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Abstract

This thesis aims at improving the convergence of iterative solvers, used

for algebraic systems coming from the discretization of partial differential

equations (PDE), in the context of large scale simulations and high perfor-

mance computing (HPC). The methodology followed consists in adapting

some existing preconditiong techniques to the physics and numerics of

convection-dominated transport and boundary layer problems in flows.

For convection-dominated flows, a physics-based permutation algorithm

is presented, which consists in renumbering the mesh in the direction of

convection. This renumbering is then used together with a Gauss-Seidel

preconditioner to propagate the result of the matrix-vector products along

the convection. The robutsness and effectiveness of this preconditioner

is proved in several test cases solving the heat equation as well as the

Navier-Stokes equations in both sequential and in parallel using the

Message Passing Interface library MPI.

Additionally, the composition of preconditioners is proposed to solve cases

where different local physical behaviors co-exist in the same flow. In par-

ticular, we focus on such problems where of a highly convective flow en-

counters an obstacle. Such problems involve a zone with high convection far

from the obstacle and the development of a boundary layer in the vicinity of
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the obstacle. In numerical terms, these local behaviors translate into specific

matrix structures that we will take advantage of to adapt the preconditioner

locally. On the one hand, the linelet preconditioner is a well-known efficient

preconditioner for boundary layers where the mesh is highly anisotropic, in

particular to solve the Poisson equation. On the other hand, the streamline

linelet that we propose in this thesis (Gauss-Seidel together with a mesh

renumbering in the convection direction) is well adapted for locally hyper-

bolic flows. Both preconditioners will be composed (combined) in different

ways to investigate their robustness in terms of convergence as well as their

costs to solve the proposed transport problems. We will study as well their

performances in terms of parallelization.
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Chapter 1

Introduction

‘Begin at the beginning’, the
King said very gravely ‘and go
on till you come to the end: then
stop.’

Lewis Carroll,
Alice in Wonderland

Improving convergence of the iterative solvers coming from the discretiza-

tion of complex transport problems, in the context of large scale simulations

and high performance computing (HPC), is a challenging topic. Efficiency

is not only linked to a good implementation of the numerical method used

to solve the problem, but to other constraints such as the physics of the

problem that is solved.

The main objectives of this thesis are: First, to analyze thoroughly the heat

equation and the physical phenomena associated and how this nature af-

fects the numerics. Second to improve some of the existent preconditioning

techniques adapting them to the nature of the physics and improve the con-

vergence of the iterative solvers. Finally, to study these new preconditioning

techniques in challenging complex cases using Marenostrum IV supercom-

puter.



2 1. Introduction

1.1 Motivation

Complex physical problems for both, applied fields and basic research,

such as fluid dynamics, heat transfer problems, solid dynamics or general

transport equations, are often represented by partial differential equations

(PDEs) which have to be discretized and solved numerically. This takes

the continuum formulations of physics to systems of algebraic equations,

and in order to obtain good approximations to such complex problems

it is necessary to solve the discretized problem with a great number of

unknowns. The resulting matrices obtained from these discretizations are

often very sparse, that is, only a few entries of the matrix differ from zero.

Sparse linear systems of equations can be solved either with direct or with

iterative methods. Iterative solvers are often the ones preferred, as they

are cheaper in terms of computer storage and CPU-time, but at the same

time they are less robust than direct methods and often converge slowly to

the desired solution. To cope with this problem, equivalent preconditioned

systems can be solved instead of the original ones.

Finding a good preconditioner for solving sparse linear systems of equa-

tions is not an easy task and several aspects have to be taken into account.

The values and distribution of the sparse matrix coefficients highly depend

on the physics of the problem. Depending on the problem at hand, different

patterns or dependencies (stucture) can be observed in the matrix. Adapting

the preconditioner to the physics of the problem and detecting the differ-

ent physical behaviours that a problem can have, by looking at the values

of the coefficients of the sparse matrix, can improve convergence in many

multiphysics problems.
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1.2 Physics and Numerics in Computational Simula-

tions

Computation is now regarded as an equal partner along with theoretical

and experimental sciences in the advance of scientific knowledge and engi-

neering. Numerical simulation enables the study of natural phenomena and

other complex systems that would be difficult, expensive or even impossi-

ble to study by direct experimentation. The search for having high levels of

detail in such simulations, requires enormous computational capacity and

has been responsible for mathematicians, physicists and engineers to rack

their brains in new breakthroughs in computer algorithms and architectures.

At software level, to build an efficient algorithm, there are many factors

that have to be taken into account. First, the nature of the problem that one

wants to study. For example, the complexities to study a laminar flow or a

turbulent flow are different in terms of degrees of freedom; the study of con-

vective heat transfer where the process of conduction is dominant requires

different numerical techniques than the ones required to solve convective

heat transfer with a dominant advection. These physical properties will also

have an impact on the matrix properties of the discretized problem. This is,

depending on the case that one wants to study, matrices can be symmet-

ric, non-symmetric, dense, sparse etc., and then, based on these properties,

different numerical methods can be selected to solve the algebraic system

in an accurate way. Also, the discretization scheme used plays an impor-

tant role in solving a problem, for example in terms of numerical method

(finite differences, finite volumes or finite elements) or in terms of stabi-

lization techniques. Finally, the way in which the mesh is numbered can

affect the convergence and efficiency of the iterative solver used to solve
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the corresponding algebraic system. In all these steps, one must also con-

sider the fact that these problems are often very complex and that often a

high performance computing environment is necessary to solve them, so

these algorithms have to be also envisaged and implemented to eventually

run in parallel efficiently.

1.2.1 Physics in Mathematical and Numerical Modeling

In general, the laws of physics define the rules for the dynamics of systems,

such as heat transfer, flow motion or electromagnetic radiation. A possible

approach to have a good comprehension of the behavior of the system is by

looking at the solution of PDEs that describe such systems under different

circumstances. PDEs describe the change of a system in space and time,

where space coordinates and time are the so-called independent variables.

Mathematically, these PDEs express the conservation of certain physical

quantities such as momentum, mass, energy, etc. When envisaging the so-

lution of such PDEs, identifying and understanding physical phenomena

beforehand enables to have a better understanding of the problem and also

to have a first guess on the dynamics of the system under consideration.

1.2.2 Numerical methods in large scale simulations

Depending on the matrix obtained after a particular problem is discretized

with an appropriate scheme [73, 79], different numerical approaches may

be used to solve the resultant linear system of equations. For instance,

for large sparse matrices, direct solvers such as LU decomposition lose

efficiency since the arithmetical operations and memory requirements

increase rapidly with the problem size and are thus far from being optimal

from a computational point of view. In these cases, an iterative method
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such as the conjugate gradient if the matrix is symmetric, or the GMRES

and BiCGSTAB methods if the matrix is non-symmetric may be preferred

[79]. Also, in case of opting for an iterative method, it is also important to

choose a good preconditioning technique to accelerate or even to allow the

convergence of the iterative solvers [36], as the matrices coming from the

discretizations of PDEs are likeley to be ill-conditioned.

This thesis focuses on the developments of local preconditioning tech-

niques, based on the physics and numerics, to enhance the robustness and

performance of the iterative solvers. Deciding which numerical method fits

better in each situation and which is the best way to have a fast and robust

solver, requires a good understanding of the matrix properties as well as a

good knowledge of the existing literature.

1.3 High Performance Computing Environment

This thesis has been developed in the Computer Applications of Science &

Engineering (CASE) department of the Barcelona Supercomputing Center

(BSC-CNS). The aim of this department is to develop numerical software to

solve complex physical problems by means of HPC. In this context, the use

of supercomputers becomes essential as ordinary computers do not have

enough computational power to deal with large-scale cases. Many codes

have been developed to tackle complex problems on supercomputers, such

as Code_Saturne, FLASH or Alya [2, 20, 96], which is the one that has been

used in this thesis.
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1.3.1 Marenostrum IV Supercomputer

A supercomputer is composed of thousands of processors working in

parallel. The computational performance of a computer is measured in

floating point operations per second (flops) and to get an idea of the power,

the performance of a supercomputer is measured in Petaflops as opposed

to Gigaflops for a laptop, for instance.

In the last years, supercomputers have been used to model scenarios for

tackling challenges that would be impossible otherwise. They change how

meteorologists forecast the weather, how astrophysicists study the evolution

of the universe or how engineers simulate aircrafts. There are many super-

computing centers world wide which are in charge of providing resources

to enable such simulations. In the particular case of this thesis, the numeri-

cal experiments have been carried out on Marenostrum IV supercomputer.

Marenostrum IV is the last version of the Marenostrum series which started

withMarenostrum I inMarch 2004.MareNostrum IV is based on Intel Xeon

Platinum processors. It consists of 48 racks housing 3456 nodes with a to-

tal of 165,888 processor cores. Compute nodes are equipped with 2 sockets

Intel Xeon Platinum 8160 CPU with 24 cores each, for a total of 48 cores

per node. Its current Linpack Rmax Performance is 6.23 Petaflops.

Figure 1.1: Marenostrum IV supercomputer.
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1.3.2 Alya multi-physics code

Alya is a high-performance computational mechanics code developed at

Barcelona Supercomputing Center. This code is designed for multiphysics

and to be flexible to run parallel coupled problems using techniques for

distributed (Message Passing Interface library, MPI) and shared memory

(OpenMP and OmpSs) parallelization, together with vectorization to

enhance performance at node level. The code uses mainly the finite element

method for space discretization and was written from scratch to be run in

parallel.

Alya has a modular architecture (see Figure 1.2). It consists of a kernel and

some modules. The kernel contains the common tasks in which all the nu-

merical problems solved in Alya need. It is responsible for reading data, per-

forming operations and calling the different modules and services needed in

each task. The modules solve each of the physical problems individually.

Figure 1.2: Alya’s modular structure.
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In the particular case of this thesis, all the code has been developed in the

kernel, in particular in the algebraic solver subroutines. Its has been tested to

solve the heat equation (Temper module) and also to solve the incompress-

ible and compressible Navier-Stokes equations (Nastin and Nastal modules,

respectively).

1.4 Objectives

A good example that involves complex physical phenomena is convection

heat transfer in a fluid, which involves fluid motion as well as heat transfer.

Generally, the problems governed by such phenomena are associated with

complex geometries including obstacles, zones of high advection and zones

of low advection, thus exhibiting different local behaviors. In this particular

case, twomain physics can be distinguished. On the one hand, there is a high

advection away from the boundary layer developing near the obstacles; on

the other hand, in the boundary layer attached to the obstacle, the problem

is locally diffusion-dominant. The heat transport in such flows is modeled

using a PDE, namely the advection-diffusion equation. This equation needs

to be discretized to obtain a finite dimension solution to the problem. As

it was said in the Motivation, solving the corresponding linear system aris-

ing from this discretization of the PDE is often complex and in some cases

also difficult to converge. If an iterative solver is used, often precondition-

ing techniques are used to improve the convergence. The aim of this thesis

is to adapt some existing preconditioning techniques to the physics of the

problem, and also to derive different preconditioners to further enhance the

convergence. For example, in the case of the presence of a boundary layer,

there are two local phenomena, as stated above: strong advection and high

diffusion. So in this case, one preconditioner would be used to solve the
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strong advection and the other the high diffusion parts. This is what is called

local preconditioning (a clear picture of this can be seen in Figure 1.3). To

achieve these goals, the following objectives have been accomplished:

• Analyze the connection between the physics and numerical methods

in some limiting situations found in the convection-diffusion equation.

• Study the impact of the numerical method on the algebraic system.

• Devise the different state-of-the art preconditioning techniques based

on these analyses.

• Study the condition number of the preconditioned system and estimate

the gain for simple problems.

• Validate the hypotheses using complex examples.

• Understand the effect of parallelization on the convergence of such

preconditioners.

Physical 
phenomenon PDE Variational form Algebraic 

system

Local physical 
phenomenon

Local  
PDE

Local variational 
form

Local 
preconditioning

Local limiting  
behavior

Figure 1.3: Objectives general scheme.
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1.5 Thesis Outline

Apart from this introduction, the thesis is organized in six additional chap-

ters:

• Chapter two introduces a finite elementmethod to solve the advection-

diffusion equation focusing on its limiting behaviors. This includes

a full description of the advection-diffusion equation, a description

of the variational formulation together with the SUPG stabilization

method and finally, we introduce some case studies where we bring

some theoretical backgrounds to the simulations that we will study

along the thesis.

• Chapter three consists of a state-of-the-art of the different methods,

either direct or iterative, to solve sparse linear systems. We will focus

mainly on the GMRES, BiCGSTAB and conjugate gradient methods,

as these will be the ones used in the different simulations carried in

this thesis.

• Chapter four starts with a state-of-the-art of the existing precondition-

ing techniques and finally explains in detail the mesh renumbering

proposed to be used together with the Gauss-Seidel method to pre-

condition systems coming from convection-dominant problems.

• Chapter five focuses on the composition of preconditioners.

• Chapter six proves the results obtained in Chapters four and five,

but for the compressible Euler and the incompressible Navier-Stokes

equations.

• Chapter seven holds the conclusions of this PhD thesis and shows

possible future work.



Chapter 2

Physical and Numerical
Phenomena in Numerical
Simulations

What is essential,
is invisible to the eye

Antoine de Saint-Exupéry,
The Little Prince

This chapter presents the finite element method used in this thesis to model

the advection-diffusion (AD) equation. In the first section we explain briefly

the advection-diffusion equation together with the characteristics behavior

encountered under certain conditions such as high/low Péclet numbers or

under some specific conditions such as boundary layers. Then the varia-

tional formulation of the AD equation is introduced and some of the stabi-

lization techniques found in literature are explained. Finally the second sec-

tion covers several examples found in the physical and numerical modeling

of the AD equation. In particular we will study the cases of convection-

dominated problems and anisotropic meshes.
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2.1 The Advection-Diffusion Equation

This section describes a transport equation known as the AD equation. First

we will briefly describe the AD equation, then we will put it in its non-

dimensional form to study its applicability range and the boundary layer

phenomenon. After, we will state the properties of the work spaces and fi-

nally we will derive the weak form of the AD equation together with the

streamline upwind Petrov-Galerkin (SUPG) stabilization strategy [17].

2.1.1 Description of the AD Equation

The advection-diffusion equation is a transport equation that models many

physical phenomena like heat transfer in a fluid or the transport of species

through two transport mechanisms: advection (convection) and diffusion.

As a model equation in this section the heat equation will be considered in

order to establish analogies to illustrate mathematical behaviors:

Lu :=

Parabolic︷ ︸︸ ︷
ρcp∂tu + ρcpa ·∇u
︸ ︷︷ ︸

Hyperbolic

Parabolic︷ ︸︸ ︷
−k∆u = F︸︷︷︸

Hyperbolic︸ ︷︷ ︸
Elliptic

in Ω (2.1)

where, u is temperature, Ω with boundary ∂Ω, is a n-dimensional domain,

k is the thermal conductivity, ρ is the density of the medium, cp the spe-

cific heat, F the heat source term, t the time, and a the advection field. This

equation should be supplied with specific initial and boundary ∂Ω condi-

tions. This can be re-written as:

∂u

∂t
+ a ·∇u− α∆u = f where α =

k

ρcp
and f =

F

ρcp
(2.2)

where α is the thermal diffusivity.
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As remarked, Equation (2.1) can admit different characteristics behaviors.

These are elliptic parabolic and hyperbolic. For example a pure diffusive

problem would be elliptic and a pure convective problem would be

hyperbolic. In a hyperbolic PDE, a perturbation of the solution will follow

the direction of convection. In an elliptic situation, for example, in the case

of pure diffusion, the quantity will diffuse isotropically and the domain of

influence eventually will be the complete domain Ω. The implications at

mathematical and numerical level will be shown in the next sections of this

chapter.

Also, according to the characteristics of the PDE’s, different types of ini-

tial and boundary conditions will be needed to solve the problem in each

particular case. To simplify, only three main types of boundary conditions

depending on the coordinates x and time t will be considered. These are:

• Dirichlet: Prescription of temperature u = fd(x, t).

• Neumann: Prescription of the heat flux fn(x, t) and it is given by:

k
∂u

∂n
= k∇u · n = fn(x, t)

where n is the outward unit vector to the boundary.

• Robin: These are weighted combinations of Dirichlet and Neumann

boundary conditions and are defined by:

k
∂u

∂n
+ αru = fr(x, t)

with αr being the Robin factor.
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Depending on the characteristic of the PDE, different combination of the

boundaries may be applied or prohibited to get a well posed problem [89].

For example, for stationary hyperbolic flows a Dirichlet boundary condition

must be imposed at inflow [76].

2.1.2 Asymptotic vs Characteristic Behaviors

In the following, when we refer to asymptotic and characteristic behaviors

it will be considered purely elliptic, parabolic or hyperbolic cases. Studying

the asymptotic and characteristic behaviors of the AD equation together

with some of the physical phenomena that occur in determined situations,

helps to predict the behaviour of the AD equation before it is solved

numerically. In this section the non-dimensional form of the AD equation

will be written, to study different regimes, and also the consequences of the

boundary layer phenomenon. This study will then be used in Section 4.3 to

derive suitable preconditioning techniques.

The asymptotic behaviour of the AD equation is better understood having

the AD equation in a non-dimensional form. In this way taking (2.2), the

following non-dimensional variables can be defined:

t∗ =
t

t0
x∗ = x

x0
a∗ = a

a0
u∗ =

u

u0
f∗ =

f

f0

where t0, x0, a0, u0 and f0 are the characteristic time, length, advection

velocity, physical quantity studied (temperature in this particular case) and

source term and t∗, x∗, a∗, u∗, f∗ are the non-dimensional variables of the

time, length, advection velocity, the physical quantity studied and the source

term. Such characteristic values will enable to compare the different terms

of the equations and are problem-dependent.
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Then substituting in (2.2) the following is obtained:

a0
x0

∂u∗

∂t∗
+

a0a∗
x0

·∇u∗ − α

x20
∆u∗ =

f0f∗

u0

where in this case we have chosen t0 =
x0
a0
.

∂u∗

∂t∗
+ a∗ ·∇u∗ − 1

Pe∆u∗ = f ′ (2.3)

with Pe = a0x0
α

=
a0x0ρcp

k
and f ′ =

f0x0f∗

a0u0

The non-dimensional number Pe is the Péclet number and gives the ratio

of advection to the rate of diffusion, this is, in the particular case shown

in Equation (2.3) for heat transfer, it measures the ratio between the heat

transferred by convection to the diffusive heat transfer.

With all these, some questions arise: How does (2.3) behaves under high/low

Péclet numbers? How these asymptotic and characteristic behaviours will

affect the solution of the AD equation?

Asymptotic Behavior

Equations (2.4) and (2.5) show the behaviour of the non-dimensional AD

equation under high and low Péclet numbers. As we can see with high Péclet

numbers Equation (2.3) tends to an hyperbolic behaviour whereas under low

Péclet numbers it has a parabolic behavior if the problem is time-dependent

or elliptic behaviour if the problem is stationary. Then considering the non-

dimensional form of the AD equation, the asymptotic behavior is given by:

Pe → ∞ then equation 2.3 tends to ∂u∗

∂t∗
+ a∗ ·∇u∗ = f ′ (2.4)
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Pe → 0 then equation 2.3 tends to ∂u∗

∂t∗
− 1

Pe∆u∗ = f ′ (2.5)

It is important to stress that equation that Equation (2.4) is only valid away

from the boundaries. In fact, in the vicinity of walls, where the temperature

is prescribed, diffusion takes over convection and the correct equation is

the original one (2.3). This is what happens with boundary layer as we will

show in section 2.1.3.

Characteristic Behavior

We will refer to characteristic behavior to pure elliptic, hyperbolic and

parabolic cases. Considering Equation 2.3, these are:

• Pure elliptic:

− 1

Pe∆u∗ = f ′ (2.6)

• Pure hyperbolic:

∂u∗

∂t∗
+ a∗ ·∇u∗ = f ′ (2.7)

• Pure parabolic:

∂u∗

∂t∗
− 1

Pe∆u∗ = f ′ (2.8)

The main difference between asymptotic and characteristic behaviors

stems from the appropriate boundary conditions and the locality of the

phenomenon in the case of asymptotic behavior.
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From now on in this thesis u, t, x, a are going to be considered non-

dimensional variables and f ′ will be called f .

2.1.3 Boundary Layer Phenomena

In a flow, boundary layers are some restricted regions where sharp gradients

of the solution (velocity or temperature) exist. Boundary layers occur when

an incoming flow encounters an obstacle where the local conditions are

different from the free stream conditions. They can be isothermal, thus

affecting exclusively the velocity profile, or thermal, affecting both the

velocity and temperature.

The main characteristic of a boundary layer is height, which typically

depends on dimensionless numbers like the Reynolds number for the

velocity flow and the Prandtl number for the temperature. The height of

the boundary layer is by definition the extent through which the unknown

goes from its value on the obstacle to its free stream value. As an example

the height of the boundary layer decreases when the Reynolds number

increases, leading to sharper gradients when convection dominates over

diffusion.

In nature, we encounter two main types of boundary layers. On the one

hand, parabolic boundary layers occur when a flow encounters an obstacle

which walls are parallel to it. On the other hand, exponential boundary

layers occur when the flow impinges an obstacle.

Let us define our boundary ∂Ω in three parts as:

∂Ω = ∂Ω− ∪ ∂Ω0 ∪ ∂Ω−
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where ∂Ω−, ∂Ω0 and ∂Ω− are the inflow, wall and outflow boundaries re-

spectively which are defined as:

∂Ω− = {u ∈ ∂Ω where a · n < 0}

∂Ω0 = {u ∈ ∂Ω where a = 0}

∂Ω+ = {u ∈ ∂Ω where a · n > 0}

According to the place in which this sudden changes of velocity and

temperature take place, different types of boundary layers may occur.

So for example, if the changes of velocity and temperature occur in the

inflow boundary (∂Ω−) or along the characteristic boundary (∂Ω0), then a

parabolic boundary layer may arise, whereas if the same phenomena occurs

in the outflow boundary (∂Ω+), then an exponential boundary layer will

happen.

Knowing this, the parabolic and exponential boundary layers will be ex-

plained in more details.

Parabolic Boundary Layer

Let us consider a flat plate at temperature Tw immersed in a fluid with free

stream velocity V∞ and temperature T∞ when the flow hits the wall, veloc-

ity and temperature must accommodate to the plate boundary condition. In

this situation, a boundary layer triggers and propagates along the plate as

illustrated by Figure 2.1. Mathematically, the asymptotic behavior can be

obtained through dimensional analysis [3, 10]:

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
− 1

Pe

(

✓
✓✓∂2u

∂x2
+

∂2u

∂y2

)
= f
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∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
− 1

Pe
∂2u

∂y2
= f

ax
∂u

∂x
+ ay

∂u

∂y
≪ 1

Pe
∂2u

∂y2
⇒ ∂u

∂t
− 1

Pe
∂2u

∂y2
= f (2.9)

Equation (2.9) shows the thermal boundary layer equation. In this equation

several approximations have been considered, first it has been assumed

that the gradients across the boundary layer are larger than the ones

across the main flow direction. Also it has been assumed that the direction

of the flow is negligible if compared to the gradient across the boundary [3].

The approximation for the equations of the velocity boundary layer

are similar to the thermal boundary layer ones but using Navier-Stokes

equations instead. This thesis will not go into detail into Navier-Stokes

equations or the velocity boundary layer, but a full demonstration can be

found in the literature [3, 10].

Apart from the approximation of the equations it is also possible to obtain

the thickness of both boundary layers, these are δ and δT for velocity and

temperature respectively, which are defined as:

δ ∼
√

νL

V∞
(2.10)

δT ∼ δ Pr−1/3 (2.11)

where Pr is the Prandtl number, which is defined to be the ratio between

momentum diffusivity and thermal diffusivity:
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Pr = ν

α
=

µ/ρ

k/(cpρ)
=

cpµ

k

with ν being the kinematic viscosity, which is also ν = µ/ρ where µ is the

dynamic viscosity [3, 10].

As it is shown in Figure 2.1 if the momentum diffusivity is greater than

the thermal diffusion rate, the Prandtl number will be greater than one and

thus the thickness for the velocity boundary layer δ will be greater than the

thickness for the thermal boundary layer δT . The opposite will happen when

the thermal diffusion rate dominates over the momentum diffusivity. Finally

if the Prandtl number equals to one, both boundary layers will have the same

thickness.
y

xTw

Pr > 1
� > �T

V1 T1

�
�t

y

xTw

Pr < 1
� < �T

V1 T1

�t
�

Figure 2.1: Parabolic boundary layer in a flat plate. Right: The boundary layers
from the cooling of a body with Pr < 1. Left: The boundary layers from the cooling
of a body with Pr > 1.

Exponential Boundary Layer

Impinging jets occurs when a flow impinges a surface, generally at high

velocities (high Reynolds number). Such jets can be intentionally sought

for convective heat transfer in many engineering applications such as

cooling of turbine blades or cooling of hot steel plates. Figure 2.2 shows a

general scheme of an impinging jet. An impinging jet can be divided into

several regions. First we find the free jet region, where velocity remains
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constant and equal to the nozzle exit (of width d) until the jet spreads

(impinging region). Then, we find the stagnation region, in which the jet is

deflected from the axial direction. Finally in the two sides we find the wall

jet region, where the flow increases in thickness and boundary layer builds

along the surface.

Impingement 
surface

Impinging region

Wall jet 
region

Stagnation region Wall jet 
region

Free jet region

h

x

z

d

Stagnation point

Boundary Layer Boundary Layer

Figure 2.2: Schematic of an impinging jet inspired in the work of [71, 77].

As we stated in the introduction of this section, exponential boundary

layers can be expressed mathematically when the temperature is prescribed

at an outflow. This is situation is unlikely found in physical problems,

but a similar behavior happens with impinging jets [65]. In fact, when the

jet impinges, a zero velocity is enforced by the no-slip condition. For this

reason, we will show two examples. We start with a 1D example, for which

we find the exact solution, and then show the variation of the boundary
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layer according to the Péclet number; then we calculate the numerical

solution of an impinging jet for a 2D example. Through the comparison of

a 2D impinging jet with the results of a 1D exponential boundary layer (see

Figures 2.5 and 2.4), apart from the space dimension, the main difference

stems from the boundary condition of the velocity which is a no-slip

condition in the former case and an outflow condition in the latter.

Let us consider the following 1D example:

x = 0 x = 1

u(x) = 1 u(x) = 0

a = 1

Figure 2.3: Domain of length 1 in which the AD equation is solved.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 1

Pe
d2u

dx2
+

du

dx
= 0 ∀x ∈ Ω = (0, 1)

u(0) = 1

u(1) = 0

(2.12)

For the sake of simplicity, the advection velocity a and the source term f

will be chosen as a = 1 and f = 0. Then, it is easy to see that (2.12) has the

following exact solution:

u(x) = 1− ePex − 1

ePe − 1
(2.13)

And plotting the solution for different Péclet numbers we obtain the profiles

of Figure 2.4.
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Figure 2.4: Exponential boundary layer of the 1D advection-diffusion equation
for different Pe.

As it is shown in Figure 2.4, the width of the boundary layer increases as

the Péclet number decreases, in this cases outflow boundary conditions

need to be prescribed in order to guarantee the solution of the PDE.

Now let us consider the 2D example sketched in Figure 2.5. In a first step,

the incompressible Navier-Stokes equations are solved in the computational

domain shown in the figure. Constant inflow velocity is imposed at the inlet,

a no-slip condition is imposed on the walls, and a symmetry condition on the

left-hand boundary. The Reynolds number was set to 100, where the charac-

teristic length is the inlet width. The left part of the figure shows the velocity

amagnitude obtained. Then we solve the temperature equation, with a high

Péclet number of 500. The temperature is prescribed at the inlet to a value of

one, and to zero on the upper wall of the outflow channel. Elsewhere, a zero

flux condition is imposed. The temperature magnitude contours are shown

on the right part of the figure, where we can observe the parabolic boundary

layer developing on the upper part of the outflow channel. Finally, the plot
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compares the solution obtained with the 1D exact solution together with the

temperature along a vertical cut in the inflow channel. We observe a very

similar behavior, showing that the solution of an impinging jet is triggering

an exponential boundary layer.

Figure 2.5: Exponential boundary layer in an impinging jet. On the left, velocity
contours. On the right, temperature contours and comparison between the 1D exact
solution and the temperature obtained along a vertical cut (shown in the entrance
channel).

2.2 Numerical Treatment of the AD Equation

In general, partial differential equations such as Equation (2.3) only have

an exact solution under certain conditions of some of its parameters. But in

most cases and more when solving general problems, numerical methods

are required to solve them. There are several techniques to solve a partial

differential equation numerically, although the most common one consists

in the discretization of partial differential equations using techniques such

as finite differences, finite elements and finite volumes. This thesis will

only focus on the finite element method, as it is the only one that has been

used to carry the different simulations that will follow in the next chapters.

In this section the finite element formulation of the advection-diffusion
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equation will be introduced. To do so, a continuous variational formulation

will be introduced (weak formulation), after the same will be done but for a

finite dimensional subspace, then a basis for the variational formulation in

the finite dimensional subspace will be chosen to obtain a system of linear

equations.

2.2.1 Weak Formulation

Before starting with the finite element spatial discretization of the AD equa-

tion, a weak formulation needs to be defined for the Equations in (2.1) and

(2.3). First the boundary ∂Ω will be split into two components, these are,

ΓD and ΓN . ΓD is in general associated with the inflow ∂Ω− and/or the wall

∂Ω0, while ΓN is related to the outflow ∂Ω+. Then, to define the weak or

variational formulation two types of spaces are needed, these are, natural

spaces for second order PDE’s and are defined as:

• Test Spaces: These will be denoted by V and are all the square in-

tegrable functions that have square integrable first derivatives in the

domain Ω and that are zero on the Dirichlet boundary ΓD.

V = {v ∈ H1(Ω) | v = 0 on ΓD} ≡ H1
ΓD

(Ω) (2.14)

where H1(Ω) is a Hilbert space defined by:

H1(Ω) := {v ∈ L2(Ω) | ∂v

∂xj
∈ L2(Ω), j = 1, ..., nd} (2.15)

with L2(Ω) being the space of square integrable functions in Ω and

nd the space dimension. Also, we provide H1(Ω) with the following

scalar product:
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(u, v)1 :=

∫

Ω
uvdΩ+

∫

Ω
∇u ·∇vdΩ

and we define the norms associated toH1(Ω) and L2(Ω) respectively

as:

∥u∥1 =
(∫

Ω
u2dΩ+

∫

Ω
∇u ·∇udΩ

)1/2

∥u∥ =

(∫

Ω
u2dΩ

)1/2

• Trial Spaces: These will be denoted by S. They are similar to test

functions but with the difference that the functions need to satisfy the

Dirichlet conditions at the boundary ΓD.

S = {u ∈ H1(Ω) | u = uD on ΓD} ≡ V + {ūD} (2.16)

where ūD is any function of H1(Ω) which satisfies ūD = uD.

From the aforementioned definitions, it is easy to see that in case of hav-

ing only homogeneous boundary conditions, this is uD = 0, test, trial and

Hilbert spaces will be the same and will be identified as V 0, S0 and H1
0 (Ω)

respectively and can be written as:

H1
0 (Ω) := {v ∈ H1(Ω) | v∂Ω = 0} (2.17)

These will have the same scalar product and norm as H1.

Then, the weak form of Equations (2.1) and (2.3) is achieved by multiplying

them by a test function belonging to V and integrating over the domain Ω.
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Then the variational formulation consists in finding u ∈ S such that:

∫

Ω
v
∂u

∂t
dΩ+

∫

Ω
va ·∇u dΩ− 1

Pe

∫

Ω
v∆u dΩ =

∫

Ω
vf dΩ ∀v ∈ V (2.18)

Applying the Gauss divergence theorem to the left-hand side of equation

(2.18) the following is obtained:

∫

Ω
v
∂u

∂t
dΩ+

∫

Ω
va ·∇u dΩ+

1

Pe

∫

Ω
∇v ·∇u dΩ =

=

∫

Ω
vf dΩ+

1

Pe

∫

∂Ω
v∇u · n d∂Ω ∀v ∈ V

(2.19)

Before introducing the finite element formulation, the following bilinear and

linear forms are introduced for the sake of clarity:

a(u, v) : =

∫

Ω
v
∂u

∂t
dΩ+

∫

Ω
va ·∇u dΩ+

1

Pe

∫

Ω
∇v ·∇u dΩ

f(v) : =

∫

Ω
vf dΩ+

1

Pe

∫

∂Ω
v∇u · n d∂Ω

(2.20)

Finally, with these definitions, the weak form of the problem consists in

finding u ∈ S such that:

a(u, v) = f(v) ∀v ∈ V (2.21)

2.2.2 Existence and Uniqueness of Solutions

Let us analyze the existence and uniqueness of solutions of Equation (2.21).

To do so, we will consider the non-dimensional form of the advection-

diffusion equation defined in Equation (2.3) with ∂u/∂t = 0 and homo-

geneous boundary conditions;
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⎧
⎪⎪⎨

⎪⎪⎩

a ·∇u− 1

Pe∆u = f in Ω

u = 0 on ∂Ω

(2.22)

where we have considered ∇u =
(
∂u
∂x ,

∂u
∂y

)
, ∆u = ∂2u

∂x2 + ∂2u
∂y2 , a = (ax, ay)

and ∇ · a = 0.

Lax-Milgram theorem [31], guarantees the existence and uniqueness of so-

lutions of a non-symmetric bilinear form a(·, ·). The theorem states the fol-

lowing:

Theorem 2.2.1. The variational problem defined in (2.21) has a unique

solution u ∈ V if the following conditions hold:

(i) a(·, ·) is continuous, this is, it exists a real constant Na such that:

∣∣a(u, v)
∣∣ ≤ Na∥u∥V ∥v∥V ∀u, v ∈ V

(ii) a(·, ·) is coercive, this is, it exists a real positive constant Ma such

that:
∣∣a(v, v)

∣∣ ≥ Ma∥v∥2V , ∀v ∈ V

(iii) f(·) is a continuous linear functional on V , this is it exists a real con-

stant Nl, such that:

f(v) ≤ Nl∥v∥V ∀v ∈ V

Let us prove now the existence and uniqueness for this specific case of the

AD equation using the problem defined in (2.22). In this case we have cho-

sen homogeneous Dirichlet boundary conditions and noNeumann boundary
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conditions, so our solution will be in u ∈ V 0.

Proof.

(i) Continuity of a(·, ·)

From the bilinear form it is easy to see that:

a(u, v) ≤
∣∣∣∣
∫

Ω

1

Pe
∇u ·∇vdΩ

∣∣∣∣+
∣∣∣∣
∫

Ω
va ·∇udΩ

∣∣∣∣ (2.23)

Now, if we seek the bounds of each term separately:

∣∣∣∣
∫

Ω

1

Pe
∇u ·∇vdΩ

∣∣∣∣ ≤
∫

Ω

∣∣∣∣
1

Pe
∇u ·∇v

∣∣∣∣ dΩ ≤ 1

Pe
∥∇u∥∥∇v∥ ≤ 1

Pe
∥u∥1∥v∥1

∣∣∣∣
∫

Ω
va ·∇udΩ

∣∣∣∣ ≤
∫

Ω
|va ·∇u| dΩ ≤∥a∥∞∥u∥1∥v∥1

where∥a∥∞ = sup
i

|ai|.

Finally putting together these two bounds into Equation (2.23), we

get:

a(u, v) ≤ Na∥u∥1∥v∥1 ∀v ∈ V 0 (2.24)

where Na = 1
Pe +∥a∥∞ .

(ii) Coercivity of a(·, ·)

Here we note that ∀ ∈ vΩ,

∫

Ω
va ·∇v =

∫

Ω
a ·∇

(
v2

2

)
=

∫

∂Ω
(a · n)

(
v2

2

)
−
∫

Ω

(
v2

2

)
∇ · a
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The term
∫
∂Ω(a · n)

(
v2

2

)
dissapears, as v vanishes in ∂Ω. Then using

that ∇ · a = 0 and Poincaré-Friedrichs inequality we obtain:

a(v, v) =
1

Pe

∫

Ω
∥∇v∥2 +

∫

Ω
va ·∇v =

1

Pe

∫

Ω
|∇v|2 dΩ ≥ Ma∥v∥21

(2.25)

whereMa = C
Pe and C is the Poincaré constant [40].

• Continuity of f(·)

f(v) ≤
∫

|vfdΩ| ≤
∫

|vf | dΩ ≤∥v∥∥f∥ ≤ Nl∥v∥1

where Nl =∥f∥.

Since Lax-Milgram theorem holds for the advection-diffusion equation, we

can conclude that there exists a unique solution u ∈ V 0 for this variational

problem.

2.2.3 Energy Norm and Stability

Let us now introduce the energy norm∥·∥a in V , given by:

∥u∥a := a(u, u) (2.26)

In the particular case of the problem defined in (2.22) this can be written as:

a(u, u) =
1

Pe∥∇u∥2 (2.27)

From Equation (2.25) it is easy to see that:

Ma∥u∥21 ≤
1

Pe∥∇u∥2 (2.28)
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Also from this last equation and using Cauchy-Schwarz inequality, we know

that:

1

Pe∥∇u∥2 ≤∥f∥∥u∥1 (2.29)

And putting Equations (2.28) and (2.29) together we obtain:

∥u∥1 ≤
Pe
C

∥f∥ (2.30)

whereC is the Poincaré constant. This means that, for large Péclet numbers,

or what is the same, for small values of the diffusion coefficient k, the right-

hand-side of Equation (2.30) is high, meaning that small variations on the

data f can lead to large variations on the solution u [15, 40, 41].

2.2.4 Discrete Galerkin Formulation

Let Ωe be a finite element partition of the domain Ω, where the index e

ranges from 1 to the total number of elements ne and let h be the diameter

of Ωe. From the definition of (2.17) the functional space from the previous

partition V 0
h is considered such that V 0

h ⊂ V 0, the finite element space un-

der these circumstances is said to be conforming. Finally the finite element

approximation or what is the same, the discrete Garlekin formulation of the

problem consists in finding uh ∈ V 0
h such that:

a(uh, vh) = f(vh) ∀vh ∈ V 0
h (2.31)

where a(uh, vh) is the same as in (2.20) but considering the discrete

functional space V 0
h .

As it was proved in Subsection 2.2.2, Equation (2.31) has a unique solution
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such that uh ∈ V 0
h . Also the following error estimate can be derived (Cea’s

lemma [21]):

∥u− uh∥1 ≤
Na

Ma
inf

vh∈V 0
h

∥u− vh∥1 (2.32)

and where u is the solution to the problem defined in Equation (2.21). From

Equation (2.32) we can deduce that this error bound is suited if Na
Ma

is not too

large. To see this better let us use the results obtained in Equations (2.24)

and (2.25) forNa andMa respectively. In this case the relationship between

the two is given by:

Na

Ma
=

1

C
+
Pe
C

∥a∥∞ (2.33)

This means that for large Péclet numbers the right-hand-side of Equation

(2.32) can also be very large. In practice this leads to oscillations in the

solution, as described in [15]. In these cases, a stabilization technique is

needed.

2.2.5 Stabilized Finite Elements

As it has been shown, the Galerkin discretization is not appropriate to

convection dominated problems. A remedy to this, is to use a stabilization

technique. Before continuing, it must be clarified that the scope of this

thesis is not about comparing the different existent stabilization strategies,

there will be only used as a tool needed for the type of problems that will

be solved. In this framework, a small overview of the streamline upwind

Petrov-Galerkin (SUPG) method will be introduced, in order to support

the results in the next chapters. For further details about stabilization

techniques see [24].
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In general for the stabilization methods that will be considered in this work,

the discrete problem that needs to be solved is the following:

a(uh, vh) + S(uh, vh) = f(vh) ∀vh ∈ Vh (2.34)

where S(uh, vh) is the stabilization term.

For solving the equation, several models can be considered as illustrated

in Figure 2.6. Historically, artificial viscosity methods were intended to

add a stabilising isotropic diffusion [59]. Schemes of different orders have

been proposed and in general, the numerical viscosity introduced scales with

the mesh size, to progressively disappear while the mesh is refined. Later,

streamline upwind methods (SU) were adopted to introduce diffusion only

in the streamline direction [16]. Such methods suffer from the fact that they

are not consistent, that is an exact solution to the PDE does not satisfy the

weak form. To correct this, the streamline upwind Petrov-Galerkin (SUPG)

methods [17] are similar to their SU counterpart but are consistent, as the

added term is proportional to the residual of the equation. Then, Galerkin-

Least-Square (GLS) methods [57] were developed as a generalisation of

stabilisation methods to any type of PDE and to systems of equations. In

1995, Hughes [56] reinterpreted the stabilization methods in the context of

Variational Multiscale methods (VMS). In brief, the stability is provided by

modelling the sub grid scale, that is the scale not resolved by the mesh, and

including it in the resolved scale equation. In this context, Algebraic Subgrid

Scale methods propose an algebraic equation for the subgrid scale that poses

mathematical grounds to previous stabilisation methods. Once this subgrid

scale has been identified and modelled, families of tracking methods for the

subgrid scale have been proposed to follow the history of the subgrid scale
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for unsteady problems and to consider the subgrid scale in the non-linear

terms of the equation. In parallel, orthogonal subgrid scales method (OSS)

or split OSS methods intend to increase the accuracy of the stabilized for-

mulation by choosing the subgrid scale in an appropriate space, the space

orthogonal to the space of the resolved scale [24, 59].

VMS Methods

GLS Methods

SUPG Method

SU Method

Artificial Viscosity

Split OSSOSS ASGS

1

Figure 2.6: Evolution of the different stabilization methods

Streamline upwind Petrov-Galerkin

Before starting with the SUPG method, we need to define the following:

• he is a characteristic non-dimensional length of the element e (mini-

mum edge size in the direction of the advection a )

• We simplify the integral over all elements as:

∫

Ω′
:=

ne∑

e=1

∫

Ωe
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where Ωe is the interior of each element e that the mesh has.

Then, in case of the SUPG method, the stabilization term is given by:

S(uh, vh) =

∫

Ω′
τe(a ·∇vh)(L(uh)− f(vh))dΩ (2.35)

where τe is the stability parameter at element level and it is given by [58,

62, 63]:

τe =
he
2|a|

(
coth Pe− 1

Pe

)
with Pe = |a|he

2k
(2.36)

A different formulation is used if quadratic elements are used [25]. If the

asymptotic behavior of this last equation is analyzed, then:

τe =

⎧
⎪⎪⎨

⎪⎪⎩

he
2|a| if Pe → ∞

0 if Pe → 0

(2.37)

From Equation (2.37) we observe that when Pe → 0, τe → 0 meaning that

the term S(uh, vh) will be negligible in Equation (2.34).

Let us analyze now Equation (2.34), taking uh = vh:

a(uh, uh) =
1

Pe∥∇uh∥21 +
∥∥∥τ1/2e a ·∇uh

∥∥∥
2

1
(2.38)

where τe is given by Equation (2.36). From this last equation we observe

that when Pe → ∞ we still have control over the gradient in the direction

of the flux provided by the second term of Equation (2.38).

2.2.6 Matrix Form of the Finite Element Formulation

Since the objective of the finite element formulation is to build a linear

system of equations, we build its matrix form, as this will be useful at
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the end of this chapter to discuss the resultant matrices coming form the

advection-diffusion equation. Also, this will give us a first idea on how to

adapt preconditioning techniques to the physics of the problem.

Let us consider a basis of functions φi ∈ V 0
h with 1 ≤ i ≤ N . And let us

express uh in this basis:

uh =
N∑

j=1

ujφj (2.39)

Then using it in Equation (2.31) (analogously the same can be done with

Equation (2.34)) we obtain:

N∑

j=1

uja(φj ,φi) = f(φi) ∀ i = 1, ..., N (2.40)

Defining then A = a(φj ,φi) and fi = f(φi) the following linear system is

obtained:

Au = f (2.41)

where u = (u1, ..., uN )T ∈ RN is the vector of coefficients of uh, A is an

N ×N matrix and f ∈ RN is the right-hand-side vector.

2.2.7 Transient Problem

To solve the transient problem let us consider the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu+ Lu = f in Ω× (0, T )

u = 0 on ∂Ω× (0, T )

u = u0 in Ω × {0}

(2.42)
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where the time interval goes from time 0 to time T and Lu is defined by

(2.22) and where f can depend also explicitly of t, but for the sake of sim-

plicity this will not be considered. To solve the transient problem, we use

the generalized trapezoidal rule [6] as shown in Equation (2.43).

∂tu
n+θ : =

un+θ − un

θ∆t

∆t : = tn+1 − tn

un+θ : = θun+1 + (1− θ)un

(2.43)

where n is the time step number and θ is a parameter related to the method

used in each case. It is always in the interval [0, 1] and ∆t is the time step

size. Finally putting all these together and using (2.42), the equation to be

solved for un+θ is:

∂tu
n+θ + Ln+θun+θ = fn+θ (2.44)

Then the solution at time step n+ 1 will be given by:

un+1 = un +
un+θ − un

θ
(2.45)

By using the trapezoidal rule we obtain the formulation of the transient

problems by carrying out the time discretization on 2.42 and then deriving

the weak formulation.

There are mainly two strategies to select the time step size ∆t. On the

one hand, when implicit methods are considered and the time scales of

the problems are known, the time step can be prescribed by the user. On

the other hand, explicit schemes are constrained by the Courant-Friedrichs-
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Lewy (CFL) condition [27] which imposes a critical (maximum) time step

∆tc to provide temporal stability of the scheme. Also, when considering im-

plicit schemes and when no indication on the time scales of the problem are

known a priori, it may be convenient to select the time step as a function

of the critical time step. The multiply α is called the safety factor and the

resulting time step is therefore ∆t = α∆tc [18, Chapter 9]. A classical ex-

pression for the critical time step for the AD equation is ∆tc = mini∆tci ,

where ∆tci is the critical time step of element I such that:

∆tci =
1

2|a|
h

+
4k

h2

In this sectionwewill list some of the integrationmethods used in this thesis.

Backward Euler approximation

This is a first order implicit approximation and it is obtained by choosing

θ = 1. Then substituting in Equation (2.44):

∂tu
n+1 + Ln+1un+1 = fn+1

And the Galerkin formulation, using a backward Euler approximation, of

the problem defined in (2.42) will consist in finding for each time step n,

un+1
h ∈ Vh such that:

(∂tu
n+1
h , vh) + an+1(un+1

h , vh) = fn+1(vh)∀vh ∈ Vh

(u0h, vh) = (u0, vh) ∀vh ∈ Vh

(2.46)

where again an+1(un+1
h , vh) is the bilinear form defined in (2.20) at time
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step n+ 1.

Crank Nicolson approximation

Crank Nicolson approximation is a second order method implicit in time

and it is obtained by choosing θ = 1/2, this is:

∂tu
n+1/2 + Ln+1/2un+1/2 = fn+1/2

And analogously as it happened with the backward Euler approximation, the

Galerkin formulation, using a backward Euler approximation, of the prob-

lem defined in (2.42) will consist in finding for each time step n, un+1/2
h ∈ V

such that:

(∂tu
n+1/2
h , vh) + an+1/2(un+1/2

h , vh) = fn+1/2(vh)∀vh ∈ Vh

(u0h, vh) = (u0, vh) ∀vh ∈ Vh

(2.47)

To obtain the solution at n+ 1, Equation (2.45) has to be used.

2.2.8 Integration Rules

In Subsection 2.2.6 we show that the finite element method requires the

calculation of integrals over individual elements. In some occasions these

integrals can be calculated analytically, but often they are too difficult and

numerical integration methods are required. There are several integration

methods such as the trapezoidal rule [6] or Simpson’s rules [100], although

Gaussian quadrature is one of the most frequently applied to numerical

integration methods [75]. It is the one that we have used in this thesis.
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Gaussian quadrature approximates an integral as the weighted sum of the

values of its integrands as shown in Equation (2.48) for a one-dimensional

integral, over the interval −1 ≤ ξ ≤ 1.

∫ 1

−1
f(ξ)dξ ≈

Nq∑

q=1

ωqf(ξq) (2.48)

where Nq is the total number of quadrature points, ξq is the location of the

qth quadrature point in the domain, and ωq is the corresponding quadrature

weight. The extension to multi-dimensional integrals can be found in [72].

We will call it a closed rule if the chosen quadrature points are located at

the bounds of the interval [-1,1] and an open rule if the quadrature nodes

are interior nodes of the interval [-1,1]. As we will see in the next section,

the way in which these integrals are calculated will have an influence on the

structure of the matrix of the linear system defined in Equation (2.41).

2.3 Case Studies of the Advection-diffusion Equa-

tion

In this section a series of problems are selected to show the physical and

numerical behaviors explained in this chapter. Also they will be the theo-

retical basis that will justify the renumbering algorithms developed in this

thesis. In particular, we will evidence some specific structures of the matrix

under different scenarios: strong advection and boundary layer mesh. When

referring to the structure of a matrix, we refer to the original connectivity

while excluding the null coefficients.
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2.3.1 Example 1: Strong Advection

This example will consider the problem defined in (2.22) taking the velocity

constant only in the y direction, so that a = (0, ay). As the Péclet number

is high, the convection term is dominant over the diffusive one. To study

this problem let us consider a patch of a typical regular 2-dimensional mesh

made of four linear quadratic elements and nine nodes. The example will

solve the advection-diffusion equation for node 5, the other nodes being

boundary nodes. It should be noted that the nodes have been ordered in a

way that we can evidence some specific structure, and that the velocity has

been chosen in the y direction.

a

1

2

3

4

6

7

8

9

5

2h1

2h2

x

y

2h1

2h2

(-h1,-h2) (h1,-h2)

(-h1,h2) (h1,h2)

1

4

2

3

Figure 2.7: Global mesh (left) and single element with local numbering (right).

In Figure 2.7, h1 and h2 are the element sizes in the x and y axes respec-

tively. Also, as it is shown in Figure 2.7 we have chosen h1 = h2 = h.

Considering just one element of the mesh given in Figure 2.7, the following
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change of variables is done from cartesian to local coordinates as shown in

Figure 2.8:

x

y

(-h1,-h2) (h1,-h2)

(-h1,h2) (h1,h2)

ξ

η

(-1,-1) (1,-1)

(-1,1) (1,1)

1

4

2

3

1

4

2

3

Je =


J11 J12
J21 J22

�
=


h1 0
0 h2

�

Figure 2.8: Isoparametric transformation in the 2D mesh.

where ξ and µ are the local coordinates. Then, the shape functions and local

derivatives are given by:

Φ1(ξ, η) =
1

4
(1− ξ − η + ξη)

∂Φ1

∂ξ
=

1

4
(η − 1)

∂Φ1

∂η
=

1

4
(ξ − 1)

Φ2(ξ, η) =
1

4
(1 + ξ − η − ξη)

∂Φ2

∂ξ
=

1

4
(1− η)

∂Φ2

∂η
= −1

4
(ξ + 1)

Φ3(ξ, η) =
1

4
(1 + ξ + η + ξη)

∂Φ3

∂ξ
=

1

4
(η + 1)

∂Φ3

∂η
=

1

4
(ξ + 1)

Φ4(ξ, η) =
1

4
(1− ξ + η − ξη)

∂Φ4

∂ξ
= −1

4
(η + 1)

∂Φ4

∂η
=

1

4
(1− ξ)

(2.49)

Substituting them into (2.31), the following local matrices are obtained for

each element:
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Kl
s =

∫

Ωe

(
J−1
11

∂Φi

∂ξ
+
✟✟✟✟J−1

12
∂Φi

∂η

)
·
(
J−1
11

∂Φj

∂ξ
+
✟✟✟✟J−1

12
∂Φj

∂η

) ∣∣Je
∣∣ dξdη

+

∫

Ωe

(

✟✟✟✟J−1
21

∂Φi

∂ξ
+ J−1

22
∂Φi

∂η

)
·
(

✟✟✟✟J−1
21

∂Φj

∂ξ
+ J−1

22
∂Φj

∂η

) ∣∣Je
∣∣ dξdη

Cl
s =

∫

Ωe

Φi

⎛

⎜⎝ ax︸︷︷︸
=0

(
J−1
11

∂Φj

∂ξ
+
✟✟✟✟J−1

12
∂Φj

∂η

)
+ ay

(

✟✟✟✟J−1
21

∂Φj

∂ξ
+ J−1

22
∂Φj

∂η

)
⎞

⎟⎠
∣∣Je

∣∣ dξdη

(2.50)

where Je is the Jacobian of the transformation andK l
s and C l

s correspond to

the stiffness matrix that belongs to the diffusive term of (2.22) respectively.

The subindex s will be either o if the integration is done with an open

integration rule or c if the integration of the variational form is done with a

closed integration rule.

Then if an open integration rule is considered, the following result is ob-

tained for the local matrices:

K l
o =

1

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 −2 −1

−1 4 −1 −2

−2 −1 4 −1

−1 −2 −1 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

C l
o =

hay
6

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−2 −1 1 2

−1 −2 2 1

−1 −2 2 1

−2 −1 1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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and looking at the global matrices of the local matrices above:

Kg
o =

1

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 −1 −2 0 0 0 0

−1 8 −1 −2 −2 −2 0 0 0

0 −1 4 0 −2 −1 0 0 0

−1 −2 0 8 −2 0 −1 −2 0

−2 −2 −2 −2 16 −2 −2 −2 −2

0 −2 −1 0 −2 8 0 −2 −1

0 0 0 −1 −2 0 4 −1 0

0 0 0 −2 −2 −2 −1 8 −1

0 0 0 0 −2 −1 0 −1 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cg
o =

ayh

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 2 0 −1 1 0 0 0 0

−2 0 2 −1 0 1 0 0 0

0 −2 2 0 −1 1 0 0 0

−1 1 0 −4 4 0 −1 1 0

−1 0 1 −4 0 4 −1 0 1

0 −1 1 0 −4 4 0 −1 1

0 0 0 −1 1 0 −2 2 0

0 0 0 −1 0 1 −2 0 2

0 0 0 0 −1 1 0 −2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now if the same is done using a closed integration rule, then:

K l
c =

1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

C l
c =

ayh

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1

0 −1 1 0

0 −1 1 0

−1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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and in this case the global matrices will be the following:

Kg
c =

1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 −1 0 0 0 0 0

−1 4 −1 0 −2 0 0 0 0

0 −1 2 0 0 −1 0 0 0

−1 0 0 4 −2 0 −1 0 0

0 −2 0 −2 8 −2 0 −2 0

0 0 −1 0 −2 4 0 0 −1

0 0 0 −1 0 0 2 −1 0

0 0 0 0 −2 0 −1 4 −1

0 0 0 0 0 −1 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Cg
c =

ayh

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0

−1 0 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

0 0 0 −2 2 0 0 0 0

0 0 0 −2 0 2 0 0 0

0 0 0 0 −2 2 0 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 0 1

0 0 0 0 0 0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally the local elemental matrices are presented for SUPG stabilization,

where the coefficient τe has been used in its asymptotic form given by (2.37).

Also we present, the resultant global matrix after summing the convective

term C together with the SUPG stabilization term S. Both calculations are

done with open and closed integration rules.
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In the case of having an open integration rule, the local elementary matrices

are the following:

Sl
o = a2yτe

1

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 1 −1 −2

1 2 −2 −1

−1 −2 2 1

−2 −1 1 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

where τe is taken as the one defined in (2.36) and the resultant global matrix

for the new convective term is:

Cg
o + Sg

o =
ayh

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

−4 4 0 −2 2 0 0 0 0

0 −4 4 0 −2 2 0 0 0

0 0 0 0 0 0 0 0 0

−2 2 0 −8 8 0 −2 2 0

0 −2 2 0 −8 8 0 −2 2

0 0 0 0 0 0 0 0 0

0 0 0 −2 2 0 −4 4 0

0 0 0 0 −2 2 0 −4 4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If the same is donewith a closed integration rule, the local elementarymatrix

is:

Sl
c = a2yτe

1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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and the resultant global matrix in this case is:

Cg
c + Sg

c =
ayh

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0

−2 2 0 0 0 0 0 0 0

0 −2 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −4 4 0 0 0 0

0 0 0 0 −4 4 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 2 0

0 0 0 0 0 0 0 −2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remarks

Several conclusions come out from the derivations carried out:

• First, as it is shown in Figure 2.7 themesh has been ordered in the same

direction as the advection velocity, which is given in the y direction.

This choice was made to evidence the structure of the matrix.

• Second, in order to solve the problem (or equivalently to invert the

global matrix), boundary conditions should be prescribed.We observe

that in the case of pure advection (stabilized with SUPG), the rows of

1, 4, 7 are null, suggesting that the unknown must be prescribed on

these nodes. This is achieved by adding a non-zero in the diagonal of

their respective rows. Otherwise zero flux is prescribed and the rows

remain unchanged.

• The Galerkin terms Cg
o and Cg

c have no specific structure, although

we observe in Cg
c a zero on the diagonal of node 5; this is a centered

scheme [91].
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• In the case of Cg
c + Sg

c we have independent rows in the direction of

the advection (independent streamlines). in this example we have 3

streamlines aligned along the nodes (1,2,3), (4,5,6) and (7,8,9). This

is because there is only a dependence with the previous node (down-

stream node).

• This structure does not appear in the case of open integration rule. Fig-

ure 2.9 shows the domain of influence of both stabilized convection

matrices.We observe that for both rules, the domain of influence is up-

stream, justifying the term streamline upwind for the SUPG method.

5 5

a

Figure 2.9: Domain of influence of node 5 for convection and stabilization matri-
ces with open integration rule (left) and closed integration rule (right).

• Regarding diffusion, we observe that the close rule has a cross struc-

ture, similar to the one we obtain in finite differences. On the contrary,

the open rule has a complete structure. This is sketched in Figure 2.10.
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5 5

Figure 2.10: Domain of influence of node 5 for diffusion matrices with open inte-
gration rule (left) and open integration rule (right).

2.3.2 Example 2: Pure Diffusion with Mesh Anisotropy

In this case the same mesh as in Example 1 will be considered, but now

the mesh will have an anisotropy. This example represents the typical mesh

that can be found usually when solving boundary layer problems, shear layer

problems etc., for which the variation of the solution is concentrated in very

thin layers. In this example diffusion dominates advection, this is why only

the diffusion matrix will be shown in this example.
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4 6

1 2 3

7 8 9

5

1 2

4 3

2h1

2h2

x

y

2h1

2h2

(-h1,-h2) (h1,-h2)

(-h1,h2) (h1,h2)

Figure 2.11: Global mesh (left) and single element with local numbering (right).

Like in Figure 2.7 h1 and h2 are the element sizes in the x and y axes respec-

tively and as it is shown in Figure 2.11 in this case h1 ≪ h2. This choice is

used to neglect some terms of the matrices, in particular, the terms propor-

tional to h1/h2. We define the aspect ratio as:

ar =
h2
h1

(2.51)

According to this definition, the situation in this example corresponds to

a high aspect ratio. Then using the same change of coordinates as the one

shown in Figure 2.8 of Example 1 and using the same shape functions de-

fined in (2.49), the resultant matrices for each element are in case of using
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an open integration rule:

K l
o =

h2
6h1

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 −1 1

−2 2 1 −1

−1 1 2 −2

1 −1 −2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Finally the global matrix in this example for the stiffness (diffusion) matrix

K will be:

Kg
o =

h2

6h1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 0 1 −1 0 0 0 0

−2 4 −2 −1 −1 2 −1 0 0

0 −2 2 0 −1 1 0 0 0

1 −1 0 4 −4 0 1 −1 0

−1 2 −1 −4 8 −4 −1 2 −1

0 −1 1 0 −4 4 0 −1 1

0 0 0 1 −1 0 2 −2 0

0 0 0 −1 2 −1 −2 4 −2

0 0 0 0 −1 1 0 −2 2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And if the same is done with an close integration rule, the result for the local

and global stiffness matrix are the following:

K l
c =

h2
2h1

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

for the local matrix and
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Kg
c =

h2

2h1

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 0 0 0

1 2 −1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

0 0 0 2 −2 0 0 0 0

0 0 0 −2 4 −2 0 0 0

0 0 0 0 −2 2 0 0 0

0 0 0 0 0 0 1 −1 0

0 0 0 0 0 0 −1 −1 0

0 0 0 0 0 0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for the global one.

Remarks

Several things come out from the calculations done in this example:

• First, as it is shown in Figure 2.7 the mesh has been ordered in the

direction of anisotropy of the mesh, which is given in the x direction.

As it happened with the previous example, this choice was made to

show the structure of the matrix.

• Second, this patch is done for row 5, but in order to solve the problem

(or equivalently to invert the global matrix), we need to prescribe at

least the value on one node.

• Kg
o has no specific structure, and the coefficients are of the same or-

der. On the contrary in Kg
c we observe a tridiagonal structure. These

domain of influence are shown in Figure 2.12. This Figure should be

compared with Figure 2.10 for the case h1 = h2.



2.3 Case Studies of the Advection-diffusion Equation 53

5 5

Figure 2.12: Domain of influence of node 5 for the diffusion matrix with open
integration rule (left) and closed integration rule (right).

2.3.3 Conclusions

In this Section two canonical cases often encountered in CFD have been ana-

lyzed. The first example could correspond to any heat transfer problem with

a high advection, whereas the second one could be associated to a parabolic

boundary layer problem. In both cases and independently of the physics of

the problem itself, we have demonstrated that the order in which the mesh is

renumbered can exhibit some interesting structures (tridiagonal and lower

diagonal). In more general problems, these limiting regimes can happen to-

gether. Then, by performing a careful renumbering according to the local

physics or mesh anisotropy, we can in principle exhibit such structures in
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the same way it was done for the simple cases. This opens the possibility of

applying specific preconditioning techniques adapted to these structures.



Chapter 3

Sparse Linear Systems

‘I’m not young enough to know
everything’

J.M. Barrie,
Peter Pan

This chapter presents the state-of-the-art solvers used in this thesis to solve

the advection-diffusion and Navier-Stokes equations. Section 3.1 shows

how the assembly of an algebraic system is done and how matrices are

stored. Several aspects on basic linear algebra are discussed in Section 3.2.

Section 3.3 focuses on the different existing solvers used to solve algebraic

linear systems of equations depending on the matrix properties described in

Section 3.2. Finally, in the last section we explain the parallelization of the

different operations involved.

3.1 Assembly and Storage

Aswe have seenwith the cases of Section 2.3, the discretization of the partial

differential equations lead to sparse matrices. By sparse matrix, we under-

stand a matrix that only has a few entries different from zero. In this section

we give a short overview on how the system of equations is assembled and

which technique wewill use to store sparsematrices, since the zero elements
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in this matrices do not need to be stored.

3.1.1 Algebraic System Assembly

The discretization methods considered, Finite Element (FE), Finite Volume

(FV) or Finite Difference (FD), transform a continuous problem into a dis-

crete problem of finite dimension that results in solving a linear system of

equations of the type:

Ax = b (3.1)

where A ∈ Rn×n is a matrix representing the coefficients relating the

unknowns in each equation, x ∈ Rn is the vector of unknowns and

b ∈ Rn is the right-hand side term. Note that this equation is the same

as Equation (2.41), obtained from the finite element discretization of the

advection-diffusion equation.

In the context of classical finite element method as shown in Chapter 2, the

coefficients of the matrix are obtained computing a loop over the element

mesh, in each elemental matrix. Finally these coefficients are assembled

into the global matrix.

The matrices resulting from these discretizations are often large and sparse,

meaning that they have only a few entries different from zero. Thus solving

the system defined in Equation (3.1) can be challenging.

3.1.2 Matrix Storage

Several storage schemes have been proposed for these sparse matrices. The

matrix storage format is determined mainly by two constraints: First to

keep the memory requirements as low as possible to store the coefficients,
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and second to make the sparse matrix vector product (SpMV) as fast as

possible. Different storage formats can be found in the literature, such as

Coordinate Storage (COO) [49, 79], Jagged Diagonal Storage (JAD) [87],

Compressed Sparse Row (CSR) [79], Compressed Sparse Column (CSC)

[33, 79] or ELLPACK (ELL) [37]. In this document, only the CSR format

will be explained in detail.

Let us consider the following example:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 −2 0

3 9 0 0 0 3

0 7 8 7 0 0

3 0 8 7 5 0

0 8 0 9 9 13

0 4 0 0 2 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.2)

The previous matrix in CSRwill be expressed with the following data struc-

tures:

aa =
[
10,−2, 3, 9, 3, 7, 8, 7, 3, 8, 7, 5, 8, 9, 9, 13, 4, 2,−1

]

ja =
[
1, 5, 1, 2, 6, 2, 3, 4, 1, 4, 5, 6, 2, 4, 5, 6, 2, 5, 6

]

ia =
[
1, 3, 6, 9, 13, 17, 20

]

The array aa stores the non-zero values of the sparse matrix, ja indicates the

corresponding column indexes and ia contains the pointers of the previous

arrays in which each row starts.
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3.2 Basic Linear Algebra

Several aspects have to be taken into account when solving the system in

Equation (3.1), such as matrix properties and matrix conditioning. The type

of matrix obtained and its associated condition number are related directly

to the physics of the discretized equation, these will determine eventually

the appropriate solver and preconditioner used in each case. Also, we will

explain matrix permutation and restriction. These will be of special interest

in Chapters 4 and 5.

3.2.1 Matrix Properties

Depending on the nature of the physical problem and the numerical

methods studied in each case, the resulting sparse matrix can have different

properties after the discretization. In this section, some of them will be

mentioned.

Let A = [aij ] be a real square matrix of dimension n × n with coefficients

aij ∈ R such that 1 ≤ i ≤ n and 1 ≤ j ≤ n and where i and j represent the

row and column index respectively. If we denote At = [aji] as the transpose

of matrix A, we can define the following properties:

• Symmetry if A = At ⇒ aij = aji is symmetric, otherwise is non-

symmetric.

The discretization of the Laplacian in the convection-diffusion equa-

tion described in Chapter 2 for a pure diffusive problem, results in a

symmetrix matrix. The presence of the convection term in Equation

(2.1) makes it non-symmetric. These two statements have been shown

in detail in Section 2.3.
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• Symmetric Positive Definite A symmetric, square matrix A of di-

mension n× n with real coefficients is said to be positive definite, if

it verifies one of the following equivalent properties [42]:

(i) ∀ non-zero vectors x with n rows:

(x, x)A = (Ax, x) = xtAx > 0

(ii) All the eigenvalues λi(A) i = 1, ..., n of the matrixA are strictly

positive.

(iii) The symmetric bilinear form (x, y)A = (Ax, y) = ytAx is a

scalar product on Rn

Theorem 3.2.1. If A is positive definite, then:

(x, y)A = (Ax, y)

defines an inner product, and

∥x∥A =
√
(x, x)A

defines a norm.

For a pure diffusive problem the resultant matrix is symmetric and

positive definite [13, 45, 52].

• Orthogonality AAT = ATA = I ⇒
∑

k akiakj =
∑

k aikajk = δij is

an orthogonal matrix, where I is the identity matrix and δij the Kro-

necker symbol.
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3.2.2 Matrix Permutation

In the last chapter, it was shown that we could explicitly exhibit some con-

venient properties of the matrix by numbering the nodes of the mesh prop-

erly. Given an arbitrary ordering, the desired numbering can be obtained

by permuting rows and columns of the original matrix. Such a permutation

can be achieved using a permutation matrix P of size n × n and such that

PP T = I , therefore P is an orthogonal matrix. This matrix has one single

non-null coefficient per row corresponding to the permutation to apply. To

permute row and column i and row and column j, we simply set Pij = 1,

while if no permutation is desired, Pii = 1. The permutation of matrix A to

matrix AP is then done in the following way:

Ap = PAP T (3.3)

For example, let us consider the following matrix:

A =

⎡

⎢⎢⎢⎢⎣

1 2 3

4 5 6

7 8 9

⎤

⎥⎥⎥⎥⎦

If we permute the first and third rows and columns of a 3× 3 matrix:

P =

⎡

⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤

⎥⎥⎥⎥⎦
P T =

⎡

⎢⎢⎢⎢⎣

0 0 1

0 1 0

1 0 0

⎤

⎥⎥⎥⎥⎦
(3.4)

And matrix Ap:
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Ap =

⎡

⎢⎢⎢⎢⎣

9 8 7

6 5 4

3 2 1

⎤

⎥⎥⎥⎥⎦

It should be noted that in practice, such a permutation is rarely explicitly

needed. Rather, a node permutation array is used to put the unknowns in a

given order. However, it is a useful tool to express formally a renumbering.

It will be implicitly used to design linelet type preconditioners as well as

composite preconditioners in next chapters.

3.2.3 Matrix Restriction

The restriction of a matrix of rank n× n enables to extract sub-matrices Ai

of rank mi × mi with mi < n. Let us consider for example the following

matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

To extract two square matrices from A, one corresponding to the first 2× 2

block and the other with the second 2× 2 block, let us set:

R1 =

⎡

⎢⎣
1 0 0 0

0 1 0 0

⎤

⎥⎦ , R2 =

⎡

⎢⎣
0 0 1 0

0 0 0 1

⎤

⎥⎦ (3.5)

The restricted matrices Ai can then be computed as

Ai = RiAR
T
i (3.6)
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so that we find:

A1 =

⎡

⎢⎣
1 2

5 6

⎤

⎥⎦ , A2 =

⎡

⎢⎣
11 12

15 16

⎤

⎥⎦ (3.7)

The restriction matrix also enables to permute rows and columns. For the

sake of clarity, we will nevertheless maintain the permutation and restric-

tion operations independently. Finally, let us remark that the restrictions can

overlap, meaning that
∑

mi > n. For example, this kind of restriction is the

one used by overlapping Schwarz methods.

3.2.4 Matrix Norm

Let Mn×n be the vector space of all the matrices of size n × n and let A

and B be two matrices that belong toMn×n. Then, the transformation ∥·∥ :

Mn×n → R is a matrix norm if it satisfies the following properties:

• ∥αA∥ = |α| ∥A∥ ∀A ∈ Mn×n α ∈ R

• ∥A+B∥ ≤ ∥A∥+ ∥B∥ ∀A,B ∈ Mn×n

• ∥A∥ ≥ 0 ∀A ∈ Mn×n with ∥A∥ = 0 ⇐⇒ A = 0

• ∥AB∥ ≤ ∥A∥∥B∥

Induced Matrix Norms:

The most frequent type of matrix norms are induced matrix norms, these

come form vector norms which are defined in detail in [39, 42]. Then, for

every p-vector norm, the matrix p-norm will be defined as:

∥A∥p := max
∥x∥p ̸=0

∥Ax∥p
∥x∥p

(3.8)



3.2 Basic Linear Algebra 63

This is, the matrix norm is, the largest size of ∥Ax∥p relative to∥x∥p. Par-

ticularly it can be proved that for p = 1, 2 and ∞ this norm is given by

[88]:

∥A∥1 = max
j

∑

i

∣∣aij
∣∣

∥A∥2 =
√
largest singular value of AtA

∥A∥∞ = max
i

∑

j

∣∣aij
∣∣

3.2.5 Matrix Conditioning

Chapter 2 shows how a partial differential equation is discretized using

the finite element method. More precisely we apply the finite element

method to the convection-diffusion equation. The matrices obtained with

this technique are usually large, sparse, and ill-conditioned. As it will

be shown in the next section, under these conditions, the linear system

defined in Equation (3.1) is usually solved with iterative methods. Esti-

mates for the convergence in these methods, among others, depend on

the condition number of the resultant matrix [79]. In the case of itera-

tive solvers, this condition number can be improved using the appropriate

preconditioning technique.These statements will be developed in Chapter 4.

Then, the conditioning of a matrix A associated to the norm p, is defined as

the real number:

κp(A) = ∥A∥p∥A−1∥p (3.9)

As shown in the following items, the condition number κp(A) can be thought

of as the rate at which the solution x changes with respect to a change in the
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right-hand-side b. This measure is strictly a property of the matrix and is

independent of the algorithm or floating-point accuracy used to solve the

system itself.

• From Equation (3.1) the following system can be now considered:

A(x+ δx) = b+ δb

where x is the solution to Equation (3.1) and δx is the error in the

solution of Equation (3.1) and δb is a perturbation of b. Then taking:

δx = A−1δb and b = Ax

leads to:

∥δx∥p ≤ ∥A−1∥p∥δb∥p

∥b∥p ≤ ∥A∥p∥x∥|p

And using these two last inequalities the following is obtained:

∥δx∥p
∥x∥p

≤ ∥A∥p∥A−1∥p
∥δb∥p
∥b∥p

⇒ ∥δx∥p
∥x∥p

≤ κp(A)
∥δb∥p
∥b∥p

(3.10)

• Again taking Equation (3.1) but now perturbing the matrix A:

(A+ δA)(x+ δx) = b

where δA is the perturbation in the sparse matrix A, and taking:

δx = A−1δA(x+ δx) and b = Ax
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Doing the same procedure as it was done with Equation (3.10), the

following relation finally is obtained:

∥δx∥p
∥x+ δx∥p

≤ ∥A∥p∥A−1∥p
∥δA∥p
∥A∥p

⇒ ∥δx∥p
∥x+ δx∥p

≤ κp(A)
∥δA∥p
∥A∥p
(3.11)

It is easy to see from the definitions above that κ(A) ≥ 1, as

1 = ∥I∥ =
∥∥AA−1

∥∥ ≤
∥∥A−1

∥∥∥A∥. This means that when the condi-

tion number is large, even a small change in b or A may cause a large error

in x.

Let us show now how the condition number changes with the mesh size. To

do so, we will consider the one-dimensional Poisson equation with homo-

geneous boundary conditions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−d2u

dx2
= 1 Ω ∈ [0, 1]

u = 0 in ∂Ω

(3.12)

We now discretize the equation on a Cartesian grid in a segment withN +2

nodes spaced with a distance (mesh size) h = 1
N+1 , from Section 2.3 in

Chapter 2, we know that the resultant matrix of the linear system will be

symmetric.

Also, we know that the condition number of a symmetric squared matrix in

the Euclidean space is given by [42]:

κ2(A) =
λmax

λmin
(3.13)

where λmax and λmin are the maximum and minimum eigenvalue respec-
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tively. In this case, the condition number is:

κ2(h) =
4

π2h2
(3.14)

See [42] for more details on how to obtain Equation (3.14). The results of

plotting Equation (3.14) are shown in Figure 3.1.

Figure 3.1: Evolution of the condition number for different mesh sizes.

Figure 3.1 shows that the condition number increases as the mesh gets more

refined. As wewill show in Subsection 3.3.2 this will affect the convergence

of the iterative method chosen to solve the system.

3.3 Solution of Sparse Linear Systems of Equations

The linear system defined in Equation (3.1) can be solved with direct or it-

erative methods, although in most cases, iterative methods are the ones pre-

ferred to solve sparse matrices, as direct methods scale poorly with problem

size n in terms of problem size n, arithmetic operations and memory re-

quirements [68] (see Table 3.1).



3.3 Solution of Sparse Linear Systems of Equations 67

Arithmetic Operations Memory Demand

Direct Methods O(n2) O(n logn)

Iterative Methods O(n) O(n)

Table 3.1: A comparison of arithmetic operations and memory
requirements between direct and iterative methods (considered in this work) when

solving sparse linear systems of equations [29, 68].

In this section, a small overview of some state-of-the-art methods will

be given, focusing mainly on the Conjugate Gradient, GMRES, and

BiCGSTAB methods as these are the ones used to carry out the test cases in

this thesis. Stationary methods are explained briefly for two reasons: First,

to have a general overview, as they are part of the state-of-the-art methods,

and second, because some of them, will be mentioned in Chapter 4 as they

are used as preconditioners.

3.3.1 Direct Methods

Direct methods provide the solution of the system defined in Equation (3.1)

in a finite number of steps. In general, to solve large sparse linear systems,

they are not a good option, as the number of operations needed to solve the

system and memory requirements may be too demanding as shown in Table

3.1. However, in some cases, such as some non-linear problems in solid

mechanics, which are often very ill-conditioned, they can be competitive

with iterative solvers [95].

In general, direct methods are divided into two groups:

• Elimination methods, such as Gauss method.

• Factorization methods, such as LU or Cholesky factorizations.
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In this document only factorization methods will be briefly presented, as

they are more commonly used when solving linear systems.

LU Factorization

In this case the matrix A of Equation (3.1) is factorized as a product of a

lower triangular matrix L and an upper triangular matrix U . Then Equation

(3.1) is solved in the following way:

Ax = b ⇒ LUx = b with Ly = b and Ux = y

Although the factorization is very computationally expensive, the opera-

tions to solve this last system are referred to as forward and backward sub-

stitutions respectively, these substitutions being seen as trivial [5]. Such

methods can be advantageous when the matrix A does not change, as the

factorization can be carried out only once, allowing the solution step to re-

duce to both substitutions.

Cholesky Factorization

If thematrixA is symmetric and positive definite, it can be factorized so that,

A = LLT , where L is the lower triangular matrix and LT is the transpose

of L. With respect to full LU factorization, Cholesky factorization takes

advantage of the symmetry and thus involves less computation and memory

requirements. In this case the sytem is solved as:

Ax = b ⇒ LLTx = b where Ly = b and LTx = y
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3.3.2 Iterative methods

Contrary to direct methods, iterative methods require fewer operations and

memory demand. However, they suffer from the ill-conditioned matrices

coming from the discretized matrices, meaning that they can lead to large

iteration numbers or even diverge. To deal with such a situation and

improve its performance, preconditioning techniques are used [11, 79].

Let us define the r(x) the residual of Equation (3.1) as:

r(x) := b−Ax (3.15)

Then, iterative solvers search an approximation of the exact solution x̄, of

the system defined in Equation (3.1) through a sequence of approximate

solutions to make r(x) → 0. And for the exact solution we have that

r(x̄) = 0.

Also, we define the error function as:

e(x) = x̄− x (3.16)

Finally, the iterative method is stopped when the norm of the residual is

below a given criterion.

In this thesis we will present two types of iterative methods, these are:

• Stationary methods.

• Krylov subspace methods.

For both methods we present an overview of the most relevant ones inside
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the context of this thesis. For more details about iterative methods see for

example [50, 94, 99] in case of stationary methods and [43, 84] for Krylov

subspace methods.

Stationary Methods

Stationary methods find the solution to a linear system finding the stationary

point (fixed point) of a fixed point iteration given by:

xk+1 = F(xk) (3.17)

If the system solved is like the one in Equation (3.1) then the fixed point

iteration chosen is in such a way that the mapping F is affine, this means that

if X and Y are affine spaces, then every affine transformation F : X → Y is

of the form xk+1 = Gxk + h, where G and h are a matrix and a vector that

do not depend on the iteration k. This fixed point iteration then will generate

a succession of vectors {x0, x1, ..., xk} meant to converge to the solution of

the linear system (3.1), or what is the same:

lim
k→∞

xk = x̄ (3.18)

With this definition, any such fixed point iteration of the matrix A can be

written by ‘splitting’ the matrix A in the following way:

A = M −R (3.19)

whereM is a non-singular matrix known as the preconditioning matrix and

R is a well-defined matrix.
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Then Equation (3.1) can be re-written as:

Mx = Rx+ b ⇒ x = x+M−1(b−Ax) (3.20)

Starting with an initial guess x0, iteratively a new guess will be obtained in

the following way:

xk+1 = M−1(Rxk + b) = xk +M−1(b−Axk) (3.21)

Finally defining G = M−1R and h = M−1b (3.21) can be written as:

xk+1 = Gxk + h (3.22)

which is no more than the affine transformation defined above.

Several stationary methods exist, depending on the how the matrix M is

chosen in Equation (3.21). Some of the most common methods found in the

literature are the following:

Richardson Iteration

In this case the matrixM is chosen as the identity, and thus (3.21) is written

as:

xk+1 = xk + (b−Axk) (3.23)

or written component by component:

xk+1
i = xki −

n∑

j=1

aijx
k
j + bi, i = 1, ..., n k = 0, 1, .. (3.24)
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Jacobi

Considering the splitting of the matrix in an additive way:

A = L+D + U (3.25)

where L and U are the strict lower and upper triangular parts of the matrix

A, and D is the diagonal of A.

Then in the case of the Jacobi methodM = D so that:

xk+1 = xk +D−1(b−Axk) (3.26)

This can be re-written as:

Dxk+1 = Dxk + (b−Axk) (3.27)

and using the additive decomposition of A described above it is obtained:

xk+1 = D−1(b− Lxk − Uxk) (3.28)
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and written component by component from Equation (3.28):

xk+1
i =

1

aii

⎡

⎣bi −
i−1∑

j=1

aijx
k
j −

n∑

j=i+1

aijx
k
j

⎤

⎦ , i = 1, ..., n k = 0, 1, ..

(3.29)

Gauss-Seidel

Taking the matrix splitting defined in Equation (3.25), M will be taken as

M = D + L, then considering Equation (3.21):

xk+1 = xk + (D + L)−1(b−Axk) (3.30)

and as it happened with the Jacobi method this can be re-written as:

(D + L)xk+1 = (D + L)xk + (b−Axk) (3.31)

Then taking the decomposition of A given in (3.25):

(D +A)xk+1 = (b− Uxk) (3.32)

Dxk+1 = (b− Lxk+1 − Uxk) (3.33)

Obtaining:

xk+1 = D−1(b− Lxk+1 − Uxk) (3.34)

Note that if U = 0, then A = L+D, that is, if the matrix is lower triangular

we have:

Dxk+1 = (b− Lxk+1 − Uxk) (3.35)
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(D + L)xk+1 = b (3.36)

Axk+1 = b (3.37)

Implying that the solution is obtained in one iteration. In this work, we will

devise a renumbering strategy to make the matrix lower triangular in some

asymptotic cases to make the Gauss-Seidel algorithm an efficient solver or

preconditioner.

Finally if (3.34) is written component by component:

xk+1
i =

1

aii

⎡

⎣bi −
i−1∑

j=1

aijx
k+1
j −

n∑

j=i+1

aijx
k
j

⎤

⎦ , i = 1, ..., n k = 0, 1, ..

(3.38)

Here the components xi are updated successively. Note that the sequence

obtained is thus dependent on the ordering of the unknown. This property

will be used to design suitable preconditioners in chapter 4.

Krylov Subspace Methods

Another approach for solving Equation (3.1) is to use Krylov subspace

methods. These solve a minimization problem in a given subspace gen-

erating a sequence of approximate solutions. In general, Krylov subspace

methods only need few matrix-vector products at each iteration. Also, a

small number of other operations such as vector updates or dot products are

required [8], meaning that low memory requirements are needed to solve

a problem. For this reason, Krylov subspace methods are retained to carry

out most of the simulations of this thesis.
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Given the linear system of equations defined in Equation (3.1), an initial

guess x0 and the subspaces Kk and Lk of dimension k, an approximation xk

can be defined by the following conditions:

xk − x0 ∈ Kk

rk ⊥ Lk

where rk is the residual defined in Equation (3.15) at iteration k and the

Krylov subspace Kk is defined as:

Kk = Kk(A, r0) = span{r0, Ar0, A2r0, ..Ak−1r0} (3.39)

The choice of Lk depends on the type of Krylov subspace used in each case.

This choice will be based on the properties of the matrix A. For example,

we know that the diffusion equation leads to a symmetric positive definite

(SPD) matrix, in this case the Conjugate Gradient (CG) is the appropriate

method to solve the linear system [51, 82]. In Section 2.3 we also proved that

the convective part of the advection-diffusion equation is non-symmetric.

This means that in problems which present diffusion and convetion or only

convectionwill lead to non-symmetricmatrices. In these cases, other Krylov

subspace methods have been proposed, such as the Generalized Minimal

Residual (GMRES), the Bi-Conjugate Gradient or the Bi-Conjugate Gradi-

ent Stabilized [32, 78, 79]. Although this thesis focuses on strong convection

problems, meaning that we will use the GMRES and BiCGStab methods in

all our tests, the CG, due to its simplicity, is introduced to have an overview

of how the convergence rate changes with the condition number of the ma-

trix.
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Conjugate Gradient

The conjugate gradient method is used to solve linear systems with SPD

matrices and Lk is given by, Lk = Kk(A, r0). This method minimizes the

norm of the error at each iteration over the Krylov subspace. If the matrix

A is symmetric and positive definite, solving Equation (3.1) is the same as

minimizing the quadratic form [82]:

f(x) = 1

2
xTAx− xTb ⇒ ∇f(x) = 1

2
ATx+ 1

2
Ax− b

If A is symmetric then ⇒ ∇f(x) = Ax− b (3.40)

so the gradient of the quadratic form is no more than the opposite of the

residual defined in (3.15).

Comparing Equation (3.40) with the definition given in (3.15) it is easy

to see that the residual is the direction in which a small change in xk will

cause f(x) to decrease rapidly (negative gradient of f(x)).

Considering this scheme, to find the next iterate xk+1 by the CGmethod two

methods have to be introduced briefly [82]:

• Method of the Steepest Descent: This methods uses a line search

strategy to find the new iterate xk+1 in the direction in which f de-

creases most quickly, this is the direction opposite to ∇f(x), which

according to (3.40) is −∇f(x) = b−Ax (known as search direction),

at each iteration to reach the minimum value of f(x) in this specific

direction. This direction changes at each iteration, as it depends on the

residual defined in Equation (3.15) (for more details see [82]).
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• Method of the Conjugate Directions: Two vectors pk and pl are said

to be A-orthogonal if (pk)TApl = 0. A set of A-orthogonal vectors

can be generated by the conjugate Gram-Schmidt process [82]. This

method then searches solutions in such a way that the search direction

dk at the iteration k+1 starting at xk, is taken to be A-orthogonal to all

previous search directions and thus the error ek+1 is also A-orthogonal

to all previous search directions. This means that after k iterations,

the error will be A-orthogonal to k linearly independent vectors, and

the solution will be reached, or what is the same, at each iteration, a

component of the error is removed.

The Conjugate Gradient Method is no more than the Method of the Con-

jugate Directions where the search directions are computed by conjugation

of the residuals rk. We summarize how the CG method works in Algorithm

3.1.
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Algorithm 3.1: Conjugate gradient algorithm.
Given an initial guess x0

Compute r0 := b−Ax0

Set p0 := r0

repeat
βk+1 := (rk)T rk

(rk−1)T rk−1

pk+1 := βk+1pk + rk

αk+1 := (rk)T rk
(pk+1)TApk+1

xk+1 := xk + αk+1pk+1

rk+1 := rk + αk+1Apk+1

until stopping criterion is reached;

Convergence rate

It can be shown that the CG method can be used as a direct method and

that it converges after k iterations [51]. Although in practice, we use it as

an iterative method, the algorithm is stopped when the converge criterion

is reached (see Algorithm 3.1). It is for this reason that calculating the

convergence rate of the CG is important to know the limitations of such a

method.

From [82] we know that the convergence result for the conjugate gradient

is:

∥∥∥ek
∥∥∥
A
= 2τk

∥∥∥e0
∥∥∥
A

(3.41)
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where e is the error function defined in Equation (3.16) and τ :=
√

κ(A)−1√
κ(A)+1

is referred to as the convergence rate. In Figure 3.2 we plot the convergence

rate of the CG in function of the condition number κ(A).

Figure 3.2: Convergence rate of the conjugate gradient of one iteration in terms
of the condition number κ(A).

For small condition numbers, we can see from Equation (3.41) that the CG

method will converge fast, and that only a few iterations will be needed

to reach the stopping criterion. The convergence of the method looses

efficiency as the condition number increases, and gets stagnant for matrices

with a condition numbers of an order of 106, where τ ≈ 1. Therefore we

need to control the condition number for large systems, as the convergence

of the CG worsens for large condition numbers.

Let now consider again the example of the Poisson equation defined in

Equation (3.12). Given Equations (3.14) and (3.41) we can write τ as a func-

tion of the mesh size h. Figure 3.3 shows the tight relation between the mesh

size and the rate of convergence of the CG method.
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Figure 3.3: Convergence rate of the conjugate gradient of one iteration in terms
of the mesh size h.

Generalized Minimal Residual

The Generalized Minimal Residual (GMRES) method is used to solve non-

symmetric matrices, and in this case Lk = AKk(A, r0) rather than mini-

mizing the norm of the error each iteration over the Krylov subspace as CG

does, GMRESminimises the Euclidean norm of the residual over this space.

Following this definition the general procedure to solve the linear system in

Equation (3.1) is:

• Because the matrices are non-symmetric the vectors defined for the

Krylov subspace in (3.39) might almost be linearly independent, so

in order to work with an orthonormal basis a ‘kind of orthonormal-

ization’ similar to Gram-Schmidt procedure is applied. It is known

as the Arnoldi iteration [78] and gives a set of orthonormal vectors

{q1,q2, ...qk} and the space Lk = AKk(A, r0). This is shown in Al-
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gorithm 3.2.

Algorithm 3.2: Arnoldi iteration algorithm.
Given a vector q1 with

∥∥q1
∥∥ = 1

for j=1, ..., k do
qj+1 = Aqj

for i=1, ..., j do
hij = qj+1 − hijqi

hj+1,j =
∥∥qj+1

∥∥

qj+1 = qj+1/hj+1,j

• Once the orthonormal basis is found, an approximation of the solution

xk can be written as xk = Qkyk, where yk ∈ Rk and Qk is a matrix

formed by {q1,q2, ...,qk}.

• TheArnoldi processwill then produce the (k+1)×k upperHessenberg

matrix H̃
k
(a detailed proof of this can be found in [78]) with:

AQk = Qk+1H̃k (3.42)

• With the equality in Equation (3.42) and following the details found

in the bibliography in [78] the following equality between residual

norms can be established:

∥b−Axk∥ = ∥βe1 − H̃kyk∥ (3.43)

where e1 = (1, 0, 0, ..., 0)T is the first vector in the basis Rk and β =

∥b−Ax0∥ with x0 the initial iterating vector.

• Once this is defined, the final solution xk at the kth iterate is found

taking the residual as rk = βe1 − H̃kyk and minimising it until the
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residual rk is small enough.

In a general way the algorithm of GMRES is written as in Algorithm 3.3.
Algorithm 3.3: GMRES algorithm.
Given an initial guess x0
Compute r0 := b−Ax0, β :=

∥∥r0
∥∥, and q1 := r0/β

Create k + 1 orthogonal vectors {q1,q2, ...,qk+1} as a basis for

Qk+1 following algorithm 3.2

repeat
Find yk ∈ Rk which minimizes ∥b−Axk∥

Compute xk = x0 +Qkyk

until until stopping criterion is reached;

In the GMRES method, each new iteration is more costly than the previous

one, and the memory required grows as the algorithm progresses. Therefore,

a new version of the GMRES called the Restarted GMRES deals with this

issue by discarding after a given number of iterations all of its accumulated

history and starting again from its current location [79]. In this work we

will use the Restarted GMRES, that we will refer to as GMRES in the next

chapters.

Bi-Conjugate Gradient (BiCG) and Bi-Conjugate Gradient Stabilized

(BiCGSTAB)

The BiCG and BiCGSTAB methods are used to solve systems that are

neither symmetric nor positive definite. Unlike CG, it cannot be described

in terms of function minimization. As shown above, for the GMRES

method, the residuals are retained orthogonally using long recurrences,
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meaning that more storage will be needed. Instead, in the case of the

BiCG, it replaces the orthogonal sequence of residuals by two mutually

orthogonal sequences (the chosen subspaces will be Kk = Kk(A, r0) and

Lk = Kk(AT , r0) [38, 67]. The residuals generated within one path are

not necessarily orthogonal to each other as they are within CG. However,

each residual is orthogonal to all of the residual vectors generated within

the other path. In other words, the residual generated within the other path

on the same iteration. Similarly, the search directions are not orthogonal

within one path, as they are in the CG algorithm, but each is orthogonal to

all of the search directions used to generate the other path, except for the

one used in the same iteration on the other path. A drawback of this method

is that each step requires a matrix-by-vector product with both A and AT

[79]. The BiCGSTAB algorithm is a variant of the BiCG, developed by van

der Vorst [93] and of the Conjugate Gradient Squared (CGS) developed by

Sonneveld [84]. Compared to the BiCG method avoids using the transpose

matrix AT at each iteration and thus reducing one matrix-vector product.

Also, it avoids the cases of irregular convergence that happen with the CGS

under some circumstances (see [79, 93] for more details).
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The classical algorithm for the BiCGSTAB algorithm is given by:

Algorithm 3.4: Bi-conjugate gradient stabilized algorithm.
Given an inital guess x0

Compute r0 := b−Ax0 such that (r0)T r0 ̸= 0

Set p0 := r0, r̄0 := r0

repeat

αk :=
(rk)T r̄0
(r̄0)TApk

sk := rk − αkApk

ωk :=
(sk)TAs̄k
(sk)TA2sk

xk+1 := xk + αkpk + ωksk

rk+1 := sk − ωkAak

βk+1 :=
(rk+1)T r̄0

(r̄k)T r̄0
αk

ωk

pk+1 := βk+1(pk − ωkApk) + rk+1

until stopping criterion is reached;

3.4 Parallelization of the Iterative Solvers

This section focuses on how matrices are assembled in parallel and iterative

solvers are parallelized in the context of Alya.

3.4.1 Parallel Assembly

In a parallel context, the division of the work is generally achieved through

a mesh paritioning into disjoint sets of elements, referred to as subdomains.
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At the computational level, these different sets of elements are treated by

different processes. Each process then computes the contributions of the

elements that have been assigned to it into local matrices and right-hand

side vectors (local meaning specific to each subdomain).

The partitioning of the primal mesh into disjoint sets of elements defines

two main categories of nodes: internal nodes are those belonging to one

single subdomain; interface nodes are those that belong to more than one

subdomain. Figure 3.4 shows an example of the partitioning of two subdo-

mainsΩ1 andΩ2. Γ is called the interface and it is defined as the set of nodes

belonging to Ω1 ∩ Ω2.

⌦1 ⌦2

�

Figure 3.4: Mesh Partition into two subdomains.

By choosing this parallel assembly strategy, we note that the local matrices

are not fully assembled for the interface unknowns, as the coefficients of

the interface unknowns in the global matrix have contributions from neigh-

boring subdomains. This has an implication on the matrix-vector product

operations, as shown in the next subsection.
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3.4.2 Solution with Iterative Methods

Stationary and Krylov methods require three types of operations: matrix-

vector products, scalar products, and linear vector combination of two vec-

tors. The parallelization of the matrix vector product is linked to the way the

local matrices are assembled, as shown in the previous subsection. Note fi-

nally that in this thesis, the communications between the parallel processes

are implemented through the MPI library [54].

• Linear Combinations: In this case, each process calculates the local

vectors assigned to it.

• Scalar Product: For scalar products, each process calculates the con-

tribution of its local vectors, and the final results consist of a reduction

operation of the different local contributions. One has to take care of

not duplicating the contributions of the interface nodes. There are sev-

eral options as explained in [42].

• Matrix-Vector Product: This is the most tricky part from the im-

plementation point of view and the one that will be discussed in detail.

Let us focus on a two-subdomain partition, as depicted by Figure 3.4.

Let us denote xi the unknowns belonging to the interiors of subdomain

i = 1, 2 and xΓ the unknowns on the interface. A similar notation is

employed for larger number of subdomains. Upon reordering follow-

ing the partitioning, the matrix can be rewritten as:

A =

⎛

⎜⎜⎜⎜⎝

A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

⎞

⎟⎟⎟⎟⎠
(3.44)
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so that a matrix vector product gives:

⎛

⎜⎜⎜⎜⎝

y1

y2

yΓ

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

A11 0 A1Γ

0 A22 A2Γ

AΓ1 AΓ2 AΓΓ

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

x1

x2

xΓ

⎞

⎟⎟⎟⎟⎠
(3.45)

=

⎛

⎜⎜⎜⎜⎝

A11x1 +A1ΓxΓ

A22x2 +A2ΓxΓ

AΓ1x1 +AΓ22x2 +AΓΓxΓ

⎞

⎟⎟⎟⎟⎠
(3.46)

Now let us consider two local matricesA(1) andA(2) coming from the

independent contributions of subdomains 1 and 2, respectively:

A(1) =

⎛

⎜⎝
A11 A1Γ

AΓ1 A(1)
ΓΓ

⎞

⎟⎠ , A(2) =

⎛

⎜⎝
A22 A2Γ

AΓ2 A(2)
ΓΓ

⎞

⎟⎠ (3.47)

where

AΓΓ = A(1)
ΓΓ +A(2)

ΓΓ. (3.48)

By performing two local matrix-vector products, we have

⎛

⎜⎝
y1

y(1)Γ

⎞

⎟⎠ =

⎛

⎜⎝
A11 A1Γ

AΓ1 A(1)
ΓΓ

⎞

⎟⎠

⎛

⎜⎝
x1

xΓ

⎞

⎟⎠ (3.49)

⎛

⎜⎝
y2

y(2)Γ

⎞

⎟⎠ =

⎛

⎜⎝
A22 A2Γ

AΓ2 A(2)
ΓΓ

⎞

⎟⎠

⎛

⎜⎝
x2

xΓ

⎞

⎟⎠ . (3.50)

Here, we have denoted y(i)Γ the different interface values obtained on
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subdomains i = 1, 2. By using Equation 3.48, we observe by that

computing

yΓ = y(1)Γ + y(2)Γ , (3.51)

we recover the interface value given by Equation (3.46). This means

that the full matrix-vector product can be performed in two steps:

(i) Perform the local matrix-vector products as in Equations (3.49)

and (3.50).

(ii) Assemble the local contribution on the interface as in Equation

(3.51).

The first step involves local (subdomain) data only. The second

requires an exchange of data between the processes with a common

interface. This process can be easily generalized to multiple subdo-

mains with arbitrary interfaces as explained in [96] in the context of

Alya.

Note that this parallel implementation of the matrix-vector product for

sparse matrices is not unique and several options exist, as explained in

[42]. In general, the finite difference and finite volume methods rely

on halos in order to produce full local matrices, while for the finite

element method, the one presented here, appears naturally (no halo,

and local matrices not fully assembled). In any case, a point-to-point

communication is always necessary.



Chapter 4

Preconditioning

There’s no earthly way of

knowing

Which direction they are going!

There’s no knowing where

they’re rowing,

or which way the river’s

flowing!

Roald Dahl,

Charlie and the Chocolate

Factory

The discretization of the continuum equations in physics often leads to

sparse linear systems of equations which are usually solved with iterative

methods as they are cheaper than direct methods in terms of CPU-time and

memory. But at the same time, iterative methods often converge slowly. To

deal with this problem, instead of solving the system defined in Equation

(3.1), an equivalent system, called preconditioned system, is solved. This

is, Equation (3.1) is multiplied by a matrixM−1, called preconditioner, that

carries part of the information of the original matrix A in the sense that we

seekM−1 such thatM−1A ≈ I (having in mind that κ(I) = 1), and taking
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I as the identity matrix. Doing so, the condition number of the original

matrix is improved as well as the convergence of the iterative solver used to

solve the linear system of equations. The computational constraint imposed

on the preconditioner is that its construction should be not too memory or

time consuming.

Given an iterative solver, the design of a preconditioner is crucial to ensure

fast convergence and robustness, but not at the expense of time-to-solution.

A simple preconditioner (Jacobi) could a priori be disregarded because of

its slow convergence. However, if one takes into account computing time,

it may then be competitive compared to more complex preconditioners,

such as Domain Decomposition Methods (DDM) which are much more

robust and provide fast convergence in general. The choice is strongly

case dependent, in terms of PDE to be solved, computational domain,

partitioning and mesh size.

In this chapter, we explain the different preconditioning techniques tech-

niques used, we review some of the different state-of-the-art preconditioners

and finally we introduce what we understand by local preconditioning.

4.1 Deriving a Preconditioned System

According to the literature [11, 79], preconditioning can be done in three

different ways:

(a) Left Preconditioning

M−1Ax = M−1b (4.1)
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This is the most ‘natural’ type of preconditioning as no extra step is

required to compute x as the solution of such system is directly x.

In this case, the residual norm computed at each iteration to check

the convergence of the solver, is naturally the preconditioned residual

norm.

(b) Right Preconditioning

AM−1y = b (4.2)

and then:

Mx = y (4.3)

In this case the residual norm computed at each iteration of the solver

is the non-preconditioned norm.

(c) Left-Right (Mixed) Preconditioning:

M−1
L AM−1

R y = M−1
L b (4.4)

and then:

MRx = y (4.5)

The type of preconditioning technique (right, left or mixed) chosen in each

case, will depend on the properties of the resultant matrix obtained after the

discretization of the partial differential equation. A good example to illus-

trate this, would be taking the advection diffusion equation (see Equation

(2.3)) described in Chapter 2. As shown in Equations (2.4) and (2.5) under
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high Péclet numbers the behavior will be parabolic and under low Péclet

numbers the behavior will be hyperbolic. Also, as it is shown in Chapter 2,

Equation (2.4) will give rise to a symmetric matrixA after its discretization,

whereas Equation (2.5) will lead to a non-symmetric matrix. In the first case

using the Conjugate Gradient method to solve the linear systemwould be the

most suitable [79, 82], whereas in the second one, GMRES or BiCGSTAB

would be selected [78, 79]. When choosing a preconditioner for these itera-

tive solvers, something similar happens: in the case of symmetric matrices,

when the linear system is preconditioned, the preconditioned system should

preserve its symmetry, meaning that M−1A should be symmetric. The fact

that M and A are symmetric does not guarantee that M−1A is symmetric.

In fact, generally this is not the case. To solve this problem, one common

approach is to find a Cholesky factorization of M into LLT and solve the

preconditioned system L−1AL−T [79]. Doing this, the resultant precondi-

tioning system, will be:

L−1AL−Ty = L−1 with y = LTx

which is no more than Equation (4.4) taking L = ML and LT = MR. There-

fore, for symmetric systems, mixed preconditioners would be appropriate.

In case of having non-symmetric matrices, as there are no restrictions, the

three types of preconditioners described hereafter are suitable.

4.2 Preconditioning Techniques

Apart from the way chosen to precondition the linear system of equations

(left, right or mixed), there are different methods by which the precondi-

tioner can be obtained. In this section, the different state-of-the art precon-

ditioning techniques will be briefly introduced, focusing more on stationary
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methods rather than in domain decomposition and multigrid methods, as

these are the ones that have been used in this thesis and that will be devel-

oped in more detail in Subsection 4.2.2 of this chapter.

4.2.1 Domain Decomposition Methods

In general Domain Decomposition Methods (DDM) are computationally

more expensive than simple preconditioning methods and often more diffi-

cult to implement. But at the same time they tend to improve convergence

of the iterative solvers. Usually, in a parallel context, domain decomposi-

tion preconditioners follow the partitioning of the mesh, meaning that the

preconditioner subdomains coincide with the submeshes of the partitions.

But this is not a prerequisite and such preconditioners would also make

sense in sequential. Actually, Schwarz preconditioner was firstly designed

at the beginning of last century to handle the solution on non-trivial

geometries, out of any parallel context.

In the context of the PDE solutions, the stucture of the matrix of the linear

system is linked to the underlying mesh. DDM preconditioners are based

on the partitioning of this mesh into disjoint or overlapping subdomains,

also named partitions, and the solution of the local problems using mainly

direct solvers. Such methods have been mainly applied in the context

of parallelization techniques, where one subdomain is associated to one

partition, corresponding to one MPI process. This is not a requirement

of the method. In fact, it is already mentioned at the previously, that

this techniques were originally developed to solve problems on complex

geometries, and more recently, as the mathematical basis of the Chimera

method [55].
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In general, the computational domain Ω is partitioned in N subsets that are

either non-overlapped, Ω0
i or overlapped Ωδ

i , where δ denotes the overlap

partition. Then for each subdomain we define:

• A rectangular extension matrix, R0
i in the non-overlapping case and

Rδ
i for the overlapping case, that extends by zero a vector of values

defined at the mesh vertices associated with the elements contained

in Ω0
i and Ωδ

i respectively. The entries of R0
i and Rδ

i are zeros and

ones and it considers in each subdomain the interior nodes and the

nodes of the interface [47].

And the following subsets:

• The set of mesh vertices for the two cases considered (non-

overlapping and overlapping) Γ0
i and Γδ

i that belong to the interfaces

∂Ω0
i /∂Ω and ∂Ωδ

i /∂Ω respectively.

• The set of interior nodes also for the non-overlapping and overlapping

subdomains I0i and Iδi within the subdomains Ω0
i and Ωδ

i .

Then, the discrete matrices coefficients obtained from a Finite Element dis-

cretization scheme inΩ0
i andΩδ

i can be obtained from the extensionmatrices

defined earlier. We define them as A0
i and Aδ

i in each case:

A0
i =

⎡

⎢⎣
A0

IiIi
A0

IiΓi

A0
ΓiIi

A0
ΓiΓi

⎤

⎥⎦ and Aδ
i =

⎡

⎢⎣
Aδ

IiIi
Aδ

IiΓi

Aδ
ΓiIi

Aδ
ΓiΓi

⎤

⎥⎦ (4.6)

According to the scheme presentented above, two kinds of DDM can be

found, these are overlapping DDM and non-overlapping DDM. In this doc-

ument we will give a short overview of overlapping DDM, for more details

about DDM see [48].
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Overlapping DDM

Often known as Schwarz methods, because of the work done by Swcharz

in the XIXth century [92]. The most common ones used, as preconditioners

are:

Additive Schwarz Preconditioner:

(M δ
AS)

−1 =
N∑

i=1

(Rδ−1
i )T (Aδ

IiIi)
−1Rδ−1

i (4.7)

In this case if the original matrix is symmetric (or non-symmetric)

the preconditioner will also be symmetric (or non-symmetric).

Restrictive Additive Schwarz Preconditioner

(M δ
RAS)

−1 =
N∑

i=1

RT
i (A

δ
IiIi)

−1Rδ−1
i (4.8)

The Additive Schwarz (AS) preconditioner computes multiple

solutions on the overlapping degrees of freedom. To remedy this,

the Restrictive Additive Schwarz (RAS) preconditioner selects

only one subdomain to update the interface degrees of freedom

[92], through the action of a different restriction operator Ri. As

a side effect, this enables one to avoid a communication of the

unknown updates. The negative effect is that the resulting precon-

ditioner is not symmetric even if the original matrix is symmetric [92].
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Multiplicative Schwarz Preconditioner:

(MMULT )
−1 =

1∏

i=N

(Ri
δ−1)T (Aδ

IiIi)
−1Rδ−1

i A (4.9)

Contrary to the additive approach, that builds the solution in all

the subdomains simultaneously, the multiplicative Schwarz precon-

ditioner builds the solution of the system by switching successively

through all the subdomains [83]. In general, a problem solved with a

multiplicative Schwarz preconditioner will converge in less iterations,

however its performance in a parallel environment can be affected

by the data dependencies existent between the different subdomains

[83, 92].

4.2.2 Stationary Iteration Methods

These preconditioners are especially interesting because they are computa-

tionally cheap, there are easy to implement and also can be adapted easily

to the physics of the problem. In the cases hereafterD, L and U correspond

to the diagonal, lower triangular and upper triangular terms of the matrix A

respectively.

(i) Jacobi

In this case, thematrixM is taken as the diagonal of the originalmatrix

A. Often this preconditioner is also called diagonal preconditioner.

(ii) Gauss-Seidel Type:

There are three different choices of the preconditioning matrixM and

by which the inverseM−1 is found using Equation (3.34):

• Forward Gauss-Seidel:M = D + L
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• Backward Gauss-Seidel:M = D + U

• Symmetric Gauss-Seidel:M = (D + L)D−1(D + U)

(iii) Bidiagonal

The preconditioning matrix M is chosen either as M = D + B or

M = D + K, where B and K are the subdiagonal and the upper-

diagonal of the original matrix A respectively.

(iv) Tridiagonal

Following the same notation as in the bidiagonal, in this case M is

such that,M = D +B +K.

In the next section, we will show how efficient these preconditioners can be

with an efficiently applied numbering strategy.

4.3 Mesh Renumbering for Local Preconditioning

In this section we explain how we can take advantage of the geometry (node

coordinates) and topology (node connectivity) of the mesh to renumber

the nodes and thus exhibit some matrix structures like the ones presented

in Section 2.3. In this way, we will be able to devise two preconditioners:

the classic anisotropy linelet preconditioner [85] and the streamline linelet

preconditioner, which is the new one that has been developed in this thesis.

In Section 2.3 we have shown that the order in which the mesh is numbered

can present some particular structures in some limited situations. Thus the

stiffness matrix in an anisotropic mesh can present a tridiagonal structure

or in a pure advection problem we observe independent streamlines in the

direction of advection. This suggests us that the way in which a mesh is

numbered can have an effect on the convergence of a given. This concept
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was seen in the work of [23, 34]. In the case of [34] four different orderings

are presented for the 1-dimensional convection-diffusion equation along

the direction of the flow, showing how the performance of iterative solvers

can be affected by the directions of the flow and by the orderings of the

discrete grid points. The work of [85] presented a mesh renumbering or

permutation in the direction of the mesh anisotropy in a boundary layer

problem solving the pressure equation coming form the finite element

discretization of the incompressible flows. Finally, [42] suggested that

solving the 1-dimensional advection-diffusion equation with the appro-

priate boundary conditions, can be done in only one iteration using the

Gauss-Seidel method. Following the work started in [42] we introduce in

this chapter a mesh numbering that accounts for the advection to solve 2

and 3-dimensional problems with high advection.

Before explaining the renumbering algorithm for convection-dominated

flows, a short overview of the anisotropy linelet preconditioner together

with some results obtained with Alya will be given. Then the renumbering

algorithm will be explained in detail together with some results that support

the mathematical study first given in Chapter 2.

4.3.1 Anisotropy Linelet: Preconditioning and Results

The anisotropy linelet preconditioner is referred to as the linelet precondi-

tioner in the literature [1]. We have added the adjective anisotropic in or-

der to differenciate it from the streamline linelet preconditioner, which con-

structs linelets but in a different way and for a different purpose. The main

idea of the linelet preconditioner is to construct ‘lines’ in the mesh e.g. in the

parts of the mesh where the anisotropy becomes high, typical in boundary

layer problems, as shown in Subsection 2.3.2 in the case of a close integra-
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tion rule. In this case, the dominant terms are in the normal direction to the

grid stretching. A linelet then is a group of nodes in that direction and the

preconditioning matrix is built by assembling these linelets. One of the con-

ditions to build a linelet is that a nodal point can only belong to one linelet,

this means that two linelets will never cross each other. With this property,

if a Laplacian is integrated in the mesh shown in Figure 4.1 and if the nodes

are renumbered following the linelet structure, the corresponding precon-

ditioning matrix is such that it has a tridiagonal structure, when anisotropy

is sufficiently high, and if a close integration rule is used. This tridiagonal

matrix, tends to the original matrix when the aspect ratio (anisotropy) as

defined in Equation (2.51) tends to infinity, as shown in Subsection 2.3.2.

For the nodes of the mesh which do not belong to any linelet the diagonal

preconditioner is applied in our case [42]. We will also study the case of the

open rule, although we could not witness any apparent structure, as shown

in Subsection 2.3.2.

Figure 4.1: Construction of the anisotropy linelet preconditioner (linelet ordering
with its tridiagonal structure)



100 4. Preconditioning

Test Case

To prove that renumbering the mesh in the direction of the mesh anisotropy

is efficient on more general cases, Figure 4.2 from [42], shows the conver-

gence of the pressure equation (Poisson’s equation) in the simulation of a

thermal turbulent cavity. As it is illustrated in Figure 4.2 this problem does

not converge with the Conjugate Gradient method when is used with the di-

agonal preconditioner. However, the convergence improves significatively

if the linelet preconditioner is used together with a deflation preconditioning

technique [7]. This shows that this renumbering works well in case of mesh

anisotropy and leaves a door open to try different mesh numberings, mesh

topologies and geometries with different physics.
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Figure 4.2:Mesh and convergence of the pressure equation for a thermal turbulent
cavity.

4.3.2 Anisotropy Linelet: Matrix Conditioning

Chapter 3 showed that the convergence rate of the Conjugate Gradient

method depends on the distribution of the eigenvalues of a matrix A, and

that a good estimate of this convergence rate could be done using the condi-

tion number of the matrix. Also it is well known [64, 79] that precondition-
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ing techniques help to accelerate the convergence of the Conjugate Gradient

method. Estimating the condition number of preconditioned matrices is im-

portant to know how effective a preconditioner is. In the case of having a

preconditioned matrix, its condition number is given by:

κp(M
−1A) = ∥M−1A∥p∥(M−1A)−1∥p (4.10)

Case 1

To show that the anisotropy linelet preconditioner is good, we study a case

solving the Poisson equation for a temperature problem. The problem has

been discretized using the finite element method and has been integrated

using both open and close integration rules. To solve the linear system

we use the CG method with and without the linelet preconditioner. The

computational domain is a square and Dirichlet boundary conditions are

imposed at the bottom wall and zero flux at the other walls. The meshes

are artificially stretched in the bottom wall direction, to mimic the mesh

required to capture all the phenomena in a boundary layer.

Three different meshes have been considered, e.g. Mesh 1,2,3 and shown in

Figure 4.3. The aspect ratios of their first elements at the bottom wall are,

respectively: 20.29, 127.50 and 6771.04. We understand by aspect ratio the

relationship between length/height, where the length is in the x dimen-

sion and height in the y dimension (see Equation (2.51)). To perform the

conditioning sensitivity to the aspect ratio, we have scaled in the horizontal

direction the three meshes, four times. Results are shown in Figure 4.4 for

the open and the close rules, respectively.
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(a)Mesh 1

(b) Mesh 2 (c) Mesh 3

Figure 4.3: Example meshes used to perform estimations of the condition number
for the Laplacian solving the heat equation.

Figure 4.4: Condition number of the preconditioned matrix with the anisotropy
linelet preconditioner for different meshes, open integration rule (left) and close
integration rule (right).
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Remarks

• Figure 4.4 shows the condition number of the preconditioned system

M−1A for the meshes shown in Figure 4.3 and its four different aspect

ratios. The left figure corresponds to the results of the open and the

right figure to the close rule.

• When scaling in the horizontal direction the final condition number

becomes almost independent of the aspect ratio of the initial mesh.

• In the case of the close rule, the condition number tends towards 1,

as the matrix exhibits a tridiagonal structure as shown in Subsection

2.3.2.

• The case of the open rule is different. We observed in Subsection 2.3.2

that the structure of the matrix (removing zero coefficients) does not

depend on the anisotropy. Despite this fact, Figure 4.4 left shows that

the conditioning tends to a value of 3 with increasing aspect ratios.

This shows that the linelet preconditioner is a good preconditioner for

boundary layers disregarding the integration rule.

4.3.3 Streamline Linelet: Setup of the preconditioner

Following the idea of the anisotropy linelet renumbering, and for con-

vection dominated problems, the matrix structure concentrates mainly

in the direction of advection. As shown in Subsection 2.3.1, the main

contributions for every row of a given node of the resultant matrix, apart

from the diagonal term, comes from the closest neighbor in the opposite

direction of the advection field, in case of the close integration rule and

all the upstream nodes in case of the open rule. In these cases, the mesh
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numbering is performed along the flow direction (streamwise direction).

In this way, the main coefficient in each row, apart from the diagonal term

happens to be the first lower-diagonal term.

To this end, we group the nodes into different non-crossing groups, corre-

sponding to ‘numerical streamlines’. The specific procedure to identify all

nodes into groups is shown in Algorithm 4.1. The renumbering algorithm

is based on two main ideas. First, the nodes are ordered by their velocity

modules in an increasing way, starting with the inflow nodes, the interior

nodes and finally the outflow nodes. This is clearly shown in Figure 4.5.

Velocity Module

Imposed Inflow
Nodes (boundaries)

Free Inflow Nodes
(boundaries)

Interior Nodes Outflow Nodes
(boundaries)

Figure 4.5: Nodes ordered using their types and velocity modules.

The next step consists in putting the nodes in different groups following

what we call the minimum angle criterion achieving in this way the final

ordering. This is done as it follows:

• Starting with an inflow node (e.g. starting point in Figure 4.6), the

vector vi (the black vectors in Figure 4.6) between this node and each

of its neighbors i is computed.
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Figure 4.6: Schematic of the streamline numbering.

• Then, we compute the angle between these vectors and the represen-

tative velocity vector uref (in case of Figure 4.6, we have three angles,

θ1, θ2 and θ3 and the velocity vector is the one in orange starting in

the starting point). The angle is computed in the following way:

cos θi =
uref · vi∥∥uref
∥∥∥vi∥

with i = 1, . . . , n (4.11)

where n are the number of neighbors of each node (the three blue dots

in Figure 4.6).

• Discarding the nodes which have a negative or zero cosine, the next

node in the group will be the one that forms the smallest angle with

the velocity vector (maximum cosine), or what is the same, the one

which is the closest to the direction of the advection velocity.

• This procedure is repeated recursively until no positive values of the

cosine are found.

• When this happens the next node on the list is selected (as explained
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in Figure 4.6), and the above process is repeated until all the nodes of

the mesh are numbered.

Algorithm 4.1 summarizes the procedure. The outputs are: a list of group

to which the nodes belong to ( ), a permutation array ( ) and the

inverse permutation array ( ) to perform the reordering from the new

numbering to the old numbering. In this new numbering, nodes are num-

bered successively in terms of linelets, and, for each linelet, following the

‘numerical streamline’.
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Algorithm 4.1: Streamline numbering along advection: Construct

groups following the direction of advection
Result: Permutation array (from new to old) and group list

=0

=0

while all nodes have not been assigned a group do
Look for next seed node not belonging to any group

= + 1

= + 1

repeat

= 0 for all the neighbors of do

if does not belong to any group then
= coord( ) - coord( )

= 1

2
(advec( )+advec( ))

= ·
∥ ∥∥ ∥

if > then
=

=

if != 0 then
= + 1

( ) =

( ) =

=

until or is an outflow;
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Figure 4.7 shows an example of streamline linelets, constructed with a ve-

locity field obtained from the solution of the Navier-Stokes equations for

a NACA0012 geometry. The velocity vectors are shown in the (top) (left)

part. The other plots show the vectors forming the linelets from node-to-

node.

Figure 4.7: Streamline linelets for a NACA0012. Velocity vectors used as a refer-
ence to construct the linelets (top) (left) and different views of the vectors forming
the different linelets.

Figure 4.8 shows the effect of the maximum angle cosine on the

streamline linelets. Although the quantity of linelets seems not be affected,

we can observe that large cosine implies straighter linelets, as expected. The

zone in red shows an example in this situation.
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Figure 4.8: Streamline linelets for a NACA0012 for different maximum angle
cosines: 0.2 (top) (left), 0.4 (top) (right), 0.6 (bottom) (left), 0.8 (bottom) (right)
.

4.3.4 Streamline Linelet: Preconditioning

Once this renumbering is done, an appropriate preconditioning technique

can be applied [26] to solve the preconditioning step:

Mz = r (4.12)

if left preconditioning is considered.

In the particular case of this thesis, the preconditioners are the Gauss-Seidel

and the bidiagonal preconditioners. For which a matrix takes the diagonal

and sub-diagonal entries from the permuted matrix using the permutation

array coming from Algorithm 4.1. In Algorithms 4.2 and 4.3 we show how

we apply this new reordering to the Gauss-Seidel and bidiagonal precon-

ditioners respectively. The proposed preconditioners are thus based on a

streamline renumbering together with a solver, namely the Gauss-Seidel
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and bidiagonal solvers.

Note that in both algorithms , and are the row indices, column

indices and matrix coefficients defined in Subsection 3.1.2 for the CSR

format respectively.

Algorithm 4.2: One iteration Gauss-Seidel in CSR format.
Define in old numbering iiold.

(iiold) diagonal coefficient for row iiold

Initial guess =

for all the nodes of the mesh in the new numbering iinew do
iiold = (iinew)

(iiold) = (iiold)

for = (iiold), (iiold+1)-1 do
= ( )

if ( ) /= iinew then
(iiold) = (iiold) - aa( ) * ( )

(iiold) = (iiold)/ (iiold)

Algorithm 4.3: One iteration Bidiagonal in CSR format.
Define , and in old numbering iiold.

(iiold) diagonal coefficient for row iiold

(iiold) is the lower-diagonal column for row iiold

(iiold) is the matrix position of the lower-diagonal coefficient

for all the interior nodes of the mesh in the new numbering iinew do
iiold = (iinew)

= (iiold)

= (iiold)

(iiold) = ( (iiold) - aa( ) * ( ))/ (iiold)

We note that by doing one single Gauss-Seidel iteration in Algorithm 4.2
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and considering a zero initial condition, Equation (3.31) reads

x1 = (D + L)−1r (4.13)

which is equivalent to approximating the matrix A by its lower part and se-

lecting M = L +D in the new renumbering. However, we prefer to main-

tain the Gauss-Seidel terminology to envisage the possibility of carrying out

several iterations in the future.

4.3.5 Streamline Linelet: Matrix Conditioning

Two more cases are presented to show how the condition number decreases

when the matrix is preconditioned appropriately. In the first case we show

the ideal case, similar to the one considered in Subsection 2.3.1. The second

case shows the same for a more challenging problem, where we prove again

that the condition reduces after the matrix is preconditioned.

Case 1

For this first problem we consider pure advection equation. The problem

has been discretized using the finite element method and integrated using

both integration rules. Four different meshes have been considered, these

are shown in Figure 4.9. The computational domain is a rectangle, where

Dirichlet boundary conditions are imposed at the left wall and zero flux at

the other walls. The results are shown in Figure 4.10.
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(a) Mesh 1 (b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 4.9: Example meshes for Case 1 to perform the estimations of the condition
number for the convection equation with size h, h/2, h/4 and h/8, respectively.

Figure 4.10: Condition number of the unpreconditioned matrix and precondi-
tioned matrix using the streamline linelet preconditioner.

Remarks

• Figure 4.10 shows the condition number of the non-preconditioned

system and of the preconditioned system for the meshes shown in Fig-

ure 4.9 and for both integration rules.
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• In the case of the non-preconditioned system (for both integration

rules), the condition number of the matrix increases as the mesh size h

decreases. In the case of the preconditioned system and for both rules,

the condition number does not depend on the size of the matrix.

• As we observe in Figure 4.10 using the close rule gives better results

than using the open rule. It can be explained by the fact that the close

rules have independent streamlines and there is only a dependence to

the previous node as showed in Subsection 4.3.3.

• If the preconditioned system uses the close integration rule, the con-

dition number, independently of the mesh size, is equal to one, as the

stencil is one-dimensional in the direction of the flow and the matrix

has a lower diagonal structure.

• In the case of the open rule, the condition number cannot be one be-

cause, apart from the upstream dependence, there is a cross-flow de-

pendence between the nodes (see in Figure 2.9) which cannot be re-

solved with one single Gauss-Seidel iteration.

Case 2

We will now compute the condition number of the matrix coming from

a more complex case. The reason for choosing this problem is to show

that the condition number in this ‘not-so-ideal case’ (advection is not

perfectly aligned with the mesh edges), we can also obtain a gain in the

condition number. In this case, we will compute the condition numbers

of the preconditioned matrix with the streamline linelet preconditioner

(Gauss-Seidel and bidiagonal) and compare them to those of the diagonal

preconditioned matrix and non-preconditioned matrix.
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In this example, we consider a rotating advection field centered in (0.5, 0.5)

in a square domain Ω = (0, 1)× (0, 1) such that a = (0.5− y, x− 0.5) and

solve the following problem:

a ·∇u− 1

Pe
∆u = 0 in Ω = (0, 1)× (0, 1)

where we choose Pe = 104 and the following Dirichlet boundary condi-

tions:

⎧
⎪⎪⎨

⎪⎪⎩

u = 1 at 0 < x < 1 and y = 0

u = 2 elsewhere

The test was performed on three different triangular meshes of 200, 800 and

3200 elements shown in Figure 4.11 respectively.
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(a)Mesh 1

(b) Mesh 2 (c)Mesh 3

Figure 4.11: Example meshes to estimate the condition number for the convection-
diffusion equation with a rotating advection field.

Figure 4.12: Condition number of the unpreconditioned matrix and precondi-
tioned matrix using the streamline linelet (Gauss-Seidel and bidiagonal) and diag-
onal preconditioners: close integration rule (left) and open integration rule (right).
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Remarks

• Figure 4.12 shows the condition number for matricesA andM−1A for

a close (left) and open (right) integration rules. In both cases we have

calculated the condition number for three different types of precon-

ditioners, these are the diagonal, the streamline linelet (Gauss-Seidel

and bidiagonal).

• The close rule gives slightly better results. Contrary to what happened

with the ideal case,we do not have a perfect structure in this case due

to the effect of diffusion and the missalignment of the advection with

the mesh.

• As we observe in both figures, the condition number depends on the

mesh size, and it increases as h decreases. Also we note, that if we

renumber the mesh appropriately along the advection velocity and

apply the Gauss-Seidel or bidiagonal preconditioners, the condition

number is reduced by one order of magnitude, meaning that the con-

vergence is accelerated at the time of solving the linear system of

equations.

4.4 Parallelization of the Preconditioners

The parallelization of a preconditioning step Mz = r can result in a com-

plex implementation, or in some cases even makes it serial. Considering the

parallel implementation used in this work (and described in Section 3.4),

the minimum required for the preconditioning is that after solvingMz = r,

interface values of z are the same on all neighbouring subdomains. For in-

stance, the diagonal preconditioner is easy to compute, as the coefficient
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of the diagonal matrix can be computed through the reduction of all the

subdomain contributions on the interface nodes. The same strategy as the

one described in Subsection 3.4.2 can then be used. The parallelization of

the Gauss-Seidel method would make serial the preconditioning step. In

fact, the values of z are obtained successively along the streamlines, so that

downstream subdomains should wait for their upstream neighbours before

solving their local solution to Mz = r. Finally, the parallelization of the

anisotropy linelet preconditioner is possible, but not easy to implement [74].

One workaround consists in preventing the mesh partitioning from cutting

the linelet [85]. In this work, we have chosen an easier option for all the pre-

conditioners, which consists of imposing a diagonal preconditioner on the

interface nodes. Then, each preconditioner is only applied locally. The effi-

ciency of the preconditioner thus depends on both the partitioning topology

and the number of subdomains. This has obviously an impact on the perfor-

mance of the preconditioning step, but greatly simplifies the implementation

and limits the communication between neighbouring subdomains.

4.5 Convergence Results for the Streamline Linelet

Solver and Preconditioner

This section tackles two different problems. In the first example, we

will study the convergence of the Gauss-Seidel solver with streamline

renumbering. In the second example, we will apply the streamline linelet

preconditioner (Gauss-Seidel and bidiagonal) and study the convergence

of several iterative solvers. For all the results we have chosen a close

integration rule.

For the sake of clarity, before continuing with the results we will introduce
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the following notation for this section:

Streamline linelet used with the Gauss-Seidel: Gauss-Seidel

Streamline linelet used with the bidiagonal: Bidiagonal

4.5.1 Simple Case: Gauss-Seidel as a Solver

In order to confirm the good behavior of the streamline renumbering,

two meshes of 3 elements and 8 nodes are considered (see Figure 4.13).

In both of them we solve the pure advection equation with a horizontal

advection field with constant velocity a = (a, 0). We number the two

meshes differently, the one at left-hand side of Figure 4.13 being numbered

arbitrarily, whereas the one at the right-hand side of the figure has been

numbered following the direction of the advection velocity, which in this

particular case is along the x axis. In addition we show in Figure 4.14 the

assembled matrices coming from the two meshes. The blue squares in the

matrix are the zero coefficients, the orange ones the non-zero coefficients

and the black ones correspond to the boundary conditions that, for this

example, correspond to Dirichlet boundary conditions applied to nodes 1

and 5.

Figure 4.13: Simple Mesh with arbitrary numbering (left) and numbered along
advection (right)
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Figure 4.14: Resultant matrices that correspond to the mesh showed in Figure
4.13 before renumbering (left) and after renumbering (right)

We then apply the Gauss-Seidel Algorithm 3.38 to these two cases and count

the number of iterations to reach convergence. The results of these two ex-

periments are shown in Table 4.1.

Number of iterations

Arbitrary numbering 3

Numbering along 1

the advection

Table 4.1: Comparison of the convergence between the mesh numbered randomly
and the one numbered along the direction of advection.

Remarks

• Without diffusion, the problem is hyperbolic and the information

‘propagates’ only in the direction of the advection. If we put this in

terms of what we observe in the matrices of Figure 4.14, it means that

for every row of the matrix, a part from the coefficients in the diag-

onal, there is only one coefficient different from zero, located down-
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stream in terms of position in the mesh. This suggests that we can

find the solution node to node starting from a node with a Dirichlet

boundary condition, this is what the Gauss-Seidel method does [42].

If the numbering is performed in the direction of advection, then the

non-zero coefficient corresponds to the previous node and we observe

that in this case that we need one iteration to obtain the solution to the

problem.

• The case with random numbering converges in 3 iterations, showing

the impact of the renumbering even in this very simple case. Depend-

ing on the renumbering this number of iterations is likely to increase

for larger meshes.

4.5.2 Swirl (Rotating Advection Field): Gauss-Seidel as a Pre-

conditioner

We consider now the example considered in Subsection 4.3.3 where we

showed the effect of preconditioning on the condition number for a non-

ideal case. From the meshes considered in Figure 4.11, we consider Mesh

3, as shown in Figure 4.15, which is a 2-D mesh of 3200 elements. We will

also consider a finer mesh made of 12800 elements. The figure also shows

the velocity vectors and the streamline linelet, drawn as vectors from node

to node.
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Figure 4.15: Swirl: Mesh (top-left) and node-to-node streamline vectors computed
by algorithm 4.1 (top-right) together with the velocity vectors (bottom).

Wealso show in Figure 4.16 the original and renumberedmatrices. Similarly

as for the previous example, the dark blue parts of both matrices show the

zero coefficients, and the rest of the color map, shows the distribution of the

non-zero elements.
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Figure 4.16: Swirl: Original matrix (top) and renumbered matrix (bottom).

In the ideal cases studied in Section 2.3.1 and in the previous example, the

resulting matrix obtained after renumbering was lower diagonal (U = 0 in

Equation 3.34). We observe that in the case of the streamline reordering,

the greatest coefficients lie just below the diagonal, showing that the re-

orderingmake the structure of thematrix tend to a lower triangular structure.

Figures 4.17 and 4.18 show the results for convergence and convergence

time of this case. We have carried out more tests with two different iterative
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solvers, the GMRES with a Krylov dimension of 10 and BiCGSTAB. In

both cases we have chosen a convergence tolerance of 10−12 and we have

tried the diagonal, Gauss-Seidel and bidiagonal preconditioners respectively

using the renumbering algorithm in all cases.

Figure 4.17: Swirl: Results for convergence using a GMRES (left) and a
BiCGSTAB (right).

Figure 4.18: Swirl: Results for convergence times using a GMRES (left) and a
BiCGSTAB (right).

Let us now consider the same problem, but with a triangular mesh of 12800

elements, in Figures 4.19 and 4.20 we show the convergence and conver-

gence times using a GMRES and a BiCGSTAB in this case.
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Figure 4.19: Swirl: Results for convergence using a GMRES (left) and a
BiCGSTAB (right).

Figure 4.20: Swirl: Results for convergence times using a GMRES (left) and a
BiCGSTAB (right).

We summarize the results obtained in Figures 4.17, 4.18, 4.19 and 4.20 in

Tables 4.2 and 4.3, and we use the notation NC in the cases where the prob-

lem does not converge.

Preconditioner Coarse Fine

Bidiagonal 18766 48713

Gauss-Seidel 11202 36307

Diagonal 68397 NC

Preconditioner Coarse Fine

Bidiagonal 280 677

Gauss-Seidel 231 538

Diagonal 791 2073

Table 4.2: Number of iterations of the different preconditioners in the two meshes
considered with a GMRES (left) and a BiCGSTAB (right).
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Preconditioner Coarse Fine

Bidiagonal 1.21 11.6

Gauss-Seidel 0.92 12.6

Diagonal 3.65 NC

Preconditioner Coarse Fine

Bidiagonal 2.3 · 10−2 0.21

Gauss-Seidel 2.8 · 10−2 0.31

Diagonal 5.6 · 10−1 0.51

Table 4.3: Convergence time (in seconds) of the different preconditioners in the
two meshes considered with a GMRES (left) and a BiCGSTAB (right).

Remarks

• Figure 4.16 shows the assembled matrix before and after the mesh

renumbering is done. As we can see, the non-zero coefficients (red

and green dots in Figure 4.16) lay closer and below to the diagonal,

this is, the relevant coefficients of the problem are packed in the lower

part of the diagonal.

• Thanks to the renumbering, we have succeded in making the matrix

more lower triangular, on which the Gauss-Seidel algorithm is effi-

cient (see remark in Subsection 3.3.2).

• Figure 4.18 and Tables 4.2 and 4.3 show the time that it takes for the

problem to converge and it compares it with the three preconditioners.

The fastest one, independently of the solver used is the Gauss-Seidel

preconditioner for both iterative solvers. In this case, we observe that

the bidiagonal preconditioner, although involving less computations

than the Gauss-Seidel, does not compensate in terms of time to con-

vergence.

• From Figures 4.19 and 4.20 and Tables 4.2 and 4.3, we confirm the

robustness of the Gauss-Seidel and Bidiagonal preconditioners using

the renumbering strategy. Also we observe that in this case, the prob-
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lem does not converge when the diagonal preconditioner is used with

a GMRES solver.

4.5.3 Temperature Transport over a Sphere

Let us consider a more complex problem, the temperature transport over a

sphere. The geometry and boundary conditions are shown in Figure 4.21.We

consider three meshes, coarse, middle and fine, composed of 8670, 69360

and 554880 tetrahedra, respectively. Some views are shown in Figure 4.22.

Figure 4.21: Geometry and boundary conditions for the temperature transport
over a sphere.
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Figure 4.22: Coarse, middle and fine meshes for the temperature transport over a
sphere.

In a first step we solve the incompressible Navier-Stokes equations at a

Reynolds number 100, based on the sphere diameter. We then transport

the temperature with a Péclet number of 1000 by solving the stationary

convection-diffusion equation:

a ·∇u− 1

Pe
∆u = 0 in Ω

Figure 4.23 shows the streamline linelets constructed on the middle mesh.

Figure 4.23: Streamline linelets on the middle mesh for the temperature transport
over a sphere.
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Figures 4.24, 4.25 and 4.26 show the results for convergence in terms of iter-

ations and time for the threemeshes considered.We use the GMRESmethod

with a Krylov subspace of dimension 100 and a convergence tolerance of

10−12 using apply the diagonal, Gauss-Seidel and Bidiagonal precondition-

ers and the renumbering algorithm in all cases.

Figure 4.24: Coarse Mesh: Results for convergence (left) and convergence times
using a GMRES (right).

Figure 4.25: Middle Mesh: Results for convergence (left) and convergence times
using a GMRES (right).
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Figure 4.26: Fine Mesh: Results for convergence (left) and convergence times
using a GMRES (right).

We summarize Figures 4.24, 4.25 and 4.26 in Tables 4.4 and 4.5. Like in

the previous example we use NC in the cases where the problem has not

converged.

Preconditioner Coarse Middle Fine

Bidiagonal 59 134 464

Gauss-Seidel 45 89 304

Diagonal 84 201 NC

Table 4.4:Number of iterations of the different preconditioners in the threemeshes.

Preconditioner Coarse Middle Fine

Bidiagonal 4.75 · 10−3 8.76 · 10−2 2.63 · 10−1

Gauss-Seidel 8.31 · 10−3 1.62 · 10−1 5.69 · 10−1

Diagonal 6.82 · 10−3 1.26 · 10−1 NC

Table 4.5: Convergence time (in seconds) of the different preconditioners in the
three meshes.

Figure 4.27 shows the results for the relationship of the different sizes of the

meshes considered and the number of iterations.
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Figure 4.27:Mesh Convergence: Relationship between the mesh size and the num-
ber of iterations required to converge.

Remarks

• The left side of Figures 4.24, 4.25 and 4.26 show the convergence for

the threemeshes considered respectively using the Gauss-Seidel, bidi-

agonal and diagonal preconditioners together with a GMRES solver.

The results in terms of convergence are similar to the ones obtained for

the swirl test case. This is, the Gauss-Seidel is the one that needs less

iterations to converge if compared with the other two preconditioners.

We also observe in Figure 4.26, that the diagonal preconditioner does

not converge in this case.

• The right side of Figures 4.24, 4.25 and 4.26 show the results for the

convergence time for the problem using the same three precondition-

ers. In this case, differently as what happened with the swirl test case,

the problem takes less time to converge using a bidiagonal precondi-

tioner. In Figures 4.24 and 4.25 we also observe that the Gauss-Seidel

is the one that takes more time to converge.

• In Figure 4.27 and Tables 4.4 and 4.5, we show the relationship be-
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tween the size of the mesh and the convergence of the solver. Here

we note that as the mesh gets finer, the converge slows down and as

a consequence it takes more time to converge.

• The Gauss-Seidel preconditioner is the one that converges in less iter-

ations, as it is the one that requires more information from the original

matrix of the discretized problem. This does not mean that it is always

faster in terms of time to converge, as one iteration using a Gauss-

Seidel preconditioner is more expensive in terms of CPU time, that

an iteration using a bidiagonal preconditioner. In this case we observe

that the Gauss-Seidel multiplies by two the time to convergence of the

diagonal preconditioner. As it has been shown convergence times de-

pend on several aspects, such as, how the reordering is done and how

many relevant terms are left away from the diagonal or the balance be-

tween number of iterations needed for the problem to converge versus

the time that takes an iteration to complete its cycle.

• From the computational point of view, the way the Gauss-Seidel

was implemented using permutation arrays involves non-contiguous

memory accesses. This also contributes to increasing the time of one

Gauss-Seidel iteration.

• All these results suggest the need for a more efficient algorithm to

handle the preconditioning step when considering the Gauss-Seidel

and bidiagonal preconditioners.

4.5.4 Temperature Transport over a NACA0012: Paralleliza-

tion

With this example we study the effect of the parallelization on the perfor-

mence of the streamline linelet preconditioner. We consider the temperature
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transport over a NACA0012 profile. The 2-D mesh is composed of 21127

triangular elements and 3075 quadrilateral elements in the boundary layer

(see Figure 4.28). We first solve the Navier-Stokes equations at a Reynolds

number 500, and then transport the temperature with a Péclet number of

500 by solving the stationary advection-diffusion equation. To solve the al-

gebraic system, we use the GMRES method with a Krylov subspace size of

10, and a tolerance of 10−12. Here we choose the maximum angle cosine of

0.4.

Figure 4.28: Boundary conditions (left) and mesh (right) for NACA0012 airfoil.

We first consider an algebraic partitioner (METIS [61]), and compare it to

the sequential version and the diagonal preconditioner. Figure 4.29 shows

the convergence histories obtained using different number of subdomains

(indicated between parenthesis).
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Figure 4.29: Convergence histories: effect of the partitioning for NACA0012 air-
foil.

One can easily imagine the adverse effect of cutting the streamlines when

considering running this problem in parallel. Intuitively, we expect that par-

titioning horizontally, streamlines would not be cut and thus the precondi-

tioner performance would not be so much affected compared to the sequen-

tial version. Conversely, we expect that if streamlines are cut by a vertical

partitioning, the convergence will be adversely affected. Let us examine this

last example. In Figure 4.30, we show a vertical partitioning, together with

streamline linelets.

Figure 4.30: Vertical partitioning for NACA0012 airfoil. Different subdomains
(left) and streamline linelets (right).

We first observe that almost no streamline linelets are present in the second

(blue) subdomain from the left of the partitioning. How can we explain this?



134 4. Preconditioning

In Subsection 4.3.3, we constructed the streamline linelets by choosing the

seed nodes with higher values of velocity. In the present case, when the

flow encounters the airfoil profile, the intensity of the velocity decreases

along the x-axis to satisfy mass conservation. Therefore, the possible seeds

are ordered from right to left of the subdomain. According to the algorithm

described in Subsection 4.3.3, the streamlines are constructed following the

flow, that is from left to right in this case. Thus, they cannot propagate when

using to our algorithm. To fix this, we have slightly modified the algorithm

to enable the upstream propagation of the streamline linelets. Figure 4.31

shows the linelets given by the original algorithm on the left and by the new

algorithm on the right.

Figure 4.31: Vertical partitioning for NACA0012 airfoil. Original algorithm (left)
and modified algorithm enabling upstream propagation of linelets (right).

Figure 4.32 compares the convergence obtained using the original al-

gorithm, which considered only downstream propagation of streamline

linelets, and the modified algorithm which accounts for both downstream

and upstream propagations.
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Figure 4.32: Convergence histories of the original algorithm and modified algo-
rithm enabling upstream linelets.

Finally, let us compare this adverse partitioning together with METIS and

a supposingly favorable horizontal partitioning, using 6 subdomains. Parti-

tions as well as the streamline linelets are shown in Figure 4.33.

Figure 4.33: Partitioning and streamline linelets for NACA0012 airfoil. Vertical
(top), horizontal (middle) and metis (bottom).

Figure 4.34 compares the corresponding convergences.
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Figure 4.34: Convergence histories using different partitionings: vertical, hori-
zontal and METIS.

Remarks

• In Figure 4.30 we show the effect of the partitioning for a NACA0012

airfoil. Here we observe non-negligible differences with respect to the

sequential version, very clear in the first iterations of the solver. How-

ever, the impact of the number of subdomains seems to be limited.

• In Figure 4.31 the streamlines considering first only downstream

propagation and then both downstream and of the linelets. It is impor-

tant to use both upstream and downstream propagations as in Figure

4.32 we observe a gain in number of iterations achieved by this slight

modification.

• Regarding the results for the vertical, horizontal andMETIS shown in

Figure 4.34, we observe that the vertical partitioning andMETIS parti-

tioning give similar convergences.We also note that their convergence

rates are smaller when the residual gets small (around 10−4). How-

ever, the horizontal partitioning give the worst convergence, which
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was not expected at all, although the final convergence rate is quite

similar to that of the sequential method. We do not have an explana-

tion for the result obtained for the horizontal partition.

4.5.5 Temperature Transport over a NACA0012: Maximum

Angle

To finish the study of the streamline linelet preconditioner, we investi-

gate the effect of the maximum angle cosine of Algorithm 4.1 on

the convergence of the solver. To this aim, we consider the last example

(NACA0012) in sequential mode, with the same four angles used in Fig-

ure 4.8. Figure 4.35 shows the convergence histories obtained for a Péclet

of 500 and a Péclet of 5000. The convergences are compared with those

obtained with a diagonal preconditioner and a Gauss-Seidel preconditioner

using the original mesh node renumbering.

Figure 4.35: Convergence histories using different maximum angle cosines
for Pe=500 (left) and Pe=5000 (right).

Remarks

• The larger values of angle cosines 0.6 and 0.8 respectively, which lead

to straight streamlines, converge in more iterations that the smaller

angles, as the small angle cosines present a rapid decay of the residual
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during the first iterations. However, they present a slightly better rate

of convergence once a minimum residual (around 10−4) is reached,

in the case of smaller Péclet numbers. Therefore small angle cosines

lead to faster convergence in the first phase of the solver.

• In Figure 4.35 (left) we observe that the Gauss-Seidel algorithm used

without renumbering gives better results than the streamline linelet

preconditioner with an angle cosine of 0.8. Although we observe this,

the convergence is slower and obviously strongly depends on the node

numbering, which does not depend on the direction of the flow.

• In all cases, the gain compared to a case using a diagonal precondi-

tioner is huge, e.g. 2.5 to 3.

• We confirm the positive effects of the streamline renumbering in all

cases.

4.6 Conclusions

Table 4.6 summarizes the ideal case of pure diffusion considered in Subsec-

tion 4.3.1 for the anisotropy linelet preconditioner case. It shows that renum-

bering the mesh appropriately, we can improve the convergence of the linear

system. In this case, the condition number κ(M−1A) depends on the mesh

size h, but it tends to one in case of using the close integration rule and

three with the open rule as the aspect ratio increases. Table 4.7 summarizes

the ideal case where we have pure advection as considered in Subsection

4.3.3. In this case, we observed, that if the system is preconditioned with

the streamline linelet preconditioner (Gauss-Seidel), the condition number

κ(M−1A) does not depend on the size of the mesh, and similarly to the re-

sults obtained for the pure diffusion case, it is one in case of using a close
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rule and 2.5 if we use the open rule.

open close

integration rule integration rule

Pure diffusion 3 1

(Anisotropy linelet)

Table 4.6: Condition number κ(M−1A) of the anisotropy linelet with close and
open integration rule for an aspect ratio that tends to infinity.

open close

integration rule integration rule

Strong advection 2.5 1

(Streamline linelet)

Table 4.7: Condition number κ(M−1A) of the streamline linelet with close and
open integration rule.

From the study of these simple cases, we have proposed a renumbering

strategy to generalize the application of simple preconditioners, namely

Gauss-Seidel, tridiagonal and bidiagonal, to more complex and arbitrary

meshes. The results show that the Gauss-Seidel and the bidiagonal pre-

conditioners have a better performance than the diagonal preconditioner in

terms of number of iterations. Also, they are more robust than the diagonal

one when considering convection-dominated flows, as we have shown

with the example of the swirl test case, that the diagonal preconditioner

sometimes does not converge. Regarding the maximum angle cosine

criterion, small angle cosines lead to a faster convergence in the first part

of the solver, although this dependence is limited in terms of number of

iterations. Finally, the partitioning affects the convergence of the iterative
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solvers, although no general and clear tendency has been found in the

examples considered.

So far we have been focusing on problems that present either a strong diffu-

sion or a strong convection, but in most industrial problems several differ-

ent physical regimes (strong diffusion and strong convection) might coexist.

This is the reason why we are interested in composing the anisotropy and

streamline linelet preconditioners in the same algebraic system.



Chapter 5

Composition of
Preconditioners

I’ve always wanted to use that

spell!

J.K. Rowling,

Harry Potter and the Deathly

Hallows

The use of a single preconditioner, as described in the previous chapter, may

not be an optimal option for general cases. In fact, the matrix can exhibit

some local behaviors (meaning in some rows of the matrix) not well suited

for the selected preconditioner, which can undermine the convergence of

the solver. One typical example where the different numerical patterns

coexist is the advection of a scalar subject to a high Péclet number with the

presence of an obstacle, which may lead to a boundary layer. We actually

showed in Chapter 2 the differences in the distribution of the coefficient

of the matrix in zones of high Péclet and typical boundary layer involving

anisotropic meshes. Also, in a parallel context, many implementations

‘cut’ the preconditioner at the subdomain interface nodes (as usually it is

complex to construct) and the diagonal preconditioner (easy to construct

on interface nodes) is used instead. In this chapter we show that this
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kind of composing can be embedded in the context of some restricted

preconditioners, also referred to herein as local preconditioners.

This chapter is organized as follows: In the first section, the general frame-

work explaining preconditioner composition is set, in order to introduce the

composition of the anisotropy and streamline linelet preconditioners in the

following sections. Finally, several options showing how to mix these two

preconditioners are presented.

5.1 Composition Methods

A general framework for the composition of preconditioners is explained.

To do so, let M1 and M2 be two preconditioners in Rn. By composition it

is meant the use ofM1 andM2 to build a new preconditionerM . In the fol-

lowing, additive, multiplicative and restricted operators are understood they

are described in the literature [83, 47, 28, 69, 86, 90]. We also define two

restricted preconditioners M̃1 and M̃2 with a rank lower than n. These two

preconditioners are assumed to be good preconditioners of restricted matri-

ces Ã1 and Ã2, obtained from combinations of permutations and restrictions

of the global matrix as follows:

Ãi = RpiAR
T
pi, for i = 1, 2 (5.1)

where Rpi for i = 1, 2 are the restriction and permutation matrices for the

non-overlapping form, as the one depicted in Figure 2.11.

We define three different types of compositions:

• Additive

M−1 = α1M
−1
1 + α2M

−1
2 . (5.2)
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where α1 and α2 are appropriate scaling factors.

• Multiplicative

M−1 = M−1
1 +M−1

2 −M−1
2 AM−1

1 (5.3)

• Additive restrictive

M−1 = RT
p1M̃

−1
1 Rp1 +RT

p2M̃
−1
2 Rp2 (5.4)

• Multiplicative restrictive

M−1 = (RT
p2M̃

−1
2 Rp2)(R

T
p1M̃

−1
1 Rp1) (5.5)

5.1.1 Additive

The additive preconditioner defined in Equation (5.2) comes from the

weighted sum of two preconditioners. It is noted that even if M1 and M2

are good preconditioners of A, the additive preconditioner is not necessar-

ily a good preconditioner for A, and could even be singular. One example

of such sum is the coarse level preconditioner mainly used in DDM type

preconditioners or in deflation methods. In the latter case, setting D as the

diagonal of A, yields (using the same notation as in [7]):

M−1 = D−1 −WÃ−1W TAD−1,

where Ã is a coarse matrix and the columns ofW are the basis of the defla-

tion subspace (where coefficients are 1 and 0).
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5.1.2 Multiplicative

The multiplicative preconditioner comes from the application of precondi-

tionerM1 followed by a preconditioned Richardson iteration using precon-

ditionerM2. Assuming the preconditioning step consists of solvingMz = r,

then:

M1z1 = r (5.6)

z = z1 +M−1
2 (r−Az1) (5.7)

By substituting the first equation into the second we obtain:

z = M−1
1 r+M−1

2 (r−AM−1
1 r)

= (M−1
1 +M−1

2 −M−1
2 AM−1

1 )r
(5.8)

Contrary to the additive case, this two step preconditioning is necessarily

well defined ifM1 andM2 are invertible.

5.1.3 Restricted

The restricted composition is defined as the application of local precondi-

tioners M̃1 and M̃2 designed for restricted matrices Ã1 and Ã2. These ma-

trices can be obtained by permuting and restricting the original matrix, to

isolate rows with similar behavior as formally indicated in Equation (5.1).

Typical Schwarz preconditioners are obtained exactly in this way. As an

example, the Restricted Additive Schwarz (RAS) preconditioner can be ex-

pressed as Equation (5.4), where the choice M̃i = Ãi is made. That is, a

local inverse of the matrix is chosen to precondition the system. It should

be noted that in this case, the restriction matrices are not exactly the same

on the left and right hand side of the preconditioner [19].
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The linelet preconditioner can be represented as well by Equation (5.4), in

the case of two linelets, and can be generalized for n linelets. First, a per-

mutation is carried out to put the rows of the different linelets together, then

a restricition is carried out to isolate each linelet and two tri-diagonal re-

stricted preconditioners M̃1 and M̃2 are assembled and applied formally as

given by Equation (5.4). Let us formalize the construction of the streamline

linelet preconditioner for the example presented in Subsection 4.3.3, and us-

ing the definition of the permutation matrix in Equation (3.4). Let us assume

the matrix is given by:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 −1 0 0

0 0 0 1 0 0 0 −1

0 0 0 0 3 0 0 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 1 0

0 −1 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, Dirichlet conditions on nodes 1 and 5 have been imposed by putting

an arbitrary value on the diagonal 2 and 3, and by eliminating the corre-

sponding contributions from the matrix (which are eventually cast to the

right-hand side).
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The permutation matrix is given by:

P =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

so that the permuted matrix is Ap = PAP T :

AP =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 −1 1 0 0 0 0 0

0 0 −1 1 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now, a restriction can be carried out to isolate the two linelets, as done in

Subsection 3.2.3. In this case we have:

R1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, R2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.9)
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Then the resulting restricted and permuted matrices Ãi = RpiART
pi are built

as:

Ã1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, Ã2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0

0 1 0 0

0 −1 1 0

0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

By defining L̃i and D̃i the lower and diagonal parts of Ãi, the streamline

linelet preconditioner can then be applied independently to each submatrix

with:

M̃1 = L̃1 + D̃1, M̃2 = L̃2 + D̃2

and formally expressed as a restricted composition as in Equation 5.4.

Remark

For the sake of clarity, we have intentionally simplified Equations (5.4) and

(5.5), with respect to the way the restrictions are implemented in this work.

We mentioned that the restrictions were non-overlapping in order to have

one single possible update per row: rows are exclusively preconditioned by

one single preconditioner. However, degrees of freedom can appear in both

preconditioners (at the nodes they meet), meaning that their values will be

taken into account twice (although updated once). This can be formally ex-

pressed by using different restrictions on the left and right hand sides ofM1

andM2 in Equations (5.4) and (5.5), as in the case of RAS preconditioner.
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5.2 Linelet Compostion: Streamline Linelet and

Anisotropy Linelet

The main objective of this section is to blend the anisotropy and streamline

linelet preconditioners to solve the same system, namely M1 and M2, and

investigate their combined performance for problems exhibiting appropri-

ate physical behaviors. For instance, this could be the case of a thermal

boundary layer problem, where a region of strong advection is identified

outside the boundary layer and a strong anisotropy is found close to the

wall. A way of accomplishing this, is to compose the two preconditioners

in a single one. To do so, the three ways of composing preconditioners

explained in the previous section will be adapted to the particular case of

considering the streamline linelet and the anisotropy linelet preconditioners.

Let us note that in this section, we consider M1 and M2 as two precondi-

tioners of the original (not restricted) matrix, that is, theMi’s have the same

size as the original matrix. On the nodes not belonging to any linelet, we

will use the diagonal (Jacobi) preconditioner. This means that the Mi’s are

constructed in the same way as if they were to be applied as a single pre-

conditioner.

5.2.1 Additive

In the case of this thesis, the additive preconditioner is defined as the

sum of inverse of the two invertible preconditioners M−1
1 and M−1

2 . The

streamline linelet and anisotropy linelet are inverted and added to obtain a

new preconditioner that exploits the two different physics of the problem

without distinguishing the different regions where the different physics

dominate. This is exactly what the classical approach does [7].
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Then formally, the additive preconditioner is given by:

M−1 = α1M
−1
1 + α2M

−1
2 (5.10)

In practice only one parameter is needed. Noting that κ(αA) = κ(A) [79],

the equation can be factorized by α1, to lead to, if α = α2/α1:

M−1 = M−1
1 + αM−1

2 (5.11)

In the examples of this thesis, we have chosen α = 1.

5.2.2 Multiplicative

For the multiplicative version, we will use directly Equation (5.3). How-

ever, we will distinguish the order in which the preconditioners are applied.

When composing anisotropy and streamline linelets, we will mention the

first preconditioner that is applied. For example ‘Mult. anisotropy’ if the

anisotropy linelet is applied first (M1) and the streamline in a second step

(M2) or ‘Mult. streamline’ if we apply the streamline linelet first and then

the anisotropy linelet. In addition, from numerical tests that we will analyze

further on, we have found that the convergence of the preconditioner can be

enhanced by relaxing the second preconditioning step using the relaxation

parameter ω. This can be done by substituting Equation (5.7) by:

z = z1 + ωM−1
2 (r−Az1) (5.12)
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5.2.3 Restricted

The restricted preconditioning is the new approach that this thesis intro-

duces, if compared with the classical additve or multiplicative ones. The

approach in this case, is different, as different regions are identified and

different preconditioners are applied to these regions, depending on the

physics that dominates in each case. Ideally, in the region where convection

dominates, the streamline linelet preconditioner will be picked, whereas

in the region where diffusion dominates, the anisotropy linelet will be the

preferred one.

This could be achieved for example by using a criterion based on a nodal

measure of the Péclet number to decide on the preconditioner to be used.

However, in order to compute this nodal Péclet one would need to access

nodal values for convection, diffusion and mesh size. To avoid introducing

problem-dependent criteria in the solver, we thus chose another strategy.

First, anisotropy linelet nodes are identified through the geometrical

criterion used to initiate and grow the different linelets [85]. Then, the

remaining nodes will be identified as streamline linelet nodes.

This selection procedure is illustrated in Figure 5.1. We present an example

of a mesh in which there are two different regions: a region that presents a

strong anisotropy in the y-direction (green nodes in Figure 5.1) and an outer

region away from the one with strong anisotropy (blue nodes in Figure 5.1).

We identify first, the nodes belonging to the anisotropic boundary layer (in

green), based on a geometrical criterion. The remaining nodes are then iden-

tified as streamline linelets (in blue). This is a first level of permuation. The

second level of permutation consists in constructing each individual linelet
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(see bottom part in Figure 5.1 and Table 5.1). Finally, the two precondition-

ers are composed:

M−1 = Rt
p1M̃

−1
1 Rp1 +Rt

p2M̃
−1
2 Rp2 (5.13)
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Figure 5.1: Example anisotropic mesh - Global numbering (top) and local num-
bering (bottom).
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Global Numbering Local Numbering Linelet

Anisotropy Linelet Anisotropy Linelet Number

1 1’ 1

2 2’ 1

3 3’ 1

5 4’ 2

6 5’ 2

7 6’ 2

9 7’ 3

10 8’ 3

11 9’ 3

13 10’ 4

14 11’ 4

15 12’ 4

Global Numbering Local Numbering Linelet

Streamline Linelet Streamline Linelet Number

4 1’ 1

8 2’ 1

12 3’ 1

16 4’ 1

Table 5.1: Global and local numberings for the
anisotropy and streamline linelets.

5.3 Results

In this section, we show two exampleswherewe have tested the composition

of the two preconditioners. In these examples we will study:

• The performance of the four different compositions described in this

chapter, compared to the streamline linelet, the anisotropy linelet and

the diagonal preconditioners.

• The convergence time of all the preconditioners we have mentioned

so far.

For the sake of clarity, with the results of this section we will introduce the

following notation:

• Composed preconditioners

Additive: Addit.

Restrictive: Restr.
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Multiplicative if we apply the anisotropy linelet first: Mult.

anisotropy

Multiplicative if we apply the streamline linelet first: Mult.

streamline

• Single preconditioners

Anisotropy linelet: Anisotropy lin.

Streamline linelet: Streamline lin.

Also we have to mention that in the case of the streamline linelet precondi-

tioner in this chapter we have only considered the Gauss-Seidel method.

5.3.1 Blasius - Thermal Boundary Layer FlowOver a Flat Plate

The Blasius boundary layer can be simulated considering a sufficiently

long flat plate on which a constant flow impinges. In this context, two

main regions can be clearly distinguished, the boundary layer region and

the region away from the boundary. In the first region, diffusion dominates

over convection, whereas in the second one, is the other way around. This

configuration makes it ideal to test the compositions presented previously.

As in Subsection 4.5.3, we first solve an incompressible flow with pre-

scribed velocity at the inflow. The Reynolds number is 500, based on the

plate length. The mesh and the boundary conditions used for this simulation

are shown in Figure 5.2. The mesh is composed of 6000 quadrilateral ele-

ments in the boundary layer and 10188 triangular elements in the core flow.

Once the velocity is obtained, we then consider the temperature transport.

Here, we select a Péclet number of 500. The problem is solved as unsteady

using the Euler scheme.
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Figure 5.2: Boundary conditions (left) and mesh (right).

Figure 5.3 shows the anisotropy linelets constructed in the boundary layer,

colored by their numbers. We observe that they are longer and longer as

we move away from the plate, while anisotropy is increasing. This is due

to the refinement at the start of the plate that limits the anisotropy in this

region.When considering the restrictive preconditioners, streamline linelets

are constructed in the rest of the domain.

Figure 5.3: Anisotropy linelets colored by their numbers.

In Figures 5.4 and 5.5, we show the results obtained for the Blasius bound-

ary layer. We present results for convergence and time. In all cases we have

applied all the preconditioning strategies to a GMRES iterative solver with

a Krylov dimension of 70. The convergence tolerance has been set to 10−10.

Figure 5.4 compares the different composition strategies with the streamline

linelet, anisotropy linelet and diagonal preconditioners.
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Figure 5.4: Results for convergence (left) and convergence times (right). Compar-
ison of the all composition strategies with the anisotroy linelet, streamline linelet
and diagonal preconditioners.

Figure 5.5 shows the convergence and time of the four different approaches

that we have used for the composition of the preconditioners.

Figure 5.5: Results for convergence (left) and convergence times. Comparison of
the different composition strategies.

Preconditioner Number of iterations Time (s)

Diagonal 1477 23.9

Anisotropy Linelet 993 15.9

Streamline Gauss-Seidel 853 17.7

Mult. Streamline 465 11.1

Mult. Anisotropy 428 12.1

Additive 769 12

Restrictive 610 12.6

Table 5.2: Comparison of the preconditioners in terms of iterations and time.
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Remarks

• Table 5.2 shows the results for convergence and time for all the types

of preconditioners considered in this thesis. The results clearly show

that the compositions of preconditioners in any of its four variants are

the oneswith the best performance. IFor instance, theMult. anisotropy

is the one that is the best in terms of iterations and theMult. streamline

in terms of time (see Figure 5.5).

• In this example, the multiplicative preconditioner converges without

relaxation (ω = 1 in Equation (5.12)).

• The main goal of combining the anisotropy linelet and the stream-

line linelet into one single preconditioner is to take into account the

physical characteristics that a general problem can exhibit (e.g. strong

convection away from the boundary and diffusion dominant close to

the boundary layer), so it makes sense that if the two preconditioners

are used for the same problem, they will have a better performance

than if they are used on their own.

• The additive and restrictive additive preconditioners behave equally,

as they are similar by construction. In fact, the main difference is the

additional diagonal preconditioning provided by the additive precon-

ditioner and possibly the streamline linelets crossing the boundary

layer.

5.3.2 NACA0012 - Thermal Boundary Layer

Temperature effects on airfoils such as icing has a negative impact on

aerodynamic performance. For this reason a detailed understanding of

convective heat transfer is necessary to, among others, develop de-icing
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methods [97]. From a numerical point of view, these problems can be very

challenging, as the temperature gradients created near the surface of the

airfoil due to the difference of temperature between the fluid free stream

and the surface, gives rise to steep boundary layers. Near the surface,

heat transfer occurs only through heat conduction, whereas away from the

surface heat transfer is done mainly by heat convection (see Figure 5.6).

This situation of having two different physics in a given configuration,

makes it difficult to choose an approppriate method to solve the corre-

sponding algebraic system. Using the local preconditioning approach that

includes both the properties for high advection problems (heat convection

away from the surface of the airfoil) and boundary layer problems (heat

conduction close to the surface of the airfoil) can be a good option to

improve the convergence results for a NACA0012 airfoil.

In the same way as we have done with the Blasius example, we consider

an incompressible flow surrounding the NACA0012 airfoil and we use the

resultant velocity field from solving the momentum and continuity equa-

tions as an input for the convection-diffusion equation for temperature. See

Subsection 4.5.4 for the description of the test case. Here, we select a Péclet

number of 100. As we have done with the previous example, we will pre-

condition the linear system with the different composition methods that we

have described in this chapter and compare them to the anisotropy linelet,

the streamline linelet and the diagonal preconditioners.

Figure 5.6 (left), depicts the linelets colored by their numbers, while the

right Figure shows the boundary layer developement around the airfoil.
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Figure 5.6: Anisotropy linelets colored by their numbers (left) velocity magnitude
in the boundary layer (right).

Figures 5.7 and 5.8 show the results obtained for the NACA0012 airfoil

for convergence and times. In all cases we have applied the different

preconditioning strategies to a GMRES solver with a Krylov subspace

dimension of 10 and a convergence tolerance of 10−12.

Figure 5.7 shows the different convergence histories and time to solution

obtained with the different preconditioners used in this thesis.

Figure 5.7: Results for convergences (left) and convergences and times (right).

To better appreciate the differences between the composed preconditioners,

Figure 5.8 shows the convergence of a subset of these preconditioners.
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Figure 5.8: Results for convergences (left) and times (right).

Preconditioner Number of iterations Time (s)

Diagonal 937 5.6

Anisotropy Linelet 705 4.6

Streamline Linelet 307 1.1

Mult. Streamline 174 2.78

Mult. Anisotropy 255 5.2

Additive 301 3.8

Restrictive 305 3.9

Table 5.3: Comparison between preconditioners.

Remarks

• Table 5.3 shows the results for convergence and time of all the types of

the streamline linelet and the anisotropy linelet and of the four differ-

ent approaches that have been implemented containing the composi-

tion of both preconditioners. By comparing the methods, we observe

similar time and convergence to the ones obtained with the Blasius

case.

• All the composed preconditioners give better convergence and times

than the single preconditioners.

• The anisotropy linelet preconditioner exhibits the worst performance
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(excepting for the diagonal preconditioner), although after some itera-

tions its rate of convergence seems to decrease down to the same value

as the others (low rate of convergence means faster convergence see

Equation (3.41) for τ ). This can be due to the fact that the main errors

at the beginning of the iterations are located in the core flow, which

are easily removed by the Gauss-Seidel algorithm.

• The preconditioners involving the streamline linelets are the most ef-

ficient ones, as the rate of convergence is low very soon in the iterative

process.

• Regarding the convergence of the multiplicative preconditioners,

starting with the Gauss-Seidel gives a better rate of convergence than

starting with the anisotropy linelet.

• No much difference is found between the additive and restrictive ver-

sions, which are quite similar in their constructions.

5.4 Conclusions

In this chapter we have presented several strategies to compose two different

preconditioners, namely the anisotropy and streamline linelet ones. These

preconditioners are tested on problems which offer regions with strong con-

vection and regions with strong diffusion. Tables 5.5 and 5.3 of show that

any of the composition strategies have a better performance in terms of con-

vergence (iterations) and time compared to the case in where we solve our

problem only with one of the two preconditioners. As we expected, when

different regimes coexist, the composition of preconditioners is a suitable

strategy to accelerate the convergence of the linear system. Also, it should

be mentioned that the gain in convergence not always means a gain in time,
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due to the additional operations involved in the composition with respect

to using one single preconditioner. However, there remains room for im-

provement as in this thesis, we have concentrated more on the algorithmic

performance than on the computational performance.
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Chapter 6

Numerical Applications:
Navier-Stokes Equations

The further he climbed,
the closer he got.
To the slumbering lion
reclining on top

Rachel Bright & Jim Field
The Lion Inside

In this chapter, the preconditioners presented in Chapters 4 and 5 are applied

to the solution of the Navier-Stokes equations. First, a brief introduction to

the Navier-Stokes equations is given. Then, we introduce two different sets

of equations, namely the compressible Euler equations and the incompress-

ible Navier-Stokes equations. The first set is considered to test the stream-

line linelet preconditioner which should be well suited, in principle, to hy-

perbolic problems. We finally end with the simulation of the incompressible

Navier-Stokes equations on a test case involving both a boundary layer and a

core flow to study the behavior of the different preconditioner compositions

introduced in the previous chapter.
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6.1 Navier-Stokes equations

In this section, a brief introduction to the Navier-Stokes equation is given.

Figure 6.1: Different approximations of the Navier-Stokes equations. The ones in
red are the ones studied in this chapter.

In particular, we will focus on two approximations of the general Navier-

Stokes equations, namely the compressible Euler equations and the

incompressible Navier-Stokes equations. Figure 6.1 shows the common

approximations of the general Navier-Stokes equations, depending on the

compressibility, which characterizes the dependence of the density on other

flow variables (e.g. pressure and temperature) and on the viscosity. In fact,

starting from the general governing equations, some simplifications can

be made to decrease the complexity of the equations, making them more

tractable numerically without compromising the accuracy.

The compressible Euler equations govern the motion of an inviscid (no vis-

cosity) and adiabatic flow (no heat conduction). They express the conser-

vations of mass, momentum and energy. If u is the fluid velocity, p the

pressure, ρ the density, E its specific total energy, the equations in the non-

conservative form read:
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∂tρ+∇(ρu) =0

ρ∂tu+ ρ(u ·∇)u+∇p =0

ρ∂tE + ρu ·∇E +∇ · (pu) =0

(6.1)

together with the following closure equations:

p = (γ − 1)ρe,

e = E − |u|2

2

where e is the internal energy and γ is the ratio of specific heats. One

important number in the case of the compressible Euler equations is the

Mach number M , which non-dimensionalizes the velocity with respect to

the speed of sound. These Euler equations should be provided with initial

and boundary conditions.

The incompressible Navier-Stokes equations consist of an approximation

of the general set of equations. They are considered valid when the Mach

number is sufficiently low (0.3 is an accepted value), and if the temperature

influence on the density is negligible. Basically, the density is assumed to

be constant. Finally, these assumptions remove the dependence of the mass

and momentum conservations from the energy. They read:

ρ∂tu+ ρ(u ·∇)u−∇ · [2µϵ(u)] +∇p = 0

∇ · u = 0
(6.2)

where µ is the dynamic viscosity and ϵ is the rate of deformation tensor



166 6. Numerical Applications: Navier-Stokes Equations

defined as

ϵ(u) =1

2
(∇u+∇uT )

These equations should be provided with initial and boundary conditions.

In a similar way as it was done in Chapter 2, the non-dimensional form of

the Navier-Stokes equations is now presented, to easily analyze limiting

behaviors. For the sake of simplicity, this is done with the incompressible

form of the equations. For more details on how to find the non-dimensional

form of the compressible Navier-Stokes equations see [12].

Let us consider u0 and x0 some characteristics measures for velocity and

length, respectively. We assume constant density and viscosity. By non-

dimensionalizing the variables, and redefining the original variables for the

sake of clarity, we end up with the non-dimensional form of the incompress-

ible Navier-Stokes equations:

Parabolic︷︸︸︷
∂tu + (u ·∇)u︸ ︷︷ ︸

Hyperbolic

−

Parabolic︷ ︸︸ ︷
2

Re
∇ · ϵ(u) +∇p = 0︸︷︷︸

Hyperbolic︸ ︷︷ ︸
Elliptic

∇ · u = 0

(6.3)

where Re is the Reynolds number, given by:

Re =
ρu0x0
µ

(6.4)

The Reynolds numberRe can provide valuable information on the behavior

of the flow, as it measures the ratio of the inertia over the viscous forces. It
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thus indicates the global state of the flow, laminar, transitional or turbulent

[35].

As a system of equations, the Navier-Stokes momentum equations present

similar characteristics to the transport equation of a scalar, as studied in

the case of the temperature equation (here the Reynolds number plays the

role of the Péclet number, as explained in Chapter 2). In the case of the in-

compressible Navier-Stokes equations, the viscosity term is responsible for

the so-called no-slip condition (a fluid sticks to a surface), which triggers

boundary layers. Similarly, far from the walls, we may be in the presence

of a core flow, almost uniform, where we expect the behavior to be locally

hyperbolic. We will take advantage of these characteristics to test the dif-

ferent preconditioner compositions. We finally note that in the case of the

Euler equations, due the absence of viscous and thermal dissipation terms,

the equations are globally hyperbolic and the no-slip condition should be

substituted to a slip condition together with a no-penetration condition on

walls.

6.2 Streamline Linelet: Euler equations

In this section two different airfoils have been studied, these are the

NACA0012 and the ONERA M6. For both of them the streamline number-

ing strategy has been tested using the Gauss-Seidel and bidiagonal precon-

ditioners and these two, have been compared to the diagonal preconditioner.

The approach has been exactly the same as in the test cases of Chapter 4,

but this time it has been applied to the compressible Euler equations. For

the NACA0012 test case, the effects of this renumbering are shown for a

problem run in sequential, and in the ONERA M6 we study the effects of
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parallelization of the streamline linelet algorithm.

6.2.1 NACA0012 Airfoil

The aerodynamic properties of a wing, a propeller or a turbine blade are de-

termined by the precise of the airfoil that is used. In case of the NACA0012

(and other airfoils too), depending on the boundary conditions, shear layer

interactions, Reynolds number for instance, complex flow patterns may

appear which usually make the convergence of the non-linearity and of

the iterative solvers challenging. For example at high Reynods number the

convection term described in Equation (6.1) dominates over the diffusive

one. In this case, and knowing the results obtained from the convection-

diffusion equation, if the mesh is reordered following the direction of the

velocity u, the convergence of the iterative solver is expected to improve.

In the present case, we propose to solve the compressible Euler equations to

simulate the inviscid flow over a NACA0012 airfoil. Therefore, no bound-

ary layer is present near the profile where a slip condition is imposed. To do

so, we consider a 2-D mesh of 4522 elements (see Figure 6.2). The problem

is solved as unsteady using the Euler scheme in time. We solve the corre-

sponding monolithic linear system using a GMRES algorithmwith a Krylov

subspace of dimension 30 and BiCGSTAB solvers and a convergence tol-

erance of 10−6 for both cases. We will precondition the system with the

streamline linelet (using the Gauss-Seidel and bidiagonal) and the diagonal

preconditioners.
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Figure 6.2: Geometry and boundary conditions (left) mesh details (right).

Figure 6.3 shows some views of the streamline linelets, representing the

node-to-node vectors of each linelets. We observe, that they follow the flow

direction.

Figure 6.3: NACA0012: Node to node vectors forming the streamline linelets.

Figure 6.4 shows the results for the convergence of the streamline linelet and

diagonal preconditioners using a GMRES (left) and BiCGSTAB (right).
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Figure 6.4: NACA0012: Results for convergence with a GMRES (left) and
BiCGSTAB (right).

Remarks

• Figure 6.4 shows the convergence of the Gauss-Seidel, Bidiagonal

and Diagonal preconditioners using GMRES and BiCGSTAB. In both

cases (GMRES and BiCGSTAB), the Gauss-Seidel preconditioner is

the one that requires less iterations to converge if compared with the

other preconditioners.

• The right-hand-side of Figure 6.4 shows that in the case of the

BiCGSTAB solver it takes less iterations to converge than with the

GMRES. This behavior is similar to the test cases shown in Chapter 4

and it is due to the difference between the two iterative solvers [46].

• With this problem, we show that the renumbering also works for the

inviscid compressible Euler equations, although the gain in number

of iterations is less than for the scalar case (around 30% less itera-

tions of the Gauss-Seidel preconditioner with respect to the diagonal

preconditioner) in the case of GMRES.
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6.2.2 ONERA M6 Airfoil

Let us know consider a more challenging problem. In this case we consider

the ONERA M6 airfoil, which is a standard transonic test case frequently

used to validate CFD codes [70, 81]. In this case we want to use the inviscid

compressible Euler equations in 3-D to study the effect of the paralleliza-

tion on the performance of the streamline linelet preconditioner. In Figure

6.5 we show the details of the mesh (composed of 472026 elements) and

the boundary conditions used to solve the problem. The problem is solved

as unsteady using the Euler scheme. We will solve the linear system using

GMRESwith a Krylov subspace of dimension 100 and we will precondition

the system with the streamline linelet (using the Gauss-Seidel and bidiago-

nal) and the diagonal preconditioners. The convergence tolerance is set to

10−6.

Figure 6.5: Geometry and boundary conditions (left) mesh details (right).

Figure 6.6 shows the velocity and temperature profiles around the airfoil,

showing the presence of the so-called lambda shock [66].
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Figure 6.6: Velocity contours (left) temperature contours (right).

Figure 6.7 shows some snapshots of the streamline linelets. The left part of

the figure shows the different streamline linelets in the near-airfoil region.

The other view shows the vectors going from node-to-node and eventually

forming the different streamline linelets. By construction, we can observe

that they in general follow the flow direction.

Figure 6.7: Streamline linelets near the airfoil (left) and node-to-node vectors
forming the streamlines (right).

On the left-hand-side of Figure 6.8 we show the results for the convergence

of the streamline linelet and diagonal preconditioners. The right-hand-side

of the figure shows the convergence when we parallelize the problem with

10 and 50 processors in the case of using the streamline linelet in the Gauss-

Seidel preconditioner case.
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Figure 6.8: Results for convergence in sequential (left) and paralllelization for the
Gauss-Seidel (right).

Remarks

• Figure 6.8 (left-hand-side) shows the convergence for the streamline

linelet (Gauss-Seidel and bidiagonal cases) and for the diagonal pre-

conditioners. The results obtained are similar to the ones obtainedwith

the NACA0012 airfoil, this is, the streamline linelet in the Gauss-

Seidel case is the one that converges in less iterations, followed by

the streamline linelet in the bidiagonal case and finally the diagonal

is the one that converges in more iterations. The Gauss-Seidel pre-

conditioner provides a speedup of 1.4 with respect to the diagonal

preconditioner in terms of total solver iterations.

• The gain is also limited compared to the scalar transport case studied

in Chapter 4.

• The left-hand-side of Figure 6.8 shows the effect of the parallelization

on the streamline linelet. To show this we have chosen the streamline

linelet with the Gauss-Seidel algorithm and we have used 10 and 50

processors. As we can see, the algorithm looses efficiency as more

processors are used, because we apply each preconditioner locally,

meaning that the streamlines are cut.
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6.3 Composition of Preconditioners: Incompressible

Navier-Stokes Equations

This section tests the local preconditioning algorithms for the incom-

pressible Navier-Stokes equations following the same approach as the one

used in Chapter 4 for the case of the advection-diffusion equation. The

solution of the incompressible Navier-Stokes equations is based on the

segregation of the momentum and continuity equations. To summarize,

the algorihtm extracts the pressure Schur complement from the monolithic

Navier-Stokes algebraic system, and this Schur complement is solved

using the Orthomin(1) method [53]. Eventually, at each time step, the

momentum equation is solved twice and the continuity equation once. The

preconditioners are applied here to the momentum equation, exclusively.

To carry out the study, we consider a NACA0012 airfoil similar to the

one studied in Section 6.2. We first consider the sequential solution of a

NACA0012, to compare the different preconditioners presented in Chap-

ters 4 and 5. Then we study the same example to investigate the effects

of the parallelization on the performance of one single preconditioner, the

multiplicative streamline one.

6.3.1 NACA0012 Airfoil

In the previous section, we have used the streamline linelet algorithm

to accelerate the convergence of the solvers in the case of having an

inviscid compressible flow over two airfoils. In this example we consider

the different composition approaches presented in this Chapter and we

compare them with the anisotropy linelet and the streamline linelet ap-

proaches. The problem setup is the same as the one in Subsection 4.5.4 of
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Chapter 4 but in this occasion the problem is solved as unsteady using the

Euler scheme. Also we will consider two safety factors of 100 and 1000.

The solver tolerance is set to 10−2 and the Krylov subspace dimension to 10.

Figure 6.9 shows the convergence for all the preconditioners studied (left)

and the convergence for different relaxation parameters using the Mult.

Streamline preconditioner (right). In all cases we choose a safety factor of

100.

Figure 6.9: NACA0012 NS: Results for convergence (left) and comparison of the
relaxation parameter (right) for a factor of 100.

We now consider a safety factor of 1000. We first point out that in some

cases, the solution diverges if some preconditioners are activated from the

first time step. This is a known problem when solving complex linear prob-

lems and when the tolerance is too tight during the first iterations. Thus we

also consider using the diagonal preconditioner for the first 30 time steps

(which corresponds to 60 momentum equations solves). Figure 6.10 shows

the convergence for all the preconditioners studied (left) and the conver-

gence for different relaxation parameters using the Mult. Streamline pre-

conditioner (right).
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Figure 6.10: NACA0012 NS: Convergences starting from the beginning (left),
starting at time step 30 (right) and comparison of the relaxation parameter (bot-
tom) for a factor of 1000.

Remarks

• Figure 6.9 (left) shows the resuls for the convergence of all the pre-

conditioners studied in this thesis using a safety factor of 100. In this

case, Mult. Streamline is the one that the best performance.

• In Figure 6.9 (right) we compare the convergence of theMult. Stream-

line preconditioner for different relaxation parameters. We observe

that with ω = 0.5, is where we have the best performance.

• Figure 6.10 (top) shows the results for the convergence for all the

preconditioners using a safety factor of 1000. At the top left of the

figure, we apply each preconditioner from the beginning. Here we

notice that the Mult. Streamline preconditioner does not converge and

that the Additive one is the one that has the best performance. At the
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top right of the figure, we first start with 30 iterations of the diagonal

preconditioner and then we apply the other preconditioners. In this

case we see that the one that converges in less iterations is the Mult.

Streamline one.

• In Figure 6.10 (bottom) we show the convergence results for differ-

ent relaxation parameters taking the Mult. Streamline preconditioner.

Again in this case we notice that the preconditioner has the best per-

formance when we take ω = 0.5.

• To conclude, the Mult. Streamline option gives the best results, with

a speedup up to 5 compared to the diagonal preconditioner (for both

safety factors). Also the number of iterations per time step is more

stable than any other preconditioner and a relaxation parameter of 0.5

gives the best results.

6.3.2 NACA0012 Airfoil: parallelization

This last section studies the effect of the parallelization on the performance

of the best preconditioner found in the previous example, namely the

Multiplicative Streamline, with a relaxation of 0.5. To this end, we consider

exactly the same problem and consider different partitioning using METIS,

with 2, 3, 4, 5 and 6 subdomains. The safety factor is 100, the solver

tolerance set to 10−2 and the Krylov subspace dimension to 10.

Figure 6.11 compares the number of iterations required to convergence, for

the different partitionings, and compares them to the sequential version and

the diagonal preconditioner.
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Figure 6.11: NACA0012: effect of the parallelization on the number of solver it-
erations for different partitionings.

Figure 6.12 shows the streamline linelets obtained for the last time step

(50th) when partitioning into 5 and 6 subdomains.

Figure 6.12: NACA0012 NS: streamline linelets with 5 sudbomains (left) and 6
subdomains (right).

Remarks

• In Figure 6.11 we observe a constant reduction of factor 5 with respect

to the diagonal preconditioner, except for the case with 5 subdomains.

This means that in this case, partitioning has a limited effect on the

performance of the preconditioner.
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• We cannot straightforwardly conclude why the streamline in the case

of 6 subdomains is more favorable than in the case of 5. We thus can-

not explain the loss of efficiency with 5 subdomains. Specific parti-

tionings alter the performance (here using 5 subdomains), without a

well-identified explaination.

6.4 Conclusions

In this chapter we have applied the preconditioners developed in Chapters 4

and 5 to the compressible Euler and the incompressible Navier-Stokes equa-

tions respectively. First we have tested the streamline linelet (both Gauss-

Seidel and bidiagonal) preconditioner for a NACA0012 airfoil and an ON-

ERA M6 airfoil using the compressible Euler equations. In both cases we

observe that the convergence is accelerated but it has a minor impact com-

pared to the case of the scalar transport. In the case of the ONERA M6 air-

foil we notice that the streamline linelet preconditioner looses performance

when parallelized. However, it still has a better performance if compared to

the diagonal preconditioner. Then, we have tested the composition of pre-

conditioners for solving the incompressible Navier-Stokes equations for a

NACA0012 airfoil and studied the parallelization. In this case we show that

the Mult. Streamline option is the one that has a better performance with

a speed-up up to 5 if compared to the diagonal preconditioner. Regarding

parallelization we observe that the partitioning has a limited effect on the

performance of the preconditioner.
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Chapter 7

Conclusions and Future Work

The less there is to justify a
traditional custom, the harder it
is to get rid of it

Mark Twain,
The Adventures of Tom Sawyer

In this chapter the conclusions reached in this dissertation together with the

future work are presented. The main objective of this thesis was the devel-

opement of preconditioning techniques to accelerate the solution of alge-

braic systems, coming from the discretization of PDEs or systems of PDEs.

To this end, the following sub-objectives were posed:

• Understanding and explaining the relations between the physics and

the numerical methods in some given situations.

• Understanding the impact of the numerical method on the resulting

algebraic system: stabilization, Péclet number, integration rule, mesh

anisotropy for instance.

• Deriving preconditioning techniques based on these analyses.

• Estimating the gain by solving simple problems and studying the con-

dition number of the preconditioned system.



182 7. Conclusions and Future Work

• Validating our hypothesis by solving some practical examples.

• Understanding the effect of parallelization on the convergence prop-

erties of such preconditioners.

7.1 Achievements

Following the motivations and objectives set the following achievements

have been obtained.

• By understanding the relations between the physics and the numerical

methods, we have found that the order in which the mesh is renum-

bered in some well identified problems (strong advection or strong

diffusion) can exhibit a particular structure (e.g. tridiagonal, lower di-

agonal etc.). In general, for advection-diffusion problems, these lim-

iting behaviors are likely to co-exist.

• For simple cases, these structures depend on the stabilization tech-

nique, integration rule etc. used in each case. Hence, the stiffness ma-

trix coming from an anisotropic mesh where the nodes have been or-

dered in the direction of anisotropy presents a tridiagonal structure if

we use a close integration rule and no specific structure if we use an

open integration rule. In the case of having a pure convection problem,

using a SUPG stabilization technique leads to independent streamlines

in the matrix in the direction of advection if we use a close integration

rule, but no remarkable structure is observed if we use an open rule.

• We have also explored the different state-of-the art preconditioners,

where we have chosen the Gauss-Seidel and bidiagonal precondition-

ers. Then by performing a renumbering along the advection direction

or mesh anisotropy we have applied these preconditioning techniques
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adapted to the structures observed (streamline linelet and anisotropy

linelet preconditioners).

• We have calculated the condition number for a pure diffusive and a

pure advective problem with SUPG stabilization and solved simple

problems using the streamline linelet approach. From the results ob-

tained we conclude that the matrix is more lower triangular and we

confirm the positive impact of the streamline numbering.

• To validate our first results, we have built a composition of physics-

based preconditioners and applied them to problems where different

physics occur. Herein, when different regimes coexist the composi-

tion of preconditioners has proven to be a good strategy to accelerate

convergence.

• Parallelizing the code with MPI to make it appropriate to an HPC

environment has enabled us to solve more complex problems and to

understand how the convergence of these preconditioners is affected

when the code is run in parallel. From this, we conclude that, the pre-

conditioners studied do not retain performance, although these has a

limited effect on the performance of the preconditioners. Also, some

specific partitions alter the performance of the preconditioners.

7.2 Future Work

Using physics-based preconditioners for large scale simulations remains an

open problem. As future work we present different possibilities based on

the results and the work done in this thesis.
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In terms of convergence we have been successful in building physics-based

preconditioners, but as we showed in our results they are still expensive

in terms of convergence times. Efforts to make their implementation more

efficient are required. Also, we have not presented the results of the timings

for the preconditioner set-up. The algorithm costs should be studied in

detail.

Concerning the streamline linelet renumbering combined with the Gauss-

Seidel algorithm, we propose to study the impact of doing more than one

iteration.

A deeper study of the mesh partition could be done, to understand why the

case of the horizontal partition presented Subsection 4.5.4 is the one that

exhibits a better performance in terms of convergence, opposite to what we

thought in our initial hypothesis.

MPI has been chosen to parallelize the different problems targeting

distributed-memory machines. As said in Chapter 4, parallelization has a

counter-effect on the performance of the numbering algorithms, as it cuts

the streamlines and thus the technique loses performance. One possibility

to parallelize the Gauss-Seidel method would be to use OpenMP with

a multi-coloring technique as the one presented in [80] to avoid race

condition. In the case of the bidiagonal solver, one could parallelize the

loop over the different linelets, as a node only belongs to one single linelet

so that there is no race condition. By introducing OpenMP, we have the

posibility to load balance our solution by using libraries such as DLB [44].

In fact, we may find that some compute nodes are overloaded while others

are left inactive (e.g. due to the lack of linelets), which could explain the
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relatively poor performance.

Finally, the main objective of this thesis has been to adapt mesh numbering

to the physics of convection-dominated flows to improve the convergence

of such problems. This mesh numbering in all cases has been done using a

geometrical approach. As future work, the same could be done algebraically.

This is, instead of finding a geometrical and physics-based condition (e.g.

renumbering the mesh in the direction of the mesh anisotropy or renumber-

ing themesh along the direction of advection using theminimum angle crite-

ria), finding a relationship between the coefficients of the assembled global

matrix resulting from the discretization of the partial differential equation

and from this condition reorder the mesh. A preliminary attempt of doing

this was done at the end of this thesis using Gephi, an open-source network

analysis and visualization software written in Java on the NetBeans platform

[9], which gives the following result for a 2-D boundary layer problem. The

input of Gephi is the matrix graph and coefficients coming from the dis-

cretization of the temperature equation assembled for a boundary layer flow

with high Péclet number. The mesh considered is shown in Figure 7.1.

Figure 7.1: Boundary layer mesh used to try Gephi.

Figure 7.2 shows the groups given as output of Gephi, where the node are

colored according to the assigned group.
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Figure 7.2: Boundary layer problem renumbered with Gephi software.

the pink color follows the zone of the mesh with higher anisotropy, includ-

ing also the part of the core flow on the top right. The blue and the yellow

colors in the core flow. The results show that the algorithm follows more

the mesh than the physics in this case. It should be noted that a deeper anal-

ysis is required to understand deeper the relation between the groups and

the stiffness matrix.

The result obtained in Figure 7.2 suggests that employing clustering tech-

niques such as K-Means clustering [4, 60], Mean-shift clustering [22, 98]

or Agglomerative hierarchical clustering [14, 30] could be a way to clus-

ter the different physics existent in a given physical problem and once this

clustering has done order the mesh in a convenient way to form streamline

or anisotropy linelets.
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