

Influència d'alguns anestèsics i analgèsics en l'activitat citocrom P450 hepàtica (CYP450) de rata

María del Carmen Gómez Martín

UNIVERSITAT DE BARCELONA

FACULTAT DE FARMÀCIA

DEPARTAMENT DE FARMÀCIA I TECNOLOGIA FARMACÈUTICA

INFLUÈNCIA D'ALGUNS ANESTÈSICS I ANALGÈSICS EN

L'ACTIVITAT CITOCROM P450 HEPÀTICA (CYP450)

DE RATA.

María del Carmen Gómez Martín

Agraïments per totes les persones que m'han ajudat en aquest treball.

Agraïments als dos Directors de la Tesi, el Dr. Josep Solà i Vidal i la Dra. Concepció Peraire i Guitart, per la seva feina i el seu temps dedicat a aquest projecte.

Als meus pares,

1	INTRODUCCIÓ		
1.1	Metaboli	isme de Xenobiòtics	
	1.1.1	El CYP450	
	1.1.1.1	Nomenclatura	24
	1.1.1.2	Distribució en Teixits de Rata	25
	1.1.2	Matriu : Microsomes Hepatics de Rata (RLM)	
	1.1.3	Substractes i Inhibidors Específics	27
	1.1.3.1	Substractes Específics	27
	1.1.3.2	Inhibidors Específics	
1.2	Anestèsie	cs i Analgèsics	
	1.2.1	Ketoprofè, KT	
	1.2.2	Ketamina, KTA	
	1.2.3	Buprenorfina, BN	31
	1.2.4	Fentanil, FEN	32
	1.2.5	Xilacina, XYL	33
1.3	Interacci	ions Farmacològiques en el Metabolisme del Complex CYP450	
	Hepàtic.		
2	OBJECT	FIU	
3	PLA DE	TREBALL	
4	MATER	IAL	
4.1	Material	i Equips Generals	
	4.1.1	Anestèsics	43
	4.1.2	Analgèsics	43
	4.1.3	Matrius	43
	4.1.4	Reactius	44
	4.1.5	Solvents i Productes per Solucions Reguladores del pH	
	4.1.6	Cromatografía Líquida d'Alta Resolució (HPLC)	45
	4.1.7	Equips Varis	45
4.2	Material	per l'Extracció de Fetge i l'Obtenció de RLM	
4.3	Animals		
4.4	Caracter	ització Funcional dels Lots de RLM	
	4.4.1	Determinació de la Concentració de Proteïna Microsomal	46
	4.4.2	Determinació del Citocrom P450 en RLM	46
	4.4.3	Determinació de l'Activitat NADPH-CYP450 Reductasa en	
		RLM	
4.5	Cinètiqu	es Enzimàtiques	
4.6	Estudi d	Inhibició <i>In Vitro</i> de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11,	
	2D1, 2E1	l i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN	
4.7	Determi	nació de la Unió <i>In Vitro</i> de la KTA a Proteïnes Microsomals.	
	Model In		
4.8	Program	ies Informatics	
5	METOD		
5.I	Procedin	nent per l'Extracció de Fetge de Rata i l'Obtenció de RLM	
5.2	Caracter	Titzacio Funcional dels Lots de KLM	
	5.2.1	rroceaiment per la Determinacio de la Concentracio de	F 1
	5 2 2	rroleina Microsomal	
	5.2.2	rroceaiment per la Determinacio de la Concentracio de CVD450 m DI M	
	5 7 7	CIF45U en KLIVI	
	5.2.5	rroceaimeni per la Delerminacio de l'Activitat NADPH- CVD450 Poductasa en DIM	50
		U11 430 REUUCIUSU EN RLAI	J <i>L</i>

5.3	L'Incuba	at	54
5.4	Cinètiqu	es Enzimàtiques	55
	5.4.1	Determinació de la Linealitat en la Producció de Metabòlit	
		CYP450-Específic en Funció del Temps i en Funció de la	
		Concentració de Proteïna Microsomal	55
	5.4.2	Determinació dels Paràmetres Cinètic-Enzimàtics K _m i V _{max}	56
5.5	Estudi <i>In</i>	<i>n Vitro</i> d'Inhibició de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11,	
	2D1, 2E1	l i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN	
5.6	Prepara	ció de les Mostres per l'Anàlisi	63
5.7	Anàlisi p	er HPLC	63
5.8	Determinació de la Unió de la KTA a Proteïnes Microsomals. Model In		
	Vitro		69
	5.8.1	Determinació de la Recuperació Analítica	
	5.8.2	Determinació del Percentatge d'Unió de la KTA al Filtre del	
		Sistema d´Ultrafiltració	71
6	TRACT	AMENT DE LES DADES	73
6.1	Caracter	rització dels Lots de RLM	73
	6.1.1	Determinació de la Concentració de Proteïna Microsomal	73
	6.1.2	Determinació del CYP450 en RLM	73
	6.1.3	Determinació de l'Activitat NADPH-CYP450 Reductasa en	
		<i>RLM</i>	74
6.2	Cinètiqu	es Enzimàtiques	74
	6.2.1	Determinació de la Linealitat en la Producció de Metabòlit	
		CYP450-Específic en Funció del Temps i en Funció de la	
		Concentració de Proteïna Microsomal	74
	6.2.2	Determinació dels Paràmetres Cinètic-Enzimàtics V _{max} i K _m	75
6.3	Estudi <i>In</i>	n Vitro d'Inhibició de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11,	
	2D1, 2E1	l i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN	77
	6.3.1	Determinació de la $K_{m,app}$ i Càlcul del Quocient $K_{m,app}/V_{max,app}$	77
	6.3.2	$Càlcul de l'1C_{50}$	
	6.3.3	Càlcul de la K _i . Mètode de Regressió No-Lineal Simultània,	
		SNLR. Equacions derivades de M-M	
	6.3.3.1	Inhibició Competitiva Simple	
	6.3.3.2	Inhibició No Competitiva Simple	81
	6.3.3.3	Inhibició Acompetitiva Simple	
	6.3.3.4	Inhibició Mixta	
	6.3.4	Fòrmules d'Inhibició Reversible Sigmoidal	85
	6.3.4.1	Inhibició Competitiva Sigmoidal	85
	6.3.4.2	Inhibició No Competitiva Sigmoidal	86
	6.3.4.3	Inhibició Acompetitiva Sigmoidal	
	6.3.5	Càlcul de la K _i . "Mètode de K _{m.app} "	87
	6.3.6	Càlcul de la K _i "IC ₅₀ -to-K _i Converter"	87
6.4	Determi	nació de la Unió No-Específica del KT, la KTA, la BN, el FEN i	
	la XYL a	a Proteïnes Microsomals	
	6.4.1	Determinació de la Unió de la KTA a Proteïnes Microsomals.	
		Model In Vitro	
	6.4.1.1	Càlcul del Percentatge de Recuperació (%R)	
	6.4.1.2	Càlcul del Percentatge de KTA Unida (%M)	
	6.4.1.3	Càlcul del Percentatge del KTA Unida (%B) i No Unida (%F)	
		/	

	6.4.2	Predicció de la Unió No-Específica a les Proteïnes Microsomals	
		Utilitzant les Propietats Físico-Químiques del KT, la KTA, el	
		BN, el FEN i la XYL. Models In Silico	89
6.5	Càlcul d	e la K _i Modificada per la f _{u.mic}	91
6.6	Càlcul d	e R _{exp}	92
7	RESUL	ГАТŚ	93
7.1	Caracter	rització Funcional dels Lots de RLM	93
	7.1.1	Determinació de la Concentració de Proteïna Microsomal	93
	7.1.2	Determinació del Citocrom P450 en RLM	93
	7.1.3	Determinació de l'Activitat NADPH-CYP450 Reductasa en	
		<i>RLM</i>	94
7.2	Cinètiqu	ies Enzimàtiques	95
	7.2.1	Determinació de la Linealitat en la Producció de Metabòlit	
		CYP-Específic en Funció del Temps i en Funció de la	
		Concentració de Proteïna Microsomal	95
	7.2.2	Determinació dels Paràmetres Cinètic-Enzimàtics K _m i V _{max}	
7.3	Estudi <i>I</i>	<i>n vitro</i> d'Inhibició de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11.	
	2D1. 2E	1 i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN	101
	7.3.1	Determinació de la K _m ann i Càlcul del Ouocient K _m ann/V _{max}	
	7.3.2	Càlcul de l'IC ₅₀	130
	7.3.3	Càlcul de la K: Mètode SNLR	135
	7.3.4	Càlcul de la K: Mètode de la K _m m i Mètode "IC ₅₀ -to-Ki	100
	7.0.4	Converter"	144
7.4	Determi	nació de la Unió No-Específica del KT, la KTA, el BN, el FEN i	
	la XYL a	a Proteïnes Microsomals	145
	7.4.1	Determinació de la Unió No-específica de la KTA a Proteïnes	
	/	Microsomals Model In vitro	145
	7.4.1.1	Càlcul del Percentatge de Recuperació (%R)	146
	7.4.1.2	Càlcul del Percentatge de KTA No Unida (%M) al Material	
	,	d'Iltracentrifugació	146
	7413	Càlcul del Percentatge de KTA Unit (%B) i No Unit (%F)	170 147
	742	Unió No-Específica a les Proteïnes Microsomals Utilitzant les	
	/.1.2	Pronietats Fisico-Químiaues del KT la KTA la RN el FFN i la	
		XYI Model In silico	147
75	Càlcul d	e la K. Modificada ner f	147 148
7.6	Predicci	ó d'Interaccions Potencials <i>In Viva</i> Càlcul de R	140
8	DISCUS	IÁ	150
0	CONCI	IISIONS	131
, 10	REFER	FNCIES	105
10		L1 1 VIII/ 000000000000000000000000000000000	

ÍNDEX DE TAULES

Taula 1	Isoformes CYP450 Hepàtiques Constitutives i No Constitutives en Rata, i la Seva Especificitat	26
Taula 2	Reactius: Substractes i Metabòlits Específics, Estàndards Intern i	
Taula 3	Concentracions de Substracte Específic, Concentracions de Proteïna i Temps d'Incubació Utilitzats en la Determinació de la	44
Taula 4	Linealitat de la Concentració de Proteïna i del Temps d'Incubació Concentracions de Substractes Específics, Concentracions de Proteïna Microsomal, i Temps d'Incubació per Determinar les	56
	Diferents Cinètiques Enzimàtiques.	57
Taula 5	Composició de les Mostres Control per Verificar la Metòdica Analítica.	59
Taula 6	Composició dels Incubats pels Estudis de Cinètica Enzimàtica (Concentració de Fàrmac Zero) i Estudis d'Inhibició (en Presència de Fàrmac) CVP2E1 CVP2D1 i CVP1A1/2	61
Taula 7	Composició dels Incubats pels Estudis de Cinètica Enzimàtica (Concentració de Fàrmac Zero) i Estudis d'Inhibició (en Presència de Fàrmac). CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CVP3A1/2	
Taula 8	Components de les Rectes de Calibració per les Reaccions	02
Taula 9	Especifiques dels CYP2E1, CYP2D11CYP1A1/2 Components de les Rectes de Calibració per les Reaccions Específiques dels CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i	05
Taula 10	CYP3A1/2 Lot , Mètode de Preparació dels Microsomes, i Concentració de	65
-	Proteïna Microsomal en els RLM Obtinguts	
Taula 11	Lot i Contingut de CYP450 en els RLM Obtinguts	94
Taula 12	Valors de l'Activitat NADPH-CYP450 Reductasa en els Lots de RLM Obtinguts	95
Taula 13	Reaccions Específiques de cada CYP450: Temps d'Incubació i Concentració de Proteïna Microsomal	98
Taula 14	Paràmetres Cinètics K _m i V _{max} . Models de Michaelis-Menten i de Hill, CYP2E1, CYP2D1, CYP1A1/2 i CYP2B1/2	99
Taula 15	Paràmetres Cinètics K _m i V _{max} . Models de Michaelis-Menten i de Hill. CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2	
Taula 16	Estudi d'Inhibició del CYP2E1. Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA	102
Taula 17	Estudi d'Inhibició del CYP2E1. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN	
Taula 18	Estudi d'Inhibició del CYP2E1. Valors d'Activitat (Velocitat). Incubació amb XYL	104
Taula 19	Estudi d'Inhibició del CYP2D1. Valors d'Activitat (Velocitat) Incubacions amb KT i amb KTA	105
Taula 20	Estudi d'Inhibició del CYP2D1. Valors d'Activitat (Velocitat).	103 102
Taula 21	Estudi d'Inhibició del CYP2D1. Valors d'Activitat (Velocitat).	1V0 107
Taula 22	Estudi d'Inhibició del CYP1A1/2.Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA	

Taula 23	Estudi d'Inhibició del CYP1A1/2. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN	
Taula 24	Estudi d'Inhibició del CYP1A1/2. Valors d'Activitat (Velocitat). Incubació amb XVI	110
Taula 25	Estudi d'Inhibició del CYP2B1/2. Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA	111
Taula 26	Estudi d'Inhibició del CYP2B1/2. Valors d'Activitat (Velocitat).	112
Taula 27	Estudi d'Inhibició del CYP2B1/2. Valors d'Activitat (Velocitat).	113
Taula 28	Estudi d'Inhibició del CYP2A1/2. Valors d'Activitat (Velocitat).	11/
Taula 29	Estudi d'Inhibició del CYP2A1/2. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN	115
Taula 30	Estudi d'Inhibició del CYP2A1/2. Valors d'Activitat (Velocitat).	116
Taula 31	Estudi d'Inhibició del CYP2C. Valors d'Activitat (Velocitat).	117
Taula 32	Estudi d'Inhibició del CYP2C. Valors d'Activitat (Velocitat).	110
Taula 33	Estudi d'Inhibició del CYP2C. Valors d'Activitat (Velocitat).	110
Taula 34	Estudi d'Inhibició del CYP2C11. Valors d'Activitat (Velocitat).	119
Taula 35	Estudi d'Inhibició del CYP2C11. Valors d'Activitat (Velocitat).	120
Taula 36	Estudi d'Inhibició del CYP2C11. Valors d'Activitat (Velocitat).	121
Taula 37	Estudi d'Inhibició del CYP3A1/2. Valors d'Activitat (Velocitat).	122
Taula 38	Estudi d'Inhibició del CYP3A1/2. Valors d'Activitat (Velocitat).	124
Taula 39	Estudi d'Inhibició del CYP3A1/2. Valors d'Activitat (Velocitat).	124
Taula 40	Paràmetres Cinètics $K_{m,app}$ (μ M) i $V_{max,app}$ (pmol/mg proteïna/min) per les Isoformes CYP1A1/2 i CYP2B1/2. Càlcul del Quocient	126
Taula 41	R _{m,app} /V _{max} . Paràmetres Cinètics K _{m,app} (μM) i V _{max,app} (pmol/mg proteïna/min) per les Isoformes CYP2D1 i CYP3A1/2. Càlcul del Quocient	120
Taula 42	K _{m,app} /V _{max} . Paràmetres Cinètics K _{m,app} (μM) i V _{max,app} (pmol/mg proteïna/min) per les Isoformes CYP2C11 i CYP2C. Càlcul del Quocient	127
Taula 43	$K_{m,app}/V_{max}$. Paràmetres Cinètics $K_{m,app}(\mu M)$ i $V_{max,app}$ (pmol/mg proteïna/min) pel CVP2 A 1/2 Cèlcul del Ouocient K V	128
Taula 44	Estadística. Comparació dels Quocients $K_{m,app}/V_{max}$ Entre les Diferents Concentracions de Fàrmac per a Totes les Isoformes	127
Taula 45	CYP450 Valor d'IC ₅₀ dels Fàrmacs amb els CYP450 Susceptibles d'Interaccionar per Inhibició segons el Test Estadístic	

Taula 46	Valors de la K_i i dels Paràmetres Cinètics K_m i V_{max} per cada Tipus	
	d Inhibició. Model de M-M. KT i KTA	136
Taula 47	Valors de la K _i i dels Paràmetres Cinètics K _m i V _{max} per cada	
	Tipus d'Inhibició. Model del M-M. BN, FEN i XYL	137
Taula 48	Valors de la K _i i dels Paràmetres Cinètics K _m i V _{max} per cada Tipus	
	d'Inhibició. Model de Hill	138
Taula 49	Concentracions Terapèutiques de Fàrmac en Plasma / Sang de	
	Rata	139
Taula 50	Valors dels Paràmetres d´Inhibició (IC ₅₀ i K _i) i Tipus d´Inhibició	
	per 18 Relacions Fàrmac-Isoforma CYP450 Resultants del Test	
	Estadístic	140
Taula 51	Valors de K _i Estimats pels Mètodes de: SNLR, "Km,app " i "IC ₅₀ -	
	to-Ki Converter"	144
Taula 52	Determinació de la f _{umic} pel Model <i>In vitro</i> . Dades Experimentals i	
	Càlcul del Percentatge de Recuperació (%R)	146
Taula 53	Determinació de la f_{umic} pel Model <i>In vitro</i> . Dades Experimentals i	
	Càlcul del Percentatge de KTA No Unida al Material	
	d'Ultracentrifugació (%M)	146
Taula 54	Determinació de la fumic pel Model <i>In vitro</i> . Dades Experimentals i	
	Càlcul del Percentatge de KTA No Unida als RLM (%F)	
Taula 55	Tipus de Càrrega i Valors de f_{umic} de cada Fàrmac segons el	
	Model de Predicció <i>In silico</i> Utilitzat	
Taula 56	Valors de f _{u mic} Determinada <i>In silico</i> per KT. BN. FEN I XYL i <i>In</i>	
	<i>vitro</i> per la KTA. Càlcul de la K: No Unida	
Taula 57	Valors del Ouocient R _{own} per cada Fàrmac i Isoforma	
Taula 58	Valors d'IC ₅₀ per cada Fàrmac i Isoforma CYP450 on es Detecta	
Luulu 20	una Interacció Potencial ner Inhibició en l'Activitat de la Isoforma	157
	una moraceto i otenetar per inmoreto en i metritar de la 150101 ma	

ÍNDEX DE FIGURES

Figura 1	Estructura Química del Grup Hemo del CYP450	22
Figura 2	Cicle Catalitic del CYP450	23
Figura 3	Traspàs d'Electrons des del NADPH-CYP450 Reductasa al CYP450.	24
Figura 4	Estructura Ouímica del Ketoprofè (KT)	
Figura 5	Estructura Química de la Ketamina (KTA)	
Figura 6	Estructura Química de la Buprenorfina (BN)	
Figura 7	Estructura Química del Fentanil (FEN)	
Figura 8	Estructura Química de la Xilacina (XYL)	
Figura 9	Cicle de la Reacció del <i>Riuret</i> amb el Mètode <i>Folin-Lowry</i> ner la	
I Igui u >	Determinació de la Concentració de la Proteïna Microsomal	
Figura 10	Cicle del Funcionament de la NADPH-CYP450 Reductasa	
Figura 10	Cinètiques Enzimàtiques: Reaccions Específiques, Substractes i	
I Igui u II	Metabòlits Específics	57
Figura 12	Cinètiques Enzimàtiques: Reaccions Específiques. Substractes i	
8	Metabòlits Específics. (Continuació).	58
Figura 13	Disseny Experimental per l'Estudi d'Inhibició (n=3)	59
Figura 14	Cromatograma Representatiu de la Determinació de la 6-	
U	hidroxiclorzoxazona	66
Figura 15	Cromatograma Representatiu de la Determinació del Dextrorfà	67
Figura 16	Cromatograma Representatiu de la Determinació de la Resorufina	68
Figura 17	Cromatograma Representatiu de la Determinació de les	
-	Hidroxitestosterones.	69
Figura 18	Determinació de la Unió No-Específica a Proteïnes Microsomals In	
	Vitro	70
Figura 19	Determinació de la Unió No-Específica a Proteïnes Microsomals In	
	Vitro: Determinació de la Recuperació Analítica de la KTA.	71
Figura 20	Determinació de la Unió No-Específica a Proteïnes Microsomals In	
	Vitro: Determinació de la Unió de la KTA al Filtre	72
Figura 21	Representació Gràfica de l'Equació de Michaelis-Menten (M-M).	
	Obtenció dels Paràmetres K _m (µM) i V _{max} (pmol/mg proteïna/min)	75
Figura 22	Representació Gràfica de l'Equació de Hill. Obtenció dels	
	Paràmetres $K_m (\mu M)$ i V_{max} (pmol/mg proteïna/min)	76
Figura 23	Representació Teòrica de l'Ajustament de M-M a les Activitats	
	Ezimàtiques per una Reacció Específica (Una Isoforma CYP450)	
	en l'Experiment d'Inhibició d'un Fàrmac	77
Figura 24	Representació Teòrica d'un Model d'Inhibició Mitjançant	
	Regressions No-Lineals Simultànies (SNLR) Utilitzant WinNonlin	79
Figura 25	Esquema Inhibició Competitiva Simple	80
Figura 26	Esquema Inhibició No Competitiva Simple	81
Figura 27	Esquema Inhibició Acompetitiva Simple	83
Figura 28	Esquema Inhibició Mixta	84
Figura 29	Espectre d'Absorció del CYP450	94
Figura 30	Representacions de la Linealitat en la Producció de Metabòlit	
	Específic en Funció de la Concentració de Proteïna Microsomal	
T	per cada CYP450	96
Figura 31	Representacions de la Linealitat en la Producció de Metabòlit	
	Especific en Funcio del Temps d'Incubacio per cada CYP450	97

Figura 32	Representacions Gràfiques pel Càlcul de l'IC ₅₀ dels Fàrmacs amb	
	els CYP1A1/2, CYP2B1/2 i CYP2D1	132
Figura 33	Representacions Gràfiques pel Càlcul de l'IC ₅₀ dels Fàrmacs amb	
	els CYP3A1/2, CYP2C11 i CYP2C	
Figura 34	Representacions Gràfiques pel Càlcul de l'IC ₅₀ dels Fàrmacs amb	
	el CYP2A1/2	134
Figura 35	Corbes de Regressió No-Lineal Obtingudes per SNLR. XYL-	
	CYP2C, XYL-CYP2C11, XYL-CYP2D1	141
Figura 36	Corbes de Regressió No-Lineal Obtingudes per SNLR. XYL-	
	CYP3A1/2	142
Figura 37	Corbes de Regressió No-Lineal Obtingudes per SNLR. KT-	
	CYP3A1/2	142
Figura 38	Corbes de Regressió No-Lineal Obtingudes per SNLR. KTA-	
_	CYP2B1/2	143
Figura 39	Corbes de Regressió No-Lineal Obtingudes per SNLR. BN-	
	CYP3A1/2	143

ÍNDEX D'ANNEX

Annex 1	Model d´Inhibició Enzimàtica Competitiva Deduït de l´Equació de	
	Michaelis-Menten per 5 Concentracions d'Inhibidors	175
Annex 2	Model d'Inhibició Enzimàtica No Competitiva Deduït de	
	l'Equació de Michaelis-Menten per 5 Concentracions d'Inhibidors	176
Annex 3	Model d'Inhibició Enzimàtica Mixta Deduït de l'Equació de	
	Michaelis-Menten per 5 Concentracions d'Inhibidors	177
Annex 4	Model d'Inhibició Enzimàtica Acompetitiva Deduït de l'Equació	
	de Michaelis-Menten per 5 Concentracions d'Inhibidors	178
Annex 5	Model d'Inhibició Enzimàtica Competitiva Deduït de l'Equació de	
	Hill per 5 Concentracions d'Inhibidors	179
Annex 6	Model d'Inhibició Enzimàtica No Competitiva Deduït de	
	l'Equació de Hill per 5 Concentracions d'Inhibidors	180
Annex 7	Model d'Inhibició Enzimàtica Acompetitiva Deduït de l'Equació	
	de Hill per 5 Concentracions d'Inhibidors	181
Annex 8	Posters Relacionats amb el Treball i Presentats a Diferents	
	Congressos	183

LLISTAT D'ABREVIATURES I DEFINICIONS DE TERMES

AcN	Acetonitril
AE	Activitat enzimàtica (nmol/mg/min)
AES	Activitat específica (nmol/mg)
AIC	Criteri d´Akaike
%B	Percentatge de fàrmac unit (%)
BN	Buprenorfina
β-NADP	β-Nicotinamida adenina dinucleòtid fosfat
С	Constitutiu
C _{FMS}	Concentració de ketamina trobada en les mostres FMS (pmol/ml)
CIM	Cimetidina
CONC	Concentració específica de CYP450
СР	Concentració de proteïna
C _{RLMS}	Concentració de ketamina trobada en les mostres RLMS (pmol/ml)
CUM	Cumarina
CV%	Coeficient de variació (%)
СҮР	Citocrom
CYP450	Citocrom P450
CZX	Clorzoxazona
D	Increment d'absorció per minut
DDC	Dietilditiocarbamat
DEX	Dextrometorfà
D-G-6P	Dextro-glucosa-6-fosfat
DMSO	Dimetilsulfòxid
Ε	Enzim
EI	Complexe enzim-inhibidor
ERO	Etoxiresorufina
ES	Complexe enzim-substracte
ESI	Complexe enzim-substracte-inhibidor
%F	Percentatge de fàrmac no unit (%)
FAD	Flavin adenina dinucleòtid
FDA	Food and Drug Administration
Fe	Ferro

FEN	Fentanil
FMN	Flavin mononucleòtid
FMS	Matriu composta per microsomes ultrafiltrada
f _{u,mic}	Fracció no unida a proteïnes microsomals
GH	Hormona del creixement
G-6P-DH	Glucosa-6-fosfat deshidrogenasa
HPLC	Cromatografia líquida d´alta eficàcia
HRSDMC	Microsomas de fetge de rata Sprague-Dawley mascle control
I	Inhibidor
I _{max}	Concentració màxima d'inhibidor
IC ₅₀	Concentració d'inhibidor que disminueix l'activitat màxima d'un enzim a la meitat.
i.m.	Intramuscular
i.v.	Intravenosa
i.p.	Intraperitoneal
K _i	Constant d'inhibició (min ⁻¹)
Ki ^u	Constant d'inhibició no unida a proteïna microsomal (min ⁻¹)
K _m	Constant de Michaelis-Menten (µM)
K _{m,app}	Constant aparent de Michaelis-Menten (µM)
KT	Ketoprofè
КТА	Ketamina
K _s	Constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K _m
K _p	Constant de formació de producte
log D	Coeficient de distribució
log P	Coeficient de repartiment
log P/D	Coeficient de repartiment en molècules bàsiques i coeficient de distribució per molècules àcides.
%M	Percentage de fàrmac no unit al material d'ultrafiltració
M _A	Àrea de pic trobada de la ketamina en les mostres FMS grup A
M _B	Àrea de pic trobada de la ketamina en les mostres FMS grup B
M-M	Michaelis Menten
NADPH	Nicotinamida adenina dinucleòtid fosfat reduïda

NAF	α-Naftoflavona
NSAID	Antiinflamatori no estereoïdal
ORF	Orfenadrina
Р	Producte
P-450	Pigment 450
рКа	Logaritme negatiu de la constant de dissociació àcida d'un àcid feble.
p.o.	Oral
PRO	Pentoxiresorufina
QN	Quinidina
% R	Percentatge de recuperació de fàrmac
R _{exp}	Quocient depenent de la K _i i de la concentració màxima d'inhibidor assolida <i>in vivo</i>
R _{FMS}	Àrea de pic de ketamina trobada en les mostres FMS
RLM	Microsomes de fetge de rata
RLMS	Matriu composta per microsomes, no ultrafiltrada.
R _{RMLS}	Àrea de pic de ketamina trobada en les mostres RMLS
S	Substracte
SBC	Criteri de Schwarz
s.c.	Subcutani
SNC	Sistema nerviós central
SLNR	Regressió no-lineal simultània
SD	Desviació estàndard
SUL	Sulfafenazol
TCA	Tricloroacètic
TF	Tampó fostat sòdic
Tris	Tris -(hidroximetil)-aminometà
TRO	Troleandomicina
TST	Testosterona
UV	Ultravioleta
V	Velocitat
Vo	Velocitat inicial
V _{max}	Velocitat màxima (pmol/mg/min)
XYL	Xilacina

1 INTRODUCCIÓ

1.1 Metabolisme de Xenobiòtics

Els xenobiòtics són compostos exògens als éssers vius, i encara que no formen part de la seva bioquímica normal, s'incorporen a les seves vies metabòliques. Els xenobiòtics entren a l'organisme per diferents vies: oral (p.o.), intravenosa (i.v.) subcutània (s.c.), intramuscular (i.m.), respiratòria, etc.

Els xenobiòtics es poden classificar segons el seu origen i segons els seus efectes. Els organismes, per la seva part, han desenvolupat sistemes de detoxificaxió per eliminar-los.

En aquest treball, s'estudien xenobiòtics que tenen o estan desenvolupats per tenir una activitat terapèutica (fàrmacs). Aquests compostos són normalment de naturalesa lipofílica, de forma majoritària amb capacitat de difondre per les membranes cel.lulars, encara que alguns interaccionen amb transportadors específics. Un cop dins de la cèl.lula són normalment difícils d'eliminar. Per aquest motiu, els organismes transformen els xenobiòtics mitjançant processos metabòlics, i així faciliten la seva eliminació.

En aquest procés de detoxificació intervenen un conjunt d'enzims poc específics que reconeixen una àmplia gamma de compostos. Les reaccions de metabolisme d'aquests enzims s'anomenen reaccions de biotransformació de fase I, i reaccions de conjugació o de fase II.

En el present treball s'estudien les reaccions de fase I, que són processos d'oxidació, reducció i hidròlisi que es donen a temperatura fisiològica. El Citocrom P450, CYP450, és el principal complexe enzimàtic encarregat de les reaccions de fase I, i es caracteritza per la gran varietat de processos que poden catalitzar així com la quantitat de substractes diferents que poden metabolitzar.

(ref. 1, ref. 2)

1.1.1 El CYP450

El CYP450 és una família de pigments de naturalesa hemoproteica (hemoproteïna) que es troba a gairabé tots els òrgans i principalment al fetge.

En general els CYP450 dels organismes eucariòtes tenen un pes molecular entre 50 - 60 kD. La similitud en la seqüència d'aminoàcids entre els diferents CYP450 és molt baixa, arribant a ser menor del 20% en molts casos. L'extrem C-terminal de la proteïna presenta una conservació de les seqüències d'aminoàcids entre els diferents CYP450 més gran que a la regió N-terminal. De forma general, la molécula de l'enzim està constituïda per una combinació de regions α -hèlix i de fulles fonamentalment a la regió de la proteïna que envolta el grup hemo, mentre que les regions més variables són les que corresponen als llocs d'ancoratge a la membrana del reticle endoplasmàtic, o a les regions d'unió i reconeixement de substractes. La part ancorada és una hèlix hidrofòbica propera a l'extrem N-terminal, i per aquest motiu, la major part de la proteïna es situa a la cara citosòlica de la membrana. La regió del grup hemo es correspon amb el centre catalític de l'enzim, a on hi ha una transferència d'electrons i de protons, que reudeixen l'ió fèrric (III), Fe³⁺, i formen l'espècie activada de l'oxígen.

A la estructura del grup hemo/centre catalític hi ha l'àtom de ferro (Fe) al centre, i està unit a quatre àtoms de nitrogen de l'anell de porfirina (veure Figura 1). El Fe té com a cinquè lligand el grup tiol d'una cisteina, i el sisè lligand és una molècula d'aigua.

La Figura 2 mostra les etapes del cicle catalític del CYP450:

- Unió del substracte (RH). A l'àtom de ferro del centre actiu de l'enzim que està en estat oxidat (Fe³⁺) se li uneix el substracte i es forma el complexe enzim-substracte, que és relativament estable. La unió causa una baixada del potencial redox que afavoreix la transferència d'un primer electró.
- Primera reducció. El primer electró ve transferit per l'enzim de membrana NADPH-citocrom P450 reductasa, mitjançant la reacció d'oxidació una molècula de NADPH a NADP. Veure Figura 3.
- 3. Unió de la molècula d'oxigen. A l'àtom Fe^{2+} se li uneix de forma covalent una molècula d'oxigen, i es forma el complexe $\text{Fe}^{2+}-\text{O}_2^-$, que de forma lenta passa a convertir-se en un complexe més estable, $\text{Fe}^{3+}-\text{O}_2^-$.
- Segona reducció. Un altre electró transferit pel NADPH-citocrom P450 reductasa entra en el cicle i es forma el complexe Fe³⁺-O₂²⁻.
- Alliberament de la mòlecula d'oxigen. El O₂²⁻ reacciona amb 2 protons del medi, es trenca l'enllaç O-O i es forma una molècula d'aigua i el complexe (FeO)³⁺.
- Formació del producte (ROH). L'àtom d'oxigen del complexe (FeO)³⁺ es transfereix al substracte i l'oxida.
- 7. Alliberació del producte des del centre actiu, que torna al seu estat inicial.

Figura 2 Cicle Catalític del CYP450

Figura 3 Traspàs d'Electrons des del NADPH-CYP450 Reductasa al CYP450.

Els P450 catalitzen reaccions d'oxidació regio- i estero-específiques a temperatura fisiològica, i la seva funció catalítica està relacionada amb el metabolisme de la majoria dels fàrmacs i d'altres xenobiòtics.

(ref. 3, ref. 4, ref. 5, ref. 6, ref. 7, ref. 8, ref. 9)

1.1.1.1 Nomenclatura

La superfamília dels P-450 és el conjunt d'isoformes CYP450 anomenades i classificades segons la seva seqüència d'aminoàcids en les cadenes polipeptídiques. S'anomenen amb les sigles CYP seguides d'un número que designa la família, una lletra que identifica la subfamília i un segon número que correspon al gen. Els enzims d'una mateixa família tenen una similitud igual o

major del 40% en la seqüència d'aminoàcids. Dintre d'una mateixa subfamília, han de tenir una homologia superior al 55% en la seqüència d'aminoàcids. I dintre de les subfamílies es classifiquen en subsubfamílies quan les seqüències difereixen en més d'un 3%.

Tot i així, la classificació segons l'homologia en la seqüència d'aminoàcids no té una relació directa amb el tipus de reaccions que catalitzen, que poden utilitzar substractes endògens i exògens.

En la rata, les principals isoformes involucrades en el metabolisme de compostos exògens són les que s'estudien en aquest treball: CYP1A1/2, CYP2A1/2, CYP2B1/2, CYP2C11, CYP2D1, CYP2E1, CYP3A1/2 i la subfamília CYP2C que inclou les subsubfamílies CYP2C6, CYP2C7, CYP2C11 i CYP2C13.

(ref. 10)

1.1.1.2 Distribució en Teixits de Rata

El complexe CYP450 està distribuït en diferents òrgans de la rata: fetge, ronyons, pulmó, intestins, glàndula adrenal, testicles, pell, melsa i cervell. El fetge però, és on hi ha una major expressió. El número d'isoformes del CYP450 en la rata, així com els al.lels que codifiquen per aquests CYP450 es troba descrit a la pàgina web, CytochromeP450 Homepage (http://drnelson.uthsc.edu/CytochromeP450.html).

Determinades formes CYP450 es troben expressades només en rates mascle, mentre que d'altres són específiques de rata femella. L'activitat CYP450 és diferent segons el sexe, i sol ser molt més baixa en femelles que en mascles. Aquesta diferència en l'activitat està relacionada amb el cicle d'alliberació de la hormona del creixement (GH), entre d'altres factors. L'edat, els estats fisiològics, la dieta, així com les alteracions fisiopatològiques també poden modificar l'expressió de les CYP450.

En el fetge de rata hi ha isoformes constitutives i isoformes que es poden induir, i al mateix temps hi ha isoformes predominants en rates mascle, predominants

en rata femella, i presents en els dos sexes sense diferència. A la Taula 1 es detallen les isoformes presents en rata Sprague Dawley mascle, que és l'animal d'experimentació utilitzat en aquest estudi.

Isoforma	C/Ind	Especificitat
CYP1A1	Ind	Ν
CYP1A2	Ind	F-d
CYP2A1	Ind	F-d
CYP2A2	С	М
CYP2B1	Ind	M-d
CYP2B2	Ind	M-d
CYP2C6	Ind	N
CYP2C7	С	F-d
CYP2C11	С	М
CYP2C12	С	F
CYP2C13	С	М
CYP2C22	С	М
CYP2D1	С	M-d
CYP2E1	Ind	F-d
CYP3A1	Ind	M-d
CYP3A2	Ind	М

Taula 1Isoformes CYP450 Hepàtiques Constitutives i No Constitutives en Rata, i la SevaEspecificitat

C/Ind: Enzim constitutiu / enzim que es pot induir N : No especificitat depenent del sexe F: Isoforma específica de rates femella F-d: Isoforma dominant en rates femella M: Isoforma específica de rates mascle M-d: Isoforma dominant en rates mascle

Les isoformes més rellevants en abundància són: CYP2C11, CYP3A1/2, i CYP2C13.

(ref. 10, ref. 11, ref. 12, , ref. 13, ref. 14, ref. 15)

1.1.2 Matriu : Microsomes Hepatics de Rata (RLM)

Els microsomes són petites vesícules que es formen per fragmentació quan s'homogeneïtza el fetge. Aquestes vesícules estan compostes de forma majoritària per reticle endoplasmàtic, principalment llis, i la resta són fragments vesiculats de la membrana plasmàtica, del complexe de Golgi, dels endosomes i de les mitocondries. En mamífers, el complexe CYP450 pot arribar a ser fins el 20% de la proteïna total del reticle endoplàsmic en el fetge.

Els microsomes contenen un sistema generador de NADPH, que és un sistema dirigit per l'enzim NADPH-citocrom P450 reductasa, que com el CYP450, està ancorat a la cara externa de la membrana del reticle endoplasmàtic mitjançant la regió hidrofòbica de l'extrem amino-terminal. Com s'ha vist a la Figura 2 i a la Figura 3, la seva funció és catalitzar el pas d'electrons del NADPH a la CYP450. Els electrons intervenen en la reducció del Fe³⁺ a Fe²⁺, i en la formació de l'espècie activada de l'oxígen que s'insereix dintre del substracte oxidant-lo. L'esquema de funcionament es detalla a la secció 5.2.3.

(ref. 1, ref. 2, ref. 8, ref. 16)

1.1.3 Substractes i Inhibidors Específics

1.1.3.1 Substractes Específics

Les isoformes de CYP450 presenten especificitat diferent pels substractes, encara què, la majoria de vegades es solapen, és a dir, els xenobiòtics se solen metabolitzar per varis CYP450. Només alguns compostos són "exclusivament" metabolitzats per una isoforma o tenen un metabòlit que es produeix únicament o de forma majoritària per una isoforma (metabòlit isoforma-específic). Aquests són els compostos que es fan servir per la caracterització de les activitats de les isoformes CYP450 al laboratori.

Els substractes específics que es fan servir en aquest estudi són la clorzoxazona (CZX), el dextrometorfà (DEX), l'etoxiresorufina (ERO) i la pentoxiresorufina (PRO) que són específics pels CYPs 2E1, 2D1, 1A1/2 i 2B1/2, respectivament, i la testosterona (TST) és substracte específic dels CYPs 2A1/2, 2C, 2C11 i 3A1/2.

Caldria senyalar que tots els CYP450 tenen la característica de metabolitzar per hidroxilació la TST, excepte el CYP2E1. En aquest treball, la TST és el substracte específic seleccionat per l'estudi de l'activitat del CYP2C,

CYP3A1/2 i CYP2A1/2. Les isoformes del grup de les CYP2C i la CYP3A1/2, metabolitzen la TST per hidroxilació en la posició 6 β , tenint en compte però, que per la CYP3A1/2 suposa la principal via d'hidroxilació. El CYP2C11 es caracteritza per hidroxilar la TST principalment posició 2 α , encara que també l'hidroxila en posició 16 α , com diferents isoformes de la subfamília CYP2C. El CYP2A1/2 hidroxila la TST en posició 7 α . Veure Taula 2.

(ref. 4)

1.1.3.2 Inhibidors Específics

Es defineix com inhibidor específic, aquella molècula que a la concentració en la que inhibeix el 50% de l'activitat d'una isoforma CYP450, és unes 100 vegades més petita que la concentració necessària per inhibir una altra isoforma.

Els inhibidors en general actuen de forma reversible o bé de forma irreversible o quasi-irreversible. En la primera forma, i sense haver pràcticament metabolisme de la molècula, l'inhibidor competeix pel centre actiu de l'enzim (inhibició competitiva); inhibidor i enzim s'uneixen a llocs diferents de l'enzim (inhibició no competitiva); l'inhibidor només s'uneix a l'enzim quan aquest ja està unit al substracte (inhibició acompetitiva). En la segona forma, l'inhibidor s'uneix de forma que no se separa del centre actiu de l'enzim i el bloqueja.

En general, els substractes específics i els inhibidors específics s'utilitzen com a eines que s'utilitzen per a demostrar la implicació d'un determinat CYP450 en una reacció.

Els inhibidors específics s'utilitzen en aquest estudi per fer les proves de control negatiu dels experiments, i són els que es mostren a la Taula 2 de la secció 4.1.4.

(ref. 17)

1.2 Anestèsics i Analgèsics

Quan s'elabora un protocol experimental per l'estudi del metabolisme d'un fàrmac per CYP450 en fetge de rata de laboratori, s'han d'avaluar les interaccions potencials dels anestèsics/analgèsics administrats a la rata per

iniciar el procés quirúrgic. És important considerar els efectes de l'anestèsia/analgesia, entre d'altres factors com el procediment quirúrgic.

Una bona anestèsia/analgèsia és imprescindible pel benestar de l'animal, i s'ha de considerar durant tot el procés experimental, encara que el procediment finalitzi amb el sacrifici de l'animal. Al mateix temps, per seleccionar els anestèsics/analgèsics que es faran servir, s'haurien de conèixer els possibles efectes d'aquests sobre el metabolisme del fàrmac a estudiar per poder interpretar correctament els resultats obtinguts. Dels anestèsics i analgèsics utilitzats en el present estudi existeixen poques dades sobre les seves interaccions amb el complexe CYP450 hepàtic, i aquesta informació, és la que es pretén obtenir en el present treball.

A continuació es descriuen els analgèsics i anestèsics que s'utilitzen, i que es fan servir més freqüentment en l'experimentació animal. A la descripció de cada fàrmac, s'afegeixen les dades publicades en estudis realitzats *in vivo* en rata o *in vitro* en els RLM.

1.2.1 Ketoprofè, KT

El KT (Figura 4) és un analgèsic NSAID (fàrmac antiinflamatori no-esteroïdal) derivat de l'àcid (2-(3-Benzoilfenil)propanoic, què conté un grup quiral. S'administra normalment com a barreja racèmica (50:50) dels enantiòmers (*S*) i (*R*). L'enantiòmer (*S*) és l'isòmer amb més activitat farmacològica, l'isòmer (*R*) té poca o cap activitat farmacològica.

En rata, el KT s'elimina inalterat principalment conjugat per via biliar (87%), i la resta en orina (11%). Només una part poc significativa del KT administrat s'hidroxila per després eliminar-se.

Les concentracions trobades en plasma de rata estan entre els 100 i 300 μ g/ml després de l'administració d'una dosi de 10 mg/kg per les vies i.p. i i.v., respectivament; i la unió a proteïnes plasmàtiques està al voltant del 97% (f_u=0.029).

(ref. 18, ref. 19, ref. 20, ref. 21, ref. 22)

1.2.2 Ketamina, KTA

La KTA ((\pm)-2-(2-clorofenil)-2-(metilamino)ciclohexanona clorhidrat, Figura 5) és un anestèsic que proporciona a més una profunda analgèsia. És una molècula quiral que es disposa normalment com una barreja racèmica (50:50) dels isòmers (*R*) i (*S*), i que presenta una enantioselectivitat farmacocinètica i farmacodinàmica així com diferents propietats d'absorció i metabolisme.

La norketamina (N-desmetilació de la KTA) és el principal metabòlit i representa aproximadament un 26% de la KTA metabolitzada pels RLM. La KTA i els seus metabòlits s'eliminen com a conjugats en orina i en bilis.

Les concentracions màximes trobades en plasma de rata, després de l'administració d'una infusió de 10 mg/kg/min durant 5 min, estan al voltant de 10 μ g/ml, i la unió a proteïnes plasmàtiques de rata està al voltant del 38% (fracció no unida, f_u=0.62).

(ref. 23, ref. 24, ref. 25, ref. 26, ref. 27, ref. 28, ref. 29, ref. 30, ref. 31, ref. 32, ref. 33, ref. 34, ref. 35, ref. 36, ref. 37, ref. 38)

1.2.3 Buprenorfina, BN

La BN $([5\alpha,7\alpha(S)]-17-(ciclopropilmetil)-\alpha-(1,1-dimetiletil)4,5-epoxi-18,19$ $dihido-3-hidroxi-6-metoxi-\alpha-metil-6,14-etenomorfinan-7-metanol clorhidrat,$ (Figura 6) és un potent analgèsic derivat de l'alcaloide de la morfina, la tebaïna.

Després de la seva administració s'elimina principalment inalterada i conjugada (glucuronoconjugada) en la bilis. Una petita part de la BN és desalquila al fetge (norbuprenorfina) i després s'elimina conjugada en bilis. L'eliminació en bilis és aproximadament del 90% de la dosi administrada.

Les concentracions trobades en plasma de rata després de l'administració estan entre 0.01 i 5 μ g/ml després de l'adminitració i.v. de les dosi de 0.008 i 3 mg/kg, respectivament. Els valors d'unió a proteïnes plasmàtiques determinats *in vitro*, són de 88.9% i de 95.3% a concentracions de BN de 0.2 i 5 ng/ml, respectivament. Els valors trobats d'unió a proteïnes en experiments *in vivo* són de 34.7% i de 5.3% a concentracions (en plasma) de BN de 0.46 i 0.82 ng/ml, respectivament.

Figura 6 Estructura Química de la Buprenorfina (BN)

(ref. 39, ref. 40, ref. 41, ref. 42, ref. 43, ref. 44, ref. 45, ref. 46)

1.2.4 Fentanil, FEN

El FEN (N-fenil-N-[1-(2-feniletil)-4-piperidinil]propanamida citrat, Figura 7 és un opioide sintètic que es fa servir en procediments quirúrgics que necessiten anestèsia.

El FEN es metabolitza principalment en el fetge, i es forma com a metabòlit majoritari el norfentanil (N-desalquilació del FEN). Està publicat que el CYP3A1/2 és l'enzim responsable de la formació del norfentanil a partir del FEN incubat en RLM. De la mateixa manera, s'ha descrit que el FEN inhibeix o interacciona amb el CYP2D1 quan s'incuba amb els RLM.

La concentració trobada en plasma de rata després de l'administració d'una dosi de 50 μ g/kg per via i.v., és de aproximadament de 0.15 μ g/ml, i la unió a proteïnes plasmàtiques de rata està sobre el 83% (f_u=0.17).

(ref. 47, ref. 48, ref. 49, ref. 50, ref. 51, ref. 52, ref. 53, ref. 54)

1.2.5 Xilacina, XYL

La XYL (2-(2,6-dimetilfenilamino)-5,6-dihidro-4H-tiacina clorhidrat) és un agent sedatiu i analgèsic, anàleg de la clonidina, que actua com a depressor del sistema nerviós central (SNC). S'utilitza en animals com a tranquil.litzant i relaxant muscular, i s'administra normalment en combinació amb altres anestèsics com la KTA.

Després de l'administració aproximadament el 70% de la dosi s'elimina en orina (el 8% de forma inalterada) i el 30% en femta, i no sembla que hagi recirculació enterohepàtica perquè l'eliminació biliar és comparable a la de la femta. El metabòlit majoritari (*N*-(2,6-dimetilfenil)tiourea) és un 35% de la dosi administrada, i els productes finals del metabolisme són el sulfat inorgànic i el CO₂.

La concentració màxima trobada en sang de rata després de l'administració d'una dosi de 20 mg/kg per via i.m., és de 18 µg/ml.

Figura 8 Estructura Química de la Xilacina (XYL)

(ref. 55, ref. 56, ref. 57, ref. 58, ref. 59, ref. 60)

1.3 Interaccions Farmacològiques en el Metabolisme del Complex CYP450 Hepàtic

Les interaccions farmacològiques, farmacocinètiques i farmacodinàmiques, es produeixen quan es modifica l'efecte d'un fàrmac per l'administració conjunta amb un altre fàrmac. Les interaccions farmacocinètiques a nivell del metabolisme del CYP450 es divideixen en interaccions enzimàtiques per inhibició o per inducció. Quan s'inhibeix el funcionament del CYP450 pot augmentar l'exposició plasmàtica al fàrmac i potser donar toxicitat; i quan s'indueix el funcionament, pot disminuir la concetració plasmàtica i potser no arribar als efectes terapèutics desitjats.

Els anestèsics i els analgèsics s'administren de forma simultània amb fàrmacs que s'estudien en rates de laboratori, i l'administració concomitant d'un anestèsic/analgèsic amb la molècula objecte d'estudi, podria alterar la disposició i donar el que s'ha anomena una interacció metabòlica entre fàrmacs.

Com hem vist abans, les inhibicions enzimàtiques es classifiquen de forma global en reversibles i irreversibles. Les reversibles es caracteritzen per ser concentració/dosi-dependent, d'inici ràpid i transitòries, perquè es recupera la capacitat metabòlica de l'enzim quan s'elimina l'inhibidor. Són les principals causants de les interaccions fàrmac-fàrmac. Les interaccions irreversibles són dosi i temps-dependents, són reaccions d'inici lent i l'enzim no recupera la seva capacitat metabòlica. Existeixen varis tipus d'inhibició reversibles: Competitiva, No Competitiva, Acompetitiva i Mixta.

Davant la pregunta si un fàrmac pot alterar per inhibició el metabolisme per CYP450 d'un altre, s'haurien d'identificar els isoenzims responsables del metabolisme de cada fàrmac.

De la mateixa manera, el més important és tenir en compte si aquesta interacció *in vitro* es donaria *in vivo*. Per això, es comparen les concentracions plasmàtiques terapèutiques del fàrmac "inhibidor", amb la constant d'inhibició relativa a l'enzim (K_i). Si la concentració en plasma és més gran que la K_i,

existeix una possibilitat que es donin interaccions. Si per contra, les concentracions plasmàtiques són més baixes que la K_i , és bastant probable que no es donin.

(ref. 61, ref. 62, ref. 63, ref. 64, ref. 65, ref. 66, ref. 67, ref. 68, ref. 69, ref. 70)
2 OBJECTIU

En el present treball es determinen les interaccions potencials per inhibició en l'activitat dels principals CYP450 hepàtics en la rata, per alguns anestèsics i analgèsics (Ketoprofè, Ketamina, Buprenorfina, Fentanil i Xilacina). L'estudi es porta a terme mitjançant experiments *in vitro* en un sistema d'incubacions en microsomes de fetge de rata. Les isoformes on s'estudien les possibles interaccions en la seva activitat són: CYP1A1/2, CYP2A1/2, CYP2B1/2, CYP2C, CYP2C11, CYP2D1, CYP2E1 i CYP3A1/2.

Per assolir aquest objectiu global, es va obtenir i caracteritzar el sistema experimental (microsomes de fetge de rata), es van posar a punt sistemes analítics per avaluar les cinètiques enzimàtiques, i es van desenvolupar models cinètics pel tractament de les dades experimentals.

3 PLA DE TREBALL

Per aconseguir l'objectiu global, es van dissenyar una sèrie d'experiments *in vitro* que es detallen a continuació:

I. Obtenció dels RLM.

Es va procedir a l'extracció dels fetges de les rates, i després amb ells es van obtenir suspensions de microsomes. El mètode de precipitació amb calci i el mètode d'ultracentrifugació són els dos processos que es van fer servir per obtenir els diferents lots de RLM.

II. Caracterització del sistema experimental.

Una vegada obtinguda la matriu experimental, els RLM, aquesta es va caracteritzar per obtenir informació de la seva funcionalitat metabòlica. Les proves de caracterització van ser les habitualment establertes per aquestes matrius:

- a) Es va mesurar la quantitat de proteïna microsomal per ml de suspensió de microsomes.
- b) Es va determinar la concentració del CYP450 total de cada lot de microsomes.
- c) Es va determinar l'activitat de la NADPH-CYP450 reductasa de cada lot de microsomes.

III. Metodologia analítica.

Els metabòlits formats en cada reacció específica es van quantificar per HPLC amb detecció UV o fluorescència. Per aquesta raó, es van posar a punt mètodes analítics, per cada reacció específica.

IV. Linealitat en la producció de metabòlit específic en funció de la concentració de proteïna i del temps d'incubació.

A continuació, es va estudiar la linealitat de la producció de cada metabòlit provinent de cada substracte CYP-específic, en funció de la concentració de proteïna microsomal i en funció del temps d'incubació. Aquestes dos proves es van repetir de forma individual per a cada isoforma CYP450 amb el seu substracte específic, amb la finalitat de seleccionar una concentració de proteïna i un temps d'incubació per posteriorment procedir a l'estudi cinètic. La regressió lineal simple va ser l'equació utilitzada per ajustar a les dades obtingudes dels experiments.

V. Cinètica enzimàtica.

L'estudi cinètic va consistir en la realització d'una sèrie d'incubacions de RLM a concentracions creixents de substracte específic. Tot això preparat a la concentració de la proteïna microsomal i al temps d'incubació fixats segons els resultats obtinguts al punt anterior (punt *IV*). El procediment es va repetir de forma individual per a cada isoforma CYP450.

Les equacions de Michaelis-Menten (M-M) i de Hill es van utilitzar per ajustar les dades obtingudes dels experiments. Els paràmetres K_m i V_{max} que són els que defineixen la cinètica d'un enzim, es van determinar per a cadascuna de les isoformes CYP450 de l'estudi.

VI. Estudi in vitro d'inhibició de les isoformes CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11, 2D1, 2E1 i 3A1/2 per la KTA, el KT, la BN i el FEN i la XYL.

Una vegada caracteritzat el sistema experimental es van dissenyar els experiments per estudiar la inhibició del CYP450 pels fàrmacs anestèsics i analgèsics.

Es van obtenir els paràmetres d'inhibició K_i i IC₅₀ (concentració d'inhibidor que disminueix l'activitat màxima d'un enzim a la meitat). El valor de la K_i es va determinar utilitzant tres mètodes diferents per comparar entre els valors obtinguts:

- A. Mètode de regressions no-lineals simultànies, SNLR. Que inclou el desenvolupament de models d'inhibició no descrits en bibliografia.
- *B*. Mètode de la "K_{m,app}"
- C. Mètode "IC₅₀-to-K_i Converter"

VII. Unió no-específica a proteïnes microsomals.

De forma paral.lela es va determinar la unió no específica dels fàrmacs als microsomes. Per això es va determinar la fracció no unida a proteïnes microsomals, $f_{u,mic}$. El $f_{u,mic}$ és un factor de correcció que es multiplica pels valors de les K_i per obtenir els valors de K_i no unida. Es van utilitzar dos tècniques per obtenir aquest factor: la tècnica o mètode experimental *in vitro* (per la KTA) i la tècnica o mètode *in silico* (per tots els fàrmacs inclosa la KTA).

VIII. Predicció de potencials interaccions in vivo.

Per determinar la possibilitat d'interferència del anestèsic/analgèsic en el metabolisme del fàrmac en estudi, es van comparar els valors de K_i obtinguts amb les concentracions plasmàtiques terapèutiques en rata, això es va fer utilitzant el càlcul indicat en la directriu d'interaccions de la FDA.

4 MATERIAL

4.1 Material i Equips Generals

4.1.1 Anestèsics

La barreja racèmica de la KTA clorhidrat va ser amablement proveïda per Chemo Iberica, S.A. La XYL clorhidrat va ser subministrada per Sigma-Aldrich Co.

4.1.2 Analgèsics

El KT, el FEN citrat i la BN clorhidrat van ser proveïts per Sigma-Aldrich Co.

4.1.3 Matrius

Els RLM utilitzats van ser els lots 008HRSDMC, 009HRSDMC, 010HRSDMC i 029HRSDMC preparats a partir de "pools" de diferents animals per aquest treball.

4.1.4 Reactius

	nom	pes molecular	proveïdor	prova CYP
	clorzoxazona	169.57		CYP2E1
	dextrometorfà	370.32		CYP2D1
Substracte	etoxiresorufina	241.24	Sigmo	CYP1A1/2
específic	pentoxiresorufina	283.32	Sigilia	CYP2B1/2
-	testosterona	288.42		CYPs2A1/2, 2C,
		405 50	0	201113A1/2
	6-hidroxiciorzoxazona	185.56	Sigma	CYP2E1
Metabòlit	dextrorfa-D-tartrat	407.46	RBI	CYP2D1
estàntard	resorutina	213.19	Sigma	CYP1A1/2 2B1/2
de				CYP3A1/2
referència	6-β-hidroxitestosterona	304.42	Sigma	CYP2C11
				CYP2A1/2
	C elere eviin del	407.50	Ciarana	
	5-ciorooxiindoi	167.59	Sigma	
Estàndard	levaloria 4 matil 7 hidraviaumarina	433.49	KBI Ciama a	
intern	4-metii-7-nidroxicumanna	170.17	Sigma	
	dexametasona	392.46	Sigma	CTPSZAT/2, 2C,
	distildition conhomot	225.24		201113A1/2
	dietiiditioncarbamat	223.31		
	quinidine	370.09		
Inhihidar	u-naitonavona	212.3		
	onenaunna	401.5	Sigma	
especific	sunarenazor	314.30		
	cimetidina	202.04		
	troloondomicino	912 07		
	TOREANDOMICINA	013.97		UTPSAI/2

Taula 2Reactius: Substractes i Metabòlits Específics, Estàndards Intern i InhibidorsEspecífics Utilitzats en les Reaccions del CYP450.

Els reactius utilitzats per crear un sistema generador de NADPH a totes les incubacions amb RLM consistia en: La β -nicotinamida adenina dinucleòtid fosfat (β -NADP), la dextro-glucosa-6-fosfat (D-G-6P), i l'enzim glucosa-6-fosfat deshidrogenasa (G-6P-DH) obtinguts de Sigma Aldrich Co., i el clorur de magnesi hexahidratat (MgCl₂)·6H₂O obtingut de Merck Co.

Els altres reactius i solvents utilitzats eren d'alta puresa química i comercialment disponibles.

4.1.5 Solvents i Productes per Solucions Reguladores del pH

- Aigua (Milli-Q)
- Sodi dihidrògenfosfat monohidrat (Merck)
- Disodi hidrògenfosfat dihidrat (Merck)

Material

- Tris-hidroximetil aminometà (Merck)
- Àcid clorhídric al 37% (Merck)
- Acetonitril per HPLC (SDS, Panreac)
- DMSO (Merck)
- Metanol per HPLC (Panreac)
- Àcid acètic glacial (Merck)

4.1.6 Cromatografía Líquida d'Alta Resolució (HPLC)

- Sistema de cromatografía HPLC composat per:
- Sistema bomba-injector 2695 Separation Module (Waters)
 - Detector espectrefotomètric de doble longintud d'ona 2487 (Waters)
 - Sistema de cromatografia HPLC composat per:
 - Bomba M600 (Waters)
 - Detector espectrofotomètric de doble longintud d'ona 2487 (Waters)
 - Sistema mostrejador Prospeckt Marathon (Spark-Holland)
- Columnes:
 - Supelcosil (LC-18DB) (150 x 4.6 mm, 5 µm ,Supelco)
 - Xterra RP18 (150 x 4.6 mm, 5 µm, Waters)
 - Symmetry C18 (150 x 4.6 mm, 5 μm, Waters)

4.1.7 Equips Varis

• Bany termostàtic amb agitació Unitronic-Orbital (Selecta)

Material

- Bany termostàtic sec amb agitació Thermomixer compact (Eppendorf)
- Congeladors -20°C, -80°C.
- pH-metre (Methrohm)
- Balances analítiques (Mettler)
- Centrífugues refrigerades (Sorvall, Eppendorf)

4.2 Material per l'Extracció de Fetge i l'Obtenció de RLM

- Material quirúrgic divers en el procediment per l'extracció de fetge i l'obtenció de microsomes.
- Homogenitzador de teixits "Potter-Elvehjem"
- Centrífuges refrigerades Sorvall SA-600 i Sorvall RC28S
- Rotor Sorvall F-28/36

4.3 Animals

• Rates mascle Sprague-Dawley d'entre 8 i 16 setmanes d'edat en el moment de la seva utilització.

4.4 Caracterització Funcional dels Lots de RLM

4.4.1 Determinació de la Concentració de Proteïna Microsomal

- Total Protein Kit, Sigma-Aldrich Co.
- Espectrefotòmetre Multiskan Spectrum (Thermo Electron)

4.4.2 Determinació del Citocrom P450 en RLM

- Ditionit sòdic proveït per Aldrich Co.
- Bombona de monòxid de carboni (CO) amb manoreductor i vàlvula de precisió, i localitzada dintre d'un sistema d'extracció d'aire.

• Espectrefotòmetre Multiskan Spectrum (Thermo-Electron).

4.4.3 Determinació de l'Activitat NADPH-CYP450 Reductasa en RLM

- NADPH (Sigma-Aldrich, Co.)
- Citocrom C forma fèrrica (Sigma-Aldrich, Co.)
- Espectrefotòmetre Multiskan Spectrum (Thermo-Electron).

4.5 Cinètiques Enzimàtiques

- Reactius especificats a la Taula 2 de la secció 4.1.4., excepte els inhibidors específics.
- Reactius utilitzats per crear un sistema generador de NADPH, especificats a la secció 4.1.4.

4.6 Estudi d'Inhibició *In Vitro* de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11, 2D1, 2E1 i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN

- Reactius especificats a la Taula 2 de la secció 4.1.4.
- Reactius utilitzats per crear un sistema generador de NADPH, especificats a la secció 4.1.4.

4.7 Determinació de la Unió *In Vitro* de la KTA a Proteïnes Microsomals. Model *In Vitro*

- Sistema generador de NADPH (secció 4.1.4).
- Centrifree YM-10.
- Es van preparar dos tipus de matrius per fer aquest estudi: les mostres de microsomes de fetge de rata (RLMS) i la matriu filtrada (FMS).
- Les RLMS estaven compostes per RLM a una concentració de proteïna microsomal de 1 mg/ml en el volum final en solució tampó fosfat sòdic 100

Material

mM pH 7.4, i en presència de D-G-6P 4 mM, G-6P-DH 2 U/ml i MgCl₂ 5 mM.

• Les FMS es van preparar a partir d'alíquotes de RLMS filtrades en tubs Centrifree YM-10 a 5000 xg durant 1 h a 25°C.

4.8 **Programes Informàtics**

- Programa Millenium 32 v3.05.01[®] (Waters), controlador del sistema cromatogràfic HPLC.
- Programa Empower 2[®] (Waters), controlador del sistema cromatogràfic HPLC.
- Programa SkanIt®, controlador del espectrefotòmetre Multiskan
- Programa WinNonlin®, programa de tractament de dades farmacocinètiques i farmacodinàmiques.
- Programa NCSS®, tractament estadístic de dades.

5 MÈTODES

5.1 Procediment per l'Extracció de Fetge de Rata i l'Obtenció de RLM

Les rates es van sometre a dejú (amb accés a aigua de beguda) aproximadament 18 hores abans començar el procés.

Els animals es van sacrificar mitjançant concussió i dislocació cervical. Durant el procediment sempre es va controlar i anotar l'hora de sacrifici, extracció, inici de perfusió / final de perfusió, temps d'isquèmia calenta i freda de l'òrgan, amb l'objectiu de normalitzar el procediment.

Una vegada sacrificats els animals, es va procedir ràpidament a realitzar una laparotomia per la línia alba seguida de seccions transversals caudals dels arcs costals i de la paret de l'àrea caudal de l'abdomen. Per accedir al tòrax es va extreure l'estèrnum mitjançant talls als dos costats d'aquest, en direcció cranial. Es va retirar l'estèrnum en direcció cranial i es va seccionar a la base.

La perfusió es va realitzar en algunes rates *in situ* i en altres en l'òrgan aïllat. Per aïllar l'òrgan es va procedir a seccionar els vasos de l'òrgan i qualsevol altre element sense alterar el mateix. Ràpidament el fetge es va netejar i es va col.locar aïllat en un bany fred de sèrum fisiològic. Seguidament es va col.locar una brànula a l'artèria porta i es va iniciar la perfusió. El temps màxim de perfusió va ser de 5 minuts.

Una vegada finalitzada la perfusió es va traspasar l'òrgan a una altra cubeta que contenia gel i solució freda de sèrum fisiològic per la neteja de tot teixit accessori. Finalment es va pesar l'òrgan abans de començar la producció de microsomes.

Homogenització

L'òrgan recent obtingut, es va trossejar en una placa de Petri situada a sobre d'una safata amb gel. Els fragments, de 2-3 g de pes, es van submergir en uns mililitres de solució tamponada de Tris.HCl 50 mM pH 7.4 que contenia KCl 154 mM. A continuació, es van introduir en el tub a on es van homogenitzar amb el sistema "Potter-Elvehjem". Una vegada homogenitzat, es va buidar el contingut en un recipient que contenia un 80% de Tris.HCl 50 mM pH 7.4 amb KCl 154 mM.

Obtenció de la fracció post-mitocondrial

L'homogenitzat es va centrifugar a 10.000 x g durant 20 min a 4°C. Al final de la centrifugació es va descartar la capa lipídica superficial i es van recol.lectar acuradament els sobrenedants (fracció post-mitocondrial).

Obtenció de la fracció microsomal

A. Mètode de precipitació amb Calci

A la mateixa proveta es va afegir una solució freda de clorur càlcic 88 mM en una proporció de 100 µl per cada ml de sobrenedant post-mitocondrial. Es va transvasar la solució a un got de precipitats, es va agitar i es va mantenir durant 10 min en una safata amb gel. Al final d'aquest període es va tornar a centrifugar a 26.400 xg durant 15 min. El sobrenedant obtingut es va descartar acuradament. Es va resuspendre el sediment i es va repetir l'operació a 26.400 xg durant 15 min a 4°C. Per segona vegada es va descartar el sobrenedant i el sediment final es va resuspendre en solució tampó Tris.HCl 50 mM pH 7.4 amb KCl 154 mM.

B. Mètode d'ultracentrifugació

Es va centrifugar la fracció post-mitocondrial a 100.000 x g durant 60 min a 4°C. Després de la centrifugació es va descartar el sobrenedant (fracció del citosol) i es va resuspendre el sediment amb Tris.HCl 50 mM pH 7.4 amb KCl 154 mM.

En tot moment el procés es va mantenir la matriu en fred (en safata amb gel).

(ref. 73, ref. 74)

5.2 Caracterització Funcional dels Lots de RLM

5.2.1 Procediment per la Determinació de la Concentració de Proteïna Microsomal

Una vegada obtinguda la fracció microsomal del fetge de rata es va mesurar la concentració de proteïna microsomal. La mesura es va fer mitjançant el mètode colorimètric "Micro Lowry, Onishi & Barr Modification" (Total Protein Kit, Sigma-Aldrich Co.) que presenta un màxim d'absorció a 725 nm.

Es va determinar la concentració de proteïnes a dos dilucions de la mostra: 1:25 i 1:50, tal i com s´indica a la secció 6.1.1.

Figura 9 Cicle de la Reacció del *Biuret* amb el Mètode *Folin-Lowry* per la Determinació de la Concentració de la Proteïna Microsomal.

5.2.2 Procediment per la Determinació de la Concentració de CYP450 en RLM

El mètode per quantificar el CYP450 en microsomes es basa en la mesura de l'espectre d'absorció per la forma reduïda del CYP450, que és la forma disponible per la unió del substracte.

En aquest procediment, el monòxid de carboni (CO) és la molècula que s'uneix al ferro en forma reduïda per formar un complexe Fe²⁺-CO, i que presenta un màxim d'absorció del grup hemo a 450 nm. Aquesta propietat és precisament la que li va donar origen al nom de P-450, pigment (P) que absorbeix la llum a 450 nm. D'aquesta manera, el CO s'uneix amb una gran afinitat i impedix la unió i l'activació de l'oxigen molecular, i en conseqüència, s'inhibeix de forma reversible l'activitat enzimàtica del P450.

Es van preparar suspensions de microsomes a una concentració de proteïna microsomal de 0.25 i 1 mg/ml en solució Tris.HCl 50 mM pH 7.4 : glicerol (80:20). A continuació, es va reduir el CYP450 afegint una petita quantitat de ditionit sòdic a les solucions preparades i es van fer lectures d'absorció des de 400 nm a 500 nm. Després es va bombollejar la mostra amb CO durant 1 min, i finalment es va fer una altra sèrie de lectures d'absorció des de 400 nm a 500 nm. Aquesta lectura es va repetir per a cada concentració de suspensió de microsomes (n=2), segons es descriu a la secció 6.1.2.

Així doncs, la quantificació dóna informació de la concentració d'enzim CYP450 que es pot esperar en els diferents lots de RLM.

(ref. 76, ref. 77, ref. 78, ref. 79, ref. 80, ref. 81, ref. 82, ref. 83)

5.2.3 Procediment per la Determinació de l'Activitat NADPH-CYP450 Reductasa en RLM

La NADPH-CYP450 reductasa és l'enzim que intervé en el cicle catalític del CYP450 transferint els electrons des del NADPH fins el grup hemo del CYP450, i per tant la seva activitat és un factor limitant del funcionament del complexe. L'esquema de funcionament es mostra en la Figura 10.

Els electrons són transferits des del NADPH al grup hemo del CYP450 en vàries etapes. Primer el NADPH cedeix els electrons al cofactor flavina adenina dinucleòtid (FAD) que es converteix en a flavina mononucleòtid (FMN), i allibera dos electrons en cada cicle catalític. Aquests electrons són els que van al CYP450.

Figura 10 Cicle del Funcionament de la NADPH-CYP450 Reductasa.

FAD: flavina adenina dinucleòtid, FMN: flavina mononucleòtid, NADP: nicotinamida adenina dinucleòtid fosfat, NADPH: nicotinamida adenina dinucleòtid fosfat deshidrogenasa, H_2 : hidrogen, H^{\bullet} : protó, e^- : electró.

La metodologia per quantificar l'activitat NADPH-CYP450 reductasa va consistir en quantificar el Citocrom C, que és una proteïna petita transportadora d'electrons que actua com a acceptora d'electrons i es redueix. Es quantifica per absorció el Citocrom C reduït, degut a que la mesura directa del propi NADPH-CYP450 reductasa és una tècnica complexa. El Citocrom C reduït presenta un màxim d'absorció a 550 nm.

Per la quantificació, la mostra estava composta per suspensió microsomal a 0.067 mg/ml (6.3% v/v), solució de la Citocrom C 5 mg/ml en Tris.HCl 50 mM pH 7.4 (10.4% v/v), i Tris.HCl 50 mM pH 7.4 (83.3% v/v). A continuació, la mostra es va pre-incubar durant 3 min a 37°C. Una vegada finalitzat el període de pre-incubació es va afegir la solució de NADPH (en Tris.HCl 50 mM pH 7.4), i immediatament es va mesurar l'absorció durant 50 segons. El procés es va fer per triplicat, i es detalla a la secció 6.1.3.

(ref. 2)

5.3 L'Incubat

Es preparen incubats pels estudis de cinètica enzimàtica (quan la concentració de fàrmac és zero), i de la inhibició (en presència de fàrmac inhibidor).

Abans de començar els estudis de la cinètica enzimàtica i de la inhibició, caldria descriure com es preparen aquests processos en l'incubat.

L'incubat és una "barreja" de components que preparats en tubs eppendorf donen com a resultat una sèrie de reaccions enzimàtiques. En el present treball aquestes reaccions enzimàtiques són les que porten a terme els CYP450.

Els incubats estan formats pels microsomes (que contenen el CYP450), la solució tampó on té lloc la reacció, el sistema generador de NADPH (que permeten el funcionament del CYP450 i es detalla a la secció 4.1.4), el substracte específic, i la solució d'aturada de la reacció. El detall dels components es descriu a la Taula 6 i la Taula 7.

Les solucions de reactius es van incorporar de forma individual, seguint un ordre d'addició, perquè la reacció tingués lloc correctament. Primer es va afegir el tampó (TF 100 mM pH 7.4, Tris.HCl 50 mM pH 7.4, o Tris.HCl 50 mM pH 7.8), a continuació la suspensió de microsomes, tot seguit de la solució generadora de NADPH, però sense el β -NADP. Deprés, es van addicionar el substracte específic i, en el cas dels estudis de la inhibició, el fàrmac o inhibidor específic. Seguidament es va iniciar la reacció incorporant el β -NADP, i es va incubar a temperatura fisiològica durant el temps d'incubació seleccionat. En darrer lloc, la reacció es va interrompre quan es va afegir la solució d'aturada de la reacció específica corresponent.

Una vegada aturada la reacció, es procedeix a la preparació de les mostres per l'anàlisi. En darrer lloc, s'analitza. En aquest treball l'anàlisi de les mostres es fa per HPLC amb detecció UV o fluorescència (veure la secció 5.7).

5.4 Cinètiques Enzimàtiques

Per realitzar aquests experiments, es va tenir en compte que menys d'un 20% de la concentració de substracte es consumís durant les incubacions, i a més, que la concentració d'enzim (concentració de proteïna microsomal) estigués "controlada" per no ser massa elevada.

(ref. 84)

5.4.1 Determinació de la Linealitat en la Producció de Metabòlit CYP450-Específic en Funció del Temps i en Funció de la Concentració de Proteïna Microsomal

Per a estudiar la linealitat de producció de metabòlit CYP450-específic en funció de la concentració de proteïna microsomal en l'incubat i el temps d'incubació, es van seguir les condicions d'incubació específicades a la següent Taula 3.

Es van preparar de forma individual, una sèrie d'incubats en què es va fixar el temps d'incubació però les concentracions de la proteïna microsomal variaven (Taula 3, A), i una altra sèrie d'incubats en què es va fixar la concentració de la proteïna microsomal però els temps d'incubació eren diferents (Taula 3, B). Els incubats es van preparar seguint l'ordre d'addició dels components segons es descriu a la secció 5.3.

Aleshores, les dues sèries d'experiments es van realitzar per a cada reacció específica, a la concentració de substracte específic pròxima a la K_m de la reacció en qüestió. Els valors de la K_m es van obtenir com a resultat d'una recerca bibliogràfica.

		А		В	
CYP450	Concentració Substracte específic (µM)	Concentració de proteïna (<i>mg/ml</i>)	Temps d´incubació (<i>min</i>)	Temps d´incubació (<i>min</i>)	Concentració de proteïna (<i>mg/ml</i>)
CYP2E1	500	0.25, 0.5, 1 i 2	30	5, 10, 30, 60 i 120	1
CYP2D1	300	0.25, 0.5, 1 i 2	30	5, 10, 30, 60 i 120	1
CYP1A1/2	5	0.05, 0.1, 0.25, 0.5 i 1	5	0.5, 1, 2.5, 5, 10 i 30	0,5
CYP2B1/2	50	0.25, 0.5, 1 i 2	10	1, 5, 10, 30 i 60	1
CYP2A1/2 CYP2C CYP2C11 CYP3A1/2	250	0.1, 0.25, 0.5 i 1	10	5, 10, 20 i 30	0,1

Taula 3	Concentracions de Substracte Específic, Concentracions de Proteïna i Temps
d´Incubació	Utilitzats en la Determinació de la Linealitat de la Concentració de Proteïna i del
	Temps d'Incubació.

A: Determinació de la linealitat en funció de la concentració de proteïna. Es fixa el temps d'incubació. B: Determinació de la linealitat en funció del temps d'incubació. Es fixa la concentració de proteïna.

La quantificació dels metabòlits es va fer per HPLC amb detecció UV per totes les reaccions específiques, excepte per la recció dextrometorfà-O-demetilasa, que es va fer per fluorescència, d'acord amb les tècniques descrites a la secció 5.7.

Les dades obtingudes es van tractar tal i com s'indica a la secció 6.2.1.

5.4.2 Determinació dels Paràmetres Cinètic-Enzimàtics K_m i V_{max}

Una vegada establerts el temps d'incubació i la concentració de la proteïna microsomal idonis per cada reacció específica, es va passar a estudiar la cinètica enzimàtica pròpiament, i a estimar els paràmetres cinètics K_m i V_{max} . La cinètica enzimàtica consisteix en la determinació de les activitats enzimàtiques *versus* les concentracions de substracte específic per a cada reacció específica (8 reaccions específiques corresponents a 8 isoformes CYP450), tal i com es descriu a la secció 7.2.2. Per això, es van preparar de forma individual una sèrie d'incubats de microsomes a diferents concentracions de substracte específic en cada reacció es van seleccionar segons dades bibliogràfiques trobades (concentracions per sota i per sobre del valor de la K_m), i es mostren a la Taula 4.

Les condicions d'incubació es mostren a la Taula 4, i els incubats es van preparar seguint l'ordre d'addició dels components segons es descriu a la secció 5.3.

Taula 4Concentracions de Substractes Específics, Concentracions de Proteïna Microsomal, iTemps d'Incubació per Determinar les Diferents Cinètiques Enzimàtiques.

CYP450	Reacció específica	Substracte específic	Concentracions Substracte específic (µM)	Conc. Proteïna microsomal (mg)	Temps d´incubació (min)
CYP2E1	Clorzoxazona-6-hidroxilasa	clorzoxazona	5, 10, 50, 100, 250, 500, 750, 1000 i 2000	1	10
CYP2D1	Dextrometorfà-O-demetilasa	dextrometorfà	5, 10, 50, 100, 250, 500, 750, 1000 i 2000	1	20
CYP1A1/2	Etoxiresorufina-O-deetilasa	etoxiresorufina	0.25, 0.5, 1, 2.5, 5 i 10	0.5	10
CYP2B1/2	Pentoxiresorufina-O-dealquilasa	pentoxiresorufina	2, 5, 15 i 50	0.5	10
CYP2A1/2 CYP2C CYP2C11	Testosterona-7α-hidroxilasa Testosterona-16α-hidroxilasa Testosterona-2α-hidroxilasa	testosterona	10, 25, 50, 100, 200 i 500	0.5	10
CYP3A1/2	Testosterona-6β-hidroxilasa				

Els temps d'incubació i les concentracions de proteïna en cada reacció específica són els obtinguts dels experiments realitzats a la secció 5.4.1.

La Figura 11 mostra els substractes específics i els metabòlits específics de cada reacció CYP450-específica.

Figura 11 Cinètiques Enzimàtiques: Reaccions Específiques. Substractes i Metabòlits Específics.

Figura 12 Cinètiques Enzimàtiques: Reaccions Específiques. Substractes i Metabòlits Específics. (Continuació).

La quantificació dels metabòlits es va fer per HPLC amb detecció UV per totes les reaccions específiques, excepte per la recció dextrometorfà-O-demetilasa, que es va fer per fluorescència, d'acord amb les tècniques descrites a la secció 5.7.

Les dades dels experiments es van tractar tal i com es descriu a la secció 6.2.2.

(ref. 86, ref. 87, ref. 88, ref. 89, ref. 90, ref. 91)

5.5 Estudi *In Vitro* d'Inhibició de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11, 2D1, 2E1 i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN

Una vegada estimada la K_m de CYP450 amb el seu substracte específic, es van preparar de forma individual, una sèrie d'incubats de microsomes a cinc concentracions de fàrmac anestèsic/analgesic, per quatre concentracions de substracte específic. Les concentracions de substracte específic que es van escollir van ser valors per sota i per sobre del valor de la K_m . Les concentracions de fàrmac es van seleccionar en funció de la seva concentració plasmàtica màxima trobada en bibliografia (es van seleccionar valors per sota i per sobre).

La concentració de la proteïna i el temps d'incubació es van fixar i estan indicats en els experiments de cinètica enzimàtica, secció 5.4.2. La Figura 13 mostra el disseny experimental que es va seguir per triplicat.

Figura 13 Disseny Experimental per l'Estudi d'Inhibició (n=3).

Substracte			Fàrmac*		
específic **	concentració 1***	concentració 2	concentració 3	concentració 4	concentració 5
concentració 1	\Box	\Box	\Box	\Box	
concentració 2	\Box	\Box	\Box	\Box	\Box
concentració 3	\Box	\Box	\Box	\Box	\Box
concentració 4	\Box	\Box	\Box	\Box	\Box

* : Ketoprofè, Ketamina, Buprenorfina, Fentanil, Xilacina.

**: Clorzoxazona, Dextrometorfà, Etoxiresorufina, Pentoxiresorufina, Testosterona.

Dibuix tub d'assaig: Incubat.

A més, es van introduir una sèrie de controls per verificar la metòdica analítica i controls positiu i negatiu per validar el procès d'inhibició. La Taula 5 mostra els controls preparats per verificar el funcionament de les incubacions i de les anàlisis.

Taula 5 Composició de les Mostres Control per Verificar la Metòdica Analítica.

	Microsomes hepàtics	Sistema generador	Substracte específic	Fàrmac (Inhibidor	Estàndard intern
Control 1	de rata -	de NADPH -	x	potencial) -	X
Control 2	Х	Х	-	Х	-
Control 3	х	Х	-	-	-

Sistema generador de NADPH : glucosa-6-fosfat, glucosa-6-fosfat deshidrogenasa, clorur de magnesi , β -nicotinamida dinucleòtid fosfat

La mostra Control 1 es va preparar per verficar l'estabilitat del substracte específic i de l'estàndard intern en la solució tampó, a pH 7.4 o pH 7.8.

La mostra Control 2 es va preparar per verificar que no es metabolitza el fàrmac donant productes que tinguin el mateix temps de retenció que el metabòlit específic que es quantifica, i no apareguin interferències.

^{*** :} Concentració de fàrmac = 0.

La mostra control 3 es va preparar per verificar que la matriu (RLM) i el sistema generador de NADPH (G-6P-DH, D-G-6P, clorur de magnesi i β -NADP) no formen cap molècula per degradació que interfereixi en l'analítica del metabòlit específic.

Els controls positiu i negatiu de la inhibició es van preparar com els incubats de l'experiments d'inhibició per cada reacció específica CYP450 però, substituint el fàrmac per un inhibidor de referència (control positiu) o pel seu solvent (control negatiu). Les concentracions d'inhibidor de referència utilitzades es van obtenir a partir de recerca bibliogràfica.

Els components i condicions de les incubacions pels estudis d'inhibició estan especificats a la següents Taula 6 i Taula 7.

La quantificació dels metabòlits es va fer per HPLC amb detecció UV per totes les reaccions específiques, excepte per la recció dextrometorfà-O-demetilasa, que es va fer per fluorescència, d'acord amb les tècniques descrites a la secció 5.7.

Les dades obtingudes (producció de metabòlit específic *versus* la concentració de substracte específic per cada concentració de fàrmac) es van tractar tal i com s'indica a la secció 6.3.

Taula 6 Composició dels Incubats pels Estudis de Cinètica Enzimàtica (Concentració de Fàrmac Zero) i Estudis d'Inhibició (en Presència de Fàrmac). CYP2E1, CYP2D1 i CYP1A1/2.

		Activitats CYP450 específiques	
	Clorzoxazona-6β-hidroxilasa CYP2E1	Dextrometorfà-O-demetilasa CYP2D1	Etoxiresorufina-O-deetilasa CYP1A1/2
Condicions de l´incubació			
Conc. proteïna microsomal (mg/ml)	1	1	0.5
Volum d´incubació (<i>ml</i>)	0.5	0.5	0.5
lots microsomes rata	008HRSDMC (KT) 009HRSDMC (KTA i BN) 010HRSDMC (FEN i XYL)	008HRSDMC (KT) 009HRSDMC (KTA i BN) 010HRSDMC (FEN) 029HRSDMC (XYL)	008HRSDMC (KT) 009HRSDMC (BN) 010HRSDMC (FEN i XYL) 029HRSDMC (KTA)
temps d´incubació (<i>min</i>)	10	20	10
tampó d´incubació	TF pH 7.4	TF pH 7.4	Tris pH 7.8
sistema generador de NADPH	G-	6P-DH 2 U/ml, D-G-6P 4 mM i MgCl ₂ 5 mM	М
		DEX /	ERO /
Substracte específic / concentracions (μΜ) / solvent	CZX / ^a : 50, 250, 500 i 1000 ^b : 100, 250, 500 i 1000 / AcN	^c : 5, 25, 250 i 1500 ^d : 25, 250, 500 i 1500 ^e : 5, 25, 250 i 500 /	^f : 0.25, 5, 10 i 50 ^g : 1, 5, 10 i 50 ^h : 0.1, 0.25, 1 i 5 /
Fàrmac: /concentracions (µM) / solvent	 KT: 0, 0.025, 0.05, 1.25 i 5 mM / AcN KTA: 0, 5, 25, 75 i 375 μM / DMSO BN: 0, 0.02, 0.1, 0.5 i 2.5 μM / AcN FEN: 0, 0.1, 0.5, 5 i 20 μM / AcN XYL: 0, 2.5, 10, 50 i 250 μM / AcN 	AcN <i>KT</i> : 0, 0.025, 0.05, 1.25 i 5 mM / AcN <i>KTA</i> : 0, 5, 25, 75 i 375 μM / DMSO <i>BN</i> : 0, 0.02, 0.1, 0.5 i 2.5 μM / AcN <i>FEN</i> : 0, 0.1, 0.5, 5 i 20 μM / AcN <i>XYL</i> : 0, 2.5, 10, 50 i 250 μM / AcN	AcN <i>KT</i> : 0, 0.05, 0.2, 1.25 i 5 mM / AcN <i>KTA</i> : 0, 5, 25, 75 i 375 μM / DMSC <i>BN</i> : 0, 0.02, 0.1, 0.5 i 2.5 μM / AcN <i>FEN</i> : 0, 0.1, 0.5, 5 i 20 μM / AcN <i>XYL</i> : 0, 2.5, 10, 50 i 250 μM / AcN
Inhibidor específic / concentració (μΜ) / solvent Inici de la reacció enzimàtica	DDC / 50 / AcN	QN / 10 / AcN β-NADP	NAF / 10 / DMSO
Aturada de la reacció enzimàtica / volum (µ)	AcN / 100	AcN / 100	AcN / 100

^e : concentracions utilitzades pel Fàrmac XYL a totes les seves concentracions

^h : concentracions utilitzades pel Fàrmac KTA a totes les seves concentracions

f : concentracions utilitzades guan la concentració de Fàrmac(KT, BN, FEN i XYL)=0

^g : concentracions utilitzades quan la concentració de Fàrmac(KT, BN, FEN i XYL) era diferent de 0

KT: ketoprofè, KTA: ketamina, BN: buprenorfina, FEN: fentanil, XYL: xilacina

DDC: dietilditiocarbamat, QN: quinidina, NAF: α-naftoflavona

AcN:acetonitril, DMSO: dimetilsulfòxid

^a : concentracions utilitzades quan la concentració de Fàrmac=0

^b : concentracions utilitzades quan la concentració de Fàrmac era diferent de 0

	Activitats CYF	P450 específiques	
	Pentoxiresorufina-O-dealquilasa CYP2B1/2	Testosterona-hidroxilasa CYPs 2A1/2, 2C, 2C11 i 3A1/2	
Condicions de l'incubació			
Conc. proteïna microsomal (mg/ml)	0.5	0.5	
Volum d'incubació (<i>ml</i>)	0.5	0.5	
lots microsomes rata	008HRSDMC (KT) 010HRSDMC (FEN i XYL) 029HRSDMC (KTA i BN)	029HRSDMC (KT, KTA, BN, FEN, XYL	
temps d'incubació (min)	10	10	
tampó d'incubació	Tris pH 7.8	TF pH 7.4	
sistema generador de NADPH	PH G-6P-DH 2 U/ml, D-G-6P 4 mM i MgCl2 5 mM		
	PRO /	TST /	
Substracte especific /	ⁱ : 2, 5, 10 i 50	^k 25 10 50 i 350 /	
solvent	^j : 5, 10, 25 i 50 / DMSO	DMSO	
Fàrmac: /concentracions (µM) / solvent	KT: 0, 0.05, 0.2, 1.25 i 5 mM / AcN KTA: 0, 5, 25, 75 i 375 μM / DMSO BN: 0, 0.02, 0.1, 0.5 i 2.5 μM / AcN FEN: 0, 0.1, 0.5, 5 i 20 μM / AcN XYL: 0, 2.5, 10, 50 i 250 μM / AcN	<i>KT:</i> 0, 0.05, 0.2, 1.25 i 5 mM / AcN <i>KTA</i> : 0, 5, 25, 75 i 375 μM / DMSO <i>BN:</i> 0, 0.02, 0.1, 0.5 i 2.5 μM / AcN <i>FEN:</i> 0, 0.1, 0.5, 5 i 20 μM / AcN <i>XYL:</i> 0, 2.5, 10, 50 i 250 μM / AcN	
Inhibidor específic / concentració (μΜ) / solvent	ORF / 200 / DMSO	SUL / 100 / Metanol CUM / 50 / Metanol CIM / 100 / Metanol	
Inici de la reacció enzimàtica	β-	NADP	

Taula 7Composició dels Incubats pels Estudis de Cinètica Enzimàtica (Concentració de Fàrmac Zero) i Estudis d'Inhibició (en Presència de Fàrmac).
CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2.

G-6P-DH: glucosa -6-fosfat deshidrogenasa, TF: tampó fosfat sòdic 50 mM, Tris: tampó Tris.HCl 50mM

k : concentracions utilitzades per tots els Fàrmacs i a totes les concentracions

PRO: pentoxiresorufina, TST: testosterona

KT: ketoprofè, KTA: ketamina, BN: buprenorfina, FEN: fentanil, XYL: xilacina

ORF: orfenadrina, SUL: sulfafenazol, CUM: cumarina, CIM: cimetidina, TRO: troleandomicina AcN:acetonitril, DMSO: dimetilsulfòxid, TCA 10%:àcid tricloroacètic al 10%

i : concentracions utilitzades quan la concentració de Fàrmac=0

^j : concentracions utilitzades quan la concentració de Fàrmac era diferent de 0

5.6 Preparació de les Mostres per l'Anàlisi

Els incubats generats en l'estudi d'inhibició es van transferir a tubs eppendorf i es van centrifugar a 25.000 xg durant 15 min a 4°C. Els sobrenedants es van diluir si corresponia amb el solvent pertinent a cada tècnica, i es van injectar directament al sistema per l'anàlisi cromatogràfic. Excepte, els incubats de la reacció específica de la TST, els quals van passar per una extracció en fase sòlida prèvia a l'anàlisi per HPLC.

5.7 Anàlisi per HPLC

Les mostres es van analitzar per HPLC amb detecció UV o fluorescència segons es detalla a continuació.

Els mètodes d'anàlisi es van posar a punt de forma individual, per la detecció dels metabòlits específics de les diferents reaccions específiques. Malgrat que els mètodes no es van validar, si que es van preparar una sèrie de rectes per cada un, i es van determinar els paràmetres d'exactitud i precisió. Per les rectes, es van representar les concentracions teòriques de metabòlit CYP-específic *versus* els quocients de les àrees metabòlit específic/estàndard intern. Els valors dels quocients de les mostres es van interpolar d'aquesta recta per obtenir les concentracions de metabòlit específic (pmol/ml). A continuació, les concentracions de metabòlit específic es van dividir per la concentració de proteïna microsomal i pel temps d'incubació de les mostres. D'aquesta manera es va obtenir l'activitat enzimàtica (pmol/mg proteïna/min).

La Taula 8 i la Taula 9 mostren els components en la recta de calibració que s'utilitza per la quantificació del metabòlit específic en les mostres.

Així mateix, es van introduir una sèrie de controls en cada sequència analítica de mostres per validar l'anàlisi de les mostres. Aquests controls estan descrits a la secció 5.5.

Els paràmetres de les rectes i els valors de les mostres control no s'han inclòs en el present treball.

Taula 8	Components de les Rectes de	Calibració per	r les Reaccions Esp	ecífiques dels CYP2E1	, CYP2D1 i CYP1A1/2.
	1	1	1	1	

	Activitats CYP450 específiques					
	Clorzoxazona-6β-hidroxilasa	Dextrometorfà-O-demetilasa	Etoxiresorufina-O-deetilasa			
	CYP2E1	CYP2D1	CYP1A1/2			
Recta de calibració						
Metabòlit CYP-específic /	6-β-hidroxiclorzoxazona /	Dextrorfà /	Resorufina /			
concentracions (<i>pmol/ml</i>)/	500, 1000, 5000, 25.000 i 100.000 /	600, 1200, 3.000, 12.000 i 30.000 /	10, 25, 50, 100, 500 i 2.000 /			
solvent	AcN	TF pH 7.4	Tris pH 7.8			
Estàndard intern /	5-cloroxindol /	Levalorfà /	4-metil-7-hidroxicumarina /			
solvent	AcN	TF pH 7.4	AcN			

TF: tampó fosfat sòdic 50 mM, Tris: tampó Tris.HCl 50mM

AcN: acetonitril

El volum de les mostres és el mateix que el de les incubacions de les reaccions específiques

Taula 9 Components de les Rectes de Calibració per les Reaccions Específiques dels CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2.

	Activitats CYP450 específiques				
	Pentoxiresorufina-O-dealquilasa CYP2B1/2	Testosterona-hidroxilasa CYPs 2A1/2, 2C, 2C11 i 3A1/2			
Recta de calibració					
/ Metabòlit CYP-específic concentracions (<i>pmol/ml</i>)/ solvent	Resorufina / 10, 25, 50, 100, 500 i 2.000 / Tris pH 7.8	6-β-hidroxitestosterona / 300, 500, 1.000, 2.000, 5.000, 10.000 i 20.000 pmol/ml / Metanol			
Estàndard intern /	4-metil-7-hidroxicumarina /	Dexametasona /			
solvent	AcN	Metanol			

TF: tampó fosfat sòdic 50 mM, Tris: tampó Tris.HCl 50mM

AcN: acetonitril

El volum de les mostres és el mateix que el de les incubacions de les reaccions específiques

Els mètodes analítics desenvolupats en el present treball es descriuen a continuació:

I. .Determinació de la 6-hidroxiclorzoxazona

Columna : Supelcosil (LC-18DB) (150 x 4.6mm, 5µm, Supelco)

Temperatura de la columna: Temperatura ambient

Fase mòbil A: àcid acètic al 0.1%

Fase mòbil B: metanol

Gradient:

Temps (min)	Fluxe (ml/min)	A%	В%	Curvatura
0	1	60	40	1
3.0	1	45	55	1
8.0	1	45	55	1
8.1	1	10	90	1
10.0	1	10	90	1
10.1	1	60	40	1

Longitut d'ona : 287 nm

Figura 14 Cromatograma Representatiu de la Determinació de la 6-hidroxiclorzoxazona.

II. Determinació del dextrorfà

Columna : Xterra RP18 (150 x 4.6mm, 5µm, Waters)

Temperatura de la columna: Temperatura ambient

Fase mòbil A: acetat amònic 50 mM pH 4.0.

Fase mòbil B: acetonitril

Gradient:

Temps (min)	Fluxe (ml/min)	A%	B%	Curvatura
0	0.75	75	25	6
6.0	0.75	75	25	6
7.0	0.75	20	80	6
9.0	0.75	20	80	6
10.0	0.75	75	25	6

Longitut d'ona. Excitació: 235 nm. Emissió: 310 nm.

Figura 15 C	Cromatograma	Representatiu	de la	Determinació	del Dextrorf	à.
-------------	--------------	---------------	-------	--------------	--------------	----

III. Determinació de la resorufina

Columna : Symmetry C18 (150 x 4.6mm, 5µm, Waters)

Temperatura de la columna: Temperatura ambient

Fase mòbil A: acetat amònic 50 mM pH 6.0.

Fase mòbil B: metanol

Gradient:

Time	fluxe	۸%	B%	curvatura
(min)	(ml/min)	A70		
0	1	55	45	6
6,0	1	55	45	6
7,0	1	10	90	6
10,0	1	10	90	6
11,0	1	55	45	6

Longitut d'ona: 570 nm

Figura 16 Cromatograma Representatiu de la Determinació de la Resorufina.

IV. Determinació de les Hidroxitestosterones

Columna: Symmetry 150x4.6mm 5µm, (Waters)

Temperatura de la columna: Temperatura ambient

Fase mòbil A: metanol : aigua (75:25) + àcid acètic al 0.1%

Fase mòbil B: metanol : acetonitril : aigua (64:6:30)+ àcid acètic al 0.1%

Gradient:

Time	fluxe	A 0/	D 0/	ourvoturo
(min)	(ml/min)	A /0	D /0	curvatura
0	1	75	25	6
12,0	1	48	52	6
20,0	1	40	60	6
25,0	1	0	100	6
28,0	1	0	100	1
30,0	1	75	25	1

Longitut d'ona: 254 nm

Figura 17 Cromatograma Representatiu de la Determinació de les Hidroxitestosterones.

5.8 Determinació de la Unió de la KTA a Proteïnes Microsomals. Model In Vitro

La unió no-específica de KTA a proteïnes microsomals es va avaluar quantificant la KTA no unida a RLM. La separació de KTA no unida es va realitzar per ultrafiltració a través d'una membrana YM-10.000, utilitzant el sistema *Centrifree Micropartition System* (Amicon).

Per aquest experiment, es van preparar incubacions de KTA en RLMS, a 37°C durant 30 min. Les incubacions es van fer per triplicat i a tres concentracions de KTA: 5, 25 i 100 pmol/ml, després es van preparar en dos grups de mostres (n=3). El disseny experimental es mostra a la Figura 18.

- Un primer grup (RLMS-A) al qual se li va afegir una quantitat d'AcN (proporcional a la quantitat que s'utilitza per aturar la reacció en una incubació), i es va col.locar en tubs eppendorf. A continuació, els tubs es van centrifugar a 27000 xg durant 15 min a 4°C, i els sobrenedants resultants es van analitzar.
- Un segon grup de mostres (RLMS-B) es va col.locar en el reservori de tubs *Centrifree* i aquests es van centrifugar durant 1 h a 5000 xg i 25°C. Es van obtenir els ultrafiltrats. Als ultrafiltrats es va afegir AcN proporcionalment, i finalment les mostres es van analitzar.

Figura 18 Determinació de la Unió No-Específica a Proteïnes Microsomals In Vitro.

RLMS : mostres que contenen microsomes hepàtics de rata (conc. prot. 1 mg/ml), solució tampó fosfat sòdic 100 mM pH 7.4, glucosa-6-fosfat deshidrogenasa, glucosa-6-fosfat i clorur de magnesi. KTA : ketamina.

Previ a aquest assaig es va determinar la recuperació analítica de la KTA i la unió d'aquesta al filtre del sistema d'ultrafiltració per poder aplicar els factors de correcció, tal i com s'explica a continuació a les seccions 5.8.1 i 5.8.2.

5.8.1 Determinació de la Recuperació Analítica

Les matrius RLMS i FMS es van incubar en presència de KTA en un bany amb agitació a 37°C durant 30 min, i es van aturar les reaccions afegint un volum d'AcN proporcional.

Les concentracions de KTA en els incubats van ser de 1, 5, 10, 50 i 100 pmol/ml, n=3.

Les mostres FMS es van analitzar directament en el sistema HPLC, i les mostres RLMS es van centrifugar a 27000 xg durant 15 min i després es van analitzar. La Figura 19 mostra el disseny experimental.

Figura 19 Determinació de la Unió No-Específica a Proteïnes Microsomals *In Vitro*: Determinació de la Recuperació Analítica de la KTA.

RLMS : mostres que contenen microsomes hepàtics de rata (conc. prot. 1 mg/ml), solució tampó fosfat sòdic 100 mM pH 7.4, glucosa-6-fosfat deshidrogenasa, glucosa-6-fosfat i clorur de magnesi.
 FMS : mostres RLMS filtrades en Centrifree YM-10 a 5000 xg, 1 h a 25°C.
 KTA : ketamina.

5.8.2 Determinació del Percentatge d'Unió de la KTA al Filtre del Sistema d'Ultrafiltració

Les mostres de FMS es van incubar en presència de KTA a les concentracions de 5, 25 i 100 pmol/ml, n=3:

• A un conjunt de mostres FMS (FMS-A) se li va afegir el volum d'AcN proporcional, es van centrifugar a 27000 xg durant 15 min i per acavar es van analitzar.
Un segon conjunt de mostres (FMS-B) es van centrifugar en tubs *Centrifree* a 5000 xg durant 1 h. Posteriorment, es va afegir un volum d'AcN al sobrenedant de les mostres FMS-B i després es van analitzar.

La Figura 20 mostra el disseny experimental.

Figura 20 Determinació de la Unió No-Específica a Proteïnes Microsomals *In Vitro*: Determinació de la Unió de la KTA al Filtre.

FMS : mostres RLMS filtrades en Centrifree YM-10 a 5000 xg, 1 h a 25°C.

RLMS : mostres que contenen microsomes hepàtics de rata (conc. prot. 1 mg/ml), solució tampó fosfat sòdic 100 mM pH 7.4, glucosa-6-fosfat deshidrogenasa, glucosa-6-fosfat i clorur de magnesi.

KTA : ketamina.

6 TRACTAMENT DE LES DADES

6.1 Caracterització dels Lots de RLM

6.1.1 Determinació de la Concentració de Proteïna Microsomal

Seguint el protocol del "Total Protein Kit" de Sigma. El mètode que descriu aquest protocol és el mètode clàssic de quantificació de proteïnes de Lowry però lleugerament modificat per simplificar i fer la reacció més estable. El procediment es divideix en dos etapes, tal i com es descriu a la secció 5.2.1.

Per tractar les dades, es va incloure en l'experiment una recta de calibració a concentracions conegudes d'albúmina, que es va preparar seguint les instruccions del Kit comercial. D'aquesta recta es van interpolar els valors d'absorció de les mostres i es van obtenir els valors de concentració (mg/ml).

Una vegada determinada la concentració es va ajustar a una concentració de 20 mg/ml i es va etiquetar i emmagatzemar a -80°C.

6.1.2 Determinació del CYP450 en RLM

Es va determinar la diferència entre la mitjana dels valors d'absorció corresponents a les regions de l'espectre a 449, 450 i 451 nm, i a 489, 490 i 491 nm per les dues solucions de 0.25 i 1 mg de proteïna microsomal/ml. El càlcul es va fer aplicant la fòrmula deduïda a partir de l'increment d'absorció entre 450 i 490 nm obtinguda de l'espectrofotòmetre, i aplicant el coeficient d'extinció molar del complexe CYP450 reduït-CO (91 mM⁻¹. cm⁻¹), Equació 1.

$$CONC = \frac{(\Delta_{450-490} \bullet 1000)}{91 \bullet CP} \quad \text{Equació 1}$$

on,

CONC, és la concentració específica de CYP450 expressada en nmol de CYP450 per mg de proteïna microsomal.

CP, concentració de proteïnes en la mostra de microsomes analitzada (en mg/ml).

6.1.3 Determinació de l'Activitat NADPH-CYP450 Reductasa en RLM

Es va calcular l'activitat enzimàtica total per cada replicat seguint la fòrmula, deduïda a partir de l'increment de l'absorció per min (D) obtingut de l'espectrofotòmetre, i aplicant el coeficient d'extinció molar del Citocrom C reduït $(21 \text{ mM}^{-1}.\text{cm}^{-1})$:

$$AE = \frac{D \bullet 250000}{21} \quad \text{Equació 2}$$

on,

AE, és l'activitat enzimàtica expressada en nmol del Citocrom C reduït per min i per mg de proteïna microsomal.

D, és l'increment d'absorció per min.

6.2 Cinètiques Enzimàtiques

6.2.1 Determinació de la Linealitat en la Producció de Metabòlit CYP450-Específic en Funció del Temps i en Funció de la Concentració de Proteïna Microsomal

Les equacions de regressió lineal (Equacions 3 i 4) es va ajustar a les reprentacions de les concentracions de proteïna microsomal i els temps d'incubació *versus* l'activitat (pmol/ml).

(I). Linealitat en funció de la concentració de proteïna microsomal:

$$y = ax + b$$
 Equació 3

on, x és la concentració de proteïna microsomal, i y és la formació de metabòlit (pmol/ml) obtinguda en funció de la concentració de proteïna; a i b són constants de l'equació (el pendent i la intersecció, respectivament).

(II). Linealitat en funció del temps:

y = ax + b Equació 4

on, x és el temps d'incubació, i y és la formació de metabòlit (pmol/ml) obtinguda en funció del temps; a i b són constants de l'equació (el pendent i la intersecció, respectivament).

6.2.2 Determinació dels Paràmetres Cinètic-Enzimàtics V_{max} i K_m

Els resultats d'activitat enzimàtica que es van obtenir després de la incubació dels microsomes a diferents concentracions de substracte específic (veure secció 5.4.2), van donar lloc a una corba hiperbòlica (quan era una cinètica de M-M), o sigmoidal (quan era una cinètica de Hill).

Els paràmetres enzimàtics K_m i V_{max} es van determinar ajustant dos models a les dades obtingudes: el model de M-M (Equació 5) i el model de Hill o model Sigmoidal (Equació 6). El model de M-M representa la cinètica enzimàtica típica, que normalment es fa servir per estudiar les propietats cinètiques dels enzims. El model de Hill descriu la una cinètica d'autoactivació, a on a partir d'una concentració determinada del mateix substracte es produeix un increment exponencial en l'activitat de l'enzim.

Les Equacions 5 i 6 es van ajustar a l'activitat enzimàtica (pmol/mg proteïna microsomal/min) de cada CYP450, mitjançant una regressió no-lineal simultània (SNLR) utilitzant el software WinNonlin:

$$v = \frac{V_{max} \bullet [S]}{K_m + [S]} \qquad \text{Equació 5}$$

$$v = \frac{V_{\max} \bullet [S]^{\gamma}}{K_m + [S]^{\gamma}} \quad \text{Equació 6}$$

on,

v i V_{max} són respectivament les velocitats observada i màxima de metabolisme (pmol/mg proteïna microsomal/min), K_m és la constant de Michaelis-Menten, [S] és la concentració de substracte específic, i γ és el factor de sigmoidicitat.

(ref. 92, ref. 93)

6.3 Estudi *In Vitro* d'Inhibició de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11, 2D1, 2E1 i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN

6.3.1 Determinació de la $K_{m,app}$ i Càlcul del Quocient $K_{m,app}/V_{max,app}$

Per cada concentració de fàrmac es van estimar els paràmetres K_m i V_{max} després d'ajustar el model de M-M als valors d'activitat enzimàtica (pmol/mg proteïna/min). Quan es fan ajustaments cinètics on la concentració de fàrmac és diferent de zero, els paràmetres s'anomenen $K_{m,app}$ i $V_{max,app}$ (Equació 7).

$$v = \frac{V_{\max}, _{app} \bullet [S]}{K_{m, app} + [S]}$$
 Equació 7

on, v i $V_{max,app}$ són respectivament les velocitats observada i màxima aparent de metabolisme (pmol/mg proteïna microsomal/min); $K_{m,app}$ és la constant aparent de M-M; i [S] és la concentració de substracte específic (μ M).

Figura 23 Representació Teòrica de l'Ajustament de M-M a les Activitats Ezimàtiques per una Reacció Específica (Una Isoforma CYP450) en l'Experiment d'Inhibició d'un Fàrmac.

Es van estimar els valors de K_m i V_{max} per a cada isoforma CYP450 i cada concentració de fàrmac, i amb aquestes estimacions es van calcular els quocients $K_{m,app}/V_{max,app}$ de forma individual. Els quocients $K_{m,app}/V_{max,app}$ es van comparar entre les diferents concentracions de fàrmac amb un test estadístic. El test es va realitzar de forma individual per cada isoforma (o reacció específica).

La selecció del tipus de test estadístic es va fer analitzant la distribució dels valors mitjos dels quocients $K_{m,app}/V_{max,app}$. Quan la distribució de les dades era normal s'aplicava un test estadístic paramètric: *anàlisi de la variància d'una via*. Quan els valors no presentaven una distribució normal, s'aplicava un test estadístic no paramètric: test de Kruskal-Wallis.

Aquest estudi estadístic va permetre diferenciar els fàrmacs que podien interferir en l'activitat d'una isoforma CYP450.

6.3.2 *Càlcul de l'IC*₅₀

Es va determinar el valor de l' IC_{50} de les relacions fàrmac-isoforma CYP450 que en el test estadístic havien donat diferències estadísticament significatives i per tant, amb possibilitat d'interaccions.

Per això, les dades d'activitats enzimàtiques obtingudes dels incubats de RLM, que es van realitzar a una concentració determinada de substracte específic i en presència de diferents concentracions de fàrmac, es van expressar com a percentatge de la activitat control (concentració zero de fàrmac). Els valors de concentració de fàrmac *versus* els percentages d'activitat, van ser ajustaments per la funció hiperbòlica que descriu l'Equació 8 utilitzant el software SigmaPlot.

$$v = V_0 \bullet \left[1 - \left(\frac{C^{\gamma}}{C^{\gamma} + IC_{50}^{\gamma}} \right) \right] \quad \text{Equació 8}$$

on, v és l'activitat enzimàtica (pmol/mg proteïna microsomal/min), V_0 és l'activitat enzimàtica en absència del fàrmac (pmol/mg proteïna microsomal/min), C és la concentració del fàrmac (μ M), IC_{50} és la concentració del fàrmac que inhibeix l'activitat màxima d'un enzim a la meitat (μ M), i γ és el factor de sigmoidicitat.

6.3.3 Càlcul de la K_i. Mètode de Regressió No-Lineal Simultània, SNLR. Equacions derivades de M-M

Es van ajustar les set fòrmules d'inhibició que es descriuen en aquesta secció a les dades experimentals d'activitat enzimàtica, i es va seleccionar el model que millor ajustava segons els criteris que es descriuen a continuació. El model indicava el tipus d'inhibició i aportava el valor de K_i . La K_i es va estimar per aquelles associacions fàrmac-CYP450 en les que s'havien detectat possibles interaccions d'inhibició després de l'estudi estadístic que es detalla a la secció anterior 6.3.1.

Per això, les següents equacions d'inhibició deduïdes de les equacions de M-M i de Hill (secció 6.3.4), es van ajustar als valors d'activitat enzimàtica de cada reacció CYP450-específica, mitjançant SNLR i utilitzant el software WinNonlin. La Figura 24 mostra una representació de l'ajustament teòric d'un model d'inhibició (en aquest cas competitiu) mitjançant el WinNonlin. A la Figura s'observen representats els valors d'activitat enzimàtica a quatre concentracions de substracte específic, i tot això per les cinc concentracions de fàrmac (inclosa la concentració zero).

Figura 24 Representació Teòrica d'un Model d'Inhibició Mitjançant Regressions No-Lineals Simultànies (SNLR) Utilitzant WinNonlin

Les quatre equacions deduïdes del model cinètic de M-M són les següents:

6.3.3.1 Inhibició Competitiva Simple

Es dóna quan el substracte i l'inhibidor competeixen pel mateix centre actiu de l'enzim. El valor de la K_m varia mentre que el valor de la V_{max} es manté constant.

Figura 25 Esquema Inhibició Competitiva Simple

E:enzim; *S*:substracte; *ES*:complexe enzim-substracte; *I*:inhibidor; *EI*:complexe enzim-inhibidor; *P*:producte; E_i :enzim total; K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_p :constant de formació de producte; K_i :constant de formació del complexe *EI* o constant d'inhibició.

Tenint en compte que,

$$V = K_p \bullet [ES] \tag{1}$$

Quan $V = V_{\text{max}}$, $[ES] = [E_t]$ i,

$$V_{\max} = K_p \bullet [E_t] \tag{2}$$

A més,

$$\begin{bmatrix} E_t \end{bmatrix} = \begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} ES \end{bmatrix} + \begin{bmatrix} EI \end{bmatrix}$$
$$\begin{bmatrix} ES \end{bmatrix} = \frac{\begin{bmatrix} E \end{bmatrix} \bullet \begin{bmatrix} S \end{bmatrix}}{K_s}$$
(3)

$$[EI] = \frac{[E] \bullet [I]}{K_i} \tag{4}$$

$$\frac{v}{[E_t]} = \frac{Kp \bullet [ES]}{[E] + [ES] + [EI]}$$
$$\frac{v}{V_{\text{max}}} = \frac{\frac{[S]}{K_s}}{K_s \bullet \left(1 + \frac{[S]}{K_s} + \frac{[I]}{K_i}\right)}$$

finalment,

$$v = \frac{V_{\max} \bullet [S]}{K_s \bullet \left(1 + \frac{[I]}{K_i} + [S]\right)}$$
 Equació 9

v:velocitat (pmol/mg proteïna/min); V_{max} :velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μ M); [I]:concentració d'inhibidor (μ M), K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_i :constant d'inhibició (μ M).

6.3.3.2 Inhibició No Competitiva Simple

Es dóna quan el substracte i l'inhibidor s'uneixen a centres independents de l'enzim i es forma el complexe ESI, què no és eficaç per la catàlisi. És un tipus d'inhibició que no es dóna freqüentment. El valor de V_{max} queda afectat, però el de K_m es manté inalterat.

$$E + S \xrightarrow{K_{S}} ES \xrightarrow{K_{p}} P + E$$

$$+ | \uparrow \downarrow K_{i} + | \uparrow \downarrow K_{i}$$

$$E| ES|$$

E:enzim; *S*:substracte; *ES*:complexe enzim-substracte; *I*:inhibidor; *EI*:complexe enzim-inhibidor; *EIS*:complexe enzim-inhibidor-substracte; *P*:producte; E_t :enzim total; K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten; K_p :constant de formació de producte; K_i :constant de formació del complexe *EI* i *ESI* o constant d'inhibició.

Tenint en compte (1), (2), (3), (4) i

$$[ESI] = \frac{[E] \bullet [S] \bullet [I]}{K_i \bullet K_s}$$
(5)

llavors,

$$\begin{bmatrix} E_t \end{bmatrix} = \begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} ES \end{bmatrix} + \begin{bmatrix} EI \end{bmatrix} + \begin{bmatrix} ESI \end{bmatrix}$$
$$\frac{v}{\begin{bmatrix} E_t \end{bmatrix}} = \frac{K_p \bullet \begin{bmatrix} ES \end{bmatrix}}{\begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} ES \end{bmatrix} + \begin{bmatrix} EI \end{bmatrix} + \begin{bmatrix} ESI \end{bmatrix}$$
$$\frac{v}{V_{\text{max}}} = \frac{\begin{bmatrix} S \end{bmatrix}}{K_s \bullet \left(1 + \frac{\begin{bmatrix} S \end{bmatrix}}{K_s} + \frac{\begin{bmatrix} I \end{bmatrix}}{K_i} + \frac{\begin{bmatrix} S \end{bmatrix} \bullet \begin{bmatrix} I \end{bmatrix}}{K_i \bullet K_s}\right)$$

$$v = \frac{[S] \bullet V_{\max}}{K_s \bullet \left(1 + \frac{[I]}{K_i}\right) + [S] \bullet \left(1 + \frac{[I]}{K_i}\right)}$$
Equació 10

v:velocitat (pmol/mg proteïna/min); V_{max} :velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μ M); [I]:concentració d'inhibidor (μ M), K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_i :constant d'inhibició (μ M).

6.3.3.3 Inhibició Acompetitiva Simple

Es dóna quan l'inhibidor s'uneix a l'enzim només quan aquest ja està unit al substracte.

Els valors de V_{max} i K_m disminueixen. Normalment en aquests casos el substracte i l'inhibidor tenen una estructura molt semblant.

Figura 27 Esquema Inhibició Acompetitiva Simple

E:enzim; *S*:substracte; *ES*:complexe enzim-substracte; *I*:inhibidor; *EIS*:complexe enzim-inhibidorsubstracte; *P*:producte; E_i :enzim total; K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_p :constant de formació de producte; K_i :constant de formació del complexe *ESI* o constant d'inhibició.

Tenint en compte (1), (2), (3), (5), i

$$\begin{bmatrix} E_t \end{bmatrix} = \begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} ES \end{bmatrix} + \begin{bmatrix} ESI \end{bmatrix}$$

llavors,

$$\frac{v}{[E_t]} = \frac{K_p \bullet [S]}{[E] + [ES] + [ESI]}$$
$$\frac{v}{V_{\text{max}}} = \frac{[S]}{K_s \bullet \left(1 + \frac{[S]}{K_s} + \frac{[S] \bullet [I]}{K_s \bullet K_i}\right)}$$

v:velocitat (pmol/mg proteïna/min); V_{max} :velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μ M); [I]:concentració d'inhibidor (μ M), K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_i :constant d'inhibició (μ M).

6.3.3.4 Inhibició Mixta

Aquest tipus d'inhibició engloba una barreja entre la inhibició acompetitiva i la no competitiva, i les unions de l'inhibidor i del substracte a l'enzim no s'exclouen mútuament. Normalment l'efecte de l'inhibidor altera la V_{max} i la K_m .

Figura 28 Esquema Inhibició Mixta

E:enzim; *S*:substracte; *ES*:complexe enzim-substracte; *I*:inhibidor; *EI*:complexe enzim-inhibidor; *EIS*:complexe enzim-inhibidor-substracte; *P*:producte; *E_t*:enzim total; *K_s*:constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); *K_p*:constant de formació de producte; *K_i*:constant de formació del complexe *EI* i *ESI* o constant d'inhibició; α : constant que relaciona *K_s i K_i*.

Tenint en compte (1), (2), (3), (4),

$$[ESI] = \frac{[E] \bullet [S] \bullet [I]}{\alpha \bullet K_i \bullet K_s} \quad i,$$

$$\begin{bmatrix} E_t \end{bmatrix} = \begin{bmatrix} E \end{bmatrix} + \begin{bmatrix} ES \end{bmatrix} + \begin{bmatrix} EI \end{bmatrix} + \begin{bmatrix} ESI \end{bmatrix}$$

llavors,

$$\frac{v}{[E_t]} = \frac{K_p \bullet [ES]}{[E] + [ES] + [EI] + [ESI]}$$
$$\frac{v}{V_{\text{max}}} = \frac{[S]}{K_s \bullet \left(1 + \frac{[S]}{K_s} + \frac{[I]}{K_i} + \frac{[I] \bullet [S]}{\alpha \bullet K_s \bullet K_i}\right)}$$
$$\frac{v}{V = \frac{[S] \bullet V_{\text{max}}}{K_s \bullet \left(1 + \frac{[I]}{K_i}\right) + [S] \bullet \left(1 + \frac{[I]}{\alpha \bullet K_i}\right)} \text{ Equació 12}$$

v:velocitat (pmol/mg proteïna/min); V_{max} :velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μ M); [I]:concentració d'inhibidor (μ M), K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_i : constant d'inhibició (μ M); α : constant que relaciona K_s i K_i .

6.3.4 Fòrmules d'Inhibició Reversible Sigmoidal

Una part important del treball va consistir en desenvolupar una sèrie d'equacions per considerar les inhibicions competitiva, no competitiva i acompetitiva per cinètiques enzimàtiques deduïdes de l'equació de Hill, que no estaven descrites en bibliografia. Les equacions es van programar en el software WinNonlin i es van ajustar a les dades d'activitat (velocitat enzimàtica).

A continuació es descriuen les equacions.

6.3.4.1 Inhibició Competitiva Sigmoidal

L'esquema és el mateix que descriu la inhibició competitiva simple (secció 6.3.3.1) però, considerant *n*, que és el número de centres d'unió que hi ha en una molécula d'enzim per un S.

Tractament de les Dades

$$v = \frac{V_{\max} \bullet [S]^n}{K_s^n \bullet \left(1 + \frac{[I]}{K_i} + [S]^n\right)}$$
 Equació 13

v:velocitat (pmol/mg proteïna/min); V_{max} :velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μ M); [I]:concentració d'inhibidor (μ M), K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); K_i :constant d'inhibició (μ M); *n*:número de Hill.

6.3.4.2 Inhibició No Competitiva Sigmoidal

L'esquema és el mateix que descriu la inhibició no competitiva simple (secció 6.3.3.2) però, considerant *n*.

$$v = \frac{[S]^n \bullet V_{\max}}{K_s^n \bullet \left(1 + \frac{[I]}{K_i}\right) + [S]^n \bullet \left(1 + \frac{[I]}{K_i}\right)}$$
Equació 14

v:velocitat (pmol/mg proteïna/min); V_{max} :velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μ M); [I]:concentració d'inhibidor (μ M), K_s :constant de formació del complexe enzim-substracte o constant de Michaelis-Menten, K_m (μ M); K_i :constant d'inhibició (μ M); *n*:número de Hill.

6.3.4.3 Inhibició Acompetitiva Sigmoidal

L'esquema és el mateix que descriu la inhibició acompetitiva simple (secció 6.3.3.3) però, considerant *n*.

v:velocitat (pmol/mg proteïna/min); V_{max}:velocitat màxima (pmol/mg proteïna/min); [S]:concentració de substracte (μM); [I]:concentració d'inhibidor (μM), K_s:constant de formació del complexe enzim-substracte o constant de Michaelis-Menten K_m (μ M); *K_i*:constant d'inhibició (μ M); *n*:número de Hill.

Una vegada ajustades les dades, es va seleccionar el model d'inhibició que millor ajustava a les dades d'acord amb : a) L'evolució de K_m i V_{max} a cada concentració d'inhibidor, b) els criteris estadístics d'Akaike (AIC) i de Schwartz (SBC), c) el coeficient de variació (CV%) en l'estimació dels paràmetres.

6.3.5 Càlcul de la K_i . "Mètode de $K_{m,app}$ "

És un mètode que permet estimar el valor de K_i a partir de la representació de les concentracions de fàrmac *versus* els valors del quocients K_m/V_{max} (calculats en la secció 6.3.1). A continuació, una regressió lineal simple es va ajustar als valors dels quocients.

El valor de K_i es va obtenir de la intersecció en l'eix de les x, quan y=0.

(ref. 94, ref. 95)

6.3.6 Càlcul de la K_i "IC₅₀-to-K_i Converter"

Aquest mètode és una nova eina que existeix a internet i que permet estimar els valors de K_i a partir dels valors experimentals d'IC₅₀, per inhibidors d'enzims que segueixen una cinètica de M-M. La pàgina web calcula els valors de K_i pels tres tipus d'inhibició simple (competitiva, no competitiva i acompetitiva) considerant el fàrmac com la molècula que s'uneix a l'enzim amb un tipus d'inhibició reversible "clàssica", o també considerant el fàrmac com un inhibidor d'unió "forta" (*"tight binding inhibitor"*). Pel càlcul en el cas d'inhibició "clàssica", el programa utilitza el valor de la concentració de substracte específic utilitzada en l'estimació de la IC₅₀, el valor de la IC₅₀, i el valor de la K_m . El càlcul en el cas d'inhibició "tight binding", s'utilitza també el valor de la concentració de l'enzim. En el present treball s'utilitza el càlcul d'inhibició reversible "clàssica".

El mètode es va crear amb la idea d'obtenir el valor de la K_i simplificant el número d'experiments, i d'aportar informació a l'investigador de forma ràpida per dirigir l'estudi d'un nou fàrmac. Per aplicar-lo, s'assumeix que el substracte i l'inhibidor s'uneixen de forma reversible a l'enzim, i que no hi ha una unió múltiple de molècules d'inhibidor a l'enzim, ni cooperativitat o mecanismes complexes d'inhibició, com les inhibicions mixtes o parcials.

(ref. 96)

6.4 Determinació de la Unió No-Específica del KT, la KTA, la BN, el FEN i la XYL a Proteïnes Microsomals

6.4.1 Determinació de la Unió de la KTA a Proteïnes Microsomals. Model In Vitro

La unió no-específica dels fàrmacs a proteïnes microsomals es va estudiar *in vitro* en el cas de la KTA.

6.4.1.1 Càlcul del Percentatge de Recuperació (%R)

El %R de la metodologia analítica deguda a la precipitació de les proteïnes durant la preparació de la mostra es calcula com s´indica a continuació:

$$\% R = \frac{R_{RLMS}}{R_{FMS}} \bullet 100$$
 Equació 16

on,

 R_{RLMS} = mitjana (n=3) de l`àrea de pic de KTA en RLMS

R_{FMS} = mitjana (n=3) de l'àrea de pic de KTA en FMS

6.4.1.2 Càlcul del Percentatge de KTA Unida (%M)

El percentatge de KTA unida (%M) al material d'ultrafiltració (tubs Centrifree) es calcula amb la següent equació:

$$\%M = \frac{M_B}{M_A} \bullet 100$$
 Equació 17

on,

M_A= mitjana (n=3) de l'àrea de pic de KTA en FMS-A

M_B= mitjana (n=3) de l'àrea de pic de KTA en FMS-B

6.4.1.3 Càlcul del Percentatge del KTA Unida (%B) i No Unida (%F)

Els percentatges de KTA unida (%B) i no unida (%F) a les proteïnes microsomals es va obtenir seguint la següent equació:

$$\% F = \frac{C_{RLMS-B} \bullet \% R}{C_{RLMS-A} \bullet \% M} \bullet 100 \quad \text{Equació 18}$$
$$\% B = 100 \bullet \% F$$

C_{RLMS-A}= concentració (pmol/ml) mitjana (n=3) en el grup de mostres de RLMS-A

C_{RLMS-B}= concentració (pmol/ml) mitjana (n=3) en el grup de mostres de RLMS-B

En aquest cas, tant per C_{RLMS-A} com per C_{RLMS-B} , la KTA es va quantificar interpolant el valor de l'àrea de pic en una corba de calibració lineal (regressió lineal).

6.4.2 Predicció de la Unió No-Específica a les Proteïnes Microsomals Utilitzant les Propietats Físico-Químiques del KT, la KTA, el BN, el FEN i la XYL. Models In Silico

La determinació *in silico* de la unió a proteïnes microsomals d'un fàrmac a partir de les seves propietats físico-químiques es va fer d'acord amb mètodes descrits bibliogràficament. El models que s'apliquen són una sèrie d'equacions que tenen en compte principalment la lipofília de la molècula (logP) i el seu estat d'ionització o càrrega.

Per aplicar els següents models, primer es van classificar les molècules en tres grups segons la seva càrrega: àcida, bàsica o neutra, i després es va assumir que: la unió a proteïnes microsomals era no-específica, que els valors de $f_{u,mic}$ s'ajustaven a una concentració de proteïna microsomal de 1 mg/ml, i què la unió a proteïnes microsomals per un mateix fàrmac era independent de l'espècie animal.

Aquest model presenta l'avantatge que no necessita una part experimental.

Els models per la determinació *in silico* de $f_{u,mic}$ són els que es descriuen les següents equacions:

• El model d'Austin, mes apropiat per molecules àcides:

tenint en compte que,

$$\log\left(\frac{\left(1 - f_{u,mic}\right)}{f_{u,mic}}\right) = 0.53 \bullet \log D_{7.4} - 1.42$$

llavors,

$$f_{u,mic} = \frac{1}{10^{(0.53 \bullet \log D_{7.4} - 1.42)} + 1}$$
 Equació 19

• El model de Hallifax, mes apropiat per les molècules bàsiques:

$$f_{u,mic} = \frac{1}{10^{(0.072 \bullet \log P + 0.067 \bullet \log P - 1.126)} + 1}$$
 Equació 20

• El model combinat:

$$f_{u,mic} = \frac{1}{C \bullet 10^{(0.56 \bullet \log P / D - 1.41)} + 1}$$
 Equació 21

a on el logP/D és el valor de logD_{7.4} en molècules àcides, i el valor de logP en molècules bàsiques. Això és degut a què l'afinitat als fosfolípids de membrana a pH_{7.4} per part de les molècules bàsiques es descriu millor pel valor de logP que pel valor de logD_{7.4}, i a l'inversa per les molècules àcides. *C* és la concentració de proteïna microsomal.

- El model de Simcyp® per:
 - o molècules àcides:

$$f_{u,mic} = \frac{1}{10^{(0.2 \bullet \log P - 1.54)} + 1} \quad \text{Equació 22}$$

molècules bàsiques:

$$fu, mic = \frac{1}{10^{(0.58 \cdot \log P - 2.02) + 1}}$$
 Equació 23

(ref. 98, ref. 99, ref. 100, ref. 101, ref. 102, ref. 103)

Els valors de $f_{u,mic}$ obtinguts pels dos mètodes, es van multiplicar pel valor de K_i i es va obtenir el valor de K_i no unida.

6.5 Càlcul de la K_i Modificada per la f_{u,mic}

Per obtenir els valors de K_i no unida es van multiplicar els valors de K_i pel factor $f_{u,mic}$.

Aquest càlcul es va aplicar a aquelles relacions fàrmac-CYP450 on es va detectar una interacció potencial per inhibició en la secció 7.3.1.

6.6 Càlcul de R_{exp}

El quocient R_{exp} és el valor que es calcula tenint en compte el paràmetre d'inhibició K_i i la concentració màxima d'inhibidor assolida *in vivo*. És un valor de "cutoff" publicat a la directriu d'interaccions en el metabolisme de fàrmacs en humans de la FDA (ref. 114).

Quan el R_{exp} és >1.1 la directriu indica que s'ha de considerar el fàrmac com a potencial inhibidor d'una isoforma CYP450, i per tant, iniciar un estudi per examinar aquesta inhibició.

El càlcul del quocient es realitza segons la següent equació:

$$R_{\exp} = 1 + \frac{[I_{\max}]}{K_i^{\ u}} \quad \text{Equació 24}$$

a on,

 R_{exp} , és la relació de les àrees sota la corba en plasma en presència i en absència d'inhibidor.

 $[I_{max}]$ és la concentració màxima de fàrmac en plasma (μM).

i $K_i^{\ u}$ és la constant d'inhibició no unida a proteïnes microsomals (μM).

(ref. 114)

7 **RESULTATS**

7.1 Caracterització Funcional dels Lots de RLM

7.1.1 Determinació de la Concentració de Proteïna Microsomal

La Taula 10 mostra els valors de concentració de proteïna en RLM obtinguts per les tècniques de precipitació amb calci i d'ultracentrifugació. S'observa que la quantitat de proteïna per ml obtinguda amb el mètode d'ultracentrifugació és aproximadament 10 vegades més gran que amb el mètode de precipitació amb calci i el rendiment és major.

Aquests microsomes es van obtenir del fetge de rates no tractades amb fàrmac, i les determinacions es van fer per duplicat en cada lot.

Taula 10 Lot , Mètode de Preparació dels Microsomes, i Concentració de Proteïna Microsomal en els RLM Obtinguts

Data	Lot	Teixit	Mètode	Volumen (ml)	Conc. Proteïna Inicial	Proteïna	Conc. Proteïna Final
Preparació			Preparació	soluc. Microso.	(mg/ml)	Total (mg)	(mg/ml)
27/04/2000	008HRSDMC		Ca++	46,49	10,81	502,56	10
09/02/2001	009HRSDMC	Fotoo	Ca++	57,63	7,67	442,02	5
24/10/2001	010HRSDMC	reige	Ca++	70,82	11,89	842,05	10
12/07/2007	029HRSDMC		ULTRA_C	17,07	95,63	1632,59	20

Ca++ : Precipitació amb Calci ULTRA_C: Ultracentrifugació

7.1.2 Determinació del Citocrom P450 en RLM

La Figura 29 mostra els espectres d'absorció ultravioleta del CYP450 en dos lots de RLM. El lot 008HRSDMC correspon a microsomes obtinguts amb el mètode de precipitació amb calci. El lot 029HRSDMC correspon a microsomes obtinguts per ultracentrifugació. En ambdós lots, les mostres per l'anàlisi es van preparar a una concentració de 1 mg/ml en Tris.HCl 50 mM pH 7.4 : glicerol (80:20).

La Taula 11 mostra el contingut en CYP450 per mg de proteïna microsomal, dels lots 008HRSDMC i 029HRSDMC de RLM.

Lot	Replicats	Conc		Absorció		Contingu	it en CYP450
		proteïna (mg/ml)	490 nm	450 nm	(490-450) nm	(nmol/mg)	Mitjana (nmol/mg)
	1	1	3.8580E-01	4.5364E-01	6.78E-02	0.75	0.7
	2	0.25	9.5723E-03	5.4277E-03	1.50E-02	0.66	0.7
009HRSDMC				n.d.			
010HRSDMC				n.d.			
	1	1	5.20E-02	1.20E-02	4.00E-02	0.44	0.4
0291 INSDIVIC	2	1	4.30E-02	1.00E-02	3.30E-02	0.36	0.4

Taula 11	Lot i Contingut de	CYP450 en els	RLM Obtinguts
	not i comingat at	011.000	

n.d.: No determinat per problemes tècnics.

7.1.3 Determinació de l'Activitat NADPH-CYP450 Reductasa en RLM

A la Taula 12 es mostren els valors d'activitat CYP450 reductasa en lots de RLM que es van utilitzar en el present treball.

Lot	Replicat	CYP450 Reductasa	CYP450 Reductasa
		(nmol/mg/min)	Mitjana (nmol/mg/min)
	1	202.4	
008HRSDMC	2	238.1	226.2
	3	238.1	
	1	238.1	
009HRSDMC	2	285.7	265.9
	3	273.8	
	1	154.8	
010HRSDMC	2	154.8	150.8
	3	142.9	
	1	158.0	
029HRSDMC	2	178.1	171.5
	3	178.6	

Taula 12 Valors de l'Activitat NADPH-CYP450 Reductasa en els Lots de RLM Obtinguts

7.2 Cinètiques Enzimàtiques

El lot de microsomes 008HRSDMC es va utilitzar en aquests experiments, excepte en l'estudi de les cinètiques enzimàtiques dels CYP450: CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2, on es va utilitzar el lot 029HRSDMC.

7.2.1 Determinació de la Linealitat en la Producció de Metabòlit CYP-Específic en Funció del Temps i en Funció de la Concentració de Proteïna Microsomal

Les següents Figures mostren les representacions dels experiments per l'estudi de la linealitat en la producció de metabòlit específic en funció del la concentració de proteïna microsomal (Figura 30) i del temps d'incubació (Figura 31).

Les representacions de la Figura 30 mostren que la reacció del CYP2E1 és lineal fins que s'incuba a una concentració de proteïna de 2 mg/ml; les reaccions de CYP2D1, CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2 són lineals fins arribar a la concentració de 1 mg/ml; i la reacció específica del CYP1A1/2 és lineal fins la concentració de 0.5 mg/ml.

Les representacions de la Figura 31 mostren que la reacció específica del CYP2E1 és lineal fins als 30 min de temps d'incubació; la reacció del CYP2D1 és lineal fins els 25 min d'incubació; i les reaccions CYP1A1/2, CYP2A1/2, CYP2B1/2, CYP2C, CYP2C11 i CYP3A1/2 són lineals fins els 10 min d'incubació.

Resultats

Figura 30 Representacions de la Linealitat en la Producció de Metabòlit Específic en Funció de la Concentració de Proteïna Microsomal per cada CYP450

CZX: cloroxazona, DEX: dextrometorfà, ERO: etoxiresorufina, PRO: pentoxiresorufina, TST: testosterona, Hidroxitetosterona: 6-β-hidroxitestosterona (CYP3A1/2), 16-α-hidroxitestosterona (CYP2C), 7-α-hidroxitestosterona (CYP2A1/2) o 2-α-hidroxitestosterona (CYP2C11).

Resultats

Temps d´incubació, min

Figura 31 Representacions de la Linealitat en la Producció de Metabòlit Específic en Funció del Temps d'Incubació per cada CYP450

CZX: cloroxazona, DEX: dextrometorfà, ERO: etoxiresorufina, PRO: pentoxiresorufina, TST: testosterona, Hidroxitetosterona: 6-β-hidroxitestosterona (CYP3A1/2), 16-αhidroxitestosterona (CYP2C), 7-α-hidroxitestosterona (CYP2A1/2) ο 2-α-hidroxitestosterona (CYP2C11).

Temps d'incubació, min

Hidr A partir de la informació obtinguda per observació de les representacions de la Figura 30 i la Figura 31, es van fixar la concentració de proteïna microsomal i el temps d'incubació en cada reacció específica, segons s'indica a la Taula 13.

Taula 13 Reaccions Específiques de cada CYP450: Temps d'Incubació i Concentració de Proteïna Microsomal

CYP450	Reacció específica	Temps d´incubació (min)	Concentració de proteïna (mg/ml)
CYP2E1	Clorzoxazona-6-hidroxilasa	10	1
CYP2D1	Dextrometorfà-O-demetilasa	20	1
CYP1A1/2	Etoxiresorufin-O-deetilasa	10	0.5
CYP2B1/2	Pentoxiresorufin-O-dealquilasa	10	0.5
CYP2A1/2	Testosterona-7α-hidroxilasa		
CYP2C	Testosterona-16α-hidroxilasa	10	0.5
CYP2C11	Testosterona-2α-hidroxilasa	10	0.0
CYP3A1/2	Testosterona-6β-hidroxilasa		

7.2.2 Determinació dels Paràmetres Cinètic-Enzimàtics K_m i V_{max}

A la Taula 14 i a la Taula 15 es mostren els valors dels paràmetres cinètics (K_m i V_{max}), el coeficient de variació (%) de l'estimació dels paràmetres, la desviació estàndard, i els criteris estadístics d'AIC i SBC. Tot això, per cada reacció específica i cada model cinètic (M-M i Hill).

Taula 14 Paràmetres Cinètics K_m i V_{max}. Models de Michaelis-Menten i de Hill. CYP2E1, CYP2D1, CYP1A1/2 i CYP2B1/2

Ajustat equació Michaelis-Menten

		CY	′P2E1 ^{(M}	-M)			C	YP2D1 ^{(№}	I-M)			(CYP1A1/	2			CY	P2B1/2 ^{(I}	M-M)	
CYP450	Clo	orzoxaz	ona-6-hi	idroxilas	a	De	xtrome	torfà-0-o	demetila	asa	Etox	kiresor	ufina-O-	dealquil	asa	Pento	oxireso	rufina-O	-dealqu	ilasa
	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC
V _{max}	5006.7	86.1	1.7	297.5	299.8	433.1	7.2	1.7	72.5	72.9	132.9	3.9	2.9	127.7	129.5	13.7	0.6	4.4	30.6	31.5
K _m	223.2	11.7	5.3			6.6	0.8	12.2			0.6	0.1	11.6			3.3	0.6	17.0		

Ajustat equació de Hill (Sigmoidal)

		(CYP2E1					CYP2D1				C	YP1A1/2	(H)			(CYP2B1/	2	
CYP450	Cle	orzoxazo	ona-6-hi	idroxilas	a	De	xtromet	torfà-0-o	demetila	asa	Eto	xiresor	ufina-O-	dealquil	asa	Pent	oxireso	rufina-O	-dealqu	ilasa
	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC
V _{max}	4885.9	187.3	3.8	299.0	302.5	437.9	11.4	2.6	73.8	74.4	161.4	19.9	12.3	123.0	125.7	13.4	1.0	7.8	32.4	33.9
K _m	210.3	20.7	9.8			6.6	0.9	14.1			1.0	0.5	45.1			3.2	0.6	19.8		
Y	1.0	0.1	5.7			0.9	0.2	18.6			0.6	0.1	19.3			1.1	0.3	26.3		

V_{max}: velocitat màxima (pmol/mg proteïna/min)

 K_m : constant de Michaelis-Menten (μM)

γ : factor de sigmoidicitat

SD: desviació estàndar

CV(%): coeficient de variació (%)

AIC: criteri estadístic d'Akaike

SBC: criteri estadístic de Schwartz

(M-M): els valors d'AIC i SBC indiquen que el model de M-M ajusta millor a les dades

(H): els valors d'AIC i SBC indiquen que el model de Hill ajusta millor a les dades

CYP1A1/2: els valors de CV% dels paràmetres estimats són inferiors quan el model de M-M s'ajusta a les dades

Taula 15 Paràmetres Cinètics K_m i V_{max}. Models de Michaelis-Menten i de Hill. CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2

Ajustat equació Michaelis-Menten

		CY	′P2A1/2 ⁽	M-M)				CYP2C					CYP2C1	1			C	YP3A1/2		
CYP450	Tes	stostero	ona-7-α-l	nidroxila	asa	Test	osteror	na-16-α-l	hidroxila	isa	Te	stostere	ona-2-α-l	nidroxila	isa	Tes	tosteror	na-6-β-hi	droxilas	a
	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC
V _{max}	191.7	6.3	3.3	152.6	154.4	1176.6	80.1	6.8	223.1	224.9	686.9	33.1	4.8	196.4	198.2	2278.0	75.6	3.3	230.1	231.9
K _m	10.9	1.9	17.8			60.7	12.9	21.2			44.6	7.3	16.4			34.0	4.2	12.2		

Ajustat equació de Hill (Sigmoidal)

		C	CYP2A1/	2			C	CYP2C ^{(H})			C	YP2C11	(H)			CY	P3A1/2 ^{(I}	H)	
CYP450	Tes	stosterc	ona-7-α-l	hidroxila	asa	Test	osteror	na-16-α-l	hidroxila	asa	Tes	stostero	ona-2-α-l	hidroxila	asa	Tes	tosteror	1 <mark>a-6-</mark> β-hi	idroxilas	a
	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC	valor	SD	CV%	AIC	SBC
V _{max}	196.1	13.3	6.8	154.4	157.0	1007.6	48.1	4.8	213.5	216.0	635.3	35.2	5.5	194.8	197.0	2167.1	94.1	4.3	229.6	232.0
K _m	10.9	2.3	20.7			44.7	4.8	10.7			38.3	5.3	13.9			30.9	3.6	11.6		
Y	0.9	0.3	29.2			1.7	0.3	16.1			1.3	0.2	16.0			1.2	0.2	13.0		

V_{max}: velocitat màxima (pmol/mg proteïna/min)

 K_m : constant de Michaelis-Menten (μM)

γ : factor de sigmoidicitat

SD: desviació estàndar

CV(%): coeficient de variació (%)

AIC: criteri estadístic d'Akaike

SBC: criteri estadístic de Schwartz

(M-M): els valors d'AIC i SBC indiquen que el model de M-M ajusta millor a les dades

(H): els valors d'AIC i SBC indiquen que el model de Hill ajusta millor a les dades

CYP3A1/2: el valor d'AIC és menor en l'ajustat de Hill, el valor de SBC és menor en l'ajustat de M-M

Segons la informació obtinguda de les taules, els models seleccionats que es van seleccionar van ser el de M-M per ajustar les activitats dels CYP450 2E1, 2D1, 2B1/2 i 2A1/2, i el model de Hill per ajustar les activitats dels CYP450 1A1/2, 2C, 2C11 i CYP3A1/2.

Amb aquesta referència es va establir que les equacions d'inhibició que s'ajustarien en l'estudi s'inhibició *in vitro* serien les deduïdes l'equació de M-M per totes les isoformes CYP450, i a més a més, les equacions deduïdes de l'equació de Hill per les isoformes: CYP1A1/2, CYP2C, CYP2C11 i CYP3A1/2.

7.3 Estudi *In vitro* d'Inhibició de les CYP1A1/2, 2A1/2, 2B1/2, 2C, 2C11, 2D1, 2E1 i 3A1/2 per la KTA, la XYL, el KT, la BN i el FEN

Les següents Taules mostren els valors d'activitat enzimàtica adquirits en els experiments d'inhibició, que es descriuen a la secció 5.5. Els valors s'obtenen de forma individual dels cinc fàrmacs (KT, KTA, XYL, BN i FEN), per les vuit isoformes CYP450 (CYP1A1/2, CYP2A1/2, CYP2B1/2, CYP2C, CYP2C11, CYP2D1, CYP2E1 i CYP3A1/2).

Concentració Ketoprofè μΜ	Concentració clorzoxazona μΜ		Veloc	itat (pmol/ı 6-hidroxicle	mg proteïna orzoxazona	a/min)	
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	50	617.4	592.9	1436.1	882.1	479.9	54.4
0	250	2002.8	1932.1	<i>m.p.</i>	1967.4	-	-
U	500	2684.4	2960.2	2629.7	2758.1	177.2	6.4
	1000	3427.7	3451.7	3371.9	3417.1	41.0	1.2
	100	1438.9	1282.5	1425.8	1382.4	86.7	6.3
25	250	1961.2	2078.1	1933.5	1990.9	76.8	3.9
25	500	2215.1	2864.7	2674.8	2584.9	334.0	12.9
	1000	3882.4	3383.0	3528.3	3597.9	256.9	7.1
	100	935.9	980.8	981.6	966.1	26.2	2.7
50	250	2062.0	2001.5	1966.8	2010.1	48.2	2.4
50	500	2778.0	2586.2	2680.5	2681.6	95.9	3.6
	1000	3621.7	3473.3	3557.8	3550.9	74.4	2.1
	100	1261.0	1129.6	1125.9	1172.1	77.0	6.6
1250	250	1810.7	1914.6	1930.5	1885.2	65.1	3.5
1200	500	2612.7	2492.9	2817.1	2640.9	163.9	6.2
	1000	3489.6	3498.0	3502.0	3496.5	6.3	0.2
	100	1179.8	1178.9	984.2	1114.3	112.7	10.1
5000	250	1940.6	1806.1	1822.1	1856.3	73.5	4.0
5000	500	2904.5	2448.9	2234.6	2529.4	342.1	13.5
	1000	3292.5	3277.3	3149.4	3239.7	78.6	2.4

Taula 16 Estudi d'Inhibició del CYP2E1. Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Ketamina μΜ	Concentració clorzoxazona μΜ		Veloc	itat (pmol/ı 6-hidroxicle	mg proteïna orzoxazona	a/min)	
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	50	137.2	140.9	132.3	136.8	4.3	3.1
•	250	813.8	814.9	777.5	802.1	21.3	2.7
U	500	1159.2	1202.4	1229.9	1197.2	35.6	3.0
	1000	1721.5	1511.8	1581.3	1604.9	106.8	6.7
	100	<i>m.p.</i>	<i>m.p.</i>	m.p.	m.p.	-	-
5	250	770.5	759.3	764.5	764.8	5.6	0.7
5	500	1207.3	1194.5	1266.1	1222.6	38.2	3.1
	1000	2513.1	1775.0	1913.4	2067.2	392.4	19.0
	100	269.7	268.0	273.8	270.5	3.0	1.1
25	250	667.1	717.0	717.1	700.4	28.9	4.1
25	500	982.4	978.6	1109.0	1023.3	74.2	7.3
	1000	1658.4	1767.0	1811.7	1745.7	78.9	4.5
	100	264.1	265.6	261.2	263.6	2.3	0.9
75	250	643.7	665.0	597.6	635.4	34.5	5.4
75	500	1169.0	1133.1	1174.5	1158.9	22.5	1.9
	1000	1635.3	1637.0	1724.8	1665.7	51.2	3.1
	100	244.6	250.9	275.0	256.8	16.0	6.2
375	250	580.5	575.0	588.6	581.3	6.8	1.2
313	500	1139.4	1188.5	1104.5	1144.1	42.2	3.7
	1000	1681.1	1639.3	1684.4	1668.3	25.1	1.5

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Buprenorfina μΜ	Concentració clorzoxazona μΜ		Veloc	itat (pmol/r 6-hidroxicle	ng proteïna orzoxazona	a/min)	
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	50	361.6	359.7	354.5	358.6	3.7	1.0
0	250	1162.8	1135.5	1135.3	1144.5	15.8	1.4
U	500	1418.6	1432.0	1329.3	1393.3	55.8	4.0
	1000	1826.6	1735.9	1678.1	1746.9	74.8	4.3
	100	615.2	620.2	614.4	616.6	3.2	0.5
0.02	250	1083.1	1444.3	1297.3	1274.9	181.6	14.2
0.02	500	1656.6	1383.0	1318.6	1452.7	179.5	12.4
	1000	1303.5	1553.4	1493.9	1450.3	130.5	9.0
	100	681.4	619.6	542.6	614.5	69.5	11.3
0.1	250	1181.2	1271.8	1201.6	1218.2	47.5	3.9
0.1	500	1285.3	1259.7	1171.7	1238.9	59.6	4.8
	1000	1274.1	2138.0	1324.5	1578.9	484.9	30.7
	100	661.6	646.6	653.0	653.7	7.5	1.1
0.5	250	1222.2	1214.8	1148.4	1195.1	40.7	3.4
0.5	500	1514.8	1494.5	1423.0	1477.4	48.2	3.3
	1000	<i>m.p.</i>	m.p.	1754.3	1754.3	-	-
	100	674.1	693.5	643.1	670.2	25.4	3.8
25	250	1138.4	1217.6	1179.1	1178.4	39.6	3.4
2.0	500	1671.4	1667.5	1644.3	1661.1	14.7	0.9
	1000	1838.7	2048.7	1953.5	1947.0	105.2	5.4

Taula 17 Estudi d'Inhibició del CYP2E1. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Fentanil μΜ	Concentració clorzoxazona μΜ	Velocitat (pmol/mg proteïna/min) 6-hidroxiclorzoxazona							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	50	559.0	547.4	586.0	564.1	19.8	3.5		
0	250	1487.3	1575.6	1469.1	1510.7	57.0	3.8		
U	500	2510.0	2370.4	2486.4	2455.6	74.7	3.0		
	1000	2944.6	3035.9	3027.5	3002.7	50.5	1.7		
	100	917.5	975.9	895.0	929.5	41.8	4.5		
0.1	250	1457.5	1665.4	1756.0	1626.3	153.1	9.4		
0.1	500	2471.0	2426.5	2190.5	2362.7	150.7	6.4		
	1000	3001.8	2936.0	2693.0	2876.9	162.7	5.7		
	100	976.9	889.0	907.6	924.5	46.4	5.0		
0.5	250	1743.7	1747.3	1659.1	1716.7	49.9	2.9		
0.5	500	2430.0	2377.1	2301.9	2369.6	64.4	2.7		
	1000	2962.1	2995.7	2956.8	2971.6	21.1	0.7		
	100	891.5	977.5	952.2	940.4	44.2	4.7		
5	250	1708.8	1797.2	1762.4	1756.1	44.5	2.5		
5	500	2224.5	2198.4	2163.7	2195.5	30.5	1.4		
	1000	2883.7	2495.4	2827.7	2735.6	209.9	7.7		
	100	978.4	778.6	874.2	877.1	99.9	11.4		
20	250	1832.4	1848.8	1749.1	1810.1	53.5	3.0		
20	500	2447.1	2320.8	2509.1	2425.7	95.9	4.0		
	1000	2605.6	2933.5	2913.4	2817.5	183.8	6.5		

Concentració Xilacina μΜ	Concentració clorzoxazona μΜ	Velocitat (pmol/mg proteïna/min) 6-hidroxiclorzoxazona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	50	732.9	705.2	663.3	700.5	35.0	5.0	
0	250	2164.0	2119.9	2106.3	2130.1	30.2	1.4	
U	500	2816.3	3001.3	3008.1	2941.9	108.9	3.7	
	1000	3693.3	3550.9	3526.5	3590.2	90.1	2.5	
	100	1283.8	1282.3	1215.3	1260.5	39.1	3.1	
2.5	250	2035.0	2038.4	2071.3	2048.2	20.1	1.0	
2.5	500	2942.7	2926.2	2922.9	2930.6	10.6	0.4	
	1000	3489.1	3497.9	3366.3	3451.1	73.6	2.1	
	100	1084.3	1072.7	1199.4	1118.8	70.1	6.3	
10	250	2232.9	2234.2	2100.0	2189.0	77.1	3.5	
10	500	2989.0	2951.1	3018.8	2986.3	33.9	1.1	
	1000	3380.1	3396.5	3580.2	3452.2	111.1	3.2	
	100	1108.5	1214.8	1103.2	1142.2	63.0	5.5	
50	250	2134.2	2011.0	2191.7	2112.3	92.3	4.4	
50	500	3042.4	2956.6	2877.5	2958.8	82.5	2.8	
	1000	3468.0	3502.7	3326.4	3432.4	93.4	2.7	
	100	948.5	988.6	948.7	961.9	23.1	2.4	
250	250	1916.0	2125.9	1879.4	1973.8	133.0	6.7	
200	500	2797.2	2686.9	2693.5	2725.9	61.8	2.3	
	1000	3352.9	3004.4	3291.1	3216.1	185.9	5.8	

Taula 18 Estudi d'Inhibició del CYP2E1. Valors d'Activitat (Velocitat). Incubació amb XYL

Concentració Ketoprofè μΜ	Concentració dextrometorfà μΜ	Velocitat (pmol/mg proteïna/min) dextrorfà						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	5	121.9	123.7	130.4	125.3	4.5	3.6	
0	25	315.1	225.3	201.9	247.4	59.8	24.2	
U	250	351.5	374.0	335.6	353.7	19.3	5.4	
	1500	363.0	347.5	363.1	357.8	9.0	2.5	
	25	201.9	192.9	200.6	198.5	4.8	2.4	
25	250	m.p.	359.2	330.7	345.0	-	-	
20	500	314.7	352.6	340.9	336.1	19.4	5.8	
	1500	346.1	313.8	334.4	331.4	16.4	4.9	
	25	192.6	183.5	181.7	185.9	5.8	3.1	
50	250	340.2	368.8	365.0	358.0	15.5	4.3	
50	500	371.9	361.0	361.8	364.9	6.1	1.7	
	1500	351.4	321.8	315.9	329.7	19.0	5.8	
	25	166.9	436.4	240.9	281.4	139.2	49.5	
1250	250	309.4	333.6	327.6	323.6	12.6	3.9	
1250	500	349.2	341.6	351.9	347.6	5.3	1.5	
	1500	298.0	281.7	277.0	285.6	11.0	3.9	
	25	177.9	183.7	91.7	151.1	51.5	34.1	
5000	250	307.8	281.3	303.8	297.6	14.3	4.8	
5000	500	256.7	261.5	250.8	256.4	5.4	2.1	
	1500	194.3	188.5	198.4	193.7	4.9	2.5	

Taula 19 Estudi d'Inhibició del CYP2D1. Valors d'Activitat (Velocitat).Incubacions amb KT i amb KTA

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Ketamina μΜ	Concentració dextrometorfà μΜ	Velocitat (pmol/mg proteïna/min) dextrorfà							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	5	70.0	68.9	67.6	68.9	1.2	1.7		
0	25	143.2	138.3	140.2	140.6	2.5	1.8		
U	250	198.4	199.4	195.8	197.9	1.9	0.9		
	1500	184.1	174.4	175.9	178.1	5.2	2.9		
	25	142.5	139.5	136.0	139.3	3.2	2.3		
F	250	188.4	185.6	189.3	187.8	1.9	1.0		
5	500	196.0	191.1	184.6	190.6	5.7	3.0		
	1500	167.2	160.8	169.8	165.9	4.6	2.8		
	25	133.9	136.1	132.2	134.0	1.9	1.5		
25	250	176.5	188.2	193.2	186.0	8.6	4.6		
25	500	177.1	183.7	174.1	178.3	4.9	2.8		
	1500	172.9	174.4	172.7	173.3	0.9	0.5		
	25	135.0	126.1	126.9	129.3	4.9	3.8		
75	250	179.7	173.7	171.5	175.0	4.3	2.4		
75	500	181.2	176.5	168.2	175.3	6.5	3.7		
	1500	155.8	165.0	167.7	162.8	6.3	3.8		
	25	91.6	91.0	88.8	90.5	1.5	1.6		
275	250	158.0	168.6	163.3	163.3	5.3	3.3		
315	500	167.9	147.8	157.8	157.8	10.1	6.4		
	1500	168.1	144.9	156.6	156.5	11.6	7.4		

Concentració Buprenorfina μΜ	Concentració dextrometorfà μΜ	Velocitat (pmol/mg proteïna/min) dextrorfà						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	5	173.0	164.2	172.7	169.9	5.0	3.0	
	25	417.9	418.6	424.5	420.3	3.7	0.9	
U	250	370.7	371.4	374.4	372.2	2.0	0.5	
	1500	336.6	344.4	343.7	341.5	4.3	1.3	
	25	337.6	308.8	311.2	319.2	16.0	5.0	
0.02	250	418.3	409.9	410.3	412.8	4.8	1.2	
	500	т.р.	m.p.	m.p.	m.p.	-	-	
	1500	338.9	312.8	334.5	328.8	14.0	4.3	
	25	309.7	325.6	308.0	314.4	9.7	3.1	
0.1	250	411.1	413.7	407.1	410.6	3.3	0.8	
0.1	500	380.3	385.9	363.8	376.7	11.5	3.0	
	1500	289.6	324.4	295.8	303.3	18.6	6.1	
	25	323.0	330.3	331.4	328.2	4.6	1.4	
0.5	250	420.4	409.2	417.3	415.7	5.8	1.4	
0.5	500	378.1	379.5	387.6	381.7	5.1	1.3	
	1500	332.1	286.1	298.8	305.7	23.8	7.8	
	25	320.6	320.8	324.2	321.9	2.0	0.6	
25	250	421.0	423.8	427.5	424.1	3.3	0.8	
2.0	500	433.8	423.4	418.5	425.2	7.8	1.8	
	1500	329.8	315.8	296.5	314.1	16.7	5.3	

Taula 20 Estudi d'Inhibició del CYP2D1. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Fentanil μΜ	Concentració dextrometorfà μΜ	Velocitat (pmol/mg proteïna/min) dextrorfà						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	5	157.9	150.4	152.9	153.7	3.8	2.5	
0	25	т.р.	m.p.	m.p.	m.p.	-	-	
U	250	324.5	318.7	318.8	320.7	3.3	1.0	
	500	269.6	268.4	264.9	267.6	2.4	0.9	
	5	276.6	271.0	262.1	269.9	7.3	2.7	
0.1	25	305.4	281.5	302.5	296.5	13.1	4.4	
0.1	250	282.9	278.5	271.6	277.7	5.7	2.1	
	500	263.5	267.9	257.9	263.1	5.0	1.9	
	5	277.2	272.0	273.9	274.3	2.6	1.0	
0.5	25	324.7	322.6	326.8	324.7	2.1	0.6	
0.5	250	264.7	273.2	281.7	273.2	8.5	3.1	
	500	237.4	256.4	247.9	247.2	9.5	3.9	
	5	255.3	246.6	247.8	249.9	4.7	1.9	
5	25	317.8	262.0	302.4	294.1	28.8	9.8	
5	250	283.9	360.0	315.6	319.8	38.2	11.9	
	500	242.1	227.3	235.0	234.8	7.4	3.1	
	5	231.5	239.7	241.3	237.5	5.2	2.2	
20	25	297.1	298.0	294.3	296.5	2.0	0.7	
20	250	334.4	335.9	325.5	331.9	5.6	1.7	
	500	231.8	242.9	245.9	240.2	7.4	3.1	

m.p.: mostra perduda durant l'anàlisi

-' : no es pot calcular perquè n<2

Concentració Xilacina μΜ	Concentració dextrometorfà μΜ	Velocitat (pmol/mg proteïna/min) dextrorfà							
	5	9.4	9.3	9.1	9.3	0.2	2.1		
	25	207.1	200.9	196.8	201.6	5.2	2.6		
0	250	138.7	131.5	135.6	135.3	3.6	2.7		
	500	129.8	129.5	139.2	132.8	5.5	4.1		
	5	7.8	7.8	7.8	7.8	0.0	0.2		
25	25	188.3	184.0	177.5	183.3	5.4	3.0		
2.5	250	129.9	129.0	134.4	131.1	2.9	2.2		
	500	141.9	137.3	137.4	138.9	2.7	1.9		
	5	5.1	5.4	5.3	5.3	0.2	3.1		
10	25	171.2	172.4	166.9	170.2	2.9	1.7		
10	250	130.3	130.8	135.1	132.1	2.7	2.0		
	500	133.8	145.3	148.1	142.4	7.6	5.3		
	5	3.4	3.3	3.4	3.4	0.1	2.2		
50	25	111.2	115.5	117.4	114.7	3.2	2.8		
50	250	122.7	122.5	124.4	123.2	1.0	0.8		
	500	129.0	132.1	137.7	132.9	4.4	3.3		
	5	2.5	2.5	2.6	2.6	0.1	2.2		
250	25	61.8	54.1	52.9	56.3	4.8	8.6		
250	250	92.3	95.6	93.9	93.9	1.6	1.7		
	500	m.p.	т.р.	m.p.	т.р.	-	-		

Taula 21 Estudi d'Inhibició del CYP2D1. Valors d'Activitat (Velocitat). Incubació amb XYL

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2
Concentració Ketoprofè μΜ	Concentració etoxiresorufina μΜ	Velocitat (pmol/mg proteïna/min) resorufina							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	0.25	7.6	8.0	8.1	7.9	0.3	3.4		
0	5	17.4	18.6	19.3	18.4	1.0	5.2		
U	10	35.1	35.6	28.8	33.2	3.8	11.4		
	50	23.1	21.0	21.9	22.0	1.1	4.9		
	1	12.4	12.3	12.0	12.2	0.2	1.7		
50	5	17.7	17.2	18.6	17.9	0.7	4.0		
	10	23.2	37.6	31.5	30.8	7.2	23.5		
	50	21.0	22.3	21.2	21.5	0.7	3.2		
	1	11.4	11.9	12.2	11.8	0.4	3.8		
200	5	15.7	15.5	16.0	15.7	0.3	1.8		
200	10	21.4	31.9	<i>m.p.</i>	26.7	-	-		
	50	21.4	20.8	21.2	21.1	0.3	1.5		
	1	8.4	9.0	8.7	8.7	0.3	3.8		
1250	5	11.7	11.2	11.8	11.6	0.3	2.9		
1250	10	т.р.	т.р.	m.p.	-	-	-		
	50	14.6	13.8	14.2	14.2	0.4	2.9		
	1	6.8	6.4	5.6	6.3	0.6	9.8		
5000	5	7.2	7.5	7.7	7.5	0.3	3.8		
5000	10	7.4	9.6	6.6	7.9	1.6	19.7		
	50	8.3	8.1	9.1	8.5	0.5	5.9		

Taula 22 Estudi d'Inhibició del CYP1A1/2.Valors d'Activitat (Velocitat). Incubacions amb KT i amb КТА

m.p.: mostra perduda durant l'anàlisi -': no es pot calcular perquè n<2

Concentració Ketamina μΜ	l/min)						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	0.25	7.0	6.7	7.9	7.2	0.6	8.5
0	5	9.4	9.1	8.8	9.1	0.3	3.4
U	10	6.8	6.2	6.3	6.5	0.3	5.1
	50	6.4	6.2	6.3	6.3	0.1	1.9
	1	6.2	6.4	<i>m.p.</i>	6.3	-	-
5	5	8.1	9.1	8.4	8.5	0.5	5.8
	10	5.6	m.p.	5.9	5.7	-	-
	50	6.2	6.7	6.5	6.5	0.3	4.3
	1	5.5	6.7	6.9	6.3	0.7	11.7
25	5	7.3	7.6	7.8	7.6	0.2	3.1
25	10	5.0	5.2	5.2	5.1	0.2	3.0
	50	6.1	5.9	5.6	5.9	0.3	4.4
	1	5.8	6.4	6.7	6.3	0.5	7.6
75	5	7.0	7.8	7.1	7.3	0.4	6.0
75	10	5.1	4.6	5.0	4.9	0.3	5.1
	50	5.3	5.3	5.5	5.4	0.1	1.6
	1	5.5	5.2	5.7	5.5	0.2	4.2
375	5	5.8	5.9	6.1	5.9	0.1	2.3
375	10	4.2	4.1	4.1	4.1	0.0	1.0
	50	4.5	4.7	4.6	4.6	0.1	2.5

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Taula 23 Estudi d'Inhibició del CYP1A1/2. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

Concentració Buprenorfina μΜ	Concentració etoxiresorufina μΜ	Velocitat (pmol/mg proteïna/min) resorufina							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	0.25	6.3	6.6	6.7	6.5	0.2	3.3		
0	5	8.4	9.0	7.4	8.3	0.8	9.7		
	10	8.2	7.6	7.6	7.8	0.4	4.8		
	50	6.9	7.3	6.7	7.0	0.3	3.8		
	1	8.9	9.1	8.4	8.8	0.4	4.2		
0.02	5	7.3	8.0	10.0	8.4	1.4	16.8		
	10	7.5	7.5	7.0	7.3	0.3	3.6		
	50	7.2	7.2	6.1	6.8	0.6	9.3		
	1	8.2	8.1	8.7	8.3	0.3	3.9		
0.1	5	10.5	т.р.	9.7	10.1	-	-		
0.1	10	7.6	6.8	6.7	7.1	0.5	7.0		
	50	6.5	6.7	6.5	6.6	0.1	1.8		
	1	8.9	7.9	7.6	8.1	0.7	8.4		
0.5	5	9.3	9.6	9.1	9.3	0.2	2.6		
0.5	10	6.7	9.5	9.8	8.7	1.7	20.0		
	50	6.7	7.0	6.3	6.7	0.3	5.2		
	1	8.5	8.2	8.4	8.4	0.1	1.8		
2.5	5	9.0	8.9	8.5	8.8	0.3	3.0		
2.5	10	8.2	8.1	7.3	7.9	0.5	6.6		
	50	6.7	6.5	6.5	6.6	0.1	1.7		

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Fentanil μΜ	Concentració etoxiresorufina μΜ	Velocitat (pmol/mg proteïna/min) resorufina							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	0.25	12.5	12.9	12.8	12.7	0.2	1.7		
0	5	24.4	23.4	23.8	23.9	0.5	2.1		
U	10	22.3	21.2	21.2	21.6	0.7	3.0		
	50	19.8	19.0	17.4	18.7	1.2	6.4		
	1	18.1	18.1	17.4	17.8	0.4	2.3		
0.1	5	23.3	24.4	23.9	23.9	0.5	2.2		
	10	21.0	25.8	22.4	23.0	2.5	10.7		
	50	17.6	19.7	16.2	17.8	1.8	9.9		
	1	18.0	18.3	16.8	17.7	0.8	4.5		
0.5	5	24.0	23.7	24.0	23.9	0.2	0.7		
0.5	10	25.7	24.8	22.3	24.3	1.8	7.4		
	50	17.0	18.7	18.1	17.9	0.9	4.8		
	1	17.4	17.9	15.6	17.0	1.2	7.1		
5	5	20.8	20.5	20.4	20.6	0.2	1.1		
5	10	20.7	21.8	20.8	21.1	0.6	2.7		
	50	16.6	16.5	17.5	16.9	0.6	3.3		
	1	15.5	16.0	16.0	15.8	0.3	1.9		
20	5	16.7	17.8	17.6	17.3	0.6	3.4		
20	10	19.1	18.9	17.7	18.6	0.7	4.0		
	50	14.2	13.7	15.1	14.4	0.7	5.1		

Concentració Xilacina μΜ	Concentració etoxiresorufina μΜ	Velocitat (pmol/mg proteïna/min) resorufina						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	0.25	9.6	9.1	11.0	9.9	1.0	10.0	
0	5	11.0	20.6	19.8	17.2	5.3	31.0	
U	10	т.р.	15.3	17.9	16.6	-	-	
	50	16.3	т.р.	14.6	15.5	-	-	
	1	12.8	13.9	15.0	13.9	1.1	8.2	
2.5	5	19.9	т.р.	18.4	19.2	-	-	
	10	18.5	т.р.	т.р.	18.5	-	-	
	50	12.8	т.р.	12.5	12.7	-	-	
	1	13.0	13.3	13.9	13.4	0.5	3.7	
10	5	17.6	17.8	т.р.	17.7	-	-	
10	10	16.8	16.9	17.2	17.0	0.2	1.4	
	50	12.8	12.3	т.р.	12.6	-	-	
	1	12.7	12.5	13.8	13.0	0.7	5.6	
50	5	17.9	т.р.	16.5	17.2	-	-	
50	10	17.5	15.6	14.6	15.9	1.5	9.2	
	50	13.5	12.0	т.р.	12.8	-	-	
	1	16.1	14.8	15.7	15.5	0.7	4.4	
250	5	т.р.	17.5	17.7	17.6	-	-	
200	10	17.2	16.6	m.p.	16.9	-	-	
	50	14.3	13.5	13.6	13.8	0.4	3.0	

Taula 24 Estudi d'Inhibició del CYP1A1/2. Valors d'Activitat (Velocitat). Incubació amb XYL

m.p.: mostra perduda durant l'anàlisi

-' : no es pot calcular perquè n<2

Taula 25 Estudi d'Inhibició del CYP2B1/2. Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA

Concentració Ketoprofè μΜ	Concentració pentoxiresorufina μΜ		Velocitat (pmol/mg proteïna/min) resorufina						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	2	4.6	4.3	4.3	4.4	0.2	4.0		
0	5	5.6	5.8	5.8	5.7	0.1	2.5		
0	10	7.6	8.3	7.5	7.8	0.4	5.5		
	50	9.4	10.8	9.6	9.9	0.7	7.6		
50	5	5.5	5.6	5.8	5.6	0.2	3.2		
	10	7.2	8.0	8.3	7.8	0.5	6.8		
	25	12.9	12.3	11.6	12.3	0.6	5.1		
	50	8.7	8.9	9.2	8.9	0.3	2.8		
	5	5.5	5.5	5.6	5.5	0.1	1.1		
200	10	7.0	8.3	7.5	7.6	0.6	8.4		
200	25	7.6	7.8	7.7	7.7	0.1	1.6		
	50	9.1	8.5	8.6	8.8	0.3	3.8		
	5	4.2	4.0	4.1	4.1	0.1	2.2		
1250	10	4.8	5.8	5.9	5.5	0.6	10.9		
1250	25	6.4	6.1	6.3	6.3	0.1	2.1		
	50	7.5	7.2	7.8	7.5	0.3	3.8		
	5	2.2	1.9	2.5	2.2	0.3	13.0		
5000	10	3.1	2.6	3.0	2.9	0.3	9.1		
5000	25	3.8	3.4	т.р.	3.6	-	-		
	50	4.5	4.5	4.2	4.4	0.2	4.2		

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Ketamina μΜ	Concentració pentoxiresorufina μΜ		Velocitat (pmol/mg proteïna/min) resorufina					
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2	1.6	1.6	1.5	1.6	0.1	4.8	
0	5	2.7	2.9	2.8	2.8	0.1	3.2	
0	10	3.9	3.8	3.7	3.8	0.1	2.4	
	50	5.5	5.4	5.5	5.5	0.0	0.8	
5	5	2.4	2.4	2.1	2.3	0.1	6.0	
	10	3.3	3.1	3.4	3.3	0.2	4.9	
	25	т.р.	4.0	4.2	4.1	-	-	
	50	4.8	4.7	4.8	4.7	0.1	1.2	
	5	1.8	1.9	2.0	1.9	0.1	6.4	
25	10	2.5	2.5	2.2	2.4	0.1	5.6	
25	25	3.3	3.3	3.3	3.3	0.0	1.0	
	50	4.1	4.6	4.0	4.3	0.3	7.4	
	5	1.4	1.3	1.3	1.3	0.0	3.0	
75	10	1.9	1.9	1.8	1.9	0.0	1.6	
75	25	2.9	2.7	2.6	2.7	0.1	4.6	
	50	3.5	3.7	3.7	3.6	0.1	3.7	
	5	0.9	0.6	0.7	0.7	0.1	19.7	
275	10	1.3	1.2	1.3	1.3	0.0	2.4	
575	25	2.3	2.4	2.4	2.4	0.1	3.0	
	50	2.7	2.9	2.8	2.8	0.1	3.4	

m.p.: mostra perduda durant l'anàlisi

-' : no es pot calcular perquè n<2

Concentració Buprenorfina μΜ	Concentració pentoxiresorufina μΜ	Velocitat (pmol/mg proteïna/min) resorufina						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2	1.2	1.3	0.9	1.1	0.2	17.2	
0	5	2.3	2.1	2.0	2.1	0.2	7.5	
U	10	4.6	3.7	3.6	4.0	0.5	13.3	
	50	8.4	6.9	7.0	7.5	0.8	11.1	
	5	1.9	1.9	1.7	1.8	0.1	5.1	
0.02	10	3.8	3.3	3.6	3.6	0.3	7.6	
0.02	25	5.8	5.4	6.1	5.8	0.4	6.6	
	50	7.1	7.2	6.8	7.0	0.2	3.0	
	5	1.7	т.р.	m.p.	1.7	-	-	
0.1	10	3.7	3.3	3.7	3.6	0.2	6.0	
0.1	25	5.7	6.0	5.5	5.7	0.2	4.1	
	50	6.6	6.4	6.4	6.5	0.1	1.8	
	5	1.9	1.9	m.p.	1.9	-	-	
0.5	10	3.6	3.8	3.5	3.7	0.2	4.2	
0.5	25	4.4	5.1	4.8	4.8	0.3	6.9	
	50	5.7	6.3	6.4	6.1	0.4	6.7	
	5	1.9	1.7	2.2	1.9	0.2	11.8	
25	10	3.5	3.3	3.7	3.5	0.2	4.6	
2.3	25	4.6	4.9	4.9	4.8	0.2	3.3	
	50	6.5	7.0	6.5	6.7	0.3	4.3	

Taula 26 Estudi d'Inhibició del CYP2B1/2. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Concentració Fentanil μΜ	Concentració pentoxiresorufina μΜ		Velocitat (pmol/mg proteïna/min) resorufina						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	2	3.3	2.6	2.9	2.9	0.4	12.2		
0	5	3.9	3.6	3.9	3.8	0.2	5.0		
0	10	5.2	4.6	5.4	5.1	0.5	8.9		
	50	9.3	8.3	9.5	9.0	0.6	6.7		
	5	3.8	3.8	m.p.	3.8	-	-		
0.1	10	4.0	3.7	4.6	4.1	0.4	10.7		
	25	8.1	8.2	7.3	7.9	0.5	6.8		
	50	8.0	7.3	8.0	7.8	0.4	5.0		
	5	т.р.	3.5	3.2	3.3	-	-		
0.5	10	4.5	3.8	4.1	4.1	0.3	7.9		
0.5	25	8.3	7.4	6.4	7.4	0.9	12.9		
	50	8.9	7.6	8.1	8.2	0.7	8.1		
	5	3.9	3.8	3.5	3.7	0.2	6.1		
5	10	5.1	5.5	5.8	5.5	0.4	6.8		
5	25	6.4	7.3	7.3	7.0	0.5	7.2		
	50	7.8	7.2	8.2	7.7	0.5	6.8		
	5	3.2	3.3	3.2	3.2	0.1	1.9		
20	10	3.8	4.6	5.5	4.6	0.8	17.6		
20	25	6.2	6.2	7.0	6.5	0.4	6.9		
	50	6.4	7.4	7.6	7.1	0.6	8.4		

m.p.: mostra perduda durant l´anàlisi -' : no es pot calcular perquè n<2

Taula 27	Estudi d'Inhibició del	CYP2B1/2.	Valors d'Activitat (Velocitat).	Incubacions	amb XYL
----------	------------------------	-----------	----------------------	-------------	-------------	---------

Concentració Xilacina μΜ	Concentració pentoxiresorufina µM	replicat 1	Velocitat (pmol/mg proteïna/min) resorufina						
	2	23	mn	mn	23	-	-		
	5	3.5	m.p.	m.p. m.p.	3.5	-	-		
0	10	4.6	m.p.	m.p. m.p.	4.6		-		
	50	5.3	m.p. m.p.	m.p.	5.3	-	-		
	5	3.3	 	p. m.p.	3.3	-	-		
	10	3.9	m.p.	m.p.	3.9	-	-		
2.5	25	5.1	т.р.	т.р.	5.1	-	-		
	50	5.2	m.p.	m.p.	5.2	-	-		
	5	3.0	, т.р.	, т.р.	3.0	-	-		
40	10	3.6	т.р.	, т.р.	3.6	-	-		
10	25	4.6	т.р.	m.p.	4.6	-	-		
	50	5.0	т.р.	m.p.	5.0	-	-		
	5	3.2	т.р.	m.p.	3.2	-	-		
50	10	3.8	m.p.	m.p.	3.8	-	-		
50	25	4.3	<i>m.p.</i>	m.p.	4.3	-	-		
	50	4.6	m.p.	m.p.	4.6	-	-		
	5	4.5	т.р.	m.p.	4.5	-	-		
250	10	5.0	т.р.	т.р.	5.0	-	-		
250	25	5.4	т.р.	т.р.	5.4	-	-		
	50	5.4	т.р.	т.р.	5.4	-	-		

m.p.: mostra perduda durant l'anàlisi -' : no es pot calcular perquè n<2

Concentració Ketoprofè μΜ	Concentració testosterona μΜ		Velocitat (pmol/mg proteïna/min) 7-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	2.5	10.4	10.2	10.2	10.3	0.1	1.1		
0	10	44.7	46.9	46.7	46.1	1.2	2.6		
U	50	64.7	65.6	65.8	65.4	0.6	0.9		
	350	72.7	73.3	74.9	73.6	1.1	1.5		
	2.5	8.6	9.7	9.9	9.4	0.7	7.4		
50	10	45.2	43.8	43.4	44.1	1.0	2.2		
	50	56.9	61.9	63.3	60.7	3.3	5.5		
	350	69.5	71.1	70.0	70.2	0.8	1.1		
	2.5	12.3	13.9	13.7	13.3	0.9	6.6		
200	10	46.1	48.1	49.9	48.0	1.9	4.0		
200	50	61.4	61.3	58.0	60.2	1.9	3.2		
	350	67.6	70.0	71.1	69.6	1.8	2.6		
	2.5	n.d.	n.d.	13.0	13.0	-	-		
1250	10	46.8	53.3	46.0	48.7	4.0	8.3		
1250	50	58.3	57.3	58.8	58.1	0.8	1.3		
	350	67.4	68.2	74.1	69.9	3.6	5.2		
	2.5	n.d.	n.d.	11.6	11.6	-	-		
5000	10	36.4	36.4	39.6	37.5	1.8	4.9		
5000	50	44.2	42.9	41.2	42.8	1.5	3.6		
	350	56.2	62.7	58.4	59.1	3.4	5.7		

Taula 28 Estudi d'Inhibició del CYP2A1/2. Valors d'Activitat (Velocitat). Incubacions amb KT i amb КТА

n.d.: pic cromatogràfic no detectable -' : no es pot calcular perquè n<2

Concentració Ketamina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 7-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2.5	32.2	33.7	25.6	30.5	4.3	14.2	
0	10	84.7	95.4	93.0	91.1	5.6	6.2	
	50	156.3	153.8	108.2	139.4	27.1	19.4	
	350	200.8	188.4	140.0	176.4	32.2	18.2	
	2.5	n.d.	33.9	26.9	30.4	-	-	
5	10	99.9	102.1	93.8	98.6	4.3	4.4	
	50	153.6	145.3	112.0	137.0	22.0	16.1	
	350	184.5	184.7	149.1	172.8	20.5	11.9	
	2.5	34.5	36.3	31.0	33.9	2.7	7.9	
25	10	97.2	111.0	100.6	102.9	7.2	7.0	
25	50	142.1	153.7	106.1	134.0	24.8	18.5	
	350	191.6	152.1	123.1	155.6	34.4	22.1	
	2.5	27.8	42.9	36.8	35.8	7.6	21.2	
75	10	92.3	98.9	90.0	93.7	4.6	4.9	
75	50	137.5	128.2	101.1	122.3	19.0	15.5	
	350	159.1	174.4	129.2	154.2	23.0	14.9	
	2.5	37.5	32.9	35.7	35.3	2.3	6.5	
375	10	81.2	82.8	83.0	82.3	1.0	1.2	
575	50	120.5	107.0	98.5	108.6	11.1	10.2	
	350	158.8	159.8	117.9	145.5	23.9	16.4	

Taula 29 Estudi d'Inhibició del CYP2A1/2. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

Concentració Buprenorfina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 7-α-hidroxitestosterona					
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	2.5	n.d.	26.9	27.6	27.2	-	-
0	10	n.d.	71.1	69.8	70.4	-	-
	50	126.3	101.0	105.7	111.0	13.5	12.2
	350	158.7	145.1	142.7	148.8	8.7	5.8
	2.5	34.3	24.6	31.5	30.2	5.0	16.5
0.1	10	78.4	83.9	79.9	80.8	2.8	3.5
0.1	50	100.1	98.3	108.2	102.2	5.3	5.1
	350	154.3	130.7	138.1	141.0	12.1	8.6
	2.5	25.7	29.8	31.4	29.0	2.9	10.2
0.5	10	72.0	63.5	70.1	68.5	4.5	6.5
0.5	50	100.2	113.9	91.0	101.7	11.5	11.3
	350	136.5	153.6	127.6	139.2	13.2	9.5
	2.5	31.6	25.6	29.3	28.8	3.0	10.5
25	10	74.3	70.0	73.9	72.7	2.4	3.3
2.5	50	103.5	123.4	101.4	109.4	12.1	11.1
	350	149.6	129.7	149.2	142.8	11.4	8.0
	2.5	27.2	28.7	30.2	28.7	1.5	5.1
10	10	83.7	72.6	70.8	75.7	7.0	9.2
10	50	105.1	94.1	80.1	93.1	12.5	13.5
	350	128.8	131.4	124.3	128.2	3.6	2.8

Concentració Fentanil μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 7-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2.5	58.1	39.0	40.3	45.8	10.7	23.3	
•	10	83.0	90.7	82.6	85.5	4.5	5.3	
U	50	109.0	105.2	105.8	106.6	2.1	1.9	
	350	164.7	170.7	161.7	165.7	4.6	2.8	
0.1	2.5	37.9	39.9	35.4	37.7	2.3	6.0	
	10	78.6	86.5	83.6	82.9	4.0	4.8	
	50	109.3	104.2	107.4	107.0	2.6	2.4	
	350	156.2	165.6	165.9	162.6	5.5	3.4	
	2.5	37.5	40.1	38.9	38.9	1.3	3.4	
0.5	10	81.7	84.7	94.8	87.1	6.9	7.9	
0.5	50	111.1	107.8	115.5	111.5	3.9	3.5	
	350	153.5	160.7	160.5	158.2	4.1	2.6	
	2.5	39.3	41.6	30.7	37.2	5.7	15.4	
5	10	85.0	86.1	96.5	89.2	6.3	7.1	
5	50	102.8	101.5	96.1	100.1	3.5	3.5	
	350	151.7	155.1	160.5	155.8	4.4	2.8	
	2.5	39.5	35.6	43.6	39.5	4.0	10.2	
20	10	84.4	85.7	94.9	88.3	5.7	6.5	
20	50	99.1	90.2	88.7	92.7	5.6	6.1	
	350	147.4	147.1	148.0	147.5	0.5	0.3	

Concentració Xilacina μΜ	Concentració testosterona μΜ	replicat 1	Velocitat (pmol/mg proteïna/min) 7-α-hidroxitestosterona						
	2.5	19.3	16.1	17.0	17.5	1.7	9.6		
	10	57.9	61.9	54.5	58.1	3.7	6.4		
0	50	89.1	87.1	89.6	88.6	1.3	1.5		
	350	109.8	104.9	112.4	109.1	3.8	3.5		
	2.5	13.9	16.3	16.3	15.5	1.4	8.7		
	10	51.2	47.3	53.1	50.5	2.9	5.8		
2.5	50	78.0	81.9	80.5	80.1	2.0	2.5		
	350	94.2	105.9	110.4	103.5	8.4	8.1		
	2.5	17.3	16.8	20.0	18.0	1.7	9.5		
10	10	49.7	52.5	55.7	52.6	3.0	5.8		
10	50	72.0	78.4	82.4	77.6	5.2	6.7		
	350	93.5	95.3	102.5	97.1	4.8	4.9		
	2.5	20.6	14.3	18.9	17.9	3.3	18.3		
50	10	50.2	49.7	52.2	50.7	1.3	2.6		
50	50	71.6	76.0	81.3	76.3	4.9	6.4		
	350	97.5	105.4	101.1	101.3	3.9	3.9		
	2.5	10.9	14.5	12.7	12.7	1.8	14.3		
250	10	44.0	41.3	41.9	42.4	1.4	3.4		
230	50	67.5	67.6	73.4	69.5	3.3	4.8		
	350	88.7	87.8	93.0	89.8	2.8	3.1		

Taula 30 Estudi d'Inhibició del CYP2A1/2. Valors d'Activitat (Velocitat). Incubació amb XYL

Concentració Ketoprofè μΜ	Concentració testosterona μΜ	ació Velocitat (pmol/mg proteïna/min) ona 16-α-hidroxitestosterona							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)		
	2.5	n.d.	n.d.	n.d.	-	-	-		
	10	46.1	52.2	51.8	50.0	3.4	6.7		
U	50	179.9	189.5	206.9	192.1	13.7	7.1		
	350	272.0	271.2	281.2	274.8	5.6	2.0		
	2.5	n.d.	n.d.	n.d.	-	-	-		
50	10	36.3	54.7	75.3	55.4	19.5	35.2		
50	50	188.4	207.1	217.4	204.3	14.7	7.2		
	350	282.3	275.5	285.6	281.1	5.2	1.8		
	2.5	n.d.	n.d.	n.d.	-	-	-		
200	10	91.4	91.1	93.4	92.0	1.2	1.3		
200	50	197.9	208.8	208.5	205.1	6.2	3.0		
	350	303.6	281.8	281.8	289.1	12.5	4.3		
	2.5	n.d.	n.d.	n.d.	-	-	-		
1050	10	143.9	161.8	181.0	162.2	18.5	11.4		
1250	50	214.7	206.1	214.9	211.9	5.0	2.4		
	350	278.4	298.2	297.4	291.3	11.2	3.8		
	2.5	n.d.	n.d.	n.d.	-	-	-		
5000	10	116.7	111.4	139.2	122.4	14.7	12.0		
5000	50	122.0	126.1	121.4	123.2	2.6	2.1		
	350	219.2	217.9	181.2	206.1	21.6	10.5		

Taula 31 Estudi d'Inhibició del CYP2C. Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA

n.d.: pic cromatogràfic no detectable

-' : no es pot calcular perquè n<2

Concentració Ketamina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 16-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2.5	n.d.	n.d.	n.d.	-	-	-	
0	10	34.9	64.9	55.3	51.7	15.3	29.6	
U	50	440.5	445.8	441.6	442.6	2.8	0.6	
	350	789.2	764.6	735.7	763.2	26.8	3.5	
	2.5	n.d.	n.d.	n.d.	-	-	-	
E	10	67.2	70.6	86.9	74.9	10.5	14.0	
5	50	387.9	420.7	447.2	418.6	29.7	7.1	
	350	737.9	748.5	775.7	754.1	19.5	2.6	
	2.5	n.d.	n.d.	n.d.	-	-	-	
25	10	49.9	76.1	104.7	76.9	27.4	35.6	
25	50	397.1	438.9	424.4	420.1	21.2	5.0	
	350	760.8	674.9	672.2	702.6	50.4	7.2	
	2.5	n.d.	n.d.	n.d.	-	-	-	
75	10	50.5	43.2	53.0	48.9	5.1	10.4	
75	50	336.7	354.8	336.8	342.8	10.4	3.0	
	350	655.6	707.5	679.6	680.9	25.9	3.8	
275	2.5	n.d.	n.d.	n.d.	-	-	-	
	10	16.6	21.3	29.4	22.4	6.5	28.8	
375	50	189.4	176.0	192.4	186.0	8.7	4.7	
	350	534.5	503.1	535.0	524.2	18.3	3.5	

Concentració Buprenorfina μΜ	Concentració testosterona μΜ		Velocitat (pmol/mg proteïna/min) 16-α-hidroxitestosterona							
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)			
	2.5	n.d.	n.d.	n.d.	-	-	-			
0	10	n.d.	39.9	41.3	40.6	-	-			
U	50	185.0	165.6	179.2	176.6	9.9	5.6			
	350	293.1	301.1	289.8	294.7	5.8	2.0			
	2.5	n.d.	n.d.	n.d.	-	-	-			
0.1	10	42.4	45.2	52.0	46.5	4.9	10.6			
0.1	50	158.0	176.3	186.6	173.7	14.5	8.3			
	350	292.2	279.4	305.0	292.2	12.8	4.4			
	2.5	n.d.	n.d.	n.d.	-	-	-			
0.5	10	51.6	36.1	41.5	43.0	7.9	18.4			
0.5	50	173.3	227.6	195.5	198.8	27.3	13.7			
	350	284.9	346.0	291.2	307.4	33.6	10.9			
	2.5	n.d.	n.d.	n.d.	-	-	-			
25	10	48.2	50.5	66.1	54.9	9.7	17.7			
2.5	50	225.2	242.5	188.8	218.8	27.4	12.5			
	350	355.2	315.8	361.0	344.0	24.6	7.2			
	2.5	n.d.	n.d.	n.d.	-	-	-			
40	10	63.7	66.1	69.2	66.4	2.8	4.2			
10	50	205.1	213.1	214.2	210.8	5.0	2.4			
	350	304.8	342.0	336.9	327.9	20.2	6.1			

Taula 32 Estudi d'Inhibició del CYP2C. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

n.d.: pic cromatogràfic no detectable -' : no es pot calcular perquè n<2

Concentració Fentanil μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 16-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2.5	n.d.	n.d.	n.d.	-	-	-	
0	10	26.2	31.1	30.1	29.1	2.6	8.9	
	50	97.3	99.5	98.4	98.4	1.1	1.1	
	350	738.5	773.2	733.7	748.5	21.5	2.9	
	2.5	n.d.	n.d.	n.d.	-	-	-	
0.1	10	28.4	31.7	32.3	30.8	2.1	6.8	
0.1	50	103.4	104.0	105.9	104.4	1.3	1.3	
	350	709.0	771.7	770.4	750.4	35.8	4.8	
	2.5	n.d.	n.d.	n.d.	-	-	-	
0.5	10	33.1	38.4	44.1	38.6	5.5	14.2	
0.5	50	112.0	112.1	118.0	114.0	3.4	3.0	
	350	717.4	771.4	768.9	752.6	30.4	4.0	
	2.5	n.d.	n.d.	n.d.	-	-	-	
5	10	42.8	37.8	46.7	42.4	4.5	10.5	
5	50	114.5	112.3	97.3	108.0	9.3	8.7	
	350	733.3	751.3	784.0	756.2	25.7	3.4	
	2.5	n.d.	n.d.	n.d.	-	-	-	
20	10	47.6	47.7	53.7	49.7	3.5	7.0	
20	50	116.3	107.3	102.2	108.6	7.2	6.6	
	350	712.1	726.5	730.9	723.2	9.8	1.4	

Concentració Xilacina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 16-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	5D	CV(%)	
	2.5	n.d.	n.d.	n.d.	-	-	-	
0	10	47.0	47.8	41.3	45.3	3.6	7.8	
Ŭ	50	191.1	188.9	192.0	190.7	1.6	0.9	
	350	277.6	272.7	283.8	278.0	5.5	2.0	
	2.5	n.d.	n.d.	n.d.	-	-	-	
25	10	35.3	34.1	39.8	36.4	3.0	8.3	
2.5	50	155.7	167.5	167.2	163.4	6.8	4.1	
	350	238.2	267.3	269.2	258.2	17.3	6.7	
	2.5	n.d.	n.d.	n.d.	-	-	-	
10	10	30.4	40.3	41.4	37.4	6.0	16.1	
10	50	147.3	167.5	173.3	162.7	13.6	8.4	
	350	239.4	241.0	264.7	248.4	14.2	5.7	
	2.5	n.d.	n.d.	n.d.	-	-	-	
50	10	24.3	25.6	30.8	26.9	3.5	12.8	
50	50	123.5	138.9	148.0	136.8	12.4	9.0	
	350	242.1	266.3	253.2	253.9	12.1	4.8	
	2.5	n.d.	n.d.	n.d.	-	-	-	
250	10	6.7	5.9	6.6	6.4	0.5	7.3	
230	50	74.3	79.3	80.1	77.9	3.1	4.0	
	350	191.7	185.6	203.7	193.7	9.2	4.8	

Taula 33 Estudi d'Inhibició del CYP2C. Valors d'Activitat (Velocitat). Incubacions amb XYL

Concentració Ketoprofè μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 2-α-hidroxitestosterona						
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)	
	2.5	6.4	4.5	4.6	5.2	1.0	20.3	
0	10	98.9	101.1	102.1	100.7	1.6	1.6	
U	50	122.8	123.3	124.3	123.5	0.8	0.6	
	350	n.d.	153.0	156.7	154.8	-	-	
	2.5	5.1	4.7	8.4	6.1	-	-	
50	10	87.3	95.3	103.6	95.4	8.2	8.6	
50	50	109.7	123.0	123.3	118.6	7.8	6.6	
	350	181.1	152.9	149.3	161.1	17.4	10.8	
	2.5	12.3	12.5	16.4	13.7	-	-	
200	10	109.1	111.9	113.9	111.6	2.4	2.2	
200	50	122.7	123.9	116.0	120.9	4.2	3.5	
	350	n.d.	153.0	155.6	154.3	-	-	
	2.5	n.d.	n.d.	17.5	17.5	-	-	
1250	10	117.7	136.6	140.6	131.6	12.3	9.3	
1250	50	n.d.	n.d.	124.1	124.1	-	-	
	350	149.5	154.2	163.5	155.7	7.1	4.6	
	2.5	n.d.	n.d.	n.d.	-	-	-	
5000	10	83.4	79.7	96.9	86.7	9.1	10.5	
5000	50	20.4	n.d.	12.6	16.5	-	-	
	350	31.2	30.9	23.6	28.6	4.3	15.1	

Taula 34 Estudi d'Inhibició del CYP2C11. Valors d'Activitat (Velocitat). Incubacions amb KT i amb КТА

n.d.: pic cromatogràfic no detectable

-' : no es pot calcular perquè n<2

Concentració Ketamina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 2-α-hidroxitestosterona					
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	2.5	21.5	29.3	17.5	22.7	6.0	26.5
0	10	90.9	106.2	100.7	99.3	7.8	7.8
	50	305.4	305.6	298.1	303.0	4.3	1.4
	350	470.8	460.2	444.3	458.4	13.3	2.9
	2.5	n.d.	15.7	12.2	13.9	-	-
5	10	100.3	109.6	105.4	105.1	4.7	4.4
5	50	269.9	285.6	299.3	284.9	14.7	5.1
	350	447.0	458.9	477.3	461.0	15.3	3.3
	2.5	4.6	7.3	2.6	4.8	2.3	48.4
25	10	68.7	84.0	89.7	80.8	10.8	13.4
25	50	261.7	288.7	281.0	277.1	13.9	5.0
	350	461.7	402.0	407.5	423.8	33.0	7.8
	2.5	n.d.	1.3	n.d.	1.3	-	-
75	10	54.2	50.8	51.4	52.1	1.8	3.5
75	50	214.9	226.6	219.1	220.2	5.9	2.7
	350	386.6	426.2	404.9	405.9	19.8	4.9
	2.5	n.d.	n.d.	n.d.	-	-	-
375	10	12.5	13.0	15.6	13.7	1.7	12.1
313	50	108.0	102.4	113.8	108.1	5.7	5.3
	350	304.9	305.8	289.7	300.1	9.0	3.0

Concentració Buprenorfina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 2-α-hidroxitestosterona					
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)
	2.5	n.d.	n.d.	n.d.	-	-	-
0	10	n.d.	36.1	35.2	35.6	-	-
U	50	113.8	101.3	107.1	107.4	6.2	5.8
	350	160.3	162.8	153.9	159.0	4.6	2.9
	2.5	n.d.	n.d.	n.d.	-	-	-
0.1	10	37.5	40.0	43.9	40.5	3.2	8.0
0.1	50	95.6	104.4	112.8	104.2	8.6	8.3
	350	159.0	146.8	160.5	155.4	7.5	4.8
	2.5	n.d.	n.d.	n.d.	-	-	-
0.5	10	38.0	29.9	35.0	34.3	4.1	11.9
0.5	50	101.7	121.5	98.4	107.2	12.5	11.6
	350	154.5	184.1	153.9	164.1	17.3	10.5
	2.5	n.d.	n.d.	n.d.	-	-	-
25	10	38.5	38.8	46.5	41.3	4.5	11.0
2.5	50	120.2	142.2	110.7	124.4	16.2	13.0
	350	186.2	170.1	199.6	185.3	14.7	8.0
	2.5	n.d.	n.d.	n.d.	-	-	-
	10	45.3	45.9	47.9	46.4	1.4	2.9
10	50	120.9	119.7	106.0	115.5	8.3	7.2
	350	164.9	189.3	187.3	180.5	13.6	7.5

Taula 35 Estudi d'Inhibició del CYP2C11. Valors d'Activitat (Velocitat). Icubacions amb BN i amb FEN

n.d.: pic cromatogràfic no detectable

-' : no es pot calcular perquè n<2

Concentració Fentanil μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 2-α-hidroxitestosterona										
	2.5	n.d.	n.d.	n.d.	-	-	-					
0	10	17.8	23.6	21.0	20.8	2.9	14.0					
	50	55.7	55.8	54.9	55.5	0.5	0.9					
	350	452.1	471.7	448.6	457.5	12.4	2.7					
	2.5	n.d.	n.d.	n.d.	-	-	-					
0.1	10	18.8	20.2	20.5	19.8	0.9	4.7					
	50	58.3	57.7	60.3	58.8	1.4	2.4					
	350	434.1	471.9	469.7	458.6	21.3	4.6					
	2.5	n.d.	n.d.	n.d.	-	-	-					
0.5	10	21.4	23.6	27.1	24.1	2.9	11.9					
0.5	50	62.4	62.3	68.5	64.4	3.5	5.5					
	350	440.1	470.0	468.5	459.5	16.9	3.7					
	2.5	n.d.	n.d.	n.d.	-	-	-					
5	10	25.9	24.2	29.1	26.4	2.5	9.4					
5	50	64.2	62.6	56.2	61.0	4.2	6.9					
	350	447.4	460.9	477.4	461.9	15.0	3.3					
	2.5	n.d.	n.d.	n.d.	-	-	-					
20	10	26.5	27.1	30.0	27.8	1.8	6.6					
20	50	64.8	59.5	57.3	60.5	3.8	6.4					
	350	438.7	445.2	447.7	443.9	4.6	1.0					

Concentració Xilacina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 2-α-hidroxitestosterona									
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)				
	2.5	n.d.	n.d.	n.d.	-	-	-				
0	10	38.2	39.7	35.3	37.8	2.2	5.9				
	50	119.5	117.5	120.4	119.1	1.5	1.3				
	350	160.0	155.1	161.9	159.0	3.5	2.2				
	2.5	n.d.	n.d.	n.d.	-	-	-				
2.5	10	19.8	17.2	21.1	19.4	2.0	10.1				
	50	81.6	86.1	86.6	84.7	2.7	3.2				
	350	115.2	129.0	132.4	125.5	9.2	7.3				
	2.5	n.d.	n.d.	n.d.	-	-	-				
10	10	15.2	19.1	19.9	18.1	2.5	13.8				
10	50	75.5	86.5	90.4	84.1	7.7	9.2				
	350	116.2	116.2	129.3	120.6	7.6	6.3				
	2.5	n.d.	n.d.	n.d.	-	-	-				
50	10	7.2	7.6	8.7	7.8	0.8	10.2				
50	50	60.0	68.2	72.2	66.8	6.2	9.3				
	350	116.0	127.4	122.0	121.8	5.7	4.7				
	2.5	n.d.	n.d.	n.d.	-	-	-				
250	10	n.d.	n.d.	n.d.	-	-	-				
250	50	28.3	30.1	31.2	29.9	1.5	5.0				
	350	85.3	81.8	92.6	86.6	5.5	6.3				

Taula 36 Estudi d'Inhibició del CYP2C11. Valors d'Activitat (Velocitat). Incubacions amb XYL

Taula 37 Estudi d'Inhibició del CYP3A1/2. Valors d'Activitat (Velocitat). Incubacions amb KT i amb KTA

Concentració Ketoprofè μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 6-β-hidroxitestosterona								
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)			
	2.5	39.1	34.5	37.6	37.1	2.4	6.4			
0	10	348.5	362.8	364.7	358.6	8.9	2.5			
	50	685.9	693.4	727.0	702.1	21.9	3.1			
	350	813.9	811.8	888.9	838.2	43.9	5.2			
	2.5	25.6	30.4	30.0	28.7	2.7	9.4			
50	10	324.5	306.6	341.7	324.3	17.5	5.4			
	50	606.5	644.7	684.5	645.2	39.0	6.1			
	350	785.4	780.0	826.2	797.2	25.3	3.2			
	2.5	24.8	24.6	28.9	26.1	2.5	9.4			
200	10	294.3	285.2	316.8	298.7	16.3	5.4			
200	50	609.5	591.4	612.4	604.5	11.4	1.9			
	350	735.7	752.6	821.2	769.8	45.3	5.9			
	2.5	n.d.	n.d.	8.0	8.0	-	-			
1250	10	150.0	182.0	174.7	168.9	16.7	9.9			
1250	50	444.2	387.6	410.0	413.9	28.5	6.9			
	350	657.6	672.6	783.8	704.7	69.0	9.8			
	2.5	n.d.	n.d.	2.2	2.2	-	-			
5000	10	54.0	54.8	65.9	58.2	6.7	11.4			
5000	50	156.2	129.1	142.1	142.5	13.6	9.5			
	350	361.1	403.3	388.5	384.3	21.4	5.6			

n.d.: pic cromatogràfic no detectable

-' : no es pot calcular perquè n<2

Concentració Ketamina μM Concentració testosterona Velocitat (pmol/mg proteïna/min) μM μM 6-β-hidroxitestosterona									
		replicat 1	SD	CV(%)					
	2.5	55.4	64.5	37.4	52.4	13.8	26.3		
0	10	322.8	389.3	322.0	344.7	38.7	11.2		
0	50	1281.0	1290.3	585.1	1052.2	404.5	38.4		
	μM re 2.5 10 50 1 350 1 2.5 10 50 1 350 1 2.5 10 50 1 30 1 30 1 1 30 1 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 30 1 1 30 1 1 30 1 1 30 1 1 1 30 1 1 1 1 1 1 1 1 1 1 1 1 1	1822.0	322.0 1757.2 835.3 1471.5 551.9						
	2.5	n.d.	53.9	33.9	43.9 -		-		
5	10	366.6	397.4	333.1	365.7	32.2	8.8		
	50	1161.9	1167.1	602.1	977.1	324.7	33.2		
	350	1687.7	1743.6	903.4	1444.9	469.8	32.5		
	2.5	43.9	49.2	29.4	40.8	10.2	25.1		
25	10	316.9	350.6	307.5	325.0	22.7	7.0		
25	50	1094.4	1209.6	529.9	944.6	363.7	38.5		
	350	1715.7	1459.0	770.4	1315.0	488.8	37.2		
	2.5	18.6	48.5	29.4	32.2	15.2	47.2		
75	10	268.1	263.2	228.5	253.3	21.6	8.5		
15	50	959.2	959.3	476.9	798.5	278.5	34.9		
	350	1427.1	1583.6	746.7	1252.5	444.9	35.5		
	2.5	12.9	13.5	7.3	11.2	3.4	30.5		
275	10	123.1	115.2	120.6	119.6	4.0	3.4		
375	50	597.6	532.1	282.6	470.8	166.2	35.3		
	350	n.d.	1200.1	568.6	884.4	-	-		

n.d.: pic cromatogràfic no detectable

-' : no es pot calcular perquè n<2

Concentració Buprenorfina μΜ	Concentració testosterona μΜ	Concentració testosterona μM Velocitat (pmol/mg proteïna/min) replicat 1 replicat 2 replicat 3 mitjana SD CV(%) 2.5 n.d. 40.3 57.8 49.0 - -									
	2.5	n.d.	40.3	57.8	49.0	-	-				
0	10	n.d.	304.4	296.9	300.7	-	-				
	50	879.5	702.5	734.4	772.1	94.4	12.2				
	350	1143.2	972.2	927.6	1014.3	113.8	11.2				
	2.5	56.2	51.5	72.0	59.9	10.7	17.9				
0.1	10	334.0	337.5	336.0	335.8	1.7	0.5				
	50	754.5	707.0	741.5	734.3	24.5	3.3				
	350	1119.4	878.2	933.0	976.9	126.4	12.9				
0.5	2.5	38.4	47.6	n.d.	43.0	-	-				
	10	316.7	242.6	249.6	269.6	40.9	15.2				
0.5	50	765.2	775.3	655.7	732.1	66.3	9.1				
	350	1052.4	1040.8	878.8	990.7	97.0	9.8				
	2.5	39.0	17.6	26.7	27.8	-	-				
25	10	246.2	209.8	213.2	223.0	20.1	9.0				
2.5	50	689.5	799.0	648.8	712.4	77.7	10.9				
	350	1040.9	950.5	1043.8	1011.7	53.1	5.2				
	2.5	n.d.	0.7	n.d.	0.7	-	-				
10	10	106.5	93.4	92.2	97.4	7.9	8.2				
10	50	622.2	508.5	435.0	521.9	94.3	18.1				
	350	991.3	930.6	901.4	941.1	45.9	4.9				

Taula 38 Estudi d'Inhibició del CYP3A1/2. Valors d'Activitat (Velocitat). Incubacions amb BN i amb FEN

Concentració Fentanil μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 6-β-hidroxitestosterona									
		replicat 1	replicat 2	replicat 3	mitjana	SD	CV(%)				
	2.5	67.3	43.1	41.4	50.6	14.5	28.7				
0	10	226.0	252.6	237.3	238.6	13.4	5.6				
	50	545.6	533.8	548.9	542.8	7.9	1.5				
	350	1376.3	1408.5	1434.0	1406.3	28.9	2.1				
	2.5	42.8	39.3	43.6	41.9	2.3	5.4				
0.1	10	224.4	256.5	254.6	245.2	18.0	7.4				
	50	551.1	528.1	560.9	546.7	16.8	3.1				
	350	1290.0	1375.2	1482.1	1382.4	96.2	7.0				
	2.5	40.9	44.3	42.2	42.5	1.7	4.0				
0.5	10	216.0	252.1	281.2	249.8	32.7	13.1				
0.5	50	559.3	537.5	601.7	566.2	32.6	5.8				
	350	1260.5	1318.0	1431.7	1336.7	87.1	6.5				
	2.5	35.7	41.5	25.7	34.3	8.0	23.2				
5	10	245.1	208.2	269.7	241.0	31.0	12.9				
5	50	528.4	516.1	487.1	510.5	21.2	4.2				
	350	1251.5	1261.4	1411.0	1308.0	89.3	6.8				
	2.5	26.0	23.2	35.3	28.2	6.3	22.5				
20	10	202.4	205.1	209.7	205.7	3.7	1.8				
	50	484.2	441.2	460.6	462.0	21.5	4.7				
	350	1160.5	1179.6	1283.9	1208.0	66.5	5.5				

Concentració Xilacina μΜ	Concentració testosterona μΜ	Velocitat (pmol/mg proteïna/min) 6-β-hidroxitestosterona									
		replicat 1	replicat 3	mitjana	SD	CV(%)					
	2.5	35.5	25.0	24.2	28.2	6.3	22.5				
0	10	204.3	213.3	194.3	204.0	9.5	4.7				
	50	588.2	572.8	613.8	591.6	20.7	3.5				
	350	717.4	692.1	793.3	734.3	52.7	7.2				
	2.5	32.3	36.0	35.8	34.7	2.1	6.1				
2.5	10	192.8	183.9	197.0	191.2	6.7	3.5				
	50	525.4	537.4	558.2	540.3	16.6	3.1				
	350	673.7	740.6	827.4	747.2	77.1	10.3				
	2.5	36.6	35.0	41.2	37.6	3.2	8.6				
10	10	169.7	185.3	189.8	181.6	10.5	5.8				
10	50	482.8	514.4	553.1	516.8	35.2	6.8				
	350	669.0	657.7	768.6	698.4	61.1	8.7				
	2.5	39.6	27.1	38.0	34.9	6.8	19.4				
50	10	152.3	156.2	165.3	157.9	6.6	4.2				
50	50	409.8	435.0	484.9	443.3	38.2	8.6				
	350	646.2	696.7	727.1	690.0	40.8	5.9				
	2.5	11.2	16.8	14.6	14.2	2.8	19.6				
250	10	86.1	74.8	82.9	81.3	5.8	7.2				
250	50	251.1	252.6	280.4	261.4	16.5	6.3				
	350	480.2	464.0	544.7	496.3	42.7	8.6				

Taula 39 Estudi d'Inhibició del CYP3A1/2. Valors d'Activitat (Velocitat). Incubació amb XYL

7.3.1 Determinació de la $K_{m,app}$ i Càlcul del Quocient $K_{m,app}/V_{max}$

Els resultats de les estimacions dels paràmetres K_m ($K_{m,app}$), V_{max} ($V_{max,app}$), i els seus quocients respectius ($K_{m,app}/V_{max,app}$) es mostren a la Taula 40.

CYP1A1/2											
EEN		$K_{m,app}$			$V_{max,app}$		K _{m,app} / V _{max,app}				
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3		
0	0.187	0.155	0.149	22.500	21.444	21.014	0.008	0.007	0.007		
0.1	0.032	0.071	0.046	20.625	23.394	20.843	0.002	0.003	0.002		
0.5	0.056	0.053	0.066	22.275	22.455	21.543	0.003	0.002	0.003		
5	0.027	0.022	0.063	19.422	19.596	19.656	0.001	0.001	0.003		
20	0.019	0.010	0.012	16.689	16.793	16.813	0.001	0.001	0.001		
columna 1								columna 2			

				CYP2	B1/2				
кт	K _{m,app}				$V_{max,app}$		K _{m,app} / V _{max,app}		
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	2.813	4.096	3.070	9.740	11.585	9.992	0.289	0.354	0.307
50	5.096	4.419	4.028	11.866	11.632	11.467	0.429	0.380	0.351
200	3.635	2.423	2.718	9.367	9.031	8.935	0.388	0.268	0.304
1250	5.528	4.063	4.589	8.027	7.575	8.097	0.689	0.536	0.567
5000	6.323	9.803	4.537	4.974	5.181	4.526	1.271	1.892	1.002
κτδ		$K_{m,app}$			$V_{max,app}$		K	_{m,app} / V _{max,a}	рр
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	6.050	5.529	6.306	6.163	6.000	6.166	0.982	0.921	1.023
5	6.430	6.245	6.825	5.395	5.154	5.446	1.192	1.212	1.253
25	9.189	11.478	8.103	4.739	5.372	4.501	1.939	2.136	1.800
75	11.589	14.228	15.402	4.222	4.596	4.616	2.745	3.095	3.336
375	16.717	24.821	20.426	3.679	4.466	4.035	4.544	5.558	5.063
FEN		$K_{m,app}$			$V_{max,app}$		K _{m,app} / V _{max,app}		
1 213	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	7.493	8.316	8.369	10.354	9.481	10.840	0.724	0.877	0.772
0.1	10.478	9.357	10.944	10.218	9.468	9.958	1.026	0.988	1.099
0.5	14.135	10.639	13.060	11.858	9.530	10.023	1.192	1.116	1.303
5	6.516	5.458	7.608	8.507	8.357	9.524	0.766	0.653	0.799
20	7.743	8.342	7.462	7.611	8.493	8.884	1.017	0.982	0.840
columna 1								columna 2	

FEN: Fentanil, KT: Ketoprofè, KTA: Ketamina.

Taula 41	Paràmetres Cinètics $K_{m,app}\left(\mu M\right)$ i $V_{max,app}$ (pmol/mg proteïna/min) per les Isoformes
	CYP2D1 i CYP3A1/2. Càlcul del Quocient K _{m,app/} V _{max}

				СҮР	2D1				
кта		$K_{m,app}$			V _{max,app}		K _{m,app} / V _{max,app}		
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	8.777	8.725	8.671	194.529	189.566	189.068	0.045	0.046	0.046
5	7.329	7.045	8.336	186.282	181.353	183.952	0.039	0.039	0.045
25	8.188	8.661	8.989	178.486	185.174	182.841	0.046	0.047	0.049
75	6.825	9.389	8.739	174.300	174.948	172.185	0.039	0.054	0.051
375	22.027	16.738	20.429	172.539	158.255	165.633	0.128	0.106	0.123
FEN		$K_{m,app}$			$V_{max,app}$		К	_{m,app} / V _{max,a}	рр
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	4.368	4.719	4.203	299.326	296.021	294.385	0.015	0.016	0.014
0.1	0.437	0.403	1.247	283.554	276.037	277.402	0.002	0.001	0.004
0.5	0.003	0.748	0.617	275.964	283.322	284.436	1.1E-05	0.003	0.002
5	2.082	3.695	3.369	281.197	285.112	285.125	0.007	0.013	0.012
20	5.793	5.296	4.817	290.080	294.748	290.818	0.020	0.018	0.017
YVI		$K_{m,app}$			$V_{max,app}$		K _{m,app} / V _{max,app}		
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	7.200	7.200	7.800	158.800	154.500	159.700	0.045	0.047	0.049
2.5	8.100	8.100	8.700	156.700	153.200	154.400	0.052	0.053	0.056
10	8.900	9.500	10.100	150.000	155.700	158.400	0.059	0.061	0.064
50	15.000	14.600	14.900	136.100	138.400	142.300	0.110	0.105	0.105
250	24.400	32.100	32.400	103.800	109.300	107.400	0.235	0.294	0.302
columna 1								columna 2	

	CYP3A1/2										
кт		$K_{m,app}$			$V_{max,app}$		K	K _{m,app} / V _{max,app}			
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3		
0	16.355	15.655	17.681	871.876	870.773	950.448	0.019	0.018	0.019		
50	18.546	18.383	17.431	830.684	840.344	886.150	0.022	0.022	0.020		
200	18.155	20.007	20.621	791.233	806.289	870.802	0.023	0.025	0.024		
1250	36.052	39.894	54.341	732.739	740.771	899.495	0.049	0.054	0.060		
5000	92.041	168.750	122.785	455.285	596.597	523.140	0.202	0.283	0.235		
BN		$K_{m,app}$			$V_{max,app}$		К	m,app / V _{max,a}	рр		
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3		
0	m.p.	25.900	22.300	m.p.	1050.200	1006.200	<i>m.p.</i>	0.025	0.022		
0.1	29.200	18.700	19.700	1209.200	940.200	999.500	0.024	0.020	0.020		
0.5	26.600	30.100	25.100	1142.400	1153.700	951.800	0.023	0.026	0.026		
2.5	35.700	27.200	43.000	1153.900	1071.000	1178.000	0.031	0.025	0.037		
10	50.900	67.600	82.300	1150.700	1 <u>118.600</u>	1116.300	0.044	0.060	0.074		
YVI		$K_{m,app}$			$V_{max,app}$		К	_{m,app} / V _{max,a}	рр		
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3		
0	23.745	22.579	28.292	791.378	761.210	880.881	0.030	0.030	0.032		
2.5	25.040	30.042	34.372	738.375	815.996	915.312	0.034	0.037	0.038		
10	29.676	25.090	30.310	735.303	721.306	846.607	0.040	0.035	0.036		
50	37.388	40.221	35.585	715.519	778.292	806.604	0.052	0.052	0.044		
250	61.416	58.889	66.745	564.126	542.998	649.237	0.109	0.108	0.103		
columna 1								columna 2			

m.p.: mostra perduda a l'anàlisi.

KTA: Ketamina, FEN: Fentanil, XYL: Xilacina, KT: Ketoprofè, BN: Buprenorfina

Taula 42	Paràmetres Cinètics $K_{m,app}\left(\mu M\right)$ i $V_{max,app}$ (pmol/mg proteïna/min) per les Isoformes
	CYP2C11 i CYP2C. Càlcul del Quocient K _{m,app} /V _{max}

				CYP2	2C11				
кт		$K_{m,app}$			$V_{max,app}$		K	_{m,app} / V _{max,a}	ıpp
NI NI	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	9.456	9.777	10.004	153.015	156.298	159.475	0.062	0.063	0.063
50	18.671	10.583	8.619	180.280	156.981	152.688	0.104	0.067	0.056
200	7.441	7.581	7.163	149.796	154.494	152.130	0.050	0.049	0.047
1250	<i>m.p.</i>	<i>m.p.</i>	5.640	т.р.	т.р.	161.231	<i>m.p.</i>	<i>m.p.</i>	0.035
5000	2.2E-04	т.р.	9.7E-05	44.871	т.р.	44.330	4.8.10 ⁻⁶	т.р.	2.2.10 ⁻⁶
ктл		$K_{m,app}$			$V_{max,app}$		K	ıpp	
NIA	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	40.529	35.103	35.710	529.854	508.840	493.597	0.076	0.069	0.072
5	41.597	39.203	40.797	499.185	510.211	534.877	0.083	0.077	0.076
25	57.308	34.197	35.899	540.187	449.727	455.864	0.106	0.076	0.079
75	58.853	68.478	63.514	453.535	512.289	480.319	0.130	0.134	0.132
375	167.612	187.935	133.726	451.407	470.547	401.098	0.371	0.399	0.333
YVI		$K_{m,app}$			$V_{max,app}$		K	_{m,app} / V _{max,a}	ıpp
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	30.830	29.207	32.378	178.093	172.086	181.105	0.173	0.170	0.179
2.5	38.357	45.341	44.594	130.611	148.422	151.514	0.294	0.305	0.294
10	47.696	36.374	40.684	134.309	132.090	147.620	0.355	0.275	0.276
50	80.069	75.571	62.136	143.687	156.361	145.636	0.557	0.483	0.427
columna 1								columna 2	

m.p.: mostra perduda a l'anàlisi.

				CYF	2C					
КТ		$K_{m,app}$			V _{max,app}		K	_{m,app} / V _{max,a}	рр	
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	
0	42.882	37.475	35.474	309.847	305.744	318.041	0.138	0.123	0.112	
50	45.866	33.388	28.537	325.394	310.475	316.287	0.141	0.108	0.090	
200	32.117	25.612	3.222	330.734	306.158	93.663	0.097	0.084	0.034	
1250	14.734	14.596	11.815	288.421	299.502	297.557	0.051	0.049	0.040	
5000	17.364	18.377	8.098	212.596	214.690	174.483	0.082	0.086	0.046	
κτΔ		$K_{m,app}$			$V_{max,app}$		K _{m,app} / V _{max,app}			
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	
0	70.475	60.580	58.453	959.111	906.961	870.189	0.073	0.067	0.067	
5	71.818	63.450	58.486	894.461	891.692	912.808	0.080	0.071	0.064	
25	76.411	47.429	45.337	933.477	778.885	766.384	0.082	0.061	0.059	
75	77.274	82.896	82.251	804.930	880.217	843.480	0.096	0.094	0.098	
375	171.434	171.568	158.608	797.657	750.521	778.216	0.215	0.229	0.204	
XVI		$K_{m,app}$			$V_{max,app}$		K	_{m,app} / V _{max,a}	рр	
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	
0	38.095	37.203	41.362	312.603	306.449	322.511	0.122	0.121	0.128	
2.5	43.675	48.979	47.525	271.547	308.367	308.693	0.161	0.159	0.154	
10	50.566	37.697	42.611	277.082	271.440	300.543	0.182	0.139	0.142	
50	74.633	72.339	55.996	294.906	322.957	296.092	0.253	0.224	0.189	
250	142.482	118.178	139.087	270.410	249.182	285.354	0.527	0.474	0.487	
columna 1								columna 2		

KT: Ketoprfè, KTA: Ketamina, XYL: Xilacina

				CYP2	A1/2				
кт		$K_{m,app}$			$V_{max,app}$		K	, m,app / V _{max,a}	рр
Γ I	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	8.782	8.369	8.689	75.779	76.422	77.678	0.116	0.110	0.112
50	8.398	8.859	8.745	71.427	73.538	73.368	0.118	0.120	0.119
200	7.068	6.717	6.486	70.225	71.465	70.786	0.101	0.094	0.092
1250	4.441	2.476	8.106	66.389	65.060	73.636	0.067	0.038	0.110
5000	5.464	7.839	6.485	53.957	58.853	55.203	0.101	0.133	0.117
YVI		$K_{m,app}$			$V_{max,app}$		ĸ	, m,app / V _{max,a}	рр
	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3	replicat 1	replicat 2	replicat 3
0	10.341	9.120	12.320	111.404	106.658	115.046	0.093	0.086	0.107
2.5	10.408	13.901	13.025	96.441	108.462	110.447	0.108	0.128	0.118
10	10.104	9.672	9.488	93.024	96.723	102.867	0.109	0.100	0.092
50	10.085	13.778	10.446	95.241	105.753	102.258	0.106	0.130	0.102
250	12.755	12.667	14.037	89.911	88.966	96.025	0.142	0.142	0.146
columna 1								columna 2	

 $\label{eq:constraint} \begin{array}{l} \mbox{Taula 43} \ \ \mbox{Parametres Cinètics $K_{m,app}$} (\mu M) \ \mbox{i $V_{max,app}$} (pmol/mg \ proteïna/min) pel CYP2A1/2. Càlcul \\ \mbox{del Quocient $K_{m,app}/V_{max}$} \end{array}$

KT: Ketoprofè (µM), XYL: Xilacina (µM)

A continuació, es va realitzar l'estudi estadístic de les dades tal i com s'explica a la secció 6.3.1.

La Taula 44 mostra els 18 tests on es detecten diferències estadísticament significatives, que són: KT amb CYP2B1/2, CYP3A1/2, CYP2C11, CYP2C i CYP2A1/2; KTA amb CYP2B1/2, CYP2D1, CYP2C11 i CYP2C; BN amb CYP3A1/2; FEN amb CYP1A1/2, CYP2B1/2 i CYP2D1; i XYL amb CYP2D1, CYP3A1/2, CYP2C11, CYP2C i CYP2A1/2. A la mateixa taula s'indica el tipus de test estadístic aplicat.

CYP450			Fàrmac	;	
011 450	кт	KTA	BN	FEN	XYL
CYP1A1/2				KW	
CYP2B1/2	KW	****		***	
CYP2D1		KW		****	KW
CYP3A1/2	KW		KW		KW
CYP2C11	**	KW			***
CYP2C	*	KW			KW
CYP2A1/2	*				**
CYP2E1					

Taula 44 Estadística. Comparació dels Quocients K_{m,app}/V_{max} Entre les Diferents Concentracions de Fàrmac per a Totes les Isoformes CYP450

KT: Ketoprofè, KTA: Ketamina, BN: Buprenorfina, FEN: Fentanil, XYL: Xilacina

TEST PARAMÈTRIC. Anàlisi de la variància d´una via, * p< 0,05. Diferències estadísticament significatives entres els valors mitjos ** p<0,005. Diferències estadísticament significatives entre els valors mitjos *** p< 0.0005. Diferències estadísticament significatives entre els valors mitjos **** p< 0.00005. Diferències estadísticament significatives entre els valors mitjos

TEST NO PARAMÈTRIC: Kruskal-Wallis

K-W, Diferències estadísticament significatives entre els valors mitjos

7.3.2 *Càlcul de l'IC*₅₀

L'equació hiperbòlica descrita a la secció 6.3.2 es va utilitzar per estimar els valors d'IC50 en les 18 relacions fàrmac-isoforma CYP450 indicades en la secció 0.

Per aquest càlcul es van utilitzar les concentracions de substracte específic més properes a la K_m de cada isoforma: 5 μ M per EROD i PROD, 25 μ M per DEX, i 10 μ M per TST.

La Taula 45 mostra els valors obtinguts d' IC_{50} , i les representacions gràfiques es mostren a la Figura 32.

Taula 45 Valor d'IC₅₀ dels Fàrmacs amb els CYP450 Susceptibles d'Interaccionar per Inhibició segons el Test Estadístic

	FEN	Activitat (%)	IC ₅₀						
	0	100							
CYP1A1/2	0.1	99.9							
••••	0.5	100.0							
	5	86.1							
	20	72.5	49.0						
	KT	Activitat (%)	IC ₅₀	KTA	Activitat (%)	IC ₅₀	FEN	Activitat (%)	IC ₅₀
	0	100		0	100.0		0	100.0	
CYP2B1/2	50	97.5		5	82.3		0.1	99.1	
	200	96.0		25	67.3		0.5	87.0	
	1250	71.6		75	48.0		5	96.8	
	5000	37.9	3112.6	375	26.3	72.9	20	84.5	142.2
	KTA	Activitat (%)	IC ₅₀	FEN	Activitat (%)	IC ₅₀	XYL	Activitat (%)	IC ₅₀
	0	100					0	100.0	
CYP2D1	5	99.1					2.5	90.9	
	25	95.3			т.р.		10	84.4	
	75	92.0					50	56.9	
	375	64.4	693.8				250	27.9	75.0
	KT	Activitat (%)	IC ₅₀	BN	Activitat (%)	IC ₅₀	XYL	Activitat (%)	IC ₅₀
	0	100		0	100.0		0	100.0	
CYP3A1/2	50	90.4		0.1	111.7		2.5	93.7	
	200	83.3		0.5	89.7		10	89.0	
	1250	47.1		2.5	74.2		50	75.6	
	5000	16.2	1058.7	10	32.4	5.5	250	39.9	162.4
	KT	Activitat (%)	IC ₅₀	KTA	Activitat (%)	IC ₅₀	XYL	Activitat (%)	IC ₅₀
	0	100		0	100.0		0	100.0	
CYP2C11	50	96.079		5	94.02		2.5	70.6	
	200	97.878		25	91.45		10	70.6	
	1250	100.53	04470	75	72.65	000 5	50	56.1	00.0
	5000	13.338	3117.9	375	35.67	209.5	250	25.1	62.9
	KI	Activitat (%)	IC ₅₀	KTA	Activitat (%)	IC ₅₀	XYL	Activitat (%)	IC ₅₀
				0	100.0		0	100.0	
CYP2C		no o		5	144.8		2.5	80.3	
		110 C.		25 75	148.6		10	82.4	
				75 275	94.5	012	50 250	59.3 14.1	50.9
	νT	A othylitet (0/)	IC	- 375 		04.3	200	14.1	09.0
		ACTIVITAT (%)	IC ₅₀			IC ₅₀			
	50	100		0	100.0				
CYP2A1/2	200	90.7		2.5	δ1.U 00.5				
	200	104.2		50	90.0 87.2				
	5000	91 3	38021 1	250	07.2 73.0	760 7			
	5000	01.3	309Z1.1	200	13.0	109.1			

KT: Ketoprofè (μм), KTA: Ketamina (μM), BN: Buprenorfina (μM), FEN: Fentanil (μM), XYL: Xilacina (μM)

IC $_{50}$ ($\mu \textsc{m}$): concentració d'inhibidor que disminueix l'activitat màxima d'un enzim a la meitat

Activitat (%): percentatge d'activitat relatiu a l'activitat control (concentració 0 de fàrmac)

m.p.: les mostres de concentració Fentanil zero es van perdre en l'experiment.

no c.: no es pot calcular. Ajustat erroni de l'equació utilitzant el SigmaPlot

Figura 32 Representacions Gràfiques pel Càlcul de l'IC₅₀ dels Fàrmacs amb els CYP1A1/2, CYP2B1/2 i CYP2D1

FEN: Fentanil, KT: Ketoprofè, KTA: Ketamina, XYL: Xilacina

100 200 KTA (μM) 300

40

BN: Buprenorfina, XYL: Xilacina, KT: Ketoprofè, KTA: Ketamina

0

Figura 34 Representacions Gràfiques pel Càlcul de l'IC₅₀ dels Fàrmacs amb el CYP2A1/2

7.3.3 Càlcul de la K_i Mètode SNLR

A la Taula 46, a la Taula 47 i a la Taula 48 apareixen els valors de K_i de les 18 relacions Fàrmac-CYP susceptibles d'establir una relació d'inhibició. El valor de K_i es va determinar ajustant els models cinètics als valors mitjos de les activitats enzimàtiques (n=3), mitjançant SNLR i utilitzant el software WinNonlin. Les equacions d'aquests models són les descrites a les seccions 6.3.3 i 6.3.4.

En funció dels resultats obtinguts a la secció 7.2.2., es van aplicar els models d'inhibició derivats de la equació de M-M en les següents relacions: KT-(CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2); KTA-(CYP2B1/2, CYP2C, CYP2C11 i CYP2D1); BN-CYP3A1/2; FEN-(CYP1A1/2, CYP2B1/2, CYP2D1); i XYL-(CYP2A1/2, CYP2C, CYP2C11, CYP2D1 i CYP3A1/2). I els models derivats de la equació de Hill en les relacions: KT-(CYP2C, CYP2C11 i CYP3A1/2); KTA-(CYP2C i CYP2C11); BN-CYP3A1/2; FEN-(CYP1A1/2); XYL-(CYP2C, CYP2C11 i CYP3A1/2).

			In	nhibició Co	mpetitiv	a			nhibició N	o Comp	petitiva			Inhibició	Acompe	etitiva			Inhibi	ció Mixta		
Fàrmac	CYP450		Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC
		V_{max}	10.1	0.6	6.3	65.9	68.9	10.8	0.6	5.4	57.9	60.9	10.9	0.7	6.0	60.0	63.0	10.7	0.6	6.0	60.1	64.0
	CYP2B1/2	K _m	2.7	0.9	31.5			3.8	0.8	20.9			4.0	0.9	22.9			3.7	0.9	24.2		
		Ki	378.9	138.5	36.5			3052.2	593.5	19.4			2463.7	525.0	21.3			2107.4	2004.8	95.1		
		V_{max}	69.9	2.6	3.8	137.4	140.4	73.8	2.5	3.4	128.9	131.9	74.2	2.6	3.5	129.0	132.0	73.9	2.7	3.7	130.8	134.8
	CYP2A1/2	K _m	6.7	1.3	19.3			7.6	1.0	13.3			8.0	1.1	13.5			7.8	1.2	15.8		
		Ki	5468.5	3832.5	70.1			18013.5	5777.9	32.1			15502.7	5050.1	32.6			29063.8	70266.3	241.8		
		V_{max}	266.7	15.6	5.8	721.9	728.2	278.8	17.3	6.2	718.7	725.0	283.5	18.2	6.4	717.9	724.2	282.5	18.9	6.7	720.1	728.5
KT	CYP2C	K _m	20.6	5.1	24.8			21.6	4.7	21.6			22.6	4.9	21.6			22.5	5.6	24.8		
		Ki	18103.6	34530.8	190.7			23514.2	15628.5	66.5			16414.0	9769.5	59.5			94069.8	982243.8	1044.2		
		V_{max}	151.5	14.6	9.6	583.8	589.6	158.3	10.0	6.3	543.0	548.8	162.8	10.1	6.2	537.8	543.6	162.8	10.4	6.4	540.3	548.0
	CYP2C11	K _m	3.3	2.0	60.2			7.2	1.8	24.7			8.1	1.9	23.8			8.0	2.0	25.2		
		Ki	50.0	37.3	74.7			4553.6	1491.3	32.8			3654.3	1136.5	31.1			49876.0	709540.5	1422.6		
		V_{max}	851.7	19.4	2.3	679.4	685.5	911.6	23.7	2.6	688.8	694.9	916.7	31.1	3.4	712.7	718.8	877.1	18.6	2.1	664.4	672.5
	CYP3A1/2	K _m	14.2	1.5	10.6			21.1	1.9	9.2			22.8	2.7	11.7			18.0	1.5	8.3		
		Ki	291.7	44.7	15.3			3030.7	350.6	11.6			2528.1	375.6	14.9			702.7	147.2	20.9		
		V_{max}	5.1	0.3	5.7	26.4	29.4	5.6	0.4	7.3	33.6	36.6	5.7	0.5	8.9	38.1	41.1	5.3	0.4	8.0	35.2	39.2
	CYP2B1/2	K _m	5.1	1.1	22.2			7.6	1.7	21.9			8.3	2.1	25.6			6.6	1.7	25.8		
		Ki	41.8	11.7	28.1			262.0	67.1	25.6			197.2	60.0	30.4			109.7	75.6	69.0		
		V_{max}	869.6	20.8	2.4	508.3	513.8	920.9	26.1	2.8	520.4	516.2	931.1	34.1	3.7	536.6	542.0	881.8	23.1	2.6	508.9	516.2
	CYP2C	K _m	55.7	4.7	8.4			69.9	5.8	8.4			76.4	7.9	10.3			60.7	5.1	8.4		
κтΔ		Ki	130.4	20.1	15.4			631.4	91.3	14.5			519.4	98.4	18.9			193.7	53.3	27.5		
		V _{max}	497.6	6.8	1.4	518.0	524.0	532.3	12.0	2.3	566.3	572.3	536.3	17.0	3.2	595.5	601.5	505.3	8.1	1.6	526.3	534.3
	CYP2C11	K _m	34.4	1.9	5.4			47.7	3.3	7.0			52.3	4.9	9.4			39.4	2.2	5.6		
		K _i	72.8	6.7	9.1			468.7	52.5	11.2			400.7	63.6	15.9			110.4	17.3	15.7		
		V _{max}	179.5	3.3	1.8	159.1	162.1	186.5	3.9	2.1	158.7	161.7	186.3	4.2	2.3	158.7	161.7	184.3	3.4	1.9	153.8	157.8
	CYP2D1	K _m	6.9	1.2	17.8			9.3	1.3	14.3			9.5	1.4	15.3			7.9	1.2	14.7		
		Ki	138.5	55.3	39.9			1831.1	480.7	26.3			1855.4	545.9	29.4			230.0	107.5	46.8		

Taula 46 Valors de la K_i i dels Paràmetres Cinètics K_m i V_{max} per cada Tipus d'Inhibició. Model de M-M. KT i KTA

KT: Ketoprofè (µм), KTA: Ketamina (µм), BN: Buprenorfina (µм), FEN: Fentanil (µм), XYL: Xilacina (µм)

V_{max}: velocitat màxima (pmol/mg proteïna/min)

 K_m : constant de Michaelis-Menten (µM)

 K_i : constant d'inhibició (µM)

SD: desviació estàndar CV(%): coeficient de variació (%) AIC: criteri estadístic d'Akaike SBC: criteri estadístic de Schwartz

			In	hibició Co	mpetitiv	а			Inhibició N	o Comp	oetitiva			Inhibició	Acompe	titiva			Inhib	ició Mixta		
Fàrmac	CYP450		Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC
		V_{max}	1092.0	21.9	2.0	681.8	687.9	1132.6	30.0	2.7	702.8	708.8	1127.7	33.5	3.0	709.9	715.9	1092.6	25.8	2.4	684.9	692.9
BN	CYP3A1/2	K _m	24.5	2.1	8.5			30.7	2.7	8.9			31.8	3.1	9.6			25.1	2.3	9.1		
		Ki	7.1	1.6	22.8			51.1	14.8	29.0			55.2	21.7	39.2			7.6	2.2	28.5		
		V_{max}	20.6	0.8	4.0	105.5	108.5	21.7	0.8	3.8	98.4	101.4	21.7	0.8	3.8	98.2	101.2	21.7	0.9	4.0	100.3	104.3
	CYP1A1/2	K _m	0.1	0.1	58.4			0.2	0.1	40.9			0.2	0.1	40.8			0.2	0.1	44.8		
		Ki	9.1	11.2	123.5			74.5	29.2	39.2			71.7	28.1	39.2			206.3	3996.2	1937.1		
		V_{max}	9.4	0.4	4.5	41.9	44.9	9.7	0.4	4.5	39.6	42.6	9.8	0.5	4.6	39.2	42.2	9.4	0.5	5.1	42.3	46.3
FEN	CYP2B1/2	K _m	8.0	1.2	14.8			8.5	1.1	13.1			8.9	1.2	13.2			7.8	1.3	16.2		
		Ki	58.2	40.7	69.9			149.3	73.1	49.0			107.1	51.9	48.5			154.6	394.7	255.3		
		V _{max}	288.2	8.6	3.0	189.4	192.3	288.5	10.2	3.5	189.5	192.4	288.3	10.2	3.6	189.6	192.4	288.6	10.7	3.7	191.5	195.3
	CYP2D1	K _m	3.4	1.4	40.2			3.5	1.3	37.9			3.5	1.3	37.9			3.5	1.5	42.1		
		Ki	48.6	148.7	305.8			2252.4	17257.8	766.2			3244.7	36812.5	1134.5			293.5	5619.8	1914.9		
		V _{max}	101.7	2.3	2.3	129.2	132.2	105.3	2.3	2.2	124.2	127.1	105.6	2.6	2.4	126.3	129.3	104.7	2.5	2.4	125.5	129.5
	CYP2A1/2	K _m	9.9	1.1	10.9			11.3	0.9	8.4			11.7	1.0	8.9			10.9	1.1	9.9		
		K _i	305.0	128.7	42.2			1351.2	377.0	27.9			1213.9	375.8	31.0			658.5	490.1	74.4		
		V _{max}	298.0	6.7	2.3	420.6	426.0	314.4	9.2	2.9	440.7	446.1	316.1	11.6	3.7	455.9	461.3	300.8	7.6	2.5	424.4	431.6
	CYP2C	K _m	40.3	3.4	8.4			51.8	4.7	9.2			55.6	6.2	11.1			43.3	3.8	8.8		
		K _i	76.8	12.2	15.9		/	448.7	73.5	16.4			392.9	83.7	21.3			103.7	27.2	26.2		
VVI	01/00044	V _{max}	155.5	5.4	3.5	549.1	555.4	162.1	6.9	4.2	441.1	446.7	162.2	1.1	4.8	446.1	451.7	157.4	7.2	4.6	441.7	449.2
XIL	CYP2C11	K _m	27.2	3.2	11.9			41.3	5.4	13.1			44.5	6.3	14.1			38.2	5.7	14.9		
		K _i	18.0	4.6	25.3	100.0	0.00 7	155.3	45.6	29.4		0.00.0	152.8	56.2	36.8		000.0	59.8	35.5	59.3		0.05.0
		V _{max}	150.6	15.6	10.3	199.8	202.7	159.6	17.8	11.1	200.0	202.8	159.7	18.8	11.8	200.8	203.6	156.3	18.1	11.6	201.2	205.0
	CTPZD1	r _m	6.8	4.7	69.1			9.5	5.0	52.7			10.2	5.5	54.4			8.2	5.2	62.6		
		K _i	26.7	33.4	124.9	000.4	705 4	262.6	204.8	78.0	007.0	700.0	243.0	200.8	82.7	740.0	705.0	52.9	92.6	1/4.8	004.0	000.0
	CVD2 A1/2	v _{max}	/81.8 00.0	15.4	2.0	099.1	705.4	829.1	10.8 2.4	2.0	097.0	703.3	834.8	21.4	2.0	718.9	125.2	807.2	15.3	1.9 7.0	084.2	092.6
	GTF3AI/Z	r _m	23.8	1.9	0.1 15 0			31.0	2.1 41 7	0.0 11.0			33.4	2.8 45 5	0.J			27.5	1.9	7.0		
1		n,	56.6	ŏ.b	15.2			369.9	41.7	11.3			316.2	45.5	14.4			120.7	27.0	22.8		

Taula 47 Valors de la K_i i dels Paràmetres Cinètics K_m i V_{max} per cada Tipus d'Inhibició. Model del M-M. BN, FEN i XYL

KT: Ketoprofè (µм), KTA: Ketamina (µм), BN: Buprenorfina (µм), FEN: Fentanil (µм), XYL: Xilacina (µм)

V_{max}: velocitat màxima (pmol/mg proteïna/min)

 K_m : constant de Michaelis-Menten (µM)

 K_i : constant d'inhibició (µM)

SD: desviació estàndar CV(%): coeficient de variació (%) AIC: criteri estadístic d'Akaike SBC: criteri estadístic de Schwartz

			lr	nhibició Co	mpetitiv	a			Inhibició N	lo Com	petitiva			Inhibicić	Acompe	etitiva	
Fàrmac	CYP450		Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC	Valor	SD	CV%	AIC	SBC
		V_{max}	252.6	17.8	7.1	722.9	731.3	262.5	18.4	7.0	719.1	727.5	264.9	18.8	7.1	718.1	726.4
	CVP2C	Km	17.6	4.5	25.6			17.7	3.8	21.3			18.0	3.9	21.4		
	01120	Ki	23996.0	66090.7	275.4			22343.1	14218.6	63.6			16529.5	9400.7	56.9		
		Ŷ	1.2	0.2	20.6			1.3	0.3	20.0			1.3	0.3	19.9		
		V _{max}	270.4	196.4	72.6	564.4	572.1	139.6	6.7	4.8	527.6	535.2	142.3	6.7	4.7	524.9	532.5
кт	CVP2C11	Km	95.0	402.1	423.5			5.7	0.9	16.3			6.1	0.9	14.8		
	0112011	Ki	2068.4	1893.2	91.5			4899.4	1360.7	27.8			4481.0	1209.4	27.0		
		Ŷ	0.4	0.2	52.1			3.1	0.8	25.3			2.9	0.7	24.8		
		V_{max}	860.7	27.5	3.2	681.2	689.3	876.6	26.9	3.1	687.4	695.5	870.2	33.5	3.9	710.4	718.5
	CYP341/2	K _m	14.7	2.0	13.6			18.7	1.8	9.6			19.4	2.3	11.9		
	011 0/1/2	Ki	313.6	75.6	24.1			3007.6	339.7	11.3			2618.9	378.3	14.4		
		Ŷ	1.0	0.1	6.9			1.2	0.1	8.4			1.2	0.1	10.5		
		V_{max}	785.4	19.9	2.5	496.8	504.0	795.8	16.0	2.0	494.0	501.2	792.9	21.3	2.7	518.3	525.5
	CYP2C	K _m	42.1	3.2	7.6			47.9	2.1	4.4			49.7	2.9	5.8		
	0	Ki	85.6	16.4	19.2			627.1	66.6	10.6			589.8	87.6	14.9		
ктΔ		Ŷ	1.3	0.1	6.1			1.6	0.1	7.5			1.6	0.2	9.8		
		V_{max}	417.0	48.1	11.5	752.2	760.5	423.4	53.4	12.6	753.1	761.4	502.1	18.9	3.8	593.5	601.5
	CYP2C11	K _m	33.4	10.0	30.0			37.6	13.8	36.7			43.2	4.4	10.2		
		K	697.5	212.0	30.4			9595.8	3325.4	34.7			416.8	64.0	15.4		
		Ŷ	1.1	0.3	30.0			1.1	0.3	31.0			1.2	0.1	8.9		
		V _{max}	1026.5	21.4	2.1	671.0	679.0	1076.8	31.6	2.9	698.7	706.7	1057.3	37.8	3.6	708.2	716.3
BN	CYP3A1/2	K _m	20.7	1.6	7.5			26.8	2.3	8.5			28.3	2.9	10.3		
		Ki	5.1	1.2	23.1			49.5	13.4	27.1			74.6	35.9	48.1		
		Y	1.3	0.1	6.1			1.2	0.1	7.7			1.1	0.1	8.7		
		V _{max}	20.3	1.0	4.8	107.0	111.0	21.4	0.9	4.0	99.5	103.5	21.4	0.9	4.1	99.4	103.4
FEN	CYP1A1/2	K _m	0.2	0.1	61.3			0.2	0.1	38.2			0.2	0.1	38.3		
		K	0.9	2.0	226.7			9.2	3.7	40.0			8.9	3.6	39.7		
		Y	0.9	2.0	226.7			9.2	3.7	40.0			8.9	3.6	39.7		
		V _{max}	273.9	6.3	2.3	409.1	416.3	284.2	7.3	2.6	427.7	434.9	281.8	8.9	3.2	445.2	452.4
	CYP2C	K _m	32.2	2.3	7.3			39.9	2.5	6.3			41.1	3.1	7.5		
		Ki	50.9	9.7	19.0			446.5	62.3	14.0			428.9	78.6	18.3		
		Y	1.3	0.1	5.9	10.0.0	100.0	1.4	0.1	8.1	10.0.0	400.0	1.5	0.1	9.7	40.4.4	111.0
		V _{max}	136.2	4.2	3.1	420.6	428.0	146.3	5.2	3.6	428.8	436.3	145.6	5.7	3.9	434.1	441.6
XYL	CYP2C11	κ _m	23.1	2.6	11.2			31.6	2.8	8.9			32.8	3.1	9.5		
		Ki	14.9	5.3	35.8			157.1	40.3	25.7			157.2	47.3	30.1		
		Y	1.5	0.1	9.7	609.0	707.0	1.5	0.2	10.1	606.0	604.4	1.5	0.2	10.7	709.7	717 4
		v _{max}	758.0	19.7	2.0	098.9	707.2	784.5	16.5	2.1	080.0	094.4	/81./	20.3	2.0	108.7	/17.1
	CYP3A1/2	K _m	21.8	2.1	9.4			26.4	1.6	6.1 10.0			27.5	2.0	1.5		
		ĸ,	48.8	9.8	20.0			363.5	36.9	10.2			328.0	42.4	12.9		
1		ΙY	1.1	0.1	6.0			1.2	0.1	5.4			1.3	0.1	6.5		

Taula 48 Valors de la K_i i dels Paràmetres Cinètics K_m i V_{max} per cada Tipus d'Inhibició. Model de Hill

KT: Ketoprofè (µm), KTA: Ketamina (µm), BN: Buprenorfina (µm), FEN: Fentanil (µm), XYL: Xilacina (µm)

V_{max} : velocitat màxima (pmol/mg proteïna/min)

 K_m : constant de Michaelis-Menten (µM)

 K_i : constant d'inhibició (µM)

SD: desviació estàndar CV(%): coeficient de variació (%) AIC: criteri estadístic d'Akaike SBC: criteri estadístic de Schwartz

De cada reacció fàrmac-isoforma es va establir que el model d'inhibició que millor ajustava en cada cas era aquell que tenia els valors de la criteris estadístics d'AIC i de SBC més baixos, tal i com s'indica a la secció 6.3.4.

A continuació, per establir si existia alguna interacció potencial per inhibició en l'activitat d'una isoforma CYP450, es van comparar el valors de la K_i de cada relació fàrmac-isoforma, amb els valors de les concentracions plasmàtiques en rata

després de l'administració de l'anestèsic/analgèsic (Taula 49), trobades en la bibliografia. En el cas de la XYL, el valor de K_i es va comparar amb el valor de la concentració en sang del fàrmac, perquè es va assumir una relació 1:1 plasma:sang.

Taula 49 Concentracions Terapèutiques de Fàrmac en Plasma / Sang de Rata

Fàrmac	Concentrac	ió (μg/ml)
i annac	plasma	sang
KT	100 - 300	
KTA	10	
BN	0.01 - 3	
FEN	0.15	
XYL		18

KT: Ketoprofè (ref. 18); KTA: Ketamina (ref. 37); BN: Buprenorfina (ref. 41); FEN: Fentanil (ref. 53); XYL: Xilacina (ref. 57)

La Taula 50 mostra els valors d'IC₅₀ i de K_i, a més del tipus d'inhibició, per les relacions fàrmac-isoforma CYP450 que en el test estadístic havien donat diferències estadísticament significatives entre els valors dels Quocients K_m/V_{max} per cada fàrmac i isoforma CYP450.

Resultats

Fàrmac	CYP450	IC ₅₀ (μΜ)	IC ₅₀ (µg/ml)	K _i (μΜ) ^a	K _i (µg/ml) ^a	Tipus inhibició
	CYP2A1/2	38921.1	9897.2	18013.5	4580.7	no competitiva ¹
	CYP2B1/2	3112.6	791.5	3052.0	776.1	no competitiva ¹
КТ	CYP2C	n.c.	-	16414.0	4173.9	acompetitiva 1
	CYP2C11	3117.9	792.9	4481.0	1139.5	acompetitiva ²
	CYP3A1/2	1058.7	269.2	702.7	178.7	MIXTA
	CYP2B1/2	72.9	19.9	41.8	11.4	COMPETITIVA ¹
ктл	CYP2C	84.3	23.0	627.1	171.4	no competitiva ²
NIA	CYP2C11	209.5	57.4	72.8	19.9	competitiva ¹
	CYP2D1	693.8	189.6	230.0	62.9	mixta
BN	CYP3A1/2	5.5	2.6	5.1	2.4	COMPETITIVA ²
	CYP1A1/2	49.0	25.9	71.7	37.9	acompetitiva ¹
FEN	CYP2B1/2	142.2	75.2	107.1	56.6	acompetitiva 1
	CYP2D1	т.р.	-	48.6	25.7	competitiva 1
	CYP2A1/2	769.7	169.6	1351.2	297.7	no competitiva ¹
	CYP2C	59.8	13.2	50.9	11.2	COMPETITIVA ²
XYL	CYP2C11	62.9	13.9	14.9	3.3	COMPETITIVA ²
	CYP2D1	75.0	16.5	26.7	5.9	COMPETITIVA ¹
	CYP3A1/2	162.4	35.8	120.7	26.6	MIXTA

Taula 50Valors dels Paràmetres d'Inhibició (IC50 i Ki) i Tipus d'Inhibició per 18 Relacions Fàrmac-
Isoforma CYP450 Resultants del Test Estadístic

KT: Ketoprofè, KTA: Ketamina, BN: Buprenorfina, FEN: Fentanil, XYL: Xilacina.

K_i ^a :paràmetre estimat per SNLR amb WinNonlin®

m.p.: no hi ha valor en aquesta concentració

n.c.: no es pot calcular. Ajustat erroni de l'equació utilitzant el SigmaPlot.

¹: Equacions derivades del model de Michaelis-Menten

² : Equacions derivades del model de Hill (Sigmoidal)

Tipus d'inhibició Majúscula: valor de K_i (μ M) molt similar o inferior a la concentració de fàrmac trobada en plasma. Interacció potencial per inhibició.

Concentracions en plasma: Ketoprofè, 1179.8 μM, Ketamina, 36.6 μM, Buprenorfina, 6.4 μM, Fentanil, 0.28 μM, Xilacina, 81.7 μM (cocnentració en sang).

Els valors de K_i iguals o inferiors a les concentracions plasmàtiques són els corresponents a les relacions: KT-CYP3A1/2, KTA-CYP2B1/2, BN-CYP3A1/2, i XYL-CYP2C, CYP2C11, CYP2D1 i CYP3A1/2.

Les següents Figures (Figura 35, Figura 36, Figura 37, Figura 38, Figura 39) són les representacions gràfiques dels ajustaments per SNLR de les set interaccions potencials per inhibició en l'activitat CYP450 esmentades.

Figura 35 Corbes de Regressió No-Lineal Obtingudes per SNLR. XYL-CYP2C, XYL-CYP2C11, XYL-CYP2D1

XYL: Xilacina, TST: Testosterona, DEX: Dextrometorfà

Figura 36 Corbes de Regressió No-Lineal Obtingudes per SNLR. XYL-CYP3A1/2

Corbes: taronja, concentració 0 de XYL; negra, concentració 2.5µM de XYL; blava, concentració 10µM de XYL; vermella, concentració 50µM de XYL; rosa, concentració 250µM de XYL. XYL: Xilacina, TST: Testosterona

Corbes: taronja, concentració 0 de KT; negra, concentració 50µM de KT; blava, concentració 200µM de KT; vermella, concentració 1250µM de KT; rosa, concentració 5000µM de KT. KT: Ketoprofè, TST: Testosterona

Figura 38 Corbes de Regressió No-Lineal Obtingudes per SNLR. KTA-CYP2B1/2

Corbes: taronja, concentració 0 de KTA; negra, concentració 5µM de KTA; blava, concentració 25µM de KTA; vermella, concentració 75µM de KTA; rosa, concentració 375µM de KTA. KTA: Ketamina, PRO: Pentoxiresorufina

Figura 39 Corbes de Regressió No-Lineal Obtingudes per SNLR. BN-CYP3A1/2

Corbes: taronja, concentració 0 de BN; negra, concentració $0.1\mu M$ de BN; blava, concentració $0.5\mu M$ de BN; vermella, concentració $2.5\mu M$ de BN; rosa, concentració $10\mu M$ de BN. BN: Buprenorfina TST: Testosterona
Resultats

7.3.4 Càlcul de la K_i. Mètode de la K_{m,app} i Mètode "IC₅₀-to-Ki Converter"

La Taula 51 mostra els valors de K_i estimats pel mètode de la K_{m,app} (secció 6.3.5), i pel mètode de "IC₅₀-to-K_i Converter" (secció 6.3.6). A més, a la Taula s'inclouen els valors de K_i obtinguts pels mètode de SNLR (secció 6.3.3) per comparar entre ells.

Fàrmac	CYP450	K _i (μM) ^a	Ki (µM) [⊳]	K _i (μΜ) ^c	Tipus d'Inhibició
	CYP2A1/2	18013.5	51550.1	38921.1	no competitiva ¹
	CYP2B1/2	3052.0	1643.5	3112.6	no competitiva ¹
KT	CYP2C	16414.0	17093.0	-	acompetitiva 1
	CYP2C11	4481.0	4742.5	8328,4	acompetitiva 2
	CYP3A1/2	702.7	350.0	-	MIXTA
	CYP2B1/2	41.8	150.7	46.4	COMPETITIVA ¹
ктл	CYP2C	627.1	164.2	72,8	no competitiva ²
	CYP2C11	72.8	98.4	66.4	competitiva 1
	CYP2D1	230.0	202.5	-	mixta
BN	CYP3A1/2	5.1	6.2	3,9	COMPETITIVA ²
	CYP1A1/2	71.7	n.c.	47.4	acompetitiva 1
FEN	CYP2B1/2	107.1	n.c.	75.4	acompetitiva 1
	CYP2D1	48.6	10.7	-	competitiva 1
	CYP2A1/2	1351.2	493.3	769.7	no competitiva 1
	CYP2C	50.9	100.6	47,6	COMPETITIVA ²
XYL	CYP2C11	14.9	42.4	4,5	COMPETITIVA ²
	CYP2D1	26.7	58.6	17.1	COMPETITIVA ¹
	CYP3A1/2	120.7	114.1	-	MIXTA

Taula 51 Valors de Ki Estimats pels Mètodes de: SNLR, "Km,app " i "IC50-to-Ki Converter"

KT: Ketoprofè, KTA: Ketamina, BN: Buprenorfina, FEN: Fentanil i XYL: Xilacina

 K_i^{a} : paràmetre estimat per SNLR amb WinNonlin®

K_i^b : paràmetre estimat per el "Mètode KM,app"

K_i^c : paràmetre estimat amb el mètode "IC50-to-Ki Converter"

m.p.: no hi ha valor en aquesta concentració de substracte. Error experiment.

- : no es va calcular. El mètode no permet

n.c. : no es pot calcular. Ajustat erroni

¹: Equacions derivades del model de Michaelis-Menten

² : Equacions derivades del model de Hill (Sigmoidal)

Tipus d'inhibició Majúscula: valor de K_i (μ M) molt similar o inferior a la concentració de fàrmac trobada en plasma. Interacció potencial per inhibició.

Concentracions en plasma: Ketoprofè, 1179.8 μΜ, Ketamina, 36.6 μΜ, Buprenorfina, 6.4 μΜ, Fentanil, 0.28 μΜ, Xilacina, 81.7 μΜ (concentració en sang).

Valors que no es poden estimar per aquests mètodes

En els ajustaments KT-CYP2C i FEN-CYP2D1 no es van estimar els valors de la K_i , amb el model "IC₅₀-to- K_i -Converter", perquè no havia el valor de l'IC₅₀ necessari pel càlcul. En el primer cas (KT-CYP2C) perquè el model per estimar l'IC₅₀ ajustava de forma errònia a les dades, i en el segon cas (FEN-CYP2D1) per un error experimental en què es van perdre mostres.

Per KTA-CYP2D1 i XYL-CYP3A1/2 no es va estimar la K_i , pel mètode de "IC₅₀to- K_i Converter", perquè el mètode no contempla el càlcul en el cas d'inhició Mixta.

Per KT-CYP2C11, KTA-CYP2C, BN-CYP3A1/2, XYL-CYP2C i XYL-CYP2C11 es va estimar el valor de la K_i pel mètode "IC₅₀-to-K_i Converter" encara que el model d'inhibició per SNLR que millor ajusta les dades, està deduït de l'equació de Hill, i el mètode "IC₅₀-to-K_i Converter" està desenvolupat per cinètiques de M-M. El càlcul es realitzar per comparar els valors de K_i entre els diferents mètodes. Per aquest mateix motiu, es va calcular el valor de la K_i pel mètode de la "K_{m,app}" en casos que no correspondria.

7.4 Determinació de la Unió No-Específica del KT, la KTA, el BN, el FEN i la XYL a Proteïnes Microsomals

A continuació es mostren les Taules amb els valors de $f_{u,mic}$ dels fàrmacs. Aquests valors es van obtenir experimentalment pel Model *in vitro* (només la ketamina), o bé calculats pel Model *in silico* (tots els fàrmacs).

7.4.1 Determinació de la Unió No-específica de la KTA a Proteïnes Microsomals. Model In vitro

Les següents taules mostren les dades experimentals i el càlculs realitzats, tal i com s'indica a la secció 6.4.

7.4.1.1 Càlcul del Percentatge de Recuperació (%R)

Taula 52Determinació de la $f_{u,mic}$ pel Model In vitro. Dades Experimentals i Càlcul del Percentatge de

	Área de pic de KTA									
Concentració		FN	IS			R(/0)				
(pmol/ml)	replicat 1	replicat 2	replicat 3	R _{FMS}	replicat 1	replicat 2	replicat 3	R _{RLMS}	Mitjana	
1	103059	95860	114909	104609	111579	105548	95334	104154	99.6	
5	683090	602506	673005	652867	521645	572437	589156	561079	85.9	
10	1379938	900498	1123924	1134787	1069827	1125406	1027801	1074345	94.7	
50	5564477	7000122	7135612	6566737	4862541	5639757	5817590	5439963	82.8	
100	13056945	8503174	10794494	10784871	10539464	9599170	10024379	10054338	93.2	
							Mi	tjana R(%)	91.2	

Recuperació (%R)

KTA: ketamina FMS: matriu filtrada RLMS: RLM R(%): recuperació (%)

R FMS : mitjana (n=3) de l'area de pic de KTA en FMS

R_{RLMS} : mitjana (n=3) de l'àrea de pic de KTA en RLMS

7.4.1.2 Càlcul del Percentatge de KTA No Unida (%M) al Material d'Ultracentrifugació

Taula 53 Determinació de la f_{u,mic} pel Model In vitro. Dades Experimentals i Càlcul del Percentatge deKTA No Unida al Material d'Ultracentrifugació (%M)

	Área de pic de KTA										
Concentració		FM	S-A			M(%)					
(pmol/ml)	replicat 1	replicat 2	replicat 3	M _A	replicat 1	replicat 2	replicat 3	M _B	Mitjana		
5	s.l.	s.l.	446922	446922	397637	403490	403232	401453	89.8		
25	2445536	2459354	2527160	2477350	2211075	2241354	2180677	2211035	89.3		
100	9443949	9435530	9614105	9497861	8591189	8727782	8852662	8723878	91.9		
							Mit	ijana M(%)	90.3		

KTA: ketamina

s.l.: mostra perduda durant l´anàlisi

M(%): percentatge de KTA unit al filtre del sistema

 M_{A} : mitjana (n=3) de l`area de pic de la ketamina en FMS-A

 M_B : mitjana (n=3) de l`àrea de pic de la ketamina en FMS-B

Mitjana B(%)

13.6

7.4.1.3 Càlcul del Percentatge de KTA Unit (%B) i No Unit (%F)

Taula 54 Determinació de la f_{u,mic} pel Model *In vitro*. Dades Experimentals i Càlcul del Percentatge de KTA No Unida als RLM (%F)

_	Área de pic de KTA									
Concentració		RLM	IS-A			F(/0)				
(pmol/ml)	replicat 1	replicat 2	replicat 3	C _{RLMS-A}	replicat 1	replicat 2	replicat 3	C _{RLMS-B}	Mitjana	
5	2.3	2.5	2.5	2.4	2.0	2.0	2.1	2.0	82.9	
25	21.5	17.3	20	19.6	18.7	15	17.4	17.0	86.8	
100	88.1	86.8	84.6	86.5	78.7	77.2	76.4	77.5	89.5	
							Mi	tiana F(%)	86.4	

RLMS-A: mostres de RLM no filtrades

RLMS-B: mostres de RLM filtrades

F(%): percentatge de KTA no unit

B(%): percentatge de KTA unit al filtre del sistema

C _{RLMS-A} : mitjana (n=3) de la concentració de ketamina en les mostres RLMS-A C _{RLMS-B} : mitjana (n=3) de la concentració de ketamina en les mostres RLMS-B

KTA: ketamina

El valor de $f_{u,mic}$ de la KTA estimat pel mètode de determinació de la unió noespecífica a proteïnes microsomals *in vitro*, és 0.86.

7.4.2 Unió No-Específica a les Proteïnes Microsomals Utilitzant les Propietats Fisico-Químiques del KT, la KTA, la BN, el FEN i la XYL. Model In silico

Els valors obtinguts de $f_{u,mic}$ que es mostren a la Taula 55, es van calcular seguint les equacions de la secció 6.4.2.

Taula 55Tipus de Càrrega i Valors de $f_{u,mic}$ de cada Fàrmac segons el Model de Predicció In silicoUtilitzat

						f _{u,mic} predit <i>in silic</i> o*				
Eàrman	Tipus de	nKa		logD	Model	Model	Model	Model	Model	'u,mic
гаппас	càrrega	ρκα	logD7.4	logP	Austin	Hallifax	combinat 1	combinat 2	Simcyp®	In vitro
KT ^a	àcida	4.60	-0.09	2.71	0.97		0.97	0.98	0.91	
KTA ^b	bàsica	6.46		2.18		0.87	0.61	0.76	0.85	0.86
FEN ^b	bàsica	9.06		3.89		0.79	0.15	0.25	0.37	
BN ^b	bàsica	8.31		3.44		0.82	0.23	0.38	0.52	
XYL ^b	bàsica	7.67		2.37		0.86	0.55	0.71	0.82	

*: Es considera ajustada la concentració de proteïna microsomal a 1 mg/ml, excepte al Model combinat 2 (conc. Proteïna=0.5 mg/ml)

^{*a*}: Valors de pKa, logD_{7.4} i logP obtinguts de bibliografia. (ref. 100).

^b: Valors de pK_a i logP calculats usant el software Advanced Chemistry Development (ACD/Labs). (ref. 101).

Model Austin: $f_{u,mic}$ predit per el model d'Austin. Fòrmula: 0.53logP/D-1.42 (.ref. 100).

Model Hallifax: $f_{u,mic}$ predit per el model de Hallifax.(ref. 98).

Model combinat: $f_{u,mic}$ calculat amb la fòrmula: $f_{u,mic}=1/(C*10^{0.56log}P/D-1.41+1).C$, és la concentració de proteïna microsomal. (ref. 100).

Model combinat 1, C=1; Model combinat 2, C=0.5.

Model Simcyp[®]: $f_{u,mic}$ calculat utilitzant el model de Turner et al. Manuscript preparation. Simcyp Limited, University of Shefflied, UK

 $f_{u,mic}$ in vitro: $f_{u,mic}$ obtingut experimentalment. 1 mg/ml concentració proteïna microsomal.

KT: ketoprofè, KTA: ketamina; FEN: fentanil; BN: buprenorfina; XYL: xilacina.

(ref. 104, ref. 105, ref. 106, ref. 107, ref. 108, ref. 109, ref. 110)

7.5 Càlcul de la K_i Modificada per f_{u,mic}

A la Taula 56 es mostren els valors de $f_{u,mic}$ i els valors de K_i no unida per les 18 relacions fàrmac-isoforma CYP450 susceptibles d'interaccionar indicades en la secció 7.3.3: KT-(CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2); KTA-(CYP2B1/2, CYP2C, CYP2C11 i CYP2D1); BN-CYP3A1/2; FEN-(CYP1A1/2, CYP2B1/2, CYP2D1); i XYL-(CYP2A1/2, CYP2C, CYP2C11, CYP2D1 i CYP3A1/2.

El valor de la K_i no unida es va estimar tenint en compte el factor $f_{u,mic}$ obtingut pel model *in vitro* (en el cas de la KTA), i pels models *in silico* (Simcyp®, Austin i Hallifax) per la resta de fàrmacs.

Taula 56 Valors de f_{u,mic} Determinada In silico per KT, BN, FEN I XYL i In vitro per la KTA. Càlcul de

la K_i No Unida

Fàrmac	CYP450	f _{u,mic}	K _i ^u (μΜ)	K _i ^u (µg/ml)	Tipus inhibició
	CVP2A1/2	0.91 ^a	16392.3	4168.4	
	GTF2AI/2	0.97 ^b	17473.1	4443.2	no competitiva
	CVD2B1/2	0.91 ^a	2777.3	706.2	no compositivo 1
	GTF2B1/2	0.97 ^b	2960.4	752.8	no competitiva
кт	CVP2C	0.91 ^a	14936.7	3798.3	acompotitiva ¹
	01120	0.97 ^b	15921.5	4048.7	acompetitiva
	CYP2C11	0.91 ^a	4077.7	1036.9	a compositiva ²
	0112011	0.97 ^b	4346.6	1105.3	acompetitiva
	CYP3A1/2	0.91 ^a	639.5	162.6	ΜΙΧΤΔ
	011 041/2	0.97 ^b	681.6	173.3	WIXTX
	CYP2B1/2		35.9	9.8	COMPETITIVA ¹
кта	CYP2C	0.96 ^C	539.3	147.4	no competitiva ²
NIA	CYP2C11	0.00	62.6	17.1	competitiva ¹
	CYP2D1		197.8	54.1	mixta
BN	CYP3A1/2	0,52 ^a	2.6	1.2	
DIN		0,82 ^d	4.2	1.9	COMPETITIVA
	CYP1A1/2	0,37 ^a	26.5	14.0	acompotitiva ¹
		0,79 ^d	56.6	29.9	acompetitiva
FEN	CVP2B1/2	0,37 ^a	39.6	20.9	acompotitiva ¹
		0,79 ^d	84.6	44.7	acompetitiva
	CVP2D1	0,37 ^a	18.0	9.5	compotitiva ¹
	011201	0,79 ^d	38.394	20	competitiva
	CVP2A1/2	0,82 ^a	1108.0	244.1	no compotitivo ¹
		0,86 ^d	1162.0	256.0	no competitiva
	CVP2C	0,82 ^a	41.7	9.2	
	01120	0,86 ^d	43.8	9.6	COMPETITIVA
YVI	CVP2C11	0,82 ^a	12.2	2.7	
	0172011	0,86 ^d	12.8	2.8	COMPETITIVA
	CVP2D1	0,82 ^a	21.9	4.8	
	GIFZUI	0,86 ^d	23.0	5.1	COMPETITIVA
	CVD3 A1/2	0,82 ^a	98.9	21.8	MIXTA
	CYP3A1/2	0,86 ^d	103.8	22.9	

KT: Ketoprofè, KTA: Ketamina, BN: Buprenorfina, FEN: Fentanil, XYL: Xilacina

f_{u,mic} : fracció de fàrmac lliure

K_i :constant d'inhibició estimada per SNLR amb WinNonlin®

u: valor de Ki no unida

a: model de càlcul in silico Symcyp®

b: model de càlcul in silico d'Austin

c: model de determinació in vitro

d: model de càlcul in silico de Hallifax ¹ : Equacions derivades del model de M-M

² : Equacions derivades del model de Hill (Sigmoidal)

Tipus d'inhibició Majúscula: valor de K_i (µM) molt similar o inferior a la concentració de fàrmac trobada en plasma. Interacció potencial per inhibició.

Concentracions en plasma: Ketoprofè, 1179.8 µM, Ketamina, 36.6 µM, Buprenorfina, 6.4 µM, Fentanil, 0.28 µM, Xilacina, 81.7 µM (cocnentració en sang).

Resultats

7.6 Predicció d'Interaccions Potencials *In Vivo*. Càlcul de R_{exp}

En la següent Taula 57 es mostren els valors del quocient R_{exp} en les 18 interaccions potencials per inhibició. Pel càlcul de la K_i no unida es va emprar el valor de $f_{u,mic}$ més baix en cada cas.

Fàrmac	CVP450	f.	K ^u (11M)	Concentració	Plasmàtica*	R
Failliau	C1F430	u,mic	κ _i (μινι)	µg/ml	μM	Nexp
	CYP2A1/2		16392,3			1,1
	CYP2B1/2		2777,3			1,4
КТ	CYP2C	0.91 ^a	14936,7	300	1179,8	1,1
	CYP2C11		4077,7			1,3
	CYP3A1/2		639,5			2,8
	CYP2B1/2		35,9			2,0
КТА	CYP2C	0.86 ^{invitro}	539,3	10	36,6	1,1
NIA	CYP2C11		62,6			1,6
	CYP2D1		197,8			1,2
BN	CYP3A1/2	0,52 ^a	2,6	3	6,4	3,4
	CYP1A1/2		26,5			1,0
FEN	CYP2B1/2	0,37 ^a	39,6	0,15	0,28	1,0
	CYP2D1		18,0			1,0
	CYP2A1/2		1108,0			1,1
	CYP2C		41,7			3,0
XYL	CYP2C11	0,82 ^a	12,2	18	81,7	7,7
	CYP2D1		21,9			4,7
	CYP3A1/2		98,9			1,8

Taula 57 Valors del Quocient R_{exp} per cada Fàrmac i Isoforma

KT: Ketoprofè, KTA: Ketamina, BN: Buprenorfina, FEN: Fentanil, XYL: Xilacina

fu,mic: fracció de fàrmac lliure

Ki :constant d'inhibició estimada per SNLR amb WinNonlin®

u: valor de Ki no unida

a: model de càlcul in silico Simcyp®

invitro: model de determinació in vitro

En aquesta taula i pel càlcul de la R_{exp} s'utilitza el valor de fu,mic més baix

Concentracions en plasma: Ketoprofè, 1179.8 μ M, Ketamina, 36.6 μ M, Buprenorfina, 6.4 μ M, Fentanil, 0.28 μ M, Xilacina, 81.7 μ M (concentració en sang).

*: concentració sanguínia en el cas de la Xilacina

8 DISCUSIÓ

Quan s'elabora un protocol experimental, per l'estudi del metabolisme i la disposició d'un nou fàrmac, un dubte que sovint es planteja, és quin tipus d'anestèsic/analgèsic es pot emprar en la rata de laboratori per no interferir en el metabolisme del fàrmac, i no afectar les dades obtingudes.

En el present treball es van seleccionar una sèrie d'anestèsics i d'analgèsics en funció de la seva freqüència d'us. El Ketoprofè, la Ketamina, el Fentanil, la Buprenorfina i la Xilacina són els més utilitzats en la rata. Encara que està descrit que són substracte del complexe CYP450 en major o menor proporció, no existeixen gaires dades sobre les seves interaccions amb aquest complexe. El KT s'hidroxila per acció del CYP450 encara que en una proporció molt petita (ref. 19, ref. 20); un 26% de la KTA és biotransforma en el metabòlit norketamina (N-desmetilació de la KTA) (ref. 27); també una part de la desalquilació de la BN té lloc en el fetge produint norbuprenorfina (ref. 39, ref. 41); el FEN es metabolitza principalment donant norfentanil (ref. 52); i un 35% de la XYL administrada es transforma en el seu metabòlit principal (N-(2,6-dimetilfenil)tiourea) (ref. 59).

El CYP450 és un complexe enzimàtic que catalitza principalment reaccions d'oxidació en organismes, i la seva funció catalítica està relacionada amb el metabolisme de la majoria dels fàrmacs i xenobiòtics. El CYP450 és una superfamília d'isoformes P450, de les quals les principals encarregades del metabolisme de xenobiòtics en rata són les que s'estudien: les CYP1A1/2, CYP2A1/2, CYP2B1/2, CYP2C, CYP2C11, CYP2D1, CYP2E1 i CYP3A1/2.

Per aquest motiu, en el present treball s'estudien les interaccions potencials dels anèstesics KTA i XYL i els analgèsics KT, BN i FEN amb les principals isoformes de CYP450 hepàtiques de rata Sprague Dawley mascle.

En el present treball s'han dissenyat experiments d'inhibició de la forma més simplificada possible, reduint el número de concentracions de substracte específic (4), i d'analgèsic/anestèsic (5), així com el número de replicats (3). Però a la vegada, aquests experiments són suficients com per aportar l'informació necessària de forma

fiable. Els experiments es van dissenyar amb la recopilació de dades bibliogràfiques d'articles científics publicats (ref. 86, ref. 87, ref. 88, ref. 89, ref. 90, ref. 91).

El desenvolupament d'aquest estudi comença per l'obtenció i caracterització del sistema experimental. El sistema experimental són els microsomes de fetge de rata. Per obtenir-los, les rates es sacrifiquen i s'intervenen seguint els procediments ètics aprovats per un Comité d'Experimentació Animal. Els microsomes s'obtenen per dos mètodes descrits en la bibliografia, el mètode de precipitació amb Calci (que és el primer mètode descrit per obtenir microsomes, i que presenta l'avantatge de què no precisa d'una ultracentrifuga), i el mètode d'ultracentrifugació, que és el mètode més utilitzat en l'actualitat, i què per tant permet la comparació de resultats entre laboratoris o grups de treball. L'obtenció i posterior caracterització dels microsomes pels dos processos mostra que el mètode d'ultracentrifugació a més de ser el més senzill i fàcil de realitzar, sol tenir un rendiment més elevat, i es pot aconseguir una concentració de proteïna microsomal més alta.

A continuació, es posen a punt tres mètodes per caracteritzar cada lot de microsomes:

- Per mesurar la concentració de proteïna microsomal.
- Per mesurar la concentració de CYP450.
- Per determinar l'activitat NADPH-CYP450 reductasa.

La concentració de la proteïna microsomal es mesura amb el mètode comercialitzat de "Micro Lowry, Onishi & Barr modification", segons es descriu a la secció 5.2.1. Els valors de les concentracions de proteïna microsomal obtinguts pels dos mètodes (precipitació amb Calci i ultracentrifugació), són suficientment alts com per poder ajustar la concentració de la proteïna a les concentracions especificades en els certificats de qualitat dels microsomes commercialitzats, que són les concentracions de treball habitual (20, 10 i 5 mg/ml).

El mètode per la mesura de la concentració de CYP450 es posa a punt en el present treball, tal i com es detalla a la secció 5.2.2. La mesura consisteix en la reducció del ferro del centre catalític del CYP450 i la posterior incorporació d'una molècula de

CO al mateix, i tot seguit, es mesura l'absorció per espectrometria. El complexe ferro reduït-CO dóna un espectre d'absorció màxim a 450 nm.

El mètode per la determinació de l'activitat NADPH-CYP450 reductasa també es posa a punt en el present treball, segons es descriu a la secció 5.2.3. El procediment consisteix en una mesura indirecta de l'activitat NADPH-CYP450 reductasa mitjançant un sistema que quantifica el Citocrom C reduït. El Citocrom C és una proteïna transportadora d'electrons que accepta els electrons provinents de la NADPH-reductasa, es redueix i presenta un màxim d'absorció a 550 nm.

Els continguts de CYP450 (0.4 i 0.7 nmol CYP450/mg proteïna) i els valors d'activitat de la NADPH-CYP450 reductasa (171.5-265.9 nmol/mg proteïna/min) són similars als especificats en els certificats de qualitat dels lots de microsomes comercialitzats, i amb les dades trobades en la bibliografia (ref. 83, ref. 84, ref. 85).

Una vegada caracteritzats els microsomes, la concentració de la proteïna microsomal s'ajusta a una concentració útil per treballar com s'ha comentant en el paràgraf anterior.

Un aspecte important del present treball és la preparació dels incubats on tenen lloc les reaccions enzimàtiques dels CYP450, i que estan formats pels microsomes (que contenen el CYP450), el sistema generador de NADPH (que permet el funcionament del CYP450), i el substracte específic. La composició dels incubats es detalla a la secció 5.3. Quan finalitza el temps d'incubació, s'atura la reacció en l'incubat, es procedeix a la preparació de la mostra per l'anàlisi, i per últim s'analitza. En aquest treball l'anàlisi de les mostres es fa per HPLC amb detecció UV o fluorescència com es descriu a la secció 5.7. S'utilitzen mètodes que es van desenvolupar recollint informació de la bibliografia i fent proves de posta a punt. Els mètodes es basen en la quantificació del metabòlit format en cada reacció específica (6-hidroxiclorzoxazona, dextrorfà, etoxiresotufina, pentoxiresorufina, 2- α -hidroxitestosterona, 7- α -hidroxitestosterona, 16- α -hidroxitestosterona i 6- β hidroxitestosterona), per després calcular l'activitat enzimàtica tenint en compte la concentració de proteïna i el temps d'incubació. L'activitat enzimàtica indica la taxa de formació del metabòlit específic, i les reaccions específiques que s'avaluen són les: clorzoxazona-6-hidroxilasa (CYP2E1), dextrometorfà-O-demetilasa (CYP2D1), etoxiresorufina-O-deetilasa (CYP1A1/2), pentoxiresorufina-O-dealquilasa (CYP2B1/2), i testosterona hidroxilases (que inclou: testosterona-7 α -hidroxilasa (CYP2A1/2), testosterona-16 α -hidroxilasa (CYP2C), testosterona-2 α -hidroxilasa (CYP2C11) i testosterona-6 β -hidroxilasa (CYP3A1/2)). Veure la Figura 11, secció 5.4.2.

Després que els mètodes analítics s'hagin establert, es posen a punt els mètodes experimentals abans de dissenyar els experiments d'inhibició.

En primer lloc, s'estudia de forma individual per cada reacció específica la linealitat en la formació de metabòlit a partir de cada substracte específic, en funció de la concentració de la proteïna microsomal i en funció del temps d'incubació. Per aquest experiment, tal i com es descriu a la secció 5.4.1, es preparen de forma individual una sèrie d'incubats en què es fixa el temps d'incubació, però les concentracions de la proteïna microsomal varien; i una altra sèrie d'incubats en què es fixa la concentració de la proteïna microsomal però els temps d'incubació són diferents. Aleshores, les dues sèries d'experiments es porten a terme per a cada reacció específica, a la concentració de substracte específic igual o similar a la K_m de la reacció en qüestió (valor obtingut de bibliografia, ref. 86, ref. 88, ref. 91). Les mostres obtingudes d'aquests experiments es preparen per l'anàlisi, i s'analitzen per HPLC amb el mètode analític corresponent a la reacció específica. Les dades de producció de metabòlit obtingudes de l'anàlisi de les mostres es representen versus la concentració de la proteïna microsomal i versus el temps d'incubació, i després s'ajusta una regressió lineal (veure la secció 7.2.1). A partir dels resultats obtinguts, el temps d'incubació es fixa a 10 min per totes les reaccions específiques, excepte per la del CYP2D1, que és de 20 min. Per escollir aquests temps, es va considerar que el temps d'incubació fos curt però, que a la vegada la producció de metabòlit en aquest temps fos detectable/quantificable amb la nostra tècnica analítica. Així mateix, la concentració de proteïna microsomal es fixa a 1 mg/ml per les reaccions específiques dels CYP2E1 i CYP2D1, i a 0.5 mg/ml per les reaccions específiques

dels CYP1A1/2, CYP2B1/2, CYP2A1/2, CYP2C, CYP2C11 i CYP3A1/2. Veure Taula 3 secció 5.4.1 i Taula 4 secció 5.4.2.

En segon lloc, s'estudia la cinètica enzimàtica de cada CYP450 amb el seu substracte específic, atès que aquests experiments permeten estimar els paràmetres enzimàtics K_m i V_{max} de cada reacció específica. És per això que es preparen de forma individual, tal i com s'indica a la secció 5.4.2, una sèrie d'incubats de microsomes a diferents concentracions de substracte específic. Quant a la concentració de proteïna microsomal i el temps d'incubació en aquests incubats estan fixats segons es descriu en el paràgraf anterior. Les concentracions de substracte específic en cada reacció es van seleccionar segons dades bibliogràfiques trobades (concentracions per sota i per sobre del valor de la K_m). Aquesta sèrie d'experiments s'efectua per cada reacció específica. Les dades d'activitat enzimàtica es representen *versus* les concentracions de substracte específic, i s'ajusten les equacions de M-M i de Hill.

Els resultats mostren que les cinètiques dels CYP2E1, CYP2D1, CYP2B1/2 i CYP3A1/2 es descriuen millor per l'equació de M-M, en canvi, la cinètica dels CYP1A1/2, CYP2C, CYP2C11 i CYP3A1/2 es descriu millor per l'equació de Hill. La Taula 14 i la Taula 15 de la 7.2.2, mostren com els valors dels criteris estadístics AIC i SBC, així com els valors dels CV% dels paràmetres estimats pels ajustaments cinètics dels CYP1A1/2, CYP2C, CYP2C11 i CYP3A1/2, són més baixos quan s'empra el model de Hill per ajustar les dades. Tot i això, en els CYP1A1/2, CYP2C, CYP2C11 i CYP3A1/2 es van ajustar els dos models (M-M i Hill) a les dades per confirmar el tipus de cinètica enzimàtica, ja que, com s'indica a la bibliografia, l'equació de M-M descriu gairebé totes les cinètiques.

Els valors de K_m estimats són: CYP2E1, 223.2 μ M; CYP2D1, 6.6 μ M ; CYP1A1/2, 1.0 μ M ; CYP2B1/2, 3.3 μ M ; CYP2A1/2, 10.9 μ M ; CYP2C, 44.7 μ M ; CYP2C11, 38.3 μ M ; i CYP3A1/2, 30.9 μ M. Aquests valors són habituals segons la informació trobada en la bibliografia dels valors de K_m per aquestes isoformes (ref. 86, ref. 88, ref. 91).

Un cop establerts els mètodes experimentals, es procedeix a <u>dissenyar l'estudi</u> <u>d'inhibició</u>. Els experiments dels estudis d'inhibició permeten conèixer si el KT, la KTA, la BN, el FEN i la XYL són inhibidors potencials d'alguna de les isoformes CYP450. Per això, es van preparar de forma individual (veure secció 5.5), incubats de microsomes a cinc concentracions de fàrmac anestèsic/analgesic, per quatre concentracions de substracte específic. La concentració de la proteïna i el temps d'incubació són els especificats als experiments de cinètica enzimàtica. Les concentracions de substracte específic es van seleccionar en funció del valor de la K_m de cada reacció específica, obtingut de forma experimental en l'anterior estudi de cinètica enzimàtica. En cada cas, s'escolleixen valors per sota i per sobre del valor de la K_m. Les concentracions de fàrmac es seleccionen en funció de la seva concentració plasmàtica màxima trobada en bibliografia (també es seleccionen valors per sota i per sobre): 25, 50, 1250 i 5000 μ M pel KT; 5, 25, 75 i 375 μ M per la KTA; 0.02, 0.1, 0.5 i 2.5 μ M per la BN; 0.1, 0.5, 5 i 20 μ M pel FEN; i 2.5, 10, 50 i 250 μ M per la XYL.

A continuació, amb les dades d'activitat enzimàtica resultants dels experiments, s'efectuen diferents càlculs per obtenir els valors de K_m i V_{max} , i els paràmetres d'inhibició, K_i i IC_{50} . Per cada concentració de fàrmac i per cada isoforma es determinen els valors de la K_m i els valors de la V_{max} , com es detalla a la secció 6.2.2. A continuació, es calculen els quocients K_m/V_{max} (5 quocients, per un CYP450 i una concentració de fàrmac), i s'aplica un test estadístic que permeten fer una primera selecció dels fàrmacs potencials inhibidors d'una isoforma CYP450. Quan no hi ha inhibició, els valors de la K_m i de la V_{max} no varien significativament amb la concentració de fàrmac, perquè aquest no interfereix en l'activitat d'una isoforma CYP450, i llavors els valors dels quocients són constants. Els tests estadístics aplicats indiquen si hi ha diferències estadísticament significatives entre els valors dels quocients en conjunt per totes les concentracions de fàrmac (inclosa la concentració zero). Aquesta primera selecció, permet que no s'hagin de realitzar els ajustaments dels models d'inhibició (que es descriuen més endavant), en les

situacions en què no hi ha diferències estadísticament significatives entre els quocients, per un CYP450 i una concentració de fàrmac.

En els resultats dels tests estadístics evidencien diferències estadísticament significatives entre els quocients en les següents reaccions específiques: CYP2A1/2, CYP2B1/2, CYP3A1/2, CYP2C11 i CYP2C quan s'incuben els microsomes amb KT; CYP2B1/2, CYP2D1, CYP2C11 i CYP2C amb KTA; CYP3A1/2 amb BN; CYP1A1/2, CYP2B1/2 i CYP2D1 amb FEN; i CYP2D1, CYP3A1/2, CYP2C11, CYP2C i CYP2A1/2 amb XYL.

A partir d'aquí, es calcula el valor de l' IC_{50} per les 18 relacions fàrmac-isoforma CYP450 que en el test estadístic havien donat diferències estadísticament significatives. Dels experiments de l'estudi d'inhibició es seleccionen les dades d'activitat enzimàtica d'una sèrie d'incubats individuals de microsomes amb les cinc concentracions de fàrmac (inclosa la concentració zero) i a una de les quatre concentracións de substracte específic, tal i com es descriu a la secció 6.3.2. La concentració de substracte específic seleccionada és la concentració més propera al valor de la K_m de cada reacció específica (5 μ M per ERO i PRO, 25 μ M per DEX, i 10 μ M per TST). El resum dels valors d'IC₅₀ obtinguts es mostra a la Taula 58.

Taula 58	Valors d'IC $_{50}$ per cada Fàrmac i Isoforma CYP450 on es Detecta una Interacció Potencial per
	Inhibició en l´Activitat de la Isoforma

	Ketoprofè	Ketamina	Buprenorfina	Fentanil	Xilacina
		٧	alors IC ₅₀ (μΜ)	
CYP1A1/2				49.0	
CYP2B1/2	3112.6	72.9		142.2	
CYP2D1		693.8		m.p.	75.0
CYP3A1/2	1058.7		5.5		162.4
CYP2C11	3117.9	209.5			62.9
CYP2C	no c.	84.3			59.8
CYP2A1/2	38921.1				769.7

IC ₅₀ : concentració d'inhibidor que disminueix l'activitat màxima d'un enzim a la meitat. m.p.: mostres perdudes. No hi ha valor en aquesta concentració de

substracte. Error en l'experiment.

no c.:no es pot calcular. Ajustat erroni de l'equació utilitzant el SigmaPlot.

combinacions que no presenten interaccions.

Tenint en compte els valors d'IC₅₀ i comparant-los amb les concentracions màximes esperades de cada fàrmac en plasma, s'observa que hi ha valors de concentracions en plasma superiors als valors d'IC₅₀. Això indicaria la possibilitat d'una interacció per inhibició entre el fàrmac i la isoforma corresponent. Aquestes possibles interaccions serien el KT (concentració plasmàtica de 1179.8 μ M) que podria interaccionar per inhibició al CYP3A1/2 (IC₅₀= 1058.7 μ M), la BN (concentració plasmàtica de 6.4 μ M) podria interaccionar per inhibició també al CYP3A1/2 (IC₅₀= 5.5 μ M), i la XYL (concentració plasmàtica de 81.7 μ M) podria interaccionar per inhibició als CYP2D1, CYP2C i CYP2C11 (IC₅₀= 75.0 μ M, 59.8 μ M i 62.9 μ M, respectivament).

En el present treball s'utilitzen tres mètodes no tradicionals (com serien les representacions de Lineweaver-Burck i de Dixon) per determinar la K_i. El primer mètode aplicat en el present treball consisteix en el desenvolupament d'una sèrie de models d'inhibició deduïts de l'equació de M-M, i una altra sèrie de models d'inhibició deduïts de l'equació de Hill. L'aplicació d'aquests models d'inhibició reversible mitjançant regressions no-lineals simultànies (SNLR), és un dels aspectes més rellevants del treball, ja que, no estava descrita en publicacions prèvies. Aquests models es programen i es validen en el software WinNonlin, amb les equacions d'inhibició reversible: Competitiva, No Competitiva i Acompetitiva. El segon mètode de "K_{m,app}" estima el valor de K_i a partir de la representació de les concentracions de fàrmac versus els valors dels quocients K_m/V_{max} , i el tercer, que és el mètode de "IC₅₀-to-K_i Converter" que és una eina que existeix a internet i que permet estimar els valors de Ki a partir dels valors experimentals d'IC₅₀. Aquests tres mètodes per determinar la Ki presenten l'avantage que només necessiten un número reduït de dades d'activitat enzimàtica a diferents concentracions de substracte específic i fàrmac, i que són d'aplicació ràpida.

En aquest primer mètode per determinar la K_i , i en funció dels criteris estadístics d'AIC i SBC, a més dels valors dels CV% dels paràmetres estimats, tal i com s'indica a la secció 6.3, s'observa que el model Competitiu és el que millor ajusta en

set cinètiques (4 derivades de l'equació de M-M i 3 derivades de l'equació de Hill); els models No Competitiu i Acompetitiu ajusten 4 cinètiques (3 derivades de l'equació de M-M i 1 de l'equació de Hill); i el model Mixte en 3 cinètiques. A l'hora de treballar, com totes les inhibicions estudiades són reversibles, la determinació del tipus d'inhibició és útil per estimar millor el valor de la K_i.

En el present treball no es comprova si algun d'aquests tipus d'inhibició podia ser irreversible.

Amb els valors de Ki obtinguts i tenint en compte els valors de concentració màxima en plasma del KT (300 µg/ml, 1179.8 µM), de la KTA (10 µg/ml, 36.6 µM), de la BN (3 µg/ml, 6.4 µM), i del FEN (0.15 µg/ml, 0.28 µM), i la concentració màxima en sang de la XYL (18 µg/ml, 81.7 µM), trobades en la bibliografia (veure la Taula 49 de la secció 7.3.3), s'observen set potencials interaccions per inhibició potencials. Aquestes interaccions són les del KT amb el CYP3A1/2 (K_i=702.7 µM, inhibició Mixta), la KTA amb el CYP2B1/2 (K_i= 41.8 µM inhibició Competitiva deduïda de l'equació de M-M), la BN amb el CYP3A1/2 $(K_i = 5.1 \mu M, inhibició Competitiva deduïda de l'equació de Hill), i la XYL amb els$ CYP2C (K_i=50.9 µM, inhibició Competitiva deduïda de l'equació de Hill), CYP2C11 (K_i=14.9 µM, inhibició Competitiva deduïda de l'equació de Hill), CYP2D1 (K_i=26.7 µM, inhibició Competitiva deduïda de l'equació de M-M), i el CYP3A1/2 (K_i =120.7 μ M, inhibició Mixta). El cas de l'interacció de la XYL amb el CYP3A1/2 i de la KTA amb el CYP2B1/2, s'inclouen com a inhibició potencial a considerar perquè, el valor de la K_i només és lleugerament superior al valor de concentració màxima referenciada.

Els valors de K_i estimats pel mètode de la " $K_{m,app}$ " no són similars als obtinguts pel mètode de SNLR. Els valors de K_i calculats per mètode "IC₅₀-to-K_i Converter" són similars en els següents casos: KT-CYP2B1/2 (3052.0 µM i 3112.6µM, model SNLR i model "IC₅₀-to-Ki Converter", respectivament); KTA-CYP2B1/2 (41.8 µM i 46.4 µM, model SNLR i mètode "IC₅₀-to-K_i Converter", respectivament); KTA-

CYP2C11 (72.8 μ M i 66.4 μ M, model SNLR i mètode "IC₅₀-to-K_i Converter", respectivament.

En la comparació entre els valors de Ki determinats pels tres mètodes, s'ha de tenir en compte que el mètode de la " $K_{m,app}$ " està descrit per l'inhibició competitiva deduïda de la cinètica de M-M, i el mètode "IC₅₀-to-K_i Converter" està descrit per utilitzar en les inhibicions Competitiva, No Competitiva i Acompetitiva deduïdes també de la cinètica de M-M. Pels models d'inhibició Mixta i pels derivats de l'equació de Hill no serien aplicables aquests dos mètodes d'estimació de la K_i.

En una etapa posterior i per precisar al màxim el valor de la K_i , es determina la fracció de fàrmac no unida a proteïnes microsomals. S´apliquen dos tècniques per estimar el fàrmac no unit/fàrmac unit a proteïnes microsomals.

La primera tècnica que es posa a punt amb les nostres condicions de treball, és la determinació *in vitro* per ultracentrifugació a través d'una membrana per l'ultrafiltració YM-10.000, d'una sèrie d'incubats de microsomes amb KTA. Si bé la tècnica *in vitro* es realitza només amb KTA, el procediment experimental és aplicable a la resta de fàrmacs, si s'adapten les concentracions de l'assaig.

La segona tècnica es la determinació *in silico* de la unió no-específica dels fàrmacs a proteïnes microsomals, que s'inclou en l'estudi perquè és una tècnica que permet conèixer la quantitat de fàrmac no unit de forma senzilla mitjançant l'aplicació d'una sèrie d'equacions (veure secció 6.4.2), i tenint en compte només la càrrega de la molècula de fàrmac. Per la qual cosa, s'estalvia tota la part experimental. Els models que s'utilitzen són: el model de Hallifax (per molècules bàsiques), el model d'Austin (per molècules àcides), el model combinat (pels dos tipus de molècules), i els models de Simcyp® per àcides i bàsiques.

El valor de la fracció no unida ($f_{u,mic}$) de la KTA determinat pel mètode *in vitro* (0.86), és pràcticament igual al calculat *in silico* amb els models de Hallifax (0.87) i de SimCYP® (0.85). En canvi, el model combinat *in silico* calcula un valor més

distant de l'obtingut pel mètode *in vitro*, (0.61). Veure Taula 55, secció 7.4.2. En conseqüència, aquests resultats consoliden l'aplicació de la tècnica *in silico*.

En el present treball també es planteja el càlcul del quocient R_{exp} , que representa la relació entre l'àrea sota la corba plasmàtica en presència i en absència d'inhibidor (ref. 115), i que s'ha desenvolupat fins arribar a una equació on el quocient depèn del paràmetre d'inhibició *in vitro* (K_i no unida) i de la concentració màxima d'inhibidor (fàrmac) trobada en plasma, tal i com s'indica a la secció 6.6. D'aquesta manera que es consideren pel càlcul, els valors de concentracions en plasma que es mostren a la Taula 49 de la secció 7.3.3, i en el cas de la XYL el valor de la concentració en sang, (s'assumeix un quocient plasma:sang 1:1).

Tal i com s'indica a la secció 6.6, quan el valor de R_{exp} és >1.1 és predictiu d'interaccions per inhibició *in vivo*. En aquest treball, els casos on R_{exp} és >1.1 són: KT amb CYP2B1/2 (R_{exp} =1.4), amb CYP2C11 (R_{exp} =1.3), i amb CYP3A1/2 (R_{exp} =2.8); KTA amb CYP2B1/2 (R_{exp} =2.0), amb CYP2C11 (R_{exp} =1.6), i amb CYP2D1 (R_{exp} =1.2); BN amb CYP3A1/2 (R_{exp} =3.4); i XYL amb CYP2C (R_{exp} =3.0), amb CYP2C11 (R_{exp} =7.7), amb CYP2D1 (R_{exp} =4.7), i amb CYP3A1/2 (R_{exp} =1.8). Veure Taula 57.

En resum, de tots els fàrmacs estudiats, el FEN no presentaria risc d'interacció en les activitats enzimàtiques de les isoformes CYP450 estudiades.

9 CONCLUSIONS

Les conclusions que s'extreuen del treball realitzat són les següents:

- S'ha posat a punt metòdiques analítiques per determinar els set metabòlits específics formats en les reaccions corresponents a les següents isoformes del CYP450: resorufina per CYP1A1/2, 7-α-hidroxitestosterona per CYP2A1/2, resorufina per CYP2B1/2, 16-α-hidroxitestosterona per CYP2C1, 2-α-hidroxitestosterona per CYP2C11, dextrorfà per CYP2D1, 6-hicroxiclorzoxazona per CYP2E1 i 6-β-hidroxitestosterona per CYP3A1/2.
- 2. S'ha posat a punt en el nostre laboratori dos mètodes per l'obtenció de microsomes hepàtics de rata, un basat en la precipitació en calci i l'altre en el mètode d'ultracentrifugació. Amb els dos mètodes es van obtenir els microsomes emprats per la realització d'aquest treball.
- 3. S'ha posat a punt i validat models d'inhibició enzimática, que permeten determinar la K_i dels fàrmacs en estudi sobre vuit isoformes CYP450 de rata, per regressions no-lineals simultànies (SNLR). Els models d'inhibició s'han desenvolupat a partir de les equacions de Michaelis-Menten i de Hill; aquestes últimes de forma innovadora, ja que no están descrites en la bibliografia. Els models s'han implementat en el software WinNonlin per la seva utilització rutinària.
- 4. Es proposa la utilització d'una anàlisi de la variància d'una vía entre els quocients K_m/V_{max} i les concentracions de fàrmac com a eina de filtrat de les interaccions CYP-fàrmac no rellevants o inexistents amb la finalitat de reduir el número de càlculs posteriors.
- 5. El paràmetre IC₅₀ no ha resultat ser un indicador prou predictiu de possibles interaccions *in vivo*. Es van predir cinc potencials interaccions per inhibició a partir de IC₅₀, set a partir de K_i i 11 a partir del quocients R_{exp}.
- 6. Els resultats del present treball permeten predir interaccions potencials *in vivo* en rata per inhibició, pels següents fàrmacs:

- a. La Buprenorfina pot inhibir l'activitat del CYP3A1/2 (R_{exp} =3.4; K_i=6.4 μ M).
- b. El Ketoprofè pot inhibir l'activitat dels CYPs 2B1/2 (R_{exp} =1.4; K_i=2777.3 μ M), 2C11 (R_{exp} =1.3; K_i=4077.7 μ M) i 3A1/2 (R_{exp} =2.8; K_i=639.5 μ M).
- c. La Ketamina pot inhibir l'activitat dels CYPs 2B1/2 (R_{exp} =2.0; K_i=35.9 μ M), 2C11 (R_{exp} =1.6; K_i=62.6 μ M) i 2D1 (R_{exp} =1.2; K_i=197.8 μ M).
- d. La Xilacina pot inhibir l'activitat dels CYPs 2C (R_{exp}=3.0; K_i=41.7 μM),
 2C11 (R_{exp}=7.7; K_i=12.2 μM), 2D1 (R_{exp}=4.7; K_i=21.9 μM) i 3A1/2 (R_{exp}=1.8; K_i=98.9 μM).
- Dels fàrmacs estudiats, i segons els resultats obtinguts, l'analgèsic Fentanil es l'únic que no presentaría potencials inhibicions de les activitats de les vuit isoformes CYP450 estudiades, i per tant, seria un analgèsic d'elecció pels estudis de metabolisme en rata.

10 **REFERÈNCIES**

- ref. 1 *Murray R*. Metabolism of xenobiotics. Harper's Illustrated Biochemistry. McGraw-Hill Incorporated.2009.
- ref. 2 *Lake B.G.* Preparation and characterisation of microsomal fractions for studies on xenobiotic metabolism. Biochemical Toxicology: A practical approach. Ed. IRL, Press, Oxford, Washintong D.C.1987.
- ref. 3 Werck-Reochhart, D. and Feyereisen R. Cytochromes P-450: a success story. Genome Biology.1:1-8, 2001.
- ref. 4 *David F.V. Lewis.* Cytochromes P450. Structure, function and mechanism..Ed. Taylor and Francis.2001.
- ref. 5 Cytochrome P450 Homepage: http://drnelson.uthsc.edu/CytochromeP450.html.
- ref. 6 *Donato M.T.* Unidad de Hepatología experimental. Centro de Investigación. Hospital La Fe. Valencia. ¿Qué es el citocromo P-450 y cómo funciona?.2000.
- ref. 7 *Donato M.T. and Castell V.* Strategies and molecular probes to investigate the role of cytochrome P450 in drug metabolism. *Clinical Pharmacokinetics*.42(2):153-178,2003.
- ref. 8 *Shiraki H. and Guengerich P.* Turnover of membrane proteins: kinetics of induction and degradation of seven forms of rat liver microsomal cytochrome P-450, NADPH-Cytochrome P-450 reductase, and epoxide hydrolase. *Archives of Biochemistry and Biophysics*. 235(1):86-96,1984.
- ref. 9 *Orellana M. and Guajardo V.* Actividad del citocromo P450 y su alteración en diversas patologías. *Revista Médica de Chile*.132:85-94,2004.
- ref. 10 Nebert D.W. and Nelson D.R. P450 gene nomenclature based on evolution. Methods in Enzymology.206:3-10,1991.
- ref. 11 *Mugford, C.A. & Kedderis, G.L.* Sex-dependent metabolism of xenobiotics. *Drug Metabolism Review*.30: 441-498,1998.
- ref. 12 *Furukawa T. and col.* Sex difference in the daily rhythm of hepatic P450 monooxygenase activites in rats is regulated by growth hormone release. *Toxicology and Applied Pharmacology*.161:219-224,1999.
- ref. 13 Imaoka S. and col. Age-dependent expression of cytochrome P-450s in rat liver. Biochimica et Biophysica Acta.1097:187-192,1991.
- ref. 14 *Lutz M.* Effect of dietary oils, cholesterol and antioxidant vitamin supplementation on liver microsomal fluidity and xenobiotic-metabolizing enzymes in rats. *Annals of Nutrition and Metabolism*.42:350-359,1998.
- ref. 15 *Furukawa T. and col.* Sex difference in the daily rhythm of hepatic P450 monooxygenase activities in rats is regulated by growth hormone release. *Toxicology and Applied Pharmacology*.161:219-224,1999.

- ref. 16 *Strobel H.W. and Dignam J.D.* Purification and properties of NADPHcytochrome P-450 reductase. *Methods in Enzymology*.52:89-96,1978.
- ref. 17 Newton D.J., Wang R.W. and Lu A.Y.H. Evaluation of specificities in the *in vitro* metabolism of therapeutic agents by human liver microsomes. Drug Metabolism and Disposition.23(1):154-158.1994.
- ref. 18 Foster R.T. and Jamali F. High-performance liquid chromatographic assay of ketoprofen enantiomers in human plasma and urine. Journal of Chromatography, 416:388-393,1987.
- ref. 19 *Menzel S., and col.* Is the inversion from R- to S-ketoprofen concentration dependent? Investigations in rats *in vivo* and *in vitro*. *Biochemical Pharmacology*.47:1267-1270,1994.
- ref. 20 *Foster R.T. and Jamali F.* Stereoselective pharmacokinetics of ketoprofen in the rat. Influence of route of administration. *Drug Metabolism and*. *Disposition*.16(4):623-626,1988.
- ref. 21 *Meunier C.J. and Verbeek R.K.*Glucuronidation of R- and S-ketoprofen, acetaminophen, and diflunisal by liver microsomes of adjuvant-induced arthritic rats. *Drug Metabolism Disposition*.27:26-31,1999.
- ref. 22 *Rodgers T. and Rowland M.* Mechanistic approaches to volume of distribution predictions: understanding the processes. *Pharmaceutical Research*.24(5):918-932,2007.
- ref. 23 *Geisslinger G. and Menzel-Soglowek S.* Stereoselective high-perfomance liquid chromatographic determination of the enantiomers of ketamine and norketamine in plasma. *Journal of chromatography B: Biochemical Sciences and Applications*.573(1):163-167, 1992.
- ref. 24 Alfonso M. and col. Validation of an EIA kit for determination of total thyroid hormones in rat serum. Effects of different anaesthesics. Journal of *Physiololgy Biochemistry*.54(1):15-22, 1998.
- ref. 25 *Yanagihara Y. and col.* Stereoselective high-perfomance liquid chromatographic determination of ketamine and its active metabolite, norketamine, in human plasma. *Journal of Chromatography B.* 746:227-231, 2000.
- ref. 26 *Edwards S.R. and Mather L.E.* Tissue uptake of ketamine and norketamine enantiomers in the rat. Indirect evidence for extrahepatic metabolic inversion. *Life Sciences*.69:2051-2066, 2001.
- ref. 27 Adams J.D. and col. Studies on the biotransformation of ketamine. Biomedical Mass Spectrometry.8(11):527-538,1981.
- ref. 28 *Williams M.L. and col.* Effects of protein calorie malnutrition on the pharmacokinetics of ketamine in rats. *Drug Metabolism and Disposition*.32 (8):786-793, 2004.
- ref. 29 *Bolze S. and Boulieu R.* HPLC determination of ketamine, norketamine and dehydronorketamine in plasma with a high-purity reversed-phase sorbent. *Clinical Chemistry*.44(3):560-564,1998.

- ref. 30 *Gumbleton M. and Benet L.Z.* Drug metabolism and laboratory anesthethic protocols in the rat:examination of antipyrine pharmacokinetics. *Pharmaceutical Research*,8(4):544-546,1991.
- ref. 31 Van Pelt Ll.F. Ketamine and xylazine for surgical anesthesia in rats. Journal of the American Veterinaty Medical Association.171(9):842-844, 1997.
- ref. 32 *Smiler K.L. and col.* Tissue response to intramuscular and intraperitoneal injections of ketamine and xylazine in rats. *Laboratory Animal Sciences*.40(1):60-64,1990.
- ref. 33 *Pedraz J.L.* The biotransformation kinetcis of ketamine *in vitro* in rabbit liver and lung microsome fractions. *European Journal of Drug Metabolism and Pharmacokinetics*.11(1):9-16,1986.
- ref. 34 *Hedenqvist P. and col.* Effects of repeated anaesthesia with ketamine/medetomidine and of pre-anaesthesic administration of buprenorphine in rats. *Laboratory Animals*.34:207-211,2000.
- ref. 35 *Björkman S. and Redke F.* Clearance of fentanyl, alfentanil, methohexitone, thiopentone and ketamine in relation to estimated hepatic blood flow in several animal species:application to prediction of clearance in man. *Journal of Pharmacokinetics and Pharmacology*.52:1065-1074,2000.
- ref. 36 *Livingston A. and Waterman A.E.* The development of tolerance to ketamine in rats and the significance of hepatic metabolism. *British Journal of Pharmacokinetics*.64:63-69,1978.
- ref. 37 Marietta M.P. and col. Biodisposition of ketamine in the rat: self-induction of metabolism. The Journal of Pharmacology and Experimental Therapeutics.198(3):536-544,1975.
- ref. 38 *Meneguz A. and col.* Influence of urethane and ketamine on rat hepatic cytochrome P450 *in vivo. Experimental and Toxicologic Pathology*.54:392-396,1999.
- ref. 39 *Brewster D. and col.* Biliary excretion, metabolism and enterohepatic circulation of buprenorphine. *Xenobiotica*.11(3):189-196,1981.
- ref. 40 Arnould J.F. and Pinaud M. Pharmacologie de la buprénorphine. Annales Françaises d'Anesthésie et de Réanimation.10:559-564,1991.
- ref. 41 *Ohtani M. and col.* Pharmacokinetic analysis of enterohepatic circulation of buprenorphine and its active metabolite, norbuprenorphine, in rats. *Drug Metabolism and Disposition*.22(1):2-7,1993.
- ref. 42 *Kobayashi K. and col.* Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Short Communication. *Drug Metabolism and Disposition*.26(8):818-821,1998.
- ref. 43 *Umehara K. and col.* Inhibition of human drug metabolizing cytochrome P450 by buprenorpine. *Biological and Pharmaceutical Bulletin*.25(5):682-685,2002.

- ref. 44 Simpson D.P. Prolonged (12 hours) intravenous anesthesia in the rat. Laboratory Animal Science.47(5): 519-523,1997.
- ref. 45 *Ohtani M. and col.* Kinetics of respiratory depression in rats induced by buprenorphine and its metabolite, norbuprenorphine. The Journal *Pharmacology and Experimental Therapeutics*.281(1):428-433,1997.
- ref. 46 *Takahashi Y. and col.* Pharmacokinetics of buprenorphine hydrochloride (BN.HCl)(1):absorption, distribution, metabolism and excretion after percutaneous (TSN-09:BN.HCl containing tape application) or subcutaneous administration of BN.HCl in rats. *Xenobiotic, Metabolism and Disposition*.16(6):569-583,2001.
- ref. 47 *Ekins S. and col.* Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. *The Journal of Pharmacology and Experimental Therapeutics*.291(1):424-433,1999.
- ref. 48 *Ho J.W. and Moody E.* Determination of tolbutamide hydroxylation in rat liver microsomes by high-performance liquid chromatography: effect of psycoactive drugs in *in vitro* activity. *Life Sciences*.52:21-28,1992.
- ref. 49 *Meuldermans W.E.G. and col.* Plasma protein and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood. *Archives Internationales Pharmacodynamie.* 257:4-19,1982.
- ref. 50 *Feierman D.E. and Lasker J.M.* Metabolism of fentanyl, a synthetic opioid analgesic, by human liver microsomes. Role of CYP3A4. *Drug Metabolism and Disposition*.24(9): 932-939,1996.
- ref. 51 *Björkman S. and col.* Comparative tissue concentration profiles of fentanyl and alfentanil in humans preicted from tissue/blood partition data obtained in rats. *Anesthesiology*.72:865-875,1990.
- ref. 52 *Feierman D.E.* The effect of paracetamol (acetaminophen) on fentanyl metabolism *in vitro*. *Acta Anaesthesiologica Scandinavica*.44:560-563,2000.
- ref. 53 *Hug C.C. and col.* Tissue redistribution of fentanyl and termination of its effects in rats. *Anesthesiology*.55:369-375,1981.
- ref. 54 *Feierman D.E.* Identification of cytochrome P450 3A1/2 as the major P450 isoform responsible for the metabolism of fentanyl by rat liver microsomes. *Anesthesia and Analgesia*.82:936-941, 1996.
- ref. 55 Chamberlain P.L. Xylazine. FDA, Center of Veterinary Medicine. 2002.
- ref. 56 Park H-Y. and Choi S-O. The metabolism of xylazine in rats. Archives of Pharmacal Research.14(4):346-351,1991.
- ref. 57 *Choo H-Y P.* Tissue concentration of xylazine and its metabolite in rats. *Korean Journal of Toxicoly.* Vol. 9, No. 2:147-152. 1993.
- ref. 58 *Yasuhara K. and col.* Toxicity and blood concentration of xylazine and its metabolite, 2,6-dimethylaniline, in rats after single or continuous oral administrations. *The Journal of Toxicological Sciences*.25(2):105-113,2000.

- ref. 59 *Mutlib A.E. and col.* Characterization of metabolites of xylazine produced *in vivo* and *in vitro* by LC/MS/MS and by GC/MS. *Drug Metabolism and Disposition*.20(6):840-848,1992.
- ref. 60 *Kazuo Y. and col.* Toxicity and blood concentrations of xylazine ant its metabolite 2,6-dimethylaniline in rats after single or continuous oral administrations. *The Journal of Toxicological Sciences*.25:105-113,2000.
- ref. 61 *Kakkar T. and col.* Evaluation of a minimal experimental design for determination of enzyme kinetic parameters and inhibition mechanism. *The Journal of Pharmacology and Experimental Therapeutics*.293(3):861-869,2000.
- ref. 62 *Segel I.H.* Enzyme kinetics. Behavior and analysis of rapid equilibrium and steady-state enzyme systems. John Wiley and sons, Inc.N.Y. USA.1993.
- ref. 63 *De Arriaga M.D. and col.* Manual de ejercicios de cinética enzimàtica. Ed.Universidad y León.1998.
- ref. 64 Houston J.B. and Kenworthy K.E. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten Model. Drug Metabolism and Disposition.28(3): 246-254,1999.
- ref. 65 *Tran T.H. and col.* Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. *Drug Metabolism and Disposition*.30:1441-1445,2002.
- ref. 66 *Lin J.H.* Applications and limitations of interspecies scaling and *in vitro* extrapolation in pharmacokinetics. *Drug Metabolism and Disposition*.26(12):1202-1212,1998.
- ref. 67 *Obach R.S.* The importance of nonspecific binding in *in vitro* matrices, its impact on enzyme kinetic studies of drug metabolism reactions, and implications for *in vitro-in vivo* correlations. *Drug Metabolism and Disposition*.24(10):1047-1049,1996.
- ref. 68 *Obach R.S.* Nonspecific binding to microsomes:impact on scale-up of *in vitro* intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propanolol. *Drug Metabolism and Disposition*.25(12):1359-1369,1997.
- ref. 69 *Munson P.J. and Rodbard D.* An exact correction to the "Cheng-Prusoff" correction. *Journal of Receptor Research*.8:533-546,1988.
- ref. 70 *Cheng Y. and Prusoff W.H.* Relationship between the inhibition constant (Ki) and the concentration of inhibitior which causes 50 per cent inhibition (IC50) of an enzymatic reaction. *Biochemical Pharmacology*.22:3099-3108.1973.
- ref. 71 *"In vitro interactions of Ketamine, Xylazine, Buprenorphine, Fentanyl and Ketoprofen with CYP2B and 3A in rat liver microsomes".* 18th International Conference in Cytochrome P450. Dijon, França, 2003. M.C.Gómez, J.Solà, C.Peraire and R.Obach.

- ref. 72 *"In vitro interactions of Ketamine an Ketoprofen with different Cytochrome P450 isoforms in rat liver microsomes"*. 12th International Conference on Cytochrome P450. La Grande Motte. França, 2001. M.C.Gómez, J.Solà, C.Peraire and R.Obach.
- ref. 73 Schenkman J.B. and Cinti D.L. Preparation of microsomes with calcium. Methods in Enzymology.52:83-89,1998.
- ref. 74 *Litterst Ch.L. and col.* Drug metabolism by microsomes from hepatic organs of rat and rabbit prepared by calcium aggregation. *Life Sciences*.17:813-818,1975.
- ref. 75 Lowry O.H. and col. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry.193(1):265-275,1951.
- ref. 76 Omura T. and Sato R. Isolation of Cytochromes P-450 and P-420. Methods in Enzymology. 10:556-561,1967.
- ref. 77 Omura T. and Sato R. A new Cytochrome in liver microsomes. J. Biol. Chem. 237:1375-1376,1962.
- ref. 78 *Guengerich F.P. and Martin M.V.* Purification of Cytochromes P450. Rat an human hepatic forms. *Methods in Molecular Biology*,107:35-53,1998.
- ref. 79 *Ryan D.E. and col.* Purification, characterisation and regulation of five rat hepatic microsomal cytochrome P-450 isozymes. *Xenobiotica*.12(11):727-744,1982.
- ref. 80 Joly, J.G. and col. Cytochrome P-450 measurement in rat liver homogenate and microsomes. Drug Metabolism and Disposition.3(6): 577-586,1975.
- ref. 81 Omura T. and Sato R. The carbon monoxide-binding pigment of liver microsomes. The Journal of Biological Chemistry. 239(7):2379-2385, 1964.
- ref. 82 *Funae Y. and Imaoka S.* Purification and characterization of liver microsomal cytochrome P-450 from untreated male rats. *Biochimica et Biophysica Acta*.926:349-358,1987.
- ref. 83 *Matsubara T. and col.* Quantitative determination of cytochrome P-450 in rat liver homogenate. *Analytical Biochemistry*.75(2):596-603,1976.
- ref. 84 *Vuppugalla R. and Mehvar R.* Enzyme-selective effects of nitric oxide on affinity and maximum velocity of various rat cytochromes P450. *Drug Metabolism and Disposition*.33:829-836,2005.
- ref. 85 *Litterst Ch.L. and col.* Drug metabolism by microsomes from extrahepatic organs of rat and rabbit prepared by calcium aggregation. *Life Sciences*.17:813-818,1975.
- ref. 86 Jaruratanasirikul S. and col. The inhibitory effect of amiodarone and desethylamiodarone on dextromethorphan O-demethylation in human and rat liver microsomes. Journal of Pharmacy and Pharmacology.46:933-935,1994.

- ref. 87 *Kuhn U.D. and col.* Induction of cytochrome P450 1A1 in rat liver slices by 7-ethoxycoumarin and 4-methyl-7-ethoxycoumarin. *Experimental and Toxicologic Pathology*.50:491-496,1998.
- ref. 88 *Burke M.D. and col.* Ethoxyresorufin: direct fluorometric assay of a microsomal O-dealkylation which is preferentially inducible by 3-methylcholanthrene. *Drug Metabolism and Disposition*.2(6):583-588,1974.
- ref. 89 Burke M.D. and col. Characteristics of a microsomal cytochrome P-448mediated reaction. Drug Metabolism and Disposition.5(1):1-8 1977.
- ref. 90 *Turini A. and col.* Oxidation of methyl- and ethyl- tertiary-butyl ethers in rat liver microsomes: role of the cytochrome P450 isoforms. *Archives of Toxicology*.72:207-214,1998.
- ref. 91 *Howard L.A.and col.* Low doses of nicotine and ethanol induce CYP2E1 and chlorzoxazone metabolism in rat liver. *The Journal of Pharmacology and Experimental Therapeutics*.299(2):542-550,2001.
- ref. 92 *Korzekwa K.R. and col.* Evaluation of atypical cytochrome P450 kinetics with two-substrate models:evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. *Biochemistry*.37:4137-4147,1998.
- ref. 93 *Ekins S. and col.* Autoactivation and activation of the cytochrome P450s. *International Journal of Clinical Pharmacology and Therapeutics*.36(12):642-651.1998.
- ref. 94 *Geng W.* A method for indentification of inhibition mechanism and estimation of Ki in *in vitro* enzyme inhibition study. *Drug Metabolism and Disposition*.31:1456-1457,2003.
- ref. 95 *Kakkar T. and col.*. Estimation of Ki in a competitive enzyme-inhibition model: comparisons among three methods of data analysis. *Drug Metabolism and Disposition*.27(6):756-762, 1999.
- ref. 96 *Car R.Z. and col.* IC50-to-Ki: a web-based tool for covering IC50 to Ki values for inhibitors of enzyme activity and ligand binding. *Nucleic Acids Research*:1-5,2009.
- ref. 97 "Role of Ketamine non-specific binding to rat microsome incubations and its impact on the inhibition parameters of cytochromes P450: 1A, 2A, 3A1, 2B, 2C, 2C11 and 2D1". 9th European ISSX Meeting. Manchester, UK, 2006. M.C.Gómez, J.Solà, C.Peraire and R.Obach.
- ref. 98 *Hallifax and col.* Binding of drugs to hepatic microsomes:comment and assessment of current prediction methodology with recommendation for improvement. *Drug Metabolism and Disposition*.34(4):724-726,2006.
- ref. 99 *Austin R.P. and col.* Response to "binding of drugs to hepatic microsomes: comment and assessment of current prediction methodology with recommendation for improvement". Drug Metabolism and Disposition.34(4):727. 2006.

- ref. 100 *Austin R.P. and col.* The influence of nonspecific binding microsomal binding on apparent clearance, and its prediction from physicochemical properties. *Drug Metabolism and Disposition*.30(12):1497-1503,2002.
- ref. 101 Advanced Chemistry Development (ACD/Labs) software v8.14 for Solaris©.:1994-2005. ACD/Labs.
- ref. 102 *Turner D.B. and col.* Prediction of non-specific hepatic microsomal binding from readily available physicochemical propierties. 9th European ISSX Meeting. Manchester UK, 4th-7th Juny 2006.
- ref. 103 *De Buck. S.S. and col.* The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools. *Drug Metabolism and Disposition*.35(4):649-659,2007.
- ref. 104 Anderson T.B. and col. An evaluation of the *in vitro* metabolism data for predicting the clearance and drug-drug interaction potential of CYP2C9 substrates. *Drug Metabolism Disposition*.32(7):715-721,2004.
- ref. 105 *Gao H. and col. In silico* modeling of nonspecific binding to human liver microsomes. Drug Metabolism and Disposition.36(10):2130-2135,2008.
- ref. 106 *Emoto C. and col.* Utilization of estimated physicochemical properties as an integrated part of predicting hepatic clearance in the early drug-discovery stage: impact of plasma and microsomal binding. *Xenobiotica*.39(3):227-235, 2009.
- ref. 107 *McLure J.A. and col.* Nonspecific binding of drugs to human liver microsomes. *British Journal of Clinical Pharmacology*.49:452-461,2000.
- ref. 108 Venkatakrishnan K. and col. Microsomal binding of amitriptyline:_effect on estimation of enzyme kinetic parameters *in vitro*. *The Journal of Pharmacology and Experimental Therapeutics*.293(2):343-350.2000.
- ref. 109 *Margolis J.M. and Obach R.S.* Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating *in vitro* inhibition data to *in vivo* drug interactions. Drug Metabolism and Disposition.31(5):606-611, 2003.
- ref. 110 De Buck S.S. and col. The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools. Drug Metabolism and Disposition.351(4):649-659, 2007.
- ref. 111 *Woon-Gye Ch. and col.* Involvement of CYP3A1, 2B1, and 2E1 in C-8 hydroxylation and CYP 1A2 and flavin-containing monooxygenase in N-demethylation of caffeine: identified by using inducer treated rat liver microsomes that are characterized with testosterone metabolic patterns. *Chemico-Biological Interactions*.113:1-14, 1998.
- ref. 112 *Steensma A. and col.* Metabolism of coumarin and 7-ethoxycoumarin by rat, mouse, guinea pig, Cynomolgus monkey and human precision-cut liver slices. *Xenobiotica*.24(9):1-14, 1994.

- ref. 113 *Feierman D.E.* Identification of cytochrome P450 3A1/2 as the major P450 isoform responsible for the metabolism of fentanyl by rat liver microsomes. *Anesthesia and Analgesia*.82:936-941, 1996.
- ref. 114 Guidance for industry. Drug interactions studies. Study design, data analysis, implications for dosing, and labeling recommendations. FDA.Febrer 2012.
- ref. 115 *Bjornsson T.D.* The conduct of *in vitro* and *in vivo* drug-drug interaction studies: a pharmaceutical research and manufacturers of America (PhRMA) perspective. *Drug Metabolism and Disposition*.31(7):815-832, 2003.

Annex 1 Model d'Inhibició Enzimàtica Competitiva Deduït de l'Equació de Michaelis-Menten per 5 Concentracions d'Inhibidors

```
Model 1
        remark
remark Developer:
      Model Date:
remark
remark Model Version: 1.0
       remark
remark
remark - MODEL D'INHIBICÓ ENZIMÀTICA COMPETITIVA M-M
remark - PER 5 CONCENTRACIONS D'INHIBIDOR
COMMANDS
NFUN 5
NPARAMETERS 3
PNAMES 'Vm', 'Km', 'Ki'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5 = CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
END
remark - define model equation
FUNCTION 1
F=Vm*x/((KM*(1+INH1/Ki)+x))
END
FUNCTION 2
F=Vm*x/((KM*(1+INH2/Ki)+x)
END
FUNCTION 3
F=Vm*x/((KM*(1+INH3/Ki)+x)
END
FUNCTION 4
F=Vm*x/((KM*(1+INH4/Ki)+x))
END
FUNCTION 5
F=Vm*x/((KM*(1+INH5/Ki)+x))
END
remark - end of model
EOM
```

```
Model 1
        remark
remark
      Developer:
remark Model Date:
remark Model Version: 1.0
        remark
remark
remark - MODEL D'INHIBICIÓ ENZIMÀTICA NO-COMPETITIVA
remark - PER 5 CONCENTRACIONS D'INHIBIDOR
COMMANDS
NFUN 5
NPARAMETERS 3
PNAMES 'Vm', 'Km', 'Ki'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5= CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
END
remark - define model equation
FUNCTION 1
AMT1=(1+(INH1/Ki))
F=Vm*x/((KM*AMT1)+(x*AMT1))
END
FUNCTION 2
AMT2=(1+(INH2/Ki))
F=Vm*x/((KM*AMT2)+(x*AMT2))
END
FUNCTION 3
AMT3=(1+(INH3/Ki))
F=Vm*x/((KM*AMT3)+(x*AMT3))
END
FUNCTION 4
AMT4=(1+(INH4/Ki))
F=Vm*x/((KM*AMT4)+(x*AMT4))
END
FUNCTION 5
AMT5=(1+(INH5/Ki))
F=Vm*x/((KM*AMT5)+(x*AMT5))
END
remark - end of model
EOM
```

Annex 2 Model d'Inhibició Enzimàtica No Competitiva Deduït de l'Equació de Michaelis-Menten per 5 Concentracions d'Inhibidors

Annex 3 Model d'Inhibició Enzimàtica Mixta Deduït de l'Equació de Michaelis-Menten per 5 Concentracions d'Inhibidors

```
Model 1
        remark
remark Developer:
remark Model Date:
remark Model Version: 1.0
      remark
remark
remark - MODEL D'INHIBICIÓ ENZIMÀTICA MIXTA
remark - PER 5 CONCENTRACIONS D'INHIBIDOR
COMMANDS
NFUN 5
NPARAMETERS 4
PNAMES 'Vm', 'Km', 'Ki', 'a'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5 = CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
a = P(4)
END
remark - define model equation
FUNCTION 1
AMT1=(1+(INH1/Ki))
AMT2 = (1 + (INH1 / (a * Ki)))
F=Vm*x/((KM*AMT1)+(x*AMT2))
END
FUNCTION 2
AMT3=(1+(INH2/Ki))
AMT4 = (1 + (INH2 / (a * Ki)))
F=Vm*x/((KM*AMT3)+(x*AMT4))
END
FUNCTION 3
AMT5=(1+(INH3/Ki))
AMT6=(1+(INH3/(a*Ki)))
F=Vm*x/((KM*AMT4)+(x*AMT6))
END
FUNCTION 4
AMT7=(1+(INH4/Ki))
AMT8=(1+(INH4/(a*Ki)))
F=Vm*x/((KM*AMT7)+(x*AMT8))
END
FUNCTION 5
AMT9=(1+(INH5/Ki))
AMT10=(1+(INH5/(a*Ki)))
F=Vm*x/((KM*AMT9)+(x*AMT10))
END
remark - end of model
EOM
```

Annex 4 Model d'Inhibició Enzimàtica Acompetitiva Deduït de l'Equació de Michaelis-Menten per 5 Concentracions d'Inhibidors

```
Model 1
        remark
remark
      Developer:
remark Model Date:
remark Model Version: 1.0
        remark
remark
remark - MODEL D'INHIBICIÓ ENZIMÀTICA ACOMPETITIVA PER 5 CONCENTRACIONS
D´INHIBIDORs
remark -
COMMANDS
NFUN 5
NPARAMETERS 3
PNAMES 'Vm', 'Km', 'Ki'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5= CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
END
remark - define model equation
FUNCTION 1
AMT1=(1+(INH1/Ki))
F=Vm*x/((KM)+(x*AMT1))
END
FUNCTION 2
AMT2=(1+(INH2/Ki))
F=Vm*x/((KM)+(x*AMT2))
END
FUNCTION 3
AMT3=(1+(INH3/Ki))
F=Vm*x/((KM)+(x*AMT3))
END
FUNCTION 4
AMT4=(1+(INH4/Ki))
F=Vm*x/((KM)+(x*AMT4))
END
FUNCTION 5
AMT5=(1+(INH5/Ki))
F=Vm*x/((KM)+(x*AMT5))
END
remark - end of model
EOM
```

Annex 5 Model d'Inhibició Enzimàtica Competitiva Deduït de l'Equació de Hill per 5 Concentracions d'Inhibidors

```
Model 1
        remark
remark Developer:
remark Model Date:
remark Model Version: 1.0
remark
remark - MODEL D´INHIBICIÓ ENZIMÀTICA COMPETITIVA SIGMOIDAL
remark - PER 5 CONCENTRACIONS D'INHIBIDOR
COMMANDS
NFUN 5
NPARAMETERS 4
PNAMES 'Vm', 'Km', 'Ki', 'gamma'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5 = CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
gamma = P(4)
END
remark - define model equation
FUNCTION 1
AMT1=(1+(INH1/Ki))
F=Vm*x**gamma/((KM**gamma*AMT1)+x**gamma)
END
FUNCTION 2
AMT2=(1+(INH2/Ki))
F=Vm*x**gamma/((KM**gamma*AMT2)+x**gamma)
END
FUNCTION 3
AMT3=(1+(INH3/Ki))
F=Vm*x**gamma/((KM**gamma*AMT3)+x**gamma)
END
FUNCTION 4
AMT4=(1+(INH4/Ki))
F=Vm*x**gamma/((KM**gamma*AMT4)+x**gamma)
END
FUNCTION 5
AMT5=(1+(INH5/Ki))
F=Vm*x**gamma/((KM**gamma*AMT5)+x**gamma)
END
remark - end of model
EOM
```
```
Model 1
        remark
remark Developer:
remark Model Date:
remark Model Version: 1.0
       remark
remark
remark - MODEL D'INHIBICIÓ ENZIMÀTICA NO-COMPETITIVA SIGMOIDAL
remark - PER 5 CONCENTRACIONS D'INHIBIDOR
COMMANDS
NFUN 5
NPARAMETERS 4
PNAMES 'Vm', 'Km', 'Ki', 'gamma'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5 = CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
gamma = P(4)
END
remark - define model equation
FUNCTION 1
AMT1=(1+(INH1/Ki))
F=Vm*x**gamma/((KM**gamma*AMT1)+(x**gamma*AMT1))
END
FUNCTION 2
AMT2=(1+(INH2/Ki))
F=Vm*x**gamma/((KM**gamma*AMT2)+(x**gamma*AMT2))
END
FUNCTION 3
AMT3=(1+(INH3/Ki))
F=Vm*x**gamma/((KM**gamma*AMT3)+(x**gamma*AMT3))
END
FUNCTION 4
AMT4=(1+(INH4/Ki))
F=Vm*x**gamma/((KM**gamma*AMT4)+(x**gamma*AMT4))
END
FUNCTION 5
AMT5=(1+(INH5/Ki))
F=Vm*x**gamma/((KM**gamma*AMT5)+(x**gamma*AMT5))
END
remark - end of model
EOM
```

Annex 6 Model d'Inhibició Enzimàtica No Competitiva Deduït de l'Equació de Hill per 5 Concentracions d'Inhibidors

Annex 7 Model d'Inhibició Enzimàtica Acompetitiva Deduït de l'Equació de Hill per 5 Concentracions d'Inhibidors

```
Model 1
        *******************
remark
remark Developer:
remark Model Date:
remark Model Version: 1.0
remark
remark - MODEL D'INHIBICIÓ ENZIMÀTICA SIGMOIDAL
remark - PER 5 CONCENTRACIONS D'INHIBIDOR
COMMANDS
NFUN 5
NPARAMETERS 4
PNAMES 'Vm', 'Km', 'Ki', 'gamma'
NCONSTANTS 5
END
remark - define temporary variables
TEMPORARY
INH1 = CON(1)
INH2 = CON(2)
INH3 = CON(3)
INH4 = CON(4)
INH5= CON(5)
Vm = P(1)
Km = P(2)
Ki = P(3)
gamma = P(4)
END
remark - define model equation
FUNCTION 1
AMT1=(1+(INH1/Ki))
F=Vm*x**gamma/((KM**gamma)+(AMT1*x**gamma))
END
FUNCTION 2
AMT2=(1+(INH2/Ki))
F=Vm*x**gamma/((KM**gamma)+(AMT2*x**gamma))
END
FUNCTION 3
AMT3=(1+(INH3/Ki))
F=Vm*x**gamma/((KM**gamma)+(AMT3*x**gamma))
END
FUNCTION 4
AMT4=(1+(INH4/Ki))
F=Vm*x**gamma/((KM**gamma)+(AMT4*x**gamma))
END
FUNCTION 5
AMT5=(1+(INH5/Ki))
F=Vm*x**gamma/((KM**gamma)+(AMT5*x**gamma))
END
remark - end of model
EOM
```

Annex 8 Posters Relacionats amb el Treball i Presentats a Diferents Congressos

- "Role of Ketamine non-specific binding to rat microsome incubations and its impact on the inhibition parameters of cytochromes P450: 1A, 2A, 3A1, 2B, 2C, 2C11 and 2D1". 9th European ISSX Meeting. Manchester, UK, 2006. M.C.Gómez, J.Solà, C.Peraire and R.Obach.
- "In vitro interactions of Ketamine, Xylazine, Buprenorphine, Fentanyl and Ketoprofen with CYP2B and 3A in rat liver microsomes". 18th International Conference in Cytochrome P450. Dijon, França, 2003. M.C.Gómez, J.Solà, C.Peraire and R.Obach.
- *"In vitro interactions of Ketamine an Ketoprofen with different Cytochrome P450 isoforms in rat liver microsomes".* 12th International Conference on Cytochrome P450. La Grande Motte. França, 2001. M.C.Gómez, J.Solà, C.Peraire and R.Obach.