
Resilience for Large Ensemble Computations

Kai Rasmus Keller

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

in the

Facultat d’Informàtica de Barcelona (FIB)
Universitat Politècnica de Catalunya (UPC)

Supervisor: Dr. Leonardo Bautista Gomez
Tutor: Prof. Dr. Adrian Cristal Kestelman

May 26, 2022

To my beloved father Edgar Keller, who introduced me into the hidden mysteries of our universe,

and who still never wanted to believe in gravitons. . .

Resum

Amb l’increment de les capacitats de còmput dels supercomputadors, es poden simular models
de sistemes físics encara més detallats, i es poden resoldre problemes de més grandària en qualsevol
tipus de sistema numèric. Durant els últims vint anys, el rendiment dels clústers més ràpids ha passat
del domini dels teraFLOPS (ASCI RED: 2.3 teraFLOPS) al domini dels pre-exaFLOPS (Fugaku: 442
petaFLOPS), i aviat tindrem el primer supercomputador amb un rendiment màxim que sobrepassa
els exaFLOPS (El Capitan: 1.5 exaFLOPS). Les tècniques d’ensemble experimenten un renaixement
amb la disponibilitat d’aquestes escales tan extremes. Especialment les tècniques més noves, com els
filtres de partícules, se’n beneficiaran. Els mètodes d’ensemble actuals en climatologia, com els filtres
d’ensemble de Kalman, exhibeixen una dependència lineal entre la mida del problema i la mida de
l’ensemble, mentre que els filtres de partícules mostren una dependència exponencial. No obstant,
juntament amb les oportunitats de poder computar massivament, apareixen desafiaments com l’alt
consum energètic i la necessitat de tolerància a errors. El temps de mitjana entre errors es redueix amb
el nombre de components del sistema, i s’espera que els errors s’esdevinguin cada poques hores a
exaescala. En aquesta tesis, explorem i desenvolupem tècniques per protegir grans càlculs d’ensemble
d’errors. Presentem noves tècniques en punts de control diferencials, recuperació elàstica, punts de
control totalment asincrònics i compressió de punts de control. A més, dissenyem i implementem
un filtre de partícules tolerant a errors amb captació i emmagatzematge en caché de partícules de
manera preventiva. I finalment, dissenyem i implementem un marc per la validació automàtica i
l’aplicació de compressió amb pèrdua en l’assimilació de dades d’ensemble. En total, en aquesta
tesis presentem cinc contribucions, les dues primeres de les quals milloren les tècniques de punts de
control més avançades, mentre que les tres restants aborden la resiliència dels càlculs d’ensemble. Les
contribucions representen tècniques independents de tolerància a errors; no obstant, també es poden
utilitzar per a millorar les propietats de cadascuna. Per exemple, utilitzem la recuperació elàstica
(segona contribució) per a mitigar la resiliència en un marc d’assimilació de dades d’ensemble en
línia (tercera contribució), i construïm el nostre marc de validació (cinquena contribució) sobre la
nostra implementació del filtre de partícules (quarta contribució). A més, demostrem que les nostres
contribucions milloren la resiliència i el rendiment amb experiments en diverses arquitectures, com
processadors Intel, IBM i ARM.

i

Abstract

With the increasing power of supercomputers, ever more detailed models of physical systems
can be simulated, and ever larger problem sizes can be considered for any kind of numerical system.
During the last twenty years the performance of the fastest clusters went from the teraFLOPS
domain (ASCI RED: 2.3 teraFLOPS) to the pre-exaFLOPS domain (Fugaku: 442 petaFLOPS),
and we will soon have the first supercomputer with a peak performance cracking the exaFLOPS
(El Capitan: 1.5 exaFLOPS). Ensemble techniques experience a renaissance with the availability
of those extreme scales. Especially recent techniques, such as particle filters, will benefit from it.
Current ensemble methods in climate science, such as ensemble Kalman filters, exhibit a linear
dependency between the problem size and the ensemble size, while particle filters show an exponential
dependency. Nevertheless, with the prospect of massive computing power come challenges such as
power consumption and fault-tolerance. The mean-time-between-failures shrinks with the number of
components in the system, and it is expected to have failures every few hours at exascale. In this thesis,
we explore and develop techniques to protect large ensemble computations from failures. We present
novel approaches in differential checkpointing, elastic recovery, fully asynchronous checkpointing,
and checkpoint compression. Furthermore, we design and implement a fault-tolerant particle filter
with pre-emptive particle prefetching and caching. And finally, we design and implement a framework
for the automatic validation and application of lossy compression in ensemble data assimilation.
Altogether, we present five contributions in this thesis, where the first two improve state-of-the-art
checkpointing techniques, and the last three address the resilience of ensemble computations. The
contributions represent stand-alone fault-tolerance techniques, however, they can also be used to
improve the properties of each other. For instance, we utilize elastic recovery (2nd contribution)
for mitigating resiliency in an online ensemble data assimilation framework (3rd contribution), and
we built our validation framework (5th contribution) on top of our particle filter implementation
(4th contribution). We further demonstrate that our contributions improve resilience and performance
with experiments on various architectures such as Intel, IBM, and ARM processors.

ii

Acknowledgments

I want to thank Leonardo Bautista Gomez and Adrian Cristal Kestelmann for supervising the thesis and

giving me priceless advice. I want to thank especially Leonardo, for giving me the opportunity of this

doctorate, for always having an open ear, and always treating me respectful. I also want to thank my wife,

Maialen Lehane Lezaun, who helped me to endure difficult and frustrating moments. I want to thank my

sister Maren Keller, who especially in the beginning, provided me with advice and assistance, while I was

writing my first articles. I want to thank my mother Gerda Keller, and my sister Solveigh Keller for always

having an open door for me. I want to thank Konstantinos Parasyris (Dinos), teaching me many lessons. I

want to thank the EoCoE-II project for funding the doctorate, and Sebastian Lührs for his outstanding

work as work-package leader. I want to thank Sebastian Friedemann, Bruno Raffin, and Yen-Sen Lu,

for the exciting collaboration on working with MelissaDA. I want to thank EuroLab-4-HPC funding a

one-month stay at the Jülich Supercomputing Centre, and I want to thank the NASDAC project for funding

a two-month stay at the Argonne National Laboratory in Chicago. I want to thank my colleges from

my time at argonne, Shintaro Iwasaki, and Rohit Zambre. I want to thank RIKEN for the seven-month

internship and access to Fugaku. I want to thank Mohamed Wahib, Balazs Gerofi, and Hisashi Yashiro,

for supervising the internship and giving me advice. I want to thank PRACE Summer Of HPC for giving

me the opportunity to supervise two students. I want to thank the two students that participated, Kevser

Ildes and Athanasios Kastoras. I want to thank Gemma Pidelaserra Martí for translating the abstract into

catalan. And finally, I want to thank my co-workers and colleges from other centers for their advice and

good collaboration. Especially (in more or less random order): Albert Njoroge Kahira, Julian Pavon,

Saber Nabavi, Mikel Cortes Goicoechea, Tarun Harjani Daryanani, Sawsane Ouchtal, Alexandre de Limas

Santana, Sanem Arslan Yılmaz, and many others.

iii

List of Figures

2.1 Example showing 4 levels of different reliability and speed 6

2.2 Asynchronous checkpoint creation. The first step (pre-processing) is performed inline, and

the second step (post-processing) is performed by dedicated processes asynchronously to the

application. 7

2.3 (Left) Lorenz Attractor Lpσ “ 28, ρ “ 10, β “ 8{3q with initial state at x “ p0, 1, 1.05q in

blue and slightly perturbed with initial state at x “ p0.00001, 1, 1.05q in orange. (Right) The

Root Mean Square Error (RMSE) between the first and second Lorenz system. 8

3.1 Exponential increase in peak performance (TOP500 lists). 13

3.2 Exponential increase in the average number of cores (TOP500 lists). 14

5.1 The FTI-FF structure can be resolved into three layers of abstraction: The first layer comprises

global metadata (for instance, filesize and datasize) and checkpoint data (protected variables),

the latter is build from M chunks Ci of which each contains Ni variable blocks. The

actual application data are stored in the variable blocks. Each chunk also contains metadata

describing the layout of the variable blocks. 23

5.2 The streaming DCP file structure contains M layers Li; one layer for each checkpoint update.

The layers Li contain the Ni variable blocks that contain the differential variable update.

each layer also contains metadata holding information such as the layer size, block size, and

checkpoint ID. 24

5.3 DCP detection and update scheme. Processes left to the blue circle happen before and

processes to the right after the DCP update. The circle indicates the dirty region request loop 25

5.4 The bars show the estimated Differential Checkpointing (DCP) threshold, i.e. the ratio of

dirty to total data we need, to make the DCP operation beneficial. The left axis shows the

dirty data ratio, η, the right axis shows the corresponding value of ρ (ratio between the hash

time, tb,h, and I/O time, tb,w, for block size b). The experiment has been performed with 768

and 2400 processes and 1GB per rank. 29

5.5 Data differences per rank in checkpoints at different timesteps in LULESH. The x-axis shows

the ranks (512 in total), and the y-axis shows the percentages written in percentage. 31

5.6 Data differences per rank in checkpoints at different timesteps in xPic. The x-axis shows the

ranks (192 in total), and the y-axis shows the percentages written in percentage. 32

5.7 Data differences per rank in checkpoints at different timesteps in Heat2D. The x-axis shows

the ranks (768 in total), and the y-axis shows the percentages written in percentage. 33

iv

5.8 Measured and estimated speedup/overhead of DCP updates. The green background indicates

the region where we have speedup and the red region indicate overhead. τ{tw “ 0 corresponds

to the threshold (i.e., the full Checkpointing (CP) baseline) The datasets with the label

corrected, refer to measurements that used a buffer to collect small chunks in order to avoid

small chunck writes. 36

5.9 Cumulative distribution function (CDF) for chunk sizes of contiguous dirty regions during

DCP updates. 37

6.1 The entire grid of the data used by the application. The different gray scales indicate the

domains of the MPI processes. (a) shows the initial execution with 4 MPI processes and (b)

the execution with 3 processes after the elastic recovery. 43

6.2 Top: Relative checkpoint overhead. Bottom: Relative recovery overhead. For xPic we

separated the recovery overhead into read and re-distribution of the particles.The difference

in latency between online and offline recovery depending on the number of nodes. 49

6.3 Relative checkpoint overhead for our new extensions for varying checkpoint data per process

(strong scaling). 51

6.4 Relative checkpoint overhead for our new extensions for varying number of nodes and

constant checkpoint data per process (Weak scaling). 52

6.5 The difference in latency between online and offline recovery depending on the number of

nodes. 53

6.6 Relative additional overhead for executions on fewer nodes with constant total load. The

x-axis shows the percentage of nodes lost upon failure. 55

6.7 Comparison of the 2 techniques (PP and PC) to organize the particle data in the checkpoint

file. Recovery on 16 nodes means recovery on the same number of nodes, whereas recovery

on 15 nodes means elastic recovery on a reduced number of nodes (i.e., simulates the loss of

1 node upon failure). 56

7.1 Server-runner concept of MelissaDA. Each iteration, the server distributes the analysis

ensemble to the runners, which in turn compute the background state as input for the next

analysis step. 64

7.2 Launcher workflow. Upon a runner failure, the launcher starts a new runner instance. Upon

server failures, the launcher waits until the runners completed their computations and check-

points and restarts the framework. 65

7.3 Server mainloop showing the mechanism to register new runners, the scheduling and check-

pointing. 66

7.4 Virtual cluster, generated by FTI if deployed in local test mode. The number of processes

per virtual node is set to 4 and we have M processes per physical node. This leads to M/4

dedicated FTI processes per node. 67

7.5 Flowchart of the MelissaDA runner workflow. 67

v

7.6 On the top, we see the characteristic failure regimes if checkpointing only the analysis

ensemble. Below, the regimes if checkpointing both the background and analysis ensemble.

(i) Failures in region A lead to a roll back to the beginning of the propagation step from the

previous iteration, failures in B to a rollback to the beginning of the propagation of the current

iteration. (ii) Failures in region A result in a rollback to the end of the previous propagation.

For failures in B we recover to the point where the failure occurred (zero-waste recovery). . 72

7.7 Time for 5 epochs (from epoch 4 to 9). Bars in green show the runtime for experiments

with, and bars in blue without dedicated checkpoint threads on the server. Bars in gray show

runtimes for the experiments without protection (baseline). The percentages above the bars

indicate the overhead compared to the baseline. 74

7.8 Communication graph for state circulation between runner and server. The right showing the

case with dedicated FTI processes (i.e., asynchronous checkpointing) and the left, without

(i.e., synchronous checkpointing). 74

7.9 Time for the pre (i.e., node SSD) and post-processing (i.e., asynchronous shared HDF5 file

creation) for checkpoints on the server. 75

7.10 Histograms of the runner idle and checkpoint times. The runner idle period is the time

between two model propagations. The checkpoint time is part of the idle time. The upper

plots show executions with FTI heads and the lower, without. We observe that synchronous

checkpointing broadens the runners idle time. 76

7.11 Gantt charts showing the server and runner execution (i.e., one runner instance). The charts

show execution, failures in region A and B, and the recovery. The upper plots showing the

cases when protecting both background and analysis ensembles and the lower, only protecting

the analysis ensemble. 77

7.12 Speedup of checkpointing both ensembles towards checkpointing only the analysis ensemble.

The speedup is plotted versus the location of the failure in the respective region. For failures

in region A, αA represents the normalized distance from the beginning of the region to the

end. For failures in region B the respective normalized distance is given by αB 78

7.13 Speedup of checkpointing both ensembles towards checkpointing only the analysis ensemble.

The speedup is plotted versus the location of the failure in the respective region. For failures

in region A, αA represents the normalized distance from the beginning of the region to the

end. For failures in region B the respective normalized distance is given by αB 80

8.1 Initially particles are uniformly sampled. They are propagated to T1 where they are weighted

taking into account observation data. Resampling leads to discard some particles with low

weights (top and bottom), while others with high weights become parent of several ones (3

here). 84

8.2 Runners/server architecture. The model processes perform the state propagation, the helper

processes send propagated states to the PFS and prefetch next scheduled states to the local

cache in the background. Communications with the server combine MPI and ZMQ data

exchanges. 86

vi

8.3 Two possible schedules of 24 propagation tasks of equal duration on 4 runners. All particles

propagated from the same parent state have the same color (9 parents here). Top schedule

is optimal with 9 compulsory loads (one per parent), and one for the dark blue parent that

cannot fit in one runner. The bottom schedule, with 2 more sate loads, is a possible one that

our on-line scheduling algorithm can produce. This is not optimal but still bellow the general

P `R´ 1 bound as the algorithm ensures that no more than R´ 1 "color cuts” occur and

avoids the same runner loads more than once a given parent state. 88

8.4 The topography of the target domain of Europe for the simulation. 90

8.5 Gantt chart of particle propagations executed by 15 (out of 511) randomly selected runners

over 5 assimilation cycles. Tasks are green when the associated parent state was already

present in the runner cache and did not require a load from the PFS (red otherwise). 91

8.6 Trace detailing the activity of a runner over the course of an assimilation cycle. Helper

processes enable to keep model processes busy with particle propagation, except at the end

of assimilation cycles when they wait for the server to finish particle resampling (dark blue).

Some activities are so thin that they are not visible here (state copies from cache to model).

they can become idle . 92

8.7 Server response times on runner requests. 93

8.8 Gantt chart as in Figure 8.5. Two runners crashed (black cross) and 2 restarted (top 2 runners). 94

8.9 Left: strong scaling efficiency using different numbers of particles with 63 runners. One

runner sets the reference case. Right: weak scaling performance test: assimilation cycle

duration for different numbers of runners, but always 5 particles per runner. 94

9.1 Workflow in validation mode. 102

9.2 Linear correlation between the timely evolution of the NRMSE of compressed to lossy

compressed states. We plot the NRMSE of the compressed states for each cycle by the

respective values for the lossy compressed state. 107

9.3 Trace of randomly selected validator for one validation cycle 109

9.4 Comparison of the time for one assimilytion cycle leveraging the dynamic mode of our

proposed framework. 110

A.1 Z-Value deviation, ∆RMSZpXc
(Equation 9.11) for FPZIP. The colors indicate values at

different cycles. 123

A.2 Z-Value deviation, ∆RMSZpXc
(Equation 9.11) for ZFP in precision mode. The colors indicate

values at different cycles. 123

A.3 Z-Value deviation, ∆RMSZpXc
(Equation 9.11) for ZFP in accuracy mode. The colors indicate

values at different cycles. 124

A.4 Z-Value deviation, ∆RMSZpXc
(Equation 9.11) for half and single precision. The colors

indicate values at different cycles. 124

A.5 Normalized maximum pointwise error and normalized root mean square error for (a) FPZIP,

half and single precision, and (b) ZFP in accuracy and precision modes. The colors indicate

values at different cycles. 125

vii

List of Tables

5.1 Collision rates (i.e. the probability of collision per iteration) achieved by application of

algorithm 1. We did not detect any collision for CRC32 or MD5 and the collision rates for

Fletcher32 mod(65535) were almost identical to Fletcher mod(65536). Thus, we do not list

the results here. For all cases, the number of iterations have been within 160-180 million. . . 27

5.2 Impact of the block size b on the DCP update time for xPic using MD5. Negative values of

τ correspond to a speedup and positive values to overhead. HASH SIZE lists the respective

memory sizes that the hash tables occupy in memory. The problem size was 1568MB per rank. 31

5.3 Relative overhead (∆T {T0 [%]) of the checkpoint creation in LULESH with FTI-FF leverag-

ing DCP, compared to classic CP with the original FTI file format. Negative values correspond

to a reduction of the overhead (speedup) and positive values to an increase in the overhead. . 33

5.4 Dataset sizes for the various xPic configurations. 34

5.5 Relative overhead (∆T {T0 [%]) of the checkpoint creation in xPic with FTI-FF leveraging

DCP, compared to classic CP with the original FTI file format. Negative values correspond to

a reduction of the overhead (speedup) and positive values to an increase in the overhead. . . 34

5.6 Relative overhead (∆T {T0 [%]) of the checkpoint creation in Heat2D with FTI-FF leveraging

DCP, compared to classic CP with the original FTI file format. Negative values correspond to

a reduction of the overhead (speedup) and positive values to an increase in the overhead. . . 35

6.1 Different C/R scenarios tested in the evaluation section with respect to the file format, the

checkpoint method and the recovery method. 47

6.2 Configuration and scale for the benchmark experiments. 48

6.3 Results for the relative CR overheads. 50

6.4 The resulting values for the relative CR overheads for N-1 (shared HDF5 file on PFS).

Comparison between our proposal and ADIOS. 50

6.5 Configuration for the measurements of the 2 different data organization pattern in the check-

point file for xPic. 56

7.1 Parameters for the experiments (left) and scale of the experiments (right). The number

of processes dedicated to FTI, in parenthesis, are a subset of the processes preceding the

parenthesis. 70

7.2 Experiments that we have performed with the respective labels. 70

7.3 Probabilities (Equation 7.5 and Equation 7.6), average revival times (Equation 7.10), and

speedup (xT 1revy´xTrevy{xTrevy). The numbers in green indicate that protecting both ensembles

is beneficial, and the red numbers indicate that it is not. 77

viii

8.1 Experimental setting and performance overview at 4 different scales. The times are given as

average in all cases. 91

9.1 Summary of the best compression parameters and the exclusion criteria. 108

9.2 Compression rates, CRc, for selected compression parameters, ordered by the state size. . . . 110

9.3 Speedup for the various compression parameters while storing and loading the states fomr the

PFS. 111

A.1 Average values of the statistical qualifiers NRMSE, NPME and ρXc for selected compression

parameters. The rows show the evolution of the qualifiers by assimilation cycles. 122

ix

Acronyms

3D-Var Three Dimensional Variational Data Assimilation

4D-Var Four Dimensional Variational Data Assimilation

ADIOS Adaptable Input Output System

CESM Community Earth System Model

CP Checkpointing

CKPT Checkpoint

CR Checkpoint-Restart

CRC32 Cyclic Redundancy Check 32-Bit

DA Data Assimilation

DART Data Assimilation Research Testbed

DCP Differential Checkpointing

EC-EARTH European Community Earth-System Model

ECMWF European Centre for Medium-Range Weather Forecasts

EKF Extended Kalman Filter

EnKF Ensemble Kalman Filter

FLOPS Floating Point Operations Per Second

FT Fault Tolerance

FTI Fault Tolerance Interface

GPU Graphics Processing Unit

HDF5 Hierarchical Data Format

HPC High Performance Computing

IFS Integrated Forcasting System

IO Input and Output

KF Kalman Filter

LAPF Localized Adaptive Particle Filter

LETKF Local Ensemble Transform Kalman Filter

MD5 Message-Digest Algorithm 5

x

MITgcm Massachusetts Institute of Technology Ocean General Circulation Model

MPI Message Passing Interface

MTBF Mean Time Between Failures

NICAM Nonhydrostatic ICosahedral Atmospheric Model

NVMe Non Volatile Memory Express

NWP Numerical Weather Prediction

OS Operating System

PDF Probability Density Function

PF Particle Filter

PFS Parallel File System

RMSE Root Mean Square Error

SA Sensitivity Analysis

SCR Scalable Checkpoint/Restart

SIR Sequential Importance Resampling

SSD Solid State Drive

TCP Transmission Control Protocol

TOPAZ Transient One Dimensional Pipe Flow Analyzer

VeloC Very Low Overhead Checkpointing System

WRF Weather Research and Forecasting model

ZeroMQ Zero Message Queue

xi

Contents

List of Figures iv

List of Tables viii

I Prologue 1

1 Introduction 3

2 Background 5
2.1 Modern Checkpointing . 5

2.1.1 Multilevel Checkpointing . 5

2.1.2 Asynchronous Checkpointing . 6

2.1.3 Approximate Checkpointing . 7

2.2 Ensemble Data Assimilation . 8

2.2.1 Variational Methods . 9

2.2.2 Sequential Monte Carlo Methods . 10

2.2.2.1 Ensemble Kalman Filter . 10

2.2.2.2 Particle Filter . 10

3 Motivation 13

4 State of the Art 17
4.1 Modern Ensemble Data Assimilation Frameworks . 17

4.2 Fault Tolerance in Ensemble Data Assimilation . 18

II Contributions to Checkpoint Schemes 19

5 Differential Checkpointing 21
5.1 Terminology . 22

5.1.1 Definition of Incremental Checkpointing . 22

5.1.2 Definition of Differential Checkpointing . 22

5.2 Differential Checkpointing Implementation in FTI . 22

5.2.1 A Storage Space Efficient Differential Checkpointing Implementation for Dy-

namic Dataset Sizes . 23

5.2.2 The Dynamic File Structure in FTI-FF . 23

xiii

5.2.3 A Safe Update of the FTI-FF Differential Checkpoint Files 24

5.2.4 A Streaming Implementation of Differential Checkpointing 24

5.2.5 Tracking the differences . 24

5.3 Choice of the Hash Algorithm . 26

5.4 When is Differential Checkpointing Beneficial? . 27

5.5 Evaluation . 28

5.5.1 HPC Applications . 29

5.5.1.1 LULESH 2.0 . 29

5.5.1.2 xPic . 30

5.5.1.3 Heat2D . 30

5.5.2 Variation of the Block Size b . 30

5.5.3 Spatial and Temporal Differences . 32

5.5.4 Overhead reduction on HPC Applications . 33

5.6 Discussion . 34

5.7 Related Work . 36

5.8 Conclusion . 38

6 Elastic Recovery 39
6.1 Background . 40

6.1.1 MPI Layer Fault Tolerance . 40

6.1.2 General Purpose IO . 40

6.1.2.1 HDF5 . 40

6.1.2.2 ADIOS . 40

6.2 Implementation . 41

6.2.1 Design Objectives . 41

6.2.2 API Specification . 41

6.2.2.1 Complex Data Representation . 41

6.2.2.2 Descriptive Data Representation . 42

6.2.3 Accessing the Checkpoint Data . 43

6.2.4 Elastic recovery . 43

6.2.5 Checkpoint Strategies . 44

6.2.6 Asynchronous Checkpoint . 44

6.3 Methodology . 45

6.3.1 Generalized Evaluation Metric . 45

6.3.2 Measurements . 46

6.3.3 Experiments . 46

6.3.4 Applications . 47

6.3.4.1 Heat2D (C++) . 47

6.3.4.2 xPic . 47

6.4 Evaluation . 48

6.4.1 HPC Environment . 48

6.4.2 Performance Measurements . 48

6.4.3 Comparison to ADIOS . 49

xiv

6.4.4 Scaling . 50

6.4.4.1 Strong Scaling . 51

6.4.4.2 Weak Scaling . 51

6.4.5 Offline vs Online Elastic Recovery . 52

6.4.6 Elastic Recovery with Fewer Processes . 54

6.4.7 Data Distribution on Irregular Applications . 54

6.5 Discussion . 56

6.6 Related Work . 57

6.7 Conclusion . 57

III Contributions to Resiliency in Large Ensemble 59

7 Background Checkpointing in Operational Ensemble Data Assimilation 61
7.1 Background . 62

7.1.1 Data Assimilation and the Ensemble Kalman Filter 62

7.1.2 MelissaDA . 63

7.1.3 Asynchronous Checkpointing and Elastic Recovery 64

7.2 Implementation . 64

7.2.1 Launcher . 65

7.2.2 Server . 65

7.2.3 Runner . 67

7.2.4 Recovery . 68

7.3 Related Work . 69

7.3.1 Fault Tolerance for DART-MITgcm with Decimate 69

7.3.2 Fault Tolerance Methods for Numerical Climate Models 69

7.4 Methodology . 69

7.4.1 Experiments . 70

7.4.2 Data Collection . 71

7.4.3 Failure Regions . 71

7.4.4 Failure Injection . 73

7.5 Evaluation . 73

7.5.1 Climate Model . 73

7.5.2 Experimental Setup . 73

7.5.3 Performance Evaluation during Runtime . 73

7.5.4 Performance Evaluation Recovery . 75

7.5.5 Checkpointing Background and Analysis Vs. Only Analysis 78

7.6 Discussion . 79

7.7 Conclusion . 80

8 Resilient Online Particle Filter using a Local Particle Cache 83
8.1 Particle Filters . 84

8.2 Architecture . 85

8.2.1 Runner and Cache Interaction . 85

xv

8.2.2 Cache Eviction Strategy . 87

8.2.3 Fault Tolerance and Elasticity . 87

8.2.4 Scheduling . 88

8.2.5 Implementation Details . 89

8.3 Evaluation . 89

8.3.1 Runner activity . 90

8.3.2 Server activity . 92

8.3.3 State transfers to/from PFS . 92

8.3.4 Fault tolerance, elasticity and load balancing 93

8.3.5 Scaling . 93

8.4 Related Work . 95

8.5 Conclusion . 95

9 A Framework for Automatic Validation and Application of Lossy Data Compression in
Ensemble Data Assimilation 97
9.1 Background . 98

9.1.1 Ensemble Data Assimilation . 98

9.1.2 Terminology . 99

9.2 Design and Implementation . 99

9.2.1 MelissaDA Particle Filter . 99

9.2.2 High-Level View on the Validation Framework 100

9.2.3 Validation Mode . 101

9.2.4 Dynamic Mode . 104

9.3 Evaluation . 104

9.3.1 Experimental Setup . 105

9.3.2 Methodology . 105

9.3.3 Statistical Evaluation . 105

9.3.3.1 Z-Value Deviation . 106

9.3.3.2 Pearson Correlation Coefficient . 106

9.3.3.3 Normalized Error Statistic . 106

9.3.3.4 Summary of the Validation Study . 108

9.3.4 Performance . 108

9.3.4.1 Validation Mode . 108

9.3.4.2 Dynamic mode . 109

9.3.5 Discussion . 111

9.4 Related Work . 111

9.5 Conclusion . 112

IV Epilogue 113

10 Thesis Conclusion 115

11 List of Publications 117

xvi

V Appendix 119

A Validation Framework - Figures and Tables 121

Bibliography 127

xvii

Part I

Prologue

1

Chapter 1

Introduction

” When I have clarified and exhausted a subject, then I turn away

from it, in order to go into darkness again.

— Carl Friedrich Gauss

High Performance Computing (HPC) is becoming ever more important for research and development

in both public and industry sectors. Supercomputers have observed an exponential increase in size and

performance over the last couple of decades. Exascale computing (i.e., 1018 floating point operations per

second) is the next frontier, and it promises to bring orders of magnitude more computing power into

the hands of scientists. However, the increase in computational power also comes with a certain number

of challenges. Power consumption and resilience are among the most pressing issues that need to be

addressed [1]. Indeed, the increasing number of components in large-scale systems makes the machine

more prone to failures, reducing the Mean Time Between Failures (MTBF). It is expected that the next

generation of HPC systems experiences failures every few hours [2, 3]. Consequently, most long-running

extreme scale HPC applications will experience multiple failures during their execution [4, 5].

A sample of systems that encloses common information in the statistical moments of the sample is

commonly known as a computational ensemble. The individual systems are each Monte Carlo realizations

of the system we want to resolve. The individual systems can be simple or complex systems. Ensemble

methods for complex systems gain interest with the increasing availability of computing resources.

Computational ensembles find application in various fields of HPC. For instance, in solving linear

systems [6], ensemble sensitivity analysis [7–9], ensemble learning [10, 11], and Numerical Weather

Prediction (NWP) [12,13]. What makes ensembles different from common parallel computing techniques

is, that typically the ensemble members are processing independently of each other. We understand a

computational ensemble as a group of numerical systems that generate dependent output, and that can be

executed independently of each other. This definition applies for a number of (though not for all) ensemble

methods among different fields; for instance, Bootstrap Aggregating (Bagging) in ensemble learning, and

particle and ensemble Kalman filtering in ensemble data assimilation. Ensemble methods, being based on

Monte Carlo principles, need sample sizes of statistical significance. Depending on the problem size and

complexity of the individual ensemble members, this often translates into extensive resource requirements.

Consequently, long-running ensemble systems need to perform fault-tolerant processing.

Thankfully, ensemble methods yield promising starting points for introducing resiliency. Being

independent, failures of one ensemble member does not directly affect others, so we might consider a

task based fault tolerance approach. Or we may want to exploit the stochastic origin of the ensemble

method and simply discard failed member executions. To find and evaluate appropriate fault-tolerance

mechanisms for ensemble methods has been the mission of this doctorate, and in this thesis, we present

the fruits of our efforts in accomplishing this.

3

Before we present our contributions to improving resiliency of large ensembles, we will present our

contributions to state-of-the-art checkpoint features. Checkpointing still represents the most common

resiliency measure in HPC, and we will use the techniques developed by us and other modern features in

our efforts to protect ensemble runs. The thesis is devided into three parts. The first part (Part I - Prologue)

introduces the basic concepts (chapter 2), and the motivation behind this work (chapter 3). Further, we

will present state-of-the-art ensemble techniques, as well as existing Fault Tolerance (FT) mechanisms for

ensemble methods, and general FT techniques (chapter 4). The second part (Part II - Contributions to

Checkpoint Schemes) contains our contributions to improving and extending state-of-the-art checkpoint

methods. In chapter 5 we present our first contribution: a proposal for Differential Checkpointing

(DCP), addressing issues with state-of-the-art DCP methods. we implemented our proposal in the Fault

Tolerance Interface (FTI) library, and evaluated it with three different HPC applications at large scale.

In chapter 6, we present our second contribution: our proposal for an API and runtime for multilevel

Checkpoint-Restart (CR) libraries, that mitigates the elastic recovery (recovery with an arbitrary number

of processes), and provides access to the checkpoint data for scientific post-processing. The third part

(Part III - Contributions to Resiliency in Large Ensemble) contains our contributions to resiliency in

ensemble computations. In chapter 7 we present our third contribution: where we utilize asynchronous

CR techniques and threads to entirely hide the checkpoint cost, and minimize the recovery cost for the

state-of-the-art ensemble Data Assimilation (DA) framework MelissaDA. In chapter 8, we present our

fourth contribution: a Particle Filter (PF) implementation that uses local storage layers for implementing

a distributed particle-state cache. The cache allows one to perform the state transfer from and to the

global storage layer entirely in the background, and with this, it achieves a very high parallel efficiency.

In chapter 9, we present our fifth contribution: a validation framework for ensemble systems, using

robust statistical qualifiers to evaluate state and ensemble consistency when applying lossy compression

to the individual state variables.

4

Chapter 2

Background

The most general and common technique to introduce Fault Tolerance (FT) into High Performance

Computing (HPC) applications is rollback-and-recovery (a.k.a., checkpoint and restart). For this, the

application state is periodically stored in dedicated buffers on some storage device. If the application

is interrupted unexpectedly, it can be recovered using the application state from the latest checkpoint

available on the dedicated buffers. In this chapter, we will briefly introduce the most common and efficient

Checkpoint-Restart (CR) techniques. Afterwards, we will introduce briefly the ensemble methods that we

have used in our studies.

2.1 Modern Checkpointing

In CR, application data is periodically stored into checkpoints, and upon failure, used to recover the

application state at which the checkpoint was taken. CR techniques differ in: (1) the data contained in

the checkpoints; (2) the way the checkpoint is performed; and (3) the way the data is recovered from the

checkpoint. For instance, the checkpoint data may comprise an informational core from which the runtime

data can be computed. Upon checkpoint creation, the runtime data is reduced to this informational core,

and upon recovery it is reconstructed. This is beneficial if the time to create and reconstruct the data is less

than the time we save while storing fewer data. This is often the case, because computing is typically faster

compared to the throughput of the Input and Output (IO) layer. A similar argument holds for compressing

the data before writing it to the file system, where the compression can be lossless, i.e., without loss of

information, or lossy, i.e., with a certain loss of information. Further, the checkpoint creation can be

coordinated, i.e., performed at a global synchronization point, or uncoordinated, i.e., independent of the

other system components (typically other ranks). CR libraries mitigate the implementation of modern FT

techniques in HPC applications. Some libraries provide transparent checkpoint integration, i.e., without

modifying the application code, while others are based on a user-level API, or provide both options.

Libraries that provide an API are typically more efficient, as the developer can explicitly define which

data to checkpoint, and when. Note, however, that library approaches typically require the application to

wait until the end of the current iteration in order to checkpoint less state. On the other hand, transparent

checkpointing holds promise in providing effortless checkpoint protection. In the following sections,

we introduce CR techniques that we have used in our work, and that need to be introduced for better

understanding.

2.1.1 Multilevel Checkpointing

Multilevel checkpointing represents checkpointing at various levels of reliability. Levels of lower reliability

are typically faster than levels of higher reliability. Multilevel checkpointing represents a tradeoff between

reliability and speed. Common levels are:

5

1. local checkpoints,

2. partner checkpoints (a.k.a., buddy checkpoints),

3. encoded checkpoints, and

4. global checkpoints.

Where the reliability increases and speed decreases from 1 to 4 (Figure 2.1). The first three levels

can only be applied if local storage is available, where local storage can comprise node memory or local

persistent storage (Solid State Drive (SSD), Non Volatile Memory Express (NVMe), etc.). For the first

level, the checkpoint is created on local storage. Consequently, if the checkpoint remains unavailable after

the failure (e.g., node failure), the checkpoint is lost and the application cannot be recovered. The second

level, provides a better protection, as local checkpoints are duplicated and sent to partner nodes. In this

case, as long as one version of the checkpoint remains available, numerous node failures can be tolerated.

The third level increases the reliability again, grouping several checkpoints using erasure codes (e.g.,

Reed-Solomon codes). Reed-Solomon codes have the property that after adding K blocks to M blocks of

data, the loss of any of up to K blocks can be tolerated, since the missing blocks can be reconstructed

with the information from the remaining blocks. Thus, arranging the checkpoint files into groups of M

members, and encoding them by adding M additional files, the loss of any of up to M files from the

group can be tolerated. The forth level provides the highest reliability, as it can tolerate failures of the

entire system, assuming an intact global storage after the failure. Some prominent multilevel checkpoint

libraries are Fault Tolerance Interface (FTI) [14], Scalable Checkpoint/Restart (SCR) [15] and VeloC [16].

Level 1

Level 2

Level 3

Node Storage

Node Storage
+

Partner Node

Node Storage
+

Encoding / Partner Node

Level 4
Node Storage

+
Global Storage Server

Sp
ee

d

R
eliability

Figure 2.1: Example showing 4 levels of different reliability and speed

2.1.2 Asynchronous Checkpointing

Sometimes, the type of the checkpoint or the application workflow allow creating the checkpoint entirely

or partially asynchronously to the applications’ execution. The levels introduced in subsection 2.1.1 can be

performed partially in the background. The second, third, and fourth level can be divided into 2 stages, the

first stage being a first level (local) checkpoint. While the first stage must be performed by the application

inline, the second stage can be performed in the background (Figure 2.2). For instance, the partner

copy can be sent to the partner node by dedicated worker processes, while the application continues its

6

execution. Similarly, we can perform the encoding and the copy to global storage in the background.

Sometimes, the application itself allows asynchronous checkpointing, for instance through pipelines.

This is the case when the checkpoint can be performed intermittently, and if some checkpoint data is not

required for a long computational period involving different data. While the application performs the

computation, the data not required can be added to the checkpoint in the background. In some cases, it is

even possible to hide the entire checkpoint creation, for instance, by leveraging intermediate buffers, or

when the entire checkpoint creation can be arranged in pipelines.

Asynchronous Post-Processing

Synchronous Pre-Processing

Figure 2.2: Asynchronous checkpoint creation. The first step (pre-processing) is performed inline, and the second step
(post-processing) is performed by dedicated processes asynchronously to the application.

2.1.3 Approximate Checkpointing

If the application can tolerate a certain loss in accuracy, the checkpoint can be created using an approximate

data representation to reduce the amount of data stored. This can be beneficial due the IO bottleneck arising

for checkpoints containing very large amounts of data. Lossless data compression is often not enough,

due to relatively low compression rates. The reduction can be improved with lossy data compression. The

HPC landscape provides various algorithms for lossy compression, for instance ZFP [17], FPZIP [18],

ISABELA [19], SZ [20], MGARD [21] and MGARD+ [22], to name a few. The algorithms follow

different approaches and might reveal their strength only for certain types of applications. Typically, the

algorithm performance can further be tuned by parameters, such as bit precision, tolerance, and fixed

compression rate. However, data compression is not the only method for data reduction, the data can also

be converted into lower precision data formats, for instance, from double precision into single or half

precision floating point representations. Furthermore, data reduction can be achieved using interpolation

techniques, spectral data decomposition, and other data specific approaches.

7

2.2 Ensemble Data Assimilation

Numerical climate models are non-linear systems and very sensitive to initial conditions (i.e., chaotic). A

famous example of a chaotic system is the Lorenz attractor [23], also called lorenz butterfly. Changing the

initial conditions by only a fraction of a percent in one of the three parameters of the model, leads to an

entirely different system evolution (see Figure 2.3).

X Axis

10
0

10
20

Y A
xis

20
10

0
10

20
30

Z
Ax

is

10
20
30
40
50

Lorenz Attractor

0 250 500 750 1000 1250 1500 1750 2000
Timestep

0

10

20

30

40

50

RM
SE

RMSE original and perturbed Lorenz Attractor

Figure 2.3: (Left) Lorenz Attractor Lpσ “ 28, ρ “ 10, β “ 8{3q with initial state at x “ p0, 1, 1.05q in blue and slightly
perturbed with initial state at x “ p0.00001, 1, 1.05q in orange. (Right) The RMSE between the first and second Lorenz system.

Clearly, real climate models exhibit chaotic behavior as well, and the vivid example from above

demonstrates that meaningful predictions of weather and climate systems require an accurate knowledge

of the initial state. However, the numerical models cannot exactly describe the dynamics of a climate

system. For instance, processes that take place at a smaller scale than the model resolution need to be

described by parametrizations that only qualitatively capture their influence. Besides, current (and likely

also future) climate models cannot take into account all the processes involved, due to the complexity

of the climate system. This leads to model-induced errors in the systems’ evolution. As a consequence,

even if it was possible to provide the real state of the weather system without uncertainty as initial state,

after a certain amount of time, the error introduced by the imperfect model-would inevitably lead to

entirely wrong predictions. Only the frequent assimilation of observations can account for this, and ensure

the correct evolution of the numerical model [24]. Thankfully, there are methods to include real world

observations that guide the model trajectory into the right direction. Those methods are known under the

generic term of Data Assimilation. Most of the Data Assimilation (DA) techniques deployed, are based

on Bayesian inference:

P pA|Bq9P pB|Aq ¨ P pAq (2.1)

resulting from Bayes theorem with constant Probability Density Function (PDF) P pBq for the evidence

B available. Applied to our problem we have:

Panalysis9Pobservation ¨ Pmodel (2.2)

where Pobservation is the conditional PDF, or Likelihood, of the observations, conditioned on the model

state. Pmodel is the PDF of the model state, or Prior distribution, before taking the observations into

account, and Panalysis is the PDF, or Posterior distribution, of the so-called analysis state. The latter

encodes the information of both model and observation uncertainty. DA aims to minimize the uncertainty

8

of the posterior distribution. There are different techniques to achieve this. The most prominent techniques

are Three Dimensional Variational Data Assimilation (3D-Var), Four Dimensional Variational Data

Assimilation (4D-Var), and ensemble methods such as the Ensemble Kalman Filter (EnKF) and Particle

Filter (PF).

Ensemble DA techniques provide an explicit description of the flow-dependent covariance matrix.

The covariance matrix encodes the uncertainty of the climate state, which is often as important as the best

state estimate itself, as it provides a range of likely realizations of the system’s trajectory. Determining

the possible trajectories of a tropical cyclone apart from the most likely one, for instance, is important

to assess the likelihood of an impact in other regions. Whereas 4D-Var often leads to more accurate

predictions, it does not provide a simple way to access the prediction uncertainty [25]. Therefore, it is

frequently combined with an ensemble method. On the other hand, ensemble methods are often preferred

from the beginning; for instance, due to the typically smaller implementation effort or because they

constitute the better fit in certain cases [26–28]. In the following, we will give a short introduction to both

variational and ensemble-based DA techniques.

2.2.1 Variational Methods

Variational DA methods are based on iterative minimization of a cost function, which is derived from

Bayes’ theorem and contains distributions from model and observation uncertainties. 3D-Var, being the

simplest of the variational methods, tries to minimize the following cost function:

J3Dpxq “ px´ xbq
TB´1px´ xbq ` py0 ´HxqTR´1py0 ´Hxq (2.3)

where x is the object of the minimization, i.e., the minimum variance state estimate [29]. xb is the

background state, sometimes also called first guess, and B is the approximated error covariance matrix of

the background state, where we use the conventional notation suggested in [30]. The background state, in

variational methods, is the result of the propagation of x from tÑ t` 1 with the numerical model (a.k.a.,

model operator):

xt “Mxt´1 (2.4)

with M being the linearized model operator. Further, denote y0 as the real-world observations, and H as

the linear observation operator defined by:

y “ Hx (2.5)

yielding the transformation from model space to observation space. All variational methods require

both the model and observation operator to be linear. Thus, for the application of variational methods,

the model operator needs to be linearized. The contributions of model and observation state to the cost

function are weighted by their respective error covariance matrices, B and R. All variational methods

assume a Gaussian model and observation errors with zero-mean.

4D-Var differs from the 3D-Var method by the additional time dimension. Whereas in 3D-Var the

observations are assimilated at the beginning of the assimilation window (indicated by the zero index of

y0), in 4D-Var, the observations are assimilated at the actual time they are measured. This is achieved by

adding respective terms in the cost function that compare the states and observations at different times:

J4Dpxq “ px´ xbq
TB´1px´ xbq `

ÿ

i

pyi ´Hxiq
TR´1pyi ´Hxiq (2.6)

9

2.2.2 Sequential Monte Carlo Methods

A different approach is taken by the ensemble methods in DA. Instead of minimizing a cost function, the

ensemble methods follow a Monte Carlo approach and approximate the best state estimate by averaging

over several realizations of the climate state. The two available techniques for ensemble DA are the EnKF

and the PF. In the following, we will give a brief introduction to both methods.

2.2.2.1 Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) was first introduced by Evensen in 1994 [31], during his efforts

toward leveraging the Extended Kalman Filter (EKF) for DA of quasi-geostrophic models [32, 33].

Problems with the error covariance evolution equation in the EKF, and its intense computational cost,

have motivated him to explore other strategies of finding approximations for the evolution of the error

covariance matrix [31]. Emerging from these efforts, Evensen introduced Monte Carlo based ensemble

statistics into the Kalman filter and established the EnKF formalism.

The Kalman filter, as well as the variational methods, assume Gaussian error covariances for model

and real-world observations. However, in contrast to the variational methods, a Kalman filter does not

require the linearization of the model and observation operators. The state space equations for the EnKF

can thus be expressed as:

xt “Mxt´1 ` ηt, ηt „ N p0, Qtq (2.7)

yt “ Hxt ` εt, εt „ N p0, Rtq (2.8)

where M and H are the full (i.e., not linearized) model and linear observation operator. The EnKF also

takes the imperfection of the model into account, indicated by the noise process ηt. However, whereas

in general, non-linear models cause non-Gaussian errors, the error here is assumed to have a Gaussian

form. Both the model and observation errors are assumed to be Gaussian with mean zero, generated by

the respective error covariance matrices Qt and Rt.

An important advantage of the EnKF is the statistics encoded in the ensemble. The statistical

moments (e.g., mean and variance) can directly be computed from the ensemble. Thus, in contrast to the

variational methods, ensemble methods provide a measure of prediction uncertainty. Furthermore, the

EnKF formulation is more general, as it doesn’t require model linearization. The update step of the EnKF

in [31] is:

xat “ xbt `Kpyt ´Hxbtq (2.9)

K “ Pf
tH

T
t

”

HtP
f
tH

T
t `Rt

ı´1
(2.10)

where xbt results from xbt “Mxat´1, i.e., the application of the model operator to the analysis state, xat´1,

from the filter step at t´ 1. K is the Kalman gain and Pb
t the background error covariance matrix, which

is computed from the background state ensemble.

2.2.2.2 Particle Filter

Another Monte Carlo approach for climate data assimilation is the Particle Filter (PF) [34]. We have

variational methods, which require a linear model operator, and the EnKF, which relaxes this condition,

10

while keeping the assumption of Gaussian error for the covariance. On the other hand, the PF has no

restrictions on the model operator and also no assumptions on the distributions. Instead, the distribution is

generated by weighting the Monte Carlo realizations (particles) of the model state. The formulation of

the PF is again based on Bayes’ theorem:

ppx|yq “
ppy|xqppxq

ppyq
(2.11)

with ppx|yq being the posterior, ppxq the prior, and ppy|xq the likelihood. x and y denote the model

state and real-world observations respectively. In the so-called bootstrap particle filter [35], the prior is

approximated by:

ppxq «
P
ÿ

p“1

1

P
δpx´ xpq (2.12)

with P being the number of particles in the sample, and δpxq the Dirac delta function. After replacing the

PDF of the observations (which is unknown) by:

ppyq “

ż

dx ppy|xqppxq (2.13)

(2.12)
«

1

P

P
ÿ

p“1

ppy|xpq (2.14)

After substituting ppxq (Equation 2.12) and ppyq (Equation 2.14) in Equation 2.11, we can write the

approximated posterior distribution as:

ppx|yq «
P
ÿ

p“1

ŵp
řP
q“1 ppy|xqq

δpx´ xpq (2.15)

“

P
ÿ

p“1

wpδpx´ xpq (2.16)

where ŵp is the unnormalized particle weight:

ŵp “ ppy|xpq (2.17)

and wp the normalized particle weight:

wp “
ppy|xpq

řP
q“1 ppy|xqq

(2.18)

Equation 2.16 gives us an explicit description of the posterior distribution at hand, and with that, access

to all statistical moments of the system. Since we have not made any assumptions on the shape of the

distribution, PF provides an elegant way of accounting for non-linearities in the climate model.

11

Chapter 3

Motivation

In section 2.2 we introduced the main concepts employed for data assimilation in climate models. Four

Dimensional Variational Data Assimilation (4D-Var) and Ensemble Kalman Filter (EnKF) are well

established in data assimilation. Both are frequently used and do not compete for deployment. It has

been observed that each method reveals certain advantages over the other, depending on the problem at

hand. On the other hand, Particle Filter (PF) is rather new in Data Assimilation (DA) for climate science.

However, recent work by Leeuwen et al. [35–37] shows promise for using PF where model non-linearities

become more important [35]. Whether usinng a variational or Monte Carlo method, increasing model

resolution and simulation volume motivate an increasing demand in computing resources. While those

needs are being answered by the rapid advances in scale and performance of supercomputers, the Mean

Time Between Failures (MTBF) of large clusters is steadily falling, and operation at very large scale

will become impractical without appropriate measures for resiliency. We have witnessed an exponential

increase in computing power during the last decades, with thee current most powerful supercomputer,

Fugaku, reaching over 0.5 EFLOPS (Figure 3.1). El Capitan is planned to reach more than 1.5 EFLOPS

in 2023 [38].

Ju
ne

 1
99

3
No

ve
m

be
r 1

99
3

Ju
ne

 1
99

4
No

ve
m

be
r 1

99
4

Ju
ne

 1
99

5
De

ce
m

be
r 1

99
5

Ju
ne

 1
99

6
No

ve
m

be
r 1

99
6

Ju
ne

 1
99

7
No

ve
m

be
r 1

99
7

Ju
ne

 1
99

8
No

ve
m

be
r 1

99
8

Ju
ne

 1
99

9
No

ve
m

be
r 1

99
9

Ju
ne

 2
00

0
No

ve
m

be
r 2

00
0

Ju
ne

 2
00

1
No

ve
m

be
r 2

00
1

Ju
ne

 2
00

2
No

ve
m

be
r 2

00
2

Ju
ne

 2
00

3
No

ve
m

be
r 2

00
3

Ju
ne

 2
00

4
No

ve
m

be
r 2

00
4

Ju
ne

 2
00

5
No

ve
m

be
r 2

00
5

Ju
ne

 2
00

6
No

ve
m

be
r 2

00
6

Ju
ne

 2
00

7
No

ve
m

be
r 2

00
7

Ju
ne

 2
00

8
No

ve
m

be
r 2

00
8

Ju
ne

 2
00

9
No

ve
m

be
r 2

00
9

Ju
ne

 2
01

0
No

ve
m

be
r 2

01
0

Ju
ne

 2
01

1
No

ve
m

be
r 2

01
1

Ju
ne

 2
01

2
No

ve
m

be
r 2

01
2

Ju
ne

 2
01

3
No

ve
m

be
r 2

01
3

Ju
ne

 2
01

4
No

ve
m

be
r 2

01
4

Ju
ne

 2
01

5
No

ve
m

be
r 2

01
5

Ju
ne

 2
01

6
No

ve
m

be
r 2

01
6

Ju
ne

 2
01

7
No

ve
m

be
r 2

01
7

Ju
ne

 2
01

8
No

ve
m

be
r 2

01
8

Ju
ne

 2
01

9
No

ve
m

be
r 2

01
9

Ju
ne

 2
02

0
No

ve
m

be
r 2

02
0

Ju
ne

 2
02

1

TOP500 - List

0

100000

200000

300000

400000

500000

Rp
ea

k
[T

FL
OP

S]

0 0 0 0 0 0 0 0 1 1 1 3 3 3 3 12 12 12 40 40 40 40 40 91 18
3

36
7

36
7

36
7

36
7

22
9

13
75

14
56

14
56

26
27

29
84

47
01

11
28

0
20

13
2

20
13

2
27

15
4

10
06

79
10

06
79

10
06

79
10

06
79

10
06

79
10

06
79

12
54

36
12

54
36

12
54

36
12

54
36

20
07

95
20

07
95

20
07

95
20

07
95

53
72

12
53

72
12

53
72

12Theoretical Peak (Rpeak)

Figure 3.1: Exponential increase in peak performance (TOP500 lists).

While this will give ever more computing power in the hand of scientists, the increase in computing

power comes along with an increasing number of components (Figure 3.2). The MTBF of a system

made up from N components, is given by the MTBF of the individual components divided by N [39].

Therefore, we will encounter more failures utilizing more components, reducing the systems MTBF. It is

13

expected that the MTBF reduces to a few hours at exa-scale [2, 3]. Consequently, applications running at

that scale need protection to successfully terminate their execution.
Ju

ne
 1

99
3

No
ve

m
be

r 1
99

3
Ju

ne
 1

99
4

No
ve

m
be

r 1
99

4
Ju

ne
 1

99
5

De
ce

m
be

r 1
99

5
Ju

ne
 1

99
6

No
ve

m
be

r 1
99

6
Ju

ne
 1

99
7

No
ve

m
be

r 1
99

7
Ju

ne
 1

99
8

No
ve

m
be

r 1
99

8
Ju

ne
 1

99
9

No
ve

m
be

r 1
99

9
Ju

ne
 2

00
0

No
ve

m
be

r 2
00

0
Ju

ne
 2

00
1

No
ve

m
be

r 2
00

1
Ju

ne
 2

00
2

No
ve

m
be

r 2
00

2
Ju

ne
 2

00
3

No
ve

m
be

r 2
00

3
Ju

ne
 2

00
4

No
ve

m
be

r 2
00

4
Ju

ne
 2

00
5

No
ve

m
be

r 2
00

5
Ju

ne
 2

00
6

No
ve

m
be

r 2
00

6
Ju

ne
 2

00
7

No
ve

m
be

r 2
00

7
Ju

ne
 2

00
8

No
ve

m
be

r 2
00

8
Ju

ne
 2

00
9

No
ve

m
be

r 2
00

9
Ju

ne
 2

01
0

No
ve

m
be

r 2
01

0
Ju

ne
 2

01
1

No
ve

m
be

r 2
01

1
Ju

ne
 2

01
2

No
ve

m
be

r 2
01

2
Ju

ne
 2

01
3

No
ve

m
be

r 2
01

3
Ju

ne
 2

01
4

No
ve

m
be

r 2
01

4
Ju

ne
 2

01
5

No
ve

m
be

r 2
01

5
Ju

ne
 2

01
6

No
ve

m
be

r 2
01

6
Ju

ne
 2

01
7

No
ve

m
be

r 2
01

7
Ju

ne
 2

01
8

No
ve

m
be

r 2
01

8
Ju

ne
 2

01
9

No
ve

m
be

r 2
01

9
Ju

ne
 2

02
0

No
ve

m
be

r 2
02

0
Ju

ne
 2

02
1

TOP500 - List

0

10000

20000

30000

40000

50000

60000

Nu
m

be
r o

f C
or

es

4 6 20 32 16 16 20 30 32 36 56 64 66 12
0

12
8

13
2

12
8

12
8

17
4

14
4

25
6

25
6

38
4

49
4

54
4

76
8

10
00

10
52

12
24

16
04

24
00

32
00 40
96 49
92

55
92 64
64 91

56 10
41

6 13
31

2
15

60
0

17
34

0
18

22
4

20
48

0
20

16
0

20
48

0
28

32
0

30
00

0 33
66

0
36

00
0 39

20
0

46
08

0
51

84
0

57
60

0
57

60
0

57
60

0
57

60
0

57
60

0Average Number of Cores

Figure 3.2: Exponential increase in the average number of cores (TOP500 lists).

Due to the high dimensionality of climate states (on the order of 109), ensemble methods require

large ensemble sizes to ensure statistical significance. Recent studies suggest ensemble sizes between

1,000 and 10,000 for reliable predictions in models that exhibit strong non-linearities [40]. In addition,

pushing towards higher model resolution leads to an increasing non-linearity in the model, due to the

fact that parametrizations need to be replaced by more realistic numerical models. A general statement

about ensemble sizes shows that the required size grows linearly with the dimension of the climate state

for EnKF and exponentially for PF [13, 41]. Though this requirement can be relaxed by introducing

techniques such as localization and ensemble inflation, the trend of ensemble sizes is pointing towards

larger scales, and with this comes the requirement of fault tolerance.

A computational ensemble is a group of numerical systems that generate dependent output, and that

can be executed independently of each other. This definition of ensembles applies to both EnKF and PF.

Ensemble states are propagated through the numerical model independently of each other, until they are

connected during the filter step. This holds certain advantages from the Fault Tolerance (FT) perspective.

For instance, the propagations of the climate states can be considered as tasks, which only have output

dependencies. We can thus leverage existing techniques from scheduling theory to achieve resiliency.

Furthermore, the separation of the filter step and the propagation allows for a decoupling of both steps

into different application domains, which can be protected independently. This reduces the complexity of

the FT measures, and reduces the size of the individual systems that need to be protected.

There are two main execution workflows for ensemble methods: the online workflow, where the

entire system is executed as a single executable with communication over the network layer; and the

offline workflow, executing the ensemble members and the filter system on separate executables, while

communicating results through the storage layer. While the latter approach allows for convenient protection

by leveraging the files as restart files, the former approach is very difficult to protect. On the other hand,

14

the online approach is typically much faster, delivering high throughput in high-bandwidth network layers.

Not only do the ensemble methods require extensive scaling, but they are often also deployed in

continuous operation. Consequently, their operation requires robust resiliency with low overheads.

Ensemble methods with large application states, can not just rely on offline approaches, due to scale

constraints. Global storage systems can simply not deliver the bandwidth for reasonable performance,

leaving online approaches as the only option. However, online approaches currently rely on MPI for

communication. Though there has been much effort at improving the FT properties of MPI (ULFM,

Fenix, etc.), dealing with faults in MPI without the use of global rollback and recovery strategies is still

immature. Hence, due to the lack of alternatives, most ensemble methods rely on offline workflows, while

accepting the accompanying large overhead.

With this, the motivation of this work is clear. The challenge is protecting very large computational

systems with reasonable overhead. Simple Checkpoint-Restart (CR) approaches are not enough to meet

the requirements for timely availability of results needed, for instance, for high-frequency predictions in

Numerical Weather Prediction (NWP). Therefore, we will approach the task from two different viewpoints:

(i) we will develop and enhance state-of-the-art checkpoint methods to improve their performance

and broaden their applicability under strict performance requirements; and (ii) we will develop new

architectures and frameworks that mitigate FT by exploiting the properties of ensembles that we have

referred to earlier.

15

Chapter 4

State of the Art

In this chapter we will present state-of-the-art ensemble data assimilation frameworks and studies about

the scale and the current size of the ensembles being deployed. Later, we will review state-of-the-art fault

tolerance techniques in ensemble data assimilation systems.

4.1 Modern Ensemble Data Assimilation Frameworks

A selection of modern large-scale ensemble data assimilation frameworks in operation are Transient One

Dimensional Pipe Flow Analyzer (TOPAZ) [42], employed, for instance, by the Arctic Marine Forecasting

Center providing a 10-day forecast of the ocean currents and sea ice on a daily basis [43]. The Community

Earth System Model (CESM) [44, 45] is a framework of coupled land, atmospheric, ocean and sea ice

models using an Ensemble Kalman Filter (EnKF). The model is used in a number of recent studies and

developments [46–48]. The Integrated Forcasting System (IFS) [49, 50], a Numerical Weather Prediction

(NWP) system in operation at the European Centre for Medium-Range Weather Forecasts (ECMWF).

Further, there is the Japanese global cloud resolving Nonhydrostatic ICosahedral Atmospheric Model

(NICAM) model [51], which has been integrated with the Local Ensemble Transform Kalman Filter

(LETKF) [52] into a high resolution global NWP framework.

Typical ensemble sizes of state-of-the-art operational ensemble Data Assimilation (DA) systems

range from about 10 to 50 ensemble members. For instance there is the CESM large ensemble with

30 members [53], and the IFS operational system with 50 members and a number of other operational

centers world wide [54]. A recent study on the ensemble size using the IFS system suggests that from

a user perspective ensembles, with more than 50 members are desirable. Miyoshi et al. [40] used the

Japanese K-Computer to explore ensemble sizes of 10,240 members to study the dependency of DA on

the ensemble size. They observes that non-linearities are better resolved if using ensemble sizes above

1000 members. In 2016, Miyoshi et al. [55] suggest Big Data Assimilation (BDA), assimilating very large

observational datasets using 100 ensemble members. A hypothetical BDA system with a DA frequency

of 10 seconds would require about 180,000 nodes of the K-Computer for the 100 members. Studies that

explore the scale required by future ensemble data assimilation systems include two works by Terasaki et

al. Irom 2015, they used about 5,700 nodes of the K-Computer at RIKEN reaching 720 TFloating Point

Operations Per Second (FLOPS) [56], and in 2020 on the Fugaku supercomputer, they used more than

130,000 nodes, reaching 79 PFLOPS [57]. In the future, high-resolution weather and climate prediction

that will support resolutions of less than 10km is expected to run at full scale on exascale systems [58].

17

4.2 Fault Tolerance in Ensemble Data Assimilation

Until today, a widely deployed workflow in ensemble data assimilation was to perform the climate

simulation and the data assimilation on separate executables [59]. The ensemble members (i.e., the

climate simulations) store the climate states to the file system, and after all simulations have finished,

the data assimilation system reads the files, assimilates the observations, and writes the improved states

back to storage. The ensemble members then reread them to perform the next assimilation cycle. It is

straightforward to protect such systems against failures; only the bookkeeping of running and finished

state propagations is needed, along with a detection mechanism to acknowledge failed propagations. The

actual implementation of such a system, however, can be cumbersome. Toye et al. [60, 61] presented a

submission framework based on the scheduler extension Decimate [62], which is capable of precisely this:

bookkeeping of submission, and resubmission of failed jobs.

A different approach to introduce resiliency in climate systems is taken by Düben et al. [63]. It is

based on a shadowing backup model, which is executed at the same time as the actual model, but uses a

coarser resolution. The backup model is used to identify corrupting errors resulting from faulty hardware

and for the replacement of corrupted data structures by the coarser representation. The original data is

thus replaced by an approximation. The advantage of such a system is that the simulation can continue

after a failure, and thus reduce the impact of failures on the time for completion.

Friedemann et al. [64] presented the framework MelissaDA, which is based on Melissa [65], a

framework to perform large-scale sensitivity analysis. MelissaDA uses the same architecture as Melissa,

providing a launcher, server and multiple workers. The framework can be used to perform ensemble data

assimilation without intermediate files. The simulation and data assimilation systems are still seperated

into different executables. However, the transfer of the states between the two systems is realized through

the network layer. The workers propagate the model states and the server performs the update step. The

states are transferred between the server and runners via Transmission Control Protocol (TCP). The

framework provides resiliency through the launcher. Whenever a runner fails, it requests new resources to

replace the failed runner. The server acknowledges the failure and reschedules the failed propagation.

18

Part II

Contributions to Checkpoint Schemes

19

Chapter 5

Differential Checkpointing

Publications

• International Symposium on Cluster, Cloud and Grid Computing (CCGRID) 2019:

– Keller, K., Bautista-Gomez, L. (2019, May). Application-level differential checkpointing for HPC
applications with dynamic datasets. In 2019 19th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID) (pp. 52-61). IEEE.

• International Symposium on Cluster, Cloud and Grid Computing (CCGRID) 2020:

– Parasyris, K., Keller, K., Bautista-Gomez, L., Unsal, O. (2020, May). Checkpoint restart support
for heterogeneous hpc applications. In 2020 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing (CCGRID) (pp. 242-251). IEEE.

Main Contributions

• Hash-based Differential Checkpointing (DCP) implementation detecting changes in the variables (not only
in memory pages). We provide two file formats that (1) remains of stable size and (2) grows in size, but
performs well also for very small block-sizes and data updates.

• Testing the hash algorithms Adler32, Fletcher32, CRC32, and MD5 regarding their applicability for hash-
based DCP.

DCP has been proposed in order to avoid re-writing checkpoint data that is identical between two

consecutive checkpoints (i.e., no change of data). Previous research works have attempted to implement

such a technique by tracking dirty memory pages in the system and only updating those within the

checkpoint files [66]. While this method works, it is not always efficient as many applications do re-write

the exact same content (e.g., zero) into the same memory cells. From the OS perspective, these memory

pages have changed as they are dirty, but in reality the content has not changed. Direct comparison

between stored and dirty pages and compression of the differences [67], and hashing the memory pages

to detect real changes has also been proposed [68]. While these techniques solve the problem of the

redundant data in checkpoint files, they further increase the runtime overhead. Furthermore, since the

methods rely on the memory pages, we are restricted to block sizes corresponding to the memory page

size that the application uses.

We have implemented a hash-based strategy in which we partition the application datasets (not the

memory pages) in blocks and keep track of the changes of each block by comparing the corresponding

hashes. The block size for the partitioning can be customized independently of the memory page size.

We further introduce a new file format that is capable of incorporating the changes without increasing

the file size, and to dynamically adapt to changing variable sizes. We further evaluate the collision

robustness of multiple hash algorithms and show that Message-Digest Algorithm 5 (MD5) and Cyclic

Redundancy Check 32-Bit (CRC32) are viable solutions for differential checkpointing. We integrate our

implementation into the multilevel checkpointing library Fault Tolerance Interface (FTI) and evaluate it

with three High Performance Computing (HPC) applications. In our measurements, we obtain up to 62%

21

reduction in checkpointing time in comparison to traditional checkpointing. Furthermore, we propose a

theoretical model that predicts performance gains that can be obtained with our DCP technique.

The rest of this chapter is organized as follows. Section 5.1 introduces the terminology that we use.

Section 5.2 introduces our DCP implementation. Section 5.3 explores the robustness of different hashing

algorithms. Section 5.4 presents our analytical model to predict performance gains. The results of our

large-scale evaluation are presented in Section 5.5. Section 5.6 discusses the strong points and limitations

of the proposed technique. Section 5.7 discusses related work, and finally Section 5.8 concludes our work.

5.1 Terminology

The term incremental checkpointing is used in the literature to denote two different processes. To avoid

confusion we would like to clarify what we refer to when we use the terms incremental and differential

checkpointing.

5.1.1 Definition of Incremental Checkpointing

We refer to incremental checkpointing as to be the incremental completion of a checkpoint file. This

technique serves primarily to avoid overhead caused by oversaturated network channels. It may be used

within applications that provide datasets, that define the current program state, at different times. Thus,

instead of writing the whole checkpoint data at once, it is incrementally written during some period of

time, which reduces the stress on the network.

5.1.2 Definition of Differential Checkpointing

We refer to differential checkpointing as to be the differential update of a checkpoint file. That is, the

data blocks in the previous checkpoint file that by the time of a subsequent checkpoint differ to the

corresponding data block of the current application state, will be replaced by the up-to-date data block.

The rest of the blocks (i.e., those that did not change) will not be updated.

5.2 Differential Checkpointing Implementation in FTI

We implement our proposed DCP mechanism into FTI, an application-level checkpointing library with

an API that provides flexibility and allows user to flag datasets that need to be protected. FTI is a

multi-level Checkpointing (CP) library that offers 4 levels of increasing reliability and FTI implements a

dedicated process that performs post-processing work for the more reliable CP levels asynchronously to

the application processes. The mechanisms used to track data differences in applications can be divided

into two categories: tracking dirty pages (i.e. pages that were accessed by a store operation), or tracking

actual changes of data by direct comparison of hash representations of the data. In our implementation,

the address range of the datasets will be partitioned into blocks of size b. We create hashes of these blocks

and keep them in memory. The hashes are created from the dataset representation in memory immediately

after a successful Checkpoint (CKPT) and before the application continues its normal execution so that

the hashes in memory represent the current state of the data in the checkpoint file.

Instead of creating one file for each update, we provide two techniques that integrate the data into

the existing checkpoint file. The first method updates the data inside the file directly, the second method

22

appends the updates at the end of the file. Both methods include the meta-data inside the file, allowing

the reconstruction of the dataset upon recovery. The first method keeps the file size constant, however,

imposes the risk of losing the checkpoint upon failures during the checkpoint creation. The second

method leads to increasing file sizes, however, is designed to be safe, even when failures occur during the

checkpoint creation.

5.2.1 A Storage Space Efficient Differential Checkpointing Implementation for
Dynamic Dataset Sizes

To implement a storage efficient DCP mechanism, the FTI-protected datasets need to be arranged into

immutable blocks in the CKPT file. For protected datasets with steady sizes, this is accomplished naturally.

However, FTI supports datasets with dynamic sizes. Thus, to maintain immutable positions inside the

checkpoint file we need to allow fragmentation of the datasets, and we need to implement a bookkeeping

of the fragmentation. FTI stores the checkpoint metadata in separate files. We could follow this practice

in order to keep track of the fragmentations. However, the meta data that FTI usually writes is very little

and the files use the INI format, which is an ASCII text format. For heavily fragmented datasets, this

approach is not efficient. Consequently, we decided to develop a file format for FTI that includes the

metadata for both the fragmentation and the checkpoint metadata inside the file structure. The proposed

file format avoids additional files, and with this reduces the stress on the metadata server. We call the new

format simply FTI File Format (FTI-FF). A diagram of the file structure is shown in figure 5.1. For a

comprehensive description please consult the FTI online documentation [69].

Checkpoint
Metadata Checkpoint Data

Chunk 1

Chunk
Metadata

Chunk i Chunk M

Variable Block 1 Variable Block j Variable Block Ni

Checkpoint File

Checkpoint Data

Chunk i

Figure 5.1: The FTI-FF structure can be resolved into three layers of abstraction: The first layer comprises global metadata (for
instance, filesize and datasize) and checkpoint data (protected variables), the latter is build from M chunks Ci of which each
contains Ni variable blocks. The actual application data are stored in the variable blocks. Each chunk also contains metadata
describing the layout of the variable blocks.

5.2.2 The Dynamic File Structure in FTI-FF

When first created, each dataset is stored inside a variable block with the current size of the dataset. All

variable blocks added to the file are appended to the chunk metadata located at the beginning of the chunk.

The chunk metadata contains the variable-ids, the offsets of the variables’ data inside the file, the size of

the variable block, etc. Once created, variable blocks never change in size or in their position inside the

23

file. If a dataset increases its size, and exceeds the total size of all its variable blocks, another variable

block is created with the excess as its size. The new block is appended at the end of the file, tailing the

corresponding metadata block. When a variable decreases in size, the metadata for the affected variable

blocks is updated and the respective updates of the variable are written to the appropriate location in the

file. Since the variable blocks never change after they have been created, this can lead to unused blocks in

the checkpoint file.

5.2.3 A Safe Update of the FTI-FF Differential Checkpoint Files

The prime directive of any checkpointing library is that we must not update the data in the CKPT file

directly. This is due to the danger of corrupting the file if an error occurs during the update. However, if

we enable DCP in FTI-FF we violate this principle for the advantage of reducing the required storage

space. To ensure the safe operation while using DCP and FTI-FF, it is necessary to create a temporary

copy of the checkpoint file, and only write directly into the copy. After the successfull update, we can

delete the temporary file again and release the storage space. This becomes more efficient, if we can create

the copy in the background, for instance leveraging FTI dedicated background processes.

5.2.4 A Streaming Implementation of Differential Checkpointing

We have implemented another file format specifically for DCP in FTI. The format is designed for high

performance for any block size, and number of updates. In contrast to FTI-FF, we simply append the

updates to the file. Additionally, we include metadata that holds information to reconstruct the dataset

upon recovery. Figure 5.2 shows a diagram of the file structure in the streaming implementation. The

name comes from the usage of the C standard streaming IO library. We take advantage of the buffered IO

for dealing with many very small updates, to minimize the number of IO calls.

Layer 1

Layer
Metadata

Layer i Layer M

Variable Block 1 Variable Block j Variable Block Ni

Checkpoint File

Layer i

Figure 5.2: The streaming DCP file structure contains M layers Li; one layer for each checkpoint update. The layers Li contain
the Ni variable blocks that contain the differential variable update. each layer also contains metadata holding information such
as the layer size, block size, and checkpoint ID.

5.2.5 Tracking the differences

In our DCP implementation, we partition the datasets in blocks of a custom size. The blocks can be

in two different states. A block can be dirty or clean, where we keep the terminology from the DCP

implementations that use the memory page protection mechanism. Dirty blocks are added to the checkpoint

file, and clean blocks are not. In addition to that, we differ between valid blocks, for blocks of data that is

present in the checkpoint file, and invalid blocks, for blocks that are not (e.g., if the data size has increased,

24

or the dataset is written for the first time). Invalid blocks do not need to be compared, as they have no

counterpart in the checkpoint file and can be added directly. Our algorithm for updating the checkpoint

file is:

1. mark new blocks as invalid.

2. create hashes for valid blocks, and compare to the old ones.

3. update the dirty and invalid blocks in the checkpoint file.

4. update the hashes for dirty blocks.

5. create hashes for invalid blocks.

The process is visualized in figure 5.3. The figure is divided in three sections separated by a dashed

line. The left section corresponds to (1) and is performed during the call to FTI_Protect. The function

exposes and updates datasets to instruct FTI including them into the CKPT files. FTI creates metadata

related to the dataset within this function, and we intercept here to flag blocks of new datasets of new

blocks of datasets as invalid. The middle section of the figure corresponds to (2) and (3) and is performed

during the checkpoint creation. Finally, the third section corresponds to (4) and (5) and is performed

after the successful creation of the checkpoint. The total amount of additional memory ∆MEMhash of our

implementation consists of the hashes of the data blocks and 2 boolean values for each block (valid/invalid,

dirty/clean):

∆MEMhash “
data size

block size
ˆ pdigest size` 2q (5.1)

MARK NEW
BLOCKS AS

INVALID

UPDATE/
CREATE

HASH
BLOCK
DIRTY/

INVALID

COMPARE HASHES

HASHES
DIFFER

HASHES
COINCIDE

MARK
DIRTY

MARK
CLEAN

WRITE DIRTY/INVALID
BLOCKS

BLOCK
INVALID

BLOCK
VALID

REGISTER/MODIFY
DATASETS

(FTI_Protect)

dCP UPDATE AFTER
SUCCESSFULL

COMPLETION OF CP

Figure 5.3: DCP detection and update scheme. Processes left to the blue circle happen before and processes to the right after the
DCP update. The circle indicates the dirty region request loop

25

5.3 Choice of the Hash Algorithm

Depending on the size of the protected datasets, the hash arrays might get significantly large. For instance,

the MD5 digest length is 128 bits (16 bytes). Assuming a hash-block size of 128 bytes and 1GB of

protected data per rank, we have to reserve 144MB of RAM for the hash metadata (see Equation 5.1). To

reduce this size, we can either increase the block size or decrease the digest size. With increasing block

sizes, we capture less of the real data changes, and with smaller digest sizes we risk higher collision rates,

and with this a higher probability of data inconsistency (when a collision occurs, two different blocks

have the same digest, and we cannot detect data changes correctly). In order to provide a small digest size,

we tested three hash algorithms with 32 bits digest size on their performance and reliability: Adler32,

Fletcher32, and CRC32. We also included the widely used MD5 algorithm with a digest size of 128 bits

for comparison. The Adler32 and CRC32 checksums were calculated using the zlib data compression

library [70], Fletcher32 was implemented using the recommendations in [71] and for MD5 we used the

OpenSSL library [72]. To obtain a statement about the reliability of the checksums we performed a simple

collision test. We focussed on the so-called avalanche effect [73], which is the property that the hash

changes significantly for small changes of the data. This is an important property, as some applications

are very sensitive to small perturbations. The algorithm is shown in 1. Where Cb and Db are buffers that

contain random integers, b “ t2i | 7 ď i ď 15u denotes the hash block sizes and p denotes the patterns

that are used to modify the elements of Cb. For Nb we have b mod pNb ˆ 64q ““ 0. The elements of p

correspond to bit flips of the last 1 (p0 “0x1), 2 (p1 “0x3), 4 (p2 “0xff), 8 (p3 “0xfff) and 16

(p4 “0xffff) bits, and an arbitrary patterin in p5 to simulate a random change.

Algorithm 1 Count hash collisions of modified buffers
repeat

for all b do
populate Cb with Nb random u64 integers;
create hashes hCb

of Cb;
for all p do

for i=1, Nb do
Db,i = Cb,i ‘ p;
Create hash hDb,i

of Db,i;
if hDb,i

== hCb,i
then

cb,p ``; Ź cb,p := Collision Counter
end if

end for
end for

end for
until N iterations

The results of the collision test are listed in table 5.1. Fletcher32 is commonly implemented with

M “ 2n or M “ 2n ´ 1 (M is the modulo value for the checksum [71]). The case M “ 2n ´ 1 leads to

identical checksums for buffers that differ only in one or more groups of two consecutive bytes that are all

0x00 in one and all 0xff in the other buffer. In our opinion, this is already reason enough to disqualify

the algorithm for its usage in DCP. Fletcher32 and Adler32 are both significantly faster than CRC32 in

our tests. However, both also have poor collision resistant characteristics for block sizes between 128

and 32768 Bytes. Most of the collisions for Adler32 occurred for 1-bit or 2-bit flips and decrease for

26

increasing block sizes. The collisions for Fletcher32 are homogeneously distributed for all modifications

and block sizes. In addition to the reliability issue of Fletcher32, that we have mentioned earlier, the

collision rate of both algorithms, Adler32 and Fletcher32, is too high to provide a sufficient level of

reliability. MD5 and CRC32, on the other hand, did not show any collisions. While the test does not

ensure reliability of CRC32 and MD5, it allows us to disqualify Adler32 and Fletcher32 for our purpose.

Based on the literature about CRC32 and MD5 (CRC32 is used in zlib and other cases to provide data

integrity [70, 74, 75]) and based on our results we think that it is safe to use both algorithms in our DCP

implementation.

p0 p1 p2 p3 p4 p5

b ADLER32

128 6.84e-3 1.42e-3 8.56e-5 3.68e-7 6.13e-9 1.23e-8
256 1.70e-3 3.46e-4 2.12e-5 8.59e-8 1.23e-8 1.23e-8
512 4.24e-4 8.69e-5 5.39e-6 1.84e-8 0 6.13e-9
1024 1.06e-4 2.21e-5 5.39e-6 1.84e-8 0 6.13e-9
2048 2.56e-5 5.21e-6 2.58e-7 0 6.13e-9 0
4096 6.23e-6 1.37e-6 9.20e-8 0 6.13e-9 0
8192 1.56e-6 2.70e-7 1.84e-8 6.13e-9 0 0
16384 3.56e-7 4.91e-8 4.29e-8 6.13e-9 0 0
32768 1.41e-7 7.98e-8 1.84e-8 0 0 0

FLETCHER32 - MOD(65536)

128 1.54e-5 1.47e-5 1.52e-5 1.52e-5 1.50e-5 1.54e-5
256 1.53e-5 1.55e-5 1.53e-5 1.54e-5 1.56e-5 1.54e-5
512 1.48e-5 1.56e-5 1.53e-5 1.52e-5 1.53e-5 1.52e-5
1024 1.48e-5 1.55e-5 1.51e-5 1.53e-5 1.58e-5 1.56e-5
2048 1.49e-5 1.51e-5 1.49e-5 1.49e-5 1.50e-5 1.56e-5
4096 1.57e-5 1.53e-5 1.57e-5 1.53e-5 1.51e-5 1.50e-5
8192 1.55e-5 1.51e-5 1.49e-5 1.54e-5 1.47e-5 1.54e-5
16384 1.51e-5 1.55e-5 1.52e-5 1.54e-5 1.55e-5 1.52e-5
32768 1.56e-5 1.59e-5 1.48e-5 1.57e-5 1.53e-5 1.52e-5

Table 5.1: Collision rates (i.e. the probability of collision per iteration) achieved by application of algorithm 1. We did not
detect any collision for CRC32 or MD5 and the collision rates for Fletcher32 mod(65535) were almost identical to Fletcher
mod(65536). Thus, we do not list the results here. For all cases, the number of iterations have been within 160-180 million.

5.4 When is Differential Checkpointing Beneficial?

In order to estimate the threshold at which differential checkpointing becomes beneficial, we will derive

a cost function from the saving, ∆T p´q, for writing fewer data, and the cost, ∆T p`q, for creating and

comparing the hashes. They are defined by:

∆T
p´q

b “ pNb,t ´Nb,dq tb,w (5.2)

∆T
p`q

b “ pNb,t `Nb,dq tb,h (5.3)

Where tb,w is the duration to write a block of data with block-size b, tb,h the duration of hashing the block,

Nb,d is the number of dirty blocks, andNb,t is the total number of blocks. Equation 5.3 involves both values,

27

Nb,t and Nb,d, since, we cannot commit the new hashes for data-blocks that differ prior to the successful

completion of the CKPT, hence we need to compute these twice1. After subtracting Equation 5.2

from Equation 5.3, and normalizing the result by the total number of blocks Nb,t we get:

∆Tb{Nb,t “ pT
p`q

b ´ T
p´q

b q{Nb,t “: τb

τb “ ptb,h ´ tb,wq ` nb,d ptb,w ` tb,hq, nb,d “ Nb,d{Nb,t. (5.4)

Equation 5.4 is our cost function that turns into an overhead reduction (i.e., speedup) for τb ă 0 and to

additional overhead for τb ą 0. We can infer, that the maximal overhead accounts to 2Nb,ttb,h when

nb,d “ 1 (i.e., all blocks are dirty). This corresponds to a maximal relative overhead of 2tb,h{tb,w (i.e.,

relative to the time without DCP). The threshold, ηb, at τb “ 0, i.e., when the application of our DCP

implementation becomes beneficial is:

ηb :“ nb,d

ˇ

ˇ

ˇ

ˇ

b,τb“0

“
tb,w ´ tb,h
tb,w ` tb,h

“
1´ ρ

1` ρ
, ρ “

tb,h
tb,w

. (5.5)

ηb corresponds to the ratio of dirty to total number of blocks, below which we can expect a speedup. The

lower the value for ρ (i.e., hashing faster than writing) the closer η gets to one, which means that for

already very small changes DCP gets beneficial.

According to Equation 5.5, we can compute the threshold by measuring the times tb,h and tb,w. To

measure the average time, tb,w, to write a block of size b to disk, we measure the total time, Tb,w, to write

n buffers of size b with p processes. The average is then given by tb,w “ Tb,w{n. We require that at time

Tb,w all processes have finished writing, to simulate the synchronisation point at the end of the checkpoint.

Similarly, we measure the average time tb,h to compute the hash for a block of size b. However, this

time independently of the other processes, since the hash creation is local to the ranks and computed

asynchronously. We expect a perfect scaling behavior for tb,h. For tb,w instead (i.e., for writes to global

storage), we have to consider network congestion and file-system bandwidth saturation, resulting into a

deterioration of the I/O throughput at large scale. Thus, we expect an increasing speedup for increasing

total problem sizes. Figure 5.4 shows the results for the measurements we performed for 768 and 2400

processes. In both cases, the total buffer size was 1GB per process which leads to the total problem sizes

of 0.75 TB and 2.3 TB respectively. We can see that the threshold indeed increases for a growing problem

size. We observe a better performance of MD5 towards CRC32 in all cases. The performance of MD5

depends slightly on the hash-block size. This dependency is less strong at a larger scale. This also applies

for the performance difference between CRC32 and MD5. The results show that for b “ 32KB and MD5,

the threshold is at about 95% (i.e. only 5% less to write).

5.5 Evaluation

In section 5.4 we have seen that even when applications update 95% of the checkpoint data (i.e. we

save only about 5% of I/O) DCP can already be beneficial for HPC applications. In order to support this

result with empirical evidence, we analyze the behavior of DCP in FTI while checkpointing three HPC

applications at large scale. We conduct representative experiments that analyze performance and overhead.

All experiments were performed on MareNostrum4, where each node is composed by [76, 77]:
1We may avoid the redundancy here if we store the hashes for the dirty blocks in a separate array, which would lead to a

higher memory footprint.

28

0

90

82

74

67

60

128B 256B 512B 1KB 2KB 4KB 8KB 16KB 32KB

0

0.05

0.1

0.15

0.2

0.25

η
[%

] (
th

re
sh

ol
d

-
N

d/
N

t)

ρ
 [-

] (
t h

/t w
)

b (block size)

MD5 (768 processes)

CRC32 (768 processes)

MD5 (2400 processes)

CRC32 (2400 processes)

Figure 5.4: The bars show the estimated DCP threshold, i.e. the ratio of dirty to total data we need, to make the DCP operation
beneficial. The left axis shows the dirty data ratio, η, the right axis shows the corresponding value of ρ (ratio between the hash
time, tb,h, and I/O time, tb,w, for block size b). The experiment has been performed with 768 and 2400 processes and 1GB per
rank.

• 2 Intel Xeon Platinum 8160 CPU (24 cores at 2.10GHz)

• 12 ˆ 8 GB DDR4-2667 DIMMS (96GB/node)

• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E

• 10Gbit Ethernet

• 200 GB SSD local to the nodes

• SUSE Linux Enterprise Server 12 SP2

5.5.1 HPC Applications

In this section we introduce Lulesh2.0, xPic and Heat2D, three HPC applications that we used for our

evaluation. We selected applications, that have different memory access patterns, to compare the efficiency

of DCP for a range of applications.

5.5.1.1 LULESH 2.0

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) [78] is part of the

Advanced Simulation and Computing (ASC) program at the Lawrence Livermore National Laboratory

(LLNL). It simulates a Sedov blast wave propagation within a material in three dimensions [79]. The

modeling space is discretized into an unstructured hex mesh. The system state is updated using stencil

operations. The purpose of LULESH is to provide a proxy application that possesses the characteristics

of an HPC application from this field in order to analyze performance on various platforms and various

programming models. That makes it suitable for our purpose as well, since it represents a broad field

of applications. To maximize the checkpoint load, we conducted measurements that determined the

29

maximum problem size we can apply, without the risk of a memory overflow on the node. The checkpoint

data is serialized, which increases the memory footprint of the application. With a CKPT size of 430MB

per rank, we use about 80GB of the node memory (96GB available) and achieve an aggregate CKPT size

of 725GB.

5.5.1.2 xPic

xPic is an alternative implementation of iPic3D [80], a particle-in-cell application. iPic3D and xPic are

part of the application co-design in the DEEP-EST project [81]. The application models space plasma

simulations. The modeling space is discretized by a rigid mesh. The simulation is always initialized to

the equilibrium state. During each time step, the particle states and electromagnetic fields are advanced

using the Vlasov equation, which couples the equation of motion to the Maxwell equations. xPic takes its

runtime parameters from a configuration file. In order to scale the problem size, we used a combination of

the parameters ntcx (number of cells in x-direction), ntcy (number of cells in y-direction) and nppc

(number of particles per cell). To control the number of contiguous datasets, we used the parameters

nblockx (number of blocks in x-direction), nblocky (number of blocks in y-direction) and nspec

(number of species). We implemented two distinct mechanisms in order to expose datasets to FTI. In the

first implementation, xPic-c (c for common), we expose every memory contiguous dataset individually to

FTI. Depending on the configuration of xPic, this may lead to a large number of protected variables. In

the second implementation, xPic-s (s for serialized), we use Boost [82] for serializing the variables.

5.5.1.3 Heat2D

Heat2D is a 2D heat distribution simulation using a 1D domain decomposition. It simulates the transition

from a non-equilibrium heat distribution to the equilibrium state. In each time step, the cells of the

temperature grid are updated via a 4-point stencil operation that stores the average of the 4 neighbor

cells temperatures into the center cell. The ranks exchange adjacent rows of the temperature grids. The

simulation runs until the total value of the temperature differences reaches a pre-defined minimal value or

exceeds a certain number of iterations. The large majority of memory used by Heat2D is checkpointed

which enabled us to perform large scale executions with large checkpoitn sizes, for instance a run with a

total problem size of about 2.8TB with 2304 processes on 48 nodes.

5.5.2 Variation of the Block Size b

We start by analyzing the impact of the block size over the effectiveness of DCP. We measured the time

of a DCP update for various block sizes b and compared the results to ordinary CP (DCP disabled). All

CKPTs were performed at the same application state. We performed experiments with both MD5 and

CRC32, the results were very similar for both hashing algorithms, and we only list the MD5 results for

the sake of brevity. By decreasing the block size, we increase the granularity. That means that we have a

better chance to get close to the actual percentage of data that did change.

Table 5.2 shows the results for the experiment we performed with the xPic application (see 5.5.1.2 for

details). The first column of the table shows the block size and the third column shows the percentage

of data written compared to the original checkpoint size. We notice that as the block size increases, the

amount of data to write increases as well, due to the lower granularity. However, the overhead (shown

30

b τ DCP RATE SHARE HASH SHARE WRITE HASH SIZE [MB]

128B 1333% 52.25% 1.51% 97.67% 196
256B 1106% 53.84% 1.53% 97.39% 98
512B 666% 56.25% 2.10% 96.13% 49
1KB 231% 59.15% 4.40% 91.40% 25
2KB 15% 61.42% 12.82% 73.93% 12
4KB -32% 62.25% 21.77% 55.07% 6
8KB -35% 62.41% 22.69% 52.47% 3
16KB -36% 62.48% 22.66% 52.52% 1.5
32KB -36% 62.50% 22.67% 52.07% 0.76

Table 5.2: Impact of the block size b on the DCP update time for xPic using MD5. Negative values of τ correspond to a speedup
and positive values to overhead. HASH SIZE lists the respective memory sizes that the hash tables occupy in memory. The
problem size was 1568MB per rank.

in the second column) is incredibly large for high block granularities (i.e., small blocks). To understand

this phenomena, we measured the time spent hashing and the time spent writing data for each case. We

observe that the large majority of checkpointing time is spent in writing and not hashing. This is caused

by the fragmentation of the updates into small chunks. It has been shown in the past (e.g. [83–85]), that

PFSs have poor performance when small chunk sizes need to be written. For xPic, block sizes of less than

4KB degrade performance and block sizes greater than 4KB improve performance up to 36%. In addition,

we measured the amount of memory consumed to store the hash arrays. Most of the block sizes have hash

arrays that represent less than 1% of the memory used by the process. For block sizes of 16KB the hash

arrays take only 0.1% of the memory used by the application. Based on this analysis, we decided to use

block sizes of 16KB during the following measurements.

Data Differences in LULESH. 1st DCP at Iter I.

(y-axis 0% to 100%)

I = 1,000

I = 5,000

I = 10,000

I = 15,000

0 511

Rank ID

I = 20,000

Figure 5.5: Data differences per rank in checkpoints at different timesteps in LULESH. The x-axis shows the ranks (512 in
total), and the y-axis shows the percentages written in percentage.

31

Data Differences in xPic. 1st DCP at Iter I.

(y-axis 0% to 100%)

I = 1,000

I = 2,000

I = 3,000

0 191

Rank ID

I = 4,000

Figure 5.6: Data differences per rank in checkpoints at different timesteps in xPic. The x-axis shows the ranks (192 in total),
and the y-axis shows the percentages written in percentage.

5.5.3 Spatial and Temporal Differences

After finding the right block size to avoid too coarse hashes as well as to fine I/O writes, we investigate the

amount of data that is actually being updated between two consecutive checkpoints for the applications

presented in Section 5.5.1. The results are depicted in Figure 5.5, 5.6, and 5.7. The three figures are

divided into several temporal regions following the y axis (i.e., DCP taken at iteration 1000, 5000, etc.)

and spatial regions following the x axis (i.e., the process rank which is representative of a slice of the

domain). First, we observe that LULESH does not change too much data during the first iterations; and

as the time passes (up to iteration 20000) the number of ranks where data is actually modified increases.

This reflects the shock wave that is simulated by LULESH. This demonstrates that for applications like

LULESH, the benefits of DCP might vary depending on time and space.

xPic on the other hand, shows a completely different behavior, the amount of data updated is consis-

tently the same across all the ranks and regardless of the time in the execution. This is explained by the

fact that xPic is a plasma simulation in which particles are constantly in movement, even in those changes

are minimal, they are enough to trigger updates as they will produce a different block hash. There are

a few variables of the application that are read-only and that do not change through out the simulation,

which is why not a 100% of the data is updated at every checkpoint.

Looking into Heat2D, we observe a middle ground between LULESH and xPic. Indeed, Heat2D also

increases the data differences as time evolves, but at a much lower pace than LULESH, giving it a less

dynamic look. We observe that the most affected ranks are organized in strides, which is consistent with

the 1D partitioning mentioned in Section 5.5.1.3. However, other initial conditions could translate into a

more homogeneous updates across ranks.

32

Data Differences in Heat2D. 1st DCP at Iter I.

(y-axis 0% to 100%)

I = 2,500

I = 5,000

I = 7,500

0 767

Rank ID

I = 10,000

Figure 5.7: Data differences per rank in checkpoints at different timesteps in Heat2D. The x-axis shows the ranks (768 in total),
and the y-axis shows the percentages written in percentage.

5.5.4 Overhead reduction on HPC Applications

In this section we evaluate the overhead of DCP in comparison with classic CP for the three applications.

Table 5.3 lists the results of our measurements performed with LULESH leveraging FTI-FF with CRC32,

MD5, and DCP disabled. The latter represents the performance difference between the checkpoint creation

leveraging FTI-FF and the original FTI file format. The first row shows the time of the first checkpoint

(everything dirty). ordinary CP and the second a checkpointing with DCP in which only 3% of the data is

updated. We have only two rows since we never had updates significantly different to 3%. This result

indicates that the propagation of the wave is slow as shown previosly. This great reduction in checkpoint

size with DCP in LULESH translates into a 62% reduction in the CP time.

Relative overhead of FTI-FF with DCP (CRC32, MD5, disabled) compared to ordinary CP

Data diff. (nd) MD5 CRC32 DCP disabled

100% -9˘12 -5˘ 13 -5˘ 13
3% -62˘ 10 -60˘ 8 -

Table 5.3: Relative overhead (∆T {T0 [%]) of the checkpoint creation in LULESH with FTI-FF leveraging DCP, compared to
classic CP with the original FTI file format. Negative values correspond to a reduction of the overhead (speedup) and positive
values to an increase in the overhead.

For xPic, we evaluate the non-serialized as well as the serialized implementations (xPic-c and

xPic-s, see 5.5.1.2) were each implementation is tested against two distinct configurations (A and B).

For configuration A, the FTI protected memory consist of many relatively small contiguous datasets.

Configuration B instead has few but rather large contiguous datasets. Table 5.4 summarizes the relevant

runtime parameters for both configurations. The results of our evaluation is shown in Table 5.5. We

33

observe that the reduction on checkpoint size is the same for executions with and without serialization.

Further, the application of DCP for configuration A does not reduce the checkpoint overhead. The reason

for this is that configuration A produces a large number of small chunks to be written. A detailed analysis

of this phenomena is presented in section 5.6. In contrast to configuration A, we do observe a significant

overhead reduction for configuration B. The best performance we measured for xPic-s (serialized) using

MD5 and using configuration B, is a 35% speedup while writing only 62% of the original checkpoint size.

CONFIG. A CONFIG. B

xPic-c xPic-s xPic-c xPic-s

SIZE OF DATASETS [MB] 4.22 1360 168 1344.25
OF DATASETS 320 1 8 1
CP SIZE / RANK [MB] 1350.32 1360.38 1344.55 1344.80
CP SIZE TOTAL [GB] 760 765 882 883

Table 5.4: Dataset sizes for the various xPic configurations.

Relative overhead of FTI-FF with DCP (CRC32, MD5, disabled) compared to ordinary CP

Data diff. (nd) MD5 CRC32 DCP disabled

xPic-c (A) 100% 7˘ 11 6˘ 12 0˘ 9
50% 9˘ 12 11˘ 9 -

xPic-c (B) 100% 9˘ 16 14˘ 11 -3˘ 9
62% -33˘ 6 -28˘ 6 -

xPic-s (A) 100% 7˘ 17 14˘ 9 0˘ 7
50% -4˘ 6 0˘ 6 -

xPic-s (B) 100% 5˘ 5 11˘ 7 -2˘ 6
62% -35˘ 7 -29˘ 6 -

Table 5.5: Relative overhead (∆T {T0 [%]) of the checkpoint creation in xPic with FTI-FF leveraging DCP, compared to classic
CP with the original FTI file format. Negative values correspond to a reduction of the overhead (speedup) and positive values to
an increase in the overhead.

As mentioned in Section 5.5.3, the data difference in Heat2D depend significantly on the initial

conditions. Heat2D shows a good reduction of checkpoint size, in the regime of 40% to 100%. Table 5.6

lists the results. We can see that MD5 has clearly performance benefits in comparison to CRC32. We

notice that almost all of the experiments show an significant reduction on the checkpoint overhead. We

observe important speedups of up to 49% for a 40% DCP update using MD5.

Overall, the three applications (although with different behaviours) show substantial improvements

thanks to DCP. The reduction in checkpointing overhead goes up to 62%, 35% and 49% for LULESH,

xPic and Heat2D respectively.

5.6 Discussion

In section 5.4 we developed a model (Equation 5.4) that can be used to estimate the speedup we may

achieve using DCP. In this section, we want to check whether the predictions from the model coincide

with the measurements or not. We first write down the relative time difference, S, of a DCP update

34

Relative overhead of FTI-FF with DCP (CRC32, MD5, disabled) compared to ordinary CP

Data diff. (nd) MD5 CRC32 DCP disabled

100% -2˘ 9 1˘ 6 -4˘ 11
99% -5˘ 7 -2˘ 7 -
95% -8˘ 6 -7˘ 7 -
87% -14˘ 6 -12˘ 6 -
79% -19˘ 8 -17˘ 6 -
71% -26˘ 6 -22˘ 6 -
63% -35˘ 5 -30˘ 5 -
56% -40˘ 5 -37˘ 4 -
40% -49˘ 5 -46˘ 7 -

Table 5.6: Relative overhead (∆T {T0 [%]) of the checkpoint creation in Heat2D with FTI-FF leveraging DCP, compared to
classic CP with the original FTI file format. Negative values correspond to a reduction of the overhead (speedup) and positive
values to an increase in the overhead.

towards a conventional CP:

Spndq “ ∆T pndq{T0 :“

$

&

%

ă 0 : overhead reduction

ą 0 : overhead increase
. (5.6)

T0 denotes the time for a full CP and DCP disabled. Using Equation 5.4, we can write this as:

Spndq “
τ

tw
“ ρ´ 1` ndpρ` 1q , ρ “

th
tw

(5.7)

Where we used T0 “ twNt. We determined tw and th for b = 16KB:

b “ 16KB (5.8)

tw “ 1.35ˆ 10´3s (5.9)

th “ 3.92ˆ 10´5s rMD5s (5.10)

Ñ ρ “ 0.029 (5.11)

Again, for the sake of brevity, we will only present the results for MD5. Figure 5.8 shows the measured

relative speedups depending on the dirty data ratio. We also added the estimation according to our model

from Equation 5.7 and the fit to the data. The fit leads to ρ “ 0.013˘0.008, which excludes our measured

value of ρ “ 0.029. However, the fit shows a p-value of 0.8, which represents a confidence interval of

only about 20%. Nevertheless, the values for xPic-B and for Heat2D above 50% dirty data ration are in

good agreement with the fit. LULESH shows the highest speedup with 62%, however, using equation 5.7

we would expect a speedup of about 94%. For xPic-s with configuration A, we measured a 4% speedup

but expected about 46%. Given the disagreement between theoretical prediction and experimental results

for LULESH and xPic with configuration A, we performed a more detailed analysis. Figure 5.9 shows the

cumulative density function (CDF) of chunk sizes written contiguously during a DCP update for all four

scenarios. The figure reveals a correlation between the size of the chunks and the performance. xPic-s A

and LULESH show both less performance than expected and both write mostly chunks of relatively small

sizes (4MB - 12MB). On the other hand, we have good performance in xPic B and Heat2D where we

observe relatively large chunk sizes (mostly over 200MB).

35

If the small writes are the explanation for the inaccurate model predictions, one should be able to

meet the estimated performance by avoiding IO operations with small chunks. This can be accomplished

by using the second file format that we developed (subsection 5.2.4). We indeed observe a significant

improvement in the experiments. The results for LULESH and xPic leveraging the streaming file format

are denoted as Streaming in figure 5.9. We can see that now xPic-A indeed is in very good agreement

with the model prediction. LULESH also improved, but is still not as good as the model predicts. We

continue the detailed analysis of LULESH, and we noticed that LULESH has about 2-3% updates in all

ranks except in rank 0. Rank 0 has a DCP share of 80%. A large amount of the data is thus written by only

one rank. We also observe a high anisotropy in the distribution of the dirty data in Heat2D (Figure 5.7),

and a completely homogeneous distribution in xPic (Figure 5.6). Indeed, Heat2D matches the model

prediction worse than xPic, that is in almost perfect agreement with the model. Thus, the anisotropy in the

dirty data ratio among the ranks seems to explain the discrepancy between our model estimation and the

fit; the model is too simple, as it does not take into account these differences. However, considering the

simplicity of the model, we achieve a satisfactory matching between model prediction and experimental

results.

-100

-80

-60

-40

-20

0

20

0 20 40 60 80 100

R
el

at
iv

e
T

im
e

D
if

fe
re

nc
e

(τ
/t

w
rit

e)
 [%

]

Dirty Data Ratio (Ndirty/Ntotal) [%]

xPic B

xPic A

xPic A (Streaming)

Heat2D

LULESH

LULESH (Streaming)

fit

MD5 (estimated)

Figure 5.8: Measured and estimated speedup/overhead of DCP updates. The green background indicates the region where
we have speedup and the red region indicate overhead. τ{tw “ 0 corresponds to the threshold (i.e., the full CP baseline) The
datasets with the label corrected, refer to measurements that used a buffer to collect small chunks in order to avoid small chunck
writes.

5.7 Related Work

The library libckpt [66] can be operated almost2 transparently (i.e. without modifying the application

code). Without instrumentation, the library will checkpoint the full address space of the application.
2The routine main in C has to be renamed into ckpt_target, and the main PROGRAM module in Fortran has to be

changed into SUBROUTINE ckpt_target. Other than that, the library can be operated transparently.

36

0

20

40

60

80

100

2 4 8 16 32 64 128 256 512

C
D

F
[%

]

CHUNK SIZE [MB]

xPic A

xPic B

LULESH

Heat2D

Figure 5.9: Cumulative distribution function (CDF) for chunk sizes of contiguous dirty regions during DCP updates.

However, by protecting the whole address space, one incorporates data that is not necessarily needed for

a successful restart. For this reason, libckpt provides an API to explicitly define certain regions to be

included/excluded from the checkpoint, and furthermore when to checkpoint, and where to checkpoint

(i.e., checkpoint path). In order to detect data updates between consecutive checkpoints, libckpt employs

the UNIX page protection mechanism; all memory pages that correspond to the process address space

are set to read-only after each checkpoint. Every store operation to one of the protected pages will rise a

segmentation fault signal (SIGSEGV) which invokes the libckpt signal handler. Inside the handler, the

address of the page is marked dirty and will be written to disk during the next checkpoint.

This approach has several limitations. First, applications may update continuously all the datasets,

which does not imply that the value after the update differs from the one before (e.g., zeros in a domain).

Applications with dynamic variable sizes sometimes need to reallocate buffers, which may lead to a

relocation of the variable to a different memory address without changing the data contained in the old

buffer. In these cases, the page protection mechanism will not lead to a significant reduction of data.

Second, the signal raised by the application may be miss-interpreted by the library, and may interfere with

a signal handler of the application itself. Third, each call to the signal handler interrupts the application

and imposes direct overhead to the execution. Fourth, the number of files steadily increases on the file

system, since all the updates (i .e., files) are needed for the reconstruction, and further each open/close

operation adds overhead for the reconstruction upon recovery.

Some of the limitations above are addressed by the library itself, for instance, a threshold for the

number of files can be given, after which the files are consolidated into one file. If performed in the

background, this can reduce the overhead on the reconstruction and reduces the stress on the meta-data

server. Further, Ferreira et al . [68, 86], and Plank [67], proposed methods to account for variables that

access, but not change contents of the memory regions. Ferreira et al. creates hashes of the memory

pages that are accessed while being protected. By the time of the checkpoint, the hashes can be compared

to the hashes of the memory page at the time of the checkpoint. While this can reduce the amount of

redundant data further, it does not account for relocations of the data, and imposes additional overhead

within the signal handler. Plank suggests another elegant way accounting for the real differences. During

the signal handler, the memory page is copied entirely to a buffer, and by the time of the checkpoint, the

current data and the copy are compared with XOR and the result is compressed and afterwards added

to the checkpoint. The advantage here is that the XOR operation produces many zeros, if the data has

37

not changed much. And zeros are easy to compress. While these methods consider the actual changes in

variables, they further increase the overhead during runtime.

Our implementation addresses all those issues, making this proposal the only general purpose multi-

level checkpointing library that implements a version of differential checkpointing that adapts to datasets

with dynamic sizes, and which is not intrusive, avoiding the invocation of a signal handler. Furthermore,

our implementation avoids the generation of secondary files, as it incorporates the meta-data in the

checkpoint files, reducing the stress on the meta-data server and minimizing the IO operations upon

recovery.

5.8 Conclusion

In this chapter, we presented a per variable based DCP mechanism. Former DCP implementations are

based on the UNIX page protection mechanism to determine data differences, but this mechanism is not

capable of recognizing all the differences correctly, as we have pointed out in section 5.7. We tested

four hash algorithms: Adler32, Fletcher32, CRC32 and MD5 upon performance and reliability and our

conclusion is that from those four, only CRC32 and MD5 are safe choices for DCP.

Our proposed DCP implementation accounts for relocation of data in memory and for dynamic

variable sizes. For this, we developed two new file formats, FTI-FF (subsection 5.2.1) for optimized

storage utilization, and a streaming file format (subsection 5.2.4) for alleviating the impact of many very

small updates. Our results demonstrate, that the application of DCP is beneficial in most cases. We further

presented a model (Equation 5.4), which can be used to estimate the benefit of DCP. For this, we need to

measure the time to write and the time to hash a block of data. The model can then predict the theoretical

speedup, depending on the dirty data ratio. We also identified an issue with our first implementation of

FTI-FF, when it comes to very small DCP updates. However, after using a buffering mechanism, this

issue has been resolved. Our experiments with three different HPC applications show speedups of up to

49% in Heat2D, 35% in xPic and 62% in LULESH.

38

Chapter 6

Elastic Recovery

Publications

• International Conference on High Performance Computing, Data, and Analytics (HiPC) 2020:

– Keller, K., Parasyris, K., Bautista-Gomez, L. (2020, December). Design and Study of Elastic
Recovery in HPC Applications. In 2020 IEEE 27th International Conference on High Performance
Computing, Data, and Analytics (HiPC) (pp. 261-270). IEEE.

Main Contributions

• We propose API extensions for checkpoint-and-restart libraries that target both objectives resiliency and
scientific IO, and enable the automatic recovery with an arbitrary number of processes (elastic recovery).

• We design and implement a runtime allowing the asynchronous creation of HDF5 checkpoint files.

• We showcase online recovery using a resilient MPI implementation (ULFM), and demonstrate automatic
elastic recovery on fewer processes.

During the last decade, Checkpoint-Restart (CR) has been highly optimized by multilevel checkpoint

libraries like Fault Tolerance Interface (FTI) [14], Scalable Checkpoint/Restart (SCR) [15] and Very Low

Overhead Checkpointing System (VeloC) [87]. These libraries offer numerous settings to improve the

checkpoint performance by taking advantage of multiple storage levels, and the utilization of modern

checkpointing techniques such as Differential Checkpointing (DCP), asynchronous checkpointing, incre-

mental checkpointing, Graphics Processing Unit (GPU) checkpointing, and in-memory checkpointing.

Despite their high performance, multilevel CR libraries still suffer from some shortcomings. They often

use an opaque file format, and the data layout in the checkpoint files is agnostic to the developer. Although

High Performance Computing (HPC) applications typically run with a variable number of processes,

CR libraries do not support recovery from a checkpoint with an adjustable number of processes (a.k.a.

elastic restart). Consequently, the recovery from a failure needs to take place with the exact number of

processes as the application was formerly executed with. On the other hand, the developer cannot extract

the data from the checkpoint files manually and restart on a changed decomposition of the application

without knowledge of the underlying file format. The same applies for utilizing the checkpointed data for

visualization or data analyses, as the developer cannot extract the data from the checkpoint files.

We propose a new API and runtime, for Checkpointing (CP) libraries, that empowers developers to

expose additional information for the datasets (e.g., decomposition, variable names, etc.), and to control

the data layout in the checkpoint files. As the checkpointed data is often also the object of the analysis, we

make two friends with one gift; the application is protected, using all the features of the CP library, and

stores the data into a format that contains all information to perform further analyses. Moreover, once the

application has been instrumented with our API, it can be restarted with an arbitrary number of processes.

The remainder of the chapter is structured as follows: Section 6.1 explains the foundation of our

work. Section 6.2 focuses on the design and implementation of our proposed API. Section 6.3 describes

39

the methodology for our detailed analysis, and section 6.4 presents and discusses the results of our

experiments. Section 6.6 explores related work, and Section 6.7 concludes the chapter.

6.1 Background

In this section, we introduce the main libraries and concepts necessary to understand the contributions

presented in this chapter.

6.1.1 MPI Layer Fault Tolerance

The most common technique used to protect applications towards failures is to periodically create

checkpoints and, in case of a failure, roll back to the last checkpoint taken. Typically, the failure leads

to the termination of the application, hence, all data stored in dynamic memory is lost and needs to be

restored upon recovery. But often, the failure affects only a small region of the application domain (e.g.,

single node failures). Hence, most of the application data is still valid, and a replacement and recovery

of only the failed processes would be sufficent. But Message Passing Interface (MPI) does not support

such scenarios innately. Fault-tolerance inside the MPI layer has been an object of investigation for some

years now [88–90]. Some popular proposals for fault tolerant MPI implementations are ULFM [91],

FT-MPI [90] and MPI_Reinit [92, 93]. The common goal of these frameworks is to provide a mechanism

for the developers to mitigate local failures in MPI. ULFM, for instance, proposes extended semantics

to the MPI specification that allows one to exclude failed processes from the MPI communicator, or to

invalidate communicators [94]. The goal of all of the fault tolerant MPI implementations is to empower

the developer of detecting process failures and to reconfigure the application accordingly during runtime.

6.1.2 General Purpose IO

6.1.2.1 HDF5

Hierarchical Data Format (HDF5) [95] is a file format that allows the storage of complex datasets

embedded inside a hierarchical folder-like structure [96]. Inter alia, HDF5 allows the creation of named

groups (similar to folders in file systems) and named datasets (continuing the analogy, the files in a file

system). The HDF5 file format represents the standard format for scientific datasets. The API is very

complete and actively maintained. Furthermore, there exist bindings to a great variety of programming

languages and applications such as C/C++, Fortran, Python, MatLab and R, and it has been optimized for

multiple file systems [97, 98].

6.1.2.2 ADIOS

Adaptable Input Output System (ADIOS) [99] is a state-of-the-art IO library for HPC applications. ADIOS

provides a rich API to define variables with additional information for shape, type, etc. The library allows

one to write the data in different formats, and allows conversion of the own file format into various others.

Under the term Sustainable Staging Transport (SST) [100], ADIOS also provides asynchronous file Input

and Output (IO). In combination with HDF5 as output format, we can stage the single file HDF5 data

locally before it is consolidated asynchronously on the Parallel File System (PFS). For this, the data is

40

first buffered locally, and then accessed via Remote Direct Memory Access (RDMA), and consolidated to

a single file on the PFS. ADIOS provides bindings to C/C++, Fortran and Python.

6.2 Implementation

In this section we outline the design objectives of our extensions and present the basic concepts and

mechanisms. The proposed interface gives developers a tool at hand that solves the disagreement

mentioned at the introduction to this chapter. In short, it consolidates the IO work for resiliency with the

IO work for data processing and it also allows for elastic restart from the checkpoint files using a variable

number of processes. Deploying our extensions does not restrict the other features of the CR library in

any way. It remains possible to perform checkpoints in all other reliability levels. We implemented our

extensions on top of FTI (without loss of generality).

6.2.1 Design Objectives

The design objectives for our API extensions are:

Complex Data Representation: The core of the problems that HPC applications try to solve is formu-

lated using complex data structures. These structures are usually organized either as structure of

arrays or as an array of structures. Our interface should provide an intuitive mechanism to define

both.

Accessibility to the Data: Checkpoint libraries in HPC do typically not intend to provide access to the

Checkpoint (CKPT) data from outside of the library. Our objective is to remove this restriction and

to give the developer the capacity of structuring the data inside the checkpoint in a way, that it can

conveniently be used for data processing, independently of the checkpoint library.

Intuitive API: Developers prefer using libraries and APIs which they already know before investing

their time to learn a new specification. Therefore, we apply the terminology of common file formats

(i.e., HDF5 and NetCDF [101]) to our API, providing descriptive function names.

6.2.2 API Specification

In this section we showcase the proposed API extensions. We use a simple example to demonstrate how

the extensions can be used to structure the data inside the checkpoint file. This will clarify i) how to

organize the data for scientific post-processing and visualization and ii) how to prepare the application

buffers to allow the elastic recovery.

6.2.2.1 Complex Data Representation

We exemplify our API using a simple example that simulates the movement of particles exposed to a force

in 3-dimensional space. Each particle state is represented by its position and velocity (see Listing 6.1).

1 typedef struct coord_t {

2 double x,y,z;

3 } coord_t;

4

5 typedef struct particle_t{

41

6 coord_t position;

7 coord_t velocity;

8 } particle_t;

Listing 6.1: The particles data type is represented by a structure with two members, which are represented by the respective
data-structures. This is an example for a nested composite data type. We explain how to expose this type with our API in
Listing 6.2.

Our interface provides mechanisms to describe complex datasets of the application and store those

to the checkpoint file with the corresponding information about shape, type and relationship. The first

step is to expose the data types of the datasets to the checkpoint library. Besides the standard types

(integer, floating-point, char, etc.), which are predefined, the user can define derived data types that

correspond to structures or classes. Composite data types, for instance the particle_t datatype

from Listing 6.1, are created by calls to FTI_InitCompositeType. The members of the composite

data type can be added one after the other by calling FTI_AddScalarField for scalar members and

FTI_AddVectorField for array members. Listing 6.2 shows this in detail for the composite types

from Listing 6.1. Note that, because the particle type has members that are of a composite type itself, we

first need to create this type.

1 fti_id_t FTI_COORD = FTI_InitCompositeType("COORD", sizeof(coord_t), NULL);

2 FTI_AddScalarField(FTI_COORD, "X", FTI_DBLE, offsetof(coord_t, x));

3 FTI_AddScalarField(FTI_COORD, "Y", FTI_DBLE, offsetof(coord_t, y));

4 FTI_AddScalarField(FTI_COORD, "Z", FTI_DBLE, offsetof(coord_t, z));

5

6 fti_id_t FTI_PARTICLE = FTI_InitCompositeType("PARTICLE", sizeof(particle_t), NULL);

7 FTI_AddScalarField(FTI_PARTICLE, "POSITION", FTI_COORD, offsetof(particle_t, position));

8 FTI_AddScalarField(FTI_PARTICLE, "VELOCITY", FTI_COORD, offsetof(particle_t, velocity));

Listing 6.2: To expose the nested particle data type from Listing 6.1, we need to expose the coordinate type first. Composite
data types are defined with FTI_InitCompositeType. Their members are added with FTI_AddScalarField (or
FTI_AddVectorField for array members).

6.2.2.2 Descriptive Data Representation

Now that we learned how to expose composite data types, we will explain the definition of global datasets.

By global dataset, we are referring to the full dataset, before its decomposition to the application ranks.

The global properties of the dataset are its description (name), the location in the file (parent group) and

the dimensions. They are exposed by calling FTI_DefineGlobalDataset. Local properties, such

as offset and count of the rank’s data share, are exposed by calls to FTI_AddSubset. Finally, the actual

data buffer is exposed via FTI_Protect. Listing 6.3 exemplifies the required steps exposing a global

particle dataset. The dimensions of the global dataset in our example are represented by the three variables

gX, gY and gZ, whereas the dimension of the subsets on each process are represented by the variables

lX, lY and lZ. Scalar variables, such as the iteration counter or communicator size, that take the same

value on all ranks, can be defined in the same way. In that case, the values for count and offset are simply

one and zero on all ranks.

1 lX = gX;

2 lY = gY;

3 lZ = gZ/nbProcs;

4

5 size_t MEMSIZE = lx*ly*lz*sizeof(particle_t);

6 particle_t *particles = (particle_t*)malloc(MEMSIZE);

42

7

8 int globalDim = {gZ, gY, gX};

9 size_t offset[3] = {0, 0, rank*lZ};

10 size_t count[3] = {lZ, lY, lX};

11

12 FTIT_H5Group GRID;

13 FTI_InitGroup(&GRID, "GRID", NULL);

14

15 int VAR_ID_PARTICLES = 0;

16 int DATASET_ID_PARTICLES = 0;

17

18 FTI_DefineGlobalDataset(DATASET_ID_PARTICLES, 3, globalDim, "PARTICLES", &GRID, FTI_PARTICLE);

19 FTI_Protect(VAR_ID_PARTICLES, particles, lX*lY*lZ, FTI_PARTICLE);

20 FTI_AddSubset(VAR_ID_PARTICLES, 3, offset, count, DATASET_ID_PARTICLES);

Listing 6.3: In this example, we create an HDF5 group GRID to show how to create a hierarchy in the checkpoint file. The
particle dataset is then added to this group. Further, we define the global dimensions of the dataset (line 15) and specify the
process local region inside the dataset (line 17) according to the domain decomposition (here we merely partition along the
z-axis.)

6.2.3 Accessing the Checkpoint Data

For the current implementation, the underlying file format is HDF5. However, the API is not restricted to

a specific format. Hence, the implementation can be extended, adding other formats like netCDF [102] or

ADIOS. The proposed API can be used to create a hierarchical structure (groups) for the datasets inside

the checkpoint file. Therefore, accessing the data in the files is straightforward, as the developer has

defined the structure by himself. The files are created with the chosen file format and can be accessed

with any binding that might be available for it. With this, checkpointing is not anymore just overhead for

the purpose of resiliency, but also serves as an interface for the scientific application IO.

(a) Initial Execution. (b) Restart with reduced number of processes.

Figure 6.1: The entire grid of the data used by the application. The different gray scales indicate the domains of the MPI
processes. (a) shows the initial execution with 4 MPI processes and (b) the execution with 3 processes after the elastic recovery.

6.2.4 Elastic recovery

The information that is provided through the two functions FTI_DefineGlobalDataset and

FTI_AddSubset is used by FTI to recover elastically with any number of application processes.

43

Providing the information is simple in most cases, since it coincides with the information about the do-

main decomposition for the parallelization with MPI. However, the developer needs to explicitly instruct

FTI that an elastic recovery is requested. For this, the failure tag in the FTI configuration files has

to be set to 3. Otherwise, FTI assumes a restart with the same number of processes. To request global

checkpoints with HDF5, the developer further needs to pass the checkpoint level FTI_L4_H5_SINGLE

to FTI_Checkpoint. All the other levels are still available and can be set passing the respective flag

(e.g., FTI_L1, FTI_L2, etc.).

The decomposition in our example is simple (Listing 6.3). Only the z-axis is decomposed between

the ranks. In figure 6.1, we show the global view of this domain decomposition. The left cube shows

the initial decomposition into 4 processes and the right cube the decomposition for the recovery into

3 processes. The offset and count in listing 6.3 are defined in such a way that the correct values are

computed automatically for the current decomposition, i.e. according to the number of processes that

participate in the current execution. Thus, for the elastic recovery with a different decomposition, the

appropriate information about offset and count for the subsets is automatically exposed to FTI.

6.2.5 Checkpoint Strategies

We want to showcase with a simple example how we can use different resilience measures, including

the descriptive file creation as a checkpoint level on its own. The resiliency strategy should comprise

a combination of all reliability levels available. Most of the CR libraries provide very fast and highly

scalable checkpoint levels (node-local checkpointing, buddy checkpointing, etc.). Those levels are suitable

to perform checkpoints at a high frequency. Those checkpoints do not require to be in a file format suitable

for extracting the scientific application data. They target minimizing the time for recomputation upon

failures. Therefore, the best checkpointing strategy is typically a mixture of all levels. Listing 6.4 shows

an example of a simple checkpoint strategy that uses 4 different levels of reliability.

1 int iter;

2 for (iter=1; iter<=MAX_ITER; iter++){

3 if(FTI_Status() != 0) FTI_Recover();

4 // structured and globally shared HDF5 file (global file system)

5 else if(iter%8000 == 0) FTI_Checkpoint(iter, FTI_L4_H5_SINGLE);

6 // encoded checkpoint files (node-level)

7 else if(iter%4000 == 0) FTI_Checkpoint(iter, FTI_L3);

8 // partner checkpointing (node-level)

9 else if(iter%2000 == 0) FTI_Checkpoint(iter, FTI_L2);

10 // single checkpoints (node-level)

11 else if(iter%1000 == 0) FTI_Checkpoint(iter, FTI_L1);

12 simulateSystem(grid);

13 }

Listing 6.4: Example of a simple checkpoint strategy that combines checkpointing into a shared HDF5 file with other levels of
reliability. Higher levels are preferred. The recovery is performed automatically upon restart.

6.2.6 Asynchronous Checkpoint

The checkpoint creation into the global self-descriptive checkpoint file can optionally be performed in

two stages. Initially, the application processes store the data to fast local storage on the nodes (stage 1).

Afterwards, the local data are united to a global file on the PFS (stage 2). The first stage is performed

by the application processes, and the second stage by dedicated FTI processes. The application will

44

only experience the overhead of the first stage, since the second stage is performed in the background

(asynchronous checkpoint). To leverage the asynchronous feature, the application has to allocate one extra

process per node. The dedicated FTI processes are removed from the main communicator during the

call to FTI_Init. Therefore, the application needs to use the FTI communicator (FTI_COMM_WORLD)

after calling FTI_Init to function properly.

6.3 Methodology

In this section, we will introduce the experiments that we have performed and the application we used.

We will further introduce the metrics that we apply to evaluate the performance of the proposed runtime.

6.3.1 Generalized Evaluation Metric

To evaluate the performance of our implementation, we propose a metric that provides a clear definition of

the checkpoint and recovery overheads. The metric is suitable for comparing results among experiments

performed at different times and architectures. The metric depends on, tckpt, the effective time to

checkpoint (i.e., experienced by the application), the effective time to recover (i.e. without downtime and

recomputations), and the Mean Time Between Failures (MTBF). The metric is define as:

δckpt “

c

tckpt

2 MTBF
“
tckpt

topt
, relative checkpointing overhead (6.1)

δreco “
treco

MTBF
, relative recovery overhead (6.2)

where topt “
a

2 tckpt MTBF is Young’s optimal checkpoint interval [103]. The relative overheads defined

in equations 6.1 and 6.2 can further be used to estimate the respective absolute overheads of our proposed

runtime. In the following we will demonstrate how to do that. The total overhead imposed by the

protections and recoveries from failures is:

∆Ttot “ ∆Tckpt `∆Treco `∆Tcorr. (6.3)

Where ∆Tckpt is the total checkpoint time for all checkpoints, ∆Treco, the total recovery time for all

recoveries (i.e., failures), and ∆Tcorr is the correction, accounting for the recomputations and downtime

between failure and recovery. For the total checkpoint and recovery overhead we can write:

∆Tckpt “ Nckpttckpt “
Texp

topt
tckpt “ δckptTexp (6.4)

∆Treco “ Nfailtreco “
Texp

MTBF
treco “ δrecoTexp (6.5)

With Texp being the expected runtime time of the application without protection and failures, Nckpt the

number of checkpoints, and Nreco the number of recoveries after a failure. In Equation 6.4, we assume

that the checkpoint interval is topt, applying the Young’s optimal checkpoint interval. Equations 6.3, 6.4,

and 6.5 can now be used to express the total overhead by:

∆Ttot “ pδckpt ` δrecoqTexp `∆Tcorr (6.6)

45

We can further give an estimation for the correction term by:

∆Tcorr « Nfail
`

Ertrecomputations ` Ertdowntimes
˘

« Nfail pMTBF{2` Ertdowntimesq (6.7)

where Er¨s denotes the expected value. Because otherwise the model would need to take into account the

times for additional checkpoints and recoveries, we further require:

∆Tcorr ` pδckpt ` δrecoqTexp ă MTBF (6.8)

6.3.2 Measurements

To determine the checkpoint and recovery overhead, we performed three different types of experi-

ments:

E0 Execution without protections (i.e., Texp).

E1 Execution without failures, performing Nckpt checkpoints.

E2 Execution interrupted by one failure + recovery, and performing Nckpt checkpoints.

The respective times for recovery and checkpointing are then given by:

∆Tckpt “ T pE1q ´ T pE0q (6.9)

∆Treco “ T pE2q ´ T pE1q (6.10)

From this, we can compute the quantities of our proposed metric by:

δckpt “
tckpt

topt
“

∆Tckpt{Nckpt

topt
(6.11)

δreco “
treco

MTBF
“

∆Treco ´ Trecompute

MTBF
(6.12)

6.3.3 Experiments

To assess the performance of the proposed runtime, we need to compare it against a similar approach

of an existing state-of-the-art mechanism. First, we test our runtime against the fourth reliability level

of the traditional interface of FTI. FTI creates one checkpoint file per process on the PFS at this level.

Experiments that use the traditional interface are labeled with Trad and experiments leveraging our

proposed runtime are labeled with Novel. We further measured both interfaces in asynchronous mode

labeled Async, and in synchronous mode labeled Sync. Furthermore, we tested the novel interface

performing the recovery online, that is without terminating the application upon a failure, and offline,

terminating the application upon failures. The recovery configurations are labeled On and Off respectively.

For the online recovery, we leverage ULFM (See Section 6.1.1). We listed the various configurations and

their labels in Table 6.1.

46

File Format Checkpoint Methodology Recovery methodology

Trad Traditional interface, bi-
nary file format (N-N)

Sync Checkpoint post process-
ing by application pro-
cesses

Off Offline recovery; applica-
tion terminates upon fail-
ure.

Novel Checkpointing into
shared HDF5 file (N-1)
for independent data post
processing and elastic
restarts

Async Checkpoint post process-
ing by the dedicated pro-
cesses

On Online recovery; applica-
tion stays alive upon fail-
ure, reinitialization and
restart with remaining
processes.

Table 6.1: Different C/R scenarios tested in the evaluation section with respect to the file format, the checkpoint method and the
recovery method.

6.3.4 Applications

We want to study how the proposed runtime behaves with different application types. The HPC ecosystem

has a wide spectrum of scientific codes, some of them are based on regular static grids that are easy to

work with, while others are more irregular and significantly harder to work with. This complexity has

an impact on both checkpoint and recovery. We selected two applications representing the boundaries

of both sides of the spectrum. Heat2D, an application with a very simple domain decomposition and

regular data distribution, and xPic, an application with a complex decomposition and irregular data

distribution (particles move between domains). In the following, we briefly discuss the peculiarities of

both applications.

6.3.4.1 Heat2D (C++)

As benchmark application we use Heat2D that was introduced in subsubsection 5.5.1.3. To use it for

automatic online recovery, we ported it to C++. In the new implementation, the body of the application is

arranged in three parts: (a) initialization, (b) mainloop, and (c) finalization. This structure is very common

for HPC applications. In spite of its simplicity, Heat2D is a good representative of many HPC codes (i.e.,

stencils) and provides a simple example for show-casing the elastic recovery with fewer processes within

an online scenario (i.e., without termination upon failures).

6.3.4.2 xPic

As an example for an application that shows irregular IO patterns, we use xPic, a Particle In Cell (PIC)

application for space plasma simulations. We introduced xPic in subsubsection 5.5.1.2, however, we want

to emphasize certain properties that are important to understand the evaluation section. The simulation

space in xPic is decomposed into a 3-dimensional grid of cells and each cell is initialized with a certain

amount of particles at the beginning. The number of cells for each direction is customizable as is the

number of particles per cell. The electric and magnetic fields are discretized and defined at fixed grid

points (nodes). On the contrary, the particle positions are continuous and the particles can move between

the cells of the grid. As a consequence, the number of elements per cell is constant for the field arrays, but

not for the particle arrays, which is a challenging scenario for the elastic recovery. Each rank operates on

a sub-volume of the grid, dictated by the MPI decomposition. The global field data in xPic is organized

in contiguous arrays, one for each component (i.e., X,Y, and Z components of the magnetic and electric

47

fields). We organize the fields in the global checkpoint file into a row-major data alignment (3D to 1D

mapping). Since the grid in xPic is static, each rank is able to compute offset and count for its share of the

global field data according to the domain decomposition. The same applies for the recovery (elastic and

common recovery). Thus, the application of elastic recovery is straight forward for the fields. This does

not apply to the particles. Given that particles move around the grid during the execution, the number of

particles per cell varies, thus, at checkpoint time the ranks cannot know the offset in the shared file without

communication among the other ranks. Even more challenging is the recovery in that case. Because

of that, xPic is a good example of an irregular application to demostrate the generality of the proposed

API and runtime. We will explain in more detail how we approach elastic recovery for the particles in

section 6.4.7, where we will present two different solutions for the problem.

6.4 Evaluation

In this section, we evaluate the performance of our implementation, compare it to a state-of-the-art IO

library (ADIOS), and demonstrate its scalability. We investigate the benefits of online recovery, and

evaluate the overhead that is imposed due to the increased execution time when restarting with fewer

processes. Finally, we analyse some of the challenges of elastic restart on irregular applications and we

present two solutions that achieve good performance for both checkpoint and recovery.

6.4.1 HPC Environment

All experiments are performed on MareNostrum4, the supercomputer at the Barcelona Supercomputing

Center (BSC). Each compute node is equipped with 2 Intel Xeon Platinum CPUs (24 cores each), 12x8

GB DDR4 main memory, a 100Gbit network and 10Gbit ethernet to the PFS [104]. All local checkpoints

are performed in-memory, using the node’s RAM disk (/dev/shm).

Evaluation Parameters xPic Heat2D

Nodes 16 16
MPI-processes per Node 12 47
Threads Per Rank 3 1
CP size per Node (GB) 11 18
Num of MPI-ranks 192 752
Total CP size (GB) 176 288

Table 6.2: Configuration and scale for the benchmark experiments.

6.4.2 Performance Measurements

Recent studies show that modern HPC systems have several failures per day [105, 106], we will use a

benchmark value of 6 hours for the MTBF for our experiments. This choice is based on an estimated

MTBF for executions on 15K cores [107]. The methodology for the experiments has been presented

in section 6.3 and the scale is listed in Table 6.2. In this section, we will present the results for the

checkpoint and recovery overhead for the novel and traditional interfaces. We performed experiments

in synchronous and asynchronous mode. For the particle recovery in xPic from the global file, we load

an even amount of particles on each rank, and afterwards redistribute particles that belong to different

48

domains. This strategy is optimized for fast checkpoint creation. We observe generally low overheads

for recovery and checkpoint for both applications (δckpt ă 3% and δreco ă 1%). The results are listed

in Table 6.3. We further observe, that most of the recovery overhead in xPic is due to the particle

redistribution (see Figure 6.2). We will compare the approach presented here to an approach without

particle redistributions in subsection 6.4.7.

0.4

1.2

2.0
ck

pt
 [%

]
xpic
Heat2D

Trad, Sync Trad, Async Novel, Sync Novel, Async

0.1

0.3

0.5

re
co

 [%
]

Particle Re-distribution

Figure 6.2: Top: Relative checkpoint overhead. Bottom: Relative recovery overhead. For xPic we separated the recovery
overhead into read and re-distribution of the particles.The difference in latency between online and offline recovery depending
on the number of nodes.

Compared to the traditional interface, our proposed runtime achieves slightly higher values for

synchronous checkpointing and slightly lower values for asynchronous checkpointing. The latter results

from the fact that we do neither create metadata files nor integrity checksums for the checkpoint files. With

the help of equation 6.6 we can further estimate the minimum and maximum overhead for an estimated

execution time of 12 hours (i.e., Texp “ 12 h):

∆Ttot «

$

&

%

22 p16q [min] xPic (Heat2D) Synchronous

10 p4q [min] xPic (Heat2D) Asynchronous

Overall, these results demonstrate that our proposed technique performs comparably well to the state-

of-the-art multilevel checkpoint techniques that leverage the local storage of current deep-memory

architectures. The overhead imposed on both applications is extremely low (ă 1.5%) when applying

asynchronous post-processing, while having the benefit of global data files in a self-descriptive data

format.

6.4.3 Comparison to ADIOS

After comparing the performance of the proposed runtime to the traditional runtime of FTI, we compared

the asynchronous file creation of our proposal to the asynchronous staging feature (SST) of ADIOS. The

feature leverages fast memory buffers and RDMA to stage the files though the network. The shared

HDF5 file is created in the background by several dedicated processes, after receiving the checkpoint

data from the application processes. This feature serve the same purpose as our asynchronous checkpoint

49

δckpt [%] δreco [%]

xPic Heat2D xPic Heat2D

Trad Sync 1.56 1.81 0.09 0.15
Async 0.95 1.03 0.11 0.09

Novel Sync 2.40 2.12 0.59 0.05
Async 0.80 0.57 0.61 0.04

Table 6.3: Results for the relative CR overheads.

implementation (subsection 6.2.6). ADIOS can also stage the files through node storage. However, the

consolidation of the local data needs manual action and is not performed from within the application

itself. Therefore, this approach differs substantially from the functionality of our implementation, and

we omit a comparison. ADIOS allows allocating an arbitrary number of dedicated processes, which can

as well be located on a separate set of nodes. Due to the limited (and not customizable) buffer size per

dedicated process, we needed to allocate as many staging processes as application processes. This can

be a disadvantage, as it increases considerably the number of processes required in the allocation. Our

implementation does not impose such a limitation, however, is less flexible in the number of workers that

perform the consolidation of the checkpoint file. The number of dedicated staging processes in FTI is

always one dedicated process per node. Therefore, in ADIOS, the consolidation of the checkpoint file can

be scaled up with additional worker processes, whereas in FTI it can not.

tckpt (sec) treco (sec) Bandwidth (GB/s)

Novel Sync 19.7 22.6 14.6
Async 0.92 6.9 157.9

ADIOS Sync 18.9 21.4 15.2
Async 5.14 10.4 28.2

Table 6.4: The resulting values for the relative CR overheads for N-1 (shared HDF5 file on PFS). Comparison between our
proposal and ADIOS.

Overall, the flexibility of ADIOS’ staging feature did not match the performance of our asynchronous

checkpoint implementation. Table 6.4 summarizes the results of our measurements. Writing directly to

the PFS (Sync) does not show any significant difference in performance between the two libraries. When

staging the data though (Async), we achieve a significant performance advantage. Our implementation

is over five times faster, writing the checkpoint files asynchronously, which could be considered as a

5x increase in terms of bandwidth. This difference is mostly because ADIOS stages the data over the

network, hence, with more effort on developers side, as mentioned earlier, this gap could be closed. An

important takeaway from this experiment is that with our interface, we achieve very high performance

with little effort for the developer, even in comparison to an established state-of-the-art IO library.

6.4.4 Scaling

We demonstrated the overall low overhead of our runtime and that it performs very well, even in

comparison to a state-of-the-art IO library. Now we want to study its scalability. We performed experiments

50

that vary the checkpoint load per process (strong scaling) and experiments that vary the total checkpoint

size, but keep the size per process constant (weak scaling). In the next sections we will discuss our results.

6.4.4.1 Strong Scaling

Figure 6.3 shows the outcome of the strong scaling experiments. The plot shows the scaling for an

increased checkpoint load per process. This is strictly speaking not identical to a strong scaling, since

the total problem size varies. However, it is very similar, as the number of processes operating on the

largest checkpoint size per process (0.4 GB) is doubled going from right to left in the plot. It is more

meaningful in our case, however, to show the increase in overhead with increasing problem size per

process. This metric allows us to estimate the overhead for higher checkpoint loads. A fit with a weighted

linear regression model on the data shows that, for the synchronous checkpoint creation, the relative

overhead increases by about 3.3%/GB (4.1% at 1 GB) and for the asynchronous checkpoint creation by

about 1.2%/GB (1.3% at 1 GB).

0.1 TB 0.3 TB 0.5 TB 0.7 TB
Checkpoint Size (Total)

200 400 600 800 1000
Checkpoint Size [MB] (Per Process)

0

1

2

3

4

5

Re
la

tiv
e

Ov
er

he
ad

 [%
]

Estimate (Novel, Sync) = 0.0032x + 0.87
Estimate (Novel, Async) = 0.0012x + 0.10
Novel, Sync
Novel, Async

Figure 6.3: Relative checkpoint overhead for our new extensions for varying checkpoint data per process (strong scaling).

6.4.4.2 Weak Scaling

For the weak scaling we performed experiments on 16, 32, 64 and 128 nodes with 47 processes per node.

The checkpoint size per process is kept constant at about 400 MB in all experiments. The results of the

measurements are shown in Figure 6.4. We observe that the overhead for the synchronous checkpointing

increases linearly with the number of processes. On the other hand, the overhead for the asynchronous

checkpointing remains practically constant. The latter is expected, since the effective checkpoint overhead

in that case, arises from the first stage of the checkpoint creation. The first stage, however, is the checkpoint

creation on node storage, and with this it uses resources that are not shared globally. We can thus expect

a continued constant weak scaling behavior for the asynchronous mode. Using again a weighted linear

regression model, we can estimate the overheads for higher scaled runs for the synchronous mode. The fit

51

estimates an increase in overhead of about 0.7%/10K processes (2.8% at 10K processes). This result is

only valid until we reach the maximum bandwidth of the PFS though. Furthermore, since the synchronous

mode uses globally shared resources, it has to take into account other users on the cluster and potential

congestions resulting from this.

2 K 4 K 6 K 8 K 10 K
Number of MPI-Processes

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e

Ov
er

he
ad

 [%
]

Estimate (Novel, Sync) = 0.0000698x + 2.06
Estimate (Novel, Async) = 0.0000026x + 0.56
Novel, Sync
Novel, Async

Figure 6.4: Relative checkpoint overhead for our new extensions for varying number of nodes and constant checkpoint data per
process (Weak scaling).

6.4.5 Offline vs Online Elastic Recovery

Our proposed runtime can be used to perform a recovery online. For instance, after the loss of a number

of processes that still allows the continuation of the application. The online recovery needs to take place

on a reduced number of processes, and the recovery can be performed elastically using our proposed

API. This can be achieved using our interface in combination with any fault tolerant MPI implementation.

We implemented an elastic online-recovery capability into the Heat2D application leveraging ULFM.

In the following we explain briefly the key facts of our implementation. First, to get notified upon a

process failure, we set the standard MPI error handler to MPI_ERRORS_THROW. Second, we wrapped

the computation block (99.99% of the execution time) of the main loop inside a try-catch statement,

and further we inject failures within that region to test the implementation. After the failure injection,

the affected processes terminate execution and the surviving processes throw an exception and call the

error handler. Inside the handler, the processes invoke the ULFM function MPIX_Comm_shrink which

excludes the failed processes from the MPI communicator. The remaining processes are then rolled back

to the last checkpoint and continue execution. Listing 6.5 shows the handler, we have implemented in

order to react to the failure.

The experiments use the same scale as the benchmarking experiments from section 6.4.2 (Table 6.2).

We simulated the loss of 1 node and then restarted on the remaining 15 nodes using either online recovery

(On) or offline recovery (Off) (Table 6.1). Figure 6.5 shows the time difference between the both methods.

As expected, online recovery is faster than offline recovery (even if assuming an immediate restart of

the job). We can see that the effect is noticeable already at a small scale. Towards large executions, the

effect becomes ever more important. After applying a linear model, we estimate an increase of 57 seconds

52

16 32 64 128
Number of Nodes

0

2

4

6

8

10

12

14

 L
at

en
cy

 [s
ec

on
ds

]

[Latency](x) = 0.057x + 1.64
Off - On

Figure 6.5: The difference in latency between online and offline recovery depending on the number of nodes.

each 1,000 nodes. However, the difference between online and offline recovery is likely to depend on

the application complexity and the initial memory allocation. That is to say, the effect could be even

more drastic for applications with complex initialization processes. Further, due to scaling effects, the

initialization time could increase faster than linear, as we assumed in our model. With our model, we

estimate a difference of about 10 minutes at a scale of 10K nodes. considering multiple failures and

recoveries, which is expected to happen at such scale, this is a significant overhead which can be avoided

applying online recovery.

1 void TDist::handle_error()

2 {

3 // shrink communicator to surviving processes

4 MPI_Comm new_application_comm;

5 MPIX_Comm_shrink(application_comm, &new_application_comm);

6 application_comm = new_application_comm;

7

8 // reinitalize FTI

9 FTI_Init(fti_config_file, application_comm);

10 application_comm = FTI_COMM_WORLD;

11

12 /* reinitialize application. This method also defines the new dimensions of the global

datasets according to the new decomposition. */

13 this->reinit();

14

15 // update protections

16 this->protect();

17

18 // recover from failure

19 this->recover();

20 }

Listing 6.5: Error handling for the online recovery (R1) in Heat2D

53

6.4.6 Elastic Recovery with Fewer Processes

The API supports both the elastic recovery with more and fewer processes. In fact, the recovery can take

place with an arbitrary number of processes. However, restarting with fewer processes can lead to load

imbalances and to higher workloads per processor. Which can result into longer execution times. In this

section we present a simple experiment with Heat2D, showing the tradeoff between fewer computing

resources and the immediate continuation of the execution. For this, we first execute Heat2D on 50 nodes

with 47 processes per node and about 400 MB checkpoint size per process. We denote the iteration

time for this experiment with T0. Furthermore, we measured the iteration time, Ti, for executions on

50´ i nodes operating on the same workload, for 1 ď i ď 10. We define the imposed relative slowdown

resulting from the execution on fewer nodes by:

δi “
Ti ´ T0

T0
. (6.13)

The definition of δi allows us to relate the iteration time after each failure that results into fewer nodes

to the original iteration time. With this, we can give a formula to model the total execution time after

multiple such failures. The increase in time per iteration, ∆Ti for executing on i fewer nodes is given by

∆Ti “ δi T0. With this we can compute the total additional execution time by:

∆Ttot “

F
ÿ

k“1

Nk δik ¨ T0 (6.14)

where F corresponds to the total number of failures during the execution, and Nk is the number of

iterations between two failures. Figure 6.6 shows the result of our measurements. The y-axis corresponds

to δi and the x-axis to the percentage of failed nodes w.r.t. the initial number of nodes (i “ 2 p“ 1%, etc.).

Note that a loss of 20% of the nodes is very unrealistic. In practice, we will be confronted with failures

of less than 5%. A linear regression up to 5% shows an almost direct proportional slope, i.e. 1% loss

corresponds to 1% overhead. Assuming an execution that is interrupted by failures with a loss of 2% of

the nodes each time, we can give an estimation of the total time imposed by the longer iteration times

using Equation 6.14. Considering an execution time of 24h and a MTBF of 6h (i.e.,Nk “ MTBF{pδik T0`T0q),

we run 6h with 100% of the nodes, 6h with 98%, 6h with 2% of 98%, and so on. With Equation 6.14 we

get:

∆Ttot “ 6h
ˆ

0.02

1` 0.02
`

0.0396

1` 0.0396
`

0.0592

1` 0.0592

˙

« 40 minutes (6.15)

Hence, in the case from above, which is a rather pessimistic example, we will have about 40 minutes

of extra time, due to the additional workload per processor. Even this example might prove beneficial,

considering the sometimes significant amount of time an application might wait for the new allocation

between two failures. Clearly, the model we presented is rather simple, and load balance issues could

increase the additional overhead. Nevertheless, the extra overhead for losses within a certain range, poses

a good tradeoff to the time spent in a job scheduler queue waiting for a new allocation.

6.4.7 Data Distribution on Irregular Applications

In section 6.3.4.2, we mentioned the challenge that xPic poses for the recovery from a shared file. The

particles in xPic move freely between the grid cells, and consequently the number of particles per processor

changes repeatedly. Because of this, the elastic recovery becomes non-trivial, we cannot arrange the

54

0 5 10 15 20
Failed Nodes [%]

0

10

20

30

Re
la

tiv
e

Ov
er

he
ad

 [%
]

TIteration

[TIteration](x) = 1.02x

Figure 6.6: Relative additional overhead for executions on fewer nodes with constant total load. The x-axis shows the percentage
of nodes lost upon failure.

particles contiguously inside the checkpoint file without knowledge of the particle distribution on the

other processes. In this section, we propose and study the benefits of two different data layouts, (1) per

process (PP) and (2) per cell (PC).

The first layout is based on the number of particles per process. This approach is oriented towards the

best performance while checkpointing. Before writing the particles, the ranks communicate the number of

particles they will write. With this information, each rank computes its offset within the global particle

dataset and writes the particles accordingly. No additional information is kept. Thus, upon recovery with

a different number of ranks, we have not enough information to directly read those particles, that indeed

belong to the respective ranks. Instead, upon the recovery, we divide the total number of particles by the

number of ranks and read from the dataset in equal parts. Afterward, we re-distribute the particles that

have been read by the wrong rank.

The second layout is based on the number of particles per cell. This approach is oriented towards the

best performance upon recovery by eliminating the necessity of particle re-distributions after the restart.

The global file contains one dataset per grid cell to store the particles. Hence, upon recovery, each rank

can directly read the contents of the cells belonging to the domain it operates on. This approach tends to

the creation of many small datasets, and fragmentation inside the checkpoint file, which, in turn, can lead

to the deterioration of the IO performance.

To have a certain degree of complexity for the experiments, we compared the two methods operating

on a cubic grid (i.e., the number of cells is equal in each coordinate direction). Table 6.5 lists the key

parameters, and figure 6.7 shows the results of the experiments. We observe that the second mode (PC)

leads to significantly more overhead than the first mode (PP), when operated in synchronous mode.

However, if operated in asynchronous mode, the overhead of both techniques becomes almost identical (2

and 3 seconds for PP and PC respectively). The recovery, on the other hand, is much faster using the first

approach (PC). We can see that when recovering on the same number of nodes, the time for the particle

redistribution for the first mode, is in the order of the time for the entire recovery with the second mode.

55

Evaluation Parameters xPic

Nodes 16
MPI-processes per Node 32
Grid Dimensions 120x120x120
Number of Cells 2¨106

Number of Particles 3¨109

Accumulated CP size 280GB

Table 6.5: Configuration for the measurements of the 2 different data organization pattern in the checkpoint file for xPic.

When restarting on fewer nodes, the time for the redistribution even becomes significantly longer. A good

solution for normal and elastic recovery poses the second mode (PC) operated asynchronously. Hence,

with our implementation for the asynchronous write of the shared file, we can efficiently perform elastic

restarts in particle-in-cell applications as an example for an irregular application.

Checkpoint
(Sync)

Checkpoint
(Async)

Recovery
(16 Nodes)

Recovery
(15 Nodes)

2

5

10

20

40

80

160

320

Du
ra

tio
n

[s
ec

on
ds

]

PP
Particle Re-distribution
PC

Figure 6.7: Comparison of the 2 techniques (PP and PC) to organize the particle data in the checkpoint file. Recovery on 16
nodes means recovery on the same number of nodes, whereas recovery on 15 nodes means elastic recovery on a reduced number
of nodes (i.e., simulates the loss of 1 node upon failure).

6.5 Discussion

In this chapter we presented our proposed API extensions and a runtime to allow multilevel CR libraries

to consolidate IO for resilience and general IO, and the ability to perform an elastic recovery through a

simple interface while guaranteeing high performance. Nonetheless, it would be naive to think that the

proposed API could cover all the corner cases that the entire HDF5 interface allow. For instance, we

did not implement HDF5 attributes and the API currently does not offer the possibility to create strided

datasets. There is currently also no simple way of exposing linked lists to the API. However, we expect

that the limitations of the proposed API will become apparent with time and practical application. We

further demonstrated that elastic restart is viable at large scale, and that we can reduce the overhead

further using online recovery. We evaluated the overhead when executing on a reduced number of nodes

and arrived to an acceptable value compared to the alternative, which is, spending time in the scheduler

queue. It is important to highlight that elastic restart is useful for other purposes different to resilience

56

(e.g., malleability of ensemble runs), which increases the scope of our proposal. Finally, we analyzed the

generality of our approach by testing with a highly irregular application. This raised several challenges and

highlighted the trade-off between checkpoint performance and restart performance. The first approach (PP)

was far more general and did not involve any application-specific measure other than particle redistribution

upon restart. The second one (PC) is more application-specific but can leverage the advantages proposed

in this work to achieve both fast checkpoint and fast recovery.

6.6 Related Work

Our proposal focuses on two aspects. The first addresses the consolidation of multilevel checkpointing

and scientific IO, the second addresses the elastic restart, i.e., the restart with a different number of

processes than the checkpoint has been created with. Regarding the first aspect, besides application-

specific solutions, there are several IO-libraries that can be used for resiliency as well as for scientific IO.

However, as we emphasized, there is no library combining the virtues of both families optimized for both

purposes. Among the most common IO libraries are ADIOS, netCDF and HDF5. From those libraries,

ADIOS is most similar to our proposal. It allows asynchronous staging to the PFS and IO to node local

storage and with this, it can be used for integrating basic checkpointing in HPC applications. However,

multilevel checkpoint techniques as for instance, partner checkpointing or encoded checkpoint files are

not available. On the other hand, the most important multilevel libraries such as FTI, SCR and VeloC do

not provide access to their checkpoint files, as they typically use an opaque file format and do not offer

interfaces to extract the data from the files.

For the other aspect of our proposal, elastic recovery, several ways to continue the execution without the

missing processes have been proposed. Redundancy schemes [108], context migration from checkpointed

migratable objects [109] or process migration using failure prediction [110] are some of the examples.

However, these techniques often impose additional requirements, as for instance, the allocation of shadow

nodes for proactive process migration and redundancy (or performance degradation when using over-

subscription). Migratable objects, such as used in Charm++ [111], need to be considered at program

creation as it requires the application to use a specific programming language and code layout. Certainly,

there are other ways to allow for an elastic restart and resilient scientific IO inside an application using an

application-specific solution. However, the proposed interface and the methods presented in this chapter

can be applied to a wide range of applications, with reasonably low effort from the developer.

6.7 Conclusion

In this chapter we proposed novel API extensions and a runtime for multilevel checkpoint libraries, that

allow the elastic recovery to an arbitrary number of processes, and the creation of global self-descriptive

checkpoint files. We implemented the runtime and API into FTI, a state-of-the-art multilevel CR library.

We demonstrated that the checkpoint overhead of our implementation is comparable to other multilevel

checkpoint techniques. We have shown that we can further reduce the overhead with an asynchronous

implementation of the global checkpoint creation, showing a negligible overhead of only 0.6% (at scale).

We compared our asynchronous mechanism to a similar feature of the state-of-the-art IO library ADIOS,

and demonstrated that our method is five times faster. We accomplished online recovery using ULFM

together with elastic recovery and showed that it reduces significantly the total recovery time compared to

57

traditional offline recovery. Our analysis of the performance degradation after an elastic recovery, due to

the higher workload per processor, shows that for the loss of 1% of the nodes, we can expect an additional

overhead of about 1%, and that it represents a viable solution compared to rescheduling the application.

We further analyzed the challenges raised by irregular applications and their trade-offs regarding the

performance for checkpointing and recovery, and we have proposed methods to solve those challenges.

58

Part III

Contributions to Resiliency in Large
Ensemble

59

Chapter 7

Background Checkpointing in Operational Ensemble Data Assimilation

Publications

• International Conference on High Performance Computing, Data, and Analytics (HiPC) 2021

– Keller, K., Kestelman, A. C., Bautista-Gomez, L. (2021, December). Towards Zero-Waste Re-
covery and Zero-Overhead Checkpointing in Ensemble Data Assimilation. In 2021 IEEE 28th
International Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 131-140).
IEEE.

Main Contributions

• We introduced checkpoint and recovery to the server of the online Data Assimilation (DA) framework
MelissaDA. We use the contribution presented in chapter 6 to store the checkpoint data into shared HDF5
files, and allow the elastic recovery.

• We move the checkpoint creation entirely in the background leveraging threads and exploiting idle times.

• Our checkpoint implementation allows checkpointing at a high frequency (every cycle), and partial check-
pointing during the propagation step to minimize recomputation.

In High Performance Computing (HPC), numerical weather and climate simulations belong to the

applications with the highest demand for computing resources. Those applications run at full scale on the

world’s largest supercomputers. Yet, the degree of resolution is nowhere near saturation. Terasaki, Miyoshi

et al. have performed studies in 2015, using about 5,700 nodes of the K-Computer at RIKEN reaching

720 TFloating Point Operations Per Second (FLOPS) [56], and in 2020 on the Fugaki supercomputer on

more than 130,000 nodes reaching 79 PFLOPS [57]. The amount of memory needed for such simulations

already is in the Petabyte regime. High resolution weather and climate prediction towards less than 10km

is expected to run at full scale on exascale systems [58].

An important part of Numerical Weather Prediction (NWP) is DA [52]. Some popular mod-

els using ensemble based DA are Transient One Dimensional Pipe Flow Analyzer (TOPAZ) [112],

Nonhydrostatic ICosahedral Atmospheric Model (NICAM)-Local Ensemble Transform Kalman Filter

(LETKF) [52], Community Earth System Model (CESM) [47], European Community Earth-System

Model (EC-EARTH) [113] and Integrated Forcasting System (IFS) [49]. DA combines numerical models

and real world observations to achieve the most accurate description of the current system state. One

cycle in ensemble data assimilation involves two steps: (1) the propagation and (2) the analysis. During

the propagation, the current estimate of the state and the flow-dependent error covariance is propagated

from ti to ti`1. The resulting state is called the background state (a.k.a. model or forecast state). The

propagation is performed with the numerical climate model. During the analysis, the background state

is improved by assimilating real world observations. The resulting state is called analysis state and

represents the current best estimate of the true state. The two steps are repeated until either the desired

accuracy is reached or all the available observations are consumed.

The majority of research in DA is applied to numerical weather or climate forecasting models.

61

However, it finds application in other fields too. For instance, in robot localization [114], and digital

twins [115]. A field where DA is a crucial ingredient is operational NWP, a continuous operated prediction

systems (e.g., short-term weather forecasting or the prediction of extreme weather events). A key aspect

of operational forecasting frameworks is the timely availability of the results, which becomes ever more

challenging due to the increased resolution and grid size.

MelissaDA [116] is a recent general-purpose online ensemble DA framework, with a simple interface

to attach numerical climate models. Traditionally, online ensemble DA implements the state circulation

with MPI. In MelissaDA, the states are circulated via Transmission Control Protocol (TCP) leveraging the

Zero Message Queue (ZeroMQ) [117] library. The framework is based on a server-runner architecture.

Several runners and the server are each executed on different resources (i.e., separate cluster jobs or MPI

domains). The server distributes the analysis states to the runners; the runners propagate the states until

the next timestep and return the background states to the server. The server then performs the analysis

and redistributes the analysis states for the next cycle. The ZeroMQ layer introduces elasticity into the

framework: Runners can be dynamically added and removed, and each component of the framework can

fail without affecting the others.

In this chapter, we present the effortless framework protection leveraging Checkpoint-Restart (CR).

The checkpoints fulfill the purpose of resiliency and scientific Input and Output (IO), providing the climate

data in the checkpoint files via Hierarchical Data Format (HDF5). The checkpoints contain the ensembles

of both the background and analysis states. We use dedicated threads and MPI processes to overlap

the checkpoint creation with the framework execution. We demonstrate that the overhead is effectively

hidden behind the framework’s normal operation (zero-overhead). Our implementation manages further

to recover from failures with none or few recomputations (zero-waste). In addition, we derive a model

that predicts the average cost of failures during continuous operation.

In the following sections, we provide a short introduction to the most important concepts necessary to

understand this chapter in section 7.1, present our implementation in section 7.2, acknowledge related work

to better understand the topic and introduce different concepts in section 7.3, present our experimental

methods and goals in section 7.4, the results of our experiments in section 7.5, discuss the results

in section 7.6, and eventually conclude the chapter in section 7.7.

7.1 Background

7.1.1 Data Assimilation and the Ensemble Kalman Filter

An essential part of climate research is making predictions and reanalysis of environmental systems

using numerical models. The governing equations of the systems are typically nonlinear and behave

chaotically (i.e., are very sensitive to initial conditions). Therefore, to make accurate predictions, initial

states near to the true state are necessary. The observational data, however, is sparse and afflicted with

uncertainties. Consequently, observational data alone is insufficient for reliable predictions. A means to

reduce uncertainty is data assimilation. DA combines the error probability distributions for observation

and model states to decrease the uncertainty. Kalman Filter (KF) is among the most common techniques

62

for DA. The foundation of the formalism is represented by the state space equations:

xt “Mxt´1 ` qt, qt „ N p0, Qtq (7.1)

yt “ Hxt ` rt, rt „ N p0, Rtq (7.2)

Here, xt represents the true state, M the model operator, yt the observed state and H the observation

operator. qt and rt are the respective errors, which are assumed to be unbiased and Gaussian. Hence, they

follow a normal distribution with zero mean and covariance matrices Qt and Rt.

The Ensemble Kalman Filter (EnKF), approximates the covariance matrices with the statistical

moments of an ensemble of states, thus, the error covariance information is contained within the ensemble.

This reduces the effective dimension of the covariance matrix from N ˆN to N ˆM , with N being the

state dimension and M the number of ensemble members. The method has been established in climate

science over the past decades and has shown good results, despite the Gaussian assumption. Besides

the EnKF, there are various other techniques for DA. For instance, 4D-Var, particle filters or hybrids of

EnKF and 4D-Var. A brief introduction of these and other techniques is provided in section 2.2. Detailed

introductions to the individual methods can be found in many textbooks and articles [12, 118–120].

7.1.2 MelissaDA

MelissaDA is a spin-off from Melissa [121], an online framework for large-scale Sensitivity Analysis

(SA). SA and ensemble based DA share some similarities. Both are based on sampling outcomes from

model simulations and extract information about the system by statistical means; however, the goals and

the underlying formalisms are very different. In both cases though, the law of large numbers dictates a

sufficient ensemble size to achieve accurate results. For DA, a 1K member ensemble, operating on a state

with 10 billion (109) variables, comprises at least 7.5 TB of memory, just for representing the ensemble

states (in double precision). In fact, for the whole ensemble, represented by background and analysis

states, we need at least 15 TB. As mentioned earlier, the ensemble needs to be circulated between the

propagation and analysis steps. In most cases, this takes place through the storage layer (offline mode).

In that case, the propagation and analysis are performed on separate executables and the ensemble is

circulated through files. Another possibility is using one executable for both propagation and analysis

while circulating the states through MPI (online mode). Both methods have certain advantages and

drawbacks. The first method is intrinsically fault tolerant, since the state ensemble from the last completed

step (analysis or propagation) is available inside restart files on the file system. However, the storage layer

introduces a bottleneck. The second method provides better performance but misses the intrinsic fault

tolerance. On the other hand, introducing resiliency for online models at large scale is costly, diminishing

the advantage towards offline models.

MelissaDA takes an intermediate approach. As in the first method, the components performing

the propagation and analysis run on separate executables, however, running concurrently instead of

sequentially. The ensemble of states is circulated through the network using ZeroMQ instead of MPI.

Hence, we have separate executables as in an offline approach, but, circulate the states through the network

as in an online approach. MelissaDA is based on a server-client architecture. The clients (runners)

compute the background states and the server gathers the states and performs the analysis step. Leveraging

ZeroMQ mitigates the effort of protecting the framework since each module can fail without affecting the

others. Furthermore, it provides a high level of elasticity, as runners can be added and removed during

63

Runners

Analysis (i) Background (i+1)

Runners

Analysis (i+1) Background (i+1)

Server Server

Propagation Step Analysis Step

Figure 7.1: Server-runner concept of MelissaDA. Each iteration, the server distributes the analysis ensemble to the runners,
which in turn compute the background state as input for the next analysis step.

runtime. The state ensemble is exchanged between the server and runners directly, without intermediate

storage layer. The server acts as a task scheduler during the propagation step, distributing the analysis

state ensemble to the runners. The runners compute the background state and send it back to the server.

Once the background state ensemble is complete, the server performs the data assimilation and thereupon

distributes the analysis state ensemble back to the runners for the next iteration. The number of runners

is adjustable and is typically chosen to be smaller than the ensemble size, thus, each runner will receive

several states from the server during one epoch. Figure 7.1 visualizes the concept.

7.1.3 Asynchronous Checkpointing and Elastic Recovery

In modern multilevel checkpoint libraries, the various levels are typically performed in two steps. The

first step (pre-processing) is performed inline, that is, performed by the application processes while

halting the application flow. During this step, the checkpoint data is stored to the local storage layer

(Solid State Drive (SSD), Non Volatile Memory Express (NVMe), node memory, etc.). The second step

(post-processing), is performed asynchronously, that is, in the background of the application flow. During

this step, the remaining action for completing the checkpoint level is performed. For instance, a copy

is sent to the partner node for partner checkpointing. Fault Tolerance Interface (FTI) [14] provides the

asynchronous staging of globally shared HDF5 files. Furthermore, the FTI checkpoints leveraging this

feature, can recover with a different number of processes as the checkpoint has been created with (elastic
recovery). The second stage is performed with extra MPI processes on the nodes. Hence, we have to

dedicate one process per node to FTI if we want to use this feature (see chapter 6).

7.2 Implementation

Our implementation involves modifications in all modules of the Melissa framework (launcher, server

and several runner). In this chapter, we will gradually introduce the three modules along with our

modifications.

64

7.2.1 Launcher

Status

Launch server

Launch
runners

Server
 finalized?

Shut down
runners

Requested
runners
running?

Crashed

Initialize
MelissaDA

No

Yes

Yes

Server
Crashed?

No

Yes No

Yes

No

Runner
busy?

Init

Finalize
MelissaDA

Figure 7.2: Launcher workflow. Upon a runner failure, the launcher starts a new runner instance. Upon server failures, the
launcher waits until the runners completed their computations and checkpoints and restarts the framework.

The launcher is the monitoring unit of the MelissaDA framework. It starts the server and runner

instances and monitors their operation. The launcher takes an essential role in our protection mechanism.

The server and the runners are monitored using (1) the cluster scheduler (checking the job status) and

(2) through timeouts or heartbeats. When the launcher notices the failure of runners, it manages their

restart, and in case of a server failure, the restart of both the server and runner instances. Initially, upon

server failures, the runners were immediately terminated, independently of the point of their execution.

We intercepted this mechanism to allow a gradual shutting down of the runner instances. With our

additions, the runners can finish computing the current background state and are gracefully shut down

after storing the state to the PFS. With this, unless the server fails during the assimilation step or the

checkpoint creation, the framework can resume execution where it has been left off. This leads to a smooth

transition from failure to recovery with none or a minimum of recomputations (zero-waste recovery).

After initialization, the launcher starts the server. Afterwards, it launches all requested runner instances.

With this, the launcher has arrived to the main loop, where it monitors the runner and server instances. If

runners fail, the launcher simply launches new runner instances. If the server fails, the launcher waits for

the runners to complete the current state propagation and the associated checkpoint, before restarting the

workflow. Figure 7.2 shows the restart mechanism in detail.

7.2.2 Server

The server workflow is different during the propagation and the analysis step. During the propagation step,

the runners generate the background state ensemble, and the server maintains the bookkeeping of which

state has yet to be propagated. The server keeps copies of all states and serves propagations to the runners.

Each time a runner requests a new state, the server transfers a state to the runner for its propagation. After

all states have been propagated, the server performs the analysis on the background ensemble to generate

the analysis ensemble, and starts the next cycle. MelissaDA intrinsically provides basic fault tolerance

to the framework, as the launcher detects and restarts failed runners (Figure 7.2, and Figure 7.3). The

server, however, is not protected by default. As the server has to be of sufficient scale for holding twice

65

Yes

No
New

runners

Register new
runners

Yes

NoTasks due?

 Reschedule
tasks

Yes

No
Un-

scheduled
tasks?

Schedule tasks Yes

No

Propagation
step

finished?

Analysis step

Yes

No
Last

timestep?

Finalize

Trigger
checkpoint

Figure 7.3: Server mainloop showing the mechanism to register new runners, the scheduling and checkpointing.

the ensemble states (background and analysis ensemble), it is operated at a large scale for large ensemble

sizes. Hence, fault protection is necessary. To provide Fault Tolerance (FT) for the server, we create

checkpoints containing the analysis state ensemble, leveraging the asynchronous global HDF5 feature

presented in subsection 7.1.3. FTI provides only one process per node for the post-processing. However,

we exploited the local test setting of FTI to enable several dedicated processes per node. The test mode is

intended for running FTI on a desktop computer simulating an underlying cluster structure. Essentially, if

applied on a real cluster, FTI creates a virtual cluster distributed on the nodes, and we can decide how

many virtual nodes (i.e. dedicated processes) we want to deploy on each physical node. Exploiting this

mode on a cluster works only if (1) the Message Passing Interface (MPI) processes are mapped equally

among all nodes, and (2) consecutive ranks are placed in increasing order filling up node by node. Now,

by setting the number of processes per node in the FTI configuration file, we can control the number of

virtual nodes per physical node. Figure 7.4 shows the distribution, if we have M processes per physical

node, and 4 processes per virtual node.

The server is typically memory bound; it has to provide enough node memory for the states of both

ensembles. The filter update during the analysis operates on a decomposition of the climate state. In

numerical weather prediction, the state size is typically in the order of 109 (less than 10 GB), and the

servers’ MPI decomposition is limited by this value. Hence, for very large ensembles, the server allocation

is large due to the memory requirement, but typically not all processors of the allocated nodes will be

used. Thus, exploiting the test mode in FTI, lets us utilize the idle processors, speeding up the completion

of the checkpoint in the background. Furthermore, we are able to move the pre-processing stage in

the background, by deploying the checkpoint pre-processing on threads. As the server is not changing

the analysis states during the propagation step, we can safely copy the states directly from the servers’

memory to the local file system, while the server is carrying out the scheduling for the propagation step.

66

1

2

3

5

6

7

0

1

2

3

4

5

6

7

M-3

M-2

M-1

M

0 4 N-3

N-2

N-1

N

1

2

3

5

6

7

0

1

2

3

4

5

6

7

M-3

M-2

M-1

M

Application process

Virtual node

Server node

FTI process

Figure 7.4: Virtual cluster, generated by FTI if deployed in local test mode. The number of processes per virtual node is set to 4
and we have M processes per physical node. This leads to M/4 dedicated FTI processes per node.

7.2.3 Runner

The runners apply the numerical climate model to propagate the analysis states to the next observation

timestep. Each runner may need very large allocations comprising several nodes, depending on the

complexity of the model (for instance 512 nodes for the NICAM atmospheric model [57]). In order

to interface with the MelissaDA framework, the simulation model needs to implement merely the two

API functions: (1) melissa_init and (2) melissa_expose. The state exchange between runner

and server takes place during melissa_expose. The function essentially involves a send and receive

operation. Runners receive analysis states from the server and return background states. In subsection 7.2.2,

we described how the server creates the checkpoint of the analysis ensemble. In the following, we will

describe how the runners create the checkpoints for the background ensemble.

Receive state

Trigger
checkpoint

Last
Timestep?

Try {

 } Catch {

 }

Busy

Send state

Try {

} Catch {

}

Compute
ForecastInitialize

Finalize

Not busy

Trigger
Checkpoint

Finalize
Checkpoint

Finalize
Checkpoint

No

Figure 7.5: Flowchart of the MelissaDA runner workflow.

Each runner propagates only one state at a time, and only keeps the data of that state in memory.

Furthermore, each runner is executed separately. On the one hand, we can not create one shared file

containing the whole background ensemble, on the other hand, creating the checkpoint of the background

67

states on the runners at the end of its propagation, integrates smoothly into the load balancing of the state

propagations. To maximize the checkpoint performance on the runners, the exact timing of the checkpoint

is essential. The runners are idle between the send and the receive operation for some time, because

they are waiting for the next analysis state to arrive. This is where we place the checkpoint creation. We

will see in the evaluation section that we can hide the checkpoint overhead entirely in that way, even

without staging through the local storage layer. However, for scalability (global storage congestion or

limited throughput), it is good practice applying asynchronous checkpointing for the runners as well.

We observe in our experiments that there is no need to move the pre-processing in the background with

threads. The implementation effort for this is not justified (allocate extra buffers to copy the background

state, implement multi-threading). Nevertheless, we performed experiments leveraging threads on the

runners, demonstrating that we indeed observe no speedup in that case.

Checkpointing the analysis ensemble is enough to ensure FT for the framework. However, if we

additionally checkpoint the background ensemble, we can minimize the necessary recomputation when

recovering. Since we create one checkpoint file for each background state, we can ensure the consistent

recovery to the point of failure, as long as the analysis ensemble has been successfully checkpointed on the

server side. In case of a server failure, the runners are guaranteed to complete the current propagation and

checkpoint of the associated background state. Figure 7.5 shows a diagram of the runner workflow. As we

can see there, the runner-server interaction is performed within try blocks. If the runners detect server

failures (ZeroMQ error or timeout), the runners shut down gracefully after completing the propagation

and the subsequent checkpoint.

7.2.4 Recovery

With the presented checkpointing scheme on runners and server, we entirely hide the checkpoint overhead

behind the framework’s execution, and we recover, if the checkpoint creation on the server side was

successful, back to the point where the failure has occurred. Both server and runners, checkpoint into

globally shared files, using the FTI API. The API enable the elastic recovery from the checkpoint files.

This has several benefits. First, the server typically uses a different domain decomposition than the runners.

Since the recovery of both the analysis and the background state ensemble takes place on the server, we

need to recover from the background states elastically. Second, the server can be restarted elastically. For

instance, when running on heterogeneous hardware.

Takeaway section 7.2

• The server creates checkpoints of the analysis state ensemble. The entire ensemble is stored into a single
HDF5 file on global storage. The checkpoint is moved entirely to the background. The pre-processing is
performed by threads, and the post-processing by dedicated MPI processes.

• The runners checkpoint the background state ensemble. each background state is stored into one shared
HDF5 file on global storage. The pre-processing is perfomed inline (no threads), and the post-processing by
dedicated MPI processes. The checkpoint cost on the runners is effectively hidden behind the runner/server
communication.

• Both the background and analysis ensemble can be recovered elastically.

68

7.3 Related Work

In this section, we present research connected to our work. We focus on works in numerical climate

modelling, selecting works that are similar to ours, or involve ideas that could be used for improvements.

The first research we present is a fault-tolerant scheduler for the MITgcm-DART ensemble system [122].

The second work comprises a comprehensive overview of available FT mechanisms to protect numerical

climate models [123].

7.3.1 Fault Tolerance for DART-MITgcm with Decimate

Decimate [124] is a Slurm extension aiming to facilitate the handling of HPC applications that include

submission of multiple jobs. It provides mechanisms to include prolog and epilog to groups of jobs and

allows inspecting the output by so-called checker functions at the end of the job execution. Toye et al.

used Decimate to implement a scheduler providing automatic recovery and rescheduling of failed jobs

for DART/MITgcm [125], the Massachusetts Institute of Technology Ocean General Circulation Model

(MITgcm) [126] on the Data Assimilation Research Testbed (DART) [127]. Besides failures that occur

either upon random soft errors or hardware failures, Toye et al. also include the handling of failures due to

filter errors (e.g., collapsed ensemble states). According to Toye et al. about 3% of failures can be related

to filter or other numerical errors. The failure detection in the presented scheduler extension is based

on two scenarios. The first scenario includes hard failures. The second scenario includes filter errors,

unphysical outcomes, and numerical errors. The checker function takes the decision on which scenario

has occurred based on the model-simulation output. If no output is found or incomplete, the framework

decides for the first scenario. If an output was generated and contains unexpected or unphysical results,

the framework chooses the second scenario. Depending on the scenario, the framework triggers the user

defined failure handling.

7.3.2 Fault Tolerance Methods for Numerical Climate Models

Benacchio et al. [123] published a comprehensive collection of FT methods in NWP on software and

hardware level. We are more interested in the software level here, as it has a connection to our work. An

engaging method presented is interpolation-restart. It describes the restart on a subset of the simulation

data by interpolating the missing data from the available. This can be applied to models with data

dependencies to reduce the amount of data in the checkpoint files. Three approximate data recovery

methods are discussed in some detail zero backup, lost data is initialized with zeros, multigrid backup,

where essentially only grid-points are stored that can be used to interpolate the missing points upon

recovery, and SZ [20] compression. Other methods discussed in the article (referred to as system

resiliency) rely on fault-tolerant MPI implementations such as ULFM [91] and Fenix [128]. Again other

rely on replication or message logging.

7.4 Methodology

In this section, we will introduce the experiments that we have performed to evaluate our implementation.

In addition, we will discuss the different cases of failures that can occur. Further, we will develop the

69

foundation for the model allowing us to estimate the time for checkpoint and recovery in continuous

operation.

7.4.1 Experiments

We designed our experiments to reveal the benefits of the asynchronous checkpoint creation. For this

we want to compare server executions that leverage threads for the local staging (pre-processing) of the

checkpoint files to executions that perform the staging inline (no threads). In all experiments, the server

uses dedicated FTI processes for the checkpoint post-processing. Furthermore, we want to compare the

checkpoint creation inline (no threads, not dedicated FTI processes), to executions leveraging dedicated

processes for the post-processes, on the runners. To reveal possible correlations between the different

settings, we perform experiments, combining the different server and runner checkpoint modes. The

experiments are labelled as:

T0 pre-processing inline (server)

T1 pre-processing leveraging threads (server)

H0 post-processing inline (runner)

H1 post-processing leveraging dedicated FTI processes (runner)

We use the FTI terminology to label the experiments, where the dedicated processes are called heads

(headsÑH). To provide a baseline, we also performed experiments without FTI (NOFTI). To identify the

experiments that we refer to, we simply concatenate the labels. For instance, experiments with checkpoint

threads on the server and head processes on the runners are labelled H1T1. We scaled the framework to

ensembles with 64, 128, 256, and 512 members. The most relevant parameters of the experiments are

listed in Table 7.1, and the labels are listed in Table 7.2.

Parameter Value Members /
Runners

CP
(For+Ana)

Server (FTI)
Proc.

Runner (FTI)
Proc.

Total (FTI)
Proc.

dim. state O(109) 64 / 16 1 TB 256 (128) 752 (16) 1008 (144)
dim. obs. O(104) 128 / 32 2 TB 512 (256) 1504 (32) 2016 (288)
size state 8 GB 256 / 64 4 TB 1024 (512) 3008 (64) 4032 (576)
size obs. 168 Kb 512 / 128 8 TB 2048 (1024) 6016 (128) 8064 (1152)

Table 7.1: Parameters for the experiments (left) and scale of the experiments (right). The number of processes dedicated to FTI,
in parenthesis, are a subset of the processes preceding the parenthesis.

Ó Checkpoint Setting / LabelÑ H0T0 H1T0 H0T1 H1T1
server runner server runner server runner server runner

pre-processing sync. (no threads) 7 7 7 7

pre-processing async. (threads) 7 7

post-processing async. (MPI) 7 7 7 7 7 7

entire checkpoint inline 7 7

Table 7.2: Experiments that we have performed with the respective labels.

70

7.4.2 Data Collection

We instrumented the code with timing events marking the beginning and the end of regions that we

want to trace. Leveraging the UNIX system clock allows comparing events from different runners and

the server. For the server side we instrumented: initialization, propagation step, analysis step, check-
point pre-processing, checkpoint post-processing, total execution time, recovery analysis, recovery
background and total recovery time. For the runners: send state, receive state, model propagation,

effective checkpoint time and idle time (complement to model propagation). The effective checkpoint

time comprises checkpoint pre and post-processing for H0 (synchronous) and only the pre-processing for

H1 (asynchronous).

7.4.3 Failure Regions

The performance of a checkpoint/restart based protection is characterized by (a) the time for the checkpoint

creation, Tcp, and (b) the revival time, Trev. Here, Trev comprises the time to recover, Trec, and the time

for recomputations, Trep. The total cost for a failure additionally includes the downtime and initialization.

However, since those are subject to cluster and application type and independent of the type of recovery

method, we do not consider them in our model. The revival time varies during failures in the following

regions:

(A) before completion of the checkpoint for the analysis ensemble

(B) after completion of the checkpoint for the analysis ensemble

The zero-waste scenario is (B). In this case, we restart where we have left off, recovering the entire

analysis ensemble and the background ensemble states that have been completed before the failure. The

worst case scenario is (A), where we need to repeat the analysis step and part of the propagation (until the

point of failure). Figure 7.6 summarizes the scenarios graphically. The figure also compares to the case if

checkpointing only the analysis ensemble. We can see that for both regions, the recomputations are much

less. The revival times for the two regions can be expressed by:

Trev,A “ Trec,ana ` Trec,for ` Trep,A

“ Trec,ana ` Trec,for ` αA pTana ` Tcpq (7.3)

Trev,B “ Trec,ana ` αR Trec,for ` Trep,B
loomoon

“0

“ Trec,ana ` αR Trec,for (7.4)

αA, αB , and αR have values between 0 and 1, indicating that for region A the failure can happen at any

point during the analysis or checkpoint creation and that for region B, we only need to recover those

states that have been successfully propagated and checkpointed before the server failure. The recovery

of both the analysis and background states (a.k.a., forecast states) in Equation 7.3 enters due to our

implementation. Upon the server restart, we first recover the latest analysis ensemble and then check for

available background states. In a future implementation this can be improved, avoiding the recovery of

the previous analysis ensemble, since for case A, we do not need to recover the analysis ensemble from

71

the iteration before. The probability of failures inside the three regions is given by:

pA “ pTana ` Tcpq ˆ T
´1
iter (7.5)

pB “ pTfor ´ Tcpq ˆ T
´1
iter (7.6)

Where Titer “ Tfor ` Tana. Note that we perform the checkpoint completely in the background using

threads and dedicated MPI processes. That is why the iteration time only consists of the time for

propagation and analysis steps. We can further compute the average revival time by:

xTrevy “ pA xTrev,Ay ` pB xTrev,By (7.7)

Where x¨y indicates the average value. We also average over the revival times in the individual regions,

since their value depends on the time when the failure occurs:

xTrev,Ay “

ż 1

0
Trec,ana ` Trec,for ` α pTana ` Tcpq dα

“ Trec,ana ` Trec,for `
1

2
pTana ` Tcpq (7.8)

xTrev,By “

ż 1

0
Trec,ana `

Tcp ` α pTfor ´ Tcpq

Tfor
Trec,for dα

“ Trec,ana `
1

2

ˆ

Tcp
Tfor

` 1

˙

Trec,for (7.9)

Where we used: αR fl pTcp`αB pTfor´Tcpqq{Tfor. Now we can write the explicit form of Equation 7.7:

xTrevy “

"

pTana ` Tcpq

ˆ

Trec,ana ` Trec,for `
1

2
pTana ` Tcpq

˙

`pTfor ´ Tcpq

ˆ

Trec,ana `
1

2

ˆ

Tcp
Tfor

` 1

˙

Trec,for

˙*N

pTana ` Tforq (7.10)

After measuring the respective times for the recovery, checkpointing, propagation and analysis, we can

estimate the average revival times if the framework runs in operational mode.

 Propagation (i-1) Analysis (i-1)

(A') (B')

Analysis (i)Propagation (i)

CPCP

Recovery (A') Recovery (B')

 Propagation (i-1) Analysis (i-1)

(A) (B)

Analysis (i)Propagation (i)

CPCP
Recovery (A) Recovery (B)

(ii) Checkpointing both Analysis and Background

(i) Checkpointing only Analysis

Figure 7.6: On the top, we see the characteristic failure regimes if checkpointing only the analysis ensemble. Below, the regimes
if checkpointing both the background and analysis ensemble. (i) Failures in region A lead to a roll back to the beginning of
the propagation step from the previous iteration, failures in B to a rollback to the beginning of the propagation of the current
iteration. (ii) Failures in region A result in a rollback to the end of the previous propagation. For failures in B we recover to the
point where the failure occurred (zero-waste recovery).

72

7.4.4 Failure Injection

To measure the recovery cost for regions A and B, we injected failures at the corresponding locations in

the server execution. To resemble a realistic situation, we injected the failures from the launcher using

signals (external failure injection). In addition to the launchers’ knowledge of the frameworks’ status, we

added a mechanism into FTI that exposes the current checkpoint stage (idle, pre, or post-processing) to the

launcher. The launcher can then inject failures into the server while checkpointing the analysis ensemble.

7.5 Evaluation

In this section we first present the evaluation of the checkpoint and recovery performance of our imple-

mentation. Afterward, we discuss the benefits of checkpointing both ensembles towards checkpointing

only the analysis ensemble.

7.5.1 Climate Model

We adapted a parallel version of the Lorenz-96 model [129] for our experiments. The Lorenz models

represent toy models to test the efficiency of data assimilation techniques. We use a 4-th order Runge-Kutta

numerical solver for the systems evolution. The model differential equation reads:

dxi
dt
“ pxi`1 ´ xi´2qxi´1 ´ xi ` F (7.11)

The linear term describes internal dissipation, the quadratic terms advection and the constant term an

external forcing as parts of an atmospheric model.

7.5.2 Experimental Setup

All experiments are performed on Marenostrum4 [130], the supercomputer at the Barcelona Supercomput-

ing Center (BSC). The compute nodes are equipped with 48 cores/node (2 ˆ Intel Xeon Platinum 8160),

96 GB of main memory and a 200 GB SSD. In all experiments, the server uses 8 MPI processes per node,

while 4 from those are dedicated to FTI for the checkpoint post-processing. Each MPI process is mapped

on 2 cores. In that way, the checkpoint thread can execute on a separate core, and does not compete

with the server execution. The pre-processing on the server side leverages the local SSDs for staging the

checkpoint data. The runners execute on 47 MPI processes per node, if the post-processing is performed

on dedicated FTI processes (1 FTI process per node), and on 46 MPI processes, if it is performed inline.

The checkpoints on the runner side never use checkpoint threads, consequently we map the MPI processes

each to 1 core. The pre-processing on the runner side leverages the node memory (RAM disk) for staging

the checkpoint data.

7.5.3 Performance Evaluation during Runtime

Figure 7.7 shows the duration of completing 5 assimilation cycles (cycles 4 to 9) for each of the ex-

periments. The green bars show the results for experiments with checkpoint threads on the server side,

and the blue bars the experiments without threads. Light blue and light green show the experiments

leveraging dedicated FTI processes on the runners, and dark blue and dark green the experiments for the

checkpoint creation inline. Finally, the gray bars show the duration for the execution without protection

73

64 / 1 TB 128 / 2 TB 256 / 4 TB 512 / 8 TB
Number of Members / Checkpoint Size

2000

2200

2400

2600

2800

3000

3200

Du
ra

tio
n

[s
ec

.]

-0
.2

9
% 1.
53

 % 1.
1

%

0.
86

 %

0.
85

 %

0.
56

 % 0.
36

 %

0.
75

 %

8.
5

%

8.
4

%

12
.2

7
% 9.

36
 %

8.
93

 % 10
.8

6
% 12

.6
1

%

12
.1

9
%

Time for 5 epochs (from epoch 4 until epoch 9)
NOFTI
H0T1
H1T1
H0T0
H1T0

Figure 7.7: Time for 5 epochs (from epoch 4 to 9). Bars in green show the runtime for experiments with, and bars in blue
without dedicated checkpoint threads on the server. Bars in gray show runtimes for the experiments without protection (baseline).
The percentages above the bars indicate the overhead compared to the baseline.

Synchronous
(without heads)

Asynchronous
(with heads)

Receive State
Checkpoint
Server execution
Runner execution

Time

Figure 7.8: Communication graph for state circulation between runner and server. The right showing the case with dedicated
FTI processes (i.e., asynchronous checkpointing) and the left, without (i.e., synchronous checkpointing).

(FTI disabled). We observe that the execution times for the gray and green bars are almost identical at all

scales. Averaging over differences between the green and the blue bars (threads/no threads) and dividing

by 5 (5 cycles) gives 50 seconds per cycle. Which is precisely the average of the time for the checkpoint

pre-processing (Figure 7.9). Hence, we successfully hide the pre-processing, leveraging threads on the

server side. We further see, that whether we use heads or not on runner side, the execution time does not

significantly change.

The checkpoint of the background states on the runner, is performed after the background state has

been sent, and before the analysis state has been received. This allows overlapping the checkpoint creation

with the runners’ idle period. Because, at the time the runner sends the background state, the server

might be busy with other runner requests. Even if the server is free, the state takes a certain amount of

74

64 Mem./0.5 TB 128 Mem./1 TB 256 Mem./2 TB 512 Mem./4 TB

H0
T0

H1
T0

H0
T1

H1
T1

H0
T0

H1
T0

H0
T1

H1
T1

H0
T0

H1
T0

H0
T1

H1
T1

H0
T0

H1
T0

H0
T1

H1
T1

0

50

100

150

200

250

300

Du
ra

tio
n

[s
ec

.]

Checkpoint Time (Server)
pre processing
 post processing

Figure 7.9: Time for the pre (i.e., node SSD) and post-processing (i.e., asynchronous shared HDF5 file creation) for checkpoints
on the server.

time to arrive at the server node. Furthermore, the the analysis state need to arrive on the runner node

after it has been sent by the server, which also takes a certain amount of time. Figure 7.8 visualizes

this concept. Hence, in our experiments, the idle time is enough to hide the checkpoint cost in either

case if we checkpoint inline or asynchronous. However, we expect that at a larger scale, checkpointing

asynchronously will be beneficial. This is supported by the histograms in Figure 7.10. The histograms

compare the effective checkpoint time towards the runners’ idle time. The upper plots show experiments

with asynchronous checkpointing (H1) and the lower plots with checkpointing inline (H0). The lower

plots show that occasionally longer checkpoint times widen the runners idle period. We expect that for

executions at very large scale this leads to a significant overhead. On the other hand, the asynchronous

pre-processing does not affect the runners’ idle period, as we can see in the histograms, and further it is

expected to be independent of the scale, since in asynchronous mode local devices are used (not shared

with other users), and with this we do not see congestion or saturation effects as on the global storage.

7.5.4 Performance Evaluation Recovery

The results of our experiments show that we successfully overlap checkpointing with the propagation

(server) and the state exchange (runner). Hence, the framework is protected without a palpable penalty on

execution time. However, the checkpoint duration affects the average cost for failures. In subsection 7.4.3

we derived revival times for failures, depending on the region they take place in. Equation 7.5 and Equa-

tion 7.6 give the associated probabilities. Failures in region A are the most costly ones, followed by B

(zero-waste region). pA and pB both depend on the checkpoint duration (i.e., the full checkpoint duration,

including pre and post-processing). Our implementation does not influence the times for the analysis or the

propagation. These are defined by the climate model and the filter that is deployed. Our implementation

can only be improved by decreasing the times for checkpoint and recovery. From Equation 7.5 and Equa-

tion 7.6, we can infer that by minimizing the checkpoint time, we minimize pA and maximize pB , and

75

Figure 7.10: Histograms of the runner idle and checkpoint times. The runner idle period is the time between two model
propagations. The checkpoint time is part of the idle time. The upper plots show executions with FTI heads and the lower,
without. We observe that synchronous checkpointing broadens the runners idle time.

therefore minimizing the probability for failures in the most costly region and maximizing the probability

for failures within the zero-waste region. Furthermore, the revival times (Equation 7.3 and Equation 7.4)

depend on the times for the recoveries of analysis and background ensembles. Hence, to provide minimal

revival times, it is important to ensure both good checkpoint and recovery performance.

Figure 7.11 shows traces of executions which have been interrupted by a failure. The upper plots

show executions where we protect both ensembles, and the plots below show executions where we only

protect the analysis ensemble. In both cases we interrupt the execution once in region A, and once in

region B. The traces show the server execution, and additionally the execution of one runner instance.

The server and runner traces are separated by a dotted blue line. The vertical dotted lines indicate the

failure and revival points. We also marked the passive recovery time (i.e., the time from the crash until the

restart of the framework) and the active recovery time (i.e., the time from server initialization until the

revival point). The passive recovery time consists mostly of the time the runners wait for the server reply,

i.e., the time until the runners notice the server crash. Note that this time can be reduced by adjusting the

timeout. With a little more effort the waiting time can be eliminated entirely by implementing a server

polling and by relying on the launcher to notify the runners of the server crash. Consequently, to make a

fair comparison, we should only compare the active recovery time. We can see that indeed the revival

times are faster when checkpointing both ensembles. The trace of executions with the failure in region B

(top row, second trace) demonstrates that we indeed resume from the point of failure. We can see that the

revival times without protecting the background are significantly longer, especially for failures in region

A, as these include the repetition of the entire or most of the propagation step.

76

Runner
Timeout

Fr
am

ew
or

k
In

it

Revival PointCrash

Server

Runner

Figure 7.11: Gantt charts showing the server and runner execution (i.e., one runner instance). The charts show execution,
failures in region A and B, and the recovery. The upper plots showing the cases when protecting both background and analysis
ensembles and the lower, only protecting the analysis ensemble.

32 (H1T1) 64 (H1T1) 128 (H1T1) 256 (H1T1) 512 (H1T1)

PA [%] 31.7 32.6 38.1 48.9 64.1
PB [%] 68.3 67.4 61.9 51.1 36.9
xTrevy [sec] 82 191 293 752 1574
xT 1revy [sec] 371 418 492 637 929
speedup [%] 353 119 68 -15 -41

Table 7.3: Probabilities (Equation 7.5 and Equation 7.6), average revival times (Equation 7.10), and speedup
(xT 1

revy´xTrevy{xTrevy). The numbers in green indicate that protecting both ensembles is beneficial, and the red numbers
indicate that it is not.

We can determine the probabilities for failures in the two regions (Figure 7.6) using Equation 7.5

and Equation 7.6. Using Equation 7.10, we can further compute the average revival time for checkpointing

both ensembles. A formula for the revival time if checkpointing only the analysis ensemble, can be derived

in the same way. We have computed the values for the probabilities and revival times. The values are listed

in Table 7.3. The table shows the results for 32, 64, 128, 256 and 512 members. The speedup is negative

for executions with more than 128 members. This means that it is more beneficial to checkpoint only the

analysis ensemble. However, we observed that the recovery times for the background states and analysis

states differ considerably. For executions with 256 members, the recovery of the forecast ensemble takes

more than twice as long as the recovery of the analysis ensemble (analysis: 197 seconds, background: 581

seconds). For 512 members it takes even about three times as long (analysis: 381 seconds, background:

1168 seconds). Furthermore, the recovery is significantly longer than the checkpoint creation. Both can

likely be improved by tuning the file-creation parameters and block size for reading and writing. We will

discuss this issue further in section 7.6.

77

7.5.5 Checkpointing Background and Analysis Vs. Only Analysis

The aim of this section is to support the advantages of checkpointing background and analysis ensembles,

and to justify the additional implementation effort and storage utilization. For this, we will compare the

two methods analytically towards each other. We start applying the considerations from subsection 7.4.3

to the simpler case, protecting only the analysis ensemble. Note that we always need to roll back to the

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

αA [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionA (32Members)

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

αA [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionA (64Members)

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

αB [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionB (32Members)

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

αB [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionB (64Members)

Figure 7.12: Speedup of checkpointing both ensembles towards checkpointing only the analysis ensemble. The speedup is
plotted versus the location of the failure in the respective region. For failures in region A, αA represents the normalized distance
from the beginning of the region to the end. For failures in region B the respective normalized distance is given by αB .

last available analysis ensemble. The two regions with different revival costs are the same as before (see

also Figure 7.6):

(A1) before completion of the checkpoint for the analysis ensemble

(B1) after completion of the checkpoint for the analysis ensemble

However, the recovery takes place at different locations. The recovery for (A1) takes place at the end of

the analysis step from two iterations before, and for (B1) at the beginning of the current propagation step.

The respective revival times are:

Trev,A1 “ Trec,ana ` T
1
for ` αA pTana ` Tcpq (7.12)

Trev,B1 “ Trec,ana ` Tcp ` αB
`

T 1for ´ Tcp
˘

(7.13)

The meaning of the α coefficients is the same as before. Further, the times for the analysis step (Tana),

checkpoint (Tcp), and recovery (Trec) are identical to the other case1. However, the time for the propagation

1Note that we do not have terms for Trec,for , since we do not checkpoint the background ensemble.

78

step (T 1for) might be shorter as we do not checkpoint on the runner side. We account for this by:

T 1for
Tfor

“ δ , with 0 ď δ ď 1. (7.14)

For a more general form of Equation 7.3, Equation 7.4, Equation 7.12, and Equation 7.13, we divide by

Tfor. With this, we can estimate the speedup giving the relations between the various quantities rather

than their absolute value. This leads to:

τrev,A1 “ τrec,ana ` δ ` αA pτana ` τcpq (7.15)

τrev,A “ τrec,ana ` τrec,for ` αA pτana ` τcpq (7.16)

τrev,B1 “ τrec,ana ` τcp ` αB pδ ´ τcpq (7.17)

τrev,B “ τrec,ana ` αR τrec,for (7.18)

Where τ denotes the relative time T divided by Tfor. We can now determine the differences for the

respective regions by:

∆τA :“ τrev,A1 ´ τrev,A “ δ ´ τrec,for (7.19)

∆τB :“ τrev,B1 ´ τrev,B “ τcp ` αB pδ ´ τcpq ´ pτcp ` αB p1´ τcpqq τrec,for

“ p1´ αBq p1´ τrec,forq τcp ` αB pδ ´ τrec,forq (7.20)

Where we again used αR fl pTcp`αB pTfor´Tcpqq{Tfor “ τcp ` αB p1 ´ τcpq (subsection 7.4.3). We can

now compute the speedup using Equation 7.19 and Equation 7.19 by:

SpeedupA “ ∆τA{τrev,A (7.21)

SpeedupB “ ∆τB{τrev,B (7.22)

We plotted the speedup for both regions, using the results from our experiments. We observe, that for

large ensemble sizes (more than 256 members), it becomes more beneficial to omit the checkpoint for the

background state ensemble (Figure 7.13). However, for ensemble sizes between 32 and 128 members, we

achieve considerable speedups with checkpointing both ensembles (Figure 7.12).

7.6 Discussion

Our results show that we protect the MelissaDA framework from failures with a minimum in recomputa-

tions at large scale. Moreover, our protections do not affect the runtime, as they are performed completely

hidden behind the framework’s normal execution. As we stated in the introduction, MelissaDA takes

an intermediate approach between an online and offline setup. The offline setup uses different binaries

for propagation and analysis and circulates the states through the PFS using restart files. In a traditional

online setup, propagation and analysis run inside the same executable and circulate the states through MPI.

MelissaDA performs propagation and analysis on different executables, however, circulates the states

between propagation and analysis through the network, avoiding the staging through the file system. We

added fault tolerance to the framework in form of global checkpoint files using HDF5. This makes the

data available for reanalyses and data-processing. With our additions, MelissaDA incorporates the best

from both setups. Fast state circulation as in the online setup and global checkpoint files as in the offline

setup, without additional overhead.

79

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0
-50

0

50

100

150

200

250

αA [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionA (128Members)

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0

-50

0

50

αA [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionA (256Members)

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0
-50

0

50

100

150

200

250

αB [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionB (128Members)

δ=0.2

δ=0.4

δ=0.6

δ=0.8

δ=1.0

0.0 0.2 0.4 0.6 0.8 1.0
-80

-60

-40

-20

0

20

40

αB [-]

S
p
e
e
d
u
p

[%
]

SpeedupRegionB (256Members)

Figure 7.13: Speedup of checkpointing both ensembles towards checkpointing only the analysis ensemble. The speedup is
plotted versus the location of the failure in the respective region. For failures in region A, αA represents the normalized distance
from the beginning of the region to the end. For failures in region B the respective normalized distance is given by αB .

We also identified starting points for improvements. For instance, the ensemble states are decomposed

among all server ranks. Consequently, the parts of the states that reside on the ranks become smaller with

increasing server size. This increases the data fragmentation inside the global checkpoint files, which

can lead to a poor scaling performance of checkpoint post-processing and recovery. From Figure 7.6,

Equation 7.5, and Equation 7.6, we can see that by minimizing the total checkpoint cost, we maximize

the zero-waste region and minimize the worst-case region. Thus, changing the decomposition into a

decomposition by state, likely improves the checkpoint and recovery performance, and therefore decreases

the average revival times. We can also minimize the checkpoint and recovery time by changing to a

faster checkpoint method. For instance, the standard FTI checkpoint format (one binary file per process).

Doing so, we can use other techniques to speed up the checkpoint performance even further, leveraging

differential checkpointing or checkpoint compression. Both will reduce the total time for the checkpoint

completion. This becomes especially interesting for cases when the checkpoint data is not needed for

analyses. To improve the checkpoint performance for HDF5 files, we need to experiment with the file

creation parameters available in HDF5. It is also likely that leveraging burst buffer technologies [131–133]

will improve the checkpoint performance.

7.7 Conclusion

We presented a novel checkpoint-restart implementation for MelissaDA, a distributed framework for

ensemble based data assimilation. MelissaDA keeps the ensemble states in memory and upon failures

the simulation state is lost. Our implementation protects the framework from this. We showed that our

80

implementation manages checkpointing the full ensembles of background and analysis states, without

imposing palpable overhead. Moreover, we showed that by checkpointing both ensembles, we manage to

recover without recomputations when the failure takes place in the zero-waste region. Since we checkpoint

every epoch, the recomputation will be always less than one epoch. In fact, the maximum time for the

recomputation is bound by the time for one assimilation step plus the time to complete the checkpoint

(Equation 7.3). The checkpoints are stored leveraging the HDF5 IO interface of FTI. The checkpoint cost

is hidden behind the frameworks’ execution, although, there is still some work to be done to improve both

checkpoint and recovery performance (see section 7.6). We performed experiments with a state dimension

of 109 and 2 ˆ 104 observations. We scaled the experiments to 512 ensemble members with a total

checkpoint size of 8 TB. Runners and server together executed on 8064 processes and the assimilation step

reached 52 teraFLOPS. We estimated the average revival time (including recomputation and recovery)

per failure for a 512 member executions to be 1574 seconds. Considering a MTBF of 24 hours, this

corresponds to less than 2% of the time of a failure free execution.

81

Chapter 8

Resilient Online Particle Filter using a Local Particle Cache

Main Contributions

• We designed and implemented a fault-tolerant large-scale online Particle Filter (PF). The PF leverages a
node-local distributed and asynchronous particle cache to achieve high parallel efficiency.

• We designed an implemented a scheduling algorithm with particle virtualization for an efficient load balanc-
ing and minimal transfers between local and global storage layers.

• We evaluated the PF with the Weather Research and Forecasting model (WRF), a state-of-the-art Numeri-
cal Weather Prediction (NWP) system, on a european domain with high resolution, utilizing 2555 particles.

Data assimilation aims to reduce uncertainties and correct the trajectories of numerical model states

by integration of observation data available through measuring devices like satellites, or networks of

IoT sensors. Data Assimilation (DA) is today used routinely for geoscience applications like weather

forecast [134]. However, DA methods are likely to gain importance in many other domains as the growing

availability of data motivates the needs for methods capable of hybridizing data and numerical models,

such as for digital twins [135]. Departing from the Gaussian assumptions of other popular large scale

DA techniques like Ensemble Kalman Filter (EnKF) or Four Dimensional Variational Data Assimilation

(4D-Var), particle filters are of growing importance, as no assumptions have to be made on the shape of

the underlying Probability Density Function (PDF). Particles (a.k.a., realizations, samples or members)

correspond to states of the numerical model, initially drawn from a proposal probability distribution.

The particles are each individually propagated forward in time through the numerical model to the

next timestep when observation data is available. The PDF at each timestep is generated by weighting

the particles depending on the observation likelihood for the particle state. The particles for the next

assimilation cycle are then drawn by filter algorithms like Sequential Importance Resampling (SIR). The

goal of resampling is to keep a representative sample of particles, discarding particles that took trajectories

too unlikely (low weight), while generating new ones with high weights.

In this chapter, we present our proposal for an efficient and fault-tolerant architecture for large

scale particle filters. As the number of particles depends quadratic on the dimensionality of the model

state [13, 41], Particle Filter (PF) need to handle a very large number of particles efficiently. We exploit

certain properties of PFs to modularize the components of the architecture, and we implement particle

virtualization to conceptualize particle propagations into tasks. Particle filter updates can be decoupled

from the high dimensional states, involving merely the weights instead. The component updating the PDF

and resampling new particles, can therefore be implemented as a lightweight component of the system,

and the particle states do not need to be gathered in a central point. The propagations takes place on

so-called runners, which form part of the particle virtualization. Runners can be considered as a worker

pool advancing the scheduled particle propagations. We equip the runners with a distributed particle cache

that leverage node local storage hierarchies, where we cache and prefetch particles for a seamless bridging

of consecutive propagations. The cache is maintained by dedicated processes (one per runner node),

83

Bootstrap
Distribution

Weighting Resampling
(SIR) Weighting

Propagation Cycle i Propagation Cycle i+1Analysis

Figure 8.1: Initially particles are uniformly sampled. They are propagated to T1 where they are weighted taking into account
observation data. Resampling leads to discard some particles with low weights (top and bottom), while others with high weights
become parent of several ones (3 here).

and we ensure that the cache content is pushed to global storage to make it available for other runners

and ensure system resiliency. We evaluate our proposal with a realistic use-case based on the Weather

Research and Forecasting (Weather Research and Forecasting model (WRF), version 3.7.1) model [136].

WRF is a popular weather model for both operational forecasting and research. We deployed our proposed

PF with 2,555 particles using 20,442 compute cores for simulations on the european domain (15 km

horizontal resolution) based on the ERA5 data set, while achieving 87% parallel efficiency. Within the

next sections, we review the principles of particle filters and the associated workflowsection 8.1, present

the architecture of our approach in section 8.2, evaluate our proposal in section 8.3, discusses the related

work in section 8.4, and conclude the chapter in section 8.5.

8.1 Particle Filters

We have given an introduction to particle filtering in subsubsection 2.2.2.2. Now we want to point out

some properties of particle filters that we exploit in our proposal. It is important to understand that in

contrast to other DA techiques, particle states remain unchanged during the PF update step. Particles

that have departed too much from the observations are discarded, and the sample set is reduced without

any further corrections to the remaining particles. However, especially for high dimensional problems,

particle filters tend to suffer from weight degeneration, i.e., one normalized weight is close to 1 and all

the others close to 0. A common approach addressing degeneration consists in resampling the particles

based on their importance (high weights). Such a method is SIR. After each filter update, a new sample

of P particles is drawn from the generated PDF. Doing so, particles of low weights are automatically

discarded, while particles with high weights are drawn several times, leading to multiple propagations

starting from the corresponding states (Figure 8.1). It is clear that this method only works if the model is

84

randomized in an appropriate way. If the model itself does not include randomization, the particles need

to be perturbed in a controlled fashion before their propagation in the next cycle.
Takeaway

The following properties are important for our implementation:

(a) Unnormalized weights depend only on the associated particle and observations (Equation 2.17)

(b) The Filter update only depends on the weights (Equation 2.16)

(c) The particle states remain unchanged by the filter update

These properties enable greater resiliency, and we can exploit them to improve the parallel efficiency of our PF
implementation.

8.2 Architecture

Other ensemble data assimilation techniques like the various flavors of the EnKF, correct the trajectory of

the climate states during the filter update. As we have emphasized before, this is not the case in PF, the

states remain unchanged. Moreover, the majority of the filter update can be performed in a local operation;

the only operation that involves the particle state, the weight calculation. Beside the corresponding particle

state, we need the observation to compute the weight, but not the other particle states. The remaining steps

of the update are the normalization of the weights and the resampling. Thus, in contrast to the EnKF, we

only need to gather an array of scalar weights, but not the high dimensional climate states for the update.

This allows a lightweight central server implementation, where the server performs the relatively cheap

filter update, resampling, and scheduling, while the runners advance the particle states with the numerical

model, and generate the particle weight at the end of each propagation. The architecture comprises three

components the launcher, the server, and the runners. In a nutshell, the launcher submits jobs for the

server and runners, the server schedules the particle propagations to the runner pool, and the runners

execute the particle propagations. Figure 8.2 visualizes the concept of the server-runner architecture.

We can see the runners, implementing a local cache which is maintained by one dedicated process per

node. The connection between runners and server is accomplished using TCP with Zero Message Queue

(ZeroMQ). In the next sections, we will gradually introduce the components and explain their operation

in more detail.

8.2.1 Runner and Cache Interaction

The runners execute the numerical model simulation, which are often itself advanced parallel codes of

considerable scale (several nodes). To serve as a runner, the model code implements the MelissaDA

API, consisting of two functions for initializing the framework and for updating the model states. From

model perspective, the update function initializes the model to a new state, which is then propagated until

the next update step, where the model receives the next new state. This continues as often the runner is

requested propagations by the server. The complexity of the runtime is hidden by the update function.

Four things are happening during the function call:

1. the particle state is stored to local storage

2. the particle weight is computed and send to the cache controller

85

 Runner

Server

Node 1

Node n

To other runners

MPI Communicator

Model process (master)

Model process

Helper process

Helper process (master)

Node local storage

To PFS

To PFS

MPI communication

ZMQ communication

File transfer

Figure 8.2: Runners/server architecture. The model processes perform the state propagation, the helper processes send
propagated states to the PFS and prefetch next scheduled states to the local cache in the background. Communications with the
server combine MPI and ZMQ data exchanges.

3. a new particle is requested from the server

4. the new particle is copied from local storage into the state buffer

Those are performed inline by the model processes. The cache controller, on the other hand, ensures

that the simulation finds the states on the local storage. Now that the model code is equipped with a new

particle for the propagation, two things happen on the cache controller asynchronously:

1. the particle state is copied from local to global storage

2. the weight is sent to the server

The cache controller is loop based and event triggered. Besides the event from above, it receives prefetch

requests from the server. Particle eviction as well is maintained by the server. Every time the cache needs

to evict a particle due to storage limitations, it submits an eviction request to the server. Knowing the

contents of the runner caches empowers the server to distribute the propagations more efficiently. The

server can assign propagations of particles prefered to the runners that have them in their cache. On the

other hand the server can request runners to prefetch states which are not available in their cache and

assign the propagation afterwards.

A typical DA run relies on several runners to propagate states. An important concept in MelissaDA

is that each component (launcher, server, several runners) execute on separate allocations. This is an

essential part of the Fault Tolerance (FT) concept of the framework, as runners can dynamically be added

or removed without affecting the other components. For instance when runner fail, they can simply be

replaced. At the same time it is important to make the particle state globally available for the purpose of

particle virtualization, each runner must be able to propagate any particle. At the same time, storing the

particles on global storage ensures fault tolerance for the case of server failures (even full system failures).

The implementation of the cache controller serves the purpose of fault tolerance and particle virtualization,

as it stores the particles on global storage. Moreover, by moving the interactions with global storage

86

in the background, we increase parallel efficiency as we reduce the holding time between two particle

propagations. At the same time it improves scalability, since the particle states are provided to the model

on exclusive storage devices (no Parallel File System (PFS) saturation, network congestion, etc.).

8.2.2 Cache Eviction Strategy

The number of particle states that can be kept in the cache is limited by the local storage capacity (SSD,

NVMe, RAM disk, etc.). To avoid evicting particles that are needed for future propagations, the cache

controller is in contact with the server. For the correct operation, the cache needs to provide at least

2 slots, one for the particle state currently propagating, and one for the particle propagating next. The

cache controller needs to guarantee that at least that many spots are free. For this it is necessary to evict

particles from the cache from time to time. States that are available on global storage are potentially

safe for eviction, however, they might be needed in future propagations. The cache controller needs to

consults the server as it has knowledge of the cache content of the other runners, and about the remaining

particle propagations. When the server is requested it selects the particle that first meets one of following

properties in the given order:

1. Particle was discarded during the previous filter update.

2. All propagations for the particle have been completed.

3. Particle with the lowest weight.

4. A randomly selected particle.

Particles that meet properties 1 and 2 can safely be removed from the cache, since those states will not be

needed anymore. Particles with property 3 might still be needed for propagations during the current cycle,

but may not be selected for the following cycle.

8.2.3 Fault Tolerance and Elasticity

Besides storing the particle states on global storage, MelissaDA implements a second mechanism to ensure

fault tolerance. Runners that experience hard failures can be replaced by the launcher. The framework

detects dysfunctional runners in two different ways. Terminated runners are recognized by the launcher

monitoring the runner’s states using system calls or the cluster scheduler. Unresponsive runners, on the

other hand, are detected by the server if runners miss due dates for particle propagations. In the first case,

the launcher immediately launches another runner instance for compensating the loss. In the second case,

the server notifies the launcher which in turn replaces the unresponsive runner. In any case, everytime

the launcher starts a new runner, the runner contacts the server and requests the incorporation into the

runner pool. This mechanism allows also to increase the runners externally, when new resources become

available. With this, the framework becomes elastic and at the same time ensures resiliency towards runner

failures. We further protect the server by checkpointing the particle queues and weights. Server failures

are detected by the launcher again with timeouts or system calls. Server failures are handled by cleaning

up the execution of all runners and resubmission of the framework. This is necessary to reestablish the

server runner connections (changed server ip). Finally launcher failures require the resubmission of the

entire framework. However, thanks to checkpointing on the server and the globally stored particles, we

can recover to the last consistent state.

87

Compulsory state load Extra state load due to parallelization

Runner work lists

Figure 8.3: Two possible schedules of 24 propagation tasks of equal duration on 4 runners. All particles propagated from the
same parent state have the same color (9 parents here). Top schedule is optimal with 9 compulsory loads (one per parent), and
one for the dark blue parent that cannot fit in one runner. The bottom schedule, with 2 more sate loads, is a possible one that our
on-line scheduling algorithm can produce. This is not optimal but still bellow the general P `R´ 1 bound as the algorithm
ensures that no more than R´ 1 "color cuts” occur and avoids the same runner loads more than once a given parent state.

8.2.4 Scheduling

In this section we present the scheduling algorithm used by the server to distribute the particle propagations

to the runners. Let R be the number of runners, and pi, i “ 0, 1, . . . , P the P particle states, selected for

the next assimilation cycle. The total number of particles to be propagated is M “
řP
i“0 αi, where αi is

the number of times the particle pi was drawn during the resampling. We will first derive a lower and upper

bound for the minimum number of particle loads (from global storage) per assimilation cycle c˚ assuming

that (i) runners do not cache states, (ii) the number of runners is constant and (iii) all particle propagations

take the same amount of time. under these conditions, each runner will propagate M
R particles. Because

each particle state needs to be loaded at least once, the number of compulsory state loads is P . If αi “ 1

for all 0 ă i ď P , i.e., every particle has only one realization, then c˚ “ P . Otherwise, parallelizing the

propagations may require to assigne some particles to more than one runner, resulting into additional

particle loads. The numer of runners, si, particle pi is assigne to is given by:

si “

S

αi
M
R

W

. (8.1)

As we have R runners, the list of M particles is cut at most R´ 1 times, hence, the extra particle loads are

at most R´ 1 (Figure 8.3). This upper limit occurs if only one particle was drawn M times (i.e., α0 “M

and P “ 1): c˚ “ R. Thus, in the general case the minimum number of state loads c˚ is tightly bound by:

P ď c˚ ď P `R´ 1. (8.2)

Implementing a static scheduling is not efficient in our case, as the number of runners is dynamical, and

the propagation time is not homogeneous. Hence, a static scheduling woud lead to load imbalance. Our

extension to a dynamic case relies on dynamic list scheduling to ensure an efficient load balancing [137,

138]: when idle, a runner requests work from the server that returns a particle to propagate. Our scheduling

policy is based on the split factor si defined in Equation 8.1, however, with dynamic values for M , R, and

αi. The split factor provides the maximum number of runners that can propagate particle pi. To support

this algorithm, the server needs to know the number of successful propagations for particle pi, and the

number of associated current propagations. The scheduling algorithm is:

88

1. If αi ą 0 for particle pi currently propagated by the runner, decrement αi and assign pi again.

2. Otherwise, select another particle pj and compute the associated split factor sj . By default

any particle could be selected, but priority goes to particles already in the runner cache (See

subsection 8.2.2).

3. If sj runners are already scheduled to propagate particle pj go back to step 2).

4. Otherwise, assign pj , decrement αj and register pj as being propagated by this runner.

When runners fail, the server needs to update the bookkeeping accordingly. Assuming conditions (i), (ii),

and (iii) from above, this algorithm behaves like the static schedule and respects the bound of Equation 8.2.

8.2.5 Implementation Details

The cache is deployed on the runner nodes sharing the global MPI domain with the model processes.

The caches form a distributed cache, serving as the cache layer for the global particle propagation. The

content of the caches (eviction and prefetching) is regulated by the server, as it has a global view on

the assimilation workflow (particles propagated, not yet propagated, etc.). The distributed cache can

be considered as level 1 cache of the runners before the main storage (PFS). The local caches leverage

dedicated FTI processes allowing the operation in the background of the propagations. During the

initialization, FTI splits the main application communicator into one for the model and another one for the

helper processes. To modify FTI for our purpose, we extended the event mechanism of the FTI processes

(helpers), and we decoupled the staging to allow a better controlling of state transfers between local and

global storage. In that way we can control when to upload the local data to global storage, and when to

download the data in order to prefetch particles. The communication between model and helper processes

relies on asynchronous MPI messages. Communication with the server is established leveraging ZeroMQ.

8.3 Evaluation

To evaluate our PF implementation we rely on the popular WRF model [136]. The core of WRF is based

on solving fully compressible non-hydrostatic equations with complete Coriolis and curvature terms, and

a large set of physics options. The simulation domain covers most of Europe (Figure 8.4) resolved into

220 by 220 grid cells with horizontal resolution of 15 km and 49 vertical levels with uneven thickness

to perform short–range weather forecasting. We randomly choose the date 2018-07-19 to simulate 48

hours in time steps of 100 seconds. The model employs the WSM6 microphysics, MYNN2 boundary

layer physics, Grell-3 cumulus parameterization, Eta Monin-Obukhov similarity surface layer processes,

and RUC land surface model. We also employ non-hydrostatics increasing the detail in simulated cloud

and precipitation. The input initial and boundary condition is based on the reanalyzed ERA5 dataset from

the European Center for Medium-Range Weather Forecasts (ECMWF). Data assimilation is performed

using the cloud cover fraction (CFRACT). For each particle, the cloud cover fraction is compared with its

pendant obtained from the EUMETSAT CMSAF satellite data [139]. The observation data is available

hourly, so we perform assimilation cycles over 36 model time steps (36 ˆ 100 s p“ 1 h) to assimilate all

observation data testing our approach under high stress.

89

Figure 8.4: The topography of the target domain of Europe for the simulation.

In the following sections we present our experimental results, If not explicitly said, using our PF

and WRF on the european domain, with 2555 particles utilizing 20442 compute cores on 512 Nodes of

the Jean-Zay supercomputer. Each compute node of Jean-Zay is equipped with 2 Intel Cascade Lake

6248 processors, summing up to 40 cores with 2.5 GHz and 192 GiB RAM per node. Intel Omni-Path

(100 GB/s) connects the compute nodes with each other while an IBM Spectrum Scale (ex-GPFS) parallel

file system with SSD disks (GridScaler GS18K SSD) is used for persistent file storage. To capture

the meteorological state of the European domain, each particle state accounts for 2.5 GiB of data. All

experiments that we have performed are listed in Table 8.1.

8.3.1 Runner activity

We want to evaluate elasticity and efficiency of our implementation for the propagation phase. For this,

we will first look at selected runner traces from scheduling perspective (Figure 8.5). We observe several

things in this trace. First, we can see the elasticity of the framework. During the first two assimilation

cycles the individual runners are connecting to the framework, requesting the incorporation into the runner

pool. During this phase, as fewer runners are available, each runner has to take on several propagations

more than in later cycles. The trace further shows the behavior of the our scheduling mechanism. The red

boxes indicate the necessity of transfers from global storage to the runner cache. The green boxes, on the

other hand, indicate that no transfer was necessary (up to 69% each cycle).

A closer view on the individual tasks on one runner (Figure 8.6) reveals the times for particle loads

(stores) from (to) global storage, and the idle times due to load imbalances. We can further see that

the operations on the cache are asynchronously to the particle propagation. We can see that indeed, the

propagation occupies the majority of the simulation trace, leading to high parallel efficiencies. A particle

90

Experimental Setup

Particles 315 635 1275 2555
Number of runners 63 127 255 511
Number of nodes 64 128 256 512
Model processes 2457 4953 9945 19929
Particles per runner (avg) 5 5 5 5
Particle state size (GiB) 2.5 2.5 2.5 2.5

Performance Data

Scaling efficiency 92% 91% 92% 87%
Resampling (ms) 2.21 4.06 8.16 16.37
Assimilation cycle (s) 136 138 139 146
Propagation (s) 25.1 25.2 25.1 25.0
Load state from PFS to cache (s) 2.1 2.1 2.4 4.1
Write state from cache to PFS (s) 1.4 1.6 1.8 2.3
Writes to PFS per cycle (TiB) 0.77 1.55 3.11 6.24
Reads from PFS per cycle (TiB) 0.30-0.4 0.64-0.79 1.27-1.79 2.54-3.82

Table 8.1: Experimental setting and performance overview at 4 different scales. The times are given as average in all cases.

250 500 750 1000
Time (s)

0

5

10

15

Ru
nn

er

Cache hit
Cache miss
Initial propagation

Assimilation cycle
1
2
3
4
5

Figure 8.5: Gantt chart of particle propagations executed by 15 (out of 511) randomly selected runners over 5 assimilation
cycles. Tasks are green when the associated parent state was already present in the runner cache and did not require a load from
the PFS (red otherwise).

propagation takes between 24 and 26.5 seconds, keeping model processes busy 87% of their time. The

rest is dedicated to weight calculation (1%), and communication with the server (12%), including waiting

times due to load imbalances at the end of the assimilation cycle. Thanks to the asynchronous caching and

prefetching, 94% of the particle loads are from local storage reducing the Input and Output (IO) overhead

by 14% (compared to using global storage directly), while the deployment of the cache only corresponds

to p“ 2.7% of the total compute resources.

91

Figure 8.6: Trace detailing the activity of a runner over the course of an assimilation cycle. Helper processes enable to keep
model processes busy with particle propagation, except at the end of assimilation cycles when they wait for the server to finish
particle resampling (dark blue). Some activities are so thin that they are not visible here (state copies from cache to model). they
can become idle

8.3.2 Server activity

The server response time is always in the order of a few hundred microseconds, except for job requests at

the end of assimilation cycles if no particle remains for propagation (Figure 8.7). Therefore, these longer

times (in the order of seconds) are due load imbalances, and not due to server saturation. In executions

with 511 runners, we observed a maximum of 676 requests per second. Assuming average response

times of about 500 microseconds, this translates to less than 500 ms of busy time per seconds. Thus,

with 511 runners, the server is not even at 50% of its capacity, even though it is deployed leveraging a

sequential python code. Simple optimizations are at reach if the server needs to be accelerated (e.g., server

parallelization).

8.3.3 State transfers to/from PFS

Each particle state has a size of 2.5 GiB, leading to a transfer of 6.2 TiB to global storage during each

assimilation cycle (2,555 particles). Maintaining a cache size of 5 particles, the cache controllers provides

between 1024 and 1563 particle states locally (through prefetching), that otherwise would have needed to

be loaded from global storage. The P value (number of distinct particles) per cycle is between 1594 and

1629, with up to 5 realizations for some particles. The scheduling algorithm, without caching, is expected

to achieve less than P `R´ 1 loads (compare Equation 8.2). Leveraging the distributed cache, even the

minimal number P of state loads is undercut (See subsection 8.2.4). The time to load or to store a state

from the PFS can vary significantly and increases with the number of runners, experiencing congestion

of the global storage layer. This effect is expected to gain importance at larger scales. However, the

distributed cache effectively hides most of the IO cost writing to global storage, as the model processes

only write to local storage. The transfer between local and global storage takes place on the helper cores

92

Dele
te

req
ue

st

Job
 re

qu
est

Pre
fet

ch
req

ue
st

Pu
sh

weig
ht

to
ser

ve
r

1

1e2

1e4

Du
ra

tio
n

(m
s)

Figure 8.7: Server response times on runner requests.

asynchronously.

8.3.4 Fault tolerance, elasticity and load balancing

We tested the fault tolerance and elasticity of our PF implementation with 63 runners crashing 2 runners

(Figure 8.8). We observe that the fault tolerance algorithm reacts as intended, restarting new runners

after each crash. The first crash (runner 53) occurs in the worst situation: just after propagating the last

particle of the current cycle, which leads to a significant idle period. This is due to the server only detects

the runner crash (runner is unresponsive) after the timeout of 60 seconds. Only after that, the particle

is redistributed (to runner 44). As the particle that runner 53 was propagating, was the last remaining

particle for the cycle, all runners are in idle state until the propagation has finished. As we can see for

the second crash (runner 48), crashing at the beginning of the cycle, the idle period due to the failure

recognition stays out. We merely observe a gap larger to the other gaps between the cycles, due to the

resulting load imbalance. However, we observe a generally well balanced execution with small gaps

between two consecutive cycles. The load balancing becomes more important for models that show more

variability in propagation times. In WRF, the propagations show rather small variability of about 10%.

with other simulation codes, or if executing on heterogeneous resources, propagations might show a much

stronger variability.

8.3.5 Scaling

We performed strong scaling experiments with a constant number of runners (63 runners) while increasing

the number of particles. We observe a parallel efficiency above 90% (Figure ??) for executions that

allow to distribute the propagations among the runners. The parallel efficiency increases with the number

of particles per runner. This is expected, as the load balancing becomes more efficient with increasing

possibilities to distribute the propagations. Furthermore, as prefetching enables to overlap IO and

93

0 250 500 750 1000 1250
Time (s)

0

20

40

60
Ru

nn
er

Cache hit
Cache miss
Initial propagation

Assimilation cycle
1
2
3
4
5
6
7
8

Figure 8.8: Gantt chart as in Figure 8.5. Two runners crashed (black cross) and 2 restarted (top 2 runners).

propagations, increasing the number of particles per runner better amortize the cost of the synchronization

associated with resampling. For evaluating weak scaling of the framework, we performed experiments

with a constant number of particles per runner, while increasing the number of runners. We observe an

increase of 8% for the time of one assimilation cycle from 63 to 511. This translates to about 1.8% for

every additional 100 runners and 500 particles.

63
 (1

 pa
rtic

les

pe
r ru

nn
er)

31
5 (

5 p
art

icle
s

pe
r ru

nn
er)

63
0 (

10
 pa

rtic
les

pe
r ru

nn
er)

95
6 (

15
 pa

rtic
les

pe
r ru

nn
er)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Sc
al

in
g

ef
fic

ie
nc

y

63
(315)

127
(635)

255
(1275)

511
(2555)

Runners
(particles)

0

50

100

150

As
sim

ila
tio

n
cy

cle
du

ra
tio

n
(s

)

5 particles per runner

2522 5082 10202 20442
Cores

Figure 8.9: Left: strong scaling efficiency using different numbers of particles with 63 runners. One runner sets the reference
case. Right: weak scaling performance test: assimilation cycle duration for different numbers of runners, but always 5 particles
per runner.

94

8.4 Related Work

The DA domain features a large variety of techniques and algorithms, for instance, nudging [140],

kriging [141], Kalmann filtering [142], ensemble maximum likelihood filtering [143], and particle

filtering [144]. We refer to [145, 146] for a comprehensive overview. We focus on Monte Carlo DA

methods relying on ensemble runs models to compute a statistical estimator (co-variance matrix for EnKF,

PDF for particle filters). To aggregate the data produced by all members (i.e., particles) two main groups

of approaches are used. Either the data is stored to files and then processed in a second step (a.k.a.,

offline mode), or the data is processed online, typically within large MPI codes enclosing the particle

propagations, and filter updates. Frameworks relying on the offline mode include EnTK [147], with

the largest published runs involving 4,096 members for a molecular dynamics application with EnKF

filtering [148]. Similarly OpenDA, using NetCDF for data exchange with the NEMO code [149]. DART

supports both online and offline modes [127], with reported large scale runs in offline mode using about

1,000 members with an oceanic code [60], and using 1,024 members with the Local Ensemble Transform

Kalman Filter (LETKF) DA utilizing 6 M cores at the Fugaku supercomputer [150, 151].

File based approaches have the benefit of their simplicity, providing fault tolerance and elasticity. But

these solutions do not support member virtualization, state caching and prefetching. Hence, starting or

restarting a member requires to request new resource allocations, and launching a new instance of the

model code with all the associated start-up costs.

The online mode, on the other hand, avoids the I/O bottleneck. PDAF [152], which supports both

modes, has been used for online data assimilation with the EnKF in the regional earth system model

TerrSysMP using 256 ensemble members [153]. ESIAS uses online DA with particle filters incorporating

up to 4,096 particles in a wind power simulation on a european domain [154]. Notice that we work with

the same WRF component of ESIAS in this paper, using a configuration an a similar domain, but at higher

spatial resolution, inuding with more advanced and more time consuming physics. We can also find ad

hoc MPI codes for online DA using an atmospheric model with 10,240 members, using a localized EnKF

utilizing 4,608 compute nodes [40].

All these MPI approaches lead to monolithic code without intrinsic support for fault tolerance,

elasticity or load balancing. Here, we propose an alternative architecture for particle filters, relying

on distributed caching and checkpointing to suppress the server bottleneck and significant reduction of

data movements. Recall that this approach is possible, because the filter update does not impose state

corrections.

8.5 Conclusion

In this chapter, we proposed an architecture for handling very large ensembles for particle filters. The

architecture was designed to address the challenge of exascale computing that will allow massive ensemble

runs [155]. The architecture is based on a server/runner model where runners support a distributed cache

and virtualization of particle propagation, while the server aggregates the weights computed by the

runners and ensures the dynamic balancing of the workload. With the addition of a global checkpointing

mechanism for particles, the architecture supports dynamic changes in the number of runners during

execution for fault tolerance and elasticity. Experiments with the WRF weather simulation code show that

our framework can run at least 2555 particles on 20442 cores with 87% scaling efficiency.

95

Chapter 9

A Framework for Automatic Validation and Application of Lossy Data

Compression in Ensemble Data Assimilation

Main Contributions

• Design and implementation of a framework for validation and application of lossless/lossy compression in
ensemble Data Assimilation (DA). The framework provides two operational modes: (1) validation mode:
identify viable compression parameters using robust statistical qualifiers that test state and ensemble con-
sistency (2) dynamic mode: apply compression parameters. The compression parameters can vary among
all state variables.

Ensemble data assimilation with large ensembles and large models requires high performance I/O [156–

158]. This is due to the large amount of data that needs to be circulated between different constituents of

the assimilation system. A still widely used workflow in ensemble data assimilation is to perform the

climate simulation and the data assimilation on separate executables [59]. The ensemble members (i.e.,

the climate simulations) store the climate states to the file system, and after all simulations have finished,

the data assimilation system reads the files, assimilates the observations and writes back the improved

states to storage. The ensemble members then reread them to perform the next assimilation cycle. The

amount of data transferred between the two steps often leads to an I/O bottleneck, where the storage

subsystem cannot deliver the throughput that is needed to keep up with the computing power. In some

cases, I/O can be overlapped with computation and be performed in the background, which alleviates

the I/O overhead itself. The states can also be transferred through the network, bypassing the I/O layer.

However, this approach is limited by the memory available and raises fault tolerance issues, if it involves

large monolithic MPI allocations.

Reducing the data to minimize storage requirements and storage space availability for other users is

beneficial in either case. A recent example of storage based state circulation between simulation and data

assimilation system has been published by Yashiro et al . [57]. The article presents the execution of the

NICAM-LETKF system on Fugaku [159], using 82% of the entire system. During each cycle, the system

circulates more than 400 TB of data through the parallel file system. Yashiro et al. compares double

to mixed precision executions, where the computing times with mixed precision show a 1.6x speedup

compared to double precision, while reducing the data size to the half. This demonstrates the prospect of

departing from the double precision doctrine in climate science. There are a number of works studying

explicitly the impact and advantage of mixed precision in data assimilation [160–162]

Besides using mixed precision, data can be reduced by compression. Data can be compressed in a

lossless fashion, without the loss of accuracy, or in a lossy fashion, with a certain loss of accuracy. Since

climate systems are strongly non-linear and typically chaotic, it is essential not to introduce significant

perturbations when applying lossy compression. On the other hand, the models and the observations are

both imperfect and inevitably introduce errors to the states. This means that the intrinsic precision of the

states can be lower than the precision of the data type used in the application. Indeed, multiple previous

97

studies have shown that climate simulations can tolerate certain loss in data precision [163–166].

We propose a framework that: (1) explores the impact of lossy data compression on the climate

states and ensemble consistency through time (error propagation), and (2) dynamically selects the best

compression parameters during runtime. The former constitutes the validation mode of the framework

and the latter the dynamic mode. In validation mode, the framework generates and stores validation data

for each assimilation cycle. The collected data provides a means to evaluate the impact of repeatedly

compressing the states through time. We provide a JSON configuration file to conveniently set the desired

compression parameters. In dynamic mode, the compression parameters are applied to the states, reducing

their size before writing them to the file system. Optionally, the states can be tested by a validation function

before storing them. Currently we provide compression with ZFP [17], FPZIP [18], single-precision

and half-precision. The framework allows easy interfacing and is build on top of the ensemble data

assimilation architecture of the MelissaDA Particle Filter (PF) that we have developed (chapter 8). After

exposing the simulation variables to the PF, and a few more steps, the climate model can be operated with

the two modes from above.

The rest of the chapter is organized as follows: Section 9.1 provides background information on

ensemble data assimilation techniques. Section 9.2 presents the design and implementation of the proposed

framework and explains its usage, and Section 9.3 provides the experimental evaluation. Related work is

surveyed in Section 9.4, and finally, Section 9.5 concludes the chapter.

9.1 Background

In this section, we outline the basic concepts behind our work and clarify the terminology that we use.

9.1.1 Ensemble Data Assimilation

Data assimilation is based on Bayes’ theorem, allowing us to combine the information from both real

world observation and numerical model states. Combining the information from both sources leads to

an improved accuracy of the state [167]. Ensemble data assimilation follows a Monte Carlo approach,

approximating the error probability density function by a statistically significant sample of states. The

most common ensemble methods for data assimilation are the Ensemble Kalman Filter (EnKF) [31] and

the Particle Filter (PF) [34]. To address the issues that arise from relatively small ensemble sizes given

the high dimensionality of the climate states, modified flavors of the original versions are often used, for

instance, the Local Ensemble Transform Kalman Filter (LETKF) [168] or Localized Adaptive Particle

Filter (LAPF) [169], and others.

One important difference of PFs compared to Ensemble Kalman Filter (EnKF)s is, that the particle

states do not change during the filter update. Instead, weights are assigned to the particles, and particles

with small weights are discarded, while particles with high weights are propagated in the next cycle. The

particle filter implementation in MelissaDA uses Sequential Importance Resampling (SIR), where the

particles of the next cycle are drawn from the Probability Density Function (PDF) which is generated

by the weights (see also subsubsection 2.2.2.2). The number of particles in each cycle is constant, and

typically particles with high weights are propagated several times, while other particles are not propagated

at all (discarded) due to their low weight. Due to the multiple propagation of identical particle states,

this technique relies on a randomization of the model. This is achieved either by introducing stochastic

98

dynamics into the model evolution, or by adding small perturbations to the input particle states before the

propagation [13, 34].

9.1.2 Terminology

In spite of the same origin, being both Monte Carlo methods, the terminology used for ensemble Kalman

filters and particle filters is quite different. To avoid confusion, we will introduce the terminology that we

use in this work. We implemented our validation framework into the particle filter of MelissaDA 1. For

this reason, we will use the particle filter terminology. We refer to a simulation state as particle state, or

sometimes just particle or state. The workflow of ensemble data assimilation is divided into assimilation

cycles. Each cycle comprises the propagation step and the update step. During the propagation step, the

climate states are advanced by the numerical model (propagated). During the update step, the model states

are improved by the filter update, assimilating the observations. In particle filtering, the update step is

called sampling, or resampling.

9.2 Design and Implementation

In this section, we first introduce the particle filter implementation of MelissaDA, which serves as a

testbed for our work, and then explain the implementation and operation of our proposed framework in

detail.

9.2.1 MelissaDA Particle Filter

MelissaDA is designed for ensemble data assimilation at large scale. The framework comprises three

modules; a launcher, a server, and multiple runners. In comparison to the common practice in ensemble

data assimilation leveraging a bash script for the workflow, the launcher replaces the script and orchestrates

the submission of the ensemble simulations and the data assimilation system. The launcher has plugins

for the most common cluster schedulers to submit and monitor the jobs for the server and runners. In this

architecture, the runners constitute a worker pool for propagating the particle states. The server requests

available runners to propagate unscheduled particles and performs the resampling after all particles have

been propagated. To ensure optimal fault tolerance, the server and each runner is allocated on separate

jobs and are restarted by the launcher upon failures. Besides the PF, MelissaDA provides several other

ensemble DA filters, for instance, various flavors of the EnKF, and allows the creation of custom filter

plugins. MelissaDA implements a particle filter that uses a fast distributed cache on the runner nodes,

where particles can be asynchronously prefetched and cached for future propagations (see also chapter 8).

The cache is maintained by dedicated MPI processes, asynchronously, and utilizes one process per runner

node. Generally, for fault tolerance, the states need to be stored on global storage. Since this is typically

slower than using the local storage, the simulation processes only write and load from local storage. The

cache controller is responsible for providing the states locally and sending the states to global storage

after they have been propagated.

In most particle filters, in contrast to Kalman filters, the states are not changed during the filter step.

Instead, states that carry high weights (i.e., that are consistent with the observation data), are selected for

1The validation methods that we use, however, are perfectly suitable for other ensemble methods as well.

99

the next assimilation cycle and states with low weights are discarded. This is precisely why the local cache

on the runners helps to overcome the Input and Output (IO) bottleneck; states that have been selected for

the next assimilation are still locally available on runners that have propagated them. Since the states

remain unchanged during filtering, they are immediately ready for propagation. The local cache leverages

Fault Tolerance Interface (FTI) to store and load the states. FTI is a multi-level checkpoint/restart library

that is aware of the node local storage. We implemented several compression techniques into FTI to

enable the state compression while storing the state and decompression while loading it.

9.2.2 High-Level View on the Validation Framework

Our proposed framework comprises two modes of operation. The first mode allows us to explore the

impact of data compression on the integrity of the ensemble and of the states in particular. The second

mode allows us to apply the best compression parameters during operation to increase performance,

while respecting data consistency. We refer to the first mode as validation mode and to the second as

dynamic mode. The respective modes and corresponding parameters are selected by providing a JSON

configuration file (see Listing 9.1).

1 {

2 "variables" : ["state1", "state2"],

3 "compression" : {

4 "method" : "validation",

5 "validation" : [

6 {

7 "mode" : "fpzip",

8 "parameter" : [16,24,32]

9 },

10 {

11 "mode" : "zfp",

12 "type" : "precision",

13 "parameter" : [32,40]

14 }

15],

16 "dynamic" : [

17 {

18 "name" : "state1",

19 "sigma" : 10e-7,

20 "mode" : "zfp",

21 "type" : "accuracy",

22 "parameter" : [0,6,8,10]

23 },

24 {

25 "name" : "state2",

26 "sigma" : 10e-5,

27 "mode" : "fpzip",

28 "parameter" : [24,28,32,36,40]

29 }

30]

31 }

32 }

Listing 9.1: Example of a configuration file. We set the compression parameters for two variables named state1 and state2. The
framework will operate in validation mode, since the method key is set to validation. To apply the dynamic mode, the method
must be set to dynamic.

100

Our framework operates in conjunction with the particle filter of MelissaDA. During the particle filter

update, the particle weights are normalized and P particles are drawn from the resulting distribution

function. P remains constant during all cycles and it can be set in the MelissaDA configuration. Hence,

during each cycle we propagate the same number of particles. However, the SIR algorithm leads to a

sample of only M distinct particles with typically M ă P . Therefore, some particles are multiplied. To

account for this, the model needs to provide some randomness to ensure that two propagations of the same

particle lead to distinct output states

During the validation mode of our framework, we now propagate pC ` 1q ¨ P particles, with C

being the number of parameters that are specified in the configuration file. The configuration shown

in Listing 9.1, leads to the propagation of 6 ensembles with P particles each. One ensemble for the

original states and 5 ensembles that use data compression with the specified parameters. This allows us to

compare the ensembles that leverage compression to the original ensemble. Furthermore, we can observe

the evolution of each particle ensemble over time for the number of cycles specified in the MelissaDA

configuration.

The dynamic mode aims improving the performance of the data assimilation system. Thus, only

one ensemble with P particles is propagated, and MelissaDA operates as it would without our additions.

However, this time compressing the particles with the parameters that have been specified in the JSON

file. During the first assimilation cycle, the compression parameters are tested using a validation function.

Per default, we check the point-wise maximum error between the compressed and uncompressed state. A

custom function can be provided by the user, or the validation can also be deactivated entirely. If using the

default validation function, the compression parameters that lead to a point-wise error larger than sigma

(see Listing 9.1) are discarded. The qualified parameters are stored in descending order by the compression

rate. In subsequent cycles, the best compression parameters (highest rate) are successively checked by

the validation function, and the first parameter that qualifies is used for compressing the state before

writing it to the file system. We allow setting the compression parameters for each variable of the climate

state independently. The meta-data that is required to recover the variables with the correct compression

parameters is maintained by FTI. A speedup is achieved, if the time for compression, decompression, and

validation is less than the time that we save due to writing and reading fewer (compressed) data.

9.2.3 Validation Mode

In validation mode, the MelissaDA launcher submits several validator instances, in addition to the server

and runner instances. As for the runners, the number of validators can be specified in the MelissaDA

configuration. Each validator is executed on one node and is parallelized leveraging all available cores on

the node. Figure 9.1 shows the workflow in validation mode. The diagram indicates that the propagation

of particles by the runners is overlapped with the validation performed on the validators. The workflow is

a follows: during the propagation phase, the server schedules particles to the runners and waits for the

particles weights to be returned. As soon as all particles have been propagated, and the associated weights

received, the server performs the filter update and communicates particle ids and weights to the validators.

While the validators calculate and store the statistical qualifiers, The runners continue the propagation of

the particles of the next assimilation cycle.

The statistical qualifiers that we calculate are the same as in the work from Baker et al. [165], where

the impact of data compression on climate states is discussed in detail. We implemented the root mean

101

Schedule propagations/
receive weights

Propagate particle states

Schedule propagations/
receive weights

Send state ids and
weights to validators

Validate particle states

Update

Schedule particles and
receive weights

Propagate particle states

Validate particle states

Runners

Server

Validators

cycle (i-1) cycle (i)

Figure 9.1: Workflow in validation mode.

squared Z-value (RMSZ). Where we calculate 2 different representations of the Z-value. We calculate

Zp,0xc,i , that encodes information on the ensemble spread, and Zp,`xc,i , that can detect a bias on the ensemble

spread introduced by the compression. The two Z-values, and the RMSZ are calculated as follows:

Zp,0xc,i “
xpc,i ´ x̄

P {p
0,i

σ
P {p
0,i

(9.1)

Zp,`xc,i “
xpc,i ´ x̄

P {p
c,i

σ
P {p
c,i

(9.2)

RMSZpXc
“

g

f

f

e

1

N

N
ÿ

i

`

Zpxc,i
˘2 (9.3)

with:

x̄
P {p
c,i “

řP
k!“pwkx

k
c,i

řP
k!“pwk

(9.4)

σ
P {p
c,i “

řP
k!“pwk

´

xkc,i ´ x̄
P {p
c,i

¯2

řP
k!“pwk

(9.5)

RMSZpXc
is the root mean squared Z-value, and constitutes the qualifier that we actually store. This value

is computed for both Z-value representations. P is the number of particles, Xc specifies the state variable

with c being the compression parameter-id and c “ 0 indicating the uncompressed state. The index p

denotes the particle-id. Consequently, we have one RMSZpXc
value for each particle, state variable, and

compression parameter (P ˆ Cˆ Number of state variables). Finally wp denotes the weight of particle p.

We further compute the peak signal-to-noise ratio (PSNR):

PSNRXc “ 20 log10

ˆ

max p|x0,i|q

RMSEXc

˙

(9.6)

Where x0,i indicate the components of the uncompressed state variable X0, and RMSEXc is the root mean

squared error between the compressed and uncompressed state variable. Further, we compute the Pearson

102

correlation coefficient:

ρXc “
CovpX0, Xcq

σX0σXc

“

řN
i px0,i ´ x̄0,iq pxc,i ´ x̄c,iq

b

řN
i px0,i ´ x̄0,iq

2 řN
i pxc,i ´ x̄c,iq

2
(9.7)

The pointwise maximum error:

∆Xmax
c “ max p|x0,i ´ xc,i|q (9.8)

And further the mean, standard deviation, minimum and maximum values for all state variables Xc, and

the compression rate:

CRc “
original size

compressed size
(9.9)

The validator is implemented in python and can be further customized by passing custom validation

functions to the validator class. The path to the custom validator script is set in the MelissaDA config-

uration. If no path is set in the configuration, the framework uses the default validator, calculating the

introduced qualifiers. Listing 9.2 shows an example of a custom validator script.

1 from validator import *
2

3 def custom_write(mean, variance, cycle, nranks, ndims):

4 ’’’

5 cycle - Assimilation cycle

6 nranks - Number of simulation processes

7 mean - { "var1" : [mean_rank1, ...], "var2" : [mean_rank1, ...], ... }

8 variance - { "var1" : [variance_rank1, ...], "var2" : [variance_rank1, ...], ... }

9 ndims - { "var1" : [ndim_rank1, ...], "var2" : [ndim_rank1, ...], ... }

10 ’’’

11 ...

12

13 def custom_evaluate(data, rank, name):

14 ’’’

15 data - variable data on application rank

16 rank - application rank

17 name - variable name

18 ’’’

19 ...

20

21 def custom_compare(data, rank, name):

22 ’’’

23 data[0] - uncompressed variable data on application rank

24 data[1] - compressed variable data on application rank

25 rank - application rank

26 name - variable name

27 ’’’

28 ...

29

30 validator = Validator(

31 evaluate_function=custom_evaluate,

32 compare_function=custom_compare

33 write_funtion=custom_write

34)

35 validator.run()

Listing 9.2: Example of a custom validator script. The Validator class provides arguments for callback functions. The functions
have to comply the function interface. We can pass the functions as scalar variables or arrays. The evaluate and compare
functions must return a scalar value. The result will be included in the data output. A function to write the mean particle state
into files can also be provided.

103

The developer can provide three kinds of custom functions. The evaluation function is called with

the particle state that was compressed with parameter c. The intended use of this function is computing

scalar quantities that depend on the state variables Xc. For instance, the total energy, energy budgets,

etc. The evaluation function(s) can be used in both the validation and dynamic mode. The compare
function is called with both the data of the uncompressed state and the compressed counterpart, and

provides a means to customize the validation. The developer can provide additional qualifiers testing

the consistency of the compressed states. In addition to the two functions, it is also mandatory to pass

appropriate reduction functions, since the functions are called with the rank local parts of the data. All

values that are calculated will be recorded and written into a comma seperated csv file. Finally, it is

possible to provide a custom write function. The intended use of this function is to write the mean state

and variance into a file. The developer is free to decide the structure and format of the file. The compare

and evaluation functions can also be passed as function arrays. It is therefore possible to pass as many

functions as desired of those kinds. The compare functions(s) will only be available in validation mode.

The evaluation function(s) are available in both modes, and the write function is only available during the

dynamic mode.

9.2.4 Dynamic Mode

After identifying the parameters that can safely be applied for data compression leveraging the validation

mode, the framework can be operated in dynamic mode. This mode aims providing the best performance

for the ensemble data assimilation. The same configuration file as for the validation mode serves here

as well for providing the compression parameters (see Listing 9.1). The dynamic mode operates in two

phases. During the initial phase we check all compression parameters using a validation function and

discard those parameters that fail the validation. The remaining parameters are sorted by the compression

rate and kept in a runtime variable. In the following, before writing the particle state to disk, we compress

and decompress the state using the best parameters, and check the integrity of the particle state with the

validation function. If the validation check passes, the state is stored to the file system. If the test fails,

we check the next parameter in the list, and repeat the procedure until we find a parameter that qualifies.

This ensures, that we never use a compression parameter that introduces intolerable deterioration to the

particle state. However, this procedure is optional. The compression can also be directly applied, without

applying the validity check.

Per default, no validator instances are submitted by the launcher during the dynamic mode. However,

validators can be submitted, if wanted, to compute certain quantities using custom evaluation functions.

Moreover, they can be used to write out the mean particle state with a custom function. This has the

advantage, that these tasks are performed asynchronously to the particle propagation. The validators are

implemented in Python, hence, we can leverage Python bindings for common IO libraries to write the

state data (netCDF4 [170], ADIOS [171] HDF5 [172], i.a.).

9.3 Evaluation

We evaluate our framework based on an exemplary workflow a user would follow applying it to a climate

model. First, we use the validation mode to identify viable compression parameters. Afterwards, we

perform the data assimilation in dynamic mode, using the qualified parameters from the validation mode.

104

To measure the performance of the validation tasks, we instrumented the validators with an event logging

mechanism. To measure the performance in dynamic mode, we leverage the internal profiler of MelissaDA.

We present the analysis of the statistical qualifiers from the validation mode in subsection 9.3.3, the

performance of the validators in subsubsection 9.3.4.1, and the performance of the data assimilation in

dynamic mode in subsubsection 9.3.4.2.

9.3.1 Experimental Setup

All of our experiments were performed on Fugaku [173], a 488 (double-precision) PFlops supercomputer

hosted by RIKEN R-CCS in Japan. Fugaku consists of 158,976 compute nodes that are each equipped

with a Fujitsu A64FX CPU. A64FX provides 48 application CPU cores and is integrated with 32 GiB

of HBM2 memory. The compute nodes are interconnected through the TofuD network. Each group

of 16 compute nodes in Fugaku shares a 1.6 TB SSD storage, and all the nodes can access the global

150 PB Lustre file system. We utilize the SSDs in the so-called local mode, where each SSD is divided

proportionally among compute nodes in the given group and is exposed as dedicated per-node file system.

9.3.2 Methodology

We performed experiments with different state sizes (N), and different ensemble sizes (P), to examine the

scaling behavior of the validation mode. We selected such N , that result in state sizes of 16, 32, 64 and

128 MB (state size in Bytes = 8N). We further set P to 25, 50 and 100 particles, using 36, 72 and 132

compute nodes respectively. All experiments are performed using the Loren96 [129] model. The model

equation reads:
dxi
dt
“ pxi`1 ´ xi´2qxi´1 ´ xi ` F i “ 1, . . . , N (9.10)

For values of N ě 9 and F ě 5 the model exhibits chaotic behavior [174]. We set the forcing to 6

in all our experiments. The model is initialized adding small perturbations at t0. Before starting the

data assimilation, we run the model for a long enough time (DT “ 10), so that it exhibits a chaotic

state. The time unit in the Lorenz96 model corresponds to about 5 days in an atmospheric model [174].

Hence, running the model for 10 time steps corresponds to about 50 days. We further introduce a generic

perturbation to the states at the beginning of each particle propagation. To ensure that we can track the

errors that are introduced by the compression method only, we use identical seeds for particles pc with

c “ 0, . . . , C, with C being the number of compression parameters. Thus, at the beginning of each

particle propagation, we reset the seed to a value sd “ fppid, rid, rank, tq, with pid the particle-id, rid the

runner-id, rank the mpi rank of the runner and t the assimilation cycle.

9.3.3 Statistical Evaluation

In this section, we present the analysis of the statistical qualifiers computed in validation mode. The

aim of this analysis is to identify viable compression parameters for production runs. We evaluate the

statistical qualifiers presented in subsection 9.2.3, where they have to fulfill certain requirements which

we will pose in the next paragraphs. If all the requirements are met, the parameter can safely be applied

for compression in the Lorenz96 model.

105

9.3.3.1 Z-Value Deviation

We start with testing the ensemble consistency. For this, we apply the two Z-tests from Baker et al. [164].

The first test checks if the RMSZ values with Zp,0xc,i , and the RMSZ values of the uncompressed ensemble

share the same distribution. According to Baker, it is sufficient to measure the Z-value deviations:

∆RMSZpXc
“

ˇ

ˇ

ˇ
RMSZpXc

´ RMSZpX0

ˇ

ˇ

ˇ
(9.11)

and to require the deviation to be smaller than 0.1:

0 ď ∆RMSZpXc
ă 0.1 (9.12)

As long as all values stay within this interval, the test is considered passed. Figure A.1, Figure A.2,

Figure A.3, and Figure A.4 show the plots resolved by the compression method. The plots show the values

for cycles 1 to 18 of the ensemble data assimilation, indicated by the different colors. The variation of the

z-value deviation can be read from the error bars of the boxes. Additionally, we added a dotted red line at

the value 0.1 to quick verification. The compression methods for which the deviation is in the tolerable

range are: FPZIP with bit precision 40 and 48; ZFP with bit precision 32, 40, and 48; and ZFP with a

tolerance of 10´8 and 10´10. Some methods are disqualified from the first cycle, these are: FPZIP with

bit precision 16 and 24; ZFP with bit precision 16; and the conversion into half precision. The conversion

into single precision does a good job, only after cycle 13 some of the RMSZ values are outside the allowd

interval.

9.3.3.2 Pearson Correlation Coefficient

Second, we look at the Pearson correlation coefficient (Equation 9.7). The coefficient encodes the linear

relationship between the compressed and uncompressed state. It can take values between -1 and 1, where

1 corresponds to a perfect linear relationship. Baker et al. [164] requires this value to be at least 0.99999.

We list the values of the coefficient per compression method in Table A.1. Strictly speaking, only ZFP

with bit precision 48 passes this test. However, if we relax the requirement of Baker et al. slightly, we also

may accept ZFP with bit precision 40; ZFP with a tolerance of 10´1; and FPZIP with bit precision 48. All

of these are below 0.9999.

9.3.3.3 Normalized Error Statistic

We can evaluate the error probagation looking at the normalized point-wise maximum error (NPME) and

normalized root mean squared error (NRMSE):

NRMSEXc “
RMSEXc

max pxc,iq ´min pxc,iq
i “ 1, 2, . . . , N (9.13)

NPMEXc “
max p|xc,i ´ x0,i|q

max pxc,iq ´min pxc,iq
i “ 1, 2, . . . , N (9.14)

We show plots of the two values for all compression parameters in Figure A.5. We can see that the errors

increase very quickly in all cases, and that towards the end the curve flattens. Nevertheless, the repeated

application of lossy compression leads in all cases to relatively high deviations towards. Besides the plot

we also list the values in Table A.1. As we described in subsection 9.3.1, we use the same static seed for

the propagation of identical particles. Therefore, the errors that we see in the plots are introduced only by

106

the compression method. On the other hand, the randomization of the model introduces an error to the

states as well, which limits the effective deterioration introduced by the compression. To make the actual

impact of the compression method apparent, we repeated the experiments for the 25 particle ensemble,

adding a very small additional perturbation of O(10´8) to the states using a random seed. Now, plotting

the NRMSE of the various compression methods versus that of the lossless compressed state, gives us

a graphical means to decide whether the compression method adds additional error or not. Since the

perturbation is indeed random, even the comparison between two identical uncompressed particles differs.

However, if the evolution of the NRMSE of a compressed particle is perfectly linear to the one of the

lossless compressed states, we can infer that no additional error is imposed by the compression method.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

mean NRMSE [-] (lossless compression)

0

0.05

0.1

0.15

0.2

0.25

m
ea

n
 N

R
M

S
E

 [
-]

 (
lo

ss
y

co
m

p
re

ss
io

n
)

HP
SP
FPZIP 16
FPZIP 24
FPZIP 32
FPZIP 40
FPZIP 48
Lossless

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

mean NRMSE [-] (lossless compression)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m
ea

n
 N

R
M

S
E

 [
-]

 (
lo

ss
y

co
m

p
re

ss
io

n
)

ZFP 1E-4
ZFP 1E-6
ZFP 1E-8
ZFP 1E-10
ZFP 16
ZFP 24
ZFP 32
ZFP 40
ZFP 48
Lossless

Figure 9.2: Linear correlation between the timely evolution of the NRMSE of compressed to lossy compressed states. We plot
the NRMSE of the compressed states for each cycle by the respective values for the lossy compressed state.

Figure 9.2 shows the correlations for all compression methods. We can see that ZFP 32, ZFP 40,

ZFP 48, ZFP 1e-8, ZFP 1e-10, FPZIP 40, FPZIP 48 and SP show an almost perfect linear relationship to

the uncompressed state. To quantify the correlation and to develop an exclusion criteria, we performed

a linear regression of the NRMSE-evolution for all P pP ´ 1q{2 combinations of the 25 particles (i.e.,

P “ 25), which have been lossless compressed with FPZIP. In that way, we can determine the variation

of the linear correlation between identical states. This results into an average correlation of A “ 1.00p01q,

107

with A being the slope of the linear regression model y „ x. Thus, we consider the NRMSE test passed,

when the value for the linear correlation lies within the error interval of A. On the basis of the second

method, the compression parameters that qualify here are: FPZIP with bit precision 40 and 48;ZFP with

bit precision 32, 40, and 48; and ZFP with a tolerance of 10´8 and 10´10 (Table 9.1).

9.3.3.4 Summary of the Validation Study

We can now combine the results of all the qualifiers to identify viable compression parameters for the

Lorenz96 model. A detailed view on the values for the NRMSE, NPME, and the Pearsson correlation

coefficient is provided in Table A.1. The Z-value deviation is shown in Figure A.1, Figure A.2, Figure A.3,

and Figure A.4, resolved by the compression method and assimilation cycle. By matching the results with

the requirements, we can extract a subset of viable compression parameters from the initial set. Table 9.1

summarizes the results of the tests for the best parameters after cycle 15. Parameters that pass the tests,

indicated by the check-mark, can be safely used for data compression in the Lorenz96 model (in our

configuration) within 15 assimilation cycles.

Qualifier FPZIP 32 FPZIP 40 FPZIP 48 ZFP 32 ZFP 40 ZFP 48

ρXc 0.67014 0.98790 0.99995 0.98595 0.99994 1
∆RMSZpXc

0.22 0.04 0.0009 0.03 0.001 3.6e-6
ApRMSEq 1.41(05) 1.0007(02) 1.0002(01) 0.9958(22) 0.9964(23) 0.9963(23)

OK 7 7 X 7 X X

ZFP 1e-6 ZFP 1e-8 ZFP 1e-10 SP

ρXc 0.85887 0.99574 0.99998 0.91457
∆RMSZpXc

0.21 0.03 0.0005 0.14
ApRMSEq 1.0855(90) 0.9965(20) 0.9973(20) 1.0232(29)

OK 7 7 X 7

Table 9.1: Summary of the best compression parameters and the exclusion criteria.

9.3.4 Performance

Now that we have outlined how to use the framework and have performed an exemplary analysis to narrow

down viable compression parameters, we will take a look at the performance profile of the framework and

evaluate the savings that we achieve during the dynamic mode.

9.3.4.1 Validation Mode

The computation of the statistical qualifiers uses a two-way parallelization. The first layer of parallelization

is the even distribution of the particles to the available validator instances. In that way each validator

computes the qualifiers for about P {V particles, with P being the number of particles, and V the number

of validators. The second layer of parallelization is among the cores on each validator node. The climate

states are decomposed and the statistical qualifiers are computed in parallel leveraging all available cores.

To minimize the number of files that the validators generate, we additionally connect the instances via

Transmission Control Protocol (TCP) (Zero Message Queue (ZeroMQ)) and gather all the results on the

108

master instance. After gathering the qualifiers, the master generates a coma seperated csv file on global

storage.

Figure 9.3 shows the profile of one validation cycle on a randomly selected validator instance for

the 50 particles and 16 MB experiment. We can see that we spend most of the time to load the particle

states (second row in the figure). The calculation of the ensemble mean and standard deviation, require

the availability of all the ensemble particle states on the validators. Thus, we need to load in total

pC ` 1q ˆ P particles on each validator. In a first implementation, we parallelized the computations for

those quantities differently. We computed the ensemble mean and standard deviation partially on each

validator, containing only the terms for the particles that have been assigned to the validator. However, The

terms have dimension N (see Equation 9.1), and the computation involves the transfer of particle states

among the validators, even worse, we need to provide the ensemble mean on all validators (allreduce) for

computing the ensemble standard deviation. It turns out that those transfers add a considerable amount

of overhead, and the current implementation without state exchanges between validators is considerably

faster, despite the overhead of the additional particle loads.

Figure 9.3: Trace of randomly selected validator for one validation cycle

9.3.4.2 Dynamic mode

In subsection 9.2.3, we identified viable compression parameters, studying the results from the validation

mode. We executed the climate model in dynamic mode using the selected parameters. The parameter

that was selected in dynamic mode was ZFP with bit precision 40 (highest compression rate). We ran the

lorenz96 model data assimilation with a state size of 2 GB. We measured a speedup of 19% for loading

and 57% for storing the state. The compression rate has been the same as it was for the smaller state sizes

(1.534). Therefore, we achieved a reduction of 35% in storage space. We have applied the validation

function before we applied the compression to the particle state. We achieved an effective speedup of

109

ZFP 40 Uncompressed
5.6

5.65

5.7

5.75

5.8

5.85

5.9

5.95

6

6.05

6.1

D
u

ra
ti

o
n

 [
m

s]

#105

Assimilation Cycle

Figure 9.4: Comparison of the time for one assimilytion cycle leveraging the dynamic mode of our proposed framework.

6%, including the time for the compression, decompression, and application of the validation function

(Figure 9.4).

In addition to the parameters that we identified during the analysis in the last section, we also measured

the speedup and compression rates for other compression parameters. Table 9.3 lists the IO performance

that we measured on the runners while executing the climate model in dynamic mode. The times contain

the compression and IO operation. We can see that we save most while storing the states, loading

the states shows a significantly smaller speedup. We define the speedup is by ∆TSU “
Tc´T0
T0

. The

maximum speedup is achieved with ZFP and FPZIP at 32 bit precision and with ZFP 10´6 accuracy. The

corresponding speedup is 39%, 43% and 44% respectively for the store, and 19%, 19% and 18% for the

load operation. The parameters which have passed all tests also show considerable speedup for storing

and loading the states. Even the most accurate methods show a reasonable speedup of 21% and 22%

for storing and 15% and 12% for loading the states. We further observe that the speedup increases with

larger state sizes. Moreover, we can see in Table 9.2, that the compression rate does not change with an

increasing state size. This means that we can expect even better speedups and equal reduction rates for

larger state sizes.

Compression Rate

Cycle FPZIP 32 FPZIP 40 FPZIP 48 ZFP 32 ZFP 40 ZFP 48 HP SP

16 2.332125 1.805610 1.473040 1.897811 1.533923 1.287127 4 2
32 2.332534 1.805876 1.473223 1.897829 1.533934 1.287135 4 2
64 2.332749 1.806008 1.473311 1.897833 1.533936 1.287137 4 2
128 2.332955 1.806137 1.473397 1.897827 1.533933 1.287135 4 2

ZFP 1e-6 ZFP 1e-8 ZFP 1e-10

16 2.240469 1.799499 1.503566
32 2.240486 1.799508 1.503571
64 2.240469 1.799498 1.503564
128 2.240469 1.799497 1.503564

Table 9.2: Compression rates, CRc, for selected compression parameters, ordered by the state size.

110

9.3.5 Discussion

Our analysis is performed on the Lorenz96 model, which has only one state variable. Baker et al. [164]

evaluates lossy compression for four different variables of the CESM. The evaluation shows different

behavior for all variables in compression rate and variable consistency. For instance, compression with

FPZIP-24 leads to compression rates between 2.56 and 5.26 and NRMSE values between 1.8e-5 and 6.5e-

7. Further, the ensemble consistency varies significantly among the variables for different compression

methods. This demonstrates that we need to allow for different compression parameters per variable

and that each variable achieves a different compression rate. That is to say, our evaluation does not give

a general statement for the performance of the compression parameters. Moreover, it underlines the

importance of studying the impact of lossy compression on consistency for each model and its variables

separately.

State
Size (MB)

Orig. FPZIP
32

FPZIP
40

FPZIP
48

ZFP
32

ZFP
40

ZFP
48

ZFP
1e-6

ZFP
1e-8

ZFP
1e-10

Load State from PFS (median) [ms]

16 877.1 776.8 769.6 779.0 805.3 820.3 824.3 - - -
32 933.8 793.7 848.2 860.3 872.2 907.5 926.7 810.1 854.6 871.3
64 989.6 957.5 1011.9 1052.4 845.0 892.4 897.7 877.6 945.7 948.2
128 1185.0 954.5 1030.5 1119.2 957.9 995.7 1011.9 977.3 1045.6 1044.4

Speedup Load [%]

16 - 11.4 12.3 11.2 8.2 6.5 6.0 - - -
32 - 15.0 9.2 7.9 6.6 2.8 0.8 13.2 8.5 6.7
64 - 3.2 2.3 6.3 14.6 9.8 9.3 11.3 4.4 4.2
128 - 19.4 13.0 5.6 19.2 16.0 14.6 17.5 11.8 11.9

Store State to PFS (median) [ms]

16 524.9 479.6 481.2 491.2 500.0 501.3 516.3 - - -
32 651.0 513.7 527.4 567.9 524.7 540.0 593.2 514.3 531.6 588.2
64 761.0 585.4 599.2 659.0 461.1 498.4 534.9 582.6 590.0 653.3
128 1215.5 744.8 966.7 1132.2 698.2 869.9 956.4 676.9 833.3 943.8

Speedup Store [%]

16 - 8.6 8.3 6.4 4.7 4.5 1.6 - - -
32 - 21.1 19.0 12.8 19.4 17.1 8.9 21.0 18.3 9.6
64 - 23.1 21.3 13.4 39.4 34.5 29.7 23.4 22.5 14.2
128 - 38.7 20.5 6.9 42.6 28.4 21.3 44.3 31.4 22.4

Table 9.3: Speedup for the various compression parameters while storing and loading the states fomr the PFS.

9.4 Related Work

Compression of scientific datasets is not only interesting for numerical climate science. Every field in

HPC that deals with large datasets benefits from reduced data sizes. Data compression can be applied,

for instance, to datasets before visualization and to generate checkpoints. A variety of compression

algorithms are used in HPC: ZFP [17], FPZIP [18], ISABELA [19], SZ [20, 175], MGARD [21] and

111

MGARD+ [22], to name a few. IO libraies such as ADIOS [176], HDF5 [172], and NetCDF4 [177] offer

high-level interfaces for compression of datasets in self-descriptive hierarchical files.

The impact and applicability of data compression to scientific datasets has been studied in several

works [156, 164–166, 177, 178]. The Community Earth System Model (CESM) [45, 179] includes a

Port-Validation tool, originally used to determine the consistency of the results after porting to a different

architecture. According to Baker et al. [164], the tool can also be used to validate data compression for

the CESM module states. Z-Checker [180] is a framework that can be used to analyze the impact of

compression to any scientific dataset. The framework offers offline and online analysis of the datasets.

The online mode can be used after instrumenting the code with the Z-Checker API functions. The online

mode can be used inside the application to observe the dynamic behavior of data compression.

Our proposed framework is similar to the port validation tool in the CESM, as the tool checks ensemble

consistency and can detect issues in the climate model after porting it to a new machine. However, our

framework (1) is not constrainted to a certain climate modelling system, (2) is more flexible as it enables

definition of custom validation functions and (3) provides automatic and direct comparison between

ensembles that use different compression methods. Z-Checker provides several features to evaluate the

impact of the compression method on the data, and the online mode can potentially be used to perform

an analysis that is similar to ours. However, this would be associated with considerable implementation

efforts, and the tool does not provide measures to detect ensemble inconsistencies.

9.5 Conclusion

In this work, we present a novel framework, build on top of the MelissaDA architecture, that provides

validation and application of lossy compression in climate models for ensemble data assimilation. We

conducted and presented an exemplary study based on the Loren96 model, where we evaluated the

applicability of the FPZIP and ZFP 16, 24, 32, 40 and 48 bit precision modes, the ZFP 1e-4, 1e-6, 1e-8,

1e-10 accuracy modes, and single and half precision floating point representations for data compression.

Our validation follows the suggestion of Baker et al. [164], requiring the deviation of the Z-Values of

compressed and uncompressed states to be less than 0.1 (Chapter 9.12), the pearson correlation coefficient

(Chapter 9.7) of the compressed and the uncompressed state to be at least 0.9999 (Baker et al. is more

restrictive, requiring at least 0.99999), and the impact on the normalized root mean squared error of

compressed and uncompressed state to be negligible (compare Chapter 9.3.3.3). After matching our

results with this metric, we remain with FPZIP 48, ZFP 40 and 48 and ZFP 1e-10. According to this,

those parameters can safely be applied for the compression of the states of the Lorenz96 model in our

configuration for 15 assimilation cycles, without affecting the data assimilation result. The compression

rates for those parameters are 1.47, 1.53 and 1.5 respectively, which translates to a saving of 1/3 in storage

space. Our measurements during the dynamic mode and a state size of 2GB, show speedups of 19% while

loading and 57% while storing the states. We also check the integrity of the states applying the default

validation function. These results into an effective speedup of 6% for the full assimilation cycle.

112

Part IV

Epilogue

113

Chapter 10

Thesis Conclusion

The contributions that we have made during this doctorate are of two kinds: (i) Advancing state-of-the-art

checkpointing techniques, and (ii) Introducing fault-tolerance into ensemble methods. The contributions

of the first kind are very general and can be applied to practically every type of HPC application. The

contributions of the second kind are applicable to certain kinds of ensemble methods. We have defined the

ensembles that we have focused on as numerical systems that are only coupled in their outcome for future

iterations (output dependency). Other than that, they can be executed independently of each other. The

contributions (ii) can be applied to every ensemble method that follows this definition. Specific examples

of those methods can be found in ensemble learning (bagging, random subspace, stacking, etc.) [181],

digital twins [182], and numerical weather prediction. In addition to the definition above, systems that

benefit from our contributions are typically large scale; many ensemble members and large ensemble

states. The contributions are presented in this thesis according to the separation above. Contributions of

kind (i) are presented in part II of this thesis and contributions of kind (ii) in part III.

1st Contribution (chapter 5) We designed and implemented a novel Differential Checkpointing (DCP)

implementation that relies on hashing the data variables itself, instead of utilizing the page protection

mechanism of the Operating System (OS). Our method eliminates the overhead introduced during runtime,

resulting from the OS signalling, and removes the restriction to block sizes that must be equal to the

memory page size. We observed a reduction of the checkpoint overhead linear to the dirty data ratio of up

to almost 80% if writing 3% of the data. We further developed a model that allows to predict the overhead

reduction, after measuring the time to write and the time to hash a block of a certain size.

2nd Contribution (chapter 6) We designed and implemented an API and runtime, that allows automatic

elastic recovery, and eliminates the separation of IO for resiliency and for scientific data. The runtime

provides the asynchronous creation of shared HDF5 files on global storage. We implemented our

proposal into the API of FTI to provide both, access to a number of modern checkpointing features

(local checkpointing, partner checkpointing, encoded checkpointing, differential checkpointing, etc.),

and the output of structured scientific data into a checkpoint file that is accessible with 3rd party tools.

Furthermore, the API allows to perform the application restart with an arbitrary number of processes

(elastic recovery). We compared the performance of our asynchronous IO to a similar feature provided by

Adaptable Input Output System (ADIOS), and we demonstrated that our runtime is 5 times faster.

3rd Contribution (chapter 7) We implemented Checkpoint-Restart (CR) into the MelissaDA frame-

work. MelissaDA is an elastic large-scale ensemble data assimilation framework, offering a number of

ensemble methods for data assimilation in climate modelling. The framework shows high parallel effi-

ciency and excellent fault tolerance properties. Our CR implementation manages to (i) hide the checkpoint

115

overhead entirely, to (ii) recover with only very few or no recomputation, (iii) provide elastic recovery for

the server, and (iv) store the scientific output into globally shared HDF5 files. Our implementation uses

the API from the 2nd contribution to provide elastic recovery, and to provide the data in HDF5.

4th Contribution (chapter 8) We designed and implemented an efficient and fault-tolerant PF based

on the MelissaDA architecture. We exploit certain properties of particle filters that allow us to minimize

the transfers between nodes and the global storage layer, and to achieve a high resource utilization. We

equip the framework with a distributed particle cache, deployed on node-local storage to further increase

parallel efficiency and to mitigate fault-tolerance. The framework shows a resource utilization of 96% for

a particle filter with 945 particles and a state size of 2.5 GB.

5th Contribution (chapter 9) We designed and implemented a framework for automatic validation and

adaptive application of lossy compression for climate states in ensemble data assimilation. The framework

addresses the issues arising from the large amount of data afflicted with ensemble data assimilation. On

the other hand, ensemble states in climate science are typically very sensitive to even small perturbations.

Therefore, the application of lossy compression needs to be applied very carefully. Our framework

provides two modes of operation: the (i) validation mode, testing the impact of lossy compression

parameters on ensemble and ensemble state, and the (ii) dynamic mode:, applying viable parameters

during the data assimilation process. The compression parameters can be applied to each variable of the

ensemble state independently, as different variables often tolerate a different degree of deterioration. We

provide an exemplary study using the Lorenz96 climate model, where we identify viable compression

parameters and achieve speedups of up to 28% during the dynamic mode after applying the parameters to

the climate state, before storing it to the file system.

116

Chapter 11

List of Publications

• Keller, K., Kestelman, A. C., Bautista-Gomez, L. (2021, December). Towards Zero-Waste Recovery

and Zero-Overhead Checkpointing in Ensemble Data Assimilation. In 2021 IEEE 28th International

Conference on High Performance Computing, Data, and Analytics (HiPC) (pp. 131-140). IEEE.

• Keller, K., Parasyris, K., Bautista-Gomez, L. (2020, December). Design and Study of Elastic

Recovery in HPC Applications. In 2020 IEEE 27th International Conference on High Performance

Computing, Data, and Analytics (HiPC) (pp. 261-270). IEEE.

• Maronas, M., Mateo, S., Keller, K., Bautista-Gomez, L., Ayguadé, E., Beltran, V. (2020). Extending

the openchk model with advanced checkpoint features. Future Generation Computer Systems, 112,

738-750.

• Parasyris, K., Keller, K., Bautista-Gomez, L., Unsal, O. (2020, May). Checkpoint restart support

for heterogeneous hpc applications. In 2020 20th IEEE/ACM International Symposium on Cluster,

Cloud and Internet Computing (CCGRID) (pp. 242-251). IEEE.

• Keller, K., Bautista-Gomez, L. (2019, May). Application-level differential checkpointing for HPC

applications with dynamic datasets. In 2019 19th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing (CCGRID) (pp. 52-61). IEEE.

• Losada, N., Bautista-Gomez, L., Keller, K., Unsal, O. (2018, November). Towards Ad Hoc

Recovery For Soft Errors. In 2018 IEEE/ACM 8th Workshop on Fault Tolerance for HPC at

eXtreme Scale (FTXS) (pp. 1-10). IEEE.

• Gomez, L. B., Keller, K., Unsal, O. (2018, June). Performance study of non-volatile memories

on a high-end supercomputer. In International Conference on High Performance Computing (pp.

145-156). Springer, Cham.

117

Part V

Appendix

119

Appendix A

Validation Framework - Figures and Tables

NRMSE

Cycle FPZIP 32 FPZIP 40 FPZIP 48 ZFP 32 ZFP 40 ZFP 48 HP SP

1 2.12e-07 8.32e-10 3.25e-12 1.11e-09 4.34e-12 1.69e-14 1.16e-04 1.42e-08

3 4.88e-06 1.87e-08 6.90e-11 2.34e-08 1.02e-10 3.91e-13 2.47e-03 3.31e-07

5 1.25e-04 5.29e-07 2.23e-09 6.47e-07 3.16e-09 1.35e-11 2.10e-02 8.88e-06

7 1.88e-03 1.17e-05 5.36e-08 1.31e-05 6.32e-08 2.21e-10 6.58e-02 2.09e-04

9 1.04e-02 1.99e-04 8.44e-07 2.39e-04 1.10e-06 5.75e-09 1.20e-01 1.90e-03

11 3.32e-02 1.68e-03 2.20e-05 1.97e-03 4.64e-05 3.38e-07 1.60e-01 8.83e-03

13 7.27e-02 7.45e-03 2.09e-04 8.19e-03 2.26e-04 1.42e-06 1.84e-01 2.73e-02

15 1.18e-01 2.25e-02 1.36e-03 2.44e-02 1.55e-03 2.00e-05 1.94e-01 6.02e-02

ZFP 1e-6 ZFP 1e-8 ZFP 1e-10

1 3.35e-08 2.59e-10 2.03e-12

3 8.02e-07 5.82e-09 4.39e-11

5 2.19e-05 1.55e-07 1.21e-09

7 4.58e-04 3.39e-06 2.57e-08

9 3.37e-03 6.34e-05 5.36e-07

11 1.37e-02 7.48e-04 1.04e-05

13 3.82e-02 3.93e-03 1.42e-04

15 7.71e-02 1.34e-02 9.56e-04

NPME

Cycle FPZIP 32 FPZIP 40 FPZIP 48 ZFP 32 ZFP 40 ZFP 48 HP SP

1 7.68e-06 2.34e-08 1.33e-10 4.74e-08 3.44e-10 1.05e-12 6.56e-03 5.26e-07

3 1.38e-03 4.38e-06 1.52e-08 3.81e-06 2.66e-08 9.60e-11 4.11e-01 1.02e-04

5 4.86e-02 2.34e-04 1.11e-06 3.01e-04 1.68e-06 8.27e-09 7.35e-01 3.80e-03

7 4.77e-01 6.16e-03 3.15e-05 5.90e-03 3.42e-05 1.10e-07 7.72e-01 1.17e-01

9 6.76e-01 1.04e-01 5.05e-04 1.31e-01 6.60e-04 4.09e-06 8.00e-01 4.97e-01

11 7.47e-01 5.05e-01 1.73e-02 5.19e-01 3.01e-02 2.35e-04 8.24e-01 6.47e-01

13 8.00e-01 6.35e-01 1.27e-01 6.59e-01 1.31e-01 1.04e-03 8.08e-01 7.38e-01

15 7.96e-01 7.24e-01 4.59e-01 7.15e-01 4.57e-01 1.29e-02 8.05e-01 7.79e-01

ZFP 1e-6 ZFP 1e-8 ZFP 1e-10

1 1.54e-06 7.20e-09 7.62e-11

3 2.52e-04 1.88e-06 8.73e-09

121

5 1.06e-02 6.61e-05 5.37e-07

7 2.25e-01 1.77e-03 1.24e-05

9 5.64e-01 3.68e-02 3.10e-04

11 6.70e-01 3.59e-01 7.01e-03

13 7.53e-01 5.80e-01 9.36e-02

15 7.80e-01 6.83e-01 3.73e-01

Pearson Correlation Coefficient

Cycle FPZIP 32 FPZIP 40 FPZIP 48 ZFP 32 ZFP 40 ZFP 48 HP SP

1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 0.99986 1

5 1 1 1 1 1 1 0.98953 1

7 0.99992 1 1 1 1 1 0.89889 1

9 0.99750 1 1 1 1 1 0.66111 0.99991

11 0.97405 0.99993 1 0.99991 1 1 0.38879 0.99815

13 0.87646 0.99870 1 0.99839 1 1 0.20570 0.98261

15 0.67014 0.98790 0.99995 0.98595 0.99994 1 0.11110 0.91457

ZFP 1e-6 ZFP 1e-8 ZFP 1e-10

1 1 1 1

3 1 1 1

5 1 1 1

7 0.99999 1 1

9 0.99974 1 1

11 0.99550 0.99999 1

13 0.96534 0.99963 1

15 0.85887 0.99574 0.99998

Table A.1: Average values of the statistical qualifiers NRMSE, NPME and ρXc for selected compression parameters. The rows
show the evolution of the qualifiers by assimilation cycles.

122

FPZIP lossless FPZIP 16 FPZIP 24 FPZIP 32 FPZIP 40 FPZIP 48
10-15

10-10

10-5

100

105
Z

-V
al

u
e

D
ev

ia
ti

o
n

 [
-]

Deviation from Z-Value by Compression Method

Figure A.1: Z-Value deviation, ∆RMSZp
Xc

(Equation 9.11) for FPZIP. The colors indicate values at different cycles.

ZFP lossless ZFP 16 ZFP 24 ZFP 32 ZFP 40 ZFP 48
10-15

10-10

10-5

100

105

Z
-V

al
u

e
D

ev
ia

ti
o

n
 [

-]

Deviation from Z-Value by Compression Method

Figure A.2: Z-Value deviation, ∆RMSZp
Xc

(Equation 9.11) for ZFP in precision mode. The colors indicate values at different
cycles.

123

ZFP 1e-4 ZFP 1e-6 ZFP 1e-8 ZFP 1e-10
10-15

10-10

10-5

100

105

Z
-V

al
u

e
D

ev
ia

ti
o

n
 [

-]

Deviation from Z-Value by Compression Method

Figure A.3: Z-Value deviation, ∆RMSZp
Xc

(Equation 9.11) for ZFP in accuracy mode. The colors indicate values at different
cycles.

half precision single precision
10-15

10-10

10-5

100

105

Z
-V

al
u

e
D

ev
ia

ti
o

n
 [

-]

Deviation from Z-Value by Compression Method

Figure A.4: Z-Value deviation, ∆RMSZp
Xc

(Equation 9.11) for half and single precision. The colors indicate values at different
cycles.

124

Lossless 16 24 32 40 48 HP SP

Lossless 16 24 32 40 48 HP SP

10-10

10-5

100

V
al

u
e

[-
]

Normalized Maximum Pointwise Error and RMSE for FPZIP, HP and SP

Normalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSE

Lossless
1e-4 1e-6 1e-8

1e-10 16 24 32 40 48

Lossless
1e-4 1e-6 1e-8

1e-10 16 24 32 40 48
10-15

10-10

10-5

100

V
al

u
e

[-
]

Normalized Maximum Pointwise Error and RMSE for ZFP

Normalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSENormalized maximum pointwise error Normalized RMSE

Figure A.5: Normalized maximum pointwise error and normalized root mean square error for (a) FPZIP, half and single
precision, and (b) ZFP in accuracy and precision modes. The colors indicate values at different cycles.

125

Bibliography

[1] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson, Laura Carrington,

George Chiu, Robert Colwell, William Dally, Jack Dongarra, Al Geist, Rud Haring, Jeffrey

Hittinger, Adolfy Hoisie, Dean Micron Klein, Peter Kogge, Richard Lethin, Vivek Sarkar, Robert

Schreiber, John Shalf, Thomas Sterling, Rick Stevens, Jon Bashor, Ron Brightwell, Paul Coteus,

Erik Debenedictus, Jon Hiller, K. H. Kim, Harper Langston, Richard Micron Murphy, Clayton

Webster, Stefan Wild, Gary Grider, Rob Ross, Sven Leyffer, and James Laros III. DOE Advanced

Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research

Challenges. Technical report, USDOE Office of Science (SC) (United States), February 2014.

[2] Z. Miao, J. Calhoun, and R. Ge. Energy analysis and optimization for resilient scalable linear

systems. In 2018 IEEE International Conference on Cluster Computing (CLUSTER), pages 24–34,

2018.

[3] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel. Resilience-aware resource management

for exascale computing systems. IEEE Transactions on Sustainable Computing, 3(4):332–345,

2018.

[4] C. McNairy. Exascale fault tolerance challenge and approaches. In 2018 IEEE International

Reliability Physics Symposium (IRPS), pages 3C.4–1–3C.4–10, 2018.

[5] Saurabh Hukerikar and Christian Engelmann. Resilience design patterns: A structured approach to

resilience at extreme scale. arXiv preprint arXiv:1708.07422, 2017.

[6] Lili Ju, Wei Leng, Zhu Wang, and Shuai Yuan. Numerical investigation of ensemble methods

with block iterative solvers for evolution problems. Discrete and Continuous Dynamical Systems -

B, 25(12):4905, 2020. Company: Discrete and Continuous Dynamical Systems - B Distributor:

Discrete and Continuous Dynamical Systems - B Institution: Discrete and Continuous Dynamical

Systems - B Label: Discrete and Continuous Dynamical Systems - B Publisher: American Institute

of Mathematical Sciences.

[7] Brian Ancell and Gregory J. Hakim. Comparing Adjoint- and Ensemble-Sensitivity Analysis with

Applications to Observation Targeting. Monthly Weather Review, 135(12):4117–4134, December

2007. Publisher: American Meteorological Society Section: Monthly Weather Review.

[8] Ryan D. Torn and Gregory J. Hakim. Ensemble-Based Sensitivity Analysis. Monthly Weather

Review, 136(2):663–677, February 2008. Publisher: American Meteorological Society Section:

Monthly Weather Review.

127

[9] M. S. Cao, L. X. Pan, Y. F. Gao, D. Novák, Z. C. Ding, D. Lehký, and X. L. Li. Neural network

ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Computing and

Applications, 28(7):1583–1590, July 2017.

[10] Jinjun Ren, Yuping Wang, Mingqian Mao, and Yiu-ming Cheung. Equalization ensemble for large

scale highly imbalanced data classification. Knowledge-Based Systems, 242:108295, April 2022.

[11] Omer Sagi and Lior Rokach. Ensemble learning: A survey. WIREs Data Mining and Knowledge

Discovery, 8(4):e1249, 2018. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/widm.1249.

[12] Geir Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer-Verlag, Berlin, Heidel-

berg, 2006.

[13] Peter Jan van Leeuwen. Particle Filtering in Geophysical Systems. Monthly Weather Review,

137(12):4089–4114, December 2009. Publisher: American Meteorological Society Section:

Monthly Weather Review.

[14] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama, and S. Matsuoka. Fti:

High performance fault tolerance interface for hybrid systems. In SC ’11: Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage and Analysis,

pages 1–12, Nov 2011.

[15] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, modeling, and evaluation

of a scalable multi-level checkpointing system. In SC ’10: Proceedings of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking, Storage and Analysis,

pages 1–11, Nov 2010.

[16] Franck Cappello, Kathryn Mohror, and Bogdan Nicolae. Overview — veloc documentation, 2019.

Available at https://veloc.readthedocs.io/en/latest/.

[17] Peter Lindstrom. Fixed-Rate Compressed Floating-Point Arrays. IEEE Transactions on Visual-

ization and Computer Graphics, 20(12):2674–2683, December 2014. Conference Name: IEEE

Transactions on Visualization and Computer Graphics.

[18] Peter Lindstrom. FPZIP, 2017. Language: en.

[19] Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham, Rob Ross,

and Nagiza F. Samatova. Compressing the incompressible with ISABELA: in-situ reduction of

spatio-temporal data. In Proceedings of the 17th international conference on Parallel processing -

Volume Part I, Euro-Par’11, pages 366–379, Berlin, Heidelberg, August 2011. Springer-Verlag.

[20] Sheng Di and Franck Cappello. Fast Error-Bounded Lossy HPC Data Compression with SZ. In

2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 730–739,

May 2016. ISSN: 1530-2075.

[21] Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel techniques for compres-

sion and reduction of scientific data—the univariate case. Computing and Visualization in Science,

19(5):65–76, 2018.

128

https://veloc.readthedocs.io/en/latest/

[22] Xin Liang, Ben Whitney, Jieyang Chen, Lipeng Wan, Qing Liu, Dingwen Tao, James Kress, Dave

Pugmire, Matthew Wolf, Norbert Podhorszki, and Scott Klasky. MGARD+: Optimizing Multilevel

Methods for Error-bounded Scientific Data Reduction. arXiv:2010.05872 [cs], November 2020.

arXiv: 2010.05872.

[23] Edward N Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141,

1963.

[24] R. N. Bannister. A review of operational methods of variational and ensemble-variational data

assimilation. Quarterly Journal of the Royal Meteorological Society, 143(703):607–633, 2017.

_eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.2982.

[25] H. Ngodock, I. Souopgui, M. Carrier, S. Smith, J. Osborne, and J. D’Addezio. An ensemble

of perturbed analyses to approximate the analysis error covariance in 4dvar. Tellus A: Dynamic

Meteorology and Oceanography, 72(1):1–12, January 2020. Publisher: Taylor & Francis _eprint:

https://doi.org/10.1080/16000870.2020.1771069.

[26] Ganesh Gopalakrishnan, Ibrahim Hoteit, Bruce D. Cornuelle, and Daniel L. Rudnick. Com-

parison of 4DVAR and EnKF state estimates and forecasts in the Gulf of Mexico. Quar-

terly Journal of the Royal Meteorological Society, 145(721):1354–1376, 2019. _eprint:

https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3493.

[27] Andrew Lorenc. Relative merits of 4d-var and ensemble kalman filter. Technical report, NWP

Internal Report, 2003.

[28] Andrew C. Lorenc. The potential of the ensemble Kalman filter for NWP—a comparison with 4D-

Var. Quarterly Journal of the Royal Meteorological Society, 129(595):3183–3203, 2003. _eprint:

https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1256/qj.02.132.

[29] D. M. Barker, W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao. A Three-Dimensional

Variational Data Assimilation System for MM5: Implementation and Initial Results. Monthly

Weather Review, 132(4):897–914, April 2004. Publisher: American Meteorological Society Section:

Monthly Weather Review.

[30] Kayo Ide, Philippe Courtier, Michael Ghil, and Andrew C. Lorenc. Unified Notation for Data

Assimilation : Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in

Meteology and Oceanography: Theory and Practice). Journal of the Meteorological Society of

Japan. Ser. II, 75(1B):181–189, 1997.

[31] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte

Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143–

10162, 1994. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/94JC00572.

[32] Geir Evensen. Using the extended Kalman filter with a multilayer quasi-geostrophic ocean

model. Journal of Geophysical Research: Oceans, 97(C11):17905–17924, 1992. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/92JC01972.

129

[33] Geir Evensen. Open boundary conditions for the extended kalman filter with a quasi-geostrophic

ocean model. J. Geophys. Res, 98:16–529, 1993.

[34] Peter Jan van Leeuwen, Hans R. Künsch, Lars Nerger, Roland Potthast, and Sebastian

Reich. Particle filters for high-dimensional geoscience applications: A review. Quar-

terly Journal of the Royal Meteorological Society, 145(723):2335–2365, 2019. _eprint:

https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3551.

[35] Peter Jan Van Leeuwen, Hans R Künsch, Lars Nerger, Roland Potthast, and Sebastian Reich.

Particle filters for high-dimensional geoscience applications: A review. Quarterly Journal of the

Royal Meteorological Society, 145(723):2335–2365, 2019.

[36] Melanie Ades and Peter Jan Van Leeuwen. An exploration of the equivalent weights particle filter.

Quarterly Journal of the Royal Meteorological Society, 139(672):820–840, 2013.

[37] Peter Jan van Leeuwen. Nonlinear data assimilation in geosciences: an extremely efficient particle

filter. Quarterly Journal of the Royal Meteorological Society, 136(653):1991–1999, 2010.

[38] DOE/NNSA, Lab announce partnership with Cray to develop NNSA’s first exascale supercomputer.

[39] Guillaume Aupy. Resilient and energy-efficient scheduling algorithms at scale. PhD thesis, École

Normale Supérieure de Lyon, 2014.

[40] Takemasa Miyoshi, Keiichi Kondo, and Toshiyuki Imamura. The 10,240-member ensemble Kalman

filtering with an intermediate AGCM: 10240-MEMBER ENKF WITH AN AGCM. Geophysical

Research Letters, 41(14):5264–5271, July 2014.

[41] Andrew J. Majda and Xin T. Tong. Performance of Ensemble Kalman filters in large dimensions.

arXiv:1606.09321 [math, stat], May 2017. arXiv: 1606.09321.

[42] P. Sakov, F. Counillon, L. Bertino, K. A. Lisæter, P. R. Oke, and A. Korablev. TOPAZ4: an ocean-

sea ice data assimilation system for the North Atlantic and Arctic. Ocean Science, 8(4):633–656,

August 2012. Publisher: Copernicus GmbH.

[43] Laurent Bertino and Jiping Xie. Operational Forecasting of Sea Ice in the Arctic Using TOPAZ

System. In Ola M. Johannessen, Leonid P. Bobylev, Elena V. Shalina, and Stein Sandven, editors,

Sea Ice in the Arctic: Past, Present and Future, pages 389–397. Springer International Publishing,

Cham, 2020.

[44] James W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, Jennifer E. Kay, P. J. Kushner, J.-F.

Lamarque, W. G. Large, D. Lawrence, K. Lindsay, W. H. Lipscomb, M. C. Long, N. Mahowald,

D. R. Marsh, R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins, J. J. Hack,

J. Kiehl, and S. Marshall. The Community Earth System Model: A Framework for Collaborative

Research. Bulletin of the American Meteorological Society, 94(9):1339–1360, 09 2013.

[45] G. Danabasoglu, J.-F. Lamarque, J. Bacmeister, D. A. Bailey, A. K. DuVivier, J. Edwards,

L. K. Emmons, J. Fasullo, R. Garcia, A. Gettelman, C. Hannay, M. M. Holland, W. G. Large,

P. H. Lauritzen, D. M. Lawrence, J. T. M. Lenaerts, K. Lindsay, W. H. Lipscomb, M. J. Mills,

130

R. Neale, K. W. Oleson, B. Otto-Bliesner, A. S. Phillips, W. Sacks, S. Tilmes, L. van Kamp-

enhout, M. Vertenstein, A. Bertini, J. Dennis, C. Deser, C. Fischer, B. Fox-Kemper, J. E. Kay,

D. Kinnison, P. J. Kushner, V. E. Larson, M. C. Long, S. Mickelson, J. K. Moore, E. Nienhouse,

L. Polvani, P. J. Rasch, and W. G. Strand. The Community Earth System Model Version 2

(CESM2). Journal of Advances in Modeling Earth Systems, 12(2):e2019MS001916, 2020. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001916.

[46] S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R.

Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski. Predicting Near-Term Changes

in the Earth System: A Large Ensemble of Initialized Decadal Prediction Simulations Using the

Community Earth System Model. Bulletin of the American Meteorological Society, 99(9):1867–

1886, September 2018. Publisher: American Meteorological Society Section: Bulletin of the

American Meteorological Society.

[47] Alicia R. Karspeck, Gokhan Danabasoglu, Jeffrey Anderson, Svetlana Karol, Nancy Collins,

Mariana Vertenstein, Kevin Raeder, Tim Hoar, Richard Neale, Jim Edwards, and Anthony Craig. A

global coupled ensemble data assimilation system using the Community Earth System Model and

the Data Assimilation Research Testbed. Quarterly Journal of the Royal Meteorological Society,

144(717):2404–2430, 2018. _eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3308.

[48] Dan Fu, Justin Small, Jaison Kurian, Yun Liu, Brian Kauffman, Abishek Gopal, Sanjiv Ramachan-

dran, Zhi Shang, Ping Chang, Gokhan Danabasoglu, Katherine Thayer-Calder, Mariana Vertenstein,

Xiaohui Ma, Hengkai Yao, Mingkui Li, Zhao Xu, Xiaopei Lin, Shaoqing Zhang, and Lixin

Wu. Introducing the New Regional Community Earth System Model, R-CESM. Bulletin of the

American Meteorological Society, 102(9):E1821–E1843, September 2021. Publisher: American

Meteorological Society Section: Bulletin of the American Meteorological Society.

[49] A Benedetti, J Morcrette, O Boucher, A Dethof, R Engelen, M Fisher, H Flentjes, N Huneeus,

L Jones, J Kaiser, et al. Aerosol analysis and forecast in the ECMWF integrated forecast system:

Data assimilation. ECMWF, 2008.

[50] Christopher D. Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and

Sarah P. E. Keeley. Climate model configurations of the ECMWF Integrated Forecasting System

(ECMWF-IFS cycle 43r1) for HighResMIP. Geoscientific Model Development, 11(9):3681–3712,

September 2018. Publisher: Copernicus GmbH.

[51] Masaki Satoh, Hirofumi Tomita, Hisashi Yashiro, Hiroaki Miura, Chihiro Kodama, Tatsuya Seiki,

Akira T. Noda, Yohei Yamada, Daisuke Goto, Masahiro Sawada, Takemasa Miyoshi, Yosuke Niwa,

Masayuki Hara, Tomoki Ohno, Shin-ichi Iga, Takashi Arakawa, Takahiro Inoue, and Hiroyasu

Kubokawa. The Non-hydrostatic Icosahedral Atmospheric Model: description and development.

Progress in Earth and Planetary Science, 1(1):18, October 2014.

[52] Koji Terasaki, Masahiro Sawada, and Takemasa Miyoshi. Local Ensemble Transform Kalman Filter

Experiments with the Nonhydrostatic Icosahedral Atmospheric Model NICAM. Sola, 11:23–26,

2015.

131

[53] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M. Arblaster, S. C. Bates,

G. Danabasoglu, J. Edwards, M. Holland, P. Kushner, J.-F. Lamarque, D. Lawrence, K. Lindsay,

A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, and M. Vertenstein. The Community

Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying

Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteo-

rological Society, 96(8):1333–1349, August 2015. Publisher: American Meteorological Society

Section: Bulletin of the American Meteorological Society.

[54] Martin Leutbecher. Ensemble size: How suboptimal is less than infinity? Quar-

terly Journal of the Royal Meteorological Society, 145(S1):107–128, 2019. _eprint:

https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3387.

[55] Takemasa Miyoshi, Guo-Yuan Lien, Shinsuke Satoh, Tomoo Ushio, Kotaro Bessho, Hirofumi

Tomita, Seiya Nishizawa, Ryuji Yoshida, Sachiho A. Adachi, Jianwei Liao, Balazs Gerofi, Yutaka

Ishikawa, Masaru Kunii, Juan Ruiz, Yasumitsu Maejima, Shigenori Otsuka, Michiko Otsuka, Kozo

Okamoto, and Hiromu Seko. “Big Data Assimilation” Toward Post-Petascale Severe Weather

Prediction: An Overview and Progress. Proceedings of the IEEE, 104(11):2155–2179, November

2016. Conference Name: Proceedings of the IEEE.

[56] Takemasa Miyoshi, Keiichi Kondo, and Koji Terasaki. Big Ensemble Data Assimilation in

Numerical Weather Prediction. Computer, 48(11):15–21, November 2015. Conference Name:

Computer.

[57] H. Yashiro, K. Terasaki, Y. Kawai, S. Kudo, T. Miyoshi, T. Imamura, K. Minami, H. Inoue,

T. Nishiki, T. Saji, M. Satoh, and H. Tomita. A 1024-member ensemble data assimilation with

3.5-km mesh global weather simulations. In 2020 SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), pages 1–10, Los Alamitos, CA,

USA, nov 2020. IEEE Computer Society.

[58] Philipp Neumann, Peter Düben, Panagiotis Adamidis, Peter Bauer, Matthias Brück, Luis Kornblueh,

Daniel Klocke, Bjorn Stevens, Nils Wedi, and Joachim Biercamp. Assessing the scales in numerical

weather and climate predictions: will exascale be the rescue? Philosophical Transactions of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2142):20180148, April

2019. Publisher: Royal Society.

[59] Yongjun Zheng, Clément Albergel, Simon Munier, Bertrand Bonan, and Jean-Christophe Calvet.

An offline framework for high-dimensional ensemble Kalman filters to reduce the time to solution.

Geoscientific Model Development, 13(8):3607–3625, August 2020. Publisher: Copernicus GmbH.

[60] Habib Toye, Samuel Kortas, Peng Zhan, and Ibrahim Hoteit. A fault-tolerant hpc scheduler

extension for large and operational ensemble data assimilation: Application to the red sea. Journal

of Computational Science, 27:46 – 56, 2018.

[61] Habib Toye. Efficient Ensemble Data Assimilation and Forecasting of the Red Sea Circulation.

November 2020. Accepted: 2020-11-23T06:03:14Z.

[62] decimate/what_is_decimate.rst at dist · samkos/decimate.

132

[63] Peter D. Düben and Andrew Dawson. An approach to secure weather and climate models against

hardware faults. Journal of Advances in Modeling Earth Systems, 9(1):501–513, 2017. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1002/2016MS000816.

[64] Sebastian Friedemann and Bruno Raffin. An elastic framework for ensemble-based large-scale

data assimilation. Research Report RR-9377, Inria Grenoble Rhône-Alpes, Université de Grenoble,

November 2020.

[65] Théophile Terraz, Alejandro Ribes, Yvan Fournier, Bertrand Iooss, and Bruno Raffin. Melissa: large

scale in transit sensitivity analysis avoiding intermediate files. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17, pages

1–14, New York, NY, USA, November 2017. Association for Computing Machinery.

[66] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under Unix. In

Usenix Winter Technical Conference, pages 213–223, January 1995.

[67] James S. Plank, Jian Xu, and Robert H.B. Netzer. Compressed differences: An algorithm for fast

incremental checkpointing, 1995.

[68] Kurt B. Ferreira, Rolf Riesen, Ron Brighwell, Patrick Bridges, and Dorian Arnold. libhashckpt:

Hash-based incremental checkpointing using gpu’s. In Yiannis Cotronis, Anthony Danalis, Dim-

itrios S. Nikolopoulos, and Jack Dongarra, editors, Recent Advances in the Message Passing

Interface, pages 272–281, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[69] Fti file format documentation. http://leobago.github.io/fti/ftiff.html.

[70] Mark Adler and Jean-loup Gailly. Zlib data compression library. https://github.com/

madler/zlib, 1995-2017.

[71] Anastase Nakassis. Fletcher’s error detection algorithm: How to implement it efficiently and how

toavoid the most common pitfalls. SIGCOMM Comput. Commun. Rev., 18(5):63–88, October

1988.

[72] OpenSSL 1.0.2 manpages - md5. https://www.openssl.org/docs/man1.0.2/

crypto/md5.html. Accessed: 2018-04-17.

[73] Sriram Ramanujam and Marimuthu Karuppiah. Designing an algorithm with high avalanche effect.

IJCSNS International Journal of Computer Science and Network Security, 11(1):106–111, 2011.

[74] Shay Gueron. Speeding up crc32c computations with intel crc32 instruction. Information Process-

ing Letters, 112(5):179 – 185, 2012.

[75] zlib home page. https://zlib.net. Accessed: 2018-05-3.

[76] bsc.es, marenostrum4 user’s guide. https://www.bsc.es/user-support/mn4.php#

systemoverview. Accessed: 2018-04-27.

[77] bsc.es, marenostrum iv (2017) system architecture. https://www.bsc.es/marenostrum/

marenostrum/technical-information. Accessed: 2018-04-27.

133

http://leobago.github.io/fti/ftiff.html
https://github.com/madler/zlib
https://github.com/madler/zlib
https://www.openssl.org/docs/man1.0.2/crypto/md5.html
https://www.openssl.org/docs/man1.0.2/crypto/md5.html
https://zlib.net
https://www.bsc.es/user-support/mn4.php#systemoverview
https://www.bsc.es/user-support/mn4.php#systemoverview
https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information

[78] Ian Karlin, Jeff Keasler, and Rob Neely. Lulesh 2.0 updates and changes. Technical Report

LLNL-TR-641973, August 2013.

[79] Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory. Technical Report

LLNL-TR-490254.

[80] Stefano Markidis, Giovanni Lapenta, and Rizwan-uddin. Multi-scale simulations of plasma with

ipic3d. Mathematics and Computers in Simulation, 80(7):1509 – 1519, 2010. Multiscale modeling

of moving interfaces in materials.

[81] Deep projects. http://www.deep-projects.eu/.

[82] Boost - serialization. https://www.boost.org/doc/libs/1_67_0/libs/

serialization/doc/index.html. Accessed: 2018-05-17.

[83] Weikuan Yu, J. S. Vetter, and H. Sarp Oral. Performance characterization and optimization of

parallel i/o on the cray xt. In 2008 IEEE International Symposium on Parallel and Distributed

Processing, pages 1–11, April 2008.

[84] Hongzhang Shan and John Shalf. Using ior to analyze the i / o performance for hpc platforms.

2007.

[85] L. Bautista Gomez, K. Keller, and O. Unsal. Performance study of non-volatile memories on a

high-end supercomputer. In Workshop on Performance and Scalability of Storage Systems 2018

(WOPSSS’18), Frankfurt, Germany, June 2018.

[86] Kurt B Ferreira. Keeping Checkpointing Viable for Exascale Systems. PhD thesis, The University

of New Mexico, 2011.

[87] Bogdan Nicolae, Adam Moody, Gregory Kosinovsky, Kathryn Mohror, and Franck Cappello.

Veloc: Very low overhead checkpointing in the age of exascale. arXiv preprint arXiv:2103.02131,

2021.

[88] Joshua Hursey, Richard L. Graham, Greg Bronevetsky, Darius Buntinas, Howard Pritchard, and

David G. Solt. Run-through stabilization: An mpi proposal for process fault tolerance. In

Yiannis Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack Dongarra, editors, Recent

Advances in the Message Passing Interface, pages 329–332, Berlin, Heidelberg, 2011. Springer

Berlin Heidelberg.

[89] William Gropp and Ewing Lusk. Fault tolerance in message passing interface programs. The

International Journal of High Performance Computing Applications, 18(3):363–372, 2004.

[90] A. D. Selvakumar, P. M. Sobha, G. C. Ravindra, and R. Pitchiah. Design, implementation

and performance of fault-tolerant message passing interface (mpi). In Proceedings. Seventh

International Conference on High Performance Computing and Grid in Asia Pacific Region, 2004.,

pages 120–129, 2004.

[91] Ulfm 2.0, fault tolerance research hub, 2019.

134

http://www.deep-projects.eu/
https://www.boost.org/doc/libs/1_67_0/libs/serialization/doc/index.html
https://www.boost.org/doc/libs/1_67_0/libs/serialization/doc/index.html

[92] Ignacio Laguna, David F. Richards, Todd Gamblin, Martin Schulz, Bronis R. de Supinski, Kathryn

Mohror, and Howard Pritchard. Evaluating and extending user-level fault tolerance in mpi applica-

tions. International Journal of High Performance Computing Applications, 30(3), 1 2016.

[93] Sourav Chakraborty, Ignacio Laguna, Murali Emani, Kathryn Mohror, Dhabaleswar K. Panda, Mar-

tin Schulz, and Hari Subramoni. Ereinit: Scalable and efficient fault-tolerance for bulk-synchronous

mpi applications. Concurrency and Computation: Practice and Experience, 32(3):e4863, 2020.

e4863 cpe.4863.

[94] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack Dongarra. Post-

failure recovery of MPI communication capability: Design and rationale. The International Journal

of High Performance Computing Applications, 27(3):244–254, August 2013. Publisher: SAGE

Publications Ltd STM.

[95] The HDF Group. Hierarchical data format version 5, 2000-2010.

[96] Christoph Ertl, Jérôme Frisch, and Ralf-Peter Mundani. Design and optimisation of an efficient

hdf5 i/o kernel for massive parallel fluid flow simulations. Concurrency and Computation: Practice

and Experience, 29(24):e4165, 2017.

[97] Mark Howison. Tuning hdf5 for lustre file systems. 2010.

[98] Kshitij Mehta, John Bent, Aaron Torres, Gary Grider, and Edgar Gabriel. A plugin for hdf5

using plfs for improved i/o performance and semantic analysis. In 2012 SC Companion: High

Performance Computing, Networking Storage and Analysis, pages 746–752. IEEE, 2012.

[99] Qing Liu, Jeremy Logan, Yuan Tian, Hasan Abbasi, Norbert Podhorszki, Jong Youl Choi, Scott

Klasky, Roselyne Tchoua, Jay Lofstead, Ron Oldfield, et al. Hello adios: the challenges and

lessons of developing leadership class i/o frameworks. Concurrency and Computation: Practice

and Experience, 26(7):1453–1473, 2014.

[100] Oak Ridge National Laboratory. Adios 2: The adaptable input/output system version 2 — adios2

2.5.0 documentation, 2018.

[101] Unidata | NetCDF.

[102] Jianwei Li, Wei-keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,

B. Gallagher, and M. Zingale. Parallel netcdf: A high-performance scientific i/o interface. In SC

’03: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, pages 39–39, 2003.

[103] John W. Young. A first order approximation to the optimum checkpoint interval. Commun. ACM,

17(9):530–531, September 1974.

[104] BSC Operations. Technical information marenostrum 4, 2019. Available at https://www.bsc.

es/marenostrum/marenostrum/technical-information.

[105] Elvis Rojas, Esteban Meneses, Terry Jones, and Don Maxwell. Analyzing a five-year failure

record of a leadership-class supercomputer. In 2019 31st International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), pages 196–203. IEEE, 2019.

135

https://www.bsc.es/marenostrum/marenostrum/technical-information
https://www.bsc.es/marenostrum/marenostrum/technical-information

[106] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. Failures in large scale

systems: long-term measurement, analysis, and implications. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–12,

2017.

[107] Camille Coti. chapter Fault Tolerance Techniques for Distributed, Parallel Applications, pages

221–252. IGI Global, Hershey, PA, USA, 2016.

[108] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and Christian Engelmann.

Combining partial redundancy and checkpointing for hpc. In 2012 IEEE 32nd International

Conference on Distributed Computing Systems, pages 615–626. IEEE, 2012.

[109] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kalé. Using migratable objects to enhance

fault tolerance schemes in supercomputers. IEEE Transactions on Parallel and Distributed Systems,

26(7):2061–2074, 2015.

[110] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Proactive process-level live migration in hpc

environments. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,

pages 1–12, 2008.

[111] E. Meneses, X. Ni, G. Zheng, C. L. Mendes, and L. V. Kalé. Using migratable objects to enhance

fault tolerance schemes in supercomputers. IEEE Transactions on Parallel and Distributed Systems,

26(7):2061–2074, July 2015.

[112] L Bertino and K A Lisæter. The topaz monitoring and prediction system for the atlantic and arctic

oceans. Journal of Operational Oceanography, 1(2):15–18, 2008.

[113] Wilco Hazeleger, Camiel Severijns, Tido Semmler, Simona Ştefănescu, Shuting Yang, Xueli Wang,

Klaus Wyser, Emanuel Dutra, José M Baldasano, Richard Bintanja, et al. Ec-earth: a seamless

earth-system prediction approach in action. Bulletin of the American Meteorological Society,

91(10):1357–1364, 2010.

[114] Dieter Fox, Sebastian Thrun, Wolfram Burgard, and Frank Dellaert. Particle filters for mobile robot

localization. In Sequential Monte Carlo methods in practice, pages 401–428. Springer, 2001.

[115] Adil Rasheed, Omer San, and Trond Kvamsdal. Digital twin: Values, challenges and enablers from

a modeling perspective. Ieee Access, 8:21980–22012, 2020.

[116] Sebastian Friedemann and Bruno Raffin. An elastic framework for ensemble-based large-scale data

assimilation, 2020.

[117] ZeroMQ - https://zeromq.org/.

[118] Matthias Katzfuss, Jonathan R. Stroud, and Christopher K. Wikle. Understanding the ensemble

kalman filter. The American Statistician, 70(4):350–357, 2016.

[119] Habib Toye, Samuel Kortas, Peng Zhan, and Ibrahim Hoteit. A fault-tolerant hpc scheduler

extension for large and operational ensemble data assimilation: Application to the red sea. Journal

of Computational Science, 27:46 – 56, 2018.

136

https://zeromq.org/

[120] Geir Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte

carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5):10143–

10162, 1994.

[121] Théophile Terraz, Alejandro Ribes, Yvan Fournier, Bertrand Iooss, and Bruno Raffin. Melissa:

Large Scale In Transit Sensitivity Analysis Avoiding Intermediate Files. In The International

Conference for High Performance Computing, Networking, Storage and Analysis (Supercomputing),

pages 1 – 14, Denver, United States, November 2017.

[122] A fault-tolerant HPC scheduler extension for large and operational ensemble data assimilation:

Application to the Red Sea. Journal of Computational Science, 27:46–56, July 2018.

[123] Tommaso Benacchio, Luca Bonaventura, Mirco Altenbernd, Chris D Cantwell, Peter D Düben,

Mike Gillard, Luc Giraud, Dominik Göddeke, Erwan Raffin, Keita Teranishi, et al. Resilience

and fault-tolerance in high-performance computing for numerical weather and climate prediction.

International Journal of High Performance Computing Applications, 2020.

[124] Samuel Kortas. Welcome to decimate’s documentation!, 2018.

[125] Ibrahim Hoteit, Tim Hoar, Ganesh Gopalakrishnan, Nancy Collins, Jeffrey Anderson, Bruce

Cornuelle, Armin Köhl, and Patrick Heimbach. A MITgcm/DART ensemble analysis and prediction

system with application to the Gulf of Mexico. Dynamics of Atmospheres and Oceans, 63:1–23,

September 2013.

[126] John Marshall, Alistair Adcroft, Chris Hill, Lev Perelman, and Curt Heisey. A finite-

volume, incompressible Navier Stokes model for studies of the ocean on parallel com-

puters. Journal of Geophysical Research: Oceans, 102(C3):5753–5766, 1997. _eprint:

https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/96JC02775.

[127] Jeffrey Anderson, Tim Hoar, Kevin Raeder, Hui Liu, Nancy Collins, Ryan Torn, and Avelino

Avellano. The Data Assimilation Research Testbed: A Community Facility. Bulletin of the

American Meteorological Society, 90(9):1283–1296, September 2009. Publisher: American

Meteorological Society.

[128] Keita Teranishi, Marc Gamell, Rob Van der Wijingarrt, and Manish Parashar. Fenix a portable

flexible fault tolerance programming framework for mpi applications. 3 2018.

[129] Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability,

volume 1, 1996.

[130] Support Knowledge Center @ BSC-CNS - https://www.bsc.es/user-support/mn4.

php.

[131] Donghun Koo, Jaehwan Lee, Jialin Liu, Eun-Kyu Byun, Jae-Hyuck Kwak, Glenn K. Lockwood,

Soonwook Hwang, Katie Antypas, Kesheng Wu, and Hyeonsang Eom. An empirical study of

I/O separation for burst buffers in HPC systems. Journal of Parallel and Distributed Computing,

148:96–108, February 2021.

137

https://www.bsc.es/user-support/mn4.php
https://www.bsc.es/user-support/mn4.php

[132] Wolfram Schenck, Salem El Sayed, Maciej Foszczynski, Wilhelm Homberg, and Dirk Pleiter.

Evaluation and Performance Modeling of a Burst Buffer Solution. ACM SIGOPS Operating

Systems Review, 50(2):12–26, January 2017.

[133] L. Pottier, R. F. da Silva, H. Casanova, and E. Deelman. Modeling the Performance of Scientific

Workflow Executions on HPC Platforms with Burst Buffers. In 2020 IEEE International Conference

on Cluster Computing (CLUSTER), pages 92–103, September 2020. ISSN: 2168-9253.

[134] Peter Bauer, Peter D. Dueben, Torsten Hoefler, Tiago Quintino, Thomas C. Schulthess, and Nils P.

Wedi. The digital revolution of earth-system science. Nature Computational Science, 1(2):104–113,

February 2021.

[135] Adil Rasheed, Omer San, and Trond Kvamsdal. Digital Twin: Values, Challenges and Enablers

From a Modeling Perspective. IEEE Access, 8:21980–22012, 2020. Conference Name: IEEE

Access.

[136] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. Barker, M. G. Duda, and J. G. Powers. A

description of the advanced research wrf version 3. Technical Report No. NCAR/TN-475+STR,

University Corporation for Atmospheric Research, 2008.

[137] R. L. Graham. Bounds for Certain Multiprocessing Anomalies. Bell System Technical Journal,

45(9):1563–1581, 1966.

[138] D.B. Shmoys, J. Wein, and D.P. Williamson. Scheduling parallel machines on-line. In [1991]

Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages 131–140, San

Juan, Puerto Rico, 1991. IEEE Comput. Soc. Press.

[139] M. Stengel, A. Kniffka, J. F. Meirink, M. Lockhoff, J. Tan, and R. Hollmann. Claas: the cm saf

cloud property data set using seviri. Atmos. Chem. Phys., 14(8):4297–4311, April 2014.

[140] Valentijn R. N. Pauwels, Rudi Hoeben, Niko E. C. Verhoest, and François P. De Troch. The

importance of the spatial patterns of remotely sensed soil moisture in the improvement of discharge

predictions for small-scale basins through data assimilation. Journal of Hydrology, 251(1):88–102,

September 2001.

[141] John L. Williams and Reed M. Maxwell. Propagating subsurface uncertainty to the atmosphere

using fully coupled stochastic simulations. Journal of Hydrometeorology, 12(4):690–701, 2011.

[142] D. Zhang, H. Madsen, M. E. Ridler, J. Kidmose, K. H. Jensen, and J. C. Refsgaard. Multivari-

ate hydrological data assimilation of soil moisture and groundwater. Hydrol. Earth Syst. Sci.,

20(10):4341–4357, October 2016.

[143] Sara Q. Zhang, Milija Zupanski, Arthur Y. Hou, Xin Lin, and Samson H. Cheung. Assimilation

of precipitation-affected radiances in a cloud-resolving wrf ensemble data assimilation system.

Monthly Weather Review, 141(2):754–772, 2013.

[144] van Leeuwen and J. P. A variance-minimizing filter for large-scale applications. Mon. Wea. Rev.,

131(9):2071–2084, September 2003.

138

[145] Mark Asch, Marc Bocquet, and Maëlle Nodet. Data assimilation: methods, algorithms, and

applications, volume 11. SIAM, 2016.

[146] Geir Evensen. Data assimilation: the ensemble Kalman filter. Springer Science & Business Media,

2009.

[147] Vivek Balasubramanian, Matteo Turilli, Weiming Hu, Matthieu Lefebvre, Wenjie Lei, Guido

Cervone, Jeroen Tromp, and Shantenu Jha. Harnessing the power of many: Extensible toolkit for

scalable ensemble applications. In IPDPS 2018, 2018.

[148] Vivek Balasubramanian, Travis Jensen, Matteo Turilli, Peter Kasson, Michael Shirts, and Shantenu

Jha. Adaptive ensemble biomolecular applications at scale. SN Computer Science, 1(2):1–15, 2020.

[149] Nils van Velzen, Muhammad Umer Altaf, and Martin Verlaan. OpenDA-NEMO framework for

ocean data assimilation. Ocean Dynamics, 66(5):691–702, May 2016.

[150] H. Yashiro, K. Terasaki, Y. Kawai, S. Kudo, T. Miyoshi, T. Imamura, K. Minami, H. Inoue,

T. Nishiki, T. Saji, M. Satoh, and H. Tomita. A 1024-member ensemble data assimilation with

3.5-km mesh global weather simulations. In Supercomputing 2020: International Conference for

High Performance Computing, Networking, Storage and Analysis (SC), pages 1–10, Los Alamitos,

CA, USA, nov 2020. IEEE Computer Society.

[151] H. Yashiro, K. Terasaki, T. Miyoshi, and H. Tomita. Performance evaluation of a throughput-

aware framework for ensemble data assimilation: The case of nicam-letkf. Geoscebtific Model

Development, 9(7), 2016.

[152] Lars Nerger and Wolfgang Hiller. Software for ensemble-based data assimilation sys-

tems—implementation strategies and scalability. Computers & Geosciences, 55:110–118, 2013.

[153] W. Kurtz, G. He, S. J. Kollet, R. M. Maxwell, H. Vereecken, and H.-J. Hendricks Franssen.

TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an

integrated land surface–subsurface model. Geosci. Model Dev., 9(4):1341–1360, April 2016.

[154] Jonas Berndt. On the predictability of exceptional error events in wind power forecasting —an

ultra large ensemble approach—. PhD thesis, Universität zu Köln, 2018.

[155] Thomas C. Schulthess, Peter Bauer, Nils Wedi, Oliver Fuhrer, Torsten Hoefler, and Christoph Schar.

Reflecting on the Goal and Baseline for Exascale Computing: A Roadmap Based on Weather and

Climate Simulations. Computing in Science & Engineering, 21(1):30–41, January 2019.

[156] Milan Klöwer, Miha Razinger, Juan J. Dominguez, Peter D. Düben, and Tim N. Palmer. Compress-

ing atmospheric data into its real information content. Nature Computational Science, 1(11):713–

724, November 2021. Number: 11 Publisher: Nature Publishing Group.

[157] John L. Schnase, Tsengdar J. Lee, Chris A. Mattmann, Christopher S. Lynnes, Luca Cinquini,

Paul M. Ramirez, Andre F. Hart, Dean N. Williams, Duane Waliser, Pamela Rinsland, W. Philip

Webster, Daniel Q. Duffy, Mark A. McInerney, Glenn S. Tamkin, Gerald L. Potter, and Laura

Carrier. Big Data Challenges in Climate Science. IEEE geoscience and remote sensing magazine,

Volume 4(Iss 3):10–22, September 2016.

139

[158] Francesca Eggleton and Kate Winfield. Open Data Challenges in Climate Science. Data Science

Journal, 19(1):52, December 2020. Number: 1 Publisher: Ubiquity Press.

[159] Ryohei Okazaki, Takekazu Tabata, Sota Sakashita, Kenichi Kitamura, Noriko Takagi, Hideki

Sakata, Takeshi Ishibashi, Takeo Nakamura, and Yuichiro Ajima. Supercomputer Fugaku CPU

A64FX Realizing High Performance, High-Density Packaging, and Low Power Consumption.

Fujitsu Technical Review, Fujitsu Limited, March 2020.

[160] Sam Hatfield, Aneesh Subramanian, Tim Palmer, and Peter Düben. Improving Weather Forecast

Skill through Reduced-Precision Data Assimilation. Monthly Weather Review, 146(1):49–62,

January 2018. Publisher: American Meteorological Society Section: Monthly Weather Review.

[161] Sam Hatfield, Peter Düben, Matthew Chantry, Keiichi Kondo, Takemasa Miyoshi, and Tim

Palmer. Choosing the Optimal Numerical Precision for Data Assimilation in the Presence of

Model Error. Journal of Advances in Modeling Earth Systems, 10(9):2177–2191, 2018. _eprint:

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001341.

[162] Masuo Nakano, Hisashi Yashiro, Chihiro Kodama, and Hirofumi Tomita. Single Precision in the

Dynamical Core of a Nonhydrostatic Global Atmospheric Model: Evaluation Using a Baroclinic

Wave Test Case. Monthly Weather Review, 146(2):409–416, February 2018. Publisher: American

Meteorological Society Section: Monthly Weather Review.

[163] Sameh Abdulah, Qinglei Cao, Yu Pei, George Bosilca, Jack Dongarra, Marc G. Genton, David E.

Keyes, Hatem Ltaief, and Ying Sun. Accelerating Geostatistical Modeling and Prediction With

Mixed-Precision Computations: A High-Productivity Approach With PaRSEC. IEEE Transactions

on Parallel and Distributed Systems, 33(4):964–976, April 2022. Conference Name: IEEE

Transactions on Parallel and Distributed Systems.

[164] Allison H. Baker, Haiying Xu, John M. Dennis, Michael N. Levy, Doug Nychka, Sheri A. Mick-

elson, Jim Edwards, Mariana Vertenstein, and Al Wegener. A methodology for evaluating the

impact of data compression on climate simulation data. In Proceedings of the 23rd international

symposium on High-performance parallel and distributed computing, HPDC ’14, pages 203–214,

New York, NY, USA, June 2014. Association for Computing Machinery.

[165] Allison H. Baker, Dorit M. Hammerling, Sheri A. Mickelson, Haiying Xu, Martin B. Stolpe,

Phillipe Naveau, Ben Sanderson, Imme Ebert-Uphoff, Savini Samarasinghe, Francesco De Simone,

Francesco Carbone, Christian N. Gencarelli, John M. Dennis, Jennifer E. Kay, and Peter Lindstrom.

Evaluating lossy data compression on climate simulation data within a large ensemble. Geoscientific

Model Development, 9(12):4381–4403, December 2016. Publisher: Copernicus GmbH.

[166] Andrew Poppick, Joseph Nardi, Noah Feldman, Allison H. Baker, Alexander Pinard, and Dorit M.

Hammerling. A statistical analysis of lossily compressed climate model data. Computers &

Geosciences, 145:104599, December 2020.

[167] Christopher K. Wikle and L. Mark Berliner. A Bayesian tutorial for data assimilation. Physica D:

Nonlinear Phenomena, 230(1):1–16, June 2007.

140

[168] Brian R. Hunt, Eric J. Kostelich, and Istvan Szunyogh. Efficient data assimilation for spatiotemporal

chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230(1):112–

126, 2007.

[169] Roland Potthast, Anne Walter, and Andreas Rhodin. A Localized Adaptive Particle Filter within an

Operational NWP Framework. Monthly Weather Review, 147(1):345–362, January 2019. Publisher:

American Meteorological Society Section: Monthly Weather Review.

[170] Russ Rew, Glenn Davis, Steve Emmerson, Cathy Cormack, John Caron, Robert Pincus, Ed Hartnett,

Dennis Heimbigner, Lynton Appel, and Ward Fisher. Unidata NetCDF, 1989. Language: en

Medium: application/java-archive,application/gzip,application/tar.

[171] ADIOS: The Adaptable I/O System | Computer Science and Mathematics.

[172] The HDF5® Library & File Format.

[173] RIKEN Center for Computational Science. Fugaku Supercomputer. https://www.r-ccs.

riken.jp/en/fugaku/, 2021. [1 April 2021].

[174] Edward N. Lorenz. Designing Chaotic Models. Journal of the Atmospheric Sciences, 62(5):1574–

1587, May 2005. Publisher: American Meteorological Society Section: Journal of the Atmospheric

Sciences.

[175] Jinyang Liu, Sihuan Li, Sheng Di, Xin Liang, Kai Zhao, Dingwen Tao, Zizhong Chen, and Franck

Cappello. Improving lossy compression for sz by exploring the best-fit lossless compression

techniques. In 2021 IEEE International Conference on Big Data (Big Data), pages 2986–2991,

2021.

[176] William F. Godoy, Norbert Podhorszki, Ruonan Wang, Chuck Atkins, Greg Eisenhauer, Junmin

Gu, Philip Davis, Jong Choi, Kai Germaschewski, Kevin Huck, Axel Huebl, Mark Kim, James

Kress, Tahsin Kurc, Qing Liu, Jeremy Logan, Kshitij Mehta, George Ostrouchov, Manish Parashar,

Franz Poeschel, David Pugmire, Eric Suchyta, Keichi Takahashi, Nick Thompson, Seiji Tsutsumi,

Lipeng Wan, Matthew Wolf, Kesheng Wu, and Scott Klasky. ADIOS 2: The Adaptable Input

Output System. A framework for high-performance data management. SoftwareX, 12:100561, July

2020.

[177] Xavier Delaunay, Aurélie Courtois, and Flavien Gouillon. Evaluation of lossless and lossy algo-

rithms for the compression of scientific datasets in netCDF-4 or HDF5 files. Geoscientific Model

Development, 12(9):4099–4113, September 2019. Publisher: Copernicus GmbH.

[178] Oriol Tintó Prims, Mario C. Acosta, Miguel Castrillo, Stella Valentina Paronuzzi Ticco, Kim

Serradell, Ana Cortés, and Francisco J. Doblas-Reyes. Discriminating accurate results in nonlinear

models. In 2019 International Conference on High Performance Computing Simulation (HPCS),

pages 1028–1031, July 2019.

[179] James W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, Jennifer E. Kay, P. J. Kushner, J.-F.

Lamarque, W. G. Large, D. Lawrence, K. Lindsay, W. H. Lipscomb, M. C. Long, N. Mahowald,

D. R. Marsh, R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader, W. D. Collins, J. J. Hack,

141

https://www.r-ccs.riken.jp/en/fugaku/
https://www.r-ccs.riken.jp/en/fugaku/

J. Kiehl, and S. Marshall. The Community Earth System Model: A Framework for Collaborative

Research. Bulletin of the American Meteorological Society, 94(9):1339–1360, September 2013.

Publisher: American Meteorological Society Section: Bulletin of the American Meteorological

Society.

[180] Dingwen Tao, Sheng Di, Hanqi Guo, Zizhong Chen, and Franck Cappello. Z-checker: A framework

for assessing lossy compression of scientific data. The International Journal of High Performance

Computing Applications, 33(2):285–303, March 2019. Publisher: SAGE Publications Ltd STM.

[181] Jie Dou, Ali P. Yunus, Dieu Tien Bui, Abdelaziz Merghadi, Mehebub Sahana, Zhongfan Zhu,

Chi-Wen Chen, Zheng Han, and Binh Thai Pham. Improved landslide assessment using support

vector machine with bagging, boosting, and stacking ensemble machine learning framework in a

mountainous watershed, Japan. Landslides, 17(3):641–658, March 2020.

[182] Jinsong Yu, Yue Song, Diyin Tang, and Jing Dai. A Digital Twin approach based on nonparametric

Bayesian network for complex system health monitoring. Journal of Manufacturing Systems,

58:293–304, January 2021.

142

	List of Figures
	List of Tables
	Prologue
	Introduction
	Background
	Modern Checkpointing
	Multilevel Checkpointing
	Asynchronous Checkpointing
	Approximate Checkpointing

	Ensemble Data Assimilation
	Variational Methods
	Sequential Monte Carlo Methods
	Ensemble Kalman Filter
	Particle Filter

	Motivation
	State of the Art
	Modern Ensemble Data Assimilation Frameworks
	Fault Tolerance in Ensemble Data Assimilation

	Contributions to Checkpoint Schemes
	Differential Checkpointing
	Terminology
	Definition of Incremental Checkpointing
	Definition of Differential Checkpointing

	Differential Checkpointing Implementation in FTI
	A Storage Space Efficient Differential Checkpointing Implementation for Dynamic Dataset Sizes
	The Dynamic File Structure in FTI-FF
	A Safe Update of the FTI-FF Differential Checkpoint Files
	A Streaming Implementation of Differential Checkpointing
	Tracking the differences

	Choice of the Hash Algorithm
	When is Differential Checkpointing Beneficial?
	Evaluation
	HPC Applications
	LULESH 2.0
	xPic
	Heat2D

	Variation of the Block Size b
	Spatial and Temporal Differences
	Overhead reduction on HPC Applications

	Discussion
	Related Work
	Conclusion

	Elastic Recovery
	Background
	MPI Layer Fault Tolerance
	General Purpose IO
	HDF5
	ADIOS

	Implementation
	Design Objectives
	API Specification
	Complex Data Representation
	Descriptive Data Representation

	Accessing the Checkpoint Data
	Elastic recovery
	Checkpoint Strategies
	Asynchronous Checkpoint

	Methodology
	Generalized Evaluation Metric
	Measurements
	Experiments
	Applications
	Heat2D (C++)
	xPic

	Evaluation
	HPC Environment
	Performance Measurements
	Comparison to ADIOS
	Scaling
	Strong Scaling
	Weak Scaling

	Offline vs Online Elastic Recovery
	Elastic Recovery with Fewer Processes
	Data Distribution on Irregular Applications

	Discussion
	Related Work
	Conclusion

	Contributions to Resiliency in Large Ensemble
	Background Checkpointing in Operational Ensemble Data Assimilation
	Background
	Data Assimilation and the Ensemble Kalman Filter
	MelissaDA
	Asynchronous Checkpointing and Elastic Recovery

	Implementation
	Launcher
	Server
	Runner
	Recovery

	Related Work
	Fault Tolerance for DART-MITgcm with Decimate
	Fault Tolerance Methods for Numerical Climate Models

	Methodology
	Experiments
	Data Collection
	Failure Regions
	Failure Injection

	Evaluation
	Climate Model
	Experimental Setup
	Performance Evaluation during Runtime
	Performance Evaluation Recovery
	Checkpointing Background and Analysis Vs. Only Analysis

	Discussion
	Conclusion

	Resilient Online Particle Filter using a Local Particle Cache
	Particle Filters
	Architecture
	Runner and Cache Interaction
	Cache Eviction Strategy
	Fault Tolerance and Elasticity
	Scheduling
	Implementation Details

	Evaluation
	Runner activity
	Server activity
	State transfers to/from PFS
	Fault tolerance, elasticity and load balancing
	Scaling

	Related Work
	Conclusion

	A Framework for Automatic Validation and Application of Lossy Data Compression in Ensemble Data Assimilation
	Background
	Ensemble Data Assimilation
	Terminology

	Design and Implementation
	MelissaDA Particle Filter
	High-Level View on the Validation Framework
	Validation Mode
	Dynamic Mode

	Evaluation
	Experimental Setup
	Methodology
	Statistical Evaluation
	Z-Value Deviation
	Pearson Correlation Coefficient
	Normalized Error Statistic
	Summary of the Validation Study

	Performance
	Validation Mode
	Dynamic mode

	Discussion

	Related Work
	Conclusion

	Epilogue
	Thesis Conclusion
	List of Publications

	Appendix
	Validation Framework - Figures and Tables
	Bibliography

