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Resumen

Los modelos poligonales actualmente dominan el campo de los gráficos in-
teractivos. Esto es debido a su simplicidad matemática que permite que los más
comunes algoritmos de visualización se implementen directamente en el hard-
ware. Sin embargo la complejidad de estos modelos (medidos por el número de
poĺıgonos) crece más rápido que la capacidad del hardware gráfico para visu-
alizarlos interactivamente. Las técnicas de simplificación de poĺıgonos ofrecen
una solución para tratar estos modelos complejos. Estos métodos simplifican
la geometŕıa poligonal reduciendo el coste de visualización del modelo sin una
pérdida del contenido visual del objeto. Esta idea aún sigue vigente aunque es
una idea ya antigua en gráficos por ordenador. Durante los últimos años ha
surgido un gran abanico de métodos de simplificación. La mayoŕıa ha abor-
dado el problema de la simplificación desde el punto de vista geométrico. Es
decir, elaborando métricas que permiten guiar la simplificación calculando el
error cometido en cada paso utilizando una medida puramente geométrica. Re-
cientemente se han desarrollado nuevos métodos que intentan guiar el proceso
de simplificación mediante una medida de similitud visual. En otras palabras,
que los modelos simplificados se vean de forma parecida cuando se visualizan.
El error geométrico es uno de los factores que influye en la similitud visual
pero no es el único. Otros factores como las siluetas, las propias oclusiones y
trasparencias, los atributos de superficie, etc. influyen notablemente. En esta
tesis se presenta un nuevo método de simplificación de mallas de poĺıgonos.
Este método realiza una simplificación guiada por el punto de vista, acome-
tiendo una simplificación cuyo objetivo es garantizar la similitud visual. Esto
permite que muchas aplicaciones cuyo objetivo sea la visualización interactiva
como por ejemplo los juegos de ordenador se beneficien en buena medida. Se
han propuesto diferentes métricas para conducir el método de simplificación de-
sarrollado, todas ellas están basadas en la Teoŕıa de la Información. El empleo
de una métrica u otra permite llevar a cabo tres grandes tipos de simplifica-
ciones. En el primer grupo se consigue una simplificación cuyo factor primordial
es la similitud visual lo que conduce a la obtención de modelos simplificados
cuya geometŕıa oculta ha sido simplificada en gran medida o en su totalidad.
En el segundo grupo de métricas se aborda la simplificación con el objetivo
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de la similitud visual pero respetando en mayor medida la geometŕıa oculta
del modelo. Con lo que el error geométrico es menor que en grupo anterior
a costa de un mayor error visual. Finalmente, el tercer grupo permite que se
pueda acometer una simplificación que intenta preservar las regiones visual-
mente salientes de la malla mediante la aplicación del concepto de saliency de
malla, definido a partir de la divergencia de Jeshen-Shannon. Estas pequeñas
regiones se mantienen mejor si se hace uso de este método, de otra forma seŕıan
eliminadas ya que tienen un coste de simplificación bajo.

Palabras clave: simplificación poligonal automática, modelado multirres-
olución, nivel de detalle, selección del punto de vista, percepción visual, Teoŕıa
de la Información.
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CHAPTER 1
Introduction

1.1 Background and Motivation

Traditionally, polygonal models have been used in computer graphics as the
fundamental primitive for representing 3D objects. Polygonal meshes allow ob-
jects of arbitrary geometry to be represented properly at any desired degree
of accuracy. In addition, polygonal surfaces are easy to build from other sur-
face representations. Yet, perhaps the most important reason is that polygons
are the main, and sometimes the only, primitive supported by common graph-
ics hardware and software rendering systems. Moreover, most algorithms and
methods for manipulating and creating surfaces have been designed for polyg-
onal meshes.

Nowadays, many devices used in medical and scientific visualization create
polygonal models. These include, for instance, laser range scanners, computer
vision systems and medical imaging devices. These devices create models which
often consist of thousands or even millions of polygons. A great number of
polygons are necessary to represent curved surfaces. These massive data sets
normally exceed the capabilities of current display units and mesh processing
tools. Hence, in order to deal with these complex polygonal models, mesh
simplification is used. Mesh simplification or mesh decimation consists in gen-
erating approximations to highly detailed surfaces with a smaller number of
polygons. Figure 1.1 shows two different approximations of a polygonal model.
In 1976, Clark [Cla76] proposed the use of simplified models to improve the
frame rate, that is, the measurement of the frequency (rate) at which an imag-
ing device produces unique consecutive images called frames. Frame rate is
most often expressed in frames per second (fps). Different representations can

1
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2 Chapter 1 Introduction

be created for an object and the most adequate approximation can be chosen
depending on the distance, visibility, importance, etc. Objects which are close
to the viewer need a greater amount of detail than distant objects. This concept
gives rise to multiresolution modeling [Gar99, RLB+02] and a lot of algorithms
and methods have been developed in interactive graphics for constructing and
manipulating levels of detail (LOD). Figure 1.2 shows three levels of detail for a
polygonal model. Level of detail is very important in real-time systems. Every
system has a fixed frame buffer fill, transformation and lighting throughput,
and bus bandwidth. In order to maintain a constant frame rate, it is necessary
to use multiresolution models.

(a) Original (b) 68% (c) 85%

Figure 1.1: Two different approximations automatically created for a
polygonal model. Models (b) and (c) are represented with fewer polygons
than the original model (a)

Other data sources for polygonal models include modeling software for
computer-aided design (CAD) and computer games. These models are also
very complex with highly detailed surfaces that are produced by surface re-
construction and isosurface extraction methods. Indeed this creates very dense
meshes with a uniform distribution of points over the surface. Moreover, many
CAD models involve large assemblies of many small objects which may be
partially hidden. However, level of detail is still created manually. Although
polygonal simplification is a well-studied problem (there are a lot of different
approaches in the computer graphics literature), most of the work has been
carried out by developing simplification methods that minimize the geometric
error committed in the approximations. But in video games and visualization,
the most important point is the visual quality. Current video game artists often
do not use automatic simplification and continue to make the approximations
by hand. Therefore, the recent work on simplification has been conducted to
design methods that guide the simplification process by metrics that take into
account the visual error. This is the main motivation of this thesis.
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(a) Original (b) 59% (c) 89%

Figure 1.2: Three levels of detail for a polygonal model. The LOD
drawn depends on the distance. Models (b) and (c) are represented with
fewer polygons than the original model (a)

1.2 Problem Statement

The ultimate goal of the automatic simplification is to produce approxima-
tions with a desired number of polygons that minimizes the loss of quality with
respect to the original model. At the moment, there is no panacea in simplifica-
tion. That is, there is no algorithm or technique that is the best for all possible
scenarios. Different domains require different error metrics and simplification
methods.

In many medical and scientific applications, models must have precise geo-
metric tolerances with respect to the original model. For those cases, simplifi-
cation algorithms based on a geometric error metric are better suited. However,
in many visualization applications, the most important requirement is visual
similarity. In other words, what it is really important is what is visible. Other
aspects of the model are irrelevant.

In this thesis, we present a new family of methods for polygonal simplifi-
cation. These methods obtain approximations that preserve visual similarity.
The domain considered here is that of applications for interactive rendering
and visualization such as video games. Several different metrics are proposed
to conduct the simplification. These methods and metrics will be described in
the following sections.
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1.3 Contributions

The main aim of this thesis is to propose a new method for performing
polygonal simplification. This method can be used in conjunction with several
error metrics based on Information Theory. Below we will provide a brief
description of each contribution.

A survey of techniques for computing projected areas

The simplification algorithm presented here is based on viewpoint selection
measures. These measures are used to quantify the error committed at each
step of simplification and therefore guide the simplification process. All the
viewpoint selection measures included in this thesis take the projected areas
as input data. In general, the error metric has to be calculated at every step
in the simplification algorithm. Thus, it is necessary to find a technique that
allows this error metric to be computed quickly. The temporal cost of the
simplification algorithm depends above all on this computation.

Firstly, several techniques that allow the projected areas of polygons to be
computed in current graphics hardware are analyzed [CCSF05, CSCF06]. To
compare these techniques, we compute viewpoint entropy which is defined from
the projected areas of polygons. Viewpoint entropy is a metric that has been
successfully used to obtain the best viewpoints in a scene or object. It will be
used later in the viewpoint-driven simplification algorithm together with some
other viewpoint selection measures.

As pointed out above, the results from this survey can be useful not only
to compute viewpoint entropy but also to compute other metrics based on
projected areas such as mutual information and the Kullback-Leibler distance.
These metrics will be described in more detail in the following chapters.

Viewpoint entropy-driven simplification

Most existing simplification methods carry out the simplification process
by minimizing some measure of geometric deviation between the two surfaces
[SZL92, RB93, EDD+95, HHK+95, Hop96, CVM+96, COM98, GH97, LE97].
In recent times, only a few methods attempt to perform a simplification using
metrics, so that the two models appear similar when rendered [LT00, LH01,
ZT02, LVJ05]. In fact, some of them combine a pure geometric metric with
a measure of visibility [ZT02, LVJ05]. However, it is not clear how to weight
these two factors in order to produce an approximation with a higher degree
of visual quality.

In this thesis, a new error metric based on information-theoretic viewpoint
selection measures, i.e. viewpoint entropy and mutual information, is proposed
to guide the simplification process [CSCF07c, CSCF07b, CCSF07]. With this
approach, the hidden interiors of the model are removed just at the beginning.
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This metric is also able to preserve the silhouette of the model. Furthermore,
a balance in the size of the polygons is achieved. The polygonal simplification
algorithm applies the half-edge collapse as a decimation operation.

Viewpoint mutual information represents an improvement with respect to
viewpoint entropy where each viewpoint is analyzed individually. However,
with mutual information, all viewpoints are analyzed together. This allows mu-
tual information to preserve the silhouette of the model better than viewpoint
entropy. Therefore, the visual quality achieved with the mutual information is
much higher.

Viewpoint-driven simplification using f -divergences
With viewpoint entropy and mutual information, all the hidden geometry is

completely removed in the earliest stages of the simplification process. In fact,
this increases the visual quality of the simplified meshes, but it also decreases
the geometric fidelity. A high visual quality is a fundamental requirement for
some kinds of applications. However, others demand exact geometric toler-
ances. Several new metrics [CSCF07a, CCSF07] based on f -divergences are
proposed in this thesis. These divergences are measures of discrimination or
distance between probability distributions. Here we take into account not only
the distribution of projected areas of the polygons in the scene or object, but
also the actual areas of the polygons. This enables the simplification algorithm
to produce approximations that reduce the geometric error and even achieve a
higher visual quality.

Viewpoint-driven simplification using mesh saliency
Mesh saliency was defined as a measure of regional importance for graphics

meshes. This measure is able to capture what most would classify as visually
interesting regions on a mesh. This concept was first introduced by [LVJ05].
In this chapter, a new measure of mesh saliency is proposed. This new mesh
saliency, based on the Jensen-Shannon divergence, has been included in the
viewpoint-driven simplification method presented here in this thesis [CSCF08].
This approach formulates the mesh saliency in terms of how polygons are seen
from a set of viewpoints. The incorporation of mesh saliency into the sim-
plification method allows the regions of the model with small polygons to be
preserved better. Collapsing these regions would introduce a small error in our
simplification method. However, if they present a large saliency, they will not
be as much simplified. It must be considered that this is accomplished at the
expense of a greater simplification in other areas of the model.

Viewpoint-driven simplification using the best viewpoints
The viewpoints chosen by the algorithm play a decisive role throughout

the simplification process. This is due to the nature of the viewpoint selection
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measures. However, instead of using fixed camera positions that are determined
a priori, in this chapter an algorithm that selects the n best-viewpoint positions
is analyzed. This algorithm allows us to use fewer points to accomplish similar
results to those obtained with a greater number of viewpoints. This fact makes
it possible to reduce the temporal cost considerably.

Comparisons among the different viewpoint-driven methods and
a quadric-based algorithm

The different viewpoint-driven simplification methods proposed in this the-
sis [CSCF07c, CSCF07b, CSCF07a, CCSF07] are compared to a high quality
polygonal simplification method based on a pure geometric metric, quadrics
[GH97]. The quadric error metric is considered to be one of the most impor-
tant simplification metrics in the literature. This is mainly due to the fact that
it is perhaps the best balance between speed, fidelity and robustness currently
available for creating LODs. Its authors released the implementation as a soft-
ware package called QSlim, available at
http://graphics.cs.uiuc.edu/∼garland/software/qslim.html.
The quadric error metric has been improved in many different approaches. For
instance, by adding mesh attributes [GH98, Hop99] and some kind of visibil-
ity information [ZT02, LVJ05] and, more recently, by preserving topological
restrictions [WHC04, KTiKN05] and physical features [KG03, JTY06, YSZ04].

1.4 Overview

The remainder of this thesis is organized in the following chapters:

• Chapter 2: Previous Work

Automatic simplification has been a very active field of research in recent
decades. In this chapter, the most notable work in the simplification
framework is reviewed. Additionally, some basic concepts in Information
Theory which will be used later are presented here.

• Chapter 3: Techniques for Computing Projected Areas

The simplification algorithm proposed in this dissertation is based on
viewpoint selection measures. All the viewpoint selection measures in-
troduced throughout all the chapters are computed from the projected
areas. In this chapter, several techniques that allow computation of the
projected areas of polygons in current graphics hardware are analyzed.
In this study, some recent graphics processing units (GPUs) are tested.
The fastest technique will be applied later to the simplification algorithm.

• Chapter 4: Viewpoint-driven Simplification
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A new simplification algorithm for polygonal meshes is introduced in
this chapter. This method uses viewpoint entropy and mutual informa-
tion to define an error metric that will guide the simplification process.
These metrics allow for better preservation of the visual appearance of
the model. This is mainly because the hidden interiors of a model are
completely removed during the first steps of the algorithm. Mutual in-
formation significantly improves the visual quality of the approximations
obtained with viewpoint entropy, this is because it is able to preserve the
silhouettes better than viewpoint entropy.

• Chapter 5: Viewpoint-driven Simplification using f -divergences

The viewpoint-driven simplification algorithm is extended with new error
metrics based on f -divergences. These metrics consider the actual areas
of the polygons as well as the projected areas. This new approach makes
it possible to achieve high visual quality of the simplified models with-
out decreasing the geometric fidelity. However, the visual quality of the
models obtained with these new error metrics is a bit lower than with
mutual information, but the geometric error is quite a lot lower. The
hidden interiors of a model are preserved with this new proposal.

• Chapter 6: Viewpoint-driven Simplification using Mesh Saliency

The simplification method proposed in this thesis is able to produce high
quality simplifications. However, some small parts of the model composed
of very small polygons, such as the nose and the ears on a face, could
be further simplified. By incorporating the mesh saliency concept, it is
possible to preserve these regions. In this chapter, the viewpoint-driven
method is extended with mesh saliency. The results show that these small
yet very important regions are preserved better by using mesh saliency,
but other parts of the model could have a slightly worse simplification.

• Chapter 7: Viewpoint-driven Simplification using the Best Viewpoints

The temporal cost of the viewpoint-driven simplification method is high.
This is due to the technique used to compute the different measures based
on Information Theory. The cost of these measures is directly dependent
on the number of viewpoints. Therefore, instead of choosing several view-
points distributed uniformly around the model, here we analyze what the
simplification would be like if only a few best viewpoints were considered.
The results of the experiments show that the visual quality that can be
accomplished with a few best points is similar to that achieved with a
greater number of uniformly distributed points.

• Chapter 8: Conclusions and Future Work

The main conclusions and contributions of this thesis are presented in
this chapter, as well as some proposals for a future research.
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CHAPTER 2
Previous Work

2.1 Introduction
Research into automatic polygonal simplification has been very active in

recent years. The computer graphics literature is replete with excellent simpli-
fication methods. In this chapter, the most relevant algorithms in the field of
automatic simplification will be covered. Finally, some concepts on Information
Theory, which is used throughout this thesis, will be introduced.

2.2 Polygonal Simplification
The idea of representing objects within a scene at several resolutions is

very old and commonly used in computer graphics. For example, Clark [Cla76]
described its benefits back in 1976 and since then flight simulators have long
used handmade multiresolution models to ensure a constant frame rate. In
more recent years, a lot of research has focused on automatic simplification but
it is important to mention that today no algorithm excels at simplifying all
models. Some work best with terrain data sets, while others fare better with
medical and scientific data or with CAD models.

There are several different conceptual approaches to polygonal simplifi-
cation. Different taxonomies for simplification algorithms will be presented
here. These taxonomies describe some ways in which algorithms can differ
from or be similar to each other. The literature includes some good surveys
[HG97, CMS98, Gar99, Lue01, LRC+04] in which the state of the art is an-
alyzed. Recently, a study of the most important geometric error metrics was
carried out in [vKP06].

9
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10 Chapter 2 Previous Work

2.2.1 Topology

Topology refers to the structure of the connected polygonal mesh. The
genus is the number of holes in the mesh surface. For instance, a sphere and
a cube have a genus of zero, while a doughnut and a coffee cup have a genus
of one. A mesh is manifold if every edge is shared by exactly two triangles. A
mesh is manifold with boundary if it allows edges with only one triangle.

(a) An edge shared by 3 trian-
gles

(b) A vertex formed by 2 un-
connected sets of triangles

(c) A T-vertex

Figure 2.1: Examples of non-manifold triangle meshes

Manifold meshes are desirable for many algorithms and applications, but
unfortunately in practice many models are not perfectly manifold. They may
present many artifacts such as non-manifold edges or vertices (see Figure 2.1).
This is a particularly relevant problem in CAD models.

Simplification algorithms can be classified into:

• Topology-preserving algorithms. A topology-preserving algorithm main-
tains manifold connectivity and does not close holes. This constraint
limits the simplification. Thus, drastic simplification is not always possi-
ble. Many topology-preserving algorithms are simply topology-tolerant,
which means that they ignore the regions with non-manifold connectivity
and leave them unsimplified.
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• Topology-modifying algorithms. A topology-modifying algorithm does
not necessarily preserve manifold topology and may therefore close holes.
But drastic simplification can be accomplished with this kind of algo-
rithms. The price to be paid for this, however, is poor visual quality.
Many topology-modifying algorithms are topology-insensitive, and there-
fore do not take into consideration the initial mesh connectivity.

2.2.2 Mechanism

Four basic polygonal removal strategies, i.e. sampling, adaptive subdivision,
decimation and vertex merging, are used by almost every method in the field
of polygonal simplification.

• Sampling begins by taking geometric samples of the initial model. These
samples can be points, manifold surfaces or voxels. Then, these algo-
rithms attempt to create a polygonal simplification that matches the
sample data. The greater the number of samples taken, the more accu-
racy is obtained.

• Adaptive subdivision methods find a simple base mesh that can be recur-
sively subdivided to approximate the initial model. This proposal works
best when it is easy to find a base model, for instance, in terrain models.

• Decimation techniques consist of iteratively removing vertices or faces
from the model and retriangulating the resulting hole. These algorithms
are easy to code and fast, but may not preserve the topology.

• Vertex-merging algorithms work by collapsing two or more vertices of a
triangle mesh into a single vertex. Within this approach, there are basi-
cally two main operations (see Figure 2.2), namely, edge collapse, which
means merging two vertices that share an edge, and vertex contraction,
which means merging pairs of vertices that do not need to be connected.
This sort of algorithms can modify topology to enable drastic simplifica-
tion.

2.2.3 Static, dynamic and view-dependent simplification

Static simplification consists in creating several discrete approximations of
an object in a pre-process, each representing a different level of detail. At run-
time, the approximation that is most appropriate for representing the object
is chosen. This approach has many advantages because current graphics hard-
ware can render these approximations using several acceleration techniques,
such as display lists and vertex buffer objects.

Dynamic simplification creates a spectrum of data structure encoding a
continuous spectrum of levels of detail. A demanded LOD is extracted from
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(a) Edge collapse operation

(b) Vertex contraction operation

Figure 2.2: Vertex-merging operations. The edge collapse operation
removes two triangles, which are marked in blue

this structure at runtime. The main advantage of this scheme is the better
granularity that is achieved.

View-dependent simplification is an extension of dynamic simplification.
Not all parts of an object show the same level of simplification. For instance,
nearby and exterior regions may appear at a higher resolution than distant and
interior regions. Models representing large objects such as terrain models are
the most suitable for this approach. However, View-dependent simplification
has a clear drawback, i.e. the additional runtime load needed to choose and
extract an appropriate LOD.

2.2.4 Out-of-core simplification

Mesh simplification is frequently applied to very large data sets which are
too complex to fit completely into the main memory. In computer science and
applications, out-of-core refers to algorithms which process data that is too
large to fit into a computer’s main memory at one time. Out-of-core algorithms
have been proposed in order to prevent performance degradation due to virtual
memory swapping. The goal here is to design simplification methods which
avoid random access to parts of the mesh during the simplification process.
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2.3 Some relevant algorithms

Geometric fidelity has been a common issue in the simplification field, and
visual fidelity [LT00, ZT02, LVJ05] later emerged as a very important topic.
Recently, the polygonal simplification problem has been addressed by some
new approaches such as preserving global geometry features [WHC04], retain-
ing physical features [JTY06], considering a very specific class of man-made
models [JWRS06] and maintaining the topology better during the simplifica-
tion process [KTiKN05].

In this section, we will review some of the most important algorithms that
have been published in the field of polygonal simplification. Although this list
is probably incomplete, it is not our intention to provide an exhaustive catalog,
but to select just the most relevant papers.

2.3.1 Triangle mesh decimation

Schroeder et al. [SZL92] proposed one of the first simplification methods
for polygonal models. Their algorithm, based on vertex removal, is designed
to work on the output of the marching cubes algorithm [LC87] for extracting
isosurfaces from volumetric data. Basically, this method operates by making
multiple passes over all the vertices in the model. A vertex is removed if the
distance to the average plane formed by its incident triangles exceeds a certain
threshold. This error estimation is very simple to compute, but generates
low-quality approximated models. This decimation algorithm is also topology-
tolerant, accepting non-manifold vertices but not simplifying around them.
Later on, in [Sch97], Schroeder extended this algorithm to make it topology-
modifying.

2.3.2 Vertex clustering

The vertex-merging algorithm was first proposed by Rossignac and Bor-
rel [RB93]. Their algorithm is topology-insensitive. It begins by assigning an
importance to each vertex and then it overlays a 3D grid on the model and
collapses all vertices within each cell to the single most important vertex. The
resolution of the grid determines the quality of the resulting simplification. Low
and Tan [LT97] introduced a different clustering approach, called floating-cell
clustering, which leads to more consistent simplification. Since the importance
of vertices controls the positioning of clustering cells, unpredictable simplifica-
tion artifacts are greatly reduced.

Lindstrom [Lin00] also extended this algorithm in a different direction, that
is, by performing an out-of-core simplification combined with quadric error
metrics [GH97]. Lindstrom and Pascucci [LP01] improved on this approach by
removing the requirement for the output model to fit into main memory by
using a multi-pass approach. Shaffer and Garland [SG01] proposed a scheme
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that combines an out-of-core vertex clustering step with an in-core iterative
decimation step.

Recently, Kanaya et al. [KTiKN05] have extended the Rossignac and Borrel
algorithm in [RB93] to make it topology-preserving.

2.3.3 Multiresolution analysis of arbitrary meshes

Multiresolution analysis of arbitrary meshes, or MRA, is an adaptive sub-
division algorithm developed by Eck et al. [EDD+95]. This algorithm uses
a compact wavelet representation to guide a recursive subdivision process. A
base mesh is created by growing Voronoi-like regions across the original tri-
angles of the surface. When these regions cannot grow anymore, the Voronoi
sites form a Delaunay-like triangulation which forms the base mesh. But it is
not always easy to find a base mesh for general polygonal models. Another
disadvantage is that manifold topology is required in the original model and
this limits the potential for drastic simplification.

2.3.4 Voxel-based object simplification

Voxel-based object simplification by He et al. [HHK+95] is a sampling
algorithm that attempts to simplify topology in a gradual controlled way using a
signal processing approach. This algorithm samples a volumetric representation
of the model, superposing a 3D grid of voxels over the polygonal geometry. It
assigns each voxel a value of 1 or 0, depending on whether the sample point
lies inside or outside the object. Next, a low-pass filter is applied and the
volume is resampled. The result is another volumetric representation of the
model with a lower resolution. The main drawback of this algorithm is that it
performs poorly on models with sharp edges and squared-off corners. Therefore,
it is only useful on mechanical CAD models. Furthermore, this algorithm is
not topology-tolerant because deciding whether the sample points lie inside or
outside the object requires closed meshes with manifold topology.

2.3.5 Simplification envelopes

The simplification envelopes algorithm by Cohen et al. [CVM+96] creates
two copies of the surface of the model: the inner envelope and the outer en-
velope. These two surfaces are not allowed to self-intersect. Once created,
these envelopes can guide the simplification process. After that, this decima-
tion algorithm can remove triangles or vertices iteratively and retriangulate
the resulting holes. This approach allows topology to be strictly preserved and
self-intersections to be avoided, but it limits the capability for drastic simplifi-
cation.
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2.3.6 Appearance-preserving simplification

Appearance-preserving simplification by Cohen et al. [COM98] is an at-
tempt to guide the simplification process by considering not only the surface
position but also color and curvature. Their algorithm decouples this informa-
tion and stores it in normal and texture maps. This vertex-merging algorithm
uses edge collapses, guided by a texture deviation metric and applies the devi-
ation metric to both the texture and normal maps. If an edge collapse causes
color, normals or position to change more than a user-specified distance, it
is simply not allowed. These constraints make this approach less suitable for
drastic simplification.

2.3.7 Quadric error metrics

This algorithm by Garland and Heckbert [GH97] is perhaps the most impor-
tant geometric-based algorithm in the literature, probably because it represents
the best balance between speed, quality and robustness. This vertex-merging
algorithm uses vertex contractions. But its major contribution is a new way
to represent the error introduced by a vertex contraction operation, called the
quadric error metric. This metric represents the sum of the squared distances
from the vertex to the planes of neighboring triangles, that is, triangles that
share the vertex. Therefore, the error introduced by vertex contraction can be
quickly derived from the sum of the quadric error of the vertices being merged.
This algorithm stores all candidate vertex contractions in a heap. The ver-
tex contraction with the lowest error from the top of the heap is removed and
all vertex contractions involving the merged vertices are then updated. This
process is repeated until the desired number of triangles is obtained.

Quadric error metrics are fast to compute. Thus, the algorithm has a very
low temporal cost. In addition, it does not require manifold topology and
is able to close holes because disconnected vertices may merge. This allows
the algorithm to perform drastic simplifications. The implementation of this
algorithm was released as a software package called QSlim.

Later on, the algorithm was extended to deal with color and texture in
[GH98, EM99]. Hoppe probably presented the best extension of quadrics to
handle mesh attributes [Hop99].

Many incremental algorithms use some kind of a heap data structure with
the best removal operation on top. Whenever removal candidates have to be re-
evaluated, they are deleted from the heap and re-inserted with their new value.
Thus, the complexity of the update-step increases only by O(log n) for large
meshes if the criteria evaluation itself has constant complexity. Wu and Kobbelt
[WK02] proposed the probabilistic optimization technique of Multiple-Choice
algorithms. With this approach, a global heap data structure is not required
and as a result the memory overhead is reduced and the algorithmic structure
is simplified. This optimization technique was applied to the QSlim algorithm,
thus reducing the temporal cost.
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The quadric error metric has been used in a lot of algorithms since Garland
and Heckbert first proposed it. Recently, this metric has been extended to
any dimension in [GZ05]. In fact, the most recent algorithms use the quadric
error metric as the best quality metric to measure the error introduced by a
vertex-merging operation.

For instance, it has been used to develop new methods which retain physical
features in [JTY06] and preserve global geometry features in [WHC04]. Kho
and Garland [KG03] also extended QSlim to allow the user to select some
particular regions to be simplified.

Additionally, the QSlim algorithm has been extended to deal with visual
similarity. Zhang and Turk [ZT02] defined a visibility function between the
surfaces of a model and a surrounding sphere of cameras. In order to guide the
simplification process, their visibility measure was combined with the quadric
error metric. Recently, Lee et al. [LVJ05] introduced the idea of mesh saliency
as a measure of regional importance for polygonal meshes and a saliency map
was generated and incorporated in the QSlim algorithm.

Finally, this successful metric has also been used to build simplification
algorithms within the out-of-core approach. For example, Wu and Kobbelt
[WK03] proposed a streaming approach to out-of-core mesh decimation-based
edge collapse operations in connection with the quadric error metric. The basic
idea is to sequentially stream the mesh data and incrementally apply decima-
tion operations on an active working set that is kept in the main memory.
Isenburg et al. [ILGS03] introduced mesh processing sequences, which repre-
sent a mesh as a fixed interleaved sequence of indexed vertices and triangles.
This algorithm can be used in the vertex clustering algorithm [Lin00] and in
Wu and Kobbelt’s streaming approach. Recently, Vo and Callahan [VC07]
proposed a two-step approach for streaming simplification of large tetrahedral
meshes. Their algorithm arranges the data on disk in a streaming, I/O-efficient
format that allows coherent access to the tetrahedral cells. A quadric-based
simplification is sequentially performed on small portions of the in-core mesh.
The output is a coherent streaming mesh which facilitates future processing.

2.3.8 Image-driven simplification

Lindstrom and Turk [LT00] were the first to address the problem of vi-
sual similarity by developing a pure image-based metric. This vertex-merging
algorithm is based on the edge collapse operation. Basically, their method de-
termines the cost of an edge collapse operation by rendering the model from
several viewpoints. The algorithm compares the rendered images to the origi-
nal ones and adds the mean-square error in luminance across all the pixels in all
images. Then all edges are sorted by the total error induced in the images and
after that the edge collapse that produces the least error is chosen. Lindstrom
et al. used 20 viewpoints in their implementation to compute that error.

The main advantage of their method is that the metric provides a natural
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way to balance the geometric and shading properties such as color and texture
without requiring the user to perform an arbitrary weighting of them. In
contrast, its main disadvantage is the high temporal cost. To address this issue,
the authors proposed performing two passes. In the first pass, they simplify
with a fast geometric-based method and in the second pass, they apply the
image-driven simplification.

2.3.9 Progressive meshes

Progressive meshes [Hop96] is a continuous multiresolution model for gen-
eral polygonal manifold meshes. It is based on the edge collapse operation and
its complementary process the vertex split. The vertex split replaces a vertex
with an edge thus, creating an additional vertex and two additional triangles.
A progressive mesh consists of a simple base mesh, created by a sequence of
edge collapse operations and a series of vertex split operations. Applying every
vertex split to the base mesh will recapture the original model.

Later on, Hoppe extended progressive meshes to support view-dependent
simplification [Hop97] and presented its efficient implementation in [Hop98]. In
addition, he described a simplification method. This method uses an energy
function to be minimized and a heap structure in which the edge collapses are
stored. The energy function considers the position of the vertices, the color,
normal and textures, and allows all these attributes to conduct the simplifica-
tion process.

The view-dependent version of the algorithm simplifies the regions of the
mesh that lie out of view by using a view-frustum test. It also simplifies the
regions not facing the viewer and finally a screenspace error guarantees that
the geometric error is never greater than a user-specified tolerance.

Preserving topology avoids holes but limits drastic simplification and rep-
resenting non-manifold objects as a progressive mesh might present problems.

2.3.10 Hierarchical dynamic simplification

Hierarchical dynamic simplification or HDS is a vertex-merging algorithm
developed by Luebke and Erikson [LE97]. The purpose of this algorithm is to
provide a view-dependent simplification of arbitrary polygonal scenes. Instead
of representing the scene as a set of objects, each at several LODs, in this
algorithm the whole model is represented using a vertex tree. This hierarchy
of vertex clusters is used to generate a simplified scene. In fact, any algorithm
based on vertex merging can be used with HDS.

In order to perform a view-dependent simplification, the algorithm uses a
screenspace error threshold and a silhouette test. Moreover, it implements a
triangle-budget simplification by keeping a heap of vertex clusters. HDS is a
topology-tolerant algorithm, suitable for drastic simplification.
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2.3.11 Perceptually-driven simplification

Luebke and Hallen [LH01] proposed the first simplification algorithm based
on principles of visual perception. Simplification in this method is guided
by perceptual metrics which derive from the contrast sensitivity function, or
CSF, which is a simple measure of low-level perceptibility of visual stimuli in
humans. This approach was applied to view-dependent polygonal simplification
and addresses several interesting problems in regulating level of detail such as
silhouette preservation and imperceptible simplification. An optional gaze-
direct component uses eye tracking to obtain further simplification by reducing
fidelity in the viewer’s peripheral vision.

Williams et al. [WLC+03] extended the perceptual simplification framework
of Luebke and Hallen to textured and lit models. Moreover, a parametric
texture deviation was used to measure distortion more accurately. The data
structure was also changed to Multi-Triangulation by [FMP97, FMP98].

2.3.12 Four-Face cluster mesh simplification

(a) Edge swap

(b) Degree 4 vertex removal

Figure 2.3: Local modifications in Four-Face cluster mesh simplification
algorithm

Velho [Vel01] proposed a mesh simplification method, called Four-Face clus-
ter (FFC) mesh simplification, that produces a sequence of Edge-Weld opera-
tions intercalated with Edge-Flip operations (see Figure 2.3). Edge-Weld and
Edge-Flip are two examples of topological operators based on the Stellar The-
ory [Ale30]. Edge-Flip swaps an internal edge of a two-face cluster. Edge-Weld
removes a valence 4 vertex from a four-face cluster and replaces it with the
internal edge of a two-face cluster. Edge-flips are required to change the va-
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lence of a vertex to 4. Stellar theory proves that those two operators form a
complete set for changing the connectivity of the mesh without modifying its
topology. As a mesh quality criteria FFC employs the quadric metric [GH97]
and a triangle compactness measure. Furthermore, it produces a hierarchical
multiresolution structure, which allows viewpoint-dependent simplification to
be performed.

Vieira et al. [VLV+04] enhanced the Four-Face Clusters algorithm by sub-
stituting the priority queue by the Multiple-Choice technique [WK02] and in-
troducing the Corner-Table data structure [Ros01] to represent the hierarchy
of meshes obtained during the simplification process.

2.4 Information Theory: Concepts

2.4.1 Introduction

Information Theory deals with the transmission, storage and processing of
information and is used in fields such as physics, computer science, mathemat-
ics, statistics, economics, biology, linguistics, neurology and learning [Bla87,
CT91, vdL97]. For instance, it is successfully applied in areas closely related
to computer graphics, such as image processing [IVA+96, Stu97, Plu01], pat-
tern analysis and recognition [GDBA94, GDA98, DV00, KB99], scene complex-
ity and discretization [FdABS99b, FdABS99a, Fei02] or computer vision and
robot motion [VWMW97, TOS98]. Recently, it has also been used in com-
puter graphics to select the best viewpoints, as well as for scene understanding
and virtual exploration [VFSH01, VFSH03, SPFG05] and volume visualization
[BS05, TFTN05, JS06, VFSG06].

2.4.2 Entropy

Shannon entropy [Sha48] is the classical measure of information, where
information is simply the outcome of a selection among a finite number of
possibilities. Entropy also measures uncertainty or ignorance.

Thus, the Shannon entropy H(X) of a discrete random variable X with
values in the set S = {x1, x2, ..., xn} is defined as

H(X) = −
n∑

i=1

pi log pi (2.1)

where n =| j |, pi = Pr[X = xi] for i ∈ {1, ..., n}, the logarithms are taken
in base 2 (entropy is expressed in bits), and the convention that 0 log 0 = 0
is used, which is justified by continuity. The notation H(X) or H(p) for the
entropy can be used interchangeably, where p is the probability distribution
{p1, p2, ...., pn}, also represented by pi. As − log pi represents the information
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associated with the result xi, the entropy gives us the average information or
uncertainty of a random variable. Information and uncertainty are opposites,
since uncertainty is considered before the event and information afterwards.
So, information reduces uncertainty. Note that the entropy depends only on
the probabilities.

Some other properties [Sha48] of the entropy are

1. 0 ≤ H(X) ≤ log n

• H(X) = 0 if and only if all the probabilities except one are zero and
this exception has a value of unity, i.e., when we are certain of the
outcome.

• H(X) = log n when all the probabilities are equal. This is the most
uncertain situation.

2. If we equalize the probabilities, entropy increases, that is, the maximum
entropy is reached when all probabilities are equal and their value is 1

n .

If we consider another random variable Y with probability distribution qi cor-
responding to values in the set S′ = {y1, y2, ..., ym}, the joint entropy of X and
Y is defined as

Figure 2.4: The binary entropy function

H(X,Y ) = −
n∑

i=1

m∑
j=1

pij log pij (2.2)

where m =| S′ | and pij = Pr[X = xi, Y = yj ] is the joint probability.
When n = 2, the binary entropy (see Figure 2.4) is given by

H(X) = −p log−(1− p) log(1− p) (2.3)

where p = {p, 1− p}.
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Also, the conditional entropy is defined as

H(X | Y ) = −
m∑

j=1

n∑
i=1

pij log pi|j (2.4)

where pi|j = Pr[X = ai | Y = bj ] is the conditional probability.
The Bayes’ theorem expresses the relation between the different probabili-

ties:

pij = pipj|i = qipi|j (2.5)

If X and Y are independent, then pij = piqj . The conditional entropy can
be thought of in terms of a channel whose input is the random variable X
and whose output is the random variable Y . H(X | Y ) corresponds to the
uncertainty in the channel input from the receiver’s point of view, and vice
versa for H(Y | X). Note that in general H(X | Y ) 6= H(Y | X).

The following properties are also fulfilled:

1. H(X,Y ) ≤ H(X) +H(Y )

2. H(X,Y ) = H(X) +H(Y | X) = H(Y ) +H(X | Y )

3. H(X) ≥ H(X | Y ) ≥ 0

2.4.3 Mutual Information
The mutual information between two random variables X and Y is defined

as

I(X,Y ) = H(X)−H(X | Y )
= H(Y )−H(Y | X)

= −
n∑

i=1

pi log pi +
m∑

j=1

n∑
i=1

pij log pi|j

=
n∑

i=1

m∑
j=1

pij log
pij

piqj
(2.6)

Mutual information represents the amount of information that one random
variable, the output of the channel, gives (or contains) about a second random
variable, the input of the channel, and vice versa; that is to say, how much
the knowledge of X decreases the uncertainty of Y and vice versa. Therefore,
I(X,Y ) is a measure of the information shared between X and Y .

Mutual information I(X,Y ) has the following properties:

1. I(X,Y ) ≥ 0 with equality if, and only if, X and Y are independent.
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2. I(X,Y ) = I(Y,X)

3. I(X,Y ) = H(X) +H(Y )−H(X,Y )

4. I(X,Y ) ≤ H(X)

The relationship between all the above measures can be expressed by the Venn
diagram, as shown in Figure 2.5.

Figure 2.5: Venn diagram of a discrete channel

The relative entropy or Kullback-Leibler distance between two probability
distributions p = {pi} and q = {qi}, which are defined over the set S, is defined
as

KL(p | q) =
n∑

i=1

pi log
pi

qi
, (2.7)

where, from continuity, we use the convention that 0 log 0 = 0, pi log pi

0 =∞
if pi > 0 and 0 log 0

0 = 0.
The relative entropy is “a measure of the inefficiency of assuming that the

distribution is q when the true distribution is p” [CT91].
The relative entropy satisfies the information inequality KL(p | q) ≥ 0,

with equality only if p = q. The relative entropy is also called discrimination
and is not strictly a distance, since it is not symmetric and does not satisfy
the triangle inequality. Moreover, we must emphasize the fact that mutual
information can be expressed as

I(X,Y ) = KL({pij} | {piqj}). (2.8)

2.5 Summary
In this chapter, the most important work carried out on polygonal simpli-

fication and some basic concepts of Information Theory needed in this thesis
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have been reviewed. As shown, the research in the simplification framework
seems to be mature. There are many good methods and algorithms, but most
of the work has focused on geometric fidelity. Only a few approaches have
recently dealt with the problem of visual fidelity. Although exact geometric
tolerances are useful for some kinds of applications, not all kinds of applica-
tions need those requirements. For instance, video games, driving simulation
and walkthroughs are applications in which the main requirement is visual
similarity.

Information Theory is a very powerful tool that can be used to provide
measures that can be applied to the field of polygonal simplification. Indeed,
Information Theory has been used in many different areas in computer graphics.
In recent years, it has been used to develop metrics to select the best viewpoints.
In the following chapters, we will review these metrics and see how they can be
applied within the simplification framework. Furthermore, these metrics allow
for the development of simplification algorithms that consider visual as well as
geometric information.
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CHAPTER 3
Techniques for Computing

Projected Areas

3.1 Introduction
Recently, several methods have been developed to compute the goodness of

a viewpoint. What these methods have in common is the use of the concept
of viewpoint complexity [BDP99, BPD00, SFR+02, VFSH01, VFSL02, Váz03,
RFS00]. The notion of viewpoint complexity is used in several areas of Com-
puter Graphics, such as scene understanding and virtual-world exploration,
radiosity and global illumination, image-based modeling and rendering.

In scene understanding and virtual-world exploration, viewpoint entropy
which is a measure of viewpoint complexity, is used to automatically calcu-
late suitable positions and trajectories for a camera exploring a virtual world
[BDP99, BPD00, Ple03, GAG04, VS03].

In Monte Carlo radiosity and global illumination, viewpoint complexity is
used to improve the subdivision of the scene into polygons and the adaptive
ray casting [JPS99, Fei02, RFS03].

In image-based modeling, viewpoint entropy is used to compute a minimum
optimized set of camera positions [VS02].

Among the metrics that have been introduced for the calculation of view-
point complexity, viewpoint entropy has been the most fruitful metric to date
[VFSH03]. It has recently been embedded in the field of volume visualization
to compute the best n-views of a volumetric object. However, the computation
of viewpoint entropy can be very costly, especially when a very complex scene
and multiple viewpoints have to be evaluated. This is due to the fact that

25
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viewpoint entropy is defined from the projected areas of all the polygons in the
scene.

In this chapter, we will assess different alternatives for calculating the pro-
jected areas of polygons. These alternatives will be tested against several ge-
ometric models of increasing complexity. To determine the fastest technique,
we will use the calculation times of viewpoint entropy. For this calculation, we
will use the facilities of modern hardware cards such as OpenGL histogram and
Occlusion query as well as the new symmetric bus PCI Express [WST03, SA06].

The projected areas of polygons are also needed to compute other metrics
based on Information Theory used in this thesis. These metrics are proposed
to measure the simplification error. To achieve a desired approximation, lots
of simplification operations must be performed. Therefore, it is very important
to find the fastest technique in order to obtain the projected areas because the
temporal cost of the simplification algorithm is directly related to its calcula-
tion. This is the reason for the study we carry out in this chapter.

The results of this chapter were first published as a short paper in [CCSF05],
which was later extended and published as a full paper in [CSCF06]. Previously,
a study on fast rendering techniques for geometry was carried out in [CRC05].

3.2 Viewpoint Entropy

Viewpoint entropy, based on the definition of Shannon entropy, was in-
troduced in [VFSH01, Váz03] as a measure of the information provided by a
point of view. The Shannon entropy equation (2.1) is used as a basis to define
viewpoint entropy. The relative area of the polygons projected over a sphere
of directions centered on the viewpoint is taken as a probability distribution.
Thus, given a viewpoint v, the entropy of v is defined by

Hv = −
Nf∑
i=0

ai

at
log

ai

at
, (3.1)

where Nf is the number of polygons in the scene, ai is the projected area of
polygon i over the sphere, a0 represents the projected area of the background
in open scenes, and at =

∑Nf

i=0 ai is the total area of the sphere. Maximum
entropy is obtained when a certain viewpoint can see all the polygons with the
same projected area. So, in an open scene the maximum entropy is log(Nf +1)
and in a closed scene it is equal to logNf . The best viewpoint is defined as the
one that has maximum entropy, i.e., it has the maximum amount of captured
information. In molecular visualization, both maximum and minimum entropy
views show relevant characteristics of a molecule [VFSL06].
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3.3 Techniques for Computing Projected Areas

In order to compute viewpoint entropy, we need to know the number of
pixels covered by each visible polygon from a particular camera position. This
number will give us the projected area. Next, we analyze several techniques
that allow us to compute such areas.

3.3.1 OpenGL Histogram

The OpenGL histogram was first used to compute viewpoint entropy in
[VFSL04]. The OpenGL histogram allows us to analyze the color information
of an image. Basically, it counts the appearances of a color value of a particular
component. However, we can also use it to calculate the area of polygons that
are visible from a viewpoint, without reading the buffer. Since version 1.2,
OpenGL includes an extension called glHistogram. This extension is part of
the image processing utilities. The OpenGL histogram is hardware-accelerated,
although there are only a few graphics cards that currently support it (for
instance, 3DLabs WildCat) and it is often implemented in software.

In order to obtain the area of each visible polygon, a different color is
assigned to each polygon. An important limitation is that histograms have a
fixed size, normally with 256 different values. This is the most common value
in many graphics cards. The glGetHistogram command returns a table that
counts each color value separated into channels. If the 4 RGBα color channels
are used, a 256-item table of 4 integer values will be returned, where each
integer is the number of pixels this component has. Thus, if we wish to detect
a polygon, this should be codified using a single channel. This gives us a total
of 1020 different values, that is, for channel R (1,0,0,0) up to (255,0,0,0), for
channel G (0,1,0,0) up to (0,255,0,0), for channel B (0,0,1,0) up to (0,0,255,0)
and finally for channel α (0,0,0,1) up to (0,0,0,255). The value (0,0,0,0) is
reserved for the background.

Obviously the main drawback of this technique is that several rendering
passes are needed for objects with more than 1020 polygons. At each pass,
we will obtain the area of 1020 different polygons. Using histograms with a
higher number of items and performing an off-screen rendering will increase
the number of colors and therefore lower the number of rendering passes that
are needed. However, this possibility is beyond the capabilities of the OpenGL
specification and is hardware-dependent. It was not possible for us to use a
larger-sized histogram in the several graphics cards tested. Figure 3.1 shows
an example of the entropy calculation using the OpenGL histogram.

According to some comparative tests that we have run on several GPUs,
the entropy calculation with this technique has a time complexity that is linear
in the number of polygons and the image resolution, i.e. the number of pixels.
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(a) First pass (b) Second pass (c) Third pass

(d) Fourth pass (e) Fifth pass (f) Sixth pass

Figure 3.1: Example of entropy calculation from a viewpoint for the Cow
model using the OpenGL Histogram. The total number of triangles for
this model is 5804. Therefore, the total number of rendering passes is
5804/1020 ≈ 6. H1 = 1.941685

3.3.2 Hybrid Software and Hardware Histogram

The OpenGL histogram allows us to obtain the area of each visible polygon.
However, as pointed out in the previous section, several rendering passes are
needed for objects with more than 1020 polygons. Recently, new symmetric
buses such as the PCI Express have appeared. In this new bus, the buffer
read operation is not as costly as before and it is therefore possible to obtain
a histogram without making several rendering passes. The way to accomplish
this is very simple. A different color is assigned to each polygon and the whole
object is sent for rendering. Next, a buffer read operation is performed, and
then this buffer is analyzed pixel by pixel to retrieve data about its color.
Using an RGBα color encoding with a byte value for each channel, up to 2564

polygons can be calculated with only one single rendering pass. Figure 3.2
shows an example of the entropy calculation using this method.

With this technique, the time complexity for the calculation of viewpoint
entropy is linear in the number of polygons and the number of pixels. Note
that most of the work is performed by the CPU. Therefore, faster processors
will improve the performance of this technique.
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(a) H1 = 2.668125 (b) H2 = 2.609323 (c) H3 = 2.557857

(d) H4 = 2.387822 (e) H5 = 1.964738 (f) H6 = 1.224885

Figure 3.2: Entropies from 6 different viewpoints for the Dragon model
obtained with the Hybrid Software and Hardware Histogram. The maximal
entropy viewpoint corresponds to (a)

3.3.3 Occlusion Query

This OpenGL extension is normally used to identify which objects in the
scene are hidden by others, and therefore should not be sent to be rendered.
In fact, what we do is to render just the bounding box of an object and, if it is
not visible, the object is not sent for rendering. However, it can also be used
to compute the area of the polygons that are visible from a particular camera
position.

The OpenGL ARB occlusion query extension returns the number of vis-
ible pixels. In order to compute the area of each visible polygon of an ob-
ject with this technique we will proceed as follows. First, the whole object
is sent for rendering and the depth buffer is initialized. Second, each poly-
gon is sent for rendering independently. With this procedure it is necessary
to make n+ 1 rendering passes, n being the number of polygons in an object.
It must be mentioned that the whole geometry is only rendered in the first
pass. In the following passes, one single polygon is rendered. However, a high
number of renderings steps can significantly penalize this technique. In order
to improve the results this extension can be used asynchronously, unlike its
predecessor, HP occlusion query. That is, it does not use a ‘stop-and-wait’
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execution model for multiple queries. This allows us to issue many occlusion
queries before asking for the result of any one of them. But we must be care-
ful with this feature because, as we mentioned above, this extension was not
designed to deal with thousands of multiple queries. Thus, we may have some
limitations depending on the graphics card.

The running time for this technique is linear in the number of polygons.
And, as we have confirmed in tests run on several GPUs using different reso-
lutions, image resolution does not increase the time complexity.

3.4 Comparison

We calculated viewpoint entropy from 6 camera positions, which were reg-
ularly distributed over a sphere that covers the object, using the different tech-
niques described above. In order to compare them, we measured the time
needed to compute the entropy from those cameras. As test models, we used
several models of different complexities (see Figure 3.3). All models were ren-
dered in a 256×256 pixel resolution using OpenGL vertex arrays. Two different
PC configurations were used: a Xeon 2.4 GHz with 1GB RAM with an ATI
X800XT 256MB and a Pentium IV 3.0 GHz with 1GB RAM with an NVIDIA
GeForce 6800GT 256MB. We must emphasize that of the two GPUs that were
analyzed, only the NVIDIA card supports the OpenGL histogram.

Model Vertices Triangles Rendering OpenGL Histogram(ms)
Passes

GeForce Radeon
6800 GT X800 XT

Teddy 1598 3192 4 2811.45 -
Cow 2904 5804 6 4227.28 -
Teapot 3644 6320 7 4927.65 -
Octopus 4242 8468 9 6339.67 -
Unicycle 6973 13 810 14 9886.66 -
Roman 10 473 20 904 21 14 888.38 -
Sphere 15 314 30 624 31 22 136.10 -
Bunny 34 834 69 451 69 50 445.86 -
Dragon 54 296 108 588 107 80 029.94 -

Table 3.1: Results for the calculation of viewpoint entropy with the
OpenGL Histogram. The times are measured in milliseconds

Table 3.1 shows the results obtained with the OpenGL histogram. These
times are too high to allow an interactive calculation, even for objects with a
low complexity. This is fundamentally due to the several rendering passes of the
whole object that we make when using objects consisting of several thousand
polygons. The main cost component is the OpenGL histogram operation.

Table 3.2 shows the results obtained with the hybrid software and hardware
histogram. As shown in this table, the times are quite low even if the complexity
is increased, mainly because we make one single rendering pass and the buffer
read operation has a very low cost.



i
i

“thesis” — 2008/12/2 — 11:26 — page 31 — #51 i
i

i
i

i
i

3.4 Comparison 31

(a) Teddy (b) Cow (c) Teapot

(d) Octopus (e) Unicycle (f) Roman

(g) Sphere (h) Bunny (i) Dragon

Figure 3.3: Models used in our experiments

Model Vertices Triangles Rendering SW+HW Histogram(ms)
Passes

GeForce Radeon
6800 GT X800 XT

Teddy 1598 3192 1 11.66 16.62
Cow 2904 5804 1 13.36 19.10
Teapot 3644 6320 1 14.84 19.37
Octopus 4242 8468 1 17.28 20.69
Unicycle 6973 13 810 1 18.53 23.24
Roman 10 473 20 904 1 24.12 29.85
Sphere 15 314 30 624 1 36.65 38.09
Bunny 34 834 69 451 1 57.91 67.04
Dragon 54 296 108 588 1 79.35 88.75

Table 3.2: Results for the calculation of viewpoint entropy with the Hybrid
Software and Hardware Histogram. The times are measured in milliseconds
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Model Vertices Triangles Rendering Occlusion Query(ms)
Passes

GeForce Radeon
6800 GT X800 XT

Teddy 1598 3192 3193 26.88 25.19
Cow 2904 5804 5805 47.49 44.41
Teapot 3644 6320 6321 50.88 48.31
Octopus 4242 8468 8469 67.17 64.48
Unicycle 6973 13 810 13 811 109.88 100.78
Roman 10 473 20 904 20 905 162.75 151.31
Sphere 15 314 30 624 30 625 238.09 221.42
Bunny 34 834 69 451 69 452 553.36 460.74
Dragon 54 296 108 588 108 589 829.75 665.33

Table 3.3: Results for the calculation of viewpoint entropy with the Oc-
clusion Query. The times are measured in milliseconds

Table 3.3 shows the results obtained with the Occlusion Query technique.
As can be observed, the measured times increase proportionally in relation to
the complexity of the model being analyzed. In the same way as the previous
technique, the ratio remains unchanged here because the number of rendering
passes is proportional to the number of triangles. A complete rendering of the
object is only performed at the first pass.

Figure 3.4: Comparison of results obtained with the different analyzed
techniques

Finally, as a summary, Figure 3.4 shows a comparison of the performance
of the different techniques. These results were obtained with the NVIDIA card
described previously. We used an NVIDIA card because it fully supports all
the techniques. In all cases, if we examine the ratio of temporal costs among
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the techniques with the ATI card, it can be seen that they are practically the
same as with the NVIDIA card.

These results clearly show that by using the hybrid software and hardware
histogram technique the entropy can be calculated in real time even for complex
objects (100 000 triangles), because times increase very slowly as complexity
goes up. The next best technique is the Occlusion Query. Note that its cost
grows as the object complexity increases, and is unfeasible for complex objects
in real time. Lastly, the OpenGL histogram technique is worse than the other
two. This technique is useless for real-time application, unless we use objects
with a low degree of complexity (1000 triangles).

3.5 Conclusions
In this chapter, we have studied several hardware-assisted techniques for

computing the projected area of polygons in an efficient way. These techniques
were applied to the calculation of viewpoint entropy. Among the different tech-
niques analyzed, viewpoint entropy computed with the hybrid software and
hardware histogram method accomplishes the best performance, followed by
the occlusion query-based technique. By using the hybrid software and hard-
ware histogram technique the entropy calculation can be performed practically
in real time even for complex objects, while the occlusion query technique al-
lows us to obtain only interactivity.

We must take into account that the performance of the hybrid software and
hardware histogram technique depends on the analysis of pixels performed by
the CPU and the read operation of the PCI Express bus. We also carried out
some tests using higher resolutions, for example 960 × 960, and we observed
that the times for the occlusion query are constant, even at higher resolutions
the hybrid software and hardware histogram technique gives better results than
occlusion queries. The proportion is not as high as before, but it is still sig-
nificantly better. For our purposes, we believe that the resolution used in our
experiments (256× 256) is enough to obtain accurate results.
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CHAPTER 4
Viewpoint-Driven Simplification

4.1 Introduction

Polygonal models currently dominate interactive computer graphics. Poly-
gons are the simplest primitive and allow for regular rendering algorithms that
fit the hardware well. Unfortunately, the complexity of these models seems to
grow faster than the ability of graphics hardware to render them interactively.
Polygonal simplification offers one solution. A common use of polygonal simpli-
fication is to generate levels of detail (LODs) of the objects in the scene. Levels
of detail are used to create multiresolution model representations [Gar99] which
allow the surface to adapt at run-time.

Most common polygonal simplification methods use a technique based on a
geometric distance as a measure of the quality between an original mesh and the
one obtained from simplification. With these methods we can achieve meshes
that are very similar to the original. One of the most important advantages of
geometry-oriented methods is their low temporal cost. This fact makes them
suitable for scanned models, since these models are composed of thousands or
even millions of polygons. In addition, geometric methods are very useful in
applications that require exact geometric tolerances with regard to the original
model. Examples of such applications include collision detection and path
planning for part insertion and removal.

In contrast, image-based simplification methods carry out a simplification
that is guided by differences between images more than by geometric distances.
In other words, their goal is to create simplified meshes that appear similar
according to visual criteria. These methods have a high temporal cost compared
to geometric ones. The applications that can benefit from image-based methods

35
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36 Chapter 4 Viewpoint-Driven Simplification

are those in which the main requirement is visual similarity. Examples of such
applications are video games, driving and walkthroughs.

In this chapter, a viewpoint-driven simplification method is introduced.
This method defines a new simplification error metric which is based on view-
point selection measures. Two information-theoretic viewpoint selection mea-
sures are used within this simplification scheme: viewpoint entropy [VFSH01],
which is a measure of the geometric information of a scene or object seen from
a certain point of view, and viewpoint mutual information [VFSG06, FSG06],
which is a measure of the correlation between a viewpoint and the poly-
gons in an object or scene. It is important to remark that, in principle,
any other viewpoint selection measure could also be applied to this approach.
As a decimation criterion, the simplification algorithm uses the half-edge col-
lapse [HDD+93, KCS98]. The error introduced by a decimation operation is
calculated from the variation in viewpoint selection measures. Experimental
results show that the method presented here yields better visual performance
than QSlim-based simplifications [GH97]. Furthermore, it also offers very good
results even at early stages of simplification, where it achieves a higher simpli-
fication in hidden interiors.

This chapter is organized as follows. In Section 4.2, the recent work carried
out in polygonal simplification is reviewed. In Section 4.3, some viewpoint se-
lection measures are introduced. In Section 4.4, the simplification error metric
to measure the cost of an edge collapse is defined. In Section 4.5, the simpli-
fication algorithm is described. In Section 4.6, the results of the experiments
are shown and finally, in Section 4.7, conclusions are presented.

A preliminary version of the polygonal simplification presented here was
first published as a full paper in [CSCF07c].

4.2 Related work

The most important improvement in geometry-oriented simplification meth-
ods in recent years was the incorporation of mesh attributes such as color,
normals and textures. For example, Hoppe extended his initial work [Hop96]
by proposing a new quadric metric that includes colors and texture coordi-
nates [Hop99], and the QSlim algorithm [GH97] was also extended with those
attributes [GH98]. Cohen et al. [COM98] developed an algorithm based on
edge collapses that samples the vertex position, normal and color attributes
of the original mesh and then converts them into normal and texture maps.
This algorithm is based on a texture deviation metric. More recently, a general
method to incorporate texture information for edge collapse-based simplifica-
tion algorithms has been proposed in [GCC07].

Lindstrom and Turk [LT00] were the first to address the problem of visual
similarity by developing a purely image-based metric. Basically, their method
determines the cost of an edge collapse operation by rendering the model from
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several viewpoints. The algorithm compares the rendered images to the original
ones and adds the mean-square error in luminance across all the pixels of all the
images. Then, all edges are sorted by the total error induced in the images and
after that the edge collapse that produces the least error is chosen. Lindstrom et
al. used 20 viewpoints in their implementation to compute that error. The main
advantage of this method is that the metric provides a natural way to balance
the geometric and shading properties without requiring the user to perform an
arbitrary weighting of them. On the other hand, its main disadvantage is the
high temporal cost.

Karni and Gotsman [KG00] proposed a metric to capture the visual dif-
ference between two approximations, which consisted of the average of the
norm of the geometric distance between models and the norm of the Laplacian
difference. By introducing the Laplacian component, some visual properties
appreciated by the human eye, such as smoothness, are captured better.

Luebke and Hallen [LH01] presented a method to perform a view-dependent
polygonal simplification using perceptual metrics. These metrics derive from
a measure of low-level perceptibility of visual stimuli in humans. Later on,
Williams et al. [WLC+03] extended this work for lit and textured meshes.

Zhang and Turk [ZT02] proposed a new algorithm that takes visibility into
account. This approach defines a visibility function between the surfaces of a
model and a surrounding sphere of cameras. The number of cameras increases
both accuracy and calculation time. Zhang et al. used up to 258 cameras. In
order to guide the simplification process, they combined their visibility measure
with the quadric error metric introduced by Garland and Heckbert [GH97].

Recently, Lee et al. [LVJ05] introduced the idea of mesh saliency as a mea-
sure of regional importance for graphics meshes. This measure was incorpo-
rated into mesh simplification. Briefly, this approach consists of generating a
saliency map, and then simplifying by using this map in the QSlim algorithm
[ZT02]. The new edge collapse cost is that of the quadric multiplied by the
saliency of this edge.

4.3 Information-Theoretic Viewpoint Selection Mea-
sures

Information-theoretic-based viewpoint selection metrics have been success-
fully applied in different areas of computer graphics, such as scene under-
standing, virtual exploration [VFSH01, Váz03] and volume visualization [BS05,
TFTN05, JS06]. In this section, we review viewpoint entropy [VFSH01, Váz03]
which has been used to compute the best viewpoints in a scene, and view-
point mutual information which has been introduced to select the best views
in volume rendering [VFSG06] and for polygonal meshes [FSG06, FSG07].
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4.3.1 Viewpoint Entropy
From (2.1), viewpoint entropy [VFSH01, Váz03] has been defined from the

relative area of the polygons projected over the sphere of directions centered
at viewpoint v. Thus, viewpoint entropy was defined by

Hv = −
Nf∑
i=0

ai

at
log

ai

at
, (4.1)

where Nf is the number of polygons of the scene, ai is the area of the
polygon i projected over the sphere, a0 represents the projected area of the
background in open scenes, and at =

∑Nf

i=0 ai is the total area of the sphere.
Maximum entropy is obtained when a certain viewpoint can see all the polygons
with the same projected area. The best viewpoint is defined as the one that
has maximum entropy.

4.3.2 Viewpoint Mutual Information
In [VFSG06, FSG06], viewpoint mutual information was introduced to se-

lect the best views. An information channel V → O, called a viewpoint in-
formation channel, between the random variables V and O was defined. This
channel represents, respectively, a set of viewpoints and the set of polygons of
an object. Viewpoints will be indexed by v and polygons by o. The marginal
probability distribution of V is given by p(v) = 1

Nv
, where Nv is the num-

ber of viewpoints. That is, the same probability is assigned to each view-
point, although other distributions could be used. The conditional probability
p(o | v) = ao

at
is defined by the normalized projected area of polygon o over the

sphere of directions centered at viewpoint v. Conditional probabilities fulfill∑
o∈O p(o | v) = 1. Note that with this notation viewpoint entropy (4.1) can be

rewritten as Hv = −
∑

o∈O p(o | v) log p(o | v). Finally, the marginal probabil-
ity distribution of O is given by p(o) =

∑
v∈V p(v)p(o | v) = 1

Nv

∑
v∈V p(o | v),

which represents the average projected area of polygon o, i.e., the probability
of a polygon o to be hit (seen) by a random ray cast from the viewpoint sphere.

From this channel, the mutual information (2.6) between V and O, which
expresses the degree of dependence or correlation between a set of viewpoints
and the polygons of the object, is given by

I(V,O) =
∑
v∈V

p(v)
∑
o∈O

p(o | v) log
p(o | v)
p(o)

=
1
Nv

∑
v∈V

I(v,O), (4.2)

where

I(v,O) =
∑
o∈O

p(o | v) log
p(o | v)
p(o)

, (4.3)
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called viewpoint mutual information (VMI), represents the degree of correlation
between the viewpoint v and the set of polygons O, and it is a measure of the
quality of viewpoint v. Quality is considered here equivalent to representative-
ness. The best viewpoint is defined as the one that has minimum VMI. High
values of the measure mean a high degree of dependence between the viewpoint
v and the object, indicating a highly coupled view. On the other hand, low
values correspond to the most representative or relevant views, showing the
maximum possible number of polygons in a balanced way.

Note that I(v,O) = KL(p(O | v) | p(O)), where p(O | v) is the conditional
probability distribution between v and the object and p(O) is the marginal
probability distribution of O, which in our case corresponds to the distribution
of the average of projected areas. It is worth observing that p(O) plays the role
of the target distribution in the KL distance and also the role of the optimal
distribution since the objective is that p(O | v) becomes similar to p(O) to
obtain the best views. On the other hand, this role agrees with intuition since
p(O) is the average visibility of polygon o over all viewpoints, i.e., the mixed
distribution of all views, and we can think of p(O) as representing, with a single
distribution, the knowledge about the scene.

4.4 Viewpoint-Based Error Metric

In this section, a new error metric based on viewpoint selection measures is
presented. This metric can be used to evaluate the cost of a decimation oper-
ation. The edge collapse is chosen as the decimation operation, although any
other simplification operation could be performed such as removing a vertex,
replacing a cluster of vertices by a single one and contracting an edge.

Viewpoint selection measures express the accessible information about an
object from a particular viewpoint. Given a particular viewpoint, we can con-
sider the following: if the simplification is produced near the silhouette, prob-
ably it will change the shape of the object. Therefore, if the goal is to preserve
the visual appearance of the model then we should try to reduce this change.
In addition, in order to preserve the global appearance of the model, several
equidistant viewpoints surrounding the model are required, so that the whole
model will be fully covered. This distribution guaranties a uniform simplifica-
tion.

Taking into account the facts mentioned above, the variation of a viewpoint
selection measure for each viewpoint can provide us with an error metric to
guide the simplification process. Thus the simplification error deviation for an
edge collapse e from all viewpoints V is defined by:

Ce =
∑
v∈V
| Iv − I ′v |, (4.4)

where Iv represents the viewpoint selection measure before the edge collapse
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e and I ′v afterwards.
We choose two information-theoretic viewpoint selection measures to test

our simplification method, namely, viewpoint entropy (Hv) and viewpoint mu-
tual information (VMI). Viewpoint entropy measures the degree of uniformity
of the projected area distribution at viewpoint v and viewpoint mutual infor-
mation gives us the degree of dependence between the viewpoint v and the
set of polygons. Therefore, VMI can be interpreted as the average viewpoint
quality. Quality is considered here equivalent to representativeness. Viewpoint
mutual information has an important feature, that is, it can be used as a shape
descriptor for object recognition [RFS05], which is suitable for capturing the
shape variation. Viewpoint entropy tends to infinity when polygons are in-
finitely refined. This makes this measure very sensitive to the discretization of
the object, in general, inappropriate for evaluating the quality of a viewpoint.
Viola et al. [VFSG06] show that the main advantage of VMI over Hv is its
robustness to deal with any type of discretization or resolution of the volumet-
ric data. The same advantage can be observed for the polygonal data. Thus,
while a highly refined mesh will attract the attention of Hv, VMI will be almost
insensitive to changes in the mesh resolution. In general, if we compare both
measures for different discretizations, mutual information will give similar re-
sults in viewpoint quality and Hv will show an erratic behavior. In conclusion,
when a mesh is infinitely refined, VMI converges to a finite value while Hv

diverges. As a consequence, VMI is more robust than viewpoint entropy when
the object mesh is changed.

Both viewpoint entropy and mutual information are based on the distribu-
tion of areas of polygons seen from a viewpoint. The area of the background
is also included as the polygon 0. These facts allow viewpoint entropy and
mutual information to preserve the silhouette better. But perhaps the main
implication of considering the projected areas is that the hidden geometry will
be initially removed, because if a polygon is not seen from any point of view,
it will not introduce any error.

In the previous chapter, several techniques for computing those projected
areas were analyzed. More specifically, the OpenGL histogram, the hybrid
SW-HW histogram and the occlusion query were studied. The fastest tech-
nique, using today’s hardware, was found to be the hybrid SW-HW histogram.
This technique takes advantage of the PCI Express bus symmetry. In brief,
a different color is assigned to each polygon and the whole object is sent for
rendering. Next, a buffer read operation is performed, and then this buffer is
analyzed pixel by pixel to retrieve data about its color. Using RGBα color
encoding with a byte value for each channel, up to 2564 polygons can be calcu-
lated with only one single rendering pass. We used this technique during the
simplification process.

Figure 4.1 shows the original Test model and how the viewpoints are dis-
tributed around it. These viewpoints are associated with the vertices of the
Cube in which the object is inscribed. Figure 4.2 shows the VMI for the origi-
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Figure 4.1: Example of 8 camera positions surrounding the Test Model.
These camera positions correspond to the 8 vertices of the cube. This distri-
bution allows the object to be completely covered because all the viewpoints
are equidistant from each other

nal Test model using the 8 viewpoints shown in Figure 4.1. As can be seen, the
different viewpoints have the same VMI. This is because all the object is seen
from every viewpoint and each viewpoint sees the same as any other. Note that
this is a very special situation because the object is quite simple and regular.
Normally, in more complex models every viewpoint will have a different VMI.

Figures 4.3 and 4.4 illustrate how VMI can be employed to conduct the
simplification. Figure 4.3 shows the Test model after performing the best edge
collapse e and Figure 4.4 after performing the worst edge collapse e′. The
best edge collapse belongs to the lowest simplification error Ce (4.4) and the
worst edge collapse belongs to the highest. As can be observed all the VMI
values for every viewpoint decreased after an edge collapse (see for instance
Figure 4.2(a) compared to Figure 4.3(a) or 4.4(a)). This is because the visible
area did not increase in both cases and also the complexity is always reduced
during the simplification process. But in a more general case, it is possible
that after an edge collapse some previously hidden parts of the mesh may
now appear, thus increasing the visible area. If we pay attention to Figure
4.2(b) and compare this same viewpoint after the best edge collapse (see Figure
4.3(b)), it can be appreciated that although the number of triangles is reduced
(T=8), the visible area remains the same. The simplification error for this
viewpoint using VMI is Ce = 0.004097 − 0.003651 = 0.000446. If we analyze
the same viewpoint in the worst edge collapse operation (see Figure 4.4(b)),
it can be seen that although the number of triangles is less reduced (T=9),
the total visible area is somewhat decreased. The simplification error for this
viewpoint is Ce′ = 0.004097 − 0.003372 = 0.000725, which is higher than the
error committed in the best edge collapse.
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(a) (b) (c) (d)

Figure 4.2: Original Test model. T=10. I(v, O) = 0.004097 where v =
{1, .., 8}. Only 4 viewpoints are shown because the rest are symmetric

(a) I(1,O)=0.003830 (b) I(2,O)=0.003651 (c) I(3,O)=0.003651 (d) I(4,O)=0.003830

Figure 4.3: Test model after performing the best edge collapse e using
VMI. T=8. Ce = 0.002573

(a) I(1,O)=0.003238 (b) I(2,O)=0.003372 (c) I(3,O)=0.003372 (d) I(4,O)=0.003238

Figure 4.4: Test model after performing the worst edge collapse e′ using
VMI. T=9. Ce′ = 0.006228
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4.5 Simplification Algorithm

The simplification process, like many other simplification algorithms, is
based on the edge collapse operation. However, we use the half-edge collapse
operation. According to this, the remaining vertex for an edge collapse e(u, v)
is vertex u or v (see Figure 4.5). By using half-edge collapses it is possible
to reuse the simplification process in order to generate multiresolution models.
These models can use the current hardware in a more efficient way because
no new vertices are added to the original model. Furthermore, the half-edge
representation is useful for progressive transmission. The main disadvantage
is a slight loss of quality of the final mesh, although the complexity of the
simplification algorithm is reduced because we do not have to compute the
position of the new vertex v′ resulting from the edge collapse. In any case, the
general edge collapse operation can be applied to our algorithm. However, a
strategy is required to compute the position of the resulting vertex.

Figure 4.5: The half-edge collapse operation. In this example edge e
is collapsed into vertex u (see e(v, u)), but it is also collapsed into v (see
e(u, v)). Triangles t10 and t5 are removed

Brute force selection of edges can introduce mesh inconsistencies. In order
to avoid these artifacts, we only take into account the edges which have at
most two adjacent polygons, that is 2-manifold edges. And we also consider
boundary edges, i.e. edges which have one single adjacent polygon.

The best half-edge collapse is the decimation operation chosen in our algo-
rithm. Note that the cost of collapsing vertex u to v may be different to the
cost of collapsing v to u. In our strategy in order to determine the best orien-
tation of an edge collapse, we would have to render the two possibilities and
compute that error. However, this would considerably increase the number of
renderings and consequently the number of framebuffer readings. Therefore the
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Figure 4.6: Edges adjacent to vertices adjacent to vertex v

temporal cost would be penalized. To avoid this, we used the approach devel-
oped by Melax [Mel98], which takes into account polygon normals. Within this
approach, the two orientations e(u, v) and e(v, u) are calculated and finally the
orientation that produces a minor change in the curvature of the local region
around the edge collapse is applied. Hence the simplification error deviation is
only computed for that orientation.

4.5.1 Evaluation of the Edge Collapse Error

In the previous section, the error introduced by an edge collapse was defined
as the sum of the differences before simplifying and after simplifying.

To speed up its calculation, we can make use of the fact that both viewpoint
entropy and mutual information can be iteratively calculated. Viewpoint en-
tropy and mutual information are computed from the projected areas and the
total projected area. The background is considered to be another polygon, and
thus the total projected area is always the image resolution. Moreover, only a
few polygons change after an edge collapse. Therefore viewpoint entropy and
mutual information can be computed at the beginning for the entire object and
then their initial values can be successively updated. In our implementation
we have exploited this feature.

Our algorithm maintains a heap of edge collapses, sorted by the simplifica-
tion error cost. In fact, it is an iterative method, so the edge collapse operation
is applied until the desired approximation is obtained. At each operation, the
edge collapse e that has the least deviation Ce (4.4) is chosen. However, it is
important to determine some parameters, since the quality of the results may
change. We performed measurements with 20 regularly distributed viewpoints
and rendered 256×256 resolution images. More viewpoints can increase quality,
but also significantly raise the temporal cost.

In [CRC05] different hardware techniques were analyzed for geometric visu-
alization using standard OpenGL running on current GPUs, the results showing
that the vertex buffer objects technique is the best suited to dynamic geometry.
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So this technique was used to render the images. For the off-screen rendering
the OpenGL framebuffer object extension was employed.

At each iteration the edge cost has to be evaluated for the entire set of
remaining edges. An edge collapse in our algorithm could, in principle, affect
the cost of any remaining edge. But this does not always happen to each edge.
At each step we only choose a small group of edges that are affected by an edge
collapse and then the cost is recalculated for these edges. These edges are the
ones that are adjacent to the vertices adjacent to the vertex v resulting from
a half-edge collapse (see Figure 4.6). In our experiments, if we consider the
whole set of edges of the model, the temporal cost is increased about 20 times,
but we achieve results that are not significantly better.

In order to avoid performing unnecessary edge collapse calculations, after
applying an edge collapse, each edge that should be recalculated is simply
marked as dirty. Such edges are really recalculated only when they reach the
top of the heap. If the edge extracted from the heap is dirty, it is simply
discarded. Then, its cost is recomputed and inserted into the heap again. This
heuristic was introduced in [CMO97]. In Figure 4.7 we show a summary of the
simplification algorithm.

// Compute initial viewpoint selection measure for mesh M
Compute Iv, where v = {1, .., n}

// Build initial heap of edge collapses

for (e ∈M)
Choose the best orientation of e
Perform collapse e
Compute Iv, where v = {1, .., n}
Compute collapse cost Ce =

∑n
v=1 | Iv − I ′v |

Insert the duple (e, Ce) in heap h
Undo collapse e

end for

// Update mesh M
while (heap h not empty)

Delete from heap h edge e with lowest Ce

Perform collapse e
Recalculate cost for the neighborhood of e
and update their location in heap h

end while

Figure 4.7: Pseudo-code of the viewpoint-driven simplification algorithm
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4.5.2 Updating Projected Areas

As mentioned in Section 4.4, the projected area of every polygon from a
viewpoint is needed in order to compute viewpoint entropy and mutual infor-
mation. The bottleneck resides in the pixel-to-pixel analysis performed by the
histogram [CSCF06] to obtain those areas, due to the memory transfer cost.
Therefore, this overload can be reduced if, instead of analyzing the whole im-
age, the area of reading is restricted to a small window that only includes the
polygons surrounding the edge collapse (see Figure 4.8).

To obtain this window, first the bounding box of the polygons surround-
ing the edge collapse is determined and then projected onto the screen. This
method allows the temporal cost of the algorithm to be reduced by about 10
times, but it may lead to some slight loss of quality. This is mainly due to the
fact that after an edge collapse some hidden polygons might appear and it was
not possible to measure their contribution to the formula.

(a) (b)

Figure 4.8: Image (a) shows the Galo model: the triangles surrounding
the edge collapse are marked in blue. The triangles that are going to be
removed are marked in white. Image (b) shows in red the window used to
obtain the new projected areas for blue triangles. The modified triangles
are in a lighter blue
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4.5.3 Temporal Cost Analysis

The total temporal cost of our algorithm depends on the number of view-
points V , the number of pixels (image resolution) P and the number of triangles
in the mesh T . Calculating the viewpoint selection measure (VMI or Hv) im-
plies a cost of O(PV ). This is due to the analysis performed in the framebuffer
in order to obtain the projected areas, which form the probability distributions.
The cost of inserting or updating an item in a priority queue is O(log T ). Fi-
nally, If we consider the worst case, that is, all triangles are removed, the total
cost belongs to O(PV T log T ). Clearly, the temporal cost of the algorithm is
determined by the cost of the viewpoint selection metric and the number of
triangles.

4.6 Results
We carried out our tests with low complexity models from CAD programs.

All models were simplified on a Pentium Xeon 2GHz with 1GB RAM and an
NVIDIA 7800 GTX 512MB graphics card from 20 viewpoints. At the end
of this section we show some experiments with a different number of view-
points. The results obtained with the viewpoint-driven simplification method
were compared to the results achieved with QSlim v2.0 [GH97], using the best
half-edge collapse, at the same level of simplification. We chose QSlim because
it is a well-known pure geometric-based algorithm, it is freely available, and it
produces high quality simplifications. The images shown were obtained using
different viewpoints from those used during the simplification process.

Model Triangles RMSE Time
Original Final Hv VMI Hv VMI

Shark 734 80 14.78 14.65 10.24 10.23
Galo 6592 500 9.34 8.55 141.75 142.24
Greekship 9510 600 13.37 12.85 241.78 246.72
Simpletree 11 136 600 16.98 16.27 321.06 332.49
Hammer 13 380 500 8.13 7.43 404.33 423.05
Elephant 31 548 900 13.18 11.14 1756.34 1795.74

Table 4.1: Results for Hv and VMI measuring visual error (RMSE) and
simplification time in seconds

First, a comparison between viewpoint entropy and mutual information was
performed for all models, the results of which appear in Table 4.1. As shown
in this table the visual error is lower in VMI. The temporal cost is almost
the same. This difference between the VMI and the Hv lies in the calculation
performed to obtain the mean projected area of the polygons. In fact, this is
not necessary in Hv. Therefore the temporal cost of Hv is just a bit lower.

Figure 4.9 shows the Galo Model simplified with Hv (Figure 4.9(c)) and
with VMI (Figure 4.9(e)). As can be appreciated, the silhouette of this model
is kept better with VMI than Hv, see for instance the crest. The wireframe
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images reveal how these measures work. Hv balances the size of the triangles,
therefore all triangles have more or less the same area. However, VMI increases
the simplification in flat regions such as the base and the tail. This behavior
is desirable and allows VMI to reduce the simplification in other parts of the
model, preserving better the visual similarity of the simplified model. In the
rest of the section, we used VMI because of its high quality compared to Hv.

Model Triangles RMSE Metro Time
Original Final QSlim VMI QSlim VMI QSlim VMI

Shark 734 80 33.41 14.65 0.20 0.04 0.02 10.20
Galo 6592 500 12.40 8.55 0.05 0.01 0.08 142.24
Greekship 9510 600 17.20 12.85 0.21 0.09 0.11 246.72
Simpletree 11 136 600 20.73 16.27 0.11 0.14 0.20 332.49
Hammer 13 380 500 8.99 7.43 0.03 0.04 0.20 423.05
Elephant 31 548 900 25.32 11.14 0.08 0.06 0.52 1795.74

Table 4.2: Results for QSlim and VMI measuring visual error (RMSE),
geometric error (Metro) and simplification time in seconds

Table 4.2 depicts the visual and geometric error introduced in our experi-
ments and the simplification time. We implemented the root mean square error
(RMSE ) of the pixel-to-pixel image difference defined in [LT00] to measure the
mean visual error between the original and the simplified model. This error was
taken using 24 viewpoints and 512 × 512 resolution images; both the number
of viewpoints and the resolution were different from those used to simplify all
models. We must emphasize that each viewpoint was different from the one
used during the simplification process. Clearly, the visual error committed in
our method is quite low compare to QSlim, and can even be 50% lower, as
shown in case of the Shark, the Galo and the Elephant models.

We measured the geometric error using the mesh comparison tool called
Metro v4.06 [CRS98]. This tool measures the Hausdorff distance between two
meshes. Our results are rather better than the geometric method used for
comparison purposes. This makes us highly confident about our approach. For
example, the geometric error committed in the Galo and Greekship models
using VMI is 50% less than with QSlim and up to 75% in the Shark model.
However, it is possible that in particular models (for instance, the Simpletree
model) this error will be slightly higher than QSlim. The reason for this is be-
cause the model has lots of hidden interiors and these are completely removed,
thus increasing the geometric error but not the visual one. In the Simpletree
model, some branches are removed at the tree top when simplifying with VMI.

An analysis of the temporal cost is also shown in this table. This cost is
proportional to the complexity of the model and the final number of triangles
demanded. However, the QSlim algorithm is extremely fast. Its times for these
models are less than a second. In any case, our method produces high quality
simplifications as far as visual similarity is concerned. So it is valid, despite
the high temporal cost compared to geometry-based methods.

Figure 4.10 shows the results for the Shark model. VMI achieves much
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(a) Original model. T=6592 (b) Wireframe

(c) Hv .T=500 (d) Wireframe

(e) VMI.T=500 (f) Wireframe

Figure 4.9: Galo model. Image (a) and (b) show the original model.
Images (c) and (d) show the model simplified with Hv and (e) and (f) with
VMI
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(a) Original model (b) QSlim.T=80 (c) VMI.T=80

Figure 4.10: Results for the Shark model. Image (a) shows the original
model (T=734), (b) the model simplified with QSlim and (c) with VMI

(a) Original model (b) QSlim.T=500 (c) VMI.T=500

Figure 4.11: Results for the Galo model. Image (a) shows the original
model (T=6592), (b) the model simplified with QSlim and (c) with VMI

(a) Original model (b) QSlim.T=600 (c) VMI.T=600

Figure 4.12: Results for the Greekship model. Image (a) shows the orig-
inal model (T=9510), (b) the model simplified with QSlim and (c) with
VMI
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(a) Original model (b) QSlim.T=600 (c) VMI.T=600

Figure 4.13: Results for the Simpletree model. Image (a) shows the
original model (T=11 136), (b) the model simplified with QSlim and (c)
with VMI

(a) Original model (b) QSlim.T=500 (c) VMI.T=500

Figure 4.14: Results for the Hammer model. Image (a) shows the original
model (T=13 380), (b) the model simplified with QSlim and (c) with VMI

(a) Original model (b) QSlim.T=900 (c) VMI.T=900

Figure 4.15: Results for the Elephant model. Image (a) shows the original
model (T=31 548), (b) the model simplified with QSlim and (c) with VMI
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(a)

(b)

Figure 4.16: Errors measured for the Shark model at different levels of
simplification. Chart (a) shows the visual error (RMSE) and (b) the geo-
metric error (Metro)
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Figure 4.17: VMI operating in the first stages of simplification (T=7400)
for the Simpletree model. VMI is able to remove all the hidden interiors

better simplification than QSlim. The fins, the head and the tail are kept
better in VMI than in QSlim. Figure 4.11 shows the Galo model. The tail
and the crest are maintained better in VMI. Figure 4.12 shows the Greekship
model. The oars are kept much better in VMI, as well as the rope that comes
from the mast. In QSlim it is removed completely. Figure 4.13 shows the
Simpletree model. The roots at the base of the trunk are kept much better in
VMI and, additionally, VMI is able to preserve the tree-top better than QSlim.
Figure 4.14 shows the Hammer model. The handle is preserved better in our
method than with QSlim. Furthermore, VMI allows the shape of the metal
base to be kept better. Lastly, Figure 4.15 shows the results for the Elephant
model. VMI preserves the shape of the ears and the tusks much better than
QSlim. In summary, VMI achieves better simplification than the geometric
method QSlim. The difference between VMI and QSlim is bigger if the model
presents lots of hidden interiors, in which case VMI can accomplish much better
simplifications.

Figure 4.16 shows how our measure and QSlim work at several degrees of
simplification for the Shark model. We measured the visual and geometric
error. As shown in Figure 4.16(a), if we increase the level of simplification the
difference between VMI and QSlim becomes larger and the visual quality of
VMI is even much higher. Figure 4.16(b) shows that the geometric error of
VMI is also lower than that of QSlim.

Figure 4.17 shows how VMI works at very early simplification levels. In
this case we analyze the Simpletree model since it presents hidden interiors in
the branches which are in contact with the tree-top. The Simpletree model was
simplified to about 66% (T=7400). As shown in this figure, VMI accomplishes
a great level of simplification in this region. At this level, most simplifications
are focused on hidden interiors.

Lastly, we also conducted experiments with a different number of viewpoints
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(a)

(b)

Figure 4.18: Errors measured for some models simplified with VMI using
different numbers of viewpoints. Chart (a) shows the visual error (RMSE)
and (b) the temporal cost



i
i

“thesis” — 2008/12/2 — 11:26 — page 55 — #75 i
i

i
i

i
i

4.7 Conclusions 55

for some models, as shown in Figure 4.18. These viewpoints are distributed
uniformly in direction and correspond to the vertices of the Platonic solids. The
last configuration (42 viewpoints) was obtained by subdivision. In this figure
the temporal cost and the visual error are analyzed. The visual error hardly
improves when the number of cameras increases from 20 to 42. Nevertheless,
the temporal cost is about twice as high (see Figure 4.18(b)). Therefore, we
think that with 20 viewpoints we already obtain good results, and thus this
number of viewpoints is a good compromise between quality and efficiency.

4.7 Conclusions
In this chapter we have presented a new simplification method for polyg-

onal models based on viewpoint selection measures. This method quantifies
the error introduced by a decimation operation as the variation in these mea-
sures for all the viewpoints. In order to conduct the simplification process,
two information-theoretic viewpoint selection measures have been employed,
namely, viewpoint entropy and mutual information. Both measures produce
high quality approximations taking into account visual fidelity. Nevertheless,
viewpoint mutual information decreases the visual error for the simplified mod-
els more than viewpoint entropy, since it is able to preserve the silhouette bet-
ter. In addition, our approach also performs a better simplification than the
quadric QSlim method, mainly because it can benefit from visibility informa-
tion. As shown in our experiments, the resulting approximations have fewer
visual and geometric errors. Moreover, our algorithm achieves very good results
with CAD models which often present a lot of hidden interiors. Viewpoint en-
tropy and mutual information achieve good results in visual similarity by being
able to remove all these hidden interiors.

In general, the main drawback of image-based methods is the high tempo-
ral cost. Our approach, based on viewpoints, also has a high cost compared
to geometric-based simplifications. In order to compute the error introduced
at each simplification step, the model must be rendered and the framebuffer
analyzed from every viewpoint, and therefore most of the time the bottleneck
resides in the GPU and bus traffic. Nonetheless, in addition to being able to
accomplish better simplified models while minimizing visual error, our proposal
is even able to reduce the geometric error.
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CHAPTER 5
Viewpoint-Driven Simplification

Using f -divergences

5.1 Introduction
Currently, the majority of published simplification algorithms deal with the

polygonal simplification framework from two different perspectives. A common
point of view is the geometric fidelity while another is the visual quality. The
solution up to now has been to develop algorithms which individually consider
one of those approaches. Many geometric-based algorithms produce approxi-
mations with very low geometric error but with a poor visual quality. However,
the contrary case also often happens, many visual-driven algorithms perform
a high visual simplification but with a low geometric quality, especially when
the model is simplified to a coarse level. In general, visual-driven approaches
completely remove the hidden parts of the simplified model in order to obtain
the best results in visual quality. This may sometimes be desirable depending
on the type of applications, for instance, computer games. Nevertheless, it is
not allowed in others such as medical applications.

Therefore, no algorithm today excels at simplifying all models for the dif-
ferent kinds of applications. This chapter is an attempt to tackle the problem
from both points of view. The simplification scheme introduced in the previous
chapter is extended with new viewpoint selection measures. These new mea-
sures now allow us to take into consideration those different perspectives at the
same time. Moreover, it is not necessary to weight the effect of the geometric
measure in relation with the visibility information as some other approaches
have proposed.

57
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In this chapter, some viewpoint selection measures based on f -divergences
are introduced and applied to the viewpoint-driven simplification algorithm.
These divergences were proposed by Csiszár [Csi63] and Ali and Silvey [AS66] as
measures of discrimination between probability distributions. At the moment,
these measures have been successfully applied to image processing, several areas
of engineering and computer graphics. For instance, in computer graphics,
they have been used to define refinement criteria for hierarchical radiosity and
adaptive supersampling of a pixel in ray-tracing. The Kullback-Leibler distance
has been recently employed as a measure of viewpoint quality in [SPFG05].

Experimental results show the better visual and geometric performance of
our method compared to the high quality geometry-based algorithm [GH97].
The effect of the f -divergences in our viewpoint-driven simplification method
was also compared to the viewpoint selection measures tested previously (view-
point entropy and mutual information). In this case, we attain simplified mod-
els which present a similar visual quality but with an enhanced geometric error.

This chapter is organized as follows. Section 5.2 introduces some f -divergences.
Section 5.3 defines new viewpoint selection measures based on these diver-
gences. In Section 5.4, these measures are applied to the viewpoint-driven
simplification algorithm. Section 5.5 shows the results of the experiments. Fi-
nally, in Section 5.6, conclusions are presented.

5.2 f -divergences
Many different measures quantifying the degree of discrimination between

two probability distributions have been studied in the past. This section
presents some of the most important f -divergences [Dra00], called distances
in the literature.

The Kullback-Leibler distance [KL51] between two probability distributions
p and q is defined by

KL(p | q) =
∑
x∈X

p(x) log
p(x)
q(x)

, (5.1)

where the convention that 0 log 0 = 0, p(x) log p(x)
0 = ∞ if p(x) > 0, and

0 log 0
0 = 0 is used.

The Chi-Square distance [Pea00] between two probability distributions p
and q is defined by

X 2(p | q) =
∑
x∈X

(p(x)− q(x))2

q(x)
. (5.2)

The Hellinger distance [Hel09] between two probability distributions p and
q is defined by

h2(p | q) =
1
2

∑
x∈X

(
√
p(x)−

√
q(x))2. (5.3)
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Note that none of the above distance fulfills all the properties of a true
metric. However, h(p | q), the square root of the Hellinger distance, is a true
metric.

5.3 f -divergences for Viewpoint Selection

5.3.1 Viewpoint Kullback-Leibler distance

In [SPFG05], a viewpoint quality measure based on the Kullback-Leibler
distance (5.1) was proposed. This measure minimizes the distance between the
projected and actual area distributions of the polygons in the object and is
defined by

KLv =
Nf∑
i=1

ai

at
log

ai

at

Ai

AT

, (5.4)

where ai is the projected area of polygon i, at =
∑Nf

i=1 ai, Ai is the actual area
of polygon i and AT =

∑Nf

i=1Ai is the total area of the scene or object.

5.3.2 Viewpoint Chi-Square distance

Using the same probability distributions as in [SPFG05], we define from 5.2
a new viewpoint quality measure, the viewpoint Chi-Square distance given by

CSv =
Nf∑
i=1

(
ai

at
− Ai

AT

)2

Ai

AT

. (5.5)

5.3.3 Viewpoint Hellinger distance

Again, another viewpoint quality measure can also be defined from 5.3, the
viewpoint Hellinger distance. It is given by

HEv =
1
2

Nf∑
i=1

(√
ai

at
−
√
Ai

AT

)2

. (5.6)

These three measures (KLv, CSv and HEv) represent the distance between
the normalized distribution of projected areas and the ‘ideal’ projection, given
by the normalized distribution of actual areas. Note that in this case the back-
ground can not be taken into account. The minimum value 0 is obtained when
the normalized distribution of projected areas is equal to the normalized dis-
tribution of actual areas. Thus, selecting high quality views means minimizing
these measures, where quality is interpreted as representativeness.
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5.4 Extending viewpoint-driven simplification with f -
divergences

The viewpoint-driven simplification algorithm can use any viewpoint selec-
tion measure to drive the simplification process. As seen in the previous chap-
ter, the simplification error metric is defined as the sum of differences before
simplifying and after simplifying. Therefore, there is no problem in extend-
ing the algorithm to incorporate the new f -divergences for viewpoint selection
proposed in this chapter. However, some parts related to the computation of
these new metrics have to be adapted.

For instance, in addition to the projected areas, the actual areas are also
needed in order to compute the f -divergences. Obviously, this will increase the
temporal cost of the algorithm compared to the previous version. Nevertheless,
the most important fact is that the cost of an edge collapse can not be calculated
iteratively as happened in case of viewpoint entropy and mutual information.
This is because the background plays no role, that is, it is not considered
as another polygon. The total projected area is always the image resolution.
However, the total actual area is not a constant value. This means that after
an edge collapse the total actual area will have changed because some polygons
will have been removed. Therefore, the temporal cost of the algorithm will be
increased significantly.

(a) KL1 = 0.094 (b) KL′
1 = 0.090 (c) KL′

1 = 0.053

Figure 5.1: Image (a) shows the Original Test model (T=10), (b) the
resulting model simplified with KLv after applying the best edge collapse
(T=8) and (c) after applying the worst (T=8). T indicates the number of
triangles

Figure 5.1 illustrates how KLv can be employed to conduct the simplifica-
tion. This figure shows the original Test model after performing the best edge
collapse e and the worst edge collapse e′. The best edge collapse belongs to the
lowest simplification error Ce (4.4) and the worst to the highest. In addition,
this figure shows KLv from the particular viewpoint (v = 1) considered here
for all the three analyzed cases. As can be observed, the worst edge collapse has
decreased the visible area thus having a new lower KL′v value. If we compute
the error introduced by the best case Ce = 0.094 − 0.090 = 0.004, we will see
that it is clearly lower than the worst case Ce′ = 0.094− 0.053 = 0.041.
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An important property of KLv is that it balances the size of polygons. This
generates approximations in which polygons are distributed uniformly. But
this property in conjunction with the capability of preserving the silhouette is
also common in viewpoint entropy (Hv) and mutual information (VMI) when
applied to the simplification framework as seen in the previous chapter. Both
Hv and VMI only consider the projected area of polygons, and the background
plays the same role as another polygon. Hence, the total projected area is
always the image resolution. If a polygon is not visible, its contribution to
the formula for Hv and VMI will be zero. There will not be a change in
Hv and VMI before and after collapsing an edge that belongs to a hidden
polygon. Consequently, the error committed will be zero. This means that
at the beginning all the invisible polygons will be removed in both Hv and
VMI. On the other hand, due to the fact that KLv considers the actual area
of polygons and because the background plays no role, after an edge collapse,
normally one or two polygons will be removed, thus decreasing the total actual
area. This will change the value for KLv after an edge collapse. Therefore the
error committed will be distinct from zero. The consequence is that even hidden
polygons will have error when simplifying and will not be completely removed
during the initial steps of the algorithm. Hidden polygons will be removed
according to their actual area. Thus, the smallest polygons will be simplified
before, preserving the main features of the object in its internal parts. Figure
5.2 illustrates a sequence of simplification for the test model that hides a very
simple mesh of two triangles. As shown in this figure, the simple mesh is not
simplified until it reaches one of the final steps (h). The other f -divergences
proposed in this section share the properties described for KLv.

5.5 Results

Several experiments with meshes of different complexity were performed.
All models were simplified on a Pentium Xeon 2GHz with 1GB RAM and
NVIDIA 7800 GTX 512MB graphics card using 20 viewpoints. The effect of
using different number of viewpoints is also analyzed at the end of this section.
The results obtained at the same simplification level were compared to the
results with the geometric QSlim v2.0 [GH97] algorithm using the best half-
edge collapse and the viewpoint-driven simplification algorithm using viewpoint
entropy. The QSlim algorithm was chosen for the high quality of its approxima-
tions and because the code is freely available. The images shown were obtained
using a different viewpoint from those used during the simplification.

A comparison among the different f -divergences is performed in Table 5.1.
As shown, the best results are given using the Chi-Square distance. Conse-
quently, this distance was used along the remainder of this section for all the
experiments.

In Chapter 4 we demonstrated the superior visual quality of VMI with
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(a) T=12 (b) T=10 (c) T=8

(d) T=7 (e) T=6 (f) T=5

(g) T=4 (h) T=3 (i) T=2

Figure 5.2: Simplification sequence using KLv

Model Triangles RMSE Metro
Original Final KLv HEv CSv KLv HEv CSv

Fish 815 100 12.98 13.46 11.86 0.03 0.04 0.02
Galo 6592 500 10.48 11.27 9.10 0.01 0.01 0.01
Al 7124 1000 12.07 13.62 11.94 0.03 0.04 0.04
Simpletree 11 136 600 18.04 17.75 17.02 0.04 0.04 0.04
Big atc 13 594 1000 15.44 16.27 15.28 0.03 0.04 0.03
Elephant 31 548 900 13.40 23.00 11.02 0.05 0.08 0.02

Table 5.1: Errors measured for all models using KLv, HEv and CSv

Model Triangles RMSE Metro
Original Final QSlim Hv CSv QSlim Hv CSv

Fish 815 100 22.83 11.57 11.86 0.09 0.03 0.02
Galo 6592 500 12.40 9.34 9.10 0.05 0.03 0.01
Al 7124 1000 17.66 11.47 11.94 0.03 0.08 0.04
Simpletree 11 136 600 20.73 16.98 17.02 0.11 0.13 0.04
Big atc 13 594 1000 16.50 15.97 15.28 0.08 0.05 0.03
Elephant 31 548 900 25.32 13.18 11.02 0.08 0.14 0.02

Table 5.2: Errors measured for all models using QSlim, Hv and CSv
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Model Triangles Time
Original Final QSlim Hv CSv

Fish 815 100 0.03 10.01 11.31
Galo 6592 500 0.08 141.75 237.30
Al 7124 1000 0.08 150.90 273.18
Simpletree 11 136 600 0.20 332.49 605.49
Big atc 13 594 1000 0.27 535.23 835.88
Elephant 31 548 900 0.52 1756.34 4016.78

Table 5.3: Simplification time (seconds) for all models using QSlim, Hv

and CSv

respect to Hv. Now, we use Hv to show that the visual quality of the f -
divergences is similar to Hv.

Table 5.2 depicts the visual and geometric error. As in the previous chap-
ter, we used the root mean square error (RMSE ) of the pixel-to-pixel image
difference defined in [LT00] to measure the mean visual error between the orig-
inal and the simplified model. This error was taken using 24 viewpoints and
512× 512 resolution images. We must emphasize that each viewpoint was dif-
ferent from the one used during the simplification process. Clearly, the visual
error committed with CSv is quite low compare to QSlim, and can even be
50% lower, as shown in case of the Fish and the Elephant model. However, the
visual error is slightly improved in Hv. This is due to the fact that Hv removes
completely the hidden interiors and non-visible regions of the model increasing
the visual quality.

The geometric error was measured using Metro v4.06 [CRS98]. The results
of CSv are better in all the models than the geometric and visual simplification
methods used for comparison purposes. For example, the geometric error com-
mitted in the Galo, the Simpletree and the Big atc models using CSv is at least
75% less than with QSlim. Figures 5.11 and 5.12, respectively, show the Al
and the Simpletree models rendered with transparency. These models have lots
of hidden interiors. For instance, in case of the Al model the hidden joints of
the arms and the hip are preserved better in CSv (see Figure 5.11(d)) whereas
in Hv (see Figure 5.11(c)) these interpenetrating parts are partially removed.
The hidden branches of the Simpletree model are retained better in CSv (see
Figure 5.12(d)) than in Hv (see Figure 5.12(c)). Therefore, in summary, the
approximations produced with CSv preserve the interior regions better than
Hv and consequently present a lower geometric error.

As shown in Table 5.3 the temporal cost is proportional to the complexity of
the model and the desired number of triangles. However, the QSlim algorithm
is extremely fast. Its times for these models are less than a second. Hv is faster
than CSv. The reason is that Hv does not have to compute the actual areas for
the polygons and its initial value can be updated at every simplification step
because the total projected area is always the image resolution. CSv considers
the total actual area and this area changes at every simplification. Accordingly,
CSv must be recomputed. In any case, CSv is valid, despite the high temporal
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cost because it improves the geometric error without decreasing significantly
the visual quality. This can be useful in many applications as mentioned earlier.

(a) Original model (b) QSlim.T=100 (c) Hv .T=100 (d) CSv .T=100

Figure 5.3: Results for the Fish model. Image (a) shows the original
model (T=815), (b) the model simplified with QSlim, (c) with Hv and d)
with CSv

(a) Original model (b) QSlim.T=500 (c) Hv .T=500 (d) CSv .T=500

Figure 5.4: Results for the Galo model. Image(a) shows the original
model (T=6592), (b) the model simplified with QSlim, (c) with Hv and (d)
with CSv

(a) Original model (b) QSlim.T=1000 (c) Hv .T=1000 (d) CSv .T=1000

Figure 5.5: Results for the Al model. Image (a) shows the original model
(T=7124),(b) the model simplified with QSlim, (c) with Hv and (d) with
CSv

Figure 5.3 shows the results for the Fish model. The head and the tail are
kept better in CSv and Hv than QSlim. Figure 5.4 shows the Galo model.
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(a) Original model (b) QSlim.T=600 (c) Hv .T=600 (d) CSv .T=600

Figure 5.6: Results for the Simpletree model. Image (a) shows the original
model (T=11 136), (b) the model simplified with QSlim, (c) with Hv and
(d) with CSv

(a) Original model (b) QSlim.T=1000 (c) Hv .T=1000 (d) CSv .T=1000

Figure 5.7: Results for the Big atc model. Image (a) shows the original
model (T=13 594), (b) the model simplified with QSlim, (c) with Hv and
(d) with CSv

(a) Original model (b) QSlim.T=900 (c) Hv .T=900 (d) CSv .T=900

Figure 5.8: Results for the Elephant model. Image (a) shows the original
model (T=31 548), (b) the model simplified with QSlim, (c) with Hv and
(d) with CSv
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The tail and the crest are kept better in CSv and Hv. Figure 5.5 shows the Al
model. The hands and some parts of the body are preserved better in CSv and
Hv. Figure 5.6 shows the Simpletree model. The roots at the base of the trunk
are kept much better in CSv and Hv and even both are able to keep the tree
top better than QSlim. Figure 5.6 shows the Big atc model. The handlebar
is kept much better in Hv and CSv, as well as the back of the seat. QSlim
completely removes it. Lastly, Figure 5.8 shows the results for the Elephant
model. CSv and Hv keep the shape of the ears and the tusks much better than
QSlim. To sum up, CSv and Hv attain better simplification than the QSlim
quadric method. The difference between CSv and Hv is noticeable if the model
presents hidden interiors. In such case Hv could accomplish a slightly better
visual simplification at the expense of increasing the geometric error, since it
may remove completely those hidden interiors.

Figure 5.9 shows how CSv and the simplification methods used for compar-
ison work at several degrees of simplification for the Fish model. We measured
the visual and geometric error. As shown in this figure, if we increase the level
of simplification, both visual and geometric quality of QSlim approximations
decrease more than CSv and Hv. The visual difference between CSv and Hv

is practicable indistinguishable for this model, since it does not present hid-
den interiors. However, in very coarse approximations the geometric error is
reduced more in CSv than in Hv.

Some experiments with more viewpoints for some of our test models were
conducted as shown in Figure 5.10. These different viewpoint configurations
correspond to the vertices of Platonic solids. This guarantees that the view-
points are distributed uniformly. The last configuration (42 viewpoints) was
obtained by subdivision of the regular icosahedron. The visual and geometric
error was analyzed in this figure together with the temporal cost. Both visual
and geometric errors hardly improve when the number of cameras increases
from 20 to 42. Nevertheless, the temporal cost is about twice as high (see
Figure 5.10(c)). Therefore, we believe that the 20 viewpoints configuration is
a good compromise between quality and efficiency.

5.6 Conclusions

In this chapter, the viewpoint-driven simplification algorithm was extended
by using f -divergences, convex functions used to compare the distance between
two consecutive simplifications. Among the different f -divergences tested, the
Chi-Square distance yields the best results when applying to the simplification
algorithm. This new scheme is able to produce approximations that accom-
plish a high visual and geometric fidelity. Indeed, this is because all the dis-
tances proposed here consider both visual and geometric information. Unlike
many pure visual algorithms, the fact of including the f -divergences permits
the viewpoint-driven simplification method not to remove the hidden interiors
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(a)

(b)

Figure 5.9: Errors measured for the Fish model at different levels of
simplification
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(a)

(b)

(c)

Figure 5.10: Errors and times measured for some models simplified with
CSv using different number of viewpoints
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(a) Original model (b) QSlim.T=1000 (c) Hv .T=1000 (d) CSv .T=1000

Figure 5.11: The Al model rendered with transparency. Image (a) shows
the original model, (b) the model simplified with QSlim, (c) with Hv and
(d) with CSv

(a) Original model (b) QSlim.T=600 (c) Hv .T=600 (d) CSv .T=600

Figure 5.12: The Simpletree model rendered with transparency. Image
(a) shows the original model, (b) the model simplified with QSlim, (c) with
Hv and (d) with CSv

completely. Therefore, the geometric quality is not damaged. The silhouette
of the model is preserved because the f -divergences also consider the projected
areas and this fact allows the achievement of good visual results.

In contrast, the main drawback of applying the f -divergences to the viewpoint-
driven simplification scheme is that the temporal cost is increased. As men-
tioned in Section 5.4, in addition to the projected areas, it is also needed to
compute the actual areas of the polygons in the model. However, what really
increases the temporal cost is that the f -divergences proposed here can not
be computed iteratively. As we have demonstrated, this new approach can be
useful because of the high geometric and visual quality of the resulting approx-
imations. We do not need to renounce to a high geometric fidelity if we wish
to achieve good results in visual similarity.
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CHAPTER 6
Viewpoint-Driven Simplification

Using Mesh Saliency

6.1 Introduction
In general, small high-curvature details in the middle of largely flat regions

are ignored by most mesh simplification methods, mainly because simplify-
ing these details introduces very little error. However, these small surfaces are
likely to be perceived as being important. A flat region in the middle of densely
repeated high-curvature bumps is also perceptually important. Repeated pat-
terns, even if high in curvature, are visually monotonous and usually not very
interesting. Recently, the concept of saliency has been introduced to identify
visually interesting regions that are different from their surrounding context.

Mesh saliency has been incorporated into graphics applications such as
mesh simplification and viewpoint selection. For instance, Watanabe and
Belyaev [WB01] proposed a method to identify regions in meshes where the
main curvatures have locally maximal values along one of the principal direc-
tions (typically along ridges and ravines). This method was applied to the
problem of simplification, the result being better preservation of the salient
features. Hisada et al. [HBK02] proposed a method to detect salient ridges
and ravines by computing the skeleton and finding non-manifold points on
the skeletal edges and associated surface points. Lee et al. [LVJ05] proposed a
saliency for meshes based on the Gaussian-weighted center-surround evaluation
of surface curvatures. The center-surround mechanism allows the regions on a
mesh that are different from their local context to be identified with greater pre-
cision. This notion of saliency was incorporated into mesh simplification and

71
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viewpoint selection. Kim and Varshney [KV06] presented a visual-saliency-
based operator to enhance selected regions of a volume. Gal and Cohen-Or
[GCO06] introduced a method for partial matching of surfaces by using the
abstraction of salient geometric features and a method to construct them.

More recently, Feixas et al. [FSG06, FSG07] have proposed a new definition
for mesh saliency based on the Jensen-Shannon divergence. This approach
describes mesh saliency in terms of how polygons see a set of viewpoints.

In this chapter, we incorporate mesh saliency based on the Jensen-Shannon
divergence into the viewpoint-driven simplification scheme proposed in this
thesis. By including mesh saliency, our simplification method is able to pre-
serve small, but visually significant, salient regions. However, as shown in our
experiments, some other regions with low saliency values are simplified more
drastically. Consequently, there is no guarantee that the global simplification
error may be reduced.

The rest of the chapter is organized as follows. In Section 6.2, we introduce
the Jensen-Shannon divergence. In Section 6.3, the concept of saliency of a
polygon is introduced. Section 6.4 is devoted to the definition of the salient
simplification error and its application to the viewpoint-driven simplification
approach. Section 6.5 introduces viewpoint saliency. Section 6.6 shows the
results of our experiments. Finally, in Section 6.7 we present our conclusions.

6.2 Jensen-Shannon divergence

A convex function f on the interval [a, b] fulfills the Jensen inequality:∑n
i=1 λif(xi) − f (

∑n
i=1 λixi) ≥ 0 , where 0 ≤ λ ≤ 1,

∑n
i=1 λi = 1, and

xi ∈ [a, b]. For a concave function, the inequality is reversed. If f is sub-
stituted by the Shannon entropy, which is a concave function, we obtain the
Jensen-Shannon inequality [BR82]:

JS(π1, π2, . . . , πN ; p1, p2, . . . , pN )

≡ H

(
N∑

i=1

πipi

)
−

N∑
i=1

πiH(pi) ≥ 0, (6.1)

where JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) is the Jensen-Shannon divergence
of probability distributions p1, p2, . . . , pN with prior probabilities or weights
π1, π2, . . . , πN , fulfilling

∑N
i=1 πi = 1. JS-divergence measures how ‘far’ the

probabilities pi are from their likely joint source
∑N

i=1 πipi and equals zero if
and only if all the pi are equal. It is important to note that the JS-divergence
is identical to I(X,Y ) when πi = p(xi) and pi = p(Y | xi) for each xi ∈ X ,
where p(X) = {p(xi)} is the input distribution, p(Y | xi) = {p(y1 | xi), p(y2 |
xi), . . . , p(yM | xi)}, N =| X |, and M =| Y | [BR82, ST00].
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6.3 View-based Mesh Saliency
In [FSG06, FSG07], a measure of mesh saliency based on JS-divergence

was introduced. Unlike [LVJ05], this approach formulates mesh saliency in
terms of how the polygons ‘see’ the set of viewpoints, i.e. according to visual
perception. The saliency of a polygon is defined as the average dissimilarity
between this polygon and its neighbors. Two polygons are ’similar’ when the
JS-divergence between them is small. For each polygon, the average variation
of JS between two neighbor polygons is evaluated. Thus, the polygonal saliency
of oi is defined by

S(oi) = 1
No

∑No

j=1 JS
(

p(oi)
p(oi)+p(oj)

,
p(oj)

p(oi)+p(oj)
; p(V | oi), p(V | oj)

)
≥ 0, (6.2)

where oj is a neighbor polygon of oi, No is the number of neighbor polygons
of oi, and the conditional probabilities p(V | oi) and p(V | oj) are weighted by

p(oi)
p(oi)+p(oj)

and p(oj)
p(oi)+p(oj)

, respectively. Hence, a polygon o will be salient if
the average of the JS-divergences between o and its neighbors is high. On the
other hand, a polygon at the center of a smooth region will probably have low
saliency, since the polygons in this region will present small visibility differences
with respect to the set of viewpoints.

At the initialization stage, a saliency map is built from the saliency of all
the polygons. This map is computed just once and is never modified during the
simplification process. We have verified that if the saliency map is updated at
each step of simplification, the global simplification error is reduced but salient
regions are poorly preserved. This can be especially noticeable when the model
is simplified to coarse levels.

6.4 Salient Simplification Error
In this chapter, we apply mesh saliency based on JS-divergence to the

viewpoint-driven simplification method (see Chapter 4). Nevertheless, it can
be easily integrated with any other mesh simplification scheme. In order to
consider the salient regions we must change the behavior of the viewpoint-
driven simplification method. Specifically, it is necessary for salient regions to
increase the simplification error. Thus, the salient simplification error for an
edge collapse e is now given by

Ctotal = Ce + (Ce × Se), (6.3)

where Ce represents the simplification error deviation from the viewpoint-
driven algorithm and Se is the edge saliency of e. Se can be interpreted as
the average of the saliency of its adjacent polygons. However, it can be calcu-
lated more accurately if we consider its value directly from the JS-divergence
of its shared polygons. Thus, the edge saliency of e is defined as
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Se = JS

(
p(oi)

p(oi) + p(oj)
,

p(oj)
p(oi) + p(oj)

; p(V | oi), p(V | oj)
)
, (6.4)

where oi and oj are the two polygons that share edge e. If an edge is a
boundary edge, it only shares one polygon, and thus its saliency is considered
to be the maximum value. In order to avoid mesh artifacts, the simplification
algorithm only deals with 2-manifold edges and boundary edges. Nonethe-
less, calculation of the JS-divergence between more than two polygons can be
performed without any problems, as can be inferred from (6.1).

With the current definition of the salient simplification error, even very
small salient values may affect the final result. However, only high salient
values are really important because they are perceived as interesting features.
Accordingly, we define a threshold α such that we only apply the saliency values
that are greater or equal to α. This α is the 30th percentile saliency.

Ctotal =

{
Ce + (Ce × Se) if Se ≥ α
Ce if Se < α

(6.5)

6.5 Viewpoint Saliency

Similarly to [LVJ05], where mesh saliency was used to select the best views,
Feixas et al. [FSG07] proposed a method to calculate the saliency of a viewpoint
using the conditional probabilities of the reverse channel. Consequently, the
viewpoint saliency of v is defined as

S(v) =
∑
o∈O

S(o)p(v | o), (6.6)

where the conditional probability p(v | o) is obtained from the Bayes theo-
rem p(v, o) = p(v)p(o | v) = p(o)p(v | o).

In mesh simplification, viewpoint saliency can be used as a criterion to
weight the importance of a viewpoint. With this approach, the regions that
present the least salient parts of the model will be simplified further. For
instance, in a bust, the back will be simplified more than the front, since there
are a lot of salient regions on the face, such as the eyes, the nose and the mouth.

The simplification error deviation (4.4) for an edge collapse e in the viewpoint-
driven simplification algorithm taking into account viewpoint saliency is now
given by

Ce =
∑
v∈V

S(v) | Iv − I ′v | . (6.7)
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6.6 Results

In this section, we present several models that have been simplified us-
ing viewpoint-driven simplification with viewpoint mutual information and the
mesh saliency introduced above. All models shown in this chapter were simpli-
fied on a Pentium Xeon 2GHz with 1GB of RAM and an NVIDIA 7800 GTX
512 MB graphics card using 20 regularly distributed viewpoints and 256× 256
resolution images.

For the saliency map, we used a greater number of uniformly distributed
viewpoints (42 viewpoints). Additionally, we increased the image resolution to
512× 512 pixels. This significantly improves the accuracy of the saliency map.
The viewpoints chosen for the map were also different from those used during
the simplification process.

Model Triangles VMI VMI + Mesh Saliency
Original Final RMSE Time RMSE Time

Map Simp.
Shark 734 200 6.61 8.23 6.46 0.71 8.07
Beethoven 5030 500 11.94 86.12 11.87 4.65 85.53
Galo 6592 500 9.76 127.09 9.78 6.90 123.40
Al 7124 1000 11.61 152.18 11.73 7.11 153.35
Hammer 13 380 750 6.65 369.62 6.72 13.53 363.78

Table 6.1: Visual error (RMSE) and simplification time (seconds) for all
models simplified with VMI and mesh saliency

Table 6.1 shows the visual error measured with RMSE and the simplification
time for all the models that were tested. As shown in this table, the global
visual error is similar when applying mesh saliency, and it can sometimes be
even better for some models, for instance, the Beethoven and Shark models. In
fact, this depends on how many salient regions there are on the models and how
important they are. This table also shows the simplification time. As can be
seen, the simplification times are practically the same. Obviously, when using
saliency first we must compute the saliency map. Nevertheless, this calculation
hardly increases the total time. For instance, in case of the Hammer model if
saliency is applied the total time is increased by about 1%. The calculation
time for the saliency map is directly related to the number of viewpoints and
the image resolution. As shown in our experiments, saliency computation is
not a very time-consuming process.

Figure 6.1 shows the results for the Shark model and the saliency map is
shown in Figure 6.1(c). The most salient surfaces are represented in warmer
colors (reds and yellows) and the least salient are shown in cooler colors (greens
and blues). As can be seen in this figure, the most salient parts correspond to
the fins and the mouth. These parts are better preserved in the model that is
simplified with saliency. See for instance the head and the tail fin.

Figure 6.2 shows the results for the Beethoven model and the saliency map
is shown in Figure 6.2(c). As can be seen, the most salient parts, such as the
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(a) Original model (b) VMI. T=200

(c) Saliency map (d) VMI + saliency. T=200

Figure 6.1: Shark model. T indicates the number of triangles

eyes, nose, mouth and the necktie, and some parts of the hair are shown in
red, yellow and green. Some other low-saliency parts of the face, such as the
forehead and the cheeks are shown in blue. If the model simplified without
saliency is compared to that with saliency, it can be appreciated that highly
salient regions are preserved better. See for instance the eyes, nose and the
shape of the face (Figure 6.3).

Figure 6.4 shows the results for the Galo model. The saliency map reveals
that highly salient regions are on the outline of the tail and the crest. As can
be clearly seen, these regions are preserved better (see Figure 6.5). However,
it can also be appreciated that some regions near the base that present very
low saliency are smoothed. These regions are preserved slightly worse. As we
mentioned at the beginning, preserving highly salient regions may sometimes
decrease the quality of other parts in the model.

Figure 6.6 shows the results for the Al model. The most salient regions
for this model are in the fingers, the nose, the ears and the hat. As can be
seen, these regions are preserved better when mesh saliency is applied. See for
instance the fingers of the right hand.

Figure 6.7 shows the results for the Hammer model. The most salient
regions for this model are in the handle, the strips on the metal base and a
peak in the middle of the metal base. As can be seen, these salient regions are
preserved better when mesh saliency is applied. Figure 6.8 shows a close-up of
these regions.

Lastly, Figure 6.9 shows the effects of applying viewpoint saliency in the
Beethoven model. As shown in this figure, the most salient viewpoint corre-
sponds to the one that sees the face (see Figure 6.9(a)), and the least is the



i
i

“thesis” — 2008/12/2 — 11:26 — page 77 — #97 i
i

i
i

i
i

6.6 Results 77

(a) Original model. T=5030 (b) VMI. T=500

(c) Saliency map (d) VMI + saliency. T=500

Figure 6.2: Beethoven model

one that sees the back (see Figure 6.9(b)). If we pay attention to the wireframe
images, we will see that the model simplified with viewpoint saliency maintains
more triangles in the most salient views. In this case, this corresponds to the
front part of the bust. If we examine the back part, we will see that the model
simplified with viewpoint saliency presents fewer triangles in this part. We also
measured the visual error for this model and it was found to be slightly worse
(RMSE using VMI + S(v)=12.66 and RMSE using VMI=11.94). But this is
logical because the least salient views are simplified further and this means
that the global error is probably increased. Figure 6.10 shows the results for
the Al model and we measure the visual error for this model. In this case,
the model that was simplified by applying viewpoint saliency has slightly re-
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(a) VMI. T=500 (b) VMI. T=250

(c) VMI + saliency. T=500 (d) VMI + saliency. T=250

Figure 6.3: Close-ups of Beethoven model

duced the visual error (RMSE using VMI + S(v) = 11.31 and RMSE using
VMI=11.61). The hands maintain more triangles and are better preserved if
viewpoint saliency is applied.

6.7 Conclusions

Recently, mesh saliency has been introduced as a measure of regional im-
portance for graphics meshes. Its main characteristic is the ability to capture
what most would classify as visually interesting regions on a mesh. However,
note that not all such regions necessarily have high curvature. In this chap-
ter, we have incorporated a view-based mesh saliency based on JS-divergence
into viewpoint-driven simplification. Unlike other previous approaches, mesh
saliency based on JS-divergence is defined according to visual perception. Its
current definition only considers geometry, since it is formulated from the pro-
jected areas of polygons. Computing mesh saliency based on JS-divergence is
not a very expensive process. In addition, any mesh simplification method can
be modified in order to include this saliency.
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(a) Original model. T=6592 (b) VMI. T=250

(c) Saliency map (d) VMI + saliency. T=250

Figure 6.4: Galo model

Mesh saliency allows highly salient regions to be preserved better. Never-
theless, this clearly has a drawback. Low saliency regions are simplified to a
coarse level. As a consequence, there is no guarantee that the overall quality
of the resulting approximations will always be improved.

Viewpoint saliency can help us to preserve the parts of a model that present
lots of salient regions and to increase the simplification in other parts with
flat regions. This means that viewpoint saliency can be used as a weighting
factor of the importance of a viewpoint. Similar to mesh saliency, viewpoint
saliency cannot ensure that the global quality of the simplified models is always
enhanced.



i
i

“thesis” — 2008/12/2 — 11:26 — page 80 — #100 i
i

i
i

i
i

80 Chapter 6 Viewpoint-Driven Simplification Using Mesh Saliency

(a) VMI. T=500 (b) VMI. T=250

(c) VMI + saliency. T=500 (d) VMI + saliency. T=250

Figure 6.5: Close-ups of Galo model
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(a) Original model (b) VMI. T=1000

(c) Saliency map (d) VMI + saliency. T=1000

Figure 6.6: Al model
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(a) Original model. T=13 380 (b) VMI. T=750

(c) Saliency map (d) VMI +saliency. T=750

Figure 6.7: Hammer model
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(a) VMI. T=750 (b) VMI. T=400

(c) VMI + saliency. T=750 (d) VMI + saliency. T=400

Figure 6.8: Close-ups of Hammer model
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(a) S(v) = 132.47 (b) S(v) = 6.08

(c) VMI. T=500 (d) Wireframe front (e) Wireframe back

(f) VMI+S(v). T=500 (g) Wireframe front (h) Wireframe back

Figure 6.9: Beethoven model. The (a) most salient and (b) least salient
views chosen from the 20 views obtained from the vertices of a regular
dodecahedron. Images (c-e) show the model simplified with VMI. Images (f-
h) show the model simplified with VMI and weighted by viewpoint saliency
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(a) S(v) = 66.13 (b) S(v) = 28.21

(c) VMI. T=1000 (d) Wireframe front (e) Wireframe back

(f) VMI+S(v). T=1000 (g) Wireframe front (h) Wireframe back

Figure 6.10: Al model. The (a) most salient and (b) least salient views
chosen from the 20 views obtained from the vertices of a regular dodecahe-
dron. Images (c-e) show the model simplified with VMI. Images (f-h) show
the model simplified with VMI and weighted by viewpoint saliency
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CHAPTER 7
Viewpoint-Driven Simplification

Using the Best Viewpoints

7.1 Introduction
The number of viewpoints is a very important factor for the viewpoint-

driven simplification algorithm. As shown in Chapter 4, the quality of the
approximations and the temporal cost of the viewpoint-driven simplification
method are directly dependent upon it. However, there is a threshold beyond
which, although we increase the number of viewpoints, the quality is not im-
proved. This limit is about 20 uniformly distributed viewpoints, as pointed out
in previous chapters.

In this chapter, we analyze how the simplification algorithm behaves with
a minimal set of good quality viewpoints and with the same number of view-
points, but regularly distributed. This minimal set of viewpoints can be used
to reduce the temporal cost of the algorithm, since the results that can be
achieved with a minimal set of viewpoints are similar to those obtained with a
greater number of uniformly distributed points.

Any of the viewpoint selection measures described in this thesis could ob-
viously be used to measure the quality of a viewpoint and to obtain a minimal
set of good viewpoints. We consider the Plemenos et al. algorithm [PSF04]
for the computation of the minimal set of viewpoints. This algorithm uses a
notion of viewpoint quality based on the heuristic measure (HM) [PB96]. In
addition, we will experiment with the viewpoint mutual information measure
in order to compute a different minimal set of best viewpoints by using the
algorithm proposed in [FSG06, FSG07]. First, we will describe the algorithm

87
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used to compute the minimal set of viewpoints based on Plemenos et al.’s view-
point quality measure. Next, we will apply this minimal set of viewpoints to
the viewpoint-driven simplification scheme. Briefly, we will introduce the algo-
rithm of the selection of N best views based on VMI and finally we will show
the results obtained with the both different best viewpoint distributions.

7.2 Viewpoint Quality Heuristic Measure

Although a quality-of-view criterion is difficult to define, because the notion
of ’good view’ is partially subjective, a number of objective elements may be
retained in order to achieve a close approximation to this notion. The chosen
elements are: number of visible polygons, number of visible objects and area
of the projected visible part of each polygon. The notion of object is used
together with the notion of surface (or polygon) because very often a scene is
composed of triangles with low semantic value. The notion of object, obtained
by grouping polygons, is more intuitive and useful because it is not necessary
to see all the polygons of an object to consider that the object is visible.

In [PB96, BPD00, Ple03, PSF04], the quality of a viewpoint v of a scene is
computed using the heuristic measure (HM) given by

C(v) =

∑n
i=1

⌈
Pi(v)

Pi(v)+1

⌉
n

+
∑n

i=1 Pi(v)
r

, (7.1)

where Pi(v) is the number of pixels corresponding to polygon i in the image
obtained from viewpoint v, r is the total number of pixels of the image (res-
olution of the image), and n is the total number of polygons in the scene. In
this formula, dxe denotes the smallest integer, greater than or equal to x. The
first term in 7.1 gives the fraction of visible surfaces with respect to the total
number of surfaces, while the second term is the ratio between the projected
area of the scene (or object) and the screen area (thus, its value is 1 for a closed
scene).

7.3 Computing a minimal set of viewpoints

The computation of a minimal set of viewpoints is performed in four steps
[PGJT05]:

1. Compute an initial set of viewpoints.

This is accomplished by applying a uniform sampling on the surface of
a sphere surrounding the scene. The uniform sampling of the sphere is
performed by increasing the values of two angles θ and ψ. Increments ∆θ
and ∆ψ determine the precision of the sampling.
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2. Evaluating the initial set of viewpoints.

Using the viewpoint quality measure (7.1), evaluate each viewpoint in
the initial set and sort the set in decreasing order, starting from the best
viewpoint and finishing with the worst viewpoint.

To compute the main quantities required by the viewpoint quality mea-
sure, that is, the number of visible polygons, number of visible objects
and area of projected visible part of a polygon, several techniques could
be used. In [PGJT05], there is a full description of these techniques.

3. Computing a minimal set of viewpoints.

Starting from the sorted initial viewpoint set, we create a new set by
suppressing redundant viewpoints, that is, viewpoints that only allow us
to see details that are visible from the viewpoints that have already been
selected in the set.

The current viewpoint in the initial set is compared to all the viewpoints
in the reduced set of viewpoints. If all the visible details (surfaces and ob-
jects) from the current viewpoint are visible from the viewpoints already
stored in the reduced set, the current viewpoint is ignored. Otherwise,
the current viewpoint is stored in the reduced set of viewpoints. The re-
duced set is generally not minimal because every viewpoint in the initial
set is only compared to the already existing viewpoints in the reduced
set. So, the first viewpoints in the initial set have a higher probability of
being retained for the reduced set than the last ones. However, some of
these viewpoints may become redundant after a new viewpoint is added
to the reduced set. To address this problem, an additional processing
of the elements of the reduced set is required. Every viewpoint in the
reduced set is compared to all the other viewpoints in the set and, if it
does not allow us to see more details than the other viewpoints in the
set, it is suppressed.

4. If the number of viewpoints in the final set seems to be too high, apply
step 3 to this set once again in order to get a really minimal set.

The final set of non-redundant viewpoints can be sorted according to various
criteria such as quality of view, distance from the previous viewpoint, etc.

7.4 Results
The minimal set of viewpoints is computed in a preprocess and hence the

temporal cost of the viewpoint-driven simplification algorithm is not increased.
We performed some tests with several models of different complexity, and com-
pared the effect of using viewpoints that were uniformly distributed from the
vertices of the Platonic solids to that observed using the same number of view-
points obtained with the minimal set algorithm introduced in the previous
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section. The models were simplified on a Pentium Xeon 2GHz with 1GB RAM
and an NVIDIA 7800 GTX 512MB graphics card.

Model Triangles Best viewpoints
6 12 20

Galleon 4698 20 40 65
Simpletree 11 136 22 44 74
Big atc 13 594 24 44 73

Table 7.1: Time (seconds) for all models using the minimal set of view-
points algorithm based on the heuristic measure (HM)

Table 7.1 shows the time spent on the computation of the minimal set of
best viewpoints using the algorithm described in Section 7.3. These results
were obtained using 256× 256 resolution images. Note that this preprocess is
computed once before the simplification step. As shown in this table, these
times are proportional to the number of viewpoints and the complexity of the
model.

(a) (b) (c)

(d) (e) (f)

Figure 7.1: The six different views of the Galleon model. This viewpoint
distribution corresponds to the vertices of a regular octahedron

Figures 7.1 and 7.2 show two different viewpoint configurations for the
Galleon model. Figure 7.1 shows the uniformly distributed viewpoint con-
figuration. This configuration was obtained from the vertices of the regular
octahedron, a Platonic solid. Figure 7.2 shows the best viewpoint distribution.
This distribution was obtained after applying the minimal set of viewpoints
algorithm based on HM. Figures 7.3 and 7.4 show both configurations for the
Simpletree model, and Figures 7.5 and 7.6 offer those for the Big atc model.
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: The six different views of the Galleon model. This viewpoint
distribution was obtained from the minimal set of viewpoints algorithm
based on the heuristic measure (HM)

(a) (b) (c)

(d) (e) (f)

Figure 7.3: The six different views of the Simpletree model. This view-
point distribution corresponds to the vertices of a regular octahedron
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: The six different views of the Simpletree model. This view-
point distribution was obtained from the minimal set of viewpoints algo-
rithm based on the heuristic measure (HM)

(a) (b) (c)

(d) (e) (f)

Figure 7.5: The six different views of the Big atc model. This viewpoint
distribution corresponds to the vertices of a regular octahedron
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(a) (b) (c)

(d) (e) (f)

Figure 7.6: The six different views of the Big atc model. This viewpoint
distribution was obtained from the minimal set of viewpoints algorithm
based on the heuristic measure (HM)

Model Triangles Viewpoints
Original Final 6 6 best 12 12 best 20 20 best

Galleon 4698 500 27.27 19.17 18.16 17.77 17.06 17.98
Simpletree 11 136 600 18.93 18.28 17.12 17.73 16.27 16.69
Big atc 13 594 1000 19.55 18.09 15.90 16.79 15.31 16.31

Table 7.2: Visual error (RMSE) for all models simplified with VMI, using
the viewpoint distribution from the minimal set of viewpoints algorithm
based on the heuristic measure (HM)

Model Triangles Viewpoints
Original Final 6 6 best 12 12 best 20 20 best

Galleon 4698 500 28 30 52 54 83 83
Simpletree 11 136 600 113 110 196 196 331 332
Big atc 13 594 1000 148 153 271 272 412 419

Table 7.3: Simplification time (seconds) for all models simplified with
VMI, using the viewpoint distribution from the minimal set of viewpoints
algorithm based on the heuristic measure (HM)
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Table 7.2 depicts the visual error committed by the viewpoint-driven simpli-
fication algorithm using viewpoint mutual information in the simplified models
and Table 7.3 shows the simplification time. As can be seen, the RMSE error
is lower when using a minimal set of 6 best viewpoints than with 6 equidistant
viewpoints. With 6 best viewpoints, a similar quality of 12 regularly distributed
viewpoints can be accomplished. The temporal cost of the simplification algo-
rithm using 6 best viewpoints is almost half. As mentioned earlier, the minimal
set of best viewpoints is calculated once before applying the simplification al-
gorithm. However, as we have demonstrated in previous chapters, having more
than 20 regularly distributed viewpoints hardly improves the quality of the
simplified models. Thus, if we use the same number of viewpoints but in this
case best viewpoints, the quality of the resulting approximations will not be
increased either.

(a) Original (b) 6 viewpoints (c) 6 best viewpoints

(d) 20 viewpoints (e) 20 best viewpoints

Figure 7.7: Different approximations of the Galleon model obtained with
VMI, all at 500 triangles. The models shown in (b) and (d) were simplified
using the regular viewpoint distribution and models (c) and (e) using the
viewpoint distribution from the minimal set of viewpoints algorithm based
on the heuristic measure (HM)

Figure 7.7 shows the Galleon model simplified at the same level but with
different viewpoint distributions. As can be seen, there are not many visual dif-
ferences among the approximations although the RMSE error is quite distinct.
If we look closer perhaps we will see some small differences in the galleon’s
hull. With this model, the best distribution of 6 viewpoints gives quite good
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(a) Original (b) 6 viewpoints (c) 6 best viewpoints

(d) 20 viewpoints (e) 20 best viewpoints

Figure 7.8: Different approximations of the Simpletree model obtained
with VMI, all at 600 triangles. The models shown in (b) and (d) were
simplified using the regular viewpoint distribution and models (c) and (e)
using the viewpoint distribution from the minimal set of viewpoints algo-
rithm based on the heuristic measure (HM)

results. Figure 7.8 shows the Simpletree model. In this case, the trunk and the
shape of the tree top are preserved slightly better with this distribution. The
best distribution of 20 viewpoints does not seem to clearly improve the results
compared to the regular one. Lastly, Figure 7.9 shows the Big atc model. The
best distribution of 6 viewpoints maintains the wheels much better than the
regular one. However, in case of the configuration of 20 viewpoints, no clear
benefit is gained when using the best distribution instead of the regular one.

Finally, as pointed out at the beginning of the chapter, we experimented
with another algorithm for the selection of N best views proposed in [FSG06,
FSG07]. This algorithm is based on viewpoint mutual information. It provided
us with a different optimal distribution of viewpoints. Basically, the aim of this
algorithm is to select the N viewpoints so that their merging v̂ minimizes the
viewpoint mutual information I(v̂, O). At each step, it attempts to maximize
the JS-divergence between the set of previously merged viewpoints and the new
viewpoint to be selected. Briefly, the algorithm proceeds as follows. First, the
best viewpoint v1 with probability distribution p(O | v1) corresponding to the
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(a) Original (b) 6 viewpoints (c) 6 best viewpoints

(d) 20 viewpoints (e) 20 best viewpoints

Figure 7.9: Different approximations of the Big atc model obtained with
VMI, all at 1000 triangles. The models shown in (b) and (d) were simplified
using the regular viewpoint distribution and models (c) and (e) using the
viewpoint distribution from the minimal set of viewpoints algorithm based
on the heuristic measure (HM)

minimum viewpoint mutual information I(v,O) is selected. Next, v2 is selected
such that the mixed probability distribution p(v1)p(O | v1) + p(v2)p(O | v2)
will minimize I(v̂, O), where v̂ represents the clustering of v1 and v2. At each
step, a new mixed probability distribution p(v1)p(O | v1) + p(v2)p(O | v2) +
· · · + p(vn)p(O | vn) is produced until the VMI-ratio given by I(v̂,O)

I(v,O) is lower
than a given threshold or a fixed number of views is achieved.

Table 7.4 shows the results using the selection algorithm based on VMI.
We have tested the same viewpoint configurations, the regular distribution of
6, 12 and 20 viewpoints and the best distribution of 6, 12 and 20 viewpoints.
As shown in this table, the best distribution improves the visual error more
than the regular one only when a small number of viewpoints (6 viewpoints)
is selected. These results are in agreement with the minimal set of viewpoints
algorithm based on the heuristic measure (HM).

7.5 Conclusions

The quality of the viewpoints is an important factor in the viewpoint-driven
simplification algorithm. As seen in this chapter, when a small number of
viewpoints are used (for example, 6 viewpoints), the best viewpoint distribution
can improve the resulting approximations as compared to the same number of
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Model Triangles Viewpoints
Original Final 6 6 best 12 12 best 20 20 best

Galleon 4698 500 27.27 23.19 18.16 23.21 17.06 17.47
Simpletree 11 136 600 18.93 17.96 17.12 17.91 16.27 18.38
Big atc 13 594 1000 19.55 16.81 15.90 16.74 15.31 16.18

Table 7.4: Visual error (RMSE) for all models simplified with VMI, using
the viewpoint distribution from the best view selection algorithm based on
VMI

viewpoints with a regular distribution. This is because the best distribution
receives more information from the object. However, if a regular viewpoint
configuration with a large number of viewpoints (for instance, 20 viewpoints)
is employed, the quality of the simplified meshes may not be enhanced when
using the same number of good viewpoints. This is due to the fact that a
dense uniformly distributed configuration completely covers the object and
obtains enough information about its entire surface. Therefore, although the
best distribution is chosen in this case, the results will probably not be easily
improved.

By using a minimal set of good viewpoints, the temporal cost of the algo-
rithm can be reduced and reasonable results in terms of quality can be achieved.
This can be useful for low-end computers, which do not have expensive graphics
cards, but also to accomplish affordable simplification times for very complex
models.
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CHAPTER 8
Conclusions and Future Work

8.1 Conclusions
In this thesis, we have studied the problem of automatic simplification of

polygonal models. We have presented a new simplification method driven by
viewpoint selection measures. These measures allow us to define a new error
metric for polygonal simplification which is used to carry out the simplification
process. Below, we review the concepts and the results achieved during the
development of this dissertation:

• In Chapter 3, several techniques for computing the projected areas of
polygons were analyzed. These areas are taken as probability distri-
butions in the different viewpoint selection measures such as viewpoint
entropy, mutual information and the Kullback-Leibler distance, used to
quantify the error introduced by a simplification operation. The viewpoint-
driven simplification method presented in this thesis is a greedy algorithm
in which only one single simplification operation is performed at each step.
Therefore, depending on the model and the level of simplification that
is demanded, a large number of decimation operations are carried out.
Thus, it is very important to find a technique that allows the simplifica-
tion error metric to be computed quickly.

We studied various techniques: the OpenGL histogram, the hybrid soft-
ware and hardware histogram and the occlusion query. We found that the
fastest technique in current hardware is the hybrid software and hard-
ware histogram. This histogram analyzes the framebuffer pixel-by-pixel
to retrieve information about its color. Thus, it depends on the image

99
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resolution and the performance of the bus. Nowadays, the symmetric
PCI express bus allows a fast access, but we must take into consideration
that the effectiveness of this technique is related to the size of the frame-
buffer. The occlusion query does not depend on the image resolution
and can be easily paralyzed. However, it has not been designed to deal
with the thousands of queries needed to obtain the projected area of each
individual polygon. The OpenGL histogram can be directly supported
by the hardware in some graphics cards. Unfortunately, it has a clear
disadvantage, i.e. the need to make several rendering passes due to the
color assignment for the polygons. This makes the OpenGL histogram
the worst technique of those analyzed here.

• In Chapter 4 the viewpoint-driven simplification method was presented.
This new polygonal simplification scheme uses viewpoint selection mea-
sures to guide the simplification process and was designed to improve
the visual fidelity of the approximations. The simplification error met-
ric is defined by the variation in viewpoint selection measures for every
viewpoint. Various uniformly distributed viewpoint configurations were
employed to cover the whole object and consequently to achieve a regular
simplification. This method can use any decimation operation. However,
we apply the best half-edge collapse because this greedy operation makes
it possible to reuse the simplification process in order to generate contin-
uous multiresolution models. These models adjust the level of detail in
real time depending on many factors, such as distance to the viewer.

In this chapter, we studied the behavior of two Information-Theoretic
viewpoint selection measures, namely viewpoint entropy and viewpoint
mutual information. Both measures give excellent visual results when
they are applied to the viewpoint-driven simplification algorithm. In
many cases both of them can even enhance the geometric quality of the
simplified models. Viewpoint mutual information represents an improve-
ment over viewpoint entropy. In fact, it is able to preserve the silhouette
of the models better than viewpoint entropy. The reason for this is that
mutual information prefers to maintain the total visible area of the object
rather than only balance the size of polygons as happens with viewpoint
entropy. An important feature of both viewpoint entropy and mutual in-
formation is that both remove all hidden geometry in the earliest stages
of simplification.

• In Chapter 5, the viewpoint-driven simplification algorithm is extended
with several viewpoint f -divergences, such as the viewpoint Kullback-
Leibler distance, the viewpoint Chi-Square distance and the viewpoint
Hellinger distance. The f -divergences are convex functions that were in-
troduced as measures of discrimination between probability distributions.
The viewpoint Kullback-Leibler distance was proposed as a measure for
viewpoint selection, and the other two defined here can also be used for
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this purpose. These divergences calculate the distance between the pro-
jected and the actual area distributions of the polygons in an object.

The application of these measures to the viewpoint-driven simplification
algorithm considerably changes its results. By using the viewpoint f -
divergences, the simplification method proposed in this thesis is able to
produce simplified models which preserve hidden interiors and at the
same time present a high degree of visual fidelity. Indeed, preserving
hidden regions increases the geometric quality of the approximations.
This characteristic is due to the fact that the actual areas of the polygons
are considered. Among the different f -divergences tested, the Chi-Square
distance gives the best results.

• In Chapter 6 we included a definition of mesh saliency based on JS-
divergence in the viewpoint-driven simplification approach. This def-
inition formulates mesh saliency in terms of how polygons see a set of
viewpoints. Mesh saliency was introduced as a measure of regional impor-
tance for graphics meshes in order to capture the visually most interesting
regions on a mesh.

By incorporating mesh saliency into the simplification method, the most
salient regions on a mesh are better preserved. However, mesh saliency
may increase the global error because regions with low saliency are further
simplified.

• In Chapter 7 we studied how viewpoint distribution affects the quality of
the results in the viewpoint-driven simplification algorithm. We tested
some uniformly distributed viewpoint configurations obtained from the
vertices of some Platonic solids and the minimal set of best viewpoints
using the same number of viewpoints. These minimal sets were calculated
from viewpoint mutual information and the heuristic measure, although
any other viewpoint selection measure presented in this thesis could also
be used. The experiments show that with a small number of viewpoints,
the minimal set of best viewpoints produces simplified meshes with a
better quality than by using the same number of viewpoints distributed
in a regular manner. This can be very useful, since the temporal cost of
the algorithm is directly dependent on the number of viewpoints, so both
distributions (regular and best) have the same cost. Nonetheless, there
is a threshold beyond which using the best distribution does not enhance
the quality of the simplified meshes. This threshold is reached at about
20 viewpoints.

8.2 Main contributions
The main contributions of this thesis are described below. In addition, the

publications related to each contribution are also indicated.
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• A study of several techniques to compute projected areas for the polygons
in a scene or object. Most of the viewpoint selection measures used in this
thesis are based on projected area distributions. This analysis therefore
allowed these metrics to be computed quickly. [CRC04, CRC05, CCSF05,
CSCF06]

• A new simplification method for polygonal meshes based on the view-
point. This method uses the variation in viewpoint selection measures
to quantify the error introduced by a decimation operation. Two view-
point selection measures based on Information Theory, namely viewpoint
entropy and mutual information, were tested. The simplification al-
gorithm with these measures produces approximations with a high vi-
sual quality. Furthermore, it is able to remove all hidden geometry.
[CSCF07c, CCSF07]

• The viewpoint-driven simplification algorithm was extended with several
viewpoint f -divergences. In addition to the projected area distribution,
these divergences also consider the actual area distribution and this fact
completely changes the results of the simplification algorithm. With these
divergences, the simplification algorithm is able to preserve hidden inte-
riors and at the same time achieve a good visual quality. But perhaps
the most relevant consequence is that the geometric error is substantially
improved with respect to the previous selection measures (viewpoint en-
tropy and mutual information). [CCSF07]

• A definition of mesh saliency based on JS-divergence was added to the
viewpoint-driven simplification method. This notion of saliency was for-
mulated according to visual perception. Mesh saliency allows salient fea-
tures on the mesh to be preserved better.

• The effect of applying different viewpoint distributions in the simplifi-
cation algorithm was also tested. We performed some trials with the
regular distribution and the minimal set of best viewpoints distribution.
The results of these experiments showed that when a reduced number of
viewpoints are used, the best distribution can improve the quality of the
simplified models. However, if an adequate number of viewpoints is used,
that is, a number that is enough to entirely cover the object, the best
distribution does not seem to enhance the results.

8.3 Publications
• Publications that support the contents of this thesis:

“Explotación del hardware gráfico para acelerar la visualización
de geometŕıa”
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Pascual Castelló, J. Francisco Ramos and Miguel Chover.
In CEIG ’04: XIV Congreso Español de Informática Gráfica,
Seville, Spain, pages 363–366, 2004.

“A comparative study of acceleration techniques for geometric
visualization”
Pascual Castelló, J. Francisco Ramos and Miguel Chover.
In ICCS ’05: Proceedings of the International Conference on
Computational Science (2), Atlanta, USA, LNCS 3515, pages
240–247, 2005.

“Técnicas para calcular la entroṕıa dependiente de la vista de
una escena”
Pascual Castelló, Miguel Chover, Mateu Sbert and Miquel Feixas.
In CEIG ’05: XV Congreso Español de Informática Gráfica,
Granada, Spain, pages 277–280, 2005.

“Techniques for computing viewpoint entropy of a 3D scene”
Pascual Castelló, Mateu Sbert, Miguel Chover and Miquel Feixas.
In ICCS ’06: Proceedings of the International Conference on
Computational Science (2), Reading, UK, LNCS 3992, pages
263–270, 2006.

“Viewpoint entropy-driven simplification”
Pascual Castelló, Mateu Sbert, Miguel Chover and Miquel Feixas.
In WSCG ’07: Proc. of 15th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and Com-
puter Vision, Plzen, Czech Republic, volume 2, pages 249–256,
2007.

“Applications of Information Theory to Computer Graphics
Part VII: Viewpoint-driven Simplification”
Pascual Castelló, Miguel Chover, Mateu Sbert and Miquel Feixas.
Eurographics Tutorial notes, 2007.

• Additional publications:

“Simplificación de mallas para juegos”
Carlos González, Jesús Gumbau, Miguel Chover and Pascual
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Castelló.
In CEIG ’07: XVII Congreso Español de Informática Gráfica,
Saragossa, Spain, 2007.

“A texture-based metric extension for simplification methods”
Carlos González, Pascual Castelló and Miguel Chover.
In Proc. of GRAPP 2007, Barcelona, Spain, pages 69–77, 2007.

“Tiras de triángulos con niveles de detalle”
J. Francisco Ramos, Pascual Castelló and Miguel Chover.
In CEIG ’04: XIV Congreso Español de Informática Gráfica,
Seville, Spain, pages 339–342, 2004.

• This research was supported in part by the project

“Advanced Tools for Developing Highly Realistic Computer Games”
European Union, (project IST-2-004363), 2005- 2007.

• A list of submitted papers:

“Viewpoint-driven simplification using Mutual Information”
Pascual Castelló, Mateu Sbert, Miguel Chover and Miquel Feixas.
Computers & Graphics, 2007. This paper offers a detailed ex-
planation of the viewpoint-driven simplification algorithm. In
addition, it analyzes the effect of applying viewpoint mutual
information and compares the results obtained with mutual in-
formation to viewpoint entropy (Chapter 4). It is in second
phase of revision.
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driven simplification algorithm by including some viewpoint f -
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In WSCG ’08: Proc. of 16th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and Com-
puter Vision, Plzen, Czech Republic, 2008. This paper ap-
plies mesh saliency based on Jensen-Shannon divergence in the
viewpoint-driven simplification algorithm (Chapter 6).

8.4 Future Research
There are various potential areas for future research and applications of the

simplification method proposed in this thesis. Below, we suggest and discuss
some of them.

Better techniques for computing projected areas. As seen in previous
chapters, the projected areas are used to define probability distributions.
These distributions are the basis of most of the viewpoint selection mea-
sures introduced in this thesis. But by far the most significant fact is
that the error metric of the simplification algorithm is directly dependent
on these measures. Therefore, performing a fast computation of the pro-
jected areas would considerably reduce the temporal cost. In Chapter
3 we studied several techniques to obtain these areas. However, there
is much room for improvement here. On the one hand, maybe the first
idea that comes to mind is to paralyze the computation. Viewpoint se-
lection measures are calculated from a set of viewpoints. By using a
multi-graphics processor platform, each viewpoint could be rendered and
analyzed independently. This solution is likely to be very expensive and
complex. On the other hand, current graphics processing units (GPUs)
offer a very powerful programming feature: shaders. These programs are
written to apply transformations to a large set of elements at the same
time, for example, to each pixel in an area of the screen, or for every
vertex of a model. This is well suited to parallel processing and most
modern GPUs have a multi-core design to facilitate this, which vastly
improves the efficiency of processing. For instance, a possible solution for
a fast calculation of projected areas using shaders might be as follows.
First, we create a vertex for every polygon of the object, each one with a
different color. Then, we render the object from the particular point of
view to a texture. After that, we analyze the bounding box of each poly-
gon in the texture with a pixel shader, counting the pixels that have the
same vertex color associated to the polygon. In the end, we will obtain
the projected area in each vertex.

Vertex placement heuristics. The viewpoint-driven simplification method
measures the variation in the viewpoint selection measures before and af-
ter a decimation operation. This implies that any decimation operation
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can be performed. We applied the half-edge collapse as the decimation
operation in the simplification algorithm. This may offer some advan-
tages for multiresolution modeling and progressive transmission, since we
do not introduce a new vertex after a simplification. As a consequence,
it is possible to reuse the simplification sequence of half-edge collapses
to develop multiresolution models that efficiently exploit current graph-
ics hardware. In contrast, higher quality approximations can be accom-
plished with the most general edge collapse operation. In this case, the
edge is collapsed into a new vertex that minimizes the local error. How-
ever, we need a vertex placement heuristic. We could use the quadric
error metric to determine the position of the new vertex or some other
different vertex placement strategy. A study of several strategies would
be very useful.

Automatic selection of parameters. The quality of the results obtained
with the simplification algorithm depends on various input parameters
such as image resolution, number of viewpoints and viewpoint distribu-
tion. According to our experience, the default values normally work well.
However, it would be very worthwhile studying different values and con-
trasting their effects on the results. In Chapter 7, we analyzed what
repercussions the viewpoint distribution has on the simplification algo-
rithm. In this case, we compared the minimal set of best viewpoints
obtained with the heuristic measure to the regular distribution from the
vertices of the Platonic solids. Here we suggest other algorithms based on
different viewpoint selection measures to obtain this minimal set of good
quality viewpoints. Finally, other aspects such as the image resolution
should be explored. This fact is directly related to the temporal cost of
the algorithm and might affect the quality of the simplified models.

Incorporating mesh attributes. Nowadays, in many real applications, such
as computer games, models are represented not only by means of their
geometric information. In order to appear more realistic, other infor-
mation such as color, normals and texture is also used. Therefore, it
would very useful to extend the viewpoint-driven simplification method
in order to consider these mesh attributes. One possible way of doing
this could be to extend the viewpoint selection measures with such at-
tributes. Another might be, for instance in case of texture information,
to add an error associated with the texture deformation to the cost of the
decimation operation.

Other viewpoint selection measures. As pointed out previously, the sim-
plification algorithm introduced in this thesis can use any viewpoint se-
lection measure. So far, we have tested some of the most successful
viewpoint selection metrics. However, we would like to conduct a study
with other metrics based on Information Theory that can also be applied
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to the simplification framework. For example, we would like to analyze
the extended mutual information of Tsallis [Tsa88], which depends on
a parameter and contains, as a particular case, Shannon’s mutual infor-
mation. In Chapter 5 we extended the viewpoint-driven simplification
algorithm with some f -divergences. Another family of divergences could
also be used.

Including appearance attributes in mesh saliency. Mesh saliency based
on JS-divergence only takes into consideration the geometric information,
because it is computed from the projected areas of polygons. Generaliz-
ing mesh saliency to include other appearance attributes such as color,
texture and reflectance would be an important area for future research.

Applications. In real environments, models are not isolated. Normally, ob-
jects are close and sometimes surrounded by others. For instance, imagine
a tree just at the corner of two buildings. Most of its detail will be hidden.
Only a part will be visible from many viewpoints. This case illustrates
how static objects could be simplified depending on their position in the
environment. We could put some viewpoints only in the visible part
of the object and then perform a viewpoint-driven simplification. Ac-
cordingly, the viewpoint-driven simplification algorithm would produce
approximations which will preserve the visible parts, the non-visible ones
being simplified to a coarse level.
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information-theoretic framework for viewpoint selection and mesh
saliency. Technical Report IIiA-06-06-RR, Institut d’Informàtica
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