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Preface

This document is the Ph. D. dissertation entitled LodStrips: Continuous
Level of Detail using Triangle Strips. It is presented by Jose Francisco Ramos
Romero, a faculty member at the Department of Computer Languages and
Systems of University Jaume I in Castelló, Spain.

Abstract
In recent years, multiresolution models have progressed substantially. At the

beginning, discrete models were employed in graphics applications, due mainly
to the low degree of complexity involved in implementing them, which is the
reason why nowadays they are still used in applications without high graph-
ics requirements. Nevertheless, the increase in realism in graphics applications
makes it necessary to use multiresolution models which are more exact in their
approximations, which do not call for high storage costs and which are faster
in visualization. This has given way to continuous models, where two consecu-
tive levels of detail only differ by a few polygons and where, additionally, the
duplication of information is avoided to a considerable extent, thus improving
on the spatial cost offered by most discrete models.

Advances have been made in the use of new graphics primitives which min-
imize the data transfer between the CPU and the GPU, apart from trying
to make use of the connectivity information given by a polygonal mesh. For
this purpose, graphics primitives with implicit connectivity, such as triangle
strips and triangle fans, have been developed. Many continuous models based
on this type of primitives have been recently developed. In these last few years,
graphics hardware performance has evolved outstandingly, giving rise to new
techniques which allow the continuous models to accelerate even more.

In this work, we have improved the interactive render of polygonal meshes.
To tackle the problem, we firstly studied fundamental techniques to efficiently
render polygonal meshes and we later made use of geometry simplification
and level of detail techniques. Thus, we defined a multiresolution model that
represents a polygonal mesh at any given resolution. This approach is able
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to manage continuous level-of-detail by smoothly adapting mesh resolution to
the application requirements. Moreover, the model was modified to take the
maximum advantage of the recent GPU features. We also created a modified
version of the model for being used in deforming meshes. Finally, we developed
an independent library to integrate our model in real-time applications.
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CHAPTER 1
Introduction

In a computer graphics context, this dissertation is particularly related to
real-time visualization. The aim of this dissertation is to develop a new solution
to accelerate 3D visualization by means of geometric level-of-detail techniques.
Results can be applied to any real-time application, such as video games or
virtual reality.

1.1. Motivation

Nowadays, it is common to represent 3D scenes with a high geometrical
complexity. Many of the objects that are included in these scenes come from
high-precision scanners, computer-aided design tools, digital terrain models or
even from the tessellation of implicit surfaces. In general, objects with mil-
lions of polygons. However, graphics resources are limited: processor, memory,
graphics hardware capacities, network bandwidth, etc. One possible solution
to reduce the cost of representing a 3D scene is to employ level of detail or
multiresolution modeling techniques.

The fundamental concept of theses techniques is simple: when rendering,
we should use a less detailed representation for small, distant, or unimpor-
tant parts of the 3D scene. This less detailed representation usually consists
of a selection of different approximations of objects in the scene. Obviously,
each approximation is less detailed and faster to render than the one before.
Generating and rendering these approximations of objects is known as level of
detail or multiresolution modeling. Figure 1.1 shows three levels of detail for
an object.

1
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2 Chapter 1 Introduction

Figure 1.1: From left to right, original object with 21,887 vertices and
two approximations with fewer vertices: 9,000 and 4,000, respectively.

In recent years, multiresolution models have progressed substantially. They
can be classified into two large groups [RLB+02]: discrete multiresolution mod-
els, i.e. those that contain various independent representations of the same
object with different levels of detail, and continuous multiresolution models,
which are those that manage a vast range of approximations to represent the
original object. At the beginning, discrete models were employed in graphics
applications, due mainly to their simplicity in implementing them, which is the
reason why nowadays they are still used in applications without high graphics
requirements. Nevertheless, the main problem of discrete models is the tran-
sition between different levels of detail. When changing between the different
approximations, an effect, known as popping, appears. It consists in a percep-
tion of the change in the visual quality. Besides this problem, discrete models
present other limitations, such as the number of independent approximations
stored and the difficulty to accurately adjust the level of detail to the require-
ments of the application. Continuous multiresolution models appeared to solve
most of the problems presented by discrete models. They are more exact in their
approximations (two consecutive levels of detail only differ by a few polygons)
and do not call for high storage costs (duplication of information is avoided
to a considerable extent, thus improving on the spatial cost offered by many
discrete models). In Figure 1.2, we can see a continuous multiresolution model
in runtime. Objects are rendered at different levels of detail depending on the
distance to the viewer.

Multiresolution meshes are often represented by polygonal models. In par-
ticular, most-used polygon primitive is the triangle. However, advances have
been made in the use of primitives which make use of the connectivity infor-
mation given by a polygonal mesh, apart from trying to minimize the data
transfer between the CPU and the GPU. For this purpose, graphics primitives
with implicit connectivity, such as triangle strips and triangle fans, have been
developed. There exist many continuous multiresolution models based on this
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type of primitives [Hop97, ESAV99, Ste01, Paj01, DP02, Zac02, SP03].
Triangle strips provide us two ways to improve continuous multiresolution

models. On the one hand, the use of triangle strips potentially reduce the
number of vertices to be processed by, approximately, a factor of three [ESV96b]
by avoiding redundant transformation, clipping, and lighting computations.
Besides, such an approach is also an efficient way to encode polygonal meshes.

Therefore, a multiresolution model wholly based on implicit connectivity
primitives could improve rendering and spatial cost. Moreover, an easy inte-
gration into the GPU would be important as well. Finally, time required to
extracting an approximation becomes fundamental so that we can render more
objects per scene or make lighter the GPU work. All that, allows us to achieve
more realism in real-time visualization.

Figure 1.2: Continuous multiresolution models rendered at different levels
of detail. According to the distance to the viewer, closer objects are more
detailed and further less detailed.

1.2. Contributions

The main objective of this work is to develop a new multiresolution model
that accelerates level-of-detail visualization in real-time for polygonal meshes.
On the one hand, we developed a basic and general multiresolution model based
on triangle strips. This model is able to manage uniform resolution (one level
of detail on the whole object) and variable resolution models (different levels of
detail on the same object). However, in many applications, such as video games,
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most-used models are uniform ones due to their simplicity (data structures
and algorithms are simpler than in variable resolution models) and efficiency
(they only extract one level of detail, while in variable resolution models we
must check the level of detail to be extracted for different parts of the mesh).
Thus, we improved this basic scheme in order to generate LodStrips, a uniform
multiresolution model designed to speed up geometry rendering with level of
detail. Moreover, we developed the model to be optionally integrated into the
graphics hardware by using new acceleration techniques. Finally, the model was
successfully implemented into a game engine and applied to deforming meshes.
Below, we will provide a brief description of each contribution.

Previous work in multiresolution modeling

We present some fundamental techniques to efficiently render polygonal
models. Key factors are simplification and rendering primitives. Simplification
techniques are important to generate the different approximations or levels of
detail that we will use in the real-time applications. Other key factor is the
rendering primitive, which will enable us to speed up rendering and even to
improve the storage cost.

As the simplification method applied is an important factor to produce high
quality approximations, we firstly study simplification techniques and the dif-
ferent operators and metrics applicable to polygonal models. Later, we analyze
the possibilities of new graphics cards by using the triangle strips graphics prim-
itive. Finally, we survey the different kinds of existing multiresolution models,
as uniform as variable ones. A characterization with the main features of lastest
models is presented as well.

New ways to improve multiresolution schemes

The technique known as multiresolution or level-of-detail modeling consists
in using some kind of simplification or approximation of complex polygonal
models to reduce the amount of information to be processed by the graphics
system. These models can be improved by including implicit connectivity in-
formation, storing the model as triangle strips or triangle fans that reduce the
amount of information sent to the graphics pipeline and increase the rendering
frame rate. In summary, modeling a mesh as a collection of strips or fans of
triangles avoids storing and sending a large amount of redundant information
to the graphics system. Therefore, it involves better visualization times and
lower storage cost.

We present a general framework to improve existing multiresolution mod-
els. It makes use of implicit connectivity primitives such as triangle strips. It
represents a mesh as a set of multiresolution triangle strips and maintains the
strips both in the data structure and in the rendering stage. This approach of-
fers features such as connectivity exploitation, uniform and variable resolution,
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fast extraction and low storage cost.

LodStrips: A new uniform multiresolution method based on trian-
gle strips

New specific models in applications such as computer games could improve
their performance. This kind of applications mainly use uniform resolution
models, and obviously, they must render and extract levels of detail as fast as
possible. Taking into account the framework previously presented, we introduce
LodStrips, a continuous multiresolution model that manages data structures
and algorithms for real-time visualization of multiresolution meshes.

Hardware optimizations in rendering

In these last few years, graphics hardware performance has evolved out-
standingly, giving rise to new techniques which allow the continuous models to
be accelerated even more. The use of specific stripification algorithms, which
try to take the maximum advantage of the GPU cache, and the new extensions
of graphics libraries that allow visualization of a whole mesh with only a few
instructions are examples of these new techniques.

We introduce some modifications on the LodStrips model which allow us to
noticeably improve its global performance on GPU. Among them, we underline:
modifications on the data structures and application of hardware acceleration
techniques. The efficiency of the geometric acceleration techniques have been
tested on LodStrips. Using hardware acceleration techniques allows us to in-
crease the performance of the models with dynamic geometry. In this sense,
the LodStrips model greatly increased its performance. This rise is mainly due
to the optimized design of the model for the hardware, where level-of-detail
extraction times are very low and so graphic acceleration is greatly benefited
by avoiding long waits to render approximations.

Multiresolution modeling for deforming meshes

Deforming surfaces are present in many fields such as games, movies and
simulation applications. However, as occurs with static surfaces, they are often
represented by means of much more geometry than necessary in 3D scenes. Un-
fortunately, as multiresolution techniques for static meshes are based on specific
fixed shapes, the meshes they produce can yield very poor approximations if
the mesh highly deforms.

In particular, we focus on mesh morphing, a technique to approximating
deforming meshes. A source mesh is transformed into a target mesh by in-
terpolating vertex positions. A possible solution to this problem consists of
computing a supermesh representing the union of both meshes [Ale02].
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We therefore modified LodStrips for being used in deforming meshes. We
thereby created a multiresolution model for deforming meshes based on the
triangle strip primitive. For our work we used the method proposed by Parus
et al. [Par05] in order to get the morphing sequence between two arbitrary
meshes, although any other morphing sequence can be also used. Next, we
combined that work with a modified version of LodStrips. Besides morphing,
our model is also able to manage animated models. The model can extract any
level of detail for any frame required.

Successful implementation in real-time applications: Ogre3D
We developed an independent library to integrate LodStrips in 3D applica-

tions. An efficient interface between the application and the geometry modules
was designed and implemented. This library provides the ability to construct
and render polygonal meshes in 3D applications.

This module contains functions that handle the levels of detail of the input
multiresolution polygonal meshes. For any given resolution of an object, this
module returns a set of triangle strips representing the object at that resolution,
that is, at the requested level of detail. Using LodStrips, models take advan-
tage of using triangle strips to reduce storage usage and to speed up realistic
rendering.

We extended the graphics rendering engine OGRE3D to efficiently employ
a continuous multiresolution model: LodStrips. This graphics engine is designed
to use discrete multiresolution models and we integrated the LodStrips library
in such a way that it is not necessary to recompile the engine.

1.3. Document organization
This dissertation is organized as follows:

Chapter 2: Previous Work
We introduce a survey of important factors to efficiently render polygonal
meshes. We analyze simplification, rendering primitives and multiresolu-
tion modeling works. We finally present a characterization of them.

Chapter 3: Level of Detail using Triangle Strips
With the aim of improving existing multiresolution models, a general
scheme is presented. The proposed model makes use of new implicit con-
nectivity primitives such as triangle strips and it offers the features such
as connectivity exploitation, uniform and variable resolution, fast extrac-
tion and low storage cost. Data structures, algorithms, as well as results
are presented.

Chapter 4: LodStrips: A Uniform Resolution Model
We introduce the LodStrips, a uniform and continuous multiresolution
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1.3 Document organization 7

model for real-time visualization. Main data structures and algorithms
are also presented. Moreover, we carry out a study about some important
questions related to the model such as filtering triangle strips or extrac-
tion criteria. Later, we present the results obtained from comparing this
model with other well-known multiresolution models such as Progressive
Meshes [Hop96] and Multiresolution Triangle Strips [BRR+01].

Chapter 5: LodStrips on the GPU
We propose some modifications on the original model which allow us to
noticeably improve its global performance. Among them, we highlight
modifications on the data structures and application of hardware accel-
eration techniques.

Chapter 6: LodStrips for deforming meshes
We present a modification of LodStrips for deforming meshes. This ap-
proach can extract any level of detail for any frame required of an ani-
mation.

Chapter 7: Applications
An independent library to integrate LodStrips in real-time applications
is shown in this chapter. Moreover, the implementation of the library in
the Ogre3D game engine is also introduced.

Chapter 8: Conclusions and Future Work
Finally, we summarize the contributions of this dissertation and the dif-
ferent publications derived from our work. Future work lines are also
presented.
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CHAPTER 2
Previous Work

Real-time visualization of 3D scenes is a very important feature of many
computer graphics solutions. In applications such as computer-aided design,
scientific visualization or even in the growing computer games market, the per-
formance of visualization becomes essential. In addition, the complexity of the
scenes is increasing and they now contain objects composed of thousands or
even millions of polygons. Therefore, it is necessary to resort to different tech-
niques that allow us to maintain the quality and performance of 3D applications
by managing that huge amount of geometry. Among the different solutions, we
highlight polygonal simplification, implicit connectivity primitives and level-of-
detail approaches. This has led to the appearance of a wealth of research in
multiresolution modeling. The main objective of this chapter is to study previ-
ous works on this topic, presenting the different solutions that currently exist
in the field of real-time visualization of level-of-detail models and to analyze
the most notable works published to date.

2.1. Introduction
Nowadays it is common to represent 3D scenes with a high degree of geo-

metrical complexity as the latest technological advances have generated large
databases of polygonal models. Many of the objects that are included in these
scenes come from high-precision scanners, computer-aided design tools, digi-
tal terrain models or even from the tessellation of implicit surfaces. Thus, in
general, the output objects are composed of millions of polygons that exceed
by far the visualization capacities of present hardware, including the proces-
sor, memory, graphics hardware, network bandwidth, etc. Applications such

9
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10 Chapter 2 Previous Work

as computer games, distributed virtual environments or the creation of special
effects for films make use of models generated by this type of systems. In all
these applications, a balance must be found between the accuracy with which
a surface is modeled and the amount of time required to process it.

In general, it is assumed that the precision of the approximation is pro-
portional to the number of triangles that form it. The aim is to produce the
most simplified mesh that meets the requirements of the application. Neverthe-
less, simplification in runtime has a high temporal cost. The concept of level
of detail or multiresolution modeling emerges with the purpose of supporting
real-time simplification operations. This concept entails creating a model in
a pre-process that stores several approximations (see Figure 2.1) and that is
capable of retrieving any of these approximations in an efficient way.

In 1976, James Clark already described the benefits of representing the
objects of a scene at several resolutions [Cla76]. The basic idea of using levels
of detail (LODs) is to use simpler versions of an object as it contributes less
and less to the rendered image. In general, solutions based on level of detail
consist of three parts: generation, selection and switching. Generation is the
stage where different representations of a model are generated with different
detail (see Figure 2.1). The selection mechanism chooses a level of detail based
on some criteria, such as the distance to the viewer, the screen-space area
or more complex techniques with feedback or predictive analysis [XESA97].
Finally, we need to change from one level of detail to another, this is named
switching.

The mostly used models in interactive graphics applications are 3D polygo-
nal ones, usually composed of triangles due to their simplicity. Before describ-
ing the different multiresolution approaches, it is important to comment on
two elements that are key for the generation of a level-of-detail model. On the
one hand, the simplification process will generate the different approximations
of the objects. The application of simplification algorithms to 3D polygonal
models is a well-known problem and several algorithms have been successfully
developed [MP06]. On the other hand, the visualization primitive becomes a
key aspect with respect to the final performance of the multiresolution model.

Traditionally, the triangle has been used as basic. Nevertheless, the evolu-
tion of graphics hardware has allowed the appearance of primitives that im-
prove outstandingly the performance of graphics applications. Thus, the use
of triangle fans or triangle strips allows us to save bandwidth both in mesh
codification and in rendering performance. Therefore, the combination of tri-
angle strips based rendering and simplification methods gives rise to efficient
solutions in real-time rendering.

The aim of this chapter is to present the different solutions that currently
exist in the field of real-time visualization of models with level of detail. It is
possible to find in the literature different reviews [Gar99, RLB+02], but it was
necessary to offer a more recent revision which includes the latest advances
and tendencies. This chapter is structured as follows. The first two sections
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(a) Original (b) 50 %

(c) 25% (d) 10 %

Figure 2.1: Approximations of the Horse model. Percentage means the
number of vertices composing the mesh with respect to the original one
(8,431 vertices).
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12 Chapter 2 Previous Work

introduce two very important aspects in multiresolution schemes: simplification
algorithms (Section 2.2) and rendering primitive (Section 2.3). Subsequently,
Section 2.4 revises the most notable multiresolution models, both of uniform
and variable resolution, and a classification of them is also presented. Finally,
conclusions and a summary of the main ideas are given in Section 2.5.

2.2. Simplification
Polygonal simplification techniques offer an important alternative to visu-

alize complex models. Many methods have been developed in this field [DZ91,
CMS98, Lue01]. These methods simplify the geometry of the model in order to
reduce the visualization cost without a significant loss of the visual content of
the scene. This idea has been addressed for many years in the field of interactive
graphics. These simplified meshes can be generated manually or automatically.
Manual simplification is quite costly and many times unattainable due to the
complexity of the mesh. As a result, many efforts have been made towards the
automatic simplification of polygonal models. In Figure 2.1, the simplification
of a polygonal mesh which preserves its appearance can be observed.

The main objective of the automatic simplification of polygonal meshes is
to obtain an approximation of a high resolution mesh maintaining its appear-
ance as possible. Formally, given a surface (normally represented as a triangle
mesh), the aim is to find an approximation which minimizes both the size and
the error of the approximation. Desirable properties for this sort of algorithms
are: speed, quality in the approximation, and management of different types of
initial meshes. The solutions to this problem are based on the heuristic applied
and on the function that measures the quality of the output mesh. Neverthe-
less, there is no optimum solution since it depends totally on the heuristics or
function used, on the order of execution of the simplification algorithm, the
objective and so forth.

2.2.1. Characteristics and classification
We can classify the simplification methods into several groups according to:

The input and output data. Many methods accept triangle meshes as
input. However, only a few accept more general meshes, for example,
non-manifold meshes, where one or more edges are shared by more than
two triangles. As for the output, there are many methods that can pro-
duce triangle meshes both manifold, where every edge must be shared
by exactly two triangles, and non-manifold. Moreover, it is important
to underline that some of these methods also outputs simplification se-
quences [Hop96, GH97].

The objective of the simplification. Methods that given a certain error
ε construct the minimum mesh that approximates the original and sat-
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2.2 Simplification 13

isfies that error (the error is usually measured as a certain number of
vertices [Hop96]).

The heuristics used in the approximation. They can be sub-characterized
according to whether the heuristics allow us to measure the error intro-
duced in each simplification step by a defined metric, evaluate the error
locally or globally or preserve the geometry or attributes in the mesh.

The operation applied in the simplification. Operations are local or glob-
al [LRC+02], local operations reduces the complexity of a mesh by con-
sidering a small portion of the mesh and global operations modify the
topology of the whole mesh in a controlled fashion.

Whether it is incremental or not. A method is incremental if the sim-
plification consists of a sequence of local updates which reduce the size
of the mesh in every step while, at the same time, the precision of the
approximation obtained decreases.

2.2.2. Operations

As we have previously commented, the operations applied to produce the
approximations can be divided into local and global [LRC+02]. Even though
in the work developed by Matias and Pedrini [MP06] each of these operations
is detailed and compared, among the existing simplification methods the most
populars are incremental methods based on local updates. All these methods
have in common that they simplify the original mesh by means of an ordered
sequence of local modifications and, besides, every modification reduces the
size of the mesh, decreasing in addition the precision of the approximation
generated.

Regarding the existing local operations, we emphasize:

Edge collapse: an edge (v1,v2) collapses in a vertex v3 producing the
elimination of those triangles that contain it (see Figure 2.2a). This oper-
ation was firstly introduced by Hoppe [HDD+93] and later used in several
works [Hop96, XV96].

Vertex collapse: two unconnected vertices, v1 and v2, are collapsed. Ad-
jacent triangles require to be modified. An important aspect of this op-
erator is that it is able to connect unconnected elements to close holes
and gaps (See Figure 2.2b). Important works that use this operation are
[GH97, ESV99].

Vertex decimation: it involves eliminating a vertex, its edges and the tri-
angles it forms. Subsequently, the area is triangularized again (see Figure
2.2c). Notable papers inside this group are [SZW92, Sch97, CCMS97].
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(a) Edge collapse.

(b) Vertex collapse.

(c) Vertex decimation.

Figure 2.2: Example of different simplification operations.
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2.2.3. Metrics

It is also important to comment on the error function employed to determine
the operations to perform and also characterize the simplification methods.
Metrics based on the optimization of an energy function [Hop96] and those
based on the metrics of quadric errors [GH97, HON04] are the most important
and widely used. Depending on the way the error function is calculated, we can
classify the metrics into geometry-based and viewpoint-based.

Geometry-based

These metrics use measures based on geometry [MP06], calculating the error
by means of simple heuristics (length of the edges, angles, area, etc.), distances
to the original surface [Hop96, CCMS97], or other important characterizations
such as the one based on quadric errors [GH97, HON04]. We highlight two
works:

Simplification based on quadric errors [GH97]. It is based on iterative
edge contractions. A geometric error is maintained for each vertex; this
error is calculated as the sum of the squares of the distances to the planes
adjacent to the vertex. The overall algorithm is as follows:

1. Compute the quadric error corresponding to each vertex

2. Determine the contraction cost for each edge

3. Place the edges into a min priority queue sorted on contraction cost

4. Remove the edge (u,v) with the lowest contraction cost from the
priority queue

5. Use the quadric to determine the optimal contraction target of (u,v)

6. Contract u and v, and update the cost of all edges adjacent to u and
v

7. Repeat steps 4 through 6 until the desired mesh resolution is reached

Optimization of an energy function. It allows the reduction of the mesh
in an incremental way, eliminating vertices, edges or faces, through the
optimization of a function that measures the quality of each of the ap-
proximations generated. Given a set of vertices V0 and an initial triangle
mesh M0, a mesh Mj of the same type and with fewer vertices than
M0 is progressively obtained. To that end, an energy function that con-
templates the geometric parameters of the representation is employed.
The process is based on a nonlinear optimization, where the number,
position and connectivity of the vertices vary in order to minimize such
function [Hop96].
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Viewpoint-based

Metrics based on viewpoints involve generating different images from sev-
eral cameras, locating the camera in more than one point around the object,
and thus calculating the error when simplifying, comparing the result with the
original object [LT00, WLC+03, CSCF07]. These methods generates good re-
alistic results for the viewer, by removing for example parts of the object that
are not visible for the user. However, they have a high cost of computation. We
underline these works:

Image-driven simplification [LT00]. Basically, it determines the cost of
an edge collapse operation by rendering a model from different points
of view uniformly located. Later, it compares the result images to the
original ones and adds an error across all the pixels of all the images.
Finally, all edges are sorted by the total error induced in the images and
the edge collapse that produces the least error is chosen.

Mesh saliency. Idea of mesh saliency, as a measure of regional importance
for graphics meshes, has recently been introduced [CHVJ05]. It consists
of generation a saliency map, and then simplifying by using this map.

Other interesting works are addressed to the application of information
theory to the field of metrics based on viewpoints [SFRV07].

2.3. Rendering primitive
Traditionally, graphical models have been represented with triangles, as the

simplicity of their elements and their connectivity allow us to easily manipulate
and render them [PS97]. Nevertheless, triangle strips are able to make the
most of these characteristics while offering a compact representation of the
connectivity of the mesh and a faster rendering, due to the fact that the number
of vertices to transform and illuminate is lower.

2.3.1. Triangle strips

In general, the way of encoding a triangle mesh is the specification of the
three vertices that compose each of the triangles of the mesh. Owing to the
fact that neighbour triangles share an edge and its vertices, all vertices are sent
several times to the graphics pipeline. In general, the number of triangles is
approximately twice the number of vertices [PS85].

A triangle strip is a more efficient representation which consists of a series of
n+2 vertices representing n triangles. In Figure 2.3a, the sequence {0,1,2,3,4,5}
corresponds with triangles {0,1,2}, {1,2,3}, {2,3,4} and {3,4,5}, that is, a se-
quential triangle strip. Thus, the transmission cost of n triangles is reduced in
a factor of three, from 3n to n + 2 vertices.
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In some situations, the adjacency of the triangles does not allow a sequential
encoding. An example of it can be observed in Figure 2.3b. To represent this
triangle strip, it is necessary to add an extra triangle to convert the sequence
into {0,1,2,3,2,4,5}. This operation is known as repetition or swap and triangle
strips with swaps are called generalized triangle strips. Despite this extra in-
formation, the transmission cost is reduced in a factor greater than two, from
3n to n+2+swaps vertices. In some special cases, it is also possible to use a
special kind of generalized triangle strip which is termed triangle fan. The fan
is defined by a central vertex and its neighbour vertices. In Figure 2.3c, the fan
is defined by the sequence {6,0,1,2,3,4,5}. This sort of primitive is not wide-
ly used in practice because the length of a fan is normally short: the average
number of neighbour vertices is usually six in a manifold mesh [AM04].

Figure 2.3: From left to right, examples of: a sequential triangle strip (a),
a generalized strip (b) and a triangle fan (c).

Owing to the fact that the number of triangles in the meshes grows as fast
as the processing capacity of GPUs and the bandwidths of the buses, triangle
mesh stripification is very important and many papers have appeared in this
direction. Triangle strips provide a compact representation of triangle meshes
and they are supported by the most important graphics libraries like OpenGL
and DirectX. In general, they allow for a fast transmission and visualization of
triangle meshes. In Figure 2.4, we show a triangle strip in the cow model.

Figure 2.4: A triangle strip of the cow model.

Evans showed that given a polygonal mesh made up by triangles, the prob-
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lem of creating an optimum set of triangle strips for this triangulation is NP-
hard [ESV96a]. Therefore, to stripify a mesh in a polynomial time it is necessary
to use certain heuristics that find an optimum local. A lot of work focused on
heuristics has been carried out in an attempt to minimize the number of triangle
strips in a polygonal mesh [AHB90, AHMS96, ESV96b, Kor99, Ste01, XHM99,
GE04, DGBGP06]. Strip search algorithms, commonly known as stripification
algorithms, can be classified in different ways [VK07]. Here, they are classified
into five different groups according to:

The kind of input data: isolated vertices, triangles, triangle strips and so
forth.

The kind of mesh: static meshes or meshes with level of detail. It includes
the algorithms which receive the triangles of the model and construct
the triangle strips with or without changing the mesh topology. Most
stripification algorithms have been designed for static meshes. However,
due to the increasing complexity of some industrial models, the need
of visualization by level of detail becomes even more accentuated. With
respect to the use of triangle strips in meshes with level of detail, there are
two different approaches. On the one hand, there are methods which work
with versions of an original stripification [ESAV99, BRR+01, RC04b]. On
the other hand, we can find methods which change the mesh topology for
each approximation used [VFG99, Ste01, SP03].

The type of optimization: minimization of the number of triangle strips
or minimization of vertices. The term optimum stripification can be un-
derstood in several ways. It can be optimized by producing a low number
of vertices in the strips to reduce the amount of data sent through the bus
and thus accelerate visualization. On the other hand, the initialization of
a new triangle strip has a certain cost, though, and that’s why it is al-
so interesting to minimize the number of strips generated [Ste01, PS03].
Obviously, it is not possible to minimize both parameters at the same
time; reducing the number of strips often involves increasing the number
of vertices (due to the high number of swaps necessary to preserve the
strips) or vice versa. A different approach is offered by those works that
create a single triangle strip [GE04, DGBGP06].

The kind of heuristic: local or global. Other classification considers the
type of heuristic function used. Usually, the heuristic function only de-
cides in which direction the triangle strip must continue. To take this deci-
sion, it is enough to apply a certain local criterion [ESV96b, Ste01, GE04].

Hardware: optimization for vertices caches. It refers to the methods ca-
pable of generating triangle strips which maximize the use of the cache
of vertices. Nowadays, GPUs contain caches of vertices that allow us to
reuse already transformed vertices, reducing the bandwidth and therefore
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accelerating visualization. Taking into consideration this criterion, many
papers have been written [Hop99, BG99, BD02, LY06, NBS06].

Stripification can be applied to multiresolution models in two ways: static
or dynamic. Dynamic stripification involves generating the triangle strips in
real time, that is, for each level of detail new strips are generated. On the
other hand, static stripification entails first creating triangle strips and then
working with versions of the original strips. There are several models that
use dynamic stripification [Hop97, Ste01, SP03], especially variable resolution
models. However, other models such as [ESAV99, RAO+00, BRR+01] use
static stripification techniques.

An important problem that poses the use of triangle strips in a multiresolu-
tion model is the appearance of degenerate triangles. In those multiresolution
models that maintain an original (static) stripification, when the level of de-
tail is decreased the topology of the mesh is altered and it is possible that
the initial stripification presents unnecessary triangles that add no information
but involve a higher processing time. A solution followed by several authors
is the use of filters to eliminate those indices of the strips that are no longer
necessaries. Nevertheless, it is worth to refer to those algorithms which were
specifically developed for multiresolution models [BRR+01, RCR05]. These al-
gorithms generate the triangle strips following a simplification criterion. Bel-
monte et al. developed [BRR+01] an algorithm which generated strips starting
from the maximum level of detail and applying the subsequent simplifications.
A different approach was that presented by Ripolles et al. [RCR05]. In this
work they developed a similar algorithm but it constructs the strips starting
from the minimum to the maximum level of detail and following the simplifi-
cation sequence. Nevertheless, both approaches still present a great amount of
degenerated triangles in many levels of detail. Table 2.1 summarizes the differ-
ences and similarities of some important multiresolution models according to
the stripification they apply.

Model Stripification
VDPM [Hop97] Dynamic
Skip Strips [ESAV99] Static
MOM [RAO+00] Static
MTS [BRR+01] Static
Tunneling [Ste01] Dynamic
DStrips [SP03] Dynamic

Table 2.1: A comparison of stripification techniques (ordered according
to publication date).
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2.4. Multiresolution modeling

The techniques to control the level of detail of a surface in runtime are very
important in real-time visualization systems. In any system, the capacity of
the available hardware is essentially limited. Nevertheless, the complexity of a
scene can vary substantially. Therefore, in order to keep a constant frame rate,
the level of detail of the scene must not exceed the processing capacity of the
graphics hardware.

In order to manage the level of detail of an object it is necessary to resort
to a surface representation that allows the reconstruction of several approxima-
tions adapted to different visualization contexts. An example can be observed
in Figure 2.5. Let’s suppose we use a distance criterion to select the proper
level of detail. Figure 2.5a presents the most detailed approximation, which
is suitable when the viewer is close to the object. When the object is further
away and it is just covering a few pixels, we do not need such a detailed ap-
proximation. Instead, we can use a simplified version that, due to distance,
looks approximately the same as the highly detailed version. As a consequence,
a significant speedup can be expected. In conclusion, a multiresolution model
must be capable of extracting the appropriate approximations in different sce-
narios. Furthermore, it must change the level of detail in a fast and efficient
way, without overloading the system. That is, if the time required to extract a
low level of detail and visualize the result exceeds the time required to visual-
ize the higher level of detail, then there is no point in using a multiresolution
model [PS99, RLB+02].

Figure 2.5: Visualization of a model using different views. From left to
right, a) Close view, b) Normal view and c) Distant view

Formally, a multiresolution model consists of a representation that stores a
range of approximations of an object and that allows to obtain any of them as
required [Cla76]. The cost of extracting those approximations must be low as
normally many of them will be needed in execution time. It is also important
that the size of the multiresolution representation does not exceed very much
the size of the object in its most detailed approximation.

Over the last years graphics hardware has undergone a real revolution:
not only its computational power has been remarkably increased, but also its
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cost has decreased, thus facilitating its availability in any computer in the
market. Both aspects, its easy availability and the high processing capacity
reached during these years, have driven the developers to make the most of
graphics hardware with new objectives, from the production of videogames and
computer-generated films to computer-aided design and scientific visualization,
or even to solve problems unrelated to computer graphics [GPG07]. Apart from
powerful and cheap, graphics hardware has also become flexible, that is, from
being a simple memory device to being a configurable unit and, finally, to
becoming a parallel processor totally programmable [FHWZ04]. As we will see
in the following sections, many authors have resorted to graphics hardware to
offer multiresolution approaches that offer better performance and improved
visual quality.

2.4.1. Discrete multiresolution models

The simplest method to create a multiresolution model is to generate a
fixed set of approximations. In a given instant, the graphics application could
select the approximation to visualize. In this case, a series of discrete levels of
detail would be being used, as seen in Figure 2.1. This multiresolution model
would consist of a set of levels of detail and some control parameters to change
between them. The simplicity of this kind of models is its main characteristic.
If good approximations of the original mesh can be produced, then a discrete
multiresolution model can be generated and successfully applied. Free visual-
ization systems like OSG and commercial ones like Renderman [Ups90], Open
Inventor [Wer94] or IRIS performer [JR94] include support for discrete levels
of detail. Some 3D games engines such as Ogre3D or Shark3D, also include this
feature.

As the number of polygons can differ considerably between two approxima-
tions, so does its visual appearance. When changing between levels of detail,
it can produce an effect known as popping. Specifically, this effect consists in a
perception of the change in the visual quality when changing between the dif-
ferent approximations. Despite this limitation, discrete multiresolution models
are useful in many applications.

However, the problem of the popping artifacts previously mentioned limits
them considerably. There are two general solutions that try to lighten this
problem: blending and geomorphing.

Blending entails softening the transitions between the levels of detail by
using transparencies, that is, a smooth interpolation of the images [TAF92,
GW07]. Nevertheless, the use of this technique causes a significant increase of
the visualization cost since the graphics system must visualize two levels of
detail at the same time. The other alternative, geomorphing, involves interpo-
lating the geometry of two consecutive levels of detail in several frames [Zac02].
There are also hardware-based solutions that try to minimize the overload gen-
erated by these methods [SG03]. Apart from the overload problem, this type
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of models also require a considerable storage space, as each approximation is
stored independently, which implies that the number of levels of detail stored
should be small. The greatest limitation is that in runtime the levels of detail
available are quite limited. That is, the visual display unit must select one of
the approximations available, even when it needs an intermediate level of detail.
This means that either a model is visualized without enough detail, sacrificing
the quality of the image, or a model with excessive detail is selected, wasting
processing time.

Another method recently presented [BS05] consists in sending to the GPU a
mesh at minimum level of detail and applying later a refining pattern to every
face of the model. That pattern is stored in the GPU. The problem is that each
pattern corresponds with a different level of detail and as a result we have a
discrete model that, according to the authors, suffers popping effects. Another
aspect is the load suffered by the GPU when a model does not change the level
of detail, as a pass must be made for each face the coarser model has.

2.4.2. Continuous multiresolution models

Instead of creating individual levels of detail, continuous multiresolution
models present a series of continuous approximations of an original object.
The simplification method employed offers a continuous flow of simplification
operations to progressively refine the original mesh.

The main advantage of these models is their better granularity, that is, the
level of detail is specified exactly, and the number of visualized polygons is
adapted to the requirements of the application. This granularity is usually of
a few triangles, as the difference between contiguous levels of detail is usually
of a vertex, an edge or a triangle. Moreover, the spatial cost is lower since the
information is not duplicated. Obviously, the management of the level of detail
in these models is an essential point, that is, the amount of time required to
visualize a level of detail should not never exceed the time required to visualize
the object at its maximum resolution.

Characteristics and classifications

Several studies [Gar99, PS99, RLB+02] consider important the following
characteristics in a continuous multiresolution model:

Spatial cost similar to the original object: it is important that the storage
cost of the multiresolution representation does not surpass excessively
that of the original object (usually, two or three times size of the original
object).

Continuous surface: any polygonal surface extracted from the model must
not have discontinuities.
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Gradual transition between approximations: transitions between levels of
detail must be gradual, without abrupt changes.

Without loss of information: the model must be capable of representing
accurately the original object.

Efficient processing of the information: it is essential that the multireso-
lution model recovers any level of detail as fast as possible.

A possible division of continuous multiresolution models is based on their
structure. In this classification we can find two main groups:

Incremental models: they depend on the simplification technique used in
their construction, mainly methods based on local modifications of the
mesh [Hop96, ESAV99, RAO+00, BRR+01, Ste01, SP03]. The structure
of incremental multiresolution models is obtained by storing the evolu-
tion of a mesh through a series of local modifications (see Section 2.2.2).
Starting from the most detailed mesh, each operation or simplification
step generates a new set of triangles that appears in the mesh after the
simplification. These models usually encode the approximations with the
coarser mesh and the sequence of operations that allows to generate all
the approximations; that is why they are called incremental (but also
historical [PS97]) models. All historical models are constructed with this
kind of techniques. However, there are differences between them, among
which the following stand out: the simplification criterion used to gen-
erate the model, the amount of information stored, and the operations
supported, as well as the efficiency of the algorithms implementing them.
The MT or multitriangulation model [DFMP98] is a general scheme for
incremental models.

Hierarchical models: starting from the idea that the resolution of a mesh
can be refined recursively by dividing an area into small portions of it,
these models are said to be based on consecutive subdivisions of the mesh.
Furthermore, the hierarchy of the subdivided areas can be described with
a tree [DFMP98, EMB01, BS05, JWLL05, Tur07]. Among hierarchical
models we can highlight those based on quadtrees and on triangle hier-
archies. The first ones are based on the nested subdivisions of regular
surfaces. Therefore, they are adequate for regularly arranged surfaces,
such as terrains, see Figure 2.6a. On the other hand, triangle hierarchi-
cal models are based on the recursive division of the regular space into
triangles. In Figure 2.6b we can observe how the binary tree is generated
by dividing each triangle. In [ZS00] a wide study of this kind of models
is presented.

It is also possible to establish a characterization of continuous multireso-
lution models depending on the resolution they are capable of showing. Thus,
multiresolution models can be divided into two groups:
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(a) Quadtree (b) Triangle hierarchy

Figure 2.6: Hierarchical models.

Uniform resolution models: they always visualize the same level of detail
in the whole object.

Variable resolution models: they allow us to extract and visualize different
resolutions throughout the surface of the object. They are also known as
view-dependent models when image-space is used to guide the selection
of the level of detail for the mesh.

This latter classification is the one that we have adopted in this article to
present the works in level-of-detail modeling.

Uniform resolution models

Uniform resolution approaches are characterized by extracting and showing
only one level of detail throughout the whole object. These models are very
often used in computer games as they are very fast and simpler to implement
than variable resolution ones.

One of the first models to offer a neat solution to a continuous representation
of polygonal meshes was Progressive Meshes [Hop96]. From version 5.0, it has
been included in Microsoft Corporation’s DirectX graphics library. Later, its
author [Hop97] and other researchers [PH97, PR00, SSGH01] improved the
original model.

Progressive Meshes simplifies a mesh M = Mn in consecutive approxima-
tions M i by applying a sequence of n edge collapses:

M = Mn Collapsen−1→ Mn−1 Collapsen−2→ . . .
Collapse0→ M0 (2.1)

The reverse operation can also be performed, recovering more detailed mesh-
es from the simplest mesh M0 by using a sequence of vertex splits:
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M0 Split0→ M1 Split1→ . . .
Splitn−1→ Mn = M (2.2)

A further improvement was the development of models based on primitives
which implicitly store connectivity information. Thus, storing the meshes as
triangle strips or fans considerably reduces the storage cost of a mesh, the
amount of information sent to the graphics system and it also accelerates the
visualization [ESV96b].

One of the first models to use implicit connectivity primitives was MOM-
Fan [RAO+00]. It employed triangle fans both in its data structure and in its
visualization process. The main drawback lies in the high number of degener-
ate triangles produced in the representation, although they can be eliminated
before the visualization. Another disadvantage of this model is that the average
number of triangles that make up each triangle fan is small [AM04], losing the
main advantage of using this kind of primitive.

At a later date the MTS model appeared [BRR+01]. This solution uses the
primitive triangle strip both in the data structure and the rendering algorithm.
Its core idea consists in using a collection of multiresolution triangle strips, each
of them representing a triangle strip for each level of detail. All this is encoded
as a graph, which involves a high storage cost. Moreover, the extraction of the
level of detail is also a high time-consuming task.

Evolution of graphics hardware has given rise to new techniques that allow
us to accelerate multiresolution models. Thus, new papers designed to minimize
the traffic between the CPU and the GPU appeared later on. These models try
to make maximum use of the cache of vertices of the GPU, minimizing traffic
as possible [Cho97, Hop99, BG99], even reducing the pixel redrawing that does
not contribute to the final scene [NBS06]. The main idea is to organize the
meshes in short and parallel strips, that is, linked along many edges that share
as many vertices as possible. The work presented by Chow [Cho97] allows
different regions of a geometric model to be compressed with variable precision
depending on the level of detail present at each region.

There are also several methods based on points as graphics primitives [ZMK02,
DVS03]. The latter proposes a method that converts a hierarchy of points and
polygons into a linear list easily rendered by graphics hardware and with a
minimum load for the CPU. The problem of this method is the impossibility
of applying a hierarchical culling, given the nature of the data structure used.

Ji et al. [JWLL05] suggest a method to select and visualize several levels of
detail by using the GPU. In particular, they encode the geometry in a quadtree
based on a LOD atlas texture [LPRM02]. In the first pass, the atlas is read
as a texture in the GPU, where the level of detail is selected with a pixel
shader that dumps the result into a buffer. Subsequently, that buffer is read in
the CPU and the vertices selected are checked. Finally, another map with the
vertices to be visualized is sent to the GPU, where all the vertices are encoded
in a texture, avoiding sending them every time by the bus. The visualization
primitive used in this solution is the triangle fan. The problem of this method
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is that the CPU must execute in every change of level of detail, testing the
selection maps and creating the new map of vertices which is sent to the GPU.
Moreover, if the mesh is too complex, the representation with quadtrees can be
not very efficient and even the size of the video memory can be an important
restriction.

Variable resolution models

As we have previously commented, the concept of variable resolution in-
volves showing different levels of detail of the same object in a given moment.
In Figure 2.7 an example is shown where a sphere, interactively placed by the
user, selects an area to be represented at maximum level of detail. This area
is rendered at highest detail while the rest of the object is rendered with the
minimum possible resolution, always assuring the connectivity of the mesh.
Consequently, in the same object, two sets of faces can be observed, ones at
maximum level of detail and others at minimum.

Figure 2.7: Variable resolution in the horse model.

HDS [LE97] and MT [DFMP98] were conceived as triangle-based multires-
olution models, although they are both general schemes applicable in the cre-
ation of any multiresolution model. The first of them consists of a tree data
structure that stores simplification sequences, and the second one of an acyclic
graph. There are several models of this type [Hop97, XESA97].
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FastMesh [Paj01] introduced a hierarchical framework which offered effi-
cient algorithms and error metrics for both extraction and simplification. Nev-
ertheless, the authors stress their interest on including triangle strips for faster
rendering.

One of the first models to use triangle strips was VDPM [Hop97]. In general,
this model determines the triangles to be processed and then turns them into
triangle strips to visualize them. This task consumes a considerable amount
of time, but the final performance in the visualization improves because of
the acceleration attained by using this sort of graphics primitive. Later on,
Skip Strips [ESAV99] was the first model to store the triangle strips in its
data structure. Triangle strips are initially calculated and, afterwards, simpler
versions of them are rendered. Skip Strips also uses a series of filters in the
visualization to eliminate degenerate triangles. According to [SP03], this model
also presents a high storage cost.

DStrips [SP03] is another model based on triangle strips. It calculates the
triangle strips to be visualized in execution time, but it only processes the strips
affected by the change of level of detail, without recalculating all the strips in
the mesh. This mechanism reduces the time of extraction of the level of detail.
Nevertheless, according to the results published, it is still a considerable tem-
poral cost. Besides, its data structure is complex and it has a high spatial cost.
Another approximation is Tunneling [Ste01], spread by Porcu [PS03, MP05].
Essentially, it involves using an algorithm that allows us to connect triangle
strips that become more and more simplified and thus obtain strips with many
triangles and reduce their total number. Its main problem is the time required
to carry out these operations, which implies a high extraction cost of the levels
of detail.

Present representations and extraction algorithms are not scalable for mod-
els made up of tens or hundreds of millions of polygons. The extraction cost
is proportional to the size of the model, and it can be prohibitive for massive
models.

Massive or out-of-core models are multiresolution approaches which have
been specifically developed for meshes which exceed by far the capacities of
present hardware. Therefore, only parts of the original mesh can be used for vi-
sualization. Given that these meshes surpass the capacity of the main memory,
specific multiresolution techniques must be adopted for rendering in real-time
this type of meshes. In general, these models create a simplification hierarchy
in external memory that will be employed later for the online visualization of
the required approximation of the original mesh.

The first paper directed at the visualization of massive models suggested
the use of levels of detail in external memory [ESC00]. This model generated
in a pre-process a simplification hierarchy based on edge collapses that will
be used later in the visualization. Afterwards works were presented, improving
substantially the spatial cost by creating new formats of disk storage and the
performance in visualization by using efficient data structures [DP02].
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The model introduced by Erikson et al. [EMB01] was developed to manage
very large environments, and was later improved by Lakhia [Lak04] to offer
better results in dynamic scenarios. Hierarchical models are essentially discrete
models and they suffer from popping artifacts when the scene changes in a fast
way. Lakhia tries to reduce these effects by means of certain heuristics that
advance the load of levels of detail before they are visualized. Another problem
of hierarchical models is that the quality of the simplifications diminishes as
the simplification hierarchy becomes deeper.

More recent models are directed towards exploiting the graphics hardware
with massive models [SM05]. In general, the previous models does not have a
gradual transition between the different levels of detail. They are mainly based
on updating the level of detail before the change is perceived. This model per-
forms geomorphing in the GPU gradually, avoiding the typical popping effect.
This model doubles the number of buffers used in the GPU when it performs
geomorphing at coarser levels of detail, besides performing a great amount of
rendering calls.

A model that incorporates simplification based on vertex hierarchy, out-
of-core functions and occlusion culling is [YSG05]. This model shows in its
results a lower spatial cost than other models such as [DP02] or [Hop97]. It is
based on a cluster hierarchy of Progressive Meshes, where each cluster is made
up of several nodes, and, in turn, each of these nodes contains a progressive
representation of a portion of the original mesh [Hop96]. This allows us to
improve the performance through a hierarchical culling.

2.4.3. Characterization

In Table 2.2 we can observe a description of the multiresolution models for
arbitrary polygonal meshes considered in this review. The description takes
into account several aspects:

Type: it indicates whether the model is discrete or continuous.

Primitive: the sort of primitive the model uses in the visualization.

Resolution: whether the model allows us to visualize various resolutions
in the same mesh (variable) or it is only possible to see a level of detail
throughout the approximation (uniform).

Simplification: it indicates if the simplification technique used in the con-
struction of the model is incremental or hierarchical.

GPU: it indicates if the model analyzed uses any of the latest capacities
of present GPUs.

Massive: whether the model is prepared for extremely big meshes.
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2.5. Conclusions
The use of a discrete or continuous multiresolution model in an application

depends on its requirements. Discrete multiresolution models are a good alter-
native in applications which require few levels of detail in their objects. These
models also offer a simple implementation and these levels of detail can be pol-
ished and improved considerably. Nevertheless, continuous models offer a high
granularity, allowing us to adapt exactly the level of detail desired in each case.
Furthermore, their evolution has allowed us to obtain very low level-of-detail
extraction times and significant accelerations due to the irruption of the new
and powerful GPUs.

As previously commented, multiresolution models can be divided into uni-
form and variable resolution. Although variable resolution schemes are powerful
and very flexible, they usually have a high storage cost and they are usually
slower than uniform ones. Obviously, requirements will determine its applica-
bility. The design of schemes for specific applications, such as computer games
or interactive visualization of vegetation, is an open line.
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CHAPTER 3
Level of Detail using Triangle

Strips

In this chapter, we present a general framework to improve existing mul-
tiresolution models. It makes use of new implicit connectivity primitives such
as triangle strips. It represents a mesh as a set of multiresolution triangle strips
and maintains them both in the data structure and in the rendering stage. This
approach offers features such as connectivity exploitation, uniform and variable
resolution, fast extraction and low storage cost.

3.1. Introduction

As presented in the previous chapter, one possible solution to reduce the
amount of information to be processed by the graphics system consists in us-
ing some kind of simplification or approximation of complex polygonal models.
Management of the level of detail of an object implies to represent it by means
of a surface description that allows the reconstruction of several approxima-
tions. Multiresolution models consists of a representation that stores a range
of approximations of an object and that allows us to obtain any on them as
required [Cla76].

Multiresolution models are often represented by triangle meshes. However,
large triangle meshes are difficult to render at interactive frame rates due to the
large number of vertices to be processed by the graphics hardware. Although
each triangle can be specified by three vertices, it is desirable to order the
triangles so that consecutive triangles share an edge. Such ordered sequences

31
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32 Chapter 3 Level of Detail using Triangle Strips

of triangles are referred to as triangle strips. Using such an ordering, only
the incremental change of one vertex per triangle need be specified, poten-
tially reducing the rendering time by a factor of three by avoiding redundant
transformation, clipping, and lighting computations. Therefore, multiresolution
schemes can be improved by using triangle strips. Storing the model as triangle
strips reduces the amount of information sent to the graphics pipeline and in-
creases the rendering frame rate. In summary, modeling a mesh as a collection
of strips or fans of triangles avoids storing and sending a large amount of redun-
dant information to the graphics system. Hence, it involves better visualization
times and lower storage cost.

With the aim of improving existing multiresolution models, here we present
a general framework [RCBR04]. The proposed model makes use of new implicit
connectivity primitives such as triangle strips. It represents a mesh as a set of
multiresolution triangle strips. This approach offers the following features:

Continuity. Transitions between levels of detail are smooth. They mean
eliminating or adding one vertex.

Connectivity exploitation. The model is based on the use of triangle strips
both in the data structure and in the rendering stage. This leads us to a
reduction in the storage and rendering costs.

Uniform and variable resolution. This scheme permits both uniform and
variable resolution.

Fast extraction. It avoids the intensive use of the CPU that usually takes
place with continuous multiresolution models.

In this chapter, section 3.2 shows how our approach is constructed. Af-
ter that, data structures and algorithms are explained in section 3.3 and 3.4,
respectively. Later, in section 3.5 we present the results obtained from this
approach. Finally, in section 3.6, conclusions are presented.

3.2. Construction of the model
Nowadays, the most available sources of geometric data are polygonal mesh-

es composed of triangles. Construction of the model is performed by a pre-
process consisting of different stages that allows us to obtain a multiresolution
representation from a polygonal mesh. Thus, the model is able to retrieve, at
anytime, the level of detail required by the application. The data flow diagram
of the construction process is shown in Figure 3.2.

In general, the construction of a continuous multiresolution model based on
triangle strips requires two fundamental tasks. On the one hand, it is necessary
to use a simplification algorithm which allows us to obtain a sequence of oper-
ations to generate the different approximations from an object. On the other
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hand, we also need an algorithm capable of converting a polygonal mesh that
is usually composed of triangles into triangle strips.

3.2.1. Simplification
There exist different methods for polygonal simplification, for an overview

see section 2.2. The simplification method applied here is an incremental method,
that is, it is based on a sequence of local updates. For every simplification step,
the mesh is reduced in size and precision. In this context, we can underline the
work on [HDD+93], where the edge collapse and vertex split local operations
were presented. A sequence of n edge collapse operations is applied to simplify
an arbitrary mesh Mn to a much simplifier mesh M0 of the same topology,
reducing the number of vertices by n. Reciprocally, Mn can be reconstructed
by applying n vertex split operations to the base mesh M0.

In particular, we use the half edge collapse variant of this operation of sim-
plification. This variant collapses one vertex into another one, that is, no new
vertices are created because we always refer to an existing vertex to compute
the operation. As shown in Figure 3.1, edge pc collapses into vertex p, produc-
ing the simplified mesh. In the complementary operation, vertex p can be split
into edge pc, thus refining the mesh.

In order to obtain the simplification sequence, any metric can be used in
our approach. We use a metric based on quadric errors [GH97]. In Figure 2.1
we can see the result of applying a simplification algorithm based on quadric
errors to a mesh. This kind of algorithms receives a polygonal model composed
of triangles as a data input and it outputs an ordered edge collapsing sequence.
In order to obtain this sequence, the algorithm maintains a geometric error for
each vertex. This error is calculated as the sum of the quadric of the distances
to the planes lying adjacent to the vertex. As commented before, we deal with
half edge collapses.

Figure 3.1: Half edge collapse and vertex split operations.

Thus, this type of simplification produces an ordered sequence of edges to
be removed in the mesh to progressively obtain coarser meshes. This sequence
can be seen as a series of edge collapse operations and their complementary
operation, vertex split.

Formally, we define a polygonal mesh composed of triangles M, as:

M = {V, T} (3.1)
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where V is a set that contains all the vertices and T is another set that
contains every triangle used to represent the mesh at the highest level of detail.

As shown in Figure 3.2, this process receives a polygonal mesh M={V ,T}.
Internally, it refines this mesh by applying a simplification algorithm. From this
process, we obtain E, that is, the simplification sequence. It is important to
stress that set E is an ordered set of edge collapses that allows us to simplify
the polygonal mesh M . Taking into account that n is the number of levels of
detail available, we can state that:

M0 e0→ M1 e1→ . . .
en−2→ Mn−1 (3.2)

Therefore, every atomic operation of simplification applied to the multires-
olution mesh will mean a different level of detail. Obviously, n will be less than
the number of vertices in the mesh.

Figure 3.2: Data flow diagram of the model construction process.

3.2.2. Stripification

As mentioned in the previous chapter, 3D polygonal models, usually com-
posed of triangles, are the most used in interactive graphics. However, triangle
strips represent, in a compact way, the connectivity of a triangular mesh. An
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3.2 Construction of the model 35

ideal triangle strip codifies a sequence of n triangles using n+2 vertices, see
Figure 3.3. This implies important savings over the codification based on trian-
gles, which requires 3n vertices per triangle. Therefore, by using triangle strips
we obtain improvements in storage costs.

Figure 3.3: Simple geometry represented by means of triangle strips and
triangles.

The process of converting a polygonal model into triangle strips is called
stripification. As commented in the previous chapter, many algorithms imple-
ment this process. We notice that any stripification method can be applied to
our approach.

In the approach that we propose, we use static stripification (see section
2.3.1). We prefer this kind of technique since we thereby avoid strip creation
and destruction, which would imply an additional cost that would make the
model less competitive. This is due to the fact that we should calculate the
new triangle strips at each level of detail, which would penalize the level-of-
detail extraction. Thus, the use of static strips will enable us to have a better
implementation in the GPU, as we will see in chapter 5.

Thus, we process a mesh M={V ,T}, by converting it into another {V ,S},
where V contains all the vertices in the model and S is the set of triangle strips
that compounds the model at the highest level of detail.

Figure 3.4: Edge collapse applied to a triangle strip.

3.2.3. LOD Builder
One objective of this model is to diminish the cost produced by the op-

erations of edge collapse and vertex split into multiresolution triangle strips.
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Moving among levels of detail implies a high temporal cost in extracting the
geometry. Here, we pre-calculate the information that will change, when level-
of-detail transitions take place, and thus store it in a suitable way. Later, we can
query this information in runtime to quickly locate the vertices to be changed.

In Figure 3.4, an edge collapse is applied to a triangle strip. As we can
observe, the result of this collapse can be represented by replacing every oc-
currence of vertex 0 by the vertex 2, that is, vertex 0 collapses to 2. As shown
in Figure 3.5, we can generate different approximations or levels of detail by
applying a sequence of edge collapses to a mesh represented by triangle strips.

As shown in Figure 3.2, this process receives two fundamental types of
information with which to construct the multiresolution model. On the one
hand, and from the simplification process, we obtain the simplification sequence
E, that is, the information needed to transit among the levels of detail. On the
other hand, the stripification process provides us with the mesh in triangle
strips at the highest level of detail {V ,S}.

With this information, it is already possible to build a multiresolution mod-
el. However, every time a change in level of detail is required, we have to search
for the edges to be collapsed in each triangle strip. Obviously, this operation
has a high cost in real time, and it will noticeably affect the performance of the
application. With the aim of creating a more efficient multiresolution model,
the LOD Builder process performs a fundamental task: it calculates and stores
the information required to transit among the levels of detail.

The calculation of transitions consists in extracting every level of detail
of the model, saving the number of strips, that changes in that level of detail
and the place where the vertices to be processed are located. This precalculated
information will allow a fast transit among LODs because it prevents time from
being wasted on looking for the vertices to modify in the real-time application.

Specifically, we name the set of changes that modify the different triangle
strips C. This set is an extension of set E and it is defined as:

C =
n−1⋃
i=0

Ci , n > 0 (3.3)

Where n is the number of LODs available, and Ci is the set of changes to
be applied in the triangle strips at LOD i. Every item in Ci consists of the
modifications to be applied in a particular triangle strip, that is, it stores the
strip that changes and where collapses take place. Formally:

∀ Ci
j ∈ Ci, Ci = { Ei, {ti0, pi

0} , {ti1, pi
1} , ...} , 0 ≤ j < s (3.4)

s being the number of strips to be modified at LOD i. Next, we detail the
meaning of every tuple that compounds Ci

j :

Ei: is the edge collapse to be applied at LOD i.
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Figure 3.5: Sequence of edge collapses applied to a mesh represented by
triangle strips.
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tij : is a scalar that stores the index to one of the triangle strips that is
modified at LOD i.

pi
j : is a scalar that informs us about the position, in the strip tij , where

vertices to be modified are located.

In Figure 3.6, we can observe a simple example where an edge collapse takes
place from edge {0,1} to vertex 1 (notice that an edge always collapses to the
second vertex of the same edge) which implies a modification in strips 0 and
1. Vertex 0 is located in position 4 within both strips. Information about set
C comes wholly from the construction pre-process. In this pre-process, every
modification produced in the triangle strips is calculated and stored in C. This
process goes on its flow until the lowest LOD is reached, storing each and all
of necessary changes to transit among the different LODs.

Figure 3.6: Sets of our approach.

Construction of the model finishes by storing the information in the data
structures used to manage the LOD. We will introduce them in next section.

3.3. Representation
This model represents a mesh as a set of multiresolution triangle strips. Let

M be the original polygonal surface and M t its multiresolution representation.
M t can be defined as:
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M t = {V, St}, 0 ≤ t < n (3.5)

where t and n are: any level of detail and the number of levels of detail
available, respectively. V is the set of all the vertices and St is the triangle
strips used to represent any resolution. Thus, we can express St as a tuple
{S0,C}, where S0 consists of the set of triangle strips at the lowest level of
detail and C is the set of changes required to simplify or refine them.

S0 C0→ S1 C1→ . . .
Cn−2→ Sn−1, n : levels of detail (3.6)

In order to efficiently represent the set C, we perform some operations in
the sets of our model:

1. We order the vertices in the set V according to their simplification se-
quence.

2. We later update the set S so that it reflects a new vertex order.

3. Taking into account that we use the half edge collapse operation to sim-
plify and that this operation collapses one edge into an existing vertex of
that edge, we create an ordered set of vertices W . This set contains the
vertices into which every vertex in V collapses to.

4. We finally remove the edge collapse information E from the set C as it
is now implicitly stored in our model.

Once construction is completed, the data structures are fed and prepared
for their use in runtime. A simple example of this can be observed in Figure 3.7.
On the one hand, the Vertices data structure stores the 3D coordinates and one
index to the vertex where it collapses to. On the other hand, Triangle strips
store indices to the vertex that they are composed of. And, finally, the structure
Changes saves the information required to quickly locate the vertices which are
modified by moving between different levels of detail. A simple implementation
in C++ is shown in Figure 3.8.

3.3.1. Theoretical spatial cost
Before calculating the spatial cost of the model, we assume that cost of

storing a real, integer or pointer value as being a word. Thus, the cost can be
calculated as a sum of the different components of the multiresolution model:
V , W , S and C.

We suppose |V | to be the number of vertices in the model. For each vertex
we must store their 3D coordinates, and so the spatial cost for V is 3|V |
words. On the other hand, W contains indices to the set V , considering that
the number of indices will be at the most |V |, we can state that the spatial
cost for W is |V | words. In brief, the spatial cost, including V and W , is 4|V |.
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Figure 3.7: Simple representation of the data structures.

struct Vertices {
float *listOf3DCoordinates[3];

};
struct Collapses {

struct Vertices *CollapseVertex;

};
struct Strip {

integer *listOfIndices;

};
struct Strips {

struct Strip *listOfStrips;

};
struct Change {

struct Strip *stripToChange;

integer Position;

};
struct ChangesPerLOD {

struct Change *listOfChangesPerLOD;

};
struct Changes {

struct ChangesPerLOD *listofChanges;

};

Figure 3.8: Data structures in C++ of our model.
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In a polygonal mesh, if |T | is the number of triangles and |V | the number of
vertices, according to Euler’s formula, we can suppose that |T | is approximately
2|V |. On the other hand, the theoretical spatial cost for a mesh composed of
triangle strips is |T | +2 | S | words, where |S | is the number of triangle
strips. Obviously, |S | depends on the algorithm applied and varies noticeably.
Therefore, the spatial cost for S is approximately 2|V | + 2|S | words.

Finally, we must analyze the changes produced in the triangle strips that
allow us to transit among the levels of detail. Empirically, we have proved that,
on average, an edge collapse produces a modification in two triangle strips.
However, as we do not remove vertices from the triangle strips, we accumulate
these modifications to the next edge collapses where the collapsed vertex be
involved in. Thus, taking into account that we have a maximum of |V | levels of
detail, we will store 2|V ||V | records of C. Moreover, each element of C contains
two words. Therefore, the spatial cost of C is 2|V |2|V |.

Hence, the spatial cost of the LodStrips multiresolution model is 4|V | +
2|V | + 2|S | + 2|V |2|V | words, that is, (6+2|V |)|V | + 2|S | words.

3.4. Rendering

In general, visualization algorithms try to efficiently manage complex scenes.
Multiresolution modeling improves visualization by rendering the appropriate
level of detail of an object or group of objects within the scene. The most-
used criterion to select the level of detail is the distance from the observer
to the object [Hop97]. Thus, objects closer to the observer are drawn at a
high detail and distant ones at a low detail. Regarding resolution, on the one
hand, if the entire object is drawn at the same detail, we are using uniform
resolution. On the other hand, if the object is represented by different levels of
detail coexisting along the same mesh, then we are using variable resolution.
Often, the parameters of the view are used to select the part of the surface
to be represented at a high detail and, in this case, it is called view-dependent
visualization.

Our model is able to manage both types of resolution. Obviously, we need
different algorithms to support them. In this section, we will examine both
algorithms.

As previously commented, once the model has been constructed, we need
algorithms to be able to support multiresolution capabilities. Our approach
and indeed most multiresolution models have two main algorithms to carry out
these tasks, i.e. a level-of-detail recovery algorithm and a drawing algorithm.
We assume the rendering stage to be a stage that contains these two algorithms,
which are applied in a sequential order: first extraction and then drawing.
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3.4.1. Uniform resolution algorithms

In this section, we will explain the two main algorithms needed to render
the multiresolution mesh at the appropriate level of detail. That level of detail
will be the same in the whole mesh, that is, these algorithms are for uniform
resolution rendering.

Level-of-detail recovery algorithm

This algorithm is responsible for extracting a level of detail from the triangle
strips by applying the pre-calculated operations available in the data structure
Changes. The model uses three data structures. From a visualization point of
view, two of them are static: Vertices and Changes, that is, they never change in
runtime, and the other one, the Triangle Strips, is dynamic. These are adapted
to the level of detail required during visualization. Obviously, every time an
operation is produced, it is applied to the triangle strips. In this way, triangle
strips always have the geometry corresponding to the level of detail used in
that time.

To illustrate this algorithm, we will see how the model transits between
two consecutive levels of detail by generating the appropriate triangle strips
for visualization. In Figure 3.9, we proceed to extract a coarser level of detail
in the model. In order to clarify, to apply an edge collapse or vertex split
operation means to change the level of detail. Of course, we could easily consider
a level of detail as a group of operations. Thus, from the information calculated
in the pre-process, we know that vertex 0 collapses to 1 (information about
collapsing is stored in field p, vertex where it collapses to). Moreover, we also
know the triangle strips that contain that vertex and the position within them.
In the example, we need to change triangle strips 0 and 1, both in position 4,
where vertex 0 is located. In Figure 3.10 we can see the algorithm that was
implemented. With this algorithm, we are able to quickly transit between two
non-consecutive levels of detail.

Drawing algorithm

The aim of the drawing algorithm is to send all the triangle strips to the
graphics system. However, as the model moves to coarser levels of detail, the
triangle strips begin to accumulate repeated vertices. Some multiresolution
models use filtering [ESV99] to remove these vertices. Our work follows the
same line. Most repeated vertices follow the pattern a(aa)+ or ab(ab)+, where
a, b are indices to vertices of the model. Sending this kind of vertices is equiv-
alent to sending degenerate triangles that do not contribute at all to the final
scene but just add overhead to the graphics system. Thus, filtering or removing
these vertices noticeably improves the model because less vertices to be pro-
cessed are needed. Therefore, this algorithm also filters degenerate triangles so
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Figure 3.9: Simple example of a level-of-detail extraction.

Function ExtractLevelOfDetail (newLOD)

// To a coarser mesh

if newLOD>currentLOD then

for lod=currentLOD to newLOD

for change=Changes[lod].Begin to Changes[lod].End

change.ApplyCollapses(Strips);

end for

end for

// To a more detailed mesh

else

for lod=newLOD to currentLOD

for change=Changes[lod].Begin to Changes[lod].End

change.ApplySplits(Strips);

end for

end for

end if

currentLOD=newLOD;

end Function

Figure 3.10: Uniform resolution level-of-detail recovery algorithm.
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Function Draw()

for strip=Strips.Begin to Strips.End

strip.RemoveDegenerate();

strip.Render();

end for

end Function

Figure 3.11: Drawing algorithm.

as to prevent them from being sent to the graphics system. In Figure 3.11 we
can see the algorithm that was implemented.

3.4.2. Variable resolution algorithms

The meaning of variable resolution consist in displaying different levels of
detail on the same object. In Figure 3.12, a sphere interactively located by a
user selects the area to be represented in high detail. This area is drawn at the
highest resolution LOD, while the rest of the object is drawn with the coarsest
resolution possible while maintaining the connectivity of the mesh. Thus, in
the same object, two sets of faces can be observed: a set of faces with a low
level of detail and another one with a high one.

Figure 3.12: Cow model at different resolutions.

To retrieve a variable resolution LOD a criterion or set of criteria is needed.
The criterion is used to decide which part of the object is simplified and which
is refined. This decision could be taken by the user interactively, indicating
which regions should be displayed with the higher or lower resolution, or by
the application. The most-used criteria to represent areas at a high detail,
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are [Hop97]:

View frustum, increasing detail in the regions inside the view frustum.
See Figure 3.13.

Silhouette boundaries, increasing detail in the regions where there are
edges for which one of the adjacent faces is visible and the other is invis-
ible.

Orientation surface, increasing detail at the regions oriented near the
viewer.

Screen-space projections, increasing or decreasing detail in the region
depending on the length of its screen-space projection.

Local illumination, increasing detail in a direction perpendicular to, and
proportional to, the illumination gradient across the surface.

Figure 3.13: View frustum criterion applied to a terrain model.

These criteria can be easily added to our model because the algorithm is
independent of the criteria used.

Level-of-detail recovery algorithm

In general, this algorithm traverses every vertex, and a test function is
evaluated to decide whether the criterion is achieved. Depending on the result,
the vertex included inside the test is processed or not, obtaining a mesh with
different levels of detail. This algorithm is shown in Figure 3.14.

After the level-of-detail recovery algorithm has processed the multiresolu-
tion strips and the criteria have been applied to them, the drawing algorithm
takes over, traversing each strip to obtain their vertices in order to send them to
the graphics system. We can use the same algorithm mentioned in Figure 3.11.
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Function ExtractLevelOfDetail (newLOD)

for vertex=0 to NumberOfVertices-1

if (test(vertex,newLOD)==TRUE) then

for change=Changes[newLOD].Begin to Changes[newLOD].End

change.ApplyCollapses(Strips);

end for

else

for change=Changes[newLOD].Begin to Changes[newLOD].End

change.ApplySplits(Strips);

end for

end if

end for

end Function

Figure 3.14: Variable resolution level-of-detail recovery algorithm.

3.5. Results

In this section, we present the obtained results. Some tests were conducted
to compare our approach to Progressive Meshes [Hop96] and Multiresolution
Triangle Strips [BRR+01], from now on PM and MTS, respectively. The first of
them has been, and still is, a reference model in the multiresolution modeling
field. The second one was one of the first models to use triangle strips. These
multiresolution models were coded in C++ and OpenGL. It is also important
to underline that OpenGL immediate mode was used to render the models as
it facilitates comparisons with other multiresolution models

Tests were applied to three standard meshes from the Stanford University
Computer Graphics repository. This makes it easier to compare them to other
existing models. The hardware used consists of a PC with an Intel Xeon 3.6
Ghz processor and 512 Mb RAM, and with an NVidia GeForce 7800 GTX
(512Mb) graphics card.

We first analyze the spatial cost of our model, comparing it to other existing
models. After that, we also analyze the temporal cost of the model both in
uniform and variable resolution. As regards uniform resolution, we apply the
tests proposed by Ribelles et al. [RCLH99]. In particular, we use the linear test,
which extracts the levels of detail of the model in a linear and proportionately
increasing or decreasing way. Finally, in order to test the variable resolution
capabilities, we apply a plane test to the models. Plane test consist of a plane
that goes through the object from one extreme to the other in a linear way,
thus in front of the plain and behind it the level of detail is high and low,
respectively (see Figure 3.15).
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3.5.1. Spatial cost

Table 3.1 shows a comparison between the multiresolution models com-
mented above. We can observe that our model offers a similar spatial cost to
the other models. However, as the complexity of the model increases, the cost
also grows considerably. This is due to the presence of the degenerate triangles
in the data structures, which are in the triangle strips even though they are
removed when rendering. It is important to underline that our model allows
us to represent a model both in uniform and variable resolution, which affects
spatial cost.

Progressive Previous
#Vertices #Faces Meshes MTS Approach

Cow 2,904 5,804 0.27 0.25 0.39
Bunny 34,834 69,451 3.28 2.96 3.56
Phone 83,044 165,963 7.86 6.76 8.10

Table 3.1: Some features and spatial costs (in MB.) for Progressive Mesh-
es, MTS and our approach.

3.5.2. Temporal cost

Uniform resolution

Table 3.2 shows the results obtained after applying a linear test from the
highest level of detail to the coarser. We extracted the one per cent of the
available levels of detail. As commented before, the models in the comparison
are: Progressive Meshes, MTS and the approach here presented. The total
visualization time is shown first, while the lower part shows the percentage of
this time used to extract the level of detail and the percentage used to draw
the resulting mesh.

As shown in the table, the PM model is very fast in extracting the level
of detail. However, its basic rendering primitive is the triangle, and for this
reason the total visualization time is approximately three times higher than
our approach. The MTS model also shows times that are around twice as high.
It is because MTS produces more strips and it increases the cost to extract the
level of detail.

In Figures 3.16, 3.17 and 3.18 a series of charts allows us to graphically
analyze the performance of the three multiresolution models used in the com-
parison. The x axis shows the level of detail in the interval [0,1], zero being
the highest level of detail and one the lowest one. Essentially, we observe that
as our approach moves to lower levels of detail it sends more vertices than
PM due to the accumulation of degenerate triangles in the triangle strips, .
On the other hand, MTS sends fewer vertices because it breaks the triangle
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Models Progressive Our
Meshes MTS Approach

Render (ms) Render (ms) Render (ms)
% Rec % Drw % Rec % Drw % Rec % Drw

Cow 0.711 0.370 0.245
26 74 62 37 40 60

Bunny 6.625 4.070 1.956
3 97 51 49 37 63

Phone 16.265 8.839 4.705
2 98 38 62 34 66

Table 3.2: Linear test applied to the multiresolution models PM, MTS
and our approach.

strips dynamically, but this task considerably affects the performance of the
model. Our model offers a noticeable trade-off between vertices that are sent
and performance in rendering. As shown in the charts, our approach obtains
visualization curves that are always below the other models it is compared to.

Variable resolution

In order to test the variable resolution capabilities on our approach, we
performed a plane test based on position along the x axis to the cow, bunny
and phone models. In Figure 3.15, we can see a model simplified with the
mentioned test.

In Figures 3.19, 3.20 and 3.21, we show the results of these tests. The higher
parts show the vertices sent to the graphics pipeline while the plane is traversing
the object. Plane position is in the interval [0,1], zero being the plane on the
left of the object by showing the whole model at a high level of detail, and one
being the plane on the right of the object by showing the whole model at a low
level of detail. A 0.5 value means that the plane is located in the middle of the
object by showing the left part at a high level of detail and the rest at a low
one. In these figures, the lower parts show the frame per second rates reached
while running the plane test.

As expected, the number of vertices sent decreases as plane traverses the x
axis. In this way, frame per second rates increase as more surface at a low level
of detail is processed.

3.6. Conclusions
We introduced an approach that improves the time required to extract dif-

ferent levels of detail in multiresolution schemes based on triangle strips [RCBR04].
Moreover, by means of a filter in the visualization, it removes most degenerate



“tesis” — 2008/4/28 — 19:02 — page 49 — #65i
i

i
i

i
i

i
i

3.6 Conclusions 49

Figure 3.15: Plane test applied to the bunny model.

triangles produced in the lower levels of detail of the model. However, filtering
these repeated vertices is a time-consuming task and it is applied every frame
when rendering.

With respect to the temporal cost, the model presented here has a better
cost than the models it has been compared with [RC04a]. Indeed, the time
employed to recover the level of detail is quite low compared to other models
based on triangle strips, like MTS, and similar to models based on triangles, like
PM. Nevertheless, the model can be further improved as far as its extraction
cost is concerned by removing more degenerate triangles and moving detection
and elimination to the pre-process. Thus, we can previously detect and save that
information and create a uniform resolution model faster than the approach
here introduced, although we would lose variable resolution capabilities [RC04c,
RCG04].
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(a) Vertices sent per level of detail.

(b) Rendering times per level of detail.

Figure 3.16: Uniform resolution: linear test applied to the cow multires-
olution model.
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(a) Vertices sent per level of detail.

(b) Rendering times per level of detail.

Figure 3.17: Uniform resolution: linear test applied to the bunny mul-
tiresolution model.
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(a) Vertices sent per level of detail.

(b) Rendering times per level of detail.

Figure 3.18: Uniform resolution: linear test applied to the phone mul-
tiresolution model.
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(a) Vertices sent during the plane test.

(b) Frames per second during the plane test.

Figure 3.19: Variable resolution: plane test applied to the cow multires-
olution model.
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(a) Vertices sent during the plane test.

(b) Frames per second during the plane test.

Figure 3.20: Variable resolution: plane test applied to the bunny mul-
tiresolution model.
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(a) Vertices sent during the plane test.

(b) Frames per second during the plane test.

Figure 3.21: Variable resolution: plane test applied to the phone mul-
tiresolution model.
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CHAPTER 4
LodStrips: A Uniform

Resolution Model

In the previous chapter, we conducted a detailed study of some fundamen-
tal aspects involved in creating a continuous multiresolution model based on
implicit connectivity primitives. We introduced a model that enables multires-
olution meshes to gain the rendering speed-up from using optimized rendering
primitives, such as triangle strips. Taking that preliminary study into account,
we specifically design LodStrips, a uniform resolution model based on triangle
strips that features a fast level-of-detail extraction and a low spatial cost.

4.1. Introduction

Applications such a videogames usually makes use of uniform multiresolu-
tion models due to their simplicity (data structures and algorithms are simpler
than in variable resolution models) and efficiency (they only extracts one level
of detail, while in variable resolution models we must check the level of detail
to be extracted for different parts of the mesh). With that aim, we specifically
develop a uniform resolution model. As explained in section 3.4, the basic ap-
proach uses filtering in visualization to remove degenerate triangles produced
when simplifying. However, filtering these repeated vertices every frame is a
time-consuming task that could be improved if we could precalculate that in-
formation. Using uniform resolution enables us to previously detect and remove
degenerate triangles. Moreover, it greatly improves visualization and storage
cost. This model features:

57
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Uniform resolution. We specifically design and implement a uniform res-
olution model.

Degenerate triangles elimination. We remove degenerate triangles from
a pre-process, allowing us to speeding the extraction up. On the one
hand, vertices in the triangle strips are not continuously filtered at the
rendering stage. On the other hand, degenerate vertices are removed from
the triangle strips before rendering, taking advantage of frame to frame
coherence in the triangle strips.

Low storage cost. We improve spatial cost from the previous approach.
As we detect and remove degenerate triangles before rendering, we do
not need to save the information of these repeated vertices into the data
structures that allows us to change the level of detail.

Rendering speed up. Due to removing degenerate triangles from the tri-
angle strips before the rendering stage, this stage is noticeably improved.

This chapter is organized as follows: construction of the LodStrips model,
with internal details, is presented in section 4.2. Section 4.3 and 4.4 introduce
its data structure and algorithms. Later, in section 4.5 we present the results
obtained from comparing this model with other models. Finally, in section 4.6,
conclusions are presented.

4.2. Construction of the model
This model is built mainly upon two algorithms: construction of a simplifi-

cation sequence [GH97] and generation of triangle strips [ESV96b]. We combine
the information obtained from those algorithms in order to apply the simpli-
fication sequence to a model represented by triangle strips. Let us overview
again the general process followed, which is shown in Figure 3.2.

4.2.1. Simplifification and stripification overview
In general, we define a polygonal mesh composed by triangles M, as:

M = {V, T} (4.1)

where V is a set that contains all the vertices and T is another set that
contains every triangle used to represent the mesh at the highest level of detail.

The most important information obtained from the simplification process is
the edge collapse sequence necessary to simplify the mesh M . This information
allows us to obtain some versions, at different level of detail, from a polygonal
mesh, see Figure 2.1.

The simplification receives a polygonal mesh M={V ,T}, and it refines this
mesh by applying the simplification E, where E is the ordered set of edge
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collapses that allows us to simplify the polygonal mesh M . We underline again
that every atomic operation of simplification applied to the multiresolution
mesh will mean a different level of detail. Moreover, the highest level of detail
will be zero and the lowest one n-1.

Regards to stripification, this process consists of creating, from a polygonal
mesh geometrically composed of triangles, another mesh composed of triangle
strips. This process does not change from the basic scheme either. Therefore,
it processes a mesh M={V ,T}, by converting it into another {V ,S}, where
V contains all the vertices in the model and S the set of triangle strips that
compounds the model at the highest level of detail.

4.2.2. LOD Builder

As commented in the introduction, one feature of the LodStrips model is
that it removes degenerate triangles from the triangle strips by avoiding the
scanner needed in the rendering stage of the basic scheme. It removes every
degenerate triangle from the data structure used to render. Thus, we can pre-
calculate those eliminations in a pre-process.

As expected, this process receives the information needed to transit among
the levels of detail, simplifying the geometry E and the mesh in triangle strips at
the highest level of detail {V ,S}. This information enable us to build a simple
multiresolution model that extracts the different levels of detail. In order to
accelerate extraction and efficiency, the initial construction process performs
two fundamental tasks:

it calculates and stores every transition among the levels of detail.

it removes degenerate triangles in every transition, storing that informa-
tion.

On the one hand, calculation of transitions consists in transiting every LOD
of the model, storing the strip or strips which changes in that LOD and the
place where vertices to be processed are. On the other hand, we detect and re-
move degenerated triangles produced by the simplification. This pre-calculated
information will allow a fast transit among LODs because it avoids to waste
time looking for the vertices to modify in the real-time application. Moreover,
it enable us to quickly remove degenerate triangles and therefore, filtering in
rendering is not needed anymore. Thus, we will use the following patterns,
which represent the 90 per cent of the degenerate triangles to be appeared in
the triangle strips:

Type 1: we replace pattern vertices such as a(aa)+ by aa, where a ∈| V |.

Type 2: we replace pattern vertices such as ab(ab)+ by ab, where a,b
∈| V |.
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Figure 4.1 shows the effect of applying degenerate-triangles filter to a tri-
angle strip. The first column shows a triangle strip geometric representation
along successive simplifications. In the second and third columns, we can see
the triangle strip indices obtained from the simplification. In the first edge col-
lapse, when applying the simplification we generate a 4 7 4 7 sequence, which
is an ab(ab)+ pattern, and which could be removed from the strip while keeping
its geometry intact. After that, when applying the second edge collapse a 3 3
3 sequence appears, a a(aa)+ pattern, and it is also removed from the triangle
strip. It is obvious that removing degenerate triangles results in sending fewer
vertices to the graphics system and a lower system load. In this example, af-
ter four edge collapses, filtering the number of vertices sent to the pipeline to
render the same geometry halves the number produced without filtering.

Figure 4.1: Triangle strips simplification both filtering and not filtering
degenerate triangles.

We name C the set of changes that modifies the different triangle strips. In
order to add filtering to the model, we need to reformulate this set. We define
C as:
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C =
n−1⋃
i=0

Ci , n > 0 (4.2)

where n is the number of LODs available, and Ci is the set of changes to
apply in the triangle strips at the LOD i. Every item in Ci consists of the
modifications to apply in a particular triangle strip, that is, it stores the strip
that changes, where collapses take place and where are the degenerate triangles
to be removed after applying those collapses. Formally:

∀ Ci
j ∈ Ci, Ci = { Ei{}, {ti0, pi

0, r
i
0} , {ti1, pi

1, r
i
1} , ...} , 0 ≤ j < si (4.3)

being si, the number of strips to modify at the LOD i. Next, we detail the
meaning of every tuple that compounds Ci

j :

Ei: this is the edge collapse to be applied at LOD i.

tij : this is a scalar that stores the index to one of the triangle strips that
is modified at the LOD i.

pi
j : this is a scalar that informs us about the position, in the strip tij ,

where vertices to be modified or removed are located.

ri
j : this scalar can adopt positive values (indicating how many degenerate

triangles of type one there are to be removed at position pi
j), negative

values (indicating how many degenerate triangles of type two there are
to be removed at position pi

j) and zero (indicating that a vertex collapse
will take place at position pi

j).

Finally, the model is composed of the sets: V , S and C.

4.3. Representation
We perform some operations in the sets of the model to efficiently represent

it. These operations have already been commented in section 3.3. We thereby
obtain the sets:

V : Vertices ordered according to their simplification sequence.

W : Indexes of the vertices where each vertex in V collapses to.

S: Triangle strips at the highest level of detail.

C: Changes to be applied to the triangle strips that enable us to obtain
the different approximations or levels of detail.
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4.3.1. LodStrips construction example

In the following example, we show the construction sequence of the model
obtained from the cited information. Thus, if we suppose that the sets W and
S are:

W={1,8,3,...}

S={{6,5,4,7,0,8,1,9,10}, {6,11,4,3,0,2,1,16,10}, {11,12,3,13,2,14,16,15}}

In Figure 4.2, we can observe the construction data flow diagram. In previ-
ous sections, we have already explained that, in this model, the simplification
vertex sequence follows an increasing natural order, that is, the first vertex to
be simplified is zero, the second vertex is one, etc. Furthermore, the set W is
implicitly ordered in such a way that vertex zero collapses to one, one to eight
and so on.

Initially, we start from the highest level of detail, S, and we apply successive
edge collapses on the triangle strips. During their simplification some degener-
ate triangles could be produced and these would be removed from them. All
this information is stored in C. Thus, when the process finishes, we have the
necessary information to reconstruct every LOD in the model.

Therefore, the process begins by applying the first collapse to set S. This
implies collapsing vertex zero to one. The process search for the vertex zero in
every triangle strip in order to replace it with vertex one. Once we have found
the places where this vertex is located, we then proceed to update S and we
store that information in C. In the example case, vertex zero is in position
four at strip zero, {0, 4, 0}, and position four at strip one, {1, 4, 0}. The last
zero informs us about the type of register, in this case an edge collapse. Thus,
the fist subset in C, that is C0, is equal to {{0, 4, 0}, {1, 4, 0}}. After that, we
proceed with the next collapse: vertex one collapses to eight. As well as storing
positions of vertex one in order to collapse it (strip zero, positions four and
six and strip one, positions four and six: {{0, 4, 0},{1, 4, 0},{0, 6, 0},{1, 6, 0}}),
we detect a degenerate triangle in strip zero position four. Finally, the subset
C1 contains {{0, 4, 0},{1, 4, 0},{0, 6, 0},{1, 6, 0},{0, 4, 1}}. This process contin-
ues its flow until the lowest LOD is reached, storing each and every change
needed to transit among the different LODs.

The data structures proposed for saving the model are shown in Figure 4.3.
In particular, V contains every vertex of the model, which are stored in the

data structure Vertices. The sequence of collapses to be applied to the different
vertices, that is W , is saved in the structure Collapses. Triangle strips at the
highest level of detail are stored in Strips. Finally, the changes needed to modify
the resolution of the triangle strips are saved in Changes.
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Figure 4.2: Simple example of construction of the model.
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struct Vertices {
real *listOf3DCoordinates[3];

};
struct Collapses {

struct Vertice *CollapseVertex;

};
struct Strip {

integer *listOfIndices;

};
struct Strips {

struct Strip *listOfStrips;

};
struct Change {

struct Strip *stripToChange;

integer Position;

integer TypeOfRecord;

};
struct ChangesPerLOD {

struct Change *listOfChangesPerLOD;

};
struct Changes {

struct ChangesPerLOD *listofChanges;

};

Figure 4.3: Fundamental data structures of the multiresolution model.

4.3.2. Theoretical spatial cost

Before calculating the spatial cost of the model, we assume that the cost of
storing a real, integer or pointer value as being a word. Thus, the cost can be
calculated as a sum of the different components of the multiresolution model:
V , W , S and C. As commented in section 3.3.1, the spatial cost of V , W and
S is 6|V | + 2|S | words.

Finally, we proceed to analyze the changes produced in the triangle strips
that allow us to transit among the levels of detail. Empirically, we have proved
that, on average, an edge collapse produces a modification in two triangle strips
and one degenerate triangle. Taking into account that we have a maximum of
|V | levels of detail, we will store 3|V | records of C. Moreover, each element of
C contains three words. Therefore, the spatial cost of C is 9|V |.

Hence, the spatial cost of the LodStrips multiresolution model is 6|V | +
2|S | + 9|V | words, that is, 15|V | + 2|S | words. A mesh composed of triangle
strips has a spatial cost of 5|V |+2|S | words. Therefore, our model has a spatial
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cost approximately three times higher than the original model.

4.4. Rendering
Obviously, besides data structures, multiresolution models need algorithms

to manage the level of detail. The model presented here, and indeed most mod-
els, have two fundamental algorithms to perform this task. Thus, we assume
the rendering stage to be a stage consisting of two algorithms applied sequen-
tially. The first algorithm extracts the level of detail and the second visualizes
the resulting mesh.

4.4.1. Level-of-detail extraction

The level-of-detail extraction algorithm processes requests from graphics
applications that imply a modification in the level of detail. This algorithm
allows us to efficiently obtain a mesh in uniform resolution from a geometric
representation.

The graphics dataset is represented as a set of triangle strips. We have two
representations for each triangle strip. On the one hand, we use a representation
that supports constant or linear time in insertion and removal of elements to
perform modifications in the triangle strip. On the other hand, we draw the
geometry by means of a representation with a constant access time. Thus, when
the level of detail does not change we access the triangle strips in constant time.
Both representations are maintained and suitable for the current level of detail.
We will refer to them as recovery strips and draw strips, respectively.

Each time a change in level of detail is required, edge collapses or vertex
splits take place in the recovery strips. While changing the strips, they are also
marked as modified. After that, the drawing algorithm goes into action and the
recovery strips that remain unmodified are rendered by means of their copy in
draw strips. However, if a recovery strip is modified, its content is copied to its
corresponding draw strip while rendering.

Therefore, this algorithm comes into operation when the graphics applica-
tion requires a change in the level of detail of the represented object. Set C
is processed from the current level of detail to the new one (CCurrentLOD to
CNewLOD) by applying geometric transformations to the set of triangle strips.
It is important to underline that edge collapses or vertex splits are applied to
a mesh when the LOD demanded is higher or lower than the current one.

In Figure 4.4 we can observe the pseudo-code associated to this algorithm.

4.4.2. Drawing

After the level-of-detail extraction algorithm has modified the object geom-
etry, the drawing algorithm begins to run. As commented before, this algorithm
updates the draw strips when required and finally renders them. In general, we
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Function ExtractLevelOfDetail (newLOD)

// Determine whether newLOD is higher or lower than the current one

if newLOD>currentLOD then

for lod=currentLOD to newLOD

for change=Changes[lod].Begin to Changes[lod].End

if change.isCollapse() then

change.ApplyEdgeCollapses(RecoveryStrips);

else

change.RemoveDegenerateTris(RecoveryStrips);

end if

end for

end for

else // To a more detailed mesh

for lod=newLOD to currentLOD

for change=Changes[lod].Begin to Changes[lod].End

if change.isSplit() then

change.ApplyVertexSplit(RecoveryStrips);

else

change.RestoreDegenerateTris(RecoveryStrips);

end if

fin para

end for

end if

end Function

Figure 4.4: Level-of-detail extraction algorithm.

will render the geometry by means of a triangle strip representation with con-
stant time access, which implies optimum performance when sending them to
the graphics system. In conclusion, by using both representations we take ad-
vantage of constant time to access the triangle strips and linear time to insert
and remove elements from them.

4.5. Results

Tests and experiments were carried out with a Dell Precision PWS760 Intel
Xeon 3.6 Ghz with 512 Megabytes of RAM, the graphics card was a NVidia
GeForce 7800 GTX 512. Implementation was performed in C++ and OpenGL
as support graphics library. We used the immediate mode to render the ge-
ometry because it facilitates comparisons with other multiresolution models.
Among other aspects, the next chapter will deal with acceleration in rendering.
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Function Draw ()

for indexStrip=0 to NumberOfStrips-1

// Refresh draw strip content if recovery strip modified

if RecoveryStrips[indexStrip].Modified then

RecoveryStrips[indexStrip].CopyTo(DrawStrips[indexStrip]);

RecoveryStrips[indexStrip].SetUnModified();

end if

DrawStrips[indexStrip].Render();

end for

end Function

Figure 4.5: Drawing algorithm.

The different objects used to generate multiresolution models are meshes
in OBJ format, which allows us to manage its geometry easily. In Table 4.1,
we show some objects used as a reference. We specify the number of vertices
and triangles which compose them, together with the cost of storing all that
information.

Original
Vertices Triangles MB.

Cow 2,904 5,804 0.10
Capone 3,618 7,124 0.12
Boat 6,082 12,268 0.21
Car 21,310 42,964 0.74
Bunny 34,834 69,451 1.19
Dragon 54,294 108,588 1.86
Phone 83,044 165,963 2.85
Isis 187,644 375,284 6.44
Buddha 543,699 1,085,634 18.65

Table 4.1: List of models with their main features and their original
storage cost.

4.5.1. Analysis

Before presenting the results obtained, we will carry out a preliminary study
of some important questions related to the model. On the one hand, filtering
or removing degenerate triangles is a key question in the model. On the other
hand, the number of level of detail extractions is important in order to deter-
mine the model’s performance.
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Filtering

With the aim of analyzing filtering of degenerate triangles, we studied the
impact of applying different filters to a multiresolution model: the Bunny mod-
el. Thus, in Figure 4.6, we compare a multiresolution model based on LodStrips
applying different filters and a model based on triangles, in this case Progressive
Meshes [Hop96]. Moreover, we can observe the difference in times obtained by
applying filtering in Figure 4.7. Obviously, as the model moves toward coarser
LODs, the number of vertices sent is noticeably decreased due to filtering. It
is important to notice that from certain LODs, PM sends fewer vertices to
the pipeline. However, temporal cost is better in LodStrips due to the graphics
primitive which is based on.

Figure 4.6: Vertices sent to the GPU per level of detail by applying
different filters to the Bunny model. Lowest level of detail means the model
simplified at 90 %.

Extraction

Before evaluating the temporal cost of the model, it is necessary to analyze
the context where it will take place. We have implemented the linear test pro-
posed by Ribelles [RCLH99]. This test extracts and renders, in a linear way, a
number of levels of detail given by the user or application. Moreover, we must
decide on the parameters to be used in running the linear test on the models.
On the one hand, we will apply the test from the highest level of detail to the
lowest one, which corresponds to the model simplified at 90% and, on the other
hand, we must select a number of approximations to be extracted.

In Table 4.2, we show some tests applied to the Bunny model. In this table,
each row shows:



“tesis” — 2008/4/28 — 19:02 — page 69 — #85i
i

i
i

i
i

i
i

4.5 Results 69

Figure 4.7: Frames per second per level of detail by applying different
filters to the Bunny model.

the number of levels of detail extracted.

the number of edge collapses processed to transist between one level of
detail and the next one.

the time employed to run the whole test.

the time employed only to extract the different levels of detail.

what percentage of the total test time is spent on extracting

At this point, we must underline one of the LodStrips characteristics we
have already commented earlier: the low time required to retrieve one LOD.
We have decided to extract 1,000 levels of detail in the tests carried out in
the following sections. In Figure 4.8, we show the percentage of time (when
applying a linear test to different models) spent on the extraction of 1,000
levels of detail.

4.5.2. Spatial cost

Spatial costs from the models taken as references are shown in Table 4.3. For
each model, we specify the triangle strips that compose them (strips generated
by means of the STRIPE algorithm [ESV96b]), the number of approximations
or levels of detail available, storage cost in main memory and, finally, the re-
lation between storing the multiresolution model and the original model. We
can easily observe that the cost of storing the whole model ranges is between
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Extractions Step Test (ms.) Extraction (ms.) % Extraction
10 3135 28.83 9.48 32.9
100 313 210.44 14.49 6.9
500 62 904.46 19.40 2.1

1,000 31 1,800.52 24.85 1.4
10,000 3 16,776.4 49.46 0.3

Table 4.2: Extraction times of the Bunny model extracting different
LODs. The model consists of 31351 levels of detail.

Figure 4.8: Percentage of time spent on extraction for different models
by applying a linear test with 1000 LOD extractions.

2.11 and 2.69 times higher than storing the original mesh (mesh at the highest
level of detail and represented by triangle strips).

4.5.3. Temporal cost

Results shown in this section were obtained under the conditions mentioned
above. We applied a series of tests to the reference models, where levels of de-
tail were in the interval [0, 1], zero being the highest LOD and one the lowest
one. We also considered the model simplified at 90 % to be the lowest LOD.
Transition between the different LODs used in the tests follows the criteria
proposed in section 4.5.1. Results for some models are shown from Figure 4.10
to Figure 4.15. We can see how the extraction time is a small percentage of
the model. Graphically, this time consists in the difference between the render-
ing and the drawing time, we consider rendering as the sum of extracing and
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LodStrips Ratio
Strips LODs Total (Mb)

Cow 136 2,614 0.22 2.21
Al Capone 177 3,256 0.26 2.11
Boat 399 5,474 0.55 2.62
Car 1,396 19,179 1.98 2.69
Bunny 1,229 31,351 2.88 2.41
Dragon 1,787 48,865 4.28 2.30
Phone 1,747 74,740 6.56 2.31
Isis 5,141 168,880 15.11 2.35
Buddha 31,596 489,329 46.95 2.52

Table 4.3: List of models with their features and the LodStrips storage
cost.

drawing a level of detail.
In Figure 4.9, we can observe LodStrips performance compared to other

well-known multiresolution models. In these figures, it is important to notice
that although LodStrips sends more vertices than MTS, we obtain better ren-
dering times due to the large amount of time that the latter model spends on
extracting.

4.6. Conclusions
In this chapter we have introduced LodStrips [RC04b], a multiresolution

model wholly based on an implicit connectivity primitive: the triangle strip.
This model allows us to efficiently transit between different levels of detail in
real-time applications [RCC04].

The LodStrips model offers many advantages and it should be underlined
that it offers a fast level-of-detail extraction which allows us to obtain smooth
transitions between levels of detail as well as considerable rendering times be-
cause extraction is usually an important part of the total rendering time. This
model offers an important reduction in storage and rendering costs when com-
pared to other well-known multiresolution models.

Reduction in spatial costs has been shown in the previous sections, where
it can be seen how a LodStrips model can store an object in a memory space
that is similar in size to twice the size of the original mesh in triangle strips.
We thereby can allocate more objects in memory than with other models.

It has been shown how LodStrips has better temporal cost than the MTS
and PM models. It also allows us to obtain a fast-rendering model, which
is important in critical applications and, what is more, it accelerates scene
rendering by increasing the frame per second rate.
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(a) Bunny: Vertices sent per level of detail.

(b) Bunny: Rendering times per level of detail.

Figure 4.9: Charts obtained for the Progressive Meshes, MTS and Lod-
Strips multiresolution models based on the Bunny object.
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(a) LOD 0 (b) LOD 0.5 (c) LOD 1

(d) Vertices sent to the GPU per level of detail.

(e) Rendering and drawing times per level of
detail. Rendering=Extracting+Drawing. The
difference between the curves means extraction
times.

Figure 4.10: Results obtained for the multiresolution model based on the
Cow object.
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(a) LOD 0 (b) LOD 0.5 (c) LOD 1

(d) Vertices sent to the GPU per level of detail.

(e) Rendering and drawing times per level of
detail. Rendering=Extracting+Drawing. The
difference between the curves means extraction
times.

Figure 4.11: Results obtained for the multiresolution model based on the
Bunny object.
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(a) LOD 0 (b) LOD 0.5 (c) LOD 1

(d) Vertices sent to the GPU per level of detail.

(e) Rendering and drawing times per level of
detail. Rendering=Extracting+Drawing. The
difference between the curves means extraction
times.

Figure 4.12: Results obtained for the multiresolution model based on the
Dragon object.
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(a) LOD 0 (b) LOD 0.5 (c) LOD 1

(d) Vertices sent to the GPU per level of detail.

(e) Rendering and drawing times per level of
detail. Rendering=Extracting+Drawing. The
difference between the curves means extraction
times.

Figure 4.13: Results obtained for the multiresolution model based on the
Phone object.
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(a) LOD 0 (b) LOD 0.5 (c) LOD 1

(d) Vertices sent to the GPU per level of detail.

(e) Rendering and drawing times per level of
detail. Rendering=Extracting+Drawing. The
difference between the curves means extraction
times.

Figure 4.14: Results obtained for the multiresolution model based on the
Isis object.



“tesis” — 2008/4/28 — 19:02 — page 78 — #94i
i

i
i

i
i

i
i

78 Chapter 4 LodStrips: A Uniform Resolution Model

(a) LOD 0 (b) LOD 0.5 (c) LOD 1

(d) Vertices sent to the GPU per level of detail.

(e) Rendering and drawing times per level of
detail. Rendering=Extracting+Drawing. The
difference between the curves means extraction
times.

Figure 4.15: Results obtained for the multiresolution model based on the
Buddha object.
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CHAPTER 5
LodStrips on the GPU

In the previous chapter, we introduced LodStrips, a continuous multiresolu-
tion model that manages data structures and algorithms for real-time rendering
of meshes with uniform level of detail. Following the same philosophy as that
underlying LodStrips, we introduce some modifications in the original model
which allow us to noticeably improve its performance in recent graphics hard-
ware. Some of the most important changes include a representation of the model
on the GPU and the application of new hardware acceleration techniques that
take advantage of the new GPU features.

5.1. Introduction
Nowadays GPUs offer new capabilities that, when exploited to the maxi-

mum, allow the multiresolution models to accelerate even more. One of these
involves storing information directly in the memory located in the GPU. This
characteristic allows information to be managed in the GPU while avoiding da-
ta transfer between the CPU and the GPU and taking the maximum advantage
of the proximity of the memory and the graphics processor.

Another important issue is the kind of bus that joins the CPU and the
GPU. AGP buses are far better optimized to upload data than to download it,
thus favoring the use of the memory of the graphics card to store static objects
that do not change their geometry. But the appearance of the PCI-Express bus
makes it possible to use a symmetric bus, which allows data to be uploaded
and downloaded to and from the GPU at the same speed, so that it is possible
to work with the GPU memory and dynamic geometry in a reliable way. The
use of stripification algorithms, which attempt to take maximum advantage

79
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80 Chapter 5 LodStrips on the GPU

of the GPU cache, and the new extensions of graphics libraries that allow
visualization of a whole mesh with only a few instructions are also examples
of these new techniques. Thus, the model have been greatly improved both in
rendering times and in spatial cost.

We have organized this chapter as follows: we will carry out an analy-
sis concerning stripification (section 5.2) and hardware acceleration techniques
(section 5.3). Section 5.4 introduces the LodStrips model in the GPU, it details
the new representation (section 5.5) and algorithms (section 5.6) for the GPU
exploitation. Later, section 5.7 shows the different results obtained. Finally, we
finish the chapter with the conclusions, in section 5.8.

5.2. Stripification techniques

The use of optimized rendering primitives elicits a performance gain in
graphics systems. Graphics processors allow us to represent 3D objects prop-
erly by using triangles, triangle strips, triangle fans, and so on. Given an ob-
ject representation in triangles, there exist some algorithms that can obtain
its equivalent representation in triangle strips. This process is usually named
Stripification. LodStrips is a multiresolution model that admits any kind of
mesh composed of triangle strips.

As commented in previous chapters, the stripification process is involved in
the construction and management of multiresolution models based on triangle
strips. This process can be carried out in a dynamic or a static way. Dynamic
stripification involves generating the triangle strips in real time, that is, for
each level of detail new strips are generated. On the other hand, static strip-
ification entails first creating triangle strips and then working with versions
of the original strips. There are several models that use dynamic stripifica-
tion [Ste01, SP03], especially variable resolution models. Other models such
as [ESAV99, RAO+00, BRR+01], however, use static stripification techniques.

From a performance point of view and given the architecture of present-day
GPUs, it is better to employ static stripification techniques since we thereby
avoid strip creation and destruction in the GPU, which would imply an ad-
ditional cost that would make the model much less competitive. Furthermore,
there is an additional cost stemming from the calculation of the new triangle
strips at each level of detail, which also penalizes the use of dynamic techniques.

In previous chapters, we have analyzed LodStrips by using the stripifica-
tion algorithm STRIPE [ESV96b]. To accelerate the rendering, we will use the
NvTriStrip algorithm [BD02]. Both algorithms allow us to obtain a triangle
strips representation from a model composed of triangles. However, NvTriStrip
has a distinctive and important feature that accelerates geometry visualization:
it exploits the vertex cache. Current GPUs have a series of records which store
the last 16 or 24 vertices that have been used. Thus, we can send the geometric
information to the pipeline in an ordered way, so that page faults are kept to a
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minimum, that is, by reusing the maximum number of vertices that are in the
GPU vertex cache. As commented before, we will use the NvTriStrip algorithm
to accelerate rendering.

In Figure 5.1, we show some meshes in triangle strips generated by means of
STRIPE and NvTriStrip algorithms. We could accept that triangle strips creat-
ed by STRIPE offer a better performance than those generated by NvTriStrip
because the mesh has less triangle strips and sends fewer vertices. However,
performance of the mesh obtained by applying NvTriStrip is better because it
reuses the vertex cache far better.

5.3. Hardware acceleration techniques

There exist a number of different solutions to exploit graphics hardware
and they are directly linked to the graphics library. In this work, we have used
OpenGL, although DirectX offers similar features. Traditionally, OpenGL offers
two ways to render geometry, namely immediate mode and display lists.

Use of immediate mode implies that, for each frame, that applications must
send all the geometric information to the GPU. If data do not change very often,
this mode wastes a lot of time on transferring data to the GPU when compared
to storing data in the graphics memory. That is, the immediate mode transfers
data (vertices, normals, ...) in an individual way, it involves a considerable
amount of traffic between the CPU main memory and GPU through the bus
that interconnects them. Moreover, it noticeably affects to the GPU parallelism.

Implicit connectivity primitives reduce this traffic. However, it continues to
be very important. As an alternative to the immediate mode, OpenGL provides
display lists. This allows us to group a series of commands and store them in
the graphics memory, thus avoiding the traffic in the graphics bus. However,
if mesh geometry changes in a frame, which is very usual in multiresolution
solutions, we should create a new display list and transfer it to the graphics
memory. This would cause a significant bottleneck in applications that work
with level of detail.

Another solution that OpenGL offers, which is different to display lists, is
vertex arrays. These allow data associated to the vertices to be grouped in
arrays, which leads to similar advantages to those provided by display lists.
However, whenever we render an object using vertex arrays, we must validate
them every time that we refer to them, which implies a greater workload on
the data transfer.

Vertex buffer objects, or VBOs, increase the capabilities of OpenGL by of-
fering most of the benefits of immediate mode, display lists and vertex arrays,
as well as avoiding some of their limitations. They efficiently group and store
data, in the form of vertex arrays, thus improving their transfer. Moreover, ap-
plications are able to modify the data with no extra cost due to data validation.
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(a) STRIPE: 136 strips. 7190
vertices sent.

(b) NvTriStrip: 551 strips. 7774
vertices sent.

(c) STRIPE: 1.229 strips. 82762
vertices sent.

(d) NvTriStrip: 6194 strips.
90182 vertices sent.

(e) STRIPE: 1787 strips.
125579 vertices sent.

(f) NvTriStrip: 8799 strips.
138033 vertices sent.

Figure 5.1: Triangle strips generated by STRIPE and NvTriStrip algo-
rithms for the Cow, Bunny and Dragon meshes, respectively.
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5.3.1. High-performance memory

A vertex buffer object is a feature that enables us to store data in high-
performance memory in the GPU. The basic idea is to provide some buffers,
which will be available through identifiers. There are different ways to interact
with buffers:

Bind a buffer: this activates the buffer so it can be used by the application.

Put and get data: this allows us to copy data between a client’s area and
a buffer object in the GPU.

Map a buffer: you can get a pointer to a buffer object in the client’s
area, but this can lead to the driver’s waiting for the GPU to finish its
operations.

There are two kinds of vertex buffer objects: array buffers and element array
buffers. On the one hand, array buffers contain vertex attributes, such as vertex
coordinates, texture coordinates data, per-vertex color data and normals. On
the other hand, element array buffers contain only indices to elements in array
buffers. The ability to switch between various element buffers while keeping the
same vertex array allows us to implement level of detail schemes by changing
the elements buffer while working on the same array of vertices.

In order to implement the model on graphics hardware, we used different
functions which interact with buffer objects. Among them, we can highlight:

glBindBufferARB: this function sets up internal parameters so that the
next operations work on this current buffer object.

glBufferDataARB: this function is an abstraction layer between the mem-
ory and the application. Basically, this function copies data from the client
memory to the buffer object bound.

glBufferSubDataARB and glGetBufferSubDataARB: its purpose consists
in replacing or obtaining, respectively, data from an existing buffer.

Therefore, vertices and triangle strips are directly stored in the GPU. On
the one hand, vertices are stored in a vertex array buffer. On the other hand,
we might allocate each triangle strip in an element buffer. However, we have
observed that creating as many buffers as there are triangle strips leads to
noticeable decreases in performance due to bind operations. A solution to this
problem, with optimum results, consists in creating a single element buffer, con-
taining every strip to be rendered. This way, we avoid the need for continuous
bind operations to assign an element buffer for each strip.
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5.3.2. Specific library extensions

As commented before, we need some OpenGL extensions to exploit Vertex
buffer objects. In general, what the extensions linked to geometry acceleration
attempt to do is to load the data concerning the vertices into the memory
of the graphics card while trying to avoid using the main memory because
this memory is close to the GPU and is therefore substantially faster. There
are many extensions available to render geometry, two of the most important
being glDrawRangeElements and glMultiDrawElements.

glDrawRangeElements enables us to render a list of indices to vertices, hence
one call per primitive is required. glMultiDrawElements behaves identically to
glDrawRangeElements except that it handles multiple lists of indices in one call.
Its main purpose is to allow one function call to render more than one primitive,
such as a triangle strip, triangle fan, etc. This enables very large models to be
rendered with no more than a few small commands to the graphics device.

5.4. The model on the GPU

In this section, we introduce the GPU version of the LodStrips model pre-
sented in chapter 4. A brief outline of the model is shown in Figure 5.2. We
advance the general idea which is based on. At the beginning, information
about vertices and triangle strips is uploaded into the GPU. Later, strips are
updated in accordance with the current level of detail. More specifically, when
a level of detail transition is required, it downloads the strips affected by these
changes from the GPU. Later, it modifies and uploads the updated strips to the
graphics system. Lastly, strip information in the GPU is then used for display.

Figure 5.2: Model implementation in GPU.
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5.5. Representation
In general, applications such as computer games have high memory require-

ments. Efficient memory usage is a way to improve this kind of solutions. In
our case, we present a way to improve the LodStrips data structures in order
to minimize its spatial cost while performance remains unaffected.

Two essential data structures of the model are stored in the GPU: vertices
and triangle strips, which constitute the polygonal mesh. The data structure
Changes, which contains the information for modifying the triangle strips, is
stored in the CPU.

Following the nomenclature introduced in previous chapters, we focus on
improving the LodStrips data structures and taking also into account the per-
formance in real time, we have reformulated the set C as:

C =
n−1⋃
i=0

Ci , n > 0 (5.1)

Where n is the number of levels of detail available, and Ci is the set of
changes to be applied in the multiresolution triangle strips at the level of detail
i. Every element in Ci contains the modifications of a particular triangle strip,
that is, it stores what triangle strip changes, where its collapses take place and
where the degenerate triangles to be removed are located after applying the
collapses. Formally:

∀ Ci
j ∈ Ci, Ci = { {ti0, P i

0, R1i
0, R2i

0} , {ti1, P i
1, R1i

1, R2i
1} , ...} , 0 ≤ j < si

(5.2)
si being the number of triangle strips to be modified at the level of detail

i. Next, we detail the meaning for each tuple that composes Ci
j :

tij : this is a scalar that stores the index to one of the triangle strips that
is modified at the LOD i.

P i
j : this is the set of positions, within the triangle strip tij , where vertices

to be collapsed at LOD i are located.

R1i
j : this is the set of positions, within the triangle strip tij , where degen-

erate triangles of type one that are to be removed are located.

R2i
j : it is the set of positions, within the triangle strip tij , where degenerate

triangles of type two that are to be removed are located.

The construction process has been described in previous chapters. However,
we will show a simple example of construction for this new model, from now
on the GPU model. Thus, if we suppose that sets W and S are:

W={1,8,3,...}
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S={{6,5,4,7,0,8,1,9,10}, {6,11,4,3,0,2,1,16,10}, {11,12,3,13,2,14,16,15}}

In Figure 5.3, we can observe an example of construction of the GPU model.
In previous chapters, we have already explained that, in this model the sim-
plification vertex sequence follows an increasing natural order, that is, the first
vertex to be simplified is zero, the second vertex is one, etc. Furthermore, the
W set is implicitly ordered. In the example, zero collapses to one, one to eight
and so on.

Initially, we start from the highest level of detail, S, and we apply successive
collapses to the triangle strips. During their simplification some degenerate
triangles could be produced, which will be removed. All this information is
stored in C. Thus, when the process finishes, we have the necessary information
to reconstruct every LOD in the model.

The process therefore begins by applying the first collapse to set S which
implies collapsing vertex zero to one. The process searches for the vertex zero in
every triangle strip in order to replace it with vertex one. Once we have found
the places where this vertex is, we proceed to update S, and we store that
information in C. In the example case, vertex zero is in position four at strip
zero, {0, {4}}, and position four at strip one, {1, {4}}, the last zero informs
about the type of register, in this case a collapse. Thus, the first subset in C,
that is, C0 is equal to {{0, {4}}, {1, {4}}}. After that, we proceed with the next
collapse: vertex one collapses to eight. As well as storing positions of vertex one
in order to collapse it (strip zero, positions four and six and strip one, positions
four and six: {{0, {4, 6}}, {1, {4, 6}}}, we detect a degenerate triangle in strip
zero position four. Finally, subset C1 contains {{0, {4, 6}, {4, 1}}, {1, {4, 6}}}.
This process continues its flow until the lowest LOD is reached, storing each
and every change needed to transit among the different LODs.

In Figure 5.4, we show the new data structures proposed in our work. As
commented previously, the main difference can be found in the data structures
that support the level-of-detail transitions.

5.6. Rendering

As described in previous chapters, extraction and drawing algorithms allow
us to manage level-of-detail solutions in real time. Obviously, application of
hardware acceleration techniques implies certain modifications in those algo-
rithms.

At a high level, the pseudo-algorithm to transit from LOD n to LOD n+1
consist in downloading, from the GPU, the chunks of memory corresponding
to the strips affected by the change in the level of detail. After that, we replace
vertex n by the vertex it collapses to, in every strip where it appears. Later,
derived vertex repetitions must be removed. Finally, the strip is uploaded to
the GPU for visualization.
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Figure 5.3: Simple construction example of the GPU model.
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struct Vertices {
real *listOf3DCoordinates[3];

};
struct Collapses {

struct Vertex *CollapseVertex;

};
struct Strip {

integer *listOfIndices;

};
struct Strips {

struct Strip *listOfStrips;

};
struct Change {

struct Strip *stripToChange;

integer NumberOfCollapses;

integer NumberOfDegenerateT1;

integer NumberOfDegenerateT2;

integer *Positions;

};
struct ChangesPerLOD {

integer NumberOfStripsAffected;

struct Change *listOfChangesPerLOD;

};
struct Changes {

struct ChangesPerLOD *listOfChanges;

};

Figure 5.4: Fundamental data structures for the GPU multiresolution
model.
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In Figure 5.5, we show the pseudo-algorithm associated to the extraction
of the level of detail. Essentially, it consists in downloading from the GPU the
chunks of memory corresponding to the strips affected by a change in the level
of detail. After that, we modify the triangle strips following the LodStrips phi-
losophy. Finally, the processed strip is uploaded to the GPU for visualization.

for LOD = currentLOD to newLOD

for Strip = StripsAffected(LOD).Begin() to StripsAffected(LOD).End()

auxStrip.DownloadFromGPU(Strip);

auxStrip.Modify(LOD);

auxStrip.UploadToGPU();

end for

end for

Figure 5.5: Level-of-detail extraction algorithm.

Visualization of the resulting mesh is implemented taking maximum ad-
vantage of the new characteristics of current GPUs. To accomplish this aim,
we have applied the OpenGL extensions glDrawRangeElements and glMul-
tiDrawElements. Both extensions allow us to render the geometry directly from
the graphics hardware memory. In Figure 5.6, the glDrawRangeElements ex-
tension is applied for rendering. In the beginning, we activate the GPU buffers
which contain the vertices and triangle strips. After that, we call the extension
for each triangle strip to be rendered. It is important to underline that infor-
mation about vertices and strips is wholly located in the GPU, and therefore
this kind of information does not transit through the bus.

The drawing algorithm greatly improves rendering times, as shown in the
results section. However, one call per primitive is needed to render the whole
mesh. With glMultiDrawElements, we only need one function call to render
more than one primitive such as a triangle strip, that is, the whole mesh.
In Figure 5.7, we have an example of the utilization of this extension. Main
difference between this extension and the previous one consists in the capability
of this extension to manage arrays that contain information about size and
location of triangle strips. As shown in the results sections, performance is
greatly improved.

5.7. Results

5.7.1. Spatial cost

In Table 5.1, the storage cost for the LodStrips and GPU model are shown.
It can be seen an improvement in this cost that varies from 23 to 30 per cent.
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glBindBufferARB(GL ARRAY BUFFER ARB, vertex buffer);

glBindBufferARB(GL ELEMENT ARRAY BUFFER ARB, strips buffer);

for IndexStrip = 0 to NumberOfStrips - 1

glDrawRangeElements (

GL TRIANGLE STRIP, // Primitive

0, // Beginning of Vertex Buffer

NumberOfVertices - 1, // Ending of Vertex Buffer

StripBufferSize(IndexStrip), // Triangle strip size

GL UNSIGNED INT, // Indices data type

StripBufferOffset(IndexStrip) );// Beginning of strip in Element Buffer

end for

glBindBufferARB(GL ELEMENT ARRAY BUFFER ARB,0);

glBindBufferARB(GL ARRAY BUFFER ARB,0);

Figure 5.6: Drawing algorithm using the OpenGL glDrawRangeElements
extension.

glBindBufferARB(GL ARRAY BUFFER ARB, vertex buffer);

glBindBufferARB(GL ELEMENT ARRAY BUFFER ARB, strips buffer);

glMultiDrawElements (

GL TRIANGLE STRIP, // Primitive to render

StripBufferSize, // Strip size array

GL UNSIGNED INT, // Indices data type

StripBufferOffset, // Strips beginning array

NumberOfStrips ); // Number of triangle strips

glBindBufferARB(GL ELEMENT ARRAY BUFFER ARB,0);

glBindBufferARB(GL ARRAY BUFFER ARB, 0);

Figure 5.7: Drawing algorithm using the OpenGL glMultiDrawElemens
extension.

It is also important to underline that this modification improves the temporal
cost of the model, as described in the following sections.

5.7.2. Temporal cost

A temporal comparison between the LodStrips and GPU models is shown
in Figure 5.8. We compare extraction and drawing times. These charts show
similar behaviors both extracting and drawing. Therefore, we have obtained a
implementation of LodStrips that offers approximately the same temporal cost
but saves around a 30 per cent in the spatial cost. OpenGL immediate mode
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Spatial Cost in Mb. Improvement
#Strips #LODs LodStrips GPU

Cow 136 2614 0.22 0.17 23 %
Capone 177 3256 0.26 0.20 23 %
Boat 399 5474 0.55 0.40 27 %
Car 1396 19179 1.98 1.38 30 %
Bunny 1229 31351 2.88 2.21 23 %
Dragon 1787 48865 4.28 3.32 22 %
Phone 1747 74740 6.56 5.08 23 %
Isis 5141 168880 15.11 11.69 23 %
Buddha 31596 489329 46.95 35.51 24 %

Table 5.1: Improvement produced in the spatial cost when implemented
with the new data structure.

was used to render the models.

5.7.3. Hardware acceleration

In Table 5.2, we observe an improvement of around ten times in the speed
between using extensions and the immediate mode. In the immediate mode, for
each frame all the vertex information, as well as triangle strip indices, are sent
to the graphics system. However, the other modes only send a minimum amount
of information that enables the GPU to correctly interpret data contained in
its buffers. On comparing glDrawRangeElements and glMultiDrawElements, we
notice a marked difference in the rendering times. This is due to the number
of calls to the driver. While glMultiDrawElements calls it once per frame, with
glDrawRangeElements we need as many calls as there are primitives to be
rendered.

We highlight that LodStrips rendering times are similar to the GPU model
when OpenGL immediate mode was used to render (Figure 5.8). Therefore, the
GPU model is around ten times faster than the original LodStrips presented in
the previous chapter.

It is important to underline that extensions can be used with any kind
of triangle strips, that is, those generated both to minimize the number of
vertices sent and to take advantage of the vertices cache. LodStrips is able to
manage any set of triangle strips. In Figure 5.9, we have created two models
from the Bunny object: one using the STRIPE algorithm and the other one
with the NvTriStrip utility. However, in spite of taking rendering measures
for both models with the glMultiDrawElements extension, they have similar
extraction costs. In that figure, it is possible to observe how the Bunny object
generated from the NVTriStrip Library shows better frame-per-second rates
than the Stripe object when the level of detail is higher. However, we obtain
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(a) Extraction times.

(b) Drawing times.

Figure 5.8: A comparison of extraction and drawing times comparison for
the LodStrips and GPU model using the Bunny object (OpenGL immediate
mode was used to better compare the models).
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Immediate
Mode glDrawRange glMultiDraw

Render (s) Render (s) Render (s)
%Rec %Drw %Rec %Drw %Rec %Drw

16.38 1.64 1.22
0.11 16.27 0.11 1.54 0.11 1.11

Table 5.2: LodStrips on GPU: Linear test with 1000 extractions applied
to the Isis model (187644 vertices and 5141 triangle strips at the highest
LOD) by applying different hardware acceleration techniques.

Figure 5.9: Bunny model performance comparison by using triangle strips
generated by Stripe and NVidia algorithms. Rendering mode used was gl-
MultiDrawElements.

better results with STRIPE at coarser levels of detail. This behavior is due
to the vertex cache locality being lost whenever the model moves to coarser
meshes.

5.8. Conclusions
In this chapter, we introduced a GPU version of the LodStrips model by

modifying both the data structure and the drawing algorithms [RCRG06a]. As
regards the data structure, we noticeable improved its spatial cost [RCRG06b].

It is important to underline how appropriate the LodStrips model is for
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applying hardware acceleration techniques. This model spends a small per-
centage of time on extracting the level of detail, which leads to fast transitions
between different levels of detail. Moreover, it benefits the application of those
techniques. On the other hand, by using cache optimized triangle strips, per-
formance is greatly improved, although it is important to notice that when the
model moves to coarser meshes, vertex locality is lost and we lose the advantage
over another kind of triangle strips. Hence, improvements in this way would be
an interesting line in order to manage multiresolution schemes.

Moreover, the efficiency of the geometric acceleration techniques was tested
on a multiresolution model. One of the most important conclusions that must
be stressed here is that using hardware acceleration techniques allows us to
increase the performance of the models with dynamic geometry. In this regard,
the LodStrips model increased its performance around ten times.
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CHAPTER 6
LodStrips for Deforming

Meshes

Applications such as video games or movies often contain deforming mesh-
es. The most-commonly used representation of these types of meshes consists
in dense polygonal models. Such a large amount of geometry can be efficiently
managed by applying level-of-detail techniques and specific solutions have been
developed in this field. However, these solutions do not offer a high performance
in real-time applications. We thus introduce a multiresolution scheme for de-
forming meshes. It enables us to obtain different approximations over all the
frames of an animation. Moreover, we provide an efficient connectivity coding
by means of triangle strips as well as a flexible framework adapted to the GPU
pipeline. Our approach enables real-time performance and, at the same time,
provides accurate approximations.

6.1. Introduction

Nowadays, deforming surfaces are frequently used in fields such as games,
movies and simulation applications. Due to their availability, simplicity and
ease of use, these surfaces are usually represented by polygonal meshes.

A typical approach to represent these kind of meshes is to represent a dif-
ferent mesh connectivity for every frame of an animation. However, this would
require a high storage cost and the time to process the animation sequence
would be significantly higher than in the case of using a single mesh connectiv-
ity for all frames. Even so, these meshes often include far more geometry than

95
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is actually necessary for rendering purposes. Many methods for polygonal mesh
simplification have been developed (see Section 2.2). However, as multiresolu-
tion techniques for static meshes are based on a specific fixed shape, the meshes
they produce can yield very poor approximations if the surface highly deforms.
A single simplification sequence for all frames can also generate unexpected
results (see Figure 6.1). Hence, multiresolution techniques for static meshes are
not directly applicable to deforming meshes and so we need to adapt these
techniques to this context.

(a) Bug. (b) Bunny.

Figure 6.1: A simplification sequence from the bug mesh applied to the
bunny mesh.

Therefore, our goal consists in creating a multiresolution model for de-
forming meshes. We specifically design a solution for morphing meshes (see
Figure 6.2), although it could be extended to any kind of deforming mesh. Our
approach includes the following contributions:

Implicit connectivity primitives: we benefit from using optimized render-
ing primitives, such as triangle strips. If compared to the triangle prim-
itive, triangle strips lead us to an important reduction in the rendering
and storage costs.

A single mesh connectivity: for all the frames we employ the same connec-
tivity information, that is, the same triangle strips. It generally requires
less spatial and temporal cost than using a different mesh for every frame.

Real-time performance: meshes are stored, processed and rendered en-
tirely by the GPU. In this way, we obtain greater frame-per-second rates.

6.2. Background

6.2.1. Deforming meshes: morphing
A solution to approximate deforming meshes is to employ mesh morph-

ing [ADSS99, Par05]. Morphing techniques aim at transforming a given source
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Figure 6.2: A deforming mesh: Elephant to horse morph sequence.

shape into a target shape, and they involve computations on the geometry as
well as the connectivity of meshes.

In general, two meshes M0 = (T0, V0) and M1 = (T1, V1) are given, where
T0 and T1 represent the connectivity (usually in triangles) and V0 and V1 the
geometric positions of the vertices in R3. The goal is to generate a family of
meshes M(t) = (T, V (t)), t ∈ [0, 1], so that the shape represented by the new
connectivity T together with the geometries V (0) and V (1) is identical to the
original shapes. The generation of this family of shapes is typically done in
three subsequent steps:

finding a correspondence between the meshes.

generating a new and consistent mesh connectivity T together with two
geometric positions V (0), V (1) for each vertex so that the shapes of the
original meshes can be reproduced.

creating paths V (t), t ∈ [0, 1], for the vertices.

The traditional approach to generate T is to create a supermesh [Par05] of
the meshes T0 and T1, which is usually more complex in terms of geometry,
than the input meshes. After the computation of one mesh connectivity T and
two mesh geometries represented by vertex coordinates V (0) and V (1), we
must create the paths. The most-used technique to create them is the linear
interpolation, see Figure 6.2. Given a transition parameter t the coordinates of
an interpolated shape are computed by:

V (t) = (1− t)V (0) + tV (1), t ∈ [0, 1] (6.1)

As commented before, connectivity information generated by morphing
techniques usually gives rise to more dense and complex information than
necessary for rendering purposes. In this context, we can make use of level-
of-detail solutions to approximate such meshes and thus remove unnecessary
geometry when required. We can also represent the connectivity of the mesh
in triangle strips, which reduces in a factor of three the number of vertices to
be processed [ESV96b].
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6.2.2. Multiresolution

Some multiresolution models that benefit from using hardware optimized
rendering primitives have recently appeared [ESAV99, VFG99, Ste01, SP03,
BRR+04, RC04b]. However, as they are built from a fixed and static mesh,
they usually produce low quality approximations when applied to a mesh with
extreme deformations.

Some methods also provide multiresolution models for deforming mesh-
es [MG03, SP00, DR05], but they are based on the triangle primitive and their
adaptation to the GPU pipeline is potentially difficult or does not exploit it
maximally. An important work introduced by Kircher et al. [KG05] is a triangle-
based solution as well. This approach obtains accurate approximations over all
levels of detail. However, temporal cost to update its simplification hierarchy
is considerable, and GPU-adaptation is not a straightforward task.

6.2.3. GPU Pipeline

Recent GPUs include vertex and fragment processors, which have evolved
from being configurable to being programmable. They execute shader programs
in parallel. On the one hand, vertex shaders allow the programmer to alter
per-vertex attributes, such as position, color, texture coordinates, and normal
vectors. On the other hand, after the rasterizer has converted the transformed
primitive to pixels, fragment shaders are used to calculate the color of a frag-
ment, or per-pixel.

Mesh morphing techniques are also favored when they are employed directly
in the GPU. With the current architecture of GPUs, it is possible to store the
whole geometry in the memory of the GPU and to modify the vertex positions
in real time to morph a supermesh. This would greatly increase performance.
In order to obtain all the intermediate meshes, we can take advantage of the
GPU pipeline to interpolate vertex positions by means of a vertex shader.

A combination of multiresolution techniques and GPU processing to de-
forming meshes can lead us to an approach that offers great improvements in
rendering and, at the same time, high quality approximations.

6.3. Technical background

Starting from two arbitrary polygonal meshes, M0 = (T0, V0) and M1 =
(T1, V1), where V0 and V1 are sets of vertices and T0 and T1 are the connectivity
to represent these meshes, our approach is built upon two algorithms: We first
obtain a supermesh (morphing builder) and later we build the multiresolution
scheme (lod builder). The general construction process is shown in Figure 6.3.
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Figure 6.3: General construction process data flow diagram.

6.3.1. Generating morphing sequences
As commented before, linear interpolation is a well-known technique to

create paths for vertices in morphing solutions. Vertex paths defined by this
kind of technique are suitable to be implemented into recent GPUs offering
considerable performance when generating intermediate meshes, M(t). Thus,
we apply a method [Par05] to first generate a family of meshes M(t) = (T, V (t)),
t ∈ [0, 1]. As paths are linearly interpolated, we only need the geometries V (0)
and V (1) and the connectivity information T , to reproduce the intermediate
meshes M(t) by applying the equation 6.1. The FaceToFace morphing sequence
shown in Figure 6.8 was generated by using this method [Par05].

6.3.2. Construction of the multiresolution scheme
Once generated the supermesh (M(t) = (T, V (t))), we proceed to create

the multiresolution model. A strip-based multiresolution scheme for polygonal
models is preferred in this context as we obtain improvements both in ren-
dering and in spatial cost. Thus, we perform an adaptation of the LodStrips
multiresolution model to deforming meshes.

In order to construct the model, we perform two fundamental tasks by
means of the LOD builder subprocess (see Figure 6.3). On the one hand, we
generate the triangle strips to represent the connectivity by means of these
primitives, and, on the other hand, we generate the simplification sequence
which allows us to recover the different levels of detail. In Figure 6.4, the LOD
Builder subprocess is shown.

Before constructing the multiresolution scheme, we need to convert the con-
nectivity of the supermesh from triangles to triangle strips. This stripification
process has been already explained in section 2.3.1. After this process, the su-
permesh is topologically equal to the previous one but represented by triangle
strips: M(t) = (S, V (t)). However, we use the same connectivity information
for all frames so that we only need to process one frame to compute the triangle
strips.

As previously explained, a single simplification sequence for all frames of the
animation can generate incorrect approximations (see Figure 6.1). Therefore,
we generate the simplification sequence for each frame that we will consider
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S=StripifySuperMesh(V (0),T) //Single connectivity

for i=0 to |r |-1
t=i/(|r |-1) //t ∈ [0, 1]

M=TransformSuperMesh(S,V (t))

Ci=SimplifyMesh(M)

end for

Figure 6.4: LOD Builder subprocess.

in the animation. This task is performed by modifying the t factor in the
supermesh. The number of frames to be taken into account is called |r |. In this
way, we linearly transform the supermesh by calculating C, which contains the
set of changes to be applied in the multiresolution strips so that they represent
the required level of detail.

After the general construction process has finished, we obtain the sets {V (0),
V (1), S, C }, where V (0) and V (1) comes from the Morphing builder, S is the
supermesh in triangle strips and C contains the sequences of simplification
operations that enable us to change the resolution of the supermesh for each
frame of the animation.

6.4. Representation in GPU
In the previous section, we described the sets required to represent our

approach: V (0), V (1), S and C. According to the multiresolution morphing
pipeline that we propose in Figure 6.5, our sets are implemented as follows:
V (0), V (1) and S are located in the GPU, whereas C is stored in the CPU.
In particular, V (0) and V (1) are stored as vertex array buffers and S0 as an
element array buffer, which offers better performance than creating as many
buffers as there are triangle strips.

It is important to notice that we represent the geometry to be rendered
by means of the data structures in the GPU, where the morphing process also
takes place. On the other hand, the simplification sequence for every frame is
stored in the CPU. These data structures are efficiently managed in runtime in
order to obtain different approximations of a model over all the frames of an
animation.

6.5. Rendering
Once construction has finished, we must build a level-of-detail represen-

tation with morphing during run-time. According to the requirements of the
applications, it involves the extraction of a level of detail at a given frame.
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Figure 6.5: Multiresolution morphing pipeline using the current technol-
ogy.

In Figure 6.5, we show the main functional areas of the pipeline used in our
approach.

The underlying method to extract approximations of the models is based on
the LodStrips. Among other advantages already commented, this model offers
a low temporal cost when extracting any level of detail for strip-based meshes.
We take advantage of this feature to perform fast updatings when traversing a
supermesh from frame to frame in any level of detail.

Thereby, according to the frame and level of detail required by applications,
the level-of-detail extraction algorithm is responsible for recovering the appro-
priate approximation in the triangle strips by means of the previously computed
simplification sequence. In Figure 6.5, we show the general operation of this
algorithm. It reads the simplification sequence of the current frame from the
data structure Changes, and it modifies the triangle strips located in the GPU
so that they always have the geometry corresponding to the level of detail used
at the current time. A more detailed algorithm is shown in Figure 6.6.

After extraction, vertices must also be transformed according to the current
frame in such a way that the deforming mesh is correctly rendered. When an
application uses the GPU to compute the interpolation operations, the CPU
can spend time improving its performance rather than continuously blending
frames. Thus, by using the processing ability of the GPU, the CPU takes over
the task of frame blending. Therefore, after extracting the required approxima-
tion, we directly compute the linear interpolations between V (0) and V (1) in
the GPU by means of a vertex shader, see Figure 6.10.

Regarding the GPU pipeline, the first stage is the Input Assembler. The
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purpose of this stage is to read primitive data, in our case triangle strips,
from the user-filled buffers and assemble the data into primitives that will be
used by the other pipeline stages. As shown in the pipeline-block diagram,
once the Input Assembler stage reads data from memory and assembles the
data into primitives, the data is output to the Vertex Shader stage. This stage
processes vertices from the Input Assembler, performing per-vertex morphing
operations. Vertex shaders always operate on a single input vertex and produce
a single output vertex. Once every vertex has been transformed and morphed,
the Primitive Assembly stage provides the assembled triangle strips to the next
stage.

Function ExtractLODFromFrame (Frame,LOD)

if Frame!=CurrentFrame then

CurrentFrame=Frame;

CurrentChanges=Changes[CurrentFrame];

ExtractLevelOfDetail(LOD);

else if LOD!=CurrentLOD then

ExtractLevelOfDetail(LOD);

end if

end Function

Figure 6.6: Extraction algorithm.

6.6. Results

Tests and experiments were carried out with a Dell Precision PWS760 Intel
Xeon 3.6 Ghz with 512 Megabytes of RAM, the graphics card was an NVidia
GeForce 7800 GTX 512. Implementation was performed in C++, OpenGL
as the supporting graphics library and Cg as the vertex shader programming
language.

The morphing models taken as a reference are shown in Figure 6.8 and
Figure 6.9. We can observe the high quality of the approximations, some of
which are reduced (in terms of number of vertices) by more than a 90 %.

6.6.1. Spatial cost

Spatial costs from the FaceToFace and HorseToMan morphing models are
shown in Table 6.1. For each model, we specify the number of vertices and
triangle strips that compose them (strips generated by means of the STRIPE
algorithm [ESV96b]), the number of approximations or levels of detail available,
the number of frames generated and, finally, the spatial cost in Megabytes. It
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is divided into cost in the GPU (vertices and triangle strips) and cost in the
CPU (simplification sequence). Finally, in the ratio column, we show the cost
per frame, calculated as the total storage cost divided by the number of frames.
As expected, the cost of storing the simplification sequence of every frame is
the most important part of the spatial cost.

Morphing model FaceToFace HorseToMan
#Verts 10,520 17,489
#Strips 620 890
#LODs 9,467 15,738
#Frames 25 26

Cost GPU 14.2 KB. 22.4 KB.
per CPU 472.1 KB. 848.3 KB.

Frame Total 486.3 KB. 870.7 KB.

Table 6.1: Spatial cost.

6.6.2. Temporal cost

Results shown in this section were obtained under the conditions mentioned
above. Levels of detail were in the interval [0, 1], zero being the highest LOD
and one the lowest. Geometry was rendered by using the glMultiDrawElements
OpenGL extension, which only sends the minimum amount of information that
enables the GPU to correctly interpret data contained in its buffers. With
glMultiDrawElements we only need one call per frame to render the whole
geometry.

In Figure 6.7a, we show the level-of-detail extracting cost per frame of the
FaceToFace morphing sequence. The per-frame time to extract the required
level-of-detail ranges between 6 % and 1.4% of the frame time. If we consider
the lowest level of detail as being the input mesh reduced by 90% (see LOD
0.9 in Figure 6.7a), we obtain times around 6 % of the frame time, which offers
us better perfomance than other related works such as [KG05], which employs
more time in changing and applying the simplification hierarchy.

We performed another test by extracting one approximation every 24 frames
and, at the same time, we progressively changed the level of detail. This was
carried out to simulate an animation which is switching its LOD as it is further
from the viewer. In Figure 6.7b, we show the results of this test. As expected,
our approach is able to extract and render different approximations over all
frames of an animation at considerable frame-per-second rates.
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6.7. Conclusions
We have introduced a multiresolution scheme suitable for deforming mesh-

es such as those generated by means of morphing techniques. A solution for
morphing sequences was specially designed, although it can be adapted to any
kind of deformed mesh by storing the vertex positions of every frame within the
animation. We also share the same connectivity information and we store the
whole geometry in the GPU, thus saving bandwidth in the typical CPU-GPU
bottleneck. Morphing is also computed in the GPU by exploiting its paral-
lelism. We thus obtain real-time performance at great frame-per-second rates.
At the same time, we offer high quality approximations in every frame of an
animation.
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(a) Level-of-detail extraction cost per frame of the FaceTo-
Face morphing model at a constant rate of 24 fps.

(b) Frame-per-second rates by performing one extraction
every 24 frames. Results obtained by using the FaceTo-
Face morphing model.

Figure 6.7: Temporal cost of the model.
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Figure 6.8: Multiresolution morphing sequence for the FaceToFace model.
Rows mean level of detail, 10,522 (original mesh), 3,000 and 720 vertices,
respectively, and columns morphing adaptation, aproximations were taken
with t=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.

Figure 6.9: Multiresolution morphing sequence for the HorseToMan mod-
el. Rows mean level of detail, 17,489 (original mesh), 5,000 and 1,000 ver-
tices, respectively, and columns morphing adaptation, aproximations were
taken with t=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, respectively.
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struct appdata
{

float3 positionA : POSITION;
float3 normalA : NORMAL;
float3 positionB : TEXCOORD1; //Position
float3 normalB : TEXCOORD2; //Normal

};

struct vfconn
{

float4 HPos : POSITION;
float4 Col : COLOR0;

};

vfconn main( appdata IN,
uniform float4x4 ModelViewProj,
uniform float keyFrameBlend,
uniform Light light)

{
vfconn OUT; // Variable to handle our output from the vertex

// shader (goes to a fragment shader if available).

float3 positionF = lerp(IN.positionA,
IN.positionB,
keyFrameBlend);

float3 blendNormal = lerp(IN.normalA,
IN.normalB,

keyFrameBlend);

float3 normal = normalize(blendNormal);

// Transform The Vertex Position Into Homogenous Clip-Space
OUT.HPos = mul(ModelViewProj, float4( positionF,1));

OUT.Col = computeLighting(light, positionF, normal);

return OUT;
}

Figure 6.10: CG implementation of the Vertex shader.
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CHAPTER 7
Applications

The integration of LodStrips into computer graphics applications implies
having an efficient interface between the application and the geometry mod-
ules. Thus, we have developed an independent library to satisfy these require-
ments. It has also been designed to be API independent, thus allowing client
applications to use any graphics library to manage the geometry.

7.1. LodStrips Library
The LodStrips library provides the ability to construct and render interac-

tive arbitrary 3D meshes in 3D applications. The LodStrips class represents a
general mesh which is able to change its level of detail.

This module contains functions that handle the levels of detail of the input
multiresolution polygonal meshes. For any given resolution of an object, this
module returns a set of triangle strips representing the object at that resolution,
that is, at the requested level of detail. These modules use LodStrips and,
therefore, they take advantage of triangle strips to reduce storage usage and to
speed up realistic rendering.

A simple specification of the library is shown as follows:

Public Member Functions

LodStripsLibrary (char *fileGeometryMesh, char *fileDecimationMesh,Vertex-
Data ∗uservertexdata, IndexData ∗userindexdata)

• Class constructor. Constructs a LodStrips multiresolution object from:

109
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◦ The triangle strips geometry information contained in the fileGeom-
etryMesh file.

◦ The decimation information contained in the fileDecimationMesh file.

◦ A user-defined IndexData instance.

◦ A user-defined VertexData instance.

∼LodStripsLibrary (void)

• Class destructor.

void GoToLod (Real)

• Changes the level of detail of the object to a specified factor. The value
specified to change the LOD must be in the range [0,1] ([min,max]). Af-
ter the LOD has been calculated, this function automatically updates the
indices using the IndexData interface provided in the constructor.

uint32 MaxFaces () const

• Returns the number of triangles at the highest LOD.

uint32 MinFaces () const

• Returns the number of triangles at the lowest LOD.

uint32 GetValidIndexCount (int submeshid) const

• Returns the index count at the current LOD of a certain mesh.

uint32 GetTotalStripCount (void) const

• Retrieves the total number of strips in a mesh.

uint32 GetSubMeshtripCount (int submeshid) const

• Returns the number of strips in a given submesh.

uint32 GetCurrentTriangleCount (void) const

• Obtains the triangle count at the current LOD.

Real GetCurrentLodFactor (void) const

• Obtains the current LOD factor.
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7.1.1. The VertexData and IndexData interfaces

The LodStripsLibrary class is able to change the level of detail of an object.
It has been designed to be API independent. However, updating indices or
vertices of a mesh is an API-dependent task because it is dependent on how
the client application stores them to render the geometry. For example, the
client application can use OpenGL or Direct3D, where management of their
vertices and indices is different, but our library must support them.

Therefore, the LodStripsLibrary class knows where to store the vertices and
how to calculate the new set of indices to render the geometry, but it does not
know how or where to retrieve vertices or store the resulting indices. To solve
this, we developed our library using VertexData and IndexData abstraction
interfaces. The LodStrips algorithm uses these interfaces to communicate with
the client code in order to retrieve the vertices and set the indices at a given
LOD.

The user must inherit a custom class from the VertexData and IndexData
interfaces and implement their virtual methods to provide the desired function-
ality. Thus, instances of the user custom VertexData and IndexData classes will
be passed to the LodStripsLibrary class at creation time. The code below shows
both class interfaces.

VertexData class

class VertexData
{
public:
VertexData(void){}
virtual ~VertexData(void){}

virtual void Begin(unsigned int numinds)=0;
virtual void SetVertex(unsigned int i, float x, float y, float z)=0;
virtual void End(void)=0;

};

The methods above will be called when a LodStrips instance changes the
3D coordinates of the mesh. The meaning of each method is described below:

Begin(numverts) indicates the number of vertices to be modified on the
mesh. This is a good place to lock a vertex buffer.

void SetVertex(unsigned int i, float x, float y, float z) specifies the new
3D coordinates for vertex i.

End() indicates that the changes made to the mesh are finished. This is
a good point to unlock a vertex buffer.



“tesis” — 2008/4/28 — 19:02 — page 112 — #128i
i

i
i

i
i

i
i

112 Chapter 7 Applications

IndexData class

class IndexData
{
public:
IndexData(void){}
virtual ~IndexData(void){}

virtual void Begin(unsigned int numinds)=0;
virtual void SetIndex(unsigned int i, unsigned int index)=0;
virtual void End(void)=0;

};

The methods above will be called when a LodStrips instance must change
the level of detail. The meaning of each method is described below:

Begin(numinds) it indicates the number of indices to be modified on the
mesh. This is a good place to lock an index buffer.

SetIndex(i,index) it specifies the new value for the index at the position
i.

End() it indicates that the changes made to the mesh are finished. This
is a good point to unlock an index buffer.

7.1.2. LOD switching
After the multiresolution has been instantiated, LOD switching involves

finding the new set of indices that describe the object at a given LOD. Lod-
Strips class calculates this set of indices and applies them to the mesh with
the IndexData user interface implemented by the user. To change the LOD of
a multiresolution object the user must call the method GoToLod() specifying
the desired level of detail in the range [0,1] (0 means the lowest LOD and 1 the
highest).

myLodStripsObject->GoToLod(lodfactor); // lodfactor in [0,1]

After calling this function, the target mesh should have effectively changed
its level of detail and it should be ready to be rendered.

7.1.3. Usage
First of all, we need two files containing information about geometry and

decimation, that is, the LOD information required to run the LodStrips algo-
rithm. To use this file in an external application such a LodStrips object the
general process would be:
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1. LOD Initialization:

a) Load a mesh file with the geometry.
b) Load a mesh file with the decimation information.
c) Create an instance of LOD model feeding it with those parameters.

2. LOD Switching. To change the level of detail:

a) Call the GoToLOD method.

We highlight that the previous scheme would also be suitable to implement
a multiresolution model based on triangles.

7.2. Applications: LodStrips in Ogre

7.2.1. Overview
OGRE (Object-Oriented Graphics Rendering Engine) is a flexible scene-

oriented 3D engine. It was written in C++ and designed to make it easier
and more intuitive for developers to produce applications utilizing hardware-
accelerated 3D graphics. The class library abstracts all the details of using
the underlying system libraries like Direct3D and OpenGL and provides an
interface based on world objects and other intuitive classes. OGRE can be (and
indeed has been) used to create games, but OGRE was deliberately designed
to provide just a world-class graphics solution; for other features like sound,
networking, AI, collision, physics and so on, it is necessary to integrate it with
other libraries.

As regards licensing, the Ogre source is made available under the GNU
Lesser General Public License (LGPL), which basically means that the source
of any changes to the core engine must be released if a product is distributed.
The sources of the application or of new plugins that are created do not have
to be released.

In Figure 7.1, we show a diagram of the main core objects of OGRE. At
the very top of the diagram is the Root object. This is the way in to the
OGRE system and the place where the top-level objects, like scene managers,
rendering systems and render windows, loading plugins and so on, are created.
The rest of OGRE’s classes are located in one of these three groups:

Scene manager: This is concerned with the contents of the scene, how it
is structured, how it is viewed from cameras, and so forth. Objects in this
area are responsible for providing a natural, declarative interface to the
world in construction.

Resource management: All rendering needs resources, whether it is ge-
ometry, textures, fonts, etc. It is important to manage the loading, re-use
and unloading of these carefully, and that is what classes in this area do.
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Figure 7.1: Ogre system overview.

Rendering: This is about the lower-level end of the rendering pipeline, the
specific rendering system API objects like buffers, render states and the
like and pushing it all down the pipeline. Classes in the Scene management
subsystem use this to obtain their higher-level scene information onto the
screen.

With reference to plugins, OGRE was designed to be extended and plugins
are the usual way to do so. Many of the classes in OGRE can be subclassed and
extended, whether it is by changing the scene organization through a custom
SceneManager, adding a new render system implementation (e.g. Direct3D or
OpenGL), or providing a way to load resources from another source (e.g. from
a web location or a database). As a result, OGRE is not just a solution for a
single defined problem, it can extended as much as is needed.
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Figure 7.2: Ogre and LodStrips interaction.

7.2.2. LodStrips integration

Integration into Ogre-based applications is a very straightforward task. This
is due to the fact that the LodStrips library was initially designed with this
engine in mind. Integration of the LodStrips library into existing applications
and game engines like OGRE is a very important task. This library was designed
to be as flexible as possible, so that it can be successfully integrated into any
situation.

As regards meshes, OGRE was designed to use discrete multiresolution
models. In particular, mesh objects are the basis for the individual movable
objects in the world, which are called entities. An entity is an instance of a
movable object in the scene. The only assumption is that it does not necessarily
have a fixed position in the world. Entities are based on discrete meshes, which
are represented by the Mesh object. Multiple entities can be based on the same
mesh, since multiple copies of the same type of object in a scene can be created.

In this context, we have integrated the LodStrips library in such a way that
it is not necessary to recompile the engine. In the client application, we simply
modify the vertex indices used by a mesh object through a LodStrips object.
In Figure 7.2 we show a simple scheme representing how we interact with mesh
objects.

7.2.3. Results

We have developed a number of demos to demonstrate the LodStrips li-
brary and its integration into a graphics rendering engine: The Ogre Rendering
Engine.

Figure 7.3 shows the LodStrips multiresolution library in runtime. The ap-
plication renders a group of models which are able to change their level of detail
depending on the distance of the group of objects from the camera. The infor-
mation panel in the bottom-left corner of the screen shows the current LOD
factor, frames per second and the amount of geometry sent to the renderer.
The level of detail can be calculated in two ways: automatically, based on the
distance of the group from the camera, and manually, where the user changes
the level of detail regardless of the distance. This last mode is useful to see the
meshes in detail even when their level of detail is set to the minimum by the
automatic mode.

In Figure 7.4, we can see several LodStrips objects running in OGRE. They
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are rendered at different levels of detail according to their distance to the
camera. In this demo, each color means a different level of detail.

7.3. Conclusions
The LodStrips library which we have developed, provides the ability to con-

struct and render interactive meshes in 3D applications. Using this library, we
implemented LodStrips in a real-time application. The Ogre3D game engine was
extended with this library and it thus enabled Ogre3D to manage continuous
multiresolution models.
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Figure 7.3: Screenshot of a LodStrips demo.

Figure 7.4: LodStrips running in OGRE. The colors denote the level of
detail used. According to the distance to the viewer, closer objects (in blue)
are more detailed and further ones (in red) less detailed.
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CHAPTER 8
Conclusions and Future Work

In this dissertation, we focus on improving the interactive render of polyg-
onal meshes. To tackle the problem, we have combined geometry simplification
and level of detail techniques. Thus, we have defined a multiresolution model
that represents any polygonal mesh at any given resolution. This approach is
able to manage continuous level-of-detail by smoothly adapting mesh resolution
to the application requirements. Moreover, the model can be perfectly integrat-
ed into current GPUs and it was successively implemented in some real-time
applications.

This chapter is organized as follows: we summarize the conclusions in section
8.1. Later, in section 8.2 we introduce the different publications derived from
our work and finally future work lines are presented in 8.3.

8.1. Conclusions
In this section, we review the concepts and results achieved during the

development of this dissertation:

In chapter 2, we introduced previous works in multiresolution modeling,
presenting the different existing techniques in the field of real-time visual-
ization of geometric models and analyzing the most outstanding papers to
date. From an application point of view, the use of a discrete or continu-
ous multiresolution model in an application depends on its requirements.
Discrete multiresolution models are a good alternative in applications
which require few levels of detail in their objects. These models also of-
fer a simple implementation and these levels of detail can be polished

119
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and improved considerably. Nevertheless, continuous models offer a high
granularity, allowing us to adapt exactly the level of detail desired in
each case. Furthermore, their evolution has allowed us to obtain very low
level-of-detail extraction times and significant accelerations due to the
irruption of the new and powerful GPUs. As previously commented, mul-
tiresolution models can be divided into uniform and variable resolution.
Although variable resolution schemes are powerful and very flexible, they
usually has a high storage cost and they are usually slower than uniform
ones. Obviously, requirements will determine its applicability. The design
of schemes for specific applications, such as computer games or interactive
visualization of vegetation, are open lines.

In chapter 3, we introduced a simple and effective triangle strips and data
structure management for real-time rendering of multiresolution mesh-
es. Conceptually, it enables multiresolution meshes to gain the render-
ing speed-up from using optimized rendering primitives, such as triangle
strips. We introduced an approach that improves the time required to ex-
tract different levels of detail in multiresolution schemes based on triangle
strips. Moreover, by means of a filter in the visualization, it removes most
degenerate triangles produced in the lower levels of detail of the model.
This approach offers the following features:

• Uniform and variable resolution: this scheme permits to extract one
or several levels of detail on the surface of a polygonal mesh.

• Low storage cost: cost diminishes drastically compared to previous
multiresolution models.

• Efficiency: with low level-of-detail recovery time, we obtain better
results than MTS [BRR+01], one of the first models wholly based
on triangle strips.

• Speed: using triangle strips, rendering is faster than other models
based on triangles.

In chapter 4, a new uniform multiresolution method was presented: Lod-
Strips. This model allows us to efficiently transit between different levels
of detail in real-time applications. The LodStrips model offers many ad-
vantages and it should be underlined that it is a model with only three
simple data structures and it is easy to implement. Moreover, it offers a
fast level of detail extraction which allows us to obtain smooth transitions
between levels of detail, as well as very good rendering times because ex-
traction is usually an important part of the total rendering time. This
model is wholly based on the triangle strips primitive, which leads to an
important reduction in storage and rendering costs. Reduction in spatial
cost has been shown in the previous chapters, where it can be seen how
a LodStrips model can store an object in a memory space that is similar
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in size to two times the original triangle strips mesh size. Hence, we can
allocate more objects in memory than with other models. It has also been
shown how LodStrips has a much better rendering time than other well-
known models. It also allows us to obtain a fast rendering model, which is
important in critical applications and, what is more, it accelerates scene
rendering by increasing the frame per second rate.

In chapter 5, we introduced a GPU version of the LodStrips model by
modifying both the data structure and the drawing algorithms. As regards
the data structure, we noticeable improved its spatial cost. Moreover,
the efficiency of the geometric acceleration techniques was tested on this
multiresolution model. One of the most important conclusions that must
be stressed here is that using hardware acceleration techniques allows us
to increase the performance of the models with dynamic geometry. In
this regard, the LodStrips model increased its performance around ten
times. This rise is mainly due to the design of the model that has been
optimized for the hardware, where level-of-detail extraction times are very
low and so graphic acceleration is greatly benefited by avoiding long waits
to render approximations.

In chapter 6, we introduced a multiresolution scheme suitable for deform-
ing meshes such as those generated by means of morphing techniques. We
share the same connectivity information and we store the whole geom-
etry in the GPU, thus saving bandwidth in the typical CPU-GPU bot-
tleneck. Morphing is computed in the GPU by exploiting its parallelism.
We thus obtain real-time performance at great frame-per-second rates.
At the same time, we offer high quality approximations in every frame of
an animation.

In chapter 7, we designed and developed an independent library to in-
tegrate LodStrips in 3D applications. An efficient interface between the
application and the geometry modules was designed and implemented.
This library provides the ability to construct and render interactive 3D
meshes in 3D applications. This module contains functions that handle
the levels of detail of the input multiresolution polygonal meshes. For
any given resolution of an object, this module returns a set of triangle
strips representing the object at that resolution, that is, at the level of de-
tail requested. Obviously, these models use LodStrips, they therefore take
advantage of triangle strips to reduce storage usage and to speed up real-
istic rendering. Finally, the Ogre3D game engine was extended with this
library and it thus enabled Ogre3D to manage continuous multiresolution
models.
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8.2. Publications

In this section, publications related to this dissertation are detailed:

Tiras de Triángulos con Nivel de Detalle
F. Ramos, P. Castelló, M. Chover CEIG 2004
339-342. 2004

Explotación del Hardware Gráfico para Acelerar la Visualización
de Geometŕıa
P. Castelló, F. Ramos, M. Chover CEIG 2004
363-366. 2004

A Comparison of Multiresolution Modeling in Real-Time Ter-
rain Visualization
C. Rebollo, I. Remolar, M. Chover, F. Ramos
Lecture Notes in Computer Science 3044. ICCSA 2004
Springer-Verlag. 2. 703-712. 2004

An Approach to Improve Strip-based Multiresolution Schemes
F. Ramos, M. Chover, O. Belmonte, C. Rebollo
WSCG 2004
Journal of WSCG. 12(1). 349-354. 2004

A comparison of strip-based multiresolution models
F. Ramos, M. Chover
VIIP 2004
Acta Press. 239-244. 2004

LodStrips: Level of Detail Strips
F. Ramos, M. Chover
Lecture Notes in Computer Science 3039. ICCS 2004
Springer-Verlag. 4. 107-114. 2004

Level of Detail Modeling in a Computer Game Engine
F. Ramos, M. Chover
Lecture Notes in Computer Science 3166. ICEC 2004
Springer-Verlag. 4. 451-454. 2004
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Variable Level of Detail Strips
F. Ramos, M. Chover
Lecture Notes in Computer Science 3044. ICCSA 2004
Springer-Verlag. 2. 622-630. 2004

Real-Time Terrain Rendering using LodStrips Multiresolution
Model
F. Ramos, M. Chover, C. Granell
DEXA 2004
819-823. 2004

LodStrips in a Game Engine
F. Ramos, M. Chover
ICCCT 2004
288-292. 2004

A Comparative Study of Acceleration Techniques for Geomet-
ric Visualization
P. Castelló, F. Ramos, M. Chover
Lecture Notes in Computer Science 3515. ICCS 2005
Springer-Verlag. 2. 240-247. 2005

Quality Strips for Models with Level of Detail
O. Ripolles, M. Chover, F. Ramos
VIIP 2005
ACTA Press. 268-273. 2005

Efficient Implementation of LodStrips
F. Ramos, M. Chover, O. Ripollés, C. Granell
VIIP 2006
ACTA Press. 365-370. 2006

Continuous Level of Detail on Graphics Hardware
F. Ramos, M. Chover, O. Ripollés, C. Granell
Lecture Notes in Computer Science 4245. DGCI 2006
Springer-Verlag. 460-469. 2006

Level-of-Detail Triangle Strips for Deforming Meshes
F. Ramos, M. Chover, I. Kolingerova, J. Parus
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Accepted in CGGM 2008. Lecture Notes in Computer Science.

Adaptive Keyframing Animation on the GPU using Triangle
Strips
F. Ramos, M. Chover
Submitted to Visual Computer.

8.3. Future work
There exist several open areas to research in the line of this work. In this

section, we present some of them.

Stripification
The process to convert a polygonal mesh, usually composed of triangles, into

triangle strips is often called stripification. As explained in previous chapters,
there are a lot of heuristics to calculate them. However, schemes which take
advantage of vertex cache are not numerous and they only optimize a static
mesh. It would be interesting to develop stripification methods that optimize
vertex cache reuse for each level of detail.

Out of core
Present representations and extraction algorithms are not scalable for mod-

els made up of tens or hundreds of millions of polygons. The extraction cost
is proportional to the size of the model, and it can be prohibitive for massive
models. Another future line is to develop an out-of-core multiresolution method
following the LodStrips philosophy.

Comparison tool
Regarding simplification, we have tools to compare methods and thus, to

determine different characteristics to improve them, that is, to tune them.
In multiresolution, we do not have this kind of tool. Thus, a general tool to
compare multiresolution methods can help researchers to efficiently develop
new multiresolution models and, what is more, to tune them.

Adaptive morphing with level of detail
Deforming meshes are present in real-time applications. That surfaces are

often represented as dense polygonal meshes with static connectivity. However,
such high resolution meshes are unnecessary and undesired in many environ-
ments. Many works has addressed the simplification of static meshes but they
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are not adequate for deforming meshes. We created a multiresolution model
for deforming meshes based on triangle strip primitive. However, this model
is view-independent. A view-dependent approach to manage multiresolution
models based on triangle strips with morphing is another open line.

GPU
Nowadays GPUs offer new capabilities that, when exploited to the max-

imum, can offer very good results in several aspects. New units have been
included in the graphics pipeline: geometry shaders. A geometry shader can
generate new primitives from existing primitives like vertices, lines, triangles
and triangle strips. It offers us the possibility of simplify a model in real-time
in the GPU, avoiding the traffic needed to update the triangle strips located
in the GPU buffers. Another open line is to develop a model that stores the
information to change the triangle strips into textures within GPU memory.
Later, at runtime, the geometry of the mesh would be modified by means of a
geometry shader.
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