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Abstract

Characterization and interpretation of
cardiovascular and cardiorespiratory dynamics
in cardiomyopathy patients

Javier Rodriguez Benitez
Biomedical Signal Processing and Interpretation (BIOSPIN) group, IBEC
Departament d’Enginyeria de Sistemes, Automatica i Informatica Industrial

(ESAII), UPC

Doctoral thesis

The main objective of this thesis was to study and characterize the variabil-
ity of the cardiac, respiratory and vascular systems through electrocardiographic,
respiratory flow and blood pressure signals, in patients with idiopathic, dilated,
or ischemic disease. The aim of this work was to introduce new indices that
could contribute to understanding, describing and characterizing these diseases.
With these new indices, we propose methods to classify cardiomyopathy patients
according to their cardiovascular risk or etiology. The sudden cardiac death
risk stratification of cardiomyopathy patients, including patients with idiopathic
dilated cardiomyopathy, remains a clinical challenge. In addition, due to the pos-
sible presence of similar symptoms and comorbidities, there are still inaccuracies
in the diagnosis of patients based on their etiology. These diagnostic limitations
could complicate treatment, and therefore hinder patient prognosis. Our purpose
is to introduce new indices with which to characterize the cardiovascular and
cardiorespiratory interactions under pathological conditions. More specifically,
these analyses focus on the study of ischemic and dilated cardiomyopathy pa-
tients associated with sudden cardiac risk stratification. All this new information
could facilitate the future diagnosis of cardiomyopathy patients. These studies
have been conducted using biomedical signal analysis. Thus, prior to studying
these signals, a processing step should be considered to ensure that they are ana-
lyzed under optimal conditions. Therefore, a new tool is proposed to reconstruct
artifacts in biomedical signals, when needed. This process allows information
unrelated to the clinical study that could distort its results to be removed.

In this research, we used four different datasets: the Heris, ART, WeanDB,
and Healthy databases. These databases contain electrocardiographic (ECG),
blood pressure (BP), and respiratory flow (FLW) signals from which different



data series were extracted: beat to beat intervals (BBI, s), from the ECG signal;
systolic and diastolic blood pressure (SBP and DBP, mmHg), from the BP signal;
and breathing duration (TT, s), from the FLW signal. We employed the Heris,
WeanDB, and Healthy databases to test the artifact reconstruction tool. The
Heris database was used with the Poincaré plot analysis for the cardiovascular
risk stratification of cardiomyopathy patients according to their left ventricular
ejection fraction. The ART database was used for cardiovascular coupling anal-
ysis research. The Heris dataset was also used for the cardiorespiratory and
vascular variability analysis to classify cardiomyopathy patients based on their
cardiorespiratory response associated with vascular activity. In order to contrast
all these results, the Healthy database was used as a reference to compare the
indices studied.

In the first part of this work, we propose a novel artifact reconstruction method
applied to biomedical signals made up of physiological pseudo-cycles. The recon-
struction process makes use of information from neighboring events while main-
taining the dynamics of the original signal. The method is based on detecting
the cycles and artifacts, identifying the number of cycles to reconstruct, and pre-
dicting the cycles used to replace the artifact segments. It works by comparing
the morphology of the areas under the curve of each event analyzed. The Op
parameter is defined as the difference between the areas under the curve when
two events are compared. The value of this parameter is low when two events
are similar, whereas it is high when the events are dissimilar, such as a physio-
logical cycle and an artifact. Then, an adaptive threshold was defined to identify
the artifact episodes. Afterwards, the number of cycles to be reconstructed was
generated considering the same number of physiological cycles as in neighbouring
signals to the left and right of the original signal. Finally, we tested the method’s
performance by comparing the number of events and artifacts detected and their
correct reconstruction.

The method was tested using ECG, BP and FLW signals. The results showed
that most of the artifacts were correctly detected and successfully reconstructed.
Physiological cycles were incorrectly detected as artifacts in fewer than 1% of the
cases. The application of a reconstruction step, if necessary, allowed us to treat
artifacts and interruptions, improving the information from these signals, and
therefore, the expected results of the study.

The second part of the study is related to the cardiac death risk stratification
of patients based on their left ventricular ejection (LVEF) using the Poincaré
plot analysis. The patients where stratified according to their left ventricular
ejection fraction and classified as low (LVEF > 35%) or high (LVEF < 35%) risk.
The BBI, SBP, and TT time series of 46 cardiomyopathy patients from the Heris
dataset were used to explore this method. Indices that describe the scatterplot
of Poincaré method, related to short- and long- term variabilities, acceleration
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and deceleration of the dynamic system, and the complex correlation index were
extracted. The linear discriminant analysis (LDA) and support vector machines
(SVM) classification methods were used to analyze the results of the extracted
parameters. The models were optimized in terms of accuracy.

When comparing low risk vs high risk, the best accuracy (98.12%) was ob-
tained with an SVM model using the ANOVA kernel. When comparing control
vs patient groups, the best accuracy (97.01%) was obtained using an SVM model
with a Laplacian kernel. Our results suggest that a dysfunction in the vagal ac-
tivity could prevent the body from correctly maintaining circulatory homeostasis.
This reduction in vagal activity and increase in the sympathetic influence could
expose the cardiovascular system to frequent states of stress, which could con-
tribute to further worsening the condition over time. Through analyzing the
morphology of the Poincaré plot, we were able to introduce indices that allow the
cardiorespiratory system dynamics to be characterized. These indices, related to
cardiorespiratory and vascular variabilities, are proposed as a means to charac-
terize patients and predict their cardiovascular risk based on their left ventricular
ejection fraction.

Next, we studied cardio-vascular couplings based on heart rate variability
(HRV) and blood pressure variability (BPV) analyses in order to introduce new
indices for noninvasive risk stratification in idiopathic dilated cardiomyopathy
patients (IDC). The method was explored through the high-resolution electro-
cardiogram (ECG) and continuous noninvasive blood pressure (BP) signals of 91
IDC patients from the ART database, and 49 healthy subjects (CON) from the
Healthy database. The patients were stratified by their sudden cardiac death
(SCD) risk as: high risk (/DCgr), when after two years the subject either died
or suffered life-threatening complications, and low risk (IDCpg), when the sub-
ject remained stable during this period. Several indices were extracted from the
beat-to-beat interval and systolic and diastolic blood pressure, and analyzed using
the segmented Poincaré plot analysis (SPPA), the high-resolution joint symbolic
dynamics (HRJSD), and the normalized short time partial directed coherence
(NSTPDC) methods. Support vector machines (SVM) models were built to clas-
sify these patients based on their SCD risk.

Our results suggest that I DCy g patients have decreased HRV and increased
BPV compared to both the IDCr patients and the control subjects, suggesting
a decrease in their vagal activity and the compensation of sympathetic activity.
The strength of both cardio-systolic and cardio-diastolic coupling was higher in
high-risk patients than in low-risk patients. The cardio-systolic coupling analysis
revealed that the systolic influence on heart rate gets weaker as the risk increases.
The SVM IDCpr vs IDCpr model achieved 98.9% accuracy with an area under
the curve (AUC) of 0.96. The IDC and the CON groups obtained 93.6% accuracy
and 0.94 AUC. To simulate a circumstance in which the original status of the sub-
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ject is unknown, a cascade model was built to merge the aforementioned models,
and achieved 94.4% accuracy. The coupling analysis-based indices introduced
could be suitable for the sudden cardiac death risk stratification of idiopathic
cardiomyopathy patients.

Lastly, we analyzed the cardiorespiratory interaction associated with the sys-
tems related to ischemic (ICM) and dilated (DCM) cardiomyopathies. We pro-
pose a three-dimensional analysis considering the relation between the cardiac,
respiratory and vascular systems. Based on vascular activity as the input and
output of the baroreflex response, we evaluated the variability of these systems
through the geometrical distribution analyzing the bivariate behavior of the car-
diorespiratory interaction in function of the dynamical changes of the vascular
activity. The aim of this study was to analyze the suitability of cardiorespiratory
and vascular interactions for the classification of ICM and DCM patients. To do
this, we studied 41 cardiomyopathy patients from the Heris dataset. All patients
selected had a New York heart association index (NYHA) of > 2, and were di-
agnosed with either ICM (24 patients) or DCM (17 patients). In addition, 39
healthy subjects (CON) from the Healthy data set were used as a reference. In
this study, we explored the BBI, TT, SBP and DBP time series.

Vascular activity was determined by defining thresholds associated with the
increase, decrease or absence of change in SBP or DBP variability. To analyze
this variability, three new sub-spaces were defined based on thresholds: up’ re-
ferred to increasing values; 'no change’ referred to values between the negative
and positive threshold, and 'down’ was used for decreasing values. To evaluate
the variability of the cardiorespiratory activity associated with the vascular be-
havior, a three-dimensional representation was created for each sub-space. This
representation was then characterized statistically and morphologically and the
resulting indices were used to classify the patients by their etiology through SVM
models. The results were validated using leave-one-out cross-validation.

The optimal SVM model for the comparison of ICM vs DCM patients achieved
92.7% accuracy, 94.1% sensitivity and 91.7% specificity. The optimal model for
the comparison of cardiomyopathy patients vs CON groups obtained 86.2% accu-
racy, 82.9% sensitivity, and 89.7% specificity. The optimal model for the compar-
ison of ICM patients vs CON subjects achieved 88.9% accuracy, 87.5% sensitivity,
and 89.7% specificity; and for DCM patients vs CON subjects, 87.5% accuracy,
76.5% sensitivity, and 92.3% specificity. The results reflected a more pronounced
deterioration of the autonomous regulation in dilated cardiomyopathy patients.
In general, the cardiac and respiratory variabilities showed lower values in pa-
tients compared to control subjects. Therefore, the analysis of the interaction
between cardiac and respiratory activity and blood pressure could provide new
insight into the classification of patients by etiology, introducing new information
related to the homeostatic control system and other internal relationships. The
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proposed method not only contributes to analyzing the behavior of ischemic and
dilated cardiomyopathy patients, but also introduces a new procedure with which
to analyze the dynamic behavior among other related systems.

The research presented in this work should be replicated in larger databases.
Therefore, our results are more of a hypothesis-generating nature than confirma-
tory.
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Introduction

1.1 Introduction

Recent technological advancements have positively impacted medical practice,
and have fostered the development of new tools. These novel advances can not
only help physicians to improve their knowledge of pathologies, enabling more
accurate diagnoses but they can also have a direct impact on the quality of life
of the patient.

According to the World Health Organization, heart disease is the leading cause
of death in the world, responsible for 15-20% of mortality worldwide [31]. Tt is
estimated that half of these deaths correspond to sudden cardiac death (SCD).
Often, sudden cardiac arrest takes place when the electrical system of the heart
malfunctions and becomes erratic. In some cases, the heart starts beating outside
homeostatic values and ventricular fibrillation occurs, reducing blood flow to dan-
gerous levels, and often causing death [19]. The cardiovascular risk stratification
of these patients still represents a major challenge for cardiologists. In this work,
we propose analyzing the cardiac, respiratory and vascular systems to yield new
information that can contribute to improving the diagnosis and risk stratification
of patients with chronic heart failure.

The majority of SCD incidents occur in patients who are unaware of their
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heart condition. Early detection of SCD is especially difficult due to the asymp-
tomaticity of some patients [33]. The relevant risk factors include the onset of
ischemic heart disease or dilated cardiomyopathy. Likewise, the left ventricular
ejection fraction (LVEF) is one of the clinical indices used to assess the heart ac-
tivity in a patient. In addition, the possible presence of a range of comorbidities,
especially in elderly patients, may add complexity into the task of stratification.
Consequently, the diagnosis of cardiomyopathies poses a variety of challenges that
are currently being investigated.

Despite the differences between the etiologies of these diseases, the symptoms
experienced can be similar, contributing to a possible inaccurate diagnosis by
means of traditional methods. For instance, ischemic cardiomyopathy (ICM) is
related to coronary artery disease [23], while dilated cardiomyopathy (DCM) is
characterized by the enlargement and weakening of the left ventricle [30]. On
the other hand, some patients with heart failure disease could present relatively
normal LVEF levels [12]. New knowledge could lead to more accurate patient

treatment and prognosis, and contribute to the improvement of their quality of
life.

Notwithstanding the similarities in the physical limitations and symptoms
experienced by patients with different cardiomyopathies, there are possible dis-
similarities in the functionality and regulation of their cardiovascular systems,
including the baroreflex mechanism. These differences are not likely to be as-
sessed through a physical examination or the use of imaging techniques. The
development of new clinical tools related to the exploration of cardiovascular and
cardiorespiratory systems variability, and the homeostatic regulation processes
involved, could contribute to the expansion of the current body of knowledge
about these systems in pathological conditions.

Tools based on the analysis of biomedical signals could analyze information
that is unreachable by means of other medical examination methods. Biomedical
signals are recorded directly from the patients under controlled conditions. These
recordings reflect the behavior of the physiological systems, their state and dy-
namics. More specifically, information related to the time series of these records
could contribute to analyzing the cardiovascular and cardiorespiratory behavior
of these patients. Consequently, mathematical models could be used to define,
characterize and analyze patterns associated with the response of these physio-
logical systems.

On the other hand, biomedical signal recordings can be affected by different
types of interference unrelated to the physiological process. These recordings
sometimes require a preprocessing stage in order to minimize the effects of this
interference. Biomedical signal preprocessing is used to remove interference due
to factors such as the electrical network, outliers, spikes or physiological interfer-
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ences, among others. In other cases, these records could present other undesired
events that would require the use of more specific techniques in order to recon-
struct them and maintain the dynamic of the physiological system.

1.2 State of the art

For the purpose of analyzing, characterizing and interpreting the functionality
of cardiovascular and cardiorespiratory dynamics in patients with chronic heart
failure, we present the following brief description of previously published relevant
research. These works are mainly related to cardiovascular risk stratification, and
the characterization of cardiomyopathies. Research related to artifact reconstruc-
tion in biomedical signals is also presented.

1.2.1 Processing of artifacts in biomedical signals

In order to extract relevant information from a biomedical signal, components
that are not related to the physiological process must be removed or attenuated.
These components, referred to as artifacts, can have different lengths, shapes and
sources. Reconstructing these corrupted segments can prevent potential mistakes
during the analysis of the signal.

Several studies have reported solutions to the artifact interference issue. For
instance, the Bayesian filter has been used to estimate a new state space, with
the assumption that the dynamic of the system is Markovian [13]. Some authors
have developed methods for removing transcranial magnetic stimulation-induced
artifacts from electroencephalographic (EEG) and photoplethysmographic (PPG)
signals using a two-part estimation Bayesian filter (a priori - a posteriori) [22,
21, 29]. Other authors have implemented a power spectral density-based wavelet
Wiener filter to minimize the mean square error between the original ECG signals
and their estimation [41].

Some researchers have used a template to analyze the morphological features
of a signal divided in segments [15, 16]. Multiple synchronized signals were con-
sidered to compare synchronized segments with artifacts using a template, and
then the reconstruction was performed based on the past information from that
segment of the template.

The approach taken by other authors was to train a neural network model

with uncorrupted signals and then predict the output of the affected segments
during the reconstruction step [28]. Independent component analysis (ICA) has

3
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also been explored as an artifact detection and reconstruction technique [3, 27,
17]. Canonical correlation analysis was successfully used to remove muscle arti-
facts from EEGs, by reconstructing the signal from components without muscle
artifact sources [8]. Morphological correlation analysis, which divides the signal
into components that have different morphological characteristics, has also been
explored as a means to remove artifacts from EEG recordings [50]. Other works
have studied the suitability of local singular spectrum analysis to remove low-
frequency and high-amplitude artifacts from EEG recordings [44]. The fast ICA
method was studied as a means to eliminate ocular artifacts from EEG and mag-
netoencephalogram signals [20]. Additionally, stationary sub-space analysis has
been considered as a method for removing optical artifacts in EEG recordings [51].

In addition, wavelet methods have been tried on ECG and BP signals through
the application of reconstructed wavelets to replace the affected segments of the
signal [3, 11]. Other methods developed are based on empirical mode decom-
position in respiratory flow (FLW), PPG, and ECG signals, which consists of
decomposing the recordings into instantaneous frequency series, achieving recon-
struction when the artifacts are present several times over the full length of the
signal [27, 46, 26]. Motion artifacts in the heart rate signal have been recon-
structed using time-varying spectral analysis, by calculating the power spectral
density of the signals and comparing the time-varying spectra and the accelerom-
eter data to distinguish the motion artifacts from the PPG spectrum [36].

1.2.2 Cardiovascular risk stratification

Cardiovascular diseases are one of the main causes of death in first world coun-
tries. They commonly manifest as sudden cardiac death (SCD), caused by unex-
pected loss of cardiac function [31]. According to L. Saxon., (2019) [37], SCD is
responsible for half of all heart disease related deaths. The introduction of new
indices related to the complex cardiovascular and cadiorespiratory interactions
under pathological conditions could improve SCD risk stratification, as well as
the early detection of patients at high risk of SCD.

Previous studies have hypothesized various strategies to assess SCD risk based
on clinical tests data, imaging techniques, and signal processing methods, among
others. In the ECG signal, the corrected QT interval was tested in elderly subjects
and was associated with SCD risk [32]. Other authors have analyzed T-wave in-
versions, wide QRS-T angle, and the left bundle branch block, and suggested that
it prolonged the ability of QRS to predict all-cause mortality, including SCD, but
despite being useful for prediction, it does not seem to predict individual risk [2].
Some research suggests that sympathetic dominance of the autonomic nervous
system in conjunction with pro-arrhythmic processes increases the probability of

4
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SCD in patients with ventricular fibrillation problems [40].

In other research, peak oxygen uptake was evaluated during exercise to strat-
ify cardiovascular risk in ambulatory patients with heart failure with ischemic
and dilated cardiomyopathies. The authors claim that a predicted absolute peak
oxygen uptake of over 50% could provide a good short-term prognosis in patients
undergoing medical treatment [42]. Ventricular arrhythmias have been studied
to stratify mortality risk among patients with severe ischemic and non-ischemic
dilated cardiomyopathy, suggesting that complex ventricular arrhythmias repre-
sent an independent mortality risk factor [18].

Cardiac imaging of the myocardial scar, including the infarction border zone,
has also been analyzed to stratify SCD risk. The quantification of the total
myocardial scar was explored as a possible index with which to determine an
appropriate implantable cardioverter defibrillator (ICD) therapy in comparison
with the left ventricular ejection fraction measure (LVEF) [4]. Other studies have
demonstrated that the image-based analysis of myocardial scars can contribute
to the decision to implant ICDs in SCD patients [35, 38, 48].

Heart rate variability (HRV) has also been studied as a measure of autonomic
tone. Higher vagal tone activity is related to increased spontaneous variations in
heart rate, and multiple non-linear techniques have been applied to study it [47,
43, 10, 49, 14]. Lower indices related to this variability have been associated with
patients at risk of SCD, regardless of their LVEF [24, 25, 34]. Another index that
has been explored is heart rate turbulence as a measure of autonomic function.
This index may be capable of predicting SCD-related mortality by assessing the
absence of this behavior [39]. The dynamics of the cardiovascular system behave
in a highly complex way through the interplays of different linear and non-linear
subsystems [45]. Changes in blood pressure are reflected in changes in heart-rate
regulation, and vice versa [9].

1.2.3 Ischemic and dilated cardiomyopathy characteriza-
tion

Heart failure is a complex cardiovascular disease brought on by functional or
structured cardiac disorders. Heart failure patients often have multiple comor-
bidities that can make diagnosis, and therefore treatment, challenging. More
accurate identification of this pathology can lead to an improvement in the pa-
tient’s quality of life.

In one study, calcium release during the excitation-contraction coupling of the
heart was investigated in both ischemic and dilated cardiomyopathy patients [6].

5
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The authors found that the calcium release channel of the sarcoplasmic reticu-
lum levels was 28% lower in ICM patients, suggesting that ischemic hearts exhibit
diminished calcium release during excitation-contraction. This pathological be-
havior could be caused by the abnormal calcium processing of myopathic cardiac
muscle in ischemic heart disease.

Other authors have measured the behavior of components of the S-adrenergic
receptor-G protein-adenylate cyclase complex and adrenergic neurotransmitter
levels in the left and right ventricular myocardium of patients with ischemic
and dilated cardiomyopathy. They revealed differences between the regulatory
p-receptor-effector related mechanisms in ICM vs DCM patients [7]. ICM pa-
tients were characterized by less f-adrenergic receptor downregulation in both
ventricles, a decreased coupling of S-adrenergic receptors mediating a contractile
response in right ventricular tissue, and decreased coupling of (-adrenergic re-
ceptors mediating adenylate cyclase stimulation in the left ventricular tissue.

Another study compared the myocardial tissue from ischemic and dilated car-
diomyopathy patients [5]. The authors found a reduction in positive inotropic
effects, leading to weaker contractions in DCM patients compared to ICM pa-
tients. This result suggests that increased levels of heterotrimeric G;, proteins
and reduced basal adenylate cyclase activity give rise to the abnormal regulation
of contractility in dilated hearts. Other authors have used both neural networks
and fuzzy methods to classify different heart diseases, including ischemic and di-
lated cardiomyopathies [1].

1.3 Objectives

The main objective of this thesis was to study and characterize the variability of
the cardiac, respiratory and vascular systems using the electrocardiographic, res-
piratory flow and blood pressure signals from patients with idiopathic, dilated, or
ischemic disease. The aim of this work was to introduce new indices that can con-
tribute to understanding, describing and characterizing these diseases and their
classification. This new information could offer insight into the underlying phys-
iological processes involved in cardiovascular regulation. Finally, these processes
could improve the diagnosis and risk stratification of heart failure patients.

New indices are proposed to describe cardiovascular and cardiorespiratory
interactions under pathological conditions. More specifically, these analyses fo-
cus on the study of ischemic and dilated cardiomyopathy patients associated with
sudden cardiac risk stratification. Additionally, a new tool is proposed as a means
to reconstruct artifacts in biomedical signals whenever possible. This process al-
lows information unrelated to the clinical study to be removed, to prevent it from
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potentially distorting the results.

1.4 Outline

This thesis is organized as follows:

Chapter 2: Cardiac, respiratory and vascular systems. This chapter
consists of a brief description of the physiology of these systems, their interaction,
and their regulation mechanisms.

Chapter 3: Databases. Here the databases used in this research are de-
scribed, including clinical information, types of registered signals, and the pre-
processing applied. In addition, the statistical methods applied for treatment of
indices is presented.

Chapter 4: Artifact reconstruction in biomedical signals. In this
chapter, an artifact reconstruction method for quasi-periodic signals is proposed.
The method consists of the reconstruction of corrupted segments of the signal
using information from neighboring cycles. This method is tested using both
synthetic and real signals.

Chapter 5: Classification of heart failure patients through Poincaré
plot analysis. The Poincaré plot analysis was used to characterize cardiovas-
cular variability in cardiomyopathy patients. This analysis was applied to the
stratification of patients considering different levels of sudden cardiac death risk
based on their left ventricular ejection fraction.

Chapter 6: Cardiovascular coupling analysis applied to cardiomy-
opathy patients. Cardiovascular coupling analysis is proposed as a means of
studying of heart rate and blood pressure variabilities. New indices for noninva-
sive sudden cardiac death risk stratification in idiopathic cardiomyopathy patients
are introduced.

Chapter 7: Cardiorespiratory and cardiovascular variability anal-
ysts. Vascular activity and baroreflex behavior were characterized according to
cardiorespiratory response. New indices related to the variability of these systems
were extracted to classify ischemic and dilated cardiomyopathy patients.

Chapter 8: Discussion and conclusions. The results and contributions
of this thesis are summarized in this chapter. Additionally, some possible future
extensions of this research are presented.
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Cardiac, respiratory and vascular

systems

In this chapter, we present a brief description of the human cardiac, vascular and
respiratory systems. Their interactions and autonomic regulation are described,
considering normal conditions and cardiovascular pathologies, associated with
heart failure and cardiomyopathy diseases.

2.1 The human body

The human body can be described in terms of chemical, cellular, tissue, organ,
systemic and/or organism behavior [26]. The chemical environment of the hu-
man body includes the interaction of organic and inorganic compounds. These
interactions are a product of the expression of the smallest living units, known
as cells. A group of cells can share similar functions and form structures called
tissues. There are four types of tissues: epithelial, connective, muscle, and nerve
[26]. The organs are made up of different types of tissues that interact with each
other to achieve a common function, forming organ systems.
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All of the systems work to maintain a balanced environment in which the cells
can properly function, and this process is known as homeostasis. For these sys-
tems to function correctly, they must maintain low variability. Diseases and the
effects of ageing can disrupt the homeostatic process, exposing cells into unviable
environments and leading to cell death, thereby endangering the organism [27].

The homeostatic mechanism consists of three components: receptors, which
monitor whether the variables are within homeostasis values; the control center,
which manages the information received from the receptors; and effectors, which
execute changes that contribute to maintaining homeostatic balance [27]. As hu-
mans age, their homeostatic balance sometimes diminishes.

2.2 Cardiovascular system

The cardiovascular system is responsible for cardiac and vascular activity. Anatom-
ically, it comprises the heart, the blood and the blood vessels [27].

2.2.1 Cardiac system

The heart is the organ that controls the cardiac system. The primary function
of the heart is to pump blood through the arteries, capillaries and veins [26].
Cardiac cells are autorhythmic, and spontaneously generate their own electrical
activity.

Blood circulation is achieved through the coordinated action of the four cham-
bers of the heart: the right and left atria, and the right and left ventricles. The
atria receive the blood from both the body and the lungs, and the ventricles pump
that blood back to the lungs and the rest of the body (Figure 2.1). These cham-
bers are connected by different valves. The mitral and tricuspid valves control
the blood flow from the atria to the ventricles; the aortic and pulmonary valves
control the blood flow out of the ventricles. One of the functions of the atria is
to produce atrial natriuretic peptide (ANP), a hormone related to blood pressure
maintenance [26].

Electrical activity of the heart

The electrical activity of the heart is directly related to the biochemical activity of
the cardiac myocytes through the sodium-potassium pump mechanism. Cardiac
action potentials are products of the movement of calcium, potassium and sodium
ions through protein channels, inside and outside of the cardiac membrane. This
movement produces depolarization by means of a fast exchange of sodium ions,
and repolarization, through the exchange of potassium and by stopping calcium
from entering the membrane, which produces the action potential. Heart con-
tractions occur between each depolarization and repolarization (Figure 2.2).
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Figure 2.1. Frontal section of the heart’s anatomy (the arrows indicate the directions of the
blood flow into and out of the heart). Reproduced from [26]

Figure 2.2. Schematic illustration of the morphology and timing of action potentials from
different regions of the heart and the related cardiac cycle of the ECG as measured on the body
surface. Reproduced from [17]

Action potentials are generated automatically by a group of pacemaker cells
comprising the sinoatrial (SA) node, the internodal atrial pathways, the atrioven-
tricular (AV) node, and the Purkinje fibers [11]. The SA node determines the
rate at which the heart beats, defined as the cardiac pacemaker.

The electrocardiographic signal (ECG) represents the electrical activity of

the heart, and is described considering different waves. The P wave is related
to atrial depolarization, the Q, R, and S waves, called the QRS complex, repre-
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sent ventricular depolarization, and the ST segment and T wave show ventricular
repolarization. The U wave represents the repolarization of the Purkinje fibers.
Figure 2.3 shows the ECG waves, segments and intervals.

BBI R

u;U

v

| J

Figure 2.3. Wave definitions of the cardiac cycle and wave durations and intervals. BBI:
beat-to-beat interval.

The ECG signal is recorded according to standard configurations. The stan-
dard 12-lead ECG is the most widely used lead system in clinical routine, and is
defined by a combination of three different lead configurations: the bipolar limb
leads, the augmented unipolar limb leads, and the unipolar precordial leads [30].
This 12-lead ECG is recorded by placing 10 electrodes at standardized positions
on the body surface.

The three bipolar limb leads, denoted as I, II and III, are obtained by mea-
suring the voltage difference between the left and right arm and left leg (Fig-
ure 2.4a). The position of these three electrodes can be viewed as the corners of
an equiangular triangle, called Einthoven’s triangle, with the heart at its center.
The resulting limb leads describe the cardiac electrical activity in three different
directions of the frontal plane.

The augmented unipolar limb leads, aV R, aV L, and aV F', use the same elec-
trodes as the bipolar limb leads, but are defined as voltage differences between
one corner of the triangle and the average of the remaining two corners.

The precordial leads, Vi, V5, V3, Vy, Vs, and Vg, are positioned in succession on
the front and left side of the chest, in order to provide a more detailed view of the
heart than the limb leads (Figure 2.4b). These leads are unipolar and related to
a central terminal, defined by the average of the voltages measured on the right
and left arms and left leg.
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(b)
(2)
Figure 2.4. a) Unipolar electrocardiographic leads I, II, and III, and b) augmented unipo-

lar limb leads, aV R, aV L, and aV F, precordial leads, Vi, Vo, V3, V4, V5, and Vg, and the
Einthoven’s triangle. Reproduced from [17]

The orthogonal leads reflect the electrical activity in the three perpendicular
directions: X, Y, an Z. These leads, known as the Frank lead system, are obtained
as the linear combination of seven electrodes positioned on the chest, back, neck,
and left foot. The resulting leads, X, Y, and Z, view the heart from the left side,
from below, and from the front.

2.2.2 Vascular system

The vascular system contributes to homeostasis by controlling blood pressure in
conjunction with heart regulation. It also participates in the the exchange of nu-
trients, waste products, gases and tissues, and hormone transport. This system is
formed by two sets of blood vessels: the pulmonary and the systemic vessels. The
pulmonary vessels transport blood from the right ventricle, through the lungs,
and back to the left atrium. The systemic vessels transport blood through all
parts of the body from the left ventricle, and back to the right atrium (Figure 2.5).

The blood vessels can be categorized into three types: arteries, capillaries and
veins. The arteries transport blood away from the heart into the large arteries,
which progressively branch out into smaller arteries. Then, the blood flows into
the capillaries, where the exchange of blood happens. Afterwards, the blood flows
into the veins carrying deoxygenated blood back into the heart to be oxygenated
again. The veins are classified as venules, small veins, and large veins.

The steady exchange of nutrients and oxygen is vital for maintaining home-
ostasis. Consequently, any alterations in the circulatory system directly threatens
homeostasis. The baroreflex mechanism is capable of regulating blood pressure
by increasing or decreasing blood flow to meet homeostatic demands.
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Figure 2.5. Systemic and pulmonary circulation. Reproduced from [27]

The blood pressure signal (BP) registers changes from the proximal aorta to
the peripheral arteries and monitors those changes to provide information about
the hemodynamic status of the body [3]. Figure 2.6 shows an example of a BP

signal.
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Figure 2.6. Blood pressure signal with systolic (SBP) and diastolic (DBP) blood pressure

marks.
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2.3 Respiratory system

The respiratory system is responsible for the exchange of oxygen and carbon
dioxide during the breathing process inspiration and expiration. It contributes to
homeostasis by allowing the circulation of oxygen and carbon dioxide between the
circulatory system and the organism [33]. Anatomically, it comprises the upper
respiratory tract including the nose, the nasal cavity, the pharynx and the larynx,
and the lower respiratory tract including the trachea, the bronchi, and the lungs
(Figure 2.7). Additionally, the diaphragm and the muscles of the thoracic and
abdominal walls are responsible for respiratory movements.

The lungs are the principal organs of the respiratory system [33]. They are
made up of lobes, two in the right lung and three in the left lung. These lobes
are formed by bronchopulmonary segments, nine in the left lung and ten in the
right lung. At the same time, the bronchopulmonary segments are subdivided
into lobules supplied by bronchioles.

Gas exchange occurs in the capillaries, which are wrapped around small air
sacs called alveoli. The blood carried by the blood vessels interacts with the gas
brought by the airways, consisting of a series of branching tubes, which become
narrower and shorter. In addition, the respiratory system performs functions like
the regulation of blood pH, the production of chemical mediators, voice produc-
tion, olfaction, and protection against microorganisms [27].

Figure 2.7. Respiratory system. Reproduced from [27]
Respiration takes place in sequential cycles of inspiration and expiration. Dur-
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ing inspiration, on every diaphragmatic contraction, the abdominal contents are
forced downward and forward, and the chest cavity expands. Other muscles
involved in inspiration are the scalene muscles and the sternomastoid muscles,
which also contribute to the regulation of this process.

Expiration is a passive process that takes place during breathing due to the
elastic nature of the lungs and chest walls. They tend to return to their initial
positions after being actively expanded during inspiration [33]. The intercostal
muscles assists active expiration by pulling the ribs downward and inwards, de-
creasing thoracic volume.

The dynamics of the respiratory system can be modeled in terms of air volumes
and pulmonary capacities, defined by (Figure 2.8):

- Tidal volume: the volume of air inhaled or exhaled during one respiratory
cycle

- Inspiratory reserve volume: the amount of air that can be forcibly
inhaled after a normal tidal volume

- Expiratory reserve volume: the amount of air that can be forcibly
exhaled after exhalation of the tidal volume

- Residual volume: the volume of air still remaining in the lungs after
maximal exhalation

Based on these volumes, four pulmonary capacities can be defined according to
(Figure 2.8):

- Inspiratory capacity: the maximum volume of air that can be inhaled
following a resting state

- Functional residual capacity: the amount of air remaining in the lungs
at the end of a normal exhalation

- Vital capacity: the total amount of air exhaled after maximal inhalation

- Total lung capacity: the maximum volume of air that the lungs can
accommodate

2.3.1 Respiratory volume and flow signals

The respiratory volume signal represents the circulating air flow in the airway of
the subject. In normal conditions, inspiratory volume can reach up to 3.5 [ and

22



Respiratory system

Figure 2.8. Lung volumes and capacities. Reproduced from [27]

expiratory volumes can reach 1 [ during regular deep breathing. Respiratory flow
occurs by convection, as a result of the pressure difference between the chest and
the atmosphere. It is a measure of the circulating air volume over time. Respira-
tory flow can be estimated through a time derivative of the volume signal. Figure
2.9 is an example of a record of the respiratory flow signal.

The aforementioned signals can be obtained through different recording meth-
ods. With a pneumotachograph device, the flow signal is derived from the pres-
sure difference over a fixed resistance. A linear relationship between pressure drop
and flow is assumed to exist in accordance with the law of Poiseuille. Respira-
tory inductive plethysmography is a widely accepted method for quantitative and
qualitative noninvasive respiratory measurements [23]. Additionally, a pressure
transducer connected to a nasal oxygen cannula can detect fluctuations of about
0.1 kPa during nose breathing [13].
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Figure 2.9. Respiratory flow signal with breath duration (TT) marks.
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2.4 Autonomic nervous system

The autonomic nervous system (ANS) contributes to regulating of the complex
actions involved in maintaining homeostasis. It is involved in the control of body
temperature, digestion, heart rate and blood pressure, among other processes.
The ANS includes the sympathetic and parasympathetic processes and the en-
teric nervous system. The enteric nervous system is a complex network of neuron
cell bodies and axons within the wall of the digestive tract.

The sympathetic preganglionic neurons are located in the lateral horns of the
spinal cord grey matter. These nerves project towards the sympathetic ganglia.
The axons of the parasympathetic preganglionic neurons project from the brain in
the cranial nerves, and from the spinal cord in the pelvic splanchnic nerves. These
axons course through the nerves to the terminal ganglia, where they synapse with
postganglionic neurons (Figure 2.10).

The sympathetic and parasympathetic divisions of the autonomous nervous
system maintain homeostasis by adjusting the body functions to match levels of
physical activity [27]. The autonomous nervous system innervates most organs
through sympathetic and parasympathetic fibers. In general, the sympathetic
division has increased influence under conditions of physical activity or stress, by
stimulating blood and nutrients to structures that are physically active, and by
decreasing activity in nonessential organs. The parasympathetic division is active
during resting conditions, playing a major role in maintaining blood pressure and
body temperature during rest. Increased parasympathetic activity stimulation
lowers heart rate, which lowers blood pressure.

Nervous system activity gradually declines as a person ages due to the decrease
in the number of neurons. The function of the sensory neurons that monitor blood
pressure declines with age, resulting in a higher prevalence of high blood pressure
among the elderly.

2.4.1 Cardiovascular autonomic regulation

Blood pressure in the systemic vessels must be high enough in order to maintain
homeostasis. The heart has a primary influence over blood pressure and plays an
important role in maintaining homeostasis. Heart activity can also vary depend-
ing of the demands of the body, for example, in situations of exercise and rest.
Regulation is achieved by the action of two mechanisms: the baroreflex and the
chemoreflex [27].
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Figure 2.10. Distribution of autonomic nerve fibers. Reproduced from [27]
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- Baroreflex mechanism

The main function of the baroreceptors is to detect changes in blood pressure.
These stretch receptors are located within the walls of certain large arteries like
the carotid and the aorta. Pressure changes in these walls are projected through
the glossopharyngeal and vagus nerves from the baroreceptors to an area of the
medulla known as the cardioregulatory center, where the action potentials are
analyzed. This center acts through the cardioacceleratory center, which increases
heart rate, and the cardioinhibitory center, which decreases heart rate. These
centers communicate stimulating or inhibitory actions to the heart through both,
the sympathetic and parasympathetic divisions of the autonomic nervous system.

High blood pressure in the internal carotid arteries and aorta causes an in-
cremental stretch that stimulates an increase in action potential frequency in the
baroreceptors. This effect produces a reduction in sympathetic stimulation and
an increase in the parasympathetic stimulation of the heart, causing the heart
rate to slow. When blood pressure decreases, the walls are stretched to a lesser
extent, and the afferent action potential frequency decreases, causing decreased
parasympathetic activity and increased sympathetic stimulation of the heart, and
resulting in an increase in heart rate. Several authors have studied the function-
ality of this baroreflex mechanism associating it with the analysis of changes
between the heart rate and blood pressure, the relationship between the systolic
blood pressure and pulse intervals, the peripheral sympathetic nerve activity to
muscle, or the baroreflex sensitivity [20, 28, 24].

- Cardiopulmonary baroreflex

Stretch receptors are located in the walls of the atria and pulmonary arteries,
and respond to changes in blood volume. These receptors are activated by the
distension of the vessel walls. The function of the cardiopulmonary baroreceptors
is to minimize changes in arterial blood pressure in response to changes in blood
volume [33]. This mechanism contributes to the regulation of cardiac and arterial
output. Furthermore, prolonged expiration may increase the vagal tone, thereby
decreasing the heart rate, and decreasing venous return, vascular resistance and
cardiac work [33]. The respiratory-sympathetic coupling could reverse paroxys-
mal supraventricular tachycardia [4].

- Chemoreceptor reflexes

The chemoreceptors contribute to balancing the levels of carbon dioxide in blood
by sensing changes in pH. A drop in pH and a rise in carbon dioxide levels stim-
ulates the chemoreceptors to decrease parasympathetic stimulation and increase
sympathetic stimulation. Hence, the heart rate speeds up, causing increased
blood flow through the lungs, and eliminating carbon dioxide from the body in
the process. The lower carbon dioxide level in the blood helps to increase blood
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pH, and thus maintain homeostasis.

In the event of a significant decrease in blood oxygen levels, chemoreceptor
reflexes force the heart rate to decrease and vasoconstriction to increase. Vaso-
constriction causes the blood pressure to rise, which allows the blood to keep
flowing despite the decrease in heart rate. Chemoreceptors are primarily located
in the carotid and aortic arteries, and close to the brain and heart.

2.5 Cardiorespiratory interaction

Several studies related to cardiorespiratory interaction have analyzed the interde-
pendent response of these systems. Some authors have assessed the suitability of
using respiratory sinus arrhythmia to differentiate between ischemic and dilated
cardiomyopathy patients through fractal dimension and entropy-based methods.
They found that respiratory sinus arrhythmia is lower in chronic heart failure
patients, especially in those with ischemic cardiomyopathy [12]. Cardiorespira-
tory coupling was explored by exposing healthy patients to five different levels
of mental stimulation [29]. They found that mental stimulation could enhance
cardiorespiratory coupling as an alternative to aerobic exercise.

Other authors have presented different results on the behavior of heart rate
variability in relation to the interaction between the cardiac and respiratory sys-
tems and variation with age [7, 15]. The influence of respiration on heart mechan-
ics may decrease as a person ages, in a manner similar to respiratory modulation
of the heart rate. Different respiratory indices have been estimated from the
ECG signal in [6, 21] and the beat-to-beat heart rate have been associated with
the sleep disordered breathing using statistical methods in [25]. On the other
hand, the respiratory-related components of the heart rate variability have been
extracted using a coupled oscillators model [32]. They suggest that these com-
ponents could be an indicator of vagal tone behavior and the non-respiratory
components represents the sympathetic activity.

The heart is sensitive to changes in intrapleural pressure and these can in-
duce physiological responses on both the left and right ventricles [7]. Moreover,
the pericardium is directly related to cardiovascular hemodynamic modulations.
Under normal conditions, it limits the cardiac preload and attenuates the left
ventricular afterload during respiration [22].
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2.6 Cardiovascular pathologies

The dysfunction of heart activity and the cardiovascular system is associated with
different cardiac pathologies. In this research, we focus on the study of heart fail-
ure and heart diseases like idiopathic, ischemic and dilated cardiomyopathies.

2.6.1 Heart failure

Heart failure (HF) is one of the most common pathologies in modern society.
It is defined by the incapacity of the heart to provide enough blood pressure to
supply the metabolic requirements of the body, or to ensure the venous return.
There are multiple causes for the development of this pathology, such as diabetes,
cardiac arrest and hypertension, which often lead to the deterioration of the my-
ocardial tissue [18]. Other authors have studied heart failure patients through
the characterization of the blood pressure signal. They were able to stratify these
patients into high and low cardiovascular risk, using a combination of indices for
blood pressure characterization and the left ventricular ejection fraction index [1].

When heart failure occurs, the body compensates by means of a rage of mech-
anisms, such as increasing output volume, further increasing the thickness and
volume of the ventricular walls, and activating the neurohormonal systems to
maintain average arterial pressure [18].

Congestive heart failure takes place when the heart becomes weak or stiff and
is unable to properly pump blood around the body, so the blood flows through the
heart and body at a slower rate. Therefore, the pressure in the heart increases,
and the cardiovascular system can no longer maintain homeostasis. The chambers
of the heart respond by stretching to hold more blood to pump through the body,
or by becoming stiff and thickening their walls. In time, this causes the walls of
the heart to weaken and become unable to pump blood efficiently. The kidneys
respond by causing the body to retain fluid and salt, and the body becomes
congested.

2.6.2 Sudden cardiac death

Sudden cardiac death (SCD) is unexpected death caused by the loss of heart
function. The electrical system of the heart malfunctions and suddenly becomes
irregular, starting to beat dangerously fast, which may lead to ventricular fibril-
lation, followed by cardiac arrest. SCD is responsible for half of all heart disease
related deaths, and affects men twice as often as it does women, and occurs most
frequently in adults between 30 - 50 years of age [16].

28



Cardiovascular pathologies

2.6.3 Cardiomyopathies

Cardiomyopathies are one of the most common causes of heart failure and occurs
when the heart muscle becomes enlarged, thick, or rigid, causing the heart to
malfunction. The most prevalent of these afflictions are ischemic and dilated
cardiomyopathies.

- Ischemic cardiomyopathy

Ischemic cardiomyopathy (ICM) manifests when a region of the myocardial tissue
stops receiving sufficient blood flow, in most cases occasioned by arteriosclerosis.
This condition can lead to a heart infarction, which can in turn lead to permanent
heart tissue damage [10, 8]. Figure 2.11 shows an illustration of a heart with ICM.

Figure 2.11. Heart with ischemic cardiomyopathy. Reproduced from [14]

- Idiopathic dilated cardiomyopathy

Patients with dilated cardiomyopathy (DCM) have dilated, weakened, elongated
hearts that are incapable of ejecting enough blood to sustain homeostasis, occa-
sioning heart disease. Most of the causes of this pathology are idiopathic, i.e.
its origins are unknown. Nevertheless, it has some indicators, as it has been
associated with genetic heritage, diabetes, viruses, alcoholism, drug abuse and
thyroid related diseases. Figure 2.12 shows a comparison between a healthy and
a DCM heart. Patients affected by this pathology commonly do not manifest any
symptoms or may be affected by minor symptoms such as fatigue, weight gain,
dizziness or fainting.
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Figure 2.12. Heart with dilated cardiomyopathy. Reproduced from [31]

2.7 Clinical indices

Clinical practice presents several indices to describing the cardiac function con-
tributing to the stratification according to different levels of severity through
biomarkers, cardiac mechanical response, and physiological activity, among oth-
ers. In this section, we describe the most relevant indices associated with the
clinical diagnosis of cardiomyopathy patients.

- Left ventricular ejection fraction

The left ventricular ejection fraction (LVEF) is one of the most common indices
for heart failure. This parameter is calculated based on the blood volume at the
end of the diastole (FDV), and the volume at the end of the systole, also known
as final systolic volume (FSV), presented in percentages.

LVEF = (FDV — FSV)/FDV. (2.1)

A patient with a LVEF above 55% is considered normal, between 35% and
55% is considered below normal, and below 35% is considered pathological [2].

- Left ventricular diameter

The diameter of the left ventricle is analyzed during both, the end-systolic and
end-diastolic instances in order to assess the dimensions of the heart during the
systole and the diastole, respectively. The left ventricle end-diastolic diameter is
measured during the end-diastole, and corresponds to the largest cardiac dimen-
sion. The left ventricle end-systolic diameter is measured during the end-systole,
and corresponds to the shortest cardiac dimension. These measurements are often
associated with cardiovascular death risk.
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- New York heart association index

The purpose of the New York heart association index (NYHA) is to stratify the
cardiac risk of heart failure patients. Risk is stratified into four classes depend-

ing on the severity of the limitations and symptoms experienced by the patient,
according to [9]:

NYHA I: No limiting symptoms

NYHA II: Minor limitations

NYHA III: Limitations in workout conditions

NYHA 1IV: Limitations in rest conditions

- Brain natriuretic peptide

Brain natriuretic peptide (BNP) is a polypeptide of 32 amino acids secreted by
the heart ventricles in response to the excessive enlargement of the cardiac mus-

cle. BNP ranges can help in the prediction of heart failure. BNP ranges and their
interpretation are shown in Table 2.1

Table 2.1. BNP interpretation

BNP Heart failure
stratification
< 100 pg/mL unlikely
100-400 pg/mL  Use clinical judgement
> 400 pg/mL likely

According to clinical criteria, high levels of BNP are evidence of left ventricular
symptomatic failure. The N-terminal pro-brain natriuretic peptide (NT-proBNP)
is a 76 amino acid N-terminal inactive protein, that releases BNP when it breaks

from the molecule [5]. Table 2.2 presents the ranges and interpretation for NT-
proBNP.

Table 2.2. NT-proBNP interpretation

Age range NT-proBNP Heart failure
stratification
< 300 ng/mL unlikely
Age < 50 years NT-proBNP > 450 pg/mL likely
Age 50 - 75 years  NT-proBNP > 900 pg/mL likely
Age > 75 years  NT-proBNP > 1800 pg/mL likely
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- Heart failure survival score

The heart failure survival score (HFSS) is calculated through the combination
of several clinical predictors in a mathematical model, including blood pressure,
left ventricular ejection fraction, oxygen peak volume, and intraventricular con-
duction delay [19]. Patients with HFSS values lower than 7.19 are considered at
high risk of cardiac infarction, while patients with values higher than 8.10 are
considered low risk.

- Body mass index

Body mass index (BMI) is calculated as the ratio between the patient’s weight
and the square of his or her height. This indicator is used to estimate the patient’s
degree of obesity (Table 2.3).

Table 2.3. BMI interpretation

BMI

< 18.5%¢ Underweight
18,554 and 24.92¢  Normal
25% and 29.9% Overweight
> 30% Obese

These indices are used to diagnosing heart failure patients and associated
with information obtained using other methods can contribute to extract new
information about these pathologies.
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Databases

Four databases were explored to analyze the behavior of cardiovascular and car-
diorespiratory dynamics. The Heris, WeanDB and Healthy databases were used
to test an artifact reconstruction technique. The Heris database was explored
using the Poincaré plot analysis, the ART database was used in the coupling
analysis section, and the Healthy database was used as a reference.

3.1 Heris database

The Heris database is composed of synchronized recordings of the electrocar-
diogram, blood pressure, and respiratory volume and flow signals of 52 patients
diagnosed with either ischemic (ICM) or dilated (DCM) cardiomyopathy disease.

The signals were recorded at Santa Creu i Sant Pau Hospital, Barcelona,
Spain. This work was developed in collaboration with the Technical University
of Catalonia (UPC), Barcelona, Spain, and the University of Applied Sciences
of Jena, Department of Medical Engineering and Biotechnology, Jena, Germany.
All patients were studied according to the protocol previously approved by the
ethics committee of Santa Creu i Sant Pau Hospital, with the patient’s prior con-
sent.

The signals were acquired with the Portapres-System (TNO Applied Physics
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Institute, Amsterdam, the Netherlands), and the Porti 16-biosignal amplifier
(TMS BV International, Enschede, the Netherlands). All signals were recorded
in high resolution at a 1600 Hz sample frequency for 30 minutes. Orthogonal
derivations were recorded from ECG signals X, Y and Z. Atrium diameters were
estimated from an echocardiogram obtained a few days prior to the recordings.
All patients were recorded under resting conditions in supine position.

The patients were allowed to participate in the study according to the follow-
ing inclusion criteria:

New York Heart Association (NYHA) II — IV

No syncope or life-threatening ventricular arrhythmias to date

- 45-80 years of age

- No secondary disease that influences the prognosis

Medication: besides anti-arrhythmic drugs, all drugs necessary for stan-
dard drug therapy were allowed

And the following exclusion criteria:

New York Heart Association (NYHA) < II
- < 45 years of age
Atrial fibrillation / flutter

Ventricular premature contractions (VPC) > 10%

Active cardiac pacemaker or active implantable cardioverter defibrillator

Additionally, the following clinical indices were recorded: weight, height, sex,
birth date, the medications the patient takes, systolic pressure, diastolic pres-
sure, New York heart association index (NYHA), left ventricular ejection frac-
tion (LVEF), left ventricular diastolic dimension (LVDD), brain natriuretic pep-
tide (ProBNP), hemoglobin levels, smoker status, hypercholesterolemia, coronary
artery disease, and information about the myocardial infarction sustained (Table
3.1).

3.2 ART database

The signals contained in the Autonomic Regulation Trial (ART) database are
part of a study that aimed to evaluate the risk predictors of sudden cardiac death
(SCD) and to improve risk stratification in idiopathic dilated cardiomyopathy
(IDC) patients.
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Table 3.1. Clinical parameters of the Heris database (mean and standard deviation).

DCM ICM
Patients 22 28
Age [years| 64.5 £ 11.5 65.8 £ 10.0
Weight [Kg]| 74.2 + 22.6 77.8 £ 21.1
BMI [Kg/m?] 27.0 + 7.8 272 + 6.6
NYHA 2.0+ 0.6 21+03
LVDD [mml] 61.5 £ 5.0 60.9 £ 8.1
AD [mm] 41.3 + 13.9 46.7 £ 6.9
ProBNP 2119.4 £ 4051.8 1537.5 £ 1395.7
LVEF [%)] 354 +£99 32.6 £ 8.7

BMI: body mass index; NYHA: New York Heart Association
functional classification; LVDD: left ventricular diastolic
dimension; AD: auricular diameter; ProBNP: brain
natriuretic peptide; LVEF: left ventricular ejection fraction.

Signals from 220 IDC patients were recorded in two hospitals: Friedrich-
Schiller University Hospital in Jena (44 patients) and Franz-Volhard Clinic in
Berlin, Germany (176 patients). All participants provided written informed con-
sent for the protocol approved by the local ethics committee of the two hospitals
(No. 0986-11/02). This study complies with the Declaration of Helsinki.

In the acquisition protocol, the ECG signals (32 bit resolution, 1600 Hz sam-
pling frequency) and blood pressure (32 bit, 500 Hz) were synchronously recorded
for 30 minutes. The ECG recordings were taken with a Porti system (TMSi BV,
the Netherlands), and the blood pressure recordings with the Portapres NIBP
monitor (TNO Biomedical Instrumentation, Amsterdam, the Netherlands). All
patients were recorded under resting conditions in supine position.

The inclusion criteria for the IDC patients were LVEF < 45% and/or frac-
tional shortening < 25%, and the left ventricle end-diastolic diameter (LVEDD)
> 117%. The New York heart association index (NYHA) for each patient was
also included. The exclusion criteria were systemic hypertension at rest, coro-
nary artery disease, congenital heart disease, pericardial diseases, valvular heart
diseases, systemic disease known to cause dilated cardiomyopathy, chronic al-
coholism, sustained ventricular tachycardia, atrial fibrillation, diabetes mellitus,
renal failure, and an active permanent cardiac pacemaker, as well as patients
without sinus rhythm [11, 12].

Afterwards, an additional exclusion criterion was applied to rule out patients
with comorbidities and confounding factors influencing the autonomic regulation
system. 129 of the 220 patients were excluded for the following reasons: 36 for
paced rhythm, 34 for coronary artery disease, 32 for a high (> 5%) percentage
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of ectopic beats or artifacts, 19 for atrial fibrillation, 4 due to technical prob-
lems, 2 for hypertrophic non-obstructive cardiomyopathy, 1 for arrhythmogenic
right ventricular cardiomyopathy, and 1 patient who was clinically unstable due
to acute decompensation [12].

After a median follow-up period of 28 months (range: 17-38 months), the
patients were classified into two groups according to their SCD risk. The group
of patients that remained in stable physical condition were considered at low risk
for cardiovascular sudden death (IDCygr). The remaining patients, who either
died of SCD or needed resuscitation because of a life-threatening tachyarrhyth-
mia, were categorized as high risk for cardiac sudden death (IDCygr). None of
these patients died from a non-cardiac disease. Table 3.2 presents the clinical
parameters of the patients from the ART database selected for this research.

Table 3.2. Clinical parameters of the ART database (median and interquartile range).

IDCLR IDCHR
N=77(595,189) N=14 (11,3 Q)

Follow-up [months] 27 [17 ; 37] 30 [21; 38]
Age [years| 55 [50 ; 60] 56 [50 ; 63]
LVEF [%)) 29 [27 ; 37] 35 [27 ; 46]
LVEDD [mm] 69 [61 ; 79] 61 [58 ; 68]
LVESD [mm] 60 [53 ; 69] 49 [44 ; 56]
NYHA 3[2;4] 225 3]

IDCygr and IDCyR, high risk and low risk group of patients with dilated cardiomyopathy; N,
number of patients within the groups ("= Male; 9= Female); LVEF, left ventricular ejection
fraction; LVEDD, left ventricular end-diastolic diameter; LVESD), left ventricular end-systolic
diameter; NYHA, New York heart association index.

3.3 WeanDB database

Electrocardiographic (ECG) and respiratory flow signals were recorded in 154 pa-
tients on weaning trials from mechanical ventilation (WeanDB database). These
patients were recorded in the Department of Intensive Care Medicine at Santa
Creu i Sant Pau Hospital, Barcelona, Spain, and Getafe Hospital, Getafe, Spain,
according to the protocols approved by the local ethics committees. The patients
gave their informed consent to participate, and were recorded under resting con-
ditions in supine position.

The patients underwent a spontaneous breathing test prior to disconnection

from mechanical ventilation during which they had to maintain spontaneous res-
piration through an endotracheal tube for 30 minutes. The patients who were
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able to maintain spontaneous breathing were extubated, while the others were
reconnected. Patients who were able to maintain spontaneous breathing after 48
hours were considered to have passed the weaning test, while those who were not
able to were reintubated.

Based on the weaning test, the patients were classified into three groups: 94
patients (61 male, 33 female, 65 4 17 years) who passed the test and could main-
tain spontaneous breathing after 48 hours (GS); 39 patients (24 male, 15 female,
67 + 15 years) who failed to maintain spontaneous breathing and were recon-
nected to a mechanical ventilator (GF); and 21 patients (11 male, 10 female, 68
+ 14 years) who successfully passed the spontaneous breathing test, but were
reintubated before the 48 hours were reached (GR).

The ECG signal was obtained using a SpaceLabs Medical monitor. The res-
piratory flow signal was recorded using a pneumotachograph connected to an
endotracheal tube. The pneumotachograph consists of a Datex-Ohmeda monitor
with a variable reluctance transducer (Validyne Model MP45-1-871). Both sig-
nals were recorded synchronously with a sampling frequency of 250 Hz and 12-bit
resolution for 30 minutes.

3.4 Healthy databases

The Healthyl and Healthy2 databases are compilations of records from healthy
subjects. The Healthyl database contains electrocardiographic (ECG), respira-
tory flow signals from 35 healthy volunteers (23 female, 27 + 7 years, respiratory
frequency 15.543.7 breaths/min). The signals were recorded at Santa Creu i Sant
Pau Hospital, Barcelona, Spain. All subjects were studied according to the proto-
col approved by the local ethics committee. The ECG signals were recorded using
a BIOPAC Pro system with a single lead for 30 minutes. The respiratory flow
signals were acquired using a pneumotachograph consisting of a Datex-Ohmeda
monitor with a Validyne Model MP45-1-871 variable-reluctance transducer. The
pneumotachograph was connected to a mask. All subjects were recorded under
resting conditions in sitting position. All signals were sampled at 250 Hz and
with 12 bit resolution.

Prior to data acquisition, an adaptation period of a few minutes was provided
to ensure that the subjects felt comfortable with the mask. Respiratory flow sig-
nals were recorded for 30 minutes. All subjects were seated and remained awake
throughout the data acquisition. For the 35 subjects, respiratory frequency was
found to range from 0.2 to 0.4 Hz, and the modulation frequency from 0.01 to
0.04 Hz [8]. The flow signals were decimated from 250 to 2 Hz, using null-phase
anti-aliasing filtering to account for the fact that the frequencies of interest only
range up to about 0.5 Hz.
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The Healthy2 database contains ECG leads I, I1, I1I, as well as blood pressure
and respiratory flow signals of 44 healthy subjects, recorded under resting condi-
tions (quiet environment, same place), using BIOPAC Systems Inc. MP150. This
database was recorded at the Institute for Bioengineering of Catalonia (IBEC)
according to the protocol approved by the local ethics committee. The sub-
jects were recorded for 30 min in supine position, and after 5 min at rest, for 15
min in sitting position. All signals were sampled at 500 Hz with 12 bit resolution.

Additionally, another database also related to healthy subjects was analyzed
to compare the cardiovascular interactions through coupling analysis. It contains
ECG and blood pressure records from 49 elderly subjects, who did not suffer from
any cardiovascular disease at the time the recordings were taken. The age range
of these subjects is 46 + 14 years, 30 of them were male and 19 female.

3.5 Signal characterization

For the mathematical analysis of the signals included in all databases presented
before, we obtained time series containing information about the physiological
dynamics of the systems.

3.5.1 Electrocardiographic signal characterization

One way to characterize electrocardiographic signals is by means of time series
that determine the behavior of the heart. The beat to beat interval (BBI) rep-
resents the time interval between two consecutive heart beats (in ms). Linear
methods (both in time and in frequency domain) and non-linear methods of
recording BBI can be used to estimate the behavior of the heart rate. Heart rate,
also known as cardiac pulse, is calculated as the number of times a heart beats
per minute. The normal range is between 60 to 100 beats per minute.

BBI time series were extracted automatically from the ECG signal using an al-
gorithm based on wavelet analysis [6]. These series were then filtered by applying
an adaptive variance estimation algorithm, to remove artifacts (e.g. movements,
electrode noises, spikes or outliers).

Heart rate variability (HRV) represents the variability between cardiac beats
over time. HRV is regulated by the autonomic nervous system, by both the
sympathetic and parasympathetic branches. The sympathetic branch increases
cardiac output and the heart’s contraction rate while decreasing HRV. Under
stress conditions, the parasympathetic branch decreases cardiac output, increas-
ing HRV to maintain the homeostatic process. Under normal conditions, HRV is
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high. On the other hand, low HRV would be a predictor of some types of cardiac
disease [10].

HRYV can be mathematically transformed to measure sympathetic and parasym-
pathetic activity, along with the activity of the autonomic nervous system. HRV
frequency components were obtained using Welch’s method and classified into
the following frequency bands:

- Very low frequency (VLF): 0.003 - 0.04 Hz
- Low frequency (LF): 0.04 - 0.15 Hz
- High frequency (HF): 0.15 - 0.4 Hz.

3.5.2 Blood pressure signal characterization

To analyze vascular function, we obtained time series related to systolic and di-
astolic blood pressure (in mmHg). Blood pressure fluctuates between a minimum
diastolic blood pressure (DBP) and a maximum systolic blood pressure (SBP).
The degree of these fluctuations is reflected in the pulse pressure (PP), which
depends on the ventricular ejection volume and rate, peripheral resistance, and
the viscoelastic properties of the arterial walls. PP is defined by the difference
between SBP and DBP (PP = SBP — DBP) [1].

The DBP value depends on the duration of the diastole. Tachycardic events
in which the diastoles are normally short, may be associated with high DBP.
On the other hand, in bradycardic episodes, in which the diastoles are normally
prolonged, the DBP may have lower values. In general, low DBP is observed in
cases of vasodilatation, bradycardia, or increased arterial compliance. Like the
heart rate, the blood pressure oscillates due to the interplay among different neu-
rohumoral systems [7]. Blood pressure variability (BPV) can be analyzed in the
short-term (minutes-hours) or in the long-term (days-months), reflecting different
characteristics of vascular activity.

Due to its interaction with different mechanisms like the baroreflex, BP varies
between beats, known as ultra-short term BP variability. Blood pressure vari-
ability can be analyzed through frequency features. At a very low frequency band
(VLF: 0.02 Hz - 0.07 Hz), BPV activity is influenced by the myogenic vascular
function and the renin angiotensin system. At a low frequency band (LF: 0.07
Hz - 0.15 Hz), this variability is modulated by the sympathetic modulation of
vascular tone. At a high frequency band (HF: 0.15 Hz - 0.40 Hz), the variability
is mainly affected by changes in cardiac output [5].

Short-term variability analyses study fluctuations in BP in periods of up to

24 hours. BP fluctuations in the minutes to hours range reflect central and au-
tonomic modulation and the elastic properties of the arteries. 24 hour BPV
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assessments are used to predict cardiovascular risk in hypertensive patients.

Long-term BPV has been associated with increased risk of cardiovascular dis-
ease. Pronounced variation in BP could also indicate the poor reaction of a
patient to a specific treatment.

Using the BP signal, we calculated time series consisting of the maximum suc-
cessive end-systolic blood pressure amplitude values (systogram, SBP - mmHg).
Time series consisting of the minimum successive end-diastolic blood pressure
amplitude values (diastogram, DBP - mmHg) were also extracted.

3.5.3 Respiratory flow signal characterization

Respiratory function is commonly analyzed in terms of inspiration and expira-
tion time series. The most common of these are inspiratory time (Ty), expira-
tory time (Tg), breath duration (TT), tidal volume (Vr), fractional inspiratory
time (Ty/TT), mean inspiratory flow (V1 /T), and frequency-tidal volume ratio
(f/Vr), where f is the respiratory frequency.

Similar to heart rate, respiratory flow oscillates from breath to breath, with a
higher variance under normal conditions. A lower respiratory flow variability is
associated with pathological conditions. The loss of a system’s variability usually
reflects a loss of degrees of freedom of the system, leading to poor adaptation to
internal or external disturbances [2].

The time series (in s) of breath duration (TT) were extracted automatically
using an algorithm based on the zero-crossing of the respiratory flow signal. They
were then visually inspected and edited if necessary.

3.5.4 Baroreflex mechanism characterization

To characterize the baroreflex mechanism, different actions involved in the reg-
ulation of blood pressure activity were considered. Measures related to changes
in stroke volume (SV), heart rate (HR), and vascular resistance (R) allow BP
variability to be analyzed, according to:

ABP = SV « HR * R. (3.1)

The sympathetic response increases blood pressure by stimulating an increase
in the heart rate and stroke volume and by promoting vasoconstriction. On the
other hand, the parasympathetic response decreases blood pressure by decreasing
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the heart rate and stroke volume and by promoting vasodilatation.

3.6 Statistical test

Statistical analyses make it possible to obtain descriptive information about the
signals studied. Several indices have allowed us to describe the characteristics and
behavior of the systems analyzed. These indices are extracted directly from the
samples through the application of different statistical procedures. The indices
and tests used in this work are introduced below.

3.6.1 Probability of an event

Being X = zy,...,x, a random vector, the likelihood of the occurrence of an
event resulting from a statistical experiment is evaluated by means of weights or
probabilities, ranging from 0 to 1. The sum of all probabilities is 1. If a certain
sample point is quite likely to occur when the experiment is conducted, the prob-
ability assigned should be close to 1. On the other hand, a probability closer to
0 is assigned to a sample point that is not likely to occur.

The probability of an event X is the sum of the weights of all sample points
in X, denoted by P(X). If an experiment can result in any one of N different
equally likely outcomes, and if exactly n of these outcomes corresponds to event
X, then the probability of event X is:

(3.2)

o

The cumulative distribution function
with probability distribution f(x;) is:

(x;) of discrete random variable X

F(X;)=P(X <ux) Zf for —oco<x; <o00. (3.3)

t<x;

The cumulative distribution function F(z;) of a continuous random variable
X with density function f(x;) is [4]:

F(z;)=P(X <ux;) = /00 f(t)dt, for —oo < x; < 00. (3.4)

3.6.2 Descriptive indices

The most commonly used statistics for measuring the location, dispersion, vari-
ability and morphology of a set of data, arranged in order of magnitude are:
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- Mean: Represents the central value of a set of numbers, it corresponds to
the average value of a dataset and is given by [3]:

Ylexi, (3.5)

where X; is the i*" sample of a set of samples X of length n

- Median: It is also a location measure that shows the middle value after the
sample is sorted, given by [3]:

X =
%(xn/z + Xpjot1), if nis even.

. T(n , if n is odd ,
{ (n1)/2 36)

- Standard deviation: it is a measure of the dispersion of a set of values and
given by:

sd — 12@- _X, (3.7)

where ; is the " sample of a set of values X of length n and X the mean
value of X [3].

- Coefficient of wvariation: It is also known as relative standard deviation
and is a standardized measure of dispersion of a probability distribution or
frequency distribution. It is often expressed as a percentage, and defined
by:

Cv = < (3.8)

- Skewness: It is the third standardized moment, defined as:

s -o{ (2] T 5 o

where X is the mean, sd is the standard deviation, E is the expectation
operator, and X5 is the third central moment. The skewness values can
be positive, zero, negative or undefined. For an unimodal distribution, in
negative skew the left tail is longer, and in positive skew the right tail is
longer [3].
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- Kurtosis: It is the fourth standardized moment, defined as:

RO =£ sz_dyﬂ e g??)? e AT

where X is the mean, sd is the standard deviation, E is the expectation
operator, and X, is the fourth central moment. Kurtosis evaluates mor-
phology considering three different cases: mesokurtic, when the distribution
presents zero excess kurtosis; leptokurtic, when the distribution has positive
excess kurtosis; and platykurtic, when the distribution has negative excess
kurtosis [3].

- Interquartile range: It is also a measure of statistical dispersion, being equal
to the difference between 75" (Q3) and 25" (Q;) percentiles, represented
by [3]:

IQR=Q3— Q1. (3.11)

Each quartile is a median calculated as follows: given an even 2n or odd
2n + 1 number of values,

(71 = median of the n smallest values,

(23 = median of the n largest values.

The second quartile is the same as the ordinary median.

3.6.3 Tests of hypotheses

A major area of statistical inference is based on the procedures that lead to
acceptance or rejection of statistical hypotheses. For this, a parametric or non-
parametric statistical test is applied in function of the behavior of the samples.
When the samples are independent, follows a normal distribution and are ho-
moscedastic a parametric statistical test is applied, otherwise, when one of these
conditions is not fulfilled a non-parametric statistical test is applied. The tests
used in this study are briefly described below.

Normality test

A normality test determines if a data set can be modeled by a normal distribution
and computes how likely it is for a random variable underlying the data set to
be normally distributed. In hypothesis testing, the dataset are tested against the
null hypothesis that samples are normally distributed [9].

47



Chapter 3. Databases

Levene’s test

Levene’s test is an inferential statistic used to assess the equality of variances for
a variable calculated for two or more groups. The homoscedasticity (equality of
variances) is tested as the null hypothesis [9]. If the resulting value of Levene’s
test is lower than a previously set significance level, the null hypothesis of equal
variances is rejected.

Kolmogorov—Smirnov test

The Kolmogorov-Smirnov test (KS test) is a non-parametric test of the equality
of continuous one-dimensional probability distributions to compare a sample with
a reference probability distribution. It quantifies a distance between the empirical
distribution function of the sample and the cumulative distribution function of the
reference distribution (one - sample KS test) or between the empirical distribution
functions of two samples (two - sample KS test). The null distribution of this
statistic is calculated under the null hypothesis that the sample is drawn from
the reference distribution (in the one sample case) or that the samples are drawn
from the same distribution (in the two sample case) [9]. This test is used with
smaller datasets.

Mann-Whitney U test

The Mann-Whitney U test is a non-parametric statistical test that makes it pos-
sible to determine if the means of two data sets present statistically significant
differences. The test assumes that the observations of both groups are indepen-
dent [9]. The null hypothesis states that all data comes from the same population.

3.6.4 Classification performance indices

The following indices are statistical measures of the performance of a classification
test:

- Accuracy (Acc): This measure is the proportion of correct predictions (true
positives and true negatives) among the total number of cases examined
and given by:

B TP +TN
- TP+ FP+TN+FN’

Acc (3.12)

being T'P the true positive, TN the true negative, F'P the false positive,
and F'N the false negative.

- Sensitivity (Sn): It is also called true positive rate and measures the pro-
portion of actual positives that are correctly identified, given by:
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TP

SN = TP EN

(3.13)

where T'P is the true positive, and F'N the false negative.

- Specificity (Sp): It is also called true negative rate and measures the pro-
portion of actual negatives that are correctly identified, given by:

TN

Sp= ——
P=TrNTFP

(3.14)

where T'N is the true negative, and F'P is the false positive.

- Area under the curve (AUC): This measure estimates how capable a model
is at distinguishing between classes. A receiver operating characteristic
curve, or ROC curve, is a graphical plot created by plotting the true positive
rate against the false positive rate. The true positive rate is also known as
sensitivity or probability of detection, and the false positive rate is also
known as probability of false detection, calculated as 1 — Sp. The AUC is
the area under the curve of the ROC curve. A higher AUC indicates that
the model is better at predicting than a model with lower AUC.

3.6.5 Covariance and correlation

Covariance

Covariance establishes the extent to which two variables vary together, defined
by:

N — —
Zi:l (xl — X) (yi - Y)
N .
Covariance values are positive when high magnitudes of one variable corre-
spond to high magnitudes of the other. On the other hand, covariance values are

negative if high magnitudes of one variable correspond to low magnitudes of the
other [4].

Cov(X,Y) = (3.15)

Correlation

Correlation represents the statistical dependency between two variables. The
correlation between variables is typically measured by means of the correlation
coefficient obtained by calculating the ratio of the covariance between the product
of its standard deviations:

R > N 1 s I
\/Z?:l (i — Y)2\/2?:1 (i — ?)2
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The ranges of the correlation coefficient are between -1 and 1. The extreme
values indicate a clear marked linear relationship between the variables. Negative
values indicate that one variable increases while the other decreases. On the other
hand, positive values indicate that if one variable increases the other increases
too. Small or close to zero values of the index indicate that there is no linear
correlation between the variables [4].
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Artifact reconstruction in

biomedical signals

4.1 Introduction

Biomedical signals can yield useful information about the physiological condi-
tion of the patient. The analysis of these signals has become a powerful tool in
both clinical diagnosis and health research. However, signals can be corrupted by
noise, artifacts, or missing data during the acquisition stage. Signal corruption
can hinder the application of processing techniques, and consequently, the further
analysis and interpretation of the signal.

A quasi-periodic signal exhibits an irregular periodic behavior with recurring
patterns. Several physiological processes can be studied through the analysis of
these types of signals. Some examples of biomedical quasi-periodic signals are
electrocardiographic (ECG), blood pressure (BP), and respiratory flow (FLW)
signals.

The implementation of an artifact reconstruction step prior to analyzing the
signal can minimize the presence of information unrelated to the physiological
process, thereby improving the quality of the signal under study. The original
dynamics of the signal, and thus of the physiological process, must be preserved.
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Therefore, the reconstructed segments should resemble their corresponding phys-
iological recordings.

A range of reconstruction methods have been reported for use on different
types of signals and applications. Bayesian and wavelet filters have been used
to eliminate different types of artifacts in ECG, electroencephalographic (EEG)
and photoplethysmographic (PPG) signals [6, 12, 18]. Independent component
analysis (ICA) has also been explored as an artifact detection and signal recon-
struction technique [14, 2, 11]. Other authors have achieved reconstruction by
means of the characterization of a signal divided into segments and the applica-
tion of template-based methods [7, §].

The aforementioned methods are optimized to work on one type of signal or
to remove a specific type of artifact, but are not generalizable. Moreover, some
methods require additional resources in order to work, like additional sensors,
signal models or templates. However, these resources are not always available,
sometimes require multiple channels to function, and cannot operate automati-
cally.

In this chapter, we propose a novel artifact reconstruction method for ap-
plication to the physiological pseudo-cycles in biomedical signals corrupted by
artifacts. This method is applicable to any quasi-periodic signal, regardless of
the morphology of its cycles. The reconstruction process is based on the informa-
tion of neighboring events, while maintaining the dynamics of the original signal.
The method has been tested using ECG, BP and FLW signals.

4.2 Artifact reconstruction in pseudo-periodic
signals

Due to their quasi-periodic nature, the behavior of biomedical signals can be an-

alyzed based on pseudo-periods related to physiological cycles and their activity.

During the acquisition process, some of these signals can be affected by events

related to artifacts or interruptions. To reconstruct these events, we propose the
following procedure:

- Cycle detection: To identify and characterize each physiological cycle
- Artifact detection: To identify and characterize each artifact event

- Artifact reconstruction: To replace each artifact event with the correspond-
ing physiological cycles, generated from neighboring cycles

o4



Artifact reconstruction in pseudo-periodic signals

4.2.1 Cycle detection

A quasi-periodic biomedical signal can be broken down into consecutive pseudo-
periods. For each signal X (t), we defined a vector F(n) with each initial time of
each pseudo-period, as:

E(n)=Ey,...,Ey, wheren=1, ..., N, (4.1)

being N the number of cycles detected. The initial position of these quasi-periods
was detected by analyzing local windows defined based on the length of each cy-
cle. This process adapts to the shape and duration of the cycles depending on
each type of signal.

In this work, we propose a method for reconstructing the physiological cycles
of ECG, BP and FLW signals. We therefore needed to identify the initial position
of each cycle. To reconstruct an ECG signal, its cycles were detected according
to the maximum value of each pseudo-period. An adaptive window was defined,
and afterwards, the first maximum value corresponding to the position of the
R-peak was obtained, through the derivative signal. From this peak position,
a new window was defined to determine the position of the P wave, and in the
same way, through the derivative signal, the initial position of this wave was ob-
tained and defined as the onset of the cycle. In BP signal reconstruction, the
diastolic value was defined as the initial position of each blood pressure cycle,
using wavelet decomposition method. For the reconstruction of FLW signals, an
algorithm based on a zero-crossing was used to define the initial position of the
cycles. In all cases, the cycle detection step was applied after the baseline of the
signals was eliminated. Figure 4.1 illustrates an example of the ECG, BP, and
FLW signals with their physiological cycles detected.

4.2.2 Artifact detection

To identify an artifact segment, the area under the curve of different cycles was
analyzed using the ©p parameter, determined by:

M
Op =Y |Ai— Ay, Vi=1,..,N, (4.2)

j=1

where A; is the area under the curve of cycle 7, N is the total number of cycles of
the signal, and M is the number of neighboring cycles. The area of each cycle A;
is compared with the cumulative areas A; ;. The result of each Op, is related
to the number of neighbors used, and thus, the M value must be optimized con-
sidering that M < % To define the optimal M value, ©g was evaluated using
different numbers of neighboring cycles.
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Figure 4.1. Physiological cycle detection in a) electrocardiographic (ECG), b) blood pressure
(BP), and c¢) respiratory flow (FLW) signals.

The morphological similarity or dissimilarity of the physiological cycle was
defined based on the result of O as:

- low value: events with similar morphology (Figure 4.2.a)

- high value: events with dissimilar morphology (Figure 4.2.b)

The difference between a physiological cycle and an artifact was determined
by comparing each O, . An adaptive threshold (The, ) was defined as The, =

O+ 306 ., Where O and 0g,, are the mean and standard deviation of O . Fig-
ure 4.3 is an example of the behavior of O for different values of M evaluated
in a blood pressure signal. In this case, M values of less than 10 caused some
physiological cycles to be considered artifacts.

In order to begin the reconstruction process the first physiological cycle must
be correctly identified. To this end, the first 10 cycles were analyzed and the
areas between each event and its neighbors were compared. This first cycle was
selected if the difference of these areas was less than or equal to Thg,, and it
constituted the pattern used to reconstruct the other cycles. Table 4.1 summa-
rizes the artifact detection process, and Figure 4.4 shows an example of these
processes applied to a BP signal with different artifact segments.
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Figure 4.2. An example of the areas superposition of a) a physiological event and a neighboring
cycle, and b) a physiological event and an artifact. The result is the difference between the
areas under the curve (grey area).
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0 : ! ! , . - | | I
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Figure 4.3. Behavior of different M values evaluated in a blood pressure signal. a) An excerpt
of a blood pressure signal with some artifacts, b) a zoom of the area with artifacts in the signal,
¢) results of O g considering different M values, and d) representation of different M values in the
artifact segment with different thresholds. In this example, the optimal threshold is obtained
when M = 10.
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Table 4.1. Pseudocode of the artifact detection process.

Artifact detection process

A=[A1 .. An] (area under the curve of each cycle)
Av =[Avy ... Awp] (each event identification, 1: artifact, O:cycle)
k number of current iteration (initial value: 1)
a number of artifacts detected in current iteration (initial value: 0)
whilek=1 || a#0
Op, = Y10 |Ai— Aigj|,¥i=1,.,N € Av, [Av =]
(calculate © E(;, Parameter, leaving out artifacts already detected)
The, = O + 30, (calculate the artifact detection threshold)
a=0
for 1 € O
if ®, > The, (O determines if the event is a cycle or an artifact)
Ay, =1 (current event is marked as an artifact)

a=a+1
else
A,, =0 (current event is marked as a physiological cycle)
end
end (process stops when no more artifacts are detected)
k=k+1
end

Figure 4.4. An example of the number of iterations necessary to detect the artifacts segments:
a) an excerpt of a BP signal with different artifact segments; b) result of © g in the first iteration,
where the largest artifact segments were detected; c) result of O in the second iteration, where
the next artifacts segments were detected, in accordance with their length; d) results of the © g
in the third iteration, where no artifact segments were detected. With this last result the
process was finished.
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4.2.3 Reconstruction process

The artifact segments were reconstructed using information from the neighboring
cycles of the original signal through the following steps:

- First step: determine the length of the event (le) to reconstruct, and the
necessary number of cycles for this segment, calculated based on the av-
erage number of neighboring cycles that would fit in the segment to be
reconstructed.

- Second step: generate the reconstruction cycles using a same number of
physiological cycles to the left and right of the artifact segment.

The artifact was then replaced by crossfading the two extrapolated values
using the following window [1]:

1—12un), wum) <l
w(n) = 2(2u(n))®,  u(n) s (4.3)
1 a 1
5(2=2u(n))*, wu(n) >3
where u(n) = ”l—tl, n = 1,...,le. Crossfading was carried out by multiplying the

forward extrapolated sequence by w(n) and the backward extrapolated sequence
by 1 —w(n). A linear down-slope was attained with o = 1, whereas a step-like
transition resulted when o — oco. The optimal transition window was obtained
when o = 3. Events with Op values greater than the threshold T'heg, were ex-
cluded from reconstruction until the next event corresponded to a physiological
cycle, and it was used instead. The process was repeated twice, and finally, the
most similar reconstructed event to the physiological cycle was selected. The
whole reconstruction process is represented in Figure 4.5.

Figure 4.5. Method description of the cycle and artifact detection and reconstruction steps.
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4.2.4 Validation

To evaluate the quality of the reconstruction process, each reconstructed cycle
was compared with its original segment. To quantify the goodness of the process,
three different quality measures were considered:

- Detc: number of artifacts present in the reconstructed signal, as undetected
artifacts

- Rwr: number of reconstructed artifacts, that because of their difference
from the original event were still considered artifact

- Cwr: number of physiological cycles incorrectly treated as artifacts

Finally, each area under the curve of the original signal (A;) was compared to
its corresponding pair in the reconstructed signal (Ag,). This process is described
in Table 4.2.

Table 4.2. Pseudocode for the automatic validation process.

Automatic validation process

A =[A; ... AN] (area under the curve of cycles in the signal)
Agr =[A; ... AN] (area under the curve of cycles in the reconstructed signal)

X:" if A; < Ag, or 121? otherwise
Dete: number of artifacts missed (initial value: 0)
Rwr: number of poor-quality reconstructions (initial value: 0)
Cwr: number of cycles wrongly detected as artifacts (initial value: 0)
Op,X = Zj\il |A; — Ay, Vi=1,..., N (O for the original signal)
@EU)XR = Ej\il |Api — Apitj)|,Vi=1,..., N (O for the reconstructed signal)
The, = O + 30e, (artifact detection threshold is calculated)
for 1 € O
if a<0.95
if OpX < The,
Cwr =Cwr+1
else
if OpXr > The,
Rwr = Rwr + 1
end
end
else
if OpX > The,
Detc = Detc+ 1
end
end

end

o =
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4.3 Illustration of the method

The performance of the artifact reconstruction method proposed was analyzed
using both simulated and real signals.

4.3.1 Simulated and real signals

The behavior of physiological signals like ECG, blood pressure and respiratory
flow often resemble a periodic signal subjected to amplitude modulation. In order
to illustrate the method’s performance, the following signals were studied:

Sinusoidal wave: Sy(t) = sin(27 ft) (4.4)
1 if [t is odd

Rectangular pulse wave: Sa(t) = (4.5)
—1 if |]¢|| is even

Saw-tooth wave: S3(t) = % . E w (4.6)
m
I

Mized wave: Sy(t) = S1(t) + Sa(t) + Ss(t) (4.7)

where f is the sample frequency, and £ is the number of truncated ramp func-
tions. Figure 4.6 shows an example of the simulated signals used to illustrate the
method.

Mixed wave @
1
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0 2 4 6 10 12 14 16 18 20
Time(s)
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Figure 4.6. Example of the a) sinusoidal, b) rectangular pulse, c¢) saw-tooth, and d) mixed
simulated signals.
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Additionally, real signals like ECG, blood pressure and respiratory flow from
the HERIS, Weandb and Healthy datasets (Chapter 3) were used to evaluate the
goodness of the method. Figure 4.7 shows an example of the real signals with
artifact segments.

ECG signal with artifacts (a)
\ \

L | | | | |
95 96 97 98 99 100 101 102
BP signal with artifacts (b)

\ \

140 T

40! \ ! ! \ ! ! ! \ !
55 56 57 58 59 60 61 62 63 64 65 66

FLW signal with artifacts ()
T T T

FLW (L/s)
g

L | | | | | | |
36 38 40 42 44 46 48 50

Time (s)

Figure 4.7. Example of the original signals with an artifact segment in: a) ECG, b) BP, and
c) FLW.

The method was tested using simulated and real signals. In addition, events
related to different levels of Gaussian noise, interruptions or different periodic
waves were introduced in parts of the signals. Figure 4.8 is an example of the
reconstruction process applied to simulated signals with different forced artifact
segments. Forced artifacts were also introduced in the real signals. Figure 4.9 is
an example of the process applied to an ECG signal with a forced artifact and
its reconstruction.

Real signals were also modified by introducing different levels of Gaussian
noise (5, 20 and 40 dB) into a segment. Figure 4.10 is an example of this process
applied to a BP signal. The results showed that successful reconstruction is pos-
sible as long as the signal-noise ratio (SNR) is high enough.

This study was undertaken because blood pressure signals are often contam-
inated by the calibration episodes necessary for signal sensing. The following
example (Figure 4.11) shows the artifact reconstruction process applied to a BP
signal with a calibration segment. The results verify the good reconstruction of

62



Hllustration of the method

Figure 4.8. Reconstruction of simulated artifacts in a rectangular pulse wave: a) original
signal, b) original signal with simulated artifacts, and c¢) reconstructed signal.

Figure 4.9. Reconstruction process applied to an ECG signal with simulated artifacts: a)
original signal, b) ECG signal with simulated artifacts, and c) reconstructed signal.

these events, which maintain the dynamic of the signal.

Figure 4.12 is an example of the reconstruction process applied to an ECG
signal when some physiological cycles were marked as artifacts. As the figure
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Figure 4.10. Reconstruction process applied to a BP signal with a segment contaminated with
either 40 dB or 5 dB Gaussian noise. a) Real BP signal, b) signal with a segment contaminated
with 40 dB Gaussian noise, c¢) reconstructed signal (40 dB Gaussian noise), d) signal with a
segment contaminated with 5 dB Gaussian noise, €) reconstructed signal (5 dB Gaussian noise).

Figure 4.11. Example of the reconstruction of a BP signal affected by calibration artifacts.
a) original signal, and b) reconstructed signal.

shows, the reconstructed events are very similar to the original signal. Another
test was applied in which interruptions were forced into the signal, simulating a
possible disconnection in the acquisition process. Figure 4.13 shows an example
of an interruption forced into a respiratory flow signal, which also presents a peri-
odic breathing pattern. Our proposed method was able to reconstruct the signal,
while maintaining its pseudo-periodic pattern.
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Figure 4.12. Reconstruction process applied to an ECG signal, with two physiological cycles
marked as an artifact segment.
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Figure 4.13. Results of the reconstruction of a FLW signal with induced interruption. a) A
respiratory flow signal with induced interruption, and b) a reconstructed signal.

4.3.2 Validation

To analyze the effectiveness of the reconstruction process, the response of the
signal-noise ratio was evaluated in the different tests. Table 4.3 presents the re-
sults of these tests in terms of SNR before and after the reconstruction process.
The table shows that in all cases, for all tested signals, the ratio increased after
the process. Similar results were obtained when the BP signal was contaminated
with different Gaussian noise levels, unless the noise was low.

In order to evaluate the goodness of the method, a random sample of 10 signals
from each database used in this study was selected, to quantify the performance
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of the method. Table 4.4 present the results obtained with the visual inspection,
and automatic process.

Table 4.3. Signal noise ratio (SNR) of the simulated signals before and after the reconstruction
process.

Signal SNR(dB) Before SNR(dB) After
BP - real, with calibration marks 10.38 16.86
Sinusoidal wave 6.56 21.68
Rectangular pulse wave 8.57 28.59
Saw-tooth wave -0.87 21.45
Mixed wave 7.06 23.67
ECG - real, simulated artifacts -5.92 6.42
BP - real, simulated artifacts -1.35 5.81
FLW - real, simulated artifacts 1.78 4.08
BP Gaussian noise (40 dB) -8.98 6.8
BP Gaussian noise (20 dB) 5.4 11.07
BP Gaussian noise (5 dB) 25.3 25.3

SNR: signal noise ratio; BP: blood pressure signal; ECG: electrocardiographic signal;
FLW: respiratory flow signal

Table 4.4. Mean values of Dete, Cwr and Rwr of the visual inspection (V) of an automatic
process (A) of the reconstruction method, applied to different types of signals.

Dataset A.Detc(%) V.Dete(%) A.Cwr(%) V.Cwr(%) A.Rwr(%) V.Rwr(%)

Dsetl 97 99.5 0.39 0.69 0.7 0.7
Dset2 99 97 0.44 0.49 0.7 0.29
Dset3 98.5 98 2.4 2 0 0

A.Dect: percentage of artifacts detected (automatic); V.Dect: percentage of artifacts detected
(visual inspection); A.Cwr: percentage of cycles wrongly detected as artifacts (automatic);
V.Cwr: percentage of cycles wrongly detected as artifacts (visual inspection); A.Rwr: percent-
age of poor quality reconstruction of artifacts detected (automatic); A.Rwr: percentage of poor
quality reconstruction of artifacts detected (visual inspection)

According to the validation results, most of the artifacts were correctly de-
tected and successfully reconstructed. Additionally, physiological cycles were only
incorrectly detected as artifacts in less than 1% of the cases.

4.4 Discussion and conclusions

4.4.1 Discussion

We propose an automatic and iterative method with which to reconstruct artifact
events in pseudo-periodic physiological signals. The method has been applied to
ECG, blood pressure and respiratory flow signals. The simulated events used
to replace the artifacts segments were generated using the neighboring physiolog-
ical cycles. This process has been shown to maintain the original signal dynamics.
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Given the variability in the length and shape of the artifact segments, this
method allows an adaptive threshold to be defined so that large and small events
present in the same signal can be detected. The second iteration makes it possible
to process potentially undetected artifacts in signals with high numbers of cor-
rupted segments. An attractive result of this method is its robustness, as it can
reconstruct signals containing a periodic breathing pattern in the respiratory flow
signal, as shown in Figure 4.13. The method has been able to adapt to the slow
modulation of the physiological process in addition to the frequency of each cycle.

The method was successful in all the proposed tests, except with signals sim-
ulated with low level Gaussian noise. Both the simulation and validation process
yielded positive results. The algorithm was able to reconstruct all the artifact
containing segments in most of the simulated cases, improving their SNR. In all
the databases tested, the Detc was higher than 97%, and the Cwr and Rwr were
lower than 1%.

In contrast with the most common advanced filtering techniques, this method
does not require the calculation of any additional parameters previous to its ap-
plication [6, 17, 9, 16]. Complementary information, like an accurate model of
the signal or an additional reference signal, is not always available. In addition,
no extra hardware is necessary in order to reconstruct the signal, which is an
advantage when the methodology is applied in a clinical or m-health setting.

The execution of the method is completely automatic, which constitutes an
advantage over the currently used ICA-based methods [3, 5, 13, 15]. These meth-
ods rely on the use of external information in addition to the original signal to
perform properly. This may be a problem because of the specific assumptions
that must be fulfilled in relation of the nature of the external input used. As an
example, in multichannel ICA, the independent sources must be non-Gaussian,
in order to obtain an estimate of the original source [10].

Additionally, this method processes each channel individually, using only the
information from the original signal. Several currently used reconstruction meth-
ods require additional channels [11, 4]. Additional channels with the required
criteria are not usually available, and often increase the complexity of the imple-
mentation.

The performance of the method heavily relies on the morphological differences
between cycles and artifacts. So, its use is recommended in applications where
the physiological pseudo-cycles are similar to one another, but significantly dif-
ferent from the artifacts. As an example, the algorithm will perform successfully
on blood pressure signals with calibration events but will not work properly on
signals with local low power Gaussian noise artifacts. Additionally, it is relevant
to mention that the performance of the reconstruction is significantly improved
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with the precision in the cycle detection. This is due to the influence of the
analysis of the cycles in both the artifact detection and reconstruction process.
An incorrectly detected cycle will negatively influence the reconstruction process,
leading to the incorrect detection of cycles as artifacts, thereby increasing the
probability of missing the detection of a true artifact, and lowering the quality of
the overall reconstruction.

The method does have some limitations worth mentioning. The quality of
the reconstruction is directly dependent on the similarity of the cycles and their
morphological differences from artifacts. The method would not work on signals
with dissimilar cycles, or on signals in which the artifacts and the cycles are similar
in terms of their areas under the curve. Despite the efficacy of the area under the
curve-based artifact detection, there is some probability that an artifact might
have its area under the curve in the same magnitude range as its neighboring
cycles by chance, even though their shapes differ. Based on our tests, in real
data the likelihood of this happening is quite low given the high variability in
the shapes and frequencies of the artifacts. On the other hand, despite being an
automatic method independent of external data, in contrast with template-based
methods, the algorithm is by nature iterative, and by extension, not a real time
process.

4.4.2 Conclusion

The analysis of the morphology of the pseudo cycles of physiological signals and
their posterior processing allows artifact segments within it to be detected and
reconstructed. The method described in this chapter is automatic and does not
require additional signals or information in order to function, in contrast to exist-
ing reconstruction techniques. It is capable of reconstructing signals tainted by
artifacts and other interruptions, while preserving the dynamics of the original
signal and improving the SNR ratio. The method may be useful in applications
in which the signals involved are affected by frequent local artifacts, and the
variability of the signal is valuable. We developed this method to reconstruct
artifact segments in blood pressure and respiratory flow signals from the Heris
and Healthy databases, mostly affected by calibration episodes.

The performance of the method is dependent on the precision in the cycle
detection step, the adequate identification of the number of cycles to be recon-
structed, and the quality of the prediction of the cycles used to reconstruct the
missing segments. The method is capable of dealing with a large variety of situa-
tions and different types of pseudo-periodic signals, given that the pseudo-periods
can be distinguished and properly differentiated from one another. It is impor-
tant to mention that the results are not ideal when reconstructing artifacts whose
morphology, more specifically the sum of their areas, is similar to the physiolog-
ical cycles. The application of a reconstruction step before signal processing can
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potentiate the information that can be extracted from the signals analyzed, and
therefore, the results of the studies in which they are involved.
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Classification of heart failure
patients through Poincaré plot

analysis

5.1 Introduction

Heart diseases are one of the most common causes of death, especially in elderly
patients [13, 14]; however, the early detection of patients at high risk of sudden
cardiac death (SCD) remains a scientific challenge, and identifying cardiomy-
opathy patients at risk of SCD is still problematic. Analysis based on the left
ventricular ejection fraction (LVEF) is one of the indices most widely used in
clinical practice today to determine heart function capacity. Patients with LVEF
values over 55% are considered to have cardiac activity within the normal ranges,
those with values between 35% and 55% are considered to have below normal
cardiac activity, and patients with values lower than 35% are classified as patho-
logical [13, 3].

Conventional signal-processing techniques such as time-domain, power spec-
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tral density and cross-correlation analysis are often insufficient to characterize
the complex dynamics of the systems associated with heart failure.

Several authors have studied different methods to stratify cardiovascular risk
through the assessment of different forms of ECG signal characterization. Pa-
rameters related to QT intervals, T-wave inversions, wide QRS-T angle, as well
as the relationships between autonomic sympathetic dominance and ventricular
fibrillation problems have been addressed [15, 4, 18]. The suitability of other
parameters like peak oxygen uptake and ventricular arrhythmias has also been
researched as means to stratify cardiovascular risk [20, 10].

A Poincaré plot is a graphic method used to evaluate the self-similarity in a
given system. It also allows the chaotic and random behaviors of these systems to
be identified [9, 6]. The self-similarities are analyzed considering the behavior of
the system at a certain point in time and immediately beforehand. In this study,
we analyzed the performance of the cardiac, vascular and respiratory systems
through the time series that represent their physiological cycles. The method
allowed us to quantify the long- and short- term variabilities of these signals [16,
12, 11].

The behavior of cardiorespiratory and cardiovascular interactions in cardiomy-
opathy patients has been analyzed in previous works using the parameters of time-
and frequency- domain or joint symbolic dynamics analysis [3, 8]. In this chap-
ter, we propose new parameters with which to classify patients with ischemic and
dilated cardiomyopathies, based on the left ventricular ejection fraction (LVEF).
We analyzed the interactions between time series extracted from ECG, respira-
tory flow and blood pressure signals using the Poincaré plot method. Afterwards,
these patients were classified based on their LVEF using the linear discriminant
analysis and the support vector machines methods.

5.2 Signal description

A sample of 46 cardiomyopathy patients from the Heris dataset were used to
explore the methodology described in this chapter. Information about the car-
diomyopathy patient database is presented in [3, 8]. Additionally, 35 healthy
subjects from the Healthy database were used as reference. These databases are
presented in Chapter 3.

According to clinical diagnoses, the patients were classified based on their

LVEF as high-risk (HR: LVEF < 35%, 30 patients) or low-risk (LR: LVEF > 35%,
16 patients) patients. Table 5.1 shows the clinical data.
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Table 5.1. Clinical parameters (mean and standard deviation)

LR HR
Patients 16 30
Age [years] 62.25 4 13.28 66.56 & 9.20
Weight [Kg] 75.31 & 15.10 80.83 & 15.98
BMI [Kg/m?] 27.25 + 3.92 28.46 + 4.89
NYHA 2.25 + 0.57 2.03 + 0.31
LVDD [mm] 56.43 + 6.67 63.5 & 6.03
AD [mm] 44.43 £ 5.04 47.43 £ 6.58
ProBNP 137.56 + 906.09  2298.3 + 3649.45
LVEF [%)] 43.81 & 8.79 29.23 & 5.42

BMI: body mass index; NYHA: New York Heart Association
functional classification; LVDD: left ventricular diastolic
dimension; AD: auricular diameter; ProBNP: brain
natriuretic peptide; LVEF: left ventricular ejection fraction.

All signals were visually inspected, the linear trend removed, and pre-processing
tools were used to treat artifacts, spikes, and outliers. From the ECG signal, the
cardiac inter-beat interval (BBI) time series were extracted automatically using
a custom algorithm based on wavelet analysis. Systolic blood pressure (SBP)
time series were obtained from the blood pressure signal as the difference between
two consecutive absolute maximums. The time series of the breathing duration
(TT) from the respiratory flow signal were extracted using an algorithm based on
zero-crossing. Then all of the time series were visually inspected and corrected,
if necessary. Figure 5.1 shows an excerpt of ECG, BP and FLW signals with the
marks corresponding to the BBI, SBP, and T'T" time series, respectively.

To apply the Poincaré plot analysis, all of the time series were re-sampled to
1 Hz, scaled, and normalized (mean of zero and standard deviation of 1).These
series, which describe the behavior of the physiological cycles of the ECG, vascular
and respiratory systems, were used to analyze the interactions between these three
systems.

5.3 Poincaré plot method

5.3.1 Mathematical description

The Poincaré plot analysis (PPA) quantifies self-similarity in a process, plotting
the data into a higher dimensional state space [9]. To apply this method, given a
time series X (n) = x1,x9, 23, ... ,xy, the Poincaré plot is obtained by plotting
X(n) vs X(n + 1). This representation have the shape of an elongated scatter
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Figure 5.1. Excerpt of (a) ECG signal with BBI time series marks, (b) BP signal with SBP
time series marks, and (c) respiratory flow signal with 7T time series marks.

of plots through the identity line. The line is the reference used to analyze the
scatter.

The short- and long- term variabilities were calculated by fitting an ellipse to
the shape of the plot, and measuring the dispersion along the minor (SD1) and
major (SD2) axes of the ellipse, around the identity line Id. The values of SD;
and SD, represent the standard deviation of the data in the ellipse around the
minor and major axes, respectively, and given by [17],

V2

SDl = TSD({E” — $n+1): (51)

1
SDy = \/2SD(Xn)2 — 55D(X0 — Xu)?. (5.2)

We considered additional indices such as the ratio between SD; and SD, and
the difference between them (ASD). Figure 5.2 is a schematic representation
of the Poincaré plot method with the identity line, and short- and long- term
variability measures.

The information above the Id line represents an increase in the variability
of the system, while the information below the line represents a decrease. This
variability is calculated by measuring the distance between each point and the Id
line, above (Dyp,) and below (Dp,).
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Figure 5.2. Schematic representation of a Poincaré plot characterized by the identity line and
short- and long- term variabilities (SDq, SDs3).

The SDyp and SDp indices represent the variability of the system around
the identity line, with nyp being the number of points above and np the number
of points below, and defined as:

1 nup
SDyp = —— Dyp)? 5.3
UP nup ;( UPl)7 ( )

1 &
Dp=— Dp.)?. 4
S D "o ZZI( Dz) (5 )

The acceleration and deceleration of the response of the system is character-
ized by the Cyp and Cp indices, given by:

 SD2,
Cor="gpt (5.5)
= 5Pb (5.6)
b= ep? :

Likewise, by replacing the Id with a regression line (Lr), the normalized
deceleration (LrCyp) and acceleration (LrCp), based on this linear regression
are obtained by:

LrSD?p

L'/’CUP = y
LrSD?

(5.7)
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LrSD%

LTCD = W .

(5.8)

The complex correlation index (C'CT), which represents the time domain
changes of the signals, was also calculated [12]. This parameter is based on
the measurement of area A;, defined by every three consecutive points, and a
coefficient C), for area normalization, calculated as C,, = 7w - SD; - SD, [16]. For
a Poincaré plot made up of N points, C'CT is defined by:

1 N-2
= —rc— Aill . .
ce Cn(N_g);H 1 (5.9)

This method was used to analyze the interaction between different time series
of the ECG (c), BP (b), and FLW (r) signals. In addition of these indices, an-
other group were extracted to study the relations between the differences within
each time series represented by Ac, Ab and Ar, respectively. Their interac-
tions were analyzed considering the indices extracted from the following bivari-
ate systems: cardio-vascular (AcAb), cardio-respiratory (AcAr) and vascular-
respiratory (AbAr). In the end, a total of 81 indices were obtained. Table 5.2
summarizes all of the indices proposed.

Table 5.2. Indices for the analysis of the Poincaré plot

Indices Description

xSDq Short-time standard deviation
xS Do Long-time standard deviation
%S—DD; Short and long deviations ratio
xASD Standard deviation difference
xzCpyp Normalized deceleration

xzCp Normalized acceleration

xLrCyp Linear regression based normalized deceleration
xLrCp  Linear regression based normalized acceleration
xCCI Complex correlation index

x represents: ¢ for BBI time series, b for SBP time series, and r for TT time series

A Kolmogorov-Smirnov test was used to determine indices with statistically
significant differences between different groups (p-value < 0.05). Indices with a
high correlation (p > 0.7) were excluded.

5.3.2 Classification and validation

We used the linear discriminant analysis and the support vector machines meth-
ods with different kernel functions to classify heart failure patients considering
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risk stratification based on LVEF. The leave-one-out cross-validation procedure
was applied to validate the results. These classification results were presented in
terms of accuracy (Acc), sensitivity (Sn), and specificity (Sp).

- Linear discriminant analysis

Linear discriminant analysis (LDA) is used to find a linear combination of predic-
tors that characterize two or more classes. The method is based on maximizing
the distance between variances of classes [5]. Given a set of parameters, the linear
discrimination is defined as:

where po and p; are the independent term and independent parameters, respec-

tively, and z; is the discriminant function coefficient. The distances between
groups are calculated using Mahalanobis distance method.

- Support vector machines

The support vector machines (SVM) method uses higher dimensional space data
transformation to convert a complex classification problem into a simpler one that
can be solved by a linear discriminant function, known as a hyperplane. Given
a set of data vectors, X = {z1,...,z}, where x; € R" and their corresponding
labels Y = {yi,...,yr}, where y; € {1,—1}, SVM function is defined by [8],

L
flz) =wz+b= Z iy K (xy;) + b, (5.11)

where «; and b define the efficiency of the classifier based on the optimal values,
and K represents the kernel function used. From all the possible kernel types,
we used the Gaussian, Laplacian and ANOVA kernels.

The Gaussian kernel is commonly used when the data is distributed radially,
and is defined by:

Hz—yHQ)

K(z,y)=eCar ), (5.12)
being o the penalty term.

The Laplacian kernel is similar to the Gaussian kernel but less influenced by
the o parameter, and is given by:

z—yl|

K(x,y) = e, (5.13)
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The ANOVA kernel is defined by:

n

K(z,y) =Y eoe =97 (5.14)

k=1

where o and d are the parameters used to optimize the kernel.

5.4 Results

We used the Poincaré plot method to classify heart failure patients in a sample of
46 cardiomyopathy patients (CMP) and 35 healthy subjects (CON). The patients
were stratified based on left ventricular ejection fraction, and two groups were
defined: low-risk patients (LR: LVEF > 35%), and high-risk patients (HR:
LVEF < 35%). Two different comparisons were performed:

- High risk vs low risk patients (HR vs LR)

- Cardiomyopathy patients vs control subjects (CMP vs CON)

To illustrate these results, Figure 5.3 presents an example of the Poincaré plot
outcomes for the BBI, SBP, and T'T time series in the control subjects and in the
low- and high- risk patients.

Our results showed that 11 indices presented statistically significant differ-
ences when comparing patients the LR and HR patient groups, A correlation
test was then applied to rule out the most highly correlated ones. In the end, 5
indices were selected to compare the two groups (Table 5.3). The same process
was applied to compare the CMP and CON groups. Our results are presented
in Table 5.4, which lists 13 indices capable of differentiating between these two
groups.

In the classification process, multiple combinations of different indices, ker-
nels, and optimized parameters were iterated. The process identified ¢SD,
c¢SD;y/SDs, and ¢CCI as the optimal choices to build the SVM and LDA models
for the purpose of classifying LR vs HR patients. Likewise, ¢SDy, ¢SD;/SDs,
and cASD were deemed the most suitable options for comparing control subjects
and patients.
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Figure 5.3. Poincaré plot results of cardiac activity (BBI) for (a) a subject from the control
group, (b) a patient from the LR group, and (c) a patient from the HR group; vascular activity
(SBP) of (d) a subject from the control group, (e) a patient from the LR group, and (f) a
patient from the HR group; and respiratory activity (TT) of (g) a subject from the control
group, (h) a patient from the LR group, and (i) a patient from the HR group.
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All the models tested were optimized in terms of accuracy. For the LR vs
HR comparison, the best accuracy (98.12%) was obtained with an SVM model
using the ANOVA kernel. When comparing control vs patient groups, the best
accuracy (97.01%) was obtained using an SVM model with a Laplacian kernel.
The best results for SVM with each kernel tested and for the LDA models are
presented in Table 5.5 for the LR vs HR comparison, and in Table 5.6 for CMP
vs CON comparison.

5.5 Discussion and conclusions

Poincaré plot analysis is used to characterize the nonlinear dynamics of a system.
With this study, we have characterized the nonlinear dynamics of the cardiovas-
cular and cardiorespiratory systems. Our purpose was to obtain new indices for
the risk stratification of heart failure patients using LVEF. The left ventricular
ejection fraction is a proven independent predictor of cardiovascular mortality [2].
Patients with values lower than 35% are considered at high risk of cardiovascular
death. In addition, low HRV has been shown to be independently predictive of
increased mortality in post-myocardial infarction and chronic heart failure pa-
tients, but this information could be limited when analyzing low risk patients
[19]. The statistical analysis of the morphology of the Poincaré plot us to classify
these patients into different levels of risk for cardiovascular death, and distinguish
between patients and control subjects.

The best differentiation between LR and HR patient groups was achieved
by indices associated with cardiac short-term variability (¢SD;), the ratio be-
tween long-term and short-term cardiac variabilities (¢SD;/cSDs), and the car-
diac cCCT index. We observed a higher mean value and less disperse cardiac
short-term variability (¢SD;) in patients at high risk compared to patients at
low risk. According to these results, patients with lower LVEF levels could have
a more limited ability to regulate cardiac activity due to slower and less active
electrical stimulation. The results of the ¢SD;/cSDy analysis shown a similar

Table 5.3. Mean, standard deviation, and p-value of the best indices to classify LR vs HR
patients

Index LR (16) HR (30) p-value
cSD, 0.66 £ 0.32 0.81 £ 0.22 0.015
cSD,/SD, 0.35 + 0.18 0.43 £0.13 0.015
cCCI 37083 £ 19032 27611 + 20448 0.009
AcArSD,/SD, 0.41 £+ 0.04 0.38 £ 0.02 0.003
AcArCyp 0.89 £ 0.98 0.74 £ 1.83 0.041
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Table 5.4. Mean, standard deviation, and p-value of the best indices to classify CON subjects
vs CMP patients

Index CON CMP p-value
cSDo 150.31 + 66.52 109.62 £+ 61.93 0.010
cSD,/SDy 0.35 + 0.07 0.40 + 0.15 0.017
cASD 0.02 £ 0.04 0.02 + 0.06 0.015
cCCI 22916 4+ 8415 30906 + 20273  0.0017
cLrCyp 0.47 £+ 0.04 0.52 + 0.13 0.0002
cLrCp 0.53 + 0.04 0.48 + 0.13 0.0002
bSD+1/SD, 0.37 £ 0.05 0.41 + 0.09 0.0020
bLrCyp 0.52 £+ 0.04 0.57 + 0.11 0.0035
bLrCp 0.48 £+ 0.04 0.43 £ 0.11 0.0004
rSD 0.11 £ 0.03 0.21 £ 0.15 0.0004
rLrCyp 0.48 + 0.04 0.50 + 0.04 0.030
ArCCI 7.95 £+ 5.02 4.24 + 4.22 0.00003
AcArCCI 16243 + 5307 20056 + 7579 0.019

Table 5.5. Accuracy (Acc), sensitivity (Sn) and specificity (Sp) obtained with LDA and SVM
classifiers when comparing LR and HR groups

Method C o D Acc Sn Sp
SVM - Gaussian 3 0.1 - 76.04 43.44 93.33
SVM - Laplace 3 0.1 - 9787 93.89 100
SVM - ANOVA 0.3 100 1 98.12 94.57 100
LDA - - - 715 2541 96.08

behavior more extended and less disperse cardiac activity in patients with dimin-
ished LVEF.

The CCT index is sensitive to changes in autonomic regulation, especially in
parasympathetic activity [12]. Our results suggest that patients at high risk of
cardiovascular death have reduced parasympathetic activity compared to patients
at lower risk. Impaired parasympathetic activity has been observed in heart fail-
ure patients in other studies [7]. Some authors have found that neurohumoral and
inflammatory disturbances within the central nervous system stimulate a stronger
sympathetic response while dampening parasympathetic outflow in heart failure
patients, beginning a positive feedback loop that stimulates further adverse im-
mune responses [21, 1].

Our results also show significant differences in the interactions between the
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Table 5.6. Accuracy (Acc), sensitivity (Sn) and specificity (Sp) obtained with LDA and SVM
classifiers when comparing CON and CMP groups

Method C o D Acc Sn Sp
SVM - Gaussian 1 0.1 - 95.06 91.3 100
SVM - Laplace 1 03 - 97.01 94.72 100
SVM - ANOVA 03 03 1 927 91.3 94.54
LDA - - - 9225 91.01 93.89

cardiac and respiratory systems of heart failure patients in accordance with their
left ventricular ejection fraction. These dissimilarities were observed in the car-
diac and respiratory coupling, specifically in the ratio of short- and long- term
variability AcArSD;/SDs and deceleration AcArCyp. These results suggest
that low-risk patients have greater cardiorespiratory acceleration than patients
at higher risk. We hypothesize that this effect might be caused by the physical im-
pairment of the cardiac and respiratory muscles due to ageing, or a dysfunction of
the autonomic mechanisms, or a combination of both. Hence, the cardiorespira-
tory system of patients at low risk would be able to adapt faster to environmental
demands under stress conditions.

On the other hand, the cardiac response is less active (slower acceleration
and faster deceleration) and more unstable (cLrCp, cLrCyp) in cardiomyopathy
patients compared to the control group. This behavior is reflected in the vas-
cular response (bLrCp, bLrCyp), in which changes in blood pressure occur at
a slower pace in patients than in control subjects. Similarly, the respiratory re-
sponse (rLrCyp) decelerates faster and accelerates significantly slower (ArC'CI)
in these patients. These patterns suggest that control subjects may be able to
adapt to homeostatic imbalances faster and more stably.

In conclusion, the analysis of the cardiac, vascular, and respiratory systems
through the Poincaré plot analysis has allowed us to assess indices that have
proven useful in stratifying patients at cardiovascular risk, based on the left ven-
tricular ejection fraction. Patients with lower levels of left ventricular ejection
fraction also show lower heart rate variability. The cardiac, vascular and respi-
ratory responses occur faster and more stably in control subjects, suggesting an
impairment of the cardiovascular control mechanisms in chronic heart failure pa-
tients. All this suggests reduced parasympathetic activity in patients at high risk,
and consequentially, the compensation of the sympathetic autonomic response.
However, these results should be validated with a greater number of patients.
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Cardiovascular coupling analysis
applied to cardiomyopathy

patients

6.1 Introduction

According to the 2015 update of the heart disease and stroke statistics of the
American Heart Association [42], 325,000 cases of sudden cardiac death (SCD)
occurred in the United States in that year, and it is the cause of 15-20% of
mortality worldwide [2]. The implantable cardioverter defibrillator (ICD) is com-
monly recommended in patients that are at high risk of suffering SCD, and the
risk of SCD is halved when one is implanted, although the presence or absence
of an ICD implant has no significant influence over the rate of death itself [31].

The implantation of an ICD is recommended in patients with an ejection frac-
tion (EF) lower than or equal to 35%. Today, it is difficult to stratify SCD risk in
patients with EFs above the risk threshold, who account for at least 70% of the
patients who will suffer SCD [10]. In addition, the effectiveness of ICD therapy
is time dependent, making a reduction in the duration of the treatment desirable
for the purpose of optimizing costs, among other reasons. Therefore, the need
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persists for additional predictors to identify patients with idiopathic dilated car-
diomyopathy (IDC) who have an increased risk of SCD and who have benefited
from ICD implantation [15, 8§].

Estimating cardiovascular SCD risk remains a challenge in clinical practice.
Studies related to linear and non-linear time series analyses have been conducted
to quantify the cardiovascular system response. Linear methods can describe the
most general behavior of the systems directly related to the response between
their time series. However, these linear approaches may not be sufficient to quan-
tify non-linear structures and the complexity of physiological systems. Therefore,
approaches based on non-linear methods may be better suited to analyzing the
complex interactions between systems. They also make it possible to quantify
direct interrelationships, such as the non-linear influence of blood pressure on
heart rate. These coupling approaches are used to quantify direct and indirect
relationships, as well as causal and non-causal relationships between time se-
ries, providing deeper insights into alterations of the cardiovascular system and
leading to improved knowledge of the interacting regulatory mechanisms under
different physiological and pathophysiological conditions. These approaches rep-
resent promising tools for generating multivariate information flows [55].

Several studies are focused on the analysis of these interactions through the
application of bivariate coupling methods. For example, the directional cardiovas-
cular interactions in young healthy subjects were assessed by means of bivariate
and multivariate coupling measures, and it was found that bivariate measures bet-
ter quantify the information transferred between indices, while trivariate measures
better reflect the existence and delay of directed interactions [28]. Information
decomposition measurements for variance or entropy were explored to assess in-
formation dynamics in cardiovascular networks through the analysis of the heart
period, systolic blood pressure, and respiratory activity [18]. The authors con-
cluded that these measures of information transfer and information modification
are better assessed through entropy-based and variance-based methods. Another
work explored polysomnographic recordings and finger blood pressure measure-
ments in healthy subjects in order to investigate the differences between the
wake-sleep states in the heart period and systolic blood pressure coupling [62].
They found that at low frequencies there are differences between these states in
human subjects. In addition, the complexity and causality of the interactions
of cardiovascular variability series were assessed through linear model-based and
non-linear model free techniques, and it was deduced that model free methods pro-
vide additional insights compared to the simpler linear model-based approaches
[48].

The behavior of cardiovascular coupling differs based on physiological conditions.
Thus, we hypothesize that the relationships between the cardiac and vascular sys-

tems will differ between IDC patients at a high and low risk of SCD. Therefore,
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the aim of this study was to analyze the suitability of cardiovascular couplings
for risk stratification in these patients. We propose to characterizing the interac-
tions through features extracted from ECG and blood pressure signals to better
describe the complex dynamics of these interactions and identify new indices of
cardiovascular risk.

6.2 Signal description

We studied 91 idiopathic dilated cardiomyopathy (IDC) patients (21 female, 70
male) from the ART database to evaluate risk predictors of sudden cardiac death
(SCD). In addition, 49 healthy subjects (30 male, 19 female; aged 46 + 14 years)
were used as a control group (CON). These databases are presented in Chapter 3.

After a median follow-up period of 28 months (range: 17-38 months), the
patients were classified into two groups, according to their SCD risk. The group
of patients that remained in stable physical condition were considered at low risk
for cardiovascular sudden death (IDCpg). The remaining patients, who either
died of SCD or needed resuscitation because of a life-threatening tachyarrhyth-
mia, were categorized as at high risk for cardiac sudden death (IDCgpr). None
of these patients died from a non-cardiac disease. Table 6.1 presents the baseline
clinical information of the IDC patients, in terms of median and interquartile
range.

Table 6.1. Clinical parameters (median and interquartile range).

IDCyr IDCyr p-value
N=77(590,189) N=14 (11,3 9)

Follow-up [months] 27 [17 ; 37] 30 [21; 38] n.s.
Age [years| 55 [50 ; 60] 56 [50 ; 63] n.s.
LVEF [%)) 29 [27 ; 37] 35 [27 ; 46] n.s.
LVEDD [mm] 69 [61 ; 79] 61 [58 ; 68] n.s,
LVESD [mm] 60 [53 ; 69] 49 [44 ; 56] 0.0028
NYHA 3[2; 4] 21(2; 3] 0.0024

IDCLr and IDCyg: low- and high- risk patient groups with dilated cardiomyopathy, respec-
tively; N, number of patients within the groups ("= Male; 9= Female); LVEF, left ventricular
ejection fraction; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-
systolic diameter; NYHA, New York heart association functional classification index.

To characterize the autonomic regulation of the cardiovascular systems, the
following time series were extracted using algorithms based on zero crossings and
different thresholds:

- Time series related to heart rate, such as beat-to-beat intervals (BBI, ms)
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- Time series related to maximum successive end-systolic blood pressure am-
plitude (SBP, mmHg)

- Time series related to minimum successive end-diastolic blood pressure am-

plitude (DBP, mmHg)

6.3 Methods

The following methods were employed to quantify the coupling between the car-
diac and vascular systems: high resolution joint symbolic dynamics (HRSJD),
segmented Poincaré plot analysis (SPPA), normalized short-time partial directed
coherence (NSTPDC), and the dual sequence method (DSM) [50].

6.3.1 High resolution joint symbolic dynamics

The joint symbolic dynamics (JSD) method is based on the analysis of dynamic
processes by means of symbols [5]. Considering BBI, SBP, and DBP time series,
X is defined as a bivariate sample vector that contains two out of the three time
series for all the possible combinations (BBI-SBP, BBI-DBP, and SBP-DBP),
expressed as,

XBBI,SBP — [235317 x;SL'BP]T
XBBIDBP _ [;BBI ,DBPIT & — (1 . N with z€R, (6.1
XSBP,DBP — [xSBP’ :L,EBP]T

being N the total number of samples.

In JSD, the increments between two successive values of the time series are
coded as “1” and the decrements and equilibriums are coded as “0”. These
increments and decrements are considered in relation to a threshold [. The vector
X can be transformed into the symbolic vector S, with the threshold [ equal to
0, using the rules given by [5, 24]:

SBBI.SBP _ [GBBI GSBP|T
SBBI.DBP _ [gBBI GDBP|T n=0,1, ..., N, withSeo0,1
§SBP-DBP _ [GSBP GDBP|T
g _ [0 (28 a2 <0
" 1 («BBI — oPBI) 5 0
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0: (x58F — 29BF) <
gonr { (S5 — 25PP) o

L (2B0 —25BP) > 0

1: (@PBF —2PBPy >0

A sequence of symbols is considered a word of length k. These words are
arranged in a vector matrix W. For this study, we defined words with £ = 3
(Sns Sna1,Sna2), and an 8 x 8 vector matrix was derived, taking values from
(000, 000)7 to (111,111)T.

To obtain JSD indices that are more robust against noise, fluctuations and
artifacts, the comparison threshold should be something other than 0. There
are several advantages for choosing a non-zero threshold. For instance, a state
will be generated that will help to distinguish between small and large changes
in the system’s variability response. It is also possible to differentiate between
equal and decreased values because both states have now different code. Also, the
number of word types included in the W matrix is not increased by words with
the code “0”, and the distribution is based on each code [59, 58]. This method
is called high-resolution joint symbolic dynamics (HRJSD), and is implemented
using three symbols for JSD, after setting a threshold [. The increment states
are coded as “2” the decrements are coded as “1”, and the equilibrium states are
coded as “0”. With this technique, the transformation from X to S varies, as is
given by:

0r ) < e

SPPl = 1 —IPBL < (B8] — gBBT) < BBI
2: (2] —aP) > 1581
0: (wnfl — 2aP0) < 1507

S = S 15 1P < (aSBF - a3P) < 157 03
). (@SB — ySBP) > [SBP
0: (xlPF —alPP) < —IPPF

SPPY = $1: —IPBP < (gDBP — gDBPy < |DBP
). («DPBP — gDBP) > |DBP

The new space comprised combinations of 27 different possible types of words
(from 000 to 222) and a total of 729 indices. All the word types were grouped
into eight pattern families, transforming the vector matrix W into a vector ma-
trix family (Wy). These indices were analyzed by their occurrence probabilities
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and grouped according to their family description, as shown in Table 6.2. The
pattern families represent different interactions between the branches of the au-
tonomic regulation system, leading to the definition of indices that determine
occurrence probabilities [58]. In addition, the Shannon entropy was calculated
for all the proposed families in order to assess the complexity of the coupling [51].

Table 6.2. Description of pattern families explored in the HRJSD method.

Family Description

EO No variation of 3 successive “0” symbols (“000”)

E1l No variation of 3 successive “1” symbols (“1117)

E2 No variation of 3 successive “2” symbols (“222”)

LU1 Low increasing behavior (1227, 0227, “1127,4221”,4220”,“2117,4121”,%212")
LD1 Low decreasing behavior (“011”, “001”, “002”,“110”,“100”,“200”,“010”,“101”)
LAl Fast alternant behavior (“020”,“202”)

P Alternant peak-like behavior (“120”,4201”,“2107)

A% Alternant valley-like behavior (“021”,4102”,“012”)

Thresholds for cardiac and vascular activity were defined to analyse cardiovas-
cular coupling. For the BBI and blood pressure times series, 5 ms and 1 mmHg
thresholds were applied, respectively, as these values were successfully applied in
a previous work [59]. The threshold level using spontaneous baroreflex sensitiv-
ity, in contrast to other thresholds, is the most suitable for highlighting different
specific cardiovascular coupling patterns.

6.3.2 Segmented Poincaré plot analysis

A mathematical description of the Poincaré plot analysis (PPA) is presented in
Chapter 5 (Section 5.3). We used this method to obtain the indices related to
short- (SD1) and long- (SD2) term variabilities, which represent the dispersion
along the minor (SD1) and major (SD2) axes, fitting an ellipse around an elon-
gated scatter on the plots.

Although PPA is a non-linear characterization method, its indices (SD1 and
SD2) can be correlated with the linear behavior of the system, which makes it a
sub-optimal approach to exploring information about the non-linear part of the
process [60, 67].

A segmented Poincaré plot analysis (SPPA) is an enhanced pseudo-phase
space quantification method that yields indices that also represent the non-linear
information of the system. In SPPA, the SD; and SD, indices are calculated
similarly to PPA, and then the scatter points are rotated « degrees around the
main focus of the plot, as defined by:
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X! X! cosa — sina 0 X, — X,
Xoa| = [ XI | + | |sine cosa O x | X!, =X/ | |- (6.4)
2 2 0 0 1 z

The z and y axis correspond to X () and X (¢ 4 1) values, X,, and X, are
the mean values of the original and shifted X time series, respectively, and z is
the axis of the rotation [68, 67, 60]. In this case, we define o = 45 degrees in or-
der to simplify the estimating procedure of the SD;/S D, adapted probability. A
12 x 12 rectangular grid is drawn for the plot. The size of the rectangles (height,
width) is adapted based on the SD; (row) and SD, (column) values.

Afterwards, for each rectangle in position (4, j) the single probability (p;;) is
calculated considering the number of points contained by the total number of
points in the series. Then, the probabilities of each row (p,;) and column (p;)
are calculated as the sum of their single probabilities, as shown below:

12
Pri = Z Pij
j=1
12
Pej = Zpij' (6.5)
i=1

6.3.3 Normalized short-time partial directed coherence

The directed coherence method (DC) describes how and if two complex phys-
iological signals are functionally connected [17]. The DC method studies the
relative structural relationships between the systems by analyzing their interac-
tions into feedback and feedforward behaviors. The partial directed coherence
method (PDC) determines the either, direct or indirect causality between the
systems analyzed. The PDC is limited to working on stationary signals and is
unable to yield information about the properties of partial correlative short-time
interaction [3].

The normalized short-time partial directed coherence (NSTPDC) method
is able to manage non-stationary signals by evaluating their dynamic coupling
changes, and detecting their level and directions in multivariate and complex
dynamic systems [1, 56]. NSTPDC is based on an m-dimensional multichannel
auto-regressive model (MAR) process with model order p to determine Granger
causality in the frequency domain. To select the optimal model order p,, of
the AR(p) model and to estimate its coefficients, the stepwise least squares al-
gorithm [44] and the Schwarz’s Bayesian criterion are applied [54]. NSTPDC is
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based on the time-variant partial directed coherence approach (tvPDC), which
provides information about the partial correlative short-time interaction prop-
erties of non-stationary signals (m,,(f,n)), where f is the frequency associated
with the behavior of the system in the frequency domain, and n the number of
windows [40].

To quantify the coupling direction between two time series, X and Y (e.g.,
BBI and SBP: with zgg; and ysgp) with the covariate z (e.g., DBP with zpgp),
a coupling factor (CF) was introduced. CF is defined as the quotient between
the mean value of x coupled with y (m,,(f,n)) and the mean value of y coupled
with « (m,.(f,n)), given by:

P (f,n) 1
OF = gt G N (),
%ZﬂysBmeBl(f, n) n Z BBIYSBP

- 1
b= E Z TysppepBI (f7 TL) (66)

A normalized factor (NF) was defined as NF = {—2,—1, 0,1,2}. The NF repre-
sents the coupling directions, and the causal connections between the time series
under study (zpp; and yspp) according to f. Therefore, the CF was normalized
in function of NF values to analyze the behavior of the couplings according to @
and b, based on:

2, if (max=a& $>5)
NF=4¢ 1, if (maz =a & 2< §<5)
0, if (maz=a& 0<% <2)
-2, if (mang&g>5)
NF={ -1, if (max=b&2<t<5). (6.7)
0, if(max:5&0<g§2)

Strong unidirectional coupling is indicated if NF is -2 or 2 (where -2 denotes
yspp as the driver); bidirectional coupling if NF = -1 or 1 (-1 denotes yspp as
the driver); an equal influence in both directions indicates no coupling, if NF =
0 in relation to the coupling strengths.

To determine the coupling strength between two time series, e.g., xpgr and

Yspp, with covariate (zppp), the areas (Appr—ssppBP), AsBp—BBI(DBP), [a-1.])
generated in space by CF were estimated, in each window within the frequency

band f = 0 — 2 Hz, and averaged. Appr—sppppp) and Aspp—pBr(DBP) Were
defined between 0 to 1, where 1 indicated that all causal influence originating
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from time series X was directed toward (arrows: — ) time series Y. If both area
indices have equal values and are greater than zero, an equal influence in both
directions is present. On the other hand, if both area indices have equal values
and are equal to zero, there is no coupling.

In order to take advantage of the stationarity behavior and scale-invariance
for NSTPDC analysis, a normalization (zero mean and unit variance) of the time
series BBI, SBP, and DBP was performed [56], using

(i) — T

std(x) (68)

:Enorm(i) =
being z; each of the time series, and T and std(z) the mean value and standard
deviation of these series, respectively.

6.3.4 Dual sequence method

A widely used method for the study of spontaneous baroreflex sensitivity (BRS)
is the sequence method [7]. Using this method, BRS is obtained by scanning the
SBP and BBI time series for sequences of three or more successive heart beats,
in which a progressive increase (or decrease) in SBP is followed (with a one-beat
delay). In our case, the dual sequence method (DSM) was applied to improve the
analysis of baroreflex sensitivity [35, 34]. A fluctuation was defined as variations
greater than 1 mmHg (increasing or decreasing) in SBP, and greater than 5 ms
in BBI values. The slopes of the regression lines between the SBP and BBI se-
quences were taken as an index for local BRS [ms/mmHg], and calculated in each
recording, and then the highest slope was selected. DSM is based on standard
sequence methods, and the enhancement lies in the analysis of two different kinds
of BBI response: bradycardic (an increase in SBP causes an increase in BBI), and
tachycardic fluctuations (a decrease in SBP causes a decrease in BBI), whereas
only the bradycardic fluctuations represented the classical spontaneous barore-
flex sensitivity (bslope). Analyzing the tachycardic fluctuations (tslope) provided
additional information about autonomic cardiovascular regulation [45].

6.3.5 Heart rate and blood pressure variability standard
indices

Heart rate variability (HRV) and blood pressure variability (BPV) were quantified
using the standard indices from the time and frequency domain. The following
indices were calculated from the beat-to-beart intervals (BBI), systolic blood
pressure (SBP), and diastolic blood pressure (DBP) time series. These time
series were analyzed considering the normal-to-normal intervals (NN), defined as
the intervals between two consecutive events after artifacts are removed:
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- The mean of BBI, SBP, and DBP time series (BBI_.meanNN, SBP_meanNN
and DBP_meanNN; respectively).

- The standard deviation of BBI, SBP, and DBP time series (BBI_sdNN,
SBP_sdNN, and DBP _sdNN, respectively).

- The proportion derived by dividing NN5o (number of pairs of adjacent NN
intervals differing by more than 50 ms in the entire recording) by the to-
tal number of NN intervals (BBI_.PNN5o, SBP_PNNj;, and DBP_PNNjy.
respectively).

- The square root of the mean squared differences of BBI, SBP, and DBP
time series (BBI_rmssd, SBP_rmssd, and DBP _rmssd, respectively).

- The power of the low frequency (LF) components (0.04-0.15 Hz) of BBI,
SBP, and DBP time series (BBI_LF, SBP_LF, and DBP_LF, respectively).

- The power of the high frequency (HF) components (0.15-0.4 Hz) of BBI,
SBP, and DBP time series (BBI_.HF, SBP_HF, and DBP_HF, respectively).

- The ratio between the low and high frequency power components of BBI,
SBP, and DBP time series (BBI.LF/HF, SBP_LF/HF, and DBP_LF/HF,
respectively.)

6.3.6 Feature extraction

A total of 621 indices were extracted to analyze the coupling between the cardiac
and vascular systems, using ECG and blood pressure signals. The “cd” label
represents the cardiac and diastolic coupling, the “cs” label indicates the cardiac
and systolic coupling, and the “ds” label the diastolic and systolic coupling. The
distribution of these indices was as follows: 264 indices from the HRJSD, 216 from
the SPPA, 97 from the JSD, 12 from the PPA, 9 from the NSTPDC, 21 from the
standard HRV and BPV indices, and 2 from the DSM. Summary descriptions of
the indices are shown in Table 6.3.

6.3.7 Statistical analysis

In order to reduce dataset dimensionality, a Mann Whitney non-parametric statis-
tical test was used to determine the statistical significance of the indices obtained
in the characterization process. The results were analyzed for different levels of
significance, including the Bonferroni criterion, considering:

ns p>0.01

p < 0.01 significant

k< 0.001 highly significant

ik p <0.0000167 Bonferroni criterion

n = 621 indices
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Table 6.3. Coupling indices extracted from high-resolution joint symbolic dynamics (HRJSD),
segmented Poincaré plot analysis (SPPA), joint symbolic dynamics (JSD), Poincaré plot analysis
(PPA), and normalized short-time partial directed coherence (NSTPDC).

Index

Description

HRJSD,,-F,-F,
HRJSDSh,,
HRJSD,y F,
SPPA,, row n-m
SPPA;,_column_n-m
JSDgy-n

PPA,,SD1
PPA,,SD2
PPA,,SD1/SD2
NSTPDC,,NF

NSTPDC,yAx —y
NSTPDC,, Ay — x

Probability of occurrence of F, and F,

word families from the x-y coupling

Shannon entropy of all the word families from the
-y coupling

Summation of the occurrences of F,, on all the
families from the z-y coupling

Probability of occurrence of row n-m from the

-y coupling

Probability of occurrence of column n-m from

the z-y coupling

Probability of occurrence of the word n from the
z-y coupling

Short-time standard deviation from the x-y coupling
Long-time standard deviation from the z-y coupling
Short and long deviation ratio from the z-y coupling
Normalized coupling factor from the z-y coupling
Coupling strength of z-y from x to y

Coupling strength of z-y from y to =

x and y represent the couplings cd, cs, and ds; F represents the word families: EO, E1, E2,
LU1, LD1, LA1, P and V; n and m represent the number of row and column in the PPA based
indices, respectively.

Additionally, a correlation analysis was performed on the statistically sig-
nificant indices. The ones with high correlation (p > 0.7) and relative lower
significance were discarded.

The leave-one-out cross-validation procedure was used to validate the results.
The classification results are presented in terms of accuracy (Acc), sensitivity
(Sn), specificity (Sp), and area under the curve (AUC).

6.3.8 Classification

We used the SVM method to classifying patients by their SCD risk. Several mod-
els were built based on the most significant indices found, and a novel cascade
model was developed.

- Support vector machines classification

A mathematical description of the support vector machines classification method
(SVM) is presented in Chapter 5 (Section 5.3.2). This method allowed us to
solve a complex non-linear problem in a higher dimensional space using linear
classifiers. The classification problem was solved by maximizing the margin while
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minimizing the training error. Using the Lagrange multiplier method, a dual
formulation can be obtained by [11]:

minP(w, b) = %||wmz||2 +OY Kl @) (6.9)

where w is the normal vector that defines the hyperplane, b defines the efficiency
of the classifier for the optimal values, K; relates to the kernel function, and C'
is a penalty parameter. Besides the scale of C' having no direct meaning, as its
value increases, the penalty assigned to errors becomes stronger, narrowing the
decision boundary [6]. For this study, we considered the Gaussian, Laplacian and
ANOVA kernels.

Each feature was scaled and normalized (zero mean and unit variance) in
order to avoid scaling biases. For each iteration of features, the model was built
by optimizing the value of C for each of the kernels considered. This consisted by
iterating different values of the kernel optimization indices, o and d. The indices
with statistical differences and low correlations were used in pairs to build several
SVM models. The accuracy of each model was then calculated and the one with
the highest value was chosen as optimal for each type of kernel.

- Cascade model

In order to consider the typical clinical case in which the original condition of the
subject is unknown, a cascade model was developed to classify this new subject
using the label SDC risk and comparing the IDC vs CON and IDCyxgr vs IDCrr
models (Figure 6.1). The general aim of this model was to classify the subject as
either CON, LR or HR without any prior labeling. The first step was to decide if
a subject was an IDC patient or not using the IDC vs CON model. Afterwards,
those classified as IDC patients were analyzed based on the LR vs HR model to
predict their risk level.

Figure 6.1. Cascade model structure. The subject is evaluated in the IDC vs CON model,
and resulting IDC patient’s level of risk is evaluated by means of the LR vs HR model.
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6.4 Results

The calculated indices were used to analyze the cardiovascular coupling in 91
idiopathic dilated cardiomyopathy patients (IDC) and 49 healthy subjects (CON).
Four different comparisons were performed:

The high-risk IDC patients (IDCyxg) vs the low-risk IDC patients (IDCpR)
The IDC patients vs the CON subjects

The high-risk IDC patients (IDCyg) vs the CON subjects

The low-risk IDC patients (IDCyg) vs the CON subjects

- IDCygr patients vs IDCyxgr patients compared with CON subjects

We obtained statistically significant differences in the symbolic dynamic analysis
for both the cardio-diastolic (BBI-DBP) and diastolic-systolic (DBP-SBP) cou-
plings. Figures 6.2 and 6.3 present an example of the three-dimensional plots of
the word distribution density matrix of the couplings using the JSD and HRJSD
methods from IDCy g (Figures 6.2a, 6.2¢, 6.3a and 6.3c) and IDCyg (Figures 6.2b,
6.2d, 6.3b and 6.3d) patients, respectively.

Figure 6.4 shows an example of the Poincaré plot method applied to a patient
for each analyzed group considering the systogram from a) a CON subject, b)
an IDCpg patient, and ¢) an IDCyg patient. Figure 6.5 represents the averaged
NSTPDC applied to the BBI, SBP, and DBP time series couplings, for a) the
CON, b) IDCyp, and c) IDCygr groups. Figure 6.6 presents the relationships be-
tween all three analyzed groups, where the arrows represent the coupling direction
and the arrow thickness indicates the coupling strength. The level of statistical
significance is also represented (p < 0.01).

In the comparison of the IDCrr and IDCyxr groups, 96 indices presented sta-
tistically significant differences, corresponding to: 76 indices from the HRJSD, 12
from the SPPA, and 7 from the NSTPDC. After the correlation analysis, a total
of 36 statistically significant indices were chosen for the classification process.
Some of the most relevant indices, expressed in mean value and a 95% confidence
interval, are shown in Table 6.4.

- IDC patients vs CON subjects

When comparing IDC patients vs CON subjects, 261 indices presented statisti-
cally significant differences between the two groups: 169 from the HRJSD, 76
from the SPPA, and 13 from NSTPDC. A total of 82 indices remained after
discarding the highly correlated indices. Table 6.5 shows the most relevant of
these.
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(2) (b)

(c) ()

Figure 6.2. Three-dimensional plots of the word distribution density matrix using the JSD
and HRJSD methods (single word probabilities, word families) from an (a,c) IDCpg and (b,d)
IDCyr patient, respectively, for cardio-diastolic coupling.
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(a) (b)

(c) (d)

Figure 6.3. Three-dimensional plots of the word distribution density matrix using the JSD
and HRJSD methods (single word probabilities, word families), from an (a,c) IDCrr and (b,d)
IDCyg patient, respectively, for diastolic-systolic coupling.
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(2) (b) (©)

Figure 6.4. Systolic blood pressure Poincaré plot analysis results from (a) a CON subject,
(b) an IDCpg patient, and (c) an IDCyg patient.

(a) (b) (©)

Figure 6.5. Averaged NSTPDC plots for cardiovascular coupling analyses for (a) the CON,
(b) the IDCrg, and (c) the IDCygr group. Arrows indicate the causal coupling direction
from one time series to another, e.g., SYS < BBI, indicates the causal link from BBI to SYS.
Coupling strength ranges from blue (0, no coupling) to red (1, maximum coupling) where BBI
are beat-to-beat intervals, and SYS are successive end-systolic blood pressure amplitude values
over time.

(2) (b) (c)

Figure 6.6. Schematic representation of the entire cardiovascular coupling structure (coupling
strengths and directions) among the cardiac (BBI), systolic blood pressure (SYS), and diastolic
blood pressure (DIA) systems, when comparing (a) CON vs IDCpg, (b) CON vs IDCyg,
and (c) IDCygr vs IDCpr. The arrow directions indicate the causal coupling direction and
the thickness the coupling strength. * indicates that the NSTPDC index associated to the
coupling represented by the arrow is statistically significant when * p < 0.01; ** p < 0.001; ***
p < 0.0000167.
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Table 6.4. Mean value and 95% confidence interval of the most significant indices when
comparing IDCrr and IDCygr patients.

Index IDCyuxr(N=14) IDCLr(N=T7T) p — value
PPAs_SD1/SD2 0.26 [0.22 ; 0.30] 0.20 [0.18 ; 0.22 ] *
PPAd_SD1/SD2 0.27 [0.25 ; 0.28] 0.19 [0.17 ; 0.20 | ok
PPAd_SD1 1.21 [1.15 ; 1.26] 0.92 [0.85 ; 0.98 | ox
SPPAcd_Column5 13.97 [13.54 ; 14.39]  12.09 [12.01 ; 13.02 ] *
SPPAcd_Column8 13.77 [13.53 ; 14.03]  12.71 [12.35 ; 13.06 ] n.s.
HRJSDcd_E1-LD1 0.03 [0.024 ; 0.035]  0.09 [0.081 ; 0.091 ] oK
HRJSDcd LD1-V 0.056 [0.039 ; 0.073]  0.025 [0.021 ; 0.028 ] ok
HRJSDds_P-LU1 0.028 [0.022 ; 0.034]  0.016 [0.013 ; 0.019 ] ok
HRJSDds_V-LD1 0.050 [0.040 ; 0.060]  0.026 [0.022 ; 0.029 | ox
NSTPDCcd NF 0.15 [0.44 ; 0.14]  -0.71 [-0.85 ; -0.56 | *
NSTPDCed_Areac-d  0.26 [0.23 ; 0.2] 0.20 [0.18 ; 0.21 ] o

*p < 0.01;%*p < 0.001; n.s. p > 0.01; IDCyg, idiopathic cardiomyopathic patients at high risk of sudden cardiac
death; IDCLR, idiopathic cardiomyopathic patients at low risk of sudden cardiac death; PPA, Poincaré plot
analysis; SPPA, segmented Poincaré plot analysis; HRJSD, high resolution joint symbolic dynamics; NSTPDC,
normalized short-time partial directed coherence; cd, cardio-diastolic coupling; ds, diastolic-systolic coupling

Table 6.5. Mean value and 95% confidence interval of the most significant indices comparing
IDC patients and CON subjects.

Index IDC(N=91) CON(N=49) p —value
HRJSDds_E0d 0.018 [0.014 ; 0.021] 0.0064 [0.0048 ; 0.0071 ] ok
NSTPDCes_Area_c-s 0.25 [0.23 ; 0.28] 0.15 [0.13 ; 0.17 | ok
PPAc_SDI1 14.18 [10.44 ; 17.93] 23.27 [20.70 ; 25.84 | wox
PPAc_SD1/SD2 0.29 [0.23 ; 0.34] 0.36 [0.33 ; 0.38 ] ok
HRJSDcd_E2d 0.02 [0.18 ; 0.21] 0.05 [0.045 ; 0.054 ] *
HRJSDed-LD1d 0.23 [0.22 ; 0.24] 0.28 [0.027 ; 0.29 ] wox
HRJSDds_LD1-E2 0.0014 [0.0010 ; 0.0018] 0.0053 [0.0035 ; 0.0071 ] ok
HRJSDcd_E0-LA1 0.0004 [0.00028 ; 0.00053]  0.00014 [0.00010 ; 0.00019 ] e
HRJSDds_LD1-LD1 0.069 [0.063 ; 0.074] 0.093 [0.086 ; 0.10 ] HoHk

*p < 0.01;%%p < 0.001; n.s. p > 0.01; IDC, idiopathic cardiomyopathic patients; CON, control group; PPA,
Poincaré plot analysis; HRJSD, high resolution joint symbolic dynamics; NSTPDC, normalized short-time partial
directed coherence; cd, cardio-diastolic coupling; ds, diastolic-systolic coupling

- IDCrr and IDCyxgr patients vs CON subjects

The comparison of IDCpg patients vs CON subjects, and IDCygr patients vs
CON subjects yielded differences in 247 and 182 indices, respectively. After the
correlation analysis, 85 and 61 remaining indices were chosen for the classification
step. Summaries of the most relevant indices are shown in Tables 6.6 and 6.7.

- HRV and BPYV standard indices and DSM results

No statistically significant indices were found when the HRV and BPV standard
indices and the DSM were evaluated in the IDCyr vs IDCyxr comparison. These
results suggests that these indices are not suitable for SCD risk stratification
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Table 6.6. Mean value and 95% confidence interval of the most significant indices comparing
the IDCygr patients and CON subjects.

Index IDCygr(N=14) CON(N=49) p — value
HRJSDds_LD1-V 0.05 [0.040 ; 0.066]  0.02 [0.020 ; 0.027 ] Hokok
NSTPDCcs_Area_c — s 0.29 [0.24 ; 0.35] 0.15 [0.13 ; 0.17 ] oAk
NSTPDCcd_-Area_c — d 0.31 [0.27 ; 0.36] 0.22 [0.20 ; 0.24 ] *x
SPPAds_Column_2-6 27.23 [25.73 ; 28.72]  22.44 [21.26 ; 23.63 ] *ok
HRJSDcd_LD1-E2 0.003 [0.001 ; 0.006] 0.012 [0.010 ; 0.015 ] Hox

**p < 0.001; *** p < 0.0000167; IDCyg, idiopathic cardiomyopathic patients at high risk of sudden cardiac
death; CON, control group; SPPA, segmented Poincaré plot analysis; HRJSD, high resolution joint symbolic
dynamics; NSTPDC, normalized short-time partial directed coherence; cd, cardio-diastolic coupling; cs, cardio-
systolic coupling; ds, diastolic-systolic coupling

Table 6.7. Mean value and 95% confidence interval for the most significant indices comparing
the IDCyr patients and CON subjects.

Index IDCLr (N=77) CON(N=49) p — value
HRJSDed E1d 0.33 [0.29 ; 0.37] 0.21 [0.17 ; 0.020] =
NSTPDCcs_Area_c — s 0.25 [0.22 ; 0.27] 0.15 [0.13 ; 0.17 ] otk
SPPAcd_Column_1-8 5.40 [4.95 ; 5.85] 7.19 [6.56 ; 7.82 ] ok
HRJSDcd_E0-LA1 0.0004 [0.0002 ; 0.0005] 0.0014 [0.0010 ; 0.0019 ] ok
HRJSDds_LD1-LD1 0.070 [0.064 ; 0.075] 0.093 [0.086 ; 0.101 ] ok

**p < 0.001; ¥** p < 0.0000167; IDCrR, idiopathic cardiomyopathic patients at low risk of
sudden cardiac death; CON, control group; SPPA, segmented Poincaré plot analysis; HRJSD,
high resolution joint symbolic dynamics; NSTPDC, normalized short-time partial directed co-
herence; cd, cardio-diastolic coupling; cs, cardio-systolic coupling; ds, diastolic-systolic coupling

in idiopathic cardiomyopathy patients. When comparing patients and control
subjects, seven indices presented statistical significance: two from the DSM and
five from the HRV and BPV standard indices. A summary of these results is
shown in Table 6.8.

- Classification results

After the SVM classification step, the PPAs_SD1/SD2 and HRJSDds_LU1-P in-
dices were deemed the optimal choices for the Laplace kernel SVM model having
achieved accuracy of 98.9% and an AUC of 0.96 for the IDCrg vs IDCyxr com-
parison. The HRJSDds-EO0d and NSTPDCcs_Area_c-s allowed us to classify IDC
patients from the CON group with 93.6% accuracy and an AUC of 0.94 using the
Laplace kernel. Meanwhile, the HRJSDds_LD1-V and the NSTPDCcs_Area_c-
s were able to differentiate between IDCygr patients and the CON group with
96.9% accuracy and an AUC of 0.95 with the application of the Gaussian kernel.
Finally, the HRJSDds-E1d and the NSTPDCcs_Area_c-s were found to be the
best indices to classify IDCpg patients from the CON group, obtaining 89.6%
accuracy and a 0.85 AUC with the Laplace kernel. The classification plots and
the results are shown in Figure 6.7 and Table 6.9, respectively.
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Table 6.8. Mean value and 95% confidence interval of the HRV and BPV standard indices
and the dual sequence method across all comparisons.

Index IDCyr (N=14) IDCLr(N=77) CON(N=49)
bslope 5.3 [3.4; 7.2 7.81 [6.8 ; 8.7] 10.2 (9.0 ; 11.4]
tslope 5.5 [3.7; 7.2] 7.94 [7.0 ; 8.83] 11.0 [9.8 ; 12.2]
BBI.meanNN 828.4 [775.2 ; 881.5] 906.9 [879.2 ; 934.6] 883.79 [853.3 ; 914.2]
BBI_sdNN 33.4 [25.0 ; 41.8] 36.9 [32.8 ; 41.0] 47.8 [43.4 ; 52.2]
BBI_rmssd 17.4 [12.0 ; 22.8] 20.5 [18.2 ; 22.8] 32.9 [28.2 ; 37.5]
BBI_pNN50 2.48 [1.4 ; 3.5 3.44 2.7 ; 4.1) 0.14 [0.1 ; 0.1]
BBI_HFn 0.6 [0.6 ; 0.7] 0.6 [0.6 ; 0.7] 0.6 [0.6 ; 0.6]
BBI_LFn 0.3 0.3 ; 0.4] 0.3 0.3 ; 0.3 0.3 0.3 ; 0.4]
BBI_LF/HF 2.5 [1.5; 3.5] 3.4[2.7;4.1] 2.5 (2.0 ; 3.0]

SYS_meanNN 121.3 [107.6 ; 135] 112.6 [108.3 ; 117] 122.5 [116.7 ; 128.2]
DIA meanNN  61.5 [55.2; 67.9]  58.5 [55.8 ; 61.2]  60.6 [56.7 ; 64.5]

DIA_VLF 0.5 [0.4 ; 0.5] 0.5 [0.5 ; 0.5] 0.4 [0.3 ; 0.4]
p — value p — value p — value p — value
IDCrgr vs IDCur IDC vs CON IDCugr vs CON IDCLr vs CON

bslope n.s. *k *x *
tslope n.s. *ok *x *
BBI_meanNN n.s. n.s. n.s. n.s.
BBI_sdNN n.s. *k * *k
BBI_rmssd n.s. *k * **
BBI_pNN50 n.s. ok * ok
BBI_HFn n.s. n.s. n.s. n.s.
BBI_LFn n.s. n.s. n.s. n.s.
BBI_LF/HF n.s. n.s. n.s. n.s.
SYS_meanNN n.s. n.s. n.s. **
DIA _meanNN n.s. n.s. n.s. n.s.
DIA_VLF n.s. *ok n.s. *%

*p < 0.01; **p < 0.001; n.s. p > 0.01; IDCyg, idiopathic cardiomyopathic patients at high
risk of sudden cardiac death; IDCy R, idiopathic cardiomyopathic patients at low risk of sudden
cardiac death; CON, control group; bslope, bradycardic fluctuations; tslope, tachycardic fluc-
tuations; BBI, beat-to-beat cardiac interval; SYS, systolic blood pressure; DIA, diastolic blood
pressure.

Table 6.9. Accuracy (Acc), sensitivity (Sn), specificity (Sp), and area under the curve (AUC)
obtained with the best SVM model for each comparison.

IDCHR Vs IDCLR IDC vs CON IDCHR vs CON IDCLR vs CON
Indices PPAs_SD1/Sd2 HRJSDds-E0d HRJSDds_.LD1-V HRJSDds-E1d
HRJSDds_LU1-P NSTPDCcs_Area_c-s NSTPDCcs_Area_c-s NSTPDCs_Area_c-s
C 7 5.5 1 0.3
Kernel Laplace Laplace Gaussian Laplace
o 1 1.5 0.3 1
Ace (%) 98.9 93.6 96.8 84.9
Sn (%) 100 93.7 92.9 89.6
Sp (%) 93.1 95.5 98.0 79.5
AUC 0.96 0.94 0.95 0.85
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(2)

(b)

(©)

(d)

Figure 6.7. SVM classification plots: (a) IDC vs CON using Laplace kernel, (b) IDCrgr vs
IDCyr using Laplace kernel, (¢) IDCygr vs CON using Gaussian kernel, and (d) IDCpr vs
CON using Laplace kernel.
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The cascade model achieved 94.4% accuracy. A One vs All approach yielded
86.1% sensitivity and 92.8% specificity for the CON group, 93.2% sensitivity and
94.5% specificity for the HR group, and 98.8% sensitivity and 89.0% specificity
for the LR group.

6.5 Discussion

The aim of this study was to find indices capable of stratifying sudden cardiac
death (SCD) risk in idiopathic cardiomyopathy patients. In order to achieve
this, we obtained indices extracted from BBI (ECG) and systolic and diastolic
blood pressure (BP) time series using linear and non-linear univariate and bivari-
ate (coupling analysis) techniques. The indices extracted from these techniques
showed patterns that behave differently in patients at high risk of SCD. These
indices (mainly from coupling analyses) were used to train several SVM models
in order to classify the subjects based on different levels of SCD risk.

Our findings showed that cardio-diastolic coupling (NSTPDC_cd_NF) is bidi-
rectional with diastolic activity as a driver in IDCpg patients. In addition, the
coupling strength of cardiac activity over both systolic and diastolic blood pres-
sure (NSTPDCcs_Area_c—s, NSTPDCcs_Area_c—d) increases when the patients
are at high risk, suggesting that cardiac activity significantly dominates over
blood pressure. This type of relationship has been previously observed in conges-
tive heart failure patients [37].

Our results also indicated that systolic pressure activity significantly increases
in response to the alternant activity of diastolic pressure in patients at risk of SCD
(HRJSDds_P-LUy). Similar patterns were also observed in cardio-diastolic cou-
pling (HRJSDecd_LD;-P), suggesting that the deterioration of autonomic regula-
tion is more severe in patients at high risk of SCD. Earlier studies indicated that
symmetric patterns in the HRJSD could be related to baroreflex-like response
patterns. This suggests that this kind of behavior is also more pronounced in
patients at high risk [4, 57].

The Poincaré plot analysis showed that the patients from the HR group have
higher short-term systolic blood pressure deviation than the patients from the
LR group and the CON subjects. This pathological behavior is also reflected
in the PPAs_SD1/SD2 index, which becomes less balanced as the illness pro-
gresses. Diastolic blood pressure behaved in a similar way: the short-term di-
astolic blood pressure deviation was significantly lower in HR patients and their
PPAd_SD1/SD2 was less balanced as well, indicating higher BPV in patients with
critical conditions. Previous studies have found that higher short-term BPV is as-
sociated with several cardiac diseases, such as left ventricular systolic dysfunction
and atherosclerosis, among others [64, 49]. This BPV behavior was also present
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in sinoaortic denervated cats [13]. In addition, baroreflex effectiveness has been
studied in paraplegic subjects, and their BPV was found to be higher than that
of CON subjects [9].

The aforementioned patterns were also present when the IDC patients were
compared to the CON group. In general, the indices found in the PPA suggest
that short-term BPV is higher in patients with pathological conditions [36, 39].
In relation to BBI, the PPA indices showed that short-term deviation and the
short- and long- term deviation ratio of the heart rate is higher in the CON group,
suggesting that the HRV in this group is higher than in IDC patients. On the
other hand, the BBI_rmssd index suggests that the HRV is lower in IDC patients
than in CON subjects [61]. Reduced HRV is a recognized predictor of an adverse
prognosis in patients with cardiac disease [63, 22]. Several studies have related
low HRV with heart failure [12, 43, 52, 46]. In addition, an increased complexity
in BBI randomness and a lower fractal-like behavior have been associated with
SDC [27].

The DSM revealed that both the tslope and bslope are significantly lower in
IDC patients compared to CON subjects, and lower values of these sequences are
associated with baroreflex dysfunction [14, 33]. A trend appeared in these indices
when the patients were compared by their level of risk: IDCygr patients showed
lower tslopes and bslopes.

The segmented approach of the Poincaré plot analysis showed that some pat-
terns in the cardiovascular coupling are more common in HR patients. There was
a significantly higher concentration of these patterns in columns 5 and 8 in both
cardio-diastolic and cardio-systolic couplings in patients at higher risk of SDC,
indicating a lower variability in their baroreflex activity compared to patients at
low risk. SPPA patterns (SPPAcd_Column_5, SPPAcd_Column_8) occurred more
frequently and were more concentrated in low-risk patients, suggesting that these
patients present a higher HRV compared to patients at higher risk of SCD. The
viability of HRV as a reliable predictor of SCD in IDC patients was explored in a
previous study [25], but the findings did not support the hypothesis that HRV is a
reliable predictor of SCD in IDC patients. However, those results were based on a
time domain analysis of HRV only, whereas the significant indices analyzed in our
work come primarily from non-linear methods. These characterization methods
are more suitable for describing the non-linear behavior of HRV in pathological
conditions.

The HRJSD results suggest that patients at high risk adapt less frequently to
changes in blood pressure, reflected in the lower presence of decreasing patterns
of BBI (Eg) in response to decreasing patterns in diastolic blood pressure (LDy).
This may be a result of the vagal response causing less recurring parasympathetic
activity, which leads to a less effective control of blood pressure, and consequently

110



Discussion

of heart rate, in patients at higher risk.

These results were consistent when CON subjects were compared with IDC
patients: decreasing patterns (Eg) in diastolic BPV were reflected in decreasing
heart rates at higher frequencies in CON subjects. The DIA_LF/HF was higher in
patients than in the CON group. Higher levels of this index reflect efferent sym-
pathetic activity [38]. Additionally, a higher prevalence of unchanging patterns
(E1) was found in the IDC patients compared with the CON group, indicating
that changes in blood pressure are frequently not reflected in changes in heart
rate, in patients with pathological conditions.

In addition, the HRJSDcd-Esd and HRJSDcd-LD;d indices showed that steady
(E2) and low decreasing (LD;) diastolic blood pressure patterns, independent
from all BBI patterns, are more recurrent in CON subjects. These indices sug-
gest a worsened circulatory homeostasis in IDC patients, and support the idea of
the influence of baroreflex activity in pathological conditions [29].

Some studies [23, 53] have stated that the relationship between systolic and di-
astolic blood pressure should be coherent: if one increases, the other is expected
to increase as well. The results of the systolic-diastolic coupling revealed that
patterns that are opposing in nature (sLU;-dP, sLD;-dV) are more recurrent in
the HR group. This suggests that the relationship between systolic and diastolic
blood pressure loses linearity as the pathological condition worsens.

The coupling strength of the cardiovascular and diastolic-systolic couplings
was stronger in pathological conditions. In addition, the symmetric patterns of
the diastolic-systolic coupling activity were less recurrent in the patients than in
the control subjects. This may be caused by the effect of autonomic regulation
mechanisms in pathological conditions [20, 30].

To summarize, our results suggest that there is a gradual loss of HRV as SCD
risk increases and, at the same time, BPV increases in keeping with SCD risk.
There is great controversy surrounding the prognostic value of linear time and
frequency domain HRV indices for risk stratification among this type of patient
25, 26, 41, 66, 68, 67]. The results of this work suggest that commonly used
techniques for analyzing the time and frequency domain of HRV are not suitable
for risk stratification. However, the combination of non-linear HRV analysis and
linear as well as non-linear coupling analysis seems to be a promising tool for
risk assessment in IDC patients [69, 65, 19]. The processes involved in circula-
tory homeostasis are by nature non-linear. Therefore, the differences between the
stages of this process can be more adequately shown by the quantification of the
signal properties rather than by the assessment of their magnitude.

We hypothesize that a dysfunction of the vagal activity, and in general of the
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baroreflex mechanism as a whole, prevents the body from correctly maintaining
circulatory homeostasis. This reduction in vagal activity and increase in sympa-
thetic influence exposes the cardiovascular system to frequent states of stress that
contribute to the further deterioration of the condition over time. The gradual
deterioration of heart rate and blood pressure variability in the different SDC risk
stages considered here supports this assumption. This kind of impairment has
also been associated with other cardiac pathological conditions like ventricular
fibrillation during myocardial ischemia [32]. Abnormal sympathetic neural firing
has been associated with SCD and the onset of ventricular tachyarrhythmias [16].
A similar behavior has been observed in elderly mice [21], which presented a re-
duced baroreflex bradycardic response compared to younger mice.

This study has some limitations that are important to consider. The average
age in the CON group was lower than in the IDC group, and the influence of
age in the study of HRV has been widely studied in other works [70]. However,
this limitation does not affect our results for HR vs LR comparisons. A higher
number of indices were analyzed than the number of patients in the database. In
order to minimize problems due to possible overfitting, we established different
levels of statistical significance to reduce the dataset dimensionality, including
the Bonferroni-Holm correction criterion.

The characterization of linear and non-linear coupling could be also analyzed
based on linear and non-linear Granger causality in time- and frequency- do-
mains [55]. The objective of this study was to evaluate the general behavior of
the underlying coupling through the average of all the features (windows) over
time. Nevertheless, it is uncertain if another time-invariant time domain measure
based on Granger causality would be more appropriate and would have more dis-
criminative power [47]. It would be an interesting objective for an ongoing study.

Another limitation of this work is related to comorbidities and confounding
factors influencing the autonomic regulation system. Therefore, these exclusion
criteria make risk stratification not yet applicable to every patient.

6.6 Conclusion

The results of this research suggest that indices from coupling analysis and non-
linear HRV and BPV can contribute to the development of risk stratification
in IDC patients. We have introduced a novel cascade model that successfully
classified subjects into different levels of SCD risk (CON, IDCyg, and IDCyg).
Further, this study allowed us to reveal, for the first time, some of the complex in-
teractions that take place within autonomic regulation, leading to more accurate
modeling and interpretation of these processes in pathological conditions. Our
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Conclusion

findings suggest that HRV gradually decreases and BPV increases as the SCD
risk increases. We conclude that patients at high risk of SCD can no longer con-
sistently maintain circulatory homeostasis, leading to states of stress that worsen
the condition over time.

However, these results should be validated with a greater number of patients,
especially in the high-risk group. Therefore, the results presented in this work
are more of a hypothesis-generating nature than confirmatory.
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7.1 Introduction

One of the most relevant challenges in biomedical research is the analysis of
system response variability. This is true not only because a system’s response
variability represents the description of the patient’s state, but also because it
can mask comorbidities. Diseases like cardiomyopathies, which affect a large seg-
ment of the elderly population, are of particular interest, as they constitute one
of the most common causes of death.

These pathologies may originate in an ischemic (ICM) or dilated (DCM) pro-
cess of the heart. The reaction to this process, however, may be related to the
variability of the cardiorespiratory and cardiovascular system response, which is
associated with the baroreflex mechanism. Therefore, these systems can help in
differentiating between these cardiomyopathies, which can lead to an improved
and earlier diagnosis for these patients [8, 13].

Despite the symptomatic similarities between ischemic and dilated cardiomy-

opathies, they differ in etiology. For instance, ischemic cardiomyopathy is related
to coronary artery disease, while dilated cardiomyopathy is characterized by the
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enlargement and weakening of the left ventricle. Several studies have proposed
linear and non-linear techniques as a means to analyze these differences from a
signal processing perspective [15, 14, 1]. An early study explored the differences
in cardiovascular autonomic regulation between patients with ischemic and those
with dilated cardiomyopathy [3].

Analyzing the interactions between the cardiovascular and respiratory sys-
tems could provide new insights into these cardiomyopathies, and contribute to
the more accurate diagnosis of these diseases. In our previous work, we pro-
posed analyzing the cardiovascular activity through the use of coupling analysis
[12]. In this work, we introduce cardiorespiratory interaction as a means by
which to analyze the behavior of the systems associated with ICM and DCM
cardiomyopathies. We proposed a three-dimensional analysis that considered the
relationship between the cardiac, respiratory and vascular systems. Based on vas-
cular activity as the input and output of the baroreflex response, we evaluated
the variability of these interactions. This novel approach introduces new infor-
mation about the homeostatic control system and other internal relationships.
The aim of this study was to analyze the suitability of cardiorespiratory and
vascular interactions for the classification of ICM and DCM patients. However,
we also characterized these interactions through features extracted from ECG,
respiratory flow and blood pressure signals.

7.2 Database

A sample of 41 cardiomyopathy patients from the Heris dataset, presented in
Chapter 3 (section 3.1), was used to explore the method described in this chapter.
All of the patients selected had a New York heart association index (NYHA) > 2,
and were diagnosed with either ischemic cardiomyopathy (ICM - 24 patients) or
dilated cardiomyopathy (DCM - 17 patients). In addition, 39 healthy subjects
(CON) from the Healthy data set, also presented in Chapter 3 (section 3.4),
were used as a reference. The clinical information of the patients from the Heris
database is summarized in Table 7.1.

- Signal processing

For this study, we used the ECG, blood pressure (BP) and respiratory flow (RF)
signals from the Heris and Healthy databases. Linear trends were removed, and
in-house preprocessing tools were used to reduce noise, artifacts and spikes. All
outliers were eliminated.

The beat-to-beat interval time series (BBI, ms) was extracted from the ECG
signal by calculating the time between two consecutive R peaks. The systolic
(SBP, mmHg) and diastolic (DBP, mmHg) blood pressure time series were cal-
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Table 7.1. Clinical parameters of the Heris database (mean and standard deviation).

ICM DCM
Patients 24 17
Age [years| 65.54 + 10.53 61.54 + 12.27
Weight [Kg] 78.14 £ 14.22 77.40 £+ 16.47
BMI [Kg/m?] 27.55 + 3.89 27.76 £ 5.77
NYHA 2.07 £ 0.28 2.00 £ 0.57
LVDD [mm] 60.83 £ 8.78 62.75 £ 4.27
AD [mm)] 46.22 £ 7.67 44.62 £ 3.47
ProBNP 881.78 £ 1424.40 441.84 £ 1535.76
LVEF [%)] 33.40 £+ 11.49 33.47 £ 6.68

BMI: body mass index; NYHA: New York Heart Association
functional classification; LVDD: left ventricular diastolic
dimension; AD: auricular diameter; ProBNP: brain
natriuretic peptide; LVEF: left ventricular ejection fraction.

culated by defining the maximum and minimum values of the BP in each heart-
beat. The breathing duration (TT, s) time series was obtained by calculating
the time between two consecutive respiratory cycles. Next, all of the time series
were inspected and edited, if necessary. To analyze the interaction between these
time series, they were resampled and synchronized using the linear interpolation
method to 1 Hz. The new signals were then decimated to 0.25 Hz to analyze the
changes in respiratory activity.

7.3 Methodology

To analyze the interaction between the cardiac, respiratory and vascular systems,
we took the difference between two consecutive events as a new time series values,
represented by,

AX =X, — X, Yn=1, ..., N, (7.1)

being X either the BBI, SBP, DBP or T'T time series, and N the total number
of time series values.

To determine vascular activity, we defined a threshold associated with the
increase, decrease or absence of change of the SBP or DBP variability, defined
by:

a (Jmax(AX,)| — |min(AX,)|)

Tth - )
2

(7.2)

125



Chapter 7. Cardiorespiratory and cardiovascular variability analysis

where A X, is either ASBP or ADBP time series, and « is a factor that defines
the percentage of the boundary value at which blood pressure values are consid-
ered as no change’. The dataset was normalized (zero mean and unit variance),
and centered to zero. In this study, we defined o = 15%.

To analyze the variability of the vascular system, three new sub-spaces were
defined in accordance with the T'h.XX, threshold: "up’ referred to increasing values,
'no change’ referred to values between the negative and positive threshold, and
"down’ referred to decreasing values. Thus, the values of each AX, are classified
as:

- Up (u): AX, >ThX,
- No change (nc): —=ThX, < AX, <ThX,

- Down (d): AX, < —ThX,

7.3.1 Three-dimensional representation

To evaluate the variability of cardiorespiratory activity associated with vascular
behavior, a three-dimensional representation was generated for each sub-space:
‘up’, 'no change’ and ’down’. This representation presents the relationship be-
tween changes in the ABBI, ATT, ASBP and ADBP time series. Figure 7.1
is an example of the representation of these relationships for a subject from the
control group (CON), an ischemic patient (ICM), and a dilated patient (DCM)
based on ASBP.

Several parameters were extracted from this three-dimensional representation
in order to characterize their interactions. For each subject/patient scatterplot,
a polygon that represents the projection of the cardiac and respiratory activity
based on vascular behavior (ASBP and ADBP) was fitted. The vertices of the
polygon were defined including 95% of each set of values. To characterize the
geometry of each polygon, its area (AXY4) and centroid (C,,C,) were defined
by:

n—1
1
AXYA = 5 Z(VXiVYi+l - VXi+1VYi)7

i=0

-1
90 Z VX + VX1+1 (VXiVYi-H - sz'+1VYi)7
=0
n—1
1
Cy=1ca D W+ Vo ) (Vi Vi, = Vi, Vi), (7.3)

=0
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ATI
ATI
ATI

Figure 7.1. Cardiac (ABBI) vs respiratory (ATT) time series considering (ASBP) a) down,
b) no change, and ¢) up activity, for a CON subject, an ICM patient and a DCM patient.
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where Vx, and Vy, are coordinates of the ith vertex, and n is the total number
of vertices. The area was normalized in accordance with the number of vertices
(AXY,,) and samples (AXY},, ). In addition, the mean distance between each
sample and centroid was measured (AXY.), and the probability of occurrence
of samples for each triangle of the polygon (AX,) was calculated.

The morphology of the polygon was also analyzed using all the triangles that
form it. First, the mean area of all triangles (AXY},,) and the probability of
occurrence of the samples (AXY),) were calculated, and then the mean angles
formed were calculated: one in the centroid with two consecutive vertices (AXYj)
and a second in the vertex with the centroid (AXYp). Figure 7.2 is an exam-
ple of the morphological characterization of a scatterplot for cardiorespiratory
activity, when systolic vascular activity decreased, illustrated for a CON sub-
ject. In addition, for the ABBI and ATT time series, statistical parameters like
mean (AX,,), standard deviation (AX,4), kurtosis (AXk), skewness (AXgg),
interquartile range (AX;gr), and coefficient of variation (AXcy ) were obtained
for each sub-space (up, no-change, and down). Table 7.2 shows a summary of the
indices considered.

Table 7.2. Index description

Index Description
AX,-2 AX time series mean value

AXgg-z AX time series standard deviation

AXg-z AX time series kurtosis

AXgp-z AX time series skewness

AXecv-z  AX time series coefficient of variation
AXigr-z AX time series interquartile range
AXp-z AX time series probability of occurrence
AXg-z AX time series mean distance

AXYs-z  Area of the fitting polygon for the X and Y time series

AXYy,-z Area of the fitting polygon normalized by the number of points

AXYy,-z Area of the fitting polygon normalized by the number of vertices

AXY,-z  Number of vertices of the fitted polygon

AXY;-z Mean distance between each sample and the centroid

AXYy-z Mean angle formed by one vertex and by the centroid

AXYp-z  Mean angle formed by the centroid and by two vertices

AXYpg-z Mean difference between AXYp-z and AXYp-2

AXY,-z  Mean number of points inside of each triangle formed by two vertices and the centroid
AXY4,-z Mean area of triangles formed by two vertices and the centroid

X and Y refers to either, BBI or TT time series; z refers to increasing (up), no change (nc) or
decreasing activity (d).
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Figure 7.2. Scatterplot of cardiorespiratory activity for decreasing systolic vascular activity in
a CON subject. V1 — V,15: vertices of the polygon; A,.: area of the triangle formed by vertices
V1 and V.5, and the centroid; € and (: angles formed on the V.4 vertex and the centroid,
respectively.

7.3.2 Classification and statistical analysis

A mathematical description of the support vector machines (SVM) classifier is
presented in Chapter 5 (Section 5.3.2). The classification models were optimized
as described in Chapter 6 (Section 6.3.8). The kernels considered for the SVM
optimization were the Gaussian, Laplace, and ANOVA. The indices with statis-
tically significant differences and low correlations were used in pairs to build a
series of SVM models.

A Mann-Whitney non-parametric statistical test was applied to evaluate the
statistically significant differences between all the indices. Any index with a
p-value < 0.05 was considered statistically significant. The leave-one-out cross-
validation method was used to validate the results. The classification results are
presented in terms of accuracy (Acc), sensitivity (Sn), and specificity (Sp).
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7.4 Results

This work aimed to characterize the cardiovascular and cardiorespiratory activ-
ity of patients with ischemic or dilated cardiomyopathy. A total of 168 indices
were obtained during the characterization process. The results were analyzed
considering the following comparisons:

Ischemic vs dilated cardiomyopathy patients (ICM vs DCM)

Cardiomyopathy patients vs control subjects (CMP vs CON)

Ischemic cardiomyopathy patients vs control subjects (ICM vs CON)

Dilated cardiomyopathy patients vs control subjects (DCM vs CON)

Figure 7.3 provides an example of the characterization of cardiorespiratory
activity based on systolic blood pressure activity according to the different sub-
spaces: down (a, b, ¢), no-change (d, e, f), and up (g, h, i) for a CON subject (a,
d, g), an ICM patient (b, e, h), and a DCM patient (c, f, i).

In the comparison of ICM and DCM patients, 9 indices presented statistically
significant differences, and relatively low correlation. For the CMP patients vs
CON group, 13 indices presented statistical differences. When each pathology
was compared to the CON group, 10 indices presented differences when com-
pared to ICM patients, and 19 when compared to DCM patients. These indices
were used to build different SVM models, determining the best classifiers in each
case. Tables 7.3 and 7.4 present the most relevant indices for each comparison in
terms of mean value and standard deviation.

Table 7.3. ICM vs DCM significant indices, in terms of mean and standard deviation.

ICM vs DCM
Index ICM (24) DCM (17) p-value
SBP-ATT,,-d 0.007 £ 0.12 -0.07 £ 0.07 0.02
SBP-ATT,4-u 1.00 £ 0.17 0.89 £ 0.14 0.02
SBP-ABBI-nc 0.85 £ 0.28 1.09 + 0.18 0.009
SBP-ABBI TTy-u  76.25 £ 29.47  49.23 £ 39.59 0.01
SBP-ATTey-d -3.15 + 31.10 -31.2 4+ 52.2 0.002
DBP-ATTey-d 1.05 = 0.15 0.96 £ 0.14 0.03

The SBP-ATT,,-d and SBP-ATT,;-u were the indices used to build the op-
timal SVM model for the ICM vs DCM comparison, achieving 92.7% accuracy,
94.1% sensitivity and 91.7% specificity. The optimal model for the CMP vs
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Figure 7.3. Characterization of cardiorespiratory activity based on the sub-space for systolic
blood pressure activity: down for a) CON subject, b) ICM and ¢) DCM patients; no-change
for d) CON subject, ) ICM and f) DCM patients; and up for g) CON subject, h) ICM and i)

DCM patients.
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Table 7.4. Significant indices for CMP vs CON, ICM vs CON, and DCM vs CON comparisons,
presented in terms of mean value and standard deviation.

CMP vs CON
CMP (41) CON(39) p-value
DBP-ABBI)-u 61.60 £ 18.73  87.43 £ 13.18 < 0.00001
DBP-ABBI TTy4,-u 0.17 £ 0.15 0.27 + 0.09 0.004
SBP-ABBIigr-u 0.66 £ 0.53 1.09 £ 0.45 0.00006
SBP-ABBIgr-nc 0.60 £+ 0.47 1.04 £+ 0.43 0.00007
SBP-ABBIqgr-d 0.62 &+ 0.48 1.03 £ 0.45 0.0003
ICM vs CON
ICM (24) CON (39) p-value
SBP-ABBIk-nc 14.70 £ 24.17 4.19 £ 8.55 0.01
DBP-ABBI,-u 61 =+ 15.16 87.43 £ 13.18 < 0.00001
SBP-ABBIgr-d 0.74 + 0.57 1.09 £ 0.45 0.004
SBP-ATTcv-d -3.15 £ 31.10 -8.43 + 54.18 n.s
DCM vs CON
DCM (17) CON (39) p-value
SBP-ATTrgr-u 0.63 £ 0.20 0.75 £+ 0.21 0.03
SBP-ABBI TT4-u 1.78 £ 1.73 4.02 £ 1.80 0.00009
SBP-ABBIgr-d 0.54 £+ 0.46 1.09 £ 0.45 0.0001
SBP-ATTeov-d -31.2 £ 52.2 -8.43 £ 54.18 0.006

CON comparison was built with the DBP-ABBI,-u and DBP-ABBI_TT4, -u,
obtaining 86.2% accuracy, 82.9% sensitivity and 89.7% specificity. The indices
for the optimal ICM vs CON model were the SBP-ABBIg-nc and DBP-ABBI,-
u, achieving 88.9% accuracy, 87.5% sensitivity and 89.7% specificity. The SBP-
ATTror-u and SBP-ABBI_TT4-u indices were used to build the SVM model for
DCM vs CON, obtaining 87.5% accuracy, 76.5% sensitivity and 92.3% specificity.
The Gaussian kernel was used in both the ICM vs DCM and the DCM vs CON
SVM models; the Laplace kernel was used in the CMP vs CON and the ICM vs
CON comparisons. The classification results and the SVM scoreplot are shown
in Table 7.5 and Figure 7.4, respectively.
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Figure 7.4. SVM classification plots considering: (a) ICM vs DCM patients, (b) CMP
patients vs CON subjects, (c¢) ICM patients vs CON subjects, and (d) DCM patients vs CON

subjects.
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Table 7.5. Accuracy (Acc), sensitivity (Sn), and specificity (Sp), obtained with the best SVM
model for each classification group.

Groups C o Acc(%) Sn(%) Sp(%)
ICMvs DCM 22 1.5 92.7 94.1 91.7
CMPvsCON 1 1.5 86.2 82.9 89.7
ICM vs CON 1 2 88.9 87.5 89.7
DCMvs CON 5 0.8 87.5 76.5 92.3

7.5 Discussion and conclusions

A novel method to analyze the three-dimensional relationships between the car-
diac, vascular and respiratory systems was proposed. The interaction between
cardiorespiratory and vascular activity was explored and characterized to analyze
the behavior of these systems in patients diagnosed with ischemic or dilated car-
diomyopathy. Based on indices related to geometrical representation and statis-
tical measurements from the time series that describe these systems, this method
proposes to reduce the complexity of the analysis in contrast with other non-linear
methods. From a three-dimensional representation of these time series, a bivari-
ate behavior of two of them is analyzed in function of the dynamical changes
of the third. Afterwards, the best indices were used to classify these patients,
through the introduction of new information about the response of the cardiac
and respiratory systems, based on vascular activity.

Our results indicate a decreasing respiratory response in DCM patients when
systolic blood pressure activity decreases (SBP-ATT,,-d), in contrast to the more
stable response in ICM patients. In addition, ICM patients exhibited higher vari-
ance in respiratory activity a as response to decreased systolic or diastolic blood
pressure activity (SBP-ATTey-d,DBP-ATTey-d).

The decreased respiratory activity observed during drops in systolic blood
pressure in DCM patients suggests a faster breathing response to decreasing blood
pressure. Changes in breathing rhythm are known to affect blood pressure levels
[11]. We hypothesize that the respiratory activity in DCM patients compensates
for the impaired cardiac-dependent regulation of blood pressure.

The comparison of SBP activity when the values corresponds to 'no change’
revealed that cardiac response was more stable in ICM patients (SBP-ABBI -
nc), than in DCM patients. This may be a sign of healthier autonomic regulation
in ICM patients, who have retained some parasympathetic responsiveness [7].
Some studies have reported that DCM patients experience impairment of car-
diac autonomic regulation [4, 9]. Therefore, this impairment may explain the
differences observed in the cardiac behavior of DCM patients vs ICM patients in
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contrast to the ischemic-related etiology in ICM patients. [7].

In the presence of increased SBP activity, the respiratory response is more dis-
perse in ICM patients than in DCM patients (SBP-ATT,4-u). These differences
could be attributed to stimulation of the vagal pulmonary mechanoreceptors,
which, mechanical in origin, are not influenced by ischemic stimulus [6]. As in-
creased respiratory variability has been observed in elderly people in a previous
work [5], we suggest that the differences found in DCM patients are due to a
more pronounced impairment of their autonomous regulation.

In addition, in cases of increased in SBP activity, the mean angle formed by
each vertex and the centroid of its fitting cloud of points associated with car-
diorespiratory activity (SBP-ABBI TTg-u) had higher values in ICM patients,
while the values of DCM patients were more scattered. These patterns suggest
that ICM patients tend to have more stable cardiorespiratory activity than DCM
patients.

An analysis of overall cardiac behavior among CMP patients, in general
showed a reduced response to increasing DBP activity (DBP-ABBI,-u) com-
pared to CON subjects. The differences found in the DBP-ABBI 1Ty -u in-
dicated lower cardiac and respiratory variability in CMP patients when DBP
activity increases. The interquartile range of the cardiac activity of CMP pa-
tients across every SBP pattern considered (SBP-ABBIgr-u, SBP-ABBI -
ne, SBP-ABBI gr-d) presented lower values when compared to the subjects of
the CON group. The results of these indices indicate lower heart rate variabil-
ity in patients with cardiomyopathies. Lower cardiac and respiratory variabilities
are typically associated with a cardiovascular dysfunction [2, 10]. We hypothesize
that the cardiac and respiratory systems in CMP patients have a more limited
ability to regulate incremental changes in BP compared to CON subjects.

A similar behavior was observed for increased DBP activity, when ICM pa-
tients were compared to the CON subjects (DBP-ABBI,-u), and the cardiac
activity was lower in ICM patients. The overall observations regarding the
interquartile range of the cardiac activity for decreasing blood pressure were
also present in the ICM vs CON (SBP-ABBIgr-d) and DCM vs CON (SBP-
ABBIgg-d) comparisons. These indices suggest that cardiac activity is dimin-
ished in both ICM and DCM patients when compared with the CON subjects.

Cardiac and respiratory variability differences were also found when the DCM
patients were compared to the CON subjects for increased SBP activity (SBP-
ABBI TTy-u), and lower values were recorded in DCM patients. We found no
significant differences between respiratory variance (SBP-ATT¢y-d) when com-
paring ICM patients and CON subjects for decreasing blood pressure activity. In
contrast, differences were recorded in respiratory variance between DCM patients
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and CON subjects. These results suggest specific patterns among DCM patients
in their respiratory response to decreasing blood pressure activity.

In conclusion, the analysis of the interaction between cardiac and respiratory
activity and blood pressure provides novel insight into the classification of pa-
tients with this type of disease. We found respiratory patterns that are present
only in dilated cardiomyopathy patients. In general, the cardiac and respira-
tory variabilities presented lower values in these patients. The work presented in
this chapter may provide physicians with new symptom-independent information
about these types of cardiomyopathies, which could help to improve the diagnosis
of these patients. This method not only serves to analyze the behavior of ischemic
and dilated cardiomyopathy patients, but also introduces a new procedure with
which to analyze the dynamic behavior between other related systems. The re-
sults discussed in this chapter should be validated using a larger dataset.
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Conclusions

This research has focused on the study, characterization and interpretation of
the cardiac, vascular and respiratory patterns of cardiomyopathy patients with
different etiologies and at different levels of sudden cardiac death risk. We ana-
lyzed the characteristics extracted from electrocardiographic, blood pressure and
respiratory flow signals, and to do this more effectively, we developed an ar-
tifact reconstruction method that allowed us to improve the quality of signals
corrupted by artifacts. A range of studies were conducted for the purpose of ex-
tracting new information about the cardiac, vascular and respiratory systems as
well as autonomic control mechanisms to help improve the sudden cardiac death
risk stratification of heart failure patients, and to contribute to the diagnosis of
cardiomyopathy patients considering the etiology of their disease.

In order to extract this new information, we characterized time series extracted
from ECG, blood pressure and respiratory flow signals by means of various ad-
vanced signal processing techniques, including time-frequency analysis, linear and
non-linear analysis, coupling analysis, as well as techniques based on the variabil-
ity of the interaction between the cardiovascular and cardiorespiratory systems.

The first part of this research aimed to design of a novel automatic artifact
reconstruction method for quasi-periodic signals. We have proposed a technique
that allows artifact events to be replaced by nearby physiological cycles, main-
taining the dynamic variability of the reconstructed signal. The method was
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tested using simulated and real biomedical signals. In addition, we performed
both an automatic and visual validation of the reconstruction, considering the
possible artifacts missing, incorrectly reconstructed cycles, and the quality of the
reconstruction. In all cases, the method detected more than 97% of the artifacts
present in the signals, and incorrectly reconstructed cycles and low-quality recon-
structions occurred in less than 1% of the reconstructions.

In the second part, two different studies were conducted to classify patients
with different cardiomyopathies according to their cardiovascular risk stratifi-
cation. The first is based on the cardiac death risk stratification of patients
according to their left ventricular ejection fraction, through the Poincaré plot
analysis. Based on the left ventricular ejection fraction index, a cardiac death
risk level was assigned as either low risk (LR, LVEF > 35%) or high risk (HR,
LVEF < 35%). Parameters related to the electrophysiological behavior of the
cardiac, vascular and respiratory systems, based on their time series (BBI, SBP
and TT, respectively) were extracted. New indices associated with cardiorespira-
tory and vascular variabilities were used to characterize the patients and predict
their cardiovascular risk based on their left ventricular ejection fraction. These
indices could contribute to improve the clinical studies associated with the HRV
in the diagnostic of these pathologies.

Statistical and correlation analyses were performed in order to determine the
most relevant indices. The support vector machines and the linear discriminant
analysis pattern recognition methods were applied to classify the patients by
their cardiovascular LVEF-based risk. Our results suggest that high risk patients
(LVEF < 35%) have reduced parasympathetic activity which is compensated by
the sympathetic autonomic response.

The second study we report here was about the risk stratification of idiopathic
cardiomyopathy patients through coupling analysis. Based on a two year follow-
up period, the patients who died due to cardiac related episodes were stratified as
at high risk of sudden cardiac death. The cardiac and vascular variabilities were
explored through the coupling analysis of the cardiac, vascular, and respiratory
systems by means of several linear and non-linear characterization techniques.
This new indices allowed to classify the risk of sudden cardiac death, without
prior characterization of patients, using a cascade model.

Statistical and correlation analyses were used to determine the most relevant
indices. The support vector machines method was used to predict which patients
were at high risk of sudden cardiac death. Our results suggest that a gradual
decrease in heart rate variability and a simultaneous increase in blood pressure
variability could be related to an increased risk of sudden cardiac death.

We hypothesize that a dysfunction of the vagal activity, and in general of the
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baroreflex mechanism as a whole, prevents the body from correctly maintaining
circulatory homeostasis. This reduction in vagal activity and increase in the sym-
pathetic influence exposes the cardiovascular system to recurrent states of stress,
which contribute to further worsening the condition over time.

The third part relates to the classification of ischemic and dilated cardiomy-
opathy patients by etiology through the analysis of their cardiac, vascular, and
respiratory variabilities. The patients considered in this research were diagnosed
as having either ischemic or dilated cardiomyopathy. Vascular activity was an-
alyzed as both the input and output of the baroreflex and chemoreflex mech-
anisms by looking at changes in their responses and considering three different
stages: increasing, unchanged, and decreasing values. The cardiorespiratory vari-
ability for these stages was analyzed using statistical and geometrical methods.
A new method to analyze multivariate three-dimensional coupling systems was
proposed. New indices based on the geometrical distribution of the interaction
between these coupled systems allowed to describe the bivariate behavior of two
of them in function of the dynamical changes of the third.

Statistical and correlation analyses were performed in order to identify the
most significant indices. The support vector machines method was used to clas-
sify the patients into either the ischemic or dilated cardiomyopathy group. Our
results suggest that dilated cardiomyopathy patients exhibit specific patterns in
their respiratory responses in the presence of decreasing blood pressure activity.

The original contributions of this thesis focus on the identification and inter-
pretation of new indices that make the risk stratification and etiology classifica-
tion of cardiomyopathy patients possible. This has allowed us to develop tools
that could help improve the earlier diagnosis of these patients, and introduce new
knowledge about these pathologies.

One of the limitations of this research is the size of datasets used. Thence,
we used the leave-one-out cross-validation method to validate our results. Nev-
ertheless, the results seem significantly promising, and should be validated with
a larger dataset. Another limitation of this work is the great variability in the
physiological response that patients of these pathologies present. The complex
interactions between the cardiac, vascular and respiratory systems impose major
limitations and give rise to different levels of complexity in the analysis of their
responses. But, at the same time, these challenges make conducting this type of
research more interesting, and give impetus to the pursuit of answers beyond the
obvious.

141



Chapter 8. Conclusions

8.1 Artifact reconstruction

When analyzing physiological signals with pseudo-cycles, it is sometimes neces-
sary to apply solutions to mitigate the effects of artifact events present in the
signals. In this thesis, we present a novel method for artifact reconstruction ap-
plied to biomedical signals that allows for the recovery of segments affected by
the disconnection of the device during recording, by noise caused by the instru-
mentation, or other types of erratic records, caused by processes unrelated to the
physiological function being studied. Below, we summarize our contributions on
the automatic artifact reconstruction method.

In [11], we presented the first part of this work, the reconstruction method
applied to blood pressure signals (a quasi-periodic signal) to recover segments af-
fected by calibration episodes. The proposed method was successful in detecting
the calibration episodes and reconstructing these segments in each tested signal.

In contrast to previous studies related to artifact reconstruction methods [3,
10, 6, 9], this novel method consists of a completely automatic reconstruction
process using only the affected signal, and not requiring additional channels or
devices. This is possible because it uses the information of the morphology of the
signal to perform the whole analysis, detection and reconstruction processes. So,
the performance of the method relies on the morphological differences between
the artifacts and the physiological cycles. This method is therefore recommended
for application in signals whose artifacts differ morphologically from the pseudo-
cycles. Introducing a reconstruction step, if necessary, before the study of these
types of physiological signals could contribute not only improving studies associ-
ated with these cycles, but also to guaranteeing the integrity of the information
associated with the dynamic responses of the related systems.

8.2 Risk stratification

The study, characterization, and interpretation of cardiac, vascular and respira-
tory interactions and their variabilities, and the effect of the baroreflex control
mechanisms on blood pressure, provide improved information through new in-
dices related to sudden cardiac death risk of patients with cardiomyopathies.
The pathological values of these indices have been compared to values of healthy
subjects. Below, we summarize our contributions in relation to the risk stratifi-
cation of sudden cardiac death patients.

Our studies based on the characterization of the Poincaré plot analysis [17,
16, 18] examined the risk stratification of cardiomyopathy patients by their left

ventricular ejection fraction level. Electrocardiographic, blood pressure, and res-
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piratory flow signals were analyzed through time series related to heart and res-
piratory rates and blood pressure variability. Using the Poincaré plot method
applied to these time series, several indices were identified as means to charac-
terize the variability and dispersion of cardiac, vascular and respiratory system
response in heart failure patients. These indices were analyzed to determine which
ones presented statistically significant differences for subsequent use in building
support vector machine-based models. Through this analysis, we obtained power-
ful indices to predict the cardiovascular risk of cardiomyopathy patients by means
of their left ventricular ejection fraction.

In general, patients with a lower left ventricular ejection fraction exhibited
lower heart rate variability. Compared to the control subjects, all the system
responses analyzed in the patients occurred at a slower rate. The results sug-
gest that patients with lower ejection fractions have reduced parasympathetic
activity, and that this impairment is being compensated by the sympathetic au-
tonomic response. Therefore, the study of the cardiac, vascular and respiratory
systems through the Poincaré plot analysis can assess indices that may be use-
ful in stratifying cardiovascular risk based on the left ventricular ejection fraction.

In our coupling analysis-based studies [19, 13], we proposed a methodology for
the sudden cardiac death risk stratification of idiopathic cardiomyopathy patients
using coupling analysis. In this study, according to the database used, the cardiac
death risk of each patient was determined from the result of a two year follow-up
period. Patients who died during this period were stratified as at high risk of
sudden cardiac death. Through the coupling analysis of the time series extracted
from the ECG and blood pressure signals, several indices were extracted using
different non-linear techniques. These indices were analyzed to determine their
statistical power to differentiate between these groups of patients. Afterwards,
the most significant indices were used to build support vector machine-based clas-
sification models.

Our findings revealed some of the complex interactions that take place within
autonomic regulation. For instance, our results suggest that there is a gradual
decrease in heart rate variability and an increase in blood pressure variability as
sudden cardiac death risk increases. We found that the strength of the cardio-
vascular and diastolic-systolic coupling was stronger in pathological conditions,
suggesting an autonomic pathological behavior [2, 8]. Our results support the idea
that the commonly used techniques for the analysis of the time and frequency
domain of HRV are insufficient for the effective risk stratification of idiopathic
cardiomyopathy patients. However, the combination of linear and non-linear HRV
analysis as well as non-linear coupling analysis seems to be a promising tool for
risk assessment in idiopathic cardiomyopathy patients [21, 20, 1].

We conclude that the pathological behaviors described in this study are caused
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mainly by the inability of the cardiac and vascular systems of high risk patients to
maintain circulatory homeostasis, leading to states of cardiovascular stress that
trigger compensatory mechanisms that increasingly worsen their condition. On
the other hand, we introduced a novel cascade model that successfully classified
subjects into different levels of sudden cardiac death risk. Therefore, the coupling
analysis-based indices introduced could be a suitable means with which to improve
the sudden cardiac death risk stratification of idiopathic cardiomyopathy patients.

8.3 Cardiomyopathy classification

Through the non-linear analysis of cardiac, vascular and respiratory activity we
were able to classify cardiomyopathy patients by the etiology of their disease. The
observed differences between the pathological patterns associated with the most
relevant indices were studied, and their physiological implications interpreted.

In our studies based on joint symbolic dynamics [5, 12, 4], patients who suf-
fered from either ischemic or dilated cardiomyopathy were successfully classified
by etiology. The time series extracted from the electrocardiographic and blood
pressure signals were characterized using the joint symbolic dynamics method.
The indices obtained were statistically analyzed and the most suitable for classi-
fication tasks were chosen. The support vector machines and principal component
analysis methods were used to build classification models.

We found a monotonous pattern in the cardiovascular interaction that is less
prevalent in dilated cardiomyopathy patients. We speculate that this difference
may occur due to the degeneration of the autonomous baroreflex control, which is
typical in this etiology. Therefore, joint symbolic dynamics could provide indices
that are useful for classifying patients with different cardiomyopathies.

In our coupling-based etiology classification study [15], ischemic and dilated
cardiomyopathy patients were classified by etiology. The cardiovascular and res-
piratory systems were studied in terms of couplings. Several non-linear methods
were applied to characterize the time series extracted from electrocardiographic,
blood pressure and respiratory flow signals. The most significant indices were ob-
tained using statistical analysis, and the etiologies of the patients were classified
through support vector machine models.

Our results suggest that there are behavioral baroreflex differences between
ischemic and dilated cardiomyopathy patients, with lower short-term variability
in ischemic patients. The values of the tachycardic fluctuations were lower in car-
diomyopathy patients. Therefore, the coupling analysis of the cardiac, vascular,
and respiratory systems could provide indices that are useful for cardiomyopathy
etiology classification.
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In our most recent publication [14], we analyzed the blood pressure as both
the input and output of the baroreflex and chemoreflex autonomic mechanisms
to identify indices that could help to classify patients with ischemic and dilated
cardiomyopathy. Vascular activity was divided into sub-spaces considering three
different types of vascular response increasing, no-change, and decreasing based on
an activity threshold. The signals were analyzed through cardiac and respiratory
time series considering the vascular sub-spaces using a scatter plot representing
the local difference between two consecutive physiological cycles. The resulting
plots were studied by extracting indices obtained by statistical and geometrical
analyses. Then, a reduced dimensionality process was applied, and the indices
with high statistical significance and low correlation between them were chosen.
The best indices were used to build support vector machine-based classification
models.

We found recurring respiratory patterns related to decreasing blood pressure
in dilated cardiomyopathy patients. We hypothesize that the differences observed
in respiratory system behavior are related to respiratory compensation for the im-
paired cardiac regulation associated with blood pressure. These differences were
observed when dilated cardiomyopathy patients were compared to the ischemic
patients, and also when they were compared to the control group. Addition-
ally, the dispersion of the respiratory activity in ischemic patients is significantly
higher when blood pressure increases.

The differences reflected in these results point to a more pronounced dete-
rioration of autonomic regulation in dilated cardiomyopathy patients, since the
vagal pulmonary mechanoreceptors are not influenced by ischemic stimulus [7].
In general, the cardiac and respiratory variabilities presented lower values in pa-
tients than in control subjects. Therefore, the analysis of the interaction between
cardiac and respiratory activity and blood pressure could constitute a novel break-
through in the classification of patients by etiology. It is worth mentioning that
this method could not only be used to analyze the cardiorespiratory behavior in
cardiomyopathy patients, but also introduces a novel procedure with which to
analyze the dynamic behavior of other related systems.

8.4 Future extension

Future research could expand the classification of heart failure patients to include
other type of cardiomyopathies and heart diseases in general. The non-linear
analysis of the cardiac, vascular and respiratory activity could contribute to the
detection of etiology-specific patterns, which could aid in improving the prognosis
of the patient, especially in cases where the diagnosis is unclear.
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One limitation of this research is the sample size of the population used in
the different studies. Therefore, one of the main areas of focus for future research
would be the acquisition of a dataset that includes all the signals as well as a
greater number of patients. This new larger dataset would enable the validation
of all the studies proposed in this thesis.

The analysis of other signals like pulse pressure or the pulse transit time using
the methods and procedures presented in this research could help to introduce
new knowledge in the breakdown of physiological responses. Another area for fu-
ture exploration is related to the introduction of clinical information that would
help to add to our understanding of the complex interactions of cardiovascular
regulation. The sum of all these contributions can facilitate the earlier and more
accurate analysis of symptoms and evidence of these diseases. We hope to have
advanced the research into biomedical signal processing, especially with regard
to pseudo-periodic events.
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