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Abstract 
 
This thesis describes a contribution to the three-dimensional reconstruction of the 
internal and external surfaces of the human's left ventricle. The reconstruction is a first 
process fitting in a complete VR application that will serve as an important diagnosis 
tool for hospitals. Beginning with the surfaces reconstruction, the application will 
provide volume and interactive real-time manipulation to the model. We focus on speed, 
precision and smoothness for the final surfaces. As long as heart diseases diagnosis 
requires experience, time and professional knowledge, simulation is a key-process that 
enlarges efficiency. 
 
The algorithms and implementations have been applied to both synthetic and real 
datasets with differences regarding missing data, present in cases where pathologies and 
abnormalities arise. The datasets include single acquisitions and complete cardiac 
cycles. The goodness of the reconstructions has been evaluated with medical parameters 
in order to compare our results with those retrieved by typical software used by 
physicians. 
 
Besides the direct application to medicine diagnosis, our methodology is suitable for 
generic reconstructions in the field of computer graphics. Our reconstructions can serve 
for getting 3D models at low cost, in terms of manual interaction and CPU computation 
overhead. Furthermore, our method is a robust tessellation algorithm that builds 
surfaces from clouds of points that can be retrieved from laser scanners or magnetic 
sensors, among other available hardware. 
 
The author is granted by an EPSON "Rosina Ribalta" award. This work has been also 
financed by the TIC2000-1009 project. 
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General Dynamic Surface Reconstruction 

1  Introduction 
 
Access to a 3D model obtained from patient’s data can have several applications like 
support on diagnosis, surgery planning, student’s training or even remote-operation. A 
first approximation to the problem would be using a manual process with specific 
image-processing software [82] though it would require deep medical knowledge and 
experience. 
 
The aim of this project is to reconstruct the three-dimensional internal and external 
surfaces of the human’s left ventricle. The reconstruction is a first process fitting in a 
complete VR application that will serve as an important diagnosis tool for hospitals. 
Beginning with the surfaces reconstruction, the application will provide volume and 
interactive real-time manipulation to the model. We focus on speed, precision and 
smoothness for the final surfaces. As long as heart diseases diagnosis requires 
experience, time and professional knowledge, simulation is a key-process that enlarges 
efficiency. 
 
1.1  Objectives 
 
This thesis is embedded inside a global project where a computerized system is intended 
to improve the analysis of the cardiac data defined by specialists. 
 
When detecting a cardiac abnormality, there are different informations to take into 
consideration: morphology, functionality and muscle irrigation plus vascular structure. 
In order to determine the pathologies, it is compulsory to perform quantitative and 
qualitative analysis for each of those informations. A better diagnosis can be given to 
the patient if the related data are presented in an effective, accurate and understanding 
manner for the physician. Once the diagnosis has been determined, specialists define the 
patterns regarding the treatment of the patient. Then it comes clear that a simulation-
oriented tool can be quite useful in order to practice quirurgical operations and predict 
their consequences. The virtual environment must be close to reality in the sense that it 
should give real sensations to the physicians, when manipulating a reconstructed heart. 
 
Innovation has allowed the development of these simulators: powerful software and 
hardware systems plus accurate image acquisition technologies are key factors in that 
sense, as pointed out by Ezquerra, Navazo, Morris and Monclús in [29]. As they 
suggest, any medical imaging process should pass through: 
 
• Data creation in terms of acquisition with the corresponding hardware and software. 
• Preprocessing in terms of discretization into voxels, contrast enhancement or 

filtering of the initial dataset with appropriate modules. 
• Analysis in order to extract relevant information by segmentation, feature detection, 

registration or labeling, among others. 
• Synthesis in order to provide physicians with scientific visualization of the 

concluded results. 
• Interaction such as manipulation of the models inside an immersive environment. 
 
The processes depicted within this document are fit inside the analysis and synthesis 
stages. Our first aim is to reconstruct the external (epicardium) and internal 
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(endocardium) surfaces of the human’s left ventricle (LV) preventing physicians from 
manually and costly procedures. The system takes SPECT (Single Photon Emission 
Computed Tomography) cardiac images as its input. Those images are hardly to handle 
for several reasons: 
 
• Initial data to recover lacks resolution. Typical resolutions for the data model are of 

64 x 64 x 20 or 128 x 128 x 20 voxels. 
• The region of interest doesn’t expand all along the slices. For a given slice, it is 

typically located on a small centered area occupying 20 x 20 pixels at much. 
• The images are characterized by very coarse depth measurements. 
• It is common to lack data voxels due to failures in the capture process. 
• Isquemic areas, with poor or absence of blood irrigation, are not shown in the 

images. That means “holes” in the data that the algorithms must deal with. 
 
Besides the LV application, our methodology is suitable for generic reconstructions in 
the field of computer graphics. Our reconstructions can serve for getting 3D models at 
low cost, in terms of manual interaction and CPU computation overhead. As a second 
utility, we present our method as a robust tessellation algorithm that builds surfaces 
from clouds of points that can be retrieved from laser scanners, for instance. 
 
1.2  State of the art 
 
Deformable models are the kernel of our algorithms and applications. Those models are 
suitable for retrieving solutions in several fields like telemedicine, material analysis, 
cloth modeling, fluid simulation or hair animation. 
 
Next paragraphs review the contributions regarding deformable models, which have 
been especially remarkable in the last fifteen years. 
 
1.2.1  Deformable models 
 
First attempts where made in the field of computer vision. Terzopoulos, Witkin and 
Kass [47] presented a constrained deformable model whose goal was to recover the 
shape and motion of a 3D free-form flexible object from its images. Objects were 
modeled as elastically deformable bodies subjected to the laws of continuum 
mechanics. Constraints were applied as forces to the objects and were divided into 
intrinsic and extrinsic. Intrinsic constraints such as surface coherence and symmetric 
regularity were enforced in models ensuring a certain axial symmetry. Extrinsic 
constraints were defined from the object’s profile, also known as the occluding contour, 
or from a human operator. 
 
A very interesting contribution from that paper was a comparison between deformable 
and conventional models. The authors emphasized several characteristics that would 
justify the use of deformable entities. Deformable models are active, dynamic, 
distributed, physical, and based on controlled constraints within a broad coverage while 
conventional are mainly geometrical, passive, kinematical and based in very strict 
constraints that provide a narrower coverage. 
 
The models presented in [47] accommodated several deformations like bending, 
stretching and shearing in an elasticity framework. They also provided a method for 

1 Introduction  2 



General Dynamic Surface Reconstruction 

combining stereo and motion in order to recover object’s shape according to depth 
measurement. Note that this method, essentially, considers objects in front of a strong 
background. The numerical scheme was based in an implicit version of the Euler solver. 
 
This model was extended to support generalized cylinders enhanced with deformation 
parameters to control the main axis and the walls of the underlying cylinder [94]. A 
natural evolution of this scheme consisted in the case of deformable superquadrics. 
Solina and Bajcsy [88] proposed it and stated the ambiguity of these surfaces in the 
sense that different sets of parameters can retrieve the same superquadric. Their model 
was based in the Levenberg-Marquardt method for nonlinear least squares 
minimization. Parametric deformations such as tapering and bending where applied to 
the model. In fact they introduced a new deformation for modeling cavities. They stated 
the importance regarding the ordering of deformations since matrix multiplication is not 
commutative. 
 
Terzopoulos and Metaxas continued this paradigm by proposing a methodology that 
would satisfy the requirements of reconstruction and recognition simultaneously [95]. 
The paper combined membrane Splines with parameterized superquadric ellipsoids for 
creating a new family of models, deformable superquadrics. The main characteristic of 
those was their ability to deform both globally and locally. Their behavior was governed 
by rigid and nonrigid dynamics expressed through a set of Lagrangian equations of 
motion. Several degrees of freedom where defined like a translation vector, a 
quaternion-based rotation and a scale among others. Besides that, the user would 
interact with the model by using mouse control. Those interactions included viewpoint 
selection, initialization and changes in the global parameters. Their formulation 
involved numerically stable equations of motion that were integrated using an explicit 
Euler solver. External forces where divided into short-range forces, obtained from 
gradients, and long-range forces, based on distances between data points and the model. 
They suggested the calculation of central moments of the data for the seek of 
initialization (initial values at the beginning of the simulation). 
 
Weiss [102] performed shape reconstruction from an incomplete dataset providing a 
method that would handle shapes with smooth and sharp areas without the use of any 
threshold. The concept of local refinement was applied by building a mesh denser in 
rapid variation parts. This adaptation was done automatically by applying a new 
optimization principle to a spring model. However there were undetermined parameters 
like the stiffness of the springs. Some general principles where presented regarding 
surface consistency, translational and rotational invariance, dimensionlessness, handling 
different scales of variations, a wide domain of applicability, computational efficiency 
and consistency with human perception. The method looked for the minimal overall 
curvature for a surface built from springs whose energy was defined in terms of stretch, 
bend and external forces (image attraction). 
 
A similar approach was presented by Wang et al. [101]. In that case they applied 
Hamilton’s principle. This principle states that the motion of an elastic grid follows a 
path from an initial state to a final equilibrium form that minimizes an action integral 
that balances kinetic versus potential energy. The model derived the potential energy 
from shape constraints and the grid deformation. This deformation was modeled as a 
grid of springs to ensure consistency in position, orientation and curvature. A kinetic 
energy term was also associated to the whole system. It is also interesting to note their 
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statement attending the importance of a friction term that would help dissipating the 
kinetic energy. Derivatives where computed by central differences in the spatial domain 
and a backward difference scheme for the temporal domain. The numerical part was 
solved by using an implicit Euler formulation. A snake accomplished for the boundary 
model by attaching it to the grid of springs. 
 
Snakes (active contours) are a very well known paradigm [46]. Basically consist on 
curves that move inside an image-domain due to the action of internal and external 
forces. The forces are defined so that the snake will conform to a desired final 
configuration, related to some boundary or specific feature in the image. Several 
extensions to this methodology have been presented through time. See section 3.3 for 
more details. 
 
Cohen and Cohen [17] used an inflation force to expand the snake model and leave it 
from stopping at spurious edges and artifacts. This strategy made the snake less 
sensitive to noise and initial conditions. 
 
Xu and Prince [104, 105] presented a variation based on parametric active contours, the 
Gradient Vector Flow external force (GVF), which has been extensively used within 
this project. They stated two key problems related to active contours: the need for the 
initial contour to be close to the dataset and the difficulties when progressing into 
concave regions. The GVF formulation has been extensively documented and tested in 
this project. See section 3.3.4 for further comments. 
 
The same authors presented an extension to the GVF field in [106]. In there they 
generalized the GVF when finding difficulties for forcing a snake through thin 
boundary indentations, for instance. In order to solve that, they introduced a varying 
weighting function in the energy functional, instead of a constant term. In addition, they 
decreased the smoothing effect near strong gradients by a second weighting function. In 
fact, they applied weighting functions to the smoothing and data terms respectively, 
instead of constant regulation parameters where a dynamic tuning is not possible. 
 
McInerney and Terzopoulos [58] superpose a simplicial grid onto the image and 
evolved a deforming snake model iteratively. The model leads to interesting results 
thanks to its ability to flow into very complex shapes with significant branches. 
Moreover, the model was designed so that it could change its topology dynamically. In 
fact they embedded the snake paradigm into the field of simplicial domain 
decomposition. 
 
The snakes where defined discrete as a set of nodes interconnected by springs. Those 
springs would not remain constant during the simulation providing the model with a 
better adaptability to the image features. An inflation force was applied to push the 
model towards the image edges until exerting the external forces near them. The system 
was integrated by using an explicit Euler method. 
 
It is important to note that the system would react differently attending to the snake 
colliding behaviors. It could collide with itself or with another snake inducing the 
system to disconnect or reconnect nodes accordingly. In order to solve the ambiguity 
problem related to the recovery of an object made of several independent parts, they 
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distributed uniformly a set of small circular snakes over all the image area. These 
snakes would expand or shrink at their own until recovering all the features. 
 
The same authors presented an extension of the previous model by their ACID 
technique (Affine Cell Image Decomposition) in [61]. They described the so-called T-
surfaces from the previous T-snakes. The framework was extended to 3D by using an 
space decomposition into tetrahedral cells with the Coxeter-Freudenthal triangulation 
method. They applied this methodology to several medical scenarios like a human 
vertebra phantom (Computed Tomography, CT imagery), the left-ventricular chamber 
and aorta (CT imagery) or the vascular system of the brain (Magnetic Resonance, MR 
imagery). It is also important their discussion about thresholding and region growing, 
another techniques in the same field that can be very difficult to tune in an effective 
way. Thresholding is very noise-sensitive and region growing is difficult to control 
because it does not follow any image edge information, does not apply any noise-
suppression technique and provides no local control for the segmentation. 
 
Hamarmeh and McInerney [39] presented a method that addressed several points 
regarding shape deformations applied to medical analysis. The deformable shapes were 
modeled using a mass-spring scheme. The connectivity was based on the medial axis of 
the object. They used operator or statistics-based deformations to control the 
deformation at different locations and scales. Furthermore, principal component 
analysis retrieved feasible deformations. The selected numerical scheme was also an 
explicit Euler method. The spring actuation allowed intuitive deformations like radial 
and directional bulging, bending, tapering and scaling. Rotation and translation was 
implemented by means of external forces. Scaling was derived from muscle actuators. 
 
The muscle actuation lead to the design of a deformable organism for automatic medical 
image segmentation. The latter authors plus Terzopoulos defined this new paradigm in 
[40] according to the studies of Artificial Life presented in [96, 97]. As a matter of fact, 
copying it with the enormous quantity of cases available in medical analysis is a hard 
task. In that sense, they introduced this new paradigm that utilized contextual 
knowledge to perform a correct analysis in regions with poor or absence of data. 
 
The authors define a deformable organism actuated by muscles. The organism search 
for the most stable structures first and then uses neighboring information and prior 
knowledge to determine the boundary regions of interest. The deformable “worm” has 
its own motor system controlled by shape deformation actuators and motor controllers. 
Moreover, sensory organs are defined regarding several sensitive parameters like image 
intensity, image gradient magnitude and direction. One important point to note is their 
use of the Canny edge detector [14] like in our approach, as it will be deeply explained 
in the next chapters. 
 
Staib and Duncan [90] stated that it is better to use the shape information as specifically 
as possible. Like in our approach, they find difficult to use generic edge detectors only 
because those tools do not find necessarily the edges corresponding to the boundaries of 
the object. They ignore model-based information and higher order organization of the 
image. 
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This methodology consisted in applying flexible constraints modeled like probabilistic 
deformable models. Boundary finding was defined like an optimization problem and 
solved by a posteriori objective function. 
 
More work in the field of probability applied to image feature identification can be 
retrieved from McCulloch et al. [57]. They proposed a probability density function to 
identify features in an image taken from a class, given a template image. They 
demonstrated their method in MR images of the brain. Their probabilistic model tries to 
match the positions of features in the template with those existing in the image. 
 
Lobregt and Viergever [54] presented a mass-spring snake scheme where the internal 
energy of the model depends on local contour curvature. We make use and have 
extended this approach in chapter 6. The internal and external forces are conveniently 
weighted in order to adapt the method to the imagery. As a clear contribution, they 
defined methodologies in order to avoid shrinking of closed models and clustering or 
gathering of vertices in the corners of the model. By checking the edge lengths at 
regular intervals, vertices can be added or removed when needed, providing the model 
with an adjustable local control, useful in unfeasible areas of the image. More 
information concerning this method can be seen in chapter 3. 
 
Another variation to the snake paradigm can be seen in [4] where Mosquera et al. 
presented a model where topological changes are possible. The structure adjusts itself in 
order to adapt to local features, segment several objects concurrently and find holes 
inner to the objects. More details can be seen in section 3.3.2 of this document. 
 
Bro-Nielsen [13] presented the families of active nets and cubes, following the tradition 
of the snake paradigm and evolving it to two and three dimensions respectively. As he 
stated, the advantage of active nets compared to active contours is the large number of 
internal nodes. Besides that, in the case of active cubes the interior is defined so that 
there is information about the object beneath its surface. An internal energy term 
controls the first and second-order smoothness of the net. There is a controlled 
continuity stabilizer that ensures C1 (first derivative) continuity at the joint points. For 
the external energy, any operator based on the image intensity might be used. The 
equilibrium state is reached by locally minimizing the energy term. For that purpose, 
Bro-Nielsen used an improved version of the Greedy algorithm. Moreover, this 
methodology provided several ways for cutting the nets if needed by the datasets. 
 
Active cubes where modeled like elastic volumetric dice whose interior was defined. 
Computation times seemed to be large so that interior nodes where only allowed to 
move inside a slice but no between slices. This decision reduced the CPU times by a 
factor of 2. This methodology provided nice results in simulated operations where the 
physician would cut the model or move interior bones realistically. 
 
Joukhadar et al. in [45] presented a solution for penalty method’s two major drawbacks: 
determining the visco-elastic parameters and finding the best stepsize. In their paper, 
they provided a discussion regarding the differences between impulse and penalty-based 
methods when dealing with collisions. 
 
As a matter of fact, they state that all solids can be considered as deformable objects 
with near-infinite rigidity. Then the behavior of a rigid scheme should be similar to the 
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behavior of a deformable model where rigidity is assumed to be extremely high. Several 
connectors (springs) where defined for that purpose (linear, torsion and joint). They also 
automated the subdivision of a rigid object into several components plus the 
computation of masses. This is especially important if we are to ensure that mass and 
inertia are respected globally and locally. The system was solved by an explicit scheme 
based on a second-order limited development with adaptative stepsize. A clear 
implementation of this methodology is their RobotΦ  system [44]. 
 
Montagnat and Delingette [69, 70] demonstrated the equivalence between registration-
based deformation and the application of a global force to a deformable model. From 
that statement, they proposed a constrained deformation scheme submitted to global, 
external and internal forces. All the forces where weighted by what they called the 
locality parameter. This parameter would control the degrees of freedom for the model 
and the shape variation accordingly, allowing the model to evolve from a coarse to a 
fine execution automatically. For the implementation they used their simplex meshes 
paradigm [23]. The external force was computed as a vector directed along the normal 
direction proportional to a distance measurement (from a vertex to the dataset). Tests on 
medical images and generic clouds of points where presented. In the case of medical 
images, contour information was provided by the gradient (Sobel masks) and the 
property in the voxels. As they pointed out, it is important to note the importance of 
knowing the gray level range of interest associated to the features to segment. 
 
Cotin, Delingette and Ayache [21] presented a real-time computation of elastic 
deformation of soft tissue for surgery simulation and planning. They applied this 
technology to the concrete case of the liver. The segmentation of the images, CT data, 
was performed by a contrast enhancement stage followed by an edge detection 
algorithm and a simple thresholding technique. 2D contour extraction was then used to 
generate a set of 2D binary images that would be stacked as to get a 3D version of the 
dataset. Simplex meshes where also used in order to model the surface. Their use was 
justified by their decimation properties regarding the quantity of triangles in the final 
mesh, much lower than with other isosurface techniques like the Marching Cubes 
algorithm [55]. 
 
As long as the model involved real-time interaction, its interior had to be modeled 
somehow. Decomposition into tetrahedral elements was selected to be the best solution. 
Soft tissue deformation was approximated by 3D linear elasticity. An improvement of 
the physical model allowed simulating quasi-nonlinear elasticity. They also reduced the 
computation time by applying a preprocessing stage that took advantage of the linearity 
and the superposition principle. Thanks to that, some elementary deformations could be 
precomputed. As a conclusion, one can say that the appreciation of the results was 
essentially qualitative which can be considered enough if we take into consideration the 
lack of knowledge in the field of soft tissue behavior in the abdomen. 
 
Koch, Gross et al. [48] presented a facial surgery simulator using a finite element 
method (FEM) scheme. They applied this scheme because no constraints on 
computational cost where applied so that it was accepted. Their system was coupled to a 
commercial modeling and animation software. As its input, they took photogrammetric 
CT scans of the patient. As a relevant contribution, they presented an automatic process 
for extracting the stiffness parameters of the soft tissue. Those where derived from 
segmentations of the dataset. 
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The evolving paradigm was typical in the sense that a global energy term would be 
minimized all along the surface under the presence of external forces. They employed a 
nonlinear, globally C1 continuous patch based on triangular shape functions for the 
facial surface. The external forces where computed by connecting the surface with the 
skull by means of nodal springs. 
 
It is also interesting that they defined the whole set of boundary conditions by using 
texture maps on the facial surface. The system is then adapted to user’s convenience in 
the sense that the texture map can be generated by commercial software. 
 
For more details regarding deformable models read the surveys provided by McInerney 
and Terzopoulos [60], Terzopoulos and Fleischer [93] and Montagnat et al. [71]. 
Metaxas also wrote a very complete analysis in his book [65]. 
 
1.2.2  Models in cardiac image analysis 
 
Several attempts have been made in the last years in order to build deformable models 
suitable for the analysis of cardiac imagery. Better diagnosis procedures and training 
sets depend from that area of research. Segmentation of the left ventricle is a key 
process that allows the physicians to compute diagnostic information such as the 
ejection fraction ratio (see appendix C) or the wall motion analysis. This section 
summarizes several results on the segmentation of cardiac imagery. Details on the 
implementation of the methods can be seek in section 1.2.1. 
 
Staib and Duncan [90] analyzed transaxial MR images of the ventricular wall within 
their system. In there, the endocardial (inside) and epicardial (outside) walls of the LV 
where delineated from 256 x 156 images. They also presented an effective approach to 
temporal sequence analysis applied to a cardiac motion sequence, also from MR images 
(256 x 256). They inferred the motion of the left ventricle boundary by segmenting 
several frames. The problem is solved for the first frame of the sequence and subsequent 
frames are initialized with the previous boundary that was found, assuming small 
changes between frames. 
 
McInerney and Terzopoulos [59] efforts in that area have been huge. Their “balloon” 
technique was applied to the segmentation of the LV surface and the tracking in a 
dynamic volume in order to estimate nonrigid LV motion over the cardiac cycle. They 
used CT data of a canine heart for those tests. The volume data consisted in 16 
acquisitions for the entire cardiac cycle, where each instant of time was built from 118 
slices of 128 x 128 pixels. Each slice was 0.9 mm thick so that each voxel represented 
0.729 mm3 of volume in the space. Typical experiments involved initial meshes of 20 
triangles that were sequentially refined until 5120 triangular elements for the final mesh. 
 
The user must supply the approximate center for the images as a first step. The user then 
specifies the initial size and position of the model in the 2D image. Initial resolution 
level can also be manually defined. While the system iterates, the user can interact with 
it, correcting possible loss of important features. The process is completed when the 
user decides so, by visual inspection. Like in [90], the final mesh for an instant was used 
as the initial for the next reconstruction. That ensures less errors and faster convergence 
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rates because the subsequent meshes will have to deform slightly only in order to reach 
equilibrium. 
 
Mullick and Ezquerra [75] presented a new methodology suitable in the area of 
registration. The idea behind their system was to automatically find the orientation of 
the LV from SPECT data. We have dealt with this kind of images in this project. See 
appendix A for more details. 
 
Their algorithm finds an accurate and fast delineation of the LV long-axis, which is 
presented like a 3D curve. The methodology begins by the segmentation and continues 
by applying topological goniometry (analysis of the normal vectors associated with the 
polygons) to the dataset. They experimented on both Phantom (see appendix D) and 
actual patient’s data with good results. Maximum errors of 4.47 degrees in the 
horizontal angle and 0.23 degrees in the vertical angle where reported for the Phantom 
dataset. Their method was extensively used with real data. 124 consecutive patient 
datasets including normal and pathological cases were treated and compared to results 
derived from physicians. Only 8 of the cases failed the tests while the rest were 
correctly quantified. It is important to note that the test involved only 30 seconds per 
dataset. 
 
Metaxas et al. [79] analyzed the motion of the LV from tagged MR slices. They 
presented a new family of parameterized deformable primitives suitable for complex 
shapes and, at the same time, a few number of parameters involved. The parameters 
were modeled like 6 functions (DMPF or deformable models with parameter functions) 
as opposed to being constant which ensures local control. Added to that, they applied 
global translation and rotation. Their model can be easily generalized although they 
focused in twisting and axis offset deformations, typical in the LV. 
 
The model iterates in a Lagrangian scheme of motion and stops when forces equilibrate 
because there is no inertia at all. As a simplification, no stiffness was added to the 
global parameters of the system. The tagged dataset provides correspondence over time 
between individual points. This fact allows the recovery of the LV twisting motion. As 
in previous approximations to the problem, a recovered model is used as the initial 
shape for the next reconstruction. 
 
The datasets in their study comprised 400 material points each, describing the motion of 
the LV during the systole period. They treated two normal and two abnormal hearts. 
The normal heart motion consisted in 5 acquisitions. For the first test, they derived a 
magnitude of contraction between 20 and 25% in the radial direction. The system 
retrieved a total displacement of the long-axis of 18 mm (typical lengths of the LV are 
75 mm). Then the measured longitudinal contraction was 24%. The twisting motion was 
determined to be around 18 degrees. For the second heart, the overall contraction was 
25% and the twisting angle during systole was quantified to 20 degrees. 
 
The abnormal hearts where pathological cases where the patients diagnosis had been 
hypertrophic cardiomyopathy. This disease is manifested by bigger hearts that do not 
pump as they should. For those cases, they delivered a radial contraction of 15-20% and 
a longitudinal contraction of 7%. The twisting motion was quantified to 27 degrees. All 
those results lead to interesting comparisons between the normal and abnormal cases. 
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Bardinet, Cohen and Ayache [8] presented four different approaches to tracking 
surfaces in a sequence of cardiac images. From the tracking they inferred quantitative 
parameters useful for physicians such as the variation of volume, the wall thickness 
during a cardiac cycle, the ejection fraction and the twist component of the LV. They 
used Nuclear Medicine and X-Ray CT images. 
 
They refined a superquadric model by means of a parametric deformation. For a given 
set of 3D points, they begin by fitting data with a superellipsoid and then refine this 
with Free Form Deformations (FFDs) that retrieve complex deformations defined by a 
small number of points. They use boxes of 6000 points that are resample to 130 points 
which stands for a compression rate of 47. 
 
One of their experiments consisted on the simultaneous deformation of two surfaces in 
order to recover the endocardium (1500 points) and the epicardium (4500 points) of the 
LV. As long as the FFD is a volumetric deformation, this is possible for the system. 
Final models consisted in 130 points and retrieved compression rates between 23 (two 
FFDs) and 46 (one FFD).  Simulating both surfaces separately or simultaneously 
presented similar errors. For the thresholding of the images they set a level of 40% of 
the histogram maximum, which seems to be a reasonable value for SPECT imagery of 
the LV myocardium. It is also interesting to note the use of artificial caps at the base of 
the heart in order to get two separated and closed surfaces. 
 
Regarding the temporal sequence of the cardiac cycle, the authors suggested four 
tracking strategies: fitting the model independently to each image, independent 
representation with a reference deformation, recursive representation and recursive 
representation with a unique deformation. The strategies were different according to the 
use of the continuity of the motion basically. Tracking the entire cardiac cycle took 25 
minutes on a DEC Alpha 300 machine. 
 
Rückert [83] used geometrically deformable models (GDMs) and templates (GDTs) to 
segment and track the heart in 2D and 3D cardiac MR images. In his dissertation he 
points out that although MR images are high-resolution data, their quality can be 
severely affected by artifacts due to respiratory and cardiac motion or even blood flow. 
He also depicts that ischemic (with poor or absence of blood irrigation) areas appear as 
dark regions in MR images. 
 
For the tests the system was input with 256 x 256 x 8 pixels images where each image 
plane had a thickness of 10 mm and a pixel size of 1.17 x 1.17 mm. As a first step, they 
select manually a volume of interest of 128 x 128 x 8 pixels centered on the ventricles, 
left and right, of the heart. The segmentation is somehow slow for the first image but 
faster for the rest (subsequent simulations use the previous as their initial state). 
Reported time was 15-30 minutes for the first slice and 1-2 minutes for the rest (Sun 
Ultra 2 workstation). 
 
Montagnat and Delingette [70, 72] segmented the LV from an MR image by using 
FFDs applied over a sphere (simplex mesh) made of 800 vertices. Their system seems 
to be very robust in the sense that tests with different datasets are also successful (brain, 
liver, blood vessels, etc.). 
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They also processed a 4D SPECT database consisting in healthy and pathological 
patients. The mean deformation time for all models was 2 minutes and 34 seconds (700 
vertices meshes). The simulations took 3 stages of 20 iterations each in order to perform 
a coarse-to-fine evolution. The 3D models were quantitatively analyzed in their paper. 
 
Laading, McCulloch et al. [49] proposed a method for modeling gated cardiac SPECT 
imagery by tracking anatomical points within the organ’s volume. From the tracking 
they built a composite image specifically designed according to the heart’s motion prior 
knowledge. Their dataset consisted of 16 acquisitions of 64 x 64 x 16 voxels each. 
Voxel’s size was 7.1 mm, a very coarse length. The heart was contained in a region of 
interest measuring 16 x 16 x 16 voxels. As their system uses a reference image, gate 8 
(mid-diastole) was used to play this role. Typical computation times were 3 minutes per 
gated image (DEC 433au workstation). From the simulation they derived an overall 
volume change graph among other measurements that can be very effective when trying 
to detect function abnormalities of the heart. 
 
Paragios [78] proposed a level set method to segment MR cardiac images. Like Rückert 
[83], Paragios stated some difficulties associated to MR imaging of the heart. Among 
others, the presence of papillary muscles in the endocardium and some difficulties when 
trying to separate the myocardium from other structures apart from the heart. He used 
the GVF paradigm [104, 105] as the external force, like we have done in this project. He 
confirmed that this vector field does not give much information about the distance but 
provides the system with an optimal path to the cardiac borders. 
 
Paragios presented a model whose forces were perfectly tailored for the LV. A 
curvature-driven term, a boundary-driven bi-directional force, an intensity-driven region 
force accounting for the homogeneity of the cardiac regions and an anatomy-driven 
constraint related to the relative positions of the endocardium and epicardium. The 
author stated that the next step would consist on completing the system with an 
automatic tuning module that would select the value for all the involved parameters in a 
better way. 
 
Bonciu, Weber and Nguyen [10] presented a new acquisition system using a fast 
rotating 2D ultrasound probe used to reconstruct the deformations of the LV. The probe 
acquires successive conic sections of the LV during one cardiac cycle at a maximum 
speed of 8.7 r.p.s. The acquisition rate is 48 images per second. Thanks to these high 
rates, the system is capable to acquire all the needed planes in a single cardiac cycle 
(commonly 0.7 seconds). 
 
The initial data is sparse and irregularly spaced due to the inner characteristics of the 
discrete acquisition of the probe. Their model retrieves the missing data by an iterative 
interpolation method based on the 3D Fourier transform. 
 
The system was tested to store 100 consecutive conic images of 508 x 508 pixels (gray 
level images). After a segmentation process, there were 3000 measurement points 
available. The reconstruction process was applied to a grid sampling of 64 x 64 x 64. 
The ejection fraction parameter was estimated for this patient. Its value was 0.416, 
which agreed with physician’s estimations. 
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Legrand et al. [53] describe each part of the heart as a different set of triangles. The 
edges of the triangles are modeled like springs that are compressed and stressed 
according to heart’s motion. The system tessellates the first image of the set and defines 
the regions there. Then it tracks automatically for the regions in the rest of the images 
following an energy measure. Comparisons between hand drawn regions and the 
automatically derived ones have been presented with differences that are under 10%. 
 
Sachse et al. [85] have modeled the electro-mechanics in the LV by a fusion of different 
models (anatomical, electrophysiological, intercellular current flow and force-based). A 
3D realistic model of the LV is presented. This model allows the simultaneous 
simulation of electrical excitation propagation, force development and deformation. It 
uses deformable grids and the FEM method. 
 
Cardot et al. [18] have developed a program for automatic contour detection in gated 
SPECT imagery. Recent tests were applied to 110 explorations with each consisting in 8 
images per cardiac cycle. They use the center of mass of the images as a value to be 
compared with data in order to check its belonging to the heart tissue. In fact we have 
developed something similar in this thesis. The visual analysis of images superimposed 
to their contours retrieved a 92% of good labelings, 3% were suitable and 5% were 
catalogued as incorrect due to digestive uptake. Some results on digestive-affected 
pathological hearts are also presented within this document. See chapter 6 for further 
reading. 
 
Neumann et al. [28] are also presenting some of the latest results in terms of 
segmentation, now over MR images. They begin by applying a bottom-up multi-scale 
analysis that retrieves the gray level appearance of the structures adjacent to the 
endocardial border. Then those can be easily removed avoiding confusion. In a second 
refinement phase, the method builds a statistical model of the radial gray level profiles 
from the estimated border center of mass, similarly to the results presented in [18] and 
in our approach. Their system evolved correctly in 91% of the 150 MR images chosen. 
Similar tests were presented by Ordás, Boisrobert and Frangi in [77] where the model 
runs over an active shape model framework applied to 110 cases with promising results. 
Spreeuwers and Breeuwer extract the epicardium and endocardium boundaries from 
Short-axis MR images simultaneously by using coupled active contours [89]. 
 
Echocardiograms are also a suitable technique for imaging the LV. In that sense, several 
approaches have been proposed lately. Morales et al. [74] applied anisotropic filtering 
and active contours to contrast enhanced echo images of the LV. LV volumes were 
measured in 16 patients (5 normal and 11 abnormal). GVF was used as the external 
force. Hang et al. [41] used the GVF vector field also in their new geometric deformable 
model. It combines the geodesic active contour model and the GVF. Promising results 
may arise in the future. 
 
Radeva et al. [33] automatically segment the U-shape presented by the LV in the echo 
contrast images so that myocardial perfusion (MP) can be quantified objectively. They 
begin by applying an anisotropic filtering process to enhance contours according to their 
magnitude and orientation.  The deformable model is based on the active shape model 
and signed distance potential field in order to achieve robust results. The algorithm was 
tested in 180 images taken from 4 different cardiac datasets. The results were compared 
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with the expert segmentation guidelines given by physicians. The maximum difference 
was 12 pixels in 95% of the images (a mean difference of less than 4 pixels). 
 
1.2.3  Soft tissue modeling applied to other contexts 
 
Deformable models can be applied to other contexts such as cloth modeling and fluid 
simulation, to mention some of them. As long as our system began as a cloth-modeling 
tool [5] we present an overview of the existing contributions in this area. Simulators in 
this category can be useful in several areas like virtual human modeling, material 
analysis and fabric design among others. We will focus in cloth modeling as it 
introduced us to the development of our final solutions.  
 
Breen, House and Wozny [11] defined a theoretical model representing the 
microstructure of woven cloth with a particle system. By testing cloth samples in a real 
environment they derived the parameters necessary for their simulations. As they stated, 
each material is characterized by its own parameters. Moreover that, trained eyes would 
recognize one from another by the way the fabric waves, for instance. That statement 
justified their studies in the sense that designers and engineers are quite interested in 
characterizing the draping properties of cloth. 
 
Their approach took the following premise: if we model the low-level structures of a 
material and we aggregate their interactions accordingly, correct macroscopic behavior 
will emerge. Geometric relationships where modeled between neighboring particles as 
energy functions. Some of the behaviors involved thread collision, stretching, bending 
and trellising. Note that these forces have been extensively used in section 1.2.1 as well. 
They derived energy equations for the 100% cotton, the 100% wool and for some 
samples made both of polyester and cotton. Qualitative and quantitative conclusions 
were reported on 1 m x 1 m samples of cloth draping inside a 0.5 m x 0.5 m x 0.5 m 
volume cube. 
 
Simulations consisted of three phases: evaluating the dynamics of each particle, 
performing an energy-minimization to enforce constraints between particles and 
correcting their velocity. 
 
Baraff and Witkin [7] described a cloth simulation technique based on stability even 
when taking large stepsizes. The system coupled a technique for enforcing constraints 
on particles with an implicit integration method (backwards Euler method). Cloth 
samples were modeled like triangular meshes with a very straightforward definition 
about internal forces (stretch, shear and bend). Due to the sparse characteristic of the 
involved matrices, the simulation framework resulted significantly faster than previous 
approaches. 
 
Their simulations included clothes relaxing from an initial deformed stated onto several 
characters with complex geometry. Some local adjustment needed to be applied for a 
better behavior of the animations. Tests with different stiffness for the bending force 
demonstrated the speed of the simulator, with variances in the running times under 5% 
while stiffness parameters were ranging from 0.1 to 1000. 
 
Synthetic authors can be dressed with complex deformable clothes as stated in [15] by 
Carignan, Yang and Thalmann. 2D cloth samples are designed and fit in 3D characters. 
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They work by tailoring the cloth samples from piece to piece. As a major contribution, 
they design a new paradigm regarding the handle of collisions among the cloth elements 
themselves or between a cloth element and a rigid object such as the synthetic avatar. 
They also discuss the reduction of the parameters in order to get a usable interface for 
the final user. The automated parameter definition is defined onto the mass evaluation 
for each node, the resistance to stretching and bending, the dissipation rate for the 
energy related to stretch and the stepsize. Optimizations about collision response and 
numerical integration were also presented by Thalmann and Volino [99, 100]. 
 
Eberhardt, Weber and Strasser used particle systems to obtain realistic draping behavior 
[27]. They achieved a fast implementation with a general approach. They introduced 
several optimization techniques by combining techniques of computer algebra, 
theoretical physics, numerical mathematics, and ray tracing, in the context of computer 
graphics. Their system simulates the dynamic behavior of cloth over time. 
 
Provot’s [81] model was adapted to the particular stiff properties of textiles by using 
dynamic inverse procedures. They showed that if a concentration of high stresses occurs 
in a surface, the local deformation becomes unrealistic. The only solution so far was to 
increase the stiffness associated to the springs but this decision increases dramatically 
the cost of the algorithm. They studied the case of a sheet hanging from its two corners, 
subjected to the action of gravity. Their simulations were held by an explicit Euler 
solver. 
 
Choi and Ko [16] continued working in the same line as the previous approach and 
presented a semi-implicit cloth simulation technique that retrieved very realistic 
animations, regarding wrinkles for instance. They also stated that although the damping 
term is inherently necessary for stability, it degrades the realism of the simulated cloth 
movement. For the seeking of realism, they proposed a method including both artificial 
damping and material intrinsic damping but no fictitious damping. As presented in their 
paper, their method would be considerably simpler than the methodology presented in 
[11]. 
 
Two interaction models were defined accounting for stretch and shear (type 1) and 
flexural and compression resistance (type 2). One can point out the concept of buckling 
(failure in a rigid material) which stands for a crash in rigid-body animation but for 
success when draping textile fabrics. Fabrics do not break or collapse since they pass 
the unstable state and reach equilibrium. In their paper they describe a solution for the 
post-buckling instability that may lead the system to undesirable results. Reported 
animations involved resolutions between 1 and 2 cm. Results on human motions and 
fabrics dropped over a solid box were presented. 
 
Cordero and Matellanes [19] have presented recent experiments with their cloth 
animation system based in a particle system consisting in masses and springs. The 
model is easy to implement and retrieves realistic animations. The main contributions 
are the control of the orientation of the particles and the elongation functions. External 
forces include gravity and friction. 
 
Finally, another important contribution is the work of Fedkiw et al. [12]. Their research 
has overcome several major problems related to the simulation of folds and wrinkles. 
Their novel contributions include a hybrid explicit/implicit numerical scheme, a 
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physically correct bending model and a dynamic constraint mechanism that preserves 
folds and wrinkles while treating collisions in an efficient manner, among others. 
 
Their solver combines the flexibility of explicit schemes when handling nonlinearities 
with the high convergence ratios that characterize implicit methodologies. The system 
handles three types of collisions, with level-set methods: self-collision, cloth-object 
collision and cloth-character collision. Some of their animations have been used in 
movies like Terminator 3 and Harry Potter and the Chambers of Secrets. 
 
1.3  Structure of this document 
 
This chapter has introduced an overall view of our goals. Deep explanations on all the 
related topics are presented in the following chapters. 
 
Chapter 2 presents our major contributions to the bidimensional processing of our initial 
datasets. Bidimensional processing is needed in order to mark the data boundaries of 
our imagery. From the 2D data slices, we are able to build a 3D voxel data set that has 
been correctly labeled. 
 
Chapter 3 describes the deformation models that have been tested and compared, in 
order to provide our 3D reconstruction method with a reliable, accurate and fast 
solution. 
 
Chapter 4 is devoted to the underlying numerical theory related to the simulation of our 
deformable models and the solvers used in order to implement them. There are several 
solvers available, different in terms of efficiency, robustness and speed of evaluation. 
We analyzed them and explain the reasons for our final choice. 
 
Chapter 5 presents the possibilities regarding the selection of a geometrical model 
suitable for our specific needs. Depending on the type of representation we restrict the 
complexity of the shape and we must choose one or another methodology. 
 
Chapter 6 presents several results related to our research in 3D reconstruction as a 
modeling tool. We are mainly focused with the reconstruction of the LV, in normal and 
abnormal cases, but we also demonstrate that our technique can be applied in other 
fields that require generic reconstructions. We present several examples on this where 
our method can be used as a tessellation algorithm or in a low polygon-rendering 
framework. 
 
From that point, we present our final conclusions regarding the achievement of our 
initial goals. We also point out some future lines that might be taken into consideration 
for the seeking of completeness. 
 
The final appendices are intended to guide the author in several topics which are related 
to this project like SPECT imagery (appendix A), the LV physionomy and functionality 
(appendix B), medical parameters of interest (appendix C), the Phantom volume as a 
synthetic model for testing (appendix D) and the DICOM format for the images 
(appendix E). 
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2  2D Processing 
 
Bidimensional processing is needed in order to mark the data boundaries of our 
imagery. From the 2D data slices, we must build a 3D voxel data set that has to be 
correctly labeled. 
 
From the labeling of the borders, we derive an external force, a vector field (see chapter 
3), which pushes our particle mesh to its final configuration, recovering the 3D desired 
shape. 
 
This chapter presents our major contributions to the bidimensional processing of our 
initial datasets: 
 
• An automatic scheme designed for labeling the data borders. 
• A comparison between several generic edge detectors, used as the first step of our 

algorithm. 
• Five different techniques developed specifically for the edge labeling: the vector 

sign method, the gradient method, the case-based method, the radial-circumferences 
method and the MLC method. 

• An automated process intended to find an automatic circle that first filters the data, 
in the context of the left ventricle reconstruction (see appendix A). 

• An automated process intended to find the division slice, in the context of the left 
ventricle reconstruction (see appendix A). 

• A new approach that applies vertical coherence and bounding boxes in order to filter 
the entire dataset from top to down. 

 
2.1  Manual vs. automatic 
 
Access to a 3D model obtained from patient’s data can have several applications like 
support on diagnosis, surgery planning, student training or even remote-operation. A 
first approximation to the problem would be using a manual process with specific 
image-processing software like in the segmentation of the visible human data set [82]. 
In this huge project, both the human male data set and partially the female data set have 
been segmented by interactive manual procedures. They have used a commercial tool 
plus some other specific routines included in their packages. 
 
The package works using NURBS curves as its basis functions. Those functions are 
used to interpolate points previously marked by the physician. The program allows the 
user to freely edit and delete the curves. It must be said that NURBS curves belong to 
the Spline class of primitives, widely used for their virtues [2]: 
 
• Local control of shape. 
• Smoothness and continuity (C2 continuity in the case of Splines ensures high local 

smoothness). 
• Evaluation of the derivatives at the joint points. 
• Stability. 
• Ease of rendering. NURBS are included in the GL and GLU graphical libraries [38]. 
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Nevertheless, automatic or semi-automatic segmentation is an open research task for the 
biomedical and engineering research community that is giving results one after another. 
It still poses several difficulties that must be overcome in order to avoid manual 
processes that require deep medical knowledge and experience. 
 
This is the main goal of the segmentation algorithms designed and tested in this project. 
To provide the diagnosis tool with an automatic border detector that only requires some 
parameterization and less manual adjustments. 
 

2.2  Tested operators 
 
General-purpose edge detectors have been extensively used as a first part of our 
automatic border detection algorithm. Input imagery must be treated in an optimum 
manner as follows: 
 
• Important edges cannot be missed because of their major contribution to the border 

detection. Spurious responses must be avoided. 
• The distance between the actual and detected position of the edges has to be 

minimal.  
• Multiple responses to a single edge must be minimized. 
 
From the images we derive an edge map. The gradient of the resulting edge maps has 
vectors pointing toward the edges of the data to recover (vectors orthogonal to data 
borders). Moreover, these vectors have large magnitudes only near the edges. The same 
magnitudes decay to zero in homogeneous regions. 
 
We have tested several operators in order to fulfill these requirements. 
 
2.2.1  Robert operator 
 
This operator consists on evaluating ∇I, where I is the intensity (gray level) of the 
image. For a given pixel whose intensity value is I(x,y,z), we derive its laplacian value 
as equation 2.1 shows: 
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Some results are presented in figure 2.1. 
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Figure 2.1: Results of the Robert operator in medical images. 

 
As figure 2.1 shows, the map can be relatively effective because it fails to find the high 
gradient areas in some regions of the image. If we take into consideration that image in 
figure 2.1 is one of the best cases we can deal, it comes clear that we might miss 
important features of the image, especially if it is low contrasted due to irregularities in 
the captures. 
 
Moreover that, medical images within the scope of this project have very low 
resolutions (64 by 64 pixels) which definitely difficult the operator task if it is not 
robust enough. Attempts were made on doubling the resolution as showed in figure 2.2. 
 

 
Figure 2.2: Two resolutions for the same data slices. 

 
Doubling the resolution of a data slice from 64 x 64 to 128 x 128 pixels does not really 
improve the derived edge map. In fact it might be poor because of the smoothing 
process that it implies. This process can delete the high frequency information (edges) 
that the image contains. 
 
In figure 2.3, we show how the image gets smoothed and consistently, the edge map 
looses precision. The case shown in figure 2.3 is exactly the same as presented before, 
in figure 2.1. The unique difference is the resolution: 64 by 64 pixels in the first case, 
128 x 128 in the second, doubled by the program. 
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Figure 2.3: Results of the Robert operator in medical images, with doubled resolution. 

 
For the doubling procedure, we applied the masks shown in figure 2.4. 
 

 
Figure 2.4: Smoothing masks for doubling the resolution. 

 
As figure 2.4 depicts, the central pixel is weighted by a factor of 2.5 in front of the 1.5 
factor used for the vicinity pixels. After adding the values, the result is correctly 
averaged dividing by 4. 
 
2.2.2  Canny operator 
 
Within this project, the Canny operator [14] took importance in two stages: 
 
• As a first approximation for the external and internal data borders. 
• As a previous generic segmentation process preceding our final MLC robust border 

labeling (see section 2.3.6 in this chapter). 
 
In the first attempts, we chose this operator as a first approximation for the border 
labeling because of its robustness even when the image presents irregularities in the 
intensities. In that sense, it was more effective than the Robert operator. 
 
When marking the borders, we noted that there exist several local-maxima that cannot 
be rejected by property filtering. In some cases, discreet nature of data and its loss 
makes it difficult to mark the frontiers by the sign of the associated vector field (see 
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chapter 3). Then we finally adopted the Canny-Edge Detector as a sophisticated 
segmentation filter that might improve the border labeling. 
 

 
Figure 2.5: Left, Original SPECT image. Middle, Robert operator filtered image. Right, 

Canny operator filtered image. 
 
In figure 2.5 there’s a clear difference between the results of both operators. Canny 
offers the best edge detection for the SPECT (see appendix A) images that we must 
treat. 
 
The Canny algorithm consists on the following steps: 
 
• Smoothing the image with a Gaussian filter to reduce noise and tiny artifacts. 
• Traverse all the pixels in order to determine the gradient magnitude and direction. 

Its direction has to coincide with the maximum change in intensity. 
• If the gradient magnitude at one pixel is larger than the one in its two neighbors 

(vicinity in the gradient direction), mark the pixel as an edge. Otherwise the pixel 
belongs to the background. 

• Remove weak edges by applying hysteresis thresholding. 
 
However it can be seen that when the direction of a gradient slope at a ridge point is not 
normal to the ridge contour, the ridge point is not selected to be an edge. The typical 
implementation of this algorithm misses some edges that can be recovered by the 
revised Canny edge detector [24] algorithm. This algorithm enlarges the classification 
with a third member: the minor edge. Then pixels can be labeled to be major edges, 
minor edges or part of the background. 
 
2.2.3  Compass operator 
 
The Compass operator [84] represents an important step in the state of art of edge 
detectors because of an important aspect: it does not smooth images in the usual sense. 
As the previous operator algorithm shows, smoothing serves as a method for removing 
noise or introducing scale into an image. However the smoothing process can remove 
edge and corner information besides noise. 
 
The Compass operator algorithm generalizes smoothing to vector quantization, which 
seams to be a more detailed description of part of an image. Important features of this 
detector are: 
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• It allows arbitrary distributions of pixel values. On the contrary, most edge detectors 
assume that the edge or corner divides an image window into two constant regions. 

• This model can be used over any image type (binary, gray scale, color, multi-
spectral). 

• The treatment of color is more intuitive than in other models. 
• The detection of edges and the detection of corners can be treated in a unified 

framework. 
 
The name of the operator, "compass", comes from the fact that it uses a circular window 
divided in half by a “needle” that spins until finding the orientation that maximizes the 
gradient. Then standard techniques like non-maximal suppression or  hysteresis 
thresholding are suitable for extracting edges. 
 
2.2.4  Sobel operator 
 
The Sobel operator [31] avoids having the gradient calculated by using a 3 x 3 
neighborhood mask. For a given pixel [i, j], it uses the mask of figure 2.6. 
 

 
Figure 2.6: The Sobel operator mask. 

 
Then the magnitude of the gradient can be evaluated like equation 2.2 illustrates:  
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Where the partial derivatives sx and sy can be found by the expressions of equation 2.3: 
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sx and sy can be implemented with the convolution masks presented in figure 2.7. 
  

 
Figure 2.7: Convolution mask for Sx and Sy. 
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The convolution masks of figure 2.7 respond maximally to vertical and horizontal 
edges, always relative to the pixel grid. There’s one mask for each of the two 
perpendicular orientations. The masks can be applied separately in order to get different 
measures for every orientation. 
 
The Sobel operator smoothes the input image to a greater extent that means that it is less 
sensitive to noise than others. The operator also produces high output values for similar 
edges. 
 
2.2.5  Comparative between operators 
 
We will show several images treated with the Canny, Compass and Sobel operators. 
Those, specially the first two, are the ones considered to be robust enough for the 
application. It must be said that within our application, the main purpose of the generic 
edge detector is to provide a first clue of the edges that must be taken into consideration 
for the posterior border labeling. 
 
As a first comparison, we present figure 2.8. 
 

 
Figure 2.8: Filtered medical images. Top, Sobel operator, middle and bottom, Canny 

with different thresholds. 
 
As figure 2.8 shows, it comes clear that Canny offers better results. The Sobel operator 
is not as robust as the first in front of noise. In order to avoid the impulsive noise, it is 
better to use high thresholds. For the Canny detector we get the best results with a value 
of 1.8 for the σ and 0.3-0.8 for the low and high thresholds respectively. 
 
If we compare the Canny edge detector against the Compass operator we conclude that 
both can be useful with a suitable tuning of the input parameters. We present several 
tests as a comparison between both operators (figures 2.9 to 2.12). All the tests were 
made with left ventricle SPECT images from actual patient’s data. 
 
It comes clear that the more we increase the parameter σ, the more edges are missed. 
We must find a trade-off between the limits (0.2 to 5.0) for the best results. Low values 
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give very complete but noisy edge maps. High values miss the borders that we are 
precisely interested in maintaining. Medium rows edge maps are good enough for our 
purposes (σ = 1.8). 
 
The first test image (healthy heart) is a pretty good input because of the extent of its 
ROI  (region of interest), a 30 x 30 pixels mask. This fact ensures a good basis for the 
operators. Nevertheless the second test image (pathological heart) has the same 
resolution (64 x 64 pixels) but half the extent for the ROI (12 x 12 pixels mask). That’s 
a tough scene for the operators to do their job. 
 
If we take a look at figure 2.11 (second test, first sequence, fourth row and so) we see 
that the internal edge disappears. In fact, we can hardly maintain the external edge after 
applying the operators with a high σ. Then we infer that for tiny ROI’s we should use 
lower σ values though we might have more noisy edge maps. 
 
When keeping the σ value constant and varying the thresholds, it seems that Canny 
offers best results in terms of noise absence. 
 
The commented figures (2.9 to 2.12) are presented in the following pages. 
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First test – First sequence 
 
• Slice 14 from a healthy heart. Resolution  64 x 64 pixels. The ROI takes about a  

30 x 30 pixels region. 
• The σ parameter goes from 0.2 to 5.0 and the thresholds remain constant with values 

of Low = 0.05 and High = 0.1. 
• Left corresponds to Canny, right to Compass. 
 
 

  

  

  

  

  

  

  
 

Figure 2.9: First test and first sequence comparing the Canny and Compass operators. 
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First test – Second sequence 
 
• Same image from the previous test. 
• The σ parameter remains constant with a value of 2.2 and the thresholds take three 

different values: 
o First row ⇒ Low = 0.1 and High = 0.7. 
o First row ⇒ Low = 0.3 and High = 0.6. 
o First row ⇒ Low = 0.3 and High = 0.7. 

• Left corresponds to Canny, right to Compass. 
 
 

  

  

  
 

Figure 2.10: First test and second sequence comparing the Canny and Compass 
operators. 
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Second test – First sequence 
 
• Slice 14 from a pathological heart. Resolution 64 x 64 pixels. The ROI  takes about 

a 12 x 12 pixels region. 
• The σ parameter goes from 0.2 to 5.0 and the thresholds remain constant with values 

of Low = 0.05 and High = 0.1. 
• Left corresponds to Canny, right to Compass. 
 
 

  

  

  

  

  

  
Figure 2.11: Second test and first sequence comparing the Canny and Compass 

operators. 
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Second test – Second sequence 
 
• Same image from the previous test. 
• The σ parameter remains constant with a value of 2.2 and the thresholds take three 

different values: 
o First row ⇒ Low = 0.1 and High = 0.7. 
o First row ⇒ Low = 0.3 and High = 0.6. 
o First row ⇒ Low = 0.3 and High = 0.7. 

• Left corresponds to Canny, right to Compass. 
 

  

  

  
 

Figure 2.12: Second test and second sequence comparing the Canny and Compass 
operators. 
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2.3  Border labeling 
 
As told before, the main objective of the present work is to reconstruct the internal and 
external surfaces of the human’s left ventricle. Doing so implies identifying which part 
of the data belongs to the organ and which does not. 
 
Then data will be labeled as “in” or “out”, referenced to the organ. In fact, the generic 
segmentation algorithms explained in the previous section, detect contours that will be 
catalogued, or not, as borders. 
 
This section addresses the different techniques used for this process. 
 
2.3.1  Can we avoid the labeling? 
 
As a first approximation, one might think that a vector field can be evaluated directly 
from the images, with no needed labeling. This is true but not always as optimum as we 
may need. 
 
Depending on the resolution of the input imagery and the ROI dimensions, the vector 
field derived is basically poor detailed. This effect happens because of the tiny 
dimensions of regions like the inner volume between both the surfaces, in some actual 
patient’s data. If we take a look at figures 2.11 and 2.12 (second test for the Canny and 
Compass operators), we can see that the ROI is a 12 x 12 pixels mask. If we understand 
that for every pixel, or voxel in 3D, we will have an associated gradient vector, we see 
that the lack in space and resolution causes the vectors to be not enough. Figure 2.13 
depicts this problem. 
 

 
Figure 2.13: Evaluation of the vector field directly from the image. The theoretical 

surfaces have been manually edited as circles for a better understanding. 
 
Figure 2.13 shows three cases: a first case where the vectors outside the external surface 
(red) must point inwards; a second case where the vectors between both the surfaces 
(red and blue) must point inwards and outwards; and a third case with the vectors inside 
the internal surface (blue) pointing outwards. 
 
It comes clear that we have a very small area for placing our vectors, especially in the 
second and third cases. Only a few pixels allow constructing only a few vectors which 
means lack of information for the 3D meshes, about recovering the surfaces. 
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Moreover that, with this approximation the external mesh can be deformed from outside 
to inside but the internal one, has to be placed inside (a really small area) in order to 
follow the vector field that “inflates” it, until recovering the shape. It would be better to 
perform the internal reconstruction from outside to inside too, avoiding the placing and 
scaling of the initial mesh in such a small area. 
 
As long as most of the images are characterized by small ROI’s, we decline to use this 
approximation and we conclude that the border labeling is necessary. 
 
2.3.2  Labeling by the vector field sign 
 
Despite what we said in the previous section, in some cases it can be useful to begin by 
evaluating the vector field for the images for labeling the borders after that. 
 
In that sense it is possible to track the sign of the vector field in 2D, marking the 
changes that should be associated to the borders. 
 

 
Figure 2.14: The sign of the vector field when following a horizontal (left) and vertical 

(right) trajectories in a data slice. 
 
Both snapshots of the application shown in figure 2.14 are composed from five different 
views, for the given data slice: 
 
• The vector field rendered in a top view of the slice. Note that there is a thin line 

showing the trajectory followed (top-left). 
• The data to recover in a top view of the slice. Note that there is a thin line showing 

the trajectory followed (bottom-left). 
• The absolute value of the vector field along the trajectory line. The “peaks” define 

higher or lower magnitudes for the vectors in that area (top-right). 
• The sign of the vector field along the trajectory line. In the case of the horizontal 

trajectory, the sign is rendered as positive if the horizontal component of the vector 
points to the right. For the vertical trajectory, the sign is positive if the projected 
component of the vector over the vertical points to the top (middle-right). 

• The interface of the application (bottom-right). 
 
Figure 2.14 shows how the borders can be detected by high changes in the vector field 
sign. Following the trajectories in both the horizontal and vertical directions, allows the 
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application to mark the pixels (voxels) where the borders should be placed. Figure 2.15 
shows the results of this process. 
 

 
Figure 2.15: Voxels marked by sign (left) and gradient (right). 

 
Figure 2.15 shows two processes: marking by sign and by gradient. We are discussing 
the first one; the second will be analyzed in the next section. 
 
Although the process works quite well for the case presented in figure 2.15, it can be 
poorly effective if the ROI does not have a minimal dimension. As we commented in 
the previous section, this cannot be ensured. 
 
Moreover that, the borders can be labeled in some cases but there’s no way to 
distinguish if they are internal or external. In the following sections we present several 
attempts on this classification. 
 
2.3.3  Labeling by the gradient 
 
If we take a look at the absolute values shown in the two snapshots of figure 2.14 (top-
right little windows), we will note that the magnitude tends to be nearly zeroed in the 
borders. In fact this means that both sides of the border are high gradient areas where 
the magnitudes tend to be at their maximum values. 
 
Labeling consequently allows the application to obtain results like the green voxels 
showed in figure 2.15, where the big dimension of the ROI are permitted this process to 
be satisfactory. 
 
Again this process can be poorly effective if the ROI does not have a minimal 
dimension and there’s no way to distinguish if the labeled borders are internal or 
external. Follow the next section and the rest for several attempts on this classification. 
 
2.3.4  Case-based classification 
 
This is a first attempt on labeling the borders as internal or external, according to a 
previous case-based classification. It can be easy to explain if we look at a practical 
example, like the one shown in figure 2.16. 
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Figure 2.16: Case-based classification of the borders. 

 
Figure 2.16 illustrates an attempt for classification of the borders between external and 
internal. If we do so, we can force the meshes to stop at the outside or inside borders 
although the tiny dimensions of the ROI do not cooperate with the vector field creation. 
 
Then although having a low quality vector field, we can use it for the marking and then 
evaluating a second vector field, once we know the borders. A better description 
follows: 
 
1. Evaluate the vector field, directly from the images. 
2. Trace trajectories in every slice, and classify the near-zero gradient pixels (voxels) 

as external or internal borders. Every slice has to be inside one of the known cases, 
like the two slices shown in figure 2.16 (see Appendix B for a better understanding 
of the left ventricle). 

3. Once the borders are labeled, evaluate two different vector fields: one that goes from 
outside to the external borders; another field that goes from outside to the internal 
borders (note that this approximation solves the problem on “inflating” the internal 
mesh, as explained in section 2.3.1). 

4. With the two vector fields perform the reconstruction of the internal and external 
surfaces (see chapter 3). 

 
This process works perfectly in the ideal case, where no ischemic areas exist (areas in 
absence of blood irrigation presented as holes in the data) but not in the contrary. It is 
hardly to achieve a classification algorithm that takes into consideration all the 
possibilities. 
 
Figure 2.17 shows an actual patient’s left ventricle data set. Although the left slice looks 
well, the right one (close to the apex, bottom part of the ventricle) presents ischemia, as 
indicated by the blue arrow. 
 
This slice is not a catalogued ideal case, because although there are two borders to 
recover, the vertical trajectory along the direction indicated by the blue arrow will find 
only two gradient changes (not four as figure 2.16 showed before). 
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Figure 2.17: An actual patient’s ischemic left ventricle. 

 
That lack of control on the existent cases for very patient and data set forced us to take 
another solution to the problem. 
 
2.3.5  Radial-circumferences-based algorithm 
 
In order to solve all the previously related problems and from the knowledge of the left 
ventricle’s shape (see appendix B), we derived a radial-circumferences-based algorithm 
as a pattern based method.  
 
The algorithm assumes that the internal and external borders can be considered basically 
circular contours. The algorithm also starts from the fact that the physician has defined a 
manual coarse circle, like a first noise filtering tool (more information on this manual 
circle and its automation is given in the following sections). 
 
The algorithm relies on the effectiveness provided by a generic edge detector, for 
instance the Canny edge detector [14], and the symmetry of the left-ventricle’s images. 
 
The steps are showed next: 
 
• Apply a generic edge detector to all the slices.  
• Delete all the segmented contours outside the manual circle defined by the 

physicians. 
• Then for each data slice: 

o Create an initial circumference with null radius. 
o Increase the circumference radius iteratively by a defined parameter. 
o For each of the circles: 

� Save the number of changes in sign. A change in sign means that 
a voxel that was outside the previous circle, is inside the present 
one. 

o Identify the circles that provided the maximum number of changes in 
sign. Those circles are marked if provided more changes of sign than a 
given parameter. This parameter is a percentage of the total amount of 
voxels segmented by the generic edge detector. 

• Find the slice of change that defines the beginning of the left ventricle’s apex. This 
can be achieved by tracking all the slices vertically, from top to bottom in the Z axis, 
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while looking for a change in the number of circles previously identified (we must 
go from two circles to one). 

• For each data slice, classify the segmented voxels as internal or external borders 
depending on their distance to the identified circles and the vertical position of the 
slice. 

 
A visual explanation of this algorithm is given at figure 2.18. 
 

 
Figure 2.18: The radial-circumferences-based algorithm put to the test. 

 
The circles can be started from the geometrical center of the image (only in very ideal 
cases) or from a user-defined center for the image (a tedious task if we test the 
application from a Usability [76] point of view). Right before the beginning we see that 
having a center that corresponds to the centroid of the image is important. Let’s assume 
that we have this center for all the slices, just as a manual or automatic (see section 
2.4.1) previous process. 
 
Figure 2.18 shows one of the slices to be labeled. Several circles are defined and the 
amount of changes in sign is calculated and rendered in the graphs. Three graphs are 
presented, corresponding to three different rises for the increasing radius. As one can 
derive from the images, the rise begins being equal to the side of a voxel (delta = 1) and 
goes until two (delta = 2) and three times this side (delta = 3). 
 
It is a compromise to find the optimal rise for the radius because we need to go as faster 
as possible (increasing the rise) without loosing borders (decreasing the rise). 
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The orange circles drawn over the slice depict what we see in one of the graphs, in 
particular the graph that corresponds to the smaller rise (delta = 1). The graph shows 
four peaks clearly. Those peaks correspond to the changes in sign of the four rendered 
circles. 
 
The first circle overlaps some of the segmented voxels of the inner contour (first tiny 
peak); the second circle contains the entire inner contour (second peak); the third circle 
contains both contours (third peak). It must be said that all the calculus are made 
relative to the previous which means that we only take in consideration the “new” 
voxels in terms of changes in sign; the fourth circle has “touched” some noise that 
notably increases the amount on changes of sign (fourth peak). 
 
That one is a typical case where the noise fools the algorithm, if not removed first. 
However that fact that we know the pattern to recover and that this noise is very far 
from the center can give us a clue about the reliability of the fourth peak. 
 
A complete example over one of the phantom volumes used in this study is presented in 
figure 2.19. 
 

 
Figure 2.19: Borders labeled by the radial-circumferences-based algorithm. 

 
As a matter of fact, this algorithm relies too much in the ideal characteristic of 
symmetry for those images. Unfortunately this can be hardly achieved which drive us to 
our final approach, discussed next. 
 
2.3.6  MLC filtering 
 
Classification is the grouping of each pixel (or voxel) to one of the classes, internal or 
external borders in our particular application, on the basis of some probability. This 
probability states if the pixel is likely, or not, to be a part of the border. In terms of 
border detection, we have deeply explained that we do need to get the internal and 
external groupings of voxels in order to stop the dynamic surfaces during the 
reconstruction process. 
 
Given a data slice, there are several generic segmentation methods that we can apply, as 
explained in section 2.2. Those methods detect gradient changes that can be used as the 
first sight to the edges that we are looking for. After applying the segmentation, we can 
state that every voxel forms part of an edge that can be labeled independently. Then we 
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must define some decision rules in order to classify every edge as belonging to one of 
the possible classes: external border, internal border or none. 
 
Once the edges have been labeled and classified, we can find the vector field that will 
act as an external force for the reconstruction phase. See the borders in figure 2.20. 
 

 
 
Figure 2.20: From left to right: a left ventricle data slice; 2D identified borders; borders 

in 3D space that will be used for getting the 3D vector field. 
 
Our MLC implementation classifies the contours depending on their probability to 
belong to an external border, an internal border or none. As a precondition, our 
implementation assumes that there is a previous process that finds automatically: 
 
• The smallest circle that, in terms of center and radius, can be used as the first 

filtering tool for all the slices. This circle should be more accurate than the manual 
one defined by the physicians. See section 2.4. 

• The slice of change (division slice) that marks the beginning of the left ventricle’s 
apex. The slice is calculated first and refined after as explained in section 2.5. 

 
Let us focus on the algorithm. Those are the steps: 
 

• Use the automatically derived circle to cut off the edges. 
• Label the remaining edges with different ids. 
• Delete spurious edges. 
• First pass: use the first division slice to design a two-stage algorithm where 

edges under the division slice are marked as external borders. For the rest of the 
edges: 

o The algorithm calculates their distances to the global centroid. 
o It orders those distances in a vector and builds a new one containing the 

differences between consecutive distances. 
o The biggest difference indicates the frontier between internal and 

external edges, in terms of ids. 
o Then the edges can be labeled as external or internal accordingly. 

• Refine the division slice as explained in section 2.5, by using the previously 
labeled edges. 

• Second pass: use the refined division slice to again, applying a two-stage 
algorithm where edges under the division slice are finally marked as external 
borders. For the rest of the edges: 

o The algorithm calculates their distances to the global centroid. 
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o It orders those distances in a vector and builds a new one containing the 
differences between consecutive distances. 

o The biggest difference indicates the frontier between internal and 
external edges, in terms of ids. 

o Then the edges can be finally labeled as external or internal. 
• Use vertical coherence by applying a final mask to all the slices. This filtering 

process is explained in section 2.6. 
 
This algorithm is definitely characterized by its robustness because it performs all the 
calculations automatically, with less need of symmetry assumptions. The filtering circle, 
the centroid and the division slice are found automatically so that there’s no need to 
assume that the original images are centered or that the physician will provide a very 
accurate initial circle. 
 
Figure 2.21 presents the segmentation algorithm over a phantom data set. As it shows, 
the borders have been correctly detected and labeled. 
 

 
Figure 2.21: The borders detected over the Phantom data set (blue for internal and red 

for external). 
 
For a real case, an example of the final labeling for a given slice of a complete cardiac 
cycle can be observed at figure 2.22. 
 

 
Figure 2.22: Slice 15 of a complete cardiac cycle data set. 

 
The acquisition consisted on 8 captures ranging from systole to diastole. It must be said 
that the complete process used 16 meshes because of the eight instants of time with two 
meshes each, internal (endocardium) and external (epicardium). 
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In terms of computation time, typical durations for the MLC Filtering process are about 
half a second long (1,484 seconds for every static instant of figure 15, 23,744 seconds 
for the 16 meshes). Every instant consists on 94208 voxels (64 x 64 x 23). 
 
2.4  Search for the automatic circle 
 
As a prior filter, typical segmentation software for physicians allows them to define a 
manual circle. This circle acts as a noise-removal tool that deletes everything outside its 
diameter. It is a key-process for the diagnostic because of its posterior influence on the 
measures of ejection fraction and wall-thickness (see appendix C). Our intention is to 
automate the circle search in order to get the smallest one. Once the circle is well fit to 
data, border detection gets much easier. 
 
We made a first attempt in order to avoid the initial filtering circle. It consisted on 
applying a property filter to the slices, as shown in figure 2.23. 
 

 
Figure 2.23: Filtering by the property value. 

 
Although it might seem a good strategy, it is not. The reason is that the filtering 
eliminates noise but also useful data. This is due to the fact that some noisy areas have 
the same intensity values as the actual data that we need to recover. 
 
Then it is compulsory to use a filtering circle, either manual or automatic, in order to 
“clean” our SPECT images. 
 

 
Figure 2.24: The filtering circle avoids noise plus an incorrect labeling of the borders. 

 
Figure 2.24 shows the importance of the filtering circle. If not used, we can conclude 
with an incorrect labeling of the segmented borders. This fact is showed in the right 
images of this figure, where several isolated voxels are labeled as external (blue) or 
internal (green) borders when they shouldn’t. 
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Nevertheless we must be careful when deciding “what” has to be filtered by the circle. 
If we proceed by cutting off all the data outside, we might have an added problem, as 
stated in figure 2.25. 
 

 
Figure 2.25: Using the circle for the property cutting off. 

 
Sections 2.3.3 and 2.3.4 show that we can use gradient-based strategies for the labeling 
of the borders. If we filter by property previously to that, we might create false high 
gradient regions, easy to confuse with the real borders. This effect is clearly pointed out 
in figure 2.25 where the property for a given section of the data slice is drawn as a white 
thin line and the gradient is shown by the dotted orange curve. The gradient is 
maximum at the cut limits although those do not correspond to the data borders. 
 
A partial solution might be smoothing the cut data, as depicted in figure 2.26. There we 
have, from left to right, the manual filtering circle, the original data with the 
superimposed circle, the smoothed data after the cutting off and the original data after 
the cutting off. 
 
If we smooth only the surroundings, where the circle has actuated, we can avoid the 
high gradient changes that appeared in figure 2.25. 
 
However what if we can automate all the filtering, even the design of the circle? Is it 
possible to filter with no property cutting at all? This is what we show in the next 
paragraphs. 
 

 
Figure 2.26: Cutting off and smoothing the data. 

 
As a pre-process to the automated circle determination, we begin by applying a generic 
segmentation algorithm like [14, 84]. After that, we have a first sight at the edges. A 
very coarse manual circle cuts those off, as figure 2.27 shows. 
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Figure 2.27: Edges detected by the generic segmentation algorithm (white). 

The coarse circle (yellow). 
 
Tiny edges, which are considered spurious, are deleted. After that we have a first 
estimation of the edges that might finally be borders. Now we can begin with the 
automatic circle search. We split the process in two: finding the right centroid and 
getting the smallest radius. 
 
2.4.1  Centroid determination 
 
We must find the best centroid for our automated circle. This centroid needn’t to be 
equal to the geometrical center of the image, although they should be close. We can 
suppose that because of the medical acquisition procedures, physicians try to center the 
images though it is a difficult process, not always reliable. 
 
The centroid determination is performed by the following steps (for all the edges in a 
given slice): 
 

• The algorithm begins by finding the probability of the edge to be circular, which 
means to count the number of voxels equidistant to its own centroid. 

• Besides that, the algorithm compares the edge with the biggest found so far (in 
terms of number of voxels), swapping them if current edge’s probability is 
greater than a given threshold and it is formed from more voxels. 

• For this edge, the algorithm weighs up its centroid by using a factor taken from a 
Gaussian function. The factor should penalize being far from the center. The 
weighted centroid is added to the average count. 

 
More details are depicted in figure 2.28. 
 

 

Local 

Global 
Figure 2.28: Local centroids for those slices (left & middle); Local (green) and global 

(red) centroids (right). 
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Figure 2.28 shows how every slice contributes with its local centroid to the global, and 
final, centroid. The global centroid doesn’t have to coincide with the geometrical center 
of the image. 
 

 
Figure 2.29: Local centroid for the given slice, global centroid for all the slices 

and geometrical center of the image. 
 
Figure 2.29 shows clearly that the centroids are close but not equal. All the local 
centroids are averaged and contribute to the global one, normally very close to the 
image center. 
 
2.4.2  Radius determination 
 
We begin by finding a new set of probabilities. In this case the probabilities of all the 
edges to be a part of an imaginary circle centered at the global centroid, found in the 
previous section. Then for all the edges in a given slice: 
 

• The algorithm checks for the edge’s probability to be greater than a defined 
threshold. 

• If so, it calculates its average distance to the new centroid and it finds a 
Gaussian factor that penalizes its distance to the image center. Then it applies a 
size restriction: it must be greater than a defined threshold, in order to avoid 
spurious edges. 

• The algorithm checks if that distance is greater than the last saved and 
rejects/saves it accordingly. 

• As a final step, the radius is defined as the major distance plus a user-given 
offset. 

 

 
Figure 2.30: The algorithm finds the “best” edge in terms of distance to the global 

centroid. The radius is set to be this distance plus a user-given offset. 
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We can draw the new circle by using the global centroid and the major distance as the 
radius, as shown in figure 2.30. 
 
The process has automated the circle setting. Moreover, the new circle is absolutely 
well fitted to the data, avoiding most of the noise as it is shown in figure 2.31. 
 

 
Figure 2.31: The first coarse circle (left); the automated and well-fit circle (right). 

 
2.5  Finding and refining the division slice 
 
The division slice downwards determines the passage from two (external and internal) 
to one (external) surface. It is located at the end of the endocardium (inner surface). 
Therefore this can be considered an anatomical constraint characteristic from the left 
ventricle, which is the actual data to be recovered. 
 
This constraint is an important feature because it limits the later processes. In order to 
find the associated slice, we can resort to the fact that the property value (blood 
irrigation) in the global centroid grows up as we go from top to bottom, as depicted in 
figure 2.32. 
 
The property is normalized for all the voxels along the data set. This means that the 
intensity shown in figure 2.32 stands for percentage relative to the maximum. Therefore 
taking a look at different normalized data sets, gives a definitive clue about typical 
values for the property differences around the division slice. 
 

 
Figure 2.32: The property at the global centroid grows up (black to white). 

Note that the division slice should be between the second and the third image. 
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Our implementation traverses the slices from top to bottom until the division slice is 
found. The differences in property are tracked until they get expectedly big. This high 
property slice determines the endocardium bottom and therefore the division slice. 
 
The division slice is refined for the second pass of the MLC algorithm (see section 
2.3.6). This is an adjustment that has to be made in order to ensure that the division slice 
is correct. 
 
The refinement consists on taking advantage of the vertical coherence that should 
characterize our data set. If we are solid with our knowledge of the left ventricle, we 
must know that there are several cases that are very unlikely to happen. Those cases can 
be derived from the labeled borders in the slices. Take a look at figure 2.33. 
 

 
Figure 2.33: The division slice refinement process. 

 
In figure 2.33, C is the division slice that we found before the refinement. A + 1, A and 
B are the slices immediately over it. The technique examines the labelings in the first 
three slices (A, B and C) to see if everything seems to be coherent. If necessary, it 
examines the labeled borders of slice A + 1. 
 
Examining the labelings means checking if the slice has got one (external) or two 
(external and internal) borders. 
 
Slice/Case 1 2 3 4 5 6 7 8 

A 1 1 1 1 2 2 2 2 
B 1 1 2 2 1 1 2 2 
C 1 2 1 2 1 2 1 2 

Table 2.1. Cases to take into consideration when refining the division slice. 
 
Table 2.1 shows the eight cases that arise. For every case, we can see the amount of 
borders in slices A, B and C. If there’s only one border, we understand that it has to be 
external because we are in the apex area; if not we must have two borders, where one is 
internal and the other is external. Let us examine each case separately: 
 
1. Very unlikely to happen because it means that the apex is formed from lots of slices. 

This fact is totally uncommon. Notify it to the user. 
2. Not possible if the quality of the data is within some certain limits. We have two 

borders when beginning the apex and only one in the top of it! Notify it to the user. 
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3. Neither A or B are bad catalogued slices. We must check A + 1: 
a. If A + 1 has got two borders, the division slice is still considered to be C 

because we consider that A was bad catalogued with a unique border when it 
should have two. 

b. If not, we do have a not possible situation if the quality of the data is within 
some certain limits. Notify it to the user. 

4. Not possible if the quality of the data is within some certain limits. Notify it to the 
user. 

5. B is the final division slice. 
6. Not possible if the quality of the data is within some certain limits. Notify it to the 

user. 
7. C is the final division slice so no changes have to be made. 
8. Not possible if the quality of the data is within some certain limits. Notify it to the 

user. 
 
Figure 2.34 shows an actual case, labeled as 7. 
 

 
Figure 2.34: Case 7 of the division slice refinement process. 

 
The algorithm outputs 2 2 1 for the slices A B and  C. As the images show, it is clear 
that slice C contains one unique external border while A and B contain two borders, one 
external and the other internal. Then the division slice was correctly labeled at the first 
process and no corrections have to be made. 
 
However problems in the generic edge segmentation algorithm can force the apparition 
of very uncommon cases, like 1. In figure 2.35 we see this effect. 
 
The algorithm identifies C as the division slice, in terms of the property value in the 
centroid, as explained. The selection is correct attending to visual inspection but when 
the refinement stage begins, it detects that slices A and B only have one border which 
means, according to the previous catalogue, that we are in very unlikely to happen case 
1. 
 
Trying to find the cause for this, we see that the problem is due to the poor resolution of 
the ROI, especially in the inner surface area (2 pixels wide in slice C, 4 to 6 pixels wide 
in slices A and B). With such a low resolution the generic edge detectors cannot detect 
edges properly. If the generic edge detector does not provide a contour, it is impossible 
to label it as internal or external. We just miss this information and there’s nothing to do 
even by the MLC algorithm. 

2 2D Processing  43 



General Dynamic Surface Reconstruction 

 
Figure 2.35: Case 1 of the division slice refinement process. 

 
The Canny edge detector contours are rendered in yellow in the second row of the 
images in figure 2.35. Note how there are no contours in the inner areas, except for the 
slice A + 1, where the resolution begins to be suitable. Besides that, the algorithm has 
perfectly removed a noise contour in the slice C. 
 
2.6  Bounding Box based filtering 
 
As a final stage, after labeling the borders by using one of the previously explained 
algorithms, it is compulsory to attend noise removal, especially if the later 3D 
reconstruction can be affected. 
 
There are several contours that might “survive” and that are not associated to the real 
data borders. Besides that, those contours might be inside the automatic circle and big 
enough to avoid the consideration of spurious. 
 
The Bounding Box based filter is designed for taking ride of those. The filter relies 
totally in one of the slices, the slice that contained the biggest external contour that was 
used for finding the automatic circle (see section 2.4.2). It assumes that this is the 
biggest slice in terms of useful data, which should be true. This slice must be located far 
away from the apex region, near the top. Then it should contain two borders, perfectly 
defined. We will name this slice, the big slice. 
 
The filter evaluates the bounding boxes of the borders in the big slice. Those bounding 
boxes are used to filter the upper and lower slices as follows: 
 
• From the big slice to the division slice: we traverse all the slices filtering with the 

bounding boxes (internal and external) of the actual slice all the subsequent slices. 
• From the big slice to the top: all the slices are filtered with the bounding boxes 

(internal and external), of the big slice. 
• From the division slice to the bottom: we traverse all the slices filtering with the 

bounding box (only external) of the actual slice filter all the subsequent slices. 
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When talking about using a bounding box for filtering, we are referring to what is 
depicted in figure 2.36. 
 

 
Figure 2.36: Filtering with bounding boxes. 

 
As figure 2.36 illustrates, all the borders have their associated bounding box. In the 
showed example, we can see: 
 
• One of the final slices (top-left), very near the top of the left ventricle that has been 

filtered with the big slice bounding box. 
• The big slice (yellow) with its associated bounding box (red) and the internal border 

and bounding box (blue) (top-right). 
• One of the slices located between the big slice and the division slice (bottom-left). 

The figure shows the associated bounding boxes (red and blue), used to filter all the 
subsequent slices. 

• The division slice (bottom-right) with its associated external border and bounding 
box (red). 

 
The algorithm acts as a final noise removal tool, just preceding the vector field 
calculation, explained in the next chapter. 
 
2.7  Summary 
 
In chapter 2, we have presented the 2D image processing that precedes the rest of 
blocks. The images must be treated in order to detect the internal and external borders 
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that allow the posterior 3D reconstruction, with the resulting recovery of important 
parameters like the inner volume or the ejection fraction (see Appendix C). 
 
We began by explaining the need to automate all the 2D processing as much as 
possible, in order to improve speed, accuracy and robustness. 
 
Next, we have presented the generic edge detection algorithms tested besides their 
utilities inside the whole application. Those algorithms are a preprocessing step needed 
to segment the best candidates to be the final labeled borders of the data to recover. 
 
After the edge detection step, we detect and mark the borders for all the slices in the 
data set. Several strategies have been tested and intensively compared before selecting 
our major contribution to this task, the MLC algorithm applied to the labeling. 
 
As a part of the MLC implementation, we have automated the evaluation of the best 
circle that fits data, in terms of calculating its center and radius. This filtering circle is 
used as a noise-removal tool that serves as a classification mechanism that scores the 
best contours to be labeled as borders. 
 
We also detect the slice of change automatically. The slice of change defines the 
beginning of the apex for the left ventricle. Above the apex, we should have two borders 
referred to the endocardium and epicardium of the organ. In the apex, we only have one 
border, the epicardium. 
 
As a final filter, we have implemented a bounding box based filter that ensures vertical 
coherence between all the data slices, checking for singularities to be repaired. 
 
Chapter 3 describes the 3D deformation models that we have tested, implemented and 
selected for the 3D final reconstruction. 
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3  3D Deformation models 
 
Given an initial data set, a deformation model can be used to recover the geometry that 
best fits it. Besides that, the deformable model can recover and animate the shape, 
motion and interaction of the geometrical object [71, 65]. 
 
The reconstruction of the left ventricle fits inside the category of deformable objects. 
Simple shapes or rigid geometries cannot correctly model those objects. Moreover that, 
deformable objects are characterized by nonrigid transformations that describe their 
motion trajectories, differently from the motions associated to rigid objects. 
 
This chapter describes the deformation models that have been tested and compared, in 
order to provide our 3D reconstruction method with a reliable, accurate and fast 
solution. 
 
Our major contributions are: 
 
• Using particle systems in a Newtonian evolution scheme as a 3D segmentation tool. 
• Testing several methodologies available in terms of internal forces designed for 2D 

contours and 3D surfaces. Different internal forces will lead to different deformation 
models. 

• A comparative between several external force schemes that serves us to justify the 
reason to use the GVF approach. 

• The implementation and exhaustive analysis of five different deformation models. 
 
3.1  Newtonian dynamics 
 
Our reconstruction method is planned as an evolution scheme based on Newtonian 
dynamics despite of the deformation model used [6]. Our initial meshes are built from 
triangles and vertices (particles) that move due to internal and external forces. Equation 
3.1 shows the Newtonian dynamics law: 
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(3.1)

Where Fi stands for the total force, mi for the mass, xi for the position, and vi for the 
velocity, for the ith particle. The system iterates consecutively until it gets a position of 
equilibrium in a high percentage of the particles, as figure 3.1 shows. 
 
The mass is adjusted for every particle and the forces are defined as internal and 
external. Both forces drive the system to its equilibrium state. In order to solve it, we 
need a numerical method. This method or solver, depends on the deformable model 
applied, and can be formulated in terms of implicit or explicit equations. Reports on the 
models can be found at section 3.4. The numerical methods are discussed in chapter 4. 
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Figure 3.1: Particles reach their position of equilibrium after several iterations. 

 
3.1.1  Particle systems 
 
Particle systems are totally related to Newtonian schemes. Because of their simplicity, 
particles are especially suitable for modeling, simulation and animation. We can specify 
very interesting behaviors for particle-oriented objects, especially in the case of 
deformable models. As an example we might say that it is possible to build an object by 
connecting several particles with simple damped springs. Then we can apply forces for 
all the particles and let the physical laws do the rest of the job. 
 
Particles have mass, position, and velocity and they should react according to some 
existing forces. Then particle simulation involves the particles themselves and the 
entities that apply forces to them. 
 

 
Figure 3.2: Particle attributes. 

 
Figure 3.2 states that a particle is identified by several physical parameters like its 
position-velocity (named phase space as next section explains) at every instant of time, 
and its mass (a constant value). It is also important to define a force accumulator in 
order to add all the forces that act over that particle. 
 
The concept of particle system can be easily associated to the concept of geometrical 
mesh, as described in chapter 5. It is common to create several particle systems 
associated to all the different entities that we need to simulate. Then a particle system is 
formed from a set of particles, connected or not. A general particle system structure 
might be defined as follows: 
 
• Id. 
• Total quantity of particles involved. 
• Total quantity of springs involved (if it applies). 
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• Total quantity of existing forces. 
• List of particles. 
• List of springs (if it applies). 
• List of forces. 
• Starting time (optional because this is a parameter related to the dynamic scheme, 

see chapter 4). 
• Stopping time (optional because this is a parameter related to the dynamic scheme, 

see chapter 4). 
• Step size (optional because this is a parameter related to the dynamic scheme, see 

chapter 4). 
 

 
Figure 3.3: A complete particle system. 

 
Figure 3.3 shows a spring-based particle system (see section 3.4.3) where the particles 
are linked by springs that act as a constraining force. 
 
As we present extensively in chapter 4, simulating a particle system involves the 
implementation of a numerical scheme that begins the simulation for the given start 
time and iterates until it reaches a given condition. Each step takes time after step size 
seconds. All the particles vary their associated phase space vector at each step according 
to the existing forces that act on them. 
 
3.1.2  Phase Space 
 
The Newton law states that a particle’s acceleration can be obtained from its associated 
mass, plus the accumulated force acting on it. This idea can be expressed by a second 
time derivative as stated in equation 3.1. To handle a second order ordinary differential 
equation we can convert it to a first-order one by adding some extra variables, as the 
velocity v, for instance. In that case we get a couple of new equations: 
 
v' = f/m (3.2)x' = v 
 
For a given particle, we can concatenate its position and velocity in a vector (both 
magnitudes have three components in a three-dimensional space). Then this vector will 
be formed by six components. This vector is called phase space [103] and can be 
expressed like equation 3.3 states: 
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A system with n particles can be described with n vectors like the one shown in 
equation 3.3. If we concatenate all of them we will have a 6n-dimensional phase space 
vector describing all the entire system. We could think in simulating a huge particle-
oriented object as a point moving through a 6n-space. 
 
We will have to recalculate all the values for this vector at each new iteration. All the 
included positions and velocities will vary depending on the existing forces and 
interactions. 
 
3.2  Internal forces 
 
Internal forces control the inner cohesion and stability of the model. For a given 
topology, we have several connections between particles that must ensure the stability 
of the solution. 
 

 
Figure 3.4: A deformable cube [34]. 

 
Figure 3.4 shows a cube modeled like a deformable entity. In that sense, the cube is 
formed from eight vertices linked by 12 springs and rendered like 12 triangles. The cube 
hangs from eight fixed vertices that act as anchors for the system. In that simulation the 
internal forces are represented by the springs. 
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We see that the cube gets deformed due to the action of the gravity (an external force in 
that case) and the soft characteristic of the springs. Strong springs would avoid the 
deformation and produce a different final simulation where the cube would act more or 
less as expected if it was a rigid object. Then it is clear that the springs are acting as the 
internal forces that define the behavior of the particle system in terms of elasticity. 
 
In a general framework of planar deformation, three internal forces must be taken into 
account: stretch, shear and bend are introduced in the following subsections. 
 
3.2.1  Stretch force 
 
The stretch force [7] controls the magnitudes associated to the sides of a given triangle. 
We have several triangles in a mesh, that can be characterized by three vertices (or 
particles). We consider a map W between a local and a world coordinate system as 
figure 3.5 suggests. 

 
Figure 3.5: Local coordinates for a triangle. 

 
From figure 3.5, it can be easily demonstrated that: 
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Then a correct lineal approximation for the reference’s change can be:  
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And the derivatives are: 
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With this system it is possible to formulate two conditions that will prevent both sides, 
∆x1 and ∆x2, from deformations: 
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We obtain the increments and decrements of every edge’s magnitude by using the 
differences in position between the two related particles. 
 
The definition of C(x) ensures that the stretching is proportional to the triangle’s area a, 
with a typical value of 1 for the constants bu and bv. This factor implies that the 
restriction will try to maintain every edge’s magnitude as it was at the beginning of the 
simulation. Moreover that, it is possible to weight the restriction’s importance within 
the global term, by using a constant parameter. This parameter must be adjusted 
depending on the final elasticity desired for the system (see section 3.4.2 forward in the 
text). 
 
3.2.2  Shear force 
 
This force [7] acts on the inner triangle’s angle. As we can state from figure 3.6. 
 

 
Figure 3.6: Internal shear force. 

 
(3.8)(x)W(x)aWC(x) v

T
u=  

 
Figure 3.6 and equation 3.8 show that the inner angle is defined between vectors Wu(x) 
and Wv(x). The restriction tries to maintain its value as orthogonal as possible, avoiding 
then massive degenerations. 
 
3.2.3  Bend force 
 
It controls the bending movement on the mesh surface [7]. This force is defined 
between pairs of adjacent triangles, as figure 3.7 shows. 
 
Now the restriction tries to force the angle between both sides to be inside a concrete 
interval. The normal vectors n1 and n2 and the shared edge’s direction e, are used for its 
computation. The restriction is just the angle’s value that we need to maintain. 
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Figure 3.7: Internal bending force. 
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3.2.4  Local curvature force 
 
Those forces are related to the minimization of the local curvature in order to balance 
the action of the external forces that model the contour to follow all the variations that 
the energy related to the image demands [3, 54]. It is important to note that in this case 
we are dealing with curves while in the previous subsections we were defining forces 
related to triangulated surfaces. 
 

 
Figure 3.8: Local curvature forces. 

 
Let’s begin by defining the local curvature concept in a discreet model. The local 
curvature must tend to zero when traversing a segment between a pair of vertices. 
However it is not clear how to define the curvature in the vertices themselves because in 
these points, we do not have a derivative due to a first order discontinuity. 
 
An approximated solution might be to define the curvature as the difference between the 
directions associated to the edges that share this vertex. As figure 3.9 states, vector di 
stands for the segment between two consecutive vertices and its direction is perfectly 
defined by the unit vector dui. 
 

3 3D Deformation models  53 



General Dynamic Surface Reconstruction 

 
Figure 3.9: Local curvature ci. 

 
According to the previously cited definition, the local curvature ci in Vi is described by 
(see figure 3.9): 
 
ci = dui - dui-1 
 
Then the local curvature is a vector (with magnitude and direction) that allows us to 
derive the angle between both edges. In fact, the vector’s magnitude only depends on 
this angle; it is never related to the magnitudes of the edges that share the vertex. 

(3.10)

 

 
Figure 3.10: Tangential and Radial unit vectors tui and rui. 

 
The method also defines the tangential and radial directions local to the vertex position. 
In order to get those, we can use the unit vectors dui that represent the directions 
associated to the edges (di). Defining the tangential unit vector tui implies using the 
normalized sum of the unit vectors associated to the edges that share a vertex (equation 
3.11). 
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The unit and radial vector rui, equals the vector tui after a rotation of π/2 radians: 
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The vectors tui and rui represent a local coordinate system in the position of the vertex 
Vi. This coordinate system can be very helpful when evaluating the internal and external 
forces applied at that position. 
 
This paradigm is suitable for open and closed contours. Let’s assume that the amount of 
vertices is n and that we are working with a closed contour. The first vertex V0 and the 
last one Vn-1 are connected so that V0 is surrounded by two neighbors: V1 and Vn-1. If 
only the contour was opened, V0 and Vn-1 would not be connected and they would be 
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surrounded by a single neighbor (V1 and Vn-2 respectively). This situation requires a 
special treatment in order to evaluate rui, tui and also ci in these points. 
 
In the positions associated to the first and last vertices, we define the locally tangential 
direction as the direction of the first or last edge, respectively. It means that: 
 

(3.13)tu0 = du0 
 
And 
 

(3.14)tun-1 = dun-2 
 
The longitude of the curvature vector will tend to zero for both sides: 
 

(3.15)c0 = cn-1 = 0 
 
If we describe the curvature vector ci in terms of the local coordinate system (r,t), we 
can observe that ci is parallel to rui (the direction can be the same or opposite). Then ci 
is a vector contained in the r edge of the local coordinate system and its magnitude can 
be described by the dot product ci · rui. 

 
Figure 3.11: Positive and negative local curvatures. 

 
According to this definition, the magnitude ci of the curvature vector can be positive or 
negative (figure 3.11). 
 

(3.16)ci = (ci·rui)· rui 
 
Now that the local curvature has been defined as a unique dimension variable in the 
local coordinate system, let us define the internal forces that will restrict the 
deformation process. In order to understand clearly the contribution of such forces, let 
us consider a situation where there’s no external force applied. If we take a look at the 
previous figures we can figure out that the internal forces and the curvature vectors 
should have the same orientation. Nevertheless, it is not as easy as defining the internal 
forces to be equally proportional to the curvature vectors. 
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Figure 3.12: Curvature vectors ci for some typical situations. 

 
We can understand that by examining the left images in figure 3.12, any closed shape 
will deform until getting the minimal curvature at every point, in absence of external 
forces. That means that the final shape will be close to a symmetric polygon, similar to 
a circle if it is formed from enough vertices. 
 
As soon as we get to this situation, the deformation process would never stop. The 
vertices would keep moving to the geometrical center, as figure 3.12(a) shows. The 
shape would shrink until being reduced to a single point. 
 
Miller et al [66, 67, 68] studied the same problem and solved it by introducing a second 
force based on a stretching spring that maintained the distance between consecutive 
vertices within some predefined values. As explained in section 3.4.1, vertices too close 
receive a repulsion force that stops the shrinking. The stopping depends on the 
weighting factors associated to the internal forces. Then it can be seen that we have a 
tradeoff when balancing the elastic force against the local curvature force. 
 
Unfortunately, this situation is not always possible in presence of external forces. Then 
in order to avoid the introduction of a second internal force and the tradeoff associated 
to the balancing of the weighting factors, another solution can be adding a modification 
to the local curvature force. We must also take into consideration that the internal force 
must not reduce the local curvature if it remains constant by itself. 
 
Figures 3.12(b) and (c) show some typical shapes that we might get in a discreet 
contour model. Figure 3.12(b) represents a contour that rotates π radians and figure 
3.12(c) shows an example where the curvature values are alternated. The problem that 
arises if we have the situation of figure 3.12(a) has been previously documented. The 
shape will reduce to a single point in the absence of external forces. 
 
Figure 3.12(b) presents a similar situation. If we apply a force proportional to the 
curvature of its vertices, we will get the reduction of the vertical segment so that the 
local curvature will remain intact. 
 
Figure 3.12(c) does not present any problem and it has been included because it presents 
a typical situation where the local curvature must be reduced. Any solution to the 
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problem of the shrinking should not affect the correct operation in contours where we 
need to reduce the curvature. 
 
Right side of figure 3.12 shows the same shapes but expressed in the local coordinated 
system (r,t). We observe that: 
 
• The internal forces fin that are applied over the vertices Vi should have the same 

radial direction that the curvature vectors. That implies that the internal forces can 
be obtained from the curvature vectors by modifying their magnitude. 

• In order to introduce the local curvature while not affecting the constant curvature 
areas, the magnitudes of the internal force vectors must be zero in those areas.  

 
We can accomplish both if we consider the sequence ci · rui along the contour as a 
scalar discreet function that depends on the position i, and we use the convolution of 
this function with the discreet filter ki. This filter stands for a representation of a 
sequence of the magnitudes associated to the vectors of the internal force fin,i: 
 

(3.17)fin,i = (ci · rui) ⊗ ki  
 
The first condition gets accomplished if we take rui as the direction of fin,i : 
 

(3.18)fin,i = fin,i · rui  
 
The second condition depends on the accurate selection of the ki filter coefficients. If we 
need that the convolution with a constant sequence equals zero, we have to define ki so 
that it blocks the continue component. There are several filters that accomplish this 
condition. A simple one can be a uniform filter where three coefficients are different 
from zero: 
 

(3.19)ki = {···, 0, 0, -½, 1, -½, 0, 0,···}  
 
Where a value of 1 is applied to the i position and the value -½ stands for the positions 
i-1 and i+1. It must be said that the optimum filter for this application might be 
adaptative. 

 
Figure 3.13: Internal forces fin,i. 
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Figure 3.13 shows the internal force vectors related to the shapes of figure 3.12. The left 
side of the figure shows the internal forces in local coordinates (r,t); the right side 
shows the shapes and internal forces in Cartesian coordinates. The constant curvature of 
figure 3.13(a) induces that the internal forces tend to zero in all the vertices so that the 
shrinking problem gets solved. The rotation of π radians in figure 3.13(b) will not be 
deformed so that it will appeal more natural. The closed ending of this contour, where 
the rotation takes place, will get shortened and wider due to the curvature reduction. The 
alternated curvature of figure 3.13(c) will be also shortened effectively because of the 
convolution. The result from the convolution of the filter ki with an alternate signal is 
the same signal multiplied by a constant. 
 
As a conclusion, the definition of the internal forces fin produces, in absence of external 
forces, the deformation effects desired. 
 
3.3  External forces 
 
External forces attract particle systems to the data set. The simulation must be correctly 
balanced in terms of internal against external forces. Both terms will lead the system to 
an equilibrium situation that should coincide with the solution that we are looking for. 
 
This section describes the different existing external forces according to their definition 
characteristics. 
 
3.3.1  Snakes 
 
The snake model was created as a first attempt to describe a 2D parametric deformable 
model [46] suitable for several applications like edge detection, segmentation or motion 
tracking. This model or contour moves inside an image domain trying to minimize the 
energy functional of equation 3.20. 
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In equation 3.20, x(s) is the contour or model, s is its associated parameter and belongs 
to the interval [0, 1], α and β are the weighting constants that control tension and 
rigidity respectively and x’(s) and x’’(s) stand for the first and second derivatives of x(s) 
with respect to s. 
 
The Eext term stands for the external potential function and it is derived from the image. 
There exist several possibilities for this term. Some are developed next, in equations 
3.21 to 3.24. 
 

(3.21)2),(),( yxIyxEext ∇−=  
 

(3.22)2)),(*),((),( yxIyxGyxEext σ∇−=  
 

(3.23)),(),( yxIyxEext =  
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(3.24)),(*),(),( yxIyxGyxEext σ=  

 
Each of the energies is used depending on the concrete scenario. I(x,y) stands for the 
image property value on every pixel (voxels of a data slice if working in 3D), ∇ is the 
gradient operator and is a Gaussian function with a standard deviation σ. ),( yxGσ

 
Equations 3.21 and 3.22 are especially suitable for gray level images while equations 
3.23 and 3.24 are best fit for black and white scenarios. 
 
Minimizing the functional of equation 3.20, implies satisfying the Euler equation 3.25. 
 

(3.25) 0)('')(' =∇−+ extEsxsx βα  
 
Which can be compared to an equilibrium equation where tension and rigidity are 
treated like internal forces in front of the external energy potential. 
 
Equation 3.25 is solved by adding the time variable t to the system. Then it can be 
treated by a dynamic scheme that discretizes the equation and solves it iteratively. 
 
Snakes have three main disadvantages. First of all, the contour has to be initialized very 
close to the data to recover. Secondly, is has difficulties when trying to follow image 
maps that contain boundary concavities, like in the left ventricle case. The third problem 
is related to our final goal, the recovering of the inner and outer surfaces of the left 
ventricle. Isquemic areas, which mean in absence of blood irrigation, do not appear in 
the images. This effect provokes the apparition of holes that are an added problem for 
the contour or surface. 
 
3.3.2  Active nets and Topologic active nets 
 
Active nets can be described as bidimensional snakes. Active nets are bidimensional 
parametric representations moving in a bidimensional space. Then its representation can 
be derived from the one-dimensional snake formulation, extending it to the 
bidimensional space. 
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(3.26)

 
As stated in equations 3.26 and 3.27, active nets are characterized by an energy function 
that describes the equilibrium between internal and external energies. 
 
It is necessary to filter the image in order to ease the localization of objects. The 
information about borders must be maintained in order to allow the shape adjustment. 
This tradeoff can be reached by classifying the nodes between internal and external and 
treating them differently in terms of the image function applied [13]. 
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Let us assume that the interesting features are characterized by low gray levels and that 
the background tends to have high gray levels. Then the image function that finally 
defines the external force, can be defined separately for the internal and external nodes. 
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where Imax is the maximum intensity value; I(v(x1,x2)) is the intensity value for the node 
v(x1,x2); h is a normalization function and n is the window size for the average 
evaluation. 
 
Then the internal nodes will minimize their energy when being inside the object while 
the external nodes will perform the same behavior when positioned in the background. 
This process allows to track the objects by the internal nodes and to stop at the borders 
due to the external ones. 
 
Active nets work when objects are quite simple but some problems arise when 
irregularities exist, like large concavities. In order to solve those complex cases, 
topologic active nets have been introduced [4]. 
 
Topologic active nets provide with: 
 
• A first initialization step where the object is located and its shape detected in order 

to automatically center and dimension the initial net. This step allows obtaining a 
uniform distribution of the internal nodes inside the object that offers valuable 
information about its internal structure. This information can be used in later 
processes to detect internal concavities. 

• A second step where the net is topologically altered in order to fit the object 
perfectly. 

 
Those improvements make the topological active nets suitable for locating more 
complex shapes, tracking several objects simultaneously and detecting concavities in 
the internal structure of the objects. 
 
In the first active nets, the external nodes act as anchors that restrict the movements of 
the net to the interior of the object. With fixed external nodes, the mobility of their 
internal neighbors is limited. Moreover that, the internal distribution of nodes is totally 
conditioned by the instant in which the external nodes reach the borders. In order to 
avoid this effect, it would be desirable that all the external borders reach the object’s 
contour nearly simultaneously. That might be possible if the initial net is centered with 
respect to the object and if the distance between nodes is equal in both dimensions. 
 
Using a first sparse net that covers the entire image solves this problem. This net moves 
freely and detects all the objects, their positions and their approximate dimensions. 
Then this information is used for associating a dense net adapted to every object in the 
image. 
 
If the object is characterized by irregularities or concavities or even if we have several 
objects in the image, the complexity of the process increases. It could be treated by 
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locally modifying the topology of the net when necessary. In other words, being able to 
break links between external nodes. Breaking links in difficult areas means more 
external nodes that stand for a better adjustment. 
 

 
Figure 3.14: Breaking links and defining new external nodes. 

 
Figure 3.14 shows a typical situation where two internal nodes (red) change into 
external nodes (yellow) when a link is broken. 
 
Breaking links implies detecting first the external nodes that are poorly positioned. This 
detection can be achieved by the gradient distance evaluation limited to the directions 
that point inside the net. A new term can be added that certainly describes the quality of 
the adjustment, as equation 3.29 shows. 
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The new term represents the image gradient. Gmax is the maximum gradient value, 
G(v(x1,x2)) is the gradient value in the position of the node v(x1,x2) and ξ is a weighting 
factor that balances gradient and intensity information. 
 
With this new term the external nodes vary their behavior. When located in the 
background, far from the borders, their energy function will be dominated by the 
intensity term and their behavior will be as before. Nevertheless, when approaching the 
borders of the image, the gradient term will increase its effect making the external nodes 
to be attracted by the high gradient values of the image. Then the external nodes will lie 
on the borders and not only close to them. 
 
When positioned, the external nodes can be classified depending on their gradient 
distance. Distances near zero will characterize well-positioned nodes while distances 
over a defined threshold will be symptom of an incorrect position. 
 
Once the external nodes have been labeled, it is necessary to select a link to be broken. 
The selected link must maximize the gradient distances sum of all the labeled nodes that 
form part of it. After breaking the link, the net evolves until reaching a new stable state. 
 
It is important to note that the breaking process helps on the smoothness of the solution 
but also when an image presents several objects to be recovered. If we use a single 
initial net with an image formed from several objects, it will be automatically broken as 
explained, until being split in independent nets, one per object in the scenery. 
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As a final feature of the topological active nets algorithm, we can describe its ability 
when finding internal concavities. These tasks can be achieved by accessing the 
information that the internal nodes store about the internal distribution of the object. 
 
When an internal node is located in a concavity, it presents high energy values 
compared to those nodes located over the object. By analyzing these energies, especially 
those relatively high, it is possible to obtain information about the concavity presence 
and situation. 
 
Once the concavity has been detected, the inner behavior of the net performs the correct 
adjustment by breaking links if necessary. The internal nodes inside the concavity 
evolve to be external nodes that must adjust the borders. Those new external nodes must 
expand, not contract, and this is achieved by a new energy term. See equation 3.30 for 
more details. 
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Where the first row stands for internal nodes, the second row for external nodes and the 
third row for external nodes related to concavities. [ ])),((min srvGDistU −  stands for the 
thresholded gradient distance image. This new term guides the new external nodes to 
the borders of the concavity, by expanding themselves. 
 
Topologic active nets can be useful when tracking objects in an image. Unfortunately, 
this strategy might fail our purposes of tracking the entire left ventricle despite it is 
formed from an object or from several of them. These nets will track several apparently 
unrelated objects separately and we need to group them. Moreover that, the 3D 
reconstruction method described in section 3.1 depends on the calculation of an external 
force related to external and internal borders. This classification is not provided by this 
methodology. 
 
3.3.3  Radial energy based potential 
 
When working with local curvature internal forces, like those explained in section 3.2.4, 
a suitable external force can be derived from a distribution of an external potential 
energy [3, 54]. This distribution can be associated to several characteristics of the 
image. One of the characteristics that best fits a good behavior, is the gray level and the 
gradient magnitude at every pixel (or voxel if working in a 3D framework). 
If we need the model to follow the maximal gradient path through the image, we can 
use its magnitude and define an energy distribution proportional to its value. The 
implementation of the deformation process will try to drive all the vertices through the 
minimal energy areas. Moreover that, it implies that the way to follow is described by 
minimal energies (valleys) so that we must invert the potential energy distribution. 
The force field can be described like equation 3.31 shows. 
 

(3.31)fim = -∇Eim  
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If we apply this force to all the vertices in the model and we consider no internal forces 
at all, the final result will consist on the contour connecting points with local energy 
minima, following a valley through the external energy distribution. 

 
Figure 3.15: Components of the external force over the contour. 

 
Besides that, we might encounter that the force fim does not only have an orthogonal 
component to the local direction of the contour, but a tangential component that follows 
the contour trajectory (figure 3.15). This component might be important in terms of 
magnitude. If no restrictions are applied in the curvature, for instance when no internal 
forces exist, the final situation might be characterized by the apparition of clusters, as 
depicted in figure 3.16. 

 
Figure 3.16: Clustering phenomena. 

 
As a first seek to the problem it is possible to add a stretching force that avoids the 
vertices to be too close from each other, avoiding then the clustering. This force must be 
adjusted locally for each vertex depending on the external force at its position. We must 
take into consideration that the external force is different in every pixel of the image. 
Moreover that, it changes from a slice to another. Besides that, the external force 
derivation is related to the acquisition procedure and to the posterior processing that can 
be applied (filtering). Those reasons make the adjustment of the stretching force a 
critical process. The stretching force should not be too weak (because it would not act as 
a restriction) or too strong (because it would alter the deformation process). 
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Unfortunately this local tuning results in a very complex problem that drives us to find 
another solution: using only the radial component of the external force fim. The basic 
reason for doing so is that the vertex displacement along the path that the contour 
follows does not contribute to the deformation of the model in order to capture the real 
data. 

 
Figure 3.17: Radial component of the external force. 

 
If we denote this radial component of fim,Vi as fim,ri, we can see that its magnitude can be 
evaluated by the dot product fim,Vi · rui. 
 

(3.32)fim,ri = (fim,Vi · rui) · rui   
 
The sum of the radial local forces fim,ri and fim,i gives the resultant force that accelerates 
all the vertices through the contour while making them move radially. 
 
In terms of energy, it might be useful to allow the user to exert some kind of control 
over the contour. That might be possible by defining a second external energy 
distribution called Euser. This distribution would be added to the first defined energy and 
would allow the user to alter the energetical landscape by defining new valleys, for 
instance. 
 

(3.33)
(3.34)
(3.35)

Eex = Eim + Euser  
fex = -∇Eex  
fex,ri = (fex,Vi · rui) · rui  
 
Then the generation of the external associated force would be identical, as stated by 
equations 3.33 to 3.35. 
 
This paradigm has been used for the tracking of the left ventricle, as presented in 
chapter 6. However there is still the need to find an external energy term that attracts the 
contour or the surface to the original data. That’s the reason for using the vector field 
described in next section. 
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3.3.4  Gradient vector flow 
 
The Gradient vector flow [104] is a vector field where the external force consists on the 
minimization of a functional that mixes the information derived from the image-
intensities gradient with a diffusion term that allows the field to be spread out. 
 
This vector field tries to solve two key difficulties related to parametric deformable 
models: 
 
• Avoiding the need for the initial model to be close to the data to recover. Usual 

systems are likely to diverge into wrong results if the initialization is far away from 
the data. The GVF increases the capture range of the external force field so that it is 
able to guide the model towards the desired position. 

• Solving the classical difficulties when progressing into boundary concavities. 
 
The vector field that acts as the external force is obtained by minimizing the functional 
in equation 3.36. 
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The functional consists on two well-differentiated terms. On the left the diffusion term 
that spreads the field when variations on intensities are negligible. On the right the 
property term, that domains the expression if variations are important. The µ parameter 
will control the balance between both terms. 
 
In fact, minimizing the functional in equation 3.36, can be translated into solving 
equation 3.37. 
 

(3.37)0)(),(''),(' =++ xvtsxtsx βα  

 
Where the time variable t has been added to the system and v(x) stands for the GVF 
vector field instead of the energy term in section 3.3.1. The vector field can be derived 
solving the Euler equations of equation 3.38. 
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Taking a glance at the equations allows us to infer that in low-variation areas the second 
term becomes negligible due to the null-value of the gradient. 
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The numerical implementation of this external force uses a finite-differences scheme 
complemented with an Explicit-Euler method that follows the temporal evolution. 
Details on its implementation can be found in chapter 4. 
 
For the left-ventricle reconstruction, the property value is selected to be the border 
attribute. Given a data slice, a voxel can be assigned one of two possible values: “1” if it 
is a border or “0” if it is not. 
 
The vector field is calculated twice, for the internal and external borders. The result of 
the field calculation is the apparition of a vector field that surrounds the borders, making 
them act as attractors.  
 
The field will act as the external force. Figure 3.18 resumes this behavior. 
 

 
Figure 3.18: Graphical representation of the behavior for the GVF field. 

 
Note that figure 3.18 represents the field in 2D. Our final implementation finds it in a 
3D framework (voxels but not pixels) making it more robust and confident with our 3D 
data sets. 
 

  
Figure 3.19: Correct (left) and wrong (right) GVF vector fields. 

 
Figure 3.19 shows two GVF representations in 3D. The initial data set is exactly the 
same but the fields where computed with a difference in sign. The vectors are rendered 
in red-green, the data set is the blue world of voxels and the magnitudes and signs for 
the vector field are shown in the top right viewports (for a given trajectory marked as a 
thin vertical line in the left). The intensity values are marked as a red thin line (right 
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viewports). Note the magnitude valleys and the changes in sign around then, in the top 
right viewports. 
 
If we extend the analysis regarding the changes in sign and the operators used for the 
field evaluations, we obtain the results of figure 3.20. There six different cases are 
analyzed. All the tests were made over the same data set, a medical volume called 
Phantom (see Appendix D): 
 
• Tests 1, 2 and 3 are quite similar. All of them use the gradient of the edge map as 

their input. Their differences are only related to the values of some of the parameters 
(µ = 0.4 for test 1, µ = 0.2 for tests 2 and 3; 200 iterations for tests 1 and 3, 100 
iterations for test 2). 

• Test 4 used the intensity value with its sign reversed, as its input. Regardless of the 
magnitudes, that seem correct, the sign of the derived field is wrong (it goes from 
inside to outside when it should be the contrary). The simulation took 100 iterations 
with µ = 0.2. 

• Test 5 is exactly the same as the previous but when using the original intensity with 
no changes in sign at all. Here the results are perfect in terms of magnitude and sign 
for the vector field. 

• Test 6 is the reversed version of test 5. Here all the values have been reversed 
showing that the high gradient changes in intensity have become valleys instead of 
high peaks. Although it would be manageable in terms of magnitude, signs are not 
correct. 

 

 
Figure 3.20: Different operators and signs for the GVF vector field evaluation. 
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It is important to note that depending on the final application, a variation of the derived 
field can be a good solution. Several strategies based on reversing values or tracking 
signs can be used in order to get different final results from the same initial vector field. 
 
The same authors presented a generalization of the GVF vector field called Generalized 
GVF or GGVF [106]. This evolution tries to solve several difficulties that still appear 
although using the GVF vector field as the external force. It still has difficulties when 
used at thin boundary indentations. The main formulation differences between GVF and 
GGVF can be seen at equations 3.39 and 3.40. 
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In both equations, vt is the partial derivative of v with respect to t; 
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of images or world of voxels (see that the process can be applied in 3D if we use several 
slices piled up). 
 
In equation 3.40 we see that µ and 2f∇  have been substituted by the weighting 

functions g( f∇ ) and h( f∇ ). Those functions apply to both terms in the equation, the 
smoothing and the data term. Because of the dependency of the weighting functions 
from the gradient of the edge map, this formulation ensures that the weights are 
spatially varying which means locally adjusted. 
 
The weighting functions should ensure that the vector field is smooth when situated far 
from the edges but coherent with f∇ when near them. This fact implies that g( f∇ ) 

must get smaller when h( f∇ ) gets larger. Then near large gradients the smoothing will 
be negligible allowing the vector field to be basically equal to the gradient of the edge 
map. 
 
Many formulations are allowed for the weighting functions. The authors of GGVF 
proposed those shown in equations 3.41 and 3.42. 
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Those functions ensure that the vector field conforms to the gradient when edges are 
strong while varying smoothly if far away. The parameter K controls the tradeoff 
between both behaviors. 
 
3.4  Deformable models 
 
We have tested five deformable models within our application: 
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• Discreet contour deformation model, characterized by the weighting of the 
applied forces in order to ensure a correct stabilization. 

• Plain deformation model, where each of the triangles in the mesh has its own 
elasticity forces. Deformation will be characterized by the added action of three 
forces: stretch, shear and bend. 

• Spring-mass deformation model, where the only internal force is stretch, defined 
between pairs of particles following Hook’s equation. 

• Restricted spring-mass deformation model, where spring-forces are only allowed 
in the normal direction of the derived vector field. 

• Free deformation model, where the only existing force is the external one, derived 
from the data set. There’s no connectivity between particles and topology must be 
maintained using a smoothing algorithm (see chapter 6 for more details), apart from 
the evolution scheme. 

 
The following paragraphs describe the quoted models. 
 
3.4.1  Discreet contour deformation model 
 
As partially introduced in sections 3.2.4 and 3.3.3, a discreet contour deformable model 
applies to 2D contours driven over imagery. However the method can be easily 
extended to 3D if using surfaces instead of contours. 
 
The force that acts on a concrete vertex is a weighted combination of internal and 
external forces [3, 54]: 
 

(3.43)fi = wex·fex,ri + win·fin,i  
 
Where fex,ri and fin,i stand for the external and internal forces. The weighting factors are 
wex and win. If we emphasize the external forces, the model will follow the image 
characteristics with more precision. If we enlarge the internal forces, the final result will 
be clearly smooth. As a result of the forces, a vertex moves by Newtonian dynamics 
(see section 3.1) until it reaches the condition of stability, stated in equation 3.44. 
 

(3.44)ai = vi = 0 
 
In order to avoid oscillations between two minimal energy states, the model can be 
completed with a damping component fdamp, proportional to the vertex’s velocity. 
 
fi = wex·fex,ri + win·fin,i + fdamp,i  
fdamp,i = wdamp· vi  
 
Where wdamp stands for the weighting factor associated to the damping force and vi is the 
vertex velocity. The damping weighting factor is negative in order to act in the opposite 
direction of the velocity. 

(3.45)
(3.46)
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Figure 3.21: Two resolutions for the same contour. 

 
In this method, the distance between a vertex and its neighbors defines the final 
resolution that it can get, as stated in figure 3.21. Tiny details of the external energy 
distribution can be lost between consecutive vertices if distances are too big. In order to 
avoid that, we need the model to be locally adjusted while not affecting its global state 
in an important manner. An approach that can be taken consists on allowing variations 
within certain limits by periodically resampling the contour. 
 
Let’s assume that ldes is the edge magnitude that we define to be the standard. From this 
value we extract lmin and lmax that represent the lower and upper limits that we permit. 
Then the resampling procedure consists on two steps: 
 
• Firstly, we have to check if there’s any edge whose magnitude is under the lmin 

value. If so, this edge has to be removed from the model in the sense that the pair of 
vertices that define it are substituted by only one (figure 3.22(a)). 

• Secondly, we check if there’s any edge whose magnitude is over the maximum 
allowed (lmax). Segments that fit this requirement are split in two, as illustrated in 
figure 3.22(b). 

 

 
Figure 3.22: Resampling method. 

 
As previously explained, the values for lmin and lmax are derived from the parameter ldes. 
The condition that must be satisfied is: 
 

(3.47)lmax > 2lmin 
 
All the values that validate this condition are permitted. The values depend strongly on 
every application. In the case of SPECT medical imagery, satisfactory tested values are 
given in equations 3.48 and 3.49. 
 

(3.48)
(3.49)

lmin = 0.5·ldes  
lmax = 1.5·ldes  
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For the new inserted vertex, we need to specify a velocity and an acceleration value that 
can be calculated from the averaged values of the two vertices substituted (figure 
3.22(a)) or from its new neighbors (figure 3.22(b)). This is necessary in order to 
maintain continuity in the dynamical situation of the model. 
 
3.4.2  Plain deformation model 
 
In the plain deformable model [7], the deformation forces are defined for each of the 
triangles in the initial mesh. The deformation is characterized by the action of three 
different internal forces: stretch, shear and bend. 
 
Each of the forces is implemented like a restriction condition that the system has to 
maintain, as equation 3.50 summarizes. 
 

(3.50)C(x) = 0 
 
We can derive an energy function Ec(x) and a force, from the restriction. 
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In equations 3.51 and 3.52, k is a constant that weights the restriction C(x). If we 
consider that the restrictions are triangle-based, C(x) will depend on a few particles. 
Then our system will be sparse in terms of force representation. Each force element, fi, 
is an ℜ3 vector. The force derivatives matrix J belongs to ℜ3nx3n. Each of its elements 
Jij is a 3 x 3 matrix. 
 
For stability adjustment, every force has an associated damping term, defined in 
equation 3.55: 
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−=  (3.55)

 
This term is opposed to the force and proportional to its velocity, understood as the first 
derivative of the restriction. In fact the damping constant can be locally adjusted by 
using a certain spatially varying function or by building a damping map, as depicted in 
figure 3.23. 
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Figure 3.23: Two views of the damping map for a left ventricle medical dataset. 

 
Figure 3.23 shows several slices of medical imagery piled up forming what is called a 
world of voxels. Here every voxel stores the damping factor that will be used for a 
particle if it enters it. The value for the damping factor can be associated to a voxel 
depending on several reasonings. The voxels represent a human left ventricle and have 
been labeled according to their probability to be part of the muscular tissue. That means 
that voxels with high probability will be associated a larger damping factor so that 
particles stop in them when trying to reconstruct the organ in 3D. 
 
3.4.3  Spring-mass deformation model 
 
In this model the deformation is stretch-based, as stated in Hook’s law. Then the 
deformation is characterized by the stretching force between pairs of particles, 
connected by springs. 
 
Figure 3.24 and equation 3.56, show the stretch force between two particles a and b, as 
defined by Hook’s law. 
 

 
Figure 3.24: A damped spring connects two particles. 

 
The force that the spring applies to the particles is described by equation 3.56: 
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ab ff −=  
 
Where ks is the spring constant, kd its associated damping factor, l its elongation and r 
the distance between particles in equilibrium. 
 
3.4.4  Restricted spring-mass deformation model 
 
Designed as a variation from the previous model, the restricted spring-mass deformation 
model adds a movement restriction to the springs. Their stretch deformation is only 
allowed in some specific directions. For instance, for the left-ventricle reconstruction 
application, the springs can be only allowed to deform in the direction orthogonal to the 
vector field. Figure 3.25 summarizes this behavior. 
 

Voxel i, j, k  
Figure 3.25: Restricted spring. 

 
For a voxel at some given position i, j, and k, that contains two particles joined by a 
spring (green) and a gradient vector (external force), the restricted model evaluates the 
component of the stretch force that is orthogonal to the gradient vector (red). This force 
component will be added to the force accumulators of both particles. 
 
This model distinguishes between two kinds of motion: 
 
• Tangent to data, performed by the restricted springs (internal forces). 
• Normal to data, performed by the gradient vectors (external forces). 
 
The problem arises when the particles are really close to the data borders. There, the 
gradient vectors tend to disappear (their magnitude tends to be zero) and then the 
component determination might become unstable. Figure 3.26 shows the vector 
projection that allows the component to be evaluated. 
 

 
Figure 3.26: Evaluating the orthogonal-to-the-gradient-vector component of the spring 

force. 
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Where Vs is the force vector associated to the spring, Vg is the gradient vector, Vst is the 
component of Vs tangential to Vg and Vsn is the component of Vs normal to Vg. If Vg 
tends to be zero, there’s no projection and the evaluation is unstable. We can treat this 
behavior as a separate case, where springs near data borders are released from the 
restriction and therefore treated as normal. 
 
The projection equations are described in chapter 5. 
 
3.4.5  Free deformation model 
 
The free deformation model can be understood like a simplification of the spring-mass 
deformation model. It consists on leaving the external force as the unique force within 
the system. Then the particles have no real connectivity and can be treated separately. 
 
The free deformation model is characterized by: 
 
• High convergence rates, because of the small amount of numerical evaluations 

needed. 
• It doesn’t provide control over the mesh topology. Therefore it becomes important 

to apply some reinforcement strategies in order to ensure the required smoothness 
(see chapter 5 for comments on the smoothing algorithm). 

• Failures in the case of data absences, for instance in areas of poor blood irrigation 
for the left’s ventricle reconstruction application. If the volume to recover presents 
“holes”, particles won’t have any restriction that avoids them from penetrating to the 
interior. However the smoothing algorithm also helps in this question (see chapter 5 
for comments on the smoothing algorithm). 

 
The plain and spring-mass deformation models provide control mechanisms over those 
effects (the damping factors associated to the internal forces, for instance). 
 
There we have a tradeoff then: robustness of the solution against high convergence rates 
when recovering data. 
 
3.5  Summary 
 
In chapter 3 we have been through the deformation models that have been analyzed and 
tested. All of them share the evolution paradigm, a Newtonian scheme. We have also 
described their internal and external forces. 
 
The Newtonian scheme defines the underlying dynamics related to the reconstruction of 
the left ventricle. Particle systems modeled like geometrical meshes try to find their 
equilibrium state. This state of minimum energy corresponds to the 3D recovery of the 
original shape. 
 
In order to rule the system, several forces have to be defined. The first classification 
states that internal and external forces must be introduced. 
 

3 3D Deformation models  74 



General Dynamic Surface Reconstruction 

Internal forces ensure stability, curvature requirements and cohesion. This document 
describes the stretch, shear, bend, and local curvature forces that have been extensively 
tested with good results. 
 
External forces drive the system to the original data that has to be recovered. There are 
several options available like the traditional snakes, the active nets, the topologic nets, 
and so on. We have ended selecting the radial energy based potentials and the GVF and 
GGVF vector fields like the best paradigms that completely fit our needs. 
 
This chapter also presents the theoretical concepts related to the five deformable models 
that have been used. The discreet contour, plain, spring-mass, restricted spring-mass and 
free deformable models have been used with success. Using one or another depends on 
several constraints like accuracy, precision, final smoothness and speed on the 
calculations. 
 
We need to use a computer in order to perform our simulations in a fast manner. 
Chapter 4 explores the numerical methods available in order to implement the 
technologies that we need. Several possibilities are presented and tested extensively. 
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4  Numerical implementation 
 
Simulations describing physical reactions require computing over the time. The interval 
of simulation has to be discretized into sequential steps. In order to compute the state of 
the virtual scenery at every step, we need a numerical method, or solver, that evaluates 
several derivative values. The system iterates from the beginning, t0, until the final 
instant, tmax, by using a defined stepsize for every cycle of the simulation. 
 
There are several solvers available, different in terms of efficiency, robustness and 
speed of evaluation. This chapter describes the underlying numerical theory related to 
the simulation of our deformable models and the solvers used in order to implement 
them. 
 
This chapter presents the following contributions: 
 
• A deep analysis of all the numerical methods that have been implemented, 

according to a first classification: explicit vs. implicit schemes. 
• An adaptative stepsize alternative to dynamically adjust the simulator. 
• Explanations on the implementations of the deformable models presented in chapter 

3. 
• A comparative test between the numerical implementations of the deformable 

models. 
• Explanation on the implementation of the external force. 
 
4.1  ODE based methods 
 
The Ordinary Differential Equation (ODE) methods are based on a differential equation 
that describes the relationship between a function and each of its derivatives. Satisfying 
it means checking some other conditions as well. The behavior of the system can be 
described like equation 4.1 shows: 
 

(4.1)x' = f(x,t) 
 
Where f is a known function dependent on x and t, x is the state of the system and x' is 
its time derivative. We can have several types of forms for our derivative functions. 
 
Most of the situations that we might need to simulate can be classified like initial value 
problems [103]. In those some kind of initial state is given, like a particle's position x0 
for a given time t0. 
 

(4.2)x(t0) = x0 
 
From the relation stated in equation 4.2, we need to be capable of following the system's 
behavior along the time. 
 
If we try to visualize this problem graphically, we can think in a "vector field" (see 
figure 4.1). In the two-dimensional case, at any point x the function f will give us a two-
dimensional vector. In a dynamical context, we could say that the vector at x is the 
velocity that the free point p must have if ever moves through x. 
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Figure 4.1: The initial value problem. [34] 

 
Wherever we initially deposit the point p, the “stream” at that position will seize it, like 
the ocean would act in a particle of sand. We provide the initial position of p and the 
ocean, the trajectory function f, does the rest. The trajectory determined by p through f 
forms an "integral curve" of the generated vector field. 
 
Something that needs to be taken into consideration is that p's velocity depends on 
where it is but also on when it reaches that position. Depending on the moment, p can 
perceive one or other derivative, in the same physical space. 
 
A numerical method or solver is intended to allow the calculation of an ODE based 
simulation into a computer. ODE equations are essential for modeling physical 
situations like chemical reactions, resistor-capacitor-inductance circuits or spring-mass 
systems besides other problems related to ecology or economics, for instance. 
 

 
Figure 4.2: The solver interface. [34] 

 
Let us assume that we are working in a spring-mass framework. There a particle system 
moves according to the application of several forces. Particles have mass and then, by 
following Newtonian dynamics (see chapter 3), perceive an acceleration that converts 
into velocity and position while time passes. 
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Figure 4.2 summarizes the interface between the particle system and the solver. The 
system might be formed from n particles and nforces forces, either internal or external. 
The ODE solver gets the state of the system, changes it if time passes and sets it again. 
As long as the particle system is formed from n particles and every particle is 
characterized by its position, velocity and acceleration, the solver must treat with a large 
amount of values (in fact a 6n vector containing the 3D position and velocity of all the 
particles leads to the calculation of a 3n vector of 3D accelerations). From the forces 
and the masses, the solver evaluates the accelerations and the derivatives associated to 
the system. 
 
Problems like the spring-mass framework involve second-order equations where a 
particle moves in a general force field [62]: 
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Where a set of two new variables, y1 and y2, has been introduced. We can rename the 
equations for the seek of clearness, according to a Newtonian scheme: 
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Here xi stands for the ith particle’s position, vi is its velocity, Fi is the sum of forces 
acting on it and mi is its mass. It comes clear that solving the system implies solving two 
first-order equations where forces and masses contribute to the evaluation of an 
acceleration value. This value is used for getting the changes in velocity and position 
when a discreet instant of time (∆t) passes. 
 
Solving this kind of equations in a discreet manner, like in a computer for instance, is 
the goal of a solver. Different solvers will be presented within the next sections 
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according to the classification on explicit or implicit methods, which is related to the 
kind of schemes used to defining them. 
 
4.2  Explicit methods 
 
ODE solvers in this category are formulated in an explicit manner. It means that their 
equations can be directly solved with no need from iterative processes. Explicit methods 
are classically simpler than implicit methods because of the clearness of their inner 
equations. 
 
Scoring in terms of accuracy, precision, smoothness, robustness or speed depends on the 
complexity of the method. Several possibilities are presented next. 
 
4.2.1  Euler’s method 
 
Euler’s method has been always stated as the simplest one. Let us assume that our initial 
value for the position x is: 
 

(4.6)x0 = x(t0) 
 
And that our estimate value one step after is: 
 

(4.7)x(t0 + h) 
 
Where h is the stepsize parameter (the increment of time referred sometimes as ∆t). 
 
As figure 4.3 shows, Euler's method computes a new step using the derivative direction 
at the beginning of the interval. 
 

 
Figure 4.3: Euler’s method. 

 
So that: 
 

(4.8))()( 000 txhxhtx &+=+  
 
Instead of having a real vector field, Euler provides us with a polygonal path for every 
point p. 
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Figure 4.4: Euler’s inaccuracies and instabilities. [34] 
 
It is a simple method but not accurate at all [103]. Suppose that we have a 2D function f 
whose integral curves are concentric circles. A point p governed by f should orbit 
forever around its circle. Instead of that, using Euler's method we will move the point on 
a straight line that will make it appear in a circle with larger radius. Its trajectory will 
achieve the form of a spiral. This behavior cannot be avoided. See figure 4.4 for more 
details on this effect. 
 
Moreover that, Euler can get unstable. For instance, in the case of Hook’s law: 
 

(4.9)f = -kx 
 
One can find that a point p following it must decay to zero. That will happen for small 
enough stepsizes but not in other cases. If h > 1/k we have a solution that never stops. 
Instead of that, it oscillates around zero forever. 
 
It comes clear that Euler’s accuracy depends strongly on the stepsize selected, as figure 
4.5 depicts. Tiny stepsizes offer good results in terms of trajectory (red) while large 
stepsizes lead to wrong results (magenta). 
 

 
Figure 4.5: Euler’s accuracy depends strongly on the stepsize. [34] 
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Euler's method takes one evaluation of the derivative per step, with short steps if we 
want to keep accuracy and stability (it always depends on the simulation frame). 
 
There are more robust cost-per-step methods that even evaluating four or five steps per 
iteration, can greatly outperform Euler's efficiency allowing the steps to be much 
longer. 
 
Let's look at the Euler's error more closely. If we assume that our trajectory function x(t) 
is smooth enough, we can describe it in terms of its associated Taylor series. We can 
express the value at the end of the step as an infinite sum of terms involving the 
derivative value at the beginning: 
 

(4.10)x(to + h) = x(to) + hx'(to) + ..... 
 
We get the Euler's method formula by truncating the Taylor series right after the second 
term. This means that Euler would be correct in the case that all derivatives beyond first 
were zero or either negligible. 
 

The error is dominated by the )(
2 0

2

txh ′′  term so that we have an absolute error of O(h2). 

The error that we accumulate over an interval from t0 to t1 depends linearly on the 
stepsize h. 
 
Someone could think that it shouldn't be a big problem. We could select a suitable 
stepsize, a small enough one. In practice, lots of steps will be required in order to avoid 
error accumulation. 
 
4.2.2  The midpoint method 
 
In section 4.2.1, we showed that the Euler method uses two terms of the Taylor series 
for the trajectory to approximate. For the Midpoint method we take another term of the 
Taylor series in order to keep the maximum error at O(h3) [103]: 
 

x(to + h) = x(to) + hx'(to) + 
2

2h x ′′  (to)+ O(h3) (4.11)

 
Our derivative function depends on x(t) and t. For simplicity in the explanation we will 
derive this method avoiding the dependency on t. Then we will use the expression: 
 

(4.12)x' = f(x(t)) 
 
Instead of 
 

(4.13)x'=f(x(t),t) 
 
Equation 4.14 summarizes the chain rule: 
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ffx
dx
dfx ′=′=′′  (4.14)

 
We will avoid evaluating f' because it would be complicated and expensive and 
truthfully, not really necessary. Instead we can approximate the second-order term just 
in terms of f and use it in equation 4.11. It should look like: 
 

(4.15)f(x0 + ∆x) = f(x0) + ∆x f’(x0) + O(∆x2) 
 
We introduce  by choosing: x ′′
 

∆x = 
2
h f(xo) (4.16)

 
And then: 
 

f(x0 + 
2
h f(x0)) = f(x0) + 

2
h f(x0) f’(x0) + O(h2) = f(x0) + 

2
h x ′′  (t0) + O(h2) (4.17)

 
Where x0 = x(t0). If we multiply both sides by h and rearrange: 
 

2

2h x ′′  + O(h3) = h[f(x0 + 2
h f(x0) ) - f(x0)] (4.18)

 
And then if we take the right hand side and we put it into equation 4.11: 
 

)))(
2

(()()( 0000 xfhxfhtxhtx ++=+  (4.19)

 

 
Figure 4.6: The Midpoint Method. 
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Equation 4.19 evaluates an Euler step for performing a second derivative calculation at 
a midpoint between both ends of the interval. Then the midpoint method is a second-
order solution method where the second derivative, evaluated at the midpoint of the 
interval, is finally used to calculate the whole step. 
 
The midpoint method associated error is O(h3). In that sense it is important to note its 
major precision over the Euler method. Nevertheless it requires two evaluations of the 
derivative function per step, as figure 4.7 shows. 
 

 
Figure 4.7: Values of the derivative in the midpoint method. [34] 

 
We could follow adding more terms to our Taylor series in order to minimize the error 
term. That's the case analyzed at section 4.2.3, the Runge-Kutta methodology. 
 
4.2.3  The Runge-Kutta 4 method 
 
The Runge-Kutta 4 method is an extension of the previously described midpoint method 
[103]. Figure 4.8 summarizes its philosophy. 
 

 
Figure 4.8: Slope evaluations in the Runge-Kutta 4 method. 

 
This method requires four evaluations of the slope per iteration. Nevertheless the 
stepsize can be greater than in the midpoint method (at least twice as large) while 
keeping the same accuracy. The local error term for the fourth-order Runge-Kutta 
method is O(h5) whereas the global error is O(h4). 
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The overview of the algorithm's behavior is not really complex. As in the other 
methods, we input the values of the independent variables and we get out new values 
that are stepped by a stepsize h (which as in the other methods can be either positive or 
negative). We also must supply the derivatives function for evaluating the right-hand 
side of the expressions and the starting values for all the derivatives. 
 
The Runge-Kutta 4 method treats every step in a sequence of steps in identical way. 
Prior behavior of a solution is not used in its propagation. Especially the first 
affirmation makes it very easy to incorporate this algorithm into relatively simple 
"driver" schemes. 
 
To check the accuracy we can increase the step-number, repeat the integration and 
compare results at the end. In fact this is usually done when comparing results between 
this method and high order Runge-Kutta methods (fifth, sixth and so on). Those 
comparisons can be useful to advantage in determining a suitable size for the stepsize h. 
 
Greater complexity results from having to compare terms of a higher order. We must 
solve more equations per step (11 equations and 13 unknowns) but we reduce the error 
term. Equations 4.20 to 4.24 describe this classical methodology. 
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(4.21)

(4.20)

(4.24)

(4.23)

(4.22)

 
Note how the slope is evaluated four times, corresponding to four different positions 
within the step. Then the values are averaged with different weights attending to their 
relevance on the final result. Figure 4.9 shows this behavior graphically. 
 

 
Figure 4.9: The slope is evaluated four times in the Runge-Kutta 4 method. [34] 
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Implementing the Runge Kutta 4 method can be done by successively applying the 
simple Euler method, for every slope evaluation. From that knowledge we can take the 
simple Euler equations and solve the derivative term sequentially at different positions 
in order to find the k1 to k4 coefficients. Then we can average them by simple addition 
(see equations 4.20 to 4.24). 
 
4.2.4  Adaptative stepsize 
 
Changing the stepsize can exert some adaptative control over the progress of the 
simulation. We need to achieve an accuracy at the same time that we must save as much 
computational effort as possible [103]. 
 
The gains in efficiency can be important. We should select a stepsize or another 
depending on the present situation. A small stepsize in the case of going through a 
rough path or a larger stepsize if traversing a very flat and homogeneous space. It is not 
the same to simulate a bouncing football over a concrete floor than a golf ball running 
across a grass field. 
 

 
Figure 4.10: Adaptative stepsize in a simulation framework [34]. 

 
Figure 4.10 shows a particle system being simulated in real time. The sequence consists 
on a bouncing pyramid that collides against a plane. The stepsize can be larger when no 
collision exists because of the relative simplicity of the acting forces, only external 
gravity in that case. When the pyramid collides, large stepsizes might spoil the 
simulation that has to be run by following tiny instants of time in order to be reliable. 
 
For this simulation, the initial stepsize was selected to be 0.04 seconds. From that 
moment the underlying solver automatically adapted it. 
 
It comes clear that we want to choose the stepsize h as large as possible but we also 
need to maintain the error term between some desirable bounds. By adapting our 
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stepsize at each iteration, we inform the system about the kind of "scenery" that is being 
traversed. 
 
Implementing the adaptative stepsize into our system requires information about 
performance and a reliable estimation of the truncation error. The computation of all 
these values supposes a clear computational overhead, but the investment pays the 
effort. 
 
One of the techniques intended to adapt the stepsize is called step doubling. It is a very 
straightforward technique. It consists on taking every step twice. The first step is taken 
as a full step and the second step is built from two half steps. Let us assume that the 
exact solution for an advance from x to x + 2h is y(x + 2h) and that the two 
approximated solutions are y1 (one step 2h) and y2 (two steps of h each). Then we can 
define an error term like: 
 

(4.25)∆e = y2 – y1 
 
We can control this difference in order to keep our desired degree of accuracy. We 
adjust h at every new iteration. 
 
Now that we know approximately our committed error, we need to consider how to 
keep it within some desired bounds. We need to find some kind of association between 
∆e and h. We can assume that a stepsize h1 produces an error ∆e1, while a stepsize h0 
gives an error ∆e0 that can be estimated like equation 4.26 shows. 
 

5,0

1e

0e
10 hh

∆
∆

=  (4.26)

 
For the Euler method. 
 
∆e0 is our desired accuracy. If ∆e1 is larger than ∆e0, the equation is telling us how much 
to decrease the stepsize when we retry the current, and failed, step. Otherwise, if ∆e1 is 
smaller than ∆e0, then the equation tells us how much we can increase the stepsize for 
the next step. 
 
In order to provide an example, let us suppose that we have defined an internal accuracy 
of 10-3. If the present error is 10-6, we can increase our stepsize h accordingly: 
 

hh 6,31
10
10

5,0

6

3

=−

−

 (4.27)

 
On the other hand, if our error is 10-2, we are not maintaining our accuracy within its 
desirable bounds. Then we should reduce the stepsize: 
 

hh 316,0
10
10

5,0

2

3

=−

−

 (4.28)
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Those examples give a clue on the tradeoff between the stepsize and the committed 
error. 
 
When controlling the stepsize, we can define a unique accuracy for the whole system or 
a vector of accuracies, one for each of the ODE's in the system. All the equations will 
have to be within their respective bounds. In such cases we can rescale the stepsize 
attending to the requirements of the "worst-offender" equation. 
 
Another problem arises when having to select the accuracy value. It strongly depends on 
the concrete application and it has to be defined accordingly. 
 
More complex methods like the Runge-Kutta-Fehlberg (RKF-45) method provide 
mechanisms that adapt the stepsize internally with no need from other strategies like the 
step doubling [91]. 
 
4.3  Implicit methods 
 
Implicit solvers are based on algebraic formulas that need to be solved. Iterative 
algorithms or even explicit solvers usually support these kinds of methods. 
 
It is common that implicit methodologies are more complicated than explicit methods 
while ensuring a better convergence in a few iterations. 
 
We will comment the implicit version of the Euler method. Starting from the same 
philosophy as the simple Euler method, the backwards or implicit Euler method makes 
some decisions about the derivative value. It assumes some kind of average between the 
derivatives at the beginning and at the end of the interval. 
 
If we generalize the average, we get the formulation of equation 4.29: 
 

[ ] tttYftYftYttY ∆∆++−+=∆+ ))(())(()1()()( λλ  (4.29)
 

Where f(Y(t)) equals 
dt
dY  and λ is a constant parameter that belongs to the interval [0,1]. 

It is important to note how using a linear interpolation averages the derivatives at the 
beginning and at the end. If λ=0 the equation equals the simple Euler method 
formulation. When λ=1 the equation is called the implicit version of Euler’s method. 
 
These kinds of formulations require a prior knowledge of the data that we are precisely 
looking for. We do not know Y(t + ∆t) at the beginning of the interval but we can 
overcome this problem by using additional derivative information: 
 

0YY00 f)YY()Y(f
dt
dY

=∇−+≈  (4.30)

 
And if we substitute this approximation into equation 4.29: 
 

[ ] t)f(Y)Y(fY
0YY0 ∆∆λ∆ =∇+=  (4.31)
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And solving for ∆Y: 
 

)()(1
00 YffI

t
Y YY =



 ∇−
∆

∆ =λ  (4.32)

 
Where I stands for the identity matrix. Computing the update for Y requires solving a 
linear system. 
 
If we apply equation 4.32 to a spring-mass framework we can get ride of some 
simplifications because the force depends only on the positions of the particles and not 
on their velocities (unless we use a damping factor). 
 
We end up having that: 
 (4.33)vxA =∆  
 
Where 
 





 −
∆

= HI
t

A λ1  (4.34)

 
And H is the Hessian matrix associated to the spring energy, like equation 4.35 shows: 
 

ji xx
EH

∂∂
∂

=
2

 (4.35)

 
In fact this method is faster than simple Euler method. Part of the reasoning is related to 
the sparse nature of matrix A, which is three-diagonal: 
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This matrix can be solved easily in time proportional to n [98] by using a factorization 
method that uses a lower and an upper triangular matrix. 
 
4.4  Implementations of the deformable models 
 
Several deformable models were presented in the previous chapter. Besides that, several 
numerical methods have been presented in the preceding sections. The numerical 
implementation of such deformable models uses some of the paradigms mentioned 
before. 
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4.4.1  Implementation of the plain deformable model. 
 
For details on the plain deformable model, see section 3.4.2 of chapter 3. When 
implementing this deformable model we must take into consideration that: 
 
• The model is built in a spring-mass framework. 
• Several forces (three internal and one external) are defined. This fact forces us to 

use a very stable, robust and precise numerical scheme, specially when dealing with 
the internal forces that model the inner elasticity of the mesh (see sections 3.2.1, 
3.2.2 and 3.2.3 of chapter 3). 

• We are always referring to a Newtonian dynamics approach. 
 
In order to ensure the stability of the solution we use an implicit numerical scheme, the 
Backwards Euler method [7]. Then we must personalize the general methodology 
described to fill our needs, a spring-mass framework with particles involved. 
 
The variations in position and velocity can be written like: 
 

(4.37)∆x = x(t0 + h) – x(t0) 
 
And 
 

(4.38)∆v = v(t0 + h) – v(t0) 
 
Where h stands for the stepsize. Then the system can be written like: 
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h
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oo
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The method evaluates the forces at the next time step. In order to find those forces, it 
uses a first order Taylor approximation: 
 

(4.40) ∆v
v
f∆x

x
ff∆v)v∆x,f(x ooo ∂

∂
+

∂
∂

+=++  

 
The derivatives ∂f/∂x and ∂f/∂v are evaluated in (x0,v0). Substituting them in equation 
4.39 we obtain: 
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And knowing that: 
 

(4.42)∆x = h·(v0 + ∆v) 
 
We finally find: 
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We group terms and we finally obtain a linear equation system that serves us to find ∆v: 
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This is a linear equation system with 3n unknowns. The final solution is the velocity 
increment for all the particles in the system. From this knowledge, we can calculate the 
new position for all the particles like: 
 

(4.45)x = x + ∆x 
 
Where 
 

(4.46)∆x = h·(v0 + ∆v) 
 
In order to perform a step, we must evaluate the forces and their derivatives (related to 
position and velocity). 
 
The implicit characteristic of the method allows us to use bigger stepsizes, having to 
solve a linear equation system at each iteration. Those systems are typically sparse and 
then are suitable to be solved by an iterative method like the conjugate gradient method 
[5, 7]. 
 
4.4.2  Implementations of the spring-mass, restricted spring-mass and free 

deformable models 
 
The spring-mass, restricted spring-mass and free deformable models share the 
Newtonian approach with the plain deformable model. Moreover that, all of them are 
methods based on the simulation of a particle system. Nevertheless, the difference 
appears when talking about the internal forces implied. Those methods employ only one 
(spring-mass and restricted spring-mass deformation models) or none (free deformation 
model) internal force (see sections 3.4.3, 3.4.4 and 3.4.5 of chapter 3). It means that 
their numerical evaluations are not as critical as in the previous model. In fact similar 
results in terms of robustness and accuracy can be achieved in these by explicit 
methods, like the Runge Kutta 4 method (section 4.2.3). 
 
4.4.3  Comparative between numerical implementations 
 
This section presents several experiments as a comparison between the implicit and 
explicit methods used within the scope of this project. 
 
In the first test, there is a common simulation experiment that consists on the 3D 
reconstruction of the external surface of a phantom volume (see appendix D for more 
details). This volume is used for testing the quality of the reconstruction because of its 
known measurements. 
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The common conditions for the experiment are described next: 
 
• Initial reconstruction mesh built from 642 particles and 1280 triangles. See chapter 5 

for more details on the geometrical mesh. 
• The external GVF force was weighted by a factor of 25. See chapter 3 for more 

information regarding this external force. 
• A damping factor of 0.25 was associated to the external GVF vector field. 
• The discretized phantom volume was formed from 8616 peripheral voxels. Those 

voxels were used as the borders where the geometrical mesh had to stop. 
 
Table 4.1 summarizes the results of the simulations depending on the deformation 
model employed. Note that the plain deformation model was simulated by a backwards 
Euler method. The other deformation models were simulated by using an explicit 
Runge-Kutta 4 method. 
 
The stepsizes used in the implicit method can be considerable bigger than in the explicit 
simulations. The selected stepsize is then associated to the internal forces simulated and 
to the mesh resolution (the resolution can vary the internal forces magnitude). The free 
deformation model is able to drive a high percentage of particles to a distance less than 
one voxel long from the real data to recover. 
 
The parameters K Stretch, K Bend, K Shear and their associated damping factors were 
tuned by using typical values used for most of the simulations. Those values are also 
written in table 4.1. 
 
 Plain (1) Plain (2) Spring-mass Free 
∆t 0.01 seg. 0.05 seg. 0.05 seg. 0.05 seg. 
% final 
particles less 
than 1 voxel 
away 

77 % 74.5 % 73.6 % 97 % 

K Stretch 10 10 10 ---- 
K Stretch 
Damping 

1 1 1 ---- 

K Bend 10 10 ---- ---- 
K Bend 
Damping 

1 1 ---- ---- 

K Shear 1 1 ---- ---- 
K Shear 
Damping 

0.1 0.1 ---- ---- 

Table 4.1: Comparison between numerical schemes. 
 
The results of table 4.1 can be completed by the graphical representations of figures 
4.11 and 4.12. 
 
Figure 4.11 shows the dispersion of the particles around the zero-distance line (red line). 
The particles are rendered like blue points with a positive (over) or negative (under) 
distance from the real data. It is clear that the best approximation is D, which 
corresponds to the simulation that uses the free deformation model and the explicit 
Runge-Kutta 4 method. In that experiment 97 % of the particles ended up being less 
than one voxel away from the data to recover. 
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Figure 4.11: Final distances from the particles to the data to recover. A) Plain 

deformation method with ∆t = 0.01 s.; B) Plain deformation method with ∆t = 0.05 s.; 
C) Spring-mass deformation method; D) Free deformation method. 

 
Figure 4.12 shows the evolution of the distances while time passes. 
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Figure 4.12: Evolution of the distances to the data to recover. A) Plain deformation 
method with ∆t = 0.01 s.; B) Plain deformation method with ∆t = 0.05 s.; C) Spring-

mass deformation method; D) Free deformation method. 
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It is important to note the evolution of the particles more than three voxels away from 
data (red curve) and less than one voxel close (magenta curve). At the beginning there 
are several particles too far from the zero-distance region but as long as the system 
iterates, the red curve decreases at the same time that the magenta curve increases. 
Another conclusion to take is that the oscillations of the particles around the zero-
distance region in C and D are less than in the other two simulations. At the same time, 
C and D get maximum levels of proximity in only a few iterations. 
 
As a conclusion we might say that the plain de formation model is too complex for the 
3D reconstructions that we are dealing with. In that sense it is not compulsory to use an 
implicit numerical method because the other deformation models make use of less 
internal forces or even none. The explicit methods give less control over smoothing 
parameters but are fast and efficient enough, optimizing distances and avoiding the 
apparition of oscillations. 
 
Next paragraphs present two more experiments, now based on the explicit methods. All 
the tests were performed using a spring-mass deformation model (only stretch internal 
force). The parameters for the spring-mass deformation model were KS = 10.0 (the 
weighting parameter for the stretch force), KSD = 1.0 (its associated damping factor), 
KGVF = 10 (a multiplying factor for the external force), KGVFD = 0.1 (its associated 
damping factor). The global mass for the entire particle system was 1 kg. 
 
The durations are expressed in seconds. All the tests were held on a Pentium III PC, 
with 256 MB RAM and an accelerator card (ATI Radeon 32 MB). 
 
The voxelized data to recover consisted in a 64 x 64 x 23 world of voxels, with 
dimensions 2,87 mm in X and Y, 5,74 mm in Z. 
 
Table 4.2 presents the results for the first test. In that case, the smoothing algorithm (see 
chapter 5) was not enabled. The idea of the experiment was to find out the maximum 
stepsize allowed depending on the method and on the initial mesh. The tested meshes 
were three: simple, medium and complex. Their characteristics are described next: 
 
• Simple mesh: 162 vertices and 320 triangles. 
• Medium mesh: 642 vertices and 1280 triangles. 
• Complex mesh: 2562 vertices and 5120 triangles. 
 
The mesh resolution (see chapter 5) affects definitely the internal force. The stretch 
force (see section 3.2.1 of chapter 3) depends on the elongations of the springs, which 
are directly related to the links between vertices. More resolution means more links and 
that means more internal forces to evaluate at every step. Besides that, the initial 
elongations get shortened as the resolution increases, and this initial elongations are the 
ones that the stretch force tries to maintain. 
 
Let’s start looking at the maximum stepsizes according to the mesh resolution. It is clear 
that as long as the resolution increases (from simple to complex), the stepsize has to be 
reduced in order to avoid divergences. All the solvers show the same behavior. On the 
other hand, the duration of the entire simulation increases if the resolution gets larger. 
More complicated meshes lead to longer durations because of the larger amount of 
vertices and links to be processed. 
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Solver deltaT Sim. Time Volume Mesh
Euler 0,1 0,07 60338,9 simple
Euler 0,031 1,732 66979 medium
Euler 0,007 22,697 69114,9 complex

Midpoint 0,12 0,02 62054,5 simple
Midpoint 0,031 1,265 68304,6 medium
Midpoint 0,007 46,191 67917,3 complex

RK4 0,172 0,06 62308,2 simple
RK4 0,043 1,273 67850 medium
RK4 0,01 18,342 69007,5 complex  
Table 4.2: First comparison of the explicit methods. 

 
In terms of the stepsize from a fixed mesh, the Runge Kutta 4 method allows the higher 
stepsize, followed by the Midpoint and Euler methods. 
 
As a final conclusion, one can notice that the final volumes for the recovered mesh are 
quite similar if we fix the mesh while varying the employed solver. The simple mesh 
gives the most reliable volume because of the absence of degenerations. Medium and 
complex meshes are too detailed for the coarse quality of the voxelized data. If the 
triangle area is not similar to the distance between data slices, the final surface shows 
what is called a cuberille effect [42]. 
 
The volumes are referred to the internal cavity (endocardium) of the human left 
ventricle. Those measures are very important for the correct diagnosis of a patient. For 
each of the reconstructions, the information on volume gives the amount of blood 
present inside the ventricle at that moment. 
 

  

  
Figure 4.13: Degenerations on the final meshes due to the resolution increase. From left 
to right and top to bottom: the voxelized data to recover, the simple mesh, the medium 

mesh and the complex mesh. 
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Figure 4.13 shows the voxelized data and three of the final reconstructions, attending to 
the three resolutions of the meshes. The data is based on an actual’s patient left ventricle 
imagery. More concretely, the meshes reconstructed the internal surface of the organ. 
 
Table 4.3 shows the results for the second test, regarding also explicit methods. In that 
case, all the tests were performed using the simple mesh and the stepsize was fixed to 
0,1 seconds. The borders where related to the external surface of a real left ventricle 
dataset. 
 

Solver Sim. Time Relax
Euler 0,05 on
RK4 0,13 on
Euler 0,12 off
RK4 0,17 off  

Table 4.3: Second comparison of explicit methods. 
 
The smoothing algorithm was only enabled for the first two simulations. When the 
smoothing is disabled, the simulation durations tend to increase. Peaks appear because 
of the absence of the smoothing effect, and errors arise. There also differences between 
the methods due to the differences in evaluations that every solver performs at each 
iteration (one evaluation for the Euler method and four evaluations for the Runge Kutta 
4 method). There is a tradeoff between the final accuracy and the duration of the 
simulation. In that sense the Runge Kutta 4 method gives the best results. 
 
If the smoothing algorithm is enabled the durations decrease. As long as the smoothing 
algorithm corrects peaks that appear during the simulation, the reconstruction performs 
more fluently and quickly. The smoothing effect is especially present in the Euler 
method, which improves better in terms of duration. The RK4 method is refined by 
performing more steps per iteration, the results are better by themselves and the 
smoothing becomes less intensive. 
 
4.5  Implementation of the external force 
 
In order to solve the GVF external force presented in section 3.3.4, we define a temporal 
evolution that will guide the system until it reaches its stationary form. 
 
We use a finite differences scheme complemented by an explicit Euler’s method in 
order to follow this temporal evolution [104]. 
 
First of all, the variable t is introduced in the system as a parameter. Its evolution is 
planned as follows: 
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where the expressions of b, c1, c2 and c3 are: 
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If we discretize the expressions, we obtain the final implicit equations. For the first 
component of the vector field, u, we have that: 
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where: 
 

zyx
tr
∆∆∆

∆
=

µ (4.50)  

 
There are analogue expressions for the rest of vector components (v and w). Because of 
the finite differences scheme, the convergence to the solution restricts the maximum 
stepsize applicable (Courant-Friedrichs-Lewy condition). Then we must select a 
stepsize that satisfies the condition: 
 

(4.51)
µ4

zyxt ∆∆∆
≤∆  

 
Figure 4.14 shows two examples (divergence on the left and convergence on the right) 
for the method. In the left simulation, the central object is a voxelized sphere. Prior to 
the 3D reconstruction of its external surface, the GVF external force is computed. If the 
stepsize is not tuned according to equation 4.51, the results can be incorrect as shown. 
Note how the vectors are totally unorganized, especially in the four corners of the world 
of voxels. On the contrary, the right simulation was performed according to equation 
4.51 and the results where correct as expected. 
 
Satisfying the Courant-Friedrichs-Lewy condition is not a big issue. It defines a top 
value that depends on the smoothing parameter µ. We normally begin by selecting the 
value for µ depending on the smoothness that we need for the vector field. Take into 
consideration that ∆x, ∆y and ∆z are fixed values of the world of voxels. The voxels are 
created from medical images with a fixed measurement for the pixels. Then we only 
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need to use a suitable, which means under the top defined by equation 4.51, value for 
∆t. 
 

  
Figure 4.14: Wrong (left) and correct (right) results for the GVF external force. 

 
4.6  Summary 
 
This chapter shows the need of solvers in order to perform discreet simulations in a 
computer. The state of our virtual scenery, let us say the trajectory that the particle 
system has to follow, has to be simulated step by step by solving several derivatives. 
We choose an initial stepsize and let the system evolve from the beginning. 
 
Particle systems can be simulated by Newtonian dynamics and these physical laws are 
represented by second-order ordinary differential equations. Second-order ODE’s are 
frequently split in two first-order ODE’s that are solved by several methodologies 
available. Our simulations are classified as initial value problems, where the initial 
position of all the particles is known for a given time. From that value we proceed to the 
calculation of the whole trajectory. 
 
Numerical methods can be explicit or implicit. Explicit methods are typically simpler 
and easy to solve. Nevertheless several steps must be taken per iteration in order to 
ensure high degree accuracies. Implicit methods ensure a better solution but must be 
supported by iterative algorithms or even by other explicit solvers. This is due to the 
fact that implicit methods are based in an algebraic formula that has to be solved. 
 
This chapter describes several explicit  (simple Euler method, Midpoint method and 
Runge-Kutta 4 method) and implicit (Backwards Euler method) methods. It also 
presents a summary on adaptative stepsizes, useful for sceneries where the external 
conditions change continuously, making an adaptation necessary in order to speed the 
process while maintaining overall accuracy. 
 
The implementation of the deformable models presented in chapter 4 is also described. 
The method is chosen depending on the existing internal forces for every model. More 
complex models lead to the need of better solvers. The plain deformable model is 
implemented by an implicit Backwards Euler method. The spring-mass, restricted 
spring-mass and free deformation models are implemented by a Runge-Kutta 4 method. 
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The methods are compared using real data and practical results. The study concludes 
that implicit solvers better simulate deformation models where several internal forces 
apply. However, less force intensive models like the spring-mass based or the free 
deformation model, can achieve good results with an explicit solver where the stepsize 
has been accurately selected. 
 
The external force implementation is also demonstrated. It can be obtained by an 
iterative algorithm that uses a finite differences scheme complemented by an explicit 
Euler solver. 
 
Chapter 5 introduces the geometrical representation used within this project. In order to 
perform the simulations, a geometrical surface must be defined in terms of resolution, 
initial size and topology. Next chapter presents several options available and illustrates 
the reasons that drived us to select our triangulated mesh. 
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5  Model geometry 
 
The geometry of the model is one of the main restrictions to the available options. 
Depending on the type of representation we restrict the complexity of the shape and we 
must choose one or another methodology. Using triangles, quads or hexagons, explicit 
or implicit functions, continuous or discreet approximations is a tough decision that has 
to be taken conscientiously. 
 
This chapter presents the possibilities that have been analyzed and compared in order to 
select a suitable geometrical model for our specific needs. 
 
5.1  Classification of geometrical models 
 
The geometry of the model describes the shape parameters that among others, like the 
deformation parameters, permit a realistic simulation. A basic classification 
distinguishes between continuous or discreet surfaces. 
 
Continuous surfaces are characterized by an implicit or explicit equation while discreet 
morphologies are built from other entities like vertices or particles in a mesh. Table 5.1 
summarizes the classification [71]. 
 
Attending to the classification in table 5.1, our geometrical model can be considered as 
an hybrid of several categories. In fact, our model can be described as a discreet 
triangulated mesh that is treated as a particle system in terms of evolution. It can be 
simulated by several deformation patterns like the ones described in section 3.4 of 
chapter 3. One of the patterns is the spring-mass deformation scheme, also summarized 
in table 5.1. 
 
A triangulated mesh can be easily handled by code and most of the accelerator cards in 
the market are specifically designed for it in terms of overall performance of the 
computation and the rendering. Moreover that, meshes are easy to map into particle 
systems where each of the vertices can be treated like a particle in a direct way. 
 
As long as our deformable model is based on a Newtonian scheme, that is built from 
particle systems, and taking into consideration the hardware functionalities of  the 
accelerator cards in typical workstations, we decide to use the geometrical model 
described before. 
 
For the seek of clearness, let us present a suitable data structure that maintains a discreet 
triangulated mesh. A set of crossed lists (vertices, edges, triangles) does the job. Figure 
5.1 shows the code expressed in C language. 
 
As figure 5.1 shows, every entity has complete access to the others. It is clear that a 
vertex can access the edges and triangles it belongs to; every edge is composed by two 
vertices and belongs to several triangles; every triangle is defined by three vertices and 
three edges. This structure is then bi-directional in terms of access. 
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Category Explicit representation 
Defined by a parameter vector (q) 
More parameters imply more complexity 
The parameters control local and global deformation 
Types Characteristics 
Polynomial functions Where their continuity can be controlled at different levels like at the derivative 

level (C1) or at the smoothness level (C2) 
Superquadrics Typically closed surfaces 

Defined by a symmetry axis 
No good for complex shapes 

Modal decomposition The LOD (Level Of Detail) is controlled dynamically by a decomposition in 
several frequency harmonics  
The more modes, the best detail 

Category Implicit representation 
Characterized by the zeros set of a certain function f 
Types Characteristics 
Algebraic surfaces Can be used to reconstruct unstructured sets of points in the space 

Not necessarily closed 
Require the computation of distances between vertices and data which are 
typically difficult 

Superquadrics Implicit versions of the explicit surfaces commented before 
Hiperquadrics An extension of Superquadrics acting as a refinement 

Must be homeomorphic to a sphere 
Level Sets Embedded in a higher dimension space 

Poor interaction and computationally expensive 
Category Discreet meshes 
Several vertices connected with each other 
Types Characteristics 
Discreet contour Vertices connected 
Triangulation A discreet contour with some kind of neighborhood relation between the 

vertices 
Topological constraints can be defined 

Spring-mass Every vertex acts as a particle defined by its mass, position and velocity 
Particles are joined together by links that act as physical springs 

Simplex meshes With constant connectivity between vertices (three neighbors per vertex) 
Based on hexagonal shapes 
Dual to triangulations 

Category Particle systems 
Based on Newtonian evolution schemes 
Forces and energies maintain the cohesion of the entire model 

Table 5.1: Classification of geometrical models. 
 
Besides that, it can be easily embedded into a particle system scheme where vertices are 
particles and edges might be treated like springs. In fact it is only necessary to add some 
parameters to the structure like the associated mass and velocity for a vertex (we already 
save the position) and the rest length and the associated constants for an edge that acts 
like a spring. 
 
It is important to note that the triangulation ensures the robustness of the mesh. Vertices 
are joined together via their topology relationship. If no topology or external mechanism 
is provided, we might obtain poorly results after the reconstructions. Figure 5.2 shows 
an actual example. 
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typedef struct{ 

int id;  // Vertex ID 
float position[3];  // XYZ values for the vertex 
int triangleCounter;  // It belongs to “triangleCounter” 
   // triangles 
int *triangles;  // Indexes of the triangles 
int edgeCounter;  // It belongs to “edgeCounter” edges 
int *edges;  // Indexes of the edges 
float normal[3];  // Normal vector associated to the vertex 

}vertex;  // A vertex 
 
typedef struct{ 

int id;  // Edge ID 
int vertexs[2];  // Two vertices for this edge 
int triangleCounter;  // It belongs to “triangleCounter” 
  // triangles 
int *triangles;  // Indexes of the triangles 

}edge;  // An edge 
 
typedef struct{ 

int id;  // triangle ID 
int edges[3];  // Three edges for this triangle 
int vertexs[3];  // Three vertices for this triangle 
float normal[3];  // Normal vector associated to the 
  // triangle 

}triangle;  // A triangle 
 

Figure 5.1: C structure for a triangulated mesh. 
 

 

 
Figure 5.2: Top view of the poorly results due to failures in the topology. 

 
In figure 5.2, from left to right and top to bottom: the vertices after the reconstruction, 
the vertices superimposed to the dataset, the triangles associated to the vertices and a 
final render using flat shading. 
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Figure 5.2 shows the results after a reconstruction using the free deformation model (see 
section 3.4.5) where no topology relationship was provided between vertices. Moreover 
that, there were no external mechanisms controlling the simulation and ensuring its 
quality. External mechanisms might be stopping processes that would ensure that the 
vertices stop when reaching the dataset or smoothing algorithms like the one presented 
in section 5.5. 
 
The vertices of this reconstruction ran freely trying to track the dataset. All of them 
reached it but did not stop when they should. Due to the tangential components of the 
external vector field (see section 3.3.4), the vertices (particles) kept moving. That 
behavior resulted in an unorganized cloud of points with different densities depending 
on the region. If we render their associated triangles (for rendering purposes only, no 
present in the simulation) we perceive the low quality of the final mesh, totally 
degenerated. 
 
5.2  Quality of the triangulated mesh 
 
The final 3D model must contain information on surface and volume. As a second 
process which is not within the scope of this project, it will be necessary a 
tetrahedralization process between both the internal and external surfaces (see chapter 
6) in order to allow real-time interaction with the model. This process must associate 
internal triangles with their external neighbors. Then it is imperative to ensure their 
quality by avoiding possible degenerations. 
 
The degree of degeneration for a triangle can be easily computed. A good measure of 
this is the quotient between its area and the magnitude of the biggest edge (aspect ratio). 
If this quotient is near to zero, the triangle might be presenting degenerations. Figure 5.3 
shows two examples on this. The blue triangle on the left has got a degeneration 
measure of 1.5 while the red triangle on the right, which is definitely more degenerated, 
has got a measure of 0.25, clearly nearer to zero than the other. 

 
Figure 5.3: Measure of the degeneration in triangles. Values a and d stand for area and 

degeneration respectively. 
 

It becomes clear that the quality of the triangles in the final mesh is important. 
Moreover that, this needed quality determines in some way the optimal size for the 
initial triangles of the mesh. A very detailed mesh will recover the data very closely but 
will fail in terms of final smoothness and degeneration of the triangles. On the contrary, 
if the size of the initial triangles is greater or equal to the separation between the data 
slices (the vertical size of a voxel), we will ensure a good aspect ratio for them. 
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For creating the initial mesh, we use a sphere centered at the origin. We then evaluate 
the center of mass and the bounding box of the data to recover. These parameters are 
used in order to determine the suitable transformations that will make the sphere 
surround the data. These transformations are a translation and a scaling. After their 
application to all the vertices of the centered sphere, we do have the initial mesh ready 
for the simulation. 
 
We have used three different spherical meshes attending to their differences in 
resolution (number of triangles). Table 5.2 shows their characteristics. 
 

Mesh # 1 2 3 

Render 

   
# vertices 162 642 2562 

# 
triangles 

320 1280 5120 

Averaged 
areas / 

degeneration 

133.38 /  6.95 33.82 / 3.49 8.48 / 1.75 

Max. area / 
degeneration 

183.87 /  8.28 47.85 / 3.96 12.2 / 1.99 

Min. area / 
degeneration 

111.8 /  6.25 28.18 / 3.12 7.05/ 1.55 

Table 5.2: Initial triangulated meshes. 
 
Areas are expressed in mm2. The format # / # corresponds to the area value followed by 
the normalized area or aspect ratio, as commented before. It can be seen that the 
triangles of the first mesh are much bigger than the other. There are no degenerations 
for the three meshes in their initial situations as the numerical values depict. 
 
The amount of triangles is static so that no one will be created nor destroyed during the 
simulation. That means that the topology of the geometrical model is not altered. 
 
Table 5.3 shows the same quantities that table 5.2 but after the reconstruction. This test 
consisted on the recovering of a Phantom dataset (see appendix D) by using the simple 
(1), medium (2) and complex (3) meshes, attending to their resolutions. All the 
reconstructions where performed by using the free deformation model (see section 
3.4.5). The 3D graphics show the meshes with flat (left) and smooth (right) shadings. 
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 Flat Smooth Averaged 
areas / 

degeneratio
n 

Max. area / 
degeneration 

Min. area / 
degeneration 

1 

  

84.03 / 5.1 170.02 / 7.73 23.15 / 1.99 

2 

  

22.5 / 2.57 116.4 / 5.24 0.82 / 0.09 

3 

  

6.24 / 1.29 72.38 / 4.95 0.0007 / 0.0005 

Table 5.3: Quality of the triangles after the simulation. 
 
Let us examine them case by case: 
 
• In the first mesh, the final result does not present any degenerations although the 

minimum area has been reduced considerably (from 111.8/6.25 to 23.15/1.99). 
• In the second mesh, we can perceive how the degenerations begin to appear. 

Looking at the minimum areas closely we see that we have changed from 28.18/3.12 
to 0.82/0.09). 

• In the third mesh the degenerations are very important as we can derive from the 
differences between the minimum and maximum areas. The renders show clearly 
the cuberille effect in the reconstruction due to the tiny initial triangles and the 
discreet nature of the dataset. 

 
We can conclude that, as expected, the first mesh gives the best final reconstruction. 
This mesh is smooth enough for our purposes and presents no degeneration at all. 
 
In order to check if there is some kind of dependence between the final quality of the 
triangles and the reconstruction method, table 5.4 shows some results. 
 
Figure 5.4 shows all the areas. Real values are rendered in blue while aspect ratios are 
rendered in magenta. The reference to take is the initial mesh (upper-left corner). If 
there are important differences between the initial mesh and the analyzed case, we can 
conclude that we have important variations between the areas which can be understood 
like tiny and huge triangles in the same mesh (it might be a symptom of degeneration). 
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Reconstruction 
method 

Averaged areas Max. area Min. area 

Initial mesh 33.82 / 3.49 47.85 / 3.96 28.18 / 3.12 
Spring-mass 28.7 / 3.15 41.9 / 3.7 17.8 / 1.4 

Free 28.5 / 3.14 40.8 / 3.46 21.4 / 2.6 
Restricted Spring-

mass 
29.24 / 3.18 45.85 / 3.77 21.0 / 2.65 

Plain 25.77 / 2.46 90.32 / 5.92 0.76 / 0.14 
Table 5.4: Final quality of the triangles attending to the reconstruction method. 

 
All the reconstructions were performed using the second mesh of table 5.2 (1280 
triangles). We present a graphical representation of this results in figure 5.4. 
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Figure 5.4: Graphical view of the quality for the final triangles. From left to right and 
top to bottom: initial mesh, Spring-mass mesh, free mesh, restricted Spring-mass mesh 

and plain mesh. 
 
Note the poor quality of the mesh in the bottom case, when using the plain deformation 
method. It is not an exaggerated case but it contrasts with the rest which are mainly 
equal. We conclude that the final quality of the triangles depends more on the initial 
dimensions of the mesh, not hardly on the reconstruction method. 
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5.3  In-to-Out vs. Out-to-In reconstruction 
 
The reconstructions provide two surfaces, one internal and the other external. The 
external surface can be clearly obtained by a simulation from the external initial surface 
that surrounds the dataset and evolves in a Out-to-In manner. The problem arises when 
dealing with vertices in a triangulated mesh that should evolve in a In-to-Out scheme in 
order to recover the internal surface. Figure 5.5 helps explaining this question. 
 

 
 

 
Figure 5.5: Internal mesh reconstruction. 

 
The first row of figure 5.5 shows an actual patient dataset (blue) and the initial internal 
mesh that will try to reconstruct the internal cavity (red). The bounding box of the 
dataset is rendered as a yellow square. The second row shows the final results after the 
reconstruction of the internal cavity. 
 
In order to initialize the mesh we have two possibilities: 
 
• Doing it by hand, which is the case of figure 5.5. This methodology slows down the 

whole process which we want to be as automatic as possible. 
• Translating and scaling the mesh accordingly. For the internal mesh, the translation 

is easy and corresponds to the position of the center of mass of the dataset. The 
problem arises when having to scale it. The bounding box of the dataset gives clues 
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on the initial dimensions for the external initial mesh but no information on the inner 
cavity. 

 
As long as we want to use the second approach, we need an alternative methodology for 
the inner mesh initialization. Let us deduce a second reason for this. 
 
When using the In-to-Out approach, we can have several reconstruction artifacts. Table 
5.5 shows two experiments about the inner surface retrieval. The only difference 
between both tests is the resolution of the initial mesh (320 triangles for the first test and 
1280 for the second). 
 
Test Initial mesh 

(flat) 
Initial mesh 

(smooth) 
Final mesh 

(flat) 
Final mesh 
(Smooth) 

1 

   
2 

    
Table 5.5: Artifacts in internal reconstructions. 

 
Although the initial mesh has been carefully positioned inside the cavity of the dataset, 
the final results should be much better. Those are much detailed in the second test but 
we still perceive artifacts in the recovery. The differences in the sizes of the triangles are 
important. We can see by simple visual inspection that the top area of the mesh is 
poorly detailed while the bottom zone has been covered by lots of tiny triangles. 
 
There is a clear reason for this, regarding the quality of the external force inside the 
dataset (see section 3.3.4). The external force can not be derived correctly there because 
of the lack of physical space. Besides that, the vertices in the mesh are not uniformly 
attracted making the final triangles to be very different. Among all of these, triangle 
degeneration can be best controlled when decreasing than when increasing its area. 
 
We see that the In-to-Out approach presents several problems related to the initial 
adjustments and posterior evolution. Those corrupt our intentions to automate the 
process while obtaining a robust final result. In order to overcome this, we propose to 
use the Out-to-In approach even if reconstructing the internal surface. That means 
beginning as in the external reconstruction case but using a second external force, 
derived only in the vicinities of  the internal borders. More details on these can be found 
in chapter 3. 
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5.4  Our model and the Marching Cubes algorithm 
 
The Marching Cubes algorithm [55] has been extensively used in the context of 
medicine among others. It was developed by Lorenson and Cline in 1987 and it is 
always used as the first 3D segmentation algorithm to compare with. 
 
The Marching Cubes algorithm extracts the surface that corresponds to a defined level 
of property in the given dataset. We might name it as an isosurface because of the equal 
values of property everywhere inside its domain. It works in a voxel basis, like in our 
approach, by classifying the voxels attending to the property values at their associated 
vertices. Once the voxels have been classified, the internal topology can be identified 
and the vertices can be interpolated in order to get the triangle mesh that best satisfies 
our needs. 
 
Figure 5.6 summarizes its behavior in a 2D case, for a better understanding. It is the so-
called Marching Squares algorithm [2], a simplification of the Marching Cubes 
approach. 

 
Figure 5.6: Three cases of the Marching Squares algorithm. 

 
Figure 5.6 shows in red the vertices that verify the property value that we are looking 
for. That is that their associated property value is over (or under if we prefer) some 
desirable bounds. Blank vertices do not accomplish this fact. Then it is easy to see that 
the contour (or surface in 3D) that separates the vertices over the threshold from the 
vertices under it ,must be the gray line. The top cases are pretty clear but the bottom row 
presents an ambiguity: the vertices are the same but the contour might have two 
different representations. In fact, this is the main problem of the Marching Squares, and 
by extension, the Marching Cubes algorithm: the existence of ambiguities that might 
induce the apparition of holes. 
 
Moreover that, the Marching Cubes algorithm generates an elevated amount of triangles 
that must be simplified afterwards in order to provide a quick and real-time response to 
user interaction, for instance. 
 
Several attempts have been presented in order to solve these defects. A well-known one 
is the Discretized Marching Cubes approach of  Montani et al. [73]. This approach 
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focuses on the reduction of generated triangles besides the elimination of some 
ambiguities. In fact, the algorithm completes the original cases with several more that 
avoid the apparition of holes in the final surface. 
 
However there are still a couple of problems hard to handle by this kind of algorithms: 
 
• First of all, the existence of holes in the original dataset. If the data to recover is 

incomplete, those algorithms will recover an incomplete surface. 
• Secondly, we are mainly interested in the recovering of two different, and separated, 

surfaces. Those algorithms would recover a unique surface if we take into 
consideration that the left ventricle acquisitions are opened at the top. See figure 5.7 
for more details on this. 

 

 
Figure 5.7: Cross sections of the recovered surfaces for the Phantom volume (see 

appendix A). 
 
Figure 5.7 shows the cross sections of the surfaces recovered by two different 
methodologies. In the first case (top-right), the method finds two different surfaces 
which are unrelated to each other. The second case (bottom-right) consist on a method 
like the Marching Cubes algorithm, that finds a unique surface that wraps up the entire 
dataset. 
 
If the original data presents holes or let us say regions with absence of acquisition, the 
Marching Cubes algorithm does not provide the results that we are looking for. 
 
Figure 5.8 shows an artificial dataset where there is a clear absence of data in the middle 
region. However our methodology “interpolates” the blank space due to the topology 
restrictions that exist between the vertices. The edges and then the triangles “save” this 
situation from a clear failure. Isosurface based algorithms like the Marching Cubes 
algorithm would find two different surfaces, one at the top and the other at the bottom 
of the dataset. 
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Figure 5.8: Reconstruction of an artificial left ventricle, with absence of data. 

 
There is still a final reason for avoiding the use of isosurfaces. It is very difficult to 
know the exact value that has to be taken as a property threshold. Moreover that, this 
value might be different from one acquisition, or dataset, to another. Different patients 
have different tissue characteristics and different blood densities that make the obtained 
images to be different, in terms of gray level. We should work attending to gradient 
changes and not to absolute property values. 
 
Despite of all the reasons stated before, we performed a test that consisted on using a 
Marching Cubes isosurface as the initial mesh for our reconstruction method. Given a 
complete dataset, we defined a threshold value that was used to obtain an isosurface. 
This isosurface was used as the initial mesh that would adapt to the data. The final 
results were compared to the same reconstruction by using a transformed sphere as the 
initial mesh. Table 5.6 presents the results and figure 5.9 shows some conclusions 
graphically. 
 

Mesh Max. 
initial 
area 

Min. 
initial 
area 

Averaged 
initial 
area 

Max. 
final 
area 

Min. 
final 
area 

Averaged 
final area 

% less 
than one 
voxel far

Sphere 41.8 24.6 29.95 43.23 23.14 29.92 85% 
MC’s 20.5 0.25 10.5 22.12 0.2 10.8 83% 

Table 5.6: Comparison of results attending to the initial mesh (Scaled Sphere vs. 
Marching Cubes) 

 
It is clear that the initial meshes are different in the sense that their areas differ. 
Moreover that, the distance between the maximum and minimum areas is much bigger 
in the isosurface than in the transformed sphere. After the simulation, the values are 
basically maintained within the same magnitudes. The reconstructions were equally 
successful because nearly the same percentage of vertices ended up being less than one 
voxel far from the data to recover. 
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Figure 5.9: Graphical evolution of the vertices attending to their distance to real data. 

 
Figure 5.9 shows the evolution of the vertices in terms of their distance to the real 
dataset. The left graphic stands for the simulation using the transformed sphere while 
the right graphic shows the results of the simulation using the isosurface. Both 
simulations were performed using the spring-mass deformation method with stepsizes 
below 0.001 seconds that ensured their convergence. No automatic stopping mechanism 
was used and no smoothing algorithm was applied. The blue line stands for vertices less 
than one voxel far from data, the magenta line for less than two voxels, the yellow line 
for less than three voxels and the cyan line for voxels far away from three voxels. 
 
A first analysis shows that just at the beginning, the sphere has no vertices near the 
dataset while the isosurface begins with more than 300 vertices really close to data. This 
is due to the proximity of the isosurface to the dataset and demonstrates that the 
property threshold was correctly selected. 
 
Both simulations present a quick and big decay in the cyan line which means that the 
vertices came close to data in a very fast way. Nevertheless the isosurface ends up with 
more vertices far away (cyan line) although it gets more vertices really close to data 
than the sphere. As expected, the enormous amount of vertices that starts the simulation 
very close to data helps in that question. 
 
5.5  The smoothing algorithm 
 
We are dealing with the reconstruction of low-resolution data, where the final results 
can be poorly detailed because of its discreet nature. We use an algorithm that is applied 
to a world of voxels in order to “cover” the low-resolution data, getting the shape. After 
this reconstruction process, we might need to smooth the mesh. We propose an easy-to-
code smoothing algorithm for 3D reconstructed surfaces. The algorithm has been 
recently published in [50]. 
 
The smoothing algorithm is geometrically based. There is no dependency on the 
reconstruction method previously used. Thus, the algorithm can be always applied 
without any information from the previous process. 
 
The algorithm can be useful in all contexts where a mesh needs to be smoothed: in 
terrain generation, fluid simulation, automated reconstruction applied to virtual surgery, 
etc. 
 

5 Model geometry  111 



General Dynamic Surface Reconstruction 

5.5.1  About the input mesh 
 
The algorithm takes as its input a mesh to be smoothed. In order to facilitate the coding, 
it is highly recommended to build an intelligent data structure in the sense that every 
item should be able to access the others easily. It might be enough to use a set of 
crossed lists where every triangle has access to its edges and vertices; every edge has 
access to its vertices and to the triangles it belongs to, and every vertex has access to the 
edges and triangles it belongs to. Figure 5.1 shows a suitable structure. 
 
The algorithm is performed in a vertex-by-vertex manner. This means that we will need 
to go from vertices to edges and triangles. 
 
We need to take in consideration the contour conditions at the corners and borders of 
the mesh. The algorithm assumes that we are working with a closed and convex mesh. 
If this is not the case, the programmer will have to control the singularities separately. 
 
5.5.2  Motivation 
 
Figure 5.10 presents a reconstruction example in our context of a medical application, 
the reconstruction of the human’s left ventricle of the heart. In this case, our 
reconstruction method (see section 3.1) has been applied to an initial dataset. 
 

 
Figure 5.10: Top-Left) Voxelized data to recover. Top-Right) Initial mesh before the 
reconstruction. Bottom-Left) Illuminated final mesh. Bottom-Right) Wire frame final 

mesh. 
 
Reconstruction methods present several problems that make it difficult to get a final 
“smoothed” mesh. First of all, initial data to recover lacks resolution. Voxels are formed 
from several superimposed slices (images). In that sense, typical resolutions for the data 
model are small, for example 64 x 64 x 20 or 128 x 128 x 20 voxels. Moreover, the 
region of interest (ROI) does not expand all along the slices. For a given slice, the ROI 
is typically located on a small central area, occupying 20 x 20 pixels at most. See the 
data slices in figure 5.11. 
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Figure 5.11: Four portions of the data slices corresponding to medical imagery from the 

left ventricle. The ventricle (ROI) is indicated by a circle. 
 
In figure 5.11, each of the slices is about half a centimeter deep. This is a very coarse 
measure and increases the difficulties for smoothing the final result. 
 
It is common that we lack data voxels due to failures in the capture process. In our case, 
we are working with Single Photon Emission Computed Tomography (SPECT) imagery 
(see appendix A) for getting the data from the left ventricle of the human heart. 
Ischemic areas, with poor or absence of blood irrigation, will not appear in the images,  
that means that some “holes” are expected in the dataset that the mesh will try to cover 
with a surface. This is another cause of errors in the meshing (peaks). 
 
Due to the compromise between accuracy and speed, some reconstruction methods do 
not apply internal forces, which means that there is no restriction on curvature or local 
smoothness. This is the case of the free deformation model explained in section 3.4.5. 
 
Due to all these factors, we need some kind of alternate control designed to avoid the 
“peaks” that appear. The mesh in figure 5.12, illustrates the smoothing comparison. 
 

 
Figure 5.12: Final mesh with (right) and without (left) applied smoothing algorithm. 
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Figure 5.12 shows the “cuberille effect” due to the voxelized data. This effect becomes 
especially problematic if the resolution of the voxels is not large enough. 
 
5.5.3  A prior question: the edge arrangement 
 
In order to ensure the correct functionality of the algorithm, the edges must be classified 
in either clockwise (CW) or counter-clockwise (CCW) order. Mesh generation 
applications do not have to ensure a convention, so we have to take care of it. 
 
This convention applies to the list of edges of every vertex. Every vertex holds 
information about the edges it belongs to. Those edges must be arranged because we 
will need to compute the angle between pairs of them as a part of the algorithm. 
 
This task can be accomplished as follows: 
 

• First of all, we must estimate the normal vector associated with each vertex. 
o Begin by calculating the normal vector associated with each triangle 

(from the plane that contains it). 
o Average all the normal vectors of the triangles that contain a given 

vertex. 
• For each of the vertices: 

o Calculate the plane that contains the vertex. The plane is defined by the 
vertex’s normal vector. 

o Identify all the neighbor vertices by looking at the list of edges. 
o Project all the neighbor vertices over the plane. 
o Create the director vectors of the plane: 

� V1 from the vertex to the projection of the first neighbor. 
� V2 from the cross product of V1 and the normal vector. 

o Identify the plane coordinates (λ, µ) of the neighbor vertices: 
� First derive a vector from the vertex to the neighbor of interest. 
� λ equals the projection of the vector over V1. 
� µ equals the projection of the vector over V2. 

o Now each of the edges (vectors from the vertex to the neighbors) can be 
labeled with an angle derived from λ and µ (see equation 5.1). 

 

)(tan 1

λ
µ−=angle  (5.1)

 
o Order the angles from the minimum to the maximum ⇒ ordering the 

edges. 
 
Take a look at figure 5.13 for a better understanding of the edge arrangement. 
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Figure 5.13: Left) The neighbor projections onto the vertex plane.  Top-Right) The 

director vectors for the plane containing the vertex.  Note that V1 goes through the first 
selected neighbor. Bottom-Right) The (λ, µ) plane coordinates for one of the neighbors. 
 
5.5.4  The Algorithm 
 
The algorithm penalizes vertices that are inside a non-uniform triangle set. We can see 
how this looks graphically in figure 5.14. 
 

 
Figure 5.14: Evaluating the smoothness of a triangle neighborhood. 

 
Figure 5.14 shows a neighborhood formed from three triangles A, B and C. The first 
case (left), where the sum of the three inner angles is near 180 degrees (half circle), 
denotes that the reconstructed surface does not present important creases. If we go from 
left to right, the sum of the angles decreases, far from the theoretic 180 degrees. When 
the sum is really tiny, we have just found a peak to be smoothed. 
 
Smoothing the peak of the third case implies acting on the triangles until we get a 
situation similar to the one in the first case. We will solve the problem by applying a 
geometric constraint to the common vertex so that this vertex moves to the centroid of 
its neighbors. Figure 5.15 shows the displacement direction applied to the common 
vertex in order to smooth the peak. 
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Figure 5.15: Peak correction by vertex displacement. 

 
Then for each of the vertices in the mesh: 
 

• Evaluate the global angle θT from the contributions of all the triangles that 
contain the vertex. For a given triangle i, the angle is denoted as θI (see equation 
5.2). 

 
∑=

i
iT θθ  (5.2)

 
Where i goes from 1 to n (if n is the number of triangles in the neighborhood). 

 
• Compute the error term by subtracting 360 degrees from θT. If the result is 

bigger than our selected maximum tolerance, the algorithm will perform the 
vertex displacement. If not, the algorithm will skip this vertex (see equation 5.3). 

 





⇒<
⇒>

−=
skiptol
disptol

T ε
ε

θε º360  (5.3)

 
• Then if the error term is bigger than the tolerance: 

o The algorithm computes the neighborhood centroid. 
o The displacement vector, from the vertex to the centroid, is also 

calculated. 
o The common vertex is moved along the displacement vector 

until tol<ε . 
• Else ⇒ skip this vertex and go through the rest. 

 
For the mesh in figure 5.10, the tolerance was tuned to be 0.2. 
 
Although it seems like it could be enough to swap the vertex and centroid positions, 
instead of performing all the displacement calculations, this is not true. The centroid 
serves as a flag, which shows the true direction to take, but it is not necessarily the best 
position to be in. It might be too far, for instance. We want the smoothing algorithm to 
do its job while applying only small changes if possible. 
 
5.5.5  Computing the angle and the projections 
 
Computing the angle between pairs of edges can be easily achieved by using the dot 
product. We can treat the edges as vectors. Given two vectors u  and v , we can 
compute the cosine of their angle θ as equation 5.4 shows. 
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vu
vu
·
·cos =θ   (5.4)

 
Similarly, the projection of u  over v , can be found like shown in equation 5.5. 
 

θcosupu =  (5.5)
 
5.5.6  The displacement vector 
 
The neighborhood centroid is evaluated by the average of the positions contributed by 
all the vertices sharing a triangle with the common one (see equation 5.6). 
 

m

p
C j

j∑
=  

(5.6)

 
Where m is the number of vertices in the neighborhood, j goes from 1 to the m 
neighbors, C stands for the centroid and pj is the position for a given vertex apart from 
the common one.  Then we can derive the displacement vector v as shown in equation 
5.7. 
 

(5.7)VCv −=  
 
Where C and V are the positions for the centroid and the common vertex respectively. 
The movement along the displacement vector is accomplished by simple linear 
interpolation (see equation 5.8). 
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αα vVd

 (5.8)

 
In the previous equation, d(α) will give the new position for the common vertex. The 
position is adjusted by using the α parameter. Values for α range from 0 (d(α) = V) to 1 
(d(α) = C). As long as the algorithm moves the vertex until the tolerance is satisfied, the 
α value must be set by the programmer. If working in the context of voxels, a suitable 
value can be any fraction of the smaller side of the voxel. 
 
For the mesh presented in figure 5.10, the α value was defined to be the smaller side of 
the voxel divided by a defined constant of 20. 
 
5.5.7  Conclusion 
 
The technique penalizes (and reallocates) those vertices that belong to a non-uniform set 
of triangles. The algorithm is intended to apply small changes in position, never 
changing the mesh topology. 
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Before running the algorithm, the edges must be correctly arranged. This task can be 
accomplished by the software used for exporting the geometry or by the algorithm, as 
shown in the text. 
 
The tuning parameters for the algorithm are the tolerance (tol) and the alpha (α) values. 
This text gives some clues on how to adjust them. Nevertheless, those depend on the 
specific application. 
 
Figure 5.16 shows the algorithm in a very different context: the generation of synthetic 
terrain. This area is related to several applications like videogames, military and space 
simulators or weather software. 
 

 

 
Figure 5.16: The smoothing algorithm in the context of terrain generation. From top to 
bottom and left to right, the terrain mesh is smoothed in order to eliminate the peaks. 

 
5.6  Volume specified by a surface mesh 
 
We might need to evaluate the volume that lies inside our closed surfaces in order to 
compare it with the volume that we expect to recover, for instance. In fact, the final goal 
of our simulations is to provide physicians with several medical values that have 
influence in their diagnostics and depend strongly on volume evaluations (see appendix 
A). 
 
The volume determined by a closed mesh can be obtained by following the Gauss 
theorem as equation 5.9 states. 
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Where x,y,z and nx,ny,nz stand for a given vertex position and its normal vector 
coordinates respectively. 
 
This theorem evaluates the contribution of every triangle to the global volume. Figure 
5.17 shows its underlying basis. 
 

 
Figure 5.17: Computing the contributions on volume for a surface triangle. 

 
Let us assume that A is a triangle that belongs to our surface. If we project it into the –Y 
direction, we will find two different intersections, B and C. B is the projection that lies 
on the bottom area of the surface. C is the projection onto the XZ plane. We need to get 
the volume that lies within A and B (the red volume). In order to do that, we can 
compute the volume related to the prism BC and subtract it from the volume associated 
to the prism AC. The volume of a prism is easy to evaluate since it can be obtained by 
an integration within the limits of its associated triangle (at the top). The orientation of 
the triangle can be obtained from its normal vector. 
 
For a numerical implementation of the Gauss theorem we might follow this 
pseudocode: 
 

Volume = 0.0; • 
• For each triangle in the mesh (the triangle is formed from 3 vertices Triangle[i], 

Triangle[j] and Triangle[k]): 
Î Evaluate its associated normal vector N = (nx,ny,nz): 
Î For l from 1 to 4: 
� If l = 1, w = -27.0 / 96.0; 
� Else w = 25.0 / 96.0; 
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� x = (M[l,1]*Triangle[i].x + M[l,2]*Triangle[j].x + M[l,3]*Triangle[k].x) / 
15.0; 

� y = (M[l,1]*Triangle[i].y + M[l,2]*Triangle[j].y + M[l,3]*Triangle[k].y) / 
15.0; 

� z = (M[l,1]*Triangle[i].z + M[l,2]*Triangle[j].z + M[l,3]*Triangle[k].z) / 
15.0; 

� Volume = Volume + w * (x*nx + y*ny + z*nz) / 3.0; 
 
Where M is the matrix that equation 5.10 shows. 
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5.7  4D Interpolation 
 
Time is introduced in the system when we are dealing with more than a unique 
acquisition of the dataset. For instance, for the reconstruction of the left ventricle we 
might be interested in the entire cardiac cycle of an actual patient. That is the case of 
figure 2.22 in chapter 2, where physicians provided us with several acquisitions for a 
given patient. 
 
In those cases, all the reconstruction process is repeated for recovering the two surfaces 
associated to each reception. After that, the evolution through time is implemented as a 
linear interpolation function between meshes, based on keyframing [52]. Figure 5.18 
gives some clues on this. 
 

 
 

Figure 5.18: Keyframing introduces time as a fourth dimension. 
 
The idea is to define several keys, or master surfaces, positioned at the beginning, at the 
end and at several positions between them. Those keys correspond to the internal and 
external surfaces that we have reconstructed by using our method (n meshes mean n 
keys). Once the keys are defined, we must create automatically the surfaces that fit 
within them in order to perform an animation as realistic as possible (α keyframes). If 
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we create enough keyframes the animation will look smooth and fluent. This principle 
was used by Walt Disney [25] artists from the beginning of their super productions. 
Two or three very good artists would draw several keys and twenty or more less 
experienced people would emphasize the action by using keyframes. 
 
The association between meshes is performed vertex by vertex (in figure 5.18 every 
mesh contains m vertices). Because all the reconstructions have been made by using the 
same initial mesh, the amount of vertices remains constant so that they can be directly 
linked. 
 
For a given vertex, its successive positions can be calculated by linear interpolation as 
stated in equation 5.8 of section 5.5.6. Figure 5.19 shows the process graphically. We 
already know their initial (start) and final (stop) positions and we know several 
positions between as well (all those are colored in red). The interpolation creates the 
transitions (colored in blue). 
 

 
Figure 5.19: Keyframing in a vertex-by-vertex manner. 

 
Typical values for our application range from 20 to 30 key frames between successive 
instants of time. 
 
It must be said that the tracking of the motion in the left ventricle is not within the goals 
of this project. Other publications like [79] present accurate methodologies that permit 
the tracking of its characteristic twisting behavior. Our implementation provides motion 
but does not show the changes due to the twist movement. 
 
5.8  Summary 
 
The geometrical model conditions the operation of the whole process. The use of one or 
another primitive, the neighborhood relations between them and the importance of a 
design well fit to the evolution scheme are very important decisions to take. 
 
This chapter begins by classificating the existing geometrical models in a general way. 
From all the classes available, we decide to use a discreet model based on a 
triangulation mesh where the vertices can be directly mapped as the particles of our 
evolution scheme. Moreover that, triangulated meshes have been extensively used and 
are a suitable model for the graphics hardware that we use nowadays. Those meshes 
ensure the topological constraints that we must validate. 
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Once the decision has been taken, we put our triangulated meshes into the test. We 
determine the degeneration of the triangles after several simulations in order to select 
the best initial mesh, in terms of quantity and size of the triangles. We also conclude 
that the reconstruction methods presented in chapter X do not affect the quality of the 
final triangles too much. 
 
When dealing with the reconstruction of the internal left ventricle cavity, we analyze the 
best path to take. There are two options attending to the radial direction of the 
simulation: In-to-Out or Out-to-In evolutions. By testing the system, we decide to use 
the Out-to-In approach in order to ensure correct results that avoid the apparition of 
artifacts and peaks in the final mesh. 
 
Our model is compared with the well known Marching Cubes algorithm [55] in order to 
point out their differences and deduce the reasons that make the second an unsuitable 
tool for our particular needs. 
 
As an important apportation, we present a self-made smoothing algorithm. This 
algorithm detects and smoothes out the peaks that can appear in the mesh during and 
after a simulation. It is a general purpose tool that can be used in several fields like 
Telemedicine, Terrain generation or Space and Air force simulation. 
 
For the Telemedicine application, which is the main goal of this study, we present the 
numerical scheme that has to be followed in order to compute the volume specified by a 
surface mesh. Several measurements needed by the physicians make extensive use of 
this. 
 
As a final apportation, we present the integration of time into our simulation system. 
Geometrically based, our interpolation method is based in the use of an old technique 
called Keyframing [51]. It allows us to present fluent animations of objects in 
movement that have been reconstructed by our algorithms. 
 
Chapter 6 presents the results of our research. Those are related to the reconstruction of 
the left ventricle and also to other generic cases, demonstrating then that our 
implementations and algorithms can be broadly applied. 
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6  Applications and results 
 
This section presents several results related to our research in 3D reconstruction as a 
modeling tool. We are focused with the reconstruction of the human’s left ventricle, as 
stated in the majority of this document, but we also demonstrate that our technique can 
be applied in other fields that require generic reconstructions. In section 6.2 we present 
several reconstruction examples where our method can be used as a tessellation 
algorithm and also for obtaining different resolution meshes for some objects.  
 
This chapter is structured as follows. We begin by showing our first steps in 
reconstructing 3D meshes by applying external forces to them. Firstly we apply a 
generic external force. Then it is changed into the GVF vector field. From these 
experiments, we retrieve several reconstructions of spherical datasets followed by our 
first left ventricle. 
 
After that, we evolve to the final solution. We state the need of testing a known volume 
in order to find valid values for all our parameters. We use the Phantom volume because 
of its absorption and transmission characteristics similar to the ones related to the left 
ventricle. We test binary and gray level datasets obtained from this volume to get 
specific information about the GVF parameters, the stopping mechanism, the final 
distance to data, the recovered volume and the computational cost. We also apply our 
algorithms to missing-data datasets. The results are useful for analyzing the 
performance of the algorithm in pathological cases where isquemic areas, due to the 
absence of irrigation, induce holes in the data. 
 
After the Phantom experiments, a complete cardiac cycle is reconstructed. The dataset 
comes from an actual’s patient acquisition. Several comparisons are shown regarding 
the methodologies previously described. Besides that, pathological cases are also treated 
by our algorithms with very successful results. 
 
We also depict other explored approaches such as automatic contouring and tessellation 
of the 3D shape by using the discreet contour deformation model. This methodology is 
applied to SPECT imagery as well. 
 
A flexible volumetric model for the left ventricle is also summarized for the seek of 
completeness. This model is not within the scope of this project but it is being defined 
by other members of the research group as the next stage of the whole process. Real 
time interaction with the organ requires this type of modeling. 
 
Our images are also tested within the Anisotropic Contour Completion context. This is a 
very novel technique that has been published recently. The technique takes into 
consideration the local orientation of the contours which is an absolutely well fit 
assumption for SPECT images of the left ventricle. 
 
Finally, we perform generic reconstructions in the context of low-polygon modeling, 
tessellation and mipmeshing. Those are well-known techniques in the context of 
computer graphics that optimize the rendering of a synthetic scene. We show that our 
algorithm can be applied to other contexts apart from the left ventricle 3D 
reconstruction. 
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6.1  Human’s Left Ventricle reconstruction 
 
Access to a 3D model obtained from patient’s data can have several applications like 
support on diagnosis, surgery planning, student’s training or even remote-operation. A 
first approximation to the problem would be using a manual process with specific 
image-processing software though it would require deep medical knowledge and 
experience. 
 
Our method automates the manual processes related to the evaluation of SPECT images 
(see appendix A) by the physicians. From the images we derive a 3D model that can be 
used as a key tool in order to get a robust diagnostic. We will show the evolution of our 
approach trying to justify the final method adopted in each step. 
 
6.1.1  First steps 
 
This project of research began by using the DRAPS cloth simulator [5] as a tool that 
would allow applying forces to a certain particle system. As depicted in figure 6.1, a 
piece of cloth built from several particles is hanging from a cylinder. All the particles 
were suitable of being affected by an external force. This external force was selected to 
be of the form F = (-x, -y, -z). 

 
Figure 6.1: First trials in the reconstruction process. 

 
Figure 6.1 shows the evolution of the simulation. All the particles building the piece of 
cloth are affected by an external force that attracts them to the coordinate system center. 
As long as there is no internal restriction, the initial shape vanishes and the particles get 
accumulated in a unique position. 
 
That test was not really related to the aim of the project in the sense that no Left 
Ventricle data was part of it. Nevertheless it revealed that the DRAPS cloth simulator 
might be an interesting tool to use, at least as our initial framework platform. 
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As explained in chapter 3, the external force that we use for the 3D reconstruction 
method is based on a vector field. First tests involved also putting into operation the 
field and checking its diffusion variations attending to the µ parameter. Our first 
scenario consisted on two concentric spheres acting as the internal and external surfaces 
to be recovered. In figure 6.2, the intensity values along the set are presented in a binary 
format where 0 stands for no property at all and 1 for property values over a concrete 
threshold value. 
 

 
Figure 6.2: Initial tests regarding the vector field. 

 
Figure 6.2 (left) shows the vector field for a data slice. The vectors clearly identify both 
the surfaces to recover, internal and external. Both surfaces are characterized by a null 
potential. 
 
Figure 6.2 (right) shows three different graphs which correspond to a horizontal 
itinerary crossing the central area of the slice (green double arrow). The magnitudes of 
the vectors are presented in yellow; their associated sign is presented in white; and the 
intensity values are rendered in deep blue. The itinerary consists on 50 voxels with two 
high intensity regions (10 voxels wide). The vector field becomes null in the borders of 
those regions. Moreover that, it also changes in terms of sign. The change has to exist 
because even if we come closer from a side or from another, we must end stopping at a 
null gradient voxel. 
 
Moreover that, figure 6.2 shows that for higher values of µ, the vector field gets 
smoothed. One can perceive that in those cases the energy gets spread out within the 
voxels, never concentrated at some maximal areas. Then the global amplitude decreases. 
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Using the vector field of figure 6.2 and the plain deformation model (see section 3.4.2), 
we proceeded to the recovery of both the spheres. The initial meshes were cubes. Figure 
6.3 shows the final results after the reconstruction process. 
 

 
Figure 6.3: First reconstructions with the plain deformation model. 

 
Both spherical surfaces are recovered although it can be seen that there is a clear lack of 
smoothness. 
 
Using the plain deformation model and a real dataset (from an actual patient’s left 
ventricle), we performed the first non-synthetic simulation. Figure 6.4 shows the vector 
fields associated to two slices of this first test on a real dataset. 
 

 
Figure 6.4: Vector field associated to real data (two slices). 

 
In figure 6.4, left and right slices, the intensity values are binary (bottom-left window 
with the blue samples). The vector field is also shown (top-left window with the red to 
green vectors) besides the itinerary along a tiny line, vertical in the left and horizontal in 
the right slice. The magnitudes (top-right) and signs (middle-right) are associated to the 
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itineraries. Figure 6.4 (left) shows a slice with two null gradient regions (two red peaks) 
whilst figure 6.4 (right) shows a unique peak. This is due to the fact that on the first 
case, the slice is located on the top of the apex region (where there are two surfaces, the 
epicardium and the endocardium) but on the second case, the slice is located in the apex 
(only epicardium). See appendix B for more details on the left ventricle anatomy. 
 
We can see the maximum magnitudes around the internal and external vicinities. On the 
other hand, note the change of sign on the field vectors. It is positive when the vectors 
go from left to right (or from top to bottom in the left slice of figure 6.4) and negative in 
the rest of the cases. The magnitude of the vectors was scaled by a factor of 100 for a 
better observation. 
 
The vector field is not entirely uniform (see the magnitude differences on the highest 
peaks of the right slice in figure 6.4), this suggest us that the energy operator might be 
changed in order to get better results. In fact, we should use the operator of equation 6.1 
when working with several gray levels and the operator of equation 6.2 if using binary 
data. 
 

2),,(),,( zyxIzyxEext ∇−=  

(6.2)

(6.1)
 

),,(),,( zyxIzyxEext =  
 
For this first example on a real dataset, the SPECT (see appendix A) images where 
embedded in a world of voxels characterized by a resolution of 68x75x58 voxels and 
spatial steps of 1.435 mm (X), 1.435 mm (Y) and 2.871 mm (Z) for each voxel. It is 
important to note that those where the dimensions of the entire world of voxels. The 
region of interest (ROI) was definitely smaller. The temporal step was selected to 
satisfy the Courant-Friedrichs-Lewy condition as shown in equations 4.50 and 4.51. In 
fact it was also divided by a factor of 2. The µ parameter was taken as 0.4. 
 
Figure 6.5 shows the final reconstruction of the external surface. The reconstruction 
used the vector field of figure 6.4. The initial mesh was built from 1396 particles (2788 
triangles). Figure 6.5 shows how the final mesh is completely stuck to the external 
border of the voxels. The temporal average per simulation frame was 2.22 seconds (K7 
Athlon 600 MHz, 128 Mbytes RAM). The stepsize for the reconstruction of the particle 
system was selected to be of 0.01 seconds. 
 
For the simulations regarding the internal surface of this dataset, see figure 5.5. 
 
Those simulations allowed us to derive some conclusions: 
 

• It is difficult to select the amount of particles for the initial mesh. Too many will 
slow down the process and not enough might produce low resolution 
reconstructions with a poor quality. 

• It is not obvious to choose a stepsize value. It must be as higher as possible 
while avoiding divergences. 

• The weighting constants associated to the internal forces are difficult to adjust. It 
is important to find the required tradeoff between flexibility and stiffness. 
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• There are oscillations at the borders produced by the discreet nature of the 
dataset. This behavior must be smoothed or eventually eliminated. 

• Some kind of strategy must be applied in order to minimize the duration of the 
simulation (when using the plain deformation model). A unique iteration is not 
computationally expensive but the application needs several for reaching 
convergence. 

 
Figure 6.5: Reconstruction of the external surface in a real dataset; a) Initial mesh and 

dataset to recover; b) and c) Final mesh after the reconstruction. 
 
Those topics where addressed by using a synthetic test model in order to perform the 
needed tests and measures: the Phantom model. Section 6.1.2 gives details on these. 
 
6.1.2  Evolution to the final solution 
 
It is basic to test a known volume in order to infer the correct values for all our 
parameters. We also need a dataset which should be characterized by similar parameters 
to those related to the left ventricle tissue. In order to demonstrate the reliability of our 
assumptions, we present specific results about the GVF parameters, the stopping 
mechanism, the final distance to data, the recovered volume and the computational cost. 
 
6.1.2.1. Test model: the Phantom Volume 
 
In order to measure the reliability of the system from an analytical point of view, it is 
compulsory to test the algorithms on a well-known dataset. We decided to use a medical 
test volume which is frequently related to the imaging hardware used by physicians: the 
Phantom volume. 
 
The Phantom volume presents absorption and transmission characteristics similar to the 
ones related to a certain tissue. It can then be used to simulate human tissue like the left 
ventricle muscle. Details on its characteristics and measures can be seen in appendix D. 
 
Figure 6.6 (top) shows a long-axis cut of the binary dataset associated to the Phantom 
volume. From the images of the Phantom we can build up a world of voxels that feeds 
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into our reconstruction module. Figure 6.6 (top-left) shows the vector field built from 
the intensity data in figure 6.6 (top-right). 
 
Note that: 
 

• For those first experiments, the smoothing algorithm wasn’t still planned. For 
that reason, an artificial cover had to be added to the dataset in order to stop the 
internal and external meshes (figure 6.6 (bottom)). 

• The initial dataset is voxelized which enlarges the view of its discreet nature. 
This is an undesirable characteristic if we are willing to retrieve a final smooth 
surface. 

 

 

 
Figure 6.6: Top: Long-axis view of the Phantom dataset; bottom: the artificial cover. 
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At this point, two strategies were defined in order to minimize the discreet nature of the 
dataset: 
 

• In reconstruction time, check every particle’s position, determine the voxel 
where it lies and affect its force accumulator by a vector field obtained from the 
average of the vector fields associated to its neighbors (neighbors in its direction 
of movement). 

• Subdivide the initial dataset generating more voxels. Then evaluate the vector 
field in this “new and enlarged” dataset. Section 2.2.1 finds out the reasons that 
made us avoiding this second strategy. 

 
Figure 6.7 shows the final result after the reconstruction of the external surface of the 
Phantom volume. We used the plain deformation model with a temporal stepsize (∆t) of 
0.05 seconds, a GVF weighting constant of 25 and a damping factor of the 25%. The 
simulation took 2.8474 seconds per frame (averaged). 
 
In figure 6.7, the final mesh is superimposed to the initial dataset. Note that in this 
simulation there wasn’t stopping mechanism and no measures of reliability where taken 
(measures on distance to data, triangle quality or final volume). 
 
All the reconstructions presented so far were based on binary datasets. It must be said 
that we also performed several tests over datasets based on gray-level values. In fact 
those datasets are more realistic with the real data that physicians provide because blood 
irrigation is not imaged as a unique tone. 

 
Figure 6.7: Reconstruction of the Phantom external surface. 

 
Figure 6.8 presents a vector field obtained from a dataset based on gray level intensities. 
 
Note the non-binary nature of the intensities by looking at the red thin lines of figure 6.8 
(top-right windows). Instead of sudden changes of property from the zero to the one 
level, we have intensity slopes that make the transitions continuous. The only thing to 
take into consideration is the energy operator applied, as depicted before in equations 
6.1 and 6.2. 
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Figure 6.8: Vector field for a gray level dataset. 

 
6.1.2.2. GVF parameters for the Phantom volume 
 
Tables 6.1 and 6.2 present several vector fields evaluated for the Phantom volume. The 
objective of this test is to examine the variability of the solution depending on the vector 
field parameters. 
 

GVF Calculation 
µ = 0.15 

F = Laplacian of Intensity 
16µ  as the denominator of the Courant-Friedrichs-Lewy condition 

Regular data Doubled data 
<50 iterations <50 iterations

>50 iterations >50 iterations

Table 6.1: GVF vector field study for the Phantom volume (I). 
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Let us examine table 6.1. In there, all the parameters are equally defined except for the 
amount of iterations and the data preprocess. The left column shows fields derived from 
the original data, with no preprocess at all. The right column shows the same 
experiments over preprocessed data (this preprocess consisted on doubling the 
resolution of the world of voxels like explained in section 6.1.2. After the doubling, the 
vector field was found). 
 
In the first experiment (first row), the GVF algorithm was run under 50 iterations. For  
the second experiment, the algorithm was left executing for more that 100 iterations. 
 
Table 6.2 shows similar experiments where different parameters have been altered, in 
that case two variables, the µ parameter and the denominator of the Courant-Friedrichs-
Lewy condition (see section 4.5). 
 
In all the cases the images correspond to a horizontal itinerary along slice number 10. 
The itinerary traverses the slice horizontally for y = 29 (or y = 58 for the doubled data). 
 
Let us examine the tables in order to retrieve several conclusions: 
 
• It seems clear that there’s no need to iterate for more than 50-100 cycles. The results 

are pretty defined from the 50 iteration. 
• Doubling the initial data doesn’t help too much as expected. In fact the results are 

basically equal or worse, in terms of magnitudes. 
• The election of the µ parameter is less significant than it might seem. In fact it is a 

matter of convergence or divergence as we can see from the tests. If the test 
converges, the final solution will vary between some tiny bounds. 

• The denominator must be as smaller as possible in order to guarantee a major 
stepsize. However we must be careful in order to avoid divergences. 

 
Can we use the same parameters for all our datasets? We would be glad if possible but 
the answer is not obvious. As a third test, we used the same parameters again a second 
Phantom volume, the Mayo Phantom volume. 
 
The Mayo Phantom volume was considerably smaller in terms of ROI. Nevertheless its 
spatial dimensions (XYZ) were bigger than for the previous (5.388 mm 5.388 mm and 
5.388 mm against 2.87 mm 2.87 mm and 5.74 mm). 
 
We placed the new dataset into two different simulations. Table 6.3 depicts the results. 
 
As expected, higher spatial dimensions induce higher stepsizes that must be corrected 
by a suitable denominator. If its value is not big enough, the system can diverge. Figure 
6.9 shows the vector field derived for the convergence case. Note that the ROI is 
considerably smaller than in the cases analyzed in tables 6.1 and 6.2. 
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GVF Calculation 
100 iterations 

F = Laplacian of Intensity 
8µ as the denominator of the Courant-

Friedrichs-Lewy condition 
16µ as the denominator of the Courant-

Friedrichs-Lewy condition 
µ = 0.01 Divergence µ = 0.01 Divergence 
µ = 0.15 µ = 0.15 

µ = 0.5 µ = 0.5 

µ = 0.9 µ = 0.9 

Table 6.2: GVF vector field study for the Phantom volume (II). 
 

µ parameter Iterations Denominator Result 
0.15 50 8µ Divergence 
0.15 50 16µ Convergence 

Table 6.3: The GVF vector field parameters study for the Mayo Phantom volume. 
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Figure 6.9: Vector field itinerary for the Mayo Phantom volume. 

 
We may present a final conclusion for this section: most of the parameters can be tuned 
via typical values although big distortions in the dimensions of the dataset might require 
some kind of adjustment. 
 
6.1.2.3. The stopping mechanism 
 
If we take a look at the behavior of our particles around the data borders, we will detect 
undesirable oscillations. The particles do not stop immediately if no one forces them to. 
Residual components of the external force might induce movement to a basically quiet 
particle system. Figure 6.10 depicts this behavior graphically. 
 

 

 
Figure 6.10: Oscillations around the data borders. 
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The parameters of each test can be seen in table 6.4. All the simulations were performed 
by using the plain deformation model (see section 3.4.2) with a stepsize of 0.05 
seconds. All the reconstructions used the second mesh of table 5.2 (1280 triangles). As 
explained before, figure 6.10 shows the oscillation effect that characterizes a particle’s 
motion when being near the vector field boundaries. In this case, we measured the 
distances of the particles to the well-known volume of the Phantom dataset. The black 
line stands for the zero distance position. It can be seen that several particles get close to 
the boundaries but never stop due to their oscillation motion. It comes clear that we 
need some kind of stopping mechanism. We found no big differences when varying the 
simulation parameters. In fact, even avoiding the use of a multiplying factor (this factor 
increases the speed of the simulation by scaling the vector field vectors), like in test E, 
does not ensure that oscillations will not occur. 
 
Test Stretch Stretch 

Damping 
Shear Shear 

Damping
Bend Bend 

Damping 
Multiplying 

Factor 
A 10 1 0.5 0.05 5 0.5 50 
B 10 1 0.5 0.05 10 1 50 
C 20 2 0.5 0.05 10 1 50 
D 10 1 2 0.2 10 1 50 
E 10 1 0.5 0.05 5 0.5 1 

Table 6.4: Simulation parameters associated to the results shown in figure 6.10. 
 
As a first approximation to the stopping mechanism, we associated a damping value to 
each voxel in the dataset. This value was directly related to the magnitude of the vector 
field in the voxel. We have an example in figure 3.23 (see chapter 3). 
 
The more magnitude we have, the more damping we add. This control “breaks” the 
particles when closer to the data borders that we are expecting to reconstruct. It does not 
imply a real computational effort to the algorithm because it is evaluated as preprocess 
from the intensity data. This method smoothes the oscillation effect but it does not reject 
it completely. 
 
As a definitive stopping mechanism, we proposed to use a technique that would mark 
the voxels belonging to the data borders. This is not an obvious task because we do not 
have this information from beforehand. We need to process that dataset in order to get 
the answers that we are looking for. See section 2.3 for a deep explanation on the tested 
methodologies 
 
Once the voxels have been marked as belonging to one of the three categories available 
(external border, internal border or none), we can apply several stopping mechanisms: 
 

• If using the free deformation model, we can stop the particles when entering a 
marked voxel. In this case, the particles are unrelated to each other which mean 
that we are neither adding nor extracting energy to the whole system. 
Nevertheless this process is not accurate at all since the particle will not get 
totally relaxed in the position that it should but in the boundary of the voxel that 
it just entered. Moreover that, it is easy to contribute to the apparition of peaks in 
the final mesh. We are somehow introducing a cuberille effect to the mesh. 

• In the case of models with topology like the plain deformation model or the 
spring-mass deformation model, we can ease the oscillation effect by hardening 
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the damping factor in the vicinities of the border voxels.  
That would be an approximation similar to the one illustrated in figure 3.23. If 
we detect that a high percentage of particles is subjected to a minimal increment 
of motion, we can stop the system literally. 

• It would be definitely desirable to add a smoothing post-process that once the 
particles are stop, can control the smoothness of the generated triangles. This 
algorithm would delete the characteristic peaks that might appear, as explained 
before. It is an hybrid process, built from a dynamic module followed by an 
algebraic one (see section 5.5). 

 
6.1.2.4. Distance-to-data measures 
 
In order to test the reliability of the final reconstruction, several tests were performed on 
the Phantom dataset, regarding the final distance between the particles and the border 
voxels. The tests were performed by using the free and spring-mass deformation 
models. Tables 6.5 and 6.6 show the parameters and results related to these 
experiments. 

ks ksd kgvfd Pond. % < 1 
voxel 

10 1 -0.1 10 82.28 
50 1 -0.1 10 81.95 
100 1 -0.1 10 81.84 
10 1 -0.25 10 66.55 
10 1 -0.5 10 61.27 
10 1 -0.1 100 88.56 
0.1 0.01 -0.1 1 59.51 

1000 0 -0.25 100 88.77 
Table 6.5: Simulation parameters associated to the measures in distance to data. For 

those simulations ∆t = 0.00025 s., iterations = 2000. (Spring-mass deformation model) 
 
In tables 6.5 and 6.6, ks stands for the stretch constant; ksd for the associated stretch 
damping factor; kgvfd for the external force’s (vector field) damping factor; Pond. is the 
weighting factor that multiplies the vector field and ∆t is the selected stepsize. The last 
column specifies the percentage of particles that ended-up being less than one voxel far 
from the data borders. It must be said that the maximum accuracy achievable is given by 
the dataset precision, which is of one voxel. 
 
We see that for the spring-mass deformation model (table 6.5), we have more than 80% 
of the particles close to the dataset in the 62.5 % of the simulations. In fact the worst 
results appear if the weighting factor is higher or if the stretching constants are 
negligible. In those cases there is a clear lack of cohesion in the model plus an 
acceleration that might corrupt the final mesh. 
 
Nevertheless the model that we are really interested in is depicted in table 6.6, the free 
deformation model. In that case, 80% of the reconstructions ended up with more than 
75% of the particles close to the data boundaries. In fact, 70% of the reconstructions had 
a 90% of particles attached closely. It is clear that the worst results are characterized by: 
 
• Small number of iterations, surely not enough for the system to converge if the 

stepsize is not big enough (rows 4, 5 and 6). 
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• Too high weighting factors for the vector field (row 13). 
 

kgvfd Pond. ∆t 
(sec.) 

iterations % < 1 
voxel 

-0.1 10 0.00025 2000 87.12 
-0.1 10 0.1 400 92.36 
-0.1 10 0.01 3400 91.93 
-0.1 10 0.01 1000 66.36 
-0.1 10 0.01 200 38.99 
-0.1 10 0.01 400 35.29 
-0.1 25 0.0005 7700 100 
-0.1 10 0.005 7200 90.99 
-0.1 25 0.005 3700 90.35 
-0.1 10 0.01 3000 93.13 
-0.1 25 0.0005 15000 90.05 
-0.25 25 0.001 1800 75.19 
-0.25 100 0.00025 2000 36.41 
-0.1 10 0.005 1900 98.69 
-0.1 10 0.01 900 97.93 
-0.1 25 0.005 700 98.02 
-0.25 25 0.01 1000 98.47 
-0.25 25 0.001 1800 77.57 
-0.1 10 0.01 3600 91.18 
-0.1 10 0.1 400 92.36 

Table 6.6: Simulation parameters associated to the measures in distance to data. 
(Free deformation model) 

 
The free deformation model is more independent from the stepsize than the spring-mass 
deformation model. It offers better reconstruction results in terms of final distances with 
bigger stepsizes and less iterations (see the last row of table 6.6). On the other hand it 
lacks cohesion but we can address it with the smoothing algorithm (see section 5.5). 
 
Mesh rendering and additional comments on some of the tests in tables 6.5 and 6.6 are 
given in table 6.7. We may get several conclusions by analyzing them: 
 
• Tests 1, 2, 3 and 4. Performed with the Phantom Mayo dataset. The initial mesh is 

very detailed and close to data. In fact it was obtained from an execution of the 
Marching Cubes algorithm (see section 5.4). The dataset is binary and we doubled it 
in order to get a much bigger workspace. There was no neighbor interpolation for 
the vector field. Note that more than 70% of the particles end up being less than one 
voxel far from the dataset. Note also that more complex deformation models require 
smaller stepsizes and much more CPU time. Besides that, the degeneration in areas 
is especially present in the constrained stretch deformation model. 

• Tests 1 and 4. Note the final percentages (71.4% vs. 81.1%) due to the differences in 
the initial mesh. In fact test 4 is also much better in terms of degeneration. The 
reasoning seems to reverse when talking about CPU times (17.4 vs. 99.65)   
although the stepsize of test 1 doubles the stepsize of test 5. 

• Tests 5 to 9. Performed with the Phantom Hebrón dataset. Note that there are also 
differences regarding the data. It is gray level based and normalized (between 0 and 
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1). For all these tests, the simulator applied the free deformation model. The initial 
mesh is the translated and scaled sphere, suitable for avoiding degenerations. In fact 
those defects are only significant if the resolution of the mesh is quite large only 
(test 8). The distance percentages are always above the 90% although the 
degenerations are totally avoided if the resolution of the mesh is of the same order 
than the distance between slices (test 9). 

• Tests 8 and 9. Very different magnitudes on the CPU times. These differences are 
directly related to the amount of particles that the system has to update at each new 
iteration (2562 vs. 162). 

 
Results on tables 6.5, 6.6 and 6.7 where obtained from a Pentium II PC 266 MHz 
equipped with 256 MB RAM and a nVidia RIVA TNT II graphics card (32 MB). 
 
More results regarding the distances have been presented through the text. See table 4.1 
and figures 4.11 and 4.12. 
 
The plain deformation model is implemented, but we are no longer using it as an 
experimental tool. It is a very slow model because the stepsizes must be tiny, according 
to the internal forces that apply (see chapter 3). Moreover that, it is very difficult to tune 
the parameters taking into consideration the tradeoff between internal rigidity (never too 
high because we are interested in motion) and external force (that can be weighted as 
we have already seen). Figure 6.11 gives some results regarding the distance-to-data 
scoring for two reconstructions. 
 

 
Figure 6.11: Distance results for the plain deformation model. 

 
The parameters for the simulations in figure 6.11, where tuned like: 
 
• For the left simulation: Stretch = 1.0, Stretch Damping = 0.1; Shear = 0.1, Shear 

Damping = 0.01 and Bend = 1.0, Bend Damping = 0.1. 
• For the right simulation: Stretch = 100.0, Stretch Damping = 10.0; Shear = 1.0, 

Shear Damping = 0.1 and Bend = 50.0, Bend Damping = 5.0. 
 
In both cases, the stepsize was 0.05 seconds. As shown, the parameters are suitable for 
the simulations to converge. Besides that, the parameters are quite different in both 
simulations but as figure 6.11 shows, the qualitative results are far from being optimal. 
The amplitudes (blue) show the distances between a particle and the zero-distance line  
(black). The left simulation is better but it is still far away from the results that the other 
models retrieve. 
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Areas Test code Mesh 
(Flat shaded) 

Mesh 
(Gouraud shaded) 

Geometry Model KS / 
KD 

KGVF / 
KGVFD 

∆T (sec.) 
Average Max. Min. 

CPU Time % < 1 
voxel 

Comments 

-- 

  

Initial mesh: 
- 1236 Particles. 
- 2465 Triangles. 
- Initially, 52.8 % < 1 voxel 
Average areas is 10.504499 and normalized 1.459838 
Max area is 20.545576 and normalized 2.696347 
Min area is 0.251531 and normalized 0.329984 

1 

  

 Free 0.0 / 0.0 10.0 / -0.1 0.01 9.44 / 
1.34 

28.6 / 3 0.043 / 
0.024 

17.4  
 

71.4 % - Binary 
- Doubled 
- Phantom Mayo 
- No neighbor interpolation 

2 

 

    Spring-mass 1000.0 /
0.0 

  100.0 / -
0.25 

0.00025 10.48 /
1.46 

20.38 / 
2.67 

0.23 / 0.3 267.05 71.5% - Binary 
- Doubled 
- Phantom Mayo 
- No neighbor interpolation 

3 

  

    Restricted
Spring-mass 

 1.0 / 0.0 25.0 / -0.1 0.0005 10.01 / 
1.4 

23.08 / 
2.7 

0.0022 / 
0.0021 

448.7 72.16% - Binary
- Doubled 
- Phantom Mayo 
- No neighbor interpolation 
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4 

  

 Free 0.0 / 0.0 10.0 / -0.1 0.005 17.9 / 
2.26 

45.7 / 
3.79 

4.51 / 1.10 99.65 81.1 % - Binary 
- Doubled 
- Phantom Mayo 
- No neighbor interpolation 

-- 

  

Initial mesh: 
- 642 Particles. 
- 1280 Triangles. 
Average areas is 33.816044  and normalized 3.497494 
Max area is 47.854534  and normalized 3.965818 
Min area is 28.186029  and normalized 3.121821 

5 

  

 Free 0.0 / 0.0 25.0 / -0.1 0.0005 22.9 / 2.6 73.7 / 
4.4 

0.7 / 0.07 861.3 90.05 % - Gray levels 
- Normalized 
- Phantom Hebrón 
- No neighbor interpolation 

6 

  

 Free 0.0 / 0.0 10.0 / -0.1 0.005 22.49 / 
2.57 

116.34 / 
5.23 

0.79 / 
0.088 

485.4 90.9 % - Gray levels 
- Normalized 
- Phantom Hebrón 
- No neighbor interpolation 
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7 

  

 Free 0.0 / 0.0 10.0 / -0.1 0.01 22.5 / 
2.57 

116.4 / 
5.24 

0.82 / 0.09 217.4 91.2 % - Gray levels 
- Normalized 
- Phantom Hebrón 
- No neighbor interpolation 

8 

  

More refined 
initial mesh: 
- 2562 pa. 
- 5120 tri. 
- Areas: 
Average: 
 8.48 / 1.75 
Max: 
12.2 / 1.99 
Min: 
7.05/ 1.55 

Free 0.0 / 0.0 25.0 / -0.1 0.005 6.24 / 
1.29 

72.38 / 
4.95 

0.0007 / 
0.0005 

513.53 90.35% - Gray levels 
- Normalized 
- Phantom Hebrón 
- No neighbor interpolation 

9 

  

Less refined 
initial mesh: 
- 162 pa. 
- 320 tri. 
- Areas: 
Average: 
133.38 /  
6.95 
Max: 
183.87 /  
8.28 
Min: 
111.8 /  6.25 

Free 0.0 / 0.0 25.0 / -
0.25 

0.01   84.03 /
5.1 

170.02 / 
7.73 

23.15 / 
1.99 

124.3 93.13 % - Gray levels 
- Normalized 
- Phantom Hebrón 
- No neighbor interpolation 

Table 6.7: Mesh rendering and simulation parameters associated to several measures in distance to data. 
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6.1.2.5. Volume results  
 
The tests regarding the recovered volume have been comparing the final reconstruction 
with the theoretical and real volumes associated to the Phantom dataset. In all the cases 
we are referring to the external surface of the model to recover. 
 
The theoretical volume can be obtained from the geometry associated to the Phantom 
model (see figure 5.7): 
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The volume value does not include the artificial cover that is added to the voxelized 
data. This artificial cover increments the global volume in 20425 mm3. 
 
Besides the theoretical volume, we can evaluate the volume associated to the acquired 
imagery. It is a matter of counting the voxels that contain a certain amount of property, 
let’s say those that pass a defined threshold. It is necessary to perform a prior test, a 
noise filtering (deleting intensities below 20% of the maximum). Then we obtain the 
voxels depicted in figure 6.12. 

 
Figure 6.12: Filtered data of the Phantom dataset. 

 
If we quantify the volume associated to the labeled voxels (those that correspond to the 
borders), we obtain 368782 mm3. Then there is a difference of 12% between the volume 
that the images retrieve and the theoretical one. We understand that this difference is 
due to the quality of the caption (it is a discreet process at a very low resolution). 
 
In order to compare the data volumes with the ones obtained from the reconstruction, 
we need a process in order to compute the volume associated to a triangulated mesh. 
For that purpose, we use the algorithm described in section 5.6. 
 
The tests in table 6.8 where performed with the free deformation model and the 
smoothing algorithm active. 
 
Following the previously described reasoning, we should compare the reconstructed 
volumes with the dataset volume. In this way note that the third column of table 6.8 
shows the percentage of error that exists between the reconstructions and the real data. 
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Recovering the external surface of the Phantom dataset 

Mesh 
(Flat shaded) 

Mesh 
(Gouraud shaded) 

Error 
(%) 

∆t (sec.) Time 
(sec.) 

Solver 

 

1.44 0.1 0.322 Euler 

 

0.68 0.12 0.14 Midpoint 

 

1.53 0.17 0.111 RK4 

Table 6.8: Volume comparison according to the integration method. 
 

The three methods retrieve good results: 
 

• Euler: recovers 363467 mm3 vs. 368782 mm3 (real data). There is a relative 
difference of 1.44 % between both measures. 

• Midpoint: recovers 366253 mm3 vs. 368782 mm3 (real data). There is a relative 
difference of 0.68 % between both measures. 

• Runge-Kutta-4: recovers 363134 mm3 vs. 368782 mm3 (real data). There is a 
relative difference of 1.53 % between both measures. 

 
We see that in all the cases the relative differences in volume are below 2%. It is 
important to note that as the method gets complicated (Euler ⇒ Midpoint ⇒ RK4), the 
stepsize can be increased (0.1 sec. ⇒ 0.12 sec. ⇒ 0.17 sec.). Then the overall 
performance in terms of speed gets improved (0.322 sec. ⇒ 0.14 sec. ⇒ 0.111 sec.). 
 
The tests in table 6.8 where ran under a Pentium III PC (800 MHz), with 256 MB of 
RAM and a 3D ATI Radeon graphics card (32 MB). 
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Data voxels Border voxels Mesh (Flat shaded) Mesh (Gouraud shaded) Mesh 
volume 

(Including 
cover) 

Data 
volume 

(without 
cover) 

Data 
volume 
(with 
cover) 

  

257597 
mm3 

207408.35 
mm3 

246825,33 
mm3 

   

251309.12 
mm3 

207408.35 
mm3 

246825,33 
mm3 

Table 6.9: Volume comparison in the Phantom Mayo dataset. 
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For the seeking of completeness, table 6.9 presents two volume comparisons performed 
on a different dataset (the Phantom Mayo). This dataset is much smaller than the regular 
Phantom dataset (Phantom Hebrón). This fact makes the reconstruction a complex task, 
especially when finding the vector field for the ROI of the data. 
 
Both tests used the free deformation model (∆t = 0.01) and a very coarse initial mesh 
(162 particles and 320 triangles). Note how the differences between the recovered 
volume and the real one are minimal (relative errors of 4.36% and 1.82% respectively). 
 
As a final test, we present two experiments regarding the reconstruction of the internal 
cavity of the Phantom Hebrón dataset. The simulation conditions were exactly the same 
as described for table 6.9. The volumes are of course smaller because we are dealing 
with the internal surfaces. The reconstructions were also successful retrieving relative 
errors of 8.36% and 1% respectively. 
 
Note the initial and final meshes superimposed to the data voxels in the second test. 
These tests corresponded to an In-to-Out reconstruction paradigm (see section 5.3). 
 
Results on tables 6.9 and 6.10 where obtained from a Pentium II PC 266 MHz equipped 
with 256 MB RAM and a nVidia RIVA TNT II graphics card (32 MB). 
 
6.1.2.6. CPU time measures 
 
Those measures are referred to the CPU time employed for all the stages of the 
reconstruction process. Nevertheless it must be said that mostly of the time is used in 
the GVF vector field generation. Some values regarding the reconstruction stage have 
been described previously (see table 6.7). 
 
Table 6.11 shows two tests regarding the vector field evaluation in different Phantom 
datasets. In both cases, the vector field was derived using the same parameters (µ = 0.15 
and 200 iterations). It is important to note that the performance in terms of CPU time is 
mainly governed by the total amount of voxels to evaluate, not by their spatial size. 
 
First row shows a dataset with 64 x 64 x 23 voxels which stands for a global amount of 
94208 voxels that must be evaluated. On the other hand, the second row shows a dataset 
formed by 128 x 128 x 46 voxels (doubled resolution) that stands for 753664 voxels. 
The second execution (1247.6 seconds) is basically one order of magnitude above the 
first (128.03 seconds). 
 
Here we are the tradeoff then. More resolution on the images ensures a better border 
labeling but by paying a major computational effort when finding the vector field. 
 
The tests where performed with a Pentium II PC, 266 MHz equipped with 256 MB 
RAM and a nVidia Riva TNT II graphics card (32 MB). 
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Data voxels Border voxels Mesh (Flat shaded) Mesh (Gouraud shaded) Mesh 
volume 

Data 
volume 

    

39251.8 
mm3 

42835.5 
mm3 

  
 

  

43259.9 
mm3 

42835.5 
mm3 

Table 6.10: Volume comparison in internal reconstructions.
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Data Resolution 
(# voxels) 

Spatial 
Dimensions 
for a voxel 

(mm) 

CPU Time 
(sec.) 

 

64 (X) 
64 (Y) 
23 (Z) 

2.87 (X) 
2.87 (Y) 
5.74 (Z) 

128.03 

128 (X) 
128 (Y) 
46 (Z) 

2.694 (X) 
2.694 (Y) 
2.694 (Z) 

1247.6 

Table 6.11: CPU times for the GVF computation on two different Phantom datasets. 
 
Table 6.12 presents a second test that shows the differences in terms of number of 
iterations used for the vector field calculation (µ = 2). In there, six different executions 
are shown. Each of the executions ran onto the same dataset but by using a different 
number of iterations. The dataset was generated from an actual patient’s acquisition (64 
x 64 x 23 voxels) that was labeled according to our MLC implementation (see section 
2.3.6). 
 

Test GVF Solver 
CPU Time 

(sec.) 

Averaged 
relative error 

(%) 

Iterations 

1 30.334 0 200 
2 21.119 12 150 
3 14.49 27.6 100 
4 10.795 36.7 75 
5 7.34 48.2 50 
6 3.414 61.4 25 

Table 6.12: CPU times and relative errors depending on the number of iterations. 
 
The reference test is the first one (200 iterations). This amount of iterations is 
considered big enough to ensure that the vectors have been correctly found. All the 
averaged relative errors are then computed between the examined cases (tests 2 to 6) 
and the reference (test 1). It can be seen that decreasing the number of iterations (from 
200 to 25) decreases the required CPU time (from ∼30 to ∼3 seconds) but also the 
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quality of the evaluation. The relative error reaches averaged values over the 60% in the 
case of using 25 iterations only. It comes clear that there’s a tradeoff between the final 
quality and the number of iterations which stands for the involved CPU cost. Note that 
the averaged relative error was computed using the magnitudes, not the single 
components, of the vectors. The PC consisted on a Pentium III with 256 MB RAM and 
an ATI Radeon 32 MB graphics card. 
 
As a final test regarding the computational overhead in terms of time, we present an 
estimation of the global latency that stands for the whole pipeline in table 6.13. In this 
test we used a complete cardiac cycle consisting on 8 captures of 64 x 64 x 23 voxels 
each. Times are expressed in seconds. The whole process is presented for a single 
external mesh, for the eight meshes of the external surface and for the 16 meshes of the 
internal and external surfaces. 
 

Type Canny 
edge 

detector1 

MLC 
filter 

GVF2 3D 
Reconstruction3

Interpolation4 TOTAL

Single 
mesh 

(external) 

0.37 0.41 28.7 2.63 -- 32.08 

Cardiac 
cycle (8 
instants 
for the 

external) 

2.96 3.28 229.6 21.04 0.12 257 

Cardiac 
cycle (8 
instants 
for both 
surfaces) 

5.92 6.56 459.2 42.08 0.24 514 

1 σ = 1.8, thresholds 0.3 and 0.7 
2 Time includes the solver plus all the auxiliary processes; 150 iterations; µ = 2 
3 Free deformation model, smoothing algorithm active 
4 30 keyframes between original meshes 

Table 6.13: CPU times associated to the latency of the whole pipeline. 
 
The most complete reconstruction takes 514 seconds to be done (between 8 and 9 
minutes) in a regular PC (Pentium III, 256 MB RAM, ATI Radeon 32 MB graphics 
card). As expected the GVF evaluation takes most of the time (nearly the 90% of the 
global latency) which drives us to a conclusion: the method which is explicit might be 
implemented in an implicit manner in order to accelerate the process. 
 
6.1.3  Missing-data results 
 
When a patient has had a heart attack some of the areas of his heart become ischemic 
and, because of the absence of blood irrigation, the data that we obtain can have some 
missing zones. Evaluating recovering results with partial missing data require using 
different fillings of the Phantom volume. We made some recovering test experiments 
with 10%, 32% and 53% percentages of missing volume data, always referred to the 
100% of the total. Figure 6.13 shows a graphical view of the voxelized version of a 
partially filled Phantom. 
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Figure 6.13: Partially filled Phantom dataset. 

 
For this test, we used the Phantom Mayo dataset which is characterized by an overall 
volume of 265501 mm3. The images corresponding to an acquisition of this Phantom, 
with no loss, are shown in figure 6.14. 
 

 
Figure 6.14: The Phantom Mayo dataset. 
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Figure 6.15: Data and GVF field for the 32% loss dataset. 

 
Figure 6.15 shows an example for one of the original datasets, the 32% loss pack of the 
Phantom Mayo. Note the simulation of lack in blood irrigation in the data window 
(bottom-left), where the slice is unexpectedly open in terms of property, no longer 
circular. Table 6.14 shows the results. 
 

Volume=265501 mm3 
% of total=100% 

Volume=250944 mm3 
% of total=94.5% 

Volume=188360 mm3 
% of total=70.9% 

Volume=159970 mm3 
% of total=60.2% 

Table 6.14: Recovered surfaces from partial data. 
 
The first column shows the initial data to be recovered; the second column depicts the 
final meshes and the third column points out the recovered final volumes (absolute 
values and percentage of total). 
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As we can see, the best recovering is the third one because it gives a percentage of 
missing volume of 29.1% against the 32% of the real data emptied. This represents a 
relative percentage error of 0.09. For the other test examples we obtained relative errors 
of 0.45 and 0.24 respectively. 
 
Figure 6.16 shows some graphical results regarding the labeling, well-fit to the data. 
 

 

 
Figure 6.16: Internal and external labeling for the complete (left) and partial (right) 

datasets. 
 
6.1.4  Complete cardiac cycle 
 
Table 6.15 presents a complete cardiac cycle reconstruction, recovered from actual 
patient’s data. The cycle is formed by eight temporal acquisitions. Each data set consists 
on 64 x 64 x 24 voxels, with spatial resolutions of 2.87 mm (X), 2.87 mm (Y) and 5.74 
mm (Z). 
 
The meshes were generated using the free deformation model with the RK4 explicit 
scheme, using a GVF balancing constant of 10, a damping factor of 1% and a stepsize 
of 0.1 seconds. 
 
One can notice the changes in volume as the organ beats (from systole to diastole), here 
noticeable as the sequence defines a complete cardiac cycle. Internal mesh, external 
mesh and wall volumes (mm3) are presented in table 6.16. Then ejection fraction (see 
appendix C) can be calculated for this ventricle as equation 6.4 shows. In there all the 
volumes are internal. As it is showed, its value is inside the interval 50% - 70% which 
states for a non-pathological situation. Moreover, physician’s 2D software gave an 
ejection fraction value of 53% for this case which is really close to our computation. 
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1             2 3 4

5             6 7 8

1             2 3 4

5             6 7 8  
Table 6.15: Complete cardiac cycle with external surfaces (top) and internal surfaces 

(bottom).  
 

 1 2 3 4 

Int. 74741 45677 36523 32956 

Ext. 443762 316804 254112 250131 

Wall 369021 271127 217589 217175 

 5 6 7 8 

Int. 47237 55825 63133 79581 

Ext. 299779 345830 451525 473608 

Wall 252542 290005 388392 394027 

Table 6.16: Obtained volumes for the eight temporal instances. 
 

dVolumeDiastoleEn
VolumeSystoleEnddVolumeDiastoleEnEF −

=  

(6.4)
%6.58586.0

79581
3295679581

⇒=
−

=  

 
Figure 6.17 shows the complete process for one of the reconstructions in this cardiac 
cycle. In this case the external and internal surfaces of the first dataset on the cycle. 
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Figure 6.17: A complete reconstruction process. 

 
The sequence shows first the initial meshes in blue. The reconstruction begins and the 
meshes turn red as long as the particles reach the marked voxels borders. Finally the 
figure shows the border voxels (black) superimposed to meshes, the particles over a 
data slice, and some particles over the external (blue) and internal (green) frontiers. 
 
6.1.5  Pathological cases 
 
In some pathological cases, it can be interesting to use data from nuclear 
ventriculography (see appendix A) instead of using standard perfusion imagery. If the 
volume of isquemic tissue is really severe, the detection of the inner borders can be 
better achieved by this way, like shown in figure 6.18. 
 

  
Figure 6.18: Perfusion borders (left); Ventriculography borders (middle); 

Final reconstructed mesh (right). 
 
As shown in figure 6.18 for the internal surface, data borders detected from the 
perfusion data present an important lack of consistency. If we take a look at the same 
test done over the ventriculography, the borders are much better labeled. Then the final 
surface can be perfectly recovered for the case. 
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We also present six pathological cases that have been treated with the proposed 
algorithms. All of them were simulated using the Runge-Kutta 4 solver, the free 
deformation model and the final smoothing process. The tests were performed in a 
Pentium III PC with 256 MB RAM and a 32 MB accelerator card (mobility ATI 
Radeon). 
 
Figure 6.19 shows two datasets of ventricles originally affected by digestive activity in 
their apex. However, the algorithm can distinguish correctly the left ventricle borders. 
Note how the surfaces are well-fit to the voxelized data to recover. The simulations took 
0.56 (top) and 0.45 (bottom) seconds. 
 

 
Figure 6.19: Digestive activity perturbing initial datasets. For the two presented cases: 

Left, final external surfaces; Right, final surfaces over the dataset to recover. 
 
Figure 6.20 shows four more cases. Their respective initial datasets presented occlusion 
defects located at several places. The defects were classified by physicians as inferior 
(1), apical (2), side (3) and vast anteroapical (4). The simulation times took 0.32, 0.45, 
0.44 and 0.68 seconds respectively. 
 
Note how the lack of information in the original datasets influences the final 
reconstructed surfaces (cases 3 and 4). The final smoothing process avoids the 
apparition of creases along the mesh. 
 

 
Figure 6.20: Occlusions perturbing initial datasets. For each case the final external 

surface is rendered in the left and mixed with the dataset to recover in the right. 
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6.1.6  Other explored approaches 
 
There are other approaches to explore such as automatic contouring and tessellation of 
the 3D shape by using the discreet contour deformation model. This methodology is 
applied to our SPECT datasets in order to get a more complete feedback. 
 
We also point out the research that is being done in flexible volumetric modeling for the 
left ventricle, by other members of our research group. This is the next stage of the 
whole process and it is required in order to allow real time interaction with the organ. 
 
We finally test our imagery with the Anisotropic Contour Completion operator. This is 
a very novel technique that has been published recently. The technique takes into 
account the local orientation of the contours to be closed, which fits well with cardiac 
images of the left ventricle. 
 
6.1.6.1. Automatic contouring and tessellation of the 3D shape 
 
The discreet contour deformation model (see sections 3.2.4, 3.3.3 and 3.4.1) can be 
extended to a 3D framework. Moreover that, we can use this method to derive 3D 
surfaces of the left ventricle walls. It can be used as a new tessellation method. 
 
The process consists on finding a first contour by the usual method. This contour will be 
used as an initial template for the rest of the slices. The process is described below: 
 
• Begin by finding the 2D contour for the best slice (in terms of property clarity). 
• Use this contour as a template for the neighbor slices (top and bottom). 
• Repeat the process for all the slices, using the immediate contour as the initial 

template for the actual contouring. 
• Once the system has found all the contours, tessellate a 3D mesh along them. 
• Close the boundaries of the mesh in the top and bottom contours. This will ensure 

that volume evaluations are correct. 
• Smooth the mesh if needed. 
 
Figure 6.21 presents the template contour for a test using actual patient’s data (external 
surface tessellation). In this case we used the same instant of the cardiac cycle that 
figure 6.17 shows. The initial contour was found in slice 16, considered to be 
representative enough in terms of quality and clarity. 
 
From that initial contour, we segmented the whole dataset by applying the previously 
described algorithm. Figure 6.22 shows the final result. 
 
Once the whole dataset has been segmented in 2D, we apply our tessellation strategy in 
order to build the 3D surface that we are looking for. Figure 6.23 shows the final render 
in either its wire frame (left) and shaded (right) versions. 
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Figure 6.21: Template contour for the discreet contour deformation model. 

 
 

 
Figure 6.22: Segmentation of a whole dataset by the discreet contour deformation 

model. 
 
We can apply this methodology to the reconstruction of the cardiac cycle, like in section 
6.1.4. Figure 6.24 shows the external and internal meshes retrieved for the same dataset 
but when using this approach. 
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Figure 6.23: 3D recreation of the external surface by the new tessellation method. 

 

 

 
Figure 6.24: The cardiac cycle retrieved by the discreet contour deformation model. 
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Where rows one and two correspond to the external surfaces and rows three and four to 
the internal ones. We can evaluate the volumes and the ejection fraction like in table 
6.16 and equation 6.4. The results can be seen in table 6.17 and equation 6.5 
respectively. 
 
All the volumes are inferior in absolute terms but the ejection fraction is practically 
equal. In that sense, we can state that this test retrieved lower volumes but as long as 
this fact is consistent in all the reconstructions, the ejection fraction, which is a relative 
parameter, can be considered as good as the previous one. The extension of the discreet 
contour deformation model to 3D is being researched so far. In that sense, those are 
promising results. 
 
We find the volume by calculating the area of each contour. We subtract the area of the 
first contour to these (Green’s theorem)  and we multiply the result by the thickness 
between slices. We add all the partial volumes. 
 
Then we have to evaluate the contributions of all the lateral triangles that link the 
different contours. The contribution for a triangle is calculated like the area that it 
projects multiplied by the slice thickness and divided by a factor of 2. Depending on the 
sign of the normal vector, this contribution is added (positive normal) or subtracted 
(negative normal). 
 

 1 2 3 4 

Int. 49973 29964 20849 18929 

Ext. 349349 264170 215068 201387 

Wall 299376 234206 194219 182458 

 5 6 7 8 

Int. 27440 40689 47080 49034 

Ext. 247078 291363 322970 373602 

Wall 219638 250674 275890 324568 

Table 6.17: Volumes for the eight temporal instances, applying the discreet contour 
deformation model. 

 

dVolumeDiastoleEn
VolumeSystoleEnddVolumeDiastoleEnEF −

=  

(6.5)
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6.1.6.2. Flexible volumetric model of the left ventricle 
 
In order to interact with the organ in real-time, like in a surgery simulator, we need to 
add volume to our surfacing solution. This task is accomplished by a module that 
receives our surfaces as its inputs generating a volumetric model of the left ventricle 
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[64]. Although this algorithm is not within the scope of this project, we consider 
necessary explaining it in a few words for a better description of the complete VR tool. 
 
The volumetric model can be found by using a model that mixes two different 
paradigms: the Finite Element and Mesh Free Methods [43]. This hybrid approach 
constructs a multi-resolution model that can be used for real time interaction purposes. 
These simulations are characterized by the dynamic interaction between the deformable 
model and some possible external forces acting on it. The dynamic behavior of the 
volumetric model is based on linear elastic mechanics. 
 
In fact the model consists on several layers that start with a very coarse mesh that is 
being refined into a more complex representation. The computational accuracy is 
always related to the amount of elements (tetrahedra in the case of volume) and their 
associated sizes. If the user applies an external force to the model, the algorithm 
activates the refined mesh in the appropriated area. The rest of layers are used to 
animate the model according to their distance from the force location. When thinking 
about obtaining the different multiresolution meshes, it is easy to select one of two 
choices available: a refinement of the previous level mesh or a completely new and 
independent geometry. 
 
It is necessary to work with several meshes which results on the increase of the 
complexity of the data structure. We can overcome that by using a single and coarse 
mesh while applying another multiresolution methodologies to the deformable model. 
The idea behind this is to refine the zone where the forces are acting and to use a Mesh 
Free Method (MFM) in order to compute the elastic reaction of the model. 
 
Figure 6.25 shows two views for the volumetric model of the left ventricle. Left side 
shows the external surface as we have dealing in this project. Right side shows the 
innerities of the volumetric model, where two multiresolution meshes have been built. 
 

 
Figure 6.25: Volumetric model of the left ventricle. 

 
6.1.6.3. Anisotropic Contour Completion applied to left ventricle imagery 
 
Anisotropic Contour Completion (ACC) is a novel application of the diffusion tensor 
for anisotropic image processing presented by Gil, Radeva and Vilariño [37]. The 
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technique takes into consideration the local orientation of the contours to be closed. 
This fact can be exploited in our case, where the images to segment are circular-based. 
It can be interesting to add an extra knowledge of the images to the system, by using 
this operator. 
 
In fact the method recovers a closed model of the curve that can be refined by other 
means such as ours. The idea behind the method is to use the initial image as an initial 
heat distribution, in our case the irrigation values of the SPECT images. With these 
initial values a diffusion heat process is started using a local metric tensor, based on the 
principal component analysis, chosen to drive the heat diffusion in the tangent direction 
of the level contours. This way a more noise robust approach to the contour detection 
can be achieved.  For our noisy images this is a very valuable property.   
 
The technique has been tested in a cardiac sample in order to complete our results. After 
applying the novel operator, a generic edge detector is used (Canny Edge Detector). The 
results for all the slices in this dataset are shown in figure 6.26. 
 

 
Figure 6.26: ACC as a preprocess for SPECT imagery segmentation. 

 
The test retrieves clean and closed contours in the majority of the images. Spurious 
edges do not appear making it easier for our MLC implementation to operate. 
Nevertheless, there are some incomplete contours, for instance in slice 8 (second row, 
second image in the left), where the contour is not closed around the cardiac tissue. 
Fortunately our implementation can handle these situations by applying vertical 
coherence to the bounding box filtering stage. The bounding boxes do not suffer from 
bad alignments even if this type of incomplete contours appear. 
 
Figure 6.27 shows the results after applying our MLC implementation to slice 8 of the 
dataset in figure 6.26. The Canny edge detector is shown in yellow and the internal and 
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external labeling are rendered in blue and red respectively. Note that the labeling is 
correct and the bounding boxes are well-aligned. 
 

  

  
Figure 6.27: Borders are correctly labeled even if incomplete edges are retrieved. 

 
If we mark the labeling for the whole dataset in order to perform a 3D reconstruction, 
we obtain the surfaces in figure 6.28. The GVF evaluations took 44.18 / 42.561 seconds 
for the internal / external borders respectively (64 x 64 x 23 dataset). The 3D 
reconstruction took 0.935 seconds for the external surface and 0.887 seconds for the 
internal. Tests were executed in a Pentium IV 1.7 Ghz, 512 MB RAM, GeForce 4 FX 
with 128 MB graphics card. 
 
The resulting volumes are of 56166.5 mm3 (internal) and 325142 mm3 (external). These 
measurements are slightly smaller than those shown in section 6.1.9 (for the first dataset 
of the cardiac cycle which corresponds to this case). Differences range from 25 to 28%. 
The main reason for this is that some slices have no contouring at all (besides slice 8, 
see the last four slices in figure 6.26) and then do not contribute to the overall volume. 

6 Applications and results  161 



General Dynamic Surface Reconstruction 

 

 

 
Figure 6.28: External and internal surfaces for the ACC operator. 
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6.2  Generic reconstructions 
 
Our methodology can be extended to other sort of problems in a generalist way. 3D 
reconstruction can be interesting in other fields such as terrain generation, procedural 
modeling, architecture or animation, among others. 
 
This section presents several results that demonstrate how our reconstructions can serve 
for getting 3D models at low cost, in terms of manual interaction and CPU computation 
cost. 
 
6.2.1  Low-polygon modeling and mipmeshing 
 
When dealing with real time engines, low polygon modeling is a key process that 
ensures real time response. If an object is far away from the viewer, we will not 
perceive its detailed shape. Then it is convenient to use a reduced version from its 
geometry in order to ensure better CPU costs. We build several versions of the 
geometry from different meshes that represent the same object with more or less 
polygons. This is what the literature calls mipmeshing [30]. When rendering the object, 
we must check its distance to the camera, or viewer, and select the appropriated mesh. 
There is a clear tradeoff between the amount of polygons and the visual quality the we 
must offer. No quality loss should be perceived by the final user. 
 
Nevertheless, this methodology presents several disadvantages: 
 
• The user, or the programmer as a preprocess, must consider the distance intervals 

associated to the levels of detail. 
• The distance determination does not take into account the field of view. If this 

parameter changes during the animation, due to changes in the camera initializations 
for instance, the distance intervals will no longer be useful. The sizes of the object 
that the user sees depend strongly on the distance to it and on the field of view. 

• If we move away from the object, the system will produce a change in the level of 
detail that may be visually perceived by the user. An abrupt change when 
substituting a model by a reduced version of itself. 

 
Even with the disadvantages stated, this technique is very useful if we take into 
consideration that no changes in the field of view occur in most of the cases. Moreover 
that, the transition problem can be solved by implementing an interpolation algorithm 
that evolves from one mesh to another. As a final statement, we can determine when to 
change the model if we track the bounding box associated to the object. We can project 
this bounding box onto the camera frame and see what is the approximated size of the 
object, once projected. Then it is easy to select the correct model to display 
automatically. 
 
Figure 6.29 presents a mipmeshing example. In this case, the animation presented 200 
simultaneous hammers that had to be rendered and animated in real time. With the 
application of this technique, the system runs in real time in a medium PC (Pentium III, 
256 MB RAM and a 32 MB Ati Radeon accelerator card). 
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Figure 6.29: Mipmeshing [30]. 

 
There are six levels of detail that can be used for six distance intervals during the 
animation. The hammers where modeled with 1830, 1084, 798, 420, 85, and 12 
triangles respectively (beginning from the closer model). It can be seen that using lots of 
polygons is not necessary if the distances are large because the size of the object 
prevents us from appreciating the complexity of the geometry. 
 
Our methodology can be used to automatically build the different levels of detail for a 
3D model. It is a matter of selecting the required amount of polygons in order to 
initialize a mesh and apply the 3D reconstruction method. We reduce the modeling time 
considerably because we can avoid manual operations. 
 
6.2.2  Automatic tessellation 
 
As a second utility, we present our method as a robust tessellation algorithm that builds 
surfaces from clouds of points. When modeling real life objects such as vases or dishes, 
it is common to use 3D scanners and magnetic sensors [1, 9]. These devices output 
thousands of points for the desired object avoiding costly manual processes in a very 
rudimentary manner. These points or “clouds of points” must be tessellated (a 
tessellation consists on the generation of triangles from a collection of vertices) if we 
want to use them inside a VR environment or in any sort of animation production. 
 
Figure 6.30 illustrates how a generic tessellation algorithm works. From a cloud of 
points we need to derive triangles in order to end up a mesh that the system will render 
realistically. Applying realism to a scene consists on shading it consistently according to 
some predefined lights plus texturing it, among other stages. This task can be 
accomplished if using triangles but there’s no way if we are given points only. Triangles 
allow us to compute normal vectors that are a key value for lighting computations. 
 
Figure 6.31 shows a real time application that animates according to the position and 
orientation of a magnetic sensor. In the scene, the blue box stands for the coordinate 
origin and reference frames for the scene and the real sensor. The pink box is the virtual 
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representation of the sensor that moves freely guided by the user. There is a yellow 
plane associated to the sensor. This plane cuts interactively a model, rendered in brown. 
 

 
Figure 6.30: A tessellation from a cloud of points. 

 

 

 
Figure 6.31: A real time application linked with a magnetic sensor. 
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Our algorithm automatically finds a surface associated to the cloud of points that the 
sensor or scanner delivers. Once the mesh has been computed, it can be exported and 
used inside an animation framework in order to be shaded, textured and finally 
rendered. 
 
6.2.3  Results on automatic meshing 
 
This section presents several results related to the explanations in sections 6.2.1 and 
6.2.2. The models were selected to be very different in order to demonstrate the 
robustness of the method. All the tests where performed by using three different meshes 
according to three predefined levels of detail. 
 
Figure 6.32 presents one of the reconstructions as it evolves in time. Note how the 
differences between the initial mesh (an ellipsoid) and the final model (an screwdriver) 
do not suppose a problem for the method. 
 

 
Figure 6.32: A 3D reconstruction evolution graph. 

Time goes from top to bottom and from left to right. 
 

For all the tests, their associated clouds of points were voxelized to a resolution of 62 x 
62 x 62 voxels. The voxels where treated as data borders for the GVF evaluation. This 
evaluation took 200 iterations for each test (µ = 2.0). The averaged CPU cost associated 
to the GVF evaluation was 95.14 seconds. The reconstruction was performed by using 
the free deformation model and the Runge-Kutta 4 solver with no smoothing algorithm. 
The simulation parameters where: 
 
• Scaling factor of 0.1 for the GVF vector field. 
• Damping factor of 0.0 for the GVF vector field (except for tests 5 and 6 where we 

applied a value of –0.1 due to the tiny magnitudes of the original clouds). 
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• A stepsize of 0.001 seconds. 
 
All the tests were performed on a Pentium III PC with 256 MB RAM and a 32 MB Ati 
Radeon accelerator card. 
 
Table 6.18 presents several characteristics for the reconstructed models. In there, the 
meshes are catalogued as in table 5.2 (see chapter 5). The amount of triangles for each 
mesh is 320 (mesh 1, low detail), 1280 (mesh 2, medium detail) and 5120 (mesh 3, high 
detail). Quantities are always referred to those used in virtual reality environments that 
require less computations in order to achieve real time responses. Photo realistic 
productions related to movies for instance, require much larger quantities (millions of 
triangles) which are not within the scope of this project. 
 

Test Model Amount 
of original 

points 

Amount 
of 

original 
triangles

GVF 
time 
(sec.) 

Time 
for 

mesh 1 
(sec.) 

Time for 
mesh 2 
(sec.) 

Time for 
mesh 3 
(sec.) 

1 Rabbit 67038 134074 93.84 -- 78.587 300.187 
2 Screwdriver 27152 54300 96.93 -- 89.097 201.381 
3 Vase 68097 136192 94.09 -- 50.272 114.517 
4 Venus 134345 268686 97.79 -- 46.111 107.24 
5 Moai 10002 20004 94.52 1.332 26.456 57.277 
6 Squirrel 9996 19992 93.64 1.343 7.548 69.001 

Table 6.18: Characteristics for the general 3D reconstructions. 
 
Mesh 1 was only applied to tests 4 and 5. The overall computation cost for the medium 
and complex levels of detail were of 49.68 and 141.60 seconds respectively. Note then 
how the system retrieves a complex tessellation for the model in less than three minutes. 
The variations on the timings are related to the complexities of the models to 
reconstruct in terms of existing concavities. Those cases are more difficult to deal with 
and require higher computation costs. 
 
If we compare the potential amount of triangles related to a cloud of points against the 
complex mesh that we retrieve, we can see the huge difference. For instance, with the 
Venus model (test 4). The original sculpture was scanned and this process retrieved 
134345 points. This quantity leads to 268686 triangles by a typical tessellation 
algorithm. With our algorithm we build a final complex mesh consisting in 5120 
triangles which stands for the 1.9 % of the total (reduction of the 98.1 %). In the case of 
the medium approach the final mesh stands for the 0.47 % of the overall geometry 
(reduction of the 99.53 %). 
 
We provide a reduced level of detail for the model that is quite close to the original but 
consisting on a small percentage of its total geometry. This fact demonstrates the utility 
of our methodology in order to perform automatic mipmeshing for a given cloud of 
points. 
 
Tables 6.19 to 6.24 show the graphical results of the analyzed tests. In tables 6.19 to 
6.22 we show (from top to bottom and from left to right): a final render of the triangles 
retrieved by a typical tessellation algorithm, the original cloud of points, the voxelized 
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borders, two views of our final mesh and the mesh superimposed to the voxels for the 
medium (second row) and complex (third row) levels of detail. 
 
Tables 6.23 and 6.24 show the results of tests 5 and 6. In that case the first row 
corresponds to the voxels and the simple mesh. The second and third rows show the 
medium and complex final meshes (with and without the voxels). 
 
Note the accuracy when comparing the voxelized version of the data against the 
recovered mesh, especially when dealing with the complex mesh (more triangles ensure 
a better reconstruction that takes into account more details). 
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Table 6.19: General reconstructions. Test 1, the Venus model. 
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Table 6.20: General reconstructions. Test 2, the rabbit model. 
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Table 6.21: General reconstructions. Test 3, the screwdriver model. 
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Table 6.22: General reconstructions. Test 4, the vase model. 
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Table 6.23: General reconstructions. Test 5, the Moai model. 
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Table 6.24: General reconstructions. Test 6, the squirrel model. 
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6.3  Summary 
 
We have presented several results related to the three-dimensional reconstruction of the 
internal and external surfaces of the human's left ventricle from actual SPECT data. In 
that context, the reconstruction is a first process fitting in a complete VR application 
that will serve as an important diagnosis tool for hospitals. 
 
We began by performing several reconstructions in a real time environment in order to 
achieve the desired accuracy for the GVF vector field. We experimented with simple 
and well-known scenarios where the final result had to fit our predefined requirements 
of distance to data. 
 
After the first experiments, we reconstructed our first left ventricle, taken from an actual 
patient’s dataset obtained from the physicians. The algorithm worked well in terms of 
the final mesh but it was too slow for our purposes. In order to improve our 
methodologies we needed a test volume with a known geometry and dimension. 
Moreover that, it was important that its characteristics of absorption and transmission 
were similar to the ones related to the ventricular tissue. We needed the Phantom 
volume. 
 
We present results on the Phantom volume regarding all the topics: the GVF vector 
field, the stopping mechanism, measures about the distance to data, the recovered 
volume, the CPU cost, reconstructions with missing-data datasets, etc. 
 
Once the technology was deeply tested, we were ready to use it with real datasets 
related to several patients. Experiments on healthy and pathological ventricles have 
been presented. The experiments show results through the entire pipeline (2D 
segmentation, border labeling, field evaluation, 3D reconstruction and evolution in 
time). 
 
After getting the surfaces, we present the volumetric model of the left ventricle. This 
process is not within the scope of this project but there is active research on this topic 
inside our group and we give a first sight on the results, provided by other members. 
 
We also demonstrate how our methodologies can be used as automatic contouring and 
tessellation algorithms, via the discreet contour and free deformation models. We apply 
them in the context of low polygon modeling and mipmeshing, very common 
techniques within the 3D community. Those technologies are used to perform generic 
reconstructions of different models that demonstrate the flexibility of our algorithms. 
 
Next chapter presents the conclusions regarding all the topics explained within this 
document. 
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7  Conclusions 
 
This thesis is embedded inside a global project where a computerized system is intended 
to improve the analysis of the cardiac data defined by specialists. The aim of this 
particular project is to reconstruct the three-dimensional internal and external surfaces 
of the human’s left ventricle. Beginning with the surfaces reconstruction, the application 
provides volume and interactive real-time manipulation to the model. We focus on 
speed, precision and smoothness for the final surfaces. As long as heart diseases 
diagnosis requires experience, time and professional knowledge, simulation is a key-
process that enlarges efficiency. 
 
Besides the LV application, our methodology is suitable for generic reconstructions in 
the field of computer graphics. Our reconstructions can serve for getting 3D models at 
low cost, in terms of manual interaction and CPU computation overhead. As a second 
utility, our method is a robust tessellation algorithm that builds surfaces from clouds of 
points that can be retrieved from laser scanners, for instance. 
 
7.1  General structure of the system 
 
Figure 7.1 shows the first implementation of the system. 
 

 
Figure 7.1: General structure of the whole system (first version). 

 
The main features were: 
 
• Automated evaluation of the GVF vector field. 
• Three deformable models available: the plain deformation model, the mass-spring 

deformable model (standard and restricted) and the free deformation model. 
• Two numerical schemes: explicit and implicit. 
• Three implementations of the explicit solver: Euler, Midpoint and Runge-Kutta 4. 
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• Smoothing algorithm available in simulation time and as a post process. 
• Several alternatives applied to the stopping mechanism of the mesh: dynamic 

damping, voxel labeling according to the sign of the GVF field and voxel labeling 
according to the gradient maxima. 

• Exhaustive analysis of the Phantom volume. First tests with real datasets. 
• Experiments on final distances to data, quality of the tessellation and final recovered 

volumes. 
• CPU cost measurements. 
 
Nevertheless by that moment there were several topics to achieve that drove us to a 
redefinition of the structure (see figure 7.2). 
 

 
Figure 7.2: General structure of the whole system (second version). 

 
The topics were: 
 
• Solving the problems due to the lack of data when ischemia is present. 
• Reconstructing the whole cardiac cycle. 
• Implementing the transition between different keyframes of the cardiac cycle. 
• Creating the final animation, from systole to diastole. 
• Demonstrating the “kindness” of the system if applied to other datasets such as 

those obtained from scattered data (from laser scanners or VR sensors). 
• Presenting the complete algorithm as a new alternative in the fields of low polygon 

tessellation applied to mipmeshing, for instance. 
 
Figure 7.3 shows the structure of the system if applied to the generic reconstruction of a 
scanned real object (a cloud of points). 
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Figure 7.3: General structure of the whole system applied to generic reconstructions 

(second version). 
 

 
Figure 7.4: Automatic contouring and tessellation of the 3D shape with the discreet 

contour deformation model. 
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We have also extended the discreet contour deformation model (see sections 3.2.4, 3.3.3 
and 3.4.1) into a 3D framework. In fact, it is possible to use this method as a tessellator 
to derive 3D surfaces of the left ventricle walls. The structure of this parallel system is 
depicted in figure 7.4. 
 
Next sections present the conclusions regarding all the topics analyzed in the chapters of 
this document. 
 
7.2  2D Processing 
 
3D segmentation involves the evaluation of an external force, a vector field that pushes 
the meshes to the data boundaries. Prior to that, 2D processing is needed to mark the 
internal and external borders of the left ventricle. The borders are contained in slices 
that will be piled up in order to find the vector field. We want to provide the diagnosis 
tool with an automatic border detector that only requires some parameterization and less 
manual adjustments. 
 
Firstly, we have presented a comparison between several generic edge detectors, used as 
the first step of the process and applied to cardiac images. The Robert operator, the 
Canny edge detector, the Compass operator, Sobel masks and Anisotropic Contour 
Completion have been tested. In fact, we focused deeply in Canny and Compass 
operators (see figures 2.9 to 2.12) and we concluded that both can be useful with a 
suitable tuning of the input parameters. Those serve as a first segmentation tool that 
retrieves contours without any knowledge of the shape that we are willing to recover. 
Anyway, we take advantage of this knowledge later with our self-made filters. 
 
Attempts were made on doubling the resolution of the images although we had to reject 
them because of their smoothing effect. This effect neglects high gradient areas that we 
are interested in. 
 
We have automated the scheme designed for labeling the data borders. Five specific 
techniques (section 2.3.2 and so on) have been developed: the vector sign method, the 
gradient method, the case-based method, the radial-circumferences method and the 
MLC method. One might think that a vector field can be evaluated directly from the 
images, with no needed labeling. This is true but not always optimum because 
depending on the resolution of the input imagery and the ROI (region of interest) 
dimensions, the derived vector field is basically poor detailed (see figure 2.13). 
 
The vector sign method requires applying first the GVF (Gradient Vector Flow) vector 
field to the input 2D images. It tracks the sign of the vector field in 2D, marking the 
changes that should be associated to the borders. Although the process works quite well 
for some cases, it can be poorly effective if the ROI does not have a minimal dimension. 
Moreover that, the borders can be labeled in some cases but there’s no way to 
distinguish if they are internal or external. We do need to reconstruct both surfaces 
separately and we have to separate borders in two categories. 
 
The gradient method is based in the fact that both sides of a border are high gradient 
areas where the magnitudes tend to be at their maximum values. However, this method 
presents the same problems stated in the vector sign method. 
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The case-based method is a first attempt on labeling the borders as internal or external, 
according to a previous case-based classification. If we do so, we can force the meshes 
to stop at the outside or inside borders although the tiny dimensions of the ROI do not 
cooperate. From a first GVF evaluation, we mark the borders. Once this is done, we 
evaluate a second vector field used in the 3D reconstruction and evaluated on the 
borders, not over the property itself. This method is independent from the dimensions of 
the ROI but it is hardly to achieve a classification algorithm that takes into 
consideration all the possibilities when ischemia and pathological datasets are present. 
 
The radial-circumferences method assumes that the internal and external borders can be 
considered basically as circular contours. The algorithm also starts from the fact that the 
physician has defined a manual coarse circle, like a first noise filtering tool. After that, a 
generic edge detector is applied. As a matter of fact, this approach relies too much in the 
characteristic of symmetry for those images what causes it to fail in some pathological 
cases. Moreover, noise can fool the algorithm. 
 
The MLC method (Maximum Likelihood Classificator) groups pixels to one of the 
classes, internal or external borders, on the basis of some probability. We need to define 
some decision rules in order to classify them accordingly. As a precondition, our 
implementation assumes that there is a previous process that finds the smallest circle 
that can be used as the first filtering tool for all the slices and the division slice that 
marks the beginning of the left ventricle’s apex. Both parameters can be obtained 
automatically within our application, which is a major contribution in terms of usability 
and system management for physicians.  
 
We also exploit the concept of vertical coherence between slices in order to refine the 
division slice finding and the bounding box filtering that have been designed as a final 
stage that removes noise. Thus, we rely on 3D information rather than deciding in a 2D 
basis only. 
 
This algorithm is definitely characterized by its robustness because it performs all the 
calculations automatically, with less need of symmetry assumptions. All cases can be 
treated with a minimal amount of parameters to be tuned. 
 
7.3  3D Deformation models 
 
Deformation models are used to recover the geometry that best fits them, among other 
utilities. The reconstruction of the left ventricle fits inside this category because it is 
necessary to use a complex model in order to recover all of its detail and shape. Simple 
primitives or rigid geometries cannot model those objects correctly. 
 
We use particle systems in a Newtonian evolution scheme as a 3D segmentation tool 
(see section 3.1). In that context, we have experimented with several methodologies 
available in terms of internal forces (section 3.2) designed for 2D contours and 3D 
surfaces. We have successfully implemented stretching (controls the magnitudes 
associated to the sides of a given triangle), shear (acts on the inner triangle’s angle), 
bending (defined between pairs of adjacent triangles) and local curvature control 
(minimization of the local curvature). 
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In terms of external forces (section 3.3), we present a comparison between several 
paradigms that serves us to justify the reason to use the GVF approach. We analyzed 
classic snakes, active nets, topologic active nets, radial energy based potentials and the 
gradient vector flow vector field. In fact, chapter 1 provides with a deep explanation on 
these methodologies among many others. 
 
Snakes have three main disadvantages. First of all, the contour has to be initialized very 
close to the data to recover. Secondly, is has difficulties when trying to follow image 
maps that contain boundary concavities, like in the left ventricle case. The third problem 
is related to our final goal, the recovering of the inner and outer surfaces of the left 
ventricle. Ischemic areas, which mean in absence of blood irrigation, do not appear in 
the images. This effect provokes the apparition of holes that are an added problem for 
the contour or surface 
 
Active nets work when objects are quite simple but some problems arise when 
irregularities exist, like large concavities. In order to solve those complex cases, 
topologic active nets were defined. Those are suitable for locating more complex 
shapes, tracking several objects simultaneously and detecting concavities in the internal 
structure of the objects. Unfortunately, this strategy might fail our purposes of tracking 
the entire left ventricle despite it is formed from an object or from several of them. 
These nets will track several apparently unrelated objects separately and we need to 
group them. Moreover, the 3D reconstruction method depends on the calculation of an 
external force related to external and internal borders. This classification is not provided 
by this methodology. 
 
When working with local curvature internal forces a suitable external force can be 
derived from a distribution of an external potential energy: the Radial based Energy 
potential. This distribution can be associated to several characteristics of the image like 
the gray level and the gradient magnitude at every pixel or voxel. This paradigm has 
been used for the tracking of the left ventricle, as presented in chapter 6. However there 
is still the need to find an external energy term that attracts the contour or the surface to 
the original data. That’s the reason for using the vector field described in next 
paragraph. 
 
The Gradient vector flow is a vector field where the external force consists on the 
minimization of a functional that mixes the information derived from the image-
intensities gradient with a diffusion term that allows the field to be spread out. This 
vector field solves two key difficulties: it avoids the need for the initial model to be 
close to the data to recover and it performs effectively within boundary concavities. 
 
For the left-ventricle reconstruction, the property value is selected to be the border 
attribute. Given a data slice, a voxel can be assigned one of two possible values: “1” if it 
is a border or “0” if it is not. The vector field is calculated twice, for the internal and 
external borders. As a result of the field calculation a vector field that surrounds the 
borders arises, making them act as attractors (see figure 3.18). We have extended this 
method to 3D as a clear contribution of the present document. 
 
We have also implemented five different deformation models (section 3.4), all of them 
fully functional: the discreet contour deformation model that weights the applied forces 
in order to ensure a correct stabilization. In fact we have also extended it to a 3D 
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framework as another contribution (see chapter 6); the plain deformation model, a 
complex scheme where each of the triangles in the mesh has its own three elasticity 
forces; the spring-mass deformation model, a well-known one where the only internal 
force is stretch, defined between pairs of particles; the restricted spring-mass 
deformation model, which can be considered also as a contribution, where spring-forces 
are only allowed in the normal direction of the derived vector field and finally, the free 
deformation model, where the only existing force is the external one, derived from the 
dataset. In that case, there’s no connectivity between particles and topology must be 
maintained using a smoothing algorithm that we have developed entirely (chapter 5). 
 
For the damping factors necessary in a simulation framework, we have also introduced 
the concept of damping maps (figure 3.23) that link a damping value with a voxel 
attending to its quality of data border. 
 
7.4  Numerical implementation 
 
For computing the state of the virtual scenery at every step, we need a numerical 
method, or solver, that evaluates several derivative values. There are several solvers 
available, different in terms of efficiency, robustness and speed of evaluation. 
 
We have discussed explicit vs. implicit schemes which find a solution for an ODE 
(Ordinary Differential Equation) based problem. Explicit schemes (section 4.2) are 
characterized by equations that can be directly solved with no need from iterative 
processes. Those are classically simpler than implicit methods because of the clearness 
of their inner equations. Euler’s method, midpoint method and Runge-Kutta 4 method 
are some of the possibilities available. All of them are implemented within our 
simulator. 
 
Euler’s accuracy depends strongly on the stepsize selected. Tiny stepsizes offer good 
results in terms of trajectory while large stepsizes lead to wrong results. We can select a 
suitable stepsize, a small enough one, but then, lots of steps will be required in order to 
avoid error accumulation. 
 
The midpoint method is a second-order solution method where the second derivative, 
evaluated at the midpoint of the interval, is used to calculate the whole step. It 
outperforms the precision over the Euler method although it requires two evaluations of 
the derivative function per step. If we add more terms to our Taylor series in order to 
minimize the error term, we get the Runge-Kutta formulation. 
 
The Runge-Kutta 4 method requires four evaluations of the slope per iteration. 
Nevertheless the stepsize can be greater than in the midpoint method (at least twice as 
large) while keeping the same accuracy. It treats every step in a sequence of steps in 
identical way. Prior behavior of a solution is not used in its propagation. Especially the 
first affirmation makes it very easy to incorporate this algorithm into relatively simple 
"driver" schemes. 
 
Implementing the Runge Kutta 4 method can be done by successively applying the 
simple Euler method, for every slope evaluation. From that knowledge we can take the 
simple Euler equations and solve the derivative term sequentially at different positions 
in order to find its coefficients. 
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We also provide with an explanation of adaptative stepsize (the step doubling 
technique), which provides with dynamic correction of the time step according to the 
restrictions at each instant. Changing the stepsize can exert some adaptative control over 
the progress of the simulation. The gains in efficiency can be important. We should 
select a stepsize or another depending on the present situation. 
 
Implicit schemes (section 4.3) are based on algebraic formulas. Those methodologies 
are usually more complicated than explicit methods while ensuring a better convergence 
in a few iterations. We have implemented the implicit version of the Euler method, also 
called the backwards Euler method. It makes some decisions about the derivative value. 
In fact, it assumes some kind of average between the derivatives at the beginning and at 
the end of the interval. The method can be easily solved if we take into account the 
sparse characteristic of the involved matrices. 
 
Explanations on the implementations of the deformable models are also within the scope 
of this document (section 4.4). The plain deformation model is implemented by an 
implicit scheme due to its complexity in terms of internal forces. The spring-mass, 
restricted spring-mass and free deformable models share the Newtonian approach with 
the plain deformable model while being simpler in terms of forces. Because of that, we 
decided to implement them by an explicit solver. Similar results in terms of robustness 
and accuracy can be achieved in these models by an explicit method like the Runge 
Kutta 4 solver. 
 
We also offer a comparative test between all the implementations (section 4.4.3). The 
first test consists on the 3D reconstruction of the external surface of a Phantom volume 
(see appendix D). We observe that the stepsizes used in the implicit method can be 
considerable bigger than in the explicit simulations. The selected stepsize is then 
associated to the internal forces simulated and to the mesh resolution (the resolution can 
vary the internal forces magnitude). The free deformation model is able to drive a high 
percentage of particles to a distance less than one voxel long from the real data to 
recover. 
 
The plain de formation model is far too complex for the 3D reconstructions that we are 
dealing with. In that sense it is not compulsory to use an implicit numerical method 
because the other deformation models make use of less internal forces or even none. 
The explicit methods give less control over smoothing parameters but are fast and 
efficient enough, optimizing distances and avoiding the apparition of oscillations. 
 
After concluding that, we experimented more on the explicit methods. The second and 
third tests were performed using a spring-mass deformation model (only stretch internal 
force). The idea of the experiments was to find out the maximum stepsize allowed 
depending on the method and on the initial mesh. We also analyzed the impact of the 
smoothing algorithm on the durations. 
 
The mesh resolution (see chapter 5) affects definitely the internal force. The stretch 
force (see section 3.2.1 of chapter 3) depends on the elongations of the springs, which 
are directly related to the links between vertices. More resolution means more links and 
that means more internal forces to evaluate at every step. Besides that, the initial 
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elongations get shortened as the resolution increases, and these initial elongations are 
the ones that the stretch force tries to maintain. 
 
Looking at the maximum stepsizes according to the mesh resolution shows clearly that 
as long as the resolution increases (from simple to complex), the stepsize has to be 
reduced in order to avoid divergences. All the solvers show the same behavior. On the 
other hand, the duration of the entire simulation increases if the resolution gets larger. 
More complicated meshes lead to longer durations because of the larger amount of 
vertices and links to be processed. 
 
One can notice that the final volumes for the recovered mesh are quite similar if we fix 
the mesh while varying the employed solver. A low-resolution mesh gives the most 
reliable volume because of the absence of degenerations. More complex meshes are too 
detailed for the coarse quality of the voxelized data. 
 
Attending to the smoothing algorithm, we conclude that when it disabled, the simulation 
durations tend to increase. Peaks appear because of the absence of the smoothing effect, 
and errors arise. There also some differences between the methods due to the different 
evaluations that every solver performs at each iteration. On the contrary, if it is enabled, 
the durations decrease. As long as the smoothing algorithm corrects peaks that appear 
during the simulation, the reconstruction performs more fluently and quickly. The 
smoothing effect is especially present in the Euler method, which improves better in 
terms of duration. The Runge Kutta 4 method is refined by performing more steps per 
iteration, the results are better by themselves and the smoothing becomes less intensive. 
 
The document also explains the implementation of the external force (section 4.5). In 
order to solve the GVF field, we define a temporal evolution that will guide the system 
until it reaches its stationary form. We use a finite differences scheme complemented by 
an explicit Euler’s method in order to follow this evolution. It is especially important to 
follow the Courant-Friedrichs-Lewy condition (see equation 4.51) when defining the 
stepsize in order to avoid abnormal results and divergences of the field. 
 
7.5  Model geometry 
 
The geometry of the model must be selected carefully because it restricts the complexity 
of the shape that can be obtained. There are several possibilities available. In order to 
select one, we present a deep study in section 5.1. 
 
A first classification of the models drives us to four main categories: explicit and 
implicit representations, discreet meshes and particle systems. Explicit representations 
are basically defined by a parameter vector that controls local and global deformation. 
On the other hand, implicit representations are characterized by the zeros set of a certain 
function. Discreet meshes are based on several vertices connected with each other while 
particle systems, in a geometrical point of view, define forces and energies that maintain 
the cohesion of the entire model. 
 
Inside these categories we find several subcategories such as polynomial functions, 
Superquadrics and Hiperquadrics, modal decomposition, algebraic surfaces, Level 
Sets, discreet contours, triangulations and Simplex meshes, among others. Our model 
can be described as a discreet triangulated mesh that is treated as a particle system in 
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terms of evolution. A triangulated mesh can be easily handled by code and most of the 
accelerator cards in the market are specifically designed for it in terms of overall 
performance of the computation and the rendering. Moreover that, meshes are easy to 
map into particle systems where each of the vertices can be treated like a particle in a 
direct way. 
 
It is important to note that the triangulation ensures the robustness of the mesh. Vertices 
are joined together via their topology relationship. If no topology or external mechanism 
is provided, like the smoothing mechanism, we might obtain poorly results after the 
reconstructions. 
 
Once the paradigm is selected, we need to know the resolution needed in terms of 
number of triangles in the mesh. It is important because we must avoid degenerations 
while reconstructing. As a second process which is not within the scope of this project, 
it will be necessary a tetrahedralization module between both the internal and external 
surfaces (see chapter 6) in order to allow real-time interaction with the model. This 
process must associate internal triangles with their external neighbors and degenerations 
might spoil the tetrahedralization. 
 
We have tested three different meshes attending to their differences in resolution 
(section 5.2). We observed that the lower the resolution, the better the reconstruction. 
Our datasets are really coarse and simple meshes are smooth enough for our purposes 
while presenting no degenerations at all. More complex meshes present degenerations 
in some of the final triangles due to their tiny dimensions according to the magnitude of 
the dataset. 
 
We also tried to find out the dependences between the final quality of the triangles and 
the reconstruction method. Our conclusions state that the final quality of the triangles 
depends more on the initial dimensions of the mesh and not on the reconstruction 
scheme. 
 
When reconstructing the internal mesh, we demonstrate the reliability of an Out-to-In 
(deflating the initial mesh) approach over the In-to-Out scheme (inflating it). In the In-
to-Out scheme (see section 5.3), the external force can not be derived correctly there 
because of the lack of physical space. Besides that, the vertices in the mesh are not 
uniformly attracted making the final triangles to be very different. Among all of these, 
triangle degeneration can be best controlled when decreasing than when increasing its 
area. 
 
We also offer a complete comparison between our approach and a very well-known 
technique, the Marching Cubes algorithm (section 5.4). Within the analysis of cardiac 
imagery, this technique presents several ambiguities when reconstructing an isosurface, 
generates an elevated amount of triangles not suitable for real-time applications, does 
not take into account the existence of holes in the dataset and only recovers a unique 
surface while we are interested in two, internal and external. In fact, it needs a certain 
threshold to be defined, which is a handicap within our imagery where this value might 
be different from one acquisition, or dataset, to another. 
 
In section 5.5 we present one of our major contributions: the smoothing algorithm. The 
smoothing algorithm is geometrically based. There is no dependency on the 
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reconstruction method previously used. Thus, the algorithm can be always applied 
without any information from the previous process. Besides that, it can be applied in all 
contexts where a mesh needs to be smoothed like in terrain generation or in fluid and 
water simulation. 
 
In that sense, we number the reasons for using it: lack of resolution in initial datasets, 
tiny ROI’s, very coarse depths for the slices, absence of data due to failures in the 
capture or ischemia, etc. Due to all these factors, we need some kind of alternate control 
designed to avoid the “peaks” that appear. The algorithm penalizes vertices that are 
inside a non-uniform triangle set, presenting important creases. We solve the problem 
by applying a geometric constraint to the common vertex in a triangle set, so that this 
vertex moves to the centroid of its neighbors. The algorithm then is intended to apply 
small changes in position, never changing the mesh topology. 
 
As a final contribution, we present the integration of time into our simulation system by 
using interpolation with the help of Keyframing. It allows us to present fluent 
animations of objects in movement that have been reconstructed by our algorithms. 
 
7.6  Applications and results 
 
As stated within the whole document, we are deeply focused on the reconstruction of 
the human’s left ventricle but we also demonstrate that our technique can be applied in 
other fields that might require generic reconstructions. Due to the extension of the 
results, we summarize the conclusions regarding our contributions in the following list. 
In fact there are more experiments and comparisons that have been described previously 
within this chapter. 
 
• Experiments on the tuning of the µ parameter regarding the GVF evaluation. First 

experiments where committed on synthetic scenarios. 
• A first reconstruction of the left ventricle that driven us to several conclusions: 

o It is difficult to select the amount of particles for the initial mesh. 
o It is not obvious to choose a stepsize value. 
o In the plain deformation model, the weighting constants associated to the 

internal forces are difficult to adjust. 
o If no stopping mechanism is supplied, there are oscillations at the 

borders produced by the discreet nature of the dataset. 
o Explicit methods retrieve short simulation durations while implicit 

schemes require longer ones. 
• A complete analysis of a test volume: the Phantom volume, which helped us with 

several decisions. 
o Averaging the forces of the neighbors when affecting a particle does not 

provide with much better results. 
o Binaryzing data is not suitable because a threshold must be selected. It is 

better to work onto the property itself. 
o It seems clear that there’s no need to iterate for more than 50-100 cycles 

when finding the GVF field. 
o Doubling the initial data doesn’t help too much. In fact the results are 

basically equal or worse, in terms of magnitudes. 
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o The election of the µ parameter is less significant than it might seem. We 
need the system to converge and the interval of available values is wide 
enough to fix this value for all the simulations. 

o In fact, most of the parameters can be tuned via typical values although 
big distortions in the dimensions of the dataset might require some kind 
of adjustment. 

o Oscillations exist, nearby the data borders, and then we must stop the 
particles by using some kind of strategy. We propose several 
mechanisms like a damping map or an automatic marking of the voxels 
belonging to the data borders in order to stop there (we selected this 
option). 

o Regarding distance-to-data measurements, the maximum accuracy 
achievable is given by the dataset precision, which is of one voxel width. 

o The free deformation model is the fastest and best in terms of final 
distances (70% of the reconstructions had a 90% of particles attached 
closely). 

o In volume measures, all the solvers present relative differences in 
volume below 2% (between real and synthetic data). 

o Computation cost tests retrieved that most of the time (90%) is dedicated 
to the GVF evaluation. 

o There is a tradeoff between the final quality and the number of iterations 
applied. 

o The most complete reconstruction of an entire cardiac cycle takes 514 
seconds to be done (between 8 and 9 minutes) in a regular PC (Pentium 
III, 256 MB RAM, ATI Radeon 32 MB graphics card). 

o When recovering known datasets, partially emptied, the best recovering 
gives a percentage of missing volume of 29.1% against the 32% of the 
real data emptied. This represents a relative percentage error of 0.09. For 
the other test examples we obtained relative errors of 0.45 and 0.24 
respectively. 

• We reconstruct the entire cardiac cycle from actual patient’s data by using two 
different methodologies. In addition to that, we derive interesting medical 
parameters which were compared to those found by physicians using their standard 
2D software. 

• We present several reconstructions regarding abnormal datasets. In those, the real 
left ventricle presented pathologies such as digestive activity in the apex or 
occlusion defects located at several places (inferior, apical, side and vast 
anteroapical). 

• We demonstrate that the discreet contour deformation model can be extended to a 
3D framework in order to use it as a new tessellation method. 

• We test our imagery with the Anisotropic Contour Completion operator, a very 
novel technique that takes into account the local orientation of the contours to be 
closed, which fits well with cardiac images of the left ventricle. 

• Our methodology can be extended to other sort of problems in a generalist way. We 
demonstrate how our reconstructions can serve for getting 3D models at low cost, in 
the context of low-polygon modeling and mipmeshing, and as a second novel 
automatic tessellation algorithm. We show successful reconstructions of such 
different objects like a rabbit, a squirrel, a screwdriver and a Greek sculpture, among 
others. 
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8  Future work 
 
This research work was intended to be a complete solution regarding cardiac image 
segmentation and diagnosis. In fact we have also demonstrated that it can be generalized 
in order to retrieve reconstructions of other kinds of datasets. Although the job is done, 
we think that there are always some adjustments that might enrich the application. 
 
Our approach has been applied to several datasets, including synthetic and actual’s 
patient data. Plus to that, several experiments have demonstrated the validity of the 
method in normal and pathological cases. 
 
Anyway, it would be desirable to apply the methodology to a higher population of cases 
in order to test its reliability onto more pathologies. It comes clear that it works for 
several abnormalities, which might be enough if we see this application like a 
complement for traditional diagnosis, but a wider study taking into account uncommon 
cases would be also beneficial. 
 
In addition to that, there are other imaging modalities that might tolerate our processing. 
Other organs such as the liver or the prostate would take advantage of our tools. An 
additional study on the rest of imaging methods might allow us to some refinements in 
order to adapt our algorithms in a suitable way. Then this research would be useful for 
determining a better diagnosis to other diseases, related to different organs. 
 
In fact other imaging techniques such as Tagged Magnetic Resonance, retrieve 
information regarding the tracking of some data points along time. This information can 
be used for determining the evolution of the surface in a 4D framework. This is not 
possible with SPECT imagery and it was not within this work, but it might be a valid 
area of interest and application. Then more complicated motions like the twisting 
movement of the left ventricle would be possible to simulate. If no correspondence 
between data points us supplied, like in our case, there is no way to obtain this. 
 
The ACC (Anisotropic Contour Completion) paradigm [37] is a novel technique that 
takes into consideration the local orientation of the contours to be closed. We have 
shown some experiments in chapter 6, where the operator is used as a preprocess to the 
cardiac images. It takes advantage of their circular-based shape. As long as this 
technique is still under prior research, it would be interesting to follow its evolution and 
keep using it in order to improve our results. It seems coherent to do this since this 
operator adds an extra and prior knowledge of the shape. In fact we do so with our MLC 
technique as explained in chapter 2. Cardiac images are characterized by circular or 
elliptical shapes. We think that this fact can be fully exploited by future improvements 
of the ACC methodology. 
 
We have shown a way to extend the discreet contour deformation model to a 3D 
framework. We think that we can go further and use it as a complement to our particle 
system reconstruction system, regarding the stopping mechanism. The 2D contours 
retrieved by this model collide with the voxels of the slice where they are lying in. This 
information might be stored and used in order to refine the stopping mechanism, 
making the particles go further within a voxel, until colliding with the contour. We do 
retrieve the maximum precision allowable, that of a voxel, but this modification would 
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ensure a more accurate position for a given particle, while maintaining precision. This 
would be true if the contours were accurately adjusted to the data borders. 
 
As stated in chapter 3, the GVF is a valid scheme in terms of external force. Anyway we 
showed that its calculation is computationally expensive, at least compared to the rest of 
the modules in the whole process. In order to reduce this time, we propose the 
implementation of an implicit solver, instead of the explicit scheme presented in 
literature and used by our system. An implicit integrator allows higher stepsizes while 
maintaining or even improving the accuracy of the result. Those methods can be solved 
in a few iterations if implemented in a clever way. 
 
In order to reduce reconstruction times, especially when reconstructing the entire 
cardiac cycle for a patient, we suggest to use the mesh reconstructed previously as the 
initial for the actual instant. If we assume that differences between instants are not 
considerable, we can do this in order to begin the simulations being closer to the final 
solution. Of course this assumption depends on the amount of acquisitions for a dataset. 
More acquisitions might lead to better reconstructions because the differences between 
meshes should be smaller, ideally negligible. In fact there is no need to change any of 
the programming if we want to do this, we only need to load the previous mesh with our 
actual application and use it for the reconstruction, instead of the spherical meshes that 
we have shown so far. 
 
Evolution through time is based in linear interpolation. There are other possibilities to 
experiment with like cubic curves for instance. Bezier curves or B-Spline segments are 
some of the possibilities available. Those allow the user to control the joint points 
between instants, ensuring continuity and derivability, besides smoothness for instance. 
Depending on the curve, we can ensure C0, C1 or C2 continuities which stand for 
position, first derivative and second derivative (smoothness) completeness at the joint 
points. Nevertheless this improving might be coupled with the knowledge of successive 
positions for some data points, if we want it to be effective. This statement has been 
explained before in this chapter. 
 
Our application minimizes the manual adjustments required by clinical workers. 
Anyway it would be desirable to detect automatically the first and last useful slices 
within the dataset. Instead of asking the physician, the application would detect the first 
and last noisy slices and reject them. This issue happens when the acquisition process, 
via medical hardware, tracks an area larger than the space where the ventricle lies in. 
We might think in a module that would limit the vertical region of interest. This can be 
corrected in acquisition time but it is not always possible because it is not easy at all. 
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A SPECT imagery 
 
Our system takes as its input SPECT, Single Photon Emission Computed Tomography, 
images. SPECT, gSPECT (gated SPECT) and PET (Positron Emission Tomography) 
datasets are inside the category of Nuclear Medicine data. Those images give 
functionality keys about the organ and do not describe its anatomy. Therefore, data 
shows the activity being held in terms of the amount of useful tissue, never giving a clue 
about shape. From this knowledge it becomes clear that ischemic areas, it means in 
absence of blood irrigation, won’t be shown in the images. That’s the case of ventricle 
areas being affected by a heart attack. 
 
Chris Scarfone [86] points out how this technology was born. The first ECT (Emission 
Computed Tomography) device was the MARK IV developed by Edwards and Kuhl. 
This system consisted of several banks of sodium iodide (NaI) photon detectors 
arranged in a rectangular shape around the patient's head. It comes clear that in this 
case, the images to acquire where from the brain. The first commercial imaging device 
had 32 photon detectors and was called the Tomomatic-32. Many developments were 
presented in the early to mid 1970s. 
 
Early applications of ECT resulted in diagnostically unusable images. That issue caused 
this technique to be partially forgotten. It was not until the introduction of x-ray CT by 
Hounsfield and Cormak, applied to nuclear medicine ECT, that this imaging modality 
entered the medical imaging practice. Segmentation algorithms designed for x-ray CT 
had to be modified for ECT to take into account particular effects of photon attenuation 
and scatter within the body and limited mechanical and electrical detector response. 
Then ECT images allowed qualitative and quantitative image analysis and therefore 
clinical use. 
 
The acquiring of SPECT images involves lots of parameters including: attenuation, 
scatter, uniformity and linearity of detector response, geometric spatial resolution and 
sensitivity of the collimator, intrinsic spatial resolution and sensitivity of the Anger’s 
camera, energy resolution of the electronics and system sensitivity among others. The 
calibration and monitoring of these parameters falls under a certified nuclear medicine 
technician or a medical physicist. Among all the parameters, collimation is responsible 
from determining the system’s spatial resolution and sensitivity (amount of photons 
detected per second). System resolution and sensitivity are key parameters related to the 
performance of a SPECT system. 
 
The acquiring process begins with the introduction of a marker by intravenous injection. 
The marker acts as a transportation for two radioactive atoms (Technetium-99m and 
Thallium-201). Those emit Gamma rays that will be captured by the receptor, 
conforming then the final image. When mixed with blood, the liquid goes through the 
ventricle filling all its volume and giving the possibility to evaluate its internal volume, 
via the acquired images. 
 
The acquisition planes are horizontal and vertical, equally spaced. Typically acquisition 
procedures involve 64 planes normal to the symmetry axis (X and Y) and 24 planes 
following it (Z). Figure A.1 shows the planes. 
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Figure A.1: Acquisition planes in SPECT imagery [56]. 

 
Final data results on low-resolution images attending to its spatial resolution (3mm x 
3mm x 5mm). That will be a big issue, especially when recovering the internal surface 
due to its tiny discreet dimensions. In figure A.2, the bright areas correspond to tissue 
with blood irrigation. 
 

 
Figure A.2: Images from the horizontal (first and second rows) and vertical (third and 

fourth rows) planes [56]. 
 
SPECT images are difficult to process for several reasons: 
 
• The datasets lack resolution. 
• The region of interest doesn’t expand all along the slices. On the contrary, it is 

confined into a small region nearby the geometrical center. 
• The images are characterized by very coarse depth and spatial sizes. 
• It is common to lack data voxels due to failures in the capture process. 
• Data of interest is not necessarily aligned with the geometrical center of the image. 
• Isquemic areas do not appear in the images. 
• Noise emerges in the form of other structures attached to the data of interest such as 

the right ventricle or digestive activity affecting the left ventricle visualization. 
 
Figure A.3 shows two actual pathological cases (64 x 64 pixels each slice). First, note 
the small region of interest for the left ventricle section, which is more or less centered 
in the image. There are ischemic areas emphasized by the red circles in the second row. 
This absence of data must be corrected by our segmentation algorithms in order to get 
acceptable measurements. Note also the noisy structure in the second case on the right 
(blue circle). 
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Figure A.3: SPECT images from pathological cases. 

 
All these issues must be taken into account by the 2D processing module, which has to 
mark the data boundaries of the left ventricle. Once having the boundaries, we can build 
a 3D voxel dataset as an input for our 3D reconstruction method. 
 
Figure 6.18 of chapter 6 shows a different type of cardiac test: Nuclear 
ventriculography (MUGA or RNV). It also uses radioactive tracers but in this case in 
order to mark heart chambers. Then the process is non-invasive because heart structures 
are not touched by instruments. Like in SPECT tests, common isotopes include 
technetium and thallium. The isotopes attach to red blood cells and enter the circulation 
system. The images can be synchronized with an electrocardiogram. Abnormal results 
indicate a myocardial infarction, diseases in the coronary artery or in a heart valve, 
among other disorders. 
 
See [29, 92] for a complete analysis on medical imaging modalities. 
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B The left ventricle 
 
Rückert summarizes the cardiovascular system functionality in [83]. We will focus on 
the left ventricle function inside the heart system. The human heart consists of four 
chambers called atrias and ventricles (see figure B.1). The basic function of ventricles is 
to act as a pump that forces blood through the blood vessels. This function can be 
achieved because of the muscular tissues that are part of the ventricle walls. This 
muscular tissues compound the myocardium cavity whose surfaces are called 
endocardium (inside) and epicardium (outside). The atrias can contract also but only as 
a reservoir which is filled by the blood that returns through the veins to the heart. 
 
The blood flows through the superior and inferior vena cava into the right atrium. It 
contracts and causes the blood to enter the right ventricle that expels it to the lungs. 
After being saturated with oxygen, the blood flows back into the left atrium whose 
functionality is to empty it into the left ventricle by opening the mitral valve. From the 
left ventricle, which is the largest and strongest chamber, the blood is ejected with high 
pressure into the aorta in order to supply the tissue of the entire body. The valves are 
intended to control the phases regarding the cardiac cycle plus preventing back flows of 
blood. 

 
Figure B.1: Anatomy of the left ventricle. 

(Image copyright 1996 Texas Heart Institute, www.texasheartinstitute.org) 
 

A complete cardiac cycle is characterized by two phases: contraction and relaxation (see 
figure B.2). The contraction phase is called systole and it is also divided into two steps: 

Appendix B  203 



General Dynamic Surface Reconstruction 

a first stage where the valves close, the ventricular muscle starts contracting and the 
pressure increases; a second stage where the valves open due to the high pressure levels 
and the ejection starts. 
 
The relaxation phase is called diastole and it can be divided into two stages as well. In 
the first stage, all the valves close and the ventricular pressure decreases surprisingly 
fast. During the second stage, the valves separating atria and ventricles open and the 
ventricles are filled with blood. The pressure in the ventricles increases a little bit and 
the cycle starts again. 
 

 
Figure B.2: The cardiac cycle into two phases. 

(Image copyright 1996 Texas Heart Institute, www.texasheartinstitute.org) 
 
The conduction system is responsible from generating the electrical impulses that cause 
the heart to beat (see figure B.3). These impulses begin in the sinoatrial (SA) node, in 
the top of the right atrium. Impulses from the SA node cause the atria to contract. After 
that, the signal goes through the atrioventricular (AV) node. In there, the signal is 
checked and retrieved to the muscle fibers of the ventricles, allowing contraction. The 
beating frequency depends on the rate followed by the SA node but also on other 
parameters such as physical demands, stress, or hormonal factors associated to every 
concrete person. 
 
We can conclude that as long as the left ventricle is the strongest chamber in the heart, it 
is responsible from delivering oxygenated blood to the entire body through the 
circulatory system. The role of the left ventricle is extremely important and this is the 
main reason that forces physicians to pay an especial attention to it. Heart attacks can be 
located at several places but specialists are especially concerned with those in the left 
ventricle, because of the high degree consequences that might arise. If ischemia is 
placed within the left ventricle, its pumping power decreases and the volume of blood 
that has to be ejected is not maintained as it should. 
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Figure B.3: The conduction system. 

(Image copyright 1996 Texas Heart Institute, www.texasheartinstitute.org) 
 
 
 
 
 
 
 
 
 
Copyright notice 
 
1. The Texas Heart Institute is pleased to grant you conditional permission to use the 
copyrighted graphics in this appendix from our website at: 
 
http://texasheartinstitute.org (and mirror site http://www.tmc.edu/thi/) 
 
2. No commercial gain may be derived from the sale or distribution of this publication 
by the author or the publisher.  
 
3. Texas Heart Institute reserves all rights and does not grant permission for any 
subsequent republication, commercial or otherwise, of these images in any media (print, 
web, video, etc.). 
 
4. Permission to reproduce these images is contingent upon acceptance of these terms. 
No rights to any further use beyond this one time are hereby granted.  
 
5. The authors are: Department of Scientific Publications, Texas Heart Institute: 
http://texasheartinstitute.org/scipub.html 
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C Quantitative parameters of the left ventricle 
 
There are several parameters relevant for diagnosis. Physicians detect cardiovascular 
diseases by analyzing them. Then it is important to build a tool that offers qualitative 
results, in the sense that a physician can see the reconstructed left ventricle, but also 
quantitative analysis based on the recovered surfaces and volumes. 
 
The cardiac volume is a key parameter for diagnosis purposes. The cardiac cycle can be 
summarized into three stages [83]: 
 
• A first stage of contraction where the volume decreases in a very fast manner. 
• A second stage of relaxation where the volume increases quickly. 
• A third stage of relaxation where the volume increases slowly until reaching its 

maximum and beginning to decay for the next cycle. 
 
Figure C.1 shows the three phases for the cardiac cycle presented in section 6.1.4. The 
graph depicts the three phases in a clear manner. The time axis corresponds to the 8 
instants of the acquiring process. The volume axis stands for the internal volumes of the 
left ventricle (myocardium) in mm3. This is a dataset from a healthy patient. 
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Figure C.1: The cardiac volume evolution for an actual’s patient data. 

 
The different issues regarding the evaluation of the volume inside a mesh are presented 
in section 5.6 of this document.  
 
Quantifying the ventricular wall thickness is also possible within our system. This 
parameter stands for the volume between the epicardium and the endocardium. 
Measurements on the wall thickness are also possible because we are working into a 
mathematical context applied within a computer graphics framework. As long as we 
build two surfaces made from triangles, measurements on distances can be achieved by 
ray casting techniques that couple pairs of polygons in order to retrieve their relative 
distance. 
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The ejection fraction (EF) is the fraction of blood that the left ventricle does pump out 
per beat [32]. A value of 50% indicates that the ventricle ejects half of its volume for 
each contraction. For a healthy patient, this value has to be within the 50% and 70%. 
 
This value can be obtained as equation 6.4 shows. We rewrite this equation here for a 
clear and complete summary. 
 

dVolumeDiastoleEn
VolumeSystoleEnddVolumeDiastoleEnEF −

=  (C.1)

 
Equation C.1 shows the EF evaluation method. It is important to point out that all the 
volumes are internal. If we apply this equation to the healthy patient of figure C.1, we 
obtain the results in equation C.2. 
 

%6.58586.0
79581

3295679581
dVolumeDiastoleEn

VolumeSystoleEnddVolumeDiastoleEnEF

⇒=
−

=

−
=

 (C.2)

 
Medical software derived an EF value of 53%, which stands for a percentage error of 
5.6 % with regard to our application. 
 
These three parameters are considered fundamental by physicians. As shown, their 
computation is possible by using discrete versions of the underlying mathematical 
framework. 
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D The Phantom volume 
 
In order to measure the reliability of medical hardware used for retrieving medical 
images it is necessary to use a medical volume with known characteristics: the Phantom 
volume. There are several volumes available from different vendors and hospitals. All 
of them present absorption and transmission characteristics similar to the ones related to 
a certain tissue. In our case, cardiac tissues like the left ventricle muscle. 
 
Figure D.1 shows the geometry for a Phantom volume. It can be seen that it is similar to 
the left ventricle while being more symmetric of course. Anyway, it is enough for 
testing functionality, performance and the involved parameters. 
 

 
Figure D.1: The Phantom volume geometry. 

 
Where R1 = 20 mm, R2 = 35 mm, R3 = 45 mm and H = 55 mm. Those measures lead to 
internal and external volumes of 89794.5 mm3 and 305301.4 mm3 respectively. The 
walls of the Phantom can be described with equations D.1 and D.2. Equation D.3 
corresponds to the global volume evaluation. 
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In equations D.1, D.2 and D.3, (xcm, ycm, zcm) is the center of mass of the cylinder, H is 
the height of the cylinder, r stands for the radius which depending on the wall must be 
equal to R1 or R2. 
 
Two cylinder-sphere sets are necessary in order to compound the test volume walls, as 
figure D.2 shows. 
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Figure D.2: The walls of the Phantom volume. 

 
The Phantom volume can be filled in different ways for simulating several 
abnormalities. For that purpose, it is covered and hardly screwed in the top while 
maintaining two openings. Figure D.3 shows this. 
 

 
Figure D.3: Filling of the Phantom volume. 

 
Note that there is another peripheral called Phantom in the Computer Graphics/Robotics 
area. For clarity reasons, let us state the differences between them. In Robotics, the 
Phantom is a robot arm used for manipulation purposes. The arm is attached to a real-
time virtual reality application in order to “touch” the objects in the synthetic scene. In 
fact, we are also using a Phantom robot arm within this project for the physicians to 
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interact with the reconstructed left ventricle. Some examples can be seen in [20, 36, 63, 
80]. 
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E The DICOM file format 
 
DICOM stands for the Digital Imaging and Communications in Medicine standard. It 
describes a way of interconnectivity in terms of formatting and exchanging medical 
images. In fact, it also describes the interface related to the transfer of data in and out of 
an imaging device. Several imaging modalities make use of this standard: CT, MR, 
PET, Nuclear Medicine, Ultrasound, X-ray, CR, digital radiography, digitized film, 
video capture and HIS/RIS information among others.  
 
The first draft of the DICOM standard dates from 1984. It was defined by the American 
College of Radiology (ACR) and National Electrical Manufacturers Association 
(NEMA). Version 1.0 was published in 1985 and version 2.0 in 1988. The DICOM 
Standard Committee was formed in 1996. The committee was created to extend the 
standard to support all forms of biomedical imaging. The standard was definitely placed 
as a way of reinforcing communications in order to advance diagnosis and treatment 
decisions. 
 
The standard specifies a set of protocols to be followed by devices, the syntax and 
semantics of commands and information that must be supplied with each 
implementation. 
 
The basic file structure is divided into a header (a 128 byte File Preamble, followed by a 
4 byte DICOM prefix) and a dataset. The dataset is also divided into data elements. 
Data elements can be standard and private. Figure E.1 shows this structure. 
 

 
Figure E.1: The DICOM file format structure. 

 
When operating the DICOM file format, we must be aware of the byte ordering. It is 
different depending on the hardware (Big Endian or Little Endian). Little Endian byte 
ordering encodes the least significant byte first while Big Endian byte ordering encodes 
first the most significant byte. Translation from an ordering to the other can be achieved 
easily. 
 
Note also that DICOM supports the use of JPEG Image and Run Length Encoding 
(RLE) Compression methodologies. More information regarding the DICOM file 
format can be seen in [22, 26]. 
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