent geometry shader.

This chapter is organized as follows. In Section 3.2 we introduce
the concept of raining area as well as its interactions with the observer.
Then, Section 3.3 describes how the physics of rain analyzed in the previ-
ous chapter have been considered in this simulation scheme. Section 3.4
presents the level-of-detail particle system for simulating rain. Section
3.5 provides a proposal for improving the raindrops creation on GPU.
Section 3.6 offers the results obtained with our model and a comparison
with other solutions. Lastly, Section 3.7 contains some remarks on the
solution presented and the results obtained.

3.2. Simulating Rain Areas

Real-world raining scenarios include both rain areas and also non-
rainy areas. Even when it is raining in a very wide area, we must assume
that we could always find non-rainy areas nearby. Traditionally, rain
simulation has not considered this issue and their rain systems do not
provide smooth transitions between areas with different rain conditions.

The rain framework we are introducing tries to establish with rea-
sonable precision where it is raining and where it is not raining inside a
given scenario. Furthermore, we also want to handle transitions in order
to create a visually realistic raining effect. An important aspect of this
realism is the possibility of looking at a far rain area from a non-rainy
place.

We have considered that a raining area is simulated as an ellipse
with two initially given radii,

(v — 170)2 (y — yo)2
a? + b2

=1 (3.1)

centered on xq, yo with radius a, b, being a,b € R and a > b. Inside
this ellipse, we have defined an attenuation zone on the borders of the
ellipse. This zone will be used for decreasing progressively the number of
rendered raindrops when the user is leaving the rain area. The diagram
in Figure 3.2 depict the attenuation area that we have just mentioned.
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In addition to the definition of the rain area, it will also be necessary
to create and manage a rain container. This rain container encloses the
whole set of raindrops included in our particle system. Under our cir-
cumstances, the rain container will be shaped as an elliptical cylinder
with its radii adjusted to the observer’s field-of-view (FOV). In order to
achieve better performance and to obtain a more cost-effective distribu-
tion of particles for the level of detail, we decided to skip the back part
of the cylinder. Our semi-cylindrical rain container is better adapted to
the field-of-view of the user. It is more ergonomically adjusted to the
field-of-view than a box [12], it is more efficient than a whole cilynder
[30] and, in addition, it allows the user to perform small turns to the
right or to the left without requiring to reposition the whole rain con-
tainer. More precisely, if the user makes changes in its orientation of less
than 45°in any direction then it will not be necessary to reorient the
container as the rain perception is maintained. In Figure 3.2 we have
displayed a bird’s eye view of our semi-cylindrical rain container, where
it can be observed how the observer, the frustum and the rain container
are located in the scenario.

Rain container

<—— Attenuation

Field of View

Figure 3.2: Rain container.

As we already commented, the shape of the container that we have
selected offers some improvements on the rain containers from previ-
ous solutions [12, 30]. The management cost of their particle systems
makes it impossible to manage bigger containers, as this would oblige
the systems to create and update a huge number of particles. In or-
der to overcome this limitation and use a bigger container, our solution
incorporates level-of-detail techniques to modify the particle size and
location while preserving the realistic appearance of rain. Thus, by com-
bining these techniques with the selected shape of the container, our
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Figure 3.3: User point of view of the rain area, showing the two
possibilities. In the first picture the close rain and in the other two,
the far rain.

method offers an appropriate solution for reacting efficiently to changes
in the position and direction of the frustum of the user.

3.2.1. User Interaction

Once we have defined the rain area and the rain container, it is
necessary to consider how the user interacts with the rain area. These
interactions will affect the rain container behavior and the features of
the particle system enclosed within the container.

The user could interact with a rain area in two different ways:

1. The user is inside the rain area, completely surrounded by rain-
drops. We have named this situation close rain.

2. The user is outside the rain area, while looking at it from a distant
place or moving away from the area. In these cases we use the far
rain approach.

These two possibilities are shown in Figure 3.3. It is important
to note that the rain container has different behaviors depending on
whether we are using the close rain or the far rain approach. So, the
image on the left refers to close rain while the other two images show
two possible circumstances in which we must use far rain.

Close Rain

This case occurs when the observer is in the rain area. In order to
check whether the observer is inside this area, we use Equation 3.1. We
can test the location of the observer by checking whether the left member
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of the equation is less than 1. In such cases, we assume that the observer
is inside the ellipse.

The rain container is initially centered on the observer, as can be seen
in Figure 3.2. Nevertheless, the location of this container is continuously
updated in order to follow the user’s movements. So, if the user moves
then the container moves with him; if the user changes the view direction
then the container will be reoriented too. We have given the user a room
for movement to allow him to make small movements and to change
the viewing direction without altering the position of the whole rain
container. Thus, if the user exceeds the boundaries of this room the rain
container will be relocated to follow the user’s movement and the new
viewing conditions.

Far Rain

Far rain refers to a scenario where the observer is located far away
from the rain area. This situation happens when the camera is situated
in an area where it is not raining and the camera can look at the area
where it is actually raining.

In order to check whether the user can see the rain area, we will do
a simple test of the rain area against the frustum plane. If the visibility
test is passed, we should detect whether the observer can see the whole
rain area or just a part of it. If the observer can only see a part of it, it
will be necessary to calculate the size of this part.

Regarding the behaviour of the rain container, the first step consists
in locating the rain container within the perimeter of the ellipsoidal
rain area. Inside this perimeter, the container is centered in the part
that is visible to the user. Secondly, we should modify the size of the
rain container in order to cover the whole part of the ellipse that the
observer can see. Figure 3.3 shows two possible adaptations of the far
rain container with regard to the features of the observer view. In a
similar way, the height of the container should be expanded in order to
simulate the raindrops falling from the sky.

Figure 3.4 shows an image of the far rain that we have just defined.
We have rendered a part of the rain streaks in red in order to make
it easier for the user to perceive how the rain zone is far away from
the observer. We can notice how the particles are covering the suitable
area and it is not raining in the area close to the user. This is just an
example to show what a user could see from outside the rain area. We
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Figure 3.4: Far rain snapshot. On the right streaks are rendered in
red to facilitate its perception.

could simulate hard rain by increasing the number of particles and their
size.

Transitions between rain cases

Within the proposed solution for simulating rain particles, it is im-
portant to control the transitions that an observer can experiment when
changing from close rain to far rain and vice versa.

The transition from close rain to far rain occurs when the user leaves
the rain area. As the user approaches the limits of the raining area, it
will cross the attenuation zone, perceiving a progressive decrease of the
number of particles. When the user is positioned on the perimeter of
the ellipse that defines the rain area the system must react properly.
In that case, the rain container remains static at that point. The user
will perceive a final decrease of the amount of raindrops while it moves
away from the rain container which is no longer following the user’s
movements.

Regarding the transition from far rain to close rain, we again use
the perimeter of the rain area. As we have mentioned earlier, the size
of the container is adapted to the size of the observer’s frustum. When
the observer gets closer to the rain area, the size will decrease until the
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Table 3.1: Rain types characteristics.

Rain Type Type of Radius Speed Particle
Drops (mm.) (m./s.) Number
Convection Rain ~ Raindrop  [1.25,3.75] [7.46, 9.23] 50,000
Frontal Rain Droplet  [0.4,1.25] [3.67,7.46] 25,000
Relief Rain Drizzle drop  [0.2,0.35] [1.62, 2.87] 15,000

user crosses the perimeter of the initially defined rain area. That is the
moment when we make the change between the two ways our solution
can work. When swapping from far to close rain, the system will initially
render a small amount of particles that will increase progressively as the
user crosses the attenuation area.

3.3. Rain Physics

In Section 2.1.2 we introduced several aspects of the physics of rain
that are important for rain simulation. As one of the objectives of the
proposed solution is to consider the physics of rainfall, when initializing
the particle system we will adjust the attributes of the raindrops de-
pending on the selected rain type. Table 3.1 presents the characteristics
that we have chosen for rendering the different rain types. Every type
has a range for the raindrops size; moreover, every raindrop size has as-
sociated a range for its own speed (see Table 2.2). All these adjustements
are performed when initializing the particle systems, randomly selecting
each value inside the suitable range. It is important to note that the
size and the speed of the particles must be different from one particle
to another, in order to prevent all the particles from having the same
appearance and from following exactly the same trajectory. In order to
represent the retinal persistence effect realistically, the rain particles will
be shaped as vertical streaks, whose pixels will get contributions of suc-
cessive positions of the raindrops. In our rain simulation system we will
represent the raindrops by using quads as the rendering primitive, as
they are more accurate to the streak-shaped perceived raindrop. Figure
3.5 depicts three images of our rain simulation approach by rendering
the three rain types introduced in Table 3.1.
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(a) Convection rain.

(b) Frontal rain.

(c) Relief rain.

Figure 3.5: Rain appearance throuhgout the three different rain
types.
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3.4. Level-of-Detail for Rain Particles

Figure 3.6: Size and number of particles depicted from a bird’s eye
view.

The particles inside the rain container are modified in order to follow
a level-of-detail pattern. The main idea of our algorithm is to adapt the
number of particles and their size according to the distance from the
observer. Thus, we render more particles in those areas which are closer
to the observer, and fewer in those which are farther away. The reader is
referred to Figure 3.6, which shows a bird’s eye view of a scene where the
observer is located in the bottom center of the figure. The color of the
particles follows a gradation according to the distance to the observer’s
eye, starting with blue for the closer particles and ending in red for the
farther ones. Furthermore, we can also see how the closer the particles
are to the observer, the more particles are rendered. Regarding the size,
to render this figure we also considered the distance criterion to adapt
the size of each particle according to the distance. Therefore, particles
that are located closer to the viewer are smaller than those which are
farther away.

It is important to comment on the functions used to modify the par-
ticles characteristics. We must note that these functions are one of the
basic parts of our multiresolution model. Initially we decide on a num-
ber of particles that we will maintain for the entire simulation process.
The distribution of particles should not be the same throughout the
whole container. As we have already mentioned, we should render more
particles in the zone that is closer to the viewer.
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Distribution of particle size
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(b) Quadratic distribution for particle size.

Figure 3.7: Different distribution functions for size and number of
particles.

In the moment we initialize the particles, we must maintain a pro-
portion between the distance and the number of particles. This relation
follows a linear distribution (see Figure 3.7), as we need them to both
decrease and increase at the same time, as it is defined in Equation 3.2.
As we can see in the equation, we need the number of particles to de-
crease while the distance keeps growing. In order to obtain a realistic
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simulation, it is necessary that the number of particles decreases pro-
gressively depending on the distance. A non-linear distribution would
not be suitable because it would imply a faster increase of the num-
ber of particles at the beginning or at the end of the container. As a
consequence, it would not give a realistic rain impression.

The size of the particles is continuously updated. In this case, the
relation is not linear but quadratic (see Figure 3.7). This distribution is
defined in Equation 3.3. The function indicates that the size will increase
little by little at the beginning and faster at the end. We only want to
visualize big particles in those zones which include a small number of
particles (those areas located further away from the observer).

It is important to mention that, following the physics, the speed of
the particles is the same for all of them, although the size of the particles
is increased according to LOD. Perceptually to the eye, farther raindrops
fall slower than closer ones. This perception is correct since it gives the
observer a proper perspective projection. Moreover, if we modified the
speed of the back particles, then the sense of depth would be lost and
all the particles would look like being close to the observer.

num_particles = 1 — distance (3.2)

size & distance®

3.4.1. Implementation

One of the main aims in the implementation of our framework is to
make optimum use of the graphics hardware. Similar to the way that a
CPU works, the GPU in the graphics card also has a pipeline filled with
small stages allowing it to perform different tasks very quickly. The idea
is to upload the input data to the graphics memory in order to improve
the rendering by using the GPU programmable units, which are also
called Shaders.

The basic framework of our rain model is quite similar to what is
presented in the work by Pierre Rousseau et al. [12] and Sarah Tariq
[30]. The framework has the following steps:

» Initializing a particle system for rendering the rain inside a defined
zone.
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= Defining an initial position for the particles that is reused every
time the particles fall outside of the bounds and need to appear
again.

= Updating the location of the rain container to follow the user’s
movement.

= Using the graphics pipeline twice for each scene rendering. In the
first pass we update the position of the particles when falling and
in the second pass we render the particles by using the GPU to
expand dots into oriented-to-the-viewer quads.

In order to adapt this framework to the method we are presenting,
we must modify several of the mentioned steps. Firstly, the initialization
of the rain particles must follow the level-of-detail criteria presented in
the previous section. Secondly, the shaders on the GPU should be al-
so modified. The vertex shader of the first pass must consider the size
and location of the rain container to relocate the particles. On the sec-
ond pass, the pixel shader that creates the quads must adapt their sizes
following the aforementioned criteria. Figure 3.8, shows the graphics
pipeline with the two passes that we have just mentioned. Nevertheless,
in this section we will address all these processes in more detail. More-
over, Algorithms 1 and 2 present a pseudo-code for the Vertex Shader of
the first passs and the Geometry Shader of the second pass respectively,
as these are the more important shaders of our framework.

During the development of this framework we tried to perform all
these tasks in only one single pass. The difficulties appeared when work-
ing in the pipeline at the same time with points and quads. The first
pipeline is in charge of translating vertically each raindrop to simulate
the rainfall. In this pass we use points as the rendering primitive. Fol-
lowing that, the second pipeline pass will initially receive points but will
output quads for the rain rendering. By updating directly the quads we
would be obliged to translate, re-locate and output four vertices instead
of one for each raindrop, which our tests have proven to be much more
costly.

Particle initialization

We initially populate the rain container. The raindrops are distribut-
ed following the criteria introduced in the previous section in order to
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(b) Second pipeline pass.

Figure 3.8: The stages in the graphics pipeline .

achieve a linear distribution of the particles depending on the distance.
The reader is again referred to Figure 3.6. These particles are created
in the CPU and later into the GPU. All the information about the rain-
drops is kept in a data structure: original size, original position, current
position and speed. These are registers which are directly uploaded from
the CPU to the GPU, thus avoiding the use of the textures that were
used by other authors in previous models [12].
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Here we present a piece of code in DirectX10 containing the register
structure used to keep the particle data just mentioned above:

struct RainVertex{
D3DXVECTOR3 originalPosition;
D3DXVECTOR3 originalSize;
D3DXVECTOR3 currentPosition;
D3DXVECTOR3 speed;

}

It is important to note that the size and the speed of the particles
must be different from one particle to another, in order to prevent all
the particles from having the same appearance and from following ex-
actly the same trajectory. As we commented in the introduction, one
of the objectives of our solution is to consider the physics of rain. As
a consequence, when initializing the particle system we will select their
features, such as their size and speed, depending on the selected rain
type. Following the information presented in Section 2.1.2, Table 3.1
presents the characteristics that we will use for rendering the different
rain types.

Before visualizing the raindrops we must indicate how many drops
the GPU should render. The amount of particles will vary depending on
the rain type we are rendering, depending on whether the user is in an
attenuation zone and depending on whether we are visualizing close or
far rain.

As we mentioned at the beginning of this section, we need two
pipeline passes for each rendering of the final scene.

In the first pipeline pass, see Figure 3.8(a) and Algorithm 1, the
Vertex Shader updates positions and relocates particles that have gone
out of bounds.

The Geometry Shader uses the StreamQutput to store the updated
positions in vertex buffers. These vertex buffers for the rain will be used
to pingpong, which consists in having two Verter Buffers, one for reading
the current positions and the other for writing and updating them. Later
on, once the changes have been performed, we swap them.

In the second pipeline pass, see Figure 3.8(b) and Algorithm 2, the
rain particles are actually rendered. The Geometry Shader transforms
each vertex into a quad to represent the rain streak. Using the origi-
nal vertex and the position of the viewer, the other three vertices are
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calculated so that the obtained quad is oriented toward the camera.
Moreover, in this step we assure that the streak has an adequate size
depending on the rain type and the distance to the viewer. The Pizel
Shader is in charge of calculating the final color. In our framework, all
the rain streaks have the same transparency value, although we could
easily modify it to obtain further effects.

Particle animation

We have just introduced the initial creation of our particle system
and the basic ideas for rendering the particles on the GPU. Nevertheless,
it is important to analyze the way the particles evolve as time passes.
This evolution affects the position and the size of the particles.

Firstly, regarding the position of the drops, the Vertex Shader of the
first pass is responsible for displacing the raindrops and relocating them
at new positions if they fall out of bounds. In this latter situation, the
new position is calculated considering the original position stored in the
data structure of the particle and the current position of the observer.
Secondly, we must adjust the particle size depending on the distance to
the viewer. The purpose of the Geometry Shader in the second pass is
thus to calculate the most suitable size before converting the particle
into a quad.

The far rain method requires a slightly different implementation of
these Shaders. We must remember that the far rain approach involves
working with a bigger rain container. As a consequence, when the parti-
cles fall out of bounds, the drops are relocated considering their original
position but also the current size of the container, in order to cover all
the raining area that the observer can see. Moreover, it needs greater
particle sizes so that they can cover the whole rain area that is visible
to the observer.

3.5. Improving the Level-of-Detail for Rain Particles

The solution that we have presented forced the system to initially
define the position of each particle and also ther quantity of raindrops.
As a consequence, the spatial distribution of the raindrops was fixed
and initially defined on the CPU. This limitation can be overcome if we
develop a technique that decides to render more or less particles directly
on the GPU.
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Algorithm 1 Vertex Shader pseudo-code of the first pass.

// Input variables
float * speed;

float * originalPosition;
float * viewerPosition;
float height;

// Input/Output variables
float * currentPosition;

currentPosition = currentPosition + speed;
if (particlePosition.y < (viewerPosition.y - height)) then

currentPosition=originalPosition;
end if

Algorithm 2 Geometry Shader pseudo-code of the second pass.

// Input variables

float * currentPosition;

float * viewerPositionOrientation;
float * originalSize;

float distance=calculateDistance(currentPosition,
viewerPositionOrientation);
float size=calculateSize(distance,originalSize);

float™ vertices=calculateVerticesQuad (size,currentPosition,
viewerPositionOrienta-

tion,distance);

Output(vertices);




3.5 Improving the Level-of-Detail for Rain Particles

1) 11 :

NERRREEIIIL

J
gy !

Figure 3.9: Sample patterns for rain generation.

The improvement we propose in this section maintains the need of
two rendering passes presented before:

» The first pass is in charge of updating the position of each particle.

= The second pass applies the multiresolution techniques to modify
the size of the particles and also renders the final particle system.

The main idea of the improvement is to use the second GPU pass to
dynamically create more particles in those areas that are closer to the
user.

A possible way to create in real-time more particles in those areas
that need it is to use patterns. Thus, the idea is that the Geometry
Shader of the second rendering pass uses the particle that receives as
input as a seed to generate more particles. In Figure 3.9 we present three
sample patterns that are used to generate more particles from an initial
one. The seed particle is depicted in blue and the new generated ones in
green.

As we have mentioned before, the distance is the criterion used to
decide the most suitable size for a particle. This criterion is also used to
decide how many particles we should render from each seed particle. It
is relevant to note that we have decided to create a maximum number of
6 raindrops for each seed particles. Our tests have proven that with that
number it is enough to get a proper rain impression without increasing
too much the rendering cost. Moreover, we have applied those three
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patterns in our test as they are sufficient to avoid the user to perceive
repeated patterns. Nevertheless, both the number of generated particles
and the patterns followed could be easily modified in our framework.

3.5.1. Implementation

When we introduced the implementation of the previous rain scheme,
we commented that, in order to avoid all the raindrops following similar
falling paths, we initially give each particle a slightly different falling
speed and direction. Similarly, creating the particles strictly following
the presented patterns would entail noticeable repeating images. To
avoid these visual artifacts, we have included in the information of each
particle a different random value. This value will be used to modify the
final positions of the particles created using the patterns.

Consequently, the final data structure that our framework will use to
update and render the particle system will be composed of six elements
(four of them used in the solution presented before):

= currentPosition, updated in the first pass of every render.

= originalPosition, used to re-locate the particle when it leaves the
end of the container.

= originalSize, different among particles to avoid visual repetitions.
= speed, intially selected acording to the original size of the particle.

= pattern, randomly selected among the three samples presented
above.

= randomValue, used to stochastically translate the particles created
following the pattern.

The first pass of the rendering pipeline will remain unaltered, as we
will still have to translate the vertices and relocate them when necessary.
For each particle, the Geometry Shader of the second pass will be in
charge of applying the level-of-detail. In this shader will be when we
will apply the patterns to generate more particles when required.

Thus, for each particle the Geometry Shader of the second pass will
execute a code similar to that presented in Algorithm 3. This shader will
start by calculating the appropriate size according to the distance and
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the original size of the raindrop. Then it will generate the 4 vertices of
the quad using the new size adjusted to the distance and also the position
and orientation of the user to orient the quad towards the camera. Later,
depending on the distance from the raindrop to the camera, we will
create as many replicas as desired. For each of these new quads we will
calculate the position of the vertices using the original ones and the
random value to avoid visual repetitions.

Algorithm 3 New Geometry Shader pseudo-code of the second pass.

// Input variables

float * currentPosition;

float * viewerPositionOrientation;
float * originalSize;

float pattern,randomValue;

float distance=calculateDistance(currentPosition,
viewerPositionOrientation);
float size=calculateSize(distance,originalSize);

float™ vertices=calculateVerticesQuad(size,
currentPosition,
viewerPositionOrientation,distance);

Output(vertices);

if size < maximimumDistance) then
float* newVertices;
int replicasNumber = calculateReplicas(distance);

for ¢ = 0 to replicasNumber do
new Vertices=calculateVerticesReplica(vertices,
pattern,randomValue,
viewerPositionOrientation);
Output(newVertices);
end for
end if
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3.6. Resulis

In this section we will study the performance of our proposed method
by analyzing the visual quality obtained as well as the number of par-
ticles that can be rendered in real-time. Our solution was programmed
with HLSL and C++ on a Windows Vista Operating System. We have
used DirectX10, which incorporates many improvements and makes it
possible to use geometry shaders and the StreamQutput flow to memory
resources. The tests were carried out on a Pentium D 2.8 GHz. with 2
GB. RAM and an nVidia GeForce 8300 GT graphics card.

3.6.1. Level-of-detail

Figure 3.10 compares the rain perception that the user obtains when
enabling or disabling our level-of-detail scheme. Both of the images of
this Figure offers on the left side the results obtained without enabling
LOD and on the right side the rain obtained when applying our LOD
solution.

In Figure 3.10a it can be seen how the use of LOD can offer a harder
rain impression with the same amount of particles. As a consequence,
if we use our multiresolution techniques we simulate much more rain
particles with the same computational cost.

Figure 3.10b shows the same rain screenshot but coloring the par-
ticles depending on the distance, as we did in Figure 3.6. On the one
hand, the image on the left uses the same size for all particles and, as
a consequence, those particles located in the back part of the rain con-
tainer are rendered as small quads. On the other, the image on the right
shows how the particles in the back part present a bigger size, giving
more rain impression.

3.6.2. Visual Comparison

In the previous section, Figure 3.5 presented three images of our rain
simulation system depicting the three rain types described in Table 3.1.
These images are helpful to demonstrate that our approach is capable
of rendering different rain scenarios properly.

In this section we offer a visual comparison between our framework
and two previously developed rain methods based on particle systems:
Rousseau et al. [12] and Sarah Tariq [30]. Figure 3.11 offers three screen-
shots of these approaches rendering a hard rain environment with similar
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(a) Rain appearance with 20,000 particles.
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(b) Rain appearance with 20,000 particles. Particles are colored accord-
ing to the distance.

Figure 3.10: Comparison of rain appearance in our model without
(left) and with LOD (right) enabled.

rain intensity. It can be seen how our approach can offer a similar rain
appearance with considerably fewer particles, the number being reduced
to about 30 % of those required by Sarah Tariq’s method and to around
55 % of the number used by Rousseau et al.

From a different point of view, Figure 3.12 presents the three rain
frameworks rendering a similar scene with the same amount of particles.
It can be seen how the rain intensity sensation given by our framework
is much higher than the ones offered by the other rain solutions. We
have also included for each framework an image where the particles
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(a) Rousseau et al. rain model with 90,000 par-

ticles.

(b) S. Tariq rain model with 150,000 particles.

(c) Our rain model with 50,000 particles.

Figure 3.11: Comparison of rain appearance in our model and recent
previous methods.
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(a) Rousseau et al. rain model. (b) Rousseau et al. rain model with
red-colored particles.

(c) S. Tariq rain model. (d) S. Tarig rain model with red-
colored particles.

(e) Our rain model. (f) Our rain model with red-colored
particles.

Figure 3.12: Comparison of rain appearance in a similar scene when
rendering 100,000 particles.
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are colored in order to clarify the rain sensation that can be obtained.
It is important to mention that the particles in movement are much
more realistic than the simple static snapshots that we are depicting
throughout the paper.

3.6.3. User Study

We have considered that it is compulsory to perform a user study
in order to evaluate the quality of our rendered rain. The objective of
this study is to obtain the number of particles that would be necessary
for obtaining a similar rain impression by using different rain rendering
frameworks.

Our test consisted on comparing our solution against other 3D rain
frameworks: [12, 30]. We have decided to analyze two rain intensities,
one rendered in our application with 25,000 particles and named Slight
Rain and the other with 50,000 particles and named Intense Rain.

The user is presented with two screens at each time. One of them
renders all the time our rain application, while the other will present
in turns the other frameworks. Each time, the user is asked to indicate
how many particles would be necessary in the other solution in order to
obtain the same visualization intensity given by ours. To facilitate this
task, the user can use two keys of the keyboard to increase or decrease
the amount of rendered particles of the compared system.

The test has been conducted among 25 people. The order in which
the tests have been passed is random every time. As many volunteers
were not completely familiar with computer graphics, we carefully ex-
plained them some basic concepts in order to allow them to understand
the test more deeply so that the results could be as realistic as possible.

Model Rousseau et al. [12] S. Tariq [30] Our Model
Slight Rain 37,000 62,000 25,000
Hard Rain 95,000 167,000 60,000

Table 3.2: Number of particles needed for obtaining the same rain
intensity perception.

In Table 3.2 we present the average number of particles indicated by
our volunteers. It can be seen how our approach can offer a similar rain
appearance with considerably fewer particles, the number being reduced
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Table 3.3: Comparison of the results obtained from the hard rain
scenarios presented in Figure 3.11.

Model Rousseau et al. [12] S. Tariq [30] Our Model
FPS 212 266 443

Table 3.4: Comparison of the results obtained in a similar scene when
rendering 100,000 particles.

Model Rousseau et al. [12] S. Tariq [30] Our Model
FPS 202 333 359

to about a 30 % of those required by previous solutions.

3.6.4. Performance Comparison

Table 3.3 cointains the results obtained when rendering the scenes
depicted in Figure 3.11. It is important to note that the frame-rate
test performed to obtain the fps was carried out visualizing only rain
particles, without including any other elements from the scenario such
as backgrounds, light interactions or other environment features. Table
3.3 shows how the number of frames per second (fps) obtained in our
method is much higher than in the other solutions. So, the model that
we are presenting is capable of obtaining a visual aspect that is quite
similar to the other methods with a smaller number of particles and a
performance increased in 60 %.

Similarly, Table 3.4 provides the frames per second obtained for each
scene simulated in Figure 3.12. These results show that, when displaying
the same amount of particles, our approach still presents the fastest
render. Thus, as it can be seen in Figure 3.12, when rendering 100,000
particles our rain simulation system is capable of offering a harder rain
sensation with a higher performance.

Performance of the pattern-based approach

In a previous section we introduced an improvement over the rain
simulation framework were we proposed the creation of particles on the
GPU in real time, being capable of generating more particles in those
areas that require them. The objective of this improvement was to in-
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Figure 3.13: Comparison of the performance obtained with and
without replicating particles (patterns) on the GPU.

crease the performance of the rain simulation. We present in Table 3.5
the frame rate obtained for the different rain intensities proposed above.
In order to compare the performance of the different rain frameworks we
render the amount of particles indicated by the users in the study (see
Table 3.2). It can be seen how our approach can render the rain scenes
with a frame-rate increased in nearly 35 %.

Model Our Model Our Pattern-Based Model
FPS 443 579

Table 3.5: Comparison of the performance obtained without and
with the pattern-based approach.

We have also considered interesting to test the difference in perfor-
mance that can be obtained when creating the raindrops on the GPU.
In Figure 3.13 we depict in green the frame rate obtained when render-
ing different amounts of raindrops without creating multiple quads on
the GPU. In the same Figure, we show in red the fps obtained when
applying our new method. We translate 20,000 particles but in the GPU
we replicate them by 2, 3 and so on in order to obtain as many rain-
drops as desired. We can see how the replication method outperforms
drastically the previous method. In this study we have considered that
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the seed raindrop only replicates into 6 more raindrops, rendering at
most 140,000 particles. The reason for selecting this number of replicas
is because it fits more properly with the objectives of our multiresolution
proposal.

3.6.5. Scene Test

For testing the performance of our model inside a final application,
we have analyzed the frame-rate and the vertices rendered along a route
which starts at a point in the middle of the rain area and finishes outside
this area. Figure 3.14 provides the results obtained during 50 seconds.
Along this route, the number of vertices decreases once the user enters
the attenuation zone (second 10) until it leaves completely the rain area
(second 40). As a consequence, the frame rate fluctuates in accordance to
the final amount of geometry that is visualized. After nearly 40 seconds,
the user is outside the rain area. Then, the user turns back on itself to
look at the rain area, activating the far rain approach and increasing the
number of rendered particles (second 45). It is important to comment
that, when rendering a similar number of particles, the close rain is faster
than the far rain. This is due to the fact that the particles rendered with
the far rain approach are considerably bigger, which entails generating
more pixels.

3.7. Conclusions

In this chapter we have introduced a set of techniques to create and
efficiently visualize scenarios with realistic rain. The technique presented
here provides different approaches, depending on the relation between
the user location and the rain area location. In addition, we have includ-
ed multiresolution techniques which are applied directly and uniquely on
the GPU.

The results we obtained improve on those achieved by previous so-
lutions. The conducted user study proved that our presented solution
is capable of offering similar rain intensity sensations with much less
particles. This reduction in particles directly involves an increase of the
obtained performance. Moreover, the use of level-of-detail techniques
that are fully integrated into the Geometry Shader strongly decreases
the temporal cost of the rain system. The selected shape of the rain
container prevents us from relocating the whole container continuously,
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Figure 3.14: Testing our model inside a rain scene during 50 seconds.

which was one of the main drawbacks of previous solutions [12, 30]. As
a consequence, we improve on an important limitation of these systems,
the fast camera movements. Previous particle systems were not suitable
for game environments where the user makes fast continuous movements.

Finally, we have shown that our approach is capable of handling large
rain areas consisting of hundreds of thousands of particles in real time.
This work has proved that it is possible to incorporate a multiresolution
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scheme into particle systems in order to simulate rain areas. We must
note that the high performance interactivity of our framework would
only be achievable by using GPU shaders. Nevertheless, our system is
not only focused on increasing the performance. We have introduced a
new framework which can deal with different kinds of rain and also with
different interactions between the user and the rain simulation system.

The framework we have proposed could be easily improved with fea-
tures like raindrop splashes, light interaction, collisions and further ef-
fects that have been presented in previous works. Furthermore, we are
interested in applying level-of-detail techniques to these effects in order
to obtain a more realistic simulation while maintaining a low computa-
tional cost.
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CHAPTER

Rain Simulation on Dynamic
Scenes

Rain is a complex phenomenon and its simulation is usually very
costly. In the previous chapter we introduced a new framework for ren-
dering rain which enhanced the performance by means of new level-of-
detail techniques. In this chapter we propose an improved simulation
system which, aside from the rainfall simulation, offers a subsystem for
the detection and handling of the collisions of particles against the sce-
nario, which allows for the simulation of splashes at the same time. This
proposal works completely on the graphics card. The solution suggest-
ed is based on the utilization of particle systems to simulate rain. This
system obtains a very high performance thanks to the hardware pro-
gramming capabilities of CUDA.

4.1. Introduction

The use of an efficient and realistic rain simulation system consider-
ably increases the realism of outdoor scenes. Most of the systems pro-
posed for real-time rain simulation are based on the use of particle sys-
tems [26, 28, 30, 2]. Nevertheless, the use of particle systems to represent
rain may have significant limitations due to the cost involved in handling
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Figure 4.1: Intense rain environment.

the great quantity of particles which is necessary to offer environments of
intense rain with realistic appearance. Virtual environments where this
kind of solutions are integrated have thereby serious performance prob-
lems, as rain simulation takes up a very important part of the computer
resources.

The concept of GPGPU (General Purpose Computing on Graph-
ics Processing Units) was presented as a low-cost alternative to parallel
processing systems [138]. Hence, instead of employing a large number
of computers, several authors resorted to graphics processors to make
mathematical calculations. CUDA (Compute Unified Device Architec-
ture) is a recent technology created by NVIDIA with the objective of
making the most of the great processing capacity of the current graphics
cards to solve problems with a high computational load [139].

In this work we propose a rain simulation system which, as it hap-
pened in the previous chapter, is managed and updated only in the
graphics hardware. The solution suggested is based on the utilization
of particle systems to simulate rain and includes the management of
rain under variable wind conditions. This system obtains a very high
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performance through the use of CUDA, since it considerably frees the
CPU from an enormous load of operations. CUDA offers a very flexible
framework which allows us to include the implementation of an approach
to detect and handle the collisions of rain particles against the scenario
and also to generate splashes. Developing a system of this kind by means
of the traditional graphics pipeline would be very complex. Figure 4.1
shows an image of the suggested rain simulation system in an intense
rain environment.

The framework we propose in this chapter offers three main advan-
tages with regard to previous methods based on the GPU:

= [t is not necessary to make two passes of the graphics hardware
to make the calculations that update the positions of particles.
All the calculations can be made in one single pass, remaining the
second one only in charge of visualizing the geometry obtained.

= It does not introduce the overcost of using a graphics library for
a task independent of graphics, as happens with the calculations
made for the particle simulation. Moreover, CUDA provides meth-
ods for the direct visualization of the results, given the interoper-
ability of the memory in the graphics card between OpenGL and
CUDA.

= [t is possible to add more natural effects related to the precipi-
tation, such as the dynamic generation of geometry to simulate
splashes.

This chapter is structured as follows. Section 4.2 presents the main
features of the framework of the solution proposed. Section 4.3 describes
in detail the rain model presented, including the subsystem in charge
of the calculation of collisions. Later, section 4.4 presents the results
obtained, both in performance and in visual quality. Finally section 4.5
summarizes the contributions of our work and it outlines future lines of
work.

4.2. General Features

The use of graphics hardware can allow us to accelerate rain visu-
alization considerably. Thus, several solutions have appeared which use
shaders, not only to offer final effects, but also to process efficiently the
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particle systems. It is important to mention that in our rain simulation
system we will represent the raindrops by using quads as the render-
ing primitive, as they are more accurate to the streak-shaped perceived
raindrop.

Traditionally, rain simulation models in graphics hardware needed
two passes of the graphics pipeline to obtain the geometry. In the solution
proposed in the previous chapter we also used this approach based on
two rendering passes. Figure 4.2 shows a diagram that summarizes these
two traditional passes:

= The first pass moves the particles following the falling movement of
the drop with a certain velocity, which can be defined as constant
for all the particles or be stored in a vector for each element of the
particle system. Furthermore, in this pass the system repositions
those particles that have come out of the scenario to continue
with the simulation without losing the sensation of a continuously
falling rain.

= In the second pass, the system creates the four points forming the
quad used to simulate the drops. The calculation of these new
positions takes into account the current position of the camera to
orient the quads towards the user as impostors. At this point, some
models choose to texturize the quad and others assign a final color
to it.

Another aspect of the rain systems that is important to comment is
the fact that our framework follows the movements of the user. Thus,
the simulation system only represents raindrops in those areas which are
closer to the viewer. Then, if the user modifies its position, the whole
rain simulation system must react properly and locate the raindrops
according to the new camera position. This is the reason why the camera
position and orientation are necessary in the first rendering pass.

By means of the framework that we propose it is possible to optimize
the use of the graphics card. Obviously, it will still be necessary to make
two passes. The first one will be made with CUDA and the second
one with OpenGL, as it is not possible to make the update and the
visualization of the particle system in only one GPU pass, since CUDA
is not a graphics library that allows the visualization of the updated
geometry.
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Figure 4.2: Rendering passes necessary to obtain the geometry to

visualize.
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4.2.1. CUDA Usage

The problems presented by graphic applications do not generally re-
quire a very high processing capacity, contrary to the problems that have
been traditionally solved through GPGPU techniques. Even though, the
use of CUDA in a graphics application is very interesting because of the
way in which information can be accessed and shared between the dif-
ferent processes running in parallel. In CUDA, a thread has its own
processor, variables (registers), processor states, etc. A block of threads
is represented as a virtual multiprocessor. The blocks can be run in any
order in a concurrent or sequential way. The memory is shared between
the threads; in a similar way, there is shared memory between the blocks
of a kernel. This means that it is possible to work on the same data in
different threads and in different blocks, besides being able to do it in an
asynchronous way with the CPU. This supposes a great advantage with
respect to the previous architecture. Moreover, it also offers promising
possibilities for the development of new solutions or the improvement of
previous graphics methods.

4.3. Our Rain Model

In our work we propose the use of CUDA to optimize the update of
the particles in the rain simulation system. Thus, we will be able to write
at the same time the vector that stores the updated positions and the
vector that stores the generated quads. The use of this framework allows
us, on the one hand, to reduce the time consumed in the calculation of
the new positions and, on the other, to incorporate new functionalities
that, by using traditional rendering techniques, would be very complex
to obtain.

The main advantage offered by our solution is that all the calcula-
tions are made in only one CUDA kernel. The way CUDA works with
memory positions allows us to save information in several buffers at the
same time, to employ read/write buffers and to decide in which buffer
position the generated information should be saved.

As we have commented in previous chapters, the retinal persistence
of the human eye (or the motion blur of the shutter of a camera) makes
the raindrops to be perceived as strikes. It is possible to find some works
that have tried to capture in a texture the appearance of these strikes.
The complexity resulting from incorporating these textures into the real-
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Figure 4.3: Intense rain environment with wind.

time rain simulation increases the cost of the system without offering a
considerably better visual aspect in contrast to the systems that do not
use textures. Therefore, in our system we have chosen to assign the
quads a color with a certain level of transparency to give them their
final appearance. In the results section we will see how, despite not
using textures to simulate drops, our system is capable of offering a rain
simulation which offers a sensation of realism to the final user.

4.3.1. Wind

Our proposed solution offers the possibility of adding new features
to the rain simulation. In addition to the simulation of splashes, we
have also considered interesting to include the effect of the wind on the
falling raindrops. The wind simulation implies altering the falling vector
of the raindrops, so that they do not fall completely vertical. Moreover,
it is also necessary to perform a small modification of the algorithm in
charge of generating the oriented quads. This way, it will be necessary
to consider the falling direction of the particles so that the quad is also
oriented following this direction.

Figure 4.3 presents a snapshot of our rain simulation system where
wind has been added. It can be seen how the shape of the quads has
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been adapted to the new falling direction of the raindrops.

4.3.2. Collisions

One of the aims of our suggested system is to offer better capabil-
ities. In this sense, we consider that the calculation of collisions is a
very important requirement in a complete solution to the problem of
precipitation simulation. The calculation of collisions offers advantages
in two senses. On the one hand, it allows us to optimize the update of
the positions of the particles as it avoids moving those drops that have
already collided, as happens with mountains or buildings, and that are
not visible anymore. On the other hand, the main contribution refers to
realism, since the generation of splashes is a fundamental part in rain
simulation.

The splashing of a raindrop is a complex phenomenon where, in gen-
eral, the distribution of droplets of a splash depends on many different
features of the elements involved. In this sense, Garg et al. [140] mea-
sured the water drops on different surfaces to offer a physically realistic
simulation. This high degree of physical simulation is usually beyond
real-time applications.

Some of the models that we reviewed in the previous work chapter
include the detection of collisions. The solution proposed by Feng et al.
[27] presents a method for detecting collisions and it includes a subsys-
tem to simulate the splashes of drops after collision. Later, the method
introduced in [30] suggests the simulation of the splashes by repeating
the application of displacement textures on the scenario. This method
is not very precise, although the results obtained are visually satisfacto-
ry. More recently, Rousseau et al. [29] described a method for collision
detection based on capturing the normal and height of each point in the
scenario with a camera above the scene. Thus, by using this texture in
rendering time they will be able to detect collisions and calculate the
rebound direction with the normals.

In our framework we propose a simple system, although it would
be possible to use more complex methods with no technical difficulty.
Similarly to Rousseau et al. [29], the method we have applied consists
in making a capture of the heightmap of the scene we are visualizing,
although we have not considered necessary to control the rebound direc-
tions. This capture is made for every image we create, so that the system
is capable of adapting the calculation of the collisions to the state of the
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Figure 4.4: Diagram of the capture of the heightmap.

scene in each moment, considering the movements of the characters and
other objects in the environment. This heightmap is stored as a tex-
ture inside the graphics card memory. Figure 4.4 shows the process of
obtaining the heightmap from an image of the scene obtained from a
camera positioned at such height and distance that allows us to observe
the whole scene.

The solution proposed will detect if a raindrop collides with the sce-
nario by consulting this texture. In the solution suggested, when detect-
ing a collision we decided to create a quad in that position and texturize
it with an image that simulates water dispersion after the collision. In
a similar way, it would be possible to create several particles that simu-
late the drops created from the collided drop, which could follow a new
trajectory. But in the system presented we have chosen to apply a more
simple method, as it is capable of offering a realistic sensation with a
lower cost.
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Figure 4.5: Diagram of memory usage.

4.3.3. Data structures and algorithms

Figure 4.5 summarizes the data distribution in the graphics card
memory that we propose for the use of CUDA. This figure includes,
shaded in red, the structures necessary to make the calculation of colli-
sions and the simulation of splashes. In this Figure we can see how it will
be necessary to store in memory the original position of the drops and
their speed. Moreover, we need a buffer to store the current position of
the particles, which will be read and written at the same time to update
the raindrops location. From a slightly different perspective, we will also
need two buffers to store the generated quads for the raindrops and the
collisions, which are generated considering the orientation and position
of the camera. These buffers will be shared with OpenGL to visualize
the obtained geometry. It is important to comment that if the particle
suffers a collision it is necessary to reposition it above the field of vision
of the user in order to continue with the rain simulation.

Algorithm 4 offers the whole rain simulation process in a detailed way
through its description using pseudocode. The CUDA kernel proposed
includes the calculation of collisions, so that every time we displace a
particle, we compare its resulting position with the height stored in the
previously commented texture. Thus, if we detect a collision, we will
reposition the particles in the upper area of the scene considering the
current camera position, so that the rain system follows the movements
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of the user. Moreover, we will add a particle to our particle subsystem
in charge of collisions. This subsystem creates a quad in the locations
where collisions happen.

Algorithm 4 Pseudo-code of the position update process.

// Scene capture
float* heightMap;
heightMap=renderTexture();

// Process of raindrops update

float *particlePositions, *particleQuads, *particleSpeeds;
float *particleOriginalPositions;

int numCollisions=0;

float *quadsCollisions, *cameraPosition, *cameraOrientation;

for particle = 0 to numParticles do

// Scroll the particle

particlePositions|particle] -=particleSpeeds[particle];

if collision(particlePositions|particle],heightMap) then
// Create collision
numCollisions++;
quadsCollisions[numCollisions] = calculateQuad(

particlePositions[particle],cameraPosition);

// Reposition particle
particlePositions[particle]= particleOriginalPositions[particle];
// Follow camera movement
translate(particlePositions[particula],cameraPosition);
rotate(particlePositions[particle],cameraOrientation);

end if

particleQuads|particle] = calculateQuad(particlePositions[particle],

cameraPosition);
end for

The collisions subsystem needs some specific considerations. The
amount of collisions that are generated at each frame is variable and
we therefore need some techniques to manage this variable amount of
geometry. One of the features of CUDA that allows the efficient cal-
culation of collisions are atomic operations, specifically the instruction
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atomicIne() [139]. This instruction reads the contents of a register in
memory, it adds one integer and it writes the result in the same memory
direction. Atomic operations guarantee that there are no interferences
between execution threads, so that a specific memory position is not
accessed by other thread until the operation is finished. In our case, we
can maintain a single collision counter which is also used to store the
position where the collision happens in a correct and subsequent way
inside the collision vector. Thus, as output of the kernel we will obtain a
vector of quads located in the positions where collisions have happened
and oriented again towards the observer. This vector will have a fixed
size in memory, but its content will have a variable size, depending on
the characteristics of the scene.

4.4. Results

In this section we will analyze the solution proposed from several
perspectives, since, apart from the performance, we are interested in
analyzing the visual quality of the obtained simulation. The scene used
in the various tests is the one presented in Figure 4.1. All the tests have
been conducted on Windows XP Professional in a computer with an
Intel QuadCore Q6600 a 2.4GHz processor, 4 GB RAM and a GeForce
GTX280 graphics card with 1 GB RAM.

4.41. Visual Quality

One of the main objectives of the work proposed is to offer a rain
simulation method which is realistic to the human eye. In this sense,
Figure 4.1 presented an intense rain environment where we simulated
2 million particles in real time. To this simulation we have to add the
calculation of collisions for each raindrop and the splash generation when
necessary, which is simulated with a texturized quad with a color similar
to the raindrop.

Figure 4.6 shows several screen captures of our rain simulation method.
Each of them represents a different number of particles, which will give
way to a different perception of rain intensity.
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(a) Rain sensations with 512,000 particles. (b) Rain sensations with 1 million parti-
cles.

(c¢) Rain sensations with 2 million parti- (d) Rain sensations with 4 million parti-
cles. cles.

Figure 4.6: Rain environments with different intensities.

4.4.2. Collisions and Splashes

As we have already mentioned, the inclusion of splashes adds real-
ism to the final scene. The images introduced until now allowed us to
observe how the splashes are distributed in the scene. In this section we
want to especially remark that the selected method for the calculation
of collisions allows us to easily detect the surfaces on which the drops
collide.

Figure 4.7 shows two images detailing the same scene. In this case,
splashes have been coloured in red so that it is easier to distinguish
them from the environment. The first one allows us to see how the
system adapts to the geometry of the scene, since it can be observed
how the splashes take place on the steps of the hut or on the warrior
riding the dragon. In addition, Figure 4.7(b) shows a perspective of the
steps, seeing how splashes are never generated inside the hut, since the
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(a) Scene perspective.

(b) Detail of the steps of the hut.

Figure 4.7: Rain simulation examples with collision detection.

drops collide on its roof. Finally, it is important to note that our method
captures the heightmap in every frame rendered, so that the calculation
of collisions is continuously adapted to the movements of characters and
objects in the scenario.

4.4.3. Performance

The utilization of our approach for the simulation of the raindrops
offers significant advantages regarding performance. Table 4.1 presents
a study of the performance (fps) of our system when simulating various
amounts of rain. In this case, the intensities chosen are the ones pre-
sented in Figure 4.6. Furthermore, we also include separately the cost
of the calculation of collisions, in order to be able to analyze how much
the simulation of splashes affects the performance of our proposal. It is



4.4 Results

Number of CUDA Version CUDA Version Shaders Version

Raindrops without collisions without collisions
500,000 76.43 83.14 127.22
1,000,000 50.34 56.12 76.92
2,000,000 30.12 35.71 43.29
4,000,000 15.62 19.02 21.78

Table 4.1: Performance comparison for rain environments with dif-
ferent intensities (fps).

important to mention that in this table we have also included the results
of the shaders version presented in the previous chapter.

From the results shown in Table 4.1 we can conclude that the simula-
tion system proposed is capable of simulating a high quantity of drops in
real time. Regarding the calculation and the visualization of the splash-
es, it increases the processing time by 15 % on average. It is important
to remark that, the more particles the rain system handles, the more
percentage of time is necessary to dedicate to collisions. For this reason,
for the simulation which works with 500,000 particles the system slows
down by 8 %, whereas if we want to visualize 4 million particles we will
have to consider that the performance is affected in a 21 %.

In this section we also want to compare our proposal with the meth-
ods based on the use of the traditional graphics pipeline [30]. In this
case, the method with which we will compare ourselves makes no cal-
culation of collisions. We can say that the performance obtained with
shaders increases by 30 % on average. In this case, the difference between
both methods decreases as we visualize more particles, so if we want to
simulate 4 million particles the performance difference is of 14 %.

Otherwise, it is important to comment that the use that the rain
system makes of the CPU in one case and in the other is very different.
Figure 4.8 shows the percentage of use of the CPU for 30 seconds of
the simulation. We can see that the rain simulation based on shaders
takes 57 % of the CPU time, whereas with CUDA this occupation is
reduced to 26 %. Function calls by CUDA are asynchronous, allowing
the simulation to be more fluent.
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Figure 4.8: Percentage of CPU use during 30 seconds of animation.

4.5. Conclusions

In this chapter we have presented a set of techniques to efficiently
visualize scenarios with rain of different intensities and falling directions
with a realistic appearance. The improvement of the simulation has been
possible thanks to the use of new techniques for GPU programming,
as their flexibility allows us to offer advanced techniques such as the
collisions detection. Thus, the quality obtained in the different tests
is due to the possibility of including a high quantity of particles and
splashes. Moreover, CUDA enables the graphics application to reduce
by half the use of CPU time if compared with the shaders version, which
allows the application to dedicate that time to make other calculations.

The solution we have described offers great advantages and encour-
ages us to continue improving the simulation. In this sense, we are cur-
rently interested in maximizing the use of collisions to offer better effects,
as calculating the accumulation of rain on the ground due to the collided
particles. Moreover, studying how the rain affects the properties of the
different materials would be very interesting to increase the perceived
realism. Furthermore, we consider interesting to study the alteration
of the precipitation and the splashes in situations of wind, so that the
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system solves correctly situations where drops do not fall in a totally
vertical way.
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CHAPTER

Ocean Simulation

Modeling and rendering realistic ocean scenes has been thoroughly
investigated for many years. Its appearance has been studied and it is
possible to find very detailed simulations where a high degree of real-
ism is achieved. Nevertheless, among the solutions for ocean rendering,
real-time management of the huge heightmaps that are necessary for
rendering an ocean scene is still not solved. We propose a new technique
for tessellating the ocean surface on GPU. This technique is capable of
offering view-dependent approximations of the mesh while maintaining
coherence among the extracted approximations, exploiting the graph-
ics hardware capabilities in order to reuse the already calculated data.
We also include in our simulation reflection on the generated sea and
animation of ocean waves by means of GPU-based Perlin noise.

5.1. Introduction

Describing ocean waves is a very complicated challenge, as ocean is
composed of different elements that form a very complex system. It is
possible to find very complex mathematical models that simulate the
behaviour of ocean waves, some of them based on the direct observation
of the sea [53, 40]. Nevertheless, the game industry usually prefers to
lose physical realism due to the high demand for real-time simulation.
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Figure 5.1: An ocean can be seen as an animated heightmap.

Thus, real-time applications usually used simplified models that still
offer physical realism but guarantee high frame rates.

Many decades ago, Turner Whitted was among the firsts to attempt
the simulation of water. In his simulation the ripples were created by
bump mapping the surface, perturbing the surface normal according to
a single sinusoidal function [141] and ray tracing was used to obtain
reflections.

The approaches to simulate ocean that were based on bump mapping
techniques [141, 57] cannot interact realistically with other surfaces or
cast shadows on them. To avoid these shortcomings, Nelson Max [142]
used a heightfield to render wave surfaces for his film Carla’s Island.

This approach is still followed and, therefore, an ocean is usually sim-
ulated as an unbounded water surface that is represented in the gaming
environment as a heightmap. Other complex phenomena, such as foam,
spray or splashes are usually modeled and rendered using particle sys-
tems [143, 144, 145]. In these simulations, the height of each vertex is
modified in real time to offer the sensation of wave movement. It can
be seen as the use of a displacement map to alter the position of each
vertex [146]. Figure 5.1 depicts a snapshot of a mesh simulating ocean
movement in a given instant of the animation.

Some authors have criticised the use of heightfields to model waves
[42], as those data structures store only one height value for any given
(x,y) pair. In this sense, it can be possible to have situations where
there is more than one height value for each position, as it happens
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Figure 5.2: Picture of a breaking wave where a heightmap would not
be adequate.

with breaking waves (see Figure 5.2). In our case we will consider a sea
where these choppy waves are not expected. For this reason, the use of
a squared heightmap is still adequate in our proposed ocean simulation.
Kryachko [147] proposed the use of a static radial grid instead of a
squared one. On that account, by centring this radial grid at the camera
position we can have more points in those areas that are closer to the
viewer. Although this solution is capable of offering more detail in the
areas closer to the viewer, it poses severe restrictions and does not assure
a high performance.

Managing the geometry of the mesh representing the ocean still pos-
es a limitation in simulating ocean. A technique that several authors
propose is the tessellation of the surface. In the field of computer graph-
ics, tessellation techniques are often used to divide a surface in a set of
polygons. Thus, we can tessellate a polygon and convert it into a set
of triangles or we can tessellate a curved surface. These approaches are
typically used to amplify coarse geometry.

This chapter introduces a new adaptive tessellation scheme which
works completely on GPU. The main feature of the framework that we
are presenting is the possibility of refining or coarsening the mesh while
maintaining coherence. By coherence we refer to the re-use of information
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between changes in the level-of-detail. In such way, the latest extract-
ed approximation is used in the next step, optimizing the tessellation
process and improving the performance.

The main characteristics of the proposed ocean model are:

= The ocean surface is refined on the GPU by means of a new view-
dependent tessellation algorithm.

= Geometry shader capabilities are exploited to reuse extracted ap-
proximations.

» Wave movements are simulated with Perlin noise [57] on GPU.

This chapter has the following structure. As our objective is mainly
to present a new tessellation scheme, Section 5.2 thoroughly describes
the tessellation technique that we present. Section 5.3 describes the
ocean simulation process, which describes how the tessellation technique
is combined with other processes to offer a realistic impression on GPU.
Section 5.4 offers some results on the presented technique. Lastly, Section
5.5 includes some conclusions on the developed techniques and outlines
the future work.

5.2. Our GPU-based Tessellation Scheme

As we have mentioned in the previous section, tessellation is a widely
used technique in ocean simulation. Adaptive approaches are much more
interesting, as they can refine those areas that need more detail, while
those areas which are less interesting can be coarsened. Nevertheless,
there has not been developed any ocean tessellation technique which
considers the use of the latest features of graphics hardware. It is our
objective to exploit these features in order to improve the performance
of previous adaptive tessellation techniques.

Many of the tessellation algorithms presented previously in the state
of the art chapter modify the detail of the triangles following some crite-
rion applied to the triangle. The calculations involved could consider the
distance of the triangle to the camera or its position in the screen. Nev-
ertheless, applying the level-of-detail criterion in a triangle basis implies
a limitation for adaptive solutions. As an example, Figure 5.3 presents
a tessellation step where, applying some criterion, the bottom-left trian-
gle has to be refined while its neighbour does not have to. Later, if we
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Figure 5.3: Example of crack after a tessellation step.

apply some modifications to the position of the vertices we can obtain
a noticeable crack, a hole in the mesh. These cracks are due to the in-
troduction of T-vertices in the input mesh. T-vertices appear commonly
in tessellation algorithms when a vertex is positioned on the edge of an-
other triangle [134], resulting in two edge junctions making a T-shape.
An example of this problem can be seen in Figure 5.3, where the vertex
added in the tessellation step represents a T-vertex.

In order to avoid crack problems, some authors have proposed to ap-
ply the refinement criterion only to the edges of the triangle. Therefore,
if an edge needed refinement, then both triangles sharing the edge would
act accordingly. In this case, following the example presented before in
Figure 5.3, both adjacent triangles would perform the appropriate tessel-
lation tasks to create new triangles with the same new vertices, assuring
that no crack is generated.

5.2.1. Tessellation patterns

Guided by the idea of developing an edge-based tessellation algo-
rithm that avoids cracks, Ulrich described some edge-based patterns for
tessellating triangles [18]. Figure 5.4 presents, on the left side, an initial
rectangular triangle where its hypotenuse and catheti (more commonly
known as legs) are depicted anti-clockwise as H, C; and Cj respectively.
Next, the seven tessellation patterns introduced by Ulrich are presented
(labeled from 1 to 7), where the edges of the original triangle that need
refinement are depicted in red. As we stated before, the work that we
are proposing is based on using a refinement criterion based on the edges
and not on the complete triangle. As a result, each pattern shows the
tessellation that would be necessary depending on the combination of
edges that need refinement. For example, in the bottom-left case the hy-

97



98

Chapter 5 Ocean Simulation

5 1 2
is |
C1 H
5 6
C2 |
7

Figure 5.4: Tessellation patterns from Ulrich [18]. The red colour
indicates the edges that need refinement.

potenuse needed refinement and a new vertex has been added to create
two new triangles. The main problem with Ulrich’s proposal was that it
still presented cracks, as his patterns were based on the use of T-vertices.
Thus, in some of the patterns presented it can be seen how there are
vertices created on an edge that does not need refinement, resulting in
a geometry similar to that presented in Figure 5.3.

In order to avoid this limitation, the work presented in [19] modified
the previous patterns that included T-vertices. In Figure 5.5, three of
Ulrich’s patterns (number 2, 4 and 6) have been surrounded by a red
dotted line. These patterns were the ones that had T-vertices. On the
right side, surrounded by a green dotted line, the three modifications
introduced in [19] are shown, where it can be seen how no T-vertex is

added.
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Figure 5.5: Tessellation patterns with T-vertices (in red) [18] and
without T-vertices (in green) [19].

In our case, we will use the patterns presented in [19], as they can
assure that no T-vertices are introduced and that the continuity of the
mesh is maintained. These patterns produce more elongated triangles
if compared with Ulrich’s patterns, which could result in more complex
lighting or texturizing. Nevertheless, our algorithm will calculate these
values from the vertices of its parent triangle. In this sense, it is also
worth mentioning that we will not store precomputed patterns on GPU
memory as other solutions do [69]. We just code in the Geometry Shader
the seven cases that we follow so that the coordinates of the new vertices
can be calculated from the coordinates of the two vertices that define
the edge.

5.2.2. Our proposed algorithm

As we are processing the mesh in a Geometry Shader, each triangle
is processed separately. For this reason, we have developed a technique
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which is capable of altering the geometry of two triangles that share an
edge without any communication among them. With this approach we
will be able to exploit the parallelism of graphics hardware.

Refining the mesh

When refining the mesh, the algorithm checks each edge to see
whether they need refinement. Depending on the combination of edges
that need more detail, the algorithm selects a pattern for tessellating the
input triangle (see Figure 5.5). Each of these generated triangles stores
the spatial coordinates, the texture information and any other informa-
tion needed for rendering. Moreover, it is necessary to output for each
new triangle two pieces of information that enable our solution:

= A number indicating the id of the triangle.

= A number coding the tessellation patterns that have been applied,
keeping this information in patterninfo.

The need of storing these two values is due to the fact that we must
know how a particular triangle was created in order to know how we
should modify it when swapping to a lower level of detail. On the one
hand, the id value will uniquely identify each of the generated triangles.
Thus, this value will be used as a means to create the hierarchy of
triangles, as it enables us to calculate easily the parent triangle of any
given triangle. This ¢d number is given following the formula:

id = id - maxOutput + originalTris + childType (5.1)

Although this formula is quite simple, the different constants in-
volved need further explanation. The maxQutput value is understood
as the maximum number of triangles that can be output from a parent
triangle using the available patterns. The patterns presented in Figure 5
involve outputting a maximum number of 4 new triangles and, as a con-
sequence, in our case maxQutput is a value equal to 4. The originalTris
constant refers to the number of initially existing triangles on the source
mesh, which depends on the input mesh the application uses. Finally,
childType is a value used to differentiate between the triangles output
from a parent triangle. As the patterns used output a maximum number
of 4 new triangles, in our case the childT'ype is a value ranging from 0
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to 3. Let’s say we are applying pattern 1, which outputs 4 new trian-
gles. When calculating the id of each of these new triangles the value
childType will be one of the numbers in the range [0, 3] to assure that
each id is different. Thus, the childlype value is necessary to differ-
entiate between the triangles that belong to the same parent, which is
compulsory for the correct coarsement of the mesh as we will see in the
following section.

On the other hand, and following with the two elements that have
to be output for each triangle, the patternin fo number is used to store
all the patterns that have been applied to refine a triangle. This val-
ue is obtained following Equation 5.2, which has been specifically pre-
pared to code the different patterns applied to a triangle in one single
value. In this equation latestPattern refers to the type of the latest
pattern, the one that we have used to create this triangle. The value
numberO f Patterns refers to the number of available patterns that we
can apply in our tessellation algorithm. In our case we use the 7 pat-
terns presented in Figure 5.5 and, as a consequence, numberQO f Patterns
should be equal to 7.

patterninfo = patterninfo - numberO f Patterns + latest Pattern
(5.2)

This patterninfo value will be the same for all the triangles belong-
ing to the same parent. This piece of information is important due to
the fact that we must know how a particular triangle was created in
order to know how we should modify it when swapping to a lower level
of detail.

The ¢d and patternin fo values presented above are the elements that
enable our algorithm to recover less detailed approximations without
having to start again from the coarsest approximation. It is important
to underline that this is one of the main features of the method we are
proposing. Finally, it is worth mentioning that, initially, the id values of
the original triangles are given sequentially (starting from id 0) and all
the patterninfo values are equal to 0.

To clarify the process and the equations that we have introduced,
Figure 5.6 presents an example of how the tessellation process works.
On Figure 5.6(a) we present the initial mesh composed of two trian-
gles, intially labeled with ids 0 and 1. The dotted line in blue represents
the plane that we will use to define which area of the mesh needs refine-
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Figure 5.6: Tessellation example with the ¢d value of each triangle.

ments, where the whole area below this line will be considered to require
more detail. Each of the two initial triangles go through the extraction
process of the algorithm that we are presenting. In the specific case of
the triangle number 1, the algorithm detects that none of its edges needs
refinement and, as a consequence, no change will be made. Nevertheless,
the algorithm detects that triangle with id 0 needs refinement because
the center points of the two legs of the triangle are below the dotted
line. Then, we choose from the patterns the one that reflects this combi-
nation and we apply it, so that we obtain the three new triangles shown
in Figure 5.6(b). It can be seen how the id values of the new triangles
are calculated following the formula 5.1, assuring that no repeated id is
given. Following with the refinement process, the next tessellation step
shows that different patterns have been applied to triangles 2, 3 and 4,
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44

] (3]

Figure 5.7: Tessellation tree. Each node presents the i¢d and the
patterniInfo values of each triangle.

as they represent different types of tessellation.

Figure 5.7 presents the tree of triangles that can be obtained in the
example that we are presenting. For each node we present, on the left
and in blue color, the id of the triangles and on the right and in red
color the patternInfo value of each triangle. Both sets of values are
calculated following the formulas presented in Equations 5.1 and 5.2.
It is important to mention that the number of children of each node
will depend on the pattern applied, as they output a different number
of triangles. By using the previously proposed tessellation patterns in
Figure 5.5, we can refine one triangle and obtain 2, 3 or 4 new triangles.

Coarsening the mesh

A different process should be applied when diminishing the detail
of the mesh. The id and the patterninfo values of the triangles have
been precisely given in order to simplify the coarsening process. Thus,
following with the example given in the previous subsection, if we wanted
to reduce the detail and return to the state shown in Figure 5.6(b), each
of the triangles located under the dotted line would execute the same
coarsening process.

When tessellating a triangle, for example with the pattern that is
used when the hypotenuse and both legs are refined (see pattern 1 in
Figure 5.5), four triangles are output. Nevertheless, only one of these
triangles will be needed when diminishing the detail. Three of them
will be discarded and the other one will be modified to recreate the
geometry of the parent triangle. Therefore, the childld value of each
triangle enables differentiating child triangles to if the triangle can be
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discarded or if it is the triangle in charge of retrieving the geometry of
the parent triangle. If it is the latter case, the triangle will calculate the
spatial coordinates of its parent triangle.

The first step would be to find out whether the triangle that we are
processing can be discarded or if it is the triangle in charge of retrieving
the geometry of the parent triangle. The childType used when calculat-
ing the id of each triangle is necessary for this particular differentiation,
as in those cases where this value is equal to 0, the algorithm assumes
this triangle is in charge of recovering the geometry of the parent trian-
gle. The childType can be retrieved by using Equation 5.3.

childType = mod((id — originalTris), maxOutput) (5.3)

id = (id — originalTris) /maxOutput (5.4)

In order to retrieve the spatial coordinates of the parent triangle we
must know which pattern was applied to create the existing triangle.
This is due to the fact that for each pattern we will perform different
calculations for retrieving the three vertices of the parent triangle. In
this situation the patternin fo value helps us to know which pattern was
applied, as the latest pattern can be obtained with the next equation:

ilatest Pattern = mod(patternInfo, numberO f Patterns) (5.5)

Once we know which pattern was applied, we calculate the position
of the vertices and we output the new geometry with the new id value
obtained in Equation 5.4 and the new patterninfo value obtained with
Equation 5.6. The way we calculated this value assures that we will be
able to continue coarsening the mesh or refining it without any problem.

patternInfo = patternInfo/numberO f Patterns (5.6)

Following with the example presented in Figure 5.6, if we wanted to
coarsen the geometry each triangle would go through a coarsening pro-
cess. Let us suppose that we are processing the triangle with id 10. If we
calculate its childType we obtain a 0 value, indicating that triangle 10 is
the one that must become the parent triangle, whose id can be retrieved
with Equation 5.4. In this case, the latest Pattern would indicate that
pattern 1 was applied and we would calculate the spatial coordinates
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Figure 5.8: Example of re-tessellation when the refinement criterion
is changed.

of the parent triangle accordingly. Nevertheless, triangles 11, 12 and 13
have a childT'ype different from 0 and would be discarded. Once again
we would like to remember that all these operations have been coded in
the shaders, so that we are able to know which operations to perform
depending on the type of pattern we applied.

5.2.3. Camera movement

In the example presented above (see Figure 5.6), we have described
how the tessellation process works but we have considered that the lo-
cation of the plane splitting the area where the mesh is and is not tes-
sellated remains unaltered. Nevertheless, in a real case this line keeps
moving all the time as it is usually related to the camera position.

Figure 5.8 is based on the second tessellation step shown in Fig-
ure 5.6(c). It presents a case where the position of the dotted line is
modified, altering the criterion used to decide which triangles we have
to refine. In these cases, a slightly different process is applied to cor-
rect the appropriate triangles. This algorithm checks each triangle to
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see whether, with the new criterion, their parent triangle would need a
different tessellation. For example, triangles with ¢d number 1 or number
10 would not require any change as their parent would experience the
same tessellation (or refinement) with both positions of the dotted line.
Nevertheless, the parent of the triangle with id value equal to 18 had
two legs below the dotted line and now both of them are above this line.
In this case, the algorithm would coarse the triangle and refine it again.
Similarly, triangle 19 (sibling of triangle 18) would also detect that its
parent would have been affected by the critetion change.

Following with triangles 18 and 19, we would coarse them eliminating
one of them while the other becomes triangle 4 again. Then, we apply
the adequate pattern to refine again the triangle. Similarly, triangles
14, 15, 16 and 17 are affected and three of them are eliminated while
the remaining one becomes triangle 3 and is refined again, creating new
triangles with ids 14 and 15. These coarsening and refining processes are
performed following the methods presented above.

It is important to underline that both processes (coarsening and
refining again) are executed at the same time, so that we can coarse the
triangle in more than one level of detail and refine it again. The id values
have been calculated so that we can know at any point if the triangle we
are processing was useful in any of the previous levels of detail. Moreover,
although this process seems tedious, only a small portion of the triangles
in the mesh will go through this process.

5.3. Ocean Simulation

The previous technique is capable of modifying the detail of the
mesh in real time to offer a fast rendering of the ocean. It is important
to mention that the geometry obtained in this pass will be output and
stored in GPU memory, so that it can be used in the following frames
for further tessellations or for maintaining the current tessellation if
necessary.

Nevertheless, in addition to the geometry management of the mesh
simulating the ocean, we must perform other tasks in order to obtain
a visually-satisfying ocean simulation. In this section we will briefly de-
scribe the different techniques used to enhance the realism of the simu-
lation.
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Perlin noise

In this sense, one of the first features that we must consider is the
algorithm applied to simulate the ocean waves. In the state of the art
we have presented many techniques that have been developed to model
ocean surfaces. Among them, we have selected the Perlin noise [57] as it
is capable of producing smooth waves. Thus, in our specific case, Perlin
noise can be used to make some very impressive looking sea effects,
recreating sea variations by simply adding up noisy functions at a range
of different scales.

Perlin noise has been a commonly used technique of computer graph-
ics since 1985. This algorithm for noise generation has been used in
many applications and its implementation in current hardware is avail-
able [148, 149]. Moreover, Perlin noise is faster than other methods and
it is easily ported to GPU shaders, in contrast to other algorithms like
the FFT ones (explained in Chapter 2) which are slower and difficult to
code.

In our implementation, the shader in charge of updating the anima-
tion of the ocean will calculate the appropriate height according to the
position of the vertex within the mesh and to the time of the animation.
For enabling the Perlin noise calculation on GPU, we initially upload
a texture containing some noise information that is necessary for the
real-time noise update.

Rendering enhancements

In addition to animating the waves, we must also consider other in-
teractions of the ocean, such as refraction, reflection, foam, etc. Reflec-
tion can be obtained by applying environmental mapping on GPU. This
technique consists in using 3D texture coordinates to access a cubemap
storing the precalculated reflex. The Fresnel term is commonly comput-
ed by calculating, for each pixel, the dot product between the normal
and the eye vector. This value is used to access a one-dimensional texture
which stores different reflections for different fresnel values [150]. In the
simulation that we prepared, we only considered reflection and fresnel
factor, although we could apply any of the techniques that are available
in the literature. These two effects are simple to code and sufficient to
offer a realistic impression.
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5.4. Results

In this section we will study the performance of our tessellation
method by analyzing the visual quality obtained as well as the calcula-
tion time of the extracted approximation. Our scheme was programmed
with GLSL and C++ on a Windows Vista Operating System. The tests
were carried out on a Pentium D 2.8 GHz. with 2 GB. RAM and an
nVidia GeForce 8800 GT graphics card.

We also proposed the integration of the whole ocean simulation in
an application which controls the tessellation and the final rendering
quality.

5.41. Visual Results

First, we offer some visual results of the tessellation algorithm that
we have described. Figures 5.9 and 5.13 present a mesh in wireframe
where different tessellations have been applied.

Figure 5.13 presents a tessellation case where an initial mesh com-
posed of four triangles (on top) is refined according to the distance to
the camera. In the more refined meshes that this figure presents it is
possible to see how the tessellation is not uniform, as those areas of the
mesh which are closer to the observer are more tessellated than those
that are farther. Moreover, Figure 5.13(h) presents the most detailed
tessellation with Perlin noise applied to simulate ocean waves.

We can find another tessellation example in Figure 5.9. In this case,
we have considered that a fictitious frustum (depicted in red) has been
located on the mesh to guide the tessellation process which, again, al-
so considers the distance to the camera. In this case, the initial mesh is
composed of 256 triangles. In this example four tessellation steps are pre-
sented. It is important to mention that some areas of the mesh that are
outside the frustum are also tessellated in order to avoid T-vertices, as
we explained when describing the features of our proposal. These figures
show how the tessellation process is capable of increasing the detail of
an input mesh without introducing cracks or other artifacts. Moreover,
the last image of this Figure presents the tessellated surface animat-
ed with Perlin noise, where only those triangles within the frustum are
animated.
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(a) First tessellation step (598 triangles). (b) Second tessellation step (1,264 trian-
gles).

(c) Third tessellation step (2,546 trian- (d) Fourth tessellation step (5,002 trian-
gles). gles).

(e) Fourth tessellation step with surface
animation.

Figure 5.9: Sample tessellation guided by a simulated frustum (in
red).

5.4.2. Performance

In order to test the performance of our proposed tessellation tech-
nique, we have conducted some tests where an initial mesh composed
of 4 triangles is tessellated. The detail of the input mesh is initially in-
creased and later coarsened following a smooth transition obtained from
a smooth trajectory of the camera to get closer to the mesh.

Figure 5.10 presents the time needed for tessellating, animating and
rendering the different tessellation steps depicted in Figure 5.13, where
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Figure 5.10: Performance obtained using a distance criterion (Figure
5.13).

the tessellation depends on the distance to the camera. Table 5.1 presents
the results obtained in this test, helping us to show how the noise calcu-
lations for animation involve increasing the rendering time in 10 % while
the tessellation supposes an increase of 60 %.

For offering further tessellation experiments, Figure 5.11 presents the
results of a similar test where all the geometry is tessellated at the same
time, without any specific criterion. In this case, the obtained geometry
will be composed of 2" triangles, where n is the tessellation step. In this
case, we can observe how the cost of the tessellation is exponential, offer-
ing very high temporal costs when outputting 65,536 triangles. Again,
the results are depicted in Table 5.2 to help us analyze the way this tes-
sellation algorithm works. In this test, the noise calculation doubles the
rendering time while the tessellation step only involves a 60 % increase.
It is worth mentioning that, in our simulation, we will never include so
many triangles as only those areas that need detail will be tessellated.
Nevertheless, we considered interesting to show how the temporal cost
of the algorithm can be affected by the quantity of output triangles.

5.4.3. Coherence exploitation

An important improvement of the proposed approach is the possi-
bility of exploiting coherence among the extracted tessellations. Table
5.3 presents the temporal results of a scenario similar to that presented
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Number of Visualization Visualization  Visualization

Triangles + Animation + Animation

+ Tessellation
4 1.45 1.46 2.29
16 1.46 1.46 2.29
64 1.48 1.50 2.30
256 1.58 1.61 2.48
1,024 1.71 1.82 2.83
3,644 1.83 2.36 3.70
5,756 1.88 291 5.67
3,644 1.83 2.36 3.90
1,024 1.71 1.82 3.24
256 1.58 1.61 2.67
64 1.48 1.50 2.30
16 1.46 1.46 2.29
4 1.45 1.45 2.29

Table 5.1: Comparison of time (in milliseconds) required for visu-
alizing, animating and tessellating the input mesh using a distance
criterion (see Figure 5.13).

in Figure 5.13, where the distance to the camera is used to guide the
tessellation. These temporal costs include visualization, animation and
tessellation of the input mesh. The column on the right offers the results
without coherence maintenance, which nearly double the cost of our
coherence-based algorithm. These results show that we can offer better
performance us our tessellation scheme can exploit coherence among ex-
tracted tessellation, in contrast to previous solution which had to start
again from the input mesh.

5.4.4. QOcean simulation

Finally, Figure 5.12 presents a snapshot of the ocean simulation we
have proposed. As we mentioned before, the system includes reflections
and the fresnel factor to give realism to the scene.
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Number of Visualization Visualization  Visualization

Triangles + Animation + Animation

+ Tessellation
4 1.45 1.46 2.29
16 1.46 1.46 2.29
64 1.48 1.50 2.44
256 1.58 1.61 2.44
1,024 1.71 1.82 2.83
4,096 1.80 2.49 3.85
16,384 2.08 5.50 8.68
65,536 2.71 20.20 30.84
16,384 2.08 5.50 10.68
4,096 1.80 2.49 4.15
1,024 1.71 1.82 2.83
256 1.58 1.61 2.44
64 1.48 1.50 2.44
16 1.46 1.46 2.29
4 1.45 1.45 2.29

Table 5.2: Comparison of time (in milliseconds) required for visual-
izing, animating and tessellating if completely tessellating the mesh.

Number of Triangles Coherence Exploitation No Coherence

Exploitation
16 2.49 2.49
64 2.49 3.63
256 2.52 4.89
1,024 2.84 6.46
3,644 4.16 10.05
5,756 6.47 14.04
3,644 5.16 10.05
1,024 3.73 6.46
256 2.69 4.89
64 2.31 3.63
16 2.27 249

Table 5.3: Performance comparison (visualization, animation and
tessellation) with and without exploiting coherence (in milliseconds).
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Figure 5.11: Performance obtained when completely tessellating the
mesh.

5.5. Conclusions

Ocean simulation has been addressed by many researchers to offer
realistic visualization, although some of them were not aimed at real
time animation. In this sense, we have reviewed many related papers in
order to choose the main features that affect the realism of the surface
of the sea, although only some of them have proposed improvements on
the management of the underlying geometry.

We have presented a method for simulating ocean in real-time. The
presented approach is based on the use of a new adaptive tessellation
scheme which exploits coherence among extracted approximations. Ac-
cordingly, by storing some information, we are capable of reusing the
latest extracted mesh when refining and coarsening the surface. In this
framework, the final simulation includes reflection and considers the fres-
nel term to offer realistic approximations, although our main objective
was the development of a new tessellation scheme.

For future work we are focused on the inclusion of more effects like
refraction or the interaction of objects with the surface. In this sense, we
must perform further research to combine the use of fractal noise with
the interactions of objects with the ocean.

From a different perspective, it is worth mentioning that this tessel-
lation algorithm could be also applied to terrain rendering. As a conse-
quence, it is our interest to analyze the possibilities offered by a GPU-
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Figure 5.12: Simulation integrated into the final application.

based tessellation technique in terrain visualization.
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Figure 5.13: Sample tessellation following a distance criterion.
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CHAPTER

Automatic Terrain Generation

Terrain is a very important element in these outdoor scenarios. Users
from the scientific community or even the gaming environment are cur-
rently requiring a higher level of customization. In this sense, the ob-
jective of the work presented in this chapter is to provide the final user
with an easy-to-use terrain generation application. We propose a sketch-
ing solution which, combined with a simple terrain algorithm, is capable
of offering a realistic but synthetic terrain. The application is composed
of two windows, which offer 2D and 3D representations of the terrain
respectively. These windows are sufficient for providing the user with
an interactive feedback about the terrain that is being designed. More-
over, our approach offers the possibility of using an image as a guide for
sketching the desired shape. Our framework offers algorithms for both
creating and modifying terrain features, thus improving the final results
with more realism and greater customization for the user.

6.1. Introduction

In recent years, computer graphics has undergone an intense evo-
lution as new graphics hardware offers a final image quality that was
unimaginable just a few years ago. As a result, interactive graphics ap-
plications, such as computer games or virtual reality environments, now
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Draw desired coastline Create hills Re-shape hills

Figure 6.1: Designing a sample island terrain in three steps.

include more complex scenes offering very detailed environments. Ter-
rain is therefore a key element in many applications that can lessen the
sense of realism if it is not addressed correctly.

Terrain generation is a research area which has been active for many
decades and growing power of modern computers has made them ca-
pable of producing increasingly more realistic scenarios. Synthetic ter-
rain generation is a process which creates elevation values throughout
a two dimensional grid. The need for highly realistic scenarios often in-
volves developing algorithms that can generate more detailed terrains
with more user control over the final terrain that is created. Different
terrain generation techniques that are capable of offering very realistic
artificial terrains have been reported in the literature. Nevertheless, not
many applications provide enough user control and those that do are
often too difficult to control.

Sketching is a tool that is well suited to the design of architectural
elements and it provides the user with a considerable amount of con-
trol over the created elements. It is possible to find recent surveys on
sketching [109, 110], where the reader can account for the great amount
of work that has been developed in this area. However, less work has
focused on sketching the underlying terrain or extracting it from a pho-
tograph. Thus, buildings are often considered as the foreground and are
taken into account properly, whereas terrain is seen as background which
is often ignored.

Some sketching terrain approaches have been developed in recent
years [130, 128, 129]. Only the work developed by Gain et al. [129]
proposed a complete sketching solution with a sufficient amount of user
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Figure 6.2: Example of a terrain obtained with our framework and
imported into the Torque Game Engine.

control. Nevertheless, their solution still presented a complex interaction
from the user where multiple views of the terrain are needed in order to
obtain the desired terrain. In this sense, managing intersecting moun-
tains can become difficult as the user must decide if a new mountain
must be in front or behind an existing one while drawing the silhouette.
The problem of boundary constraints can be overcome if we restrict
ourselves to sketching islands. The boundary constraints for islands are
simple: an island has a coastline, that is, a continuous bounding curve.
Everything within the coastline can be assumed to be above sea level,
and everything outside the coastline can be assumed to be below sea
level and invisible.

Our aim consists in developing convenient and simple ways to create
computer models of terrain. Our goal is similar to the idea given in [151],
where the authors show that relatively simple algorithms can provide
non-professional users with fast, successful results. In this sense, Figure
6.1 shows how we can create a terrain with three simple steps using the
method we are presenting. Thus, we can sketch the island, create some
hills and also re-locate and re-shape them as desired.

It is worth mentioning that, more precisely, in this chapter we address
the problem of creating computer models of islands for use in computer
games. Figure 6.2 presents a terrain generated with our solution and
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imported into a game engine for its use in a 3D scenario. In the following
sections we will describe how this terrain is generated automatically from
the user’s input.

In this work we describe a terrain creation algorithm for island ter-
rains based on heightmaps, which are regularly-spaced two-dimensional
grids of height coordinates. These grids can be later processed by a mod-
eling software or game engine to obtain the 3D surface of the desired
terrain. The elevation of the terrain is automatically calculated from the
coastline sketched by the user, who can also create hills and apply filters
in order to achieve more realistic and irregular terrain. The perturba-
tions created by the hills and the filters are both created by means of
a simple yet efficient terrain generation algorithm. Once again, it is im-
portant to mention that our aim is to provide the user with more control
over the terrain that is generated.

Furthermore, we also consider the integration of our algorithm into
a sketching application. This application combines a 2D representation
window and a 3D displaying window in order to simplify the drawing
process. First, the user creates a silhouette of the island in the 2D window
and then, the user will be able to modify the terrain appearance from
the 2D and the 3D windows. The terrain thus obtained will be output
as a heightmap that may then be imported into a game engine.

This work is organized as follows. Section 6.2 describes our terrain
generation algorithm. After that, Section 6.3 analyzes our sketching ap-
plication and presents the user interface and the possible operations that
can be used to create the terrain. In Section 6.4 we describe a detailed
implementation of the data structures and processes of our framework.
Later, Section 6.5 depicts our results and it also discusses a usability test
performed among different potential users. Finally, Section 6.6 presents
our conclusions and gives some ideas for future work.

6.2. Our Terrain Generation Algorithm

The method that we present for generating islands is based on the
use of heightmaps and it allows users to define and modify the coastline
of the island, using an image as guide if desired. Furthermore, they can
also create and reshape any number of hills, which will interact with
each other and with the existing terrain. Finally, we offer the possibility
of applying filters to give the final terrain a more realistic appearance.
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(a) Initial island terrain. ) Bottom to top cut. ) Island reshaped.
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(d) Initial island terrain. e) Top to bottom cut. (f) Island reshaped.

Figure 6.3: Cutting and reshaping the island.

6.2.1. Reshaping the Coastline

The user can draw the silhouette of the island freely, but it will be
necessary to delineate a continuous curve by sketching a closed shape, as
shown in the left image of Figure 6.3. The shape of the coastline can be
changed by redrawing, starting and ending at points near the existing
coastline and drawing a continuous curve in any direction between those
two points. Thus, it is possible to apply different operations in order to
modify the existing coastline.

The user may decide to cut a piece of the island off. As a consequence,
the terrain will be split into two areas. Depending on the direction of the
cut, the algorithm will decide which one of these areas is to be rejected.
The direction of the cut is being understood as the direction running
from the start to the finish points. The rejected area will be the one
on the left-hand side of the direction of the cut. Figure 6.3 presents an
initial coastline and the silhouettes obtained after performing cuts with
the same start and finish points but with different directions.

Furthermore, the user can also add new pieces to the existing area.
Again, the algorithm will behave differently depending on the direction
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) Initial island terrain. ) Clockwise supplement. ) Island reshaped.
) Initial island terrain. ) Anticlockwise supple- ) Island reshaped.
ment.

Figure 6.4: Supplementing and reshaping the island.

of the sketched draw. If the line has been sketched clockwise, the new
area will be added to the existing one. In contrast, if the line has been
performed in an anticlockwise direction, then this new area will be main-
tained as the new area and the old one will be rejected. In Figure 6.4
we can see an example of these possible ways of modifying the area by
adding or subtracting a piece of terrain.

We must note that the algorithm will differentiate between cut and
supplement operations by testing whether the line goes through the ter-
rain area or not. In those cases in which a line is used to perform more
than one operation, each point where the line intersects the silhouette
will be interpreted as the finish and start points of the consecutive op-
erations. In Figure 6.5 we depict an area that is being modified by two
consecutive operations: the first one consists in an external clockwise
supplement and the second one is a curved internal cut that is rejecting
the piece of its left-hand side.

6.2.2. Updating the Terrain Height

Every time the coastline silhouette is modified, the terrain algorithm
has to react adequately to those changes and recalculate the height of
the terrain in order to offer a smooth continuous surface.
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(a) Initial island terrain.  (b) Combined operations. (c) Island reshaped.

Figure 6.5: Two consecutive operations.

Since we are simulating the terrain of an island, we must take into
account the level of the sea. We have to ensure that every single point
within the sketched coastline is above sea level. As a consequence, when
the coastline changes, it may be necessary to modify the elevations of
some onshore points. Ideally, points close to old parts of the coastline
which remain unchanged should also remain unchanged, but points close
to new parts of the coastline should be elevated above sea level regardless
of their previous height. Therefore, if we reshape the coastline then we
have to check whether all the points contained inside the island have the
appropriate height.

In order to obtain the new height values, we take into account the
distance from each point to the nearest piece of new coastline D,, and
to the nearest piece of old coastline D,, both scaled to the range 0
to 1. The height of each onshore point H; is calculated as a weighted
value between the old height H, and the new one H,, the latter being
proportional to D,. We implement the calculation of the heights with
Equation 6.1,where the weight W is calculated by Equation 6.2.

H; = H,(1,0 — W) + H,W (6.1)
W = 0,5+ 0,5tanh((D,)* — D,,) (6.2)

The hyperbolic tangent (tanh) function is chosen because it has the
appropriate shape, which is close to —1 for points near the old coastline
and close to 1 for points near the new coastline. Moreover, it never goes
outside this range. Dy is squared so that points close to neither coastline
are treated as being closer to old rather than to new coastline.

Whether a pixel is onshore or not is assessed by referring to a silhou-
ette of the island which is recalculated after each change to the coastline.
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30

(a) Elliptic paraboloid downwards. (b) Elliptic paraboloid upwards.

Figure 6.6: Example view of elliptic paraboloids.

The process entails drawing the coastline on a blank array of pixels and
using a flood-fill routine (starting from a point clearly outside the coast-
line) to distinguish sea from land.

6.2.3. Generating Hills

In our work we want to ease the modification of the orography, which
refers to the relief of mountains, hills and any other elevated region of a
terrain. The idea is to allow the user to create multiple hills having the
desired radii, height and location over the terrain.

In our algorithm we define hills as elliptic paraboloids. An elliptic
paraboloid is shaped like an oval cup. In a suitable coordinate system,
it can be represented by the equation:

2 22 g2

cTaEy

(6.3)

considering that the elliptic paraboloid is centered on 0,0,0 with
radius a, b, ¢ (along the x, y and z axes), being a, b, ¢ € R and a > b. The
variable raised to the first power indicates the axis of the paraboloid, in
our case z.
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This function represents an elliptical paraboloid which opens up-
wards and can be seen in Figure 6.6b. A negative value of ¢ defines an
elliptical paraboloid which open downwards. This latter quadratic sur-
face will be used in our algorithm to define the hills. It is important
to note that we allow the user to define valleys by means of elliptical
paraboloids which open upwards as can be seen in Figure 6.6a.

With this equation the user can introduce the central point, the
radius and the height of each hill. Once we have this information, our
algorithm will be able to calculate the height of each point affected by
the hill. All those points are obtained with the central point and the
radius that have been defined. The height of each single point will be
modified by following Equation 6.3. More precisely, we will add the new
height to the previous one. By so doing, we allow for the creation of
valleys and volcanic mountains.

6.2.4. Filtering the Terrain

In order to obtain a better appearance for the terrain being designed,
we can introduce some fuzzy bumps to deform the regular surface. We
have implemented a filter to introduce noise into the previously defined
rounded terrain. This filter can be applied as many times as the user
desires and it will give us a number of perturbations proportional to the
surface area of the island. The perturbations will be randomly distribut-
ed throughout the island surface. These perturbations will also have an
elliptical paraboloid shape, but they will be wider than taller and they
will be produced upwards or downwards in a stochastic manner. Figure
6.7 shows how the perturbations are located all around the island. The
green bumps are the small hills and the red ones are the small valleys
that will deform the regular surface of the terrain. It is worth mentioning
that more complex procedural noise may have been applied, although
the proposed approach is sufficient for our objectives.

Due to the hand-made production of hill and the filters that are
applied, there is no way two identical terrain surfaces can be otained.

6.3. User Interface

This section describes our sketching application for terrain genera-
tion by using the ideas presented earlier. The proposed application tries
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Figure 6.7: Filter applied to the terrain. The green bumps represent
the small hills and the red ones the small valleys.

to maintain the three basic elements that form the traditional sketching
on a piece of paper:

= feedback, enabling the artist to visually compare the improvements
on the sketch.

= re-sketching, allowing the user to modify the previous appearance
of the object.

= incremental refinement, adding detail to the object until the artist
is satisfied.

These three elements are fundamental for the proper use of a sketch-
ing tool [109] and have been addressed in our proposal in order to assure
that the final user experiences correctly the reasoning process.

Our proposed framework offers the user an interactive sketching ap-
plication. This solution consists of two windows. The 2D window depicts
the silhouette of the coastline of the island, as seen in Figure 6.8a. The
3D window represents the volumetric view of the whole island, as seen in
Figure 6.8b. This 3D view presents a smooth surface which is automat-
ically constructed with the information stored in the heightmap. When
the implementation starts, the 2D window contains a circular coastline,
as shown in Figure 6.8a. The 3D window, shown in Figure 6.8b, depicts
a conical island, which is the initial terrain that the user will be able to
modify.
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(a) 2D window. (b) 3D window.

Figure 6.8: 2D and 3D Window on Startup.

The presented interface is close to the ideal of a modeless single-tool
interface, with all of its major operations being controlled by a single
device (pen or single-button mouse). A problem that appears in some of
the most advanced sketching applications, like [152], is that they require
a multi-modal push-button interface. Our intention is to maintain the
original sketching objectives in order to keep our application as simple
and natural to use as possible. Nevertheless, it has been necessary to
develop a two-button mouse software to integrate all the functionalities
presented in the previous section. In the following subsections we will
provide a detailed description of the interaction with the aforementioned
windows in our application.

6.3.1. 2D Modeling Operations

The 2D window allows the user to perform two basic sketching op-
erations: defining the silhouette of the island and adding and modifying
hills.

When interacting with the left mouse button in this window, the
user is allowed to design the coastline of the island. It is possible to draw
a free-form silhouette interactively and the system will simultaneously
update the terrain. As we have mentioned in previous sections, it is

127



128

Chapter 6 Automatic Terrain Generation

possible to cut and extend the existing terrain by defining lines that
start and end on the coastline. Figure 6.9 shows how we could draw any
irregular shape to delimit the terrain of our island. Our system includes
an additional feature, which has proved popular with users: when a
change is made to the coastline, the old coastline gradually fades away,
taking about two seconds to do so. Pressing the right mouse button
during this period removes the amended coastline and reverts back to
the old coastline.

In our application, when the user clicks with the right button either
inside or outside the coastline, the application understands that the user
is defining the central point of a hill. Then a colored circular line will
appear on the terrain surface surrounding the central point that has just
been created. This line represents the area influenced by that particular
hill. The user may add as many hills as desired and each one will be
depicted in a different color (see Figure 6.9). It is important to comment
that when defining hills either inside or outside the coastline, both will
affect the terrain that has been generated since both radii affect the
coastline. After defining the hills, the user will be able to modify the
radii and the location of the hills inside the island:

= Right-clicking on the center point of the hill and dragging, allows
the user to change the position of the hill. The user can eliminate a
hill by dragging it outside the island until its radius is completely
outside the coastline.

= Right-clicking and dragging on the circular line allows the user to
modify the hill radius.

The application includes the possibility of zooming in on the sketched
island by clicking the right button of the mouse. Using the zoom can help
the user to get a better overview of the terrain. We have to click outside
the island in order to zoom, but always away from the coastline. This is
because if the user clicks too close to the coastline, the application will
interpret that the user wants to create or modify a hill.

6.3.2. 3D Modeling Operations

In our application, the 3D window shows a volumetric view of the
terrain. The user will be able to click with the right button on any of
the previously defined hills and can decide on the height of each hill by
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Figure 6.9: 2D window representing the radii of different hills.

dragging the mouse up and down. If we drag upwards, then the height
will be positive and we will create a hill, and if we drag downwards the
terrain will be a valley. Furthermore, by dragging the mouse left and
right, the user will be able to decrease and increase the size of the radius
of the selected mountain.

The 3D window also allows for the use of filters, which the user
can decide to apply to the whole terrain in order to introduce some
fuzzy bumps. Clicking with the left mouse button on any point on the
island and dragging upwards will add filters to the terrain. The more
we drag upwards, the more bumps are created. On the contrary, if we
drag downwards then the application will understand that we want to
decrease the number of perturbations.

In addition, the 3D window offers two more functions:

= Clicking with the left button away from any hill and dragging, acts
as a rotating function. It allows the island to be rotated inside the
window.

= Clicking with the right button away from the terrain and dragging
acts as a zoom function, that is to say, this increases or decreases
the apparent size of the island.
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(a) 2D window with the map as back-
ground.

=30 view 3 _ioix

(b) 3D window.

Figure 6.10: Staten Island (New York) simulated using an image as
a guide.

6.3.3. Contour map

As a guide for the design of the island, it could be possible to use
any image as background of the 2D window. Figure 6.10 presentes a
recreation of the shoreline of Staten Island in New York (USA). Similarly,
it could be possible to add hills to those locations indicated by the image
in a contour map.
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6.3.4. Putting all together

The set of operations described above enables the users to design
an island with the shape an features that they desire. All the afore-
mentioned functions can be applied in any order, as the terrain update
process is capable of reacting properly to any action performed.

In order to exemplify the usage of our application, in Figure 6.11 we
describe a step-by-step design of an island using our framework. Thus,
we start from the initial terrain showed in Figure 6.8 and and we draw
the coastline we desire. Then, we locate some hills around the island and
we modify their radii, height and location. Then, we apply some filters
in order to alter the regular surface of the terrain. With these simple
steps we are able to obtain a terrain which is adequate to import it into
any 3D application that supports heightmaps.

6.3.5. Output

Our implementation allows the user to save the heightmap in order
to be able to use it in different applications, such as game engines and
virtual reality applications. Figure 6.12 presents the 2D window display-
ing an island and its visualization in a selected game engine.

The application that we are presenting has also been prepared to
output Terragen [103] files, which consist of chunks of information in a
specific format indicating the height of the different points of our terrain.

6.4. Detailed Implementation

In this section we will describe in detail the different data structures
and processes that make up our framework.

6.4.1. Data Structures

The final terrain that will be visualized or output is composed of
three heightmaps that will be added one after the other. As a conse-
quence, with these three data structures we obtain the Final Grid. These
heightmaps are stored as grids (2D matrix) of floats:

= Heights Grid, which contains the heights of the terrain obtained
after modifying the coastline.
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g some hills.

(c) Reshaping and relocating the hills. (d) Adding some perturbations.

(e) Visualization of the terrain obtained.

Figure 6.11: Designing a sample terrain in four steps.
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(a) 2D Window displaying a sample is- (b) Game engine rendering a sample is-
land. land.

Figure 6.12: Island output and rendered in a game engine.

= Hills Grid, which stores the increments or decrements in height,
due to the hill volumes.

= Filters Grid, which holds the variations introduced by the filters
that have been inserted.

= Final Grid, which stores the sum of the three previous grids.

We assume that the Heights Grid defines the basic features of the
terrain. Then, the other data structures will add more details to the ter-
rain. It is important to note that the division of the terrain information
into those three data structures simplifies the process of updating any
of them. Thus, for example, adding a hill only involves modifying the
Hills grid.

In Figure 6.13 we can see an example of the different grids that
make up the Final Grid. The Heights Grid is obtained after defining
the coastline of the island. The Hills Grid contains three different hills.
Lastly, the Filters Grid stores the perturbations introduced by the user.
Consequently, these three grids combined together give form to the final
terrain.

Moreover, we also need other auxiliary data structures, such as:
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Heigths Grid Filters Grid

Figure 6.13: Sample composition of the Final grid of heights ob-
tained by adding the previously updated grids.

= Coastline Vector, which contains the set of points that form the
silhouette of the island.

= HillPoints Vector, which stores the position, the height and the
radius of each hill.

= FilterPoints Vector, which holds the position, the height and the
radius of the different perturbations.

» Vertices Vector, which includes the vertices information for ren-
dering the final terrain.

= Indices Vector, which stores the indices information for rendering
the final terrain.

This representation uses an internal triangle mesh to represent the
3D island. The 2D heightmap is linked with the 3D representation in
order to allow fast and efficient updates, offering a real-time visualization
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of the 2D and 3D windows. The implementation has been optimized
to ensure that each modeling operation entails updating the minimum
amount of information, including both the heightmap and the vertices
information, that is to say: spatial coordinates, normals, colors, etc.

6.4.2. Processes

In Section 6.3 we presented the different operations that can be ap-
plied by the user. Now we will describe the most important ones more
thoroughly.

When the user interacts with the silhouette of the island, the Coast-
line Vector and the Heights Grid have to be updated accordingly. If
the user creates a mew isolated coastline then the Coastline Vector is
completely updated and the old coastline is maintained to allow for the
undo operation. But, if the user reshapes an existing coastline then the
application has to calculate the intersection points between them. De-
pending on the type of operation (defined in Section 6.3) that the user
has performed, the algorithm will select the proper way to combine the
old and the new coastline.

Once the new Coastline Vector has been modified, the algorithm has
to update the Heights Grid properly. All the points on this grid have
to be updated, so that all the ones that are out of the coastline have
a zero height while those points which are onshore will have a height
value calculated following the algorithm presented in Section 6.2.2.

When the user creates or modifies a hill, the HillPoints Vector is
updated with the new values. Again, the Hills Grid has to be properly
modified to follow these changes. For each hill, the algorithm calculates
its area of influence. Within that area, all those points which are onshore
will have a height calculated by following Equation 6.3. All those points
influenced by more than one hill will add the height values that belong
to each hill.

The filtering process is similar to the addition of hills. The only
difference is that instead of creating hills by following the user input,
the algorithms will give each perturbation stochastic positions, heights
and radii.

The user interface was programmed using the GLUT (OpenGL Utili-
ty Toolkit) library, offering a simple windowing application programming
interface for OpenGL. The interaction with the user was accomplished
by applying the classical methods that this library offers. Nevertheless,
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at this point mention should be made of the method used to select the
hills in the 3D Window. If the user interacts with the 3D Window, the
application renders the contents of this window using the GL_.SELECT
rasterization mode. This mode, combined with the use of a small frustum
located around the clicking point, offers a simple yet efficient method to
find out which of the hills has been selected. More precisely, the name of
the selected primitive is obtained by reading the contents of the Selec-
tion Buffer used in this technique, as this buffer stores the information
of the objects rendered in the picking area.

6.5. Results

This section presents our results using a Pentium D 2.8 GHz proces-
sor with 2 GB. RAM and an nVidia GeForce 8800 GT graphics card.
The framework was implemented in C4++ with OpenGL. The island was
always rendered in real-time and the modifications were always appre-
ciated in a smooth continuous way. It is important to note that the
sample images that we have shown throughout the chapter were per-
formed with shiny colors that lack realism but clarify the process that
we are explaining.

In order to show the possibilities of our framework, we exported dif-
ferent heightmaps obtained from our terrain generation algorithm. Then
we introduced those heightmaps as input into a game engine and we ob-
tained several examples of islands. The game engine that we selected to
render our islands in our tests is the Torque Game Engine Advanced
(TGEA) [100, 101] released by GarageGames.

In Figure 6.14a we have rendered a volcano with two tiny hills on
one side. The volcano consists of a big hill but with a hole in the middle.
This hole is performed by applying a slightly smaller negative-height
hill, located in the middle of the first hill we created.

Figure 6.2 depicts an elongated island. The island is quite abrupt
after having applied some filters in order to give the final terrain a more
realistic appearance. Initially we set up just one big hill on one side of
the island and a small one on the other side of the island. Finally, the
filters added some perturbations to the terrain.

Finally, in Figure 6.14b we created a more circular island. This island
is also very craggy after having applied many filters. At first, we created
a single huge round hill. After that, we included a great number of
perturbations until we obtained the desired appearance for the island.
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(a) Volcano-shaped island.

(b) Craggy island obtained after applying many filters to
an initially round island.

Figure 6.14: Examples of Islands created with our algorithm and
included in the Torque Game Engine.

Although our sketching interface only creates single islands, a game
engine could load several islands simultaneously in order to create an
archipelago, as seen in Figure 6.15.

Our implementation has been prepared to create also Terragen-compatible
output. Terragen is a commonly used commercial software for creating
and visualizing terrain [103]. Figure 6.16 offers two images that were
obtained by importing two generated islands into Terragen.



138

Chapter 6 Automatic Terrain Generation

Figure 6.15: Archipelago created with our solution.

6.5.1. User Study

We have considered that it is compulsory to perform a user study in
order to evaluate the quality of our sketching application.

One of the first tasks to perform when conducting a usability study
is to decide on the persons that we are going to recruit. Different studies
have proven that 5 users are enough to assess the quality of software
applications [153], although evaluating visualization results need a dif-
ferent amount of volunteers in order to obtain valuable results [154]. As
a consequence, we will need more users as we also test their cognitive
capabilities, which means in our case, the faculty of a user to process
information after having perceived the visual inputs.

In our case we have conducted the test to 30 people, grouped in three
catergories depending on their expertise both in computer use in general
and in computer design in particular. Our tests were carried out in our
university lab and all of the participants were staff or students at the
university.

The objective of our informal user study consisted in analyzing our
sketching application from different perspectives. First, we asked our
volunteers to grade from 1 to 10 the overall quality perception of the
application, being 1 the worst and 10 the best. Secondly, we monitorized
their activity to record the time passed until they obtained a satisfactory
terrain. Finally, we asked them to report any difficulty or mistake they
could find when using our application.
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Figure 6.16: Example of Islands created with our algorithm and
included in TERRAGEN.

Study Number of Overall Avg. Required Observed

Group volunteers ~ Satisfaction = Time (min.)  Problems
Computer 12 8 3 12
Scientists
Designers 7 6 5 7

Other 11 9 4 2
Disciplines

Table 6.1: Results obtained with 30 university volunteers.

The test sessions consisted in giving the first-time users some basic
indications in order to make them know how our application works. After
that, we made them try to draw an island silhouette with the desired
hills. They played with different coastline, hills and filters until they
outlined the desired appearance of island and terrain.

In Table 6.1 we present the results obtained with university volun-
teers. Most of them were satisfied with their results after less than five
minutes. It is important to mention that both computer scientist and
designers found several problems that helped us to improve the applica-
tion. Most of them found the application difficult to use at the beginning,
although after some practice they started modeling their terrains. These
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initial usability problems helped us to modify some aspects of the ap-
plication and also encouraged us to create a brief guide to explain how
the application works. Moreover, most users found the application funny
and played with it after acquiring a little of expertise. Finally, we also
encouraged some of them to include the terrain inside the Torque Game
Engine [100, 101] with our help, in order to give them the possibility to
experience gaming over their modeled island and terrain.

6.6. Conclusions

This chapter presents an algorithm for terrain generation which is
suitable for users who wish to have full control over the whole creation
process. We have also presented a simple tool for creating solid models
of imaginary islands. The tool is easy to use and requires only a mini-
mal user interface, with all of its major operations being controlled by
a two-button mouse. From this application, the user can add, remove
and reshape existing hills interactively and the terrain will be updated
accordingly. Moreover, the user is able to modify the silhouette of the
island and add fuzzy bumps as desired.

Accordingly, the images of islands that we have shown in the previous
section show how our approach is capable of offering realistic terrains
adapted to the needs of the users. Thus, the final user can decide on the
final appearance of the island, as it is possible to apply any number of
filters. Nevertheless, the user could choose not to apply filters in order to
obtain a fairly rounded terrain which could be useful for a cartoon-like
environment. The usability study, which was performed among people
with different levels of computer skills showed that the user interface we
finally selected was comfortable and adequate in most cases.

The most promising area for future work consists in adding new fea-
tures to our existing application. We note that increasing the features is,
in principle, easy. For example, it would be straightforward to change the
application so that the designer could mark particular areas of the island
as beach or forest. In this sense, we are interested in allowing the user to
include weather phenomena, vegetation and other decorative elements
on their island. The problem with any of these is that each additional
option would make the user interface more complicated, thereby losing
a major advantage of the existing user interface, its simplicity. Never-
theless, a more complicated user interface could be justified by analogy
with sketching on paper, as paper maps often use different colours of ink
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for forests and lakes.

A group of new features which could be added without compromising
the user interface is simulation of physical processes. For example, the
height contours of an island could be determined, not by a convenient
trigonometrical formula, but by the way tha lava could flow after a real
volcanic eruption and the way that the resulting shape could be sculpted
by wind and rainfall.
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CHAPTER

Conclusions and Future Work

The work presented in this Ph.D. dissertation has been proposed
as an improvement on natural phenomena simulation. With this objec-
tive in mind, we have presented solutions to the creation and efficient
rendering of rain, sea and terrain.

To sum up, this dissertation has started by presenting a framework
for the creation, management and rendering of rain, introducing the con-
cept of level-of-detail in rain simulation and exploiting the capabilities
of the Geometry Shader. Then, we have described an improvement to
the previous solution which uses CUDA to offer rain interaction with
the scene, detecting the collisions of the raindrops with the scenario and
rendering the related splashes. After the rain rendering study, we have
presented a solution for the real-time rendering of sea, proposing a new
tessellation technique for the heightmap simulating the sea surface. Last-
ly, an approach to design terrain has been proposed, which simplifies the
user interaction and offers a high degree of control over the generated
terrain.

Throughout the different contributions, our aim has been to enhance
the visualization of each of these natural phenomena by offering an easy
management and a high performance by means of the graphics hardware
in different ways.

This chapter is organized as follows. First, we conclude on the con-
tributions offered by the different proposals. Then, we outline ideas for
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future work. Finally, we list the publications related to this Ph.D. dis-
sertation and the research projects that have enabled the development
of this thesis work.

7.1. Conclusions

Chapter 1 introduced the theme of the research work presented in
this dissertation, describing natural phenomena and related procedural
modeling techniques. Procedural modeling offers an ideal framework to
adapt the complexity of the visualized geometry to the limitations or
the specific needs of the final applications.

In Chapter 2 we described the previous work related to each natural
phenomenon that we have considered. Thus, we presented the state of
the art on rain rendering, where we could see that the existing solu-
tions still presented limitations for real scenarios where the user moved
very fast. Although interesting approaches had been presented, most of
them were too complex for an implementation in a real-time application.
Physics of rain were also described, as our solution was based on how real
raindrops behave. After the study on rain rendering, we presented the
related work for the sea simulation and the tessellation techniques that
were applied. In this case we could see how it is possible to find a wealth
of research on ocean simulation, applying many different techniques to
obtain a realistic and interactive simulation. Nevertheless, there are not
many GPU-based tessellation techniques oriented towards sea simula-
tion. Lastly, the remaining of the chapter presented the related work on
terrain generation, by covering solutions like the procedural approaches
for real terrain simulation. This study showed us that terrain genera-
tion frameworks were far from offering a high degree of control to the
final user. In this sense, although some solutions offered very realistic
environments, they usually resort to complex interfaces were most of the
parameters that define the terrain are fixed or difficult to adjust.

After we analyzed the state of the art on the different topics, we could
see that there was still room for improvement. Consequently, Chapter 3
proposed a set of techniques to create and efficiently visualize scenarios
with realistic rain. The proposed framework offered different approach-
es depending on the relation between the user location and the rain
area location. In addition, we included multiresolution techniques which
were applied directly and only on the GPU. Moreover, a study of the
generation of particles on the GPU was also proposed, preventing us
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from having to initially distribute the particles throughout the contain-
er and enabling us to distribute them in real time. The results that we
obtained improved on those achieved by previous solutions. The con-
ducted user study proved that our presented solution was capable of
offering similar rain intensity sensations with much less particles. The
use of patterns improved the performance as it reduced the amount of
particles to translate while maintaining a similar appearance. Moreover,
the selected shape of the rain container avoiding relocating the whole
container continuously, which was one of the main drawbacks of previ-
ous solutions as they were not suitable for game environments where the
user made fast and continuous camera movements. We offered a solu-
tion which was fast, simple, efficient and easily integrated into existing
virtual-reality environments.

In order to improve on the previous rain technique and to offer fur-
ther exploitation of graphics hardware, Chapter 4 described a technique
to efficiently detect, process and simulate collisions of raindrops on the
scenario. The improvement of the simulation was possible thanks to
the use of CUDA, as its flexibility allowed us to simpify the algorithms
to manage collisions and the related splashes. Thus, traditional hard-
ware programming would involve many rendering passes and a complex
memory management to obtain these effets. The quality obtained in the
different tests was due to the possibility of including a high quantity of
particles and splashes. Moreover, CUDA enabled the graphics applica-
tion to decrease the use of CPU time by 50 %, which allowed the 3D
software to dedicate that time to make other calculations.

From a different perspective, Chapter 5 presented a new fully-GPU
tessellation technique which was applied to ocean rendering. The scheme
proposed avoided the appearance of T-vertices and other artifacts that
can produce holes in the animated surface of the ocean. Another impor-
tant aspect of this tessellation algorithm was the coherence exploitation,
as it is capable of reusing the latest approximations when refining and
coarsening the mesh. In this sense, we minimize the operations to per-
form in both cases, reducing the temporal cost involved in the tessella-
tion process. This coherence maintenance is possible to the fact that we
store some small pieces of information in each triangle that are sufficient
for altering the level of detail. Although many simulation techniques
were studied in the state-of-the-art Chapter, the proposed framework
considered the use of Perlin noise to animate the water surface, as its
implementation on the GPU is simple, although more complex tech-
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niques could be equally applied. Some optical effects were considered,
as they contribute to the realism of the ocean scene without increasing
too much the rendering time.

Finally, Chapter 6 thoroughly described a tool for terrain generation
which was suitable for users who wish to have full control over the whole
creation process. The tool was easy to use and required only a minimal
user interface, with all of its major operations being controlled by a two-
button mouse. From this application, the user could add, remove and
reshape existing hills interactively and the terrain would be updated ac-
cordingly. Moreover, the user was able to modify the silhouette of the
island and add fuzzy bumps as desired. With these objectives in mind,
the final interface was designed to offer an intuitive environment and
was refined with the input of the users that tested the sketching appli-
cation. The usability study, which was performed among persons with
different levels of computer skills, showed that the user interface we fi-
nally selected is comfortable and adequate in most cases. The possibility
of exporting the obtained terraine to game engines is a key aspect for
allowing the users to create their own gaming scenarios.

7.2. Future work

In this dissertation we have presented different improvements on the
simulation of natural phenomena. Simulation of enviromental phenom-
ena still receives a great amount of attention from researchers as its
incorporation in games and feature films increases the realism of the
scenes. In this sense, it is our interest to continue working on these is-
sues to improve the realism and performance of the solutions.

Firstly, the rain simulation framework that we have proposed could
be improved with methods for simulating light interaction and other
effects that have been presented in previous works by other authors.
Furthermore, we would also be interested in studying the possibilities
of applying level-of-detail techniques to these effects in order to obtain
a more realistic simulation while maintaining a low computational cost.
Moreover, it could be possible to apply the proposed framework to the
simulation of snow, as this phenomenon is also visually perceptible and
its simulation could be improved with our multiresolution proposal. Re-
garding the CUDA-based framework, we plan to use the collision detec-
tion for further effects, like the accumulation of rain on the ground and
the alteration of the properties of the surfaces depending on the amount
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of water received. This latter line of work is specially interesting as it
can considerably contribute to the development of a physically and vi-
sually realistic rain simulation. Finally, we consider interesting to study
the alteration of the precipitation and the splashes in situations of wind,
so that the system solves correctly situations where drops do not fall in
a totally vertical way.

Secondly, we consider that it would be interesting to improve on the
ocean simulation by adding more effects to enhance the final visual qual-
ity and by studying other methods to animate the ocean surface. Shallow
water is also of interest, as ocean behaves differently when approaching
the shoreline. In this sense, we would like to consider how waves break,
producing foam and spray, in order to adapt GPU methods and level-
of-detail algorithms to the simulation of this phenomena. Moreover, the
study of methods to offer the interaction of the ocean surface with oth-
er objects is very attractive, as a real scenario usually considers objects
falling and floating on the sea. From a different perspective, the proposed
tessellation algorithm could be also applied to terrain rendering. As a
consequence, it is our interest to analyze the possibilities offered by a
GPU-based tessellation technique in terrain visualization. Nevertheless,
it is worth mentioning that the appearance of Directx 11 in the near fu-
ture will involve further advances in computer graphics. Among the new
stages that the rendering pipeline will include, we could highlight the
tessellation unit, which will be able to produce semi-regular tessellations
[155] by itself. This feature can be directly used for the ocean surfaces
and, thus, we believe that this unit will be key in the near future.

Then, the sketching tool was mainly focused on designing islands,
although we consider that it would be interesting to extended the algo-
rithms in order to manage other types of scenarios. The most promising
area for our terrain generation tool is to add new features to our existing
application. For example, it could be interesting to change the applica-
tion so that one could mark particular areas of the island as beach or
forest. In this sense, the authors are interested in allowing the user to
include weather phenomena, vegetation and other decorative elements
on their island. Moreover, all this information could be gathered by the
application and output to a render engine or a final application to render
the defined scenario. One feature that could be added is the simulation of
physical processes. For example, the height contours of an island could
be determined, not by a trigonometrical formula but by the way lava
flows after a real volcanic eruption and the way the resulting shape is
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sculpted by wind and rainfall.

Lastly, we would also like to research on the possibilities offered by
combining the different approaches presented. In this sense, for example,
we would like to explore the calculations of rain collisions on an animated
ocean surface. Similarly, we consider interesting to investigate on the use
of the CUDA programming framework to ocean tessellation.

7.3. Publications

To endorse the different works presented in this dissertation, this
section lists the publications that have been obtained with the presented
contributions. Moreover, a list of publications which are not directly
related to this Ph.D. dissertation is presented, as well as a list of research
projects that have funded this research.

= One journal publication and two more under review:

e Creation and Control of Rain in Virtual Environ-
ments
A. Puig-Centelles, O. Ripollés, M. Chover
The Visual Computer, vol. 25(11), pp. 1037-1052, 2009.

e Adaptive Tessellation in Ocean Surfaces
A. Puig-Centelles, F. Ramos, O. Ripollés, M. Chover, M.
Sbert
The Visual Computer, Under review.

e Automatic Terrain Generation
A. Puig-Centelles, P. A. C. Varely, O. Ripollés, M. Chover
Interacting with Computers, Under review.

= Six conferences, two of them under review:

e Rain Simulation on Dynamic Scenes
A. Puig-Centelles, N. Sunyer, O. Ripollés, M. Chover, M.
Sbert
Computer Graphics International (CGI), 2010, Under review.
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Tessellating Ocean Surfaces

A. Puig-Centelles, F. Ramos, O. Ripollés, M. Chover, M.
Sbert

Int. Conf. on Computer Graphics Theory and Applications
(GRAPP), 2010, Under Review.

Simulaciéon de Lluvia sobre Escenas Dinamicas

N. Sunyer, A. Puig-Centelles, O. Ripollés, M. Chover, M.
Sbert

Congreso Espanol de Informética Gréfica (CEIG), pp. 247-
250, 2009.

Optimizing the Management and Rendering of Rain
A. Puig-Centelles, O. Ripolles, M. Chover

Int. Conf. on Computer Graphics Theory and Applications
(GRAPP), pp. 373-378, 2009.

Automatic Terrain Generation with a Sketching In-
terface

A. Puig-Centelles, P. A. C. Varely, O. Ripolles, M. Chover
15" Winter School of Computer Graphics (WSCG), pp. 39-
46, 2009.

Multiresolution Techniques for Rain Rendering in vir-
tual Environments

A. Puig-Centelles, O. Ripolles, M. Chover

Int. Symp. on Computer and Information Sciences (ISCIS),
pp- 1-4, 2008.

Técnicas para visualizacién de lluvia en entornos vir-
tuales

A. Puig-Centelles, O. Ripolles, M. Chover

Congreso Espanol de Informética Gréfica (CEIG), pp. 159-
167, 2008.

Sketching Islands for a Game Environment
P. A. C. Varely, A. Puig-Centelles, M. Chover

5th European Conference on Visual Media Production (CVMP),

149



150 Chapter 7 Conclusions and Future Work

pp. 1-10, 2008.

Other publications which are not directly related to this dissertation:

= One journal Publications:

¢ Rendering continuous level-of-detail meshes by Mask-
ing Strips
O. Ripollés, M. Chover, J. Gumbau, F. Ramos, A. Puig-
Centelles
Graphical Models, vol. 71 (5), pp. 169-196, 20009.

= Four conferences:

e Multimedia Autonomous Learning Based on Video
Tutorials
A. Puig-Centelles, O. Ripollés, O. Belmonte, M. Arregui, O.
Coltell, M. Chover
International Technology, Education and Development Con-
ference (INTED), 2010.

¢ Virtual Classroom for Practical Internet Autonomous
Learning: New Materials and Course Assesment
M. Arregui, J. Huerta, A. Puig-Centelles, J.M. Pérez, O.
Ripollés, O. Coltell
International Technology, Education and Development Con-
ference (INTED), 2010.

e View-Dependent Multiresolution Modeling on the GPU
O. Ripollés, J. Gumbau, M. Chover, F. Ramos, A. Puig-
Centelles
17" Winter School of Computer Graphics (WSCG), pp. 121-
126, 20009.

e Educational instant messaging in a 3D environment
A. Puig-Centelles, O. Ripolles, M. Chover, P. Prades
Int. Conf. on Cognition and Exploratory Learning in Digital
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Age (CELDA), pp. 49-56, 2007.

Finally, it is worth mentioning that the work presented in this dis-
sertation is embedded within two research projects:

= Contenido Inteligente para Aplicaciones de Realidad Vir-
tual: una Aproximaciéon Basada en Geometria
Ministerio de Educacién y Ciencia, (TIN2007-68066-C04-02 and
TIN2007-68066-C04-01), 2007 - 2010.

» Geometria Inteligente
Fundacié Caixa Castellé-Bancaixa (P1 1B2007-56), 2007 - 2010.
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