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Abstract 

The Ground-Based Synthetic Aperture Radar (GB-SAR) is a relatively new technique, 

which in the last ten years has gained interest as deformation measurement and 

monitoring tool. The GB-SAR technique is based on an imaging radar-based sensor, which 

offers high sensitivity to small displacements, in the region of sub-millimetres to 

millimetres, long-range measurements, which can work up to some kilometres, and massive 

deformation measurement capability. These features confer to the GB-SAR technique 

interesting advantages with respect to other point-wise deformation measurement 

techniques.  

The process of estimating deformation from the GB-SAR data is not straightforward: 

it requires complex data processing and analysis tools. This dissertation is focused on 

these tools, covering the whole deformation estimation process. This thesis collects the 

main research results achieved on this topic during my work at the Active Remote Sensing 

Unit of the Institute of Geomatics. Two different approaches for measuring deformation 

with GB-SAR data are described and discussed. The first one is the interferometric 

approach, based on the exploitation of the phase component of the GB-SAR data, which 

is the commonly used GB-SAR method. The second one is a non-interferometric approach, 

which exploits the amplitude component of the GB-SAR data, offering an interesting 

alternative way to exploit the GB-SAR data.  

This dissertation has two main objectives. The first one is presenting, step by step, a 

complete interferometric GB-SAR procedure for deformation measuring and monitoring. 

The second one is presenting two new algorithms, which represent the most innovative 

part of this thesis. The first algorithm faces the phase unwrapping problem, providing an 

automatic solution for detecting and correcting unwrapping errors, which is called 2+1D 

phase unwrapping. The second algorithm is the base of the above mentioned non-

interferometric approach, which overcomes some of the most critical limitation of GB-SAR 

interferometry, at the expense of getting less precise deformation estimates. 

The dissertation is divided in 6 chapters. The first one is the introduction, while the 

second one provides an overview of GB-SAR interferometry, introducing the main aspects 

that are the basics of the subsequent chapters. Chapter 3 describes a complete GB-SAR 

processing chain. Chapters 4 and 5 contain the most original part of the dissertation, i.e. 

the 2D+1 phase unwrapping algorithm, and the non-interferometric approach. Finally, in 

Chapter 6 the conclusions are discussed and further research is proposed.  

Key words: GB-SAR, deformation measurement, interferometry, phase unwrapping, non-

interferometric approach. 
 

 

 



 

7 

 
 
 

Resum 

El radar terrestre d’obertura sintètica (GB-SAR) és una tècnica relativament nova 

que, en els últims deu anys, ha guanyat interès com a eina per a mesurar i monitorar 

deformacions. La tècnica GB-SAR es basa en un sistema radar amb capacitat per 

proporcionar imatges, que ofereix una alta sensibilitat a petits desplaçaments, d’ordre 

mil·limètric o submil·limètric, que és capaç de mesurar a llargues distàncies (alguns km) 

i que té una alta capacitat per fer mesures massives. Aquestes característiques donen a la 

tècnica interessants avantatges respecte a altres tècniques clàssiques de mesura de 

deformacions, típicament basades en mesures puntuals. 

Derivar mesures de deformació a partir de dades GB-SAR no és un procés senzill, ja 

que requereix uns procediments complexos de processat i anàlisi de dades. Aquesta tesi es 

centra en aquests processos. Aquesta tesi recull alguns dels resultats més destacats de la 

investigació que he desenvolupat sobre aquest tema a la unitat de Teledetecció Activa de 

l'Institut de Geomàtica. Al llarg del document es descriuen dues aproximacions diferents 

per mesurar deformacions amb GB-SAR. Una es basa en la explotació de la tècnica de la 

interferometria, és a dir explotant la component de la fase de les imatges GB-SAR: és la 

tècnica GB-SAR usada habitualment. La segona, anomenada tècnica no-interferomètrica, 

es basa en la component de l’amplitud de les dades GB-SAR i ofereix una interessant 

alternativa a la primera. 

La tesi acompleix dos objectius principals. En primer lloc presenta un procediment 

complet per la mesura i monitoratge de deformacions mitjançant interferometria GB-SAR. 

En segon lloc, descriu dos nous algorismes que resolen problemes específics de la 

interferometria clàssica aplicada al GB-SAR i que representen la part més innovadora 

d’aquesta tesi. El primer algorisme aborda un dels problemes oberts de la interferometria, 

el phase unwrapping, proposant un mètode automàtic per detectar-ne i corregir-ne els 

errors. El segon algorisme proposa un nou mètode per a l'explotació de les dades GB-SAR 

per mesurar deformacions sense utilitzar la interferometria. 

La estructura de la tesi consisteix en sis capítols. Després de la introducció, el Capítol 

2 proporciona una visió general de la interferometria GB-SAR, introduint els conceptes 

principals utilitzats en la tesi. En el tercer capítol es descriu una cadena de processament 

basada en GB-SAR interferomètric. Els capítols quart i cinquè contenen la part més 

original de la tesi: l'algorisme de phase unwrapping i el mètode no-interferomètric per la 

mesura de deformacions. Finalment, es discuteixen les conclusions principals i es proposen 

futures línies d’investigació. 

Paraules claus: GB-SAR, mesura de deformacions, interferometria, phase unwrapping, 
mètode no-interferomètric. 
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Chapter 1 

Introduction 

 
 

The Ground-Based Synthetic Aperture Radar (GB-SAR) is a relatively new technique 

developed for deformation measuring and monitoring. This technique offers a combination 

of interesting features. It has high sensitivity to small deformations, in the region of sub-

millimetres to millimetres, which is achieved by exploiting the interferometric capability of 

centimetre-wavelength microwaves. It is a long-range measurement device, which can 

work up to some kilometres. It can provide, in an automatic way, massive deformation 

measurements. This is directly related to its imaging capability and represents an 

interesting advantage compared to many point-wise deformation measurement techniques. 

Finally, the GB-SAR is mounted on a terrestrial platform: this offers the maximum 

flexibility in terms of data acquisition over a specific area of interest, at the required time, 

during the necessary observation period and with the needed temporal sampling. In 

particular, the GB-SAR technique can be used to monitor a wide range of deformation 

phenomena, ranging from a few millimetres per year up to metres per day. This flexibility 

represents a fundamental advantage with respect to any satellite-based deformation 

monitoring technique, and, in general, makes the GB-SAR system complementary to a 

number of existing deformation measurement techniques. 

This dissertation contains the results of my research on GB-SAR performed at the 

Active Remote Sensing Unit (TA) of the Institute of Geomatics. The main research 

activities of TA are focused on the processing, analysis and exploitation of the data 

acquired by active remote sensing sensors, like satellite-based SAR sensors, GB-SAR and 

laser scanners, for different applications such as digital surface model generation and 

deformation measurement, e.g. see Crosetto et al. (2010) and Monserrat and Crosetto 

(2008). This involves the development of algorithms and procedures for data processing 

and analysis (Biescas et al., 2007; Crosetto et al., 2011; Monserrat et al., 2011), the 

development of new applications and validation and quality assessment activities, e.g. see 

Crosetto et al. (2008) and Adam et al. (2009). 

Part of my activity on GB-SAR has been performed in the frame of different projects 

where TA was involved. Three of them deserve a specific mention, because within them, 

most of the data used in this thesis were collected: Galahad, Ciuden and Safeland. The 

Galahad project (www.galahad.eu) was useful to study in depth the limitations and 

advantages of GB-SAR and terrestrial laser scanners for deformation monitoring, and to 

develop new tools for data analysis and integration. The landslide of Formigal (Spanish 

Pyrenees) was one of the test sites of this project and is used in this thesis for evaluating 

different GB-SAR processing algorithms. In the Ciuden project, which concerns CO2 

storage activities, the GB-SAR is meant to monitor very subtle surface deformation 

associated with complex deformation phenomena. Two of the main test sites of the thesis, 
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Algeciras and Castelldefels, were used in Ciuden for assessing the quality of the GB-SAR 

measurements. Finally, in the Safeland project the GB-SAR is mainly used for the long-

term monitoring of landslides. The landslide of Vallcebre (Catalan Pyrenees) was used to 

test new measurement methodologies and processing algorithms described in this work.  

This dissertation has been written with two main objectives. The first one is to provide 

a complete view of a GB-SAR data processing chain, going from the data acquisition to 

the generation of the deformation maps. This involves a step by step description of a 

complete processing and analysis procedure, which includes the know-how acquired by the 

author in the last eight years working with satellite and ground-based SAR data. The 

second objective is presenting two innovative algorithms for deformation measurements 

with GB-SAR data, which represent the most original part of this dissertation. The first 

one addresses one of the critical aspects of the interferometric SAR data, which is due to 

the ambiguous nature of the phase measurements: the phase unwrapping. As discussed 

later in this document, the process of phase unwrapping is one of the main source of errors 

in GB-SAR interferometry. The proposed algorithm detects and, if possible, corrects the 

errors related to phase unwrapping. The second algorithm is focused on the GB-SAR long-

term monitoring. The algorithm proposes a new approach for exploiting the GB-SAR data 

based on the use of the amplitude component of the SAR images. The approach, which is 

called non-interferometric GB-SAR, resolves two important limitations of GB-SAR 

interferometry: it does not suffer phase ambiguity limitations; and it is not influenced by 

the atmosphere changes occurring between data acquisitions. In addition, the algorithm 

yields 2D deformation measurements, which represents an improvement with respect to 

the mono-dimensional measurements coming from standard SAR interferometry. It is 

worth mentioning that this approach is undergoing the review process to get a European 

patent (Crosetto and Monserrat, 2011). 

The document is structured in four main chapters followed by the conclusions. The 

Chapter 2 provides an overview of GB-SAR interferometry. It describes the characteristics 

of GB-SAR imagery, the principle of GB-SAR interferometry and its main applications: 

the generation of digital surface models and deformation measurement. The latter 

application is then discussed in detail, introducing the aspects that are the basis of the 

subsequent chapters. The Chapter 3 describes the GB-SAR processing chain for 

deformation measurement and monitoring developed at TA. For each step of the 

procedure the key aspects are discussed, an algorithm is proposed and its results are 

illustrated by using real data. The second part of the chapter outlines some aspects 

related to the precision and accuracy of the GB-SAR data. The Chapter 4 presents a new 

method, named 2+1D phase unwrapping, which addresses one of the most critical steps of 

SAR interferometry, i.e. the estimation of phase ambiguities or phase unwrapping. The 

method offers an improved alternative to the standard procedure described in Chapter 3. 

The chapter starts with the algorithm description, which is followed by the discussion of 

its performances based on a simulated dataset, and concludes with the analysis of a 

comprehensive real case study, where the results from the standard procedure from 

Chapter 3 and the new one are compared. To conclude, the Chapter 5 presents a new 

procedure for measuring deformation with GB-SAR data using a non-interferometric 

approach. The chapter starts with the detailed description of the proposed procedure, 

which is followed by a discussion of the key technical aspects of its implementation. The 

last two sections are devoted to discuss the results of several validation experiments and 

to show the use of the procedure in a real case study devoted to landslide monitoring. 
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Chapter 2  

Ground-based SAR interferometry 

 
 

In the last years the Ground-Based Synthetic Aperture Radar (GB-SAR) has gained 

an increasing interest as a deformation measurement and monitoring tool. The GB-SAR is 

a radar-based terrestrial remote sensing imaging system (Rudolf et al., 1999; Tarchi et al., 

1999). It consists on a radar sensor that emits and receives a burst of microwaves, 

repeating this operation while the sensor is moving along a rail track (Bernardini et al., 

2007). The imaging capability is achieved by exploiting the Synthetic Aperture Radar 

(SAR) technique, e.g. see Hanssen (2001). The length of the rail determines the cross-

range resolution of the acquired images: the longer the rail, the higher the cross-range 

resolution. Figure 2.1 shows a scheme of a GB-SAR system with its four main 

components: the radar head (sensor module), the rail (movement module), the power 

supply module and the computer for image acquisition control and data storage.  

The GB-SAR is a coherent system, i.e. it measures the phase of the radar signal, which 

can be exploited, by using interferometric techniques, to derive information on the 

deformation and topography of the measured scene. The high sensitivity to small 

deformations, the long range of the measurements (up to some kilometres) and the 

imaging capability, which allows the system to perform a vast number of measurements, 

are interesting characteristics that make the GB-SAR system complementary to a number 

of other deformation measurement techniques. In the last decade a number of GB-SAR 

systems have been developed and used in different types of applications, like landslides, 

dams and glacier monitoring. Although the GB-SAR offers high potentialities for 

deformation monitoring, obtaining appropriate deformation estimates it is not a 

straightforward process. In fact, in order to properly estimate deformations the SAR data 

have to be processed and analysed according to a correct procedure, which takes into 

account the specificity of the data at hand.  

This section provides an overview of GB-SAR interferometry. First, some GB-SAR 

principles, including the radar working principle and the concept of SAR, are recalled. 

Secondly, the main characteristics of GB-SAR imagery and the principle of GB-SAR 

interferometry are described. Then, the two main GB-SAR interferometry applications are 

discussed: Digital Surface Model (DSM) generation and deformation measurement. The 

latter one is then analysed in detail by introducing all the general and technical aspects 

that are the basics of the subsequent chapters. 

2.1. GB-SAR principles   

This section introduces the main working principles of a GB-SAR system by making 

explicit reference to a specific GB-SAR implementation, the IBIS-L system, which has 
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Figure 2.1: Main components of a GB-SAR system. Source: IDS Ingegneria dei Sistemi SpA. 

 

 

been developed by IDS Ingegneria dei Sistemi SpA. in collaboration with the University of 

Florence. Most of the GB-SAR data analysed in this dissertation were acquired by this 

system. However, the results discussed and the algorithms proposed are system 

independent. It is worth noting that similar working principles are used by other existing 

systems, e.g. see Antonello et al. (2003), Noferini et al. (2005a), Pipia et al. (2006 and 

2008) and Zhou and Motoyuki (2003). Werner et al. (2008) describe a similar system, 

which, however, does not use the SAR principle. An in depth description of the sensor 

IBIS-L can be found in Bernardini et al. (2007). This section is divided into two main 

parts: the GB-SAR working principle and the characteristics of GB-SAR images. 

2.1.1. Radar and SAR working principles 

The word Radar is the acronym of RAdio Detection And Ranging. The first radars 

were developed for military purposes, even though nowadays they are used for a broad set 

of civil applications, like navigation, air traffic, weather predictions, earth observation, etc. 

A classification of different types of radars can be found in Skolnik (1991). 

The basic operating principle of the radar is the emission of pulses of energy and the 

collection of the energy reflected by the illuminated objects or targets, see Figure 2.2. The 

radar, located on the left part of the scheme, emits a pulse of duration τ at time t0. The 

emitted energy travels through the environment at the velocity of the light, approximately 

at 299792,458 km/s. This pulse interacts with the illuminated object, the airplane, and a 

portion of the emitted signal is reflected back towards the radar arriving at time t0+T0. It 

is possible to derive the distance R between the sensor and the target from T0: 

           
2

* 0Tc
R =    (2.1) 

where c is the speed of light, T0 is the pulse time of flight, and the factor two reflects the 

two way path, radar-target-radar, of the pulse. As mentioned above, the radar systems are 

ranging systems. Their capability of distinguish between two objects located at different 

distances from the instrument is usually expressed by the range resolution ∆R, which is 

given by: 
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2

*τc
R =∆   (2.2) 

where τ is the duration of the emitted pulse. It is worth noting that different objects 

located at the same distance from the radar can not be distinguished. 

A single acquisition with a radar system only provides information in one dimension: 

the system only resolves targets in the range direction. The capability of the radar 

systems to resolve targets in the direction perpendicular to this one is expressed by the 

cross-range resolution. This resolution is basically a function of the radar antenna length: 

the longer the antenna, the higher the cross-range resolution. A powerful way to obtain 

high cross-range resolutions without using long antennas is using the Synthetic Aperture 

Radar (SAR) technique. The SAR technique is based on the combination of multiple 

coherent range images of the same object taken from slightly different positions, which 

results in an image as it would have been seen by a long real aperture antenna. A 

technical description of the technique can be found in Curlander and McDonough (1991). 

The GB-SAR obtains the synthetic aperture by exploiting the movement of the sensor 

along a rail, see the “movement module” in Figure 2.1: the sensor moves in a "stop and 

go" mode, acquiring data at each step. All the acquired mono-dimensional images are then 

compressed in a single two-dimensional image. The achievable cross-range resolution is 

given by: 

           
L2

λθ ≈∆    (2.3)  

where ∆θ is the angular resolution, λ is the radiation wavelength and L is the length of 

the rail. Note that the angular resolution entails that the size of the pixel footprints in 

cross-range increases with the distance from the sensor. 

2.1.2. GB-SAR image description 

The raw data collected by the GB-SAR need to be post-processed in order to obtain 

the final GB-SAR images. This post-process is called image focusing and it mainly 

involves generating the image from all the data collected during the movement of the 

sensor along the rail. Two different examples of GB-SAR focusing algorithms are 

described in Fortuny-Guash and Sieber (1994) and Fortuny-Guash (2009). The final result  

 

 

 

Figure 2.2: Scheme of the radar working principle. The radar is located on the left side, while 
the illuminated object in this case is an airplane. Source: IDS Ingegneria dei Sistemi SpA.  
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is a two dimensional complex image where each pixel contains the in-phase (I) and the 

quadrature (Q) components of the radar signal, which can be directly transformed in the 

amplitude (A) and the phase (ϕ) using these relations: 

           






= −

I

Q1tanϕ  (2.4)  

           
22 QIA +=  (2.5)  

The amplitude is directly related to the power of the scattered signal and is typically 

used for interpretation of the scene. This is an important aspect provided that the GB-

SAR geometry often hampers a straightforward image interpretation. In addition, as it is 

described in Chapter 5 of this dissertation, the amplitude image can be exploited to derive 

geometric information of the observed scene. In particular, by using GB-SAR images 

acquired over time, the amplitude can be used to estimate deformation of the observed 

scene. The phase component contains the geometric information related to the sensor to 

target distance, which can be exploited either for deformation measurement or DSM 

generation purposes. The exploitation of the phase is treated in detail in the following 

section.  

The GB-SAR image geometry is the result of a regular sampling in range coupled with 

a constant angular sampling. For this reason, the typical visualization of the GB-SAR 

images uses a polar grid with a constant sampling step in range ∆R and a constant 

angular step ∆θ in cross-range. By contrast, in this dissertation the images are 

represented as rectangular regular grids, where the pixels are simply ordered according to 

their columns, x, and lines, y. Starting from the column and line pair of the pixel (x, y) 

the corresponding polar coordinates (r, β) can be computed by means of the following 

relation: 

           
θβ ∆−=

∆=
*)(

* 

cxx

Ryr
 (2.6)  

where r is the sensor to pixel distance, β is the angle between the column of the given 

pixel and the central column of the image, xc. 

A GB-SAR amplitude image represented using a rectangular grid (top) and a 

photograph of the measured area (bottom) are shown in Figure 2.3. The amplitude image 

is a black and white image. The black areas of the amplitude image are areas providing a 

weak response to the radar and the white ones those with strong response. The 

interpretation of the amplitude image is not straightforward. The green circles highlight 

corresponding areas in the amplitude image and in the photograph. The identification of 

common structures eases the correct interpretation of the whole scene. For instance, the 

circle 4 corresponds to a couple of big cranes, while the circle 5 corresponds to the dike 

located in the far range of the scene. This dike in the radar image has a parabolic 

geometry due to the ranging nature of GB-SAR images and the fact that the central part 

of the dike is closer to the radar than its lateral parts. The circle 3 represents some 

electrical installations that show a regular pattern in the amplitude image. Finally, several 

horizontal lines can be observed in the GB-SAR amplitude image. These lines are the 

effects of strong reflectors which are not well focused in the cross range direction. These 

effects can be reduced by using different types of filtering during the image focusing 

process.  
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Figure 2.3: GB-SAR amplitude image (top) and photograph of the same scene (bottom). Some 
key structures of the scene are identified in both the amplitude image and the photograph in 
order to illustrate the complexity associated with GB-SAR image interpretation. 
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2.2. GB-SAR interferometry 

As previously mentioned, the phase of a given SAR image contains the geometric 

information related to the distance between the radar and the different objects of the 

measured scene. This information can be exploited by using the interferometric technique, 

which is based on the exploitation of the phase difference between at least two GB-SAR 

images of the same object, which are usually acquired at different moments in time. Let’s 

consider the phase ϕ1 and ϕ2 of two homologous pixels (i.e. pixels that correspond to the 
same physical object) from two images acquired at different times or from different 

positions: 

         

2
2

222

1
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111

4
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+⋅=+=

scattscattgeom
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 (2.7)  

where R1 and R2 are the sensor to target distances at each acquisition, ϕscatt is the phase 
shift generated during the interaction between the microwaves and the measured object, λ 

the wavelength of the emitted signal, and the factor 4π is related to the two way path, 

radar-object-radar. 

The interferometric phase ∆ϕ21, i.e. the phase difference between both acquisitions is 

given by: 

       )(
)(4

12
12

1221 −− −+
−⋅

=−=∆ scattscatt

RR ϕϕ
λ

πϕϕϕ  (2.8)  

Ideally, assuming that the shift phase component ϕscatt remains constant between the 

two acquisitions (i.e. its variation over time is negligible) we can simplify the Equation 2.8 

to: 

         
λ

πϕϕϕ )(4 12
1221

RR −⋅
=−=∆  (2.9)  

This equation shows that the main interferometric observable, i.e. the interferometric 

phase ∆ϕ21, is directly related to the difference of the sensor to target distances, R1 and R2. 

Note that this relation holds for every pair of pixels of the two images. The image that 

contains, for each pixel, the interferometric phase of a given image pair is named 

interferogram. Figure 2.4 shows an example of interferogram over an open pit area with 

its associated amplitude image. The interferogram is colour-coded between -π and π and 

the colours represent the phase changes. Although the above equation is valid in an ideal 

case, in practice, other important components of the interferometric phase have to be 

considered: 

       noiseatmoatmo

RR ϕϕϕ
λ

πϕϕϕ +−+−⋅=−=∆ )(
)(4

12
12

1221  (2.10)  

where ϕatmo2 - ϕatmo1 is the phase component due to the atmospheric effects on the signal 

propagation in both images and ϕnoise is the noise phase component, due to the difference 

on the phase shifts, ϕscat2 - ϕscat1, and other noise sources, like instrumental noise, etc. In 

the interferogram shown in Figure 2.4 can be distinguished the areas with high level of 

noise from those with low noise. 
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Figure 2.4: GB-SAR amplitude image (left) and associated interferogram (right). The 
interferogram, with phase values that range between [-π, π], is colour-coded. The black areas 
on the amplitude image, which correspond to weak measured signals, result in noisy phases in 
the interferogram. 

 

 

The SAR interferometry has been widely used during the last 20 years, for DSM 

generation and deformation measurements, mainly using data acquired from spaceborne 

platforms (Rosen et al., 2000). The airborne-based SAR interferometry has also been used, 

at least at experimental level, to perform deformation measurements, e.g. see Perna et al. 

(2008), even though its main application is DSM generation, e.g. Wimmer et al. (2000) 

and Rosen et al. (2000). The GB-SAR interferometry is relatively more recent, and has 

been mainly used for deformation measurement purposes; see Luzi (2010) for a general 

review. However, it is worth mentioning other interesting applications, such as DSM 

generation (Antonello et al., 2003; Nico et al., 2004;Noferini et al., 2007; Rödelsperger et 

al., 2010a), and vegetation monitoring based on a polarimetric GB-SAR (Zhou et al., 

2004).  

Most of the GB-SAR studies published in the literature concern landslide monitoring, 

where the GB-SAR can offer good performances with respect to other measurement 

techniques, such as total stations or terrestrial laser scanner (TLS). Several authors, as 

Pieraccini et al. (2002), Leva et al. (2003), Tarchi et al. (2003) and Antonello et al. 

(2004), use a GB-SAR for slope monitoring in a continuous mode, i.e. leaving the 

instrument installed in situ during the whole monitoring period. Lingua et al. (2008) 

proposes an integration of TLS and GB-SAR data for landslide monitoring. Luzi et al. 

(2004) analyze the decorrelation of the phase due to atmospheric effects and instrumental 

noise while in Noferini et al. (2005a) the persistent scatter technique is used for slope 

instability monitoring. Herrera et al. (2009) describe the use of continuous GB-SAR data 
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for improving the forecasting model of a landslide located in the central Pyrenees. Del 

Ventisette (2011) uses the GB-SAR for an emergency landslide monitoring case in the 

Calabria region in Italy. Finally, Luzi et al. (2010a) describe a discontinuous landslide 

monitoring experiment based on the use of artificial reflectors. In this case, the instrument 

was employed in a number of short campaigns, revisiting the same site over time. This 

approach, which is widely used by many other techniques, is usually appropriate for the 

monitoring of slow or very slow displacement phenomena. 

Tarchi et al. (1999) and Alba et al. (2008) address the use of GB-SAR for dam 

monitoring. This application takes full advantage of the GB-SAR imaging capability and 

its high sensitivity to small displacements. A review of the main pros and cons of using 

the GB-SAR technique for the monitoring of manmade structures can be found in Luzi et 

al. (2010b). Other works address the use of GB-SAR for single building monitoring like in 

Tarchi et al. (2000) or building damage detection as in Pieraccini et al. (2002).  

The GB-SAR has been used to monitor a number of natural phenomena, like urban 

subsidence (Pipia et al., 2007), glacier monitoring (Luzi et al., 2007; Mecatti et al., 2007). 

Several works show the use of GB-SAR for monitoring volcano slopes. In Casagli et al. 

(2010) the GB-SAR is used as an operational early warning system over the Stromboli 

volcano, while the monitoring and the measured deformations occurred during an eruption 

of the Stromboli volcano are described in Casagli et al. (2009) and Antonello et al. (2009). 

Rödelsperger et al. (2010b) also describes the monitoring of the volcano caldera located on 

the Azores. Several works have been addressed to snow covered surfaces monitoring. Luzi 

et al. (2009) proposes the integration of TLS and GB-SAR for monitoring snow covered 

slopes. In Schaffauser et al. (2008) the TLS and GB-SAR are used for measuring the snow 

depth and snow water equivalent. In Martinez-Vazquez et al. (2005) the GB-SAR is used 

for monitoring the snow cover and Martinez and Fortuny (2007) use the GB-SAR data for 

detection and classification of snow avalanches. 

To conclude, although there are not a lot of examples on the literature, GB-SAR has 

been successfully used as a tool for monitoring slopes in open pit mines. Mecatti et al. 

(2010) uses a GB-SAR system which automatically generates the DEM of the measured 

area for monitoring a quarry. 

2.2.1. DSM generation with GB-SAR interferometry 

This section describes how GB-SAR interferometry can provide information on the 

topography of the measured surface, generating a DSM of the observed area. A GB-SAR-

derived DSM is certainly useful in all cases where there is no a priori available DSM or 

digital terrain model (DTM) of the measured area. In fact, as it is described later in this 

dissertation, the knowledge of a DSM of the monitored area is fundamental to properly 

geocode the GB-SAR data and, hence, correctly interpreting and exploiting the GB-SAR 

results. GB-SAR DSM generation is discussed in depth by different authors, see for 

example Antonello et al. (2003) and Noferini et al. (2007). Its principle is briefly outlined 

below. 

Assuming than the observed scenario is stable (see Figure 2.5), if two images are taken 

slightly shifting the GB-SAR position, from M1 to M2, the interferometric phase contains a 

phase component which is due to the geometry of the observed scene, i.e. to the  terrain 

topography of the measured scene. The topography is estimated pixel-wise by applying the 

following procedure: 
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Figure 2.5: DSM estimation using GB-SAR interferometry. M1 and M2 are the positions of the 
GB-SAR at the first and the second acquisitions. R1 and R2 are the distances between the 
sensor and the point P at each acquisition, z is the height of the given point P and b is the 
distance (baseline) between M1 and M2. 

 

 

1) Given the pixel (line, column) calculate the first sensor to target distance, R1, from the 

radar measurement:  

          lineRR ∗∆=1   (2.11)  

where ∆R is the pixel spacing in range. 

2) Using the interferometric phase compute the sensor to target distance, R2, see Figure 
2.5: 

           
π
λϕ

4
*2112 ∆+= RR  (2.12)  

3) The position of P can be derived by triangulation if the positions of the radar, M1 and 

M2, are known. 

4) Repeat the above three steps for each pixel of the interferogram. 

Some geometric considerations are made in the following. The relation between the 

topography and the interferometric phase can be written as: 
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where b is the distance (baseline) between M1 and M2 and z the elevation (height) of the 

point, see Figure 2.5. 
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Assuming that (b/R) << 1, and using the Taylor expansion of the square root, it can 

be derived: 

           21
1

4
ϕ

π
λ ∆=

b

R
z  (2.14)  

It can be noticed that the relationship between z and ∆ϕ strongly depends on the 
factor (b/R). From this equation, the standard deviation of the error in the elevation z 

can be derived: 

           ϕσ
π
λσ ∆=

b

R
z

4
 (2.15)  

Table 2.1 shows different values of σz, assuming that λ is 1.76 cm, which corresponds 

to Ku-band GB-SAR data, and two different scenarios. The first one is a strong reflector, 

characterized by very low phase noise standard deviation (σ∆ϕ = π/100 rad); in this case 
σz is rather small, being equal to 0.26 m in the worst scenario, i.e. at a distance of 1200 m. 

However, it has to be considered that in the practice such strong reflectors are very rare in 

a natural scene. In addition, it is worth underlining that a DSM needs to have a uniform 

coverage, which is only achievable using the majority of the pixels of a given 

interferogram: the performances of a DSM are rather a function of the average reflector 

available in a scene. Considering a typical surface, e.g. covered by grass, it is reasonable to 

expect an σ∆ϕ equal to π/5 rad. In this case, see Table 2.1, the expected σz is much higher, 
in the order of metres. For instance, at a distance of 1200 m the σz is equal to 5.2 m. 

The values shown in Table 2.1 just provide rough information on DSM performances. 

With the typical reflectors of natural scenes σz is of the order of metres. This number 

could be improved by using sufficiently large baselines, but this has operational 

drawbacks. Given the above performances, it is often easy to get a DSM or a DTM of a 

given area with better characteristics than those derivable from GB-SAR interferometry. 

If this is not the case, GB-SAR DSM generation can provide an alternative solution. It is 

worth noting that all the considerations made in this section rely on Equation 2.9, which 

represents an ideal case: a reliable GB-SAR based DSM generation has to properly 

consider both the atmospheric phase component and the noise phase component included 

in Equation 2.10. A way to reduce the influence of both components is by generation the 

DSM using multiple interferograms of the same scene. 

 

 

b              
[m]

R              
[m]

σ z  [m]                                         

with  σ ∆ ϕϕϕϕ  = ππππ /100 rad

σ z  [m]                                             

with  σ ∆ ϕϕϕϕ  = ππππ /5 rad

0.1 250 0.1 2.5
0.1 500 0.2 4.3
0.2 500 0.1 2.2
0.2 1200 0.3 5.2   

Table 2.1: GB-SAR DSM generation: standard deviation of the error in elevation (σz ) for two 
different targets, which are characterized by different phase noise standard deviation (σ∆ϕ), at 
different distances (R) and using different baselines (b).  
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2.3. GB-SAR interferometry for deformation measurement   

This section describes deformation measurement based on the GB-SAR interferometric 

technique. Figure 2.6 illustrates the measurement principle. Let’s assume that we want to 

measure the displacements of point P. We install the GB-SAR system in front of it and 

obtain the first phase ϕM. Let’s suppose that the point suffers a displacement d, and that a 

second GB-SAR measurement is made, obtaining a second observation ϕS at the time t1. 

The interferometric phase can be calculated from the two measured phases: 

       d
MPSP

MSMS *
4)'(*4

λ
π

λ
πϕϕϕ =−=−=∆  (2.16)  

 And then, the displacement d of P can be obtained by isolating d in Equation 2.16: 
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where λ is the wavelength of the used signal. 

The above formulation is based on Equation 2.9, which does not consider disturbing 

effects, like atmospheric effects or phase noise. A more accurate approximation is given by 

Equation 2.10, where these effects are included. Furthermore, if we consider the possibility 

of removing and reinstalling the instrument we have to add a new term to the equation 

that include the phase shift due to the sensor repositioning. Finally, we have to consider 

the unwrapping term, πk2 , which is discussed in Section 2.3.2. The final formulation is: 

        πϕϕϕϕϕ kNoiseAtmoDefoGeomInt 2++++=∆  (2.18)  

Chapter 3 is devoted to describe in depth all steps needed to properly separate each of 

the above components, obtaining therefore an estimate of the deformation. In the 

following sections some considerations about the logistics and the main limitations of the 

technique are addressed. 

 

 

Figure 2.6: Working principle of GB-SAR interferometry for deformation measurement. A 
given point P, which undergoes a displacement d, is measured by GB-SAR twice, before and 
after the displacement. 
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2.3.1. GB-SAR deformation measurement: general aspects 

In this section some fundamental aspects of GB-SAR deformation measurement, which 

have to be taken into account to properly understand and exploit GB-SAR based 

deformation measurements, are discussed. These aspects are listed below; the type of 

acquisition mode, continuous vs. discontinuous; the importance of the noise phase 

component; the use of artificial Corner Reflectors (CRs); the observed direction of GB-

SAR measurements, i.e. the Line-of-Sight (LOS) direction; and the relative nature of the 

GB-SAR observed displacements. 

• Type of acquisition mode: continuous vs discontinuous GB-SAR. GB-SAR 

interferometry can be exploited in two different ways: the continuous monitoring mode, by 

leaving the instrument installed in situ and acquiring data on a regular base, and the 

discontinuous mode, by installing the instrument at each campaign, revisiting a given site 

periodically. The continuous approach allows the user to have a “near real-time” 

monitoring of the site of interest, e.g. obtaining an image and hence a deformation 

estimate every few minutes. In this case, the component ϕGeom of Equation 2.18 does not 

exist. The continuous approach is appropriate to measure fast deformation phenomena, 

e.g. with displacements ranging from some mm/day to m/day, providing a monitoring tool 

that can support the management of emergency scenarios. On the other hand, when the 

movements are slower or when the “near real time” monitoring is not demanded, the 

continuous approach is not recommendable due to both logistic and cost reasons: in these 

cases, the discontinuous approach is more adequate. As it is discussed later in this 

dissertation, the discontinuous monitoring faces two main important problems: temporal 

decorrelation and aliasing. 

• Noise phase component. Although the radar is an imaging system which delivers a 

regular grid of measured points, not all observed points can be exploited for deformation 

measurement. The exploitability of the points is mainly driven by the ϕNoise component: 

the higher the ϕNoise, the lower the capability to derive deformation information. The level 

of phase noise is mainly due to the difference in the phase shifts, ϕscat2 - ϕscat1 shown in 

Equation 2.8, which in turn depends on the physical and geometric characteristics of the 

measured objects and their changes over time and, specifically, over the time elapsed 

between the GB-SAR image acquisitions. The objects characterized by high 

interferometric phase quality are usually those that backscatter a lot of energy towards 

the radar and, at the same time, whose response does not undergo significant changes over 

time. By contrast, many types of surfaces provide either a very weak backscatter or their 

physical and geometric properties change critically over time. This is usually the case for 

different types of vegetated areas, while man made objects, metallic structures, rocks, etc. 

can maintain a good response to the GB-SAR signal even over long periods.  

The quality of the interferometric phase is usually measured by the so-called 

coherence, see the next section: the lower the phase noise ϕNoise, the higher the coherence. 

It is important to emphasize that it is not possible to exploit the interferometric 

observations with low coherence and, as a consequence, no deformation measurement can 

be obtained. In other words, the availability of interferometric observations of sufficient 
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quality, where the ϕNoise component represents a sufficiently small fraction of the whole 

phase, is conditio sine qua non to perform GB-SAR based deformation measurement. 

Even though in many cases the coherence behaviour can be predicted a priori, in many 

others it is difficult to know it without performing the GB-SAR data acquisitions. In this 

sense, the technique can be seen as an “opportunistic deformation measurement method”, 

which is able to measure deformation only over the available coherent objects. 

• Artificial corner reflectors. For the areas where it is clearly expected a low 

coherence behaviour and, at the same time, a deformation monitoring is needed, the use of 

artificial Corner Reflectors (CRs) can offer a solution. A CR is an artificial reflector with 

an optimal geometry from the radar point of view: its key characteristics, i.e. the 

geometric shape and metallic nature, guarantee a strong response to the microwaves. As 

example, Figure 2.7 shows CRs used on some of the experiments showed in this work. In 

terms of GB-SAR, a CR results in interferometric observations characterized by low ϕNoise, 

even in the discontinuous GB-SAR configuration. The use of CRs can guarantee the 

availability of measurements in those places where there is no or little coherence. 

However, this requires the accessibility to the studied area and an important effort in 

terms of in situ CR installation (Luzi et al., 2010a). This is the major disadvantage of 

CRs: they require evolving from “pure remote sensing” to a “hybrid remote sensing 

supported by in-situ installed devices”.  An interesting advantage of the CRs is that they 

allow measuring specific locations, which are supposed to be strategically located and 

materialized with respect to the expected deformation signal of interest. By contrast, as 

mentioned above, given the opportunistic nature of GB-SAR measurements, this cannot 

be guaranteed without using CRs. Figure 2.8 shows an example of deformation map 

obtained over an incoherent area (grass and forest land cover) using artificial CRs. In this 

case, the measurements over the CRs are mixed with those coming from reflectors 

available at the scene. The map shows some stable areas with high density of points, 

which mainly correspond to rocky and building areas. The moving area, located inside the 

red circle, is an area where the only possible measurements are those based on CRs. This 

deformation map was obtained from a 35-day interferogram.  

 

 

Figure 2.7: Example of corner reflector developed at the IG. 



 
30                                             CHAPTER 2. GROUND-BASED SAR INTERFEROMETRY 

 

 

 

Figure 2.8: Deformation map obtained from an interferogram with temporal baseline of 35 
days. The area bounded by the red circle is the area of interest. The measured points are 
artificial corner reflectors installed during the measurements. 

 

• Deformation measurements in the radar line-of-sight. The GB-SAR 

deformation measurements refer to the line between the sensor and the measured object, 

the radar Line-of-Sight (LOS). That is, we only see the projection of the actual observed 

displacements along this LOS direction. This represents an important limitation of the 

technique with respect to all other techniques able to estimate the full 3D deformation 

field. In addition, this requires a particular attention in choosing the location of the GB-

SAR: the ideal case is to have the LOS direction as parallel as possible to the 

displacement direction. The worst case scenario is when the LOS direction is 

perpendicular to the displacement direction. For instance, this occurs by observing a 

subsidence area from a neighbouring area located at the same height. 

• Relative deformation measurements. GB-SAR deformation measurements are 

usually relative to a given reference point. In fact, even though the absolute measurements 

are certainly more interesting from the application viewpoint, they could theoretically be 

achieved if: (i) the GB-SAR could remain perfectly stable or its position over time was 

accurately known during the measurement; (ii) the atmosphere between GB-SAR and the 

scene was perfectly stable over time or its physical properties (humidity, temperature and 

pressure) accurately monitored over time and in the whole space between GB-SAR and 

the imaged scene. In most cases the above conditions are not satisfied and, for this reason, 

there is a need to identify a reference point or a set of reference points in the scene. This 
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usually implies a previous knowledge of the measured area: a wrong selection of the 

reference point can be misleading, when analysing results. On the other hand, if no a 

priori knowledge of the observed area is available, any arbitrary pixel in the scene can be 

chosen bearing in mind that all other measurements will refer to this point. 

2.3.2. GB-SAR deformation measurement: two technical aspects 

The objective of this section is to introduce two important technical aspects of the 

GB-SAR deformation measurement: the coherence of the interferometric observations, 

which was already mentioned in the previous section, and the phase unwrapping and 

associated problem of phase aliasing. 

• Interferometric SAR coherence. As discussed in the previous section, obtaining 

coherent interferometric GB-SAR images over time is a necessary condition for GB-SAR 

deformation measurement. The complex coherence γ of a given pair of interferometric SAR 
images M and S is a statistical index that measures the degree of correlation between an 

image pair of complex SAR images: 
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where E[.] is the expected value and * the complex conjugate. The coherence is usually 

estimated by using windows of n by m pixels: 
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The reliability of the coherence depends on the number of pixels of the window. A 

comprehensive discussion of the coherence is provided in Rosen et al. (2000), Bamler and 

Hartl (1998) and Hanssen (2001). The absolute value of γ, which ranges between 0 and 1, 
provides fundamental information on the quality of the SAR interferometric phase. 

Bamler and Hartl (1998) show the relation between the standard deviation of the 

interferometric phase noise and the coherence, see Figure 2.9: the highest coherence values 

correspond to the lowest phase standard deviation. 

The loss of coherence over time is also named temporal decorrelation. During the GB-

SAR interferometric data analysis, a coherence threshold value has to be chosen: usually it 

represents a trade-off between the quality of the phase, which requires high coherence 

thresholds, and the spatial density of the selected pixels, which needs lower thresholds. 

Coherence and temporal decorrelation are discussed in several papers, e.g. Bamler and 

Just (1993), Ferretti et al. (2001) and Rosen et al. (2000). 

It is worth emphasising that the coherence behaviour depends on the type of 

microwaves used. Most of the results shown in this dissertation were acquired with a GB-

SAR system working with Ku-band data (λ = 1.76 cm). Over the same scenarios, systems 
working with longer wavelength, e.g. X-band, C-band, S-band, etc. can perform sensibly 

better both in terms of coherence and temporal decorrelation. 
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Figure 2.9: Relation between the standard deviation of the phase noise and the coherence for 
different number of interferogram looks, from Bamler and Hartl (1998). 

 
 

The loss of coherence plays a different role in the continuous and discontinuous 

acquisition modes. Figure 2.10a shows a possible measurement scenario: a sliding slope 

that affects a highway. Figures 2.10b and 2.10c show the coherent points obtained for this 

area, which correspond to two interferograms with a temporal baseline of several hours 

and of one month, respectively. In the last case the vegetated area prevents the 

availability of dense set of coherent points: only the points measured on the man made 

rock wall remain coherent over one month time span. This example clearly shows how 

severe coherence loss can occur in the case of discontinuous GB-SAR applications. 

• Phase unwrapping and aliasing. As shown in Equation 2.4, the phase of a given 

GB-SAR image is calculated by using an inverse tangent. This implies that the phase 

values are known modulo 2π, ranging in the interval [-π, π]: these are the so-called 
wrapped phases. Figure 2.11 illustrates the concept of wrapped and unwrapped phases. 

Since the full interferometric phases are wrapped around the 2πP interval, the full phase 
values need to be reconstructed by estimating the integer number of cycles to be added to 

their wrapped version:  

        πϕϕ ⋅⋅+∆=∆ kwrappedIntunwrappedInt 2__  (2.21)  

where k is an integer number. This operation is named phase unwrapping. In the context 

of this dissertation, the phase unwrapping discussed in this section is called 2D, because it 

concerns 2D fields of interferometric phases, which can have either a raster or vector 

structure. By contrast, the so-called 2+1D phase unwrapping discussed in Chapter 4 

concerns stacks of interferograms that are unwrapped jointly, both in space and time. It is 

worth noting that, from the mathematical viewpoint, phase unwrapping is a hill-posed 

problem and, therefore, one of the most critical steps of SAR interferometry.  
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Figure 2.10: Role of coherence in the continuous and discontinuous acquisition modes. 
Photograph of the measured slope (a). The coherent points of a GB-SAR image pair acquired 
with few hours of time separation are shown in green (b). Same as (b), but with 1-month time 
separation (c).  

 

The importance of phase unwrapping is clearly revealed by the considerable number of 

scientific publications devoted to this topic. In the last twenty years many phase 

unwrapping approaches have been proposed. Some of them are briefly mentioned below; 

for a systematic review see Ghiglia and Pritt (1998). The Ghost-line approach (also known 

as Branch-cut, Residue-cut, or Minimum Spanning Tree) is based on the direct integration 

of phase differences, avoiding some determined paths where aliasing occurs, see Goldstein 

et al. (1988). Another important type of phase unwrapping is based on the least squares 

(LS) principle (Ghiglia and Romero, 1989). Another method was derived from LS, which 

is based on the Green function formulation (Fornaro et al., 1996). The Minimum Cost 

Flow algorithm, presented by Costantini (1998), uses a L1 norm estimation approach. 

Another minimization criterion using the norm Lp, with 0 ≤ p ≤ 2, was suggested by 
Ghiglia and Romero (1994). Other different algorithms, e.g. those based on Kalman filter, 

the Region Growing approach, etc. are described in Ghiglia and Pritt (1998). An 

implementation of the Minimum Cost Flow method described in Constantini (1998) and 

Costantini et al. (1999) is used in this work. 

As mentioned above, the phase unwrapping is a hill posed problem and thus an 

infinite number of different solutions can be found. This issue represents an important and 

intrinsic limitation of SAR interferometry, which has important consequences from the 

point of view of deformation measurement and monitoring. The majority of phase 

unwrapping algorithms are based on the assumption that the full interferometric phases 

vary smoothly over a given interferogram. More precisely, they are based on the following 

hypothesis on the unwrapped phases: 

        πϕϕ <∆−∆ ),(),( __ lkji unwrappedIntunwrappedInt  (2.22)  
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Figure 2.11: Phase unwrapping. Profile along a hypothetical interferogram with full 
interferometric phases, ranging approximately between 35 and 60 radians (left). This profile 
represents the unwrapped version of the profile shown on the right side, which contains 
wrapped phase values that range in the interval [-π, π]. 
 

where (i,j) and (k,l) represent neighbouring pixels. Discontinuities in the full 

interferometric phases, where the phase variation between neighbouring pixels is greater 

than π radians, cause phase unwrapping or aliasing errors that are multiple of 2π and, as a 

consequence, severe errors in the deformation estimates. 2π correspond to a displacement 

of half wavelength which is about 9 mm in Ku band: the unwrapping related errors are at 

least one order of magnitude bigger than the precision of the deformation estimates. From 

the practical viewpoint, it is more informative to express the above condition in terms of 

displacement: 

      
4

),(_),(_
λ<∆−∆ lktnDeformatiojitnDeformatio  (2.23)  

where λ is the wavelength, and Deformation_∆t is the deformation occurred in the time 

interval between two image acquisitions. The condition is particularly severe for short 

wavelength, like the Ku band: differential displacements between (i,j)  and (k,l)  of 4.5 
mm can be correctly estimated at the most (at least from the phase unwrapping 

viewpoint). In practice this requires to properly adjust the time interval, ∆t. This 

condition is critical for many discontinuous GB-SAR applications, while in the continuous 

mode, where the time interval ∆t can be as short as a couple of minutes, this issue does 

not represent a major limitation (4.5 mm in 2 minutes correspond to 13.5 cm/h, a 

displacement rate very seldom met in the practice). 

To conclude, it is worth noting that Equations 2.22 and 2.23 refer to (phase or 

displacement) differences between pairs of neighbouring pixels. In this sense, two remarks 

are needed. The first one is that the concept of “neighbouring pixels” is strongly 

conditioned by the ϕNoise component. In low coherence areas, where many pixels have to be 

discharged, the distance between “neighbouring pixels” can be remarkably bigger than 

that of a highly coherent area, where all pixels can be used. The second remark concerns 

the difference between pixel pairs. Provided that a pixel usually has multiple neighbouring 

pixels, the above condition is somehow relaxed. In fact, many phase unwrapping 

algorithms use all the paths to reach a given pixel. Unfortunately, there are many 

situations where all the paths that connect a given set of pixels do not satisfy the 

Equations 2.22 and 2.23. In these cases, GB-SAR cannot usually provide a correct 

estimation of the deformation. 
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Chapter 3  

Interferometric GB-SAR for 

deformation measurement 
  
 

This chapter describes the GB-SAR data processing and analysis procedure used by 

the author for deformation measurement and monitoring. It covers the end-to-end 

sequence of steps that starts from survey preparation and finalizes with the generation of 

the geocoded deformation maps and the deformation time series. Some of the basic tools of 

the GB-SAR chain are shared with the IG data processing and analysis software chain 

used for satellite-based interferometric SAR and Persistent Scatterer Interferometry, e.g. 

see Crosetto et al. (2010) and Crosetto et al. (2011).  

The chapter starts with an overview of the whole GB-SAR chain. The main data 

processing and analysis steps are then described, showing and discussing results based on 

different GB-SAR campaigns. The last section of the chapter outlines several aspects 

related to the precision and accuracy of the deformation measurements achievable with 

the proposed GB-SAR procedure. 

3.1. The interferometric GB-SAR procedure 

This section provides an overview of the GB-SAR procedure developed at the IG for 

deformation measurement. Most of these data processing and analysis steps are directly 

related to the main GB-SAR observation model already introduced in Chapter 2: 

    πϕϕϕϕϕϕ kNoiseiAtmojAtmoDefoGeomij 2__ ++−++=∆            (3.1) 

where .∆ϕij is the interferometric phase computed with the master image j and the slave 

image i, ϕGeom is the phase term generated by removing and reinstalling the instrument, 

ϕDefo is the phase component related to the deformation occurred between the acquisition 

of the master and slave images, ϕAtmo is the atmospheric phase contribution, φNoise is the 

phase noise term and 2k. is the phase unwrapping term, where k is an unknown integer 

number.  

The entire process of deformation estimation aims to properly separate the 

deformation component from the other components shown in Equation 3.1, using a set of 

N GB-SAR images. This process involves a sequence of operations as shown in Figure 3.1. 

The following sections will deal with the main processing steps of the procedure: 

- image coregistration,  

- interferogram and coherence image generation, 

- pixel selection, 
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- 2D phase unwrapping, 

- phase integration,  

- estimation of the atmospheric component, 

- displacement computation and geocoding. 

The remaining steps are not directly discussed in this chapter. The survey preparation 

and the data acquisition are partially discussed in Chapter 2, while the focusing of SAR 

images is a well documented process, e.g. see Fortuny-Guash (2009) and Curlander and 

McDonough (1991). The focusing implemented in the procedure here described is based on 

Fortuny-Guash and Sieber (1994). 

To conclude, it is important to mention that even though data processing and analysis 

chain slightly differs for the continuous and discontinuous modes, it is basically based on 

the same tools. For this reason, the content of this chapter is valid for both types of 

acquisition mode.  

3.2. Image coregistration 

An interferometric analysis can only be performed if the SAR images used to generate 

the interferogram are properly coregistered, i.e. pixels with equivalent location in the two 

images have to match the same footprint on the ground. The coregistration step is 

fundamental in interferogram generation since it ensures that each ground target 

contributes to the same (range, azimuth) pixel in both the master and the slave images 

(Ferretti et al., 2007). This is a standard process in satellite-based SAR interferometry, 

given that satellite images only approximately cover the same area: they are usually 

acquired from different viewpoints and from not exactly parallel orbits. Different image 

coregistration algorithms can be found on the literature, e.g. see Lin et al. (1992). For a 

discussion of coregistration for SAR interferometry see Gabriel and Goldstein (1988).  

From the GB-SAR point of view, image coregistration is mandatory in the discontinuous 

mode, where the GB-SAR is re-positioned at each campaign, especially in the cases where 

a “light positioning” is performed by simply materializing the GB-SAR location using 

some marks. Note that the “light positioning”, which can easily result in repositioning 

errors of several millimetres, is necessary in many practical application cases where it is 

not possible to build a concrete base or any other precise mechanical positioning structure. 

In addition, even in the cases where the GB-SAR position can be materialized 

mechanically, ensuring in principle an accurate repositioning, the coregistration is 

recommended in order to minimize the effect of any repositioning error that could occur. 

It is worth noting that a non perfect match of the GB-SAR position at the acquisition of 

two images causes two effects: coherence loss and the phase term ϕGeom, which is included 

in Equation 3.1. 

To perform the coregistration, the transformation from the slave image geometry to 

the master geometry has to be found and then the slave image has to be resampled to the 

master geometry. This operation has to be carried out with sub-pixel accuracy in order to 

preserve the interferometric phase quality. In fact, a registration error of the order of one 

image pixel may yield a complete coherence loss. This issue prevents carrying out 

interferometric measurements using discontinuous GB-SAR without performing a 

coregistration. This is illustrated in Figure 3.2, which shows an interferogram generated by 
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Figure 3.1: Flow chart diagram for deformation estimation with GB-SAR data. 
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using discontinuous GB-SAR without performing a coregistration. In the same figure is 

shown the interferogram computed from the same images, which were properly 

coregistered. The difference is evident and underlines the need of performing a good 

coregistration: the first interferogram is noisy and it is not possible to distinguish any 

structures, while the second one shows several coherent features where the phase can be 

exploited. 

As mentioned above, when two GB-SAR images are acquired from non coincident 

viewpoints, an additional term in the interferometric phase, ϕGeom, appears (see Equation 

3.1). An example of this term is shown in Figure 3.3, which corresponds to an image pair 

collected over the Eixample (Barcelona), rotating the GB-SAR about 2º-3º between the 

first and the second acquisitions. There is a strong phase pattern, even though the two 

images were correctly coregistered, which is due to the rotation of the sensor. It is worth 

noting that the coregistration operation makes the “supports” of two images geometrically 

identical, neglecting the errors associated with this operation. However, coregistration does 

not compensate for the ϕGeom phase term, i.e. it has to be properly considered in 

subsequent data analysis steps, see the APS estimation stage. 

In principle, coregistration can be usually avoided when continuous GB-SAR data is 

used since the sensor remains stable during the acquisition period. However, it is necessary 

when measuring at long distances, to account for a particular type of image distortions, 

due to atmospheric variations during the acquisition of single images. Figure 3.4 describes 

this phenomenon. If the atmosphere does not vary during image acquisition, the refractive 

index (n1) at the end of the acquisition will be the same as that at the beginning. In this 

case, the propagation paths ∆r1 and ∆r2 will be properly estimated, and the resulting 

image will not suffer any distortion due to atmospheric effects. On the other hand, if there 

is a variation in the atmosphere, there will be a change of the refractive index: n1 at the 

beginning, and n2 at the end. Since image formation assumes a constant refractive index 

(e.g. n1), the distance ∆r1 will be properly estimated while ∆r2 will be underestimated (if 

n1 < n2). The resulting SAR image will provide a missed position for point p. This point 

will appear closer to the sensor than it actually is: the image will appear to have been 

formed by a linear aperture rotated by an angle ξ with respect to the previous 

acquisitions. This effect can, at least partially, be compensated by the image 

coregistration. 

3.2.1. Image coregistration algorithm 

This section describes the image coregistration procedure implemented in this chain. 

Let's consider two complex SAR images where the master image M is the reference image, 

and the slave image S is the image to be coregistered to M. The process of image 

coregistration involves three main steps, described below: image matching, transformation 

estimation and image resampling. 

• Image matching. Image matching involves the identification of common points in 

both images, estimating the image shifts, in azimuth and range, between the point 

position in both images M and S.  The shift estimation can be performed using different 

methods, see Bamler and Eineder (2004). In the procedure at hand, the used method is 

the so-called Incoherent Correlation, which estimates the shifts by using the cross-

correlation of the squared amplitudes of the two images. 
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Figure 3.2: GB-SAR interferogram generated using two images from discontinuous GB-SAR 

and without coregistration (middle), and the interferogram computed from the same images 

but previously coregistered (right). 

 

Figure 3.3: Example of ϕGeom phase term of an interferogram (right) and amplitude image of 

the same scene (centre). The interferogram comes from an image pair collected over a portion 

of Eixample (Barcelona), by rotating the GB-SAR of about 2º-3º between the two image 

acquisitions. 
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Figure 3.4: Image distortion due to atmospheric changes during the acquisition of a single 
image. Case with no changes in the atmosphere occur during image acquisition (left), and case 
where a change in the atmosphere, causes the image to appear as it was acquired from a rail 
rotated by an angle ξ with respect to the previous acquisitions, from Martinez-Vazquez  
(2008). 
 
 

The maximum of the correlation function indicates the shift vector between S and M. 

When the correlation is higher enough, the estimated shifts can be obtained with a 

precision of up to 0.05 pixels (Hanssen, 2001). The estimation of the shifts is performed 

over a set of selected points of the master image M. The selection of the points has to 

guarantee a good spatial distribution in the whole scene in order to avoid systematic 

effects on the final interferogram or coherence loss. For each selected pixel (x, y)M of the 

master image, the estimated shifts are given by the 2D vector, hxy = (hx, hy), which 

maximizes the normalized cross-correlation function: 
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where Wxy is a n by m window centred in (x, y)M, µM, µS, σM and σS are the means and the  

standard deviations of M and S in Wxy. The function C, which takes values between [0, 1], 

measures the degree of correspondence between M and S in W and W-h, respectively. By 

using this procedure, a shift in range, a shift in azimuth and its cross-correlation value is 

obtained for each selected pixel. The main input parameters for this step are the size of 

Wxy, the oversampling factor that will drive the resolution of the method, and the number 

of samples used in the oversampling. For GB-SAR data coregistration, typical values are a 

window size Wxy of 32 by 32 pixels, an oversampling factor of 16, and 8 samples for 

oversampling. 

• Transformation estimation. The transformation parameters between S and M are 

estimated in this step. The used model is a second-degree 2D-polynomial: 
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where (x, y) are the master image coordinates of a given point. The transformation 

parameters (ax, bx, cx, dx) and (ay, by, cy, dy) are estimated by least squares. The 

observation model is: 



 
DEFORMATION MEASUREMENT WITH GBSAR INTERFEROMETRY                         41 

 

 

       




++=
++=

yyMS

xxMS

yxpyy

yxpxx

ξ
ξ

),(

),(
         (3.4) 

where (xS, yS) are the image coordinates on the slave image of the point (xM ,yM) in the 

master image and (ξx, ξy) are the residual observation errors. Equation 3.4 can be rewritten 

in terms of the estimated shifts (hx, hy): 
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The observations are the estimated shifts obtained in the matching step. Only those 

pixels with high correlations are selected for the estimation: typically a cross-correlation 

threshold of 0.7 is enough for obtaining good parameter estimation. It is recommended to 

analyse the above residuals to obtain a good estimation. The following measures can be 

taken to ensure the quality of the estimation: (i) checking the distribution of the points: 

ideally they should be well distributed across the scene; and (ii) checking the distribution 

of the residuals, which should be uniformly distributed: the existence of clusters of high 

residuals can result in systematic effects in image coregistration. 

• Resampling. In this step, the (I, Q) value on the position (xS, yS) of the slave image 

S is calculated for every pixel (xM, yM) of the master image M. Different interpolation 

methods are discussed in the literature, e.g. Laakso et al (1996). The Truncated Sinc 

Interpolation has been selected for our procedure because it shows the better behaviour 

with respect to the phase, according to Hanssen and Bamler (1999), which discuss the 

influence of several interpolation kernels on the coherence. The size of the truncated sinc 

is one of the key inputs. The used kernel size is typically 8 pixels, which is good enough in 

terms of coherence (Hanssen and Bamler, 1999). The final output of this step is the 

transformation of the slave image S to the master geometry, i.e. each pixel (i,j) of the 

master and slaves images matches the same portion of terrain of the measured area. 

3.3. Interferogram and coherence image generation 

The main inputs for the deformation estimation procedure, the interferograms and the 

associated coherence images, are generated in this step from the stack of N coregistered 

GB-SAR images. Interferogram generation is preceded by the design of the interferogram 

network, which defines how the N images are connected through a set of M 

interferograms. The interferogram network design can be decided following different 

criteria; in the procedure here described M is equal to N-1, with the interferograms 

connecting consecutive images. This network entails that all images are interconnected 

using the minimum number of interferograms, i.e. it is a zero-redundancy network.  

Each of the M interferograms is computed starting from the pair of complex SAR 

images, M and S. Even though each interferogram is a complex image, only the 

interferometric phase is usually computed: 

       )·arg( *SMMS =ϕ           (3.6) 

where ϕMS is the interferometric wrapped phase (ϕM -ϕS), M is the master image and S* is 

the complex conjugate of S. The result is an image where each pixel contains the wrapped 

difference of phases between the image M and the image S.  
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For each interferograms its corresponding coherence image is generated using Equation 

2.20 and keeping the module of the complex coherence. The coherence images are then 

used to perform the pixel selection as discussed in the following section. 

3.4. Pixel selection 

As previously mentioned, the interferometric phase can only be exploited over a 

fraction of the measured pixels. The exploitability of a given pixel basically depends on 

the ϕNoise phase term: only those pixels whose interferometric phase is characterized by low 

ϕNoise have to be selected. Different selection criteria tailored to the application at hand 

can be used to select these pixels. Two selection criteria, the coherence-based and 

amplitude-based selection, are discussed below. 

3.4.1. Coherence-based selection 

The coherence is a statistical parameter that measures the degree of correlation 

between a pair of SAR images, which is directly related to the standard deviation of the 

interferometric phase noise. In this sense, high coherence values correspond to low phase 

noise standard deviation of the phases. This property can be directly used to perform the 

pixel selection. An example is shown in Figure 3.5, where it is evident that the noisy 

interferometric phases correspond to low coherence areas. It is worth to note that in this 

example, which concerns a 15-days interferogram of the Montserrat test site, most of the 

pixels have low coherence and hence noisy phases. 

The challenge of the coherence-based selection is choosing the appropriate threshold to 

discriminate between “bad” and “good” pixels or, more precisely, between pixels that can 

be exploited to estimate the deformation and those that have to be discarded. 

Unfortunately, we do not have a fixed rule to choose the coherence threshold. Figure 3.5 

shows three examples of pixel selection based on three thresholds: 0.85, 0.9 and 0.95. The 

first threshold select a lot of pixels in the noisy area: it is probably not sufficiently 

selective, while the last one is probably selecting pixels of good quality, at the expense of 

drastically reducing the number of selected pixels. Often the threshold is fixed by 

adjusting the trade-off between phase quality and density of the selected pixels, i.e. spatial 

density of the deformation measurement. An empirical way to check is to analyse the 

phase unwrapping results, which depend both on the quality of the phase and the pixel 

density. 

Figure 3.6 shows a 35-days interferogram over the Canillo test site (Andorra), and the 

corresponding coherence image. Built-up areas, highlighted by green circles, basically 

remain coherent, while the rest of the scene, mainly vegetated areas, displays low 

coherence and noisy phases. In this type of scenes, using the discontinuous GB-SAR mode, 

even with relatively short temporal baselines, it is difficult to achieve reliable deformation 

measurements. 

As already mentioned in Chapter 2, the loss of coherence usually increases with time 

and, thus, this issue is even more critical in discontinuous GB-SAR than in the continuous 

acquisition mode. Figure 3.7 illustrates how coherence loss increases even over relatively 

short time intervals and over built-up areas. In this case, which concerns the Port of 

Algeciras, there is a remarkable loss of coherence between a 10-minute interferogram and a 

1-day one. 
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Figure 3.5: 15-days interferogram of the Montserrat area (a); corresponding coherence image 
(b). Pixels with coherence bigger than 0.85 (c), 0.9 (d) and 0.95 (e) appear white. 

 

Figure 3.6: Picture of the Canillo test site (left). Coherence of a 35-day interferogram (middle), 
and the corresponding interferometric wrapped phase (right). 
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Figure 3.7: GB-SAR amplitude image over the Algeciras harbour (above), coherence of a 10-
minutes interferogram (middle), and coherence of a 1-day interferogram (bottom). 
 
 

To conclude it is important to underline an important limitation of the coherence-

based pixel selection. Since the coherence of a given pixel is estimated using an area 

centred on this pixel, see Equation 2.20, the coherence map is implicitly a low-resolution 

map, which is not adequate to precisely discriminate coherent features such as points or 

very thin linear elements. Either these elements are masked out by the surrounding noisy 

pixels (false negative), or the coherent elements dominate over the neighbouring noisy 

pixels, making them to appear, wrongly, as coherent (false positive). An example of this 

latter case is shown in Figure 3.8, where a portion of the dike, which clearly appears as a 

thin structure in the amplitude image, corresponds to a rather larger coherent area. In this 

case, the dike is a coherent structure that dominates over the surrounding pixels, which 

correspond to water. Although these pixels are definitely noisy because water surfaces 

decorrelate in a matter of seconds, they appear to be coherent and hence could be wrongly 

selected using a coherence-based pixel selection. Due to this important limitation, in this 

dissertation, the coherence is usually used to analyse single GB-SAR interferograms, while 

the second selection criteria (described below) is preferred to process large stacks of 

multiple interferograms. 

3.4.2. Amplitude-based selection 

This criterion is based on the analysis of the behaviour of the amplitude of each point 

along the stack of N images. It cannot be used to select pixels on a single interferogram. 

This principle was made popular by Ferretti et al. (2001) to select the so-called permanent 

or persistent scatterers, even though it was already proposed earlier, e.g. see Bamler and 

Hartl (1998). The key pixel selection parameter is the so-called dispersion of amplitude 

(DA). Given a set of N complex SAR images, the mean amplitude (MA) of a given pixel 

(i, j) is calculated: 
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Figure 3.8: Ortho-image of the Algeciras harbour (left) GB-SAR amplitude (middle), and 
coherence of a 15-min interferogram computed with a window of 3 pixels in azimuth by 5 
pixels in range (right). 
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where Ai is the amplitude of the image i. The mean amplitude is used for visualization 

purposes and the DA is used for selecting the points. The DA is then calculated as: 
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Bamler and Hartl (1998) show that there is a linear relation between the DA and the 

standard deviation of the phase noise, which holds for small DA values. Even though this 

criterion was developed for satellite data it is used in the context of this work for ground-

based data. 

Low DA values indicate “good” pixels, characterized by low phase noise. Again, we 

face the challenge of fixing a threshold to select the “good” pixels, which require adjusting 

the trade-off between phase quality and density of the available deformation 

measurements. In satellite-based PSI, Ferretti et al. (2001) suggest a DA threshold of 0.2 

to select the so-called candidate persistent scatterers. However, in the practice, we often 

face the problem of finding a trade-off between the quality of the selected points and the 

need of guarantee a sufficient number of samples in the area of interest. This occurs in all 

those areas characterized by low spatial density of good pixels.  

An example of amplitude-based pixel selection, concerning an instable slope in an open 

pit site, is shown in Figure 3.9. In this example, data acquired over a 5-day monitoring 

campaign were processed. A set of 50 images were used to calculate the MA and the DA. 

In this case the pixel selection seems to be, at least qualitatively, appropriate. As for the 

coherence-based criterion, an empirical way to prove it is to analyse the phase unwrapping 

results. 
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Figure 3.9: GB-SAR data acquired over an open pit for slope instability monitoring. Picture of 

the site (a), 50-image mean amplitude (b); amplitude dispersion (c); selected pixels with DA 

below 0.25 (d). 

 

An important advantage of this criterion is that it is point-based. Thus, as it is 

computed considering the data of a single pixel, it does not suffer the limitation of 

coherence, which is area-based. However, a limitation of this approach, which is 

particularly evident when large data stacks are analysed, is that it is based on global 

statistics over the whole data stack. This has two drawbacks. On one hand, pixels that 

contain valuable interferometric phases, but not during the whole monitoring period, may 

be discarded: more advanced pixel selection techniques need to be developed to fully take 

advantage of such pixels. On the other hand, pixels that contain, on average, good 

interferometric phases, but which are contaminated by a number of anomalous or noisy 

phases could be selected. Again, more elaborated techniques should be employed to clean 

the anomalous and noisy data. This will imply getting an insight of data quality within 

the data stack at hand, and to handle an irregular temporal sampling of the deformation, 

which may differ from one pixel to another. 

3.5. 2D phase unwrapping 

In this step, the wrapped interferometric phases of the N-1 generated interferograms 

are unwrapped, i.e. the unwrapping constant k of Equation 3.1 is estimated. Since this 

operation is performed interferogram by interferograms, without exploiting time 

component, it is called 2D phase unwrapping. As mentioned above, an implementation of 
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the Minimum Cost Flow method (Constantini, 1998; Costantini and Rosen, 1999) is used 

in this dissertation. It is worth noting that this step is only performed over the points 

selected in the previous step.  

The condition needed to perform a correct phase unwrapping is discussed in Chapter 

2, see Equations 2.22 and 2.23. If this condition is not satisfied aliasing or phase 

unwrapping errors may occur, which can drastically corrupt the quality of the deformation 

estimates. It is worth noting that many other deformation measurement techniques do not 

suffer this type of limitation: all aspects related to phase unwrapping errors have to be 

treated with particular care. Given the importance of phase unwrapping, in this 

dissertation a whole chapter, Chapter 4, is devoted to describe and illustrate the 

performances of a new 2+1D phase unwrapping approach.  

Three main classes of phase unwrapping errors are described below together with a 

discussion about its implication from the GB-SAR deformation measurement point of 

view. The three classes are: “fast deformation”, ϕNoise component, and atmospheric 

component. 

• “Fast deformation”. Fast deformation phenomena cause a very insidious type of 

unwrapping error. In fact, it occurs in all areas where deformation is more severe, i.e. in 

the priority areas of any deformation monitoring activity. It is worth emphasising that the 

expression “fast deformation” in fact applies to the specific technique at hand: it should be 

said “fast from the interferometric GB-SAR viewpoint”. That is to say, a phenomenon can 

be considered very slow, slow, etc. from the viewpoint of a given application and, at the 

same time, being a too fast phenomenon to be measured by the technique at hand, i.e. the 

GB-SAR. 

As already discussed in Chapter 2, GB-SAR temporal sampling, i.e. the time interval 

between image acquisitions, plays a fundamental role in phase unwrapping errors caused 

by deformation. An example is shown in Figure 3.10, which concerns the Formigal 

(Pyrenees, Spain) test site. Four unwrapped interferograms, which concern the same 

deformation phenomenon with an almost constant deformation rate, are shown. The 9.3-

day unwrapped interferogram correctly captures the deformation field, which is shown on 

the top left side of the figure. The 18.7-day interferogram is affected by unwrapping errors 

in the bottom part of the image and, thus, part of the deformation field is incorrectly 

measured. The entire deformation area seems to have undergone a recession in the 26.6-

day interferogram, i.e. the deformation appears to be more moderate than that observed 

over 9.3 days. Finally, the deformation pattern is lost almost completely in the 38.5-day 

interferogram. Thus, assuming a constant deformation rate, in this case, the GB-SAR can 

be used in discontinuous mode with a revisiting time of approximately 9 days. 

Another interesting example of aliasing errors is shown in Figure 3.11, which concerns 

the Port of Algeciras (Spain). The blue line shows the change of the sea level observed in 

the GB-SAR LOS caused by tidal effects: the periodical sea level pattern, which in the 

LOS ranges from 23 to 30 cm, is followed correctly by the GB-SAR data. This was 

obtained with a temporal sampling of one image every 10 minutes, approximately. The 

pink line shows the time series of the same point, which however was derived with a 

reduced temporal sampling, with one image every 100 minutes. In this case the 

accumulated movement between consecutive images does not satisfy the basic condition of 

Equations 2.22 and 2.23, and the aliasing errors completely mask the main deformation 

signal: the deformation estimate is completely erroneous. Again this example shows the 

importance of properly choosing the right GB-SAR temporal sampling. 
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Figure 3.10: Deformation monitoring of the Formigal (Pyrenees, Spain) landslide. The 
accumulated deformation map is shown in the upper left part of the figure. Four unwrapped 
interferograms are shown, which correspond to the same deformation phenomenon, which is 
characterized by a constant deformation rate. The interferograms have different time intervals, 
which range from 9.3 days to 38.5 days. 

 

 

Figure 3.11: Example of aliasing errors from the Port of Algeciras (Spain). Deformation time 
series which corresponds to the change of the sea level caused by tidal effects. This was 
observed in the GB-SAR LOS using one image every 10 min (blue line). Time series of the 
same point observed with a reduced temporal sampling of one image every 100 min (pink line). 
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• ϕϕϕϕNoise component. The noise phase component can critically affect the phase 

unwrapping. This can be avoided by selecting points with low ϕNoise, e.g. by choosing high 

coherence thresholds. However, in some cases, we do not get enough points in the area of 

interest, and the pixel selection criteria must be relaxed, including noisier points. Figure 

3.12c and d show some examples of phase unwrapping errors, highlighted by red circles, 

which are probably due to ϕNoise. These errors can be identified in a relatively easy way 

because their phase differences with adjacent pixels are multiples of 2π. 

• Atmospheric component. The combined effect of low pixel density and strong 

atmospheric effects can produce aliasing errors. For this reason, isolated pixels have to be 

analysed with particular care. An example is shown in Figure 3.12a and b. This type of 

aliasing errors differs from the other previous two ones: it can even occur over very 

coherent and stable areas that are isolated from the rest of pixels, like the one shown in 

Figure 3.12b. 

 

 

 

Figure 3.12: Wrapped and unwrapped interferograms from the Montserrat (Barcelona) test 
site (a, b), and from an open pit mine (c, d). The red circle in (b) shows an aliasing error, 
which is caused by the combined effect of low pixel density and strong atmospheric effects. 
The red circles in (d) highlight examples of phase unwrapping errors, which are probably due 
to ϕNoise. 
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3.6. Direct phase integration 

In this step are estimated the interferometric phases in correspondence to each 

acquired image, starting from the set of unwrapped interferometric phases. This is done by 

assuming the phase values of the first image equal to zero. The results are N phases that 

contain the accumulated phase increment ϕi with respect to the first one, i.e.: 

oriAtmoiNoiseAtmoDefoGeomi )()(~ ϕϕϕϕϕϕ −+++=              (3.9) 

where ϕGeom is the phase term due to instrument repositioning errors between the first 

image acquisition and the ith acquisition, ϕDefo is the deformation phase component related 

to the deformation occurred between the 1st acquisition and the ith acquisition, ϕAtmo is the 

atmospheric phase contribution corresponding to the ith image, ϕNoise is the phase noise 

term of the ith image, and finally (ϕAtmo)ori is the atmospheric phase contribution of the 1st 

image. The phase estimation is performed for each selected point and for the N acquired 

images. In order to do so, the phase integration works point wise and in the “temporal 

dimension”. In the chain here described this estimation can be performed in two different 

ways: by direct integration or by using the so-called Interferogram to Image (int2ima) 

algorithm discussed in detail in Chapter 4.  

It is worth noting that the direct integration is the simplest way to reconstruct the N 

phases, which are obtained by integrating the N-1 interferograms formed by consecutive 

images. With such an integration the simplest network is needed, which requires the 

minimum set of interferograms to connect all the images. Figure 3.13 shows the difference 

between the network used in the direct integration and the redundant one required by the 

int2ima algorithm. The direct integration requires a lower computational effort but it does 

not allow checking the quality of the observations: it is a zero redundant system where 

error propagation, especially the one due to 2D-phase unwrapping errors, cannot be 

controlled. Despite this limitation, the direct integration is a useful tool, which can be 

used at least in not problematic cases, e.g. with good phase quality, smooth deformation 

evolution, etc.  
 

 

 

Figure 3.13: Comparison of the network of images and interferograms used in two integration 
approaches: the direct integration network and the int2ima network. The former one uses the 
simple network with a minimum configuration, while the latter one is a redundant network, 
which is useful to detect and correct for phase unwrapping errors. 
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3.6.1. Direct integration algorithm 

Let’s consider N-1 unwrapped interferograms, which form the “simple network” shown 

in Figure 3.13: 

      )()( 1−+++−+++=∆ iGeomNoiseAtmoDefoiGeomNoiseAtmoDefoi ϕϕϕϕϕϕϕϕϕ  (3.10) 

The algorithm involves the following steps: 

1. Selecting a reference point, usually located in a stable area. A set of points can be 

chosen instead of a single point. The selected point or points have to be part of the 

pixel set selected in the pixel selection step. 

2. Referencing all the N-1 interferograms to the reference point(s): 

   orireferefeioriii jijiji ),(),(),( ϕϕϕ ∆−∆=∆     (3.11) 

where ∆ϕi(irefe, jrefe)ori is the original phase of the reference point of the ith 

interferogram, and ∆ϕi(i, j)ori is the original phase of a given pixel (i, j). If a set of 

reference points is chosen, the last term of the equation is the mean phase computed 

over the reference points.  

3. Integrating the phases over time: 
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where the ϕi (i, j) is the accumulated phase of the image ith with respect to the first 

one, ϕ0. 

The final result of the direct integration is, for each selected pixel (i, j), the temporal 

evolution of the phase during the acquisition period. The integration is performed for each 

selected pixel. The unwrapping errors arising from the 2D phase unwrapping stage can be 

propagated along the whole estimated time series. This is an important drawback of using 

a simple network, which does not provide any redundant observation. In order to improve 

the results, a step detector can be added to the above algorithm, which basically exploits 

the fact that the unwrapping errors are multiples of 2π. This can be accomplished, for 

instance, by checking the phase differences between consecutive images: if it is greater 

than a given threshold, the “jump” is corrected by adding or subtracting the 

correspondent multiple of 2π: 
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where [·] indicates the integer part and ε is the given tolerance. To the author 

experience, the tolerance must be not higher than 0.6 radians. In some cases, bigger 

tolerance values could provide false corrections, which can hardly be detected later by a 

simple quality check. A simple step detector like the one from Equation 3.13 is sometimes 

sufficient to detect and correct for aliasing errors. However, as it is discussed extensively 

in Chapter 4, a more complex strategy is often needed to properly detect and correct the 

aliasing errors. 
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3.7. Estimation of the phase atmospheric component  

The atmospheric phase component is mainly caused by changes in the basic properties 

of the atmosphere that interferes with the GB-SAR signal during different image 

acquisitions, e.g. see Iannini et al. (2009), Luzi et al. (2004) and Noferini et al. (2005b). 

This component, which is often called Atmospheric Phase Screen (APS), mainly affects 

the sensor to target distance, i.e. it mainly varies with the distance from the GB-SAR, but 

can also affect in a different way targets in the cross-range direction. In general its effect is 

strongly correlated spatially, i.e. it varies smoothly in space. In this step of the procedure 

we estimate and remove the atmospheric component (ϕAtmo)i - (ϕAtmo)ori shown in Equation 

3.9. However, at the same time we may estimate other systematic effects that have similar 

spatial characteristics, like the ϕGeom phase term due to instrument repositioning errors. In 

order to simplify the notation, from now on we consider that the ϕAtmo term includes both 

the APS and the ϕGeom phase term. 

Several authors have studied the APS estimation for GB-SAR data, proposing 

different algorithms. In Noferini et al. (2005a) the APS is modelled as a quadratic function 

of the distance, and it is estimated by using just two Ground Control Points (GCPs). A 

similar approach is used by other authors by slightly changing the model, e.g. from 

quadratic to linear, or by varying the number of GCPS, e.g. see Pipia et al. (2006). These 

approaches are easy to implement and, considering that they do not require extra data, 

quite effective. However, in these methods, the APS estimation is performed on 

unwrapped data, which are assumed to be aliasing-free, and, more importantly, they are 

only modelling the APS changes as a function of the distance. From the author 

experience, this is not sufficient because, even though the APS is mainly a function of the 

distance, it can also affect in a different way the targets along the cross-range direction. 

Furthermore, if we want to include the errors due to the repositioning, we need to 

properly model these effects in the azimuth or cross-range direction. A different approach 

is presented in Iannini and Monti Guarnieri (2009). In this case, the authors propose a 

method based on in situ acquired meteorological data and an initial calibration of the 

humidity function. The method has one main advantage with respect to previous 

approaches: it is not affected by unwrapping errors, because the APS is estimated using 

the acquired meteorological data and it is directly removed from the wrapped 

interferogram. According to its authors this method shows good performances. However, it 

is less accurate than the method commented above and it is not reliable in situations 

where strong changes in the atmospheric parameters along the scene occur. 

3.7.1. APS estimation proposed algorithm  

In our procedure a least squares (LS) estimation method is proposed. Its main 

assumption is that the APS is strongly correlated spatially. Examples of APS smoothly 

varying in space are shown in the first column of Figure 3.14. The model used for the APS 

component is a 2D-polynomial of variable degree g: 
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where (i, j) are the pixel coordinates of a given pixel, φ is the phase that includes both 

APS and the ϕGeom phase term, ai are the polynomial parameters, (i0, j0) are the 

coordinates of the reference point. The observations to estimate the above model 
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parameters are pixels which are located in stable areas, which have to be known a priori. 

For such pixels ϕDefo can be assumed to be nought: 

j)) (i,   j) (i, j) (i, ( j) (i, noiseatmo ϕϕϕϕ ++= defo              (3.15) 

The proposed algorithm involves the following steps. 

1. Identification of stable areas using a priori available information. The ideal situation is 

provided by a scenario with stable areas entirely surrounding the movement area at 

hand.  

2. Estimation of the APS over the selected stable areas using Equation 3.14. The 

estimation is done by LS adjustment with outlier rejection. The estimated APS and 

ϕGeom phase term are given by:  
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where ãĩ are the estimated parameters, (i, j) are the image coordinates of the selected 

points and (i0, j0) are the pixel coordinates of the reference point. 

3. Finally, Equation 3.16 is used to estimate (predict) the APS and ϕGeom phase term over 

the non stable areas. This term is then subtracted from the original phases to obtain 

phases cleaned by APS and ϕGeom for the whole set of selected points.  

The main output of the APS estimation is a stack of N phases sorted out by time. 

Each pixel of the estimated phases contains the APS-free accumulated phase with respect 

to the first acquisition.  

Some examples of results of the procedure are shown in Figure 3.14, which concerns 

the monitoring of an open pit mine. The deformation area is highlighted by a red circle. 

The phase fringes in the first column are mainly caused by atmospheric artefacts. A slight 

azimuth term is visible in the second interferogram (a.2). The second column shows the 

wrapped interferograms, which are cleaned by the APS and ϕGeom phase term: the main 

phase fringes were globally removed. However, some residual fringes remain, which are 

mainly caused by local APS artefacts which are not modelled by our approach, e.g. see the 

red artefact on the bottom part of the movement area in b.5. Further research is needed 

to correctly model and remove such local APS effects.   

The quality of the estimated APS component depends on different factors: the 

distribution of the stable areas with respect to the area of interest, the phase quality over 

these areas, and the accuracy of the chosen model, which mainly depends on the 

complexity of the observed scene, and in particular on its topography. A scheme of the 

distribution of stable vs. area of interest is illustrated in Figure 3.15. The best 

configuration is given by the stable areas that completely surround the area of interest. 

When the optimal configuration cannot be used, particular care should be taken to predict 

the APS over the area of interest and to interpret the results. Figure 3.16 illustrates a case 

where, due to the particular topography of the area, the APS effects may be strongly 

correlated with the expected deformation phenomenon. The figure shows a deformation 

map derived from a pair of images with 2 months of time separation. The measured object 

of interest is a landslide affecting most of the urban area. Unfortunately, the 

unavailability of a stable area around the area of interest makes impossible to discriminate 

between deformation and APS. In this specific case and for the above reason it was not 

possible to obtain reliable deformation estimation. 
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Figure 3.14: Interferograms from the same area shown in Figure 3.9. Original wrapped 
interferograms (left), APS-cleaned wrapped interferograms (middle), and APS-cleaned 
unwrapped interferograms (right). 
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Figure 3.15: Distribution of stable areas with respect to the area of interest. The best 
configuration is where the stable area completely surrounds the area of interest (left). 

3.8. Displacement computation and geocoding 

The generation of the geocoded deformation maps and time series is discussed in this 

section. This step of the process is fundamental for GB-SAR data interpretation and 

exploitation. This operation involves a transformation from the image space, where each 

pixel is identified by its position in the image (column and line), to the object space, by 

assigning 2D map projection coordinates or geographic coordinates and height. This 

operation is also called 3D geocoding or geo-referencing. The outputs of this step are: 

- A 3D position vector on a given reference system, typically cartographic coordinates 

(E, N) plus orthometric heights (H) or geographic coordinates (φ, λ) plus an ellipsoidal 
height (h), is obtained for each processed pixel of the master SAR image. 

- The estimated deformation parameters, i.e. the time series and other parameters, like 

the accumulated deformation, etc., are obtained for each 3D location. 
 
 

 

Figure 3.16: Deformation map on the Papiol (Barcelona) site, characterized by a weak APS 
estimation: there are no stable areas properly distributed around the deformation area. This 
map may contain an APS contribution with a pattern that is strongly correlated with the 
potential deformation pattern:  it was not possible to separate the APS from the deformation. 
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A rigorous 3D geocoding requires knowledge of the corresponding sensor model, which 

describes how the image and object spaces are connected according to the geometric and 

physical properties of the sensor. In addition, it requires the determination of the sensor 

parameters that characterize the specific geometric and physical properties of the 

acquisition of the image. The sensor model used with GB-SAR data, which connects a 

given pixel to its corresponding geocoded point P, is given by: 
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where (e0, n0, z0) are the three coordinates of the centre of the GB-SAR in a given 

reference system of the object space, (E, N, Z) are the coordinates of the geocoded point P 

in the same reference system of (e0, n0, z0), r is the slant range distance, and θ is the 

azimuth of the geocoded point P. The first equation is named radar range equation, while 

the second one is the azimuth or cross-range equation. The GB-SAR 3D geocoding needs a 

third equation, which is given by the surface Z=S(E, N), which is based on an external 

DEM or DSM of the observed scene. The sensor parameters are given by the GB-SAR 

position (e0, n0, z0), and the azimuth of the antenna pointing direction θ0, which is 

described in the following section. 

3.8.1. Geocoding algorithm 

Before starting the 3D geocoding the interferometric phases coming from the previous 

processing steps are transformed in displacements or deformations. For each pixel and for 

each phase the following equation is used: 
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where ∆RLOSi is the accumulated displacement in the LOS of the i-th image, λ is the 

wavelength, ϕi is the i-th estimated phase and the factor 4 is due to the two way radar-

object-radar of the received signal.  

The next step is the 3D geocoding. In this procedure is used the so-called inverse 

geocoding, which computes the corresponding image coordinates starting from the object 

coordinates of a point on the observed surface provided by a DEM or DSM of the scene. 

Given a DEM or DSM Z=S(E, N) and the sensor parameters (e0, n0, z0) and θ0, the 

geocoding algorithm involves the following steps: 

1. For each P of the DEM or DSM compute r and θ by using the Equation 3.17. 

2. Finding the corresponding image coordinates: 
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where ∆R is the GB-SAR sampling step in range, columncentral is the central column of the 

GB-SAR image, ∆θ is the GB-SAR constant angular sampling step in cross-range.  
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By repeating the steps 1 and 2 for all the points of the DEM or DSM we get the object 

to image space transformation for the whole scene. To run the geocoding, which involves 

an image to object transformation, an interpolation is needed to find the object space 

coordinates corresponding to the centre of each image pixel. 

The DEM or DSM quality is fundamental to correctly geocode and interpret the data. 

It is recommended to use a DEM or a DSM, if available, instead a simple DTM. As 

described in Chapter 2, a DEM generated using a GB-SAR could be used. In this case the 

DEM should be generated from the same position of the GB-SAR used for the 

deformation measurements. Figure 3.17 shows an example of geocoded GB-SAR data 

acquired over the Nativity Façade of the Sagrada Familia (Barcelona). The data were 

geocoded using a DSM generated by TLS. In this example, the geocoded points are colour-

coded according to their height. The results indicate an adequate 3D positioning of the 

GB-SAR data on the building.  
 

 

 

Figure 3.17: Example of GB-SAR geocoding over the Nativity Façade of the Sagrada Familia 

(Barcelona) based on a DSM generated by TLS. TLS amplitude image (left). GB-SAR 

geocoded data, with colour-coded heights. DSM provided by “Laboratori de modelitzacio 

virtual de la ciutat” (LMVC-UPC)  
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3.9. Precision and accuracy of deformation measurements 

The precision and accuracy of any deformation measurement technique are key 

characteristics that influence its applicability and acceptability. This section describes a 

serie of experiments carried out to characterize the performances of the GB-SAR 

deformation measurement. The results shown in this section were obtained from data 

acquired by the IBIS-L GB-SAR system manufactured by IDS Ingegneria dei Sistemi SpA.  

Precision refers to the dispersion of the estimates of a given parameter. A typical 

measure of the dispersion is the variance. The precision of deformation estimates can be 

evaluated from the precision of the original observations (i.e. the interferometric phases), 

typically using variance propagation, or other numerical methods for error propagation. 

Section 3.9.1 discusses some aspects of the GB-SAR precision based on experimental 

results. Accuracy is the extent to which the mean of the population of the estimates 

approaches the true value of the parameter. It can be defined as the closeness to the true. 

The accuracy of a given estimate cannot be assessed by simple error propagation and 

requires a validation based on independent data characterized by higher quality. A 

validation experiment performed to assess the accuracy of the GB-SAR instrument is 

described in Section 3.9.2. Finally, reliability refers to the robustness of a given technique 

against not modelled errors in the observations (outliers, blunders, etc.). In GB-SAR, the 

most important type of not modelled error is given by the phase unwrapping errors, which 

despite the high precision of deformation measurements affect its reliability.  

An experiment devoted to measure the sensitivity to small displacements of the 

instrumentation used was carried out. The experiment employed the radar of the IBIS-L 

GB-SAR but in the Real Aperture Radar (RAR) mode. In this mode, the radar acquires 

data without using the rail and, thus, it has no imaging capability (this mode only 

provides 1D measurement), but it can measure with a high temporal sampling, which in 

the experiment was 100 Hz. The object of interest was the building shown in Figure 3.18.  

 

 

 

Figure 3.18: Scenario of the sensitivity experiment based on a Real Aperture Radar. 
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Besides the building, the scene includes a streetlight indicated by a blue circle in the 

same figure. Using the RAR a displacement time series over an observation period of 

several minutes was derived, which includes approximately 100 displacement estimates per 

second. Figure 3.19 shows a portion of the estimated deformation time series over three 

different points located on the building. These points, which are characterized by high 

SNR, basically show the same oscillation pattern. The blue one (Rbin77) is clearly noisier, 

because it has a slightly lower SNR than the other two ones. The most relevant result is 

that oscillations with amplitudes as small as 2-3 µm are observed. Figure 3.20 shows a 

time series of a point located on the streetlight. Despite its relatively low SNR, the time 

series show a periodical pattern of displacements: these are oscillations with amplitudes 

between 400-500 µm: this is clearly a different oscillation regime than the one shown in 

Figure 3.19. The results shown in Figures 3.19 and 3.20 are particularly interesting: very 

seldom in geomatics one can meet such displacement time series. Different analyses were 

performed to confirm these results, which are promising to measure the natural 

oscillations of buildings. Luzi et al. (2011) analyse this application, by assessing the 

potentialities of this technique for monitoring the health state of buildings. 

In the context of this dissertation, the above experiment demonstrates the high 

sensitivity of the IBIS-L sensor to very small displacements (up to a few micrometers). 

This is, in terms of sensitivity, an upper limit which concerns extremely short term 

interferometric measurements (where the time separation ∆t is 0.01 sec), a close range 

scenario (between 9 and 35 m, approximately) and targets characterized by high SNR. In 

addition, it concerns a RAR experiment: for this reasons, its results cannot be 

straightforwardly applied to the GB-SAR, as it is briefly explained in the next section. 

However, it surely indicates the great potential of RAR and GB-SAR to measure small 

displacements. 

 
 

 

Figure 3.19: Displacement time series obtained from 10 seconds of RAR measurements over 
three different points located on the building shown in Figure 3.18. These points have 
oscillations with amplitudes up to 3µm. 
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Figure 3.20: Displacement time series obtained from 10 seconds of RAR measurements of a 
target located on the streetlight (see blue circle in Figure 3.18). The measurement shows larger 
oscillations than those of the Figure 3.19, with amplitudes of about 0.3 mm.  

 

3.9.1. Analysis of the precision 

The precision of the GB-SAR interferometric phase, whose components are shown in 

Equation 3.1, is analysed in this section. In this context, the phase components ϕNoise and 

ϕAtmo are the most important from the point of view of error budget.  

The ϕNoise includes the sum of different components, like the internal noise of the 

system, the temporal decorrelation, the effects of image coregistration errors, etc. The 

most relevant components are mentioned below, without aiming at providing a 

comprehensive description of all possible error sources. An interesting study of the noise of 

a GB-SAR system was performed within Galahad, “Advanced Remote Monitoring 

Techniques for Glaciers, Avalanches and Landslides Hazard Mitigation”, a project of the 

6th Framework Programme, see www.galahad.eu. The study focused on the main error 

sources of the interferometric phase, which were classified in short-term, mid-term and 

long-term error sources. The magnitude of each type of error was assessed by using both 

theoretical considerations and experimental results. Table 3.1 summarizes the contribution 

of the short-term instrumental errors in the LOS displacements. These results were 

published in 2005 and refer to the Galahad Ku-band GB-SAR prototype. 

The IBIS-L GB-SAR instrument is surely better from the instrumental viewpoint than 

the Galahad prototype. Its performances in the RAR mode (with quasi-instantaneous 

measurements, ∆t = 0.01 sec) are described in the previous section, see Figures 3.19.and 

3.20 It is worth emphasising that even using comparable measurement conditions, 

especially close measurement distances of tens of metres and high SNR targets, the GB-

SAR performances in terms of displacement sensitivity are notably poorer than the RAR 

ones. On one hand, the GB-SAR has the advantage of using multiple RAR acquisitions of
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Total

0.0150

0.0265

0.0067

0.1700

0.2182

Thermal noise

Demodulator unbalancing I/Q

Stable Local Oscillator instability

Spurious 

Cause of short term error
Contribution to the interferometric 

measurement standard deviation (mm)

 

Table 3.1: Estimation of the contribution of the short-term instrumental errors in 

the LOS displacements of a GB-SAR system, from Galahad, D2-2 (2008). 

 

 

the same scene. In fact, the GB-SAR phase is the result of averaging hundreds of RAR 

acquisitions. On the other hand, these acquisitions are taken under slightly different 

atmospheric conditions affecting the sensitivity of the GB-SAR phase. 

An example of atmospheric effects on the RAR measurements is shown in Figure 3.19. 

The measurements are affected by a trend which accumulates 10 µm within the 10 

seconds period displayed. This is due to micro-changes in atmosphere in the 30 m distance 

between sensor and target. However, their effect is three times bigger than the amplitude 

of the observed oscillations. Figure 3.21 shows the displacement time series of Rbin78 

shown in Figure 3.19, but covering a time lapse of more than 4.5 minutes. In this case, the 

integrated global trend caused by atmospheric effects is of about 135 µm. It is worth 

noting that the trend is globally increasing over the observed period of time; over much 

longer periods the atmospheric effects result in zero-mean fluctuations. This is, if two 

consecutive GB-SAR acquisitions are taken in exactly the same conditions of the 4.5-min 

RAR data shown in Figure 3.21 (2 GB-SAR acquisitions lasting 2.25 minutes each) and if 

the sensor and the instrument are static over the 4.5 minutes period (over such periods 

the average building and GB-SAR oscillations are basically zero), zero displacements 

would be observed. Unfortunately, a displacement between the two acquisitions of about 

58 µm will be measured, which is the difference between the average displacements 

displayed in Figure 3.21 in the first and second half of the plot (38 vs. 96 µm, 

respectively). The atmospheric effects would cause an error of 58 µm in the GB-SAR 

deformation estimate. For this reason the GB-SAR sensitivity and precision are at least 

one order of magnitude worse than those of the RAR. 

The external components of ϕNoise have to be considered together with the internal 

noise of the instrument. The most important is temporal decorrelation, which has been 

extensively discussed in other sections of this dissertation. This particular component of 

ϕNoise is particularly insidious because it depends on the type of measured object. 

Furthermore, it is more critical in the discontinuous than in the continuous mode. 

Another source of error worth mentioning, which is strictly related to the data processing, 

is coherence loss. As already discussed, see Figure 3.2, errors in the image co-registration 

can cause a loss of coherence and hence an increase of ϕNoise. Considering the case of 

satellite images, Hanssen (2001) estimates a noise standard deviation related to the co-

registration of around 0.06 mm. Again, this error source is more important in the 

discontinuous mode. 
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Figure 3.21: Displacement time series of the bin Rbin 78 shown in Figure 3.21, covering a 
period of 4.5 minutes and measured with a RAR. 

 
 

The contribution of the ϕAtmo component is analysed by studying the dispersion of the 

displacement time series of points known to be stable. The results were obtained by 

analysing original GB-SAR data, without estimating and removing the atmospheric 

component. In order to highlight the contribution due to ϕAtmo, CRs of high quality (low 

ϕNoise) were used, considering different distances to the reference point (where ϕAtmo is zero 

by definition). Data were collected at two different sites with different environments (sea 

in the case of Algeciras and mountain in the Vallcebre test site), and working at different 

ranges from the radar: 2000 m and 600 m, respectively. The use of CRs allowed 

minimizing the effects of temporal decorrelation. Using CRs located at different distances 

from the reference point allowed to separate the errors related to ϕNoise from those related 

to atmosphere, which are mainly distance-dependent. 

The results from the Vallcebre test site are shown in Table 3.2. Four CRs, located at 

different distances from the reference point and at 600 m from the radar, are considered. 

The table shows that the standard deviation of the time series increases with the distance 

of the CR with respect to the reference. This result is clearly due to the atmospheric 

contribution. A standard deviation of 0.5 mm is reached at 65 m, which represents a 

relatively small distance if compared to typical application scenarios. Table 3.2 shows also 

the results from the second test site where two CRs were installed at a distance of less 

than 100 m from the reference point. The numbers obtained are similar to the previous 

ones. It is worth underlining that in this case the mean distance of the CRs to the radar is 

approximately 2000 m. 

An additional result is shown in Figure 3.22. The plot corresponds to both sites and 

shows the loss of precision as a function of distance to the reference point, which was 

computed over CRs and natural reflectors. The latter ones are reflectors which have small 

DA (less than 0.2). The standard deviation reached for both natural reflectors and CRs is 

of the same order of magnitude, which indicates that .atmosphere is the dominant 

component. Similar results are shown by the green dots (Algeciras measurements), even 

though in this case the CRs were located at about 2000 m from the radar. 
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Point name
Standard deviation 

[mm]

P1 0.2

P2 0.2

P3 0.3

P4 0.5
P1 0.5
P2 0.7

Vallcebre 

90.0
98.0

Algeciras

Distance to reference [m]

27.6

43.5

55.0

65.2

 

Table 3.2: Dispersion of displacement time series, which correspond to four CRs (P1-P4) 
located in stable areas of the Vallcebre test  and two located in the Algeciras site. The CRs 
are ranked according to their distance to the reference point. The dispersion is measured by 
the standard deviation of the displacements.  

 

 

Two main conclusions can be drawn from these results. Firstly, that at very short 

distances, below 20-30 m, where the APS effects are practically negligible, the time series 

dispersion over CRs has a standard deviation of 0.2-0.3 mm. Working with highly 

coherent natural reflectors should not suppose a significant increase of this number. 

Secondly, the precision decreases linearly with respect to the distance to the reference 

point: this is due to the APS effects. It is worth noting that all the results shown in this 

section refer to original GB-SAR data, without removing the atmospheric phase 

component. The decrease of the precision can be minimized by properly modelling and 

removing the APS. 

 

 

 

Figure 3.22: Dispersion of displacement time series plotted against the distance to the 
reference point. The plot displays data from the Vallcebre (Barcelona) test site, including CRs 
and natural reflectors, and from the Algeciras (Spain) test site.  
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3.9.2. Analysis of the accuracy: a validation experiment  

This section describes a validation experiment performed to characterize the Ku-band 

GB-SAR system IBIS-L. The validation test was based on the GB-SAR estimation of the 

displacements imposed to a CR, which were measured independently, with sub-millimetre 

precision, using a micrometer. In this experiment the sensor to target distance was 44 m 

and a series of 12 images was acquired. The CR was shifted between consecutive 

acquisitions while the GB-SAR remained stable. The micrometre indicated a maximum 

displacement of 12 mm. In this experiment image co-registration was not performed. The 

GB-SAR procedure described in this chapter was applied to obtain the displacement time 

series shown in Figure 3.23.  

The differences between the reference displacements, measured by the micrometer, and 

the estimated GB-SAR displacements are shown in Figure 3.23. The differences range 

from -270 to 100 µm; the mean difference is 90 µm with a standard deviation of 110 µm. 

This experiment is useful to show the sub-millimetre accuracy of close-range GB-SAR 

measurements. To correctly interpret these results it is worth recalling that they refer to a 

specific GB-SAR system: the results may be sensibly different for other systems. 

Furthermore, they were achieved using a CR: they apply to very good reflectors. The 

obtained numbers can not be extrapolated to natural reflectors.  
 
 

 

Figure 3.23: GB-SAR validation experiment using a CR and a micrometer. The plot shows the 
reference displacements, which were measured by using a micrometer (pink line), the 
displacements estimated by GB-SAR (blue line) and the difference between these 
measurements (green line), which represent the estimated displacement errors. 
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Chapter 4  

A 2+1D phase unwrapping algorithm 

 
 

This chapter presents an alternative method to the direct integration step described in 

Chapter 3. The method is designed to improve the robustness of the whole interferometric 

procedure by introducing independent controls on one of the main error sources, i.e. 2D 

phase unwrapping. It involves a two-stage procedure: a 2D phase unwrapping, which is 

followed by a 1D pixel wise unwrapping. The procedure, which is named 2+1D phase 

unwrapping, represents a new unwrapping algorithm, which works separately on the space 

and time domains.  

In the first part of this chapter the algorithm is fully described, step by step, and its 

behaviour is illustrated by using a set of simulated data. The second part of the chapter 

describes a real case study, where the relative displacements of a dike were monitored. 

This part describes the obtained results and the problems that have arisen during one 

month of continuous monitoring. Finally, in the last part of the chapter, a comparison 

between the direct integration and the 2+1D phase unwrapping algorithm is performed by 

using a subset of the dike monitoring dataset. The comparison demonstrates the 

improvements offered by the proposed phase unwrapping algorithm. 

4.1. Interferogram to image transformation: 2+1D phase 
unwrapping 

This section describes an unwrapping method developed by IG in collaboration with 

the Department of Earth Sciences of the University of Milan. In this development the 

author was deeply involved. The complete procedure involves two main stages. The first 

part includes a 2D phase unwrapping. Then the estimation, for each pixel, of the phase 

value of each SAR image (unknown parameters), is performed starting from the stack of 

M unwrapped differential interferometric phases (observations). The main goal of the 

phase estimation is detecting and, if possible, correcting the errors generated in the 2D 

phase unwrapping stage. This operation, which makes use of an iterative procedure based 

on the Single Value Decomposition (SVD) least squares (LS) method (Golub and Van 

Loan, 1989; Strang, 1998), fully exploits the integer nature of the unwrapping errors. In 

the case that the errors can not be corrected, they are rejected from the original set of 

observations. The second part of the proposed procedure makes a kind of 1D phase 

unwrapping, which is called interferogram to image transformation (int2ima): it performs, 

pixel by pixel, the unwrapping along the time. As said above, since this operation follows 

a 2D phase unwrapping, the whole procedure is named “2+1D phase unwrapping”. 

The main input of the complete procedure is a set of M wrapped interferogram 

network built from a set of N phase images, with ideally M >> N. The algorithm here 
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described starts once the M wrapped interferograms are 2D-unwrapped and the 

unwrapped interferograms are referred to a common reference point using Equation 3.11. 

It is worth noting that the proposed strategy is not dependent on the used 2D phase 

unwrapping algorithm. The proposed 2+1D phase unwrapping is fully compatible with the 

GB-SAR deformation estimation procedure described in Chapter 3, see Figure 4.1. 

4.1.1. 1D phase unwrapping strategy 

The proposed phase unwrapping strategy involves a pixel wise procedure based on the 

following observation equation: 

     πϕϕϕϕϕϕϕ kNoiseMAtmoSAtmoDefoMSMS 2__ ++−+=−=∆  (4.1)  

where ∆ϕMS is the 2D unwrapped interferometric phase, S and M are the slave and master 

images, respectively, ϕDefo is the phase component due to deformation, ϕAtmo is the term 

due to atmospheric effects, k is an integer number and ϕNoise is the phase noise.  In the 

above model the observation is given by the interferometric phase ∆ϕMS, while the 

unknowns are the master and slave image phases, ϕM and ϕS. The final estimated phases 

are described by: 
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 (4.2)  

where i = 1, …, N-1. Note that we estimate, for each image, the sum of the two phase 

terms, and not the single terms separately. For each pixel we write M equations, where M 

is the total number of unwrapped interferograms, and N-1 unknowns, where N is the 

number of images. The phase estimation is made by assuming the phase values of the first 

image ϕ0 equal to zero.  

There are two key parameters that drive the entire procedure. The first one is given by 

the so-called residuals res associated with the observations, which represents the difference 

between the original interferometric phase ∆ϕMS, i.e. the input observation, and the a 

posteriori estimated observation: 

          )~~( SMMSres ϕϕϕ −−∆=  (4.3)  

The second parameter is given by the redundancy of the network of interferograms 

and images. For each image, it is important to consider the number of interferograms that 

are directly tied to it, i.e. the number of interferograms where the given image appears 

either as master or slave. The estimation procedure is iterative. We consider the 

observations whose residuals are bigger than a given threshold at each iteration, and 

opportunely treat them in order to improve the phase estimation. The algorithm consists 

of the following main steps, see also Figure 4.2: 

1. Performing the first phase estimation, by means of SVD LS, and computing the 

corresponding residuals. 

2. Identifying the residuals that are above a fixed threshold, selecting the residual that 

has the bigger absolute value. The observation associated with this residual is called 

“outlier candidate”. 

3. Temporally removing the outlier candidate from the network, and performing a new 

LS estimation. 
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Figure 4.1: Flow chart diagram of the whole GB-SAR deformation estimation procedure, 
which includes the 2+1D phase unwrapping (highlighted by the red box). 
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Figure 4.2: Flow chart of the proposed 1D phase unwrapping algorithm. 

 

 

4. Checking the residual of the outlier candidate. If it is a multiple of 2π (within a given 

tolerance), the observation is corrected and reaccepted. In this way it is possible to 

correct for the unwrapping errors. Otherwise, the decision of re-entering or rejecting 

the outlier candidate is based on the comparison of its old and new residuals.  

5. Performing new phase estimation, computing the residuals, and restarting the 

procedure from step (2). The procedure is executed iteratively from (2) to (5) until 

there are no remaining outlier candidates, i.e. there is no residual above the given 

threshold. In addition to the outlier candidates, the correction of the unwrapping-

related errors is extended to all residuals that, within a given tolerance, are multiple of 

2π.   

As commented above, the available redundancy is a critical parameter of the 

procedure, which directly influences the correction, rejection or re-acceptation of outlier 

candidates. It is also worth noting that the elimination of an observation (interferometric 

phase) characterized by a low redundancy could result in a weak network. In order to 

avoid this, the algorithm checks the available network of images and interferograms at 

every iteration, and, in case of insufficient redundancy, a residual above the given 

threshold is not considered as an outlier candidate, i.e. it is left untouched by the 

algorithm. If this occurs, the corresponding parts of the network have to be checked off-

line, after concluding the automatic analysis. That is, the automatic 1D phase unwrapping 

only works over the redundant parts of the analysed network. The main output of the 

procedure is the phase time series per each analysed pixel. Furthermore, the algorithm 

provides the standard deviation of each estimated phase, the residuals of the final least 

squares estimation, and the final local redundancy of each observation. All these outputs 

are needed to assess the quality of the estimates. 
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Finally it is interesting to note that the proposed model is similar to the one of 

geometric or “spirit” levelling, e.g. see Heiskanen and Moritz (1967). In a levelling network 

we estimate, by least squares, the point heights starting from levelling in a way which is 

similar to estimating image phases starting from interferograms. However, there are some 

important differences, which require implementing rather different estimation procedures. 

The most important one is that in a levelling network the outliers typically represent low 

percentages, e.g. below 1-2%, of the whole number of observations. This requires relatively 

simple procedures to detect outliers. By contrast, in our procedure we may experience 

much higher percentages of outliers, e.g. above 20-30% if they are evenly distributed in 

the network. This percentage of unwrapping-related error may vary as a function of 

different factors, like the noise, the selected point density, deformation rates, etc. A direct 

consequence of the high outlier percentages is that we have to devote particular care in 

checking the redundancy of the analysed network. Despite these difficulties, in our 

procedure we can exploit a specific property, which does not hold in the levelling case: the 

outliers are multiples of 2π.  

4.1.2. Behaviour of 1D phase unwrapping using simulated data 

In order to illustrate the performance of the procedure, we describe below the results of 

a test performed using simulated data. The simulated data set was based on satellite data; 

however, the example should be valid also for GB-SAR data. Later in this chapter is 

discussed an example of application of the algorithm based on real GB-SAR data. For the 

simulation, we used the following simplified model for the interferometric phases: 

           
Noise

ij

Atmo

ij

Defo

ijk ϕϕϕϕ ++=∆  (4.4)  

where ∆ϕij
Defo, ∆ϕij

Atmo and ∆ϕij
Noise are the phase components due to deformation, 

atmospheric effects and noise, respectively; k=1,…,M indicates the interferogram number 

and i and j=1,…,N indicate the image number. We simulated a network of 35 images and 

150 interferograms, designing a locally heterogeneous redundancy, see Figure 4.3. The 

minimum redundancy of the network is 3, i.e. each image has at least 3 associated 

interferograms. A subset of interferograms was contaminated by unwrapping errors 

distributed randomly: 

          πϕϕϕϕ kNoise

ij

Atmo

ij

Defo

ijk 2+++=∆  (4.5)  

In this case k varied between -3 and 3, and the unwrapping errors affected 20% of the 

total number of interferograms, i.e. 30 outliers were introduced in the network. It must be 

underlined that the assumption of the random behaviour of the unwrapping errors is an 

optimistic assumption, which makes easier the detection and correction. In some cases, the 

unwrapping errors are related to a particular image or a set of images clustered on time 

and which are affected by temporal noise effects. Even so, the simulated network was 

considered appropriately for checking and illustrating the algorithm. The main input 

parameters of the procedure were:  

- The outlier rejection threshold was set to 3 rad: if the absolute value of the residual 

was bigger than 3 then the observation was considered an outlier candidate. 

- The minimum accepted redundancy after outlier rejection was 3, i.e. if an image had 

less than 3 images after outlier rejection then the algorithm did nothing with this 

image. 
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Figure 4.3: Redundancy of simulated interferogram network. This figure shows the number of 
interferograms (incidence value) connected to each image. Incidence values ≤  4, which 
represent the weakest part of the network, are shown in red, values between 4 and 8 are in 
blue, and above 8 in green. 

 

 

- The tolerance ε for correcting an observation was set to 0.3 rad. 

- The reaccepting threshold was set to 1.5 rad, i.e. if the residual of the observation i 

was smaller the 1.5 after the outlier rejection then it was re-accepted. 

Figure 4.4 illustrates the results of the outlier correction and rejection procedure, 

showing the initial interferogram network and its changes until the last iteration, which in 

this case is the 13th one. In the first plot are shown, in blue, the outliers introduced in the 

network, while in the following plots are shown the results of three iterations, highlighting 

the current candidate outliers (in red, for the 1st and 6th iterations), the eliminated outliers 

(purple) and the corrected outliers (green). In the last iteration all outliers are corrected 

with the exception of two of them, which are highlighted in blue. The two missing 

corrections are due to the low redundancy of the corresponding observations, see Figure 

4.3: for those observations the algorithm did not perform outlier correction or rejection 

because not enough information was available locally in the network. 

The outlier correction and rejection procedure has a direct impact on the observation 

residuals at the different iterations, see Figure 4.5. In the first plot, which corresponds to 

the first iteration, most of the residuals have relatively high values, which are caused by 

the presence of unwrapping errors (simulated outliers, shown in blue). In the other plots 

one may appreciate the evolution of the residuals. For instance, one may observe that 

between the 6th and 7th iterations the candidate outlier, shown in red, is removed (empty 

circle). In the last iteration the observations that were re-entered are shown in yellow. 

Most probably these are originally bad residuals due to outliers in “neighbouring 

observation”, which decrease during the correction and rejection procedure. In the last 

iteration most of the residuals are small, with the exception of two of them, in blue, which 

are not corrected due to the low redundancy of the corresponding observations. Apart 

from these two observations, for which the network does not provide enough information, 

the rest of the network is free of outliers.  
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Figure 4.4: Evolution of interferogram network through the outlier correction and rejection 
process, using simulated data. The blue lines indicate the interferograms corrupted by 
unwrapping errors, the red lines indicate the outlier candidate (only for the 1st and 6th 
iterations), the green lines show the interferograms corrected during the processing, and finally 
the purple lines show the rejected outliers. Two outliers remain in the network at the end of 
the process. 

 

 

The two remaining high residuals have to be checked manually after the automatic 

procedure, because they have a direct impact on the final estimation of image phases. 

Figure 4.6 (above) shows an example of phase time series, while in the same figure (below) 

are shown the standard deviations of the residuals of all interferograms related to a given 

image. One may observe that images 1 and 24 (in blue), which are related to the two 

remaining observations affected by outliers, are characterized by high standard deviations. 

Note that in the same figure the standard deviation of images 4 and 9 is equal to zero 

because the standard deviations of all images with less than two interferograms are 

automatically set to zero. 
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Figure 4.5: Evolution of residuals through the outlier correction and rejection process based on 
simulated data. The four plots correspond to the 1st, 6th, 7th and last iterations. The blue 
points indicate the observations with unwrapping errors (simulated outliers), the red points 
the outlier candidates, the green points the corrected outliers and the white points indicate the 
temporally removed outliers. Note that in the last iteration the white points are the definitely 
removed outliers, while the yellow points are for outliers removed in previous iterations but 
finally corrected and re-entered. One may notice a global decrease of residuals until the last 
one, where most of the residuals are close to zero with the exception of two of them due to low 
network redundancy. 
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Figure 4.6: Estimated phase time series using the simulated data (above), and associated 
standard deviations. The images 1 and 24, which have high standard deviations, are 
directly tied to the two uncorrected interferograms affected by simulated outliers. 

4.2. A real case study: the dike of Algeciras 

This section describes in detail the main results of a GB-SAR monitoring campaign 

carried out in the Algeciras harbour (South Spain). This real case study is used in this 

chapter to emphasize one of the main limitations that can be experienced by applying the 

standard approach described in Chapter 3: the appearance of some unwrapping errors on 

the time series, which requires a time consuming, one by one, time series analysis. As it is 

shown later, this kind of analysis limits the potentials of the technique because it can be 

only performed for a relatively small set of points. This limitation is partially solved by 

the proposed 2+1D phase unwrapping. Later in this chapter, an entire sub-section is 

devoted to the comparison between direct integration and 2+1D unwrapping. 

The Algeciras campaign was planned to measure the relative displacements of the 

different portions of a dike located approximately 500 m off the coast, see Figure 4.7. The 

site distribution presented a challenge from the viewpoint of GB-SAR monitoring: the 

geometry of the scene required finding an optimal viewpoint for the GB-SAR in order to 

get the best compromise between dike coverage and displacement sensitivity. The selected 

viewpoint was the highest point of the Algeciras harbour: the roof of the 60-m height 

control tower. Although it was quite far from the area of interest, about 2 km, there were 

no other suitable points of view.  In Figure 4.7 the blue rectangle shows approximately the 

measured area, and the red one highlights the dike.  
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Figure 4.7: Port of Algeciras (South Spain) test site. The green circle indicates the position of 
the control tower, where was located the GB-SAR. The blue rectangle shows the measured 
area and the red one the object of interest: a dike. The location of 10 CRs is indicated by 
black dots; the one bounded by a green ellipse is the reference CR. 

 

 

The used system was the Ku-band IBIS-L system available at the IG. No information 

about the expected deformations was known a priori. The system was configured in order 

to acquire one image every 10 minutes. This was the maximum temporal sampling rate for 

the selected acquisition parameters, see Table 4.1. The duration of the campaign was 34 

days. During this time the system did not acquire over about 24 hours due to a software 

error. The total amount of acquired images was 4974. 

In order to ensure getting good measurements over at least a set of selected points, 10 

CRs were installed over the dike. The CRs were distributed approximately uniformly 

along the measured part of the dike. The CRs used in this test case are shown in Figure 

2.7. One of them was used as a reference point, i.e. all the displacements measured with 

GB-SAR refer to it. The maximum distance between the reference and the CRs is 450 m. 

In term of range distance to the GB-SAR, all the CRs are included in a range crown of 

about 100 m. 

 

 

  Range resolution      [m] 0.5
  Azimuth resolution  [rad] 0.004
Acquisition interval   [min] 10
  Maximum range       [m] 2500  

Table 4.1: Port of Algeciras (South Spain) test site: GB-SAR acquisition parameters. 
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4.2.1. Data processing 

In order to simplify the computational cost and the analysis effort, the data analysis 

was focused on the dike, neglecting the rest of the scene. The images were processed 

considering two separated periods, before and after the above mentioned software error: 

this made the analysis of the whole period easier, avoiding possible problems during the 24 

hours of lack of data. It was assumed that nothing happened in the dike during the 24-h 

period. The number of processed images per each period was around 2400 images. 

In a first stage, the procedure described in Chapter 3 was applied for each period. 

However, image co-registration and APS estimation were not performed. The APS effects 

were considered, at least in a first approximation, negligible due to the relatively small 

size of area of interest. The used pixel selection criterion was the DA. Figure 4.8 shows the 

MA, the DA and the final set of points, which were selected with a DA threshold of 0.3. 

The MA and DA were calculated using a subset of 300 images distributed along the whole 

period. The CRs are easy to identify on the MA image; the horizontal white lines of this 

image are due to the strong response of the CRs and the associated side lobes. The grey 

circle in the MA image shows the reference CR. One may observe the parabolic geometry 

of the dike, which is due to the polar acquisition geometry of the GB-SAR, see also Figure 

2.3 in Chapter 2, which displays the MA image of the whole scene. 

A DSM of the dike was not available. For this reason the geocoding was performed by 

assuming a flat area, with constant height equal to zero. This made more difficult the 

interpretation of the results. 

 

 

 

Figure 4.8: Port of Algeciras (South Spain) mean amplitude and DA: mean amplitude MA 
image (a), amplitude dispersion, DA (b) and final set of selected points, shown in white 
(c). The grey circle in the first image shows the reference CR.  
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4.2.2. Analysis of the results 

The main goal of the measurements was to estimate the relative displacements within 

the dike. A preliminary analysis was focused on the CRs because they ensure a low noise 

level, minimizing the probability of aliasing. Figure 4.9 shows the CR distribution, while 

Figure 4.10 shows the estimated deformation time series for each CR. These time series 

clearly indicate that no relative displacements occurred in the observed period between 

the CRs and the reference CR.  

During the phase unwrapping stage of these data some unwrapping errors occurred, 

which were manually detected and corrected. In this case the unwrapping errors were easy 

to identify because the points are stable and the observed phase jumps in the time series 

correspond to multiple values of 2π. A possible cause of these aliasing errors can be the 

wind, which affected the measurements in different moments of the observed period, 

making them noisy. Figure 4.9 shows, for each CR, the standard deviation of the 

deformation time series. Considering that all CRs are stable during the observed period, 

the standard deviation of the time series directly measures the dispersion of the 

displacement estimates over time. One may observe that the bigger the distance to the 

reference CR (P6) the higher is the standard deviation of the time series. This result, 

which was already analysed in Chapter 3, see Figure 3.22, is basically due to the 

atmospheric effects. It is worth recalling that for these data the APS estimation was not 

performed. All the standard deviations are below 1.6 mm.  

In order to confirm the results obtained using the CRs, the analysis was extended to 

the rest of coherent points of the dike. The total number of measured coherent points is 

286, see their distribution in Figure 4.8c. Again, the analysis was constrained by the 

existence of some phase unwrapping errors which compelled to the selection of a subset of 

42 points whose time series were analysed one by one. The analysis confirmed the results 

obtained with the CRs: the dike suffered no differential movements during the measured 

period. 

 

 

 

Figure 4.9: CR distribution and standard deviation of the displacement time series, which is 
displayed using red circles with diameter proportional to the standard deviation value. 
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Figure 4.10: Temporal evolution of the CR during the 34 days. The deformation axis (Y-axis) 

ranges between -20 and 20 mm. 
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In addition, the analysis highlighted some points showing a strong pattern in the 

deformation time series: these points have 12-h periodical variations, which a further 

investigation proved to be strongly correlated with the tide effects. Figure 4.11 shows the 

obtained result over few of these points distributed along the dike by using the direct 

integration (above) and after time series analysis and correction (below). There are 

significant differences between these results. Looking at the results of the direct 

integration, a possible interpretation could be that these points are structures of the dike, 

e.g. defences or upstairs, which are all affected by the tide, having however different 

displacements. However, by analysing point by point independently, it was possible to 

detect some unwrapping errors and correct for them. It is worth mentioning that a priori 

the identification of these errors was not a trivial task. The interpretation of the corrected 

results differs substantially from the above interpretation: for all points the GB-SAR was 

basically observing the same phenomenon, i.e. the change of the sea level. To understand 

this, it is necessary to understand the specific geometry of the scene: some areas of the 

dike form a perfect dihedral with the sea surface, providing a highly coherent response 

along time, see Figure 4.12. Let’s assume that the sea level decreases by h: the GB-SAR to 

target distance increases by δ, i.e. from d to d'=d+δ. Assuming that between two 

consecutive GB-SAR acquisitions δ ≤ (λ/4), being λ the wavelength, δ can be directly 

estimated from the unwrapped interferometric between consecutive phase images. 

Provided that h is negligible, if it compared with the GB-SAR height (60 m), then we can 

get an approximate value α=tan-1(60/2239) and, as a consequence, the GB-SAR-based 

estimate of the level change h = δ /sen(α).  

  

 

Figure 4.11: GB-SAR time series with a periodical pattern, which is caused by sea level 
changes due to tide effects. Original time series obtained by direct integration (above) and 
time series after manual correction of the unwrapping errors (below). 
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Figure 4.12: GB-SAR measurement of sea level changes due to tide effects: acquisition 
geometry. The green structure represents the dike and the black tower indicates the GB-SAR 
position. The dotted blue line represents the sea level at a given time T1 and the blue thick 
line the level at the time T2. The sea surface and the dike form a dihedral. 

 

A nice validation of these results was made by comparing them with independent 

measurements of the sea level change, coming from the tide gauge of the Algeciras bay 

and provided by Puertos del Estado (www.puertos.es). The validation result for one point 

is shown in Figure 4.13: there is a good correspondence between the GB-SAR estimated of 

the sea level and the validation data. Note that although the data is represented as a 

continuous data the real measurements are discrete measurements. The GB-SAR result is 

sampled every ten minutes while the validation data is sampled every hour: some of the 

observed differences can be due to it. 

It is worth noting that the above results were obtained by manual correction of the 

unwrapping errors. This manual process, which is slow and cumbersome, was feasible 

because it was limited to a small set of points. Next section addresses specifically the 

automatic capability of the proposed 2+1D phase unwrapping. It shows the efficiency of 

this phase unwrapping to automatically detect and correct unwrapping errors for all the 

measured points. 

 

 

Figure 4.13: Validation of the sea level changes measured by GB-SAR. Validation data 
obtained by the tide gauge of the Algeciras bay and provided by Puertos del Estado, 
www.puertos.es (pink line), and GB-SAR sea level estimates (blue line). There is a good 
correspondence between the two types of data.  
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4.2.3. Direct integration and 2+1D unwrapping comparison 

In this section a subset of the Algeciras dataset is used to evaluate the behaviour of 

the 2+1D phase unwrapping algorithm with real data. The subset, which contains 308 

images covering two days of monitoring, were selected by including a period characterized 

by aliasing problems, detected during the manual analysis. The reason of using only two 

days was that the algorithm is currently not optimized for processing big amounts of data. 

Future works will be devoted to improve the computing efficiency aspects.  

The interferogram network was designed to ensure a minimum starting redundancy of 

5 interferogram for every image. The total number of generated interferograms was 1525, 

which were 2D unwrapped, and then the int2ima step was performed. The number of 

unknowns (images) was 308; the minimum redundancy after outlier rejection was 3 and 

finally the outlier rejection threshold was 3. 

The total number of analysed points was 228. The total processing time was 155 

minutes. However, the time can not be generalized because the time of processing is 

strongly dependent on data quality. The mean number of outlier candidates per point was 

10, less than 1% of the observations, and the maximum number was 57, i.e. 4% of the 

observations. The mean number of unwrapping errors detected and corrected for each 

point was 3, i.e. about 30% of the outlier candidates. If we look at the global process, a set 

of 4649 outliers were detected and 582 of them were corrected. The rest of the outlier 

candidates were detected as false outliers and then reaccepted in the network, or simply 

rejected without correction, due to a weak local redundancy of the network. These 

numbers give an idea of the importance of applying automatic algorithms. 

Figures 4.14 and 4.15 show some examples of int2ima results (green) and compare 

them with those of the direct integration (blue). Figure 4.14 shows some examples based 

on stable points. There are two aliasing errors in the direct integration time series. Even 

though they seem to be evident, it is worth observing that a simple step detector would 

hardly be capable of correcting them because the phase noise hides the “2π jump” between 

consecutive images. By contrast, the int2ima solution properly detects and corrects for the 

two aliasing errors. Figure 4.15 shows some more complex examples. The first plot 

concerns a stable point: the result of the direct integration shows several aliasing errors in 

the last period of the measurements. By contrast, the int2ima properly detected and 

corrected the aliasing errors, correctly evidencing the stability of the point. The main 

cause of these aliasing errors could be the phase noise, which seems higher in the last part 

of the measured period. The second plot shows one example with a strong periodical 

pattern, due to sea level changes. Again, in this case the solution from the direct 

integration is affected by different aliasing errors, which are properly corrected by the 

int2ima algorithm. Finally, the last plot shows a more difficult example, where the direct 

integration solution shows a strong displacement variation. Over the same point, the 

int2ima found 20 outliers candidates, correcting 12 of them: the final result, which shows a 

stable point, completely differs from the other solution. 

The results shown in Figures 4.14 and 4.15 can be considered, intuitively, positive 

examples. This, however, is based on the interpretation of the results. Using the 

information available from the int2ima, it is possible to derive a kind of quality index, 

which describes, in an automatic way, the quality of the phase unwrapping estimates. 

Without going into details, this interesting feature of int2ima, which is based on the 

analysis of the residuals, is briefly discussed below. Once the corrections are applied, if all 

observations are consistent the residuals are expected to be zero or close to zero. In Figure 
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4.16 are shown the time series and the residuals of the first and last iteration of a given 

pixel. One may observe five short periods with high residuals in the first iteration (blue 

dots). If we look at the green circle, we observe that the residuals of the last iteration 

(green dots) are zero: all the aliasing errors were properly detected and corrected. Looking 

at the blue circles, we find examples where the residuals of the last iteration are not zero, 

but the corresponding results seem to be not critically affected. In these cases the 

algorithm did not act because most of the residuals are below the outlier threshold of 3 

rad, but the redundancy is high enough to get a good estimate of the phase value. Finally, 

let’s consider the period marked by the red circle, where the int2ima provides the same 

solution of the direct integration, i.e. it does not make any correction. In this case most of 

the observations are outliers candidates, which are uniformly distributed between -3 and 

+3 rad. This is a clear example of high concentration of unwrapping errors in the same 

part of the network. In such cases the algorithm cannot correctly detect the unwrapping 

errors. The positive aspect is that, by properly analysing the residuals, it is in principle 

possible to identify the concentration of high residuals in the same portion of the network, 

and thus alerting, through a quality index, of the poor quality of the given estimate. This 

is a remarkable advantage of the algorithm, not fully exploited so far, which has a positive 

impact on the interpretation and exploitation of the results. 

 

 

Figure 4.14: Comparison between the int2ima (green time series) and the direct integration 
results (blue time series). The time series come from stable points. 
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Figure 4.15: Deformation time series: comparison between the solution from int2ima and the 
direct integration. 



 

DEFORMATION MEASUREMENT WITH GBSAR INTERFEROMETRY                        83 

 

 

 
 

Figure 4.16: Int2ima residual analysis: Deformation time series from int2ima and the direct 
integration (above). In the plot below, observation residuals at the first iteration (in blue) and 
the last iteration (in green) for a given pixel.  
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Chapter 5 

Non-interferometric GB-SAR for 

deformation measurement 

This chapter presents a procedure for deformation monitoring, which uses a non-

interferometric approach based on GB-SAR data. This approach is completely different 

from and complementary to the one described in Chapter 3. In fact, it does not exploit the 

information contained in the interferometric phase; rather, it exploits the geometric 

information of the GB-SAR amplitude images. This is achieved by using an image 

matching technique performed on the amplitude images acquired over the same scene in 

different times, and by adopting targets optimised to image matching purposes.   

The chapter is organized in five main sections. The first one introduces the 

methodology, comparing it with the interferometric approach. In the second section the 

complete procedure is described, while in the third one are discussed two important topics: 

the characterization of the exploitable targets and the achievable precision. Section 5.4 is 

devoted to the description of some validation experiments performed in different 

environments, and finally the last section describes the results obtained in a real landslide 

case. 

5.1. Introduction 

In the previous chapters is described the use of GB-SAR interferometry to measure 

and monitor deformations. Two data acquisition modes are considered: the continuous and 

the discontinuous modes. The first one is usually adequate for monitoring crisis episodes, 

while the latter one is more appropriate to monitor slow or very slow displacement 

phenomena. This chapter is focused on a discontinuous approach, where the instrument is 

used to revisit the same site over time, similarly to what happens with satellite 

acquisitions.  

As already commented earlier in this dissertation, the SAR interferometric technique 

requires two fundamental components. Firstly, it needs a coherent GB-SAR sensor, which 

measures both the phase and amplitude of the radar backscattered signal. Secondly, it 

needs repeated SAR acquisitions of the same scene over time, starting, at least, from two 

acquisitions. The eventual displacements of the observed scene occurred between two SAR 

acquisitions separated in time are derived by computing and analysing the interferometric 

phase. The major advantage of this approach is its high sensitivity to small displacements, 

which can be measured with a precision that is a fraction of the used SAR wavelength. 

Considering that the majority of the available GB-SAR systems work with wavelengths in 

the region of 1-5 cm, this implies, for good targets, millimetre or even sub-millimetre 

displacement precision. The main limitations of this approach are discussed below. 
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The conditio sine qua non for using SAR interferometry is that a sufficient number of 

targets remain coherent over the observation period, which can range from weeks to 

several months or years, especially for very slow deformation phenomena. The loss of 

coherence that SAR data may experience over time can be particularly severe over 

vegetated and forested areas, and over scenes that change continuously over time 

modifying their radar responses. A second critical limitation is aliasing. Due to the 

ambiguous nature of interferometric phase measurements, the displacement undergone by 

a given scene can only be correctly, say unambiguously, estimated if the relative 

displacements actually occurring between adjacent coherent targets cause an 

interferometric phase difference up to half phase cycle. In terms of displacements this 

condition imposes a very restrictive limit that ranges from about 4.5 mm up to about 15 

mm respectively at Ku- and C-band. From the operational viewpoint, the risk of deriving 

ambiguous displacement estimates represents a very severe limitation of the technique.  

A third limitation is related to atmospheric component of the interferometric phase, 

which is caused by heterogeneities of atmospheric parameters, at the time of SAR image 

acquisitions, during the propagation from the sensor to the target. The atmospheric effect 

may degrade the quality of the displacement estimation. In the worst cases, when strong 

atmospheric components are associated with spatially sparse coherent targets, it may even 

affect the phase unwrapping stage. The last main limitation is due to the mono-

dimensional nature of the GB-SAR interferometric measurements, which returns 

displacements only along the LOS direction of the radar: out of the three possible 

components of a generic 3D displacement, GB-SAR interferometry can only provide this 

component of displacement, the LOS component.  

The proposed non-interferometric procedure provides remarkable improvements with 

respect to all four above described limitations, as detailed in the next section. 

5.2. Description of the procedure 

The procedure takes full advantage of the GB-SAR imagery by jointly using two key 

components. An image matching technique is performed on the amplitude GB-SAR 

images, and special targets are employed, which are optimal for image matching purposes. 

A way to get good targets is by using artificial Corner Reflectors (CRs). However, this is 

in principle not strictly necessary, provided that a sufficient number of natural targets are 

already available to sample the phenomenon of interest. Keeping in mind that the natural 

reflectors can always complement the measurements based on CRs, in the following we 

assume that CRs are used.  

Figure 5.1 illustrates the main concept of the procedure: two images of the same place 

are collected at different times (master and slave), then a common point is identified in 

both images (P and P’) and finally, looking at subpixel level, the displacement vector (Sx, 

Sy) occurred during the measured period is estimated. 

The core of the procedure is three-fold: (i) employing a GB-SAR in a discontinuous 

mode; (ii) using image matching procedures; and (iii) deploying CRs. It is worth 

emphasising that these three core components are, per se, well known and established 

techniques. The procedure consists on using them jointly and in an optimized way for 

displacement monitoring purposes, achieving interesting performances, as it is discussed 

later in this chapter. 
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Figure 5.1: The key concept of the procedure is the image matching performed over special 
targets. The same point appears in the master (on the left) and the slave (on the right) 
images. Then, by means of a matching technique, which works at subpixel level, the 
displacement vector (Sx, Sy) is estimated. 

 

 

This section describes the complete proposed procedure, which can be divided into the 

following steps:  

• Data acquisition. 

• Data pre-processing. 

• Global matching. 

• Estimation of the GB-SAR repositioning effects. 

• Estimation of the pairs of displacements. 

• Estimation of the displacement time series.  

The block diagram of the entire procedure is shown in Figure 5.2. Each step is 

described in the following sections. 

5.2.1. Data acquisition 

The data acquisition is obtained through N in-situ campaigns. The followed procedure 

for each campaign consists on: 

• Installing the GB-SAR instrument in a position to fully illuminate the area of interest 

(AoI). Usually the GB-SAR positioning (and re-positioning in the following campaigns) 

is performed in a relatively light fashion, e.g. without building a stable concrete base. 

This eases the data acquisition procedure. This can reduce the accuracy of the 

measurements but a check through coregistration is always carried out on site in order 

to check the quality of the repositioning. 

• Deploying a set of M CRs in the AoI. 

• Acquiring multiple images, obtaining a set of K complex SAR images. According to 

the author’s experience, a set of 15 images is typically enough. These multiple images 

are used to reduce the effects on the amplitude images due to speckle and atmospheric 

effects.  
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Figure 5.2:  Block diagram of the complete GB-SAR non-interferometric procedure. 

 

5.2.2. Data pre-processing 

The data pre-processing is performed on each set of K complex SAR images acquired 

in a campaign, and hence is repeated up to N times. The algorithm is described in Figure 

5.3. Firstly, it involves a check of the quality of each acquired complex SAR image. This 

check has the objective of detecting and eventually discarding images with problems, e.g. 

corrupted files, very noisy images, images characterised by blurred amplitude values, etc. 

The check is usually done visually. However, especially for large datasets the analysis of 

the amplitude statistics can ease this check. 

On the sub-set of quality-proofed images, which includes Q ≤ K images, a temporal 

filtering is performed. The goal of the filtering is the enhancement of the SAR amplitude 

images by strongly reducing the so-called speckle effect. This is achieved through an 

incoherent temporal averaging of the Q images. The result of this operation is an 

incoherent mean SAR image Aincoh, which is obtained as follows: 
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where k is the number of the campaign at hand, Ai is the amplitude value of the i-th 

acquisition of the campaign k, (i, j) is the column and line position of a generic pixel, and 

Q is the number of images. 



 
DEFORMATION MEASUREMENT WITH GBSAR INTERFEROMETRY                        89 

 

 

 

Figure 5.3:  Data pre-processing procedure. 

5.2.3. Global matching 

The scheme of this step is shown in Figure 5.4. The global matching is performed on 

each analysed pair ij of campaigns. Given N campaigns, the minimum number of global 

matching is N-1, e.g. 12, 23, …, ij, ..., (N-1)N. The global matching involves: 

• Getting, as input, a pair of incoherently averaged SAR images, say i

incohA  and j

incohA . 

The first image is referred to as the master, while the second one is called slave. 

• Performing a pixel selection, whose goal is identifying those pixels of the two images 

that can be exploited for the image matching purposes, excluding the other ones. The 

pixels to be selected include those associated with the M deployed CRs, and others 

related to “natural reflectors”, like exposed rocks, buildings, man-made structures, 

metallic structures, etc. Different procedures can be used for this purpose, which 

usually are based on the amplitude images or on other statistics. The selection 

criterion used on this work will be discussed later in this chapter. 

• Performing the global image matching over the set of pixels selected in the previous 

step. Several algorithms can be used for this purpose, see for example feature based 

matching (Förstner (1984)) or the least squares matching (Gruen (1985)). In Bamler 

and Eineder (2005) the achievable shift estimation accuracy of three different 

matching algorithms, the coherent speckle correlation, the incoherent cross-correlation 

and the split band interferometry is discussed. The results obtained on the present 

work were achieved by using the incoherent cross-correlation, which is based on the 

amplitude images.  

• A further selection is then performed on the outcome of the global matching, i.e. W 

pairs of global shifts, usually expressed in pixels. Each pair containing one image shift 

(the shift needed to match a given slave pixel with its homologous on the master 

image) for each of the two main directions of the SAR images: the range direction, and 

the cross-range direction. The selection is performed on a score that measures the 

quality of the matching. It is usually related to the used image matching procedure. 

Examples of these score factors are the cross-correlation coefficient, the sigma naught 

of LS matching, or other indicators of the slave to master goodness-of-fit. 

The result of the global matching is finally a selected set of R≤W pairs of global shifts. 
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Figure 5.4: Global matching procedure performed for each pair of campaigns. 
 

5.2.4. Estimation of the GB-SAR repositioning effects  

Estimation of the GB-SAR-repositioning effects, like the global matching, is performed 

on each analysed pair ij of campaigns. These effects are due to the fact that there are 

slight changes in the position and orientation of the GB-SAR between different 

campaigns. The sequence of this step is shown in Figure 5.5. The estimation of these 

effects involves: 

• Collecting external information on the stable areas located in the vicinity of the 

deformation AoI. This information is usually available if the deformation mechanism 

and the key characteristics of the deformation phenomenon at hand are known. In case 

this information is not available, one alternative way to get it is by analysing the set 

of R pairs of global shifts estimated in the previous step. If the information on the 

stable areas is known in the so-called object space, say a cartographic or geographic 

reference system, it has to be properly mapped in the SAR image space to be 

exploited. This operation, which requires as input the position and orientation of the 

GB-SAR, is the inverse of the geocoding operation described in Chapter 3. The output 

of this operation is a mask that identifies all stable areas in the SAR image space. 

• By using the above mask, a subset of the R pairs of global shifts is computed, which is 

given by the S≤R global shifts that fall in the stable area mask. 
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Figure 5.5:  Estimation of the GB-SAR repositioning effect. 

 

• The S global shifts are used to estimate the so-called coregistration transformation, i.e. 

the slave to master transformation which is due to the GB-SAR-repositioning effects. 

The complexity of the transformation mainly depends on the topography of the AoI 

and the distance AoI to the sensor. The author’s experience suggests that, excluding 

close-range scenarios, e.g. located at less than 50-100 m, and strong topographic 

variations, the affine transformation, or any transformation with similar 

characteristics, is sufficient for this purpose. In our procedure the used transformation 

model is: 
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where (xS ,yS) are the image coordinates on the slave image of the point (xM ,yM) of the 

master image, (ξx, ξy) are the residual errors on the estimation, and px, py are 

transformation functions whose parameters are the unknowns. 

• The final result of this block is a set of transformation parameters modelling the GB-

SAR-repositioning effects and used to perform the slave to master coregistration. 

For the sake of completeness, it is worth mentioning that coregistration transformation 

parameters could, in principle, be estimated directly, by measuring accurately and in each 

campaign the position and orientation of the GB-SAR sensor. 



 
92                CHAPTER 5. NON-INTERF. GB-SAR FOR DEFORMATION MEASUREMENT 

 

 

5.2.5. Estimation of the pairs of displacements 

The estimation of the pairs of displacements is performed on each analysed pair ij of 

campaigns. It involves: 

• Subtracting the GB-SAR-repositioning effects, which are modelled by the 

coregistration transformation parameters, from the set of R pairs of global shifts. This 

results in R pairs of displacement shifts, where the displacements are relative 

displacements with respect to the whole set of stable areas mentioned above. As 

mentioned above, the R pairs of displacement shifts include those shifts associated 

with the M deployed CRs and others related to “natural reflectors” located in the AoI. 

• Taking into account the GB-SAR image parameters the above displacement shifts are 

transformed in displacements. It is worth noting that in this step the displacements 

are still defined in the image space, which usually coincides with the SAR master 

image. 

• Finally, considering the GB-SAR sensor parameters (GB-SAR position, orientation, 

etc.), the image geocoding is performed. This involves the image to object 

transformation described in Chapter 3. The final result is a set of R pairs of estimated 

displacements, which have a position defined in the object space, say in a cartographic 

or geographic coordinate reference system.  

5.2.6. Estimation of the displacement time series 

The estimation of the displacement time series has to be run once for all campaigns, to 

get the main product of the whole procedure, i.e. the estimated displacement time series. 

It involves: 

• Getting, for each analysed pair ij of campaigns, a set of Rij pairs of estimated 

displacements defined in the object space. Note that the sets Rij are usually different. 

For this reason, the common set has to be identified by getting the intersection of all 

Rij sets. From each pair ij of campaigns a new subset is defined: Tij. 

• If the minimum number of campaign pairs has been analysed, the displacement time 

series can be computed by direct integration of the Tij pairs of estimated 

displacements. By contrast, if a redundant configuration is used, the displacement 

time series are estimated through a LS estimation procedure. In this case, the 

observation equation is: 





=

+−=

00T

TTT ijij ε
          (5.3) 

where To is set to 0, Ti and Tj are the unknowns and represent the accumulated 

displacement at time (i) and time (j) and ε are the residuals. 

• The redundant configuration offers the advantage of having a certain degree of 

controllability of the displacements. In particular, the LS estimation can be analysed 

in order to identify and isolate outliers in the input data, i.e. the Tij pairs of estimated 

displacements. This process can be iterative. 

The final product is provided by the final LS solution: a set of T estimated 

displacement time series, defined in the object space, say in a cartographic or geographic 

coordinate reference system.  
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5.3. Advantages against the interferometric approach 

The proposed procedure offers remarkable advantages with respect to GB-SAR 

interferometry, overcoming the important limitations addressed in Section 5.1. The main 

advantages of the non-interferometric approach with respect to the interferometric one 

are:  

- It provides non-ambiguous, aliasing-free, displacement estimates. This is, by far, the 

most important advantage of the proposed procedure. 

- The displacement estimates are not affected by the atmospheric effects. 

- It provides 2D displacement measurements, in range and cross-range directions. This 

represents an improvement with respect to the LOS estimates coming from SAR 

interferometry. It is worth emphasising that the performances of the 2D estimations 

depend on the geometric characteristics of the used GBSAR imagery. In general, worse 

performances are expected in the cross-range direction, especially in the middle and far 

range of images, where spatial resolution is degraded. 

In addition, by employing CRs, precise and reliable displacement estimates can be 

achieved. It is important to note that here we estimate the displacements over single 

targets, while usually SAR amplitude matching is usually employed for coregistration 

purposes, where hundreds of points are used to estimate a limited set of parameters 

(usually less than 10 for the entire image). Here we need to rely on the two displacements 

(shifts) per each measured target: in this context CRs are fundamental. 

Finally the CRs guarantee the possibility to measure the same targets over time. Note 

that a similar effect can be achieved by using CRs in GBSAR interferometry. 

5.4. Discussion of the proposed method 

This section discusses in detail two fundamental technical aspects of the proposed non-

interferometric GB-SAR procedure: the selection of the pixels that guarantee good 

deformation estimates, and the need of deploying CRs. Given two images acquired at 

different times, the proposed procedure provides a set of R pairs of estimated 

displacements occurred in the time interval between the master and slave acquisitions. 

The R points have to be previously selected considering their reflectivity with respect to 

their neighbours. A possible selection criterion is suggested by the diagram in Figure 5.6, 

which shows the theoretical relation between the estimated matching shift errors 

(hereafter named matching precision) and the signal-to-clutter ratio, i.e. a measurement of 

the intensity of a point scatter with respect to its neighbours located in a given window 

(Bamler and Eineder, 2004). Provided that this relation is based on theoretical results, the 

actual suitability of the signal-to-clutter ratio as pixel selection criterion was assessed by 

using real data.  

For this purpose, three experiments were devoted to explore the relation between the 

matching precision and an estimation of the signal-to-clutter ratio using real data, which 

from now on is called peak to background ratio. The sequence of the experiments was 

basically the same, while the difference between them is due to the type of test site and  

the sensor to target distance. It was assumed that for the three sites the measured area 

remained stable during the measurements. The sequence of the three experiments was: 
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Figure 5.6: Matching precision of a point scatter as a function of the peak to background ratio, 
from Bamler and Eineder (2004). 

 

• GB-SAR positioning; 

• Acquiring a set of 15 images; 

• Dismounting and re-mounting the GB-SAR; 

• Acquiring a second set of 15 images; 

• Applying the deformation estimation procedure over selected targets; 

• Analysis of the estimates, considering that zero displacements were expected. 

 

The three experiments were performed in three different scenarios, see Figure 5.7: the 

Cal Ganxo (Castelldefels) experiment was on an urban scenario, with maximum distance 

of 2.5 km; the Vallcebre, Catalan Pyrenees, experiment was performed in a mountainous 

environment, where the main part of the scene is vegetated, and with a maximum 

distance of 1.6 km; finally the Canal Olímpic (Castelldefels) was carried out in a flat area, 

with maximum distance of 1 km, and with a water channel between the area of interest 

and the sensor. These experiments were performed without considering data coming from 

artificial corner reflectors.  

Considering the three experiments, the total amount of measured deformation pairs 

was 60247. Figures 5.8 and 5.9 show the plots of the matching precision in range and 

cross-range, respectively, with respect to pick to background ratio. The blue line 

represents the reference theoretical values, while the other lines represent the experimental 

results. The original results were analysed after applying some filtering: (1) points with 

correlation below 0.6 were discarded; (2) short range points, below 100 m, were excluded 

to avoid focusing distortions; and (3) points with estimated shifts bigger than 1 pixel were 

considered outliers and discarded. The last constraint only affected the statistics of points 

with low peak to background ratio, because none of the estimated shifts over points with a 
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Figure 5.8: Theoretical and experimental matching precision in range as a function of the 

peak to background ratio. 

 

 

Figure 5.9: Theoretical and experimental matching precision in cross-range as a function of the 
peak to background ratio. 
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high peak to background were above one pixel. Two main conclusions can be derived: 

• In range direction the experimental results agree very well with the theoretical ones 

(Figure 5.8). A matching precision of about 0.02 pixels, which corresponds to 1 cm for 

IBIS-L system at maximum range resolution of 50 cm, can be achieved by selecting 

points with pick to background ratios bigger than 30 db.  

• The results in cross-range are notably worse, see Figure 5.9. In the best case, assuming 

reflectors with pick to background bigger than 30 db, the matching precision ranges 

from 0.02 to 0.07 pixels, which for the IBIS-L in terms of displacements correspond to 

1 to 3 cm at 100 m, and to 10 to 30 cm at 1000 m. The decrease of the precision in the 

cross-range direction can be due to the fact that the cross-range resolution is obtained 

by averaging all the measurements collected by the radar during its movement along 

the rail. It makes the cross-range direction more sensitive to changes in the scene 

during the acquisition. 

In addition, one may notice that the results on the Canal Olímpic are worse than the 

other two experiments. A possible explanation of this decrease on the precision can be due 

to the characteristics of the measured area which is too flat and it has calm water between 

the GB-SAR sensor and the main body. It is possible that in the statistics a lot of points 

within the water were treated as a good point due to double bound effects. However, in 

the range direction the results are still acceptable, e.g. a precision of 0.03 pixels, or 1.5 cm 

at 31 db were achieved. 

5.4.1. Role of corner reflectors 

The results of the three experiments made evident a critical point of the procedure: the 

low number of targets with a sufficient pick to background ratio to guarantee good 

deformation estimates. For the Cal Ganxo experiment, which includes an urban area, the 

number of points with pick to background bigger than 30 db is 73: this corresponds to the 

0.32% of the total number of measured pairs. Similar values were obtained in the 

Vallcebre experiment, where the percentage of “good points” is 0.27%, and in the Canal 

Olímpic experiment, with 0.28%. In the Vallcebre test site, which concerns an active 

landslide, there is no “good points” in the movement area. In general, such percentages are 

largely insufficient to get an appropriate spatial sampling of a given deformation 

phenomenon. These results clearly demonstrate the need of deploying artificial corner 

reflectors, to ensure getting good deformation measurements. As already discussed in 

Chapter 2, this implies a remarkable change, from “pure remote sensing” to a “hybrid 

remote sensing supported by in-situ installed CRs”.  

Different types of CRs were developed and tested at the Institute of Geomatics with 

two-fold objectives: getting good matching performances (i.e. high pick to background 

ratio) and an accurate repositioning of the CRs in different campaigns. In particular, the 

objective was to ensure a millimetric repositioning and a pick to background ratio of at 

least 30 db. Some tests were performed on different types of CRs, trying to find the best 

compromise between signal characteristics, repeatability over time, size and portability of  

the CRs. Figure 5.10 shows two types of CRs. The most advanced type, which can be 

oriented at different angles, can be used for both Ku-band GB-SAR and X-band satellite 

data. It is worth noting that the capability of reaching 30 db is strongly dependent on the 

combination of the size of the CR and the sensor-CR distance. 
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Figure 5.10:  Two types of CRs developed and tested at the Institute of Geomatics. 

5.5. Validation results 

In this section are described some experiments made to validate the proposed non-

interferometric GB-SAR procedure. Four experiments were carried out, all of them based 

on artificially induced deformations, which were simulated by displacing a set of CRs. The 

main objectives of these experiments were validating the new deformation monitoring 

technique, testing different types of CRs, and checking the dependence of validation errors 

on distance or on the magnitude of displacements. The experiments were performed using 

four different scenarios. The Campus experiments (I and II) were the first one, where the 

potentialities of the technique were evaluated. In these experiments the mean distance 

between the CRs and the sensor was around 150 m, the used CRs were those shown in 

Figure 5.10a, and the displacements were simulated both in in range and in cross-range. 

The Cal Ganxo experiment was performed to obtain results at a relatively far distance, 

around 1600 m. Finally, the Beach experiment was used to test different types of CRs. 

The sequence of the experiments was: 

• Positioning the GB-SAR; 

• Deploying the CRs in the observed scene; 

• Acquiring a set of 15 images; 

• Dismounting and re-mounting the GB-SAR, simulating the discontinuous mode; 

• Applying different know displacements (reference values) to each CR; 

• Acquiring a new set of 15 images; 

• Estimating the displacements using the proposed procedure; 

• Comparing the estimates displacements with the reference displacements. 

It is worth noting, that only the CRs were moved, instead of the whole object, as it is 

on the real case. In Table 5.1 are shown the results obtained in the Campus experiments 

(I) and (II). For some of the CRs deployed in this experiments were simulated 

displacements in both range and cross-range directions. Table 5.2 shows the results of the 

Cal Ganxo and the Beach experiments, where only range displacements were simulated. 

Let’s consider the cross-range error column from Table 5.1, and in particular the 9 

CRs with peak to background ratio greater than 30 db, which are highlighted by circles: 

the blue circles indicate the 5 CRs which were moved in cross-range, while the yellow ones 
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show those that remained stable during the experiment. Most of the cross-range errors 

were of the order of several centimetres. Considering the sensor to CR distances (all of 

them below 180 m), the errors are slightly worst than the expected ones according to the 

analysis discussed in Section 5.4. The interpretation of these results is two-fold. From one 

side, the cross-range performance is significantly under the expected one, which, roughly 

speaking was around 1 cm). For this reason, after these two experiments it was decided to 

focus our activities on improving and consolidating the results in the range direction, 

which from the beginning proved to offer better performances. On the other hand, the 

above results were considered useful to show the 2D capability of the proposed technique 

to measure displacements. Further works are needed to understand and improve the cross-

range results. From now on the discussion of the results is focused on the range direction. 

The range analysis was performed considering the four experiments. The total number 

of measured CRs was 37. The estimated validation errors are given by the difference 

between the GB-SAR estimates of displacements and the reference values. Most of the 

validation errors, 25 out of 37, are below 1 cm, five errors are between 1 and 2 cm, and 

finally seven errors are bigger than 2 cm. The latter ones can be considered outliers. These 

errors are analysed below.  

If we consider only the 21 CRs with peak to background ratio bigger than 30 db, all of 

them but one have validation errors below 1 cm, see the range Tables 5.1 and 5.2. In this 

case, the outlier is explained by the distribution of the CRs on the scene: the CR with 

wrong estimation was affected by the side lobes of another CR, which was moved in a 

different way. A different representation of the results shown in Tables 5.1 and 5.2 is 

given by the plot (a) of Figure 5.11. The plot shows the relation between the errors and 

the peak to background ratio: the error dispersion increases with the decrease of the peak 

to background. Note that the outliers have been removed to better visualize the results. 

For the Beach experiment, see Table 5.2, CRs with three different sizes were used. In 

this case the smaller ones, trihedral CRs with 20-cm edges, were deployed in the close 

range (from 223 m to 230 m), the medium ones, with 50-cm edge, at a medium distance 

(from 575 m to 597 m), and the bigger ones (up to 70 cm of edge) on the far range (from 

963 m to 1080 m). As can be observed in Table 5.2, there are not significant differences on 

the results. This occurs because the size of the CRs was correctly modulated by the sensor 

to CR distance. It can be observed also that the CR with lower peak to background 

corresponds to one of the big CRs: in this case the reason is probably the not optimal 

orientation of the CR with respect to the radar.  

Two more interesting results of these experiments are illustrated by the plots (b) and 

(c) of Figure 5.11. The plot (b) displays the errors versus the sensor to CR distance: there 

is not an evident relation between these two parameters. One may conclude that the 

quality on the deformation measurements is not distance dependent. However, it is worth 

noting that in this case, the real constraint is given by the peak to background threshold. 

In fact, the increase of the sensor-target distance makes more difficult finding natural 

“good” reflectors”, and requires an increase of the CR size.  

Finally, the plot (c) of the Figure 5.11 shows the relation between the errors and the 

magnitude of the displacements. This plot shows that the error magnitude is independent 

of the measured displacement, i.e. the accuracy of the method is not dependent on the 

magnitude of the measured displacement. It must be underlined that this represents a 

remarkable step forward with respect to the interferometric approach which is strongly 

dependent on the displacement magnitude due to the wrapped nature of the phases. 
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Table 5.1: Validation results of two simulated experiments made in the IG Campus. The 
results of the two experiments correspond to the same scenario, but changing the displacement 
magnitudes and simulating movements in range and cross-range directions. In the range error 
column, the circles underline the worst results. The orange one indicates an outlier with 
relative high peak to background, while the two green circles show big errors with small peak 
to background. The yellow circles of the cross-range error column indicates CRs with peak to 
background bigger than 30 that remained stable during the experiment, while the blue ones 
represent those which were displaced in cross-range. 

 

 

 

Table 5.2: Validation results of the Beach and Cal Ganxo simulated experiments. The 
experiments cover the range of distances from 223 m up to 1.6 km. The circles highlight the 
worst results. The red circle is an outlier with peak to background bigger than 30 db; the 
orange one is an outlier with relative high peak to background but with big errors, while the 
green circle show big error with small peak to background. 
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Figure 5.11: Analysis of the validation errors: plot of errors vs. peak to background ratio, peak 
to background (a); plot of errors vs. sensor to target distance (b); and plot of errors vs. 
displacement magnitude (c). 
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5.6. A real case study: Vallcebre test site 

This section describes the results obtained on a real case study, the Vallcebre 

landslide, located in the Catalan Pyrenees. It is an active landslide which on the last three 

decades has been used, mainly by the Polytechnic University of Catalonia, as a natural 

laboratory to evaluate different monitoring techniques like total station, GPS, 

inclinometers, piezometry, extensometers, photogrammetry and satellite radar 

interferometry. The landslide is located in a rural area: it consists basically of vegetated 

areas, with a reduced number of isolated rural houses, which can act as natural reflectors.  

The landslide was monitored using the non-interferometric GB-SAR approach from 

February 2010 to September 2011, carrying out eight campaigns. Figure 5.12 shows a 

photo of the measured area: the area bounded by the red line is the most active part of 

the landslide. The red dots represent the eleven CRs deployed in the moving area, while 

the four green ones represent the reference CRs, which were assumed to be stable. The 

green CRs together with other natural reflectors were used to estimate the repositioning 

effects.  

 In parallel to the GB-SAR measurements, five topographic campaigns were carried 

out in order to validate the results obtained with the GB-SAR. The topographic 

measurements were done approximately from the same viewpoint of the GB-SAR and 

considering only the distance. This was done in order to ensure a millimetric precision, 

which was needed to validate the GB-SAR displacements and in order to make easier the 

validation analysis. The GB-SAR and topographic results were both in LOS. It was not 

possible to re-install all the CRs in all campaigns, due to the vegetation changes and the 

water level raise in a portion of the AoI.  

For the first four campaigns the CRs shown in Figure 5.10a were used. These are “first 

generation CRs”, which allowed us to make a light repositioning by simply marking with 

paint over stones the position of each CR. However, the repositioning was an important 

source of error, which limited the analysis: the repositioning errors were of the same order 

of magnitude of the precision of the procedure. In addition, due to the target-sensor 

distance, with these CRs was not possible to get measurements with pick to background 

ratio greater than 30 db. Table 5.3 shows the validation results based on the first 

generation CRs. Despite the relatively low pick to background ratio, half of the 

measurements has errors of about 1 cm or less, while the other half has errors above 2 cm. 

It is worth noting that these errors could be caused by both matching errors and 

repositioning of the CRs.  

In order to avoid the uncertainty of the repositioning and to improve the pick to 

background a new generation of CRs was used, see Figure 5.10b. The new CRs have a 

larger size and allow the repositioning to be realized by fixing mechanically the base of the 

CR to the terrain (e.g. rocks). The CR bases remained in situ between campaigns: only 

the CR heads were removed at each campaign. This allowed us to improve noticeably the 

precision on the repositioning. Another improvement was the pick to background which, 

as it is shown in Table 5.3, has notably increased: for the last four campaigns the pick to 

background ratio was greater than 30 db for all CRs. The validation results with the new 

CRs show that all the measurements but one have errors below 1 cm. There is only one 

outlier (see CR9 on the measurement 11/2010 - 01/2011): even though its reason is not 

very clear, it could be due to an error on the CR repositioning. The results again confirm 
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the measurement performances of the proposed technique, which were discussed in the 

previous section.  

Figure 5.13 shows an aerial photo of the measured area with the total displacement 

vectors for those CRs with reliable results for the whole period, while Figure 5.14 shows 

the corresponding temporal series. The measurement covers the period from February 

2010 to September 2011. The maximum measured displacement is about 80 cm and 

corresponds to the CR 12. The temporal series show that the movements are mainly linear 

in time. However, one may notice a deceleration of the displacements between July 2010 

and January 2011, followed by an increase of the activity. It is worth noting that the 

displacement vectors are drawn in the LOS direction. These vectors must be projected on 

the terrain by taking into account the slope and aspect of the landslide. This could help in 

interpreting some results, e.g. the fact that CRs located on the foot of the landslide (CR10 

, CR11 and CR8), which is supposed to be the most active part of the landslide, are the 

slowest points.  
 

 

 

 

 

 

Figure 5.12: Vallcebre test site. The green points represent the stable CRs while the red ones 
represent the CR deployed on the area of movement.  
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Table 5.3: Validation results for three measurements on Vallcebre test site. The 
first campaign refers to the results obtained with the small, “first generation CRs”, while the 
other two have been obtained with the new one. It is observed an improvement on the 
accuracy with the new CR network. This is correlated with the increase of the pick to 
background of the new CRs. 
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Figure 5.13: Vallcebre test site: LOS displacement estimated with the non-interferometric 
approach for 13 CRs. The period of measurement is February 2010 to September 2011. The 
maximum measured displacement corresponds to the CR12 with 37 cm. 

 

Figure 5.14: Time series of 7 CRs from Figure 5.13 for the whole measured period, from 
February 2010 to September 2011. 
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Chapter 6 

Conclusions 

This chapter summarizes the main conclusions of this thesis, which is devoted to the 

measurement and monitoring of deformations using the GB-SAR technique. In addition, it 

discusses the most important open technical issues that require further research. 

The contribution of this dissertation is three-fold. Firstly, it offers a comprehensive 

description of a GB-SAR interferometric chain, which covers all aspects from data 

acquisition to the final deformation estimates. The description includes the main 

processing and analysis steps of the procedure and reflects the experience gained by the 

author in the last eight years working with both satellite and GB-SAR data. Secondly, it 

proposes an innovative algorithm, which addresses one of the most critical aspects of GB-

SAR interferometry, i.e. the phase unwrapping, which is due to the ambiguous nature of 

the interferometric GB-SAR observations. This thesis proposes a new algorithm, which is 

named 2+1D phase unwrapping. Its main characteristics are discussed later in this 

chapter. Thirdly, the thesis proposes an innovative algorithm for GB-SAR long-term 

monitoring, which is based on the amplitude component of the SAR images. Using this 

algorithm a completely new GB-SAR approach can be implemented, which is named non-

interferometric GB-SAR, and which offers interesting complementary advantages with 

respect to GB-SAR interferometry. This approach is undergoing the review process to get 

a European patent (Crosetto and Monserrat, 2011). 

The conclusions of this thesis and the discussion of future research needs are organized 

in two main parts: the interferometric approach to deformation measurement and the non-

interferometric one.  

• Interferometric approach for deformation measurement. The core of this part 

consists in the description of a whole GB-SAR interferometric chain for deformation 

measurement. The Chapter 3 has been focused on the description of the standard GB-

SAR processing chain implemented at IG. Each step of the procedure has been discussed 

and illustrated by using real data acquired at different sites. Out of the whole procedure, 

three steps deserve a specific discussion: pixel selection, phase unwrapping, and the 

atmospheric phase estimation. 

The pixel selection has been addressed by discussing two different criteria: the 

coherence, which is a spatial-based criterion, and the dispersion of the amplitude (DA), 

which is a point-based criterion. Although the two criteria have demonstrated to be useful 

in the processing of several GB-SAR datasets, they directly depend on the choice of a 

given threshold value. This involves finding a trade-off between point density and the 

quality of the selected phases. An empirical way to prove the goodness of the chosen 

threshold is by analysing the quality of the phase unwrapping results, which depends on 

both the phase quality and the pixel density. Further research is needed to define more 

robust and automatic pixel selection criteria. A further limitation is related to the fact 
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that the DA is a statistics that is usually computed on the whole set of images. On one 

hand, pixels that contain valuable interferometric phases, but not during the whole 

monitoring period, may be discarded: more advanced techniques need to be developed to 

take advantage of such pixels. On the other hand, pixels that are globally good can be 

contaminated by subsets of noisy phases: more elaborated techniques should be adopted to 

exploit them.  

The second important topic is the phase unwrapping, which is one of the weakest 

points of SAR and GB-SAR interferometry. In the procedure described in Chapter 3 it is 

performed automatically on each interferogram. Usually, its quality control is performed 

visually, by inspecting the unwrapped phases. However, this involves a cumbersome 

operation, which hampers a complete quality check. In Chapter 4 a new phase unwrapping 

algorithm has been proposed, which is called 2+1D phase unwrapping. The algorithm has 

been fully described, discussing in particular the pixel wise unwrapping strategy. The 

main conclusions related to the 2+1D phase unwrapping are listed below. 

- The importance of phase unwrapping errors has been illustrated considering different 

real case examples: if not properly corrected, these errors may drastically degrade the 

quality of the deformation time series. The performances of the new algorithm have 

been shown considering the same examples: clear improvements with respect to the 

standard approach have been achieved.  

- The detection and correction of the phase unwrapping errors is performed in a fully 

automated fashion: this is particularly valuable to process very large sets of GB-SAR 

images, e.g. several hundreds or thousands of images, where the visual inspection of 

the unwrapping results is unfeasible. 

- The proposed method works properly with redundant networks of interferograms and 

images, and with rather uniform distributions of unwrapping errors in these networks. 

A sufficient network redundancy can be usually guaranteed, while the concentration of 

unwrapping errors is usually not predictable: big error concentrations usually prevent 

a proper error detection and correction. 

- A remarkable advantage of int2ima is the possibility to derive a kind of quality index, 

which describes, in an automatic way, the quality of the unwrapping estimates. This is 

based on the analysis of the residuals. This is a remarkable advantage of the algorithm 

because, for all cases where the error detection and correction does not work, e.g. 

where high concentrations of errors occur, we can get a warning through the quality 

index. This has a positive impact on the interpretation and exploitation of the results. 

Considering the positive results achieved so far, it could be worth devoting further 

research efforts to the int2ima algorithm. Firstly, the algorithm should be improved to 

improve its computation performances. Secondly, efficient procedures need to be found to 

check and analyse the unwrapping data in the most critical configurations, i.e. weak 

network configurations and high concentrations of unwrapping errors. Finally, more work 

is needed to fully take advantage of the int2ima quality indices. 

The last important step of the interferometric approach is the atmospheric phase 

estimation. In this dissertation the atmospheric phase component is estimated by using a 

2D polynomial, whose degree can be selected as a function of the site characteristics. 

Although this approach generally provides good results, three limitations must be 

underlined. Firstly, it works under the assumption that the APS varies smoothly along the 

scene: in some scenarios this can be not the case, especially where abrupt topographic 

variations occur. Secondly, it is critically dependent on the quality of the unwrapped 
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phases; this quality cannot always be guaranteed, especially for all critical cases, e.g. low 

coherence, etc. Finally, it is strongly dependent on the distribution of the stable areas 

with respect to the displacement area at hand. Further research should be devoted to 

overcome these limitations.  

• Non-interferometric approach for deformation measurement. A new 

procedure for measuring terrain deformation with GB-SAR data has been proposed. This 

procedure, which is amplitude-based, exploits the GB-SAR data without using the 

interferometric phase. The procedure overcomes three of the main limitations of the GB-

SAR interferometry:  

- The procedure is aliasing-free, i.e. it is not affected by the limitations related to phase 

unwrapping, especially those related to the deformation rates of the observed 

phenomena, which represent a severe drawback of GB-SAR interferometry. The price 

to be paid for this remarkable advantage is a reduction of the sensitivity and precision 

of the achievable deformation estimates 

- The procedure is basically not affected by atmospheric effects, which mainly influence 

the GB-SAR phase. 

- The method can in principle provide 2D displacement measurements, in range and in 

the cross-range directions. This represents an improvement with respect to the mono-

dimensional LOS measurement capability of GB-SAR interferometry. However, the 

validation results have been shown weak performances of deformation estimates in the 

cross-range direction. A more in depth analysis is needed to understand if there is 

room for improving such performances. On the other hand, promising results have 

been obtained in the range direction.  

Several experiments have been devoted to analyse the performances and validate the 

proposed approach. The main outcomes are: 

- Achieving a precision of 1/50 pixels, which results in 1 cm in range using IBIS-L, 

requires scatterers with a peak to background ratio bigger than 30 db. 

- The number of natural scatterers that provide the needed peak to background ration is 

usually very limited. Although this aspect is site-dependent, in the three studied sites 

the percentage of 30 db scatterers is less than the 1%. 

- The use of CRs is usually needed to ensure a sufficient sampling of the deformation. 

- The effectiveness of the procedure has been demonstrated on a real landslide case. 

Monitoring it during one year and half, displacements up to 75 cm were measured. 

Obtaining equivalent results using the non-continuous interferometric GB-SAR 

approach would have been unfeasible due to the aliasing effects. 

To conclude, further investigation is needed to improve some aspects of the procedure. 

One of the weak aspects of the actual implementation is the need of deploying CRs to 

reach the required peak to background ratio. Further research will be focused on new 

image matching algorithms able to take full advantage of natural reflectors. A second 

aspect is related the usability of the CRs, especially at long distances that require CRs of 

considerable sizes.  The development of active CRs would significantly reduce the CR size, 

contributing to improve the logistics of the measurement campaigns, especially at long 

distances, e.g. above 2 km. Finally, the methodology could be extended to real aperture 

radar systems: this would simplify considerably the logistics of the campaigns because the 

real aperture radar does not require the use of a rail.  
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