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A B S T R A C T

For the last several years, speaker diarization has been attracting sub-

stantial research attention as one of the spoken language technologies

applied for the improvement, or enrichment, of recording transcrip-

tions. Recordings of meetings, compared to other domains, exhibit an

increased complexity due to the spontaneity of speech, reverberation

effects, and also due to the presence of overlapping speech.

Overlapping speech refers to situations when two or more speakers

are speaking simultaneously. In meeting data, a substantial portion of

errors of the conventional speaker diarization systems can be ascribed

to speaker overlaps, since usually only one speaker label is assigned

per segment. Furthermore, simultaneous speech included in training

data can eventually lead to corrupt single-speaker models and thus to

a worse segmentation.

This thesis concerns the detection of overlapping speech segments

and its further application for the improvement of speaker diarization

performance. We propose the use of three spatial cross-correlation-

based parameters for overlap detection on distant microphone channel

data. Spatial features from different microphone pairs are fused by

means of principal component analysis, linear discriminant analysis,

or by a multi-layer perceptron.

In addition, we also investigate the possibility of employing long-

term prosodic information. The most suitable subset from a set of

candidate prosodic features is determined in two steps. Firstly, a

ranking according to mRMR criterion is obtained, and then, a standard

hill-climbing wrapper approach is applied in order to determine the

optimal number of features.

The novel spatial as well as prosodic parameters are used in com-

bination with spectral-based features suggested previously in the

literature. In experiments conducted on AMI meeting data, we show

that the newly proposed features do contribute to the detection of over-

lapping speech, especially on data originating from a single recording

site.

In speaker diarization, for segments including detected speaker

overlap, a second speaker label is picked, and such segments are also

discarded from the model training. The proposed overlap labeling

technique is integrated in Viterbi decoding, a part of the diarization

algorithm. During the system development it was discovered that it is

favorable to do an independent optimization of overlap exclusion and

labeling with respect to the overlap detection system.
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We report improvements over the baseline diarization system on

both single- and multi-site AMI data. Preliminary experiments with

NIST RT data show DER improvement on the RT ’09 meeting recordings

as well.

The addition of beamforming and TDOA feature stream into the base-

line diarization system, which was aimed at improving the clustering

process, results in a bit higher effectiveness of the overlap labeling

algorithm. A more detailed analysis on the overlap exclusion behav-

ior reveals big improvement contrasts between individual meeting

recordings as well as between various settings of the overlap detec-

tion operation point. However, a high performance variability across

different recordings is also typical of the baseline diarization system,

without any overlap handling.
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1
I N T R O D U C T I O N

1.1 speaker overlap challenge in speaker diarization

Since the beginning of the digitalization era we can observe a much

easier access to various multimedia documents such as television

shows, the news, lectures, meeting recordings, and many others. This

continuous offer created a growing demand for the application of

automatic human language technologies in order to allow for effective

search and access of audio information sources. These technologies

make it possible to extract from spoken documents meta-data that

provides contextual information beyond words. The simplest example

is to break up the signal into speech and non-speech segments by

so-called Speech Activity Detection (SAD). For other purposes one may

desire to have more details, such as the locations of music, narrow-

band speech, or to know the gender of the speakers. Such tasks are

generally known as audio diarization, i. e., marking and categorizing

of audio sources within a spoken document [1].

A specific kind of diarization is speaker diarization. Given a speech Definition and

applications of

speaker diarization
recording, this task aims to answer the question: “Who spoke when?”

Speaker diarization can vary according to the amount of prior knowl-

edge that is provided, but in general it is assumed that nothing is

known in advance. In further reading when referring to diarization

normally speaker diarization is meant.

Diarization systems can be primarily used in three application

domains: broadcast news audio, meeting room data, and telephone

conversations. Their application is often a very useful preprocessing

step for other audio technologies, such as Automatic Speech Recogni-

tion (ASR), speaker identification, speaker localization, etc. For instance,

given the output of a speaker diarization system, ASR can carry out

unsupervised speaker adaptation by joining segments from the same

speakers, which can significantly improve transcription performance.

Furthermore, the readability of automatic transcriptions can also be

improved by structuring the audio stream into speaker turns, and

eventually, coupled together with speaker identification, by providing

the identity of speakers. This kind of information is of interest in

indexation of multimedia documents [2].

In the early years most research in speaker diarization concentrated

mainly on the broadcast news domain [3]. Over time, however, there

started to be a strong interest in the meeting domain as well [4]. Meet-

ing domain brings more difficulties for speaker diarization. Not only

1



2 introduction

is the speech completely spontaneous, with possibly large amount of

silences for any speaker, but the recordings with different types of

microphones positioned at various room locations lead to different

signal qualities. Furthermore, the use of distant microphones makes

the effect of room reverberation significant. All of these factors hin-

der speaker diarization. The spontaneity of speech also raises the

importance of another issue, the one of overlapping speech.

It is a well known fact that people sometimes tend to speak at theOverlapping speech

— a challenging

problem for speaker

diarization

same time, i. e., simultaneously. It is a normal part of human conversa-

tion behavior. For that reason, audio recordings of meetings commonly

include regions of overlapping speech. This factor, however, poses a

burden for a lot of spoken language technologies, speaker diarization

being no exception. According to some studies [5, 6, 7], a portion of

the performance degradation on real meeting data can be directly

associated with the occurrence of speaker overlaps. Nevertheless, this

specific issue became of interest to the scientific community only re-

cently and the number of related works that have been published

in the literature is thus far rather limited. Dealing with overlapping

speech still remains a challenging problem.

1.2 objectives

This thesis addresses the issues related to the occurrence of simulta-

neous speech in meeting recordings. The motivation is to improve

speaker diarization performance, since conventional diarization sys-

tems suffer from this common conversation phenomenon. However,

the investigation of overlapping speech may also be useful for other

speech processing tasks such as speech, or speaker recognition.

There are several objectives this work attempts to meet. In the first

place it is necessary to acquaint ourselves with the state of the art

regarding overlapping speech, its detection and also further processing.

One of the main goals is the development of a robust overlap detectionThesis objective is to

develop an overlap

detection system in

order to assist

speaker diarization.

system. This system should work with distant channel data without

any constraints about microphone configuration or the recording room.

Our interest is to research and propose new features which may be

useful for this task.

For instance, we aim at exploring the possibilities of employing

spatial-based information for the detection of simultaneous speech

since (smart) meeting rooms are normally equipped with microphone

arrays. The availability of multi-channel data provides the option to

estimate features that are in some way related to spatial location. An-

other option is to investigate the potential of higher-level information.

“Higher” in this case refers to speech information which is above the

level of short-term spectral or cepstral features, such as prosody.
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The other main goal of this thesis is to apply the detected overlap-

ping speech in the UPC speaker diarization system in order to reduce

diarization error. This should be achieved by both recovering missed

speaker time, as well as by improving the clustering. We seek to imple-

ment a novel technique for the assignment of extra speaker labels in

speaker overlap segments. Different overlap detection systems will be

examined according to the quality of their hypotheses for diarization

improvement.

Finally, since our general intention is contribute to the research in

human language processing, we participate in the organization of the

Albayzin evaluation campaign. Our responsibility is the speaker di-

arization section. Such evaluations help comparing recent approaches

in a particular field and generally stimulate the investigation progress.

1.3 organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 intends to

give the reader a brief overview about the state-of-the-art techniques

related to speaker diarization and overlapping speech. The basic idea

of the chapter organization is to separate the topics on the detection of

overlapping speech from speaker diarization and its improvement by

the use of detected speaker overlap. Moreover, both topics are divided

into a more theoretical part and into an experimental part. The first

addresses the system design and acoustic features, and the second

describes and interprets the obtained experimental results. Since the

design of a system is often closely interrelated with experiments, in

some cases the border of such a division is blurred.

Chapter 3 addresses the construction of the overlap detection system.

A large part is dedicated to the discussion of different features which

might be suited for this task. The UPC speaker diarization system

and the techniques on how to improve its performance, given the

knowledge about simultaneous speech in recordings, are explained in

Chapter 4.

The audio data coming from AMI Meeting corpus, which is used

throughout the work, is described in Chapter 5. In addition, this chap-

ter introduces an alternative data corpus consisting of NIST RT meeting

recordings. Experimental results of overlapping speech detection and

speaker diarization are presented in Chapters 6 and 7, respectively.

General discussion and conclusions are given in Chapter 8.

Finally, Appendix A reports on the Albayzin 2010 speaker diariza-

tion evaluation organized under the FALA 2010 workshop. The task,

data, and submitted systems are described and the results are dis-

cussed.





2
STATE OF THE ART

This chapter begins with a brief introduction to the general concepts
of acoustic modeling, classification, and segmentation in order to set
up the framework in which speaker diarization and overlap detection
operate. Then, an overview of the field of speaker diarization is given,
with the focus on the most popular approaches and recent advances.
In the end, the topic of simultaneous speech is discussed from vari-
ous perspectives. Overlapping speech can be viewed as a separation
problem, but in practice, when real (not artificially overlapped) audio
recordings are used, it is necessary to firstly determine the locations
of such segments. After reviewing the most successful approaches for
overlap detection, the relationship between overlapping speech and
speaker diarization performance is discussed, together with previous
attempts of handling this issue in the given context.

2.1 acoustic classification and segmentation

The goal of segmentation is to divide an acoustic waveform, or a Definition of

segmentation and

acoustic

classification

sequence of acoustic features, into certain segments that demarcate
acoustic (or phonetic, linguistic etc.) units defined beforehand. The
goal of classification is to perform an identification or “labeling” of
these segments. For instance, in the case of Automatic Speech Recog-
nition (ASR), the acoustic units can be defined as phonemes or words.
Segmentation and acoustic classification are processes which can be
performed sequentially or in parallel. The methods for acoustic clas-
sification (also referred to as decoding) can be basically divided into
heuristic-based approaches, distance-based approaches and probabilis-
tic approaches [8]. The first two are mentioned only for completeness,
in the following, only the third concept is considered. Satisfactory man-
agement of this process is especially important in classifiers which are
dealing with a large set of classes or spontaneous speech.
The probabilistic approach is usually based on the use of Hidden Hidden Markov

ModelsMarkov Models (HMMs). The HMMs are one of the most commonly
applied probabilistic finite-state machines. They have the ability of
modeling sequences of states that cannot be observed directly, since
they are hidden, but only through sequences of statistically related
observations. These models are created for acoustic realization of every
analyzed unit, e. g., every word in a system dictionary. Alternatively,
Markov models can be constructed for smaller units (phonemes), and
then words and phrases are modeled by their concatenation. The
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Figure 1: Architecture of a typical HMM-based recognizer [9].

architecture of a typical HMM-based recognizer (ASR system) is given
in Figure 1.
Given a sequence of acoustic observations, i. e., feature vectors,

Y = y1,y2, . . . ,yT extracted from an input audio signal, the decoder
tries to find the sequence of words w = w1,w2, . . . ,wL which most
likely have generated Y. Since it is difficult to model such probability
P(w | Y) directly using the generative HMMs, Bayes’ rule is applied to
transform the task into

ŵ = argmax
w

p(Y | w)P(w), (2.1)

which is an equivalent problem. The likelihood of the observation
sequence given a word sequence p(Y | w) is determined by an acoustic

model. P(w) is the prior probability of observing a particular word
sequence and is normally determined by a language model.
A typical structure of a left-right phone model is illustrated in

Figure 2. HMM makes a transition from its current state to one of
its connected states every time step. For first-order Markov chains
used to model stochastic processes it is assumed that the condition
in any state only depends on the previous state and observations are
conditionally independent of all other observations given the state that
generated it. The probability of making a particular transition from
state i to state j is given by the transition probability matrix A = {aij}.
The parameter set B = {bj(·)} holds the emission probability functions
associated with each state of the model, bj(yk) is the probability of
emitting observation yk on entering the state j. The most commonGaussian Mixture

Models approach for modeling the feature distribution is by using continuous
density Gaussian Mixture Model (GMM), that is

bΘt
(y) =

M∑

m=1

wmN(y,µm,Σm), (2.2)
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Figure 2: An example of a left-right HMM used for a phoneme [9].

where wm is the weight of the mth mixture component, and N(y,µ,Σ)
denotes a multivariate Gaussian density with mean vector µ and
covariance matrix Σ. While the model supports full covariance matri-
ces, these are usually used in their diagonal form. Furthermore, the
model’s mixture weights wm sum to unity. The number of mixtures is
usually a subject of a trade-off between the model accuracy and the
generalization on unseen data.
Given a model λ and an observation sequence Y = {y1, . . . ,yT },

there are three problems which need to be addressed to effectively use
HMMs in real applications [10, 11]: The three practical

problems with the

use of HMMs• The likelihood problem. How do we estimate the likelihood of
the model that generates the observations, i. e., p(Y | λ)?

• The learning problem. How do we find a new model estimate
λ̂ = {A,B} which maximizes the likelihood p(Y | λ)?

• The decoding problem. How do we find the state sequence
Θ = {Θ1, . . . ,ΘT } that generates Y with the highest probability?

The likelihood can be efficiently estimated in a recursive manner
by computing forward- and backward- probability variables. For the
learning problem no analytical method has been presented so far
that would ensure finding the global maximum of the probability of
model λ generating the sequence Y, p(Y | λ). Nevertheless, iterative
procedures were suggested which choose λ̂ so that this probability
is maximized at least locally on the training data.The most popular
solution to this problemis a particular version of the Expectation
Maximization (EM) technique suitable for HMMs, known as the Baum-

Welch re-estimation algorithm.
The decoding problem is addressed with the Viterbi algorithm, one of Viterbi decoding

the most widely applied decoding approaches. The goal of uncovering
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Figure 3: The objective of speaker diarization.

the best word sequence can be approximated by finding the most
likely sequence of hidden states (called Viterbi path),

ŵ ≈ argmax
w

{P(w)max
Θ

p(Y,Θ | w)}. (2.3)

Two operations are involved. First, the estimate of the highest proba-
bility along a path of length T through the states of the HMM is found,
and then the single states Θ̂1, . . . , Θ̂T of the best path are determined.
For more details on these algorithms refer to one of [10, 11, 12, 13].
When the task of a classification system is to distinguish amongSpeaker modeling

different speakers (e. g., speaker identification, verification), we are
faced with the question what is the best way to model the voice of a
speaker. The most widely applied approach to speaker representation
is based on GMMs and was presented by Reynolds in [14]. A GMM can
be considered a one-state HMM. In applications where there is strong
prior information on the spoken text, additional temporal knowledge
can be incorporated by using multiple-state HMMs as the basis for the
likelihood function.
In some situations the amount of training data for particular acoustic

classes, such as speakers, for instance, is limited. A common solution
how to deal with this problem is adaptation. Basic idea of adaptation
is to derive the speaker’s model by updating well-trained parameters
in a so-called Universal Background Model (UBM) using the speaker’s
training speech and a form of Bayesian adaptation. Comprehensive
explanation can be found in [15]. This adaptation, Maximum A Poste-
riori Probability (MAP) estimation of Gaussian mixtures, was originally
introduced by Gauvain and Lee in [16].

2.2 speaker diarization

Speaker diarization task consists of segmenting a conversation involv-Speaker diarization,

tracking and

indexing
ing multiple speakers into speaker-homogeneous parts and grouping
together all the segments that correspond to the same speaker. The
objective of speaker diarization is illustrated in Figure 3. The first part
of the process is also referred to as speaker segmentation or speaker
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Figure 4: Basic concept of a speaker diarization system.

change detection, and the second step is known as clustering. The most
common condition for speaker diarization is that the number of speak-
ers and speaker characteristics are a priori unknown to the system and
need to be determined automatically. For completeness, we can also
mention the speaker tracking task which follows (or tracks) a speaker
identity in an audio recording. The basic difference between diariza-
tion and tracking is that in the latter the voice characteristics of a
particular speaker must be known beforehand, similarly to speaker
identification or verification. Another frequently occurring term in this
field is indexing. It can be understood as performing diarization on an
audio database and eventually associating the time stamps with true
speaker identities in order to have better overview and search options
in recordings.
We can find in the literature a lot of diverse approaches to the Sequential vs.

integrated approach

to diarization
speaker diarization problem, however, there are two predominant
strategies. The step-by-step strategy deals with the main steps suc-
cessively, first finding the speaker turns, and second, re-grouping
the segments coming from one speaker during the clustering phase
[17, 18, 19]. A limitation of this method is that it is not only difficult to
correct the errors made in the segmentation later on, but these errors
degrade the performance of the subsequent clustering step. The basic
concept of a speaker diarization system with individual subtasks is
depicted in Figure 4.
An alternative approach, referred to as integrated strategy, is to

optimize the segmentation and clustering jointly [20, 21]. Both steps
are carried out simultaneously in an iterative procedure which uses
a set of GMMs or an ergodic HMM. The main disadvantage of the
integrated approach lies in the need to learn these models using very
short segments, even though the speaker models get refined along the
process.
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Mixed strategies are also proposed where the classical step-by-step
segmentation and clustering is applied first, and then the segment
boundaries and clusters are refined jointly [22, 23, 24]. Fusion of both
techniques can be found in [25]. The two steps, independently of the
strategy, are discussed later in this chapter.

2.2.1 Acoustic Features

In almost any kind of pattern recognition system, one of the basic
steps is the extraction of features from raw data. Features are mea-
surable characteristics which are important to the distinction between
different classes. They should not only have possibly low inter-class
similarity, but also low intra-class variability. In the context of speaker
recognition, features obtained from the speech signal attempt to re-
flect the discriminative speaker information. Since speaker diarization
and recognition are closely related, commonly used features are very
similar.
A standard in the field is to extract short-term low-level acoustic

features derived from speech spectrum. The spectrum of the speech
is closely related to the physiology of the human vocal tract, an
important discriminating factor. By far the most popular are the Mel
Frequency Cepstral Coefficients (MFCCs), which showed to performShort-term cepstral

features well in speaker recognition tasks [26, 27] and, somehow ironically,
in speech recognition as well. Static MFCCs are also the most widely
applied features in the majority of state-of-the-art speaker diarization
systems.
Apart from MFCCs, other used parameters are the linear predictive

coding (LPC) coefficients, frequency filtered (FF) filter-bank energies
[28], linear frequency cepstral coefficients, and perceptual linear pre-
dictive (PLP) parameters. In speaker recognition, for instance, first- and
second-order time derivatives (also called delta and delta-delta coef-
ficients) are usually also obtained to assist the recognition. However,
speaker diarization systems often do not use deltas, especially not for
acoustic change detection, since this practice empirically turned out
not to be very successful.
Variable channel or background conditions can sometimes seriously

degrade the performance of automatic systems. To compensate for
these variations, several normalization techniques have been proposed
in feature, score, or decision domain. We will focus on feature normal-
ization used for speaker-related tasks. Feature warping normalization
introduced by [29] was applied for diarization in [30]. Here, the dis-
tribution of a cepstral feature stream is warped to a standardized
distribution over a specified time interval. Another technique called
feature mapping [31] maps features from different channels into a
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common channel-independent feature space using previously learned
linear transformation.
Speech signal conveys several different levels of information on Long-term features

which the humans rely in order to recognize others by voice. This
information reaches from cues related to physical traits to cues related
to learned habits and talking style. Automatic human language pro-
cessing area was dominated by systems using acoustic information.
Since several years, an increased effort could be observed to combine
low-level features with higher-level information. For instance in [32],
wide ranging approaches using pronunciation models, prosodic dy-
namics, pitch gestures, phone streams, and conversational interactions
were explored. The potential contribution of prosodic information to
automatic processing of meeting/broadcast data was suggested in
several works, such as [33, 34]. A successful application of long-term
prosody-based features in combination with conventional parameters
for speaker diarization was eventually presented by Žibert and Mi-
helič in [35] and Friedland et al. in [36]. In a related work, Imseng
and Friedland [37] use the prosodic features for the initialization of
agglomerative clustering. Pitch, energy, peak-frequency centroid and
peak-frequency bandwidth are examples of features considered for
speaker segmentation by [38]. Furthermore, three new features related
to the cross-correlation of the signal power spectrum are investigated,
namely, temporal feature stability, spectral shape, and white noise
similarities.
Modulation spectrogram provides an alternative representation of

the speech signal with a focus on temporal structure, it represents
a filtered version of a spectrogram. It was observed that modula-
tion spectrogram features also carry speaker-specific information and
together with MFCCs can aid the speaker diarization task [39].
When speech is recorded in multi-channel environment , it is pos- Location-related

featuressible to extract complementary discriminative information which re-
flects the time-delays of signal between microphones. There are several
works addressing this topic. A technique that segments audio record-
ing according to speakers based on their locations was proposed
by Lathoud and McCowan [40]. In this paper, speaker locations are
obtained by estimating Time Delay of Arrival (TDOA) values from cross-
correlation peaks between paired microphones within an array. The
same technique was used in combination with a MFCC-based system to
improve diarization performance in [41]. Pardo, Anguera, and Wooters
[42] considered this approach, i. e., combining MFCC and TDOA feature
streams, also for the general case when the location of microphones
is unknown. In [43], the use of Direction of Arrival (DOA) informa-
tion was explored to assist the speaker change detection. Exploiting
this spatial information led to significant improvement compared to
results achieved with close-talking microphones. In addition, spatial
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information can aid the initialization of speaker clusters, as discussed
in [44].
Recently, Joint Factor Analysis (JFA) methods have demonstratedSpeaker factors

very good results addressing issues such as channel- or speaker-
variability compensation. Moreover, JFA is among the state-of-the-art
techniques for speaker and language recognition. An effective fac-
tor analysis scheme for speaker diarization was firstly proposed by
Castaldo et al. in [45] and later extended by Kenny et al. [46]. The
main idea is to exploit prior knowledge about the speaker space to
find a low dimensional vector of speaker factors that summarize the
distinctive speaker characteristics.

2.2.2 Speaker Segmentation

Acoustic change detection, in general, aims to timestamp an audio
stream according to the changes in acoustic conditions. For speaker
segmentation the focus is on detecting speaker turns in a recording.
The literature offers several methods addressing this problem that
can be roughly categorized into three groups: metric-, model-, and
silence-based algorithms.
Silence-based segmentation chops the audio stream in the silenceSilence-based

segmentation locations either using an energy threshold [47] or a decoder-guided
technique [48, 49, 3]. In the later case, the silences marking segment
boundaries are detected by a recognition system, usually putting con-
straints on their minimum duration. As there is no clear relationship
between silences in a recording and speaker turns, such techniques
are seldom used for diarization.
Model-based segmentation performs a Maximum Likelihood (ML)Model-based

segmentation classification with trained models (GMMs) corresponding to a closed
set of acoustic classes [18, 47]. The boundaries between assigned
classes become the segmentation change points. Examples of acoustic
classes can be telephone/wideband channel, male/female voice, mu-
sic/speech/silence, or their combinations. Pre-trained models can face
a robustness problem, though. Model-based techniques are playing a
major role in the integrated diarization strategy where segmentation
and clustering are performed at the same time, searching for opti-
mal acoustic change points without any previous knowledge of the
acoustic classes [20, 50].
Probably the most popular approach is metric-based segmentation

[27, 19, 51]. Here, two neighboring windows of a relatively small sizeMetric-based

segmentation are moved over the audio signal. The similarity between data in these
two windows is determined by a distance function. Acoustic change
points are put to locations where distance function local maxima
exceed some threshold value. Various metric-based algorithms differ
according to the kind of distance function they apply, the length of
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the two windows, their time shift, or the way the similarity values
are evaluated. The most common distance metric is based on the
Bayesian Information Criterion (BIC). However, various other forms of
distance measures such as symmetric Kullback-Leibler (KL) divergence,
Generalized Likelihood Ratio (GLR), or Gish distance exist in literature.
A novel approach concerning distance metrics for speaker diariza-

tion was investigated in [52]. Here, a dissimilarity measure based on an
one-class Support Vector Machine (SVM) is used in both speaker turn
detection and clustering, and the obtained results are very competitive
to standard methods.

2.2.2.1 Bayesian Information Criterion

BIC was originally introduced by Schwarz [53, 54] and its popularity
lies in its simplicity and effectiveness. BIC value informs how well a Bayesian

Information

Criterion definition
model fits some data. Consider modeling the acoustic data X = {xi ∈

R
d; i = 1, . . . ,N} using a modelM. For the modelM we assume that

#(M) parameters are chosen to maximize the likelihood and let L(X|M)

denote this maximum value. BIC is a likelihood criterion penalized by
the number of parameters in the model and is defined as follows:

BIC(X,M) = logL(X|M) − λ
1

2
#(M) log(N), (2.4)

where the penalty weight λ is a free tuning parameter (but only
λ = 1 corresponds to the strict definition of BIC) and N is the number
of observations in the acoustic segment. For the purpose of speaker
segmentation, BICwas firstly proposed by Chen and Gopalakrishnan in
[17, 55] and later also in [56]. Considering that the feature sequence X is
drawn from an independent multivariate Gaussian process, a change
at time i is resolved with a hypothesis that consecutive segments
Xi : x1 . . . xi and Xj : xi+1 . . . xN are better modeled with models
Mi and Mj, respectively, than the two segments jointly by a single
model M. It can be viewed as a model selection problem—the data is
modeled by one or two Gaussians—what is determined by computing
the difference between the BIC values for the hypotheses:

∆BIC(i) = logL(X|M) −
(

logL(Xi|Mi) + logL(Xj|Mj)
)

−
λ

2
#(Mi,Mj) log(N),

(2.5)

where #(Mi,Mj) = #(M) −
(

#(Mi) + #(Mj)
)

denotes the difference in
the number of parameters between model M and models Mi,Mj. The
two-model hypothesis is favored if ∆BIC is positive, the ML chang-
ing point can be expressed as t̂ = argmaxi∆BIC(i). Several works
addressed the fine tuning of the penalty weight parameter [57, 58, 49],
or it was discarded totally [59].
In the majority of implementations the search for the segment Modifications of BIC
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boundaries is carried out iteratively with a growing window [60].
Such algorithm is robust, but unfortunately computational complexity
is quite high. Various modifications were proposed in order to address
this issue. For instance, a two-pass mechanism called DISTBIC [57, 58]
first makes a rough selection of change points with a faster GLR metric,
and in the second pass BIC is used for refinement. Alternate distance
measures seeking to reduce the computational load include XBIC [61],
which was shown to be faster while having similar performance.
Since it is a known issue that BIC does not perform well on short

segments, a MAP adaptation of speaker models that allows to detect
shorter speaker changes was suggested in [62]. Recently, so-called
MultiBIC segmentation scheme was introduced in [63] where two
change points are assumed to be present in a window of data instead
of the usual one. It is supposed to considerably reduce the number of
undetected short segments.

2.2.2.2 Generalized Likelihood Ratio

GLRwas introduced by Willsky and Jones [64] for change detection and
constitutes a likelihood ratio test between two hypotheses. Given two
adjacent portions of parameterized audio signal X1 and X2 (similar
to BIC), the first hypothesis assumes that both portions X = X1

⋃

X2

are modeled by one Gaussian process, i. e., both are generated by the
same speaker. The alternate hypothesis, on the other hand, considers
that segments originate from different speakers and therefore two
Gaussians are a better representation of the data. The distance measure
is computed as the log-value of the likelihood ratio between the two
hypotheses:

dGLR = − log
L(X|M(µ,Σ))

L(X1|M1(µ1,Σ1)) · L(X2,M2(µ2,Σ2))
, (2.6)

where M(µ,Σ) denotes a Gaussian process with mean µ and covari-
ance Σ trained from X (by EM algorithm). A low value of dGLR signifies
the modeling with one Gaussian. In contrast, a high value of dGLR

indicates that the second hypothesis should be preferred and suggests
a speaker change on the border between the two segments.
For segmentation, GLR is usually used together with BIC in a two-

step process proposed by Delacourt, Kryze, and Wellekens [57, 58].DISTBIC —

Algorithm

combining GLR and

BIC

First, the most likely speaker changes are detected, and then they are
validated or discarded during a second pass (previously listed as the
DISTBIC algorithm). A variation of GLR, called Gish distance, was used
in [27, 65] and proved efficiency for the identification task.

2.2.2.3 Kullback-Leibler Distance

The average discriminating information between two classes is known
as the Kullback-Leibler number and was initially defined in [66]. Later
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introduced by Siegler et al. [19] and Campbell [26] for speaker-related
topics, KL measures the dissimilarity between two distributions of
random variables. Considering X and Y being random variables, KL is
formulated as follows:

KL(X, Y) = EX{logPX − logPY}, (2.7)

where EX denotes the expectation computed with the probability
density function P of X (see [19]), reflecting the distribution of samples
in an acoustic segment. A symmetrical measure is obtained as

KL2(X, Y) = KL(X, Y) +KL(Y,X). (2.8)

KL2 is sometimes also referred to as cross-entropy [67]. It is based on Symmetrical

Kullback-Leibler

distance —

Cross-Entropy

the fact, that an utterance is expected to have a large likelihood with
respect to its own model, but a small likelihood for a different model.
For Gaussian variables X and Y, KL2 can be rewritten as

KL2(X, Y) =
σ2
X

σ2
Y

+
σ2
Y

σ2
X

+ (µX − µY)
2

(

1

σ2
X

+
1

σ2
Y

)

− 1. (2.9)

Compared to GLR which requires a model to be trained for each
segment plus another model for them both, KL distance only requires
one model for each segment [67]. A comparison between KL and Gish
distance was presented in [47].

2.2.3 Clustering

A loose definition of clustering could be: “The process of organizing
objects into groups whose members are similar in some way” [68].
For adaptation of acoustic models, for instance, it is enough to group
together speakers which are acoustically similar. However, speaker
diarization, in general, intends to arrive to an accurate distinction
between speakers and tries to aggregate all the speech segments during
the clustering process that belong to a particular speaker. Although in
some cases the number of speakers or even their identity is known,
in the following we only consider blind clustering, where there is
no initial information at all. Ideally, we arrive to the final number
of clusters equal to the number of speakers [69]. In such case each
speaker is not assigned a true identity but rather a unique identifier.
It is an identification task to link each identifier to a speaker identity.
Most state-of-the-art systems rely on a hierarchical clustering1 scheme State-of-the-art

systems rely on

hierarchical

clustering

[27, 19]. The optimal number of speaker clusters is determined by a
subsequent splitting, or merging, of clusters in an iterative process
until a stopping criterion is met.

1 Besides hierarchical clustering there also exist exclusive, overlapping, and probabilistic
clustering in the literature.
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Depending on the strategy, we differentiate between bottom-up (ag-
glomerative) and top-down (divisive) clustering. As implied from pre-
vious statements, two crucial parts of a clustering mechanism are:

• distance measure between clusters to ascertain their acoustic simi-
larity;

• stopping criterion to know when to stop the algorithm.

When the number of speakers is unknown, a distance threshold usually
defines the stopping condition.Agglomerative

clustering is more

frequent than

divisive clustering

During the agglomerative clustering process, in each iteration a matrix
is usually defined that holds the distances between all possible pairs
of clusters, and the closest pair is merged together [15]. For instance,
Chen and Gopalakrishnan [17, 55] suggested BIC for this distance.
Cluster pairs assigned for merging have the highest ∆BIC value and
when all pairs have ∆BIC < 0 the merging finishes. BIC with some
modifications was also employed in [56, 3].
Another from the presented metrics, the KL2, was used by [19] as a

cluster distance measure and a stopping criterion. Combinations of the
distances in segmentation and merging stages are assessed in several
publications, KL2 and GLR were applied in [67] for iterative merging
until the cluster purity was maximized. Distances adapted to the
multi-dimensional Gaussian mixture case were introduced in [51, 70].
Particular interest was given to systems which derive speaker models
for each cluster by means of a MAP adaptation of a UBM [71, 30].
Some other works, for instance by Ajmera et al. [69, 72] or Wooters

et al. [73], integrate segmentation with clustering using model-based
schemes and use BIC as the stopping criterion [72, 73]. The acoustic
signal is initially segmented, and then iterative ML decoding is per-
formed using adaptive GMM models. These approaches make also use
of a hierarchical HMM to introduce temporal constraints to segment
lengths.
A two-pass clustering was introduced in [22]. In the first step, the

data is equally segmented and an agglomerative clustering is per-
formed using a GLR distance matrix until the desired number of
clusters is reached. In the second step, an integrated model-based
approach of decoding and retraining follows until the likelihood con-
verges.
Systems that rely on the divisive clustering scheme start with only

one initial cluster which is then iteratively split until the algorithm
stops on the optimal number of clusters [74, 3].
Bottom-up systems sometimes suffer from merging instability andCombined and other

approaches stopping criteria difficulties. On the other hand, top-down systems
are particularly prone to poor model initialization, which can lead to
large variations in performance. A number of works tried to combine
both approaches in different ways. For instance, one possibility is
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Figure 5: Overlapping speech example. Sample taken from the AMI Meeting
corpus, recording IS1000d at 00:03:17 h.

that a top-down system is initialized with the segmentation output
of a bottom-up system [75]. Alternatively, after matching hypothe-
sized outputs, the common segments are associated together and a
re-segmentation of the data where the two systems differed follows
[75]. Only recently, another integrated solution was proposed where
bottom-up and top-down systems are fused “at the heart” of the
segmentation and clustering stage in [76].
Interesting work which shows how linguistic patterns can be used

to identify the current, previous, or next speaker in order to improve
and enrich the diarization output was presented in [77].

2.3 overlapping speech

Overlapping speech refers to situations when two or more speakers
speak simultaneously so that a listener hears a mixture of their voices.
This kind of behavior is very natural for humans and occurs quite
commonly in conversations [78]. An illustration of a speaker overlap
is given in Figure 5.
Overlapping speech was identified in several publications as one of

the major challenges for spoken language applications [33, 79]. We can
distinguish several types of simultaneous speech which affect the flow Categorization of

speaker overlapsof discourse in different ways. In a meeting environment an overlap
can be categorized as one of the following [80]:

• Floor grabber, to try to usurp floor from another speaker (well I);

• Backchannels, to encourage a speaker to continue (right, uhhuh);

• Interruptions (so that’s-);

• Question, to determine the further discussion content (and the

new machines are faster?);
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• Statement (it’s easier just to buy new disks);

• Other.

In addition, some overlaps may happen accidentally or part of a joint
action (people trying to help a speaker to recall something) [33].

2.3.1 Cocktail Party Problem and Source Separation

The cocktail party effect describes the ability of human listeners to focus
one’s attention on a single talker among a mixture of conversations
and background noises, for instance, during a loud crowded party.
This phenomenon enables most people to talk in noisy places.Cocktail party

problem was first

formulated by

C. Cherry in 1953

Wang and Brown state in [81] that in “cocktail party”-like situations,
in which all voices are equally loud, speech is intelligible for normal-
hearing listeners even when as many as six interfering talkers are
present. Binaural hearing is important to this effect, because it was
observed that with interfering noise the understanding ability of
listeners using only one ear was much more decreased. It still was
not lost, though. An interesting observation was reported by Kashino
and Hirahara [82]. When listeners were asked to guess the number
of people speaking simultaneously in a recording (2–10 speakers),
they mostly answered that they heard three speakers. It follows that
even though humans can isolate and concentrate on a single source,
they have problems to correctly determine the number of concurrent
sources.
Since many years the perceptual segregation of sounds has been the

subject of extensive research. A practical realization of this problem
via computer analysis of microphone recordings is known as source

separation. Even though the cocktail party problem is not very difficult
to deal with for humans, it is non-trivial for machines.
A popular statistical approach to separation through the use of mul-

tiple microphones is Blind Source Separation (BSS). BSS refers to theBlind Source

Separation with

Independent

Component Analysis

problem when there is no prior knowledge of the mixed signal, i. e.,
the mixing process is unknown [83]. When the number of sources to
estimate is no more than the amount of sensors and independence of
the source signals is assumed, a powerful tool for BSS is Independent
Component Analysis (ICA) [84]. The difficulty of separating recorded
speech signals is due to the delays and reflections in a real environ-
ment. Therefore, the mixing process is not linear as assumed in the
basic BSS, but rather convolutive. Various solutions were proposed us-
ing iterative algorithms based on minimizing cross-channel correlation
(termed adaptive decorrelation filtering) [85, 86], taking the problem
into Z-domain and applying information maximization principle [87],
or maximizing non-Gaussianity [84].
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The source separation problem is also the focus of study in Computa-
tional Auditory Scene Analysis (CASA), which draws inspiration from Computational

Auditory Scene

Analysis
mechanisms of human auditory function. CASA seeks to exploit psy-
choacoustic features of speech to perform the separation. The general
assumption is that although two speakers might speak simultaneously,
there is little overlap in the time-frequency plane (spectrogram) if the
speakers are different. CASA-based separation techniques partition the
audio spectrogram so that each partition belongs to the speech of one
of the overlapping speakers. This partitioning typically uses grouping
cues such as pitch, onset times, offset times, and continuity [88, 89], or
is based on modulation frequencies as in [90].
Assuming that s(t) is the estimated source signal, the basic differ-

ence between BSS and CASA algorithms can be explained as follows. In
the first case, the unmixing has the form:

s(t) = α1m1(t) +α2m2(t) + · · ·+αkmk(t), (2.10)

where mi(t) are simultaneous signals recorded with different mi-
crophones. The unmixing coefficients αi are constant over time and
chosen to optimize some property of the set of the recovered sources.
In the later case, the basic principle of the refiltering method presented
in [91] is to construct the sources by selectively reweighing (masking)
the frequency subbands with automatically learned masking func-
tions. Denoting the masking signals αi(t) and subband signals of the
original input bi(t), the source s(t) can be obtained as follows

s(t) = α1(t)b1(t) +α2(t)b2(t) + · · ·+αn(t)bn(t). (2.11)

A related method to CASA was inspired by the pioneer work on
source separation based on speech periodicity and harmonic selection
in [92]. Relying on harmonic structure within speech, [93] proposed a
Harmonic Enhancement and Suppression (HES) system for the separa-
tion of two speakers. Using the pitch estimate of the stronger speaker,
his speech is recovered by enhancing its harmonic frequencies and for-
mants. Speech of the other speaker is then obtained from the residual
signal when the first speaker’s harmonics are suppressed.
However, these methods have various limitations. For example, ICA

has difficulties with one or more of the conditions of conversational
speech. Many have problems in the presence of reverberation and
nearly all source separation algorithms assume that the number of
speakers in known [94]. A comparison of these techniques for segrega-
tion of speech from concurrent sounds concludes that BSS outperforms
CASA for the majority of noise conditions [94]. Nevertheless, unmix-
ing algorithms (BSS), in general, cannot operate on single-channel
recordings, whereas CASA-based techniques can.
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2.3.2 Overlap Detection

The source separation algorithms listed in Section 2.3.1 work with
the assumption that the processed data already includes overlapping
speech. However, when working with real (not artificially mixed)
data, where overlap regions are not annotated, such segments need
to be detected in the first place. The goal of overlap detection is
to identify accurate temporal locations where several speakers are
speaking concurrently.
Several algorithms were published in the literature that detect over-

lapping speech as a result of multi-speaker Speech Activity Detec-
tion (SAD) on personal close-talking microphones. For instance, given aMulti-speaker SAD

on personal channel

microphones
multi-channel meeting recording, Pfau et al. [95] applied speech/non-
speech detection for every individual participant’s channel to create
preliminary hypotheses. Then, for regions where more than one chan-
nel was hypothesized as active, cross-correlation analysis was used
to correct the false overlap regions. These were caused mainly due
to crosstalk between nearby speakers. It was expected that the cross-
correlation would be higher for crosstalk than for real overlaps. Since
the SAD produced output for each channel separately, the system was
also able to identify the regions of speaker overlap.
Inspired by Pfau’s work, Wrigley et al. [96, 97] proposed to use

a classifier based on an ergodic HMM (eHMM) to detect four classes:
speaker alone, speaker+crosstalk, crosstalk alone, and silence. During
the classification of multi-channel meeting data, each channel was
classified by a different eHMM in parallel. This allowed for the ap-
plication of a set of dynamic transition constraints so that only legal
combinations of channel classifications were possible. Wrigley et al.
considered a number of candidate features among which were MFCCs,
energy, Zero-Crossing Rate (ZCR), Pitch Prediction Feature (PPF), kurto-
sis, so-called “fundamentalness”, Spectral Autocorrelation Peak-Valley
Ratio (SAPVR), and cross-channel correlation. He found kurtosis, fun-
damentalness, and cross-channel correlation metrics to be the best
performing features.
Fundamentalness is based on the amplitude (AM) and frequency

modulation (FM) extracted from the output of a bandpass filter anal-
ysis [98]. It is defined as having maximum value when FM and AM

magnitudes are minimum, which corresponds to situation when the
minimum number of components is present in the response area of the
filter. When more speakers are active, interference of more (than one)
fundamental components introduces modulation, thus decreasing the
fundamentalness measure.
Signal amplitude kurtosis (will be discussed in Section 3.2) and

SAPVR were applied by the authors of [99, 100, 101] for spotting usable
speech segments in the context of speaker identification and speech
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recognition. SAPVR metric relies on changes to the harmonic structure
of the signal and is computed from the autocorrelation of the signal
spectrum. The motivation for using SAPVR for overlap detection was
that a single speaker should have a strongly periodic autocorrelation
whereas in case of multiple speakers the autocorrelation function
should be flatter due to the overlapping harmonic series. However, the
performance on real meeting data reported in [97] was rather poor.
Lewis and Ramachandran [102] developed the PPF for speaker count

labeling. The basic principle is that the distances between estimated
successive pitch peaks should be more regular in single-speaker speech
than in simultaneous speech. Similarly to SAPVR, the experiments were
only performed on synthetically overlapped single-speaker data and
Wrigley [97] summarizes that PPF was “not robust for real acoustic
mixtures”, giving “mediocre results”.
In [103], a multi-pitch tracking algorithm was employed for a simi-

lar task of classifying pre-segmented multi-speaker audio into: local
speech, crosstalk, overlapping speech, and non-speech.
A simple and efficient algorithm by Laskowski et al. for segment-

ing multi-speaker meeting data can be found in [104]. Without the
necessity of training any model, joint maximum cross-correlation of
personal microphone pairs was used to detect speech for each micro-
phone wearer. Obviously, two simultaneously active speakers would
mean speaker overlap. In another work, Laskowski and Schultz [105]
proposed an algorithm which combines multi-speaker SAD with the
idea of overlapping speech states. In contrast to the approach by
Wrigley et al. [96] their eHMM had 2K states, specifying every combi-
nation of speech and non-speech for each of K participants.
A few algorithms for speaker overlap detection make use of distant-

channel data. Lathoud andMcCowan [40] suggested to segment the au- Approaches utilizing

microphone array

far-field data
dio according to speakers using microphone-pair time delays (TDOAs)
and showed the possibility to detect two simultaneous talkers by
modeling short-term turns for each speaker combination. However,
a constraining condition was that the number of speakers had to be
known beforehand and it was assumed that their location will not
change during the meeting. Since all the possible overlap combinations
have to be modeled explicitly, this strategy suffers from an explosion
of overlap classes.
In a later work, Lathoud et al. [106] presented two alternative strate-

gies which produce individual segmentations for each participant and
handle overlapping speaker combination implicitly. Here, the need to
define all possible combinations of active speakers is avoided and the
computational load is linear to the number of speakers. The segmenta-
tion strategies are based on speech/silence ratio or steered response
power, confined to particular physical regions. Again, the number and
location of meeting participants has to be fixed.
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Otterson [107], in his thesis, also investigated the possibility to
detect overlapping speech using multi-microphone location features
derived from delays. He firstly tried the combination of the location
features with MFCCs using a GMM classifier. When the GMM posterior
probabilities were fed into a Multi-layer Perceptron (MLP), he observed
a change of the performance (compared to the original results with
GMM) towards higher detection precision, but lower recall (for overlap
detection evaluation metrics see Section 3.7).
In the proposal of Yamamoto et al. [108], a spatial correlation matrix

is calculated from a microphone array input. The eigenvalue distri-
bution of this spatial correlation matrix reflects information on the
number and relative power of sound sources. In an experiment on one
meeting recording, overlapping speech could be detected by applying
support vector regression to the set of input eigenvalues.

Even though Képesi et al. [109] did not aim at detecting overlap-

ping speech in the first place, their Position-Pitch (PoPi) extraction

algorithm makes it theoretically possible. This method decomposes

real two-channel recordings into a 2d PoPi plane, where all acoustic

sources are represented by their fundamental frequency and their

position. Pitch and DOA candidates representing position are jointly

extracted from multiple correlation peaks.Single distant

microphone methods Boakye and Trueba-Hornero focused in their respective theses

[110, 111] and publications [112, 113] on developing an overlap de-

tection system for monaural recordings. The detection framework

was relying on an eHMM segmenter, which segmented the signal into

overlap, non-overlap, and non-speech class. Their approach was also

inspirational for this thesis. A number of features were tested and as-

sessed according to their suitability to discriminate overlapping speech,

e. g., Diarization Posterior Entropy (DPE), Linear Predictive Coding

Residual Energy (LPCRE), Modulation Spectrogram (MSG), Harmonic

Energy Ratio (HER), and Spectral Flatness (SF).

Entropy, in the information theory, is a measure of uncertainty, or in-

formation content. The idea behind DPE was explained by the authors

in [112] as follows. In the diarization process the system produces

likelihoods which describe the expectation that particular frame or

segment belongs to every cluster. Intuitively, in a non-overlap segment

there should be a clear “winner” and the rest will have significantly

lower scores. Thus, score entropy will be low. In a multiple-speaker

region the scores will be more equally distributed, resulting in a higher

entropy. DPE for frame y can be expressed as

HDP =
∑

k

p(Ck|y) log
1

p(Ck|y)
, (2.12)
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where the posterior probability of a particular cluster Ck, p(Ck|y), is

computed applying the Bayes’ rule as

p(Ck|y) =
p(y|Ck)p(Ck)∑
k p(y|Ck)p(Ck)

. (2.13)

The prior cluster probability p(Ck) is estimated according to the

amount of assigned speaker time in the diarization output. Entropy

analysis in the context of overlap detection, but in the time domain in

this case, was recently also investigated by [114].

SF metric is defined as a log ratio of geometric and arithmetic mean

of spectral magnitudes. Spectrum of speech signal turns out to be less

flat in segments with more frequencies (overlapping speech) than in

segments with few or no frequencies. LPCRE feature, inspired by [115],

is based on the fact that Linear Predictive Coding (LPC) can model well

one voice, but suffers if more voices are present. In such cases more

energy is expected to be present in the residual signal [112]. Both SF

and LPCRE are also discussed in Section 3.2.

Further overlap detection strategies [116, 117], integrated into speaker

diarization systems are discussed in the following section.

2.4 overlapping speech in speaker diarization

As already stated in the previous section, several works consider Simultaneous speech

poses a difficult

challenge for spoken

language

applications

overlapping speech as a challenging problem for automatic human

language technologies, including speaker diarization [33, 79]. The

presence of overlap can be especially strong in meeting environment

where the discourse is less structured and more spontaneous (com-

pared to broadcast news, for instance). Nevertheless, Shriberg et al.

[79] observed that its amount is not necessarily dependent on the

number of people being present, and that two people in a telephone

conversation can produce significant overlap too. In the following, the

focus is on techniques relying on distant channel data.

Previously, overlapping speech was discarded from speaker diariza-

tion evaluations of meeting data. In NIST RT ’06s2 evaluation, overlap

was included in the main metric for the first time. The detection tech-

niques researched by the participating labs did not bring any success

in decreasing the overall error [7, 116]. A related error analysis pub-

lished in [6] reports that approximately 22% of the error could be

accounted to overlapping speech. Otterson and Ostendorf [5] suggest

that in a conventional speaker diarization system overlaps cause errors

in at least two ways: Two sources of error

by overlaps in

conventional speaker

diarization

2 The Rich Transcription (RT) evaluation series, organized by the National Institute

of Standards and Technology (NIST), began in 2002 and promotes advances in the

state of the art in several automatic speech processing technologies to produce more

readable and useful transcriptions. One of the research tasks defined under Metadata

Extraction is speaker diarization [118].
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1. Clustering assigns segments to only one speaker, which means

that during an overlap, the speech of the interfering speaker(s)

will be denoted as missed.

2. Speaker models can be corrupted when overlapping speech is

included in their training data, possibly causing less precise

clustering (and higher speaker error).

Both increase the Diarization Error Rate (DER). This fact consequently

leads to two open questions:

1. Would the impact of overlaps be decreased if they would be

detected and excluded before clustering?

2. And, would the assignment of a second label for overlap segments

lead to an improvement in the diarization score?

Dealing with the overlapping speech issue can be considered in

two levels. The first is the detection of segments where the overlaps

occur (see Section 2.3.2). Then, given the knowledge of the overlap

locations, the second is the handling of such segments in order to

improve diarization (e. g., by assigning more than one speaker label).

An interesting assessment of the performance gain by handling overlap

regions, assuming oracle overlap detection, is given in [5].

A straightforward option would be to pre-process detected overlaps

with a source separation algorithm, and work with the separated

signals individually. The potential advantage would be that speaker-

specific characteristics could be isolated and employed in the clus-

tering. However, this approach faces robustness issues of separation

techniques with real overlapping speech (in meetings, for instance),

and also seems rather complicated. To the knowledge of the author

no comparable strategy was proposed in the literature in relation to

speaker diarization.Explicit modeling of

concurrent speaker

combinations
A completely different approach is to model overlapping combina-

tions of previously detected speakers. Actually, in this way the overlap

detection and the identification of which speakers are involved are ac-

complished simultaneously. Such approach was proposed by Leeuwen

and Huijbregts in [116]. Their system starts with a standard diariza-

tion segmentation. Once finished, a new HMM is constructed with

single-speaker states from detected individual clusters and also over-

lap states for every speaker pair. The overlap states are trained with

the speech from both clusters of a particular pair. In addition, the

HMM topology is altered so that transitions between the single and

the overlap states are only allowed if the overlap state includes the

speaker of the single state. Meeting data is then resegmented with

the extended model. The authors reported that even though overlap

was detected with this approach, it did not lead to a reduction of the

diarization error on NIST RT data.
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A global segmentation in terms of all possible single- and multiple-

speaker classes was explored in [40] (already discussed in Section 2.3.2).

Single-speaker models were used to generate dual-speaker models

and were jointly integrated into a GMM/HMM framework. Limiting

factors of this work were that the number of speakers had to be known

beforehand and such strategy suffers from a huge number of overlap

classes.

When a known number of speakers is confined to certain physical

regions, it is possible to produce parallel individual speaker segmen-

tations for every speaker based on his location instead of a global

segmentation [106]. In this way, all overlapping speaker combinations

are handled implicitly.

Having identified accurate locations of overlapping speech, it is

possible to assist diarization without any further extensive processing.

The algorithm presented by Boakye et al. [112, 113] detected overlap-

ping speech with an HMM-based system utilizing various features (see

Section 2.3.2) on single distant-channel recordings from the AMI cor-

pus. In a following step, the detected overlap segments were excluded

from speaker clustering process of the diarization system in order to

obtain purer clusters.

With the goal to assign correct speaker/cluster labels to the diariza-

tion output, Trueba-Hornero [111] explored four posterior labeling Posterior assignment

strategiesstrategies for two-speaker overlap situations:

• Random Selection — the second label is chosen on a random basis

from the remaining speaker candidates. This strategy may serve

as a baseline for assessing other more complex schemes.

• Most Talkative Speaker — this strategy assigns the overlapping

label to the most talkative speaker in the diarization output. In

case that the most talkative speaker has already been the choice

of the diarization system, the second most talkative speaker is

selected. This strategy was also applied for an oracle experiment

in [119].

• Overlap Patterns — the assignment of the missing speaker label

is based on the analysis of the identified overlapping speech

pattern (i. e., flow, interruption, floor-grabbing pattern). This

strategy is very similar to the Nearest Neighbor scheme, where

the second label is set according to the nearest neighboring

speaker, as in [5, 117].

• Diarization Posteriors — speaker labels for an overlap region

are assigned according to the two highest posterior probabil-

ity scores, produced by a diarization system, in that particular

region [112, 113].



26 state of the art

The most successful strategy according to [111] was the one based on

diarization posterior probabilities.

Experiments involving the exclusion of overlapping speech from

diarization process can also be found in [5, 114, 117]. Huijbregts et al.

[117] assume in their algorithm that speaker overlap is likely to occur

around speaker-turn points. Accordingly, an ad hoc overlap model is

trained in one diarization pass and the overlap GMM is added to the

original HMM. The objective is to pool all the suspected overlapping

speech in Viterbi decoding into one cluster, and not contaminating the

others during a second diarization pass. At the same time, overlapping

speech is also detected for posterior assignment of extra speaker labels.

The application of this technique improved results on NIST RT data.



3
DETECT ION OF OVERLAPP ING SPEECH

The detection of overlapping speech concerns with the identification

of speech segments with more simultaneously active speakers in a

meeting recording. In our approach we do not determine the exact

number of involved speakers, but rather focus on differentiating be-

tween single-speaker speech and overlapping speech. This chapter

begins with the introduction of the general concept of our overlap

detection system and its relation towards subsequent speaker diariza-

tion. Then, features assuming to convey discriminating information

on speaker overlap are discussed. Before proposing the novel spatial-

based and long-term prosody-based features for this task, baseline

short-term parameters are presented. Baseline features are derived

from speech spectrum or temporal course of the signal. Finally, the

modeling and the decoding framework are described, followed by

the definition of evaluation metrics for the detection of overlapping

speech.

3.1 overlap detection system architecture

Overlap detection process consists of the usual stages which can be

found in almost every pattern recognition system: feature extraction

and decoding/classification. The system diagram is given in Figure

6. The input is formed by a number of distant microphones in a

microphone array. When only one channel is needed, e. g., for baseline

or prosodic features, normally the first channel from the first array is

used.

Features are categorized into three groups, spectral- and temporal-

based parameters (Section 3.2), prosodic features (Section 3.5), and

cross-correlation-based spatial parameters (Section 3.3). Since spatial

parameters are produced for every microphone pair, the spatial feature

extraction is coupled with a so-called microphone data fusion block

for dimensionality reduction and unification purposes. If necessary,

the different feature streams are synchronized after feature extraction

in order to form feature vectors at a common frame rate. HMM-based decoder

relying on multiple

feature streams
The detection of speaker overlap is achieved by Viterbi decoding

of given feature streams. The system considers non-speech (e. g., si-

lence, noise), single-speaker speech, and overlapping speech class to

classify the signal and produce an output hypothesis. The HMM-based

decoding framework will be explained in Section 3.6 more in detail.

27
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Figure 6: Overlap detection system diagram.

Finally, the hypothesized start times and durations of overlapping

speech are provided as an input to the diarization system. The sys-

tem works offline, however, the design is potentially open for live

processing as well.

3.2 baseline spectral and temporal features

Baseline features for overlap detection involve short-term parameters,

derived from the speech spectrum or the temporal course of the signal,

which were previously proposed in the literature. In the following,

their definition and a brief description is given. A subset of these

parameters is later selected for the construction of a baseline system

(see Section 6.1).

Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) are a representation of

the short-term power spectrum of a sound, based on a linear cosine

transform of log power spectrum on a nonlinear frequency scale. The

power spectrum is obtained by applying triangular-shaped filter bank

to the spectral magnitudes of the signal. The frequency bands of the

filter bank are equally spaced on the mel scale, which approximatesMel cepstrum

the human auditory system’s response more closely than the linearly-

spaced frequency bands. This scale has a linear frequency spacing

below 1000Hz and a logarithmic spacing above 1000Hz.
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MFCCs are a highly popular feature kind for several speech process-

ing tasks and are well suited as baseline parameters [102]. In addition

to phonetic information, these features also capture physiology charac-

teristics of the talker and thus could also provide information whether

multiple speakers are speaking.

In our experiments, MFCCs were extracted every 10ms over 30ms

Hamming windows and normalized by Cepstral Mean Subtraction

(CMS). We use static MFCCs together with their first-order derivatives

(deltas).

Linear Predictive Coding Residual Energy

LPC is one of the most effective methods for the analysis of acoustic

signals. In this model the speech is produced as the output of a linear,

slowly time-varying system excited by either a quasi-periodic glottal

impulses (voiced speech) or random noise (unvoiced speech). The

linear system representing the vocal tract is described by an all-pole

system function that can be expressed in the form

H(z) =
Y(z)

E(z)
=

G

1−
∑p

k=1 akz−k
, (3.1)

where E(z) is the excitation input, Y(z) is the speech output of the

model, the excitation gain is denoted as G, and p is the order of the

model. The filter coefficients {ak} encode the formants, i. e., the vocal

tract resonances.

In linear prediction analysis the set of predictor coefficients {ak} is

efficiently computed directly from the speech signal. The output of a

linear predictor is

ŷ[n] =

p∑

k=1

aky[n− k], (3.2)

and the prediction error d[n] = y[n] − ŷ[n], also termed residual,

is defined as the amount by which the model fails to predict the

original signal. Residual signal can be obtained by filtering Y(z) with

a prediction error filter A(z), which will be inverse to the system filter

H(z) = G/A(z).

It is assumed that LPC of a reasonably chosen order can model the

spectrum of a single speaker quite well, but will fail for a region with

multiple speakers [115, 112]. Consequently, more energy is left in the Linear prediction

error increases with

overlapping speakers
residual signal (prediction error) in the later case. In our system, Linear

Predictive Coding Residual Energy (LPCRE) of a 12th-order LPC was

computed over a 25ms window. In the example illustrated in Figure 7,

the LPCRE features corresponding to overlapping speech exhibit higher

values compared to single-speaker speech segments.
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Figure 7: LPC residual energy of a sample audio signal (top) containing
simultaneous speech. Sample taken from the recording IS1004d
(AMI corpus) at approx. 00:16:32 h.

Spectral Flatness

Another spectral-based feature is the Spectral Flatness (SF), which was

originally applied for discrimination between speech and non-speech

[101], but can eventually convey information about the number of

speakers speaking as well [113]. It is derived from the signal spectrum

and yields high values for signals with power equally distributed

across all frequency bands, such as noise. SF is defined as the ratio

between the geometric and the arithmetic mean of N spectral magni-

tudes:

MSF = 10 log10

N

√∏N−1
i=0 |X(i)|

∑N−1
i=0 |X(i)|

. (3.3)

The frequency domain structure of overlapping voiced speech can

differ from that of single-speaker speech. Harmonic frequencies ofHigher number of

active frequency

bands makes the

spectrum flatter

overlapping speakers can introduce more elevated energy bands re-

sulting in a flatter speech spectrum in comparison with single-speaker

situation. This effect, however, is very much dependent on the pitch

differences and relative energy concentrations [110].

In our experiments, SF was extracted over 30 ms Hamming windows

at a rate of 10ms considering the first N = 100 spectral lines of a 512-

point FFT. Spectral flatness values of an audio signal containing overlap

segments are demonstrated in Figure 8 and indicate a high variability

of this feature. Even though both speaker overlap segments have, in
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Figure 8: Spectral flatness of a sample audio signal (top) containing simul-
taneous speech. Sample taken from the recording IS1004d (AMI

corpus) at approx. 00:16:32 h.

general, relatively high SF, the single-speaker segments in some frames

show even higher flatness.

Pitch Prediction Feature

Pitch Prediction Feature (PPF) was developed to discriminate between

one- and two-speaker speech [102]. A short summary of the computa-

tion process is as follows. In the first stage, an LPC representation is

computed and an LP residual is obtained. The LP residual is further-

more smoothed with a Gaussian-shaped filter. After a threshold-based

extraction of pitch peaks from the smoothed residual, the PPF mea-

sure is computed as the standard deviation of the distances between

successive peaks. For single-speaker segments, a regular sequence of

peaks will occur in the LP residual (corresponding to glottal closures),

resulting in a low PPF value [97].

We extracted the PPF every 10ms over 30ms windows and an LPC of

12th-order was used in the first computation stage. Values in unvoiced

and silence regions were substituted with mean PPF from voiced

regions. An example of PPF is illustrated in Figure 9.

Modulation Spectrogram

An alternative representation of speech signal with emphasis on tem-

poral characteristics is the Modulation Spectrogram (MSG). Originally
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Figure 9: Pitch prediction feature of a sample audio signal (top) containing
simultaneous speech. Sample taken from the recording IS1004d
(AMI corpus) at approx. 00:21:58 h.

introduced in [120], Boakye et al. [113] suggested that this representa-

tion may act complementary to, for instance, MFCCs for the detectionModulation

spectrogram

emphasizes temporal

evolution of signal

spectrum

of overlapping speech.

An example of modulation spectrogram features is given in Figure

10. The parameters are computed as follows. After obtaining the FFT

of a signal with 10ms frame rate and 25ms analysis window, the

spectrogram is analyzed in 18 subbands according to Bark scale1.

Square-root subband energies are computed for each frame. These are

then filtered in time for each individual subband with two modulation

filters: a low-pass 0–8Hz filter, and a band-pass 8–16Hz filter, to

reflect temporal evolution of spectrogram related to the syllable rate

in speech. The length of the filters is 0.21 s. Finally, the resulting 36

features are mean-variance normalized.

Voicedness Feature

Voicedness measure, which was used in combination with cepstral fea-

tures for ASR in [121], was implemented based on Harmonic Product

Spectrum (HPS) [122]. This method relies on the fact that the ampli-

tude spectrum of voiced sounds show sharp peaks at integer multiples

of the fundamental frequency. Harmonic product spectrum P(n) is

1 Bark scale corresponds to the first 24 critical bands of hearing.
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Figure 10: Modulation spectrogram features of a sample audio signal (top)
containing simultaneous speech. Two modulation filters are ap-
plied to 18 subbands: 0–8Hz filter (lower half) and 8–16Hz filter
(upper half). For better comprehensibility only every other sub-
band is depicted. Sample taken from the recording IS1004d (AMI

corpus) at approx. 00:16:32 h.

the product of R frequency-compressed replicas of the amplitude

spectrum. Mathematically it can be expressed as

P(n) = R

√

√

√

√

R∏

r=1

|X(ein∆ωr)|, (3.4)

where ∆ω is the resolution of the FFT. The motivation is that for

periodic signals the product spectrum should give high peaks at the

pitch value and its near harmonics, and close-to-zero values otherwise.

Unlike voiced speech, unvoiced frames do not have a clear peak

structure and their HPS is typically flat.

The voicedness measure reflects how voiced a particular frame is.

In [121], it is referred to as the height measure of the HPS peak, since Harmonic product

spectrum

peak-neighborhood

ratio

it considers the peak amplitude:

vh =
P(nmax)

2W
√∏

n P(n)
, (3.5)

where nmax is the position of the maximum amplitude, and n ad-

dresses the neighborhood of nmax, n ∈ 〈nmax −W;nmax +W〉 −

nmax. W is set as the half of the minimal distance between two har-

monics, 40Hz/∆ω.
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Figure 11: Voicedness feature derived from the harmonic product spectrum
of a sample audio signal (top) containing simultaneous speech.
Sample taken from the recording IS1004d (AMI corpus) at approx.
00:19:46 h.

We believe that HPS-derived voicedness measure may also be ben-

eficial for the detection of speaker overlap, because the introduction

of concurrent speaker harmonics will probably have an influence on

the periodicity of voiced speech spectra of the first speaker. In such

situation, the detected HPS peak will correspond to the pitch of the

dominant speaker. The concept of this feature is very similar to the

HER feature, mentioned in Section 2.3.2, which analyzes the energy

distribution between harmonic and non-harmonic frequency bands.

Figure 11 shows an example of this feature on overlapping speech

sample. In this case, the overlap segments exhibit in several instances

relatively high voicedness values. The feature was computed with step

size of 10ms over 30ms frames using a 2048-point FFT.

Zero-Crossing Rate

Zero-Crossing Rate (ZCR) is the rate at which the signal changes

from positive to negative or back. It is commonly used in speech

processing for various audio classification tasks including, for instance,

voiced/unvoiced or speech/music discrimination.

This speech parameter is defined as follows,

MZCR =

N−1∑

i=1

0.5 |sign x[i] − sign x[i− 1]| , (3.6)
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Figure 12: Zero-crossing rate of a sample audio signal (top) containing simul-
taneous speech. Sample taken from the recording IS1004d (AMI

corpus) at approx. 00:16:35 h.

where x is an audio signal having N samples. In single-speaker voiced Temporal-based

parametersspeech situation the values of ZCR are related to pitch periodicity and

exhibit low values, whereas in unvoiced speech or background noise,

the ZCR is high. The assumption regarding overlapping speech is that

when two voiced signals are mixed, the resulting signal will then have

due to different pitch periods increased periodicity, and thus higher

ZCR. However, in the given speech sample in Figure 12, such assumed

behavior cannot be verified. ZCR was computed over 50ms frames

every 10ms.

Kurtosis

In statistics, kurtosis serves as a measure of how flat is the top of

a symmetric distribution of a random variable. Distributions with

longer tails and more acute peaks have positive kurtosis and are called

leptokurtic. On the other hand, distributions with shorter tails and

wider peaks use to have negative kurtosis and are called platykurtic.

Given a random variable x, its kurtosis is defined as follows,

kx =
E(x− µ)4

σ4
− 3, (3.7)

where µ and σ are the mean and standard deviation of x, respectively,

and E(·) represents the expected value. The term −3 is introduced to

make the kurtosis of Gaussian distribution equal to zero.



36 detection of overlapping speech

0 1 2 3 4 5 6 7

0

5

10

15

Time [s]

K
u
r
to

s
is

Overlap

Single Speech

Non−speech

Figure 13: Kurtosis of a sample audio signal (top) containing simultaneous
speech. Sample taken from the recording IS1004d (AMI corpus) at
approx. 00:16:35h.

The use of kurtosis in this context is inspired by Krishnamachari et

al. [99] and later it was experimented by Wrigley et al. [97]. Since the

sum of several random distributions has lower kurtosis than individual

distributions, it was hypothesized that the kurtosis of overlapping

speech is generally also lower than for isolated speech utterances.

In this work, kurtosis feature is extracted over a 20ms Hamming

window every 10ms. Example values for an overlapping speech sam-

ple are illustrated in Figure 13, but unfortunately it is not clear from

this illustration if overlap segments are less leptocurtic than single-

speaker segments.

Root-Mean-Squared Energy

The basic idea behind the application of Root-Mean-Squared En-

ergy (RMSE) for speaker overlap detection is that multiple concurrent

speakers can produce higher energy than a single speaker. Further-

more, people also tend to start talking louder when competing simul-

taneously in an argument. The assumption is obviously very simple

and does not take into account states of elevated emotions, such as

laughter or anger.

RMSE for a framed audio signal x is defined as

ERMS =

√

√

√

√

1

N

N−1∑

i=0

x[i]2. (3.8)
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Table 1: Fratio and KL2 divergence for a subset of candidate baseline features.
Values are calculated according to AMI development data.

feature fratio kl2

Root-Mean-Squared Energy 0.1432 0.2378

Modulation Spectrogram (12th prm.) 0.1356 0.3848

MFCC (7th coef.) 0.0534 0.0831

Voicedness 0.0341 0.0978

Pitch Prediction Feature 0.0160 0.0466

LPC Residual Energy 0.0134 0.1220

Zero-Crossing Rate 0.0041 0.0179

Spectral Flatness 0.0023 0.0061

Kurtosis 0.0004 0.0210

For better comparability between different recording sessions, the

signals were normalized to unit power before extracting the RMSE

feature. The frame length used in this work is 20ms.

Comparison of Baseline Feature Candidates

There are several options to assess the potential discriminability of a Feature

discriminability can

be assessed by means

of Fisher’s ratio or

Kullback-Leibler

divergence

particular feature. For the case of baseline overlap detection features

we consider two metrics: Fisher’s ratio (Fratio) and the symmetric

Kullback-Leibler divergence (KL2).

Fisher’s ratio is a measure for linear discriminating power of some

variable, given as

Fratio =
(µ1 − µ2)

2

σ2
1 + σ2

2

, (3.9)

with µ1 and µ2 being the means of class 1 and class 2, and σ2
1 and σ2

2

being the variances. The KL2 divergence, given in (2.9), measures the

dissimilarity between two distributions of random variables. Though

informative, these measures only give a preliminary idea of a param-

eter suitability for a given task and do not speak about the actual

impact on system performance. Furthermore, some features can have

good isolated discrimination properties but do not work so well in

combination with others, since the features can be correlated.

Table 1 presents Fratio and KL2 divergence for a subset of baseline

features. For illustrational reasons we selected from MFCCs and MSG

features only the 7th and 12th parameter, respectively. According to

the AMI development data (refer to Section 5.1 for more details) the

highest Fratio exhibits the RMSE and the highest KL2 divergence the
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MSG feature. The two discrimination metrics do not always follow the

same trend, for instance LPCRE shows relatively high KL2, but only a

moderate Fratio.

The corresponding histograms for the subset of candidate baseline

features are given in Figure 14. The distribution of SF pictured inBaseline feature

histograms Figure 14 (b) shows that the histograms of both classes are very much

overlapping and explain the low scores in Table 1. A slight shift of

the overlap distribution towards higher SF values is in agreement

with the assumption that spectra of simultaneous speech are more

flat. Figure 14 (f) demonstrates that overlapping speech also exhibits

higher RMSE.

The majority of voicedness values in Figure 14 (e) are concentrated

in the interval 0–2, bigger values clearly indicate voiced speech frames.

It can be noted that relatively lower number of speaker overlap frames

is unvoiced. This is not unexpected, since the mixture of independent

voiced and unvoiced speech has rather a voiced speech appearance.

Surprisingly, the kurtosis distribution of simultaneous speech in

Figure 14 (h) is shifted towards higher values in comparison with the

single-speaker distribution. This observation is in contrast with the

previously stated hypothesis that overlapping speech has, in general,

lower kurtosis.

3.3 novel spatial-based features

Microphone arrays provide the ability to discriminate between sounds

based on their source location. The application of features related to

spatial location of speakers was proposed for speaker diarization in

various works, such as [123]. Spatial sampling of the acoustic field can

serve not only for meeting segmentation, but also makes it possible to

detect more active speakers [40, 106]. Other publications in the context

of speaker overlap detection relying on microphone arrays, and spatial

information in one way or another, include [107, 108, 109].

Képesi et al. [109], for instance, presented a multi-source track-

ing algorithm based on the decomposition of two-channel cross-

correlationinto a 2d Position-Pitch space. Concurrent speakers can

be separated in such 2d representation when common periodicities

and related DOA values are extracted by a specific sampling process

applied to the cross-correlation function.

In this thesis, we elaborate on the idea of applying spatial infor-

mation for the detection of simultaneous speech and propose a set

of parameters derived from the cross-correlation between two dis-

tant microphones. Furthermore, three techniques for the fusion of

information from different microphone pairs are investigated.
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Figure 14: Histograms of baseline feature candidates: (a) 7th MFCC, (b) SF, (c) LPCRE, (d) 12th MSG

parameter, (e) Voicedness, (f) RMSE, (g) ZCR, and (h) Kurtosis. Histograms are computed
on AMI development data.
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3.3.1 Generalized Cross-Correlation

The cross-correlation function is well-known as a measure of the sim-

ilarity between signals for any given time displacement and ideally

its maximum lies in correspondence to the delay between the pair

of signals [124]. A commonly used technique to estimate the time

delay between two acoustic signals that performs robustly in rever-

berant environments is the Generalized Cross-Correlation with Phase

Transform Weighting (GCC-PHAT) [125, 126]. Although it is a generalCross-correlation

function purpose technique and not fully adapted to speech, it has turned out

to be the most successful state-of-the-art approach to speaker local-

ization and it has been employed by some researchers in the field of

speaker diarization, including [127, 128]. For a pair of microphones m

and n, the GCC-PHAT can be expressed in terms of the inverse Fourier

transform of the estimated cross-power spectrum , Gmn(f), as follows,

Rmn(τ) =

∫∞

−∞

Gmn(f)

|Gmn(f)|
ei2πfτdf, (3.10)

and the Time Delay of Arrival (TDOA) is as follows,

τ̂mn = argmax
τ

Rmn(τ). (3.11)

The GCC-PHAT function exhibits a prominent peak at the elapsed

time corresponding to the dominant sound source in the room, mini-

mizing the peaks of the non-dominant sources and reverberation at the

same time. The value of the GCC-PHAT peak provides a measure of the

coherence between signals independently of the microphone gains or

the signal power, and varies with the distance between microphones,

the distance between the acoustic source and the microphone pair, and

with the environmental noise and reverberation conditions.

3.3.2 Spatial Coherence, Dispersion, and delta TDOA

In situations dealing with multiple, possibly moving, concurrent speak-

ers, it was observed that the time delay estimates produced by the

GCC-PHAT jump from one speaker to another at a very high rate as

one source dominates due to the non-stationarity of the voice. The

maximum value of the cross-correlation sequence is also lower than in

the single speaker situation, since multiple speakers introduce random

peaks, which attenuate the main peak.

Based on these observations we proposed several cross-correlation-

based spatial features for every microphone pair that provide some

degree of information on speaker overlaps [129, 130].Coherence —

cross-correlation

peak value
An easily observable feature is the coherence value, defined in (3.12).

This is the principal peak value of the GCC-PHAT, and in ideal condi-

tions should be high for single-source situations, while the presence
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Figure 15: Example of the cross-correlation between a pair of microphones
involving two concurrent speakers. The value of the main peak is
the coherence feature C, and its time displacement τ̂ corresponds
to the TDOA. The ratio between C2 and the quadratic sum of the
values in bold under the window is the dispersion feature D.

of noise, reverberation, and concurrent acoustic sources attenuate this

value.

Cmn = max(Rmn(τ)) (3.12)

Derived from the coherence value, we are also proposing to extract

the coherence dispersion ratio, as follows,

Dmn =
C2
mn∑wmn

t=−wmn
R2
mn(t+ τ̂mn)

. (3.13)

This value is computed as the ratio between the square of the main

peak value and the square quadratic sum of the cross-correlation

values under a time delay window wmn. The size of the window wmn Dispersion —

cross-correlation

peak-neighborhood

ratio

varies for different microphone pairs and it is set to the TDOA standard

deviation of each pair. In this way, the dispersion ratio measures the

relation between the energy of the main peak and the energy that is

scattered in its neighborhood. Similar to the coherence feature (3.12),

the dispersion ratio is close to 1 in the case of a single speaker and

ideal conditions, while it has a lower value in reverberant conditions

or concurrent acoustic sources situations.

Finally, the delta of TDOA obtained by (3.11) for every microphone

pair also carries information on overlaps. The derivative of the TDOA Delta TDOA
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is high in situations where the speaker is moving, multiple non-

concurrent speakers change turns at talk, or multiple speakers talk

simultaneously.

An illustration of the cross-correlation between a pair of micro-

phones and the proposed spatial features can be seen in Figure 15.

The GCC-PHAT was estimated with step advances of 64 ms using a

1024-point FFT for each of the
(

m
2

)

microphone pairs, with m being the

number of available distant channels.

3.4 microphone data fusion

One of the main issues that arise is the high dimensionality of spatialHigh and variable

dimensionality of

spatial features
feature vectors. For instance, a recording with 12 available micro-

phone channels yields 66 pairs, and thus 198 features. Furthermore,

the number of microphones can differ from site to site, making it

difficult to train a general model. In the following, we discuss two

transformation- and one neural-network-based approaches for the

dimensionality reduction and normalization of spatial features.

3.4.1 Principal Component Analysis Fusion

First strategy is based on the application of the Principal Component

Analysis (PCA), which is a useful statistical technique performing

dimensionality reduction while preserving as much variability in the

high-dimensional space as possible. It transforms the original feature

space into a new coordinate system with the greatest variance lying on

the first component. Otterson, for instance, used PCA for the reduction

of spatial parameters for diarization in [131].PCA, also known as

Karhunen-Loève

transformation
PCA is conceptually quite simple. Let X = {xi} be a data set formed

by vectors xi ∈ R
n, with mean µ and covariance Σ. Next, the eigenval-

ues and eigenvectors are computed, and sorted according to decreas-

ing eigenvalue. The eigenvalue equation is given by

ΣU = UΛ, (3.14)

where Λ is a diagonal matrix with eigenvalues λ1, λ2, . . . , λn lying on

the diagonal and U = [u1,u2, . . . ,un] is a n×n matrix consisting of

eigenvectors, which are also called principal components. Eigenvectors

are uncorrelated among each other. For more details on PCA, refer to

one of [15, 11].

The transformed feature vectors are obtained as

yi = UT (xi − µ). (3.15)

For dimensionality reduction only the first k eigenvectors with highest

eigenvalues are picked, where k < n.
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Figure 16: Spatial coherence, dispersion ratio, and delta TDOA for six ran-
domly chosen microphone pairs of an audio signal (top) contain-
ing simultaneous speech. Sample taken from the recording IS1004d
(AMI corpus) at approx. 00:16:35 h.
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In this thesis a sequential PCA implementation [132], originally

introduced in [133], is used. A transformation matrix is estimated for

every discussed spatial feature kind and for each recording site, and

then only the first principal component u1 is used [129, 130]. This

practice is motivated by two reasons. First, the data across microphone

pairs is correlated (see Figure 16) and usually the first eigenvalue

is much more higher than the rest. The second motivation of using

only one projection vector is to limit possible ambiguities when using

data from various meeting rooms, i. e., which parameter in room A

corresponds to which parameter in room B, etc. The final fused spatial

feature vector yspat for a given frame and a particular site can be

expressed as follows,

yspat =
[

uT
C1 xC, uT

D1 xD, uT
dT 1 xdT

]

, (3.16)

where uC1, uD1, and udT 1 are first principal components for spatial

coherence, dispersion ratio, and delta TDOA, respectively. The corre-

sponding microphone-pair parameter vectors xC, xD, and xdT are

already assumed to have subtracted means.

3.4.2 Linear Discriminant Analysis Fusion

Linear Discriminant Analysis (LDA), in contrast to PCA, explicitly at-

tempts to model the difference between the classes of data. However,

when the discriminatory information is not in the mean but rather in

the variance of the data, LDA is not a suitable option.

Let us consider a data set of N independent feature vectors {xi}

where each of the vectors xi ∈ R
n belongs to only one class j ∈

{1, . . . , J}. The objective of LDA is to find a linear projection from n-LDA is related to

R. Fisher’s linear

discriminant (1936)
dimensional space onto (J− 1) dimensions, f : R

n
→ R

(J−1), y = f(x).

Each class j is characterized by its own mean µj, covariance Σj,

and sample count Nj satisfying
∑J

j=1Nj = N. The class information

is represented by two scatter matrices SW and SB called within-class

scatter and between-class scatter, respectively:

SW =
1

N

J∑

j=1

NjΣj, SB =
1

N

J∑

j=1

Njµjµ
T
j − µµ

T . (3.17)

The linear projection should maximize the ratio of between-class and

within-class scatter. In the general case, however, determinants of the

scatter matrices are used. The criterion function can be written as

J(θ) =

∣

∣

∣
θSB θ

T
∣

∣

∣

∣

∣

∣
θSW θ

T
∣

∣

∣

, (3.18)

and θ̂ = argmax J(θ) is the estimated transformation matrix. The

LDA-projected feature vectors are computed as y = θ x.
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Figure 17: Topology of the MLP used for fusion of spatial data from several
microphone pairs.

Similarly to the PCA-fusion strategy, we estimated a LDA-projection

matrix for each spatial feature kind: θC for coherence, θD for disper-

sion, and θdT for delta TDOA. We performed the LDA considering only

the overlapping and single-speaker speech, since the discrimination

between these two classes is the focus of our attention. Consequently,

the 1×n projection matrices, n being here the number of microphone

pairs, project the data for a given frame to a one-dimensional parame-

ter. The joint three-dimensional spatial feature vector can be expressed

as in (3.16), only replacing the principal components uC1, uD1, and

udT 1 with LDA projections θC, θD, and θdT , respectively.

3.4.3 Artificial Neural Network Fusion

Another issue is that the proposed spatial features are, in general,

not comparable across different microphone pairs, since they are

intrinsically tied to physical characteristics of the pair like the inter-

microphone distance. To normalize the spatial features and reduce

their dimensionality we consider a Multi-layer Perceptron (MLP) neural

network [129]. The MLP is composed by four layers with six input Multi-layer

perceptron

classification
neurons, its topology is given in Figure 17. The input corresponds to

three spatial features and three normalization values (mean of coherence,

variance of coherence, variance of TDOA) for every microphone pair. The

two hidden layers have 24 and 6 neurons, respectively. The output is

a binary score classifying between overlap and non-overlap, which

is commensurable across microphone pairs. For a given frame the

average score across all microphone pairs is taken.
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The process of obtaining the output score can be mathematically

expressed as

y = σ





6∑

k=1

wk · σ





24∑

j=1

wjk · σ

(

6∑

i=1

wijxi

)







 , (3.19)

where w denotes the weight of a connection between two neurons and

σ(·) is the sigmoid function (also called logsig) defined by the formula

σ(x) =
1

1+ e−x
. (3.20)

Starting with the first hidden layer, the input to each neuron is taken

and the output is found by first calculating the weighted sum of

inputs {xi}. Then, the sigmoid function is applied to it, and it is

passed forward to the next layer until the output layer is updated. The

standard way to train a multi-layer perceptron is using a supervised

learning method called error back-propagation [11].

Comparison of PCA-, LDA-, and ANN-based fusion

The histograms of spatial parameters after the application of PCA-,

LDA-, and MLP-based microphone data fusion are given in Figure 18.

The absolute values of the transformed features are not important,

since the original parameter values were projected to different space.

However, the histograms show that the PCA-transformed coherence

and dispersion ratio in Figures 18 (a) and (c) are spanned over largerPCA emphasizes

parameter variance

while LDA the class

discriminability

intervals compared to LDA-transformed coherence and dispersion in

Figures 18 (b) and (d). LDA parameters, on the other hand, seem

to have less overlapping distributions. These observations are con-

sistent with the characteristics of the two statistical techniques, PCA

being focused on signal representation and high variance, and LDA

on enhancing the class-discriminatory information. In case of the MLP

scores in Figure 18 (g), the values range from −1 to 1 where the lower

value corresponds to single-speaker speech and the higher value to

overlapping speech.

In terms of the KL2 divergence calculated on AMI single-site develop-

ment data (refer to Section 5.1 for more details on data sets), the PCA

coherence, dispersion, and delta TDOA features yield 0.0513, 0.1078,

and 0.0435, respectively. For the LDA features in the same order, the

values are 0.2515, 0.2360, and 0.0479. The KL2 divergence of MLP score

distribution is 0.3387.

3.5 prosody-based features

A few studies were published which researched the relationship be-

tween prosodic cues and the interaction of conversation participants.
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Figure 18: Histograms of spatial feature candidates: (a) PCA- and (b) LDA-transformed coherence,
(c) PCA- and (d) LDA-transformed dispersion ratio, (e) PCA- and (f) LDA-transformed
delta TDOA, and (g) spatial MLP score. Histograms are computed on AMI single-site
development data.
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The work by Ward and Tsukahara [134], for instance, suggests that

stretches of low pitch can trigger backchannel feedback from lis-

tener (yeah, uh-huh, right). In another publication, Shriberg et al. [135]

showed that speakers raise their voices when starting their utterance

during somebody else’s talk, compared to starting in silence.

This section concerns with the application of prosodic features

and their statistical characteristics, which are obtained over relatively

long time spans. Candidate features are investigated for their overlap

discrimination properties, and a two-stage feature selection process is

outlined.

3.5.1 Candidate Features and Long-Term Statistics

Prosody, in general, is characterized by rhythm, intonation, stress, and

juncture in speech. These attributes, however, cannot be measured

directly, only their acoustic or perceptual correlates can be extracted

from speech signal. For the detection of overlapping speech a number

of prosody-based features are considered [136, 137]. They can be

assigned to one of the following categories:

• fundamental frequency,

• acoustic intensity,

• formant frequencies.

Fundamental frequency (F0) is the rate of vibration of the vocalFundamental

frequency, acoustic

intensity, and

formants

folds during voiced speech measured in Hz. The term F0 is often,

though incorrectly, used interchangeably with pitch, which is the

perceptual correlate of F0. Intonation, for instance, is represented

by changing suprasegmental—representation above the level of a

phoneme—patterns of F0. Fundamental frequency is influenced by age

and gender. For male voices it typically ranges from 100 to 150Hz

while for females it is 170–220Hz.

The values of acoustic intensity, usually expressed in dB, indicate

the energy of the speech signal. Changes in intensity, or loudness, are

relevant for marking stress and can reflect emotions of speakers.

Formants denote concentrations of acoustic energy around particu-

lar frequencies at approximately 1000Hz intervals. These frequencies

correspond to the resonances of the vocal tract tube, however, they

only occur in voiced speech segments. The first two formants are the

most important for determining the phonetic content. The higher for-

mants are assumed to convey mainly the speaker-specific information.

Four formant frequencies, i. e., F1, F2, F3, and F4 were extracted from

the speech signal.

In addition to the actual values of the prosodic parameters (F0, for-

mants, intensity) for any given time point, suprasegmental statistical
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characteristics are also computed. The long-term statistics include the Long-term statistics

mean, median, minimum, maximum, standard deviation, and the dif-

ference between the minimum and maximum of the extracted prosodic

parameters. They are computed over 500ms windows with a 10ms

step for synchronization reasons with the baseline features. Missing

values, such as F0 estimates for unvoiced speech, or parameters in

non-speech regions, are substituted with default values. Moreover,

non-speech regions are not considered when computing statistical

parameters.

A similar set of candidate features was investigated for speaker-

discriminative properties in [36]. Prosodic features were extracted with

the help of Praat2.

3.5.2 Feature Selection

Using the full set of candidate features might be suboptimal for the

overlap detection system. There are two options for reducing the

dimensionality of feature vectors, the first one being the feature extrac-

tion/transformation approach with methods covered in Section 3.4,

such as the PCA or LDA. The other approach is to select a subset of

existing features without a transformation, referred to as feature selec-

tion. Feature selection might be preferable in situation when features

are expensive to obtain or the measurement units of features want to

be maintained. Furthermore, less features means reduced complexity

and run-time.

Feature selection requires two things, a search strategy to select can- Search strategy and

objective function —

two components of

feature selection

didate subsets, and an objective function to evaluate these candidates.

Search strategies can be grouped in one of the following categories:

exponential, sequential, and random algorithms. An example of the

exponential algorithm is the simple exhaustive search which involves

2N possible combinations, N being the number of feature candidates.

Sequential forward selection is a representative of sequential algo-

rithms. It starts from an empty set and sequentially adds candidate

features that result in the highest objective function when combined

with the features that have already been selected.

Objective functions are divided into two groups: filters and wrap-

pers. Filter objective function evaluates feature subsets by their in-

formation content, such as interclass distance, for instance. Wrapper

objective function, on the other hand, is actually a patter classifier

which evaluates according to the recognition rate on some test data.

In this work, the used feature selection process consists of two

stages [136, 137]. In the first, a minumum Redundancy Maximum Rel- mRMR-based feature

selectionevance (mRMR) algorithm [138] was applied on held-out development

2 Praat: doing phonetics by computer [Computer program]. Version 5.2.04, retrieved

from http://www.praat.org/
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Table 2: Candidate prosodic features sorted according to the mRMR criterion,
fundamental frequency (f0), intensity (int), and formants (f1-4).

ord. name score ord. name score

1. f0_max 0.026 22. f1 -0.037

2. f4_max 0.000 23. f2_max -0.041

3. f4 0.000 24. int_std -0.040

4. f0_min 0.000 25. f3_med -0.041

5. int -0.002 26. f3_diff -0.044

6. f2_min -0.007 27. f0_mean -0.044

7. f4_min -0.009 28. f4_diff -0.046

8. f1_min -0.011 29. f3 -0.045

9. f2_med -0.015 30. f4_mean -0.047

10. f3_max -0.015 31. f0_diff -0.047

11. int_diff -0.013 32. f3_std -0.049

12. f3_min -0.018 33. int_max -0.051

13. f0 -0.019 34. f1_med -0.051

14. f2 -0.026 35. f2_diff -0.051

15. f2_std -0.024 36. f1_std -0.059

16. f0_med -0.025 37. f2_mean -0.060

17. f4_med -0.030 38. int_med -0.067

18. f1_max -0.029 39. f1_mean -0.069

19. f0_std -0.034 40. f1_diff -0.069

20. int_min -0.038 41. f3_mean -0.077

21. f4_std -0.039 42. int_mean -0.086

data to individually score the candidate features against the target

class (overlapping speech vs. single-speaker speech), and sort them

according to their minimum redundancy and maximal relevance. The

mRMR criterion is commonly used for first-order incremental feature

selection and it is an equivalent form of the maximal statistical de-

pendency criterion based on mutual information. Table 2 gives the

sorted 42 candidate features. The highest scores yield the F0 maximum,

the F4 maximum, the actual F4 estimate every time step, and the F0

minimum.

The second feature selection stage involves conventional hill climb-

ing wrapper approach, i. e., iteratively adding candidate features to

the feature subset, creating a model, and evaluating the system on the

development data. The obtained experimental results will be presented

in Section 6.3.
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3.6 models and decoding network

Overlap detection system considers three acoustic classes represent-

ing non-speech, single-speaker speech, and overlapping speech. For Three acoustic

classes: non-speech,

single speech, and

overlap

each class a continuous density HMM is defined. In order to obtain a

more accurate modeling of transitions between classes, the HMMs have

three states. Three states empirically showed to be a fair compromise

between imposed minimum duration constraint and simplicity. As

most other continuous density HMM systems, the output distributions

are modeled by Gaussian mixture densities (GMMs) using diagonal

covariance.

The output distribution of a particular state Θt represented by

a GMM was defined in (2.2). When modeling different information

sources (e. g., spectral, spatial, or prosodic features), a further gener-

alization is made. Each observation vector yt ∈ R
n at time t can be

split into a number of S independent data streams yst. The formula

for computing bΘt
(yt) is then

bΘt
(yt) =

S∏

s=1

[

Ms∑

m=1

wΘtms N(yst,µΘtms,ΣΘtms)

]γs

, (3.21)

where Ms is the number of components in stream s, with correspond-

ing component weights wΘtms. The exponent γs is a stream weight

which is used to give a particular stream more emphasis [13]. The

Gaussian density N(·) with mean µ and covariance Σ is defined as

follows,

N(y,µ,Σ) =
1

√

(2π)n |Σ|
e−

1
2 (y−µ)

TΣ−1
(y−µ). (3.22)

Since the amount of training data among different classes is not

balanced (refer to Chapter 5), the baseline system uses in each state

256 Gaussian components for single-speaker speech and a smaller

number, 64 components, for overlapping speech and non-speech. Un-

like the baseline feature GMMs, the spatial and prosodic likelihood

distributions use only 32 Gaussian components regardless the class.

In general, there is less spatial feature vectors compared to baseline

MFCCs, for instance, because the frame rate in the first case is 64ms

whereas it is only 10ms in the latter case. In order to synchronize

the frames, the spatial features are repeated in time accordingly. The

three HMM states will not capture much temporal evolution of spatial

features and it has little sense to use completely different GMMs. For

this reason, the spatial Gaussian mixtures share their means and

variances across the three states of a particular HMM. The mixture

weights in different states are not shared, though.

Given the pooled training data, the iterative training process for the

estimation of joint overlap detection models can be described with

following steps:



52 detection of overlapping speech

���
������	


�	���


����

�	���


������


�	���


Figure 19: Work network topology in decoding process of the overlap detec-
tion system. OIP refers to Overlap Insertion Penalty.

1. HMMs with only a single Gaussian per state are initialized.Iterative training

algorithm with

Gaussian splitting 2. An initial Baum-Welch re-estimation is performed.

3. The number of mixture components is doubled by using a

Gaussian-splitting technique.

4. (Mean and variance parameter tying in case of spatial Gaussian

mixtures.)

5. A single Baum-Welch re-estimation of the GMM parameters.

6. Go to the step 3 if the final number of GMM components is not

reached yet, or finish.

Detection hypothesis is obtained by Viterbi (maximum-likelihood)

decoding and applying a word network whose topology is depicted

in Figure 19. The transition probabilities between different HMMs are

not trained. They are set manually. In order to inhibit the numberViterbi decoding

with imposed overlap

insertion penalty
of false overlap segments, and thus increase the precision, the transi-

tion from single speech to overlap speech can be penalized with an

Overlap Insertion Penalty (OIP) and certain transitions are completely

forbidden. The OIP parameter could be perceived as a compensation

for an undertrained model. After obtaining an overlapping speech

hypothesis, the information about overlap segments is used as an

input in the speaker diarization system, as was shown in Figure 6. The

model training and decoding is performed using the HTK3 framework.

3.7 evaluation method

There are two types of errors in Overlap Detection (OD), missed and

false overlapping speech amounting to total durations of T
(ov)
miss and

T
(ov)
false, respectively. Missed overlaps correspond in a classical binary

3 HTK: Hidden Markov Toolkit [Computer program]. Version 3.4, retrieved from http:

//htk.eng.cam.ac.uk/
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detection scheme to False Negative errors and false overlaps corre-

spond to False Positive errors. Let denote the total amount of reference

overlapping speech as T
(ov)
ref and the amount detected by the overlap

detection system as T
(ov)
sys .

The first evaluation metric reflecting the amount of True Positives

is Recall. It is defined as the ratio between the true detected and the

reference overlap time: Recall, Precision,

and Overlap

detection error
R =

T
(ov)
sys − T

(ov)
false

T
(ov)
ref

, (3.23)

where the amount of correctly detected overlapping speech in the

nominator can also be expressed as T
(ov)
sys − T

(ov)
false = T

(ov)
ref − T

(ov)
miss.

The second metric is Precision, which is the ratio between true and

all detected overlap time:

P =
T
(ov)
sys − T

(ov)
false

T
(ov)
sys

. (3.24)

For instance, a system with a freely set operation point can yield very

high recall, but if the system introduces a lot of false overlapping

speech segments, the precision will be low. In some publications on

speaker overlap detection [112, 113] another metric called Fscore is also

used. It is defined as the harmonic mean of precision and recall, but

here it is not considered.

Evaluation metric which measures all the error related to overlap-

ping speech is calculated as the sum of missed and false overlap time

divided by the reference overlap time. In this thesis it is referred to as

Overlap detection error, or simply Error. It can be expressed as:

E =
T
(ov)
miss + T

(ov)
false

T
(ov)
ref

. (3.25)

The ratio between false positive time and reference time is referred to

as False Alarm rate, FA = T
(ov)
false/T

(ov)
ref .

Note that the evaluation metrics are very strongly influenced by the

overlap insertion penalty, since this penalizing parameter controls the

number of overlap segments the system will hypothesize. A common ROC curve and OD

error areaway of demonstrating the performance of a binary detection system is

by means of a Receiver Operating Characteristic (ROC) curve. This ROC

curve plots the false positive rate (FA) against the false negative rate

(or its complement, recall R) for a number of sensitivity thresholds. In

case of overlap detection system, the operating point is controlled by

the OIP.

When comparing two systems by means of ROC curves, it is unfor-

tunately not always clear which system performs better. One system
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can have lower detection error for high penalization, but the contrary

is true for low penalization. In order to solve this issue, we suggest

to calculate the area under these curves, and use this measure as a

decision factor. The amount of area reflects the overlap detection error

of a particular system. For a fair comparison, every curve is extended

with the same fictional start point [R = 100%, FA = 100%] and end

point [R = 0%, FA = 0%].



4
H A N D L I N G O V E R L A P P I N G S P E E C H I N S P E A K E R

D I A R I Z AT I O N

The two questions raised by Otterson and Ostendorf in [5], i. e., if the

diarization score can be improved by assigning more speaker labels

and if discarding speech containing multiple speakers from training

data in the diarization process will result in purer speaker models, are

outlining the topic of this chapter. Before, however, a description of

the UPC speaker diarization system considered as baseline in this work

is given. The techniques that handle overlapping speech, namely over-

lap exclusion and labeling, and their integration into the diarization

system are discussed afterwards.

4.1 upc baseline speaker diarization system

4.1.1 Diarization System Architecture

The UPC speaker diarization system follows the commonly used ag-

glomerative clustering approach. Firstly, speech is broken into short

uniform segments, and then the successive clustering stage groups

acoustically similar segments and assigns them to speaker clusters.

Figure 20 depicts an overall scheme of the diarization system submit-

ted to previous RT ’07 and RT ’09s evaluations [127]. The main stages

of the diarization can be condensed into the following points: Main stages of the

diarization algorithm

• Feature extraction and removal of non-speech frames. At this

stage, a clustering initialization is also performed based on an

homogeneous partitioning of the data (Figure 20 block A).

• Complexity selection of the models based on the amount of data

per cluster and the cluster complexity ratio (RCC) which fixes the

amount of speech per Gaussian. HMM/GMM training and cluster

realignment by Viterbi decoding based on maximum likelihood

(Figure 20 block B).

• Agglomerative clustering based on the Bayesian Information

Criterion (BIC) metric among clusters. The stopping criterion,

also based on the BIC, drives the ending point of the algorithm

(Figure 20 block C).

55
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Figure 20: Speaker diarization system architecture.

4.1.2 Integrated Segmentation and Clustering Algorithm

More in detail, the audio parametrization for the integrated segmenta-

tion and clustering consists of the extraction of 20 MFCCs from 30 ms

windows with 10 ms shifting. Aiming to avoid non-speaker informa-

tion such as background or channel noise, non-speech frames are dis-

carded from further processing based on either reference speech/non-

speech annotation (default) or a SAD hypothesis.

At the beginning of the clustering algorithm, an uniform initializa-

tion is performed so that the system starts with a homogeneous split-Clusters are

initialized by

uniform

segmentation

ting of the whole data among the initial number of clusters (Figure 20

block A). The number of initial clusters is determined automatically

depending on the meeting length with minimum and maximum value

constraints. In this work the total amount of clusters was constrained

to a minimum and a maximum of 20 and 55 clusters, respectively, in

order to avoid overclustering and to reduce the computational cost of

the iterative approach.

Once the initial segmentation is performed, each cluster is modeled

by one mixture of Gaussians, fitting the probability distribution of

the features by the classical EM algorithm (Figure 20 block B). The

automatic selection of the number of clusters (Kinit) is defined as

Kinit =
N

Ginit RCC
. (4.1)

This expression takes into account the total number of speech frames

in the meeting (N), the number of Gaussians initially assigned to each

speaker cluster (Ginit), and the cluster complexity ratio (RCC). The
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RCC is a constant value across all meetings that defines the number

of frames per Gaussian. It was fixed to 7 s of speech per Gaussian

whereas the initial number of Gaussians per model (Ginit) was set to 5.

It follows an iterative bottom-up strategy driven by a loop of BIC Bottom-up

clustering with

several HMM

alignment and

re-estimation

iterations

estimations and HMM alignments (Figure 20 block C). In this step the

segments which belong to the same speaker are combined into a new

model at each iteration. A time constraint as in [20] is also imposed

on the duration of the speaker segments by setting the transition prob-

ability among each cluster. In that sense, Viterbi decoding decisions

are taken based on the accumulation of the emission probabilities in a

3 s window.

We used a modified BIC-based metric [20] to determine the most

likely pair of clusters to merge. The segmentation obtained at the

output of block B (see Figure 20) defines a new set of speaker clusters

which will be retrained. Most of the systems based on agglomerative

clustering perform just one merge at each BIC iteration, where the clus-

ter pair with the highest BIC values is merged. This system, however,

applies a threshold that depends on the standard deviation of the BIC

values obtained across cluster pairs. It was decided to merge all cluster Modified BIC metric

to speed-up cluster

merging
pairs (i, j) which are fulfilling

BICij > BICµ +
3

2
BICσ, (4.2)

where BICij is the BIC value between the clusters i and j, BICµ is the

mean of BICij for i 6= j, and BICσ is the standard deviation for the

same set. For this reason, it is possible for the system to merge more

than one pair of clusters per iteration, speeding up the agglomerative

clustering.

At each iteration n, the number Mn
i of Gaussians to model the

cluster i is updated by Automatic model

complexity

estimation
Mn

i =

⌊

(Nn
i

RCC

)

+
1

2

⌋

, (4.3)

where Nn
i is the number of frames belonging to the cluster i. When-

ever two segments are merged, a new segment model is also trained

pooling all the features from the merged segments and fixing the

model complexity according to the RCC value. Such automatic se-

lection of the modeling complexity has demonstrated a successful

performance while avoiding the use of the penalty term in the classical

BIC metric [139]. This procedure is iterated until all the BIC values of

the remaining cluster pairs are negative, which means that no suitable

candidates for merging are found anymore. Finally, at the last iteration

and once the stopping criterion is met, each remaining state represents

a different speaker. A detailed description of the system can be found

in [127].
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4.1.3 Multi-Microphone Approach

The baseline speaker diarization system can be improved by multi-

channel approach based on conventional techniques. Firstly, the Wiener

filtering is applied using the noise reduction implementation from

the QIO front-end [140] on each microphone signal. Next, we apply

the weighted delay-and-sum technique [141] to perform the signalWeighted

delay-and-sum

beamforming
enhancement. In order to synchronize two microphone signals and

enhance the signal-to-noise ratio of the signal mixture, TDOAs are esti-

mated. In addition, TDOAs can serve as a second stream of information

when combined with the classical MFCC parameters in the diarization

algorithm.

TDOAs are computed by means of the Generalized Cross-Correlation

with Phase Transform Weighting (GCC-PHAT) method which was al-

ready defined in (3.10). The TDOAs for two microphones are computed

similarly to (3.11), using a window of 500 ms at a rate of 250 ms

applied on the Wiener-filtered channels. The TDOA information isTDOA feature stream

in combination with

MFCCs
combined with the MFCC stream along the diarization process in the

Viterbi path as well as in the BIC estimation. The joint log-likelihood is

estimated as a weighted linear combination of the log-likelihoods of

each stream. Each stream is considered to be statistically independent

from each other, as in [123].

4.1.4 Speech Activity Detection

In some experiments in this work a SAD system developed at the UPC,

which has shown a good performance in last RT SAD evaluations [142],

is applied. The algorithm is based on a proximal SVM (PSVM) [143]

and on a fast training technique which allows the training of huge

amounts of data.

The SVM-based SAD system was trained with the RT ’05, RT ’06, RT ’07

conference data, the CHIL ’07 meeting data, and the Speecon far-field

microphone data. It yielded to more than 25 hours of training material.SVM-based SAD

system, however, the

default are reference

speech/non-speech

annotations

Nevertheless, the default option regarding SAD is to use reference

speech/non-speech annotations. The reason is that this thesis mainly

focuses on studying the impact of overlapping speech on speaker

segmentation and clustering. The addition of another tunable system

(SAD) to the processing chain only complicates this task and can pos-

sibly introduce more confusion. The use of a real SAD system should

rather complete the picture for the reader about the performance of

speaker diarization.
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4.1.5 Diarization Scoring

Performance of speaker diarization systems is evaluated by means of

DER, a time-weighted metric defined by NIST1 [118]. The audio file is

divided into contiguous segments demarcated by all reference and

system speaker change points so that the set of compared speakers

in one segment does not change. Then, the DER metric is defined as

follows,

DER =

∑
∀s dur(s) · (max(Nref(s),Nsys(s)) −Ncorrect(s))∑

∀s dur(s) ·Nref(s)
, (4.4)

where dur(s) is the duration of a particular segment s, Nref(s) is

the number of reference speakers speaking in segment s, Nsys(s) is

the number of system speakers in segment s, and Ncorrect(s) is the

number of matching reference and system speakers who are speaking

in segment s. DER represents the ratio of incorrectly attributed speech

time to the total amount of speech time. It can be decomposed into Diarization error

consists of missed

speech, false alarms,

and speaker

confusion

missed speaker time error, false alarm error, and speaker error (speech

assigned to the wrong speaker). Since there is no a priori relation

between the system and reference speaker clusters, an optimum one-

to-one mapping of reference speaker IDs to system output speaker IDs

is determined separately for each audio file.

As will be shown in Section 5.1 the median overlap duration is

rather short. To make sure that overlap segments are considered in

scoring, normally no forgiveness collar was applied around segment

boundaries.

4.2 overlap handling techniques

Techniques which handle overlapping speech in speaker diarization

comprise the exclusion of overlap frames from model training and

the assignment of second speaker labels for overlap segments, also

referred to as overlap labeling. The aim of the first is to achieve purer

cluster models and thus a more precise segmentation. The latter strives

to recover missed speaker time which contributes to the DER.

Figure 21 shows the relationship of these two techniques to func-

tion blocks of the UPC diarization system. They work independently Independence of

overlap exclusion

and labeling allows

for their separate

optimization

from each other, or better said sequentially, since the exclusion works

throughout the diarization process whereas the labeling is performed

at the end of the iteration process. Understandably, overlap exclusion

affects the outcome of overlap labeling by means of the trained cluster

models. These two techniques do not necessarily have to share the

1 NIST scoring tool available at: http://www.itl.nist.gov/iad/mig/tests/rt/

2006-spring/code/md-eval-v21.pl
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Figure 21: Overlap handling in speaker diarization system. Affected modules
by the exclusion and the labeling of overlapping speech.

same overlap hypothesis but can possibly use two different hypothe-

ses, i. e., one for each technique. In other words, overlap labeling and

exclusion can be optimized independently regarding the used overlap

detection hypotheses. This method was firstly suggested in [129] and

then also applied in the following works [130, 136].

4.2.1 Overlap Exclusion

Cluster models should in the end correspond only to single speakers.

The original assumption behind overlap exclusion is that overlapping

speech frames can lead to corruption of these cluster models, since they

implicitly introduce speech from more people. Furthermore, a largeSingle-speaker

models could be

corrupted due to

multiple-speaker

speech in training

data

amount of overlapping speech can possibly result in over-clustering,

i. e., stopping the clustering process with more final speaker clusters

than the correct number of speakers.

The overlapping speech hypotheses are, however, not perfect and

there exists a risk that too much clean data could be taken away.

Consequently, the speaker models trained on less data will not be

trained as well as normally.

Exclusion of overlapping speech does not mean that these frames

are completely thrown away. They are not considered in some steps of

the diarization algorithm, but are maintained, for instance, in Viterbi

decoding. The functional modules affected by discarding overlap

frames, visible in Figure 21, are automatic cluster selection, complexity

selection, HMM training, and BIC pairs computation.
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The UPC speaker diarization system uses a uniform segmentation in

the cluster initialization among the automatically computed number

of clusters. In this stage of the diarization process there are several

variations how to implement overlap exclusion. Firstly, the Automatic Possible variations of

overlap exclusion

implementation
Number of Clusters (ANC) can be computed with the original formula

defined in (4.1), or the formula can be modified so that overlapping

frames are not considered,

Kinit =
N−N(ov)

Ginit RCC
, (4.5)

where N(ov) is the total number of detected overlapping speech frames.

In the following, the original formula (4.1) is referred to as ANC-I, and

the modified version (4.5) as ANC-II. Secondly, in case of using ANC-I,

overlapping frames can be discarded before or after uniformly divid-

ing the data among clusters. Discarding the overlapping frames before

makes the initial clusters data-uniform in the sense that there will be

an equal amount of frames in each cluster, whereas discarding these

frames after the splitting will distribute the cluster equally in time, i. e.,

time-uniformly. The initial cluster boundaries in the latter case match

the start and end times of clusters when no overlap exclusion is ap-

plied. The ANC-II approach implicitly assumes discarding overlapping

speech before the initial segmentation.

It may be polemic which of these options is the most correct. In

order to select one, the performance of the diarization system in

terms of relative DER improvement for the three variations of overlap

exclusion implementation in the initialization stage was obtained and

is demonstrated in Figure 22. Experiments were performed on AMI

development data using overlapping speech hypotheses acquired for a

number of OIP working points. The results show that there is no clear

optimal implementation from among using ANC-II (Figure 22 (a)), or

using ANC-I with data-uniform clusters (Figure 22 (b)) or time-uniform

clusters (Figure 22 (c)). In the end, the ANC-II variation was selected as

the final implementation for overlap exclusion since it is probably the

most logical alternative.

For complexity selection, the employment of overlap exclusion mod-

ifies the way the appropriate number of Gaussians is determined from

(4.3) to

Mn
i =

⌊

(Nn
i −N

(ov)n
i

RCC

)

+
1

2

⌋

. (4.6)

Here, N
(ov)n
i is the number of overlapping speech frames belonging

to the cluster i at iteration n. In case of HMM training and BIC pair com-

putation, respective formulas are modified similarly and overlapping

frames are not considered in these steps.
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Figure 22: Relative improvement over baseline DER 28.3% by excluding si-
multaneous speech from cluster-model training as a function of
OIP applied in overlap detection. Overlapping speech frames are
discarded (a) (b) before, or (c) after the initial uniform segmenta-
tion. The Automatic Number of Clusters (ANC) is computed (b)
(c) with, and (a) without considering overlap frames. Experiments
are performed on AMI single-site development data.



4.2 overlap handling techniques 63

4.2.2 Overlap Labeling

Given the start and end times of overlapping speech segments, the

goal of overlap labeling is to determine the overlapping speaker(s)

on top of the original choice of a conventional diarization system. A

number of strategies were already proposed in the literature for the

assignment of second speaker labels. They range from simple schemes

such as the most talkative speaker [119] or nearest neighbor speaker

[5, 117] to technique like the one used in [112, 113], which relies on

posterior speaker probabilities.

The technique for second speaker-label assignment proposed in

this thesis is integrated into Viterbi decoding. Altough a third and

even more speaker labels could theoretically also be assigned, here

only two speakers are considered for speaker overlap segments. As a

matter of fact, two concurrent speakers represent the vast majority of

overlapping speech situations (see Chapter 5). Overlap labeling

technique integrated

in Viterbi algorithm
Viterbi algorithm can be regarded as a dynamic programming algo-

rithm applied to the HMM, which uses a computationally efficient ap-

proximation to estimate the optimal (maximum likelihood, in practice)

sequence of states given in (2.3). Instead of summing up probabilities

from different paths coming to the same destination state, Viterbi

algorithm selects and memorizes just the best path.

For a given HMM with N states—each state represents one cluster—

let δt(j) be the probability of the most likely state sequence at time t,

which have generated the observation vectors y1, . . . , yt and finished

in state j. Furthermore, let φt(j) be a back-pointer variable which

points to the optimal predecessor of the current state j. For t = 1 the

variables are initialized as

δ1(j) = πjbj(y1)

φt(j) = 0,
(4.7)

where 1 6 j 6 N, and πj denotes the initial probability of state j. The

induction step of the recursive algorithm is as follows,

δt(j) = max
i

(

δt−1(i)aij

)

bj(yt)

φt(j) = arg max
i

(

δt−1(i)aij

)

,
(4.8)

where 1 6 j 6 N and 2 6 t 6 T . The best state sequence Ŝ =

{ŝ1, . . . , ŝT } is obtained by first identifying the last state (t = T ), ŝT =

arg maxi δT (i), and then backtracking the other states of the sequence

by observing that

ŝt = φt+1(ŝt+1), t = T − 1, T − 2, . . . , 1. (4.9)
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Figure 23: Relative improvement over baseline DER 28.3% by labeling simul-
taneous speech as a function of the minimum duration decoding
parameter when determining the second speaker label. Overlap-
ping speech segments are extracted from annotation reference
(top), or real OD system hypothesis. Experiments are performed
on AMI single-site development data.

The implementation of overlap labeling requires the introduction of

another variable which tracks the second most likely preceding cluster

state. Being in time t and current state j, it is defined as

φ
(ov)
t (j) = arg max

i; i 6=φt(j)

(

δt−1(i)aij

)

. (4.10)

It is initialized in the same manner as φt(j) in (4.7). For overlapping

speech segments the alternative state at time t, ŝ
(ov)
t , is determined

based on the most likely decoding path with identified states ŝ1, . . . , ŝT
as

ŝ
(ov)
t = φ

(ov)
t+1 (ŝt+1). (4.11)

Hence, given that speaker overlap was detected at time t, ŝt represents

the first speaker and ŝ
(ov)
t represents the second, overlapping, speaker.

In Section 4.1.2 it was stated that a minimum duration constraint of

3 s is imposed in the decoding in order to prevent too short speaker

segments. This value, however, may eventually be sub-optimal in caseMinimum duration

constraint imposed

on decoded clusters
of the second-speaker segments. A series of development experiments

was launched to estimate the most appropriate minimum length of

continuous overlapping-speaker chunk. Figure 23 demonstrates the

relative DER improvement of diarization system by overlap labeling
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with the minimum duration set to a range of values. The minimum

duration constraint for the first (default) speaker was left at 3 s, though.

When using overlapping speech segments from a real overlap detec-

tion system the performance improvements are roughly 3–4%. For

minimum durations higher than 1 s the observed improvements seem

relatively insensitive to increasing values. In case of assigning second

speaker labels to reference overlapping speech, the observed relative

improvements are much higher compared to previous case (approx.

25–27%). The reason is that in the former case only around 21% of over-

lapping speech is actually labeled and there is also a certain amount

of false overlaps. In both cases it is possible to observe a relatively

high DER improvement at 0.46 s, which is the value that was finally

selected for overlap labeling. It is worth mentioning that this value

actually corresponds with the median duration of overlapping speech

segments (see Chapter 5).

When decoding the first and the overlapping speaker with different

minimum duration constraints—two decodings are performed in fact—

sometimes the same speaker cluster is picked. In such situations the

overlapping speaker is changed to the most likely cluster of the second

decoding, which is different from the already selected first speaker

from the first decoding.

High-Precision Overlap Detection Requirement

As was already implied, the possible improvement of speaker diariza-

tion by overlap labeling is negatively affected by the amount of false

overlapping speech. The overlap hypothesis which should be used

for labeling needs to be sufficiently precise, since all falsely detected

overlaps will directly contribute to the diarization error, but only a

perfect selection of speaker labels will recover the missed overlapping

speaker time. This requirement was previously also explained in [111]

and [110]. The critical precision for overlap hypothesis is 50%, in such Critical precision of

detected overlapping

speech to be suitable

for labeling is 50%

case the DER after overlap labeling will at best be the same.

A model example of this mechanism is illustrated in Figure 24. The

missed speech error in a system with overlap labeling is decreased by

the amount of detected overlapping speech. The false alarm error, on

the other hand, will grow exactly by the amount of falsely detected

overlapping speech, because the labeling technique will introduce to

all such segments a false speaker. The actual net profit of overlap

labeling depends on the difference between overlap recall on one side,

and the amount of false overlaps and the increase of speaker error

on the other. The speaker error part of DER will almost certainly be

increased, since more speaker labels are assigned, in general.
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Figure 24: Impact of second label assignment on speaker diarization perfor-
mance in terms of missed speech error (MS), false alarm error (FA),
and speaker error (SPKE). Falsely detected overlapping speech is
denoted as OD FA.



5
D ATA B A S E S

This chapter gives a description of the corpora used for overlapping
speech detection as well as for speaker diarization experiments. The
distribution of recordings into various sets is detailed, and issues
regarding overlap annotations are discussed. The main experimental
data comes from the AMI Meeting corpus. Additional experiments
were conducted on the NIST RT recordings.

5.1 ami meeting corpus

The Augmented Multi-party Interaction (AMI) Meeting corpus [144,
145] consists of 100 hours of audio in 171 meeting recordings which use
a range of signals synchronized to a common timeline. These include
close-talking and far-field microphones. In addition, this database
provides individual and room-view camera videos. The meetings
were recorded in English using three different recording rooms with
different acoustic properties. They were located at Idiap, Edinburgh,
and TNO site. The participants are mostly non-native English speakers,
and there are normally four speakers in one meeting. The audio signals
are sampled at 16 kHz with 16 bit precision.

This thesis concerns with the use of far-field microphone channels.
For experiments on AMI data, two experimental scenarios were defined. Two experimental

scenarios involving

single and multiple

recording sites

The first, single-site scenario, included recordings only from the Idiap
site, and the other, mutli-site scenario, included meeting recordings also
from the Edinburgh and TNO sites. Full recordings were divided for
both scenarios into training, development, and evaluation sets.

The total duration of audio in single-site sets (maintaining the given
order) is 9.7 h, 1.6 h, and 4.8 h, which corresponds to 22, 3, and 11

recordings1, respectively. The recording distribution is given in Table 3.
In the case of multi-site scenario, the training, development, and

evaluation data amounts to 10.8 h, 4.4 h, and 5.9 h corresponding to
22, 9, and 10 recordings2, respectively. The distribution of meetings is
given in Table 4.

1 Originally, the development set also included the recording IS1007d, and the evalua-
tion set the recording IS1003b, but these recordings were later discarded due to the
unavailability of multi-channel data. The sets were meant to maintain the distribution
used in [110].

2 The evaluation set originally included the recording IS1003b, but due to the unavail-
ability of multi-channel data it was discarded and substituted with the recording
IS1008c. As in single-site scenario, the distribution of recordings was meant to be
similar to [110].

67
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Table 3: Experimental sets for the AMI single-site scenario.

site training development evaluation

Id
ia

p

IS1000b IS1005b IS1000d IS1000a

IS1000c IS1005c IS1002d IS1001a

IS1001d IS1006a IS1004d IS1001b

IS1002b IS1006c IS1001c

IS1002c IS1007a IS1003d

IS1003a IS1007b IS1006b

IS1003c IS1007c IS1006d

IS1004a IS1009a IS1008a

IS1004b IS1009b IS1008b

IS1004c IS1009c IS1008c

IS1005a IS1009d IS1008d

Table 4: Experimental sets for the AMI multi-site scenario.

site training development evaluation

E
d

in
bu

rg
h EN2002d ES2008d EN2004a EN2003a

ES2003b ES2011a ES2013c EN2009b

ES2005b ES2012b ES2008a

ES2006a ES2014b ES2015d

ES2007a ES2016c

Id
ia

p

IB4005 IS1004a IS1001c IN1008

IN1001 IS1006a IS1001d IN1012

IN1009 IS1007a IS1005a IS1002c

IS1001a IS1007b IS1008b

IS1007c IS1008c

T
N

O

TS3003c TS3010a TS3006a TS3009c

TS3006b TS3010b TS3012b

TS3008b
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Figure 25: Overlapping speech duration distribution in the AMI corpus.

The total amount of data in single-site scenario with respect to
the three acoustic classes considered in overlap detection system (see Overlapping speech

in AMI dataSection 3.6) is 4.0 h of non-speech and 10.4 h of single-speaker speech.
Overlapping speech yields 1.8 h which is 14.4% out of all speech.

The same categorization of data in multi-site scenario is as follows.
The duration of non-speech is 5.3 h, the total amount of single-speaker
speech is 13.5 h, and finally, the 2.4 h of overlapping speech constitues
15.1% of all speech.

Different properties of the recordings in the AMI sets, such as the
number of speakers or the amount of overlapping speech by two,
three, and four speakers, are given in Tables 5 and 6. The amounts of
overlapping speech in the training, development, and evaluation set
are 12.6%, 16.5%, and 17.4% in single-site scenario and 13.5%, 16.2%,
and 17.0% in multi-site scenario, respectively.

Note that the term overlapping speech is used to refer to speech
signal whereas speaker time refers to speech in the sense of speech
utterances from various speakers. Speaker time is calculated for each
speaker independently. For instance, three speakers speaking simul-
taneously for 3 s produce 3 s of overlapping speech, but it equals 9 s
of speaker time. In this sense, overlapping speaker time (OV-SPKT)
denotes the time that will be missed by a conventional speaker diariza-
tion system which assigns one speaker label per segment, assuming
oracle speech/non-speech detection. Moreover, it sets the upper di-
arization improvement limit by overlap labeling if a perfect overlap
detection system would be used. This would have to specify also the
number of involved speakers. The upper performance bound of our
system, which considers only two-speaker overlap, matches the ratio
of overlapping speech (OV).

The duration of continuous segments of simultaneous speech varies,
however, the lengths are rather short. The median value in AMI data is
0.46 s, whereas the mean is 0.66 s. The distribution of overlap segment
durations is depicted in Figure 25.
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The force-aligned annotations used, for instance, for training and
scoring were obtained by SRI’s DECIPHER recognizer3 [146]. ReferenceReference

annotations, impact

of mistakes on

overlap detection is

negligible

annotations are, naturally, not perfect. In order to evaluate the extent
of this issue, overlap annotations for the 3 AMI single-site development
recordings were manually corrected. In some situations, however, it is
very difficult to determine what can and what cannot be considered
overlapping speech. For instance, when several consecutive attempts
by an interrupting speaker to grab floor are accompanied by non-
verbal breathy sounds.

Let us denote the reference annotations as R and their manually
corrected version as C. The amount of overlapping speech in common,
R∩C, is 635.6 s. Overlap annotated in R, but then discarded during the
correction since it was observed to be false, R∩C ′, accounts for 42.9 s
which is 6.3% of the original amount of overlapping speech. Overlap
discovered to be missing in the reference annotations, C ∩ R ′, has a
total duration of 9.01 s, being a 1.3% addition to the original overlap.
To assess the impact of the annotation differences on the evaluation
metrics, the output overlap hypotheses of 50 experimental setups were
pairwise scored with R and C ground-truth annotations. The mean
difference in the obtained OD errors was 0.57% ± 0.14%, which we
consider acceptable for further use of the reference annotations (R) in
our experiments.

Another open question in the context of simultaneous speech is the
presence of laughter, because it is reasonable to assume that peopleLaughter in the AMI

corpus are often laughing together. The occurence of laughter can trigger
spontaneous concurrent utterances by speakers willing to share their
immediate thoughts, and vice versa (occurence of overlap resulting
in laughter). In the corpus annotations, laughter is treated as an
acoustic event independent from speech. This means that laughter
can be annotated concurrently with speech segments. In the single-
and multi-site data there is 1935.0 s and 1686.5 s of annotated laugter,
respectively. The correlation with overlapping speech is obvious when
comparing segments of both types. Laughter matches overlapping
speech in 1427.5 s (73.8% of laughter) for single-site data, and in
1186.8 s (70.4% of laughter) for multi-site data.

3 The annotation were kindly provided by K. Boakye (ICSI, Berkeley).
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Table 5: Statistics of recordings in AMI single-site experimental sets. Number
of speakers (#Spks); duration of speech, two- (OV-2), three- (OV-
3), and four-speaker overlap (OV-4) in (s); overlapping speech as a
portion of all speech (OV), and overlapping speaker time as a portion
of all speaker time (OV-SPKT) in (%).

meeting #spks speech ov-2 ov-3 ov-4 ov ov-spkt

IS1000b 4 1636.7 160.2 11.9 2.6 10.7% 10.5%

IS1000c 4 1559.3 141.7 14.5 1.0 10.1% 10.0%

IS1001d 4 516.7 72.3 9.3 2.2 16.2% 15.9%

IS1002b 4 1872.7 128.2 8.7 0.3 7.3% 7.2%

IS1002c 4 1614.7 151.3 28.8 3.6 11.4% 12.2%

IS1003a 4 457.3 78.1 12.0 0.8 19.9% 18.6%

IS1003c 4 1355.0 170.6 18.1 0.9 14.2% 13.7%

IS1004a 4 479.1 26.7 0.2 0.0 5.6% 5.4%

IS1004b 4 1675.2 144.0 9.8 2.8 9.4% 9.3%

IS1004c 4 1704.1 213.8 26.0 3.8 14.3% 14.0%

IS1005a 4 539.0 46.4 15.2 4.0 12.2% 14.2%

IS1005b 4 1608.1 133.0 17.3 3.9 9.6% 10.0%

IS1005c 4 1455.6 131.1 27.1 2.7 11.1% 11.7%

IS1006a 4 607.5 108.5 51.5 19.6 29.6% 31.0%

IS1006c 4 1454.1 205.7 57.9 19.7 19.5% 21.2%

IS1007a 4 598.9 83.3 20.7 2.3 17.7% 18.0%

IS1007b 4 940.4 147.9 40.6 7.9 20.9% 21.3%

IS1007c 4 1549.8 194.6 25.8 8.2 14.8% 15.1%

IS1009a 4 575.2 79.3 15.8 0.4 16.6% 16.3%

IS1009b 4 1669.5 152.3 28.2 3.3 11.0% 11.7%

IS1009c 4 1409.0 79.5 15.6 1.4 6.8% 7.5%

IS1009d 4 1448.2 136.2 30.4 6.0 11.9% 13.0%

ami-ss_train 26725.9 2784.4 485.3 97.3 12.6% 13.2%

IS1000d 4 1874.0 237.8 23.1 1.0 14.0% 13.3%

IS1002d 4 911.3 111.2 40.0 4.6 17.1% 18.7%

IS1004d 4 1330.0 216.5 37.9 5.8 19.6% 19.0%

ami-ss_dev 4115.3 565.5 101.1 11.4 16.5% 16.4%

IS1000a 4 868.0 98.0 20.1 0.0 13.6% 13.7%

IS1001a 4 590.6 79.6 12.1 1.6 15.8% 15.5%

IS1001b 4 1508.0 129.3 12.9 0.0 9.4% 9.3%

IS1001c 4 1010.5 88.4 9.0 0.6 9.7% 9.7%

IS1003d 4 1602.5 386.7 135.1 26.5 34.2% 31.9%

IS1006b 4 1600.3 183.8 61.4 12.6 16.1% 17.9%

IS1006d 4 1454.3 338.4 172.5 56.7 39.0% 37.6%

IS1008a 4 700.7 33.0 0.9 0.0 4.8% 4.7%

Continued on next page
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Table 5—continued from previous page

meeting #spks speech ov-2 ov-3 ov-4 ov ov-spkt

IS1008b 4 1275.5 74.7 9.5 0.7 6.7% 7.0%

IS1008c 4 1184.7 138.1 20.8 2.4 13.6% 13.8%

IS1008d 4 1130.3 122.3 22.1 1.8 12.9% 13.2%

ami-ss_eval 12925.4 1672.2 476.4 102.8 17.4% 18.7%

ami-ss 43766.6 5022.2 1062.8 211.4 14.4% 15.2%

Table 6: Statistics of recordings in AMI multi-site experimental sets. Number
of speakers (#Spks); duration of speech, two- (OV-2), three- (OV-
3), and four-speaker overlap (OV-4) in (s); overlapping speech as a
portion of all speech (OV), and overlapping speaker time as a portion
of all speaker time (OV-SPKT) in (%).

meeting #spks speech ov-2 ov-3 ov-4 ov ov-spkt

EN2002d 4 1764.9 333.1 133.1 45.4 29.0% 30.2%

ES2003b 4 1566.8 59.7 2.2 0.0 3.9% 3.9%

ES2005b 4 1795.1 205.3 26.5 0.8 13.0% 12.7%

ES2006a 4 901.0 81.9 16.0 4.2 11.3% 12.3%

ES2007a 4 717.9 72.7 9.9 1.1 11.7% 11.8%

ES2008d 4 1959.4 219.1 38.7 5.5 13.5% 13.9%

ES2011a 4 707.7 92.5 23.6 4.7 17.1% 17.9%

ES2012b 4 1524.8 104.9 14.2 3.7 8.1% 8.7%

ES2014b 4 1588.3 117.0 10.0 1.8 8.1% 8.2%

ES2016c 4 1462.3 83.7 21.6 5.2 7.6% 8.9%

IB4005 4 1683.9 179.6 27.9 8.7 12.8% 13.5%

IN1001 3 2708.1 456.1 51.1 0.0 18.8% 17.1%

IN1009 4 892.7 108.3 14.0 0.8 13.8% 13.6%

IS1001a 4 590.6 79.6 12.1 1.6 15.8% 15.5%

IS1004a 4 479.1 26.7 0.2 0.0 5.6% 5.4%

IS1006a 4 607.5 108.5 51.5 19.6 29.6% 31.0%

IS1007a 4 598.9 83.3 20.7 2.3 17.7% 18.0%

TS3003c 4 1479.5 79.5 8.1 1.8 6.0% 6.4%

TS3006b 4 1891.7 346.8 55.5 7.5 21.7% 20.3%

TS3008b 4 1806.6 209.5 31.2 2.7 13.5% 13.4%

TS3010a 4 379.3 32.4 3.6 0.4 9.6% 9.7%

TS3010b 4 1128.4 36.1 1.8 0.0 3.4% 3.4%

ami-ms_train 28234.4 3116.2 573.4 117.6 13.5% 14.1%

EN2004a 4 2829.3 426.4 126.5 39.5 20.9% 22.1%

Continued on next page
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Table 6—continued from previous page

meeting #spks speech ov-2 ov-3 ov-4 ov ov-spkt

ES2013c 4 1727.6 156.5 28.4 0.3 10.7% 11.0%

IS1001c 4 1010.5 88.4 9.0 0.6 9.7% 9.7%

IS1001d 4 516.7 72.3 9.3 2.2 16.2% 15.9%

IS1005a 4 539.0 46.4 15.2 4.0 12.2% 14.2%

IS1007b 4 940.4 147.9 40.6 7.9 20.9% 21.3%

IS1007c 4 1549.8 194.6 25.8 8.2 14.8% 15.1%

TS3006a 4 845.2 133.5 25.2 3.7 19.2% 19.0%

TS3012b 4 1918.2 287.7 26.9 1.6 16.5% 15.3%

ami-ms_dev 11876.7 1553.6 306.8 67.9 16.2% 16.7%

EN2003a 3 1583.7 132.7 9.9 0.0 9.0% 8.8%

EN2009b 3 1894.1 311.1 52.6 0.0 19.2% 18.2%

ES2008a 4 690.0 34.6 3.2 0.0 5.5% 5.6%

ES2015d 4 1485.5 310.9 84.9 34.0 29.0% 28.6%

IN1008 4 2682.3 219.4 19.1 3.4 9.0% 9.1%

IN1012 4 2649.9 611.7 107.6 13.9 27.7% 24.7%

IS1002c 4 1614.7 151.3 28.8 3.6 11.4% 12.2%

IS1008c 4 1184.7 138.1 20.8 2.4 13.6% 13.8%

IS1008b 4 1275.5 74.7 9.5 0.7 6.7% 7.0%

TS3009c 4 1884.3 385.5 98.8 14.9 26.5% 25.1%

ami-ms_eval 16944.6 2370.0 435.1 72.8 17.0% 17.1%

ami-ms 57055.7 7039.7 1315.3 258.3 15.1% 15.6%

5.2 nist rt data

The alternative database to the AMI data for the experiments presented
in this thesis consists of the Rich Transcription (RT) conference meet-
ing recordings. This data was released for the RT evaluation series
organized by NIST since 2002 [118]. In general, the RT evaluation en- NIST Rich

Transcription

evaluation series
compasses more domains, such as telephone speech and broadcast
news, but in the last years the focus has been directed exclusively at
the meeting environment.

The meetings are held in English and recorded at various sites.
The number of participants ranges from 4 to 11. Each speaker is
equiped with a personal microphone, and there are several table top
microphones located between the participants. For speaker diarization,
for instance, NIST defines two evaluation conditions: Single Distant
Microphone (SDM) and Multiple Distant Microphones (MDM). In the
first, only one of the microphones located at the table is used, whereas
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in the second condition, several microphones are used. The audio files
are sampled at 16 kHz and samples have 16 bit depth. The reference
transcriptions are derived from force-aligned annotations which are
released by NIST after a particular RT evaluation campaign finishes.

The duration of overlappig speech in all NIST RT sets is roughly 1.0 h,Overlapping speech

in NIST RT data which corresponds to 10.5% of total speech duration. For particular
sets the amounts are as follows, RT ’05 has 8.6%, RT ’06 11.1%, RT ’07

10.3%, and RT ’09 15.4% of overlapping speech.
We used the RT ’05, RT ’06, and RT ’07 data for training of the overlap

detection system, and the RT ’09 corpus for testing. The total duration
of audio is 7.4 h in so-defined joint training set and 3.0 h in RT ’09

evaluation set. Table 7 gives detailed statistical properties of the 10, 9, 8,
and 7 meetings of the RT ’05, RT ’06, RT ’07, and RT ’09 data, respectively.

The amount of annotated laughter in NIST RT ’05, ’06, ’07, and ’09Laughter in NIST RT

data together is only 129.3 s and matches overlapping speech (totaling
3427.9 s) only in 22.7 s. Contrary to the situation on AMI data, laughter
can be considered insignificant in this case.

Table 7: Statistics of NIST RT conference meeting recordings. Number of speak-
ers (#Spks); duration of speech, two- (OV-2), three- (OV-3), and four-
speaker overlap (OV-4) in (s); overlapping speech as a portion of all
speech (OV), and overlapping speaker time as a portion of all speaker
time (OV-SPKT) in (%).

meeting #spks speech ov-2 ov-3 ov-4 ov ov-spkt

AMI_20041210-1052 4 557.9 14.5 0.1 0.0 2.6% 2.6%

AMI_20050204-1206 4 524.8 34.0 3.3 0.1 7.1% 7.3%

CMU_20050228-1615 4 586.5 79.9 13.8 1.1 16.2% 15.9%

CMU_20050301-1415 4 544.0 48.2 3.1 0.0 9.4% 9.1%

ICSI_20010531-1030 5 548.0 31.4 0.7 0.0 5.9% 5.6%

ICSI_20011113-1100 9 568.0 73.1 9.0 1.2 14.7% 14.4%

NIST_20050412-1303 6 494.5 70.7 6.1 0.2 15.6% 14.5%

NIST_20050427-0939 4 542.7 37.2 1.0 0.0 7.0% 6.7%

VT_20050304-1300 5 563.6 4.8 0.0 0.0 0.8% 0.8%

VT_20050318-1430 5 450.1 26.1 3.4 0.0 6.6% 6.8%

RT ’05 Conf. 5380.1 419.9 40.6 2.6 8.6% 8.7%

CMU_20050912-0900 4 884.5 152.7 12.4 0.5 18.7% 16.8%

CMU_20050914-0900 4 837.9 122.1 8.8 0.3 15.6% 14.4%

EDI_20050216-1051 4 767.8 58.2 4.1 1.0 8.2% 8.3%

EDI_20050218-0900 4 809.6 68.9 9.8 1.1 9.9% 10.2%

NIST_20051024-0930 9 886.3 83.7 6.6 1.1 10.3% 10.2%

NIST_20051102-1323 8 839.6 63.1 5.2 1.1 8.3% 8.4%

TNO_20041103-1130 4 794.9 61.0 4.3 0.0 8.2% 8.1%

Continued on next page
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Table 7—continued from previous page

meeting #spks speech ov-2 ov-3 ov-4 ov ov-spkt

VT_20050623-1400 5 799.6 101.9 15.8 1.3 14.9% 14.7%

VT_20051027-1400 4 659.5 24.3 1.4 0.0 3.9% 3.9%

RT ’06 Conf. 7279.8 736.0 68.2 6.4 11.1% 10.9%

CMU_20061115-1030 4 1100.5 170.0 8.9 0.1 16.3% 14.6%

CMU_20061115-1530 4 1030.6 93.0 3.6 0.0 9.4% 8.9%

EDI_20061113-1500 4 1094.9 170.5 27.9 0.9 18.2% 17.3%

EDI_20061114-1500 4 964.7 55.0 1.4 0.0 5.8% 5.6%

NIST_20051104-1515 4 1054.9 104.5 3.2 0.2 10.2% 9.6%

NIST_20060216-1347 6 1053.5 64.3 5.9 0.5 6.7% 6.9%

VT_20050408-1500 5 1023.8 20.0 0.6 0.0 2.0% 2.0%

VT_20050425-1000 4 1031.3 121.5 9.3 0.0 12.7% 12.0%

RT ’07 Conf. 8354.2 798.9 60.6 1.7 10.3% 10.0%

EDI_20071128-1000 4 1355.4 108.2 6.1 0.0 8.4% 8.2%

EDI_20071128-1500 4 1266.9 178.0 11.1 0.2 14.9% 13.7%

IDI_20090128-1600 4 1615.7 163.1 13.4 0.9 11.0% 10.7%

IDI_20090129-1000 4 1366.9 124.8 8.9 0.3 9.8% 9.5%

NIST_20080201-1405 5 1088.7 302.6 76.2 6.8 35.4% 30.6%

NIST_20080227-1501 6 1021.4 183.9 30.1 2.6 21.2% 19.9%

NIST_20080307-0955 11 1121.1 119.4 19.0 2.5 12.6% 12.9%

RT ’09 Conf. 8836.1 1179.9 164.7 13.4 15.4% 15.0%





6
O V E R L A P D E T E C T I O N E X P E R I M E N TA L R E S U LT S

The system for speaker overlap detection was introduced in Chap-

ter 3, where also various features which may act contributory to this

objective were discussed. In addition, Chapter 5 presented the audio

databases which are used for conducting experiments, leaving only

the results yet to be shown. This chapter completes the topic on the

detection of overlapping speech by demonstrating the performance of

different systems.

In the first part, a subset of spectral and temporal features is selected

in order to define a baseline overlap detection system. After the defi-

nition of the baseline, experiments with the application of the novel

spatial features are discussed. First, the proposed microphone-data

fusion strategies are evaluated, and then different combinations of

the three spatial parameters are analyzed. Afterwards, the focus is

dedicated to the application of prosodic features, starting with the

selection of an optimal number of parameters. Finally, some remarks

are given about the relationship between detected overlapping speech

and laughter which is present in the recordings.

Remember that the detector has a tunable parameter called Overlap

Insertion Penalty (OIP) which influences the amount of overlapping

speech the system will hypothesize. The dilemma which OIP value

to chose for comparing different systems, or according to which per-

formance metric to optimize this parameter, was solved as follows.

Detection results are typically presented for four OIP values empir- Overlap detection

performance is

typically measured

at four OIPs

ically selected based on development data experiments, accounting

for hypotheses with high recall (OIP 0, no penalization), F-ratio (OIP

−10), low detection error (OIP −50), and acceptable high precision (OIP

−100). The extreme option of using a lot of OIPs with high resolution

is normally unnecessarily time- and computationally demanding.

6.1 definition of the baseline overlap detection system

The purpose of a baseline system is to establish a reference to compare

the performance improvement, or in some cases also decline, by the

newly proposed techniques. There are a lot of parameters which can

be tuned in order to achieve the best system possible, e. g., number

of HMM states, number of GMM components, extraction of features,

etc. In practice, some of these parameters are not completely tuning-

independent and a full grid search is neither computationally feasible

nor actually necessary for the scope of this work. Therefore, some

77
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Figure 26: Selection of baseline system features for overlap detection, OD

error area for detection performance on AMI single-site develop-
ment data. All feature setups, except modulation spectrogram
parameters, include their first-order derivatives (deltas).

of the system parameters are fixed empirically based on previous

experiences.

From the set of spectral and temporal features discussed in Sec-

tion 3.2 the aim is to select a subset which will compose the baseline

overlap detection system. The selection strategy in this case is rather

naive. Each of the candidate features is combined individually with

12 MFCCs, specific models are trained, and then they are tested on AMI

development data. In addition, all feature vectors are mean-variance

normalized according to statistics obtained on training data, and nor-

mally first-order derivatives are added.Candidate features

are compared

according to OD

error under their

ROC curves

In order to evaluate which feature actually contributes to over-

lap detection, we suggest to calculate the OD error area under their

appertaining ROC curves. This concept was previously explained in

Section 3.7. Figure 26 gives these OD error areas for several combina-

tions of MFCCs with other candidate features. In the first part of the

table, it can be seen that only adding LPCRE, SF, and RMSE reduced

the error area compared to MFCCs only. However, the truth is that the

majority of values are not very different.

It is interesting to note that this results are only vaguely correlated

with the Fratio and KL2 divergences from Table 1. The spectral flatness

parameter, for instance, obtained low preliminary Fratio and KL2 scores,

but in combination with mel cepstrum it shows to be performing well

in the actual overlap detection. On the contrary, parameters such as

voicedness or PPF, which had average preliminary scores, either do not
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convince in the real use or even completely fail (PPF). This suggests

that one cannot rely too much on measures such as Fratio and KL2

divergence for assessing discriminability properties of parameters as

far as real detection performance is concerned.

In the right part of Figure 26 there are OD error areas for further

combinations of LPCRE, SF, and RMSE. Sometimes two parameters

are not well-compatible and their joint performance is bellow their

individual ones. The lowest value is achieved by the combination of

MFCCs with LPCRE and SF. Consequently, the overlap detection system Baseline overlap

detection system

uses 12 MFCCs, LPC

residual energy, and

spectral flatness

using this feature combination is considered the best in this context,

and in the following it will be referred to as the baseline or the spectral

system. Note, for the sake of clarity, that the length of feature vectors

in the baseline system including the deltas is 28. The performance of

the baseline system will be discussed in the next sections.

As was explained in Section 3.6, the number of GMM components in

overlapping speech model is 64. Nevertheless, during the development

of the system, experiments were also performed with other numbers of

Gaussian components (e. g., 32, 128). In our experience, the more Gaus-

sian components are used in overlapping speech model, the higher

overlap recall has the detection system, but with a lower precision. In

this regard, 64 components seems like a reasonable choice.

From the point of view of speech/non-speech discrimination, the

overlap detection system has a tendency to generate more missed Overlapping speech

in the context of SADspeech errors than false alarms. The effect on detected overlapping

speech is in fact almost negligible regarding overlap recall, almost all

the missed speech affects only the single speech class. Regarding false

overlap error, such SAD operation is responsible for an increase of less

than 1%.

6.2 application of spatial information

In this section our attention turns towards spatial features which were

proposed in Section 3.3, namely spatial coherence, dispersion ratio,

and delta TDOA computed for every microphone pair. Furthermore,

Section 3.4 suggested different strategies in order to deal with the

high, and possibly variable, dimensionality of the spatial feature space.

In the following, their application will be evaluated in single- and

multi-site scenarios and compared to the baseline system relying on

spectral features only.

When combining spectral and spatial features, the two feature

streams are considered to be statistically independent. The joint emis-

sion probability is obtained by weighing the streams with weights
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Figure 27: Overlap detection error area for different values of spatial stream
weight γspat. Weight 0 means that spatial features were not used.
Experiments conducted on AMI single-site development data.

γspct and γspat, respectively, where γspct +γspat = 1. For any given

frame, the log-likelihood is computed as:

L(yspct,yspat|λspct, λspat)

= γspct L(yspct|λspct) + γspat L(yspat|λspat),
(6.1)

where λspct, yspct is the spectral model and data, and λspat, yspat is

the spatial model and data.Spatial feature

stream weight

optimization
A series of experiments was conducted on AMI development data in

order to determine the optimal weight values. The obtained results

in terms of OD error area under ROC curves are given in Figure 27.

Based on this graph the values γspct = 0.75 and γspat = 0.25 were

chosen for further experiments. Although the optimization was done

for PCA-transformed spatial parameters, these weights are also applied

in case of the other fusion strategies.

6.2.1 Comparison of Fusion Strategies

Figure 28 demonstrates the overlap detection performance of the

baseline spectral system (Spct) and of three systems also employing

spatial information on AMI evaluation data. The performance is given

in terms of recall, precision, and overlap detection error. The spatial

systems are as follows:

• Spct+Spat PCA — System combining spectral and PCA-transformed

spatial coherence, dispersion ratio, and delta TDOA.
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Figure 28: Overlap detection performance for AMI (a) single- and (b) multi-
site evaluation data using spectral features alone (Spct) or in
combination with PCA- (Spct+Spat PCA), LDA-transformed spatial
features (Spct+Spat LDA), or spatial MLP score (Spct+Spat MLP). De-
tection error, precision, and recall are delineated with solid, dotted,
and dashed line, respectively.
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• Spct+Spat LDA — Three spatial parameters for all microphone

pairs are projected using LDA and combined with baseline spec-

tral features (single-site scenario only1).

• Spct+Spat MLP — This system combines the spectral features

with a classification score of an MLP based on spatial features.

The results on single-site recordings (Figure 28 (a)) show that in theComparison of

microphone-data

fusion strategies
lower penalty region the spatial systems outperform the spectral in

all three evaluation metrics, just with the exception of Spct+Spat LDA

recall which is similar to the one of the baseline system. Even though

the differences among detection errors and precisions for higher penal-

ization are becoming smaller, the Spct+Spat PCA system continues with

a performance better than the baseline. It also achieves the lowest error

of 73%, which corresponds to a precision of 80% and a recall of 35% at

OIP −50. The system using MLP score maintains good detection error

for high OIPs, but its precision drops bellow the one of the baseline

system. The Spct+Spat LDA, on the contrary, falls at the end with the

detection error behind the Spct, but it exhibits the highest precision in

all experiments.

Multi-site scenario results presented in Figure 28 (b) show an overall

degradation of the detection performance compared to the single-site

data. Nevertheless, the performance patterns in the low penalization

region are similar. Here, the spatial PCA system seems to be the best

at low OIPs in all metrics. With increasing penalization, however, the

detection errors get almost alike, and even though Spct+Spat PCA main-

tains the highest recall, in terms of precision it is overrun by both

Spct and Spct+Spat MLP system. The latter also achieves the best re-

sult with 83% detection error, 70% precision and 30% recall at OIP

−100. The results of the baseline system are very similar in this case.

Spct+Spat PCA, on the other hand, yields at this point an error of 85%,

precision of only 64%, and recall of 36%. Obviously, the less precise

multi-site models need a higher amount of overlap penalization to

arrive to the lowest detection errors. A possible explanation for the

relatively lower precision of the spatial PCA system at the lowest error

operating point (in comparison with the other two system) could be

that PCA is a too simple technique to compensate for the variability of

the multi-site scenario. These results were also presented in [129]. All

numerical values are given in Table 8 at the end of this chapter.

6.2.2 Comparison of Spatial Parameter Combinations

Since the PCA fusion strategy has shown good potential, especially

on single-site data, we decided to investigate more on the individual

1 LDA fusion strategy was added as the last one at the end of the work, for that reason

results are available only for single-site data.
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Figure 29: Overlap detection performance for AMI (a) single- and (b) multi-
site evaluation data using different combinations of spectral fea-
tures (Spct) and PCA-transformed spatial coherence (Spat C), dis-
persion (Spat D), and delta TDOA (Spat dT). Detection error, preci-
sion, and recall are delineated with solid, dotted, and dashed line,
respectively.
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importance of the three spatial parameters in the given system. We

try different combinations of spatial coherence (Spat C), dispersion

(Spat D), and delta TDOA (Spat dT) in order to have a better under-

standing of the contribution of each of these parameters. Some of the

following results were published in [130].Different

combinations of

spatial parameters
Besides the already presented setup involving all three PCA-fused

parameters (Spct+Spat PCA ≡ Spct+Spat CDdT), there are six other pos-

sible feature setups (Spct+Spat C, Spct+Spat D, etc.). The overlap de-

tection performance of all seven setups on single-site recordings is

given in Figure 29 (a). We can observe that in terms of detection error

the Spct+Spat CDdT feature setup is performing well together with

Spct+Spat D and Spct+Spat DdT at low OIPs, and Spct+Spat CD at high

OIPs. The lowest error 73% was obtained by both Spct+Spat CDdT and

Spct+Spat CD at OIP of −50. In case of Spct+Spat CD it corresponds to

a precision and recall of 79% and 37%, respectively (Spct+Spat CDdT

results were given before). Note that what all these setups have in

common is the spatial dispersion ratio parameter. Spct+Spat CD and

Spct+Spat CDdT are yielding the highest recall values but the former

setup at the cost of the lowest precision. Here, the combinations

Spct+Spat D and Spct+Spat DdT, and later also Spct+ Spat CdT are the

better ones as far as precision is concerned. For instance, the precision

of Spct+Spat D at OIP −50 is 85% and at OIP −100 it increases to 87%.

Interesting is the relatively worse performance of setups with either

Spat C or Spat dT parameter alone and, maybe except the mentioned

high penalty precision, also with both of them together.

The situation in multi-site scenario illustrated in Figure 29 (b) is

different to single-site data, particularly regarding the detection error.

The difference is actually twofold. Not only are the absolute numbers

significantly worse as was commented before, but the performance

pattern of the feature setups changes with increasing penalization.

The relative error positioning of the setups at OIP 0 is to a certain

extent similar to the single-site data, i. e., the setups including Spat D

are slightly better than the others. The values of recall and precision

are scattered in a smaller interval. However, with penalization −10

the error detection values are coming closer to each other, and at OIP

−50 we can observe a clear switch of the error performance between

the Spat D setups and the rest. This event is even more visible byDistinct behavior of

spatial dispersion

parameter in singe-

and multi-site

conditions

looking at the precision as well as recall lines. Despite the fact that for

the highest penalization the detection errors start to converge again,

setups Spct+Spat C, Spct+Spat dT, and Spct+Spat CdT maintain lower

error and higher precision. In fact, the gap in precision becomes even

wider. Even though it is not directly depicted, their precision is actually

higher than the one of the baseline spectral system, and the detection

error is lower or equal. The lowest error of 82% was achieved by

both Spct+Spat C and Spct+Spat CdT setup (OIP −100) with the same
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Figure 30: Overlap detection performance for NIST RT ’09 data. Feature setups
are as follows, spectral (Spct), spectral with spatial coherence and
delta TDOA (Spct+Spat CdT), and spectral with all three spatial
parameters (Spct+Spat CDdT). Detection error is delineated with
solid line, precision with dotted line and recall with dashed line.
The four predefined OIP values are marked, but the performance
was tested with more penalties.

precision of 72% and a recall of 29% and 30%, respectively. It seems

that when spatial dispersion is used, the systems are more prone to

hypothesize a higher amount of overlapping speech. Since the multi-

site scenario is more challenging and the models obviously less precise,

this behavior can turn to be eventually problematic.

Another possible reason for the worse performance of feature setups

involving the Spat D parameter, besides the simplicity of PCA men-

tioned earlier, is the fact that this parameter may be closely dependent

on the spatial distribution of microphones in a room. Such dependency

would most probably result in a lower robustness in multiple room

scenarios.

The difficulty to detect simultaneous speech on data originating

from various rooms is even more visible in Figure 30, where the over-

lap detection results on NIST RT ’09 are given. This data comprises Overlapping speech

detection with

spatial features on

NIST RT ’09 data

recordings from three sites. The recordings from previous RT evalu-

ations used for training were collected from six different sites. We

decided to build overlap detection models for three feature setups

which showed to be the most interesting on AMI data in Figure 29, i. e.,
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Spct, Spct+Spat CdT, and Spct+Spat CDdT. This time the performance

was tested for more penalizations as usual.

The Spct+Spat CdT system maintains the highest precision and low-

est detection error, but the absolute numbers are worse than the AMI

multi-site results (see Figure 29 (b)). As far as the detection error is con-

cerned, the Spct system reduces the performance gap to Spct+Spat CdT

with increased penalization. Both systems yield the same lowest de-

tection error of 93%, Spct+Spat CdT at penalization −70 achieving 57%

precision and 29% recall, and Spct at OIP −80 with a lower precision

of 55% but a higher recall of 35%. These numbers are not particularly

good. Nevertheless, to the knowledge of the author much better results

for the detection of overlapping speech on NIST RT meeting recordings

have not been published [107, 117]2.

To summarize, the combination of spectral and spatial parameters

improves the detection of overlapping speech compared to baseline

system, more significantly for the low penalization values. When

spatial coherence, dispersion, and delta TDOA estimates are fused by

means of a PCA, it was observed that the application of dispersion ratio

is very beneficial for single room use, but in case of multiple recording

rooms it can result in a lower precision of the detected simultaneous

speech.

6.3 application of prosodic information

In Section 3.5 a set of candidate prosodic features was introduced and

a two-stage feature selection mechanism was outlined. After applying

the mRMR algorithm, the candidate features were scored and sorted

accordingly (see Table 2). In this section the results of the second

feature-selection stage are presented, together with the performance

of the overlap detection system using the selected optimal number of

prosodic features.

Following the hill-climbing wrapper strategy, the baseline spectral

features were combined with the first 5, 10, 15, etc. candidate prosodic

features from Table 2. New models were trained and then tested onSelection of the

optimal number of

prosodic features
AMI development data. The performance in terms of ROC curve is

given in Figure 31 (a). It can be seen that the systems with prosodic

features achieve lower error, especially for low penalization values

when compared to the spectral-only system. However, it is not easy to

decide from this plot what number of prosodic features is the optimal

value. Similarly to the selection of the baseline features, the area under

the ROC curves is used as a decision factor. The resulting OD error

area values for the considered numbers of prosodic features are given

2 Although Huijbregts et al. [117] does not specifically give results for overlap detection,

an approximate notion can be deduced from the differences between misses and

between false alarms of the diarization baseline and the diarization handling overlaps.
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Figure 31: Overlap detection performance for (a) (b) different numbers of
selected prosodic features and (c) for different values of prosodic
stream weight γprosod when 20 features are selected. Perfor-
mance given in terms of (a) ROC curves and (b) (c) OD error area.
Experiments conducted on AMI single-site development data.
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Figure 32: Overlap detection performance for AMI (a) single- and (b) multi-
site evaluation data using spectral features only (Spct), and the
combination of spectral and 20 prosodic features (Spct+Prosod 20)
in terms of detection error (solid line), precision (dotted line) and
recall (dashed line).

in Figure 31 (b). Based on this graph the first 20 features from the

candidate set are picked as the optimal number [136].

The strategy for fusion of the spectral with the prosodic information

is basically the same as the one applied with spatial features. The twoOptimization of

prosodic feature

stream weight
feature streams are considered statistically independent and similarly

to (6.1) the output HMM probability is obtained by weighting particular

streams with weights γspct and γprosod, while γspct + γprosod = 1.

The final weights are tuned on AMI development data in the same way

as the number of prosodic features. The OD error areas for a range of

examined γprosod values is depicted in Figure 31 (c), where a local

minimum appears at γprosod = 0.1. Hence, this value was eventually

selected.

The comparison of the baseline spectral and combined spectro-Comparison of the

system using

prosodic features

with the baseline

prosodic system on AMI single- and multi-site evaluation data is pre-

sented in Figure 32 (a) and (b), respectively. Detection performance is

given in terms of recall, precision, and detection error. In single-site

scenario the combined-feature system (Spct+Prosod 20) outperforms
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the spectral (Spct) in terms of error for all OIPs, with the lowest value of

75% at OIP −50. On the other hand, the situation is not so unequivocal

with precision. The precision does not rise so steeply with increasing

OIP in the new system. At the highest OIP of −100, the precision of the

Spct+Prosod 20 system is 81% while the baseline system yields 86%.

According to our experience such behavior can be probably related to

the higher amount of model parameters which need to be trained in

the combined system. The rest of the numerical results can be found

in Table 8.

In case of multi-site overlap detection the lowest detection error of

81% is achieved by Spct+Prosod 20 at OIP −100 with a precision of 65%

and a recall of 40%. At the same penalization point the baseline system

obtains 83%, 69%, and 31% of detection error, precision, and recall,

respectively. Considering the first two metrics, these results indicate a

worse detection performance compared to single-site condition. This

observation, again, emphasizes the higher difficulty of multi-site sce-

nario, especially with regard to the use of a single general model of

overlapping speech. However, the relative behavior of the two systems

is similar to the single-site case. The Spct+Prosod 20 system outper-

forms the Spct in the low OIP region, but with increasing penalization

the detection errors are basically converging and the precision of the

baseline system surpasses the prosodic one.

6.4 remarks on laughter

Another topic that is remaining to discuss is the behavior of our

overlap detection system in relation to laughter. To repeat a bit, it

was observed that the annotated laughter and overlapping speech

often coincide (in AMI corpus > 70% of laughter time). Laughter and

speaker overlap can be correlated because people can laugh when

they accidentally jump into each other’s speech. Furthermore, when

something funny is discussed people are prone to add their remarks

instantly, without waiting for the others to finish.

It was suspected that part of the false overlaps detected by the

system may have been due to the detected laughter segments. The

basis for this suspicion was that when laughter is included in the

training data of the overlap model, this model will be susceptible Does the inclusion of

laughter in the

training data of the

overlap model make

it detect also

laughter which is not

occurring together

with simultaneous

speech?

to detect laughter even when it is not coinciding with simultaneous

speech—laughter and normal speech can be considered acoustically

different to some extent.

In order to clear this doubt, oracle laughter segments were either

subtracted from detected speaker overlap segments or they were

joined together. Both alternatives are compared to the original detected

overlapping speech and the result in terms of ROC curves is given in

Figure 33. The subtraction of laughter almost did not decrease the
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Figure 33: Overlap detection performance of the baseline spectral system
when reference laughter segments are subtracted from or added
to detected overlapping speech, results for (a) single- and (b)
multi-site data.

FA error compared to the original results. It only decreased recall,

which means that only laughter which occurred together with speaker

overlap was discarded. On the other hand, the union of overlap and

laughter segments increased the amount of detected overlapping

speech (both true and false), to a greater extent for single-site data

than for multi-site data. These observations imply that our former

suspicion could not be verified and the system is not prone to detect

laughter. In fact, for single-site data the contrary is true, overlapping

speech associated with laughter is rather missed.
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Table 8: Overlapping speech detection on AMI single- and multi-site data.
Results given in terms of recall, precision, and OD error in (%) for
four OIPs.

single-site multi-site

oip overlap det. rcl prc err rcl prc err

0

Spct 45.7 52.2 96.1 55.4 38.6 132.8

Spct+Spat (PCA) C 43.3 57.5 88.7 57.3 40.4 127.1

Spct+Spat (PCA) D 46.1 59.6 85.2 59.3 41.5 124.3

Spct+Spat (PCA) dT 43.8 55.0 92.1 55.6 40.1 127.5

Spct+Spat (PCA) CD 50.9 57.4 86.9 57.6 41.9 122.2

Spct+Spat (PCA) CdT 43.0 57.9 88.3 57.7 40.3 127.8

Spct+Spat (PCA) DdT 46.6 60.1 84.3 58.6 42.1 122.1

Spct+Spat (PCA) CDdT 49.2 59.0 85.0 59.3 42.3 121.5

Spct+Spat LDA 45.8 59.1 85.9

Spct+Spat MLP 47.3 57.0 88.4 58.0 39.8 129.9

Spct+Prosod 20 44.4 60.0 85.2 54.6 46.5 108.1

-1
0

Spct 42.1 60.1 85.9 52.4 42.9 117.3

Spct+Spat (PCA) C 39.7 65.0 81.7 53.5 45.3 111.1

Spct+Spat (PCA) D 42.9 68.6 76.7 56.3 45.6 110.8

Spct+Spat (PCA) dT 40.0 63.9 82.6 51.6 45.3 110.6

Spct+Spat (PCA) CD 48.4 63.8 79.1 54.4 46.0 109.4

Spct+Spat (PCA) CdT 38.7 66.0 81.2 54.1 45.4 111.0

Spct+Spat (PCA) DdT 42.7 68.0 77.4 55.4 46.4 108.6

Spct+Spat (PCA) CDdT 46.3 66.2 77.3 56.1 46.7 107.9

Spct+Spat LDA 41.6 67.1 78.8

Spct+Spat MLP 43.9 64.1 80.7 54.1 44.8 112.6

Spct+Prosod 20 42.8 65.2 80.0 52.8 50.0 99.9

-5
0

Spct 31.3 78.6 77.2 40.7 59.9 86.6

Spct+Spat (PCA) C 29.0 80.6 78.0 39.9 63.2 83.3

Spct+Spat (PCA) D 30.3 84.9 75.1 44.9 57.9 87.8

Spct+Spat (PCA) dT 28.0 81.4 78.4 37.4 62.8 84.8

Spct+Spat (PCA) CD 37.0 78.6 73.1 43.7 57.3 88.8

Spct+Spat (PCA) CdT 28.1 83.9 77.3 40.8 62.7 83.5

Spct+Spat (PCA) DdT 31.1 83.8 74.9 44.6 58.1 87.6

Spct+Spat (PCA) CDdT 35.4 80.5 73.2 44.2 58.3 87.4

Continued on next page
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Table 8—continued from previous page

oip overlap det. rcl prc err rcl prc err

Spct+Spat LDA 30.0 82.9 76.2

Spct+Spat MLP 34.5 77.5 75.5 41.2 60.6 85.6

Spct+Prosod 20 37.3 75.5 74.8 46.7 58.5 86.4
-1

0
0

Spct 24.1 85.8 79.9 30.5 68.7 83.4

Spct+Spat (PCA) C 24.1 85.5 80.0 28.9 72.4 82.1

Spct+Spat (PCA) D 22.1 87.4 81.1 35.5 64.3 84.2

Spct+Spat (PCA) dT 20.4 86.1 82.9 27.7 71.6 83.3

Spct+Spat (PCA) CD 29.4 84.5 76.0 34.6 63.6 85.2

Spct+Spat (PCA) CdT 20.9 87.4 82.1 29.6 71.8 82.0

Spct+Spat (PCA) DdT 24.3 87.1 79.3 35.3 64.8 83.9

Spct+Spat (PCA) CDdT 27.5 86.2 76.9 35.7 63.8 84.6

Spct+Spat LDA 22.1 87.0 81.2

Spct+Spat MLP 28.1 83.6 77.4 30.0 70.1 82.8

Spct+Prosod 20 32.1 80.7 75.6 40.2 65.0 81.4



7
S P E A K E R D I A R I Z AT I O N E X P E R I M E N TA L R E S U LT S

Previous chapter was dedicated to the evaluation of overlap detection

systems. Here in this chapter, the segments of simultaneous speech

which were detected by these systems are employed in order to re-

duce the error of speaker diarization. The resulting improvements are

compared among each other.

Firstly, we try to establish a relationship between the diarization

improvement and the operation of overlap detection system, which

is controlled with a penalization parameter. Relative DER reduction is

plotted as a function of the OIP used for the detection of simultaneous

speech segments.

Then, we discuss overlap handling experiments on evaluation data

with the baseline diarization system. These include the application

of overlap exclusion, labeling, and both techniques together. In the

last section, a subset of the previous experiments is repeated, but in

this case the baseline diarization system operating on single distant

microphone is switched for a diarization system which makes use of

multiple distant microphones. Finally, an analysis on the diarization

performance on individual meeting recordings is given.

It is worth mentioning that in order to evaluate just the effect

of overlapping speech on speaker diarization, detected overlaps are

normally masked with reference speech/non-speech segments before

given to diarization system. However, in experiments involving a real

SAD system (Section 7.3.1), proper SAD hypotheses are used instead of

the reference annotations.

7.1 overlap detection vs . diarization improvement rela-

tionship

The complement of the overlap detection error tells us how much the

diarization can possibly gain with labeling when using a particular

overlap hypothesis. All of the overlap false positives will be propa- Complement of the

overlap detection

error marks the

maximal possible

gain by labeling

gated to the DER, but only a perfect labeling would transform all true

positives into a reduction of missed speaker time. Sufficiently high

precision is also important for obtaining good results. The relation-

ship between DER improvements and overlap detection properties was

discussed in [147, 130] and here it is depicted in Figure 34.

Overlap hypotheses, which were produced for development record-

ings for several OIP values with the spectral overlap detection system,

were subsequently applied in the diarization system for the assign-

93
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Figure 34: Overlap detection performance of spectral system and correspond-
ing relative DER improvements by overlap exclusion (Ov-Excl) and
assignment of second speaker labels to detected overlap segments
(Ov-Labl) for AMI (a) single and (b) multi-site development data.
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ment of second speaker labels. We can observe in both scenarios that

the DER improvement curve has its maximum in the region of the

lowest detection errors, and maintains high values with increasing

OIP towards higher overlap precisions. The relative improvements are

computed against baseline DER, which is 28.3% for single- and 39.5%

for multi-site development data.

Similar experiments were also performed with overlap exclusion,

but the system behavior in this case is not easily predictable. The

relationship between DER improvements and the overlap detection

performance metrics in Figures 34 (a) and (b) is not clear.

In practice, it is useful to have one overlap hypothesis for overlap ex- Different OIPs are

applied for producing

overlapping speech

segments for

exclusion, and for

labeling

clusion and another for overlap labeling. Even though doing exclusion

has influence on labeling output, we can say that these two techniques

work independently and may have different requirements on overlap

detection from the perspective of DER improvement. When each tech-

nique has its own hypothesis, more room is left for the optimization

of the performance.

The OIP value for overlap labeling experiments on the evaluation

data is fixed based on the results on the development data. For each

overlap detection system a high-penalty hypothesis at OIP −100 is

selected. Since it was not possible to clearly identify a successful

working point for overlap exclusion, we decided to use the overlap

hypotheses without penalization (OIP 0) for this technique.

7.2 evaluation of overlap handling techniques

7.2.1 Application of Overlap Exclusion

Baseline DER and relative improvements by applying overlap exclu-

sion in experiments conducted on AMI evaluation data are given in

Table 9. The relative DER improvements are presented according to

overlap detection systems discussed in Chapter 6, which were used

for finding segments of simultaneous speech. The results for overlap

exclusion show that the most successful overlap detection setups in

single-site condition are Spct+Spat CDdT with an improvement of 5.2%

and Spct+Spat D with 5.1%. Their common characteristic is that both

setups yield high recall and precision, and low detection error from

among the zero-penalty hypotheses in Figure 29 (a). On the other

hand, the exclusion of speaker overlap that originates from Spct+Spat

DdT setup, having comparable overlap detection performance, results

in a much lower error reduction (1.8%). This observation suggests

that the overlap detection systems though having similar numerical

performance they are not detecting exactly the same overlap segments.

Besides, it also indicates that the exclusion of different segments of
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overlapping speech does not have the same effect on the diarization

system.

With the alternative microphone-pair fusion approaches, which in-

cluded either the deployment of a pre-trained MLP (Spct+Spat MLP)

or an LDA projection (Spct+Spat LDA), the achieved relative improve-

ments are bellow the one with the spectral overlap detection system

(Spct). The exclusion of speaker overlap detected also with the help of

prosodic features is performing slightly better.

The comparison of single- and multi-site data results shows one

difference. The improvements are significantly higher for the multi-Exclusion in

multi-site scenario

resulted in higher

relative

improvements than

in single-site

scenario

site as for the single-site recordings. Considering the PCA-transformed

spatial features, high improvements by exclusion are obtained by

following setups: Spct+Spat C, Spct+Spat D, Spct+Spat dT, and partic-

ularly by Spct+Spat CdT setup that yields 13.9%. Unexpected is the

lower improvement with hypothesis originating from the combination

of spatial coherence and dispersion (Spct+Spat CD), which probably

affected also the Spct+Spat CDdT setup.

Noteworthy is the DER improvement of 12.1% relative with the

Spct+Spat MLP overlap detection system, which is the second-best ob-

served result. The overall high improvements are also confirmed by the

combined prosodic system Spct+Prosod 20. The exclusion of overlaps

in this case reduced the baseline DER by 9.2% relative.

From the point of view of detected number of speakers, the effect

of overlap exclusion on clustering is that normally the algorithm

finishes with a lower number of final clusters. In this way both the

number of true and false detected speakers are decreased. In single-

site scenario we can speak on average about 3–7 less true speakers

and 5–10 less false speakers. In multi-site condition, where better

improvements were observed, exclusion typically results in 0–1 less

detected true speakers and 20–24 less false speakers. According to the

reference annotations there are 44 speakers in single-site scenario and

38 speakers in multi-site scenario (see Chapter 5).

Overlap exclusion may also be perceived as a frame purification

mechanism. It is a bit surprising that sometimes the improvements

with overlap segments detected by a real system are higher than

by using oracle overlapping speech. For instance, on multi-site data

the relative DER reduction with reference overlaps is only 2.5%. On

single-site data it is 6.2%.

7.2.2 Application of Overlap Labeling

Overlap labeling on AMI single-site evaluation data exhibits compa-

rable improvements over the baseline DER of 38.3% for all setups.

These reach from 4.3% relative for Spct+Spat dT up to 5.5% relative for

Spct+Spat CD and Spct+Prosod 20. Results are given in Table 9.
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Although the differences between Spct overlap detection and one

of the better performing combined systems, spatial Spct+Spat CDdT

or prosodic Spct+Prosod_20, for instance, is not dramatic, they still

indicate a slight increase of improvement by the addition of spatial

or prosodic features. These setups, which are more successful than

the spectral system, have better overlap detection properties at the

selected penalization point (OIP −100), detection error and recall in

particular (see Figures 28 (a) and 32 (a)).

The multi-site improvements in comparison to single-site scenarioImprovements by

labeling are much

more interrelated

with OD performance

compared to

exclusion

are lower, they range from a small degradation of −0.1% in case of

Spct+Spat CD to an improvement of 2.0% over the baseline DER of

37.3%. The latter result is achieved by both Spct+Spat C and Spct+Spat

CdT setups. Worse labeling results were expected, since the detection

error and precision properties of multi-site overlap detection do not

attain those from single-site detection (see Figures 28, 29, and 32).

The factor that has the most influence on the results here is probably

overlap detection precision. This becomes well visible when recalling

Figure 29 (b) and taking note of the split in precision between setups

with and without spatial dispersion. While the labeling of overlaps

that correspond to setups not including this parameter performs better

than Spct, setups with spatial dispersion achieve only insignificant

improvements.

7.2.3 Joint Application of Exclusion and Labeling

In the previous sections we observed that the individual application

of the two overlap handling techniques produced some improvement

over the baseline diarization. Our expectation when applying them

both together in one experiment is to observe some kind of synergic

effect, and consequently obtain even higher improvements. As it turns

out, it is true in the majority of cases, but not always.

Table 9 shows that all setups are yielding improvements over the

baseline diarization. A visual representation of some of them is illus-

trated in Figure 35. The best relative improvement of 11.2% in single-

site condition is achieved with Spct+Spat CDdT detection system. This

corresponds with the results of overlap detection in Figure 28 (a)

where spatial PCA was the overall best performing setup. Good re-

sult with exclusion alone most probably stimulated also the relatively

good improvement with Spct+Spat D overlap segments (9.6%). Some-

how surprising is that spatial MLP could not turn the improvements

by exclusion and labeling separately also into a higher combined

performance.

When overlaps are detected by the combined prosodic system, their

discarding from training process together with the assignment of

second speaker labels reduce the single-site baseline DER by 7.2%
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Figure 35: Improvement of baseline speaker diarization by exclusion and
labeling of simultaneous speech detected by different systems on
AMI single- and multi-site evaluation data.

relative. However, this result is not much higher compared to the Spct

case. On the other hand, on multi-site data the relative improvement by

using Spct+Prosod 20 is 11.1%, which is much higher than the spectral

overlap detection setup.

Similarly to the application of exclusion alone discussed in Sec- Very good results

with the application

of both overlap

handling techniques

are mostly due to

exclusion

tion 7.2.1, the relative DER improvements observed on multi-site data

are, in general, higher in comparison to single-site data. Driven by the

very good improvement with exclusion, the use of overlap hypotheses

from Spct+Spat CdT setup obtains the overall best result of 17.0% DER

reduction. The same observation applies for a couple of other spatial

PCA setups. The spatial MLP setup confirms with 13.9% relative im-

provement its good performance on multi-site data from before. A set

of similar diarization experiments was presented in [129], but with

the difference that the overlapping speech model, used for detecting

simultaneous speech segments, had 32 Gaussians components in its

GMMs (here 64).

Unfortunately, there is no standard procedure how to estimate

confidence intervals in speaker diarization experiments that would be

defined, for instance, by NIST for the Rich Transcription competition.

In this work we followed the same procedure that was used in [148].

For a 100(1− α)% confidence interval the margin of error is me =

zα/2

√

DER(100−DER)/Nf, where zα/2 is the upper α/2 critical value

of the normal distribution, and Nf is in this case the number of

frames. This formula assumes that a frame-level decision of a speaker
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diarization system is a Bernoulli trial with DER percentage of success.

The margin of error corresponding to a 95% confidence in the obtainedConfidence interval

in diarization

experiments

estimated to ±0.1%

DER results varies in the range 0.063–0.078%, so after rounding to one

decimal, the confidence interval around DER values is ±0.1%. The

relative improvements were computed according to the center values.

7.3 overlap handling within extended speaker diariza-

tion

An interesting question is, if it will be still possible to achieve im-

provement by overlap handling when the baseline diarization system

is improved with state-of-the-art techniques like beamforming and

the use of an additional TDOA feature stream. In such case, less room

would be left for improvement by other techniques.

7.3.1 Overlap Labeling and Superior Clustering

Table 10 gives the DERs of the new, improved, baseline system for

single- and multi-site data. In order to demonstrate the effects of

overlap labeling and the use of a real SAD system, the DER is also

decomposed into three components: missed speaker time error (MS),

false alarm error (FA), and speaker error (SPKE).

The application of beamforming and TDOA features did improve the

baseline system despite little optimization. The change in performance

was from 38.3% to 35.7% DER and from 37.3% to 32.5% DER for single-

and multi-site scenario, respectively.

We repeated overlap labeling experiments for several overlap de-

tection setups, namely Spct, Spct+Spat MLP, Spct+Spat LDA (single-site),

Spct+Prosod 20, and one most promising spatial PCA setup for single-

(Spct+Spat CDdT) and multi-site data (Spct+Spat CdT) each.

It can be seen that the labeling algorithm takes advantage of the

improved clustering, since in all cases the relative DER improvements

in Table 10 increased compared to previous results in Table 9. This ob-Assignment of

second speaker labels

benefits from

improved clustering

servation is consistent, since the better clustering process also implies

a higher effectiveness of the attribution of second speaker labels.

In single-site scenario the best improvement of 6.5% relative, from

35.7% to 33.4% DER, is achieved by labeling of overlaps from the

Spct+Prosod_20 detection system. As far as the spatial setups are con-

cerned, Spct+Spat CDdT and Spct+Spat MLP achieve comparable results

of 6.2% and 5.9% relative improvement, respectively.

The best achieved result in multi-site scenario is the DER reduction

from 32.5% to 31.4% when second-speaker labels are assigned to

overlap segments from the spatial setup Spct+Spat CdT (3.4%). The

results with either the combined spatial MLP or the pure spectral

overlap detection are not much different though. When using a real
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SAD system the improvements are lower, but they basically follow the

same pattern as with oracle speech/non-speech segmentation.

The addition of prosodic features for overlap detection and their

labeling improved the diarization result a little. However, the im-

provements were lower compared to the Spct system. Even though

the overlap hypothesis of the combined prosodic system correspond-

ing to OIP −100 exhibits high recall (40%), the precision of 65% (see

Figure 32 (b)) is obviously not sufficient and too many false speech

segments are introduced to the diarization hypothesis. A possible ex-

planation may be the fact that the selection and integration of prosodic

features was basically tuned for single-site condition, which probably

was not optimal for multi-site scenario.

It is worth reminding that the DER scores are computed with no

forgiveness collar. Scoring with a collar of 0.25 s, which is common

for instance in NIST RT evaluations, reduces the DER values. These Applying a scoring

forgiveness collar

lessens the DER

differences, but they

basically remain

consistent

values are given in Table 10 in parentheses next to the no-collar DERs.

The DER improvements remain consistent, but the application of a

forgiveness collar in some cases mitigates the gain in segmentation

precision introduced by using some (spatial) overlap setups, because

the segmentation changes are rather short.

Comparison of Labeling Techniques

Our labeling technique for assigning second speaker labels to over-

lapping speech segments is integrated into the Viterbi decoding in

the diarization system. Table 11 shows its comparison to two simple

labeling schemes in terms of relative DER improvement over the di-

arization with beamforming and TDOAs. The improvements are also

illustrated in Figure 36. The first of these techniques a posteriori

attributes the overlapping speaker label according to the nearest neigh-

boring speaker, similarly to [117]. The other competing technique

assigns the overlapping label to the most talkative speaker [119]. If

the most talkative speaker has already been picked by the diarization

system, the second most talkative speaker is selected in such case. In

general, the differences between DERs of the three labeling techniques

are small, but it can be seen that the results of the technique proposed Proposed labeling

technique integrated

in Viterbi decoding

delivers competitive

results compared to

alternative strategies

in this thesis are competitive, in single-site scenario in particular.

In [113], another assignment strategy relying on posterior speaker

probabilities was proposed and relative improvements of 5.1% and

2.3% for single- and multi-site AMI sets, respectivelly, were presented.

However, these testing sets are not exactly the same as in our experi-

ments because multi-channel data is not available for some recordings

(refer to Chapter 5 for more details).
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Figure 36: Improvements of speaker diarization by different labeling strate-
gies on AMI single- and multi-site data.

Table 11: Comparison of different labeling strategies on single- and multi-
site data. Relative DER improvements over the new baseline (in
%) by the attribution of second speaker labels according to
Viterbi-decoding (Vit.), nearest-neighboring-speaker (NN), and most-
talkative-speaker (MT) scheme.

single-site multi-site

overlap det. Labl. Vit. nn mt Vit. nn mt

Spct +5.3 +5.1 +4.8 +2.7 +3.2 +2.3

Spct+Spat (PCA) CDdT +6.2 +5.9 +5.6

Spct+Spat (PCA) CdT +3.4 +3.9 +3.0

7.3.2 Addition and Effect of Overlap Exclusion

The improvements obtained by using overlap exclusion and beam-

forming with TDOA features are similar as if used standalone. Table 12

shows the performance of the extended diarization system if overlap-

ping speech segments are labeled and also excluded. What is obvious

from these results is that in both scenarios the relative DER improve-

ments are either not better than with the application of overlap labeling

only, or they are actually worse (compare to Table 10). Moreover, in Addition of overlap

exclusion could not

improve new

diarization

performance

some cases the results are even worse than the DER of the system

without any overlap handling.

This performance difference is especially contrasting with the Spct+

Prosod 20 setup on multi-site data. After having a very good relative

improvement of 11.1% over baseline diarization in Table 9, and yield-
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Table 12: Improved speaker diarization with exclusion and labeling of simul-
taneous speech detected by different systems on AMI evaluation
data, DER (score with 0.25 s forgiveness collar given in parentheses)
and relative improvements over the new baseline (in %).

single-site multi-site

overlap det. der imp. der imp.

Baseline + Beam. + TDOAs 35.7 (27.3) 32.5 (23.6)

+
O

v.
E

x
.a

n
d

L
b

. Spct 34.0 (25.4) +4.9 32.8 (24.6) -0.9

Spct+Spat (PCA) CDdT 35.6 (27.4) +0.3

Spct+Spat (PCA) CdT 34.1 (25.9) -5.0

Spct+Spat MLP 33.7 (25.1) +5.6 34.3 (26.4) -5.4

Spct+Spat LDA 34.9 (26.6) +2.3

Spct+Prosod 20 33.9 (25.8) +5.0 35.5 (28.3) -9.1

ing some small improvement by labeling in the extended diarization

system (Table 10), here it exhibits a significant degradation of perfor-

mance. In conclusion, the exclusion technique in this case was not

very successful in further improvement of the diarization system.

It seems that overlap exclusion and beamforming with TDOAs in

speaker diarization are not complementary techniques, or that there

exists some sort of improvement redundancy between them. In a

speech overlap situation, where the speech comes from several loca-

tions, the TDOA behavior might be either erratic or it can probably

focus on the acoustic source with higher energy. The latter situation

clearly benefits the diarization task. Both the cleaned MFCC parameters

derived from the beamformed signal and the process of filtering of the

interfering speakers yield to improved speaker segmentation results.

In this sense, this approach is close to the strategy of overlap exclusion.

Another reason might also be the not very stable behavior of exclusion

which was visible in Figure 34.

These observations are actually in concordance with the observa-

tions made by Otterson and Ostendorf in [5] and also with the results

published by Huijbregts et al. in [117]. The purification of clusters

by overlap exclusion was not working well with the use of spatial

information stream in the diarization system.

NIST RT Experiments

Finally, in a series of preliminary experiments, some effort was spent

to obtain results on the NIST RT ’09 conference meetings. We selected

the overlap hypotheses presented in Figure 30 for the same OIPs as

were already selected for the AMI corpus, i. e., no penalization for
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overlap exclusion and OIP −100 for labeling. The baseline diarization Overlap handling

experiments on NIST

RT data show good

potential

performance with the improved system utilizing beamforming and

TDOAs is 32.5%. The application of the overlap handling techniques

reduced the diarization error in this case to 30.6% for the spectral over-

lap detection setup, and to 30.2% for the combined spectral and spatial

setup. Again, these DER results are computed without any scoring

collar. When the standard collar of 0.25 s is used, the corresponding

error reduction is from 19.6% to 17.5% DER for the latter of the two

overlap setups. The DER 95% confidence interval radius for RT ’09 data

is also ±0.1%.

In preliminary experiments using a real SAD instead of reference

speech segments, the baseline DER of 43.3% (23.0% with collar) could

be decreased to 42.9% (22.8% with collar) with overlaps from the

combined system. It seems that the system has a good potential for

improvements, but the preliminary obtained results are not statistically

different.

7.3.3 Performance Analysis on Individual Meetings

Our experience that overlap exclusion failed to further improve the

diarization which uses also a spatial feature stream, on evaluation data

as a whole, motivated us to do a more closer analysis. Figures 37 (a)

and (b) detail the performance of the diarization system on individual

meeting recordings from AMI single-site data, and also demonstrate

the corresponding relative improvements by handling simultaneous

speech.

There are several observation that can be made. First of all, the

DER values among different meetings are highly variable, they range

between approximately 10% and 66%. A simple explanation for such Considerable

variability in

diarization error

among individual

meeting recordings

high variability is not at hand, since all meetings comprise the same

amount of speakers, i. e., four (refer to Chapter 5), the acoustic condi-

tions are also the same, and not to forget that the speech/non-speech

segments are considered perfect. However, note that the recordings

with a high amount of overlapping speech also exhibit a worse di-

arization performance. The amount of speaker overlap is derived from

reference annotations.

The introduction of beamforming and a second, TDOA, feature

stream generally improves the diarization results, but not for all record-

ings. For instance, in the IS1006b and IS1008b meetings the extended

diarization system (in Figure 37 denoted as Baseline+BT) yields higher

DERs than the original baseline system.

As regards the overlap detection in Figure 37 (a), overlapping speech

segments were detected by Spct+Spat CDdT system with no penal-

ization. Interesting fact is that OD precision seems to be somehow
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(b)

Figure 37: Performance analysis on individual meetings from the AMI single-
site evaluation data. DERs of baseline diarization and diarization
using beamforming and TDOAs together with corresponding rela-
tive improvements by (a) exclusion and (b) labeling of detected
overlapping speech with Spct+Spat CDdT system.
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correlated with the amount of overlapping speech in meetings in this

case.

Although overlap exclusion improves the baseline DER on evaluation High improvements

by exclusion apply

only to some

recordings

data as a whole, the decomposition of relative improvements according

to particular meetings reveals substantial differences between them.

Some recordings are improved a lot, with some the effect of exclusion

is only moderate, and on some recordings the DER is actually increased.

The extensive relative degradation in case of IS1008a meeting is due

to a very low baseline DER value. No particular interrelation between

improvement by exclusion on one side and OD recall, OD precision,

the amount of overlap, or baseline DER on the other side is visible.

For instance, consider the recordings IS1001b, IS1008a, and IS1008b.

We can see that all of them have similar amounts of overlap, and also

comparable OD precisions were achieved. Two of them, IS1001b and

IS1008a, obtained similar recalls and other two, IS1008a and IS1008b,

have almost the same baseline DER. Nevertheless, all three recordings Unclear relationship

between exclusion

performance and

other factors

exhibit very different relative improvements by overlap exclusion over

the diarization baseline. It remains unclear what is the factor that

influences the potential to improve a particular meeting DER. Perhaps,

these results can be put in context with the not easily predictable

behavior of exclusion in Figure 34.

Exclusion, in this case, did not manage to reduce the DERs of the

extended diarization system for almost any meeting. However, it

would be wrong to deduce that improvement can never be achieved.

Although such results are not directly presented here, but when we

take into account also recordings from multi-site data or when we

use overlap hypotheses from another overlap detection system, it was

observed that on some few recordings the extended baseline could be

improved. Sometimes even in cases in which the original baseline DER

was not reduced. In Figure 37 (a) this can be partly visible on IS1008a

meeting where the degradation, despite smaller DER of the extended

system compared to the baseline, is much lower. In conclusion, it only

confirms the uncertainty concerning the exclusion technique stated

before.

For completeness, Figure 37 (b) provides a similar performance

analysis per meeting for overlap labeling. Overlap detection precisions

are higher since overlap hypotheses at OIP −100 are used for labeling.

The recall is lower, though the line has almost the same shape as in

Figure 37 (a).

Considering the relative improvements and the amount of overlap-

ping speech in recordings, a certain correlation between them can

be recognized. Furthermore, a relationship also exists between DER Overlap labeling

normally exhibits

much easier

predictable behavior

improvements and recall in combination with sufficiently high preci-

sion. Note that sometimes a superb (IS1001b) or even a 100% (IS1008a)

precision cannot assure high DER reduction when there is a small room
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for improvement caused by either low amount of overlap or eventually

low recall.

Overlap labeling within the baseline and within the diarization

system relying also on beamforming and TDOAs shows only small

differences. Its application within the extended system yields slightly

better results for several meeting recordings, but not always (IS1008b,

for instance).



8
C O N C L U S I O N S

This chapter gives a brief summary of this thesis and pinpoints the

most important outcomes of the presented experiments. Accomplished

work and proposed techniques are reviewed with regard to the thesis

objectives formulated in Chapter 1. Finally, some suggestions for the

future work on this topic are outlined.

8.1 summary

This thesis deals with the issues of overlapping speech in the context of

speaker diarization on distant microphone channels. In order to locate

the regions where multiple speakers are speaking simultaneously

an overlap detection system was built. We have found that spatial

information can be utilized to perform this detection and proposed

three novel cross-correlation-based features. The problem of high

and variable dimensionality of spatial feature space was addressed

with the application of a per-site-specific PCA, LDA, or an MLP neural

network. Furthermore, we have also introduced features based on

prosody and their long-term statistics for the detection of overlapping

speech. The final subset out of all candidate prosodic features was

selected according to mRMR criterion and a successive hill-climbing

wrapper selection method.

Honestly speaking, the performance of the simultaneous speech

detection is in general not very good. The task to distinguish single-

speaker speech from speech including multiple speakers proves to be

extremely challenging for an automated system. As a matter of fact, in

some cases it is difficult even for humans to decide what can and what

cannot be considered overlapping speech, for instance, loud breathing

or nonverbal sounds. Such ambiguities can also have an impact on

reference transcriptions which are used either for training or scoring

the output of the detection system.

Nevertheless, in several experiments on AMI single- and multi-site

meeting data, we showed that overlap detection involving the use Proposed spatial and

prosodic parameters

contributed to the

detection of

overlapping speech

of spatial or prosodic parameters outperformed the baseline system.

In this work the baseline system relies on spectral-based features

only, such as MFCCs, LPCRE, SF, and first-order deltas. From tests with

various combinations of spatial parameters, we can conclude that the

PCA-fused dispersion ratio is well suited for the single-site condition.

The system using MLP score has a good detection performance in this

scenario, but for high OIPs its precision drops bellow the one of the

109
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baseline system. On the contrary, the system relying on LDA fusion

exhibits the highest precision in all experiments, but at the cost of

detection recall.

For the multi-site scenario, however, the mentioned PCA-fused dis-

persion ratio seems to lack robustness. The possible reason for the

worse performance of feature setups involving this parameter is its

dependency on the spatial distribution of microphones, which might

be an issue in case of using multiple recording rooms. Moreover, the

limited ability to compensate for the variability of this scenario can

most likely be attributed to the simplicity of the PCA technique. In that

case the better performing combinations included spatial coherence

and delta TDOA, but the distinction in performance between setups

including and not including dispersion ratio becomes evident only

at higher penalization values. The MLP technique combines all three

spatial parameters in this scenario more effectively and outperforms,

or at least equals, the baseline system at all instances. In general, the

less precise multi-site models need a higher amount of overlap penal-

ization to arrive to the lowest detection errors. The complexity of the

NIST RT data in the sense of the number of involved meeting rooms

was probably the reason why the detection on this alternative corpus

was worse than on AMI data, even with higher penalization.

The addition of prosodic features decreased the overlap detection

error in both scenarios either due to higher precision for low penalties

or due to improved recall in high penalty region. Despite our initial

concerns that the HMM model of overlapping speech will be prone to

detect unrelated laughter, we discovered that the presence of such seg-

ments in the training data is not affecting the actual overlap detection

much.

By handling of the detected simultaneous speech segments, weSpeaker diarization

could be improved by

handling detected

overlapping speech

managed to improve the baseline speaker diarization system. With

the objective to build more precise speaker models, the speech frames

including overlapping speech were excluded from the training process.

In addition, we reduced diarization’s missed speech by assigning

second speaker labels for speaker overlap segments.

The most successful overlap detection setups in terms of successive

diarization improvement was on single-site data the combination of

spectral and all three PCA-transformed spatial parameters. A good

result was also obtained with the combination of spectral and prosodic

features. In the multi-site scenario the relative improvements were

higher, particularly on account of overlap exclusion. Here, taking

advantage of the mentioned overlap detection performance, the best

observed result was with the combination of spatial coherence and

delta TDOA. Another successful system was the one using MLP for

the spatial parameter fusion. Considering overlap labeling only, the

comparison of DER reductions between the two scenarios shows much
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better performance on single-site data than on multi-site data. Such

results are not surprising since the detection error and precision of the

multi-site overlap detection do not attain the quality of those in the

single-site detection.

The extension of the baseline diarization system with beamforming

and TDOA features improved not only the clustering process, but also

resulted in an increased performance of overlap labeling. The reason

is that the more effectively working clustering causes the mechanism

for picking the second speaker to be mistaken fewer times, in general.

A further study has shown that our labeling technique, integrated

in the Viterbi segmentation algorithm, delivers competitive results to

alternative simple strategies for the assignment of overlapping speaker

labels, especially in the single-site scenario. Overlap exclusion in this

case did not result in further improvement of the new system on

evaluation sets as a whole.

Interestingly enough, these two techniques demonstrated quite

distinct behavior regarding DER improvement. The performance of Overlap labeling

works on top of the

baseline system,

exclusion affects the

diarization algorithm

basics

overlap labeling is closely related to overlap detection error, and, in

fact, recall, with a requirement for a high detection precision. Overlap

labeling can be considered as an addition on top of the baseline system.

Due to the necessity for high precision, and the consequently rather

low recall of the overlap detection system, the potential improvement

is developing in a limited range.

Overlap exclusion, on the other hand, affects the core elements of

the diarization algorithm. This may be one of the reasons why it ex-

hibits an unpredictable nature to some extent. In some instances it

achieves very high improvements of the baseline DER, but on others

it can actually cause performance degradation. Such performance

variability was observed both between different setups of the under-

lying overlap detection (different settings of the OIP, for instance), as

well as across different meeting recordings. High variability among

the DER scores of individual meetings is, however, also typical of the

baseline diarization system. Poor diarization performance on some

meeting recordings is often correlated with a high amount of present

overlapping speech. Based on our experiences, we suggested that it

is reasonable to use independent overlap detection hypotheses for

exclusion and for labeling.

The application of a scoring forgiveness collar in some cases mit-

igates the gains in segmentation precision introduced by overlap

handling, nevertheless, the DER improvements remain consistent. A

similar observation can be made for the use of a real SAD system. The

relative improvements are lower, but basically follow the same pattern

as with a perfect speech/non-speech segmentation.

Preliminary diarization experiments on NIST RT data with over-

lap handling demonstrated a reduction of the baseline DER for both
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spectral and combined spatial overlap detection system. Further ex-

perimentation with a real SAD revealed that the system has a good

potential for improvements, but the preliminary obtained results were

not statistically different.

8.2 future prospects

One of the drawbacks of current overlap detection systems are the

issues with robustness. Dealing with this problem should be among

the priorities of future research. We saw in the past in other fields that

robustness of systems can be improved by employing another modality,

in the case of meetings this could be the video information. Since

meeting participants are usually looking at the current speaker, reliable

head orientation information could also be beneficial assuming that an

interrupting speaker will draw attention by some of the participants.

More inspiration could also be taken from source separation ap-

proaches, such as CASA. For instance, when performing a subband

pitch estimation, the detection of different pitches in two subbands

may be an indication of speaker overlap.

The acoustic signal from one speaker arrives to a couple of distant

microphones with different delays as the speech by a concurrent

speaker. Given that there is a critical distance between the microphones,

further information sources on the presence of overlapping speech

could be found by considering the time-frequency-space diversity of

multi-channel signals.

In the context of overlap handling in diarization, the crucial task for

the future is to increase the stability of overlap exclusion operation.

This might, however, be related to the general problem in speaker

diarization, where there are recordings that exhibit unusually high DER

(called “nuts”) and others that are over-sensitive to tuning (referred to

as “flakes”).



A
SPEAKER DIAR IZAT ION OF BROADCAST NEWS IN

ALBAYZIN 2 0 1 0 EVALUATION CAMPAIGN

Objective evaluations became a valuable part of research and develop-

ment in the field of spoken language processing. The comparison of

performance of different approaches (systems) to a specific task helps

setting new trends and stimulates the progress in a particular line of

research. The Albayzin 2010 is the third in the series of evaluation

campaigns (2006, 2008) organized by RTTH1 and held under the FALA

2010 workshop [149]. Largely inspired by the NIST Rich Transcription

evaluations [118], the Albayzin 2010 campaign focuses among others

on the task of speaker diarization of broadcast news.

In this appendix we present as the co-organizers of Albayzin 2010 re-

sponsible for speaker diarization section an overview of the evaluation

and report the results achieved by five submitted speaker diarization

systems. The evaluation was performed on Catalan broadcast news

data. Although the presented systems have several features in common

(e. g., MFCCs, agglomerative clustering), there are also many differences

among them, e. g., online optimized processing, speaker factor anal-

ysis, dot-scoring similarity, or acoustic fingerprinting. Based on the

observed results, we try to derive the most successful system fea-

tures and outline promising investigation directions. The diarization

performance is analyzed in the context of the diarization error rate,

the number of detected speakers and also the acoustic background

conditions.

Broadcast news is a challenging domain, because such shows con-

tain an unpredictable number of different speakers speaking for a very

variable amount of time and speakers sometimes talk simultaneously.

However, overlapping speech issue was not very significant in this

case. Broadcast news data often contain a large amount of music and

commercial breaks.

a.1 speaker diarization task and scoring

The organized evaluation campaign aims at evaluating the perfor-

mance of automatic algorithms for speaker diarization task. The par-

ticipants could submit more than one system output, but only the

primary hypothesis was considered here.

1 RTTH is the Spanish acronym for “Red Temática en Tecnologías del Habla” (the

Spanish Speech Technologies Thematic Network)
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Table 13: Distribution of speakers

Gender # Speakers Duration [h] # Segments

male 1239 44:23:41 12869

female 507 25:43:54 7559

unknown 270 07:50:38 2579

overlapped 68 00:12:38 241

The minimum silence duration separating two utterances was set to

0.5 s, since pauses smaller than this value were not considered to be

segmentation breaks in a speaker’s speech (it is also complementary

to the scoring collar discussed later). The Diarization Error Rate (DER)

defined by NIST [118] is the primary metric.

A scoring “forgiveness collar” of 0.25 s around each reference seg-

ment boundary is used. This accounts for both the inconsistent anno-

tation of segment times by humans and the uncertainty when does

speech begin for word-initial stop consonants.

a.2 evaluation database

The database contains broadcast news channel recordings, i. e., an-

nouncements, reports, interviews, discussions and short statements

recorded from Catalan 3/24 TV channel throughout the program. ItsBroadcast news

audio data recorded

from Catalan 3/24

TV channel

original video recordings were supplied by a stationary digital video

broadcasting (DVB-T) receiver. Their original audio tracks were ex-

tracted being available at 32 kHz sample rate, 16 bit resolution, but

were downsampled to 16 kHz sample rate.

The annotated recordings comprise a total duration of 88 hours,

but for the Albayzin 2010 speaker diarization evaluation a subset of 8

recordings totaling approximately 30 hours was selected. Although

TV3 is primarily a Catalan television channel, the recorded broadcasts

contain a proportion of roughly 8.5% of Spanish speech segments.

Catalan language, mainly spoken in Catalonia, exhibits substantial

dialectical differences and is divided into an eastern and western

group. The eastern dialect includes northern Catalan (French Catalo-

nia), central Catalan (the eastern part of Catalonia) and Balearic. The

western dialect includes north-western Catalan and Valencian (south-

west Catalonia) [150]. Presumably, the majority of recorded Catalan

speakers features the central Catalan dialect.

A first annotation pass segmented the recordings with respect to

background sounds, channel conditions, and speakers as well as speak-

ing modes. Table 13 shows the speaker distribution. Since segments

of overlapping speakers did not receive a gender tag, they form also
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Table 14: Distribution of recording channels and background conditions
(number of segments in parenthesis)

Channel
Background [h]

None Speech Music Noise

None
04:27:10 00:18:54 04:36:06 01:15:30

(2451) (131) (1945) (1113)

Studio
15:04:24 01:36:16 08:40:47 00:57:12

(4752) (594) (1407) (2067)

Telephone
00:00:40 00:00:10 00:06:47

(11) (2) (10)

Outside
14:49:44 03:55:29 01:52:52 18:55:19

(6558) (1319) (557) (4342)

a subset of the “unknown” gender account. The gender conditioned

distribution indicates a clear misbalance in favor of male speech data.

The number of speakers per recording ranges from 30 to 250 with

some speakers appearing in several recordings (newscaster, journal-

ists). However, the majority of speakers are related only to a particular

news and account to only a short duration.

The total durations of audio segments of specific conditions are

given in Table 14. Besides, there are a few conditions featuring an

overlap of all noted background sounds, but only with minor duration

and are therefore omitted. Few segments are indicated to originate

from telephone speech. The recorded speech within these segments

can be considered band-limited to frequencies from 300Hz to 3.4 kHz.

A second annotation pass provided literal transcriptions and acous-

tic events of segments that feature planned and spontaneous speech,

but no long term background noises. The non-speech acoustic events

were furthermore tagged with time stamps indicating their beginning

and end.

Because of the fact that silences were not manually annotated, the

transcriptions were extended by passing the signal through the hier-

archical audio segmentation described in [151]. This involved a sim-

ple low-energy silence detector to estimate regions with non-speech

(silence). Furthermore, to avoid too short segments, a smoothing con-

straining the minimal non-speech duration to 0.5 s was applied.



116 speaker diarization of broadcast news in albayzin 2010 . . .

Table 15: Participating teams in the Albayzin 2010 speaker diarization section

Team ID Research institution

AhoLab University of the Basque Country (EHU)

GSI University of Coimbra (UC)

GTM University of Vigo (UVigo)

GTC-VIVOLAB University of Zaragoza (UZ)

GTTS University of the Basque Country (EHU)

ATVS-UAM Autonomous University of Madrid (UAM)

a.3 participants

Six teams from five research labs submitted their systems to the Al-

bayzin 2010 speaker diarization evaluation. The list of participants is

given in Table 15.Six submitted

systems (but only

five considered) from

five reserach labs

After submitting evaluation results one of the teams discovered that

in half of the recording sessions their system was reading corrupt

audio input. Therefore, their evaluation results cannot be considered

representative and only five systems are presented here. The original

descriptions of the speaker diarization evaluation can be found in

[152].

Several teams participated also in another category of the Albayzin

2010 evaluation, in the audio segmentation section, where five acoustic

classes were defined to segment the audio data [153]. The classes were

as follows: music, clean speech, speech with music, speech with noise

and other (e. g., noise, silence). Since audio segmentation normally

constitutes a part of speaker diarization systems, we are referring in

latter system descriptions to these five acoustic classes.

3.1 System 1

The algorithmic concept of System 1 facilitates an online execution, i. e.

the complete process is performed in a single iteration. The initial SAD

employs a Viterbi segmentation of the audio signal and distinguishes

five acoustic classes. Each class is modeled with a GMM and signal

parameterization involves static MFCCs with first and second order

derivatives.Online clustering

algorithm, growing

window

speaker-change

detection relying

only on voiced

speech

Subsequently, the speaker change detection employs a growing win-

dow approach and BIC to measure the dissimilarity of two adjacent

windows. The BIC metric estimates if windowed audio data is better

modeled with two distributions or with only a single one. In general,

a change point is detected at positions where the BIC value is greater
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than zero. Even though the growing window scheme has higher com-

putational cost, the authors of System 1 report its better performance

compared to fixed-size sliding window approach and implemented a

number of adjustments in order to decrease the computational load

(skipping improbable places, window length limit). At this stage of

the process, only static MFCC features with no derivatives are used.

In system development experiments it was possible to reduce the di-

arization error by discarding unvoiced frames. Therefore, the speaker

change detection of this system relies only on voiced audio data.

During the online clustering algorithm, every time a speaker change

is detected, the BIC value of the recent speech segment against all

known clusters is computed. If the lowest BIC value falls below a cer-

tain threshold the segment is assigned to the given cluster. Otherwise,

a new cluster is created. The theoretically suboptimal online algorithm

can in practice benefit from the fact that it is prone to combine adjacent

segments rather than segments far apart and consecutive segments

are likely to come from the same speaker.

3.2 System 2

System 2 incorporates audio segmentation prior to the diarization

to determine speaker turns and discard non-speech segments like

silence and music. It uses a set of 16 MFCCs, 8 other features (e. g.,

energy, zero-crossing rate, spectral measures) and their derivatives.

Segmentation is based on a hybrid ANN/HMM Viterbi decoder and

discriminates between five acoustic classes.

To classify speakers, the algorithm begins with training a UBM with

data of the entire audio file. Subsequently, the decoder determining

the most likely mixture sequence detects (with high mixture transition

penalization) the speaker turns . Homogeneous segments with speech

of only one speaker tend to produce sequences with few mixtures

turns. UBM decoding where

each Gaussian

mixture corresponds

to one cluster,

clustering based on

audio fingerprinting

and BIC

Two passes of verification are then applied to the labeled speaker

segments to test whether every pair of segments is homogeneous or

not. The first pass involves an audio fingerprint system and the other

is based on BIC. If two segments are classified as similar, then the

corresponding speaker labels are equated.

Acoustic or audio fingerprinting refers to a condensed representa-

tion of an audio signal that can be used to identify an audio sample or

quickly locate similar items in audio streams. A binary representation

of spectral patterns computed by the convolution of spectrogram with

a mask is used. This technique is convenient to discover repeated

segments with high confidence. Labels are determined according to a

majority voting scheme in order to deal with classification inconsisten-

cies in repeated segments.
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3.3 System 3

System 3 employs recent improvements in speaker segmentation of

two-speaker telephone conversations using eigenvoice modeling and

the traditional agglomerative hierarchical clustering.

The Joint Factor Analysis (JFA) received a lot of attention in the

context of speaker verification over the last few years. The idea is to

extract and model the desired sources of variability which are present

among different speakers. The JFA-based speaker segmentation was

originally designed for two-speaker telephone conversations, thus it

works with a given number of speakers. Therefore, after separating the

speech frames, every recording is split into 5 minute slices and every

slice is processed individually. The segmentation system is forced to

find 10 speakers in every slice.Eigenvoice factor

analysis, BIC-based

agglomerative

clustering

Every speaker GMM is adapted from a background model using an

eigenvoice approach. Given a sequence of feature vectors consisting

of 18 MFCCs, 20 speaker factors are estimated for every time point,

and then transformed with the within-class covariance normalization

(WCCN) in order to compensate for the intra-session variability. Af-

terwards, a 10-Gaussian GMM is estimated to model the stream of

speaker factors, where each Gaussian will be assigned to a single

speaker. Once there are 10 clusters for every 5-minute slice, clustering

over the whole recording is performed to merge those clusters belong-

ing to the same speakers. For this purpose, BIC is considered as both a

clustering metric and a stopping criterion. Clusters are modeled with

a single full-covariance Gaussian function using MFCCs.

3.4 System 4

System 4 consists of three decoupled elements: speech/non-speech

segmentation, acoustic change detection and clustering of speech

segments. All of them rely on 13 static MFCC features, while the MFCCs

for clustering are additionally augmented with their first and second

order derivatives.

Speech/non-speech segmentation makes use of an ergodic contin-

uous HMM with 5 states (one per acoustic class). In order to detect

speaker change points, speech segments were further segmented byXBIC-based speaker

segmentation,

clustering employing

GMM sufficient

statistics and

dot-scoring

similarity

means of a conventional metric-based approach evaluating the likeli-

hood of the acoustic change in the center of a sliding window using

normalized Cross-BIC (XBIC) metric. The authors of the system state

that with this approach, besides many additional acoustic changes,

almost all the speaker changes were detected.

The clustering employs linear dot-scoring, a fast and simple tech-

nique for scoring test segments against target models which employs

the first-order Taylor-series approximation to the GMM log-likelihood.
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For each speech segment a GMM was MAP-adapted from a universal

background model, and zero- and first-order sufficient statistics are

computed. The similarity between different segments is then estimated

with TZ-normalized dot scores. Finally, an agglomerative clustering

algorithm is used until no pair of clusters exceeds a similarity thresh-

old.

3.5 System 5

The front-end parameterization of the speaker diarization System 5

involves the extraction of 19 static MFCCs with their deltas, followed by

Cepstral Mean Subtraction (CMS), RASTA filtering and feature warping.

All speech data detected by a preceding audio segmentation step is

used to train a UBM. Given this UBM, sufficient statistics are extracted

for every segment. The next steps involve a factor analysis to model

the total variability subspace resulting in so-called iVectors and a LDA

transformation of the computed iVectors. Two-step clustering

relying on iVectors

and Viterbi decoding
The MFCC feature stream is divided into 90-second audio slices.

LDA-projected iVectors in each slice are clustered based on their cosine

distance. Cluster centroids represent candidate speakers. Candidate

speaker models are accumulated over all the slices in the test session

together with the frequency of appearance of their clusters.

Speakers presumably appear in several slices, thus a secondary

clustering merges the initial centroids, obtaining an enhanced set of

candidate speakers. A prior probability is assigned to each of the

candidate speakers according to its presence in the entire session.

Likelihoods for each candidate speakers are estimated in a second

pass over the iVector stream using the cosine distance and the prior

probability of each candidate speaker. Finally, the output diarization

labels are obtained by a Viterbi decoding of so-calculated speaker

scores.

a.4 evaluation results

The DER results for five submitted systems in Albayzin 2010 are given

in Table 16. Furthermore, a decomposition considering missed-speech

detection, false alarms and false speaker labeling is also depicted in

Figure 38. The best result of 30.4% DER was obtained by System 1, Rankings according

to overall DER from

the best to the worst:

System 1, 4, 3, 5,

and 2

followed by similar performances of System 4, 3 and 5.

Figure 38 indicates incorrect assigned speaker labels as the most

significant proportion of the DER. The challenge seems to be the fact

that many speakers speak only short segments of time, while a speaker

may feature different background conditions.

The speaker error achieved by the first system is very remarkable,

since all the clustering happens in only a single iteration. Furthermore,
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Figure 38: Overall speaker diarization results. DER distribution of missed
speech rate (MS), false alarm rate (FA) and speaker error rate
(SPKE).

Table 16: Speaker diarization results for all participants in terms of missed
speech rate (MS), false alarm rate (FA), speaker error rate (SPKE) and
diarization error rate (DER). All values are in given in (%).

Team MS FA SPKE DER

System 1 4.9 1.5 23.9 30.4

System 2 1.1 2.3 52.4 55.8

System 3 3.7 1.5 28.6 33.8

System 4 2.2 2.2 28.8 33.2

System 5 1.1 10.8 22.9 34.7

System 1 relies on the most popular approaches of the state-of-the-art

diarization systems. Even though it is not possible to directly derive a

conclusion from this result, the strategy to discard unvoiced frames in

speaker change detection may have been the crucial factor of the best

performance. The SAD of System 1 was tuned for hypothesizing more

misses than insertions (false alarm).

The balanced and reliable SAD of System 4 and robust techniques

applied for speaker segmentation resulted in the second best DER

according to Table 16. System 3 also relied on a good operating SAD

and the factor analysis technique used in speaker segmentation proved

to be well-suited for this task. The overall DER and speaker error rate

in particular were very similar for Systems 3 and 4.
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Figure 39: Speaker diarization performance for each of the eight testing
recordings from 3/24 TV broadcast news corpus in terms of DER.

The factor analysis approach was also employed in System 5, which

achieved the lowest speaker error with Viterbi decoding of iVector-

stream scores over candidate clusters. It remains an open question,

how the score normalization according to cluster appearance probabil-

ity impacts the error rates.

System 2, with its hybrid ANN/HMM approach, displays the lowest

error accounting to speech/non-speech detection, but it cannot benefit

from this advantage in the overall performance. It is unclear what was

the major reason for the higher overall DER score. It may have been

the very simple initial speaker change detection, or the fingerprinting

technique, which was observed to work well for audio segmentation

[153], is not so appropriate for clustering speaker segments. Eventually,

using the same set of acoustic features (and deltas) in all three stages

of the process may not have been the optimal choice.

A more detailed analysis of the DER for each testing session shows

(see Figure 39) that the recording hardest to diarize was the session

22, where almost all the evaluated systems obtained the worst result.

Otherwise, the performance of the systems was rather stable. The

DER standard deviation over the eight test recordings for each system

lies between 4.6 and 8.0% DER. All systems were operating well (with

respect to their average performance) in the test session 23. The ab-

solutely lowest error of 21.6% DER was achieved by the System 4 on

session 19. Background-

condition-specific

evaluation
The speech signal can be divided according to acoustic background

conditions into three categories: clean speech, speech over noise and

speech over music. A particular difficulty of the diarization task is
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Figure 40: Speaker diarization performance in three acoustic background
conditions: clean speech, speech with noise, and speech over mu-
sic.

due to the nature of broadcast news data, which may exhibit different

background conditions for one and the same speaker. It makes it very

challenging for the clustering algorithm to put such speaker segments

with different background conditions into the same cluster. By creating

continuous chunks, which include only the segments of one speech

class and non-speech segments (music, noise, silence), and computing

their total duration, we can estimate how these three classes roughly

contribute to the overall diarization error. Clean-speech, speech-over-

noise and speech-over-music segments are influencing the DER by

36%, 46%, and 18%, respectively. Looking at the individual DER per-

formances (evaluating each speech class independently), given in

Figure 40, it is not surprising that the DERs of clean speech are usually

the lowest.

The operation of the systems in terms of detected speaker count

is shown in Figure 41. Here, the Systems 5 and 4 exhibit the highestVery different

clustering stopping

criteria between

Systems 1, 2, 3 and

Systems 4, 5

number of true detected speakers, but at the same time suffer from

even higher counts of false speakers. The System 1, for instance,

though detecting less correct speakers, maintains a significantly lower

number of false speakers. Similar observation applies also for the

operation of System 3.

The possible reason for the high number of false speakers of Sys-

tem 4 could be the substantial initial over-segmentation (reported in

Section A.3) in a combination with a too strictly defined merging

threshold of the dot-scoring similarity. Nevertheless, since the overall
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Figure 41: Number of correctly detected (True) and falsely introduced (False)
speakers by the evaluated systems.

DER is not much different from System 1 or 3, the affected speaker

segments were probably very short.

In the case of System 5, the probable cause of the high number of

falsely detected speakers lies in the substantial false alarm rate (see

Table 16) of the speech/non-speech detection rather than clustering

algorithm, because the speaker error rate is very good compared with

other systems.

a.5 discussion and conclusions

The analysis of speaker diarization results and the characteristics of

the submitted systems revealed several observations which can be

summarized as follows:

• The use of only voiced frames for performing speaker segmen-

tation, which was implemented in one of the systems, seems a

very interesting step in context of the very good speaker error

result of that particular system.

• The speaker factor analysis technique, which received attention

in the field of speaker verification, was successfully adopted

in two presented diarization systems. Both of them delivered

competitive results compared to the best system. This approach

has the potential to become popular in speaker diarization also

in the future.

• Almost all systems rely exclusively on MFCC features (13-19

coefficients) and for clustering also the derivatives can be used.
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MFCCs are the very standard features for almost any kind of

speech-related recognition task. One of the systems also included

additional features, but the resulting performance has not proven

them to be successful.

• BIC maintains as the most popular and effective cluster merging

metric and/or clustering stopping criterion. It can be accompa-

nied with other segmentation passes applying other metrics, but

in all the cases the BIC is present at some point.

• All the systems used the conventional bottom-up agglomerative

clustering approach. Even though it can sometimes suffer from

merging instability or stopping criteria difficulties, it is usually

robust and is also the most popular in other state-of-the-art

systems.

The Albayzin 2010 speaker diarization evaluation results were pre-

sented for five of the six teams from four Spanish (EHU, UVigo, UZ,

UAM) and one Portuguese (UC) university. The system which obtained

the best result was also designed to run online and relies on modi-

fied growing-window BIC-based speaker-change detection and on a

BIC-based clustering algorithm.

The evaluation data turned out to be relatively challenging, sinceConditions were

probably more

difficult than in

comparable

evaluations (NIST

RT ’04, ESTER)

the DER results in other comparable evaluations, e. g., the NIST RT ’04

evaluation [154] or the ESTER evaluation on French broadcast news

[155], were considerably lower than in this case. The high number of

speakers in Catalan TV 3/24 broadcast news corpus was perhaps also

the reason why no system managed to determine the correct speaker

count in neither recording.
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