
 ��

Department of Computer SciencePhD ThesisPerception-Based Learningfor Fine Motion Planningin Robot Manipulation
Enric Cervera i Mateu

Castell�o, 1997
Supervisor: Angel Pasqual del Pobil i Ferr�e

Per a Rosa,sense el seu suportaquest treball no hauria segut possible.

The work presented in this thesis has been carried out partially in theCEIT (Gipuzkoa), and mainly in the Laboratory of Robotic Intelligenceat Jaume-I University of Castell�o (Spain). Support for this laboratory isprovided in part by the Comisi�on Interministerial de Ciencia y Tecnolog��a(CICYT), under the projects: TAP92-0391-C02-0 and TAP95-0710; in partby the EU ESPRIT Programme: EP21007; in part by the Fundaci�o CaixaCastell�o: B-41-IN, A-36-IN, and P1A94-22; and in part by the GeneralitatValenciana: GV-2214/94.

vi

viiPerception-Based Learning for Fine MotionPlanning in Robot ManipulationbyEnric Cervera i MateuAbstractRobots must successfully execute tasks in the presence of uncertainty.The main sources of uncertainty are modeling, sensing, and control. Finemotion problems involve a small-scale space and contact between objects.Though modern manipulators are very precise and repetitive, complex tasksmay be di�cult {or even impossible{ to model at the desired degree of ex-actitude; moreover, in real-world situations, the environment is not knowna-priori and visual sensing does not provide enough accuracy.In order to develop successful strategies, it is necessary to understandwhat can be perceived, what action can be learnt {associated{ according tothe perception, and how can the robot optimize its actions with regard tode�ned criteria.The thesis describes a robot programming architecture for learning �nemotion tasks. Learning is an autonomous process of experience repetition,and the target is to achieve the goal in the minimum number of steps. Un-certainty in the location is assumed, and the robot is guided mainly by thesensory information acquired by a force sensor.The sensor space is analyzed by an unsupervised process which extractsfeatures related with the probability distribution of the input samples. Suchfeatures are used to build a discrete state of the task to which an optimalaction is associated, according to the past experience.The thesis also includes simulations of di�erent sensory-based tasks toillustrate some aspects of the learning processes.The learning architecture is implemented on a real robot arm with forcesensing capabilities. The task is a peg-in-hole insertion with both cylindricaland non-cylindrical workpieces.Thesis Supervisor Professor Angel Pasqual del Pobil i Ferr�eAssociate Professor of Computer Scienceand Arti�cial Intelligence

viii

AcknowledgmentsI am deeply indebted to my supervisor, Angel Pasqual del Pobil, for hisconstant and generous advice, encouragement, and support. Many of thekey ideas in this thesis arose in conversations with Angel, and this workwould have been impossible without his help.I would like particularly to thank Edward Marta and Miguel Angel Serna,for their collaboration in the initial stages of this research, and all the peopleat the CEIT for their friendship.Thanks to Jari Kangas, Michael Kaiser, Profs. Kohonen and Dillman,and all the people who kindly helped me during my visits to the Laboratoryof Computer and Information Science in Helsinki and the Institute for Real-Time Systems and Robotics in Karlsruhe.Thanks to my colleagues of the Robotic Intelligence Group for helpfuldiscussions, and to many other people in the Departments of Computer Sci-ence, Mathematics, and Technology of Jaume-I University for their supportin many aspects of the research: from discussing concepts of statistics, man-ufacturing the pieces for the experiments, to the invaluable help with LATEX.Thanks also to the administrative personnel of the department of ComputerScience for their help in all those little things.Finally, I wish to thank my parents for their unconditional support overmany years. Thanks for believing in education.The author has been funded by a grant from the Spanish Ministry ofEducation (from February'94 to September'97).

ix

x

Contents
1 Introduction 11.1 Statement of the problem . 21.2 Brief outline of the approach 21.3 Issues and goals . 21.4 Outline of the thesis . 42 Uncertainty in �ne motion 72.1 Force control and compliance 92.2 Geometrical planning approaches 102.3 Contact identi�cation and monitoring 142.4 Approaches based on learning 182.5 Discussion . 203 Learning approaches 233.1 The self-organizing map (SOM) 243.1.1 Kohonen's SOM algorithm 243.1.2 Applications to robotics 273.2 Hybrid learning with multiple SOMs 273.2.1 Probability density approximation with SOMs 283.2.2 Supervised learning procedure 293.2.3 A synthetic classi�cation problem 303.2.4 Experiments on real data 323.2.5 Discussion . 343.3 Recurrent neural networks . 353.4 Reinforcement learning . 363.4.1 Markovian decision problems 373.4.2 Q-learning . 383.4.3 Exploration strategies 403.4.4 Reinforcement learning in robotics 433.5 Q-learning and recurrent networks 443.5.1 A sensor-based goal-�nding task 44xi

xii CONTENTS3.5.2 A �nite state model of the task 473.5.3 Simulation results . 504 Contact identi�cation with SOMs 614.1 Monitoring with SOMs . 614.2 Monitoring �ne motion tasks 624.3 The peg-in-hole insertion task 644.3.1 Frictionless simulation 654.3.2 Considering friction . 704.3.3 Robustness against task changes 784.3.4 Adaptation to permanent changes 824.3.5 Collective output calculation 834.3.6 Discussion . 864.4 A
exible manufacturing system task 874.4.1 Learning complex insertion tasks 914.4.2 Maps for a complete insertion operation 924.4.3 Detecting states within insertion processes 984.4.4 Improvements and generalizations 994.4.5 Discussion . 1044.5 Building a SOM-based �ne motion plan 1054.5.1 Qualitative model of a manipulation task 1064.5.2 Qualitative model . 1094.5.3 Simulations without uncertainty 1134.5.4 Uncertainty and perception 1144.5.5 Perception-based qualitative model 1164.5.6 Perception-based simulations 1184.5.7 Discussion . 1185 Robot learning architecture 1215.1 Situated, embodied agents . 1215.2 An architecture for a manipulator robot 1245.2.1 Speci�cation of a �ne motion task 1265.2.2 Robot hardware . 1265.2.3 Signals, features and states 1295.2.4 Planning and learning 1335.2.5 Control algorithms . 1365.3 Experimental results . 1375.3.1 Case of the cylinder . 1395.3.2 Case of the square peg 1475.3.3 Case of the triangle peg 151

CONTENTS xiii6 Conclusions and future work 1616.1 Main contributions of this thesis 1616.2 List of selected publications 1626.3 Future work . 164A The Zebra ZERO robot 167A.1 Kinematic con�guration . 167A.2 Drive system . 168A.3 Force sensor . 169A.4 Operating modes . 169A.4.1 Position control . 169A.4.2 Force threshold mode 169A.4.3 Force control mode . 170A.4.4 Sti�ness control mode 170A.5 Homing the robot . 170B Software packages 173B.1 Self-organizing maps . 173B.2 Recurrent neural networks . 173B.3 Learning architecture . 173

xiv CONTENTS

Chapter 1IntroductionThe conjunction of perception and action has been recognized as a key con-cept in both �elds of robotics and arti�cial intelligence (AI). Brady [1985]de�ned robotic science as the intelligent connection of perception to action.And, for Winston [1992], AI is the study of the computations that make itpossible to perceive, reason, and act.AI has failed because there are no working systems. The work in thisthesis is motivated by the engineering goal of AI which is, according againto Winston [1992], to solve real-world problems using arti�cial intelligence asan armamentarium of ideas about representing knowledge, using knowledge,and assembling systems.Our �rst motivation was a real problem (presented in Sect. 4.4), theextraction and insertion of tools of a machining center and a tool pallet bya robot arm. The uncertainty in the environment made a pure positionalapproach unfeasible. First, the robot was endowed with a force sensor inorder to capture signals which identi�ed contacts. However, the processingof these signals was di�cult, and its relationship with the required motionwas not clear.Our attention turned to learning techniques, neural networks and ma-chine learning, to provide the robot and its controlling computer with thecapabilities for adequately processing the sensor data (representing knowl-edge) and for managing the complex problem of learning which actions wererequired according to the perception from the sensors (using knowledge).This approach shed new light onto the peg-in-hole problem (in simu-lations), and the real implementation was actually carried out in a smallrobot in our laboratory for a similar task, a real peg-in-hole insertion withnon-cylindrical shapes (assembling systems); it must be noted that very fewcases are found in the literature with 3D real robots.1

2 CHAPTER 1. INTRODUCTION1.1 Statement of the problemThe basic problem is that robots must successfully execute tasks in the pres-ence of uncertainty. The main sources of uncertainty are modeling, sensing,and control. Fine motion problems involve a small-scale space and contactbetween objects. Though modern manipulators are very precise and repet-itive, complex tasks may be di�cult {or even impossible{ to model at thedesired degree of exactitude; moreover, in real-world situations, the envi-ronment is not known a-priori and visual sensing does not provide enoughaccuracy.In order to develop successful strategies, it is necessary to understandwhat can be perceived, what action can be learnt {associated{ according tothe perception, and how the robot can optimize its actions with regard tode�ned criteria.1.2 Brief outline of the approachThe basic approach models perception as a feature extraction process, andlearning as a re�nement of action choices directed towards the maximizationof some criteria by means of a mathematically de�ned feedback.The robot should act in an autonomous way. The (self-)evaluation of itsperformance during successive executions of the task should guide its actionsin the direction of maximizing its programmed criteria of performance (e.g.minimizing the number of actions to achieve the goal).Initially, the robot relies on a pre-programmed, suboptimal solution,sometimes a random strategy, provided that there is a reasonable proba-bility of solving the task in a reasonable amount of time. The robot learnsif, upon successive task executions, such probability is increased (eventuallyup to 1) and the average completion time is decreased.1.3 Issues and goalsAssembly is an important subset of �ne motion problems, and the peg-in-holeproblem is a classical example (Fig. 1.1). The task is to move the peg fromits initial position and orientation down into the hole until the bottom of thepeg is resting in the bottom of the hole. Assuming a perfect positioning andcontrol, this task can be accomplished simply by commanding a motion ofthe peg straight down. The motion is terminated once the position sensorindicates that the peg is in the bottom of the hole.

1.3. ISSUES AND GOALS 3

Figure 1.1: A peg-in-hole task

4 CHAPTER 1. INTRODUCTIONBut, if sensing and/or control are not perfect, things get complicated. Theprecise direction is unpredictable and may vary during motion. In addition,the orientation of the peg is not guaranteed to remain constant. Thus thepeg may tilt slightly as it moves. Furthermore, the position sensor is subjectto error.Given these uncertainties, it is clear that the original solution to the pegin hole problem may fail. The extension to three dimensions makes thereasoning process more complicated.However, people constantly face similar problems every day, and solvethem extremely well if compared with robots. Obviously, people have themost sophisticated end-e�ectors (hands) and algorithms (intelligence). To befair, the robot should be compared with persons who have not yet developedtheir skills, like children.Children learn basic manipulation abilities in the �rst months of life. Acommon educational toy is a set of colorful pieces (prisms, cylinder, cube)and the correspondingly shaped holes. Initially, they found very di�cultto put the piece inside. But, slowly, maybe randomly sometimes, pushing,sensing with the �ngers, jiggling, trying again, eventually one piece (usuallythe cylinder is the simplest due to its symmetry) goes in. After numerousrepetitions, children are skilled enough to blindly insert every piece in place,they get bored and ask for another toy. But the learnt skills undoubtlyremain there to be used in more complex tasks.1.4 Outline of the thesisThis thesis develops computational tools that provide a robot with skillfulmanipulation abilities, making possible to learn a �ne motion task from aninitial, possibly random, strategy plus a basic high-level plan.In particular, the simulated peg in hole problem is analyzed throughthe perspective of feature extraction with neural networks, and a relatedreal-world assembly task is monitored using force measurements. Finally acomplete robot learning architecture for manipulation tasks is presented.Chapter 2 reviews the previous work in �ne motion planning with un-certainty. Approaches based on force sensing deserve special attention, andreal-world experimental results are emphasized.Chapter 3 provides a fairly detailed view of some learning approaches,including some developed in the course of this thesis. Neural networks areconsidered for feature extraction, and a reinforcement algorithm is studiedfor learning actions.Chapter 4 investigates the peg in hole problem with neural networks.

1.4. OUTLINE OF THE THESIS 5The extracted features are tested with classi�cation of states. A similar real-world problem is studied with the same techniques, and a plan is build insimulation.Chapter 5 develops the main contribution of the thesis: a perception-based robot learning architecture for �ne motion manipulation. The archi-tecture is actually implemented on a real robot, and experimental results ofpeg-in-hole problems with di�erent shapes are presented.Finally, Chap. 6 draws some conclusions, reviews the contributions ofthis thesis, presents a list of selected publications arisen from this work, andindicates some future lines of research.

6 CHAPTER 1. INTRODUCTION

Chapter 2Uncertainty in �ne motionTaking robots out of the shop-
oor and into service and public-oriented ap-plications brings up several challenges concerning the implementation of real-time and robust systems. While modern robots are capable of performinga broad range of tasks, the presence of uncertainty in the motion or in theworld model makes current hard-coded robot programs fail miserably.Service robots perform tasks in non-structured environments, where thegoals are located with a vision system with limited accuracy. Adaptabilityby means of learning techniques is a requirement for such robots.Fine motion planning is a domain of robotics restricted to a small scalespace and contacts between interacting objects, e.g. sliding along a tabletop,opening a drawer, driving a screw or installing a fuse or light bulb. For grossmotion planning uncertainty is not critical. Since a main point is collisionavoidance, there is no contact and the clearances between objects can be keptlarge enough by using adequate spatial representations [del Pobil and Serna,1995]. Fine motion planning, on the other hand, deals with small clearancesand contact. The existence of uncertainty may render a synthesized planuseless.Assembly is one of the main applications of �ne motion. The assemblyprocess is strictly a positioning problem. Perfect knowledge of the parts beingassembled and a perfect positioning device would make the task of assemblya trivial matter. Unfortunately, parts are subject to dimensional variations;likewise the realization of a near-perfect positioning device con
icts withcost and
exibility considerations required for a general purpose system. Inthe service applications described before, position of objects are known veryroughly. Departing from the rigid positioning paradigm which dominatesrobotic manipulation, Mason [1982] pointed out that the only economicalway to cope with this problem is to determine the location of the relevantfeatures as the assembly proceeds and adapt the programmed motions to use7

8 CHAPTER 2. UNCERTAINTY IN FINE MOTION

Figure 2.1: Non-cylindrical peg-in-hole task in three dimensionsthis information.A common �ne-motion problem which is the main object of study of thisthesis is the insertion of a peg into a hole (Fig. 2.1). This task has been ana-lyzed in detail by quite a few authors [Laktionev and Andreev, 1966, Gusev,1969, Simunovic, 1975, Whitney, 1982], so it has historically become a bench-mark for �ne motion paradigms, though some di�erent variants are found inthe literature: the two-dimensional peg is the simplest problem, though themotivation is its usefulness for the three-dimensional case if cylindrical pegsare considered. The presence of chamfers in the hole, or the assumption ofno friction also tend to simplify the problem.A realistic general �ne motion solution should consider pegs of any shapein a real (i.e. uncertain) environment. The work presented in this thesis heav-ily relies on real experiments. Though the theoretical analysis is restrictedto two dimensions, the developed methodology extends to three-dimensionalproblems, and in the experiments, prismatic pegs with di�erent convex sec-tions (cylindrical, square) are used.This chapter reviews the related approaches which are found in the lit-erature. First, force control and basic compliant techniques are presented.The second category comprises o�-line planning approaches mainly based ongeometric considerations but taking uncertainty into account. Next, meth-ods based on contact identi�cation and monitoring are reviewed; and somelearning approaches are presented. Finally, a short discussion summarizestheir main advantages and drawbacks, and it points out those weaknesseswhich are intended to be overcome by the methods presented in this thesis.

2.1. FORCE CONTROL AND COMPLIANCE 92.1 Force control and complianceRobot manipulators are generally controlled by position. Contacts betweenobjects pose the necessity of force sensing to cope with such interactionswithout damage for the workpieces and the manipulator. Robot force controlactually began in the 1950s and 1960s with remote manipulator and arti�cialarm control. An interesting historical sketch is presented in [Whitney, 1987].The �rst computer controls of force feedback date from the late 1960s and1970s, and various approaches to the creation of strategies emerged, but allthe approaches depended on people to formulate the details. In fact, asWhitney [1987] pointed out, no automatic generation of strategies had beenachieved at that time.A commonly used control strategy is the guarded move [Will and Gross-man, 1975], which is used to approach and touch an object without producingexcessive force after contact is made. This is achieved by moving toward theobject slowly while closely monitoring a sensor which can detect contact.Guarded moves can be used for aligning parts with positional uncertaintyby setting a small threshold in the direction along which the end-e�ectorof the robot and the other part will �rst touch. When the end-e�ector ismoved towards the �xed part slowly, the motion will stop when the parts arealigned.Compliance is another important concept in robot force control. A com-mon characteristic of compliant motions is that the trajectory is modi�ed bycontact forces or tactile stimuli occurring during the motion [Mason, 1982].Compliance occurs either because the control system is programmed to re-act to force or tactile stimuli, or because of passive compliance inherent inthe manipulator linkage or in the servo. Examples of compliant motions aresliding of a piece across a surface, opening of a door, inserting a peg into ahole, grasping an object, and handling eggs. These compliant motion tasksare easily performed by people, but they are very awkward for robot manip-ulators. Adding compliant behavior to a robot is highly desirable since itwould make possible to perform high-accuracy tasks even with low-accuracyposition control, for example, the task of following a surface by maintaininga downward force.Whitney [1982] presented a passive compliance approach, with detailedgeometric and force-deformation analyses for rigid part mating, covering themain geometric phases of assembly plus the phenomena of wedging and jam-ming. During assembly, parts must be supported by �xtures, hands or grip-pers. These supports have some compliance, either by design or accident.Whitney proposes an uni�ed and fairly general method of modeling supports,and includes the characteristics of such modeled supports in the equations for

10 CHAPTER 2. UNCERTAINTY IN FINE MOTIONmating forces so that the in
uence of di�erent values of support parameterscan be studied. The Remote Center Compliance (RCC) is a passive devicewhich supports parts and aids their assembly. It is capable of high-speedprecision insertions. Its major drawback is the lack of
exibility, since thenecessary parameters are very sensitive and task-dependent. In addition,the analysis is restricted to two dimensions, and experimental veri�cation isbased on the insertion of a cylindrical peg in a chamfered hole.Hybrid control is a means of implementing active compliant motions. Itcontrols position/orientation along speci�ed degrees of freedom and indepen-dently controls force/torque along the remaining degrees of freedom. Mason[1981] formalized this approach by developing a method for synthesizing con-trol strategies for compliant motion, using a precise language to describe forcecontrol. The most important aspects of this method are the representationsof the task constraints and the manipulator. The use of submanifolds of <6 torepresent task constraints focuses directly on the most important character-istic of a compliant motion task|the degrees of freedom of the end-e�ectorduring the task. Mason points out the relevancy of compliant motions indi�erent domains: mechanical assembly, coordination of multiple manipula-tors, and stable prehension of an object by a gripper. Inserting a peg in ahole is an example of an important operation in assembly such as parts mat-ing. Since constrained positioning is inevitable in parts mating, compliantmotion occurs. Mason's approach decomposes a manipulator trajectory intoa sequence of compliant motions joined together by guarded moves.Asada [1993] demonstrated the limitations of linear compliance and theneed for nonlinear compliance. He introduced a multilayer neural networktrained with the error backpropagation method [Rumelhart et al., 1986]to represent this nonlinear compliance, and addressed the two-dimensionalchamferless but frictionless peg-in-hole insertion task. The major drawbackof this approach is that the network is trained in a supervised way, i.e. atraining set of input-output (force-velocity) pairs is needed, and it shouldbe provided by an external advisor. This turns to be extremely di�cult inreal-world three-dimensional problems.2.2 Geometrical planning approachesThe methods in this section are characterized by the use of geometrical mod-els of the workpieces and the environment. In addition, uncertainties inposition and control are explicitly included in the models. The generatedplans are normally a sequence of force-controlled motions (guarded moves,compliant motions) described before.

2.2. GEOMETRICAL PLANNING APPROACHES 11Perhaps the most in
uential work in this class is due to Lozano-P�erez et al.[1984], who �rst proposed a formal approach to the synthesis of compliant-motion strategies from geometric descriptions of assembly operations andexplicit estimates of errors in sensing and control. The problem of movingrigid objects among other rigid objects is reformulated as the equivalent prob-lem of moving a point among transformed objects in a higher-dimensionalspace, called the con�guration space [Lozano-P�erez, 1983].Their approach is known as preimage backchaining. Given a motion com-mand, a preimage for a goal for that command is de�ned as a subset of start-ing con�gurations of the robot from which the motion command is guaranteedto reach the goal (goal reachability) and terminate in the goal (goal recogniz-ability). Preimage backchaining consists of iteratively computing preimagesof the goal region and preimages of computed preimages taken as intermedi-ate goals, for various selected motion commands, until a preimage containsthe initial subset. This general approach, however, raises di�cult compu-tational issues which prevent its widespread application. The approach isillustrated with a simple planar example: the rectangular peg-in-hole task.Erdmann [1986] addresses the problem of computing preimages, intro-ducing the concept of backprojection, which is a region in space from whichmotions in certain directions are guaranteed to enter the goal. Backpro-jections form the primitive elements from which a planner constructs morecomplicated preimages.In another extension to the preimage backchaining approach, Donald[1989] presents a formal framework for computing motion strategies which areguaranteed to succeed in the presence of three kinds of uncertainty (sensing,control and model). The considered motion strategies are sensor-based grossmotions, compliant motions, and simple pushing motions. Model uncertaintyis represented by position uncertainty in a generalized con�guration space.Since it is not always possible to �nd plans that are guaranteed to succeed,error detection and recovery (EDR) strategies are also investigated. It isshown how this framework is e�ectively computable for some simple cases,namely the two-dimensional rectangular peg-in-hole task and a gear meshingproblem which is also planar. Experimental veri�cation for these problemsis described in [Jennings et al., 1989]. The generated plans are executed on aphysical force-controlled robot. The tasks are kept planar. The peg insertionplan is quite robust, but the gear meshing plan was less robust since it wassubject to a greater variety of unmodeled dynamic and inertial e�ects.Most of these approaches are based on geometric models which becomecomplex for non-trivial cases especially in three dimensions [Canny and Reif,1987]. Natarajan [1988] considers the complexity of motion planning forrobots with uncertainty in sensing and control, and demonstrates that com-

12 CHAPTER 2. UNCERTAINTY IN FINE MOTIONpliant motion planning is PSPACE-hard in the presence of such uncertainties.A restricted version of the problem is presented, which is PSPACE-complete.This version concerns motion planning for a Cartesian robot (one that is ca-pable of realizing velocities only along three �xed orthogonal axes) and otherrestrictions in the scene.Following Donald's work, Briggs [1989] proposes an O(n2 log(n)) algo-rithm, where n is the number of vertices in the environment, for the basicproblem of manipulating a point from a speci�ed start region to a speci�edgoal region amidst planar polygonal obstacles where control is subject to un-certainty. The algorithm �nds a single commanded motion direction whichwill guarantee a successful motion in the plane from the start to the goalwhenever such a one-step motion is possible. Motions are strictly transla-tional, and no real applications are presented.Latombe et al. [1991] describe two practical methods for computing preim-ages for a robot having a two-dimensional Euclidean con�guration space. Thegeneral principles of the planning methods immediately extend to higher di-mensional spaces, but the detailed geometric algorithms do not. Simulatedexamples of planar tasks are shown.Laugier [1989] presents a method for automatically generating robuststrategies combining sensing operations with small robot movements. Thebasic idea consists in deducing a �ne motion strategy from an analysis of thedi�erent ways in which the assembled parts may be theoretically dismantled.It works by reasoning on an explicit representation of the contact space,and it reduces the algorithmic complexity of the problem by separating thecomputation of potentially reachable positions and valid movements, fromthe determination of those which are really executable by the robot. Mostof the experimentations were executed in simulation, and some of them wereimplemented using a six DOF robot equipped with a force sensor.Caine et al. [1989] describe a set of modeling and planning techniquesdeveloped to generate robust force control strategies for a certain class ofassemblies. Speci�cally, they present strategies for the chamferless insertionof a planar peg into a hole and the insertion of a three dimensional rectangularpeg into a rectangular hole. In the latter case, the set of con�gurationsthrough which parts must pass is considerably more di�cult than for theplanar case. Consequently, only a subset of possible con�gurations is chosenon the basis of a set of heuristics, in order to generate successful assemblystrategies.Xiao and Volz [1989] address the problem of uncertainties by planningrobot motions at two levels: Nominal Planning, which assumes no uncer-tainty, and Dynamic Replanning, to deal with uncertainties that would causenominal plans to fail. They propose a replanning approach based on knowl-

2.2. GEOMETRICAL PLANNING APPROACHES 13edge of contacts among assembly parts, and certain constraints on the nomi-nal design parameters, tolerances, and sensor error parameters are enforced.However, the current strategy is limited to translational motions only and itis incapable of handling failures due to orientation errors.Su�arez and Bas�a~nez [1991] propose a methodology to automatically gen-erate an assembly plan based on position and force information, consideringseveral kinds of uncertainty, friction forces and rotational degrees of freedom.Tasks states are de�ned according to the occurrence of di�erent sets of ba-sic contacts, and state transition operators are established to move throughthem. The planner is developed for movements on a plane. Extension tomore degrees of freedom is theoretically possible, but the authors admit thata hard work is necessary to determine the sensor information (con�gura-tions and generalized forces) that can be observed in higher dimensional taskstates. The proposed planning methodology is applied to a simple task in[Su�arez and Bas�a~nez, 1992]. The selected task is the positioning of a blockin a corner considering three degrees of freedom, two translations and onerotation.Geometric planning can be combined with other methods. Though re-stricted to gross motion planning, Torras [1993] claims that classical geomet-ric planning is more adequate for global planning, whereas neurocomputingis the right approach to deal with a local reactive behavior.Vougioukas and Gottschlich [1993] describe a methodology for the au-tomated synthesis of compliance mappings. Compliance is considered asa task-dependent mapping from sensed forces to corrective motions whichbring the robot closer to its goal. They assume that a nominal path planhas already been developed for the operation and that the path is collisionfree assuming no uncertainties. They furthermore assume that the plan hasbeen analyzed and that those segments of the path that are prone to colli-sion under the given uncertainty conditions have been identi�ed. For thesesegments of the path they formulate the compliance mappings that will maperroneous contact forces into incremental corrective motions to be added tothe nominal robot velocity (that according to the nominal path). This typeof approach is referred to as a two phase approach.The input requirements for this procedure are the geometric model of therobot and the environment, the model of rigid-body interaction, the initialcon�guration and nominal velocity of the robot, the uncertainty bounds ofthe force sensors and of the robot motion, and the goal con�guration of theparticular task. To identify all possible con�gurations that may arise during aparticular motion due to uncertainty, the procedure essentially simulates themotion of the robot under the given uncertainties, �nds all possible contactforces that may arise, and maps them to corrective motions. The simulation

14 CHAPTER 2. UNCERTAINTY IN FINE MOTIONtakes place in a sampled con�guration space. However, no practical examplesare provided, and the complexity of the algorithm is not calculated. This isa tough issue, since, like in other methods based on the con�guration space,it might be prohibitive in three-dimensional problems.A di�erent geometric approach is introduced by McCarragher and Asada[1992] who de�ne a discrete event in assembly as a change in contact statere
ecting a change in a geometric constraint. The discrete event modeling isaccomplished using Petri nets. Dynamic programming is used for task-levelplanning to determine the sequence of desired markings (contact state) fordiscrete event control that minimizes a path length and uncertainty perfor-mance measure. In [McCarragher and Asada, 1993a] the method is appliedto a dual peg-in-hole insertion task, but the motion is kept planar withonly two translations and one rotation being used. The system proves to behighly successful in detecting and recovering from undesirable contact statesresulting from misalignment or mismatch between the model and the actualsystem.Discrete event models of the assembly tasks are also used in [McCar-ragher, 1996]. Using such a model, velocity constraints are derived fromwhich desired velocity commands are obtained. The aim is to develop atask-level adaptive controller for use with the discrete event control of roboticassembly tasks. The actual task for implementation is a gear mechanism fora starter motor.2.3 Contact identi�cation and monitoringA key problem for most of the planning approaches is the identi�cation oftermination conditions for motions. Guarded moves, described in Sect. 2.1,are a simple method for contact detection, but do not provide informationabout the exact relationship between the parts in contact. Such informationis necessary for the precise planning of successive motions. The approachespresented in this section are intended for the identi�cation of contact betweenparts, mainly based on force information.Simunovic [1975] analyzed the peg-in-hole insertion process to investigatehow much information could be obtained about the state of the insertionprocess using measurements of the forces produced. The peg is assumedto be cylindrical, so the analysis can be kept in two dimensions. The mainresults concern the problem of jamming and the necessary conditions to avoidsuch undesired state.Considering the fact that part mating strategies consist of sequence ofguarded or compliant guarded motions, Desai and Volz [1989] point out the

2.3. CONTACT IDENTIFICATION AND MONITORING 15necessity of verifying the termination of these motions (both successful andunsuccessful) and of identifying the termination state at the end of theseguarded motions. They introduce the concept of contact formations to de-scribe contacts among parts in a system, aiming at reducing the dimension-ality of assembly veri�cation. An elemental contact between two objects isde�ned as a contact between any two topological elements of the objects,e.g. surface-edge, vertex-surface, edge-edge, etc. A contact formation is thende�ned as the set of all con�gurations with identical elemental contacts be-tween the same pair of topological elements. This concept is the base of thecontact state that will be used later in this thesis, in the neural approachesto contact identi�cation.In the same work, they also describe a technique for identifying contactformations in spite of errors in sensing and geometric uncertainties. Since itis impossible to verify termination conditions in general, they introduce thenotion of design constraints and they formulate design constraints for whichveri�cation can be guaranteed. A two-phase planning approach is used, andthe nominal planner is assumed to already exist. The existence of appropri-ate compliant-motion controllers is also assumed. Veri�cation is done in twophases: a passive phase and, if necessary, an active phase. In passive veri�-cation, the contact formation is identi�ed on the basis of the sensed position,forces and moments. If the contact formation cannot be identi�ed unam-biguously (due to sensing and geometric uncertainties and approximation ofthe contact model), active veri�cation is used. More information about thecontact formation is collected by making small moves. The algorithms aretested on simple assembly operations such as peg-in-hole.Hirai and Iwata [1992] present a model-based approach to the recognitionof contact states, based on using force information acquired in the matingprocess. They develop a method for generating the state classi�ers basedon geometric models of the workpieces. The approach is tested on a realoperation of mating the bottom face of a workpiece with the
at top face ofthe table. The contact states of the operation are represented by enumeratingthe contacting vertices of the workpiece.The problem of analyzing ambiguous contact situations in uncertain roboticenvironments is also dealt with by Spreng [1993]. When any contact is de-tected, the analysis proceeds by generating a set of hypotheses on the contact,out of which the valid one is detected by testing the feasibility of certain mo-tions, i.e. performing movability tests. A movability test is a small motionwhich is feasible in case of the presence of one subset of the hypotheses butunfeasible in case of its component. It is assumed that the contact is betweenthe polyhedral end-e�ector of the manipulator (the moving object) and apolyhedral object of the environment. However, no experimental results are

16 CHAPTER 2. UNCERTAINTY IN FINE MOTIONpresented.Xiao [1993] introduces a method of obtaining su�cient topological contactinformation based on the current position/orientation sensing data of the ob-jects involved and geometric models, taking into account position/orientationsensing uncertainties. The results can then serve as an initial basis for theapplication of other sensing means, such as vision and/or force sensing, tocon�rm whether or not a possible contact situation exists in order to obtainthe desired contact information in spite of uncertainties. Contacts betweentwo polyhedra are assumed.In a later work, Xiao and Zhang [1996] present another approach to ob-tain the set of all principal contacts that may be formed due to locationuncertainties between two objects. The method grows exactly an arbitrarypolyhedral object in the three-dimensional Cartesian space by its positionand/or orientation uncertainties. The grown region of an object by its loca-tion uncertainty could be useful in predicting collisions and thus preventingunintended collisions due to uncertainties during motion planning. In addi-tion, once a collision occurs, it can play a major role in automatically recog-nizing the topological contact in the presence of location uncertainties of theobjects involved. However, exact grown regions may not be easy to computedue to the lack of e�cient algorithms and thus approximate representationsmay be implemented.A model-based approach to the recognition of the discrete state tran-sitions that occur in assembly processes is presented by McCarragher andAsada [1993b]. The modeling technique incorporates the dynamic nature ofassembly. In addition, a qualitative approach is used for signal understand-ing to highlight the critical components of the force signal. The presentedanalysis is limited to planar models and planar motions, and the geometricmodels of both the workpiece and the environment are required. The ex-act location of the constraint environment is assumed unknown, and bothforce and moment information are available from appropriate sensors. Thepeg-in-hole problem is used as the test case.The qualitative aspects of force sensing are studied by McCarragher[1994]. This work presents an analysis of force data that was generatedby a human demonstration of a complex and asymmetrical insertion task.The person was blindfolded and only had force sensors available. The issueis to understand how the force sensory signal is used, i.e., to determine whataspect of the force signal is the basis for a human reaction. Qualitative rea-soning is used to understand the force signal by identifying the changes incontact state.Mimura and Fubahashi [1994] propose a method for identifying unknowncontact parameters under the assumption that the shape of the grasped ob-

2.3. CONTACT IDENTIFICATION AND MONITORING 17ject, the contact position and contact conditions are all unknown. It is shownthat several active sensing motions are needed to identify contact situations,and then equations to be solved become nonlinear. With their algorithm, thedirection of contact can be identi�ed in addition to the position and DOF ofthe contact.Su�arez et al. [1994] deal with the o�-line computation of the sets of reac-tion force directions that can be expected in the presence of uncertainty forany contact situation during an assembly task. The approach is developedfor polyhedral objects moving in a plane, with two translational and one ro-tational degrees of freedom. It is assumed that the robot has an impedanceposition/force controller and that the movements are slow enough to makeinertias negligible. The method is illustrated through a simple example: po-sitioning a block in a corner.Nuttin et al. [1995] compare three di�erent learning techniques appliedto the estimation of the current contact situation. The experiments are per-formed over a planar problem with three degrees of freedom: the positioningof a block into a corner. The three learning techniques are: backpropagationneural nets, radial basis function neural nets, and classi�cation trees. Severalcriteria are used for comparison, including the classi�cation accuracy, speedof convergence, ease of use, compactness of representation, etc.Another pattern recognition approach to identifying contact formationsfrom force sensor signals is presented by Skubic and Volz [1996]. The ap-proach is sensor-based and does not use geometric models of the workpieces.It works by building a fuzzy classi�er, where membership functions are gener-ated automatically from training data. The elements used in the experimentswere a square plastic block, a pentagon-shaped block and a 3-pronged powerplug.Dutr�e et al. [1996] present a general model-based approach to identifygeometrical uncertainties and to detect topological transitions in contactsituations during compliant motion robot tasks, with emphasis on model-ing, on-line uncertainty identi�cation and model validation. The method isbased on energy consideration. The work is illustrated by a real-world exper-iment: a complete assembly of a cylindrical peg into a hole. However, dueto the computational complexity, only o�-line identi�cation and monitoringare executed.Hovland and McCarragher [1996] present a method for recognition of dis-crete events by using dynamic force measurements. Each event is describedby a Hidden Markov Model (HMM), which allows for modeling dynamic sig-nals. HMMs represent the contact state transitions instead of the contactstates, and the frequency components of the force/torque signals are usedas observation symbols of the HMMs. Dynamic motions of the workpiece,

18 CHAPTER 2. UNCERTAINTY IN FINE MOTIONfriction and sensor noise are allowed, and there is no requirement for exactknowledge of the positions of the workpiece and the environment. The consid-ered assembly process is the planar peg-in-hole task. Although the methodworks well in this problem, it su�ers from two limitations: the amount oftraining data required and the amount of on-line data log time.Discriminant functions and clustering techniques are used in an approachto discretizing sensory data by Sikka and McCarragher [1996]. This is in-tended for applications such as robotic process monitoring or interpretinghuman sensory data. The discriminant functions are learned from real sen-sory data, and hence the approach is adaptive and it also takes into accountvarious task parameters such as friction. The testbed is a contact task whichconsists of sliding a peg across a surface with holes, but motion is kept planar.2.4 Approaches based on learningThe methods presented in the previous sections rely on o�-line algorithms,based on geometric models, and physical knowledge of the task. Insteadof specifying the complete behavior of the robot, learning methods providea framework for autonomous adaptation and improvement during task ex-ecution. Inspired by the way that people (speci�cally children) learn themanipulation of objects, a suggestive goal is to achieve a robot which, start-ing from a limited ability, is able to improve its skills from its own experience.Since a pure learning approach would be ine�cient, the key is to combinelearning strategies with other methods and algorithms to synthesize a robustand
exible architecture for real-world tasks with uncertainty.Christiansen et al. [1990] describe a robot, possessing limited sensoryand e�ectory capabilities but no initial model of the e�ects of its actionson the world, that acquires such a model through exploration, practice andobservation. Their aim is to explore the potential role of robot learningin extending the
exibility and scope of robot manipulation systems. Theexperimental task is to manipulate rigid planar objects by tilting a traycontaining the objects. Beginning with no prior knowledge of the e�ects ofvarious tilting actions, the system is able to acquire a discrete model of itsactions that leads in some cases to 95% success in moving an object to arandomly selected goal con�guration.An approach to learning a reactive control strategy for peg-in-hole in-sertion under uncertainty and noise is presented in [Gullapalli et al., 1992].This approach is based on active generation of compliant behavior using anonlinear admittance mapping from sensed positions and forces to velocitycommands. The controller learns the mapping through repeated attempts

2.4. APPROACHES BASED ON LEARNING 19at peg insertion. A two-dimensional version of the peg-in-hole task is im-plemented on a real robot. The controller consists of a feedforward neuralnetwork. The output units are stochastic real-valued units, designed specif-ically for direct reinforcement learning. The rest of the units are trainedwith the backpropagation rule. In [Gullapalli et al., 1994] the same archi-tecture is implemented on a real ball-balancing task and a three-dimensionalcylindrical peg.Nuttin et al. [1994] present a procedure for fuzzy controller synthesis witha machine learning tool. The robot task consists of inserting a round peginto a hole. They also present a method for synthesizing a fuzzy controlleralmost automatically. First, a controller is generated o�-line by a classicalconcept algorithm, and, secondly, it is re�ned on-line using a reinforcementlearning technique.In order to develop robust, skill-achieving robot programs, Morrow andKhosla [1995] propose the development of a sensorimotor primitive layerwhich bridges the gap between the robot/sensor system and a class of tasksby providing useful encapsulations of sensing and action. Skills can be con-structed from this library of sensor-driven primitives. For the domain ofrigid-body assembly, they exploit the motion constraints which de�ne as-sembly to develop force sensor-driven primitives. Example primitives forassembly are: guarded move, sweep, correlation and accommodation. Ex-perimental results are reported for a D-connector insertion skill implementedusing several force-driven primitives.Kaiser and Dillman [1995] propose a hierarchical approach to learningthe e�cient application of robot skills in order to solve complex tasks. Thisapproach is not only devoted to skill learning but also includes skill re�nementas well as the adaptation of skill activation conditions and the identi�cationof a requirement to generate skills. Since people can carry out motions withno apparent di�culty, the same authors apply their method to the acquisitionof sensor-based robot skills from human demonstration [Kaiser and Dillman,1996], and investigate two distinct manipulation skills: peg insertion andopening a door.Hovland et al. [1996] present an approach for representing and acquir-ing human assembly skills for applications in robotic assembly tasks. Anassembly task is modeled as a discrete event system in terms of contact con-�gurations involving the object and the environment. The discrete eventcontroller for a skill is represented as a Hidden Markov Model (HMM). Theskill is acquired from human demonstration of the task, and so the observa-tion symbols of the HMM are taken from the variables recorded while thetask is performed by a human operator. Experiments are performed on a realrobot, but only a planar assembly task is considered, thus only three of the

20 CHAPTER 2. UNCERTAINTY IN FINE MOTIONmanipulator joints are used. The method is limited like any other methodbased on a training set. The system may be unable to handle situations notencountered in the training set.Part mating with a multi�ngered gripper has not been investigated toomuch so far. Paetsch and von Wichert [1993] investigate how to �nd and torealize a complex and useful hand behavior, which represents also a usefulstrategy to solve the task under the in
uence of high uncertainty. Their solu-tion consists of several parallelly applied strategies derived from the human(hand) behavior. The employed strategies are: upright keeping, contact forcereduction, pushing and shaking. Experiments are reported for real insertiontasks with rectangular and cylindrical pegs, achieving more than 90% of suc-cessful insertions. However, the authors point out the di�culty of �ndingsuitable strategies in a systematic and analytical way for other tasks. In ad-dition, the parameters of the single strategies are chosen in a purely heuristicway.2.5 DiscussionThe reviewed collection of �ne motion planning methods is a proof of theimportance of the problem and the interest raised among the robotic re-search community. Current methods are far from being satisfactory though:most of the study is restricted to planar problems; they are not always ableto produce a plan particularly if the part geometries involved are complexand the uncertainties are large. A heavy dilemma exists between too sim-plistic models or more reasonable ones which, on the other hand, are toocomputationally expensive.As stated by Gottschlich et al. [1994], challenges still facing this �eldare how to make �ne motion planners that are more powerful, realistic, ande�cient than those currently in operation.Force control, guarded moves and compliant motion are powerful tech-niques for low-level controllers, suitable for �ne motion tasks involving con-tacts between parts. Most of the planning approaches use these motions asprimitives, combining them in sequences for complex task-solving.Geometric planning approaches attempt to solve higher-level tasks, butthey lack
exibility and are currently limited to planar problems due to theircomputational complexity for managing uncertainty in 3D environments.Contact identi�cation methods provide information about the relation-ship between the parts, aiming at guiding the motion planner. Workpieceswith complex geometry, and the uncertainty in location or models, causesensing ambiguities which require additional strategies for successful identi-

2.5. DISCUSSION 21Table 2.1: Classi�cation of some reviewed approaches with regard to the typeof implementation and the application domainTask Real world Citation2D peg-in-hole No [Lozano-P�erez et al., 1984]Yes [Jennings et al., 1989]Yes [Desai and Volz, 1989]No [Asada, 1993]Yes [Hovland and McCarragher, 1996]Yes [Sikka and McCarragher, 1996]Yes [Hovland et al., 1996]2D block in corner No [Su�arez and Bas�a~nez, 1992]No [Nuttin et al., 1995]2D motion in conf. space No [Briggs, 1989]No [Latombe et al., 1991]Workpiece on table Yes [Hirai and Iwata, 1992]Opening door Yes [Kaiser and Dillman, 1996]Inserting D-connector Yes [Morrow and Khosla, 1995]3D assembly No [Laugier, 1989]3D round peg Yes [Whitney, 1982]Yes [Nuttin et al., 1994]Yes [Gullapalli et al., 1994]Yes [Dutr�e et al., 1996]Yes [Kaiser and Dillman, 1996]3D rectangular peg Yes [Caine et al., 1989]�cation.To brie
y summarize, a small comparison referencing the experimentalachievements of each method is illuminating (see table 2.1). Though manyof the reviewed �ne motion approaches are implemented in real-world en-vironments, they are frequently limited to planar motions. Furthermore,cylinders are the most utilized workpieces in three-dimensional problems,and the amount of uncertainty is not fully speci�ed.Throughout the rest of this thesis, new approaches to �ne motion prob-lems with uncertainty will be presented. Elements of the reviewed methodsare used, together with learning algorithms which are presented in the nextchapter. With stress on experimental results, the goal is to demonstrate theperformance of the new methods in a real-world three-dimensional insertiontask with uncertainty of both cylindrical and non-cylindrical pieces.

22 CHAPTER 2. UNCERTAINTY IN FINE MOTION

Chapter 3
Learning approaches
This chapter reviews the methods which will be used as components of ourarchitecture for perception-based �ne motion planning, and it also presentsnew contributions to the theory of neural networks.Two neural network models will be described in some detail: Kohonen'sself-organizing map (SOM) and Elman recurrent networks. SOMs will beused for unsupervised feature extraction, and Elman networks are suitablefor predicting sequences and thus inferring a �nite state automaton whichrepresents the temporal dynamics of a process. All of these neural modelshave been extensively used in the literature [Mira and Sandoval, 1995, Miraet al., 1997].A contribution of this thesis to the theory of SOMs is presented in Sect.3.2, in which a supervised training process is used in conjunction with theunsupervised approximation of the probability density functions of each classby a SOM. The resulting system shows a good classi�cation performance ina wide variety of benchmark problems.In addition to neural networks, this section focuses on the reinforcementlearning paradigm, which will be an important component of our learningarchitecture. One particular algorithm, Q-learning, is thoroughly described.It is a model-free algorithm which learns a policy (rule to select actions fromstates) by means of autonomous experiences.The combination of di�erent sound methods is intended to be the baseof a simple, robust, reliable and e�cient architecture for real agents (robots)in solving moderately complex real-world manipulation tasks.23

24 CHAPTER 3. LEARNING APPROACHES3.1 The self-organizing map (SOM)The Self-OrganizingMap (SOM) algorithm, introduced by Kohonen [1982], isan unsupervised training process with the objective of identifying a small setof statistically important features which contain the essential information forthe task. The importance of features is derived from the statistical distribu-tion of the input signals. In particular, clusters of frequently occurring inputstimuli will become represented by a larger area in the map than clusters ofmore seldom occurring stimuli. The resulting correspondence between signalfeatures and response locations in the layer has many properties of a non-linear, compressed image or map of the original signal space and resemblesvery much the topographic feature maps found in many brain areas.As opposed to supervised neural networks (like backpropagation), duringunsupervised training only the input data is available. Despite this limita-tion, SOMs are capable of generating ordered mappings of the input dataonto some low- dimensional topological structure, which is very useful in theanalysis, visualization and abstraction of high-dimensional data. Anothercapability is the partitioning of input data into subsets (or clusters) in sucha way that data items inside one subset are similar while items from di�erentsubsets are dissimilar. However, SOMs are not suited for other applications:Kohonen [1995] emphasizes that it has not been meant for statistical patternrecognition, decision or classi�cation processes.Throughout this thesis, SOMs are used for di�erent purposes. The ulti-mate objective is the extraction of features from the signal space of a ma-nipulation task (Sect. 5.2.3). The use of SOMs in classi�cation examplesin Chap. 4 is intended only for illustrative purposes of its ability to extractsuch important features: a good, though not necessarily optimal, classi�ca-tion accuracy is an indicator of the suitability of those features for a taskwhich, however, is just a component of the global problem of autonomous�ne motion in manipulation.3.1.1 Kohonen's SOM algorithmThe units (neurons) of a SOM are arranged in an array (generally one- or two-dimensional), which de�nes the neighborhood relationship between them.This is usually achieved by assigning a location vector ri to each unit i of themap. The input pattern is described by an input vector x from some patternspace V . The units are fully connected via wij (weights) to the inputs (Fig.3.1). A competitive learning rule is used, choosing the winner c as the outputunit with closest weight vector, with regard to a de�ned distance function(usually Euclidean), to the current input x:

3.1. THE SELF-ORGANIZING MAP (SOM) 25

Figure 3.1: Schematic representation of the array of units, fully connectedto inputs, and a winner celljwc � xj � jwi � xj; 8i: (3.1)The learning rule is: �wi = �hci(x� wi); 8i (3.2)where � is a learning-rate factor, and hci is the neighborhood function de�nedover the lattice units. Two simple choices are found in the literature. The�rst one is just a threshold de�ned over the distance between units:hci = (1 : jrc � rij � rt0 : jrc � rij > rt (3.3)The second neighborhood function is a Gaussianhci = exp �jrc � rij22�2 ! (3.4)whose variance �2 controls the radius of in
uence. The parameters h, rt and� need to be speci�ed appropriately. It turns out to be useful to change thesedynamically during learning. Initially, the values of h, rt and � are large, andthey are gradually decreased as learning proceeds. This allows the networkto organize its elastic net rapidly, and then re�ne it slowly with respect tothe input patterns.The update rule drags the weight vector wc belonging to the winner to-wards x. But it also drags the weight vector wi of the closest units along

26 CHAPTER 3. LEARNING APPROACHESwith it. Consequently, units that are close neighbors in the map will tend tospecialize on similar patterns. We can think of a sort of elastic net in inputspace that tries to come as close as possible to the inputs; the net has thetopology of the output array (i.e., a line or a plane) and the points of the nethave the weights as coordinates [Hertz et al., 1991].Map labelingThis training algorithm is unsupervised, since only input values are used.Frequently, input samples are associated with abstract information (class,state) which is represented by symbolic labels. Each unit is labeled by thetest pattern that excites this neuron maximally:1. De�ne a counter for each pair (unit, label) and initialize to 0.2. For all input patterns and their labels:(a) Calculate the winner unit for the input pattern, using (3.1).(b) Increment by one the counter of the pair corresponding to thewinner unit and the current label.3. For each unit of the map, choose the label with the highest counter asits associated label.A unit might remain unlabeled if it does not win for any input pattern.The labeling produces a partitioning of the map into a number of coherentregions (clusters), each of which contains units that are specialized on thesame pattern. In the next chapter of this thesis, this method will be used forclassi�cation of contact states. It is not intended to be an optimal method,since the boundaries between classes are not obtained with a supervisedtraining, but they re
ect the probabilistic distribution of the input samples.Classi�cation accuracy obtained by this method may sometimes be ratherpoor, though this depends on the application (application-speci�c methodsare common in the literature [Hern�andez-Pajares, 1994]). It should be re-marked again that the main purpose of the SOM is monitoring, visualizationof high-dimensional data, and feature extraction.The SOM can be viewed as a nonlinear extension of principal componentanalysis (PCA). The map selects a subset of independent features that cap-ture as much of the variation of the stimulus distribution as possible, butthe di�erence with linear PCA is that the selection of these features can varysmoothly across the feature map and can be optimized locally. The SOM isalso related to the method of vector quantization (VQ). The aim is to achieve

3.2. HYBRID LEARNING WITH MULTIPLE SOMS 27data compression by mapping the members of a large (possibly continuous)set of di�erent input signals to a much smaller, discrete set of code labels.3.1.2 Applications to roboticsThe SOM has been successfully used in other robotic domains di�erent from�ne motion planning, which deserve some mention. In [Ritter et al., 1989],an extension of the SOM algorithm is applied to the learning of visuo-motorcoordination of a simulated robot arm. A real implementation of the methodis described in [Walter and Schulten, 1993]. The method is extended andimproved by Ruiz de Angulo and Torras [1997] for the self-calibration of aspace robot.In mobile robot navigation, Kr�ose and Eecen [1994] present a sensor-based scheme which makes use of a global representation of the environmentby means of a SOM. This discrete map is not represented in the world domainor in the con�guration space of the vehicle, but in the sensor domain, and itis built by exploration. Simulation results are provided.DeMers and Kreutz-Delgado [1996] present a method for solving the non-linear inverse kinematics problem for a redundant manipulator by learn-ing a natural parameterization of the inverse solution manifolds with self-organizing maps. The method is demonstrated for the case of a redundantplanar manipulator.A methodology for generating all possible arm postures associated with aspeci�c end-e�ector position is presented in [Campos, 1996]. The algorithm,as an adaptive self-organizing mapping, learns redundant postures based onlyon the arm projections from a set of planes placed arbitrarily around the arm.3.2 Hybrid learning with multiple SOMsWhen considering the application of SOMs to the robotic problems of Chaps.4 and 5, a method for increasing its identi�cation capabilities was investi-gated. Though �nally it has not been used in the implementations, it is acollateral result of this thesis since it is a novel approach to classi�cationtasks with SOMS, and it exhibits a good performance in several tests andbenchmarks of quite di�erent domains [Cervera and del Pobil, 1995c, 1997c].The presented method combines a supervised phase and the usual unsu-pervised learning process. It is assumed that the problem consists of a set ofinput vectors, and there is a �nite set of output labels, associated with theappropriate inputs (i.e. a classical pattern recognition problem). The out-put (label) information of the training data is now used during the learning

28 CHAPTER 3. LEARNING APPROACHESprocess, thus performing a supervised learning phase.Other approaches have been proposed in order to perform supervisedlearning with SOMs. Kohonen [1995] describes the Supervised SOM, whichis a quite di�erent approach. In order to make the SOM supervised, thetraining vectors are composed of two parts: the �rst one is the actual inputsignal; the second part is a vector which encodes the output class. Thissecond part is not considered during recognition. Supervised learning heremeans that whereas the classi�cation of each input signal in the trainingset is known, the corresponding class value must be used during training.During recognition of an unknown sample, only its signal part is comparedwith the corresponding part of the weight vectors. The unsupervised SOMconstructs a topology-preserving representation of the statistical distributionof all input data and tunes this representation to better discriminate betweenpattern classes.3.2.1 Probability density approximation with SOMsThe key of the proposed approach is that a SOM approximates the proba-bility density of the training set. If the probability densities of each class(denoted by p(xjCi) for class i) were known, Bayesian decision theory is usedto minimize the average rate of misclassi�cations, assuming that the a prioriprobabilities of each class (denoted by P (Ci)) are also known [Devijver andKittler, 1982]. Then a sample x would be assigned to class Ci i�:p(XjCi)P (Ci) > p(XjCj)P (Cj); 8j 6= i: (3.5)Although the distribution of the SOM units is not exactly the same as thedistribution of the underlying training set density (for the one-dimensionalcase the density of output units is proportional to P (x) 23 around point x[Hertz et al., 1991], this does not matter in Bayesian classi�cation whereonly ratios of class densities are important. Furthermore, the dimensionalityof the SOM is less than that of the training set, thus a SOM is a nonlinearprojection of the probability density function of the high-dimensional inputdata onto the usually one- or two- dimensional array of units. For the sakeof simplicity, the distance of the input vector x to the best matching unit isconsidered the measure of the probability density function at that point. Asample x is thus assigned to class Ci if and only if it is closer to a unit of theclass map Mi than to any other unit of any other map Mj:minu2Mi(jx� uj) < minv2Mj(jx� vj); 8j 6= i (3.6)

3.2. HYBRID LEARNING WITH MULTIPLE SOMS 29Therefore, the probability density function is considered inversely pro-portional to this distance.3.2.2 Supervised learning procedureThe proposed, simple, yet powerful idea is based on training a di�erent SOMfor each class. Thus, output data from the training set is used to divide alldata in several subsets, each one containing only data from one class. This isthe supervised part of the procedure. After this, the SOMs will be trained asusual, in an unsupervised way, as described in Sect. 3.1.1. A similar idea wasused by Kurimo [1994], where the system is initialized with small SOMs, onefor each phoneme class, which are combined and applied to other methods.Another similar system was explained in [Naylor et al., 1988] where oneSOM is trained for each speaker. This system is able to classify a speakerbut it needs a whole sequence of input data. In our approach, however,classi�cation is performed with a single input pattern. In the experimentreported by Naylor et al. [1988], a whole sequence of inputs were tested oneach SOM and the SOM which gave the smallest quantization error was thewinner. Our approach is a generalization of this scheme and is able to classifyproperly not only sequences but also single data samples.The complete learning process consists of three phases:1. Division of the training set into as many subsets as di�erent classes.2. Training of di�erent SOMs, each with only one of the subsets of data,following the unsupervised learning procedure de�ned in Sect. 3.1.1.3. Labeling of units of all the SOMs. This can be done in two ways:either labeling each SOM as a whole, thus all its units will be labeledas belonging to the class it was trained with; or all SOMs are labeledjointly with all training data with the labeling method of Sect. 3.1.1. Inthe experiments, the latter method has been found to be more accuratewhen there are overlaps between classes.Now, classi�cation of unknown data is done with all the SOMs together.When an example is presented, the best matching unit of all maps will providethe corresponding class. To evaluate the performance of this hybrid approach,it has been tested with several benchmarks which have been reported inthe literature of neural networks and pattern classi�cation. The �rst oneis a synthetic problem; results on other two real problems are presentedafterwards.

30 CHAPTER 3. LEARNING APPROACHES
Easy problem

c1

c2

c1
c2

Hard problem

c1

c2

c1c2 c2Figure 3.2: Two normally-distributed classes, and optimal class boundariesTable 3.1: Test results of the two class problem (% of errors)Easy problemD Theory One SOM MSOM(1) MSOM(2) BP LVQ2 16.4 17.9 21.7 18.4 16.4 17.04 11.6 18.0 19.3 16.3 12.5 13.16 8.4 18.3 16.4 15.9 10.8 10.7Hard problemD Theory One SOM MSOM(1) MSOM(2) BP LVQ2 26.4 27.4 30.3 26.6 26.3 26.54 17.6 26.9 24.3 23.7 19.4 18.86 12.4 26.3 20.9 20.8 20.7 15.33.2.3 A synthetic classi�cation problemThis is a problem introduced by Kohonen et al. [1988] that consists oftwo normally distributed classes in a d-dimensional Euclidean space withequal class a-priori probabilities. In the easy test the �rst class has anN(0; Id) distribution and the second class an N(�; 4Id) distribution with� = (2:32; 0; : : : ; 0) 2 <d. The hard test has the two classes distributed asN(0; Id) and N(0; 4Id), respectively. Figure 3.2 depicts the normal distribu-tions in the one-dimensional case, and the optimal decision boundaries forclassi�cation.The dimensions considered are d = 2; 4; 6. The SOM architecture isrectangular. The studied size is 6� 6, 8� 8, and 10� 10, thus the number ofunits is 36, 64 and 100. Two independent sets for training and testing wereused. Each set consisted of 2000 randomly chosen samples from each class.The data and the trained SOMs for each class in the two-dimensional easy

3.2. HYBRID LEARNING WITH MULTIPLE SOMS 31

−5 0 5 10

−4

−2

0

2

4

6

Figure 3.3: Data and SOMs trained in the two-dimensional easy problemcase are shown in Fig. 3.3. A summary of the results is given in Table 3.1.The second column gives the theoretically optimal percentage of classi�cationerrors. Results for a single calibrated SOM are shown in the third column.The fourth and �fth columns list the results for our method using MultipleSOMs with separate labeling (MSOM(1)) and joint labeling (MSOM(2)) re-spectively. The last two columns show the results for backpropagation andLVQ as reported in [Kohonen et al., 1988].A single calibrated SOM is suited only for the two-dimensional problem,since its performance worsens when a higher number of dimensions is con-sidered in the easy problem. On the other hand, the classi�cation errors ofthe MSOM approach decrease when adding more dimensions. Classi�cationresults are not better than those obtained by purely supervised methods likebackpropagation and LVQ, but they keep rather close, especially in the hardproblem. It should be noted that only two- dimensional SOMs are used,with which, in principle, it is harder to approximate a normal distributionof higher number of dimensions, due to its homogeneity throughout all thedimensions.In these experiments, we are using more units than in the other methods:in the backpropagation tests 8 nodes were used in the hidden layer accordingto [Kohonen et al., 1988] with a number of inputs equal to the dimensionalityof the input vectors; the number of output vectors equals the number ofclasses which is 2 in all tasks. In LVQ, the number of processing units

32 CHAPTER 3. LEARNING APPROACHESwas chosen to be 5d (d is the number of dimensions). On the other hand,algorithm complexity is smaller in the case of MSOM, especially with regardto backpropagation. Moreover, training a SOM in this experiment only takes25 epochs (presentations of the complete training set). However, traininga SOM usually requires �xing the values of some parameters in order toget good convergence and a large number of units might be necessary inorder to achieve a good approximation of a tricky class; these are not majordrawbacks since the algorithm is computationally cheap. In addition, ourapproach easily lends itself to parallel implementations.Theoretically, one should get near-optimal results with a great number ofunits in each SOM, but SOMs are best suited to data which is distributed ina subspace of the high dimensional original space. Ideally, the SOM numberof dimensions should be equal to the dimension of this subspace.The main advantage of our method is that it simpli�es the original prob-lem. Training small networks with subsets of data is easier and faster thantraining a big network with all the data. Furthermore, each independentSOM might be reused in other problems of classi�cation of its class togetherwith other di�erent classes. Thus, we could get a collection of SOMs andpick the relevant ones depending on the classes involved in a given problem.Another advantage is that this approach gives a reply to a criticism fre-quently made about neural networks regarding the lack of signi�cance of theweights of the units, and how the network solves the problem. In our method,each SOM is considered as an approximation of the probability density of aclass, the weight links are codebook vectors or representative members ofthat class. The probability density of the class at point x is inversely pro-portional to the distance from x to the nearest member of the class. Thisapproximation allows the classi�cation process to be done by comparison ofthe probability densities of each class, as stated by Bayesian theory.3.2.4 Experiments on real dataThis approach has been tested in other real problems with electronicallyavailable data from the Carnegie-Mellon University connectionist benchmarkcollection.Classi�cation of sonar signalsThis is the data used by Gorman and Sejnowski [1988] in their study of theclassi�cation of sonar signals using a neural network. The task is to train anetwork to discriminate between sonar signals bounced o� a metal cylinderand those bounced o� a roughly cylindrical rock. The data set contains 208

3.2. HYBRID LEARNING WITH MULTIPLE SOMS 33samples. Half of them were used for training, and the other half for testing.Each sample has 60 components.We used two SOMs each one size 6�6. The units had 60 inputs. And theSOMs were trained for 500 epochs each. After training and labeling, we got76.2% and 78.6% right classi�cations on the test set with separate and jointlabeling respectively. When compared to the results given by Ripley [1994]on the same data, our method is almost as e�cient as backpropagation ornearest neighbor, and it is similar to or slightly better than other methodslike projection pursuit regression, multivariate regression adaptive splines, orclassi�cation trees. In the paper by Gorman and Sejnowski [1988], resultsfor di�erent backpropagation networks with variable number of hidden unitsrange from 77.1% to 84.7%. On the other hand, a single calibrated SOM of12 � 6 neurons only results in 60.7% classi�cation rate, mainly due to thehigh input dimensionality.One should note that the input data has many more dimensions thanthe SOM. However, due to the dimensionality reduction of the algorithm,classi�cation results are comparable to those of other methods, and theywould be considerably improved if more training data were available.Speaker independent vowel recognitionThese data are recorded examples of the eleven steady-state vowels of Englishspoken by �fteen speakers for a speaker normalization study. After process-ing, input space to the network was 10-dimensional. Robinson [1989] usedthese data to investigate several types of neural network algorithms. He used528 frames from four male and four female speakers to train the network andused the remaining 462 frames from four male and three female speakers fortesting the performance.In our simulations we used 11 SOMs of size 3 � 3 each, thus using atotal of 99 units. Each SOM was trained during 2200 epochs, and the testresults of the jointly labeled SOMs are shown in Table 3.2 together withthose of other methods as reported by Robinson [1989]. A measurement ofthe computational resources for each scheme is given in the �rst column whichrepresents the number of hidden-layer units (in multiple layer networks) orthe total number of units (in other cases) used in each simulation. Thepercentage of correct classi�cations obtained by our method stands amongthe best ones in a real hard problem like this one, and far better than thesingle calibrated SOM, with the same number of units.

34 CHAPTER 3. LEARNING APPROACHESTable 3.2: Test results for the vowel recognition problemClassi�er Hidden/total units % correctSingle-layer perceptron - 33Multi-layer perceptron 88 51Multi-layer perceptron 22 45Multi-layer perceptron 11 44Nearest neighbor - 56Modi�ed Kanerva model 528 50Modi�ed kanerva model 88 43Radial basis functions 528 53Radial basis functions 88 48Single SOM 100 36Multiple SOM 99 523.2.5 DiscussionIn this section a method for hybrid learning using multiple self-organizingmaps has been introduced. The learning procedure is straightforward, sinceit only requires the division of the training set in separate subsets, one foreach data class. Then, a di�erent SOM is trained in an unsupervised waywith one of the subsets. Classi�cation is based on the SOM approximationof the probability density of each class and on the Bayesian decision. Notonly do we know what the network computes but also how it does it.Training is simpli�ed since input data is simpler than the complete set;thus, a complex problem is split into several easier problems. In this ap-proach, the neurons are endowed with signi�cance as approximators of thedensities of data. Test results have been presented on both synthetic andreal classi�cation problems, which demonstrates that this method is compa-rable to other pure supervised methods widely used |like backpropagationnetworks| on hard problems, and it is a great improvement over a singlecalibrated SOM with the same total number of units.Two interesting extensions might be possible: the �rst one would be touse training set data with continuous outputs, i.e. a regression-type problem(now, since the training set class assignments are used, only categorizedoutputs are addressed). A second extension to take this approach a stagefurther is imposing a neighborhood relation between the individual SOMs;this might allow, e.g. a consistent visualization of the whole set of maps.

3.3. RECURRENT NEURAL NETWORKS 353.3 Recurrent neural networksA di�erent learning paradigm is brie
y reviewed in this section. Its use wasmotivated by the limitations of learning without taking the past history intoaccount (Sect. 3.5). No theoretical contribution to this �eld will be presented.Our interest is its use in combination with other learning algorithms whichwill be presented in the next section.Feedforward neural networks are universal function approximators: theo-retically, any continuous function can be approximated at a desired precisionwith such a network. However, sequences are frequently found in problemswhich cannot be dealt with feedforward networks, since their output is al-ways the same for a given input. There are other network architectures thatare suited for processing sequences: Minsky [1967] already proved that everyFinite State Automaton (FSA) is equivalent and can be simulated by someneural machines assembled by (arbitrarily) interconnecting certain basic el-ements called McCulloch-Pitts cells [McCulloch and Pitts, 1943].In practice, the problem faced by an agent is to infer the current stateof the world from the current and past observations. The agent ignores theunderlying dynamics of the world, and it has to infer a model based onthe sequences of observations. An overview of recurrent networks and itsrelationship with the problem of grammar inference is presented in [Casta~noet al., 1995].Elman [1990] proposed a recurrent neural network architecture which hasbeen proved to have as much computational power as a �nite state machine[Kremer, 1995]. The input layer of an Elman network is divided into twoparts: the true input units and the context units. The context units simplyhold a copy of the activations of the hidden units from the previous timestep. The modi�able connections are all feed-forward, and can be trainedby conventional backpropagation methods. The recurrent connections fromthe hidden to the context layer are �xed (Fig. 3.4). Cleeremans et al. [1989]have shown that an Elman network can learn to mimic an existing FSA,with di�erent states of the hidden units representing the internal states ofthe automaton.Other simple recurrent models have been proposed by Jordan [1986], Stor-netta et al. [1988] and Mozer [1989] which di�er in the topology of the re-current connections; second-order models have been presented by Giles et al.[1992].There are some di�erent techniques for extracting a FSA from a recur-rent network: clustering [Cleeremans et al., 1989], neighborhood techniques[Manolios and Fanelli, 1993] and dynamic state partitioning [Giles et al.,1992]. In this last technique, the range of each hidden neuron is divided into

36 CHAPTER 3. LEARNING APPROACHES

Figure 3.4: Schematic representation of an Elman network with 3 inputs, 2hidden units and 3 outputs. Connections with the context units are �xed(black arrows). The rest of the connections (gray lines) are trainableq partitions of equal size. Consequently, a hidden layer of n neurons is parti-tioned in qn states. Sequences are presented to the network so that the inputsymbol is associated to the current partition state and the next partitionstate they activate. Later, the extracted FSA is reduced to its equivalentminimal state representation using a standard minimization algorithm (seee.g. Sect. 3.4 of [Hopcroft and Ullman, 1979]).The interest of recurrent networks in our work is the ability to inferan underlying dynamic structure from the sequences of observations. Inthat case, the agent acquires a state of the world based on current and pastinformation, which can allow it to �nd a more e�cient solution to the problemthan if only the current observation is used. In Sect. 3.5, it is shown howrecurrent networks can extend reinforcement learning methods to deal withcomplex partially-observable domains.3.4 Reinforcement learningThe Self-Organizing Map, described in Sect. 3.1.1, is a method for densityapproximation and feature extraction; recurrent neural networks are suit-able for learning sequences and inferring regular languages. The learningparadigm described in this section departs from the previous ones in its do-main of application. Learning now applies to an agent (robot) acting in aworld (environment), which has to achieve a task (e.g. a �ne motion prob-

3.4. REINFORCEMENT LEARNING 37lem, assembly or part mating). The agent is not provided with the correctsolution, but an internal evaluation signal, which indicates if it is doing wellor not. Based on this limited information, the learning approaches presentedin this section are able to improve the agent's skills and its performance inthe task. The interest of the previous paradigms (SOMs and recurrent net-works) is its integration with the new learning algorithms to solve particularsubproblems (feature extraction, learning past history) which are necessaryfor the whole learning task to succeed.3.4.1 Markovian decision problemsIn the literature of learning agents, the world (environment) is commonlyconsidered a Markov process with the agent as the controller. In a Markoviandecision problem, the agent issues actions, i.e. inputs to a dynamic system,that probabilistically determine successor states. At each time step, theagent observes the systems current state and selects a control action, whichis executed by being applied as input to the system. When at state i, theaction must be chosen from a given �nite set U(i). At state i, the choice of anaction u speci�es the transition probability to the next state j. The action udepends on the state i and the rule by which we select the control actions iscalled a policy. Task knowledge might be used to program the action for agiven state, but in general the agent should learn to choose the best actionsfrom its own real experience, by means of some mechanism which indicatesthe quality of the actions performed by the robot (reinforcement).Each decision results in some immediate cost g(i; u; j) but also a�ects thecontext in which future decisions are to be made and therefore a�ects the costincurred in future stages. Optimal policies should minimize the total costover a number of stages. Dynamic programming provides a mathematicalnormalization of the tradeo� between immediate and future costs [Bertsekasand Tsitsiklis, 1996].In comparing the available controls u, it is not enough to look at themagnitude of the cost g(i; u; j); we must also take into account the desirabilityof the next state j. States j are ranked by using the optimal cost (over allremaining stages) starting from state j, which is denoted by J�(j) and isreferred to as the optimal cost-to-go or value of state j. These costs-to-gocan be shown to satisfy some form of Bellman's equation [Bellman, 1957]:J�(i) = minu E[g(i; u; j) + J�(j)ji; u]; 8i (3.7)where j is the state subsequent to i, and E[�ji; u] denotes the expected valuewith respect to j, given i and u. The objective is to calculate numericallythe (sub-) optimal cost-to-go function J�.

38 CHAPTER 3. LEARNING APPROACHESReinforcement learning (RL for short) is a collection of methods usedby the arti�cial intelligence community which are suitable for this class ofproblems. In the RL community, the concept of reinforcement or reward ismore commonly used than the concept of cost introduced in dynamic pro-gramming. When the problem is formulated in terms of costs, the objectiveis to minimize the accumulated costs; however, when using reinforcementor reward, the objective is to maximize the total amount of the receivedreinforcement signal.Sutton [1992] has de�ned RL as the learning of a mapping from situationsto actions so as to maximize a scalar reward or reinforcement signal. Infor-mally speaking, RL is the problem faced by an agent that learns behaviorthrough trial-and-error interactions with a dynamic environment [Kaelblinget al., 1996]. A more technical de�nition is given in [Keerthi and Ravin-dran, 1996]: RL refers to a class of learning tasks and algorithms in whichthe learning system learns an associative mapping, � : State ! Action bymaximizing a scalar evaluation (reinforcement) of its performance from theenvironment (user).RL often involves two di�cult subproblems. The �rst is known as thetemporal credit assignment problem [Sutton, 1984]. When the learning agentobtains certain outcomes from performing a sequence of actions, it must�gure out how to assign credit or blame to each individual situation (orsituation-action pair) to adjust its decision making and improve its perfor-mance. The second subproblem is the generalization problem (also knownas the structural credit assignment problem). When the problem space istoo large to explore completely, a learning agent must have the ability toguess about new situations based on experience with similar situations. Inthe course of learning, both subproblems must be solved.3.4.2 Q-learningThe basic problem in many tasks is the delay of the reinforcement. Forexample, when the robot is inserting a peg, the reward is attained whenthe peg is �nally inserted though many actions are carried out before, andsome of them deserve rewards while others should be penalized. It is a moredi�cult problem than a pure associative reinforcement, when an action isimmediately rewarded or punished, so it can e�ectively be associated to atype of reinforcement.Q-learning [Watkins and Dayan, 1992] is a RL algorithm that can be usedwhenever there is no explicit model of the system and the cost structure. Thisalgorithm learns the state-action pairs which maximize a scalar reinforcementsignal that will be received over time. In the simplest case, this measure is

3.4. REINFORCEMENT LEARNING 39the sum of the future reinforcement values, and the objective is to learn anassociative mapping that at each time step t selects, as a function of thecurrent state i, an action u that maximizes1Xk=0 r(t+ k) (3.8)where r(t+ k) is the reinforcement signal at step t+ k. Such an associativemapping is called a policy. In practice, the following expected discount sumis used instead:Efr(t) +
r(t+ 1) +
2r(t+ 2) + � � �g = Ef 1Xk=0
kr(t+ k)g (3.9)where E is the expectation over all possible behavior patterns of the process.The discount factor
 determines the present value of future reinforcement:a reinforcement value received k time steps in the future is worth
k timeswhat it would if it were received now. If 0 �
 < 1 , this in�nite discountedsum is �nite as long as the reinforcement values are bounded.Q-learning was developed from the theory of dynamic programming [Ross,1983] for delayed reinforcement learning. In Q-learning, policies and the valuefunction are represented by state-action pairs. Formally, for each state i andaction u 2 U(i) let us de�ne the optimal Q-factorQ�(i; u) =Xj pij(r(i; u; j) +
J�(j)) (3.10)where
 is the discount factor and r(i; u; j) is the reinforcement or rewardobtained with a transition from i to j under control u. Bellman's equation(3.7) can be written as J�(i) = maxu2U(i)Q�(i; u): (3.11)One should recall that the reinforcement has to be maximized, in oppo-sition to the cost (represented by g(i; u; j) in equation 3.7) which should beminimized. In the following, the notion of reinforcement or reward is alwaysused.The two previous equations are combined, obtainingQ�(i; u) =Xj pij(u)(r(i; u; j) +
 maxv2U(j)Q�(j; v)): (3.12)The Q-learning algorithm works by maintaining an estimate of the Q�function, and adjusting its values based on actions taken and reward received.

40 CHAPTER 3. LEARNING APPROACHESThis is done using the di�erence between the immediate reward received plusthe discounted value of the next state and the Q-value of the current state-action pair,Q(i; u) (1� �)Q(i; u) + �(r(i; u; j) +
 maxv2U(j)Q(j; v)): (3.13)The convergence of the process was demonstrated by Watkins and Dayan[1992] under the following conditions. De�ne nk(i; u) as the index of the kthtime that action u is tried in state i. Given bounded rewards, learning rates0 � � < 1, and 1Xk=1�nk(i;u) =1; 8i; u (3.14)1Xk=1[�nk(i;u)]2 <1; 8i; u (3.15)then Qn(i; u) ! Q�(i; u) as n ! 1; 8i; u with probability 1. The learningrate schedule of the experiments reported in this thesis has been used byBarto et al. [1995]: �nk(i;u) = �0�� + nk(i; u) (3.16)where �0 is the initial learning rate. The equation implements a search-then-converge schedule for each �nk(i;u) as suggested by Darken and Moody[1991]. they argue that such schedules can achieve good performance instochastic optimization tasks. In addition, the schedule satis�es the previoushypotheses of convergence.3.4.3 Exploration strategiesDuring the learning process, two opposing objectives have to be combined.On the one hand, the environment must be su�ciently explored in orderto �nd a (sub-) optimal controller. On the other hand, the environmentmust also be exploited during learning, i.e., experience made during learningmust also be considered for action selection, if one is interested in minimiz-ing costs of learning. This trade-o� between exploration and exploitationdemands e�cient exploration capabilities, maximizing the e�ect of learningwhile minimizing the costs of exploration [Thrun, 1992].Exploration schemes can be classi�ed into two families: undirected anddirected exploration. Undirected exploration techniques are characterized byusing randomness for exploration. Directed exploration techniques utilizesome exploration-speci�c knowledge for guiding exploration search.

3.4. REINFORCEMENT LEARNING 41Undirected explorationThe most basic and uninformed undirected exploration technique is calledrandom exploration. Actions are selected randomly with uniform probabilitydistribution, and the environment performs a random walk in state space.Semi-uniform exploration selects actions with a modi�ed probability distri-bution: the best action (i.e. the one which maximizes exploitation) is chosenwith a �xed probability pexp. With probability 1� pexp, a random action iscarried out. Consequently, semi-uniform exploration performs exploitationwith probability pexp and random exploration otherwise.Many learning algorithms allow for estimating the exploitation utility ofeach action separately (e.g. the Q(i; u) values in Q-learning). In Boltzmannexploration the utility estimates are used for weighting exploitation and ex-ploration. The probability of selecting an action u in state i is:p(i; u) = exp(Q(i;u)T)Pv exp(Q(i;v)T) (3.17)where T is a positive constant value, which controls the degree of randomnessand is often referred to as temperature. Its value is gradually decayed froman initial �xed value. When it is close to zero, exploration is turned o� andthe best action is always selected (see Fig. 3.5). The experimental results inthis thesis use a decreasing scheme similar to the presented in [Barto et al.,1995]: T (0) = TmaxT (k + 1) = Tmin + �(T (k)� Tmin): (3.18)Directed explorationOther exploration methods are presented here for completeness, but they arenot actually used in the experiments.Directed exploration techniques are heuristic in nature, since it is im-possible to determine which action will determine the improvement of theresulting controller over time.Counter-based exploration relies on an adaptive map c(�), counting theoccurrences of each state i. This map is used for driving an agent to lessexplored states, e.g. by selecting the action which maximizesEcounterexplore (u) = c(it)E[c(it+1)jit; u] = c(it)c(̂it+1(it; u)) (3.19)

42 CHAPTER 3. LEARNING APPROACHES

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q(i,u) = [5, 3, 9, 11, 4]

p(
i,u

)
T=75

T=5

T=0.5

Figure 3.5: Probability of selecting actions using Boltzmann exploration fordi�erent temperatures and a �xed vector of Q-valueswhere it denotes the current state, E[�j�] denotes the expected value, and thenext state ît+1 is predicted by the next-state function of a predictive model.This method selects the action which leads to the least visited neighboringstate.The recency of occurrences of states is taken as a basis for explorationin recency-based exploration. This technique favors states for explorationwhich occurred least recently, e.g. by maximizingErecencyexplore (u) = qE[�(it+1)jit; u] = q�(̂it+1(it; u)): (3.20)The function � measures the recency of a state, i.e. the time during whicha state did not occur. This is referred to as exploration bonus in [Sutton,1991].Error-based exploration makes the assumption that states or regions instate space with large error are little explored and demand further explo-ration. Obviously, the e�ciency of this rule depends on the heuristic em-ployed for estimating errors.Exploration and exploitation can be combined in di�erent ways in orderto deal with the trade-o� e�ciently. The most basic and straightforward wayis a static linear combination. Actions are selected to optimize a �xed, linearcombination thereof, e.g. by maximizingE = (1� �)Eexplore + �Eexploit (3.21)

3.4. REINFORCEMENT LEARNING 43where �(0 < � < 1) is a �xed gain, determining the portion of both targetfunctions in action selection. Other more sophisticated dynamic combina-tions are discussed in [Thrun, 1992].3.4.4 Reinforcement learning in roboticsReal-world conditions of uncertainty and noise can substantially degrade theperformance of traditional control methods. Sources of uncertainty and noiseinclude (1) errors and noise in sensing, (2) errors in execution of motioncommands, and (3) uncertainty due to movement of the grasped part withrespect to the gripper. The unavoidable problem of uncertainty motivatesthe introduction of learning strategies in robot control.The aim of machine learning in robot control is to enable a robot to collectits knowledge on-the-
y, through real-world experimentation. If a robot isplaced in a novel, unknown environment, or faced with a novel task for whichno a priori solution is known, a robot that learns can collect new experiences,acquire new skills, and eventually perform new tasks all by itself.In addition to �ne-motion applications described in Sect. 2.4 on page 18,reinforcement learning has been successfully used in other robot domains likemobile robotics. Mill�an and Torras [1992] propose a reinforcement learningarchitecture that allows an autonomous robot to acquire e�cient navigationstrategies in a few trials. Their system exhibits important properties: fastlearning, it is operational from the beginning, it improves its performanceincrementally and it exhibits a high tolerance to noisy sensory data andgood generalization capabilities. They report experimental results obtainedwith a real mobile robot in an indoor environment.Lin [1993] presents some approaches to overcome the slow learning prob-lem and tackle non-Markovian environments, making reinforcement learningmore practical for realistic robot tasks. Integration with arti�cial neural net-works, action models, instructive training instances and hierarchical learningto improve generalization and learning speedup. Memory is used to deal withnon-Markovian environments. Results rely on computer simulation, includ-ing an agent operating in a dynamic and hostile environment and a mobilerobot operating in a noisy and non-Markovian environment.In [Thrun, 1996] the task of learning from scratch is simpli�ed by consid-ering robots that face whole collections of control learning problems over theirentire lifetime. In such a lifelong robot learning scenario, learning tasks arerelated in that they all play in the same environment, and that they involvethe same robot hardware. One particular approach to the lifelong learningproblem is the explanation-based neural network learning algorithm (EBNN)[Mitchell and Thrun, 1993]. This is a hybrid learning strategy which con-

44 CHAPTER 3. LEARNING APPROACHESsists in learning functions inductively from scratch (just like neural networkbackpropagation) and learning task-independent domain knowledge, whichapplies to multiple tasks. Results are presented in [Thrun, 1996] in an indoormobile robot navigation domain.3.5 Q-learning and recurrent networksThroughout the previous sections of this chapter, several learning paradigmshave been presented in isolation, together with their main features and appli-cation domains. The combination of methods is a possible means of managingmore complex learning tasks which otherwise could not be solved. In thissection an example of a sensor-based task is presented, together with themethodology for combining two of the learning approaches presented in thischapter: recurrent networks and Q-learning.The problem is a test case, but it illustrates how the sensing ambiguitiesmight prevent the agent from successfully learning the task. The introductionof recurrent networks allows the agent to take into account the past sensingsignals, and learn a good policy for the task.3.5.1 A sensor-based goal-�nding taskThis section illustrates an application of Q-learning enhanced with a recur-rent neural network to learn a sensory-based exploration task: �nding a goalin a two-dimensional grid world. Though very simpli�ed, this task is similarto perception-based �ne motion problems. A simple grid is chosen for illus-trative purposes, but it could be any physical space, e.g. the contact space.Essentially, the agent does not know its real position but only a sensing mea-surement. It has to learn a policy from sensing to actions, which allows it toattain the goal with the minimum number of steps.The agent is not aware of both the real state (location) and the relation-ship between the sensor measures and the state or action it should perform.This relationship must be discovered in an autonomous way, by performingtrials on the task (randomly at the beginning), exploring, and learning thevalue of each pair (state, action). The indicator of performance is the lengthof the path at each trial.Each cell in the grid world produces a sensor reading, but the same mea-surement may be obtained from di�erent locations. This sensing ambiguityposes a di�cult problem, since it invalidates the Markovian hypothesis, and,consequently, degrades the performance of the reinforcement learning meth-ods. In fact, in extremely ambiguous cases (examples will be provided later),

3.5. Q-LEARNING AND RECURRENT NETWORKS 45
C

E

D

A

F

C

DB

A
EFigure 3.6: Example of agent's motion in a grid world. The goal is the centralgray cell. The sequence of sensor readings is: C A A B B D E D C F F Fthe learning task turns out to be impossible. This motivates the introduc-tion of recurrent networks: its FSA induction capabilities provide a means oftaking the past history of sensor readings into account and overcoming thesensor ambiguities.The sensor measurement is the only information the agent is aware of:it completely ignores the location of the grid where it stays. Furthermore,at each experiment the agent begins in a di�erent random position: priorto each step, it reads the current sensor measurement and makes a decisionabout the direction of motion. The agent can move from one cell to each ofits 8-neighbors (an example trajectory is depicted in Fig. 3.6). The locationof the goal is �xed, as well as the sensor reading associated to each gridlocation. The world is limited; if the agent tries to move outside, it is justforced to stay in the same cell, though it does not receive any informationabout this. A trial run ends when the agent gets into the goal, or when apredetermined number of steps have been made.After each step, the agent's reinforcement algorithm updates its valuefunction based on the previous state, the next one and the reinforcement,which is constant and negative (penalty). The reinforcement signal couldreally be considered a �xed cost for each step the agent does. The aim is toattain the goal starting from a random location with the minimum number ofsteps. The agent's performance not only depends on its learning abilities butalso on the informative content of the sensor signal with regard to the goal.However, the recurrent network enhances the agent's capabilities: it will beshown how some problems are not solvable without learning the sequences

46 CHAPTER 3. LEARNING APPROACHES
C

E

D

A

F

C

DB

A
E(a) 1st mapping

C

C

A

A

B

B

D

D(b) 2nd mappingFigure 3.7: Two sensor mappings for the agent's worldof sensor observations.The presented task is simple at the sensor and actuator levels, but theagent must learn an unknown and possibly complex relationship betweenstates and actions. Starting from a random location, the agent must �ndits way to the goal (the gray cell) guided only by its sensory information.The sensor measures a single discrete signal with a �nite number of di�erentvalues: two examples of sensor mappings used in the experiments are depictedin Fig. 3.7; in both cases there exist some sensing ambiguities. The secondmapping is extremely ambiguous in the sense that, for each reading, thereare two di�erent regions which are located in opposite directions with regardto the goal. As a result, it is impossible to learn any optimal action at theseregions, since any action that is adequate for one region, is the worst choicein the opposite case.Let (x; y) be the discrete location (which in fact is the physical state)of the agent with respect to a �xed frame of reference. Let (xf ; yf) be thelocation of the goal.Let � = fA;B;C;D;E; :::g be a �nite set of sensor measurements. LetS : (x; y) ! � be the sensing function, i.e. the mapping from the agent'slocation to the sensor measurement which is observed at such location (ob-served state).Let A be the �nite set of actions (discrete motions) that the agent canperform. If the agent's decision is based only on the current observed state,one q-value is stored for each pair (�; A), and the action whose value ismaximum for the current state is chosen. The problem is that di�erentstates are observed in the same manner, i.e. their sensor measurements are

3.5. Q-LEARNING AND RECURRENT NETWORKS 47equal. However, the best action to attain the goal from each state can bequite di�erent, and the learning algorithm learns a compromise between thoseactions, or, if the actions are totally opposite, it cannot learn anything at all(as it will be shown in the examples).If the current state is ambiguous, the agent needs more information inorder to make a sensible choice. This information, in the absence of othersensors, can only be acquired by the analysis of past observations.3.5.2 A �nite state model of the taskDuring each walk of the agent through the grid, a sequence of sensor symbolsis generated, one symbol at each step. This sequence is a string s 2 ��, andthe set of all possible generated strings is a language L � ��. Since thenumber of states is �nite, the language is regular, and the problem can bemodeled by a �nite state system. In such systems, the state summarizes theinformation concerning past inputs that is needed to determine the behaviorof the system on subsequent inputs.Let us de�ne a �nite state automaton (FSA) for that language by the 5-tuple (Q;�; �; q0; F), where Q is a �nite set of states, � is the input alphabet,q0 is the initial state, F is the set of �nal states, and � is the transitionfunction mapping Q��! Q [Hopcroft and Ullman, 1979]. Let it be namedcell-FSA:� For each location (x; y), let q[x; y] 2 Q be a state of the automaton.� Let q0 be a distinct state of Q, not associated with any location.� Let the alphabet � be the �nite set of sensor measurements.� Let F = Q� fq0g, i.e. all the states except the initial one.� Finally the (non-deterministic) transition function � is de�ned as fol-lows: For all (x; y) 6= (xf ; yf){ De�ne �(q0; �)! q[x; y]{ 8(xi; yj) 2 neighborhood(x; y), de�ne �(q[x; y]; S(x; y))! q[xi; yj]{ If (x; y) is a bounding cell, de�ne �(q[x; y]; S(x; y))! q[x; y]First, an empty transition is de�ned from the initial state to each otherstate, since the agent can start from any location and it has not sensedanything yet. Secondly, upon reading the sensor measurement of the current

48 CHAPTER 3. LEARNING APPROACHESlocation, the agent moves to a neighbor cell. Finally, if the agent tries tomove outside the bounds, it stands in the same location.Every state except q0 is a valid �nal state, since the agent can stop aftera number of steps without reaching the goal. The goal state has no furthertransitions: the agent stops when it reaches it.This is a non-deterministic FSA with as many states as cells in the gridworld, and it is equivalent to a deterministic FSA (Chap. 2 of [Hopcroft andUllman, 1979]). The number of states of the system is important, since theQ-learning algorithm needs to store the q-values of each pair (Q;A). Thenumber of states can be reduced if a simpler yet more general automaton isbuilt, by considering all the neighbor cells sharing the same sensor measure-ment as a single state of the automaton. This notion is valid as long as cellsare grouped in regions or clusters and the number of these regions is muchsmaller than the number of cells (in the examples depicted in Fig. 3.7 thereare 120 cells but only 10 and 8 regions, respectively, excluding the goal cell).Let R = fr1; r2; : : : ; rng be the set of regions or clusters of grid cells suchthat ri = f(x1; y1); (x2; y2); : : : ; (xn; yn)g and it holds that8r 2 R; 8(x; y) 2 r; 9!s 2 S=S(x; y) = s (3.22)i.e. all the cells share the same sensor measurement and it also holds thateach region is connected. The goal de�nes a particular region rf = f(xf ; yf)g.Let us de�ne a new FSA over the set of regions:� For each region r 2 R, let q[r] 2 Q be a state of the automaton.� Let q0 be a distinct state of Q, not associated with any region.� Let the alphabet � be the �nite set of sensor measurements.� Let F = Q� fq0g, i.e. all the states except the initial one.� The (non-deterministic) transition function � is now de�ned as follows:8r 6= rf{ De�ne �(q0; �)! q[r]{ De�ne �(q[r]; S(r))! q[r]{ 8r0 2 neighborhood(r), de�ne �(q[r]; S(r))! q[r0]The behavior of this FSA is de�ned by the topology of the grid world,i.e. the connections between regions of cells. Let it be named topology-FSA.Intuitively, one can see that any sequence recognized by the cell FSA is alsorecognized by the topology FSA. The opposite may not be true: in the cell

3.5. Q-LEARNING AND RECURRENT NETWORKS 49
1

2

3

4

5

6

7

8

9

10

11

12

13

14

a

e

c d

b

f

a

b

c

e

f

e

c d

a

b

f

e

c d

a

b

f

a
e

f

a
b

c

a b

c

d

e

fa b

c

d

e

c
d

e

f

c

d

e

b

c

d

e

f

a

c

d

e

f

b

c

d

e

a

b

cd

e

f

Figure 3.8: Minimized topology FSA de�ned by the �rst sensor mappingFSA, transitions from one region to other are only de�ned for those cellswhich bound the region. Thus the language (set of sequences) recognized bythe topology FSA is more general than that of the cell FSA, i.e. L(cell �FSA) � L(topology � FSA).Deterministic and minimized versions of the topology FSAs for the ex-ample mappings are depicted in Figs. 3.8 and 3.9.The methodologies previously described for building FSAs assume a com-plete and perfect knowledge of the world, which is clearly an impossibleassumption in any real task. More realistically, the agent should build aninternal representation of the FSA by means of an inference process, e.g.training a recurrent neural network (introduced in Sect. 3.3) with sample se-quences, which can be obtained by random walks across the grid. Once thenetwork learns an accurate prediction of the sequence, the FSA is extractedand, if necessary, determinized and minimized. With this scheme, the num-ber of stored q-values in the learning algorithm depends on the number ofregions, not the cells.

50 CHAPTER 3. LEARNING APPROACHES

q0

q1

q10

q2

q3

q4

q5

q6

q7

q8

q9
b d

a c

a

b

c

d

a

b d

c

a

c

a

b
c

d

b

d

a

b

c

d

a

c

a

b

c

d

b

d

b

d

a c

Figure 3.9: Minimized topology FSA de�ned by the second sensor mapping3.5.3 Simulation resultsThe presented approaches are illustrated with computer simulations of thesensor-based goal-�nding task. Two possible sensor mappings are used inthe simulations (Fig. 3.7). Each location of the grid is associated to astatic sensor measurement, but two distinct isolated locations may producethe same sensor value (an extension for stochastic values is possible, sincethere are recurrent networks capable of learning regular grammars from noisystrings [Carrasco and Forcada, 1995]).Sensing ambiguitiesSensor measurements are ambiguous and the physical state of the system (inthis particular case the position or whatever, e.g. the contact state) cannotbe directly obtained from the current sensor signal. Despite this ambiguity,the learning algorithm should be able to �nd the best action (the one whichleads to the goal in the minimum number of steps on average) for those stateswhich are not replicated, in the �rst mapping, i.e. those regions whose sensormeasurement is di�erent from the rest. In the second mapping, con�gurationof the regions is even more ambiguous, and no optimal action can be learnt

3.5. Q-LEARNING AND RECURRENT NETWORKS 51by using only the current symbol information. However, the agent can infera �nite state model of the underlying structure of both mappings by meansof randomly walking and building strings of sensor measurements.Results for the learning task which consider only the current sensor sym-bol as the state are depicted in Fig. 3.10. Three independent runs of 1500trials each are shown. The plots represent the number of steps to attain thegoal, with a limit of 100 steps if not found, versus the number of trials. Amoving average window of 25 consecutive values is used to smooth the data.In both mappings, Q-learning (Eq. 3.13) with Boltzmann exploration(Eq. 3.17) was used. The learning rate is scheduled as Eq. 3.16, with theinitial value �0 = 0:5 and � = 300. Since the number of steps is limited,no discount is necessary (
 = 1). The temperature is scheduled as Eq. 3.18with the values Tmin = 0:5, Tmax = 75 and � = 0:992.Each trial starts with the agent in a random location and �nishes eitherwhen the agent reaches the goal or when 100 steps are carried out. In the�rst mapping, the algorithm converges to a good solution in one of the threetrials; the other two show a performance increase a�ected by an oscillatingbehavior. The second mapping con�rms the intuitive impossibility of learningany sensible action due to the completely ambiguous layout of the regions.The agent cannot improve at all from the initial random strategy.Learning with FSAsTo demonstrate the e�ectiveness of using FSAs in these learning tasks, thetopology FSAs de�ned in Sect. 3.5.2 are used to determine the state of theagent. The parameters of the learning algorithm and exploration scheduleare the same as in the previous experiments.Experimental results are depicted in Fig. 3.11. The increase of perfor-mance is dramatic, specially in the second mapping which previously wasimpossible to learn. However, the FSAs have been constructed from theknowledge of the world, which usually is not available. Automatic inferenceof FSA is necessary for a realistic implementation of an autonomous agent.FSA inference with recurrent netsPrevious results have demonstrated the need of taking the sequence of sensorreadings into account to determine the state. The learning process is splittedinto two phases:1. Inference of FSA. The agent walks randomly through the grid, record-ing the sensor sequences and training a recurrent network for predictingthe next sensor reading. This network learns an internal representation

52 CHAPTER 3. LEARNING APPROACHES

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

1st mapping

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

2nd mappingFigure 3.10: Steps to goal vs. trials when using only current sensor measure-ment

3.5. Q-LEARNING AND RECURRENT NETWORKS 53

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

1st mapping

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

2nd mappingFigure 3.11: Steps to goal vs. trials when using topology FSAs

54 CHAPTER 3. LEARNING APPROACHESof the FSA which is extracted with any suitable method, determinizedand, if necessary, minimized.2. Action learning. Once the FSA is extracted, the agent begins to learnthe actions, with regard to the state determined by the FSA. The learn-ing algorithm is the same that in the previous experiments; only thedetermination of the current state is di�erent.In the �rst mapping, the network has 6 input units (one for each sym-bol, using 1-of-N codi�cation scheme), 2 hidden units and 6 outputs. Thetraining set consists of 100 random sequences of variable length (less than 30symbols), and the network is trained to predict a symbol in its outputs basedon the previous one in its inputs. A validation set of other 100 random se-quences is used. The network is trained with the backpropagation algorithmwith momentum for 150 epochs. The number of epochs was determined bythe evolution of the squared error on the validation set. The learning rate is0:04 and the momentum factor is 0:7. No exhaustive search for optimal pa-rameters was made; we found that the trained network was not very sensitiveto small changes in these parameters. The �nal Mean Square Error (MSE)was 0:54 for the training set and 0:59 for the validation set. Additional hid-den units did not improve the network performance very much, and were toocomplex for extracting the automata.The FSA was extracted by dynamic state partitioning [Giles et al., 1992].100 random sequences of variable length (less than 100 symbols each) werepresented to the network. The range of each hidden unit [0; 1] was dividedinto 6 equal intervals. The states of the FSA (up to 36) are the activated in-tervals and the transitions are de�ned by the symbols which cause the changesbetween intervals of activations. The extracted FSA was determinized andminimized to get a �nal FSA with 23 states and 113 transitions, which isdepicted in Fig. 3.12.Experimental results for the learning task with this FSA are shown in Fig.3.13. The parameters of Q-learning and the exploration scheme are the samethan in the previous experiments. The agent achieves a good convergencein all the runs, though not as fast as that obtained with the topology FSA(Fig. 3.11).The choice of the number of hidden units and the number of intervals instate partitioning is relevant to the �nal performance. Unfortunately, thereis no automatic determination of these values. Experimental results withdi�erent values are depicted in Fig. 3.14. The quality of the learning processdepends on the extracted FSA, though a similar behavior is observable inthese other cases.

3.5. Q-LEARNING AND RECURRENT NETWORKS 55

q0
q1

q10

q11

q12

q13

q14

q15

q16

q17

q18

q19

q2

q20

q21

q22

q3

q4

q5

q6

q7

q8

q9

b
f

e

c
d

a

b df

e

c

a
f

b

d c

af

e

c

b

a

f
a

e

d

c

b

b

e

c

d

a

b d

f

e

c

a

f
a

e

b

c

e

a

b

f

b

c

e

d

a

e

b

c

d

a

f

e

d

c

b

a

f

c

b

e

d

a

f

b

c

d

a

f

c

e

d

f

e

d

c

b

bf

e

c
d

f

b

c
d

e

a

b

c

d

f

e

c

b

a

f ba

e

d

c

e

b

d

a

Figure 3.12: Minimized FSA extracted from an Elman network

56 CHAPTER 3. LEARNING APPROACHES

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Figure 3.13: Steps to goal vs. trials using the FSA extracted from a 6-2-6Elman network with 6-interval partitioning for the �rst mapping
In the second mapping, the Elman network had 4 inputs only (symbolsA to D), 2 hidden units and 4 outputs. The training and validation set, andthe training parameters were the same as before. The �nal MSE was 0:46 forthe training set and 0:47 for the validation set. The FSA was extracted bypartitioning each hidden unit in 5 intervals, and testing the networks with100 sequences of length less than 30 symbols. The �nal minimized FSA with13 states and 48 transitions is depicted in Fig. 3.15.Experimental results for the learning task of the second mapping withthis FSA are shown in Fig. 3.16. The parameters of Q-learning and theexploration scheme are the same than in the previous experiments. The agentachieves a good convergence in all the runs, with a dramatic increase over thepoor performance of the system based on current sensor information (Fig.3.10), and not far from that obtained with the topology FSA (Fig. 3.11).The choice of the number of hidden units and the number of intervalsin state partitioning is also relevant to the �nal performance. Experimentalresults for FSAs extracted from the same Elman network, with partitioningin 4 and 6 intervals are shown in Fig. 3.17. With 4 intervals, the learningprocess slows down and is less stable. On the other hand, with 6 intervals,though there is a small improvement in the converged value, the system takesmore trials to achieve this convergence.

3.5. Q-LEARNING AND RECURRENT NETWORKS 57

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

6-2-6 network, 5-interval partitioning

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

6-4-6 network, 3-interval partitioningFigure 3.14: Steps to goal vs. trials when using other extracted FSAs in the�rst mapping

58 CHAPTER 3. LEARNING APPROACHES

q0

q1

q10

q11

q12

q2

q3

q4

q5

q6

q7

q8

q9

d

a c

b

d

c

a

bd

c

a

b

d

c

b

a

d

c

a

d

ba

d

b

c
d

c

a

b

d
a c

b

a c

b

d
d

c

a

b

c

d

ba

a c

b

Figure 3.15: Minimized FSA extracted from an Elman network in the secondmapping

200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Figure 3.16: Steps to goal vs. trials using the FSA extracted from a 4-2-4Elman network in the second mapping, with 5-interval partitioning

3.5. Q-LEARNING AND RECURRENT NETWORKS 59

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

4-2-4 network, 4-interval partitioning

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

4-2-4 network, 6-interval partitioningFigure 3.17: Steps to goal vs. trials when using other extracted FSAs in thesecond mapping

60 CHAPTER 3. LEARNING APPROACHESDiscussionIt has been experimentally demonstrated that the inference of FSA can helpto improve dramatically the learning capabilities of an agent in a sensory-based goal-�nding problem. Even a task which is not solvable if only currentmeasurements are considered, can be successfully learnt with the help of theinferred FSA.Both the inference and the learning process are automatically performedby the agent. However, a number of parameters have to be manually tunedby an external operator. An interesting extension would be to perform si-multaneously both learning tasks: the FSA and the action learning.The choice of an Elman network is not unique, and more sophisticated(and complex) methods for extracting FSA are available. In particular, au-tomatic methods for the extraction of FSA are needed, which guarantee thebest possible performance of the extracted automaton.

Chapter 4Contact identi�cation withSOMsThis chapter and the next one are devoted to the application of the learningapproaches presented in Chap. 3 to �ne motion robotic problems. Through-out this chapter, two problems of contact identi�cation and monitoring aredealt with: the insertion of a peg into a hole, which is studied in simulationsusing only two dimensions with translation and rotation; and a real inser-tion task in a
exible manufacturing system [Cervera et al., 1995a, 1996].Self-organizing maps are used in both problems for contact identi�cation,monitoring and error detection.Sect. 4.5 goes a step beyond the identi�cation problem since it shows howto build a perception-based plan with some recovery capabilities based onstates detected by a SOM. In the next chapter, the approach will be pusheda stage further with the integration of SOMs and reinforcement learning todevelop an architecture for solving complex �ne-motion problems in real-world environments.4.1 Monitoring with SOMsThe Self-Organizing Map is a useful tool for the analysis, visualization andabstraction of high-dimensional data. A number of applications of SOMto process monitoring, error detection, system assessment and analysis inquite di�erent domains can be found in the literature. We are interested inextending these methodologies to the �eld of robotic �ne motion planning,specially in contact identi�cation and monitoring.Tryba and Goser [1991] investigate an application of the SOM for processmonitoring and process control in chemistry: the SOM learns vectors with61

62 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMScomponents from on-line measurements of the process, and the goal is tooptimize the quality parameters of the output material of the process andthe process itself.Another process-error detection experiment is reported by Alander et al.[1991]. A sequence of SOMs is used to estimate the distribution of the correctprocesses and error detection is based on the observed deviation of a processfrom this estimated distribution. Though the initial application is a rathersimple process error detection (a co�ee making process), their aim is anassembly robot error detection process.Kasslin et al. [1992] use a SOM to detect operational states of a device.The features used in the map are the measurements from the device describ-ing its operational and environmental parameters. The quantization errorcan be used to detect a fault, and visual inspection of the map and thetrajectory depicts the state changes clearly.The application of SOMs to power system static security assessment isstudied by Niebur and Germond [1992]. Active and reactive line powers areselected as components of the input vectors, and the regions of the map whichcorrespond to a
ow constraint violated in a speci�c line are determined. Thesecure operating limits for injected powers can be determined with respectto a set of contingencies. The network is further capable of generalizing thetrained cases and therefore of classifying operating states not encounteredduring the training phase.In a rather di�erent application domain, Martin del Brio and Serrano-Cinca [1993] show the capabilities of SOMs for the analysis and representa-tion of �nancial data and for aid in �nancial decision-making. The model isapplied to some practical �nancial cases, making use of real data from theSpanish economy. In their opinion, the conclusions drawn and the method-ology used can be easily extended to data processing in other �elds.Representation and identi�cation of fault conditions is explored by Vapolaet al. [1994], in an application of an anesthesia system. The existence of anyfault condition is detected using a set of so-called absolute features. Afterthat, only if the existence of the fault has been detected by means of absolutefeatures, the fault condition is identi�ed using the di�erential features.4.2 Monitoring �ne motion tasksOur aim is to use SOMs in �ne motion and contact monitoring. The �rstdecision is which signals are chosen as inputs to the map: position or forces.Changes of contact state in �ne motion tasks are caused by small displace-ments, but changes in forces are signi�cant, since these signals are more

4.2. MONITORING FINE MOTION TASKS 63robust against uncertainties. Forces and torques are measured by sensor de-vices attached to the robot wrist. The output of such force sensors is madeof six signals: the three spatial components of the force and torque vectorsacting on the wrist. These signals are discretized and sent to the computerfor further processing.The training process (Sect. 3.1.1 on page 24), modi�es the weights accord-ing to the input stimuli, which consists of samples of force signals registeredduring task execution or simulation. The units will learn di�erent valuesof signals and, after training, will become more active when presented withthose, or similar, signals. Thus the network will be organized in regions ofunits, or clusters which contain the main features of the input signal, andwhich could be related to the contact states of the system. If an identi�cationbetween states and clusters is found, the SOM will be able to detect errors (asubset of states) in an assembly insertion/extraction task by observing thenetwork response to the on-line measured force signals, i.e., which of the mapclusters is more active, and thus, which type of contact state is occurring.The response of neuron i for a particular input vector depends on thedistance from the unit's weight vector to the input sample. For visualizationpurposes, it is interesting to choose an output function which reaches themaximum when this distance is zero, and decreases monotonically as thedistance grows, e. g. a Gaussian:oi = exp �jwi � xj2�2 ! (4.1)where:� oi is the output, a real value that is represented in the �gures with graylevels, white for 1 (maximum activation), and black for 0 (minimumactivation)� wi is the weight vector� x is the input vector� � is a parameter (the variance) which controls the spread of the func-tion: the smaller it is, the closer the input must be to the weight vectorto produce a signi�cant response.The same input vector is presented to all the neurons. The computationof the neuron responses results in characteristic gray-level patterns. In thispatterns, the state associated with the given input can be readily identi�edas the brighter region on the net.

64 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
Figure 4.1: Sequence of contacts during a peg-in-hole insertion taskWe can also visualize the region activated by a whole sequence of inputs,instead of just a single input. To do so, we just add the activation for eachinstant, obtaining the resulting pattern for the sequence. These regions canbe reduced to individual cells if only the one giving the maximum responseis considered. This neuron is usually known as the winner. This concept isuseful when monitoring a sequence of signals, since it allows us to visualizethe sequence on the map as the trace of the winner cells for each input.To monitor a plan, and detect an error in the execution, the activity ofthe network for the measured inputs is computed, and the process state canbe readily obtained by observing the winner cell, or the brighter region onthe map.4.3 The peg-in-hole insertion taskIn the two-dimensional peg-in-hole insertion task, a rectangular peg has tobe inserted into a vertical rectangular hole. Even small errors in the positionand/or orientation of the peg prevent the task from being accomplished suc-cessfully, causing undesired contacts (see Fig. 4.1) which, if ignored, producereaction forces which can damage the piece or the manipulator.In the considered setup, the hole is chamferless, but there is a clearancebetween the hole and the peg. In the �rst simulations friction is neglected,but it will be considered later. Force sensing is achieved by means of a sim-ulated force sensor attached to the upper face of the peg. When there is acontact between the peg and the surface, the reaction forces are measuredby this hypothetical sensor. As we can see in Fig. 4.2, there are six di�er-ent possible contact states between the peg and the surface of the hole. Acontact state is the set of all con�gurations of contacts between the sametopological elements (edges, vertices). By considering some clearance be-tween the peg and the hole we have added three more states to the ones usedby Asada [1993]. Obviously, each state has its own symmetric. Our aim isto train a neural network with the torque and forces measured by the sensorin each type of contact, and obtain an output from the network suitable for

4.3. THE PEG-IN-HOLE INSERTION TASK 65
p1 p2 p3

p4 p5 p6Figure 4.2: Contacts in a peg-in-hole insertion taskidentifying these states [Cervera et al., 1995b].4.3.1 Frictionless simulationRelative positions between the peg and the hole are randomly chosen, andthe appropriate reaction forces and torque are calculated. The peg is tiltedup to 15 degrees from the vertical axis in each direction. The virtual forcesensor is located in the middle of the top edge of the peg. Since only theorientation of the force vector depends on the surfaces in contact, the vectorsare normalized to unit length. These are the inputs to the neural network.The height of the peg is twice its width. The clearance of the hole is 1%.States p1-3First only states p1, p2 and p3 (and their symmetric ones) are considered(as in [Asada, 1993]). A two-dimensional SOM of 16 � 9 units hexagonallyconnected is chosen, with the bubble neighborhood function (3.3). Followingthe recommendations of Kohonen [1995] (page 80), the map is trained in twophases:1. Ordering. Fairly wide neighborhood and learning rate: 1,000 samples,� = 0:05 and rt = 15 (3.2 and 3.3).

66 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS2. Fine tuning. Small values of neighborhood and learning rate: 10,000samples, � = 0:01 and rt = 7.During each phase, the learning rate and the neighborhood radius are linearlydecreased to zero. The resulting mean quantization error was 0.094.After training, the clusters are identi�ed with an analysis of the output(4.1, with � = 0:5) of the network when presented with the inputs of eachcontact state. These organization of clusters is shown in Fig. 4.3, and rep-resent the mean activation of the map (black is 0, white is 1) for samplesof each state (since the samples were randomly chosen, approximately onesixth of the 10,000 samples of the training set correspond to each state). Byintroducing a threshold �; 0 < � < 1, the map can be partitioned intoregions: all the units whose mean activation is greater than the thresholdare labeled as identifying that state.The regions in this way de�ned with � = 0:7 are represented in the mapdepicted in Fig. 4.4. Each state is identi�ed by a cluster of units with thesame color. Units represented by white-�lled circles are overlapping units. Allthe clusters are properly arranged on the map without almost overlapping:only states p1 and p1* are slightly overlapping due to the smooth transitionbetween these states when the peg is normal to the surface. Choosing a lower� might overlap more states, and a greater one would shrink the regions; forexample, the map built from the same activation clusters, but with � = 0:5is depicted in Fig. 4.5, resulting in a great deal of overlapping units.The map is symmetric with respect to the states, which is not surprisingdue to the physical symmetry of the system. It must be noted that the layoutof clusters, and the clusters themselves, have been found by the networkwithout any supervision, only with random samples of the signals. Thesupervisor only labels the clusters with the identi�er of the state. Othersimulations produced vertically and horizontally mirrored versions of thesame map, but the relative distribution of the clusters remained constant.States p1-4If we consider states p1, p2, p3 and p4, we obtain the clusters shown in Fig.4.6. One can see that clusters for p1 and p4* are located almost on the sameunits of the map, and the same happens with p1* and p4. This is not alimitation of this particular map, since training with other parameters doesnot alleviate the problem. The ambiguity is a result of these states sharingthe same region of the input space, i.e. similar input signals.As depicted in Fig. 4.2, the reaction force in state p1 is parallel to thelocal vertical axis of the peg, while the force in state p4 is parallel to a vertical

4.3. THE PEG-IN-HOLE INSERTION TASK 67

p1 p1*
p2 p2*
p3 p3*Figure 4.3: Cell activities for a SOM trained with force/torque samples ofthree contact states, � = 0:5

68 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

p1

p1*

p2 p2*

p3

p3*

Figure 4.4: Map of regions de�ned in SOM trained with three contact states,� = 0:7

Figure 4.5: Map of regions de�ned in SOM trained with three contact states,� = 0:5

4.3. THE PEG-IN-HOLE INSERTION TASK 69

p1 p1*
p2 p2*
p3 p3*
p4 p4*Figure 4.6: Cell activities for a SOM trained with force/torque samples offour contact states, � = 0:5

70 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSaxis relative to the hole. The problem is that the peg is almost vertical withrespect to the hole (in our simulations that angle is restricted to a maximumof 15 degrees), and these forces will be very similar, so the sensor responsewill be similar too. States p1 and p4 can be distinguished by the sign of thetorque. But states p1 and p4* have the same torque, and the same happenswith p1* and p4.Consequently these states cannot be uniquely identi�ed if only force andtorque information is used. The proposed solution is the use of anotheravailable signal, with some di�erent values at each ambiguous state. Thesignal is treated like any other input to the SOM (with four inputs now),and the whole training procedure is not changed. The only thing is to selectthe signal, which in this case is the angle of the peg or orientation. Theuncertainty of the signal should also be taken into account.The activity patterns for the new SOM are depicted in Fig. 4.7. Now theoverlapping of clusters has been reduced. The resultant map (� = 0:55) isdepicted in Fig. 4.8.States p1-6Finally, for all six states, the activation patterns of force/torque signals isshown in Fig. 4.9. Obviously, the number of ambiguities is even greaterthan before. The following pairs of states are confused: (p1,p4*), (p1*,p4),(p2,p5*), (p2*,p5) and (p6, p6*).Again, a fourth input is added to the SOM: the angle of the peg. Aftertraining with the new values, the activation patterns become more distin-guishable (Fig. 4.10) and a map is constructed (Fig. 4.11).4.3.2 Considering frictionThe e�ect of introducing friction [Cervera and del Pobil, 1996] is that reactionforces are no longer normal to the surface of contact, but, depending on theapplied force, might vary within a range de�ned by the friction coe�cient �.As a result, the distribution of forces for each state spreads over the forcespace, and is likely to overlap with other states, thus reducing the ability touniquely identify each state.In the experiments with friction, the appropriate forces are chosen fromthe friction cones with a uniform random probability. For the sake of sim-plicity, the peg angle is kept positive or zero. In the previous section it wasshown that negative angles cause ambiguities among states that cannot besolved with only force measurements.

4.3. THE PEG-IN-HOLE INSERTION TASK 71

p1 p1*
p2 p2*
p3 p3*
p4 p4*Figure 4.7: Cell activities for a SOM trained with force/torque and anglesamples of four contact states, � = 0:5

72 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

p2

p2*

p3

p3*

p1

p1*

p4

p4*Figure 4.8: Map of regions de�ned in SOM trained with force/torque andangle samples of four contact states, � = 0:55Since we are interested in the in
uence of the task parameters, and notin those of the network, network dimensions are kept constant (a latticeof 15 � 10 hexagonally connected units with bubble neighborhood) as wellas the initial training parameters (learning rate, neighborhood radius, etc.).We investigate the performance of the network for several combinations ofclearance and friction (�) parameters (Fig. 4.12).The experiments consist of three phases. Each phase involves an inde-pendent set of samples which are randomly generated. The same number ofsamples for each contact state is chosen. Any parameter subject to uncer-tainty is considered to have a uniform probability density function. In thesame way, any random choice is equally probable. Each sample consists ofthe two force components, normalized to unit module, and the appropriatetorque value.The main di�erence with the previous experiments is in the calibrationphase; a parameter-free calibration scheme is used now, where the numberof samples for which the unit wins is what determines the unit's label.The three phases are the following:1. Training. The weights are randomly initialized. The neural networkis trained with a set of 1,200 random input samples. As before, thisprocess is split into two iterations. The �rst one (ordering phase) is3,000 training steps long, and the initial parameters are � = 0:02 andrt = 12 (Eqs. 3.2 and 3.3). The second iteration (tuning phase) consists

4.3. THE PEG-IN-HOLE INSERTION TASK 73
p1 p1*
p2 p2*
p3 p3*
p4 p4*
p5 p5*
p6 p6*Figure 4.9: Cell activities for a SOM trained with force/torque samples ofsix contact states � = 0:5

74 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
p1 p1*
p2 p2*
p3 p3*
p4 p4*
p5 p5*
p6 p6*Figure 4.10: Cell activities for a SOM trained with force/torque and anglesamples of six contact states � = 0:5

4.3. THE PEG-IN-HOLE INSERTION TASK 75

p1

p1*

p2

p2*

p3

p3*

p4

p4*

p5

p5*

p6

p6*

Figure 4.11: Map of regions de�ned in SOM trained with force/torque andangle samples of six contact states, � = 0:6of 60,000 training steps, and initially � = 0:001 and rt = 5.2. Calibration. A set of 600 samples is used. The network response isanalyzed and state labels are associated with the network units. A unitwill be associated to a contact state if that unit's response is greaterwith input data of that state than with data of any other state. Unlikethe previous section, this is calculated by counting how many times aneuron is selected as the closest to the input samples of the di�erentstates. The state which collects more hits is selected for that unit'slabel. A second label (of the state with the second number of hits) willalso be used during visualization, in order to highlight the overlappingamong states in the map. This labeling scheme is somewhat simplerthan the used in the previous section, since no additional parametersare needed.3. Testing. The set consists of 600 samples. The performance of thenetwork is tested with an independent set of data. For each sample,the most responsive unit is selected, i.e. the one whose weights arecloser to the input signals. The contact state is simply given by thatunit's label. An uncertain response occurs when that unit is unlabeled.In order to solve this problem, we will introduce another method forcalculating the network's output.Results in this section are presented in tables, which contain the per-

76 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

pw

hw

θ

Clearance =
hw - pw

pw

Friction: µ = tan(θ)Figure 4.12: Parameters of the peg in hole task: clearance and friction

4.3. THE PEG-IN-HOLE INSERTION TASK 77Table 4.1: Confusion matrix for � = 0:2; Clearance = 1%% p1 p2 p3 p4 p5 p6p1 59 { { 5 { 12p2 { 100 { { { {p3 { { 100 { { {p4 10 { { 94 { 9p5 { { { { 97 {p6 24 { { { { 78None 7 { { 1 3 1centages of classi�cation for the contact states. A table can be considereda confusion matrix, since each column holds the distribution of the networkresponse for each state. A perfect identi�cation would result in all diagonalvalues near 100% and the rest of matrix values near 0.Results for a experiment with � = 0:2 and clearance = 1% are shown inTable 4.1. Two states, p2 and p3, are perfectly identi�ed, according to thetest set. Other two, p4 and p5, are almost perfectly identi�ed. State p4 iscorrectly identi�ed in the 94% of the cases, it is erroneously identi�ed as p1 inthe 5% and it is unclassi�ed in the remaining 1%. Meanwhile, p5 is properlyclassi�ed in the 97% of the cases, but it is unknown in the remaining 3%.The other two states, p1 and p6, are more ambiguous, and the proper clas-si�cation percentages are smaller. The average network performance is verygood, a 88% success, and we must take into account that only force/torqueinformation has been used.Ambiguities are minimized since the symmetric states have not been con-sidered. In the previous section, confusion arose between states with di�erentorientation, thus needing to include this signal in the network.An alternative method for representing the network is the so called u-matrix visualization [Ultsch, 1993]. This display method has also been de-scribed in [Kraaijveld et al., 1992], and consists in visualizing the distancesbetween reference vectors of neighboring map units using gray levels. Thefarther the distance, the darker the representation. In this way, one canidentify clusters, or groups of neurons with similar response, which shouldbe desirable to belong to the same contact state.The map is represented in Fig. 4.13 , which consists of a big white regionon the top with units labeled with states p1, p4 and p6, and three smallerlight regions isolated by darker zones, i.e. long distances. This regions arelabeled with p2, p3 and p5. This representation re
ects the state ambiguities,which are also presented in the table. Some units are labeled twice to show

78 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
p1 p1 p1 p1 p1 p1 p1 p6 p1

p6
p1
p6

p1
p6

p1
p6

p6
p1 p1 p6

p1

p1 p1 p6
p1

p1
p6

p1
p6 p6 p6

p1 p1 p1
p6

p6
p1

p6
p4

p6 p1 p1
p6 p4 p4

p1

p3 p3 p1 p1
p4

p1
p4

p4
p6

p3 p3 p3 p3 p4 p4 p4 p4 p4 p6
p4

p6
p4

p3 p3 p3 p4

p3 p3 p5

p3 p3 p2 p2 p2 p2 p5

p3 p2 p2 p2 p2 p5

p3 p2 p2 p2 p2 p6 p6 p5 p5Figure 4.13: U-matrix representation of the neural network. Task parame-ters: � = 0:2, Clearance = 1%this problem, that occurs with states p1, p4 and p6. This means that thoseunits not only are selected for the �rst state, but sometimes they are alsoselected for another state. Unlabeled neurons are displayed as a dot.It should be recalled from the previous section that, if additional statesare considered, the network is unable to improve unless more information isavailable by adding new input signals. These could be positional or otherkind of useful information. However, tactile information is su�cient to geta good identi�cation of the contact state, according to the classi�cation ratewhich is obtained in the experiments.4.3.3 Robustness against task changesWe have argued that an accurate task model is useless if the task parameterschange unpredictably. We want to test our neural network against thesechanging conditions. The same network that was trained in the previousexperiment is now tested with input data which has been generated withother parameters, namely a di�erent clearance or friction.First, the clearance is decreased to 0.2% and 0.5%. Without furthertraining of the network, its performance is maintained or even improves alittle bit (see Tables 4.2 and 4.3). This could be due to the fact that it is easierto identify contacts when the clearance is small. The global classi�cationrates are 89% right, 8.5% wrong, and 2.5% unknown, for a clearance of 0.5%,and 89.3% right, 7.3% wrong, and 3.3% unknown for a clearance of 0.2%.Secondly, the clearance is increased up to 2%. The network's perfor-mance is only slightly worse: 84.7% right, 11% wrong, and 4.3% unknown

4.3. THE PEG-IN-HOLE INSERTION TASK 79Table 4.2: Confusion matrix for � = 0:2; Clearance = 0:2%% p1 p2 p3 p4 p5 p6p1 65 { { 2 { 11p2 { 100 { { { {p3 { { 98 { { {p4 6 { { 96 { 7p5 { { { { 95 {p6 21 { { 2 { 82None 8 { 2 { 5 {Table 4.3: Confusion matrix for � = 0:2; Clearance = 0:5%% p1 p2 p3 p4 p5 p6p1 61 { { 1 { 14p2 { 100 { { { {p3 { { 96 { { {p4 6 { { 98 { 3p5 { { { { 97 {p6 26 { { 1 { 82None 7 { 4 { 3 1(Table 4.4). Consequently, the self-organizing map is robust against clear-ance changes (Fig. 4.14 depicts the relationship between clearance and thepercentage of correct classi�cations).Next we consider some variations in the friction coe�cient. If this coef-�cient is halved (� = 0:1), the network's performance improves up to 90.1%right, 8.1% wrong, and 1.7% unknown (See Table 4.5). The reason is thatfriction cones are narrower and they are more unlikely to overlap and to causeambiguities. However, if the coe�cient is increased two and four times, per-formance progressively worsens down: 74.8% right, 11.5% wrong, and 13.7%unknown (� = 0:4); 54% right, 12.3% wrong, and 33.7% unknown (see Tables4.6 and 4.7, and Fig. 4.15).It is interesting to note that the network's response gracefully degradesas the friction coe�cient increases. The unknown value indicates that thenetwork is doing a good job in the sense that states are not randomly mis-classi�ed. Instead, the network might issue a warning to a higher controllevel, indicating that there is something wrong the network cannot cope withand further training or redesigning is required.Finally, the network also generalizes to a combination of changes of clear-

80 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSTable 4.4: Confusion matrix for � = 0:2; Clearance = 2%% p1 p2 p3 p4 p5 p6p1 53 { { 1 { 19p2 { 100 { { { {p3 { { 100 { { {p4 13 { { 98 { 7p5 { { { { 93 {p6 26 { { { { 64None 8 { { 1 7 10

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Clearance ratio

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

Figure 4.14: Evolution of the percentage of correct classi�cations with respectto the changes in the clearance ratio (� = 0:2). Network was trained withClearance = 1%Table 4.5: Confusion matrix for � = 0:1; Clearance = 1%% p1 p2 p3 p4 p5 p6p1 55 { { 2 { 5p2 { 100 { { { {p3 { { 99 { { {p4 7 { { 98 { 4p5 { { { { 100 {p6 31 { { { { 89None 7 { 1 { { 2

4.3. THE PEG-IN-HOLE INSERTION TASK 81Table 4.6: Confusion matrix for � = 0:4; Clearance = 1%% p1 p2 p3 p4 p5 p6p1 42 { { 2 { 7p2 { 95 { { { {p3 { { 90 { { {p4 11 { { 84 { 10p5 { { { { 64 {p6 30 { { 9 { 74None 17 5 10 5 36 9Table 4.7: Confusion matrix for � = 0:8; Clearance = 1%% p1 p2 p3 p4 p5 p6p1 24 { 1 2 { 11p2 { 74 { { { {p3 6 { 70 { { {p4 13 { { 57 { 5p5 { { { { 37 {p6 18 { 1 17 { 62None 39 26 28 24 63 22

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Friction coefficient

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

Figure 4.15: Evolution of the percentage of correct classi�cations with respectto the changes in the friction coe�cient (Clearance = 1%)

82 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSTable 4.8: Confusion matrix for � = 0:4; Clearance = 2%% p1 p2 p3 p4 p5 p6p1 31 { { 1 { 10p2 { 90 { { { {p3 { { 87 { { {p4 12 { { 87 { 11p5 { { { { 59 {p6 39 { { 7 { 76None 18 10 13 5 41 3ance and friction coe�cient (� = 0:4, Clearance = 2%). Classi�cation rateis slightly lower, 71.7% right, 13.3% wrong, and 15% unknown (Table 4.8).4.3.4 Adaptation to permanent changesIt has been shown how the network gracefully degrades under task parameterchanges. However, if the performance falls under a certain level, the outputwill be absolutely useless, or even harmful if the contact states are confused.Our neural network tends to be conservative, and outputs an unknown statein this case, but results show how misclassi�cation of wrong states grows uptoo.Considering the di�cult problem with a greater friction coe�cient, wetrain a new neural network to demonstrate that the task is still solvable.Results are shown in Table 4.9, and they are a great improvement over theold network, because training, calibrating and testing have been carried outwith data sets generated with the large friction coe�cient. Nevertheless,performance is a bit lower than the �rst problem because the task is moredi�cult. Now, friction cones are wider and are more likely to overlap and tocause ambiguities between contact states. The successful classi�cation rateis 77.5%, more than 23% better than the network in Table 4.7.Frequently, some tasks do not allow to stop the system and train a newneural network in order to adapt to the new conditions. A desirable systemshould be capable of adapt on-line, while the process is running, to thesechanges. We demonstrate the ability of our neural network to adapt inthis way. The �rst network is re-trained, i.e. its weights are not initializedrandomly but are kept as the initial weights and another training iterationis performed. This process could be done on-line if the training data arecollected from the running process.After 20,000 training steps, the network's performance is 77% right, 19.8%

4.3. THE PEG-IN-HOLE INSERTION TASK 83Table 4.9: Confusion matrix for a new SOM trained with � =0:8; Clearance = 1% % p1 p2 p3 p4 p5 p6p1 53 { 15 3 { 41p2 { 95 { 4 { {p3 15 { 82 { { 1p4 20 2 { 93 { 12p5 { { { { 96 {p6 6 { { { { 46None 6 3 3 { 4 {Table 4.10: Confusion matrix for adapted SOM, retrained with � = 0:8,20,000 steps, learning rate = 0:001 and radius = 5% p1 p2 p3 p4 p5 p6p1 40 { 11 2 { 23p2 { 97 { 2 { {p3 16 { 81 { { 5p4 21 1 { 95 { 21p5 4 { { { 100 {p6 11 { 1 1 { 49None 8 2 7 { { 2wrong, and 3.2% unknown (see Table 4.10). After 60,000 training steps, theperformance is 78.5% right, 19.2% wrong, and 2.3% unknown (see Fig. 4.16).It is even better than the network trained from scratch with new data. Thisis a very important result that demonstrates the ability of the network toevolve under new task conditions. It is also an example of learning a di�culttask from an initial easier task. The network was �rst trained with datagenerated with low friction coe�cient, which makes contact classi�cationeasier. Afterwards, the network is re-trained with data from the harder taskwhile keeping the previous knowledge of the similar task. Moreover, thistransition is smooth, providing robustness and trustfulness to the system torun on-line in demanding processes like assembly tasks.4.3.5 Collective output calculationIn the previous experiments, the output of the network was given by the unitwhose weights were closest to the input signals. That unit's label was the

84 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

0 1 2 3 4 5 6

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Training steps

%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

Figure 4.16: Evolution of the percentage of correct classi�cations during theretraining processcontact state. This method has two minor drawbacks: the �rst one is thesubset of unlabeled units, i.e. those units that never were selected during thecalibration phase. Thus, they have no label at all, and the network's outputwill be unknown, if one of them is selected. This could be overcome if thesearch is restricted to the labeled units, but that implies wasting resources,since those units were also trained during the training phase. The secondproblem is that the network does not give any measure of con�dence, i.e.some kind of probability of being right. Our new method will overcomethese two problems.In our method, during the calibrating phase a vector of hits is collectedfor each unit. This hit vector has as many integer components as di�erentcontact states. Each component will store the number of times that neuronwas selected for that given state during the calibration process. Obviouslythe maximum component will correspond to the state label that should beassigned by the original procedure. Now, the network's output is calculatedwith the hit vectors of all the units in the map. The output vector is aweighted sum of these vectors. The coe�cients are functions of the distancefrom the input signal to each of the unit weights, and a negative exponentialfunction is chosen (similar to Eq. 4.1). Thus the response of the map for aninput x would be: output =Xi hiti exp �jwi � xj2�2 !! (4.2)where � is a coe�cient of spread and wi the weight vector of unit i. The

4.3. THE PEG-IN-HOLE INSERTION TASK 85Table 4.11: Confusion matrix with collective output calculations, � =0:8; � = 0:2 % p1 p2 p3 p4 p5 p6p1 63 { 9 { { 25p2 { 99 { 7 { {p3 16 { 88 { { 5p4 21 1 3 93 { 31p5 { { { { 100 {p6 { { { { { 41Table 4.12: Output vectors for di�erent inputs � = 0:8; � = 0:2Input Output(-0.09, -0.99, -0.50) (4.4e-3, 2.3e-7, 5.3e-10, 1.3e-11, 2.7e-9, 15.1)(0.16, -0.98, -0.19) (5.5e-5, 1.4e-4, 2.1e-8, 9.8e-10, 3.1e-9, 22.7)(0.31, 0.95, -0.62) (12.76, 0.01, 0.61, 15.25, 0.03, 10.8)(-0.60, -0.79, 0.47) (1.4e-7, 8.9e-8, 1.8e-11, 7.1e-13, 4.5e-11, 6.9e-3)smaller �, the smaller the in
uence of the further units. The maximumcomponent of this output vector is selected, and the network's output is thecontact state associated to that component. In Table 4.11 classi�cation ratesusing this method are shown, for � = 0:8. The unknown column does notappear anymore.With this method, a state is always selected. The successful classi�cationrate is improved to 80.7%. For � = 0:2, the successful classi�cation rates are87.2% and 88.2%, which are very close to the original 88% rate.Despite this little improvement in the classi�cation rate, the major ad-vantage is the con�dence measurement. The magnitude of the vector com-ponents can be used for this purpose. If one state is clearly distinguished,its component will be much bigger than the others. However, if there is aconfusion between several states, the magnitude of their components will besimilar, re
ecting this ambiguity. Finally, if no state is con�dent enough,every component of the output vector will be small. For example, the sam-ples in Table 4.12 were generated for state p6 with � = 0:8, and the outputvectors were calculated with � = 0:2.The outputs to the two �rst samples are con�dent. The value of the 6thcomponent is far greater than the others, thus the sample will be classi�edas state p6. In the third example, however, several components share thesame order of magnitude. With the original algorithm, the signal would be

86 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSclassi�ed as state p4, the biggest component. However, this classi�cation isnot con�dent due to the similar order of magnitude of the �rst and sixthcomponents; there is an ambiguity among these states. In the fourth exam-ple, the sixth component is at least four orders of magnitude greater thanthe others, but its absolute magnitude is small. The most likely state is p6,but the network is not very con�dent about that.The absolute values of the components depend on the parameter � andthe network metrics, which in turn depend on the input signal space met-rics. A proper tuning of this parameter is required to maximize the meanclassi�cation rate. This is a mostly heuristic procedure.4.3.6 DiscussionA learning approach to contact classi�cation based on unsupervised neuralnetworks and force sensing has been applied to a simple peg-in-hole task. De-spite this simplicity, there are fundamental ambiguities between some states,which are not detected by force sensing and pose the necessity of other sig-nals.Though SOMs were not speci�cally designed for classi�cation tasks, theirperformance in the identi�cation of contact states with friction is excellent.Besides that, the network is robust against changes in task parameters (clear-ance, friction), and it behaves in a gracefully degrading way, providing ahighly con�dent and reliable output for demanding robot assembly tasks.The neural network is also capable of adapting to these new conditions bymeans of an on-line retraining process. The performance of the network in-creases up to the level of those which are speci�cally trained. In this way,the network is able to adapt to the new conditions of a harder task, by usingthe knowledge that it previously learned in a simpler problem.The e�ect of friction is particularly important for the correct identi�ca-tion of contact states. In the next chapter, it will be taken into account tominimize its e�ects, since it can slow or prevent the agent from learning thetask.The method of collective output calculation is a new procedure whichdetermines the state in a robust manner, since it not only relies on thewinner units but on the activity of the whole map. It provides a method foridentifying samples for which the winner unit has not been labeled duringthe training process.This section has demonstrated the feasibility of using SOMs for identi-fying contacts in �ne motion tasks. The SOM is able to approximate thedistribution of the input signals with the subspace of units, and this approx-imation captures the main features needed for the identi�cation of contact

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 87states.In the next section, experiments on detecting contacts in a di�erent setupare carried out. Later on, a simple insertion plan is introduced. The intentionof these experiments is to pave the way for the development of the completeautonomous learning architecture in the next chapter.4.4 A
exible manufacturing system taskThe second application of SOMs in contact identi�cation will take place inthe context of an actual
exible manufacturing system (see Figs. 4.17 and4.18). In this system, there is a machining center which works with severaltypes of tools (Fig. 4.19). These tools are fed into the unit by a robot arm(ABB IRB 2000), which also picks the tools from a robot vehicle (Fig. 4.20).The tools are carried from this robot to the machining center and vice-versa.The robot arm is very dependent on the spatial positions of the tools. A smalldisplacement of the vehicle can led to a de�cient grasp or ungrasp operationof the tool, which could even be dropped by the arm.Obviously, the greater source of error is the control of the vehicle. Anadditional amount of uncertainty is accrued in every displacement. If thevehicle is an AGV that follows a line on the
oor and landmarks at the stoppoints, the error is smaller than for a free navigation vehicle. In our systemthe robot vehicle is a Robosoft Robuter for free navigation. Although thepositioning uncertainty is being improved with the use of ultrasonic sensing,errors of a few millimeters may be expected after several trips. The positionuncertainty of the arm can also led to an incorrect insertion or extraction ofthe tool in the machining center.On top of the vehicle a loading/unloading unit for pallets is placed. Thetool pallet slides into this unit and can be carried by the vehicle. The palletcan hold six tools, for each one there is a clamping device with two
exibleclaws (Fig. 4.19). The two parallel jaws of the robot arm move a specialgripper with the shape of the tools (Fig. 4.21).In order to detect all these error conditions, a wrist force/torque sensoris attached to the robot arm. The sensor measures the three components ofthe force and torque vectors acting on the end-e�ector. Monitoring the forceand torque signals should help us detect the error conditions which leadto incorrect insertions or extractions. Moreover, they should be detectedwhile it is still possible to recover from the error. Our aim is to develop amonitoring system with neural networks. It should learn from examples ofthe task, and be able to distinguish the contact states between the arm andits environment in order to detect good and bad insertions at an early enough

88 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

Figure 4.17: CAD representation of the
exible manufacturing system

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 89

Figure 4.18: View of the tool pallet, robot arm, and machining center

Figure 4.19: View of the pallet carrying di�erent tools

90 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

Figure 4.20: Robot arm and mobile vehicle

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 91

Figure 4.21: Gripper of the robot armstage of the process [Cervera et al., 1996].It is worth noting that the complexity of these actual operations andsimilar manufacturing tasks is considerably greater than the usual test-casesin geometric approaches. First, it is a 3D problem with a non-trivial geometrydue to the shape of the tool and the insertion place. Second, due to theexistence of two
exible claws in the clamping device, the arm must exert aforce that makes them yield for the tool to be properly inserted or extracted(see Fig. 4.19).4.4.1 Learning complex insertion tasksIt has been shown how a self-organizing network can evolve to form clustersclosely related to contact states, without any a-priori knowledge of thosestates. We have solved the problem in the case of the peg-in-hole. Nowwe want to apply this scheme to the real situation described. The neuralnetwork will be fed with the six signals of a real force/torque sensor attachedto the wrist of the robot arm. We will limit the analysis to the �ne motioninvolved in the tasks of inserting the tool in the pallet on the robot vehicleor the machining center. A similar treatment could be done for the task of

92 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

Figure 4.22: Insertion of tool in the machining centerextracting the tool.4.4.2 Maps for a complete insertion operationInsertion in the machining center with positive errorsIn the �rst experiment, the tool is inserted in the tool-exchange device at themachining center shown in Fig. 4.22. The uncertainty has been simulatedby introducing small position errors in the arm. The network was trainedwith samples of 100 sensor signals for each insertion operation. Only foursituations were considered: o�sets of 0 mm (correct insertion), +1, +2 and+3 mm (incorrect insertions) on OY axis (left-right) for the wrist. Twenty-four insertions were carried out (six for each o�set). In Fig. 4.23 severalexamples of sensor data are shown. The di�erences are clearly apparent fromthe sensor signals, but an interpretation of these signals is rather di�cult.The SOM consists of 14 � 8 = 112 units, hexagonally connected, withbubble neighborhood, initialized with random values. Training consisted ofthe two usual phases: the ordering phase, with 4,000 training steps, initial� = 0:2 and radius rt = 8; and the �ne-tuning, with 40,000 steps, initial� = 0:04 and radius rt = 3. Force and torque samples were normalized tounit length.

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 93

0 20 40 60 80 100
−1

−0.5

0

0.5

1

F
x

0 20 40 60 80 100
−1

−0.5

0

0.5

1

M
x

0 20 40 60 80 100
−1

−0.5

0

0.5

1

F
y

0 20 40 60 80 100
−1

−0.5

0

0.5

1

M
y

0 20 40 60 80 100
−1

−0.5

0

0.5

1

F
z

0 20 40 60 80 100
−1

−0.5

0

0.5

1

M
z

Figure 4.23: Force sensor signals for the insertion task in the machiningcenter with o�sets 0, +1, +2, and +3 mm

94 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
a) 0 mm b) +1 mm
c) +2 mm d) +3 mmFigure 4.24: Activation patterns (� = 0:5) and trajectories of winner unitsfor the insertion task in the machining center with positive transversal errorAfter training the network with data from a set of examples, the regionson the map are labeled appropriately. In this case, a label is assigned toeach di�erent error/o�set. In Fig. 4.24 the activation patterns for completeinsertion sequences are shown. Each pattern correspond to a di�erent error.In each pattern, the brighter cells are the ones that were more activated insome moment of the process. On the �gures, trajectories are also shown,which depict the temporal evolution of the activation pattern. The arrowsjoin the winner units during a whole sequence of signals.Figure 4.24(a) depicts the cell activation for the correct insertion withno error. The most active cells are located in the lower part of the map.As a greater error is introduced, we can see in the other three plots 4.24(b-d) how active cells are located in the upper zones on the map, in such away that the greater the error, the upper the most active cells are. Thiscontinuity is a consequence of the topological properties of the SOM thatpreserves neighborhood relations: neighbor cells tend to respond jointly tosimilar inputs.Fine motion planning for the insertion task can be monitored to detecterrors by means of this network. The resulting map can be partitioned intofour regions, according to the activation borders (Fig. 4.25). Since thetransition between o�sets is continuous, there is an inherent overlapping,which in this case is not harmful (e.g. if the error were exactly 1.5 mm itwould be located either at the top of region 1 or at the bottom of region 2).So, instead of choosing a �xed threshold, a unit is labeled with an o�set when

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 95
BD0

D1
D2

D3

E0B:Common start regionD0,E0:No errorD1:Error=1mmD2:Error=2mmD3:Error=3mmFigure 4.25: Map partition for the insertion task in the machining centerwith positive transversal errorits activation with samples of such o�set is greater than with the others. Theabsence of unlabeled units might be justi�ed by the smooth distribution ofthe input signals across the mapThe existence of common regions must be taken into account. Prior tothe contact with the �xed part, the o�set obviously has no e�ect. An extraregion B is added (and, if necessary, a �nal region E), which correspondsto those samples sensed before the actual contact. This contact is easilydetected by a threshold on the normal force (Z).Each region is labeled with the process corresponding to no error, or +1,+2, or +3 mm errors. Then, we can monitor a new unknown motion forwhich a positive uncertainty in OY axis for the actual goal position maybe expected in the range [0 mm, +3 mm]. The network activation patternwill permit not only to detect an incorrect insertion, but also to identifyapproximately the magnitude of the error. Indeed, the further the activationpattern from the lower region D0 is and towards the upper region, the greaterthe positive error will be. A correct insertion will stay between the bordersof region D0. Borders should not be seen as precise, a certain overlap existsbetween regions. The existence of two additional regions B and E0 can beaccounted for as follows. B corresponds to a common starting zone, since thesensor signals for the insertion tasks have been taken a few instants beforeactual contact. Similarly, there is a �nal ending zone E0 because the ungrasp

96 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSaction is included in the monitored process. E0 could be extended to includethe ending areas for cases D1, D2 and D3.Insertion in the tool pallet with positive and negative errorsIn the real world, errors can obviously occur in either direction. Both positiveand negative o�sets are considered now, but only for the OY (left-right) axis.The other two axes are not so important: errors in OZ (front-back) only a�ectthe distance to contact; instead of moving a �xed amount towards the goal,a guarded motion automatically detects the contact, regardless the unknowno�set. Errors in OX (up-down) are expected to be much smaller, since themain source of uncertainty is the mobile vehicle, and it moves across the
oor, but its height (i.e. the vertical position of the tool pallet) does notchange. Errors in the orientation of the goal are not explicitly considered inthis setup.To perform these experiments, the tool-pallet has been removed from therobot vehicle and placed in a �xed position (see Fig. 4.19). The numberof di�erent possible situations that the network must recognize has beenincreased by considering errors in the range [-4 mm, +4 mm] on OY axis (inthe direction along tool centers on the pallet). To train the network, we haveused a set of sensor signals corresponding to insertion tasks with o�sets of-4, -3, -2, -1, 0, +1, +3 and +4 mm. Each insertion sequence is made of 55sample signals.The SOM consists of 11 � 9 = 99 units, hexagonally connected, withbubble neighborhood, initialized with random values. Training consisted ofthe two usual phases: the ordering phase, with 4,000 training steps, initial� = 0:2 and radius rt = 9; and the �ne-tuning, with 40,000 steps, initial� = 0:04 and radius rt = 3. Force and torque samples were normalized tounit length.Once the network has been trained, the activation pattern for the com-plete sequence in each case is obtained (with the same procedure used inthe previous experiment). The patterns, and trajectories of winner cells, aredepicted in Fig. 4.26; it is more complex than in the previous case, sincemore states have been introduced. The correct insertion is approximatelylocated along the diagonal (left-down to right-up) of the map, the processeswith positive errors move towards the upper left corner the greater the erroris, while the negative errors give rise to regions that move towards the lowerright corner. This is an e�ect of the strong symmetry of the task.Figure 4.27 shows the partitioned map with labeled regions. In two cases,a couple of states were merged in the same region, since the resulting acti-vation patterns presented a great overlapping. This fact can be accounted

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 97

0 -1

+1 -2

+3 -3

+4 -4Figure 4.26: Map activations and traces of winner units for the insertion taskin the tool pallet with positive and negative transversal error

98 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
+4

+3 +1

0,-1

-2,-3 -4

B

E

Safe zone Dangerous zoneFigure 4.27: Map (11� 9) partition for the insertion task in the tool palletwith positive and negative transversal errorfor in two di�erent ways: the resolution of the net may not be enough (asolution to this problem will be discussed in Sect. 4.4.4); but another ex-planation may be the physics of the problem itself and the fact that we aredealing with very small errors: for the cases with no o�set and -1 mm, thecorrect insertion may not be exactly for 0 mm, but rather for some value inthe range [0 mm, -1 mm]. In addition, due to a lack of symmetry of the tool,small negative errors will end up in a correct insertion, while the same errorsin the positive direction will produce failure (the tool has a notch on one sidethat gets stuck in the claw of the clamping device, while it is rounded in theother side producing a compliant motion).Errors for a new situation will be detected as explained for the previouscase. The further the resulting activation pattern is from the central regionsthe greater the error (positive or negative) will be. For monitoring purposes,in Fig. 4.27 the di�erent regions have been classi�ed into safe or dangeroususing grey levels.4.4.3 Detecting states within insertion processesIn the previous section, error detection was based on computing the activa-tion pattern for the whole sequence of states in an insertion task. Obviously,an error must be detected as soon as possible, while it is still possible torecover from it. For this purpose, the network can supply information aboutthe present state in a process, since an activation pattern can be obtained

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 99
+3 0 -3

Error

Time

4Figure 4.28: Temporal sequence of map activation for the insertion task inthe tool palletfor a particular instant. A sequence of these instantaneous patterns indi-cates the evolution of the process, and allows to detect failures as soon asthey take place. This can be seen in Fig. 4.28: a motion picture for threecases is shown. The �rst column corresponds to o�set +3 mm, the secondto correct insertion, and the third to o�set -3 mm. The temporal orderingfor each state is indicated by the arrow. In the �gure, it can be seen how forthe �rst instant the upper and lower cases already have bright cells locatedin error zones, while this is even more evident for the second snapshot.The evolution of the process can also be captured by the trajectoriesdepicted onto the complete activation pattern. These trajectories have beenshown in Figs. 4.24 and 4.26; they correspond to the winner cell for someinstants. Using them, we can assign to every region on the map the momentat which it must activate. In this way the method is more reliable, since notonly we check that the process remains within certain limits on the map, butalso that it is constrained by certain temporal limits.4.4.4 Improvements and generalizationsIncreasing the resolution of the networkWe faced above the problem that some di�erent processes were not properlyseparated by the net, but instead they gave rise to overlapping regions. One

100 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSpossible solution is to increase the resolution of the net by adding more cells.There are no published results about the in
uence of the number of cellson the behavior of a SOM network in a general case. The experience showsthat increasing the number of cells will improve the resolution of the net, butobviously until a certain limit. This limit has to do with the nature of theproblem: if two states are not separated in the input space, they will neverbe separated on the map (we have seen an example of this when dealing withthe peg-in-hole task). However, the more neurons we use the greater thenumber of di�erent error states the network will be able to identify. A statecan be identi�ed if at least one neuron has been labeled for that state.The previous experiment with errors in the range [-4 mm, +4 mm] hasbeen repeated for a larger network. The SOM has 22 � 15 = 330 units,hexagonally connected, with bubble neighborhood. The results are shownin Figs. 4.29 and 4.30. These results indicate that this map has a betterresolution than the previous smaller one. The learning time has been keptreasonably small, using similar training parameters (ordering phase: � = 0:2and rt = 15; �ne-tuning phase: � = 0:04 and rt = 5).The layout of clusters is similar to the previous case, with two regions forthe beginning and ending states, and the rest of regions varying continuouslywith the error. The di�erence is that now the map can be easily partitionedinto a number of regions corresponding to all the di�erent error states. Thereis still some overlapping at the borders, that can be accounted for by thereasons mentioned in Sect. 4.4.2. The regions on the upper right cornermay disappear with additional training, although in complex situations itmight not always be possible to map the six-dimensional input space ontothe two-dimensional output space in a perfectly continuous way.Generalization to other types of errorsIn all the previous experiments the network was able to recognize and identifyall of the di�erent types of errors that the network had seen during training.Two main questions arise: can the network detect error types that are notincluded in its training set? And, can the approach be generalized to othertypes of errors and combinations of these errors (e.g., along the OY and OZaxes)?The answer to the �rst question is in the a�rmative, provided that thesignal pattern of the new error is di�erent from any other signal pattern,since the network cannot distinguish states with very similar input patterns.Then when a di�erent new pattern s fed into the network, no neuron vector

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 101

0 -1

+1 -2

+3 -3

+4 -4Figure 4.29: Map activations and traces of winner units for the insertion taskin the tool pallet with positive and negative transversal error

102 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
B

E

0

+1

+3+4

-1

-2

-3

-4

+1

0

-1

Safe Region Dangerous RegionFigure 4.30: Map (22� 15) partition for the insertion task in the tool palletwith positive and negative transversal errorwill be close enough to the input vector, i.e.,jjx� wcjj = mini fjjx� wijjg > � (4.3)where � is a �xed application-dependent threshold. This means that thenetwork does not know what is happening, but it knows that something isgoing wrong. At least the network detects that it does not know the new stateand this is a very important property, since the state will not be misclassi�ed.Instead, an unknown state warning (i.e., threshold over
ow) will be noti�ed.This warning su�ces for detecting any unseen type of error condition.As regards generalization, it is possible in principle to learn to identify asmany states as the number of neurons in the network. The main constraintis that the input pattern for a certain error state must di�er from those of allthe other states; otherwise, the same neuron will respond to di�erent states.A combination of errors alongOY and OZ axes does not a�ect the successof the approach. The only e�ect of the OZ error component is that the timeinstant in which contact between tool and pallet takes place is delayed oradvanced. After contact, the situation is exactly the same. This is easilycontrollable by monitoring when the winner neuron gets out of region B(guarded move). This situation will be general as long as the OZ axis ismade to correspond to the direction along which the gripper approaches itsdestination and on which the distance between them is measured.

4.4. A FLEXIBLE MANUFACTURING SYSTEM TASK 103An error along the OX axis is not relevant to our case in the
exiblemanufacturing system, since the main source of error is the movement of thevehicle that carries the tool-pallet. Obviously, this motion does not a�ect thehorizontal plane on which the pallet is located. In a general case, an erroralong OX is not a problem since this type of error will give a very di�erentinput pattern from those caused by other errors.The network is also able to generalize and cope with arbitrary combina-tions of these errors. Let us suppose that a particular error along the OYaxis is detected by a certain neuron error along the OX axis is detected bya certain neuron N2 on another location on the lattice. An error along boththe OX and OY axes will correspond to a point in sensor space located in aregion somewhere in between those corresponding to an error along OX andalong OY . The SOM theory demonstrates that | after training | neuronswhich are close on the map respond to inputs which are close on the inputspace. Then, the neurons which, after training, are positioned between N1and N2 are responsive to the combined action of the inputs for OX and OY .To achieve an adequate identi�cation for combinations of errors, samplesfor these combined errors must be used in the training phase. Therefore,the training set includes errors along OX and OY , as well as combinationsof both; that is, sample errors taken from a grid in plane XY . A uniformdistribution of these samples on the plane guarantees that the SOM coversall types of combined errors.Since there is no limit in the number of neurons used to increase resolu-tion, the error distinction is only limited by the noise of the sensor signals.Since the topology of the sensor space is preserved, the response of the mapchanges smoothly from neuron N1 (for an error along the OY axis) to theintermediate neurons, as this error decreases and error along the OX axis in-creases, until the maximum response is given by N2 when the error is causedonly along the OX axis. The topological order is preserved as long as thehigh-dimensional input space can be mapped onto the two-dimensional lat-tice. This is not always possible, e.g. a spherical three-dimensional regioncannot be mapped continuously on a rectangular lattice. In this case, allof the regions are represented as separate parts, but there are neighborhoodrelationships which cannot be re
ected by the map (discontinuities); in anycase, di�erent neurons will distinguish the di�erent error states and any com-bination of errors will be identi�ed too.Real-time aspectsThe low computational complexity of this approach makes it feasible for itsuse in a real-time environment. The training phase is the more computer-

104 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSintensive process, which can be done o�-line. Afterwards, the monitoringphase only requires the comparison of the input vector with the weight vectorof all the neurons of the network in order to choose the winner cell, i.e. thestate of the input pattern. Since the number of neurons is unlikely to be morethan a few hundreds, this operation can be done on a personal computer ina few milliseconds.Instead of training the network o�-line with a previously collected setof input samples, the training process can be done on-line. It is feasible totrain the network at the same time as the input signals are obtained fromthe sensors. After a learning phase of a few minutes, the network is ready tomonitor the process without further training, as long as new states do notappear. If an unknown state is detected, the training process might be re-runto learn this new state on-line. Thus, new error states are dealt with as soonas they appear. Minimal feedback with the operator is required in order toprovide a label for the new state. A more complete system could send theinformation from the neural network into a high-level reasoning system toperform more complex operations such as planning and prediction.4.4.5 DiscussionA novel approach for error detection in plan monitoring based on SOMs hasbeen presented in this section. Input data are provided by the six force andtorque signals from the wrist sensor of the robot arm. The method has provedto work properly in complex real-world situations involving �ne motion andgrasping, for which a geometric analytical model may not be feasible, or toodi�cult. It is been used for an actual assembly task like a complex insertionoperations in a
exible manufacturing system. The in
uence of the size ofthe network on its resolution has been also discussed.The training of the network is very straightforward, because there is noteacher. We have shown how the network must be labelled in order to beused to monitor the process. Despite the simplicity of the network, the self-organizing map manages to store complex information about the states ofthe task, and allows to detect error conditions easily.Due to the short time required for the learning process and its simplicity,it allows for a great
exibility and new tasks can be readily learned withouta long process of analysis. In order to achieve a good training we would needexamples of every error situation. If this is not possible we still can detectabnormal samples which di�er from those learned by the network. In thatcases, no neuron will respond to the signals, so the network will be idle. Wecan associate this situation to an abnormal functioning and stop the task.Then, we could train the network with the last signals presented, so the

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 105network will learn this new situation.It must be noted that the network does not store any temporal informa-tion. However, because of its topological properties, the signal sequences leadto smooth trajectories on the map. Occasionally, there are jumps in the map,due to sudden signal changes, or topological restrictions, as a 6-dimensionalsubspace is being mapped onto a 2-dimensional surface. Thus, the processcan be monitored by observing this trajectory between clusters.An interesting extension would be modifying the training procedure toallow the network to learn on-line when the task is running, and do thelabeling process automatically. We are also dealing with temporal sequencesof signals, so we could use the temporal information associated to the signals,e.g., by adding more inputs with the values of the signals in past instants.Error detection is a previous and necessary condition for error recovery.An extension to the system will be the addition of recovery actions associatedto cells of the network labelled with error states. A simple synthetic exampleis introduced in the next section, but a real, autonomous architecture will bepresented in Chap. 5.4.5 Building a SOM-based �ne motion planThis part addresses the problem of associating actions to the di�erent statesof a �ne motion task. A qualitative method is used to show that, in theabsence of precise quantitative information, a controller is able to perform aninsertion task like the peg-in-hole problem [Cervera and del Pobil, 1995a,b].In order to cope with uncertainty, however, the introduction of a perception-based approach is required, and the SOM provides a method for integratingperceptual information and qualitative knowledge.This approach is illustrated with a simple simulation model, introducedin Sect. 4.5.1. Initially, attention is paid to geometry, but the �nal goal is aperception-based plan which can cope with geometric uncertainty.Section 4.5.2 describes the purely geometric approach, and a qualitativespatial reasoning method to control the insertion task. However, it is shownthat, in the presence of position and control uncertainty, geometric informa-tion is not su�cient to guarantee a successful plan.In Sect. 4.5.5, a perception-based approach is presented. The use offorce sensing provides the information required to properly identify the stateof the system, thus solving the uncertainty problem. A neural network-based system is used to map the raw sensory data to the state space. As a�nal result, a robust qualitative approach to reasoning about manipulationinvolving contact is derived. It is based on perception, without almost any

106 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

Wh

Hp

Wp

(xp,yp)

O

α

x

y

Figure 4.31: Geometry of the 2D peg-in-hole insertion taskgeometric information, thus being adequate for implementing in a real robotin a three-dimensional environment, where the geometry is more complex.4.5.1 Qualitative model of a manipulation taskIn this section a simulated insertion task is shown as an example of manipula-tion. With simple geometric knowledge, we show how to build a qualitativespatial reasoning system to perform the insertion task. However, as thismodel relies in positional measurements to calculate the state of the system,high accuracy is required, which usually is not available in real systems.In Fig. 4.31 the geometry of the model is shown. It is a rectangular peg ofwidthWp and heightHp, to be inserted in a chamferless hole of widthWh andin�nite depth in an xy plane. Let (O; xy) be a coordinate system attached tothe hole. The coordinates of the peg (xp; yp) are given by its left-down corner,and the orientation by the angle � with X axis. In our simulations we onlyconsider positive angles in the interval]0; �=2[, since negative angles onlyadd symmetry to the problem. Thus, the peg is described with coordinates(xp; yp; �), which de�ne the con�guration space.A constraint equation set is de�ned by the physics of the system. Eachequation describes a di�erent contact between peg and hole. Figure 4.32depicts these constraints and three examples of the con�guration space fordi�erent peg angles. The shadowed zone is, together with the Y -positive

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 107
r4

r3r5

r2

r0 r1

r6

Figure 4.32: Graphical representation of the constraint equations. Threedi�erent con�gurations of the peg, with the allowed regions inside the hole

108 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSsemiplane, the allowed peg motion space. The contact constraint equationsare the following:� Left-down peg corner and horizontal hole surface (r0):y = 0� Bottom peg side and right hole corner (r1):�x tan(�) + y + Wh tan(�)2 = 0� Left peg side and left hole corner (r2):x+ y tan(�) + Wh2 = 0� Right-down peg corner and vertical hole surface (r3):�x + Wh2 �Wp cos(�) = 0Two more constraints are added to specify the hole interval:� Left hole side (r4): x� Wh2 = 0� Right hole side (r5): x + Wh2 = 0And �nally another constraint describes the goal of the system. The peg iscompletely inserted when its left-up corner is in the hole:� Left-up peg corner in hole (r6):y +Hp cos(Wh�WpHp) = 0These constraints de�ne a partition of the con�guration space, as shownin Fig. 4.33. The elements are labeled from S0 to S6, and D is the goalregion (these labels should not be confused with the contact states p1-6 ofthe previous experiments). The regions are de�ned uniquely by the followingexpressions:S0:(r0 � 0) and (r5 < 0)S1:(r0 � 0) and (r5 � 0) and (r3 � 0)S2:(r0 � 0) and (r3 < 0) and (r4 < 0)S3:(r0 � 0) and (r4 � 0)S4:(r0 < 0) and (r1 � 0) and (r2 � 0) and (r3 � 0)S5:(r0 < 0) and (r1 � 0) and (r2 � 0) and (r3 < 0)S6:(r1 < 0) and (r2 � 0) and (r3 � 0) and (r6 � 0)D:(r6 < 0)

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 109
AAAA
AAAA

AA
AAAA
AA

A
A

A
A
A

A
A
A

S0

S2

S3

S4

S5

S6

S1

Figure 4.33: Con�guration state partition for a sample angleNow, if the coordinates and orientation of the peg are known, we cancalculate the plane region where the peg is. This region is limited by severalconstraint equations. Each constraint de�nes an edge between two regions,thus a motion between regions can be detected by the value of that constraint.This knowledge is used in the next section to build the qualitative model ofthe system.4.5.2 Qualitative modelThe constraint set and partition which was previously de�ned allows us tobuild a qualitative model of our system, a graph of states and transitions.StatesThere are two classes of states, free and contact states. Free states arecharacterized only by the plane partition where the peg is, thus all statesfrom [S0] to [S6] are free states. When the system is in a free state it has 3Degrees of Freedom (DOF) and every possible motion is allowed, a motionbeing a continuous change of variables (xp; yp; �).Contact states are those states where one or several contacts between thepeg and the hole exist. These states are characterized by the tuple consistingon the region of the partition and the appropriate constraints which de�ne

110 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
S0 S1 S2 S3

S4 S5

S6

D

S0,c0

S6,c2,c3

S6,c3 S6,c2

S4,c2 S5,c2

S5,c1

S3,c0

S5,c1,c2
r3

r0

r5 r3 r4 r0

r4
r0

r3

r1

r0 r3 r1

r1r3

r5
r1

r6 r1

r6r6

r2
r3

r0
r0

r2r2r2

Figure 4.34: State space diagramthe contacts (e.g. [S0,c0] or [S6,c2,c3]). Of course, the constraint contactequation must be zero-valued. Thus, state [S0,c0] is de�ned by constraint(r0 = 0), whereas state [S0] was de�ned by (r0 � 0). From a contact state,only those motions which will lead to a zero-or- positive value of the contactconstraint are allowed, remaining in the same state or moving to another.Each contact subtracts one DOF from the system.Thus a compliant motion is possible if there are only one or two con-tacts between peg and hole. However, for the sake of simplicity, we onlyallow translations or rotations, but not simultaneously. For example, instate [S5,c1,c2], a simultaneous translation and rotation would be possiblewhile keeping both contacts, since the system has 1 DOF. However, this isnot allowed: the peg cannot be rotated, rather it can only be translated, thusbreaking one of the contacts, or both.TransitionsA transition occurs when a constraint equation value becomes zero or whenit is zero and is increased. States and allowed transitions are depicted in Fig.4.34. Possible initial states are [S0], [S1], [S2] and [S3]. The destination stateis labeled with [D].In this state space, several transition types are allowed depending onwhether the involved states are free or contact states. It is assumed that

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 111only one constraint equation changes at a time. This is not true in the casewhen there are two contacts and the peg translates breaking them both, e.g.from state [S5,c1,c2] to state [S5], but we can think that the system goesthrough [S5,c1] or [S5,c2] in a zero time.Another case when several constraint equations change simultaneouslywhen a singularity takes place. This occurs in compliant motions when apeg corner reaches a hole corner. In this case there is a sudden change ofmotion direction, and we assume that the compliant motion goes on. Forexample, the peg is at the left of the hole, in state [S0,c0], and is moved tothe right in contact with the surface. When the peg corner in contact withthe surface reaches the left hole corner, there is a sudden change and the pegfalls in the hole. But if we assume that there is a compliant motion, the leftpeg side keeps in contact with the left hole corner. The system has changedfrom state [S0,c0] to state [S4,c2].Singularities are depicted in our diagram with two separate arrows, be-cause two di�erent constraint equations are involved, depending on the di-rection of motion. Every other transition only has one constraint equation,and the change of sign indicates the direction of the transition.Finally, between two (topologically-)neighbor free states, the transition isgiven by the constraint equation common to both states; and between a freestate and a contact state, it is given by the appropriate contact constraintequation. Now, our method of qualitative spatial reasoning is nearly com-pleted. All we need is to �nd a path in the state space graph from an initialstate to the destination state. This path will consist of a sequence of statesand transitions, each transition being a constraint equation. If we knew themotions which cause every equation to change, we could issue these motionsas commands to the arm controller, and the system will move following thepath to the destination.Qualitative motionsGiven all the constraint equations, we can calculate how they change whenthe coordinates of the system change, by calculating the partial derivativeswith respect to (x; y; �). In Table 4.13, the signs of these derivatives areshown. Only this information is needed in a qualitative system. We cannotspecify the magnitude of the change but only its sign, i.e., positive, zero, ornegative.Now, if we want to change, for example, from state [S5] to state [S5,c1],we �rst see that the constraint equation involved is r1, and it should bedecreased, because [S5] is de�ned by (r1 � 0) whereas [S5,c1] is de�ned by(r1 = 0). If we look at Table 4.13, we can see the derivatives of r1 with

112 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMSTable 4.13: Qualitative values of constraint equation derivatives@r0 @r1 @r2 @r3 @r4 @r5 @r6@x 0 {1 +1 {1 +1 +1 0@y +1 +1 +1 0 0 0 {1@� 0 +1 {1 +1 0 0 0respect to (x; y; �). Then, in order to decrease r1, we should decrease x,increase y or increase �. Thus, given a pair of states and the appropriateconstraint equation, we can calculate the changes in the variables to �re thatconstraint equation (change its sign) and move to the destination state.A problem in a qualitative approach is that we cannot control the amountof change, that is, the motion step. Thus, a big step could jump over severalstates. For example, a moderate negative change in x could easily lead fromstate [S2] to state [S0], because [S1] is quite narrow. Our strategies shouldbe robust with respect to these possible jumps.Another more important problem is that a variable change a�ects notonly that constraint equation but others as well. This can also be seen inthe table. A change in x produces changes in r1, r2, r3, r4 and r5. Thisis important, for instance, if we are in state [S4,c2] and want to move incompliant motion to state [S6,c2], then we should �re constraint r1, but notr3. In this case, however, both x and y change, and r3 is a�ected, and could�re before r1, thus leading to an undesired state [S5,c2]. We should follow astrategy that minimizes those undesired transitions. One general principle isto use compliant motion, because, as the system has less DOFs, the possiblenumber of transitions is reduced, thus providing a more reliable path. Withthis strategy, we can build the motion plan shown in Fig. 4.35.In this plan, each node consists of a state and an action. The states arethose belonging to the state space, and the actions are qualitative changesof the variables, with or without a constraint equation if it is a compliantmotion. This plan provides the adequate qualitative motion commands tomove the peg from any initial position and orientation to its destination,with only one added condition:BackStep < qW 2h �W 2p (4.4)BackStep is the amount of motion when going backward from a two-contact state (namely [S5,c1,c2] and [S6,c2,c3]), and it guarantees that thepeg will not go completely out of the hole.The step size used in the other states is not limited, but it is assumedthat the force control stops the arm motion when contacting the peg and the

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 113
([S0],-∆y)

([S0,c0],+∆x,r0)([S6,c2,c3],-∆x,r2)

([S6,c3],-∆y,r3)
([S5,c1],-∆y,r1)

([S5,c1,c2],-∆x,r2)

([S4,c2],-∆α) ([S5,c2],-∆α)([S6,c2],-∆α)

[D]

([S1],-∆x) ([S2],-∆x) ([S3],−∆x)

Figure 4.35: Qualitative motion plan based on positionhole. Thus the system can go, in one step, to a state not connected to theinitial one in diagram of Fig. 4.34 (e.g. from [S0,c0] to [S5,c1,c2] through[S4,c2] and [S5,c2]). Our plan takes this into account and includes transitionsto all the states where the system might evolve after a single step.It is also assumed that the rotations are limited by the contacts. For ex-ample, when moving from node ([S4; c2];���) to node ([S6; c3];��y; r3),the system evolves through states [S4] and [S6], but stops when contactingwith r3. Translation motions can be free or compliant. In compliant transla-tions, only one variable change is given, but the other one's change (if needed)can be calculated from the equations. Nevertheless we assume that the armforce control provides the compliant motion with only one indication.4.5.3 Simulations without uncertaintyThis qualitative system has been tested in a number of simulations withdi�erent parameters, and has been proved to work properly. One of suchsimulations can be seen in Fig. 4.36, which depicts a sequence of the pegmoving until it is inserted. The state sequence in this simulation is:[S0]! [S0; c0]! [S5; c1; c2]! [S5; c2]! [S5; c1]| {z }6 times !! [S6; c3]! [S6; c2; c3]! [S6; c2]! [S6; c3]! [D]As the initial angle is big, the peg bottom contacts with the right holecorner several times. Each time it contacts, it moves backwards and rotates.Thus the angle is reduced until the peg can enter into the hole and contacts

114 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

Figure 4.36: Simulation of peg insertion without uncertainty, guided by thequalitative planwith the right inner surface. Then it moves backwards again and rotates,and �nally it enters completely.4.5.4 Uncertainty and perceptionIt has already been mentioned that the abstract peg-in-hole problem canbe solved quite easily if the exact location of the hole is known and if themanipulator can precisely control the position and orientation of the peg.We have shown how it is solved under a qualitative perspective. But evenwith this approach we are relying on precise values of the coordinates of thesystem, which are necessary to calculate the constraint equations and obtainthe system state. Small errors in these values can lead to calculate incorrectstates and incorrect actions, thus making all our strategy become useless.Perceptual information would allow us to reduce the geometric uncer-tainty and to determine the state of the system with greater reliability. Wecould also monitor the actions and detect the error conditions, e.g. undesiredcontacts. In order to detect contacts, we should measure the forces betweenthe peg and hole. Wrist-mounted force sensors are usually used to measurethe external forces and torque applied to the end e�ector as it interacts withthe environment, so they are very suitable for our purpose.We simulate a force/torque sensor attached to the top of the peg, as

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 115
m

fy fx

O

Figure 4.37: Simulated force sensorTable 4.14: Correspondence between contact states and positional statesP0:[S0], [S1], [S2], [S3], [S4], [S5], [S6]P1:[S5, c1]P2:[S4, c2], [S5, c2], [S6, c2]P3:[S5, c1, c2]P4:[S0, c0], [S3, c0]P5:[S6, c3]P6:[S6, c2, c3]depicted in Fig. 4.37. This sensor gives us the measures of force (fx; fy)along two axes of a coordinate system attached to it and a torque signal mwith respect to O. We are interested in identifying contact states with thehelp of the force sensor. These contact states were introduced in Fig. 4.2 onpage 65. The no-contact state (only the weight force) is considered too. Weassume that no friction forces exist, nor inertial e�ects by the peg motion.If we could identify the contact state, we could almost calculate the posi-tional state in our qualitative model with no need for any other information.There are some cases when the contact state gives us the positional state, butthis is not always possible because a contact state may correspond to severaldi�erent positional states. In Table 4.14 this correspondence is shown.Obviously the sensor does not provide us directly with the contact state,rather it gives us three raw signals of force and torque. An independentproblem is to map these signals to the contact state appropriately, but ex-periments in previous sections have shown the feasibility of using SOMs forthis purpose.

116 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
P0

P4P1

P2

P3

P5

P2

P2 P2 P2 P2 P2

P2 P2 P2 P2 P2 P2 P3

P3 P3

P3P3

P0 P6 P6 P6P6 P6 P6P6

P0 P6 P6 P6 P6

P0 P6 P1 P1 P4

P1P1 P1 P4

P1P1 P1 P4

P5 P1 P4P4P4P4P4

P0

P6

P1

Figure 4.38: Trained and labeled neural networkAlthough we are dealing with a simulated problem, our aim is to im-plement our model in a real system. This implementation is carried out inChap. 5. The main di�erences are that in a general case the contact statesare unknown (the network cannot be labeled) and the plan is not knowna-priori, but it must be learnt through self-experience.In these experiments, a 10�10 network has been used, with three di�erentdata sets for training, labeling and testing of 2,100 samples each, randomlyselected from all the contact states. Sensor measurements fx, fy and m wereinputs. Distance function was the Euclidean norm. Forces were calculatedfor angles from 0 to 45 degrees and reaction forces between 0 and 5 kgf. Pegweight was 2 kgf. Since network inputs are absolute measurements, if theseparameters change, the system should be retrained.Figure 4.38 depicts the structure of a trained and labeled network. Labelswere assigned according to the class with the greatest number of wins. Eachcontact state forms a cluster. Classi�cation results are given in Table 4.15(the performance is excellent since friction is not considered).4.5.5 Perception-based qualitative modelAlthough mapping directly from contact states to positional states is notpossible, we get all the necessary information for our plan, as all its states

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 117Table 4.15: Classi�cation results of testing set with a 10� 10 networkP0 P1 P2 P3 P4 P5 P6P0 100 { { { { { {P1 { 90.7 { { 6.7 { {P2 { { 100 { { { {P3 { { { 100 { { {P4 { 5.3 { { 93.3 { {P5 { { { { { 100 {P6 { 4.0 { { { { 100can be properly classi�ed with the exception of two subsets:f[S0], [S1], [S2], [S3]g and f[S4,c2], [S5,c2], [S6,c2]g.To solve the �rst ambiguity we need an uppermost bound of the geometricuncertainty, which usually is easy to provide. If such a limit exists, the onlything to do is to move the peg to the left, at the beginning of the plan, for adistance greater than this uncertainty limit, in order to ensure that the pegwill stay at the left of the hole. The second ambiguity is even simpler tosolve. As shown in Fig. 4.35, states [S4,c2], [S5,c2] and [S6,c2] require thesame action (���). We can join these three nodes in a unique one with thesame action.Finally, state [D] should be identi�ed by geometric information with anuncertainty bound, which is reasonable, since uncertainty is supposed to bemuch lower than peg height. We are working on an extension to our modelwhich includes �nite hole depth, thus allowing to detect this goal state bythe contact with the bottom of the hole.The resulting perception-based qualitative plan is shown in Fig. 4.39.Each state is now identi�able with only the measurements of the force sen-sor, but this does not exclude the use of the geometric information. Onemight combine these two methods in obtaining the state to increase systemreliability.This new plan still requires the assumption about the backstep maximumlength, which could be a critical requirement if the clearance is very small,since the maximum step might be lower than the precision of the control.Further work is necessary to study other planning strategies which will avoidthis requirement.

118 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS
([P4],+∆x,r0)([P6],-∆x,r2)

([P5],-∆y,r3)
([P1],-∆y,r1)

([P3],-∆x,r2)

([P2],-∆α)

[D]

([P0],-∆y)

Figure 4.39: Perception-based qualitative motion plan4.5.6 Perception-based simulationsSeveral simulations have been performed like those in Sect. 4.5.3, but nowthe state information is obtained from the sensory data. Figure 4.40 depictsthe sensory data used in a simulation, where the state sequence shown in thatsection can be properly identi�ed from the force and torque signals. Duringthese simulations, all the states were correctly identi�ed.The controller behavior is equivalent to that of the geometric one. Theactions are the same but now there is no need for information about theposition and orientation of the peg. The peg, however, must be locatedat the left side of the hole at the beginning, the backstep cannot exceed thelimit stated before, and the destination state should be detected by geometricmeasurements.4.5.7 DiscussionThis section has presented a qualitative reasoning approach to motion incontact based on simple geometric relationships. It has been applied tosolve an insertion task, common in robotic manipulations. To deal withuncertainties in position and control, a perception-based qualitative controlmethod for manipulation tasks with uncertainty has been introduced. Thismethod has been proved to be robust and it solves the uncertainty problemthat arises when using only geometric information. Sensory data is useful fordescribing the state of the system, and is less sensitive to errors than positioninformation. A SOM is used to translate physical measurements to symbolic

4.5. BUILDING A SOM-BASED FINE MOTION PLAN 119
fx

-5

0

5

fy

-10

-5

0

m

-10

0

10

Figure 4.40: Force measurements in a sensor-based simulationinformation.In real-world applications it is necessary that the plan is learnt by therobot in an autonomous way. This approach is opposed to the pre-computingof a plan and the use of sensing only for corrections at run-time. If the planis learnt, states are identi�ed from real-world situations, thus the plan copeswith any uncertainty or unmodeled features. This is the purpose of thearchitecture which will be introduced in the next chapter.

120 CHAPTER 4. CONTACT IDENTIFICATION WITH SOMS

Chapter 5Robot learning architectureThe simulations presented in the previous chapter were restricted to twodimensions for simplicity. Despite this fact, they were illustrative of the ca-pabilities of the SOM for the extraction of features suitable for identi�cationof contact states. Though the set of contact states was known in advance, theSOM learnt the features in an unsupervised manner. This is very importantfor more sophisticated problems (in three dimensions) since the number ofstates increases considerably and becomes di�cult to manage explicitly.In real-world situations, a pre-builded plan like the one described in Sect.4.5 is unlikely to be e�ective. The robot can extract some features fromthe sensor signals, and it needs to learn the plan by itself too. There is nomodel of the world, but the robot builds an internal representation with theSOM and the policy that it learns. The robot must learn the actions which,according to the state extracted from the features, will attain the goal in thebest way de�ned by some criteria (reinforcement). This is a big improvementover the monitoring scheme presented in the
exible manufacturing system.5.1 Situated, embodied agentsWell beyond the ethereal world of computer algorithms, a robot is whatwe call a situated, embodied agent : a physical, material system placed in aspeci�c real environment: it performs real operations, and it has to manageto the best of its ability. This agent has two basic capabilities: it can observethe world through its sensors, and it can act based on these observations inorder to achieve a particular goal. Actuators and sensors are the bridges, onefor each direction, between the world and the agent (see Fig. 5.1). They �rstlimit what the agent is able to know and to do. Only information acquiredthrough sensing can increase the agent's knowledge which, at the beginning,121

122 CHAPTER 5. ROBOT LEARNING ARCHITECTURE
WORLD Agent

Sensors

Actuators

Figure 5.1: Diagram of a situated-embodied agentconsists of programmed data and algorithms. And, obviously, an agent cando only those actions allowed by its actuators (the most sophisticated drivingcontrol won't make an agent move if it does not possess motors and wheels!).Theoretically, an agent could perform a task without sensing devices, if itis programmed in advance with the correct sequence of actions. But in real-world tasks the presence of uncertainty makes such hard-coded programs failmiserably. Uncertainty occurs when an object is located a few millimetersaway from where it should be according to the agent's internal model, whenthe agent moves to the right more than it was commanded, or when noisedisturbs a sensor signal with a value which does not correspond with theactual observable magnitude. Uncertainty can be diminished with carefuland accurate design, but it is practically impossible, or just too costly, to becompletely eliminated.The agent's behavior is not limited to the execution of a given plan, butit should pro�t from its capacity to observe the world in order to performthe best action according to its current goal(s). Thus, during all its lifetime,the agent executes perception-action cycles: �rst, it observes its environ-ment; then perception is evaluated according to an objective and, �nally, anaction is performed which, to the agent's knowledge, is a step towards theachievement of the goal.For an external observer, the agent essentially performs a mapping func-tion between sensations and actions. If the agent's structure is intended tobe more complex than a black box, some kind of abstraction is needed. Sen-sors and actuators are provided as is, they cannot be changed at all; as aconsequence, it seems obvious that both the processing of sensor signals andthe generation of control signals are tightly coupled with the nature of thedevices.

5.1. SITUATED, EMBODIED AGENTS 123
Agent

Sensors

Actuators

Signal
processing

Feature
extraction

State
identification

Control
algorithms

Action
decision

Hardware
Hard-computing,

Low level of
abstraction

Soft-computing,
High level of
abstractionFigure 5.2: Levels of processing in the agentAside from the case of simple reactive control, when sensing and actionsare tightly coupled, action decision is an abstract process which depends onsome features of the current sensing signals and a speci�c internal state of theagent. This is a complex process since it must take into account the e�ciencyof the agent's behavior; it is desirable that agents improve its performanceby learning from its previous experience and by exploring new actions. Apossible representation of this levels of abstraction is depicted in Fig. 5.2.There is only one sharp limit between hardware (sensors and actuators) andsoftware. The software levels are not intended to de�ne a strict hierarchy,but a design principle.Low levels are dependent on the particular problem and agent architec-ture; they are programmed according to the available task knowledge andengineering guidelines to perform their particular job, with local criteria ofperformance. The signal processing module should extract the maximum in-formation it can from the available sensors, while rejecting noise. The controlalgorithms should issue the appropriate signals to the actuators to performall the possible motions, to the highest requirements of accuracy and speed.Feature extraction is the selection of the original signals into more e�ec-tive features for a particular purpose, which, in this case, is the achievementof the goal by the agent. However, except for very simple problems, thereare no proper criteria for evaluating the e�ectiveness of features and generatesystematically the extraction process. Thus the selection of features becomesto a great extent problem-oriented.High levels are intended to be general and thus applicable to di�erenttasks and agents. Information at this level is made of features, states andactions, which are loosely, or not at all, coupled with the physical signals. Ini-tially, the agent is programmed with a basic behavior (a mapping from statesto actions) which is improved through experience. This modules evaluate thehistory of states, actions and the performance of the agent in achieving thetask, and basically the state-action mapping is modi�ed with the intention

124 CHAPTER 5. ROBOT LEARNING ARCHITECTUREof improving future executions of the task.The solution of the task cannot be programmed due to uncertainty and/orlack of knowledge. The agent should discover an e�cient solution despite theuncertainty. It carries out actions in an autonomous way, but it does not getan explicit feedback of the error, nor does it know which the correct solutionis. Only a measure of the evaluation of the task is provided to the agent (thisis called learning with a critic as opposed to learning with a teacher, when itis provided with the correct solution).The agent has to be provided initially with:� an exploration strategy� a learning mechanism� an evaluation of its performanceThe �nal goal is to build an autonomous agent which is capable of learningfrom its own experience. It must be kept in mind that a signi�cant amount oftask knowledge is embedded in the architecture: the selection of features andcontrol actions, the exploration, learning, and evaluation methodologies. Atthe beginning the agent's skills are limited, and random exploratory actionsmust be carried out frequently. After several trials, either successful or not,the agent should be able to learn a policy (correspondence between statesand actions) which tends to improve its pro�ciency.5.2 An architecture for a manipulator robotThe application of the previously stated principles to the particular domainof robotic manipulation poses the necessity of specifying concrete methodsand algorithms for each of the modules. Starting from the speci�cations ofthe task and the physical robot (the agent), its available sensors and actu-ators, the control modules and the signal processing algorithms should bedesigned to maximize the use of the physical system for the desired tasks.High-level modules should exhibit the following characteristics: simplicity,robustness, e�ciency, and generality. The adaptation to a particular prob-lem is performed by the lower levels of processing. Based on the previouscharacteristics, and the principles of the general design, a diagram of thespeci�c architecture for the manipulator robot is depicted in Fig. 5.3. Eachmodule is described thoroughly in the following.

5.2. AN ARCHITECTURE FOR A MANIPULATOR ROBOT 125

State
identification

Low-pass
filters

Motion translation
LUT

Compliant
controller

Joint velocity
computation

Force
sensor

Actuators

Position
estimation

Joint
encoders

Kinematic
equations

Programmed
task plan

Raw signals

Filtered signals

Cartesian velocity

Compliant
Cartesian velocity

Joint
velocities Joint angles

Jacobian
matrix

Cartesian
location

 State-action
learning

Action

State

Feature
extraction

Figure 5.3: Architecture of a robotic manipulator agent

126 CHAPTER 5. ROBOT LEARNING ARCHITECTURE5.2.1 Speci�cation of a �ne motion taskRobot tasks involving �ne motions or contact between parts and, particularlyinsertion and extraction, are very common in assembly and manufacturing ingeneral. A robot arm must grasp a part, carry it to its destination and insertit adequately. This is a very error-sensitive task. Due to uncertainty, the partmay be badly inserted or extracted, or even damaged. Errors are typicallycaused by a de�cient geometric model of the environment and uncertaintyin the initial pose (sensor) and control. Fine-motion is strictly a positioningproblem. Perfect knowledge of the parts being manipulated and a perfectpositioning device would make these tasks a trivial matter. Unfortunately,industrially manufactured parts are subject to dimensional variations; like-wise the realization of a near-perfect positioning device con
icts with costand
exibility considerations required for a general purpose robotic system.5.2.2 Robot hardwareSensorsBased on the speci�cations of a �ne-motion task (small-scale space, con-tacts), two types of sensors are chosen: position and force. Vision is notsuited for detecting small displacements, though it could be used for a �rstapproximation.Position sensors measure the joint angles of the robot arm. If needed, theCartesian location of the end-e�ector is calculated through the direct kine-matic equations of the robot. These equations are uniquely de�ned duringthe design and engineering of the arm. Examples of this class of sensors areoptical encoders, resolvers, potentiometers and tachometers.Our robot uses incremental optical encoders for measuring the relativeangle of each joint with regard to an initial arbitrary zero value. This rel-ativeness in the position produces an important additional e�ect in the un-certainty, since not only this uncertainty will be owed to the intrinsic defectsof the arm model (gear backlash, mainly), but also to the determination ofthe origin con�guration.Force sensors measure forces of contact between a manipulator's end-e�ector and the environment which it contacts. Depending on the locationof the sensing circuitry, there are two main types of force sensors: wristsensors are placed between the end-e�ector and last joint of the manipulator(see Fig. 5.4). Force-sensing �ngers are located at the �ngertips of the end-e�ector, and measure from one to four components of the force acting at each�ngertip.

5.2. AN ARCHITECTURE FOR A MANIPULATOR ROBOT 127
Fx

Mx

Fy

My

Fz MzFigure 5.4: Wrist force sensorIn the robot used in the experiments, a wrist force sensor measures the sixcomponents of the force and torque vectors acting on the end-e�ector (Fig.5.5 depicts the pro�les of these signals during a typical assembly operation).The sensor is a cylindrical unit mounted between the wrist
ange and theend-e�ector. It consists of 3 binding beams, each instrumented with 2 pairs ofsemiconductor strain gauges, totalling 6 strain measurements. As forces andmoments are applied to the end-e�ector, these beams
ex, providing a 6� 1strain measurement vector proportional to the applied 6 � 1 force/momentvector. The strain vector is multiplied by a 6 � 6 calibration matrix toproduce a 6� 1 force/moment vector in tool coordinates.
ActuatorsRobot motions are initiated with the software, which sends commands to amotor control board. The motor control board executes closed loop controlover the joint motors by reading the motor encoders and sending signalsto the power ampli�ers to move the motors to the commanded positions.Actuator commands are based on joint velocities. To command a Cartesianmotion to the robot, a translation module is needed, which, provided with thekinematic con�guration of the robot and an appropriate frame of reference,determines the motion of each joint according to the issued Cartesian motion.

128 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

0 200 400 600 800 1000
−0.14
−0.12

−0.1
−0.08
−0.06
−0.04
−0.02

0
0.02
0.04

Fx

0 200 400 600 800 1000
115

120

125

130

135

140
Mx

0 200 400 600 800 1000

−2

−1.95

−1.9

−1.85
Fy

0 200 400 600 800 1000
−95

−90

−85

−80

−75

−70
My

0 200 400 600 800 1000
−1.3

−1.2

−1.1

−1

−0.9
Fz

0 200 400 600 800 1000
3

4

5

6
Mz

Figure 5.5: Force and torque signals

5.2. AN ARCHITECTURE FOR A MANIPULATOR ROBOT 1295.2.3 Signals, features and statesThe information acquired from sensors is not fed into a black box, but istransformed in di�erent stages of signal processing, feature extraction andstate identi�cation.Signal processingIn real applications, sensor signals are corrupted with noise, which shouldbe rejected before further processing of the signals. The presence of noisemisleads other modules as to the original features of the signals. Digital�lters are relatively easy to design, e�ective and fast to compute.The problem of force sensing is the high frequency noise. Figure 5.6depicts a typical force signal and its associated power spectrum density. Thesampling rate of the sensor is 140 Hz. Since the dynamics of the processis much slower than this rate, it is safe to use a low-pass �lter to rejectthe high-frequency noise without removing the interesting characteristics ofthe signal for the task. Following the principle of simplicity, a digital second-order Butterworth �lter is chosen with a cuto� frequency at 4 Hz. The digitaltransfer function is:H(z) = B(z)A(z) = 0:0071 + 0:0143z�1 + 0:0071z�21� 1:7474z�1 + 0:7758z�2 (5.1)No experiments have been carried out to compare its performance withthat of other types, higher order, or di�erent cuto�, but this does not seemcritical for the task. The �ltered signal is depicted Fig. 5.7, which showsthat high frequencies are rejected to a great extent.Besides noise �ltering, another important operation is done at this stage.The force signal contains information about the contact forces but also theweight of the grasped workpiece, and this value depends on the orientationof the gripper. For the sake of generality, the value of the weight has tobe subtracted from the sensed force to get, assuming linear superposition offorces, the real magnitude of the force due to contacts. The weight does notneed to be explicitly calculated, but the system only has to read the sensorvalue when there is no contact, and record this value for subtraction duringall the process. However, if the orientation of the gripper changes noticeably,the previous weight is not valid, and should be recorded again. The completeblock diagram of the signal processing module for the force signals is depictedin Fig. 5.8. The delayed signals need to be stored in memory for the calculusof the current �ltered values.

130 CHAPTER 5. ROBOT LEARNING ARCHITECTURE
0 200 400 600 800 1000

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0 10 20 30 40 50 60 70
−60

−50

−40

−30

−20

−10

0

10

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 5.6: Raw force signal and power spectral density estimation
0 200 400 600 800 1000

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0 10 20 30 40 50 60 70
−200

−150

−100

−50

0

50

Frequency

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Figure 5.7: Filtered force signal and power spectral density estimation

5.2. AN ARCHITECTURE FOR A MANIPULATOR ROBOT 131

τ τ

τ τ

H(z) = B(z) / A(z)

Raw Force
signals

Filtered
force signalsMean

subs.

Figure 5.8: Signal processing moduleFeature extractionThe selection of variables is a key problem in pattern recognition and istermed feature selection or feature extraction [Fukunaga, 1990]. Feature se-lection is a process of mapping the original measurements into more e�ectivefeatures. If the mapping is linear and if there exists a proper criterion forevaluating the e�ectiveness of features, we can use the techniques of linearalgebra or iterative techniques to determine these mapping coe�cients. Un-fortunately, in many applications, there are important features which arenot linear functions of the original measurements, but are highly nonlinearfunctions. Since there is no general algorithm to generate nonlinear mappingfunctions systematically, the selection of features becomes to a great extentproblem-oriented.Several criteria have been proposed for signal representation and classi-�cation purposes. In signal representation, e�ective features are those thatrepresent the samples accurately. Suitable criteria are minimummean-squareerror, scatter measure and population entropy. A method for selecting fea-tures based on these criteria is the Discrete Karhunen-Lo�eve Expansion (seedetails in Chap. 9 of [Fukunaga, 1990]). In classi�cation, features that pre-serve class separability should be selected (Chap. 10 of [Fukunaga, 1990]).The problem in our task is that there is no class or state information avail-able, thus suitable criteria are di�cult, if not impossible, to formulate.In the following, criteria for signal representation are used for feature ex-traction in the hope that they will be useful for the learning task. If a smallset of features is found to represent the samples accurately, the dimension-ality problem is alleviated and the state space is kept small, which in turncan accelerate the convergence of the learning process. In Chap. 4 we have

132 CHAPTER 5. ROBOT LEARNING ARCHITECTUREpointed out the feasibility of unsupervised learning algorithms (particularlySOMs) for extracting feature information from sensor data in robotic ma-nipulation tasks. Since the used criterion is based on signal representationcriteria, it is not guaranteed to be appropriate for the learning task.Kohonen's self-organizing map (SOM) algorithm performs a nonlinearprojection of the probability density function of the input space onto thetwo- dimensional lattice of units. The application of the SOM to the forcesensor signals poses the problem of de�ning an Euclidean space with sixdimensions of two di�erent magnitudes (force and torque). There is a needfor a scaling of the inputs, but there exists no simple rule to determine whatkind of optimal rescaling should be used [Kohonen, 1995].The practical solution adopted in the experiments is to use only the threetorque signals. The reason is the strong correlation between the force andthe torque, thus adding those correlated signals does not include any newinformation to the system. The correlation is justi�ed by the physics ofthe system, and it was determined empirically. The correlation coe�cientbetween Fx and My was 0.97, and between Fy and Mx it was {0.95 (see Fig.5.5). The third component Fz is not correlated with any torque signal sinceit only depends on the reacting force caused by the compliant motion, butnot necessarily on the point of application (i.e. type of contact).Besides the force signals, additional position features are used by thesystem. It was found that, with only force information, the system was notable to learn an appropriate solution. The added position feature consists ofa qualitative estimation of the relative current position with regard to theinitial one. The exploration area is divided into regions, and the locationfeatures are the activation of the region where the agent is at the particularinstant. The estimation is based on the accumulated motion during the trial,it is very simple to calculate and particularly e�ective, as its e�ectiveness willbe demonstrated in the experiments. Dependency on the absolute location ofthe goal is strictly avoided, thus making possible to use the learnt knowledgedirectly in any other robot con�guration di�erent to the trained one.State identi�cationThe state is determined by the Cartesian product between the force featuresand the location features. Force features are processed by the SOM andproduce one winner unit from all of the map units [Cervera and del Pobil,1997a]. Location features are compared with the region borders de�ned onthe exploration space, and only one region is selected. The state is thecombination of the winner unit and the region, thus the number of states isequal to the product of the number of map units and the number of regions

5.2. AN ARCHITECTURE FOR A MANIPULATOR ROBOT 133of the exploration space.The resulting state is an abstract discrete symbol, which captures all theperceptual information. In this way, a generic learning algorithm is appliedto the symbolic space, not depending on the original nature of the perceptionsignals. This approach is
exible enough to cope with changes or new type ofsignals, which will be adequately processed by the prior modules, and theywill not require modi�cations on the learning procedure.The qualitative information obtained from the feature vector is usuallyconsidered as the system state. This is true if the world is modeled as acompletely observable Markovian process, where the probability of gettingto the next state is �xed and it only depends on the current state. If thestate of the world is observed only partially through the sensors, or it is nottruly Markovian, the past information should be taken into account.The proposed methodology considers the feature data as symbols froma regular language (which is unknown initially). The dynamic behavior ofthe process is approximated by a Finite State Automaton. Although theregularity assumption seems to be too restrictive, it should be noted that anylanguage can be approximated at a desired degree with a regular language.The language alphabet is the �nite set of discrete symbols obtained fromthe feature vector. Since neither the states nor transitions of the automatonare known in advance, an inference process is needed to learn the structureof the automaton from example strings. This process is carried out by meansof a recurrent neural network, namely an Elman network trained with thebackpropagation algorithm. The FSA is extracted from the hidden layerof the network through a procedure called dynamic state partitioning. Thestate of the agent is determined by the state of this inferred automaton uponprocessing of the qualitative input (a complete example is provided in Sect.3.5 on page 44).5.2.4 Planning and learningProgrammed task planDespite the agent's capacity of learning, if any task knowledge is available itshould be used at those stages where uncertainty is not important, and toguide the agent and speed up the learning process. One of the simplest plansis to perform a random walk through the state space, using any constraintderived from task knowledge that limits the exploration space. For example,is it is known that the goal is within a distance of 5 millimeters, it does notmake sense to explore locations further away; the agent should be endowedwith the capacity of detecting such displacement and limit the exploration

134 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

State

Action

Move down Z, until contact.

Explore and learn,
 until loss of contact, or timeout.

If timeout
 Terminate --Fail.
else

 Move down Z, until contact --Success.

Figure 5.9: Programmed task plan
area in accordance.Plans should explicitly capture the task knowledge. Desirable character-istics are simplicity and robustness; optimality is not a major concern, butthe possibility of improving the performance through experience. Seekingfrom inspiration in people's way of solving tasks, a plan is a feasible solutionthat is gradually improved by experience and skill re�nement [Cervera anddel Pobil, 1997d,b].Such an example of programmed task plan is depicted in Fig. 5.9. Thisplan resembles the way in which a person would perform an insertion task:just approximate to the goal and, upon failure, explore the surrounding areawhile gently forcing the piece into the hole; either by chance or by his/hertactile skills, the person eventually comes up with the correct insertion; if thisdoes not occur for a long time, just �nish and start again from the beginning.Formally, the plan consists of a phase when the uncertainty does not matter(move down Z), and the actual exploration phase. This is limited by a �xeduncertainty bound, which guarantees that the target is located within thebounded area.

5.2. AN ARCHITECTURE FOR A MANIPULATOR ROBOT 135

Q-values
Update

τ

Q-values
LUT

Action selection
(exploration)

τ

State

State
(t-1)

Action
(t-1)

Action

Figure 5.10: State-action learningState-action learningThe agent's learning problem has been simpli�ed to the extent that a rein-forcement learning is directly applicable. There exists a �nite set of states, a�nite set of actions (chosen from the whole range of allowed directions), andonly the reinforcement scheme remains unde�ned. A simple action-penaltyrepresentation is used, i.e. the agent is penalized (negative reinforcement)for every action it performs. Consequently, the agent will learn to solve thetask with the minimum number of actions.Since the number of steps for a trial is �nite (each trial is limited bya timer; if the goal is not found within the �xed time, the current trial isaborted and a new one is started), the maximum reinforcement is boundedand there is no need to use a discount factor. Thus the reinforcement valueis weighted uniformly across all the steps. Using this scheme, the Q-learningalgorithm (reviewed in Sect. 3.4.2) can be directly applied to the problem.For simplicity a look-up table (LUT) has been used to store the q-values.There are as many rows as states and as many columns as actions. Eachcell stores the q-value for the corresponding pair of state and action, andrepresents the expected future reinforcement when such action is chosen fromsuch state. The table is initialized with zero values, and it is updated on-linewhile successive trials are being executed (Fig. 5.10).A exploration scheme based on the Boltzmann method (3.17) is used. The

136 CHAPTER 5. ROBOT LEARNING ARCHITECTUREtemperature value, as well as the learning rate, is updated in accordance to(3.18).5.2.5 Control algorithmsMotion translationThe learning algorithm employed in the architecture was originally developedfor a discrete state and action space. Though extensions have been proposedin the literature to manage continuous state spaces, the same extension in theaction space is more di�cult to tackle. Discretization is usually considereda major drawback of this algorithm. Although an action is a 'primitive' inthe theory, it is important to understand that, depending on the application,an action can be a high-level command that executes one of a repertoire ofcomplex behaviors. In our experimental results, it is shown that only eight orten di�erent discrete actions are su�cient for successfully performing a realinsertion task for cylindrical and non-cylindrical pegs. But these actions arehigh-level primitives, namely compliant motions Mason [1981]. Well-knownalgorithms are used for position control, force control, compliant motion, etc.A separate control law could be used for each distinct qualitative action.Compliant controllerDuring compliant motions, the commanded velocity is modi�ed by the sensedforces according to a programmed behavior (Fig. 5.11). Usually some de-grees of freedom are position controlled, and others are force controlled. Forexample: when sliding the peg across the surface for exploration, the motionof the peg is position controlled along the two dimensions tangential to thesurface, but the motion is force controlled along the third dimension normalto the surface. This behavior is de�ned by the damping matrix B, and forthis simple example, the matrix is diagonal with low values for the tangen-tial components and a high value for the normal component. Complicatedcompliant behaviors are possible with complex damping matrices.Kinematic modulesThe relationship between the Cartesian velocity and the velocity of each jointis de�ned by the Jacobian matrix. But this matrix depends on the currentrobot con�guration, and it needs to be recalculated at each control cycle,using the robot kinematic equations.The Cartesian location of the end-e�ector can be calculated in two ways:either applying the direct kinematics equations to the joint vector, or by

5.3. EXPERIMENTAL RESULTS 137
B

-1

+

Current
velocity

Sensed
forces

Commanded
velocityFigure 5.11: Compliant controlleradding the amount of motion to the initial location. This second approach ismore e�cient than the direct kinematics approach, so it is de�nitely used inthe implementation (in a experimental comparison between the two methodsthere were no noticeable changes in the estimated position).5.3 Experimental resultsThe system has been implemented in a Zebra Zero robot, a six d.o.f. armequipped with a wrist-mounted force sensor (see Appendix A for details).The control cycle frequency is 140 Hz, i.e. this is the maximum frequencyat which motions can be commanded to the robot actuators. This is alsothe sampling frequency of the force sensor. The task is the insertion of pegsof di�erent shapes (circular and square section) into their appropriate holes.Pegs are made of wood, and the platform containing the holes is made of asynthetic resin.Uncertainty in the position and orientation is greater than the clearancebetween the pegs and holes. The peg is supposed to be properly graspedby the robot gripper. The nominal goal is speci�ed by a vector and a rota-tion matrix relative to an external �xed frame of reference. This location issupposed to be centered above the hole, a few millimeters upwards and welloriented, so the peg would be inserted just by moving straight along the Zaxis with no rotation if there were no uncertainty present. After positioningin the nominal goal, the robot performs a guarded motion towards the hole.

138 CHAPTER 5. ROBOT LEARNING ARCHITECTURE
 ��

Figure 5.12: Zebra Zero robot arm, grasping a peg over the platform

5.3. EXPERIMENTAL RESULTS 139The success of the operation depends on the point where the contact is de-tected. It is trivial that to be able to discriminate between the contact onthe surface and the contact on the bottom, the depth of the hole must begreater than twice the uncertainty radius, as is usually the case.If the insertion has failed, the robot starts a series of perception andaction cycles. First, sensors are read, and a state is identi�ed; dependingon such state, an action or another is chosen, and the learning mechanismupdates the internal parameters of decision. The robot performs compliantmotions, i.e. it keeps the contact with the surface while moving, so it candetect the hole by a sudden force change due to the loss of contact.Contact can be lost when moving into the hole, or due to defects ofthe compliant controller. The robot is commanded a new guarded motiontowards the hole. If contact is detected immediately again, a false alarm issignaled and the exploration cycles are re-initiated. On the contrary, if therobot moves freely downwards before detecting a new contact, the hole hasbeen found and the task is completed successfully.To avoid long exploration cycles, a timeout is set which stops the processif the hole is not found within that time. In this case the robot returns to itshome location, and a new trial is started.Two types of signals are used: the force sensor signals and the relativelocation with respect to the initial position and orientation.5.3.1 Case of the cylinderThe peg is 29 mm in diameter, while the hole is chamferless and 29.15 mmin diameter. The clearance between the peg and the hole is 0.075, thus theclearance ratio is 0.005. The peg has to be inserted to a depth of 10 mm intothe hole. See Fig. 5.13.The input space of the self-organizing map is de�ned by the three �lteredtorque components. The map is trained o�-line with approximately 70,000data vectors extracted from previous random trials.De�nition of the SOMThe parameters of the map are:� Dimension: 6� 4� Topology: hexagonal� Neighborhood: bubble

140 CHAPTER 5. ROBOT LEARNING ARCHITECTURE
 ��

Figure 5.13: Robot gripper grasping the cylinder peg

5.3. EXPERIMENTAL RESULTS 141

−4−20246810

−10

−5

0

5

10

−0.2

−0.15

−0.1

−0.05

0

0.05

M
x

M
y

M
z

Figure 5.14: Self-organizing map in the input spaceFollowing the recommendations given by Kohonen [1995] for good con-vergence of SOMs, the map is trained in two phases:� 150,000 iterations, learning rate = 0.1, radius = 4� 1,500,000 iterations, learning rate = 0.05, radius = 2Due to the low dimensionality of the input space, it is possible to visu-alize the trained map in a plot (Fig. 5.14). The map is also projected inthe two most signi�cant dimensions (Mx;My). The partition of the signalspace corresponds to the Voronoi diagram de�ned by the map units, whoseprojection onto Mx and My is depicted in Fig. 5.15.Learning procedureThe agent is trained with a sequence of trials, each of which starts at a ran-dom position within an uncertainty radius of 3 mm. To absolutely ensurethat the goal is within the exploration area, this area is set to a 5 mm square,centered at the real starting position. Exploration motions are tangential tothe surface, i.e. along the X and Y dimensions. The exploration space ispartitioned in nine regions with thresholds in -2 and +2 for both X and Y;each of these regions de�ne a qualitative location state. The state is deter-mined by combining the winner unit of the map and this relative qualitative

142 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

M
x

M
y

Figure 5.15: Voronoi diagram de�ned by the SOM on dimensions (Mx;My)position with respect to the initial location, thus the total number of statesis 24� 9 = 216.Contact is detected by two thresholds in the force component Fz (normalto the surface): a contact is gained when Fz is less than -0.1 Kgf, and thecontact is lost if Fz is greater than -0.05 Kgf. This dual-threshold methodovercomes small variations in the reaction force due to friction, the irregularsurface, and the compliant controller. During compliant motions, a force Fzequal to -0.15 Kgf is constantly exerted on the surface.The action space is discretized. Exploratory motions consist of �xed stepsin eight di�erent direction of the XY-plane (0, 45, 90, 135, 180, 225, 270 and315 degrees). These motions are hybrid, with some degrees of freedom (XY)being position-controlled and other degrees (Z) being force-controlled, asstated in Mason [1981]. The complexity of the motion is transferred to thecontrol modules, and the learning process is simpli�ed.Each learning step consists of a sensor reading and an action. Duringprocessing, the robot stops the last motion and senses the forces during55 control cycles (approximately 55/140 seconds). The reason for stoppingmotion during sensing is to alleviate the e�ect of dynamic friction, since inthis setup it completely misleads the learning algorithm about the contactforces.The sensed forces and the current relative location are used to determinethe current state. An action is chosen based on the Boltzmann exploration

5.3. EXPERIMENTAL RESULTS 143scheme (3.17). Initially, random actions are chosen; as the temperature de-creases, the action with higher value for the current state is chosen moreoften. The action causes a compliant motion to be commanded during 70control steps (0.5 seconds), but it might �nish before if the contact is lost(i.e. the hole is found). Between the action and the next sensing step thereis a pause period of 45 cycles (about 45/140 seconds) to allow the motion tostop completely.Learning resultsThe learning update step consists of modifying the q-value of the previousstate and the performed action according to the reinforcement and the valueof the next state. The agent receives a constant negative reinforcement foreach action it performs (action-penalty representation). The best policy, theone that maximizes the obtained reinforcement, is that which achieves thegoal with the minimum number of actions. Experimental results are shownin Fig. 5.16. The critical phase is the surface-compliant motion towards thehole. The system must learn to �nd the hole based on sensory information.The exploration time of 4,000 consecutive trials is shown. The timeout isset to 20 seconds in each trial. The smoothed curve was obtained by �lter-ing the data using a moving-average window of 100 consecutive values. Thelearning algorithm is executed since the beginning. Temperature is gradu-ally decreased from the initial value of 75, thus progressively turning downexploration.Figure 5.17 depicts the probability of successful insertions over time. Thisprobability is estimated by calculating the percentage of achieved goals dur-ing 100 consecutive trials. The system evolves from a bare 38% of successfulinsertions during the �rst 500 trials (accomplished by random motions) to asatisfactory 93% of success during the last 500 trials of the learning process.After 1,500 trials, the insertion time is considerably improved over thevalues at the �rst steps. Despite small oscillations, the time converges tothis value. Although the results presented by Gullapalli et al. [1994] showa faster convergence for a similar task, one should note that the setup isquite di�erent, since he uses the real location as input to the robot. It isunclear how the trained system could generalize to a di�erent test location.Our system uses relative forces and a relative open-loop estimation of thelocation of the end-e�ector. Theoretically, this information is invariant withrespect to the position and orientation of the target. Any goal should beachieved with equal probability, provided an initial location within a givenbound of the real goal. Our system has been tested on di�erent locations,showing a good performance (83% of successful insertions) when there is no

144 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

500 1000 1500 2000 2500 3000 3500 4000
5

10

15

20

Trials

In
se

rt
io

n
tim

e

Figure 5.16: Smoothed insertion time taken on 4,000 trials of the cylindertask

500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trials

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Figure 5.17: Evolution of the probability of successful insertion during thetraining process

5.3. EXPERIMENTAL RESULTS 145
 ��

Figure 5.18: New orientation of the holeorientation change.However, if the hole is rotated 90 degrees (see Fig. 5.18), there is a signif-icant loss in performance (only 44% of insertions are successful), but, uponadditional training, the system quickly recovers a near perfect performancefor the new setup (Fig. 5.19 shows that with less than 500 new trials, morethan 70% of insertions are successful, whereas during the training process,1000 trials were required to achieve this rate). Since all the measurementsare relative, one would expect better results. The best solution would beto interleave di�erent positions and orientations during the training process,but this is not possible in our setup.Since the trial timeout is set to 20 seconds, additional experiments werecarried out with a higher timeout in order to study the distribution of suc-cesses over a long time, and compare the di�erences between the randomand learning strategies. Figure 5.20 depicts the distribution of successful in-sertions with respect to time, for 1,000 random trials and 1,000 trials usingthe learnt controller (but learning has been turned o� during these trials).As expected, it was found out that it is possible to achieve nearly all theinsertions with random motions, provided the necessary amount of time, butthe learnt controller achieves best results with signi�cantly less time.Experimental results have shown that the system learns incrementallyfrom an initially random strategy, by improving its performance based onlyon its own experience. A signi�cant amount of task knowledge is embedded

146 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trials

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Figure 5.19: Adaptation to a new hole setup

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Random

Learning

Figure 5.20: Probability of insertion for random and learned strategies

5.3. EXPERIMENTAL RESULTS 147in the system architecture, which simpli�es the learning problem. However,the imprecision, noise and inherent di�culties of a real robot are dealt witha discrete learning algorithm.5.3.2 Case of the square pegDue to its radial symmetry, the cylinder is more simple than other pieces forinsertions. It has been widely studied in the literature since the force analysiscan be done in two dimensions. Analytical results for pegs of other shapesare much more di�cult: Caine et al. [1989] developed an heuristic approachto manage 1,000 di�erent contact states of a rectangular peg insertion.In our architecture, it is very simple to extend the agent's capabilitiesto deal with other shapes than the cylinder. Besides the uncertainty in theposition along the dimensions X and Y (tangential to the surface), the agentmust deal with the uncertainty in the orientation with respect to the Z axis(the hole axis, which is normal to the surface). In addition to the center ofthe square being located exactly in the center of the hole, it has to be exactlyoriented to allow a proper insertion. The peg used in the experiments has asquare section, its side being 28.8 mm. The hole is a 29.2 mm square, thusthe clearance is 0.2 mm, and the clearance ratio is approximately 0.013. Thepeg is made of wood, like the cylinder, and the hole is located in the sameplatform as before (Fig. 5.21).The radius of uncertainty in the position is 3 mm, and the uncertainty inthe orientation is �8:5 degrees. The exploration area is a 5 mm square andan angle of �14 degrees. The area is partitioned in 9 regions, and the angleis divided in three segments. The self-organizing map contains 6 � 4 units,likewise the previous case. The rest of the training parameters are the sameas before.Again, the input space of the SOM is de�ned by the three �ltered torquecomponents. The map is trained o�-line with approximately 70,000 datavectors extracted from previous random trials.De�nition of the SOMThe parameters of the map are:� Dimension: 6� 4� Topology: hexagonal� Neighborhood: bubble

148 CHAPTER 5. ROBOT LEARNING ARCHITECTURE
 ��

Figure 5.21: Robot gripper grasping the square peg

5.3. EXPERIMENTAL RESULTS 149Following the recommendations given by Kohonen [1995] for good con-vergence of SOMs, the map is trained in two phases:� 150,000 iterations, learning rate = 0.1, radius = 4� 1,500,000 iterations, learning rate = 0.05, radius = 2Due to the low dimensionality of the input space, it is possible to visu-alize the trained map in a plot (Fig. 5.22). The map is also projected inthe two most signi�cant dimensions (Mx;My). The partition of the signalspace corresponds to the Voronoi diagram de�ned by the map units, whoseprojection onto Mx and My is depicted in Fig. 5.23.The total number of states is 27 � 24 = 648. Though this is the totalnumber of states, some of them may actually be never visited at all, thusthe number of real states is somewhat smaller. There is a tradeo� betweenthe number of states and the learning speed. If more states are used, theinternal representation of the task is more detailed, but more trials are neededto learn the q-values of all those states. With less states, the q-values areupdated more quickly and the learning process is faster. Unfortunately, thereis no general method for selecting the number of states, and it becomes atask-dependent heuristic process.Two new actions are added, namely rotations around the normal axis tothe surface, since symmetry around it does not hold any more. A qualitativemeasure of that angle is also included in the agent's location estimation.Since 10 di�erent actions are possible at each state, the table of q-values has6,480 entries.The rest of the architecture and the training procedure remains un-changed. The increased di�culty of the task is shown by the low percentageof successful insertions that are achieved randomly at the beginning of thelearning process. Only about 15% of the insertions are performed in less than20 seconds time. The higher di�culty is the reason for the longer learningtime and the worst performance achieved with respect to the cylinder.Learning resultsFigure 5.24 depicts the insertion time during 8,000 learning trials. One shouldtake into account that any failed insertion is rated at 30 seconds, which isnot true. The agent's improvement is shown more clearly in Fig. 5.25,which depicts the probability of successful insertion within 30 seconds time.The process is slightly more unstable than the cylinder due to the increaseddi�culty, but the agent achieves a signi�cant 80% of successful insertions.If this timeout is not considered, the bene�t is more apparent. Figure 5.26

150 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

−5
0

5
10

15

−20

−15

−10

−5

0

5

10

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

M
y

M
x

M
z

Figure 5.22: Self-organizing map in the input space for the cube task

−10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

M
x

M
y

Figure 5.23: Voronoi diagram de�ned by the SOM on dimensions (Mx;My),for the cube task

5.3. EXPERIMENTAL RESULTS 151

1000 2000 3000 4000 5000 6000 7000 8000
10

12

14

16

18

20

22

24

26

28

30

Trials

In
se

rt
io

n
tim

e

Figure 5.24: Smoothed insertion time taken on 8,000 trials of the cube taskdepicts the probability of successful insertion for 1,000 random trials and1,000 trials with the learnt controller, with respect to a time up to 210seconds (3 and a half minutes). The di�erence is more dramatic than inthe case of the cylinder, since the random controller, even for a long time,is capable of performing a low percentage of trials (about 45%), whereas thelearnt controller achieves more than 90% of the trials.As far as we know, this is the best performance achieved for this taskusing a square peg. In [Gullapalli et al., 1994] only results for the cylinderare presented and, though generalizing to other shapes is said to be possible,no real experiments are carried out.5.3.3 Case of the triangle pegThe architecture is not restricted to square shapes, but in principle it canbe used with any non-symmetric shape. However, concave shapes have notbeen experimented. Results are now presented for a triangle peg, with threeequal edges (see Fig. 5.27). Each edge is 30.5 mm long, and the hole edgesare 30.9 mm long.The representation of the state space is exactly the same that has beenused for the square.As before, the radius of uncertainty in the position is 3 mm, and the

152 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trials

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Figure 5.25: Evolution of the probability of successful insertion during thetraining process

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time − seconds

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Random

Learning

Figure 5.26: Probability of insertion for random and learned strategies

5.3. EXPERIMENTAL RESULTS 153
 ��

Figure 5.27: Robot gripper grasping the triangle peguncertainty in the orientation is �8:5 degrees. The exploration area is a 5mm square and an angle of �14 degrees. The area is partitioned in 9 regions,and the angle is divided in three segments. The self-organizing map contains6� 4 units. The rest of the training parameters are the same as before too.The total number of states is 27 � 24 = 648 and the same actions (8translations and 2 rotations) are used.As in the two previous cases, the input space of the SOM is de�nedby the three �ltered torque components. The map is trained o�-line withapproximately 70,000 data vectors extracted from previous random trials.De�nition of the SOMThe parameters of the map are:� Dimension: 6� 4� Topology: hexagonal� Neighborhood: bubbleFollowing the recommendations given by Kohonen [1995] for good con-vergence of SOMs, the map is trained in two phases:

154 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

−5

0

5

−4

−3

−2

−1

0

1

2

3

4

−0.25

−0.2

−0.15

−0.1

−0.05

M
y

M
x

M
z

Figure 5.28: Self-organizing map in the input space for the triangle task� 150,000 iterations, learning rate = 0.1, radius = 4� 1,500,000 iterations, learning rate = 0.05, radius = 2Due to the low dimensionality of the input space, it is possible to visu-alize the trained map in a plot (Fig. 5.28). The map is also projected inthe two most signi�cant dimensions (Mx;My). The partition of the signalspace corresponds to the Voronoi diagram de�ned by the map units, whoseprojection onto Mx and My is depicted in Fig. 5.29.Learning resultsThe evolution of the mean insertion time during 8,000 learning trials is de-picted in Fig. 5.30. The improvement is not as apparent as in the previouscases. Moreover, the probability of insertion (Fig. 5.31) only reaches about60% of success after the training process, whereas 80% of successful insertionswere attained in the cube example.This is quite surprising, since initially the probability of insertion for thetriangle is higher, and that means that it is easier to insert the trianglerandomly than the cube. However, it is more di�cult to improve these skillsbased on the sensed forces for the triangle. This could be caused by thedi�erent contact states, which might be more informative in the case of thecube. This is not a contradiction at all. Possibly, the contacts of the triangle

5.3. EXPERIMENTAL RESULTS 155

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

M
x

M
y

Figure 5.29: Voronoi diagram de�ned by the SOM on dimensions (Mx;My),for the triangle taskare more ambiguous, thus making it di�cult to learn a good strategy for theinsertion task.Figure 5.32 depicts the probability of successful insertion for 1,000 randomtrials and 1,000 trials with the learnt controller, with respect to a time upto 210 seconds (3 and a half minutes). This picture clearly shows that therandom strategy achieves more successful strategies than in the case of thecube, but the learned strategy is not as good as that learned in the previouscase.Unfortunately since there are no other published works for a similar task,these results cannot be compared to test if our hypothesis is true. Never-theless, this absence of results in the literature might be indicative of thedi�culties for properly learning this task.Learning using the previous SOMAn interesting generalization test is to use a SOM trained with samples frominsertions of the square peg for learning the insertions of the triangle peg.Though trained with di�erent shapes, the purpose is to test if the featureslearnt with the square are useful for the insertion of other shapes. Since thesize of the SOMs is the same, the state representation is not modi�ed at all.The evolution of the mean insertion time during 8,000 learning trials isdepicted in Fig. 5.33. The results are very similar to those obtained before

156 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

1000 2000 3000 4000 5000 6000 7000 8000
10

12

14

16

18

20

22

24

26

28

30

Trials

In
se

rt
io

n
tim

e

Figure 5.30: Smoothed insertion time taken on 8,000 trials of the triangletask

1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trials

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Figure 5.31: Evolution of the probability of successful insertion during thetraining process

5.3. EXPERIMENTAL RESULTS 157

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Random

Learned

Figure 5.32: Probability of insertion for random and learned strategieswith a speci�c SOM. The probability of insertion is depicted in Fig. 5.34.Figure 5.35 depicts the probability of successful insertion for 1,000 randomtrials, 1,000 trials with the strategy learnt with the speci�c SOM, and 1,000trials with the strategy learnt with the SOM from the cube task, with respectto a time up to 210 seconds (3 and a half minutes).Surprisingly enough, results with the cube SOM are slightly better thanthose obtained with the speci�c SOM. A possible explanation is that the SOMtrained with the cube is more powerful than that trained with the triangle.By examining Figs. 5.23 and 5.29, which depict the Voronoi diagrams of bothSOMs, one can see that the cube SOM is covering a wider area of the inputspace than the other one. It might occur that some input data has not muchin
uence during the training process of the triangle SOM (due to its lowprobability density) but is rather important for the learning of the insertionstrategy. Since the cube SOM is covering a wider area, maybe some statesare properly identi�ed with this SOM whereas they are ambiguous with thetriangle SOM.This is an interesting result which demonstrates the generalization capa-bilities of the SOM for extracting features which are suitable for di�erenttasks.

158 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

1000 2000 3000 4000 5000 6000 7000 8000
10

12

14

16

18

20

22

24

26

28

30

Trials

In
se

rt
io

n
tim

e

Figure 5.33: Smoothed insertion time taken on 8,000 trials of the triangletask, with the SOM trained with the square peg

1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trials

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Figure 5.34: Evolution of the probability of successful insertion during thetraining process, with the SOM trained with the square peg

5.3. EXPERIMENTAL RESULTS 159

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

P
ro

ba
bi

lit
y

of
 in

se
rt

io
n

Learned (triangle SOM)

Learned (cube SOM)

Random

Figure 5.35: Probability of insertion for random and learned strategies withSOMs trained with the triangle and the cube

160 CHAPTER 5. ROBOT LEARNING ARCHITECTURE

Chapter 6Conclusions and future work
6.1 Main contributions of this thesisThe main target of this thesis has been successfully achieved: a real robot armis capable of learning a complex insertion task based on its own experiencethrough perception and action. In the way to the goal, some signi�cantresults have been achieved regarding new aspects of self-organizing maps andQ-learning, as well as new contributions to the theory of neural networks likean algorithm for supervised learning with SOMs and enhancing reinforcementlearning with recurrent networks.Throughout this thesis, we have emphasized the engineering goal of ar-ti�cial intelligence: there was a real problem, which has been solved witha number of available tools in the �elds of neural networks and machinelearning, whose capabilities have been investigated with the target problemof robotic �ne motion in mind. The integration of several tools, backed bysimulations and examples, and their implementation on a real robot to solvethe initial problem are the contributions of the thesis to the �eld of roboticintelligence.Below, the main contributions of this thesis are summarized:� A supervised learning algorithmwith SOMs. This hybrid methodhas been described in Sect. 3.2 on page 27 and a number of exampleswith synthetic and real data of di�erent available benchmarks havebeen presented.� Enhancement of Q-learning with recurrent networks. It hasbeen shown how the inference of �nite state automata with recurrentnetworks enhances the learning power of Q-learning. Section 3.5 onpage 44 presented a simulation of a sensor-based task, which turned161

162 CHAPTER 6. CONCLUSIONS AND FUTURE WORKout to be impossible to solve if past history was not taken into ac-count. An Elman network, trained to predict the next sensing symbol,learns a representation of the �nite state automaton which allows thereinforcement learning algorithm to succeed in �nding a solution.� Monitoring �ne motion tasks with SOMs. Simulations of two-dimensional assemblies and the experiments in a
exible manufactur-ing cell have been carried out for the study of the SOM behavior withsignals generated from such tasks throughout Chap. 4. Through un-supervised learning, the features extracted from the map turn out tobe signi�cant with regard to the contact state of the task. The map isa valuable tool for monitoring of the assembly process, fault detectionand error recovery. It is used later in the development of a sensor-based qualitative plan for insertion tasks in two dimensions, whichis implemented on simulations.� Q-learning states with SOMs. Self-organizing maps are useful forextracting features from input signals. Selection of winner units is anatural way of discretizing the input space into a �nite set of states.These states (combined with other sources of information) are directlyusable by the reinforcement learning algorithm (with a look-up tablerepresentation) for learning the association of states and actions inorder to solve the �ne motion insertion task (Sects. 5.2.3 on page 131,and 5.3 on page 137).� A robot learning architecture for manipulation. Unsupervisedlearning of input features and reinforcement learning of action policiesform the basis of this architecture, though a number of parametersneed to be �xed by the operator (size of SOM, Q-learning parameters,state resolution). The system achieves position-independent skills in�ne motion assembly tasks, and thorough experiments are reported inSect. 5.3. Peg insertions with uncertainty are learnt within a reason-able amount of time. Moreover, the insertion of non-cylindrical partswith position uncertainty is beyond the state-of-the-art frontier in �nemotion planning.6.2 List of selected publicationsThe work carried out in this thesis has given rise to a number of publications.A selected list is presented below.� International journals

6.2. LIST OF SELECTED PUBLICATIONS 163{ Cervera, E., del Pobil, A. P., Marta, E., Serna, M. A. (1996).Perception-based learning for motion in contact in task planning.Journal of Intelligent and Robotic Systems, 17, pages 283{308,Kluwer Academic Publishers.{ Cervera, E., del Pobil, A. P. (1997c). Multiple self-organizingmaps: a hybrid learning approach. Neurocomputing (in press).Elsevier Science.� International book chapters{ Cervera, E., del Pobil, A. P., Marta, E., Serna, M. A. (1995a).Dealing with uncertainty in �ne motion: a neural approach, inG. F. Forsyth and M. Ali, editors, Industrial and EngineeringApplications of Arti�cial Intelligence and Expert Systems, pages119{126. Gordon and Breach Publishers (Amsterdam).{ Cervera, E., del Pobil, A. P. (1995c). Multiple self-organizingmaps for supervised learning, in J. Mira and F. Sandoval, editors,From Natural to Arti�cial Neural Computation, pages 345{352.Springer Lecture Notes in Computer Science 930 (Berlin).{ Cervera, E., del Pobil, A. P. (1996). Learning and classi�cation ofcontact states in robotic assembly tasks, in T. Tanaka, S. Ohsugaand M. Ali, editors, Industrial and Engineering Applications ofArti�cial Intelligence and Expert Systems, pages 725{730, Gordonand Breach Publishers (Amsterdam).{ Cervera, E., del Pobil, A. P. (1997a). Integration of self-organizingmaps and reinforcement learning in robotics, in J. Mira, R. Moreno-Diaz and J. Cabestany, editors, Biological and Arti�cial Com-putation: From Neuroscience to Technology, pages 1344{1354.Springer Lecture Notes in Computer Science 1240 (Berlin).� International conference proceedings{ Cervera, E., del Pobil, A. P., Marta, E., Serna, M. A. (1995b). Asensor-based approach for motion in contact in task planning, inProceedings of the IEEE/RSJ International Conference on Intel-ligent Robots and Systems (IROS), 2, pages 468{473, Pittsburgh,USA.{ Cervera, E., del Pobil, A. P. (1995a). Geometric reasoning for �nemotion planning. In Proceedings of the IEEE International Sym-posium on Assembly and Task Planning, pages 154{159, Pitts-burgh, USA.

164 CHAPTER 6. CONCLUSIONS AND FUTURE WORK{ Cervera, E., del Pobil, A. P. (1995b). A hybrid qualitative con-nectionist approach to robotic spatial planning. In Proceedings ofthe IJCAI Workshop on Spatial and Temporal Reasoning, Inter-national Joint Conference on Arti�cial intelligence (IJCAI'95),pages 37{46, Montreal, Canada.{ Cervera, E., del Pobil, A. P. (1997d). Programming and learningin real-world manipulation tasks, in Proceedings of the IEEE/RSJInternational Conference on Intelligent Robots and Systems (IROS),pages 471{476, Grenoble, France.{ Cervera, E., del Pobil, A. P. (1997b). Learning strategies forsensor-based manipulation tasks. In Proceedings of the IEEE In-ternational Conference on Computational Intelligence in Roboticsand Automation (CIRA'97), pages 54{59, Monterey, USA.6.3 Future workThe integration of learning methods is a challenging �eld of the AI commu-nity. This thesis has presented some successful applications of combinationsof SOMs, Q-learning and recurrent networks, with emphasis on a modulardesign of an autonomous agent architecture. A direct extension is the imple-mentation of Q-learning with recurrent networks in the real robot, in orderto test if it improves the learned skills.Quite a few theoretical questions remain open and deserve future research,leading to fundamental issues: what is learnable, and how can it be learnt?The learnable thing has been decomposed in inputs, features, states, pasthistory, but automatic methods for the selection and the appropriateness ofsuch concepts need to be clari�ed.The empirical bias of this thesis should be considered, as mentioned be-fore, as guided by the engineering goal of arti�cial intelligence: starting froma real problem, we have used the existing theory and developed new ideasto �nd a feasible solution. Simulations were intermediate steps towards thereal implementation. Collateral contributions to the theory of neural net-works and reinforcement learning have emerged from this research. We havetried to avoid the (still very common, sadly) approach of developing a newawesome theory which is only applied to toy problems.In addition to theoretical issues, applications have just begun to be ex-plored. The emphasis on solving real tasks which has guided this thesisshould not remain limited to the laboratory environment (which is not asreal as the real world). Our robot is like a little child, learning while playing

6.3. FUTURE WORK 165with a piece set with di�erent shapes, and putting each one in the appro-priately shaped hole. But that is the means, not the target. When he/sheachieves good skills, the next step will be directing his/her attention to thecountless objects of everyday use at home, and the unlimited ways of com-bining them. The use of robots at home, helping disabled people, posesthe necessity of skillful manipulators. Nearly all the imaginable home tasksinvolve some kind of �ne motion and contacts with objects.Industrial applications are undoubtly another important �eld to bene�tfrom skilled manipulation, in terms of production time, robustness,
exibility,and, needless to say, economic costs. To investigate the industrial assemblytasks which the presented architecture is applicable to, is not a scienti�ccuriosity but a compelling must.Though skillful with force sensing, our robot is completely blind, deaf,and as dumb as the computer which de�nitely is its brain. A challenging ex-tension is the inclusion of other sensing devices in this approach, signi�cantlyenlarging the range of solvable tasks. Vision is what immediately comes tothe mind. Though very di�erent in nature to tactile sensing, each one hasits weaknesses and strengths: a hybrid approach should bene�t from the lat-ter and minimize the former. Vision and force sensing are complementary:vision is useful for a �rst approach to the goal, and force sensing can solvethe �nal small discrepancies.In dreaming of robotics, one envisions skillful robots which can solve bor-ing everyday tasks, or cumbersome industrial applications, with robustness,
exibility and simplicity. Robots which, with minimal user interaction, canimprove their skills, and reuse their knowledge for new tasks. Solving theproblems suggested by this dream demands the resources of numerous �elds,including Mechanical Engineering, Physics, Computer Science, Mathematics,and Arti�cial Intelligence. It is the merging of these �elds which makes thetask of ful�lling the dream enjoyable.

166 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Appendix AThe Zebra ZERO robotTechnical details of the Zebra ZERO robot arm are described in this ap-pendix. A full description is provided in the technical manual ([Int, 1994]).A.1 Kinematic con�gurationThe Zebra ZERO manipulator consists of six links connected with joints asshown in Fig. A.1. The base plate, which stays �xed, is sometimes referred toas an additional link, Link 0. Link 1, the rotating base carriage, is connectedto Link 0 through Joint 1, the base rotation. Link 2, the upper arm, isconnected to link 1 through Joint 2, the shoulder elevation, etc. The wristmounting
ange and everything which is rigidly attached to it is Link 6.These joints and links will be referred to as J1 - J6 and L1 - L6.The kinematic con�guration of the ZERO is similar to that of the PUMAmanipulators, but without some of the small o�sets. The J1 axis is normalto the base plate. The J2 axis is orthogonal to, and intersects, the J1 axis.The J3 axis is parallel to the J2 axis.The plane of the arm is de�ned as the plane in which the J1 axis lies,and to which the J2 axis is normal. Conceptually, this is the plane formedby the upper arm and forearm links.The J4 axis is orthogonal to, and intersects, the J3 axis. The J4 axis alsolies in the plane of the arm. The J5 axis intersects, and is orthogonal to, theJ4 axis. The J6 axis intersects, and is orthogonal to, the J5 axis. All threeof these axes intersect at a single point called wrist center. The wrist centerlies in the plane of the arm. The signi�cant di�erences between the ZEROkinematics and the PUMA kinematics are that the PUMA wrist center doesnot lie in the plane of the arm, and the PUMA J4 axis does not intersect theJ3 axis. 167

168 APPENDIX A. THE ZEBRA ZERO ROBOT

A
A
A
A

AA
AA

Y

Z

X

X

Y

Z

X

Y

Z

J1 Axis

J2 Axis

J3 Axis

J4 Axis

J5 Axis

J6 Axis

Tool
frame

Wrist
frame

Base
frame

Figure A.1: Zebra ZERO kinematic con�gurationThree important Cartesian frames exist: the base frame, the wrist frame,and the tool frame. The base frame is �xed in the base of the arm. Thewrist frame is embedded in L6. (The force sensor and the gripper are alsopart of L6). Its origin is located at the intersection of the wrist axes, it isoriented such that its Z axis points along the J6 axis, and its X axis pointsnormal to the plane of the gripper. The tool frame is a user de�ned framewhich describes the location of the business end of the end-e�ector relativeto the wrist frame. This frame is usually set to correspond to the locationof the �ngertips or to the location of the point of contact on a part or toolwhich is being grasped.A.2 Drive systemThe Zebra-ZERO drive system consists of D. C. brush motors driving eachjoint through a combination of shafts and gears. Each motor has a twostage planetary gear head with reductions 24:1. The motors for driving J1and J2 are mounted in the rotating base carriage and transmit the powerdirectly through the gears. The motors for J3 and for J4, J5 and J6 are allmounted in the upper arm and act as a counterbalance for the rest of thearm. The power for the wrist joints is transmitted up the arm via shafts andthrough the elbow joint via idler bevel gears. The wrist uses a concentricshaft di�erential for driving its three intersecting joints.Incremental optical encoders are mounted directly on each motor shaft

A.3. FORCE SENSOR 169for position feedback. In general, the motion of any single motor will a�ectall six joint angles, although the mapping between encoder counts and jointangles is linear.A.3 Force sensorThe force sensor is a cylindrical unit mounted between the wrist
ange andthe end-e�ector. It consists of 3 binding beams, each instrumented with 2pairs of semiconductor strain gauges, totalling 6 strain measurements. Asforces and moments are applied to the end-e�ector, these beams
ex, pro-viding a 6 � 1 strain measurement vector proportional to the applied 6 � 1force/moment vector.These strain signals are fed into a data acquisition system located at thesensor, which digitizes the signals and sends them serially back to the motorcontrol board. On the card, these signals are reassembled into parallel wordsand are read by the PC. The strain vector is multiplied by a 6�6 calibrationmatrix to produce a 6� 1 force/moment vector in tool coordinates.The data acquisition uses a 10 bit A/D converter, providing a force sensordynamic range of 1000:1. The gain is set for a minimum force reading ofabout 15 grams.A.4 Operating modesA.4.1 Position controlThe trajectory of the arm is speci�ed by a series of via points which the armwill pass near or through, and a �nal goal point where the arm will come torest. These via points and goal points describe the con�guration of the armin all six degrees of freedom, and can be speci�ed as a 6� 1 joint vector, oras a Cartesian frame locating the tool relative to the arm base.With position control, the motion of the arm is pre-determined at thebeginning of the move; that is, it will always try to follow the speci�edtrajectory regardless of the forces applied at the end-e�ector.A.4.2 Force threshold modeWhen moving the arm under position control, it is possible to set a forcethreshold, such that if the end-e�ector feels a force greater than this thresh-old, the move command will be aborted and motion will stop immediately.The force threshold is speci�ed as a 6 � 1 vector of three forces and three

170 APPENDIX A. THE ZEBRA ZERO ROBOTtorques about the coordinate axes of the tool frame. If the magnitude of anycomponent of the force exceeds the corresponding value in the threshold, themove will abort and the move function will return a value indicating thatthe force threshold has been exceeded.To prevent damage from unexpected collisions, a fairly large force thresh-old, greater than any expected force, should be set. This should be donewhenever there is a chance of collision, or whenever the gripper is closed ona part which could be stuck in its �xture. Force thresholds can be used foraligning parts with positional uncertainty by setting a small threshold in thedirection along which the end-e�ector and the other part will �rst touch.When the end-e�ector is moved towards the �xed part slowly, the motionwill stop when the parts are aligned.A.4.3 Force control modeThe robot can be placed in a mode where it exerts a speci�ed force onthe environment, independent of its position. This force is speci�ed as a6x1 force/torque vector in tool coordinates. This mode is used wheneverthe end-e�ector is completely constrained, as it is when in its homing nest.This mode is also useful for guiding the arm by hand. By commanding theend-e�ector to exert a zero force, it will comply to forces exerted on theend-e�ector so as to maintain a zero force.A.4.4 Sti�ness control modeIn most contact situations, the end-e�ector will be constrained in some direc-tions, but not in others. The sti�ness control mode is a means of controllingpositions in some directions, and forces in others. In sti�ness mode, the userspeci�es the desired Cartesian sti�ness behavior of the end-e�ector with a6�1 sti�ness vector, representing the translational sti�ness of the end-e�ectoralong the tool coordinate axes, and the rotational sti�ness about these axes.As the end-e�ector is moved through space, it will de
ect from its nominaltrajectory in accordance with these sti�ness values.A.5 Homing the robotWhen the ZERO robot system is �rst powered up, it has no idea of wherethe arm is. To solve this problem, the system should always be started withthe arm in known location: in its homing nest. With the arm in the nest,the system has an approximate idea of where the arm is. However, there is

A.5. HOMING THE ROBOT 171some play between the alignment pins and the nest, and the drive train shaftsmay be
exed somewhat by friction, so that by reading the motor encoders,the system still won't have an accurate idea of the arm con�guration. Thisproblem is solved using the active force sensing and control.The system �rst moves the end-e�ector up and out of the nest, main-taining the same orientation as when in the nest. Once free of the nest, ittakes an o�set reading to zero the force sensor. The end-e�ector then movesback into the nest with the aid of a little wobble. The end-e�ector is nextcommanded to exert a speci�c force and moment against the nest. When itreaches this force, the alignment pins will all be pressed �rmly against themating slots, and the arm drive trains will all be
exed by a known amount.At this point, the optical encoder counters are set to zero. The use of forcecontrol enables the system to put the arm in a very repeatable con�guration.

172 APPENDIX A. THE ZEBRA ZERO ROBOT

Appendix BSoftware packagesSeveral software packages, both commercial and public domain, have beenused in the implementation of the programs.B.1 Self-organizing mapsExperiments with SOMs on Chap. 4 were carried out with the public domainsoftware package SOMPAK [Kohonen et al., 1995] which consists of a set ofprograms written in C for the training and visualization of SOMs. Additionalfunctions for clustering and visualization were written in MATLAB. All theprograms run on a Silicon Graphics workstation with the IRIX operatingsystem.B.2 Recurrent neural networksThe training of Elman networks of Sect. 3.5 was carried out with theStuttgart Neural Network Simulator [Zell et al., 1995], with additional pro-grams written in MATLAB for the extraction of the automata and the sim-ulations of the agent. Additional processing (including minimization andvisualization) of the automata was performed with the public domain FSAUtilities [van Noord, 1995], a set of programs running on SICStus Prolog.All these packages were running on a Silicon Graphics workstation.B.3 Learning architectureThe learning architecture of Chap. 5 was written in C on a IBM-compatiblepersonal computer with MS-DOS, which controlled the Zebra Zero robot173

174 APPENDIX B. SOFTWARE PACKAGESarm. The program included an implementation of the SOM and Q-learningalgorithms.

BibliographyJ. T. Alander, M. Frisk, L. Holmstrom, A. Hamalainen, and J. Tuominen.Process error detection using self-organizing feature maps. Technical re-port, Rolf Nevanlinna Institute, Helsinki, 1991.H. Asada. Representation and learning of nonlinear compliance using neuralnets. IEEE Transactions on Robotics and Automation, 9(6):863{867, 1993.A. G. Barto, S. Bradtke, and S. Singh. Learning to act using real-timedynamic programming. Arti�cial Intelligence, 72(1):81{138, 1995.R. Bellman. Dynamic Programming. Princeton University Press, 1957.D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. AthenaScienti�c, 1996.M. Brady. Arti�cial intelligence and robotics. Arti�cial Intelligence, 26:79{121, 1985.A. J. Briggs. An e�cient algorithm for one-step planar compliant motionplanning with uncertainty. In 5th ACM Annual Symposium on Computa-tional Geometry, pages 187{196, 1989.M. E. Caine, T. Lozano-P�erez, and W. P. Seering. Assembly strategies forchamferless parts. In Proceedings of the IEEE International Conference onRobotics and Automation, pages 472{477, 1989.T. P. R. Campos. Connectionist modeling for arm kinematics using visualinformation. IEEE Transactions on Systems, Man, and Cybernetics, 26(1):89{99, 1996.J. Canny and J. Reif. New lower bound techniques for robot motion planningproblems. In 28th IEEE Symposium on Foundations of Computer Science,pages 49{70, 1987. 175

176 BIBLIOGRAPHYR. C. Carrasco and M. L. Forcada. Second-order recurrent neural networkscan learn regular grammars from noisy strings. In J. Mira and F. Sandoval,editors, From Natural to Arti�cial Neural Computation, number 930 inLecture Notes in Computer Science, pages 605{610. Springer, 1995.M. A. Casta~no, E. Vidal, and F. Casacuberta. Finite state automata andconnectionist machines: A survey. In J. Mira and F. Sandoval, editors,From Natural to Arti�cial Neural Computation, number 930 in LectureNotes in Computer Science, pages 433{440. Springer, 1995.E. Cervera and A. P. del Pobil. Geometric reasoning for �ne motion planning.In Proccedings of the IEEE International Symposium on Assembly andTask Planning, pages 154{159, 1995a.E. Cervera and A. P. del Pobil. A hybrid qualitative-connectionist approachto robotic spatial planning. In Proceedings of the IJCAI Workshop onSpatial and Temporal Reasoning, pages 37{46, 1995b.E. Cervera and A. P. del Pobil. Multiple self-organizing maps for supervisedlearning. In J. Mira and F. Sandoval, editors, From Natural to Arti�cialNeural Computation, number 930 in Lecture Notes in Computer Science,pages 345{352. Springer, 1995c.E. Cervera and A. P. del Pobil. Learning and classi�cation of contact states inrobotic assembly tasks. In T. Tanaka, S. Ohsuga, and M. Ali, editors, In-dustrial and Engineering Applications of Arti�cial Intelligence and ExpertSystems, pages 725{730. Gordon and Breach Publishers, 1996.E. Cervera and A. P. del Pobil. Integration of self-organizing feature mapsand reinforcement learning in robotics. In J. Mira, R. Moreno-Diaz, andJ. Cabestany, editors, Biological and Arti�cial Computation: From Neuro-science to Technology, number 1240 in Lecture Notes in Computer Science,pages 1344{1354. Springer, 1997a.E. Cervera and A. P. del Pobil. Learning strategies for sensor-based ma-nipulation tasks. In Proceedings of the International Conference on Com-putational Intelligence in Robotics and Automation (CIRA), pages 54{59,1997b.E. Cervera and A. P. del Pobil. Multiple self-organizing maps: A hybridlearning approach. Neurocomputing, 1997c. In press.

BIBLIOGRAPHY 177E. Cervera and A. P. del Pobil. Programming and learning in real-worldrobotic tasks. In Proceedings of the IEEE/RSJ International Conferenceon Intelligent Robots and Systems, pages 471{476, 1997d.E. Cervera, A. P. del Pobil, E. Marta, and M. A. Serna. Dealing with un-certainty in �ne motion: a neural approach. In G. F. Forsyth and M. Ali,editors, Industrial and Engineering Applications of Arti�cial Intelligenceand Expert Systems, pages 119{126. Gordon and Breach Publishers, 1995a.E. Cervera, A. P. del Pobil, E. Marta, and M. A. Serna. A sensor-basedapproach for motion in contact in task planning. In Proceedings of theIEEE/RSJ International Conference on Intelligent Robots and Systems,volume 2, pages 468{473, 1995b.E. Cervera, A. P. del Pobil, E. Marta, and M. A. Serna. Perception-basedlearning for motion in contact in task planning. Journal of Intelligent andRobotic Systems, 17:283{308, 1996.A. D. Christiansen, M. T. Mason, and T. M. Mitchell. Learning reliablemanipulation strategies without initial physical model. In Proceedings ofthe IEEE International Conference on Robotics and Automation, pages1224{1230, 1990.A. Cleeremans, D. Servan-Schreiber, and J. L. McClelland. Finite stateautomata and simple recurrent networks. Neural Computation, 1:372{381,1989.C. Darken and J. Moody. Note on learning rate schedule for stochasticoptimization. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky,editors, Advances in Neural Information Processing Systems 3, pages 832{838. Morgan Kaufmann, 1991.A. P. del Pobil and M. A. Serna. Spatial Representation and Motion Planning.Number 1014 in Lecture Notes in Computer Science. Springer Verlag, 1995.D. DeMers and K. Kreutz-Delgado. Canonical parameterization of excessmotor degrees of freedom with self-organizing maps. IEEE Transactionson Neural Networks, 7(1):43{55, 1996.R. J. Desai and R. A. Volz. Identi�cation and veri�cation of terminationconditions in �ne motion in presence of sensor errors and geometric uncer-tainties. In Proceedings of the IEEE International Conference on Roboticsand Automation, pages 800{807, 1989.

178 BIBLIOGRAPHYP. A. Devijver and J. Kittler. Pattern Recognition: a Statistical Approach.Prentice Hall, 1982.B. R. Donald. Error Detection and Recovery in Robotics. Springer Verlag,1989.S. Dutr�e, H. Bruyninckx, and J. de Schutter. Contact identi�cation andmonitoring based on energy. In Proceedings of the IEEE InternationalConference on Robotics and Automation, 1996.J. L. Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.M. A. Erdmann. Using backprojections for �ne motion planning with uncer-tainty. International Journal of Robotics Research, 5(1):19{45, 1986.K. Fukunaga. Introduction to Statistical Pattern Recognition. ComputerScience and Scienti�c Computing. Academic Press, 2nd edition, 1990.C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee.Learning and extracting �nite state automata with second-order recurrentneural networks. Neural Computation, 4:393{405, 1992.R. P. Gorman and T. J. Sejnowski. Analysis of hidden units in a layerednetwork trained to classify sonar targets. Neural Networks, 1:75{89, 1988.S. Gottschlich, C. Ramos, and D. Lyons. Assembly and task planning: Ataxonomy. IEEE Robotics and Automation Magazine, pages 4{12, 1994.V. Gullapalli, J. A. Franklin, and H. Benbrahim. Acquiring robot skills viareinforcement learning. IEEE Control Systems, 14(1):13{24, 1994.V. Gullapalli, R. A. Grupen, and A. G. Barto. Learning reactive admittancecontrol. In Proceedings of the IEEE International Conference on Roboticsand Automation, pages 1475{1480, 1992.A. S. Gusev. Automatic assembly of cylindrically shaped parts. RussianEngineering Journal, 49(11):53, 1969.M. Hern�andez-Pajares. How tracer object can improve competitive learningalgorithms in astronomy. Vistas in Astronomy, 38:317{330, 1994.J. A. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory ofNeural Computation. Addison-Wesley, 1991.

BIBLIOGRAPHY 179S. Hirai and K. Iwata. Recognition of contact state based on geometricmodel. In Proceedings of the IEEE International Conference on Roboticsand Automation, pages 1507{1512, 1992.J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-guages, and Computation. Series in Computer Science. Addison-Wesley,1979.G. E. Hovland and B. J. McCarragher. Frequency-domain force measure-ments for discrete event contact recognition. In Proceedings of the IEEEInternational Conference on Robotics and Automation, pages 1166{1171,1996.G. E. Hovland, P. Sikka, and B. J. McCarragher. Skill acquisition fromhuman demonstration using a Hidden Markov Model. In Proceedings ofthe IEEE International Conference on Robotics and Automation, pages2706{2711, 1996.Integrated Motions Inc, 758 Gilman Street, Berkeley, California 94710. ZebraZERO Force Control Robot: User Guide, 1994.J. Jennings, B. R. Donald, and D. Campbell. Towards experimental veri�-cation of an automated compliant motion planner based on a geometrictheory of error detection and recovery. In Proceedings of the IEEE Inter-national Conference on Robotics and Automation, pages 632{637, 1989.M. I. Jordan. Attractor dynamics and parallelism in a connectionist sequen-tial machine. In 8th Annual Conference of the Cognitive Science Society,pages 531{546, 1986.L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning:A survey. Journal of Arti�cial Intelligence Research, 4:237{285, 1996.M. Kaiser and R. Dillman. Hierarchical learning of e�cient skill applicationfor autonomous robots. In International Symposium on Intelligent RoboticSystems, 1995.M. Kaiser and R. Dillman. Building elementary robot skills from humandemonstration. In Proceedings of the IEEE International Conference onRobotics and Automation, pages 2700{2705, 1996.K. Kasslin, J. Kangas, and O. Simula. Process state monitoring using self-organizing maps. In I. Aleksander and J. Taylor, editors, Arti�cial NeuralNetworks, volume 2. Elsevier Science Publishers, 1992.

180 BIBLIOGRAPHYS. Keerthi and B. Ravindran. A tutorial survey of reinforcement learning. InE. Fiesler and R. Beale, editors, Handbook of Neural Computation. OxfordUniversity Press, 1996.T. Kohonen. Self-organized formation of topologically correct feature maps.Biological Cybernetics, 43:59{69, 1982.T. Kohonen. Self-Organizing Maps. Springer Series in Information Sciences.Springer, 1995.T. Kohonen, G. Barna, and R. Chrisley. Statistical pattern recognition withneural networks. In IEEE International Conference on Neural Networks,volume 1, pages 61{68, 1988.T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. SOMPAK: TheSelf-Organizing Map Program Package. Helsinki University of Technology,1995.M. A. Kraaijveld, J. Mao, and A. K. Jain. A non-linear projection methodbased on Kohonen's topology preserving maps. In 11th International Con-ference on Pattern Recognition, pages 41{45, 1992.S. C. Kremer. On the computational power of Elman-style recurrent net-works. IEEE Transactions on Neural Networks, 6(4):1000{1004, 1995.B. J. A. Kr�ose and Marc Eecen. A self-organizing representation of sen-sor space for mobile robot navigation. In Proceedings of the IEEE/RSJInternational Conference on Intelligent Robots and Systems, 1994.K. Kurimo. Hybrid training method for tied mixture density Hidden MarkovModels using LVQ and Viterbi estimation. In IEEE Workshop on NeuralNetworks for Signal Processing, pages 362{371, 1994.N. M. Laktionev and G. Y. Andreev. Automatic assembly of parts. RussianEngineering Journal, 46(8):40, 1966.J. C. Latombe, A. Lazanas, and S. Shekhar. Robot motion planning withuncertainty in control and sensing. Arti�cial Intelligence, 52(1):1{47, 1991.C. Laugier. Planning �ne motion strategies by reasoning in the contactspace. In Proceedings of the IEEE International Conference on Roboticsand Automation, pages 653{659, 1989.L. J. Lin. Reinforcement learning for robots using neural networks. Technicalreport, Carnegie Mellon University, 1993.

BIBLIOGRAPHY 181T. Lozano-P�erez. Spatial planning: a con�guration space approach. IEEETransacions on Computing, 32(2):108{120, 1983.T. Lozano-P�erez, M. T. Mason, and R. H. Taylor. Automatic synthesis of�ne-motion strategies for robots. International Journal of Robotics Re-search, 3(1):3{24, 1984.P. Manolios and R. Fanelli. First-order recurrent neural networks and �nitestate automata. Technical report, Brooklyn College of the City Universityof New York, 1993.B. Martin del Brio and C. Serrano-Cinca. Self-organizing neural networksfor the analysis and representation of data: Some �nancial cases. NeuralComputing and Applications, 1:193{206, 1993.M. T. Mason. Compliance and force control for computer controlled manipu-lators. IEEE Transactions on Systems, Man and Cybernetics, 11:418{432,1981.M. T. Mason. Compliant motion. In M. Brady, J. M. Hollerbach, T. L. John-son, T. Lozano-P�erez, and M. T. Mason, editors, Robot Motion: Planningand Control, pages 305{322. The MIT Press, 1982.B. J. McCarragher. Force sensing from human demonstration using a hybriddynamical model and qualitative reasoning. In Proceedings of the IEEE In-ternational Conference on Robotics and Automation, pages 557{563, 1994.B. J. McCarragher. The unsupervised learning of assembly using discreteevent control. In Proceedings of the IEEE International Conference onRobotics and Automation, pages 1172{1177, 1996.B. J. McCarragher and H. Asada. A discrete event controller using Petrinets applied to assembly. In Proceedings of the IEEE/RSJ InternationalConference on Intelligent Robots and Systems, pages 2087{2094, 1992.B. J. McCarragher and H. Asada. A discrete event approach to the control ofrobotic assebly tasks. In Proceedings of the IEEE International Conferenceon Robotics and Automation, pages 331{336, 1993a.B. J. McCarragher and H. Asada. Qualitative template matching using dy-namic process models for state transition recognition of robotic assembly.ASME Journal of Dynamic Systems, Measurement and Control, 114(2),1993b.

182 BIBLIOGRAPHYW. S. McCulloch and W. Pitts. A logical calculus of the ideas imminent innervous activity. Bulletin of Mathematical Biophysics, 5:115{133, 1943.J. R. Mill�an and C. Torras. A reinforcement connectionist approach to robotpath-�nding in no-maze-like environments. Machine Learning, 8:363{395,1992.N. Mimura and Y. Fubahashi. Parameter identi�cation of contact condi-tions by active force sensing. In Proceedings of the IEEE InternationalConference on Robotics and Automation, pages 2645{2650, 1994.M. Minsky. Computation: Finite and In�nite Machines. Prentice Hall, NewYork, 1967.J. Mira, R. Moreno-Diaz, and J. Cabestany, editors. Biological and Arti�cialComputation: From Neuroscience to Technology. Number 1240 in LectureNotes in Computer Science. Springer, 1997.J. Mira and F. Sandoval, editors. From Natural to Arti�cial Neural Com-putation. Number 930 in Lecture Notes in Computer Science. Springer,1995.T. M. Mitchell and S. Thrun. Explanation-based neural network learning forrobot control. In S. J. Hanson, J. Cowan, and C. L. Giles, editors, Advancesin Neural Information Processing Systems 5, pages 287{294. Morgan Kauf-mann, 1993.J. D. Morrow and P. K. Khosla. Sensorimotor primitives for robotic assemblyskills. In Proceedings of the IEEE International Conference on Roboticsand Automation, pages 1894{1899, 1995.M. C. Mozer. A focused back-propagation algorithm for temporal patternrecognition. Complex Systems, 3:349{381, 1989.B. K. Natarajan. The complexity of �ne motion planning. InternationalJournal of Robotics Research, 7(2):36{42, 1988.J. Naylor, A. Higgins, and K. P. Li. Speaker recognition using Kohonen'sself-organizing feature map algorithm. Neural Networks, 1:311, 1988.D. Niebur and A. J. Germond. Unsupervised neural net classi�cation ofpower system static security states. Electrical Power and Energy Systems,14:233{242, 1992.

BIBLIOGRAPHY 183M. Nuttin, J. Rosell, R. Su�arez, H. van Brussel, L. Bas�a~nez, and J. Hao.Learning approaches to contact estimation in assembly tasks with robots.In 3rd European Workshop on Learning Robots, 1995.M. Nuttin, H. van Brussel, C. Baroglio, and R. Piola. Fuzzy controllersynthesis in robotic assembly: Procedure and experiments. In 3rd IEEEInternational Conference on Fuzzy Systems, pages 1217{1223, 1994.W. Paetsch and G. von Wichert. Solving insertion tasks with a multi�ngeredgripper by fumbling. In Proceedings of the IEEE International Conferenceon Robotics and Automation, pages 173{179, 1993.B. D. Ripley. Neural networks and related methods for classi�cation. Journalof the Royal Statistical Society B, 56:509{456, 1994.H. Ritter, T. M. Martinetz, and K. J. Schulten. Topology-conserving mapsfor learning visuo-motor coordination. Neural Networks, 2:159{168, 1989.A. J. Robinson. Dynamic Error Propagation Networks. PhD thesis, Cam-bridge University, 1989.S. M. Ross. Introduction to Stochastic Dynamic Programming. AcademicPress, 1983.V. Ruiz de Angulo and C. Torras. Self-calibration of a space robot. IEEETransactions on Neural Networks, 8(4):951{963, 1997.D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal rep-resentations by error propagation. In Parallel Distributed Processing, vol-ume 1, pages 318{362, Cambridge MA, 1986. MIT Press.P. Sikka and B. J. McCarragher. Monitoring contact using clustering and dis-criminant functions. In Proceedings of the IEEE International Conferenceon Robotics and Automation, pages 1351{1356, 1996.S. N. Simunovic. Force information in assembly processes. In 5th Interna-tional Symposium on Industrial Robots, pages 415{431, Chicago, 1975.M. Skubic and R. A. Volz. Identifying contact formations from sensory pat-terns and its applicability to robot programming by demonstration. In Pro-ceedings of the IEEE/RSJ International Conference on Intelligent Robotsand Systems, volume 2, pages 458{464, 1996.

184 BIBLIOGRAPHYM. Spreng. A probabilistic method to analyze ambiguous contact situations.In Proceedings of the IEEE International Conference on Robotics and Au-tomation, pages 543{548, 1993.W. S. Stornetta, T. Hogg, and B. A. Huberman. A dynamical approach totemporal pattern procesing. In Neural Information Processing Systems,pages 750{759, Denver, 1988.R. Su�arez and L. Bas�a~nez. Assembly with robots in presence of uncertainty.In International Robots and Vision Conference, pages 1{15, 1991.R. Su�arez and L. Bas�a~nez. Illustrating an automatic planner for roboticassembly task. In 23rd International Symposium on Industrial Robots,pages 645{651, Barcelona (Spain), 1992.R. Su�arez, L. Bas�a~nez, and J. Rosell. Assembly contact force domains in thepresence of uncertainty. In 4th IFAC Symposium on Robot Control, pages653{659, Capri (Italy), 1994.R. S. Sutton. Temporal Credit Assignment in Reinforcement Learning. PhDthesis, University of Massachusetts, 1984.R. S. Sutton. Integrated modeling and control based on reinforcement learn-ing and dynamic programming. In R. P. Lippman, J. E. Moody, and D. S.Touretzky, editors, Advances in Neural Information Processing Systems 3,pages 471{478. Morgan Kaufmann, 1991.R. S. Sutton, editor. Reinforcement Learning. Kluwer Academic Publishers,1992.S. B. Thrun. The role of exploration in learning control. In D. A. White andD. A. Sofge, editors, Handbook of Intelligent Control: Neural, Fuzzy, andAdaptive Approaches. Van Nostrand Reinhold, 1992.S. B. Thrun. Explanation-Based Neural Network Learning: A Lifelong Learn-ing Approach. Kluwer Academic Publishers, 1996.C. Torras. From geometric motion planning to neural motor control inrobotics. AI Communications, 6(1):3{17, 1993.V. Tryba and K. Goser. Self-organizing feature maps for process control inchemistry. In T. Kohonen, K. Makisara, O. Simula, and J. Kangas, edi-tors, Arti�cial Neural Networks, volume 1, pages 847{852. Elsevier SciencePublishers, 1991.

BIBLIOGRAPHY 185A. Ultsch. Self-organizing feature maps for monitoring and knowledge acqui-sition of a chemical process. In Proceedings of the International Conferenceon Arti�cial Neural Networks, pages 864{867, 1993.G. van Noord. FSA Utilities Manual. University of Groningen, 1995.M. Vapola, O. Simula, T. Kohonen, and P. Merilainen. Representation andidenti�cation of fault conditions of an anaesthesia system by means of theself-organizing map. In M. Marinaro and P. G. Morasso, editors, Proceed-ings of the International Conference on Arti�cial Neural Networks, pages350{353, 1994.S. Vougioukas and S. Gottschlich. Automatic synthesis and veri�cation ofcompliance mappings. In Proceedings of the IEEE International Confer-ence on Robotics and Automation, pages 491{496, 1993.J. A. Walter and K. J. Schulten. Implementation of self-organizing neuralnetworks for visuo-motor control of an industrial robot. IEEE Transactionson Neural Networks, 4(1):86{95, 1993.C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279{292,1992.D. E. Whitney. Quasi-static assembly of compliantly supported rigid parts.ASME Journal of Dynamic Systems, Measurement and Control, 104:65{77, 1982.D. E. Whitney. Historical perspective and state of the art in robot forcecontrol. International Journal of Robotics Research, 6(2):3{14, 1987.P. M. Will and D. D. Grossman. An experimental system for computercontrolled mechanical assembly. IEEE Transactions on Computers, 24(9):879{888, 1975.P. H. Winston. Arti�cial Intelligence. Addison-Wesley, 3rd edition, 1992.J. Xiao. Automatic determination of topological contacs in the presence ofsensing uncertainties. In Proceedings of the IEEE International Conferenceon Robotics and Automation, pages 65{70, 1993.J. Xiao and R. A. Volz. On replanning for assembly tasks using robots inthe presence of uncertainties. In Proceedings of the IEEE InternationalConference on Robotics and Automation, pages 638{645, 1989.

186 BIBLIOGRAPHYJ. Xiao and L. Zhang. Toward obtaining all possible contacts|growing apolyhedron by its location uncertainty. IEEE Transactions on Roboticsand Automation, 12(4):553{565, 1996.A. Zell et al. SNNS: Stuttgart Neural Network Simulator, User Manual, Ver-sion 4.1. Institute for Parallel and Distributed High Performance Systems,1995.

