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A B S T R A C T

Synchronization in networks is the music of complex systems. Collective rhythms emer-
ging from many interacting oscillators appear across all scales of nature, from the steady
heartbeat and the recurrent patterns in neuronal activity to the decentralized synchrony
in power-grids. The mathematics behind these processes are solid and have significantly
advanced lately, especially in the mean-field problem, where oscillators are all mutually
connected. However, real networks have complex interactions that difficult the analytical
treatment. A general framework is missing and most existing results rely on numerical
and spectral black-boxes that hinder interpretation. Also, the information obtained from
measurements is usually incomplete.

Motivated by these limitations, in this thesis we propose a theoretical study of network-
coupled oscillators under uncertainty. We apply error propagation to predict how a com-
plex structure amplifies noise from the link weights to the synchronization onset, study the
effect of balancing pair-wise and higher-order interactions in synchrony optimization, and
derive weight-tuning schemes to map the synchronization behavior of different structures.
Also, we develop a rigorous geometric unfolding of the synchronized state to tackle decent-
ralized scenarios and to discover optimal local rules that induce global abrupt transitions.
Last, we suggest spectral shortcuts to predict critical points using linear algebra and net-
work representations with limited information. Overall, we provide analytical tools to deal
with oscillator networks under noisy conditions and prove that mechanistic explanations
were hidden behind the prevalent assumptions of complete information. Relevant find-
ing include particular networks that maximize the range of behaviors and the successful
unfolding of the structure-dynamics interplay from a local perspective.

This thesis advances the quest of a general theory of network synchronization built
from mechanistic and geometric principles, a key missing piece in the analysis, design and
control of biological and artificial neural networks and complex engineering systems.
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1
I N T R O D U C T I O N

If physics is the study of symmetries [1], mathematics is the art of drawing them. This
interplay has shed the brightest light on the questions we ask the world, either for the
sake of curiosity or our desire to progress, and has lead to some of the most remarkable
contributions of science in the past. The future is promising too, although some things
are changing. In this century, vast computational power, access to large datasets and auto-
matized pattern recognition are challenging the modeling approach by exploiting all the
available information and interdependencies at different scales. Whether research is driven
by physical reasoning and mathematical modeling; or by lots of data, machine learning
and statistical inference (or a combination of both), the scientific community has reached
a sort of consensus in the last decades about the benefits of following interdisciplinary
approaches, blurring the boundaries between different fields, in an attempt to explain the
complexity of the world [1–3].

In this thesis, we focus on some theoretical aspects of a paradigmatic complex problem,
the synchronization phenomena in networks of coupled oscillators [3–7]. To understand
the key role that this particular problem plays in many –apparently unrelated– fields of
science, it seems appropriate to begin by exploring a few stories and concepts of com-
plex systems more broadly, and await for the music of synchronization to spontaneously
emerge from the interactions between these components.

1.1 the music and mathematics of complex systems

If one thinks about systems that display complexity, probably the first that comes to mind
is precisely the mind itself [8] –or the nervous system– although it also seems to be the
most complicated to understand. It is odd to think about how we think. How can self-
consciousness emerge from a remarkably huge wiring mess of 100 billion neurons and
100 trillion chemical and electrical synapses? Are the cognitive functions of the brain com-
pletely determined by the complex interplay between its structure and neuronal dynam-
ics? [3]. Evidence points towards an affirmative answer [9–11], although it is not exempt of
ethical and philosophical concerns [9, 11]. S. Ramón y Cajal, the precursor of modern neur-
oscience in the late 19th century and probably an early advocate of the complex system ap-
proach, studied and popularized neurons as the elementary building blocks of the nervous
system [12], and suggested that “to understand the universe, we have to understand the
mind." Since then, this interdisciplinary field has advanced in many fronts to pursue this

2
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1.1 the music and mathematics of complex systems 3

quest. We know the physiology of single neurons –cells that can process external signals
and communicate with the rest via oscillatory changes in its membrane voltage, called
action potentials– and how to model them mathematically, through the pioneer works of
A. Hodgkin and A. Huxley [13]. These works opened the door for a computational and
theoretical approach to neuroscience. Meanwhile, in the lab, the measurements of brain
structural connectivity [10, 14] (see an example of the progress in Fig. 1.1 and its caption)
and functional connectivity [11, 15, 16] have significantly improved, leading to many em-
pirical discoveries at different scales. To name a few examples, we learned how activity
in single neurons can encode complex concepts [17] and how a few of them behave in a
group, extending their axons to wire together and spontaneously reach states of collective
firing patterns [16] and sustaining global function after structural damage [18]. It was also
found that different cognitive tasks are mostly driven by activity in specific brain regions
or lobes, while a correct global functionality requires a coordinated orchestration among
the different modules [10, 14]. What seems clear is that the brain is playing a very complex
symphony –a neural code [19]– that we are still far from deciphering [10].Figure-chap1-1





Figure-chap1-2





Figure 1.1: Left: Ramón y Cajal’s drawing of neurons in layers 5–7 of the 15-day-old human in-
fant visual cortex, using what is known as the Golgi method [12]. Right: White matter
fiber architecture of the brain, measured from diffusion spectrum imaging (an advanced
magnetic resonance imaging technique). Shown are association and projection fibers,
color-coded by different directions, from the human conectome project [10].

Among the myriad of complex tasks, long-term memory and learning are perhaps the
ones better understood from physical principles. Much evidence has been collected to sup-
port that, what R. Feynman called “this memory thing” is controlled by several mechan-
isms of synaptic plasticity [20–22], which reinforce and regulate the conductance weights
(the coupling) between neurons that fire together in specific patterns of activity, such that
these functional patterns can be stored in the structure and reached again in the future,
from different external or internal stimuli. These ideas have become much more sophistic-
ated in the experimental realm [11, 23], to the extent of being able to induce fake memories
in mice by stimulating a precise population of neurons in the hippocampus region [23], to
name but one striking result. On another successful and applied path, engineers have been
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inspired by these memory models, and also by neuronal circuits in the visual cortex, to
build artificial neural networks. Since the perceptron model that F. Rosenblatt introduced
in 1958 [24], these algorithms with input, hidden and output layers of connected units are
able to learn patterns from data and make predictions by tuning the connection weights in
a clever way such that the model fits the data. It eventually turned out that, when using a
very deep number of parameters and particular structures (like convolutional or recurrent
neural networks), they can classify almost everything [25] and even outperform humans
in very complex decision-making problems dealing with both complete or incomplete
information (as in the game of chess [26] or, more recently, poker [27]) and also solve long-
standing biological problems like protein unfolding [28], by predicting the spatial shape
of proteins from its DNA sequence with high accuracy.

From a theoretical standpoint, the main issue with these powerful algorithms is that
they are black-boxes. The captured relations are difficult to understand and to generalize
to broader contexts, and, in practice, each problem is tackled somewhat differently, using
brute force, rules of thumb and heuristics, rather than following a minimal model [25].
Something similar occurs with the brain, as the largest and most complicated black-box of
all [10]. Indeed, a pure theoretician would propose another view, and ask: if the brain is the
most complex complex system, which is the simplest one that keeps the minimal complex
ingredients, and, what do we understand about it? The concept of emergence, states of
matter and many-body systems have been in the physics community for a while, and it
was precisely in this context where key models of neural networks that could store and
process information were proposed. One might wonder if other cognitive abilities such as
complex decision-making, creativity, and ultimately the emergence of the mind could be
explained by simple physical models? At least from a historical perspective, here we are
tempted to be somewhat optimistic [1, 8].

We go back in time to the birth of thermodynamics in the 17th century, where the notion
of heat and the arrow of time were explained with the idea of a physical system, which
evolved to thermal equilibrium by minimizing its free energy and increasing its entropy [8,
29]. Phase-transitions, as the one observed in neuronal activity when anesthesia induces
an unconscious state [30] or in an epileptic seizure [31], were described back then in a
phenomenological manner, as abrupt changes in the observable state of a system (like
water boiling or ice melting) when a controllable parameter, for instance temperature or
pressure, was smoothly varied. However, it was not really understood from microscopic
principles. While thermodynamics was a fully consistent theory on its own that made
accurate predictions on the macroscopic properties of matter, it was statistical mechanics,
[29, 32], a more mathematically-driven theory culminated in the 19th century by J.W. Gibbs
and L. Boltzmann among others, that provided a more satisfying picture of the whole
system. The theory bridged the probabilistic counting of the accessible configurations of
particles with the macroscopic properties that one can actually measure, in a crucial step
towards the acceptance of the atomic theory [8, 32].

Under these statistical lenses, temperature and pressure are now well understood as mac-
roscopic properties that emerge from the interactions between molecules and the physics
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behind critical phenomena can be explained using idealized models of interacting spins.
These spin models started with the work of E. Ising in 1920 [29] to describe, using a bin-
ary variable, the magnetic moment of atoms (more precisely, of its electrons) placed in
a lattice. This abstraction was made in an attempt to explain the microscopic origin of
phase-transitions and to understand why ferromagnetic materials had a net macroscopic
magnetic field. In the first model, the ingredients were minimal: a chain of spins, where
configurations that are aligned in the same direction (where adjacent spins take the same
value) have lower energy, and a temperature parameter that controls the strength of fluc-
tuations. Ising showed that a phase transition did not occur in one dimension, but even-
tually L. Onsager in 1944 [33] analytically proved1 that, for two or more dimensions, a
phase transition from a disordered to an ordered state occurred when lowering the tem-
perature below a critical threshold. Spontaneous symmetry breaking [1, 29] appeared to be
the mechanism responsible for the transitions between phases with distinct order and the
anomalous properties of measurable quantities, as heat capacity or susceptibility, around
the critical points [29]. Advancing in the understanding of spin-models, spin-glasses with
random interaction strengths in the lattice were introduced [34–36], and by combining
these spin systems with the ideas of associative learning [20] and synaptic plasticity in the
brain, models as acclaimed as J. Hopfield’s in 1982 [37] provided a physical explanation of
computation.
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Figure 1.2: a) Illustrative sketch of the Ising model in a lattice with all spins aligned in up position
(value +1) b) Illustrative sketch of a spin-glass with random interactions and disordered
spins, here represented as vectors with three components.

Importantly, the idea of combining broken symmetries and disordered systems was at
the core of the early paradigm of complexity and its applications rapidly increased in
different directions, far beyond these toy models of memory and computation. In fact, the
usage of the complex system terminology arises in P. W. Anderson’s 1972 paper, “More is
Different” [1] when discussing decreasing symmetry and increasing complexity in some
condensed matter problems (the field studying the properties of many atoms under strong
interactions), but also in particle physics, biophysics and even in the social sciences. It
seems pertinent to quote P.W. Anderson here [1], on a particularly visionary line of further
research, at least to our interests. “Keeping on with the attempt to characterize types of

1 Lars Onsager won the 1958 Nobel in Chemistry, in part thanks to this result.
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broken symmetry which occur in living things, I find that at least one further phenomenon
seems to be identifiable and either universal or remarkably common, namely, ordering
(regularity or periodicity) in the time dimension. A number of theories of life processes
have appeared in which regular pulsing in time plays an important role."

To describe time well, we have to shift our perspective from a statistical to a more kinetic
and dynamical description of a complex system. Coupled systems of non-linear differential
equations describe the temporal evolution of a set of variables in a phase-space, where non-
linearity simply means that the outputs of the equations are not proportional to the inputs
[38]. These equations can be deterministic or stochastic (with or without noise), ordinary
or partial (with dependencies on only one or more variables), and have revealed to be
the best way to describe the dynamical behavior of many interacting units. Most classical
and quantum systems [8, 29, 38], the forecasting of weather or epidemics [39–42], reaction-
diffusion processes of chemical substances [38], food-web relations in ecological systems
[43], the dynamics of the power-grid between electricity generators and consumers [44,
45], the aforementioned neuronal dynamics [7, 13, 46, 47], and even the turbulence of a
fire flame2 [38] can be modeled as non-linear dynamical systems. Under this framework,
phase transitions are seen as bifurcations in the equilibrium of low-dimensional order
parameters in the phase-space when parameters of the equations are tuned. The appealing
concept of chaos also emerged in this context, in the works of H. Poincaré at the end of the
19th century on the prediction problem of three-body systems in celestial mechanics [48],
and was popularized by E. Lorenz and O. Rössler and their strange attractors [49, 50]. We
learned that very simple models could lead to very complicated dynamics [51], and that
the strong sensibility to initial conditions limit the predictive power of our models beyond
a certain, and rather short, time horizon. Interestingly, even under the pessimist view of
unpredictability, we also started to unveil ways to control this chaos [52, 53].

A key feature of most complex systems is that they are discrete, made of a countable
number of units (like neurons, spins, power-generators or people), which can interact with
each other in different ways. An abstract representation to capture these interactions is a
network or a graph, consisting of a set of vertices (nodes) joined by edges (links) [2]. Graph
theory is the branch of discrete mathematics that studies these objects, and was largely de-
coupled from the analysis of dynamical systems in the last century, where mean-field (all-
to-all interactions), random models or regular lattices of different dimensions were taken
as the underlying medium of interactions, imposing the symmetries of ordinary matter [2,
5, 6]. As we will see, at the end of the 20th century physicists learned an important lesson.
Most of the interaction patterns in nature are complex and irregular (far away from lattices
or random graphs), and the complex interaction patterns dramatically affect the dynam-
ical behavior [54–56]. The study of these complex structures and the dynamical processes
running on top of them, gave birth to the interdisciplinary field of complex networks [2,
6, 57, 58], which brought many tools from statistical, non-linear physics and graph theory.
but also required new methods and models to handle the network complexity.

2 A central name in our work, Y. Kuramoto, also has a great model for the dynamics of a fire flame, known as
the Kuramoto-Sivashinksy equation [38].
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1.1 the music and mathematics of complex systems 7

Overall, non-linearity, complex interaction patterns and interdependencies, emergent
properties like collective behaviors, but also chaos and unpredictability, are some of the
features that many complex systems share, ranging from the brain to the power-grid and
society. An open question that persists throughout different fields is to understand the rich
interplay between structure and dynamics, yet one may feel overwhelmed by the large vari-
ety of existing theoretical perspectives and also by the accurate predictions of integrated,
multiscale and data-driven approaches. Listening to the emergent music of synchroniza-
tion, the striking phenomena of interacting oscillators that synchronize their rhythms in a
spontaneous manner, sounds just great. In fact, its study has already provided key answers
into the origins of temporal order in complex systems, and we are almost at the beginning
of the way. In the words of S. H. Strogatz, “sync is grounded in rigorous mathematical
ideas; it has passed the test of experiment; and it describes and unifies a remarkably wide
range of cooperative behavior in living and non-living matter" [3]. Mathematics and music
have been related since Pythagoras [59], who discovered that simple ratios in the frequen-
cies of a single vibrating string produced a pleasant sensation to the ear, now known as
intervals in music theory, and understood from harmonic analysis of sound waves [59].
Interestingly, the phenomena of synchronization produces a similar pleasant sensation.
In American popular culture, this feeling is captured by the expression “playing in the
pocket”, referring to two or more musicians that play together and are perfectly on-beat,
never missing a note or going off tempo in any way3.

Figure-chap1-1




Figure-chap1-2





Figure 1.3: Emergent collective behavior in a flock of birds, captured with an ornitography, by Xavi
Bou. Reprinted by permission of the author.

It is evident that musicians are not simple oscillators, but analogies are powerful in
mathematics and physics. We will see that treating the interactions of units of very diverse
kinds (neurons, crickets or humans) as a network of coupled phase-oscillators, where os-
cillators are described by a single variable, its phase in a circle, has proven tremendously

3 From www.urbandictionary.com.
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useful to explain empirical phenomena across all scales and disciplines, both qualitatively
and quantitatively [3, 5, 6]. This approach captures the key point: the competition between
the internal rhythms of the units and the coupling with the network leads to distinct col-
lective behaviors, as incoherence or synchrony, but also waves and chaos, and these states
are transited via critical points! A single mechanism appears to be behind the coherent
motion of cardiac pacemaker cells [60], responsible for the heart beat, the simultaneous
flashing of fireflies in Malaysian forests [61], the correct functionality of the decentralized
power-grid [44], and the hypnotic coordination of a flock of birds or a human crowd, like in
the synchrony of applause from the audience after a good concert [5]. Collective rhythms
are difficult to capture in static pictures, by definition. The beautiful work of photographer
Xavi Bou challenges this idea with the concept of ornitographies4, as shown in Fig. 1.3.

As mentioned, the theory behind the phenomena of network synchronization is the
main topic of this dissertation. For this reason, we will not spend more time explaining
the vast number of applications that this framework can tackle, and refer the reader to
the fascinating book by Strogatz and to some great reviews on the field [5–7, 62]. Never-
theless, we have to once again mention the brain, where there is large empirical evidence
that phase-synchronization can describe the physics behind memory processes [63], the
dynamical coordination of modules in different cognitive tasks [10], and also that many
models of pulse-coupled neurons can be mapped into models of phase-oscillators [7, 64,
65]. Paraphrasing Ramón y Cajal, it seems that to understand the mind we have to under-
stand synchronization. Or, in the more eloquent words of Strogatz, “For if consciousness
is the by-product of some sort of neural sync, then just thinking about sync involves a
stupendous act of sync itself" [3]. In fact, the attraction some researchers feel towards syn-
chronization theory may be explained by this self-consistent argument. Perhaps just as
a coincidence, the Kuramoto model –a celebrated mathematical description of synchron-
ization phenomena and the starting point of our research– was initially solved, in the
mean-field case, by employing also a beautiful and ingenious self-consistent argument [4].

In the previous paragraphs, we have attempted to present a broad overview of sev-
eral theoretical approaches to complex systems, and to explain how the paradigm of syn-
chronization in complex networks fits in the whole picture. We do not want to give the
false impression that our work attempts to answer general questions of complex systems,
quite the contrary: we tackle a few specific and technical problems in idealized models of
coupled oscillators, focusing on the largely unexplored roles that network uncertainty and
partial information have in the prediction aspects of the system and in the interpretation
of these predictions. An underlying assumption of this dissertation is that synchroniza-
tion in networks is sufficiently ubiquitous and general such that the findings obtained in
our particular toy models may find validation and application in more realistic scenarios.
Before getting into the main questions of our research and into the technicalities of our
results, we introduce a brief review of previous works on the theory of coupled oscillators
and complex networks, which will uncover some of the most relevant discoveries and also
introduce important concepts to our work.

4 A gallery of ornitographies is displayed on the artist website: www.xavibou.com.
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1.2 in sync : complex networks and the kuramoto model

Synchronization and networks, or graphs, are so ubiquitous in nature that they have prob-
ably been around the curious minds since ancient times5. However, maybe the impercept-
ible interactions that caused sync and the volume of its music were too subtle compared
to all the phenomena we could directly observe from everyday experience. We had to wait
until the end of the scientific revolution to witness the first contributions to synchroniza-
tion and graph theory, and then to the beginning of the current century to unveil the real
potential of combining both fields.

C. Huygens, a Dutch scientist who contributed to the early foundations of probability
theory and optics, to name a few examples, was also an excellent engineer obsessed with
measurement [3]. Huygens invented many kinds of telescopes and also the first pendulum
clock, a significative achievement at the time that increased the precise measure of time
and promised applications in navigability problems, in particular in the estimation of the
longitudinal coordinate on earth from temporal measurements. In 1665 [6], when testing
two of his pendulum clocks, Huygens described that an “odd kind of sympathy” occurred
when both clocks were hanging from the same physical support. Huygens realized that,
if the clocks were sufficiently close to each other, and started to swing at different angles
and speeds, they would completely synchronize their motion after some time, usually
in anti-phase (meaning that the pendulums ended up swinging at the same speed but
in opposite directions), but if the clocks were too far from each other, then synchroniza-
tion would never occur. Huygens had discovered the phenomena of synchronization (also
known now as entrainment or collective rhythms) of coupled oscillators. In his case, the
oscillators were pendulum clocks, coupled via a mechanical interaction through the me-
dium, possibly wood. This mechanism was actually not great for Huygens’ initial interest,
regarding his idea of using two or more clocks to measure time during navigation (because
the synchronization effect would reduce the precision of individual clocks). However, his
finding turned out to be of great importance for many branches of science.

Quite a few years later, in 1736, the Swiss mathematician L. Euler6, studied the possibility
of taking a walk that crosses the seven bridges in the Russian city of Königsberg and
returns to the initial point by crossing each bridge only once. By abstractly representing
the bridges as lines connecting dots (thus creating a network), Euler realized that for that
particular case the answer was negative (by noting that the intermediate vertices in the
path needed to have an even number of links, which was not the case, as can be seen in
Fig. 1.4), proving the first theorem of graph theory [2]. Although research on collective
oscillations, i.e. synchronization processes, and the study of networks and graphs was
largely decoupled for several centuries, it is fun to note that some connections were already
present in the beginning of the path. Euler admired and supported Huygens’ work on the
oscillatory theory of light, which defied Newton’s crepuscular view and ended up being
the accepted paradigm until the later establishment of quantum mechanics [3]. In the end,

5 The etymology of both terms come from classical Greek, from sync “together” and khronos “time” and from
the suffix grapho, meaning “to scratch, to scrape, to graze”, from www.wordreference.com

6 Modestly known in popular terms as the king of mathematics.
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both were fascinated by oscillatory phenomena, and in the case of synchronization in
networks, we will see how this connection is shared among other researchers. Insisting in
Euler, his most beautiful formula in the history of mathematics7, will actually play a key
role in the Kuramoto model, probably the most elegant mathematical description of sync
and the theoretical framework on which this thesis is based.
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FIG. 1 Small-world network construction from a regular lat-
tice by rewiring links with a certain probability (randomness),
as proposed by Watts and Strogatz (1998)

it has also contributed to the understanding of general
emergent properties of networked systems. The main
goal of this review is precisely to revise the research un-
dertaken so far in order to understand how synchroniza-
tion phenomena are affected by the topological substrate
of interactions, in particular when this substrate is a com-
plex network.

The review is organized as follows. We first introduce
the basic mathematical descriptors of complex networks
that will be used henceforth. Next, we focus on the syn-
chronization of populations of oscillators. Section IV is
devoted to the analysis of the conditions for the stability
of the fully synchronized state using the Master Stabil-
ity Function (MSF) formalism. Applications in different
fields of science are presented afterwards and some per-
spectives provided. Finally, the last section rounds off
the review by giving our conclusions.

II. COMPLEX NETWORKS IN A NUTSHELL

There exist excellent reviews devoted to the structural
characterization and evolution of complex networks (Al-
bert and Barabási, 2002; Boccaletti et al., 2006; Costa
et al., 2007; Dorogovtsev and Mendes, 2002; Newman,
2003b; Strogatz, 2001). Here we summarize the main fea-
tures and standard measures used in complex networks.
The goal is to provide the reader a brief overview of the
subject as well as to introduce some notation that will
be used throughout the review.

The mathematical abstraction of a complex network
is a graph G comprising a set of N nodes (or vertices)
connected by a set of M links (or edges), being ki the
degree (number of links) of node i. This graph is repre-
sented by the adjacency matrix A, with entries aij = 1
if a directed link from j to i exists, and 0 otherwise. In
the more general case of a weighted network, the graph is
characterized by a matrix W , with entries wij , represent-
ing the strength (or weight) of the link from j to i. The
investigation of the statistical properties of many natural
and man-made complex networks revealed that, although
representing very different systems, some categorization
of them is possible. The most representative of these

properties refers to the degree distribution P (k), that in-
dicates the probability of a node to have a degree k. This
fingerprint of complex networks has been taken for a long
time as its most differentiating factor. However, several
other measures help to precise the categorization. Exam-
ples are the average shortest path length ! = 〈dij〉, where
dij is the length of the shortest path between node i and
node j, and the clustering coefficient C that accounts for
the fraction of actual triangles (three vertices forming a
loop) over possible triangles in the graph.

The first classification of complex networks is related to
the degree distribution P (k). The differentiation between
homogeneous and heterogeneous networks in degree is in
general associated to the tail of the distribution. If it
decays exponentially fast with the degree we refer to as
homogeneous networks, the most representative example
being the Erdös-Rényi (ER) random graph (Erdös and
Rényi, 1959). On the contrary, when the tail is heavy one
can say that the network is heterogeneous. In particular,
SF networks are the class of networks whose distribution
is a power-law, P (k) ∼ k−γ , the Barabási-Albert (BA)
model (Barabási and Albert, 1999) being the paradig-
matic model of this type of graph. This network is grown
by a mechanism in which all incoming nodes are linked
preferentially to the existing nodes. Note that the limit-
ing case of lattices, or regular networks, corresponds to
a situation where all nodes have the same degree.

This categorization can be enriched by the behavior
of !. For a lattice of dimension d containing N vertices,
obviously, ! ∼ N1/d. For a random network, a rough
estimate for ! is also possible. If the average number of
nearest neighbors of a vertex is k̄, then about k̄" vertices
of the network are at a distance ! from the vertex or
closer. Hence, N ∼ k̄" and then ! ∼ ln(N)/ ln(k̄) , i.e.,
the average shortest-path length value is small even for
very large networks. This smallness is usually referred to
as the SW property. Associated to distances, there exist
many measures that provide information about ”central-
ity” of nodes. For instance, one can say that a node is
central in terms of the relative distance to the rest of the
network. One of the most frequently used centrality mea-
sures in the physics literature is the betweenness (load in
some papers), that accounts for the number of shortest
paths between any pair of nodes in the network that go
through a given node or link.

The clustering coefficient C is also a discriminating
property between different types of networks. It is usu-
ally calculated as follows:

C =
1

N

N∑

i=1

Ci =
1

N

N∑

i=1

ni

ki(ki − 1)/2
, (1)

where ni is the number of connections between nearest
neighbors of node i, and ki is its degree. A large cluster-
ing coefficient implies many transitive connections and
consequently redundant paths in the network, while a
low C implies the opposite.

Finally, it is worth mentioning that many networks
have a community structure, meaning that nodes are

regular
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reader to the excellent review of [17] on more details on the Kuramoto model and all its
variants in the mean-field case or in lattices of different dimensions. In this dissertation,
we are interested in another source of complexity, the underlying network of interactions.

The study of networks followed its own pace during the 20th century. We must comment
on three lines. Random graphs were introduced by P. Erdos and A Renyi in 1959 and
described networks where a certain number of links are placed at random (or equivalently
each pair of nodes has a probability p of being connected). In this model, the degrees of
the nodes (the sum of connections to their neighbors) are distributed in a binomial form,
with

P(k) =

✓
N � 1

k

◆
pk(1 � p)N�1�k (1.2)

where k is the degree, N the number of nodes and p the parameter of the model. In the
large size limit, this distribution is well approximated by a Poissonian,

P(k) =
(pN)ke�pN

k!
(1.3)

which can be approximated by a Poisson distribution. Random models found applicability
in the study of percolation (adding or removing nodes or links), as we will discuss in more
detail in chapter 5.

The other lines are spectral graph theory and random matrix theory, the later being
introduced by E. Wigner in physics to study the energy spectrum of heavy atomic nucleus
in terms of the spectra of a random a matrix. These matrices were later very relevant to
ecology, in the study of the stability of large food-webs [15, 29]. To understand what is the
spectra, first we need to think of networks as matrices. For instance, the representation of
the Konigsberg network in Fig. 1.4.a) with the adjacency matrix A is given by

A =

0
BBBBBB@

0 1 0 2

1 0 1 1

0 1 0 2

2 1 2 0

1
CCCCCCA

(1.4)

Where a non-zero entry aij = 1 represents the undirected (symmetric) interactions between
nodes (i, j) and aij = 2 represents the multi-edges in the network. In this notation, the
degree is simply ki = ÂN

j=1 aij, but if the network was directed we should consider both
in and out-degree, or the so-called strength if the entries were weighted. We note that
throughout this thesis we will work with different types of representations (Laplacian,
normalized adjacency) and network conditions, which will be introduced at the specific
sections. We say that matrix A is diagonalizable if it can be written as A = P�1LP,
where L is a diagonal matrix containing the eigenvalues of A and P is a matrix with the
eigenvectors as columns. If you think of a matrix as an operator that acts on a vector,
then the eigenvectors define the directions where the matrix only acts by stretching
(with magnitudes given by the eigenvalues), without rotating. We know well the spectra
of networks only in some particular cases, and in general, it is a challenging problem.

Figure 1.4: Königsberg network, assumed symmetric, and its representation in the adjacency matrix.
Node indices are labelled clock-wise, starting from the top node, and multi-edges are
captured by entries with a value of two.

It is important to think of networks as matrices. For instance, the representation of the
Königsberg network using the adjacency matrix A is given in Fig. 1.4, where zero entries
represents an absent connection, aij = 1 represents an unweighted connection from j-node
to i-node and aij = 2 captures a double edge. In this notation, the degree (or strength for
weighted networks) is simply ki = ∑N

j=1 aij, i.e. the sum of incoming links or weights, but
if the network was directed we should consider both in and out-degree. Throughout this
thesis we will work with several types of representations (Laplacian, normalized adjacency)
and different network conditions, which will be presented at the specific sections.

It is worth introducing the network spectra due to its key role in the dynamics. We say
that A is diagonalizable if it can be written as A = P−1ΛP, where Λ is a diagonal matrix
containing the eigenvalues of A and P is a matrix with the eigenvectors as columns. If
one thinks of a matrix as an operator that acts on a vector, then the eigenvectors define
the directions where the matrix only acts by stretching (with magnitudes given by the
eigenvalues), without rotating [2, 66]. The spectra of networks is known only in some
particular cases, and in general, it is a challenging problem [2, 6, 66–68]. Luckily, there
are some important theorems available. For instance, the Perron-Frobenious theorem [2]
tells us that if a matrix A is square (here R4×4) with positive entries, then the largest
eigenvalue is real and unique, and from the Gerschgorin circle theorem [69], we know that
the eigenvalues of A will be inside N circles with centers at aii and radius ri = ∑j |aij|, thus
bounded in (−4, 4). A numerical method is used to compute the spectra of the previous
matrix, where the eigenvalues (the diagonal entries of Λ) are given by λ1 ≈ 3.63, λ2 = 0,
λ3 ≈ −0.77, λ4 ≈ −2.87, which obviously satisfy the two mentioned theorems. In this
thesis, we will use some more tools from these fields, which will be described in the
specific chapters. After this technical detour, we can return to our timeline of sync.

7 In words of R. P. Feynman [8].
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Since Huygens, synchronization in the natural realm kept fascinating researchers in sev-
eral unrelated fields, as in the contemplation of simultaneous flashing of fireflies in Malay-
sian forests [61], or the observation of chemical periodic waves and entrainment of men-
strual cycles among women [3]. However, the emergence of periodic collective phenomena
was poorly understood by physical principles (in terms of how and why it happened)
and was given very little attention compared to many other branches of physics [3]. It
was in the biological context of neural oscillations (the so-called brain waves), where the
first quantitative leap in terms of mathematical modeling was achieved. Mathematician N.
Wiener, most known for his contributions to stochastic processes8, claimed in 1958 [70] to
have measured, with EEG technics, the spectrum of alpha waves (one type of brain waves
with a frequency between 8 and 12 Hz) with an astonishing accuracy at the time, and
published the qualitative distribution of this spectrum, as shown in Fig. 1.5.a), which had
a surprising peak in the center and then two additional peaks after a dip shallow.
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FIG. 1 Small-world network construction from a regular lat-
tice by rewiring links with a certain probability (randomness),
as proposed by Watts and Strogatz (1998)

it has also contributed to the understanding of general
emergent properties of networked systems. The main
goal of this review is precisely to revise the research un-
dertaken so far in order to understand how synchroniza-
tion phenomena are affected by the topological substrate
of interactions, in particular when this substrate is a com-
plex network.

The review is organized as follows. We first introduce
the basic mathematical descriptors of complex networks
that will be used henceforth. Next, we focus on the syn-
chronization of populations of oscillators. Section IV is
devoted to the analysis of the conditions for the stability
of the fully synchronized state using the Master Stabil-
ity Function (MSF) formalism. Applications in different
fields of science are presented afterwards and some per-
spectives provided. Finally, the last section rounds off
the review by giving our conclusions.

II. COMPLEX NETWORKS IN A NUTSHELL

There exist excellent reviews devoted to the structural
characterization and evolution of complex networks (Al-
bert and Barabási, 2002; Boccaletti et al., 2006; Costa
et al., 2007; Dorogovtsev and Mendes, 2002; Newman,
2003b; Strogatz, 2001). Here we summarize the main fea-
tures and standard measures used in complex networks.
The goal is to provide the reader a brief overview of the
subject as well as to introduce some notation that will
be used throughout the review.

The mathematical abstraction of a complex network
is a graph G comprising a set of N nodes (or vertices)
connected by a set of M links (or edges), being ki the
degree (number of links) of node i. This graph is repre-
sented by the adjacency matrix A, with entries aij = 1
if a directed link from j to i exists, and 0 otherwise. In
the more general case of a weighted network, the graph is
characterized by a matrix W , with entries wij , represent-
ing the strength (or weight) of the link from j to i. The
investigation of the statistical properties of many natural
and man-made complex networks revealed that, although
representing very different systems, some categorization
of them is possible. The most representative of these

properties refers to the degree distribution P (k), that in-
dicates the probability of a node to have a degree k. This
fingerprint of complex networks has been taken for a long
time as its most differentiating factor. However, several
other measures help to precise the categorization. Exam-
ples are the average shortest path length ! = 〈dij〉, where
dij is the length of the shortest path between node i and
node j, and the clustering coefficient C that accounts for
the fraction of actual triangles (three vertices forming a
loop) over possible triangles in the graph.

The first classification of complex networks is related to
the degree distribution P (k). The differentiation between
homogeneous and heterogeneous networks in degree is in
general associated to the tail of the distribution. If it
decays exponentially fast with the degree we refer to as
homogeneous networks, the most representative example
being the Erdös-Rényi (ER) random graph (Erdös and
Rényi, 1959). On the contrary, when the tail is heavy one
can say that the network is heterogeneous. In particular,
SF networks are the class of networks whose distribution
is a power-law, P (k) ∼ k−γ , the Barabási-Albert (BA)
model (Barabási and Albert, 1999) being the paradig-
matic model of this type of graph. This network is grown
by a mechanism in which all incoming nodes are linked
preferentially to the existing nodes. Note that the limit-
ing case of lattices, or regular networks, corresponds to
a situation where all nodes have the same degree.

This categorization can be enriched by the behavior
of !. For a lattice of dimension d containing N vertices,
obviously, ! ∼ N1/d. For a random network, a rough
estimate for ! is also possible. If the average number of
nearest neighbors of a vertex is k̄, then about k̄" vertices
of the network are at a distance ! from the vertex or
closer. Hence, N ∼ k̄" and then ! ∼ ln(N)/ ln(k̄) , i.e.,
the average shortest-path length value is small even for
very large networks. This smallness is usually referred to
as the SW property. Associated to distances, there exist
many measures that provide information about ”central-
ity” of nodes. For instance, one can say that a node is
central in terms of the relative distance to the rest of the
network. One of the most frequently used centrality mea-
sures in the physics literature is the betweenness (load in
some papers), that accounts for the number of shortest
paths between any pair of nodes in the network that go
through a given node or link.

The clustering coefficient C is also a discriminating
property between different types of networks. It is usu-
ally calculated as follows:

C =
1

N

N∑

i=1

Ci =
1

N

N∑

i=1

ni

ki(ki − 1)/2
, (1)

where ni is the number of connections between nearest
neighbors of node i, and ki is its degree. A large cluster-
ing coefficient implies many transitive connections and
consequently redundant paths in the network, while a
low C implies the opposite.

Finally, it is worth mentioning that many networks
have a community structure, meaning that nodes are

regular
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The other lines are spectral graph theory and random matrix theory, the later being
introduced by E. Wigner in physics to study the energy spectrum of heavy atomic nucleus
in terms of the spectra of a random a matrix. These matrices were later very relevant to
ecology, in the study of the stability of large food-webs [15, 29]. To understand what is the
spectra, first we need to think of networks as matrices. For instance, the representation of
the Konigsberg network in Fig. 1.4.a) with the adjacency matrix A is given by

A =

0
BBBBBB@

0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0

1
CCCCCCA

(1.4)

Where a non-zero entry aij = 1 represents the undirected (symmetric) interactions between
nodes (i, j). In this notation, the degree is simply ki = ÂN

j=1 aij, but if the network was
directed we should consider both in and out-degree, or the so-called strength if the entries
were weighted. We note that throughout this thesis we will work with different types of
representations (Laplacian, normalized adjacency) and network conditions, which will
be introduced at the specific sections. We say that matrix A is diagonalizable if it can
be written as A = P�1LP, where L is a diagonal matrix containing the eigenvalues of
A and P is a matrix with the eigenvectors as columns. If you think of a matrix as an
operator that acts on a vector, then the eigenvectors define the directions where the matrix
only acts by stretching (with magnitudes given by the eigenvalues), without rotating.
We know well the spectra of networks only in some particular cases, and in general,
it is a challenging problem. Luckily, there are some important theorems available. For
instance, the Perron-Frobenious one tell us that since matrix A is square (here R4⇥4) with
positive entries, then the largest eigenvalue is real and unique, and from Gershgorin
circle theorem, that the eigenvalues of A will be inside N circles with centers aii = and
radius ri = Âj |aij|, thus bounded in (�3, 3). A numerical method is used to compute
the spectra of the previous matrix, where the eigenvalues (the diagonal entries of L) in
decreasing order) are approximately given by l1 ⇡ 2.56, l2 = 0, l3 = �1, l4 ⇡ �1.56,
which obviously satisfy the two mentioned theorems. We will use some more tools from
these fields, which will described in the specific chapters.

Despite the advance of the mathematics of networks (mostly on random or very symmet-
ric graphs), it was thanks to works of sociologists as S. Millgram, that complex networks
entered the game. It was around 1998 when D. Watts and S.H. Strogatz wondered about
synchronization on top of small-world networks, a concept introduced by the famous ex-
periment of Milgram about the six degrees of separation in the world, which showed that
social networks had very short network paths. The key idea behind the model of Watts
and Strogatz was to consider both a regular (a ring) and a random network as the two
limiting cases, with interpolation parameter p, as shown in Fig. 1.4.b). Small-world net-
works would lie in between, displaying both clustering (your neighbors are also neighbors

scale-free
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Figure 1.5: a) Qualitative results of the distribution of α-wave frequencies in the brain, by N. Wiener
and b) Distribution of effective frequencies in the Kuramoto model. Note that in b), the
entrained oscillators have an effective frequency of zero, meaning that some oscillators
have synchronized their frequency completely.

Wiener conjectured that this spectrum was the consequence of synchronization in the
collective spiking rhythms of neurons, otherwise it would be distributed normally. The
peak of the center would correspond to the neurons or groups of neurons with similar
internal rhythms, that are able to synchronize their pace at the mean effective frequency,
approximately, and then the rest of neurons would not be synchronized, thus having an
effective frequency in the tails of the distribution. This data was never revised in detail
[3] and Wiener did not successfully model his prediction either, but a few years later,
in 1975, Y. Kuramoto [4], a young Japanese statistical physicist, inspired by the work of
A. Winfree [71], proposed and solved a model of globally-coupled phase-oscillators that

8 The differential equations with uncorrelated noise on the position and velocity take his name [38].

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



12 introduction

displayed a phase transition from disorder to order at a given critical coupling strength
and whose effective distribution of frequencies, after the transition, resembled very much
the spectrum hypothesized by Wiener, as observed in Fig. 1.5.b).

The Kuramoto model in Eq. (1.1) was the beginning of some promising and novel lines
of research in complex systems,

θ̇i = ωi + K
N

∑
j=1

sin(θj − θi), ∀ i ∈ 1, . . . , N, (1.1)

where θi is the phase (angle) of the i-th oscillator, θ̇i its time derivative, ωi the internal fre-
quency, drawn from some distribution g(ω) and K is the coupling strength. In this thesis,
we will follow the mathematical approach proposed by Kuramoto, and the details on his
celebrated model and its self-consistent analysis are presented with more care in 2.1. This
model became a paradigmatic framework in the community of statistical and non-linear
physics studying large systems of phase oscillators [5], and many relevant results were
obtained in the last two decades of the 20th century, considering a mean-field, all-to-all
network, or lattices of different dimensions. Mathematical success was achieved by tak-
ing the thermodynamic limit of the model (large size) and using several techniques, as the
Fokker-Planck formalism including white noise in the process. Also, many interesting vari-
ations of the problem were studied, introducing delay (a finite velocity in the interactions),
inertial effects (considering the variation in speed, not only in phase), external random
fields [72] or frustrated coupling strengths [73]. Important connections between the Kur-
amoto and the Hopfield Model were made, in an important step to explain the physics
behind computation and memory processes [74]. We refer the reader to the excellent re-
view of [5] on more details on the Kuramoto model and all its variants in the mean-field
case or in lattices of different dimensions. In this dissertation, we are interested in another
source of complexity, the underlying network of interactions.

Before diving into the nuances of complex networks, it is important to mention here that
other approaches have been considered to model synchronization processes beyond phase
models. Pulse-coupled systems, where the oscillators have a charging voltage until they
cross a threshold and only then they fire (integrate-and-fire) are another way of describing
many types of oscillators, like pacemaker cells [60] or neurons [7, 75, 76]. Interestingly,
some of these models can be mapped into phase-models [7, 65], and also non-linear types
of limit-cycle oscillators can be described, in first approximation, by its phase [77–79]. An-
other direction was to use the master stability function, a framework to analyze the stability
of the fully-synchronized state of identical oscillators [6, 80]. In this context, synchroniza-
tion of identical coupled chaotic systems was discovered [53]; a phenomenon that at first
glance seemed counterintuitive, because these systems were able to completely synchron-
ize their trajectories, which were chaotic in isolation, even starting from different initial
conditions. This finding promised applications in cryptography for some time [3]. In any
case, the key role of complex networks and its ubiquity in nature was disregarded in most
of these theoretical approaches during the last century, probably because empirical data
was scarce and the mathematics of networks were still at an early stage.
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1.2 in sync : complex networks and the kuramoto model 13

The study of networks followed its own pace during the 20th century. We must comment
on three lines relevant to our research. Random graphs were introduced by P. Erdös and
A. Rényi in 1959 [81] and described networks where a certain number of links are placed
at random (or similarly, each pair of nodes has a probability p of being connected). In this
model, the degrees of the nodes (the sum of connections to their neighbors) are distributed
in a binomial form, with

P(k) =
(

N − 1
k

)
pk(1− p)N−1−k, (1.2)

where k is the degree, N the number of nodes and p the parameter of the model [2]. In the
large size limit, this distribution is well approximated by a Poisson,

P(k) =
(pN)ke−pN

k!
, (1.3)

centered at pN ≈ 〈k〉, and being bell-shaped for a wide range of p. Random models found
applicability in the study of percolation [82] (adding or removing nodes or links), as we
will discuss in more detail in chapter 5. The other lines are spectral graph theory [67, 68,
83] and random matrix theory [84], the latter being introduced by E. Wigner in physics to
study the energy spectrum of heavy atomic nucleus in terms of the spectra of a random a
matrix [85]. These matrices have played a key role in many problems of theoretical physics
and condensed matter [84, 86], and also found applications in large complex systems, as
in the study of the stability of ecological food-webs [43, 87]. Overall, the advance of graph
theory in these lines was key to the study of dynamical processes in future years. For
instance, M. Fiedler in the seventies found important results relating the spectra of the
Laplacian matrix of the graph L = D − A (where D is the diagonal matrix of degrees)
to the problem of graph partitioning [88], i.e. finding the minimal cuts to split the graph
in disconnected components, which found many applications in network synchronization
and community detection later on. However, it was thanks to applied works of sociologists
as S. Milgram and H. A. Simon that complex networks entered the modeling game.

It was around 1998 when D. Watts and S. H. Strogatz wondered about synchronization
on top of small-world networks [54], a concept introduced by the famous experiment of
Milgram about the six degrees of separation in the world [89], which showed that social
networks had very short network paths. The key idea behind the model of Watts and
Strogatz (WS) was to consider both a regular (a ring) and a random network as the two
limiting cases, with interpolation parameter p, as shown in Fig. 1.6.a). Small-world net-
works would lie in between, displaying both clustering (your neighbors are also neighbors
between them, as in a ring or a lattice) and short average path lengths (as in the ran-
dom case), both being relevant features of real networks. An important property that was
missing in the WS model, and observed in the web, mail or acting networks, and many
more examples, was scaling [55] –the signature of phase-transitions [58]– meaning that the
degree distributions in these networks were found to approximately follow a power-law
p(k) ∼ k−γ, with many empirical networks with low values of exponent, between 2 and 4,
thus being very heterogeneous in degree. Power-law distributions span several orders of
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magnitude, and they do not have a well-defined scale (that is why they are called scale-free
networks) [2, 66]. In the infinite size, the variance (and higher-moments) of the degree dis-
tribution diverge, because of the long tails of the distribution, meaning that it is not easy to
quantify and predict rare events. In networks, this effect translate into the concept of hubs,
super well-connected nodes (another way of having short network paths) that produce
the paradox of friendship9 and many other very noticeable effects in economy. Hubs are
found in the brain and also in social and infrastructure networks, to name some examples,
and are crucial to global function [2, 90]. Several models, as the well-known preferential
attachment [55, 90] and some modifications to control the exponent or the clustering in
the scale-free network [91–93], were proposed to generate these networks by exploiting
the mechanism of cumulative advantage [90], meaning that rich nodes, with more connec-
tions, get richer, a concept that already modelled by H.A. Simon in the sixties and D.J.S.
Price in the seventies [2]). Examples of small WS and SF networks are shown in Fig. 1.6.
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FIG. 1 Small-world network construction from a regular lat-
tice by rewiring links with a certain probability (randomness),
as proposed by Watts and Strogatz (1998)

it has also contributed to the understanding of general
emergent properties of networked systems. The main
goal of this review is precisely to revise the research un-
dertaken so far in order to understand how synchroniza-
tion phenomena are affected by the topological substrate
of interactions, in particular when this substrate is a com-
plex network.

The review is organized as follows. We first introduce
the basic mathematical descriptors of complex networks
that will be used henceforth. Next, we focus on the syn-
chronization of populations of oscillators. Section IV is
devoted to the analysis of the conditions for the stability
of the fully synchronized state using the Master Stabil-
ity Function (MSF) formalism. Applications in different
fields of science are presented afterwards and some per-
spectives provided. Finally, the last section rounds off
the review by giving our conclusions.

II. COMPLEX NETWORKS IN A NUTSHELL

There exist excellent reviews devoted to the structural
characterization and evolution of complex networks (Al-
bert and Barabási, 2002; Boccaletti et al., 2006; Costa
et al., 2007; Dorogovtsev and Mendes, 2002; Newman,
2003b; Strogatz, 2001). Here we summarize the main fea-
tures and standard measures used in complex networks.
The goal is to provide the reader a brief overview of the
subject as well as to introduce some notation that will
be used throughout the review.

The mathematical abstraction of a complex network
is a graph G comprising a set of N nodes (or vertices)
connected by a set of M links (or edges), being ki the
degree (number of links) of node i. This graph is repre-
sented by the adjacency matrix A, with entries aij = 1
if a directed link from j to i exists, and 0 otherwise. In
the more general case of a weighted network, the graph is
characterized by a matrix W , with entries wij , represent-
ing the strength (or weight) of the link from j to i. The
investigation of the statistical properties of many natural
and man-made complex networks revealed that, although
representing very different systems, some categorization
of them is possible. The most representative of these

properties refers to the degree distribution P (k), that in-
dicates the probability of a node to have a degree k. This
fingerprint of complex networks has been taken for a long
time as its most differentiating factor. However, several
other measures help to precise the categorization. Exam-
ples are the average shortest path length � = 〈dij〉, where
dij is the length of the shortest path between node i and
node j, and the clustering coefficient C that accounts for
the fraction of actual triangles (three vertices forming a
loop) over possible triangles in the graph.

The first classification of complex networks is related to
the degree distribution P (k). The differentiation between
homogeneous and heterogeneous networks in degree is in
general associated to the tail of the distribution. If it
decays exponentially fast with the degree we refer to as
homogeneous networks, the most representative example
being the Erdös-Rényi (ER) random graph (Erdös and
Rényi, 1959). On the contrary, when the tail is heavy one
can say that the network is heterogeneous. In particular,
SF networks are the class of networks whose distribution
is a power-law, P (k) ∼ k−γ , the Barabási-Albert (BA)
model (Barabási and Albert, 1999) being the paradig-
matic model of this type of graph. This network is grown
by a mechanism in which all incoming nodes are linked
preferentially to the existing nodes. Note that the limit-
ing case of lattices, or regular networks, corresponds to
a situation where all nodes have the same degree.

This categorization can be enriched by the behavior
of �. For a lattice of dimension d containing N vertices,
obviously, � ∼ N1/d. For a random network, a rough
estimate for � is also possible. If the average number of
nearest neighbors of a vertex is k̄, then about k̄� vertices
of the network are at a distance � from the vertex or
closer. Hence, N ∼ k̄� and then � ∼ ln(N)/ ln(k̄) , i.e.,
the average shortest-path length value is small even for
very large networks. This smallness is usually referred to
as the SW property. Associated to distances, there exist
many measures that provide information about ”central-
ity” of nodes. For instance, one can say that a node is
central in terms of the relative distance to the rest of the
network. One of the most frequently used centrality mea-
sures in the physics literature is the betweenness (load in
some papers), that accounts for the number of shortest
paths between any pair of nodes in the network that go
through a given node or link.

The clustering coefficient C is also a discriminating
property between different types of networks. It is usu-
ally calculated as follows:

C =
1

N

N∑

i=1

Ci =
1

N

N∑

i=1

ni

ki(ki − 1)/2
, (1)

where ni is the number of connections between nearest
neighbors of node i, and ki is its degree. A large cluster-
ing coefficient implies many transitive connections and
consequently redundant paths in the network, while a
low C implies the opposite.

Finally, it is worth mentioning that many networks
have a community structure, meaning that nodes are

regular small-world random

p

Königsberg problem

a) b)

scale-free
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reader to the excellent review of [17] on more details on the Kuramoto model and all its
variants in the mean-field case or in lattices of different dimensions. In this dissertation,
we are interested in another source of complexity, the underlying network of interactions.

The study of networks followed its own pace during the 20th century. We must comment
on three lines. Random graphs were introduced by P. Erdos and A Renyi in 1959 and
described networks where a certain number of links are placed at random (or equivalently
each pair of nodes has a probability p of being connected). In this model, the degrees of
the nodes (the sum of connections to their neighbors) are distributed in a binomial form,
with

P(k) =

✓
N � 1

k

◆
pk(1 � p)N�1�k (1.2)

where k is the degree, N the number of nodes and p the parameter of the model. In the
large size limit, this distribution is well approximated by a Poissonian,

P(k) =
(pN)ke�pN

k!
(1.3)

which can be approximated by a Poisson distribution. Random models found applicability
in the study of percolation (adding or removing nodes or links), as we will discuss in more
detail in chapter 5.

The other lines are spectral graph theory and random matrix theory, the later being
introduced by E. Wigner in physics to study the energy spectrum of heavy atomic nucleus
in terms of the spectra of a random a matrix. These matrices were later very relevant to
ecology, in the study of the stability of large food-webs [15, 29]. To understand what is the
spectra, first we need to think of networks as matrices. For instance, the representation of
the Konigsberg network in Fig. 1.4.a) with the adjacency matrix A is given by

A =

0
BBBBBB@

0 1 0 2

1 0 1 1

0 1 0 2

2 1 2 0

1
CCCCCCA

(1.4)

Where a non-zero entry aij = 1 represents the undirected (symmetric) interactions between
nodes (i, j) and aij = 2 represents the multi-edges in the network. In this notation, the
degree is simply ki = ÂN

j=1 aij, but if the network was directed we should consider both
in and out-degree, or the so-called strength if the entries were weighted. We note that
throughout this thesis we will work with different types of representations (Laplacian,
normalized adjacency) and network conditions, which will be introduced at the specific
sections. We say that matrix A is diagonalizable if it can be written as A = P�1LP,
where L is a diagonal matrix containing the eigenvalues of A and P is a matrix with the
eigenvectors as columns. If you think of a matrix as an operator that acts on a vector,
then the eigenvectors define the directions where the matrix only acts by stretching
(with magnitudes given by the eigenvalues), without rotating. We know well the spectra
of networks only in some particular cases, and in general, it is a challenging problem.

Figure 1.6: Toy examples of a) the Watts-Strogatz model interpolating between a ring and a random
network and, b) a scale-free network where hubs are represented as gray dots. Note that
for networks to have a true power-law distribution in the degrees, the size of the network
should be much larger such that the degrees can reach several orders of magnitude.

With the aforementioned works, we entered the current century and the foundations
of complex networks (and the dynamics on top of them) were rapidly established [2, 6,
56–58]. Null models were proposed to compare against empirical networks and analyze
the significance of its properties. The configuration model [94] (random networks with a
fixed degree distribution) and, more generally, exponential random graphs [95] (impos-
ing any kind of constraints in a statistical mechanics formalism) are good examples. The
stochastic block model [2, 96] has been used also to deal with communities, another prom-
inent feature of complex networks where different modules are defined by having more
connections inside than between them [2, 97]. Modularity maximization is the challen-
ging optimization problem that attempts to find these communities. It has received a huge
amount of attention due to applications in graph partitioning [98], in neuroscience [14]
and social network analysis [99], to name a few examples. In the opposite limit of modular
networks, we have bipartite networks, that connect nodes of different type and are of high

9 Due to the presence of hubs (celebrities, influencers), on average, your friends have more friends than you [2].
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relevance in many biological and technological systems [2]. All these network features, the
relevant algorithms and different networks models, are excellently reviewed in the book
of M. Newman [2].

In parallel, the properties of complex networks were studied in systems of Kuramoto
oscillators, first with numerical simulations, but rapidly by analytical means [6, 62]. We
learned that small-world networks synchronize faster than rings (because long-range inter-
actions facilitate the emergence of global synchrony) [54, 100], and also that heterogeneous
networks anticipate the onset of synchronization with respect to homogeneous ones and
follow different synchronization routes [101], as observed in Fig. 1.7.a). Approximations
for the synchronization onset in networks were obtained [102–104], and many new phe-
nomena were discovered [6, 62]. Breathing and standing chimeras [105, 106] (populations
of identical oscillators where only a part of them synchronize, due to the effects of the
network), remote synchronization [107] (where nodes can be synchronized even if they
are not connected, due to network symmetries), explosive transitions [108, 109] and chaos
[110] (due to correlations between the structure and the frequencies) and other optimal
and counter-intuitive properties, [111] as the benefits of directed and weighted networks
[112–114] or noise [110, 115]. Importantly, the role that the spectra of network matrices
plays on synchronization dynamics has become more understood [116–118] and in turn,
this spectral view of sync allowed to gain insight from the underlying networks, finding
topological scales [116] as observed in Fig. 1.7.b), dynamical communities [119] and ideas
for coarse-graining techniques [120].

Figure-chap1-5
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should have the same phase. We expect this process to
occur at different time scales if a clear community struc-
ture exists. Thus, the dynamical route towards the global
attractor will reveal different topological structures, pre-
sumably those which represent communities. Therefore,
it is the complete dynamical process what unveils the
whole organization at all scales, from the microscale at a
very early stages up to the macroscale at the end of the
time evolution. On the contrary, those systems endowed
with a regular topological structure will display a trivial
dynamics with a single time scale for synchronization.

To study this phenomena, instead of considering a
global observable, we define a local order parameter mea-
suring the average of the correlation between pairs of os-
cillators

ρij(t) =< cos(θi(t) − θj(t)) > (2)

where the brackets stand for the average over initial ran-
dom phases. The main advantage of this approach is that
it allows to trace the time evolution of pairs of oscillators
and therefore to identify compact clusters reminiscent of
the existence of communities.

To give evidence of the aforementioned facts we have
analyzed the dynamics towards synchronization –time
evolution of ρij(t)– in computer-generated graphs with
a hierarchical community structure. In [21] the authors
proposed models of networks with a well defined commu-
nity structure, that have been used as a benchmark for
different community detection algorithms [6]. Here, we
propose a generalization of this model that includes two
hierarchical levels of communities. The graphs we gen-
erate are as follows: we prescribe, in a set of 256 nodes,
16 compartments that will represent our first community
organizational level, and four compartments containing
each one four different compartments of the above first
level, that define the second organizational level of the
network. The internal degree of nodes at first level zin1

and the internal degree of nodes at second level zin2
keep

an average degree zin1
+ zin2

+ zout = 18. From now
on, networks with two hierarchical levels are indicated as
zin1

- zin2
, e.g. a network with 13-4 means 13 links with

the nodes of its first hierarchical level community (more
internal), 4 links with the rest of communities that form
the second hierarchical level (more external) and 1 link
with any community of the rest of the network.

In Fig. 1 we represent ρij(t) at the same time t for two
slightly different hierarchical networks 13-4 and 15-2. In
the two figures we can identify the two levels of the hier-
archical distribution of communities. The network 13-4
(left) is very close to a state in which the four large groups
are almost synchronized whereas the network 15-2 (right)
still presents some of the smaller groups of synchronized
oscillators, and the larger group starting to synchronize,
coherently with their topological structure.

The visualization of the correlation matrix of the sys-
tem helps in elucidating the topology of the network. To

FIG. 1: Color on-line. Average of the correlation between
pairs of oscillators. The structure networks are 13-4 (left)
and 15-2 (right). See text for a description of the networks.
The colors are a gradation between blue (0) and red (1).

extract the quantitative information it is useful to intro-
duce some threshold T to convert the correlation matrix
into a binary matrix, that will be used to determine the
borders between different groups. We define a dynamic

connectivity matrix

Dt(T )ij =

{

1 if ρij(t) > T
0 if ρij(t) < T

(3)

that depends on both the underlying topology and the
collective dynamics. For a fixed time t, by moving the
threshold T , we obtain different representations of Dt(T )
that inform about the structure of the dynamic corre-
lations. When the threshold is large enough the repre-
sentation of Dt(T ) becomes a set of disconnected clumps
or communities. Decreasing T a hierarchical structure
of communities is devised. Note that since the function
ρij(t) is continuous and monotonic (because the existence
of a unique attractor of the dynamics), we can redefine
DT (t), i.e. fixing the threshold and evolving in time.
We obtain the same information about the structure of
the dynamic connectivity matrix at different time scales.
Let us show that these time scales unravel the topological
structure of the connectivity matrix at different topolog-
ical scales.

From the eigenvalue spectrum of DT (t), S(DT (t)), one
can extract the number of disconnected components of
the system as the number of null eigenvalues. The evo-
lution of S(DT (t)) traces the hierarchy of communities
as follows: at short times, all units are uncorrelated and
then we have N disconnected sets, being N the number of
nodes in the network; as time goes on, nodes become syn-
chronized in groups according to their topological struc-
ture. In Fig. 2 (top) we plot, for the two networks ana-
lyzed in Fig. 1, the number of disconnected components
as a function of time, for a fixed threshold T [22]. We can
observe the relative stability of the two partitions for the
two networks, corresponding to the two prescribed hier-
archical levels. For the 13-4 network the synchronization
of the 4 groups of 64 nodes each is much more stable than
the 16 groups of 16 nodes, i.e. the community structure

one order of magnitude, which demonstrates that this result does not depend on the

modified eigenvalue-eigenvector pairs dominating the resulting system dynamics.

Figure 5. We modify a random (Erdős-Renyi) matrix in order to produce

an equilibrium point given by a twisted state. Here, the original matrix (a)

is modified (b) due to changes in some of the eigenvectors. The equilibrium

point (c) is then used as initial condition to the simulation. The Kuramoto

order parameter (R(t)) as a function of time shows that for the random ma-

trix, the system reaches a phase synchronized state, while for the modified

matrix, the system stays in a wave (“twisted”) state. The spatiotemporal

patterns corroborate these features (e, and f).

The equilibrium point for these systems is then represented in Fig. 5c, which is given

by Eq. (3.1). Using this phase configuration as initial condition for the simulation leads

the systems to di↵erent states: in the case of the random matrix, the system reaches a

phase synchronized state (R = 1); in the case of the modified matrix, the system stays

in a twisted state, which is a phase-locked but not phase synchronized state (R = 0) –

see Fig. 5d. These features can be observed in the spatiotemporal dynamics of these

networks, which are depicted in Figs. 5e and f, respectively.
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FIG. 4. Two-dimensional slices of state space reveal the in-
tricacy of basin geometry. (a) Random slice. Basins are color
coded by the winding number q of the corresponding attrac-
tor. The basins appear fragmented. (b) Slice centered at the
twisted state with q = 15. The color scheme highlights the
onion-like structure of the basins; the core (basin for q = 15)
is wrapped inside many layers corresponding to basins with
gradually decreasing q.

plot shown in the inset of Fig. 3, which depicts the ↵-
dependent convergence back to the in-phase state (q = 0)
for 100 representative rays. We see that no ray is inside
the basin for all ↵. But for each ↵, there are always rays
that are inside the basin. Moreover, if a ray leaves the
basin at a certain value of ↵, it often reenters the same
basin at a larger value of ↵.

In fact, such repeated reentries can be seen as the defin-
ing feature of basins with tentacles. For any given fixed-
point attractor, we say its basin is octopus-like if there
is a nonzero probability that a ray emanating from the
attractor along a random direction intersects the basin at
disjoint intervals. Note that an octopus-like basin is nec-
essarily concave, but not all concave basins are octopus-
like. Moreover, we say an octopus-like basin has long
tentacles if the basin cannot be confined within any hy-
percubes other than the full state space, which is the case
for the Kuramoto systems studied here.

Figure 4 is a further attempt to visualize the structure
of high-dimensional basins, now by examining randomly
oriented two-dimensional (2D) slices of state space, either
far from a twisted state or close to one. Specifically, we
look at slices spanned by ✓0 +↵1P1 +↵2P2, ↵i 2 (�⇡, ⇡].
Here, P1 and P2 are n-dimensional binary orientation
vectors in which bn/2c randomly selected components
are 1 and the rest of the components are 0. The results
below are not sensitive to the particular realizations of
P1 and P2. However, the choice of the base point ✓0 mat-
ters a great deal. For example, in Fig. 4(a), we choose
✓0 to be a random point in the state space. Despite the
fact that each basin is connected (because the dynamics
are described by di↵erential equations), the basins look
fragmented in this 2D slice. Perhaps another metaphor
than tentacles—a ball of tangled yarn—better captures
the essence of the basin structure in this regime, far from
any attractor, in which di↵erently colored threads (rep-
resenting di↵erent basins) are interwoven together in an
irregular fashion. As one might expect, a random slice of

the state space such as this one is dominated by basins
corresponding to small values of |q|.

The basin structure near an attractor is strikingly dif-
ferent. In Fig. 4(b), we set ✓0 to be the twisted state
with q = 15. Here, the central basin (q = 15) is sur-
rounded by competing basins in a structured fashion. As
made evident by the color scheme, the basins near an
attractor are organized like an onion. As we peel away
the onion layer by layer, the winding number of the basin
gradually increases and finally reaches q = 15 at its core.
(Although we know from above that there must be holes
in the onion for the “tentacles” of the center basin to
snake through.)

Finally, we explain why octopus-like basins should be
prevalent in high-dimensional dynamical systems. Con-
sider an n-dimensional compact state space with side
length L in each direction (after suitable rescaling). We
say a basin is boxy if it can be confined in a hypercube of
side length ` < L. If all basins of a system are boxy for an
` that does not depend on n, then to fill the entire state
space we need at least (L/`)n di↵erent basins. So if the
number of attractors in a system grows sub-exponentially
with n, the basins cannot all be boxy. In particular, this
is true for the Kuramoto systems we consider here, whose
number of attractors grows linearly with n.

Basins can be non-boxy because they are octopus-like,
with long tentacles that slither throughout state space
and escape any potentially confining hypercube. But
other scenarios can also occur. Imagine a limiting case
where the head of the octopus expands to engulf the ten-
tacles; then the basins stretch continuously across state
space in some or all directions (as they do, for instance,
in a system with just one attractor). Nevertheless, we
predict that basins with tentacles are generic for high-
dimensional dynamical systems with a modest number
of attractors, because they provide the least constrained
way to fill the state space. Our prediction is supported by
studies on basins in diverse physical systems [20, 38, 39],
from neuronal circuits to jammed sphere packings. In
some cases one can already visually identify tentacles in
low-dimensional slices of the basins [22, 41].

By illuminating the structure of octopus-like basins
and establishing their prevalence, we hope this work
will motivate future studies of basin structure in high-
dimensional systems. Some promising directions include
the definition of octopus-like basins for chaotic attrac-
tors, understanding the role of saddles in creating basin
tentacles, and generating new insights on reservoir com-
puters [47] and adversarial examples in neural networks
[48] by characterizing their basin geometries.

We thank Stefano Martiniani for sharing insights and
references on basin structures in jammed sphere pack-
ings and Robin Delabays and Ralph Andrzejak for stim-
ulating discussions. Y.Z. acknowledges support from the
Schmidt Science Fellowship and the Santa Fe Institute.
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FIG. 1: (color online) Evolution of a, the KM order parameter de-
fined in Eq. (2), and b the fraction of synchronized links rlink, Eq.
(4), as a function of λ. The curves separate when the incoherent so-
lution for SF networks destabilizes. The figure clearly illustrates that
the synchronizability of the networks does depend on the value of the
coupling strength. Both plots are represented for Erdös-Renyi (ER)
and scale-free (SF) networks as indicated. The size of the networks
is N = 1, 000 and their average degree is 〈k〉 = 6. The exponent of
the SF network is γ = −3.

We study the dynamics of Eq.(3) in ER and SF networks,
preserving the total number of links, Nl and nodes, N for
a proper comparison [24]. We concentrate in two aspects:
global and local synchronization. First, we follow the evo-
lution of the order parameter r, as λ increases, to capture the
global coherence of the synchronization in the networks. Sec-
ondly, we propose and follow the same evolution for a new pa-
rameter, rlink . This parametermeasures the local construction
of the synchronization patterns and allows for the exploration
of how global synchronization is achieved. We define

rlink =
1

2Nl

∑

i

∑

j∈Γi

∣∣∣∣∣ lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei(θi(t)−θj(t))dt

∣∣∣∣∣ ,

(4)
that represents the fraction of all possible links that are syn-
chronized in the network (averaged over a large enough time
interval ∆t, after the system relaxes at some large time tr),
being Γi the set of neighbors of node i.
We solved Eq.(3) using a 4th order Runge-Kutta method

for different values of λ, with a uniform distribution of nat-
ural frequencies g(ω) in the interval [−π, π] up to achieving
the stationary state. The networks are built following a model
[25] that generates a one parameter family of complex net-
works. This parameter, α ∈ [0, 1], measures the degree of
heterogeneity of the final networks. A network of size N is
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FIG. 2: (color online) Size of largest synchronized connected com-
ponent (GC) and number of synchronized connected components
(Nc), as a function of λ for the different topologies considered. De-
spite r being vanishing and hence no global synchronization is yet
attained, a significant number of clusters show up. This indicates
that for any λ > 0 the system self-organizes towards macroscopic
synchronization. The network parameters are as in Fig. 1.

generated starting from a fully connected core of m0 nodes
and a set U(0) of N − m0 unconnected nodes. At each time
step, a new node (not selected before) is chosen from U(0)
and linked to m other nodes. Each of the m edges is linked
with probability α to a randomly chosen node (avoiding mul-
tiple and self-connections) from the whole set of N − 1 re-
maining nodes and with probability (1−α) following a linear
preferential attachment strategy [26]. Repeating these steps
(N − m0) times, networks interpolating between the limiting
cases of ER (α = 1) and SF (α = 0) topologies are generated
[27].
In Fig. 1 we represent the evolution of both order parame-

ters, r and rlink , as a function of the coupling strength λ. The
global coherence of the synchronized state, represented by r,
shows that the onset of synchronization first occurs for SF net-
works. A detailed finite size scaling analysis performed for
both topologies shows that the critical value of the effective
coupling, λc, corresponds in SF networks to λSF

c = 0.05(1),
and in ER networks to λER

c = 0.122(2), accordingly with
Fig. 1. If λ is further increased, there is a value at which r for
the ER crosses over the SF curve. From this value up in λ, the
ER network remains slightly more synchronized than the SF
network.
The behavior of rlink shows a change in synchronizability

between ER and SF and provides additional information. In-
terestingly, the nonzero values of rlink for λ ≤ λc indicate
the existence of some local synchronization patterns even in
the regime of global incoherence (r ≈ 0). Right at the onset
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FIG. 1. Synchronization diagram. We plot r2 as a function of the
coupling strength K of the Kuramoto model, with !(K/N ) = 0.01
simulated with a fourth-order Runge-Kutta method with !t = 0.01,
for one instance of A1 (Erdös-Rényi) and A0 (power-law) networks
and their respective transformations using Eq. (8), averaged over 50
realizations with θ0 ∈ [−π,π ] (standard deviations are smaller than
the size of the symbols).

p(k) ∼ k−γ with exponent γ = 3, while for α = 1 we obtain
homogeneous random networks, keeping the average degree
fixed; in our case, 〈k〉 = 10. The mapping transformation is
then as follows: we fix the topologies of a network A drawn
from the model for a certain value α, i.e., the target network
Aα , and the candidate network Bα′ drawn for another value
α′. Then, we compute the weights, using Eq. (8), to map the
candidate network into the target one and obtain the resulting
T0(Bα′ |Aα), where the subindex of T refers to the fact that the
method exploits only zero-order information.

In Fig. 1 we present the results of the transformation
for the extreme cases T0(B0|A1) and T0(B1|A0). The results
evidence that the functional invariance is attained in the linear
regime (K ' Kc) for both transformations. However, there is
a clear discrepancy in the transformation T0(B1|A0), i.e., from
a homogeneous in-degree network toward a heterogeneous,
power-law network. This discrepancy shows that, when Eq. (8)
is applied, homogeneous networks are not able to capture the
role of heterogeneous connectivity patterns.

To improve the accuracy of the T0 method in the mapping,
we need to include higher-order constraints. We extend the
detailed balance to a further order (M = 1) by imposing that,
for each node, the transformation must also preserve the first-
order input strengths s

(1)
i , i.e.,

N∑

j=1

λA
ij s

(0)
j =

N∑

j=1

wijbij s
(0)
j , ∀ i ∈ N. (9)

Note that s(0)
j is the same at both ends of Eq. (9) because we still

retain the constraint presented in Eq. (5). We aim to maximize
Eq. (6) subject to Eq. (5) and Eq. (9). The Lagrangian in Eq. (7)
can be written explicitly as

L =
N∑

i=1



−
N∑

j=1

wij log wij − β
(0)
i



s
(0)
i −

N∑

j=1

wijbij





−β
(1)
i




N∑

j=1

λA
ij s

(0)
j −

N∑

j=1

wijbij s
(0)
j







. (10)

By imposing dL/dwij = 0 and isolating the unknown weight
wij , we obtain the implicit expression

w
(1)
ij (βi) = s

(0)
i e−βi s

(0)
j

∑N
k=1 bike

−βi s
(0)
k

, ∀ i,j ∈ N. (11)

The values of the multipliers βi are found by substituting
Eq. (11) back into Eq. (9) and numerically solving the resulting
system. However, the existence of real and non-negative
solutions cannot be ensured apriori. Indeed, the structural
bounds are easily estimated by considering the worst-case
scenarios, i.e.,

s
(0)
i × min

∀j∈N

(
bij s

(0)
j

)
! s

(1)
i ! s

(0)
i × max

∀j∈N

(
bij s

(0)
j

)
, ∀ i ∈ N.

(12)

The inequality in Eq. (12) turns out to be unfeasible for most
nodes if the reference network is very heterogeneous in local
input strength. Let us illustrate this by considering, on one
hand, that A follows a power-law distribution with p(s) =
cs−γ . Then, if network B is sufficiently well connected (kB

i '
1 ∀ i ∈ N ) and assuming N large, we can approximate the
constraints by

s
(0)
i * kB

i

∫ ∞

0
e−βi sp(s)ds = ckB

i

β
1−γ
i

∫ ∞

0
e−xx−γ dx, (13)

s
(1)
i * kB

i

∫ ∞

0
se−βi sp(s)ds = ckB

i

β
2−γ
i

∫ ∞

0
e−xx−γ+1dx. (14)

The first integral can be written as the gamma function∫
e−xx−γ dx = ((1 − γ ). Using the well-known property

((z + 1) = z((z) and dividing both equations, we obtain

βi * s
(0)
i

s
(1)
i

(1 − γ ), ∀ i ∈ N, (15)

which is negative for γ = 3, thus unveiling the structural
restrictions that emerge when mapping any arbitrary network
into a highly heterogeneous one. On the other hand, Eq. (8)
is recovered from Eq. (11) only when s

(0)
i * 〈s(0)〉, ∀ i ∈ N ,

i.e.,when A is very homogeneous in local input strength,
regardless of the topology of B.

The previous reasoning unfolds the symmetry unbalance
observed in Fig. 1 and suggests that the mapping can indeed
be enhanced, although it is strongly limited by the structural
bounds. To provide an analytical transformation that improves
the performance of Eq. (8) while still preserving wij " 0, we
expand Eq. (11) to first order around its average value, i.e.,

w
(1)
ij (βi) * s

(0)
i [1 − βi(sj − 〈s〉)]

∑N
k=1 bik[1 − βi(sk − 〈s〉)]

, ∀i,j ∈ N, (16)

where 〈s〉 = (1/kB
i )

∑
j bij s

(0)
j . We insert Eq. (16) into Eq. (9)

to obtain an approximate value β∗
i * βi as

β∗
i = 1

s
(0)
i

(
s

(0)
i 〈s〉 − s

(1)
i

〈s2〉 − 〈s〉2

)

, ∀ i ∈ N. (17)

The solution is finally obtained by direct substitution of
Eq. (17) into Eq. (11), and we denote this transformation
T1(Bα′ |Aα). Note that T1 does not provide uniform weighting,
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but depends explicitly on the balance between input strengths
and heterogeneity in each node.

Now we can compare the performance of transformations
T0 and T1 in the mapping. We define, for each transformation,
the dynamical error

σd = N−1
∫ K∞

0
[〈r2( $ω,K,A)〉 − 〈r2( $ω,K,B′)〉]2dK, (18)

as a measure of the total difference in the synchronization
diagrams between the target and transformed networks, and
we define the structural error

σs = N−1
N∑

i




N∑

j

(
λA

ij s
(0)
j − wijbij s

(0)
j

)



2

, (19)

as a measure of the total difference in the first-order local struc-
ture. In Fig. 2(a) we present the synchronization diagram for the
extreme cases T1(B0|A1) and T1(B1|A0) in the same setup as
before (N = 2000). We can observe a significant improvement
in the transformation T1(B1|A0) with respect to the zero-order
method in Fig. 1, although there still are nonvanishing errors
around the critical point due to the unfeasible structural bounds
of Eq. (12). In Fig. 2(b), we plot the dynamical σd and structural
σs errors for different values of the parameter α in T (Bα|A1−α).
Note how the accuracy of the transformations is enhanced by
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FIG. 2. (a) Synchronization diagram. We plot r2 as a function
of K , for one instance of A1 and A0 networks and transformations
T1(B0|A1) and T1(B1|A0) using Eqs. (11) and (17), averaged over
50 realizations with θ0 ∈ [−π,π ]. (b) Dynamical (left) error curves
for T0(Bα|A1−α) and T1(Bα|A1−α), averaged over 100 independent
network instances for each α (standard deviations fall in the shaded
region). In (b) right, associated structural error curves (standard
deviations are of the size of the symbols and the values of σs are
properly normalized).

T1 for any value of α, and it is associated to a decrease in the
structural error, thus validating the main assumptions of our
approach.

Furthermore, the approximate solution of Eqs. (11) and
(17) can still be improved by (i) considering higher-order
constraints (M > 1), but then the system would become cou-
pled and it should be solved simultaneously for all nodes, (ii)
extending the expansion of Eq. (11) with additional terms, (iii)
allowing the presence of negative interactions or indistinguish-
able units (without labeling the nodes in the transformation),
and also (iv) imposing global constraints instead of local
ones (requiring costly numerical methods and global objective
functions [30]).

Summarizing, we have presented an analytical method-
ology that successfully produces synchronization invariant
networks for the KM, by transforming the weights of the
interactions, while preserving the underlying topologies, and
exploiting only local structural information. We have shown
that different microscopic configurations can produce the same
macroscopic dynamical observables if the weights are adjusted
in a way that the main local properties of the nodes are
preserved. Furthermore, we have unveiled that the mapping
of homogeneous networks into heterogeneous ones requires
one to exploit additional (up to first order) information and it
is more complicated than the reverse process, due to intrinsic
structural limitations of the networks.

The presented formalism can be applied in a wide spectra
of problems beyond the mapping scenario. Our framework
provides a more comprehensive understanding of the collective
behavior of oscillators on weighted and directed networks
from a local perspective and can be used to make analytical
predictions on them (when transformed to unweighted struc-
tures) [18,23]. Also, the transformations can induce specific
features of heterogeneous networks in homogeneous ones
and vice versa, without changing the underlying structure.
Straightforward examples include the possibility to induce
explosive transitions in homogeneous networks (by correlating
the intrinsic frequencies with the input strengths [31]) and to
control the critical point of a macroscopic phase transition
[3,18] only by a local readjustment of weights. From a
theoretical point of view, our results are sheltered by previous
works that explore information-theoretic tools to study the
structure of complex networks [32–34] and to tackle recon-
struction problems [35–37]. Nevertheless, here we introduce
a novel connection between purely structural constraints and
collective dynamical behavior. This connection can help in
refining state-of-the-art inference methods with driving signals
[10,11] (by inferring appropriate network candidates from the
available structural and dynamical information), it deepens our
understanding on findings that relate weighted, directed, and
inhibitory interactions to optimal synchronization performance
[38–40], and provides another approach for evolving networks
models [3,5,18], in which a network of biological units might
evolve, due to an evolutionary pressure, toward heterogeneous
structures that maximize the number of accessible transforma-
tions and, consequently, their potential dynamical range [41].

L.A.-F. thanks G. Mosquera-Doñate for proposing the
method of Lagrange multipliers and B. Steinegger and A.
Arola for fruitful discussions. L.A.-F. and A.A. acknowledge
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Figure 1.7: a) Global (top) and local (bottom) degree of synchronization depending on coupling in
random (ER) and scale-free (SF) networks of the same size, which follow different routes
towards full synchrony (r ≈ 1). The order parameter r ∈ (0, 1) will be introduced in
detail in the next chapter. Reprinted by permission of [121]. b) Average phase similarity
(from blue to red) between pairs of oscillators in a hierarchical network of three groups.
This well-known result unveiled that the communities of the network can be recovered
from the synchronization properties between nodes. Reprinted by permission of [116].
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16 introduction

An important breakthrough in the infinitely large, mean-field case was made by E. Ott
and M. Antonsen in 2008 [122] (OA), when they found an exact dimensional reduction
into a few coupled differential equations, where bifurcations can be more easily studied.
We will introduce in more details the OA ansatz in the following chapter, in section 2.4.1,
but it is worth to mention that it was indeed a remarkable achievement for the globally
coupled problem (i.e. without considering a complex network). Closed solutions can only
be obtained under some conditions [7, 123–126], but its usage has led to many new discov-
eries and techniques [7, 127] and empirical validation in biological experiments [7, 128].

In complex networks, research on synchronization during the last decade has gradually
shifted from a more descriptive and exploratory approach of the system to more concrete
problems, in different lines. One focus of concern has been control and optimization [69,
118, 129–131], driven by the applications in the power-grid [44, 132, 133] and in network
neuroscience [10, 134, 135]. The second has been an increase in both structural complexity,
either going to multilayer networks [136] or consider higher-order (beyond pair-wise) in-
teractions [79, 125, 137–140], and dynamical complexity, by coupling the synchronization
dynamics to other processes as diffusion or epidemics [141–143] and proposing new mod-
els displaying even richer phenomena, for instance the versatile system of Janus oscillators
studied in [126, 144]. The third branch has focused on mathematical aspects of the basic
models, looking for dimensional reductions and algebraic approaches [145–147], generaliz-
ations in higher-dimensional spaces [127, 148] or going back to unsolved problems in rings
of identical oscillators [149–151]. In Fig. 1.8 we show two examples of striking discoveries
that are recently being made in the minimal Kuramoto model with identical oscillators.
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should have the same phase. We expect this process to
occur at different time scales if a clear community struc-
ture exists. Thus, the dynamical route towards the global
attractor will reveal different topological structures, pre-
sumably those which represent communities. Therefore,
it is the complete dynamical process what unveils the
whole organization at all scales, from the microscale at a
very early stages up to the macroscale at the end of the
time evolution. On the contrary, those systems endowed
with a regular topological structure will display a trivial
dynamics with a single time scale for synchronization.

To study this phenomena, instead of considering a
global observable, we define a local order parameter mea-
suring the average of the correlation between pairs of os-
cillators

ρij(t) =< cos(θi(t) − θj(t)) > (2)

where the brackets stand for the average over initial ran-
dom phases. The main advantage of this approach is that
it allows to trace the time evolution of pairs of oscillators
and therefore to identify compact clusters reminiscent of
the existence of communities.

To give evidence of the aforementioned facts we have
analyzed the dynamics towards synchronization –time
evolution of ρij(t)– in computer-generated graphs with
a hierarchical community structure. In [21] the authors
proposed models of networks with a well defined commu-
nity structure, that have been used as a benchmark for
different community detection algorithms [6]. Here, we
propose a generalization of this model that includes two
hierarchical levels of communities. The graphs we gen-
erate are as follows: we prescribe, in a set of 256 nodes,
16 compartments that will represent our first community
organizational level, and four compartments containing
each one four different compartments of the above first
level, that define the second organizational level of the
network. The internal degree of nodes at first level zin1

and the internal degree of nodes at second level zin2
keep

an average degree zin1
+ zin2

+ zout = 18. From now
on, networks with two hierarchical levels are indicated as
zin1

- zin2
, e.g. a network with 13-4 means 13 links with

the nodes of its first hierarchical level community (more
internal), 4 links with the rest of communities that form
the second hierarchical level (more external) and 1 link
with any community of the rest of the network.

In Fig. 1 we represent ρij(t) at the same time t for two
slightly different hierarchical networks 13-4 and 15-2. In
the two figures we can identify the two levels of the hier-
archical distribution of communities. The network 13-4
(left) is very close to a state in which the four large groups
are almost synchronized whereas the network 15-2 (right)
still presents some of the smaller groups of synchronized
oscillators, and the larger group starting to synchronize,
coherently with their topological structure.

The visualization of the correlation matrix of the sys-
tem helps in elucidating the topology of the network. To

FIG. 1: Color on-line. Average of the correlation between
pairs of oscillators. The structure networks are 13-4 (left)
and 15-2 (right). See text for a description of the networks.
The colors are a gradation between blue (0) and red (1).

extract the quantitative information it is useful to intro-
duce some threshold T to convert the correlation matrix
into a binary matrix, that will be used to determine the
borders between different groups. We define a dynamic

connectivity matrix

Dt(T )ij =

{

1 if ρij(t) > T
0 if ρij(t) < T

(3)

that depends on both the underlying topology and the
collective dynamics. For a fixed time t, by moving the
threshold T , we obtain different representations of Dt(T )
that inform about the structure of the dynamic corre-
lations. When the threshold is large enough the repre-
sentation of Dt(T ) becomes a set of disconnected clumps
or communities. Decreasing T a hierarchical structure
of communities is devised. Note that since the function
ρij(t) is continuous and monotonic (because the existence
of a unique attractor of the dynamics), we can redefine
DT (t), i.e. fixing the threshold and evolving in time.
We obtain the same information about the structure of
the dynamic connectivity matrix at different time scales.
Let us show that these time scales unravel the topological
structure of the connectivity matrix at different topolog-
ical scales.

From the eigenvalue spectrum of DT (t), S(DT (t)), one
can extract the number of disconnected components of
the system as the number of null eigenvalues. The evo-
lution of S(DT (t)) traces the hierarchy of communities
as follows: at short times, all units are uncorrelated and
then we have N disconnected sets, being N the number of
nodes in the network; as time goes on, nodes become syn-
chronized in groups according to their topological struc-
ture. In Fig. 2 (top) we plot, for the two networks ana-
lyzed in Fig. 1, the number of disconnected components
as a function of time, for a fixed threshold T [22]. We can
observe the relative stability of the two partitions for the
two networks, corresponding to the two prescribed hier-
archical levels. For the 13-4 network the synchronization
of the 4 groups of 64 nodes each is much more stable than
the 16 groups of 16 nodes, i.e. the community structure
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FIG. 2: Color on-line. Top: Number of disconnected synchro-
nized components (equivalent to number of null eigenvalues
of S(DT (t))) as a function of time for the two networks of
Fig. 1 at T = 0.99. Bottom: Rank index i (see text) versus
the inverse of the corresponding eigenvalues of the Laplacian
matrix L. The shadow regions indicate the stability plateaus
for 16 (dark) and 4 (light) communities. The same repre-
sentation is used for the plateaus in the eigenvalue spectrum
corresponding to indices 16 and 4.

at the second hierarchical level is stronger, whereas the
opposite can be inferred for network 15-2.

Another interesting link between dynamics and topol-
ogy can be highlighted from the analysis of the whole
spectrum of the Laplacian matrix of the network graph L

[23]. The Laplacian matrix is defined as Lij = kiδij −aij ,
where ki is the degree of node i, δij is the Kronecker
delta and aij is the element of the adjacency matrix (1
if nodes i and j are connected and 0 otherwise). The
spectral information of the Laplacian matrix has been
used to understand the structure of complex networks
[24], and in particular to detect the community structure
[25, 26]. Recent studies have also focused on the spec-
tral information of the Laplacian matrix and the syn-
chronization dynamics [11–18]. The common approach
is to take advantage of the master stability equation [27]
to determine the relation between the relative stability
of the synchronized state (via the ratio λN/λ2) and the
heterogeneity of the topology, although sometimes some
language abuse appears and authors talk about better or
worse synchonizability instead of stability of the synchro-
nized state. Our approach differs from these works in the
following: we are interested in the transient towards syn-
chronization because it is this whole process which will
reveal the topological structure at different scales. For
this reason our analysis focus on the whole eigenvalue
spectrum of the Laplacian matrix S(L).

To characterize this spectrum, we rank the eigenvalues
of L using an index i in ascending order 0 = λ1 ≤ λ2 ≤

. . .λi . . . ≤ λN . The structure of this sequence brings to
light many aspects of the topological structure: (i) the
number of null eigenvalues gives trivially the number of
disconnected components, (ii) the gaps between consec-
utive eigenvalues tell us about the relative differences of
time scales, and (iii) large eigenvalues in the last part of
the series stands for the existence of hubs in the network
(we will turn to these points later). In Fig. 2 (bottom)
we have plotted the eigenvalues of the Laplacian matrix
for the 13-4 and 15-2 structures. We observe three groups
of eigenvalues separated by gaps. Each gap separates a
community either of 256 groups, 16 groups, 4 groups ele-
ments or the whole population. Notice that for the 13-4
graph the plateau of 16 communities is shorter than the
plateau for 4 communities and the contrary for the 15-2
case, indicating that the 16 clusters community is less
well defined in the former case. Indeed, the ratio be-
tween the eigenvalues is a good quantitative measure of
the stability of the structure (which is measured in terms
of modularity in other studies [6]) and is related to the
length of the plateaus observed in Fig. 2 (top).

We visualize the formation of the connected groups
of synchronized oscillators in time constructing a dendo-
gram in which we draw lines between groups of oscilla-
tors when they merge. Applying this technique to the
above defined networks we can see two different topo-
logical scales disclosed by synchronization and the rela-
tive stability of them. The networks investigated so far
are homogeneous in degree. At this point we ask about
the effect when inhomogeneities in degree are considered.
We have applied this procedure to the network structure
proposed by Ravasz and Barabasi [28] with a hierarchical
structure in two levels and a scale-free degree distribu-
tion. As can be seen from the dendogram depicted in
Fig. 3 the communities synchronize at different times,
depending on its role in the hierarchy, and it also shows
the remarkably effect of hubs in the synchronization pro-
cess.

Finally we would like to shed some light about the
intriguing relationship between the eigenvalues of the
Laplacian and the dynamic structures that emerge to-
wards synchronization. To understand this correspon-
dence let us analyze the linearized dynamics of the Ku-
ramoto model (i.e. the dynamics close to the attractor
of synchronization) in terms of the Laplacian matrix,

dθi

dt
= −k

∑

j

Lijθj i = 1, ..., N (4)

whose solution in terms of the normal modes ϕi(t) reads

ϕi(t) =
∑

j

Bijθj = ϕi(0)e−λit i = 1, ..., N (5)

whereλi are the eigenvalues of the Laplacian matrix, and
B is the eigenvectors matrix.

one order of magnitude, which demonstrates that this result does not depend on the

modified eigenvalue-eigenvector pairs dominating the resulting system dynamics.

Figure 5. We modify a random (Erdős-Renyi) matrix in order to produce

an equilibrium point given by a twisted state. Here, the original matrix (a)

is modified (b) due to changes in some of the eigenvectors. The equilibrium

point (c) is then used as initial condition to the simulation. The Kuramoto

order parameter (R(t)) as a function of time shows that for the random ma-

trix, the system reaches a phase synchronized state, while for the modified

matrix, the system stays in a wave (“twisted”) state. The spatiotemporal

patterns corroborate these features (e, and f).

The equilibrium point for these systems is then represented in Fig. 5c, which is given

by Eq. (3.1). Using this phase configuration as initial condition for the simulation leads

the systems to di↵erent states: in the case of the random matrix, the system reaches a

phase synchronized state (R = 1); in the case of the modified matrix, the system stays

in a twisted state, which is a phase-locked but not phase synchronized state (R = 0) –

see Fig. 5d. These features can be observed in the spatiotemporal dynamics of these

networks, which are depicted in Figs. 5e and f, respectively.
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FIG. 4. Two-dimensional slices of state space reveal the in-
tricacy of basin geometry. (a) Random slice. Basins are color
coded by the winding number q of the corresponding attrac-
tor. The basins appear fragmented. (b) Slice centered at the
twisted state with q = 15. The color scheme highlights the
onion-like structure of the basins; the core (basin for q = 15)
is wrapped inside many layers corresponding to basins with
gradually decreasing q.

plot shown in the inset of Fig. 3, which depicts the ↵-
dependent convergence back to the in-phase state (q = 0)
for 100 representative rays. We see that no ray is inside
the basin for all ↵. But for each ↵, there are always rays
that are inside the basin. Moreover, if a ray leaves the
basin at a certain value of ↵, it often reenters the same
basin at a larger value of ↵.

In fact, such repeated reentries can be seen as the defin-
ing feature of basins with tentacles. For any given fixed-
point attractor, we say its basin is octopus-like if there
is a nonzero probability that a ray emanating from the
attractor along a random direction intersects the basin at
disjoint intervals. Note that an octopus-like basin is nec-
essarily concave, but not all concave basins are octopus-
like. Moreover, we say an octopus-like basin has long
tentacles if the basin cannot be confined within any hy-
percubes other than the full state space, which is the case
for the Kuramoto systems studied here.

Figure 4 is a further attempt to visualize the structure
of high-dimensional basins, now by examining randomly
oriented two-dimensional (2D) slices of state space, either
far from a twisted state or close to one. Specifically, we
look at slices spanned by ✓0 +↵1P1 +↵2P2, ↵i 2 (�⇡, ⇡].
Here, P1 and P2 are n-dimensional binary orientation
vectors in which bn/2c randomly selected components
are 1 and the rest of the components are 0. The results
below are not sensitive to the particular realizations of
P1 and P2. However, the choice of the base point ✓0 mat-
ters a great deal. For example, in Fig. 4(a), we choose
✓0 to be a random point in the state space. Despite the
fact that each basin is connected (because the dynamics
are described by di↵erential equations), the basins look
fragmented in this 2D slice. Perhaps another metaphor
than tentacles—a ball of tangled yarn—better captures
the essence of the basin structure in this regime, far from
any attractor, in which di↵erently colored threads (rep-
resenting di↵erent basins) are interwoven together in an
irregular fashion. As one might expect, a random slice of

the state space such as this one is dominated by basins
corresponding to small values of |q|.

The basin structure near an attractor is strikingly dif-
ferent. In Fig. 4(b), we set ✓0 to be the twisted state
with q = 15. Here, the central basin (q = 15) is sur-
rounded by competing basins in a structured fashion. As
made evident by the color scheme, the basins near an
attractor are organized like an onion. As we peel away
the onion layer by layer, the winding number of the basin
gradually increases and finally reaches q = 15 at its core.
(Although we know from above that there must be holes
in the onion for the “tentacles” of the center basin to
snake through.)

Finally, we explain why octopus-like basins should be
prevalent in high-dimensional dynamical systems. Con-
sider an n-dimensional compact state space with side
length L in each direction (after suitable rescaling). We
say a basin is boxy if it can be confined in a hypercube of
side length ` < L. If all basins of a system are boxy for an
` that does not depend on n, then to fill the entire state
space we need at least (L/`)n di↵erent basins. So if the
number of attractors in a system grows sub-exponentially
with n, the basins cannot all be boxy. In particular, this
is true for the Kuramoto systems we consider here, whose
number of attractors grows linearly with n.

Basins can be non-boxy because they are octopus-like,
with long tentacles that slither throughout state space
and escape any potentially confining hypercube. But
other scenarios can also occur. Imagine a limiting case
where the head of the octopus expands to engulf the ten-
tacles; then the basins stretch continuously across state
space in some or all directions (as they do, for instance,
in a system with just one attractor). Nevertheless, we
predict that basins with tentacles are generic for high-
dimensional dynamical systems with a modest number
of attractors, because they provide the least constrained
way to fill the state space. Our prediction is supported by
studies on basins in diverse physical systems [20, 38, 39],
from neuronal circuits to jammed sphere packings. In
some cases one can already visually identify tentacles in
low-dimensional slices of the basins [22, 41].

By illuminating the structure of octopus-like basins
and establishing their prevalence, we hope this work
will motivate future studies of basin structure in high-
dimensional systems. Some promising directions include
the definition of octopus-like basins for chaotic attrac-
tors, understanding the role of saddles in creating basin
tentacles, and generating new insights on reservoir com-
puters [47] and adversarial examples in neural networks
[48] by characterizing their basin geometries.

We thank Stefano Martiniani for sharing insights and
references on basin structures in jammed sphere pack-
ings and Robin Delabays and Ralph Andrzejak for stim-
ulating discussions. Y.Z. acknowledges support from the
Schmidt Science Fellowship and the Santa Fe Institute.
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Figure 1.8: a) Design of a twisted (almost synchronized state) by Nguyen et al. [151] in a random
network by modifying the adjacency matrix following the algebraic solution of a linear
limit of the Kuramoto model (KM) for identical oscillators [147] (we refer the reader
to chapter 6 for more details), and b) Basins of attraction (how many initial conditions
end up at a given equilibrium point) in the KM on a ring network. The basins turned
out to be octopus-like instead of the expected hypercubes. The tentacles can be observed
by measuring the probability of ending at a given equilibrium when applying perturb-
ations in different α-directions. Reprinted by permission of [149, 151].
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Our thesis builds upon some of the aforementioned results, ranging from the approxim-
ations of the synchronization onset to the optimization of synchrony in both pair-wise and
higher-order networks or the interplay between synchronization and percolation processes.
The novel insight of our approach is to introduce uncertainty into the network description,
dealing with oscillator networks only with partial knowledge, with the aim of revealing
new phenomena and finding clear mechanistic explanations that were hidden behind the
more prevalent, albeit unrealistic assumptions of complete information.

1.3 unexplored roles of network uncertainty

Research on network synchronization has arrived quite far, but at the same time it feels
that we have only scratched the surface and there is much more to learn and discover in
this field. It is hard to negate the myriad of situations and observed collective phenomena
that the physics of synchronization can explain and how the minimal model of Kuramoto
naturally emerges from different places, ranging from its original derivation in the con-
text of self-sustained biological oscillators [4], to its equivalence with neuronal models [7,
64, 65, 152], its direct usage in power-grid modeling [44, 45, 133] and the recent connec-
tions with quantum systems of correlated particles showing entanglement [153, 154]. In
this sense, this model is a quite general, effective theory to explain the emergence of tem-
poral order in the universe [3]. When one combines this observation with the evidence that
complex networks are all around us, it turns out that studying the physics dictated by the
Kuramoto model in complex networks is a fundamental problem, very specifically defined
in mathematical terms but with broad physical implications and straightforward applic-
ations. Even in its simplest form, there are still open questions to answer and important
questions to ask. Therefore, staying in the idealized realm seems an equally or even more
promising line of research than adding more layers of complexity into the description.

If we consider the physics of Kuramoto oscillators in complex networks as a minimal
ground truth of systems with many interacting oscillators, then we end up with a combina-
tion of just two ingredients: heterogeneity in the frequencies of the oscillators and diversity
of interaction patterns, and we aim to understand how this interplay affects global func-
tion. We already know that this combination can lead into a variety of phenomena [6, 62],
like different kinds of phase transitions and macroscopic states, but a general theory is still
missing [7, 143]. Some general questions about the interplay of structure and dynamics,
both for theoretical and practical reasons are: how many non-trivial macroscopic behaviors
can occur in this system?; and, can we predict, control and optimize them in an arbitrary
network? What does observing the structure of a network tell us about the possible dy-
namics that we can measure? And also in the opposite direction, when observing the
macroscopic dynamics: what can we say about the underlying network and the distribu-
tion of frequencies? These types of questions are understood in the infinite size of globally
coupled systems thanks to the Ott-Antonsen ansatz [7, 122]. However, when one considers
a complex network of interactions and a large but finite size –which are definitively the
most usual empirical conditions– things quickly get messier, but also richer.
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There are some analytical results that we can use to tackle our problems of interest. How-
ever, a general framework to classify, predict and control the range of collective behaviors
is not known, due to the large irregularities of the network domain which presumably
hinder symmetries [7, 143], and one has to figure out the most fitting technique for the
specific problem at hand. Most existing results are obtained in terms of the eigenvalues
of network matrices and the interplay of the frequencies with their eigenvectors, which
are all global properties and which computation relies on numerical methods that can be
seen as black-boxes [118, 129, 130, 135]. These spectral black-boxes make the interpreta-
tion of results difficult and hinder direct control and extrapolation of findings. Also, their
global nature raises the question of how complex biological systems can evolve towards
non-trivial macroscopic states, when they usually navigate in the optimization space ex-
ploiting only local information and are subjected to noise, as occurs in the brain [16, 155–
157]. Which are the microscopic rules between structure and nodal dynamics that lead to
different macroscopic properties, such as optimal synchronization [118], chaos [110] or an
explosive transition [108, 143], beyond particular cases? The answer up to the moment is
also incomplete. Related features that are only partially understood in the networked case
is how noise or uncertainty in the structure propagates into the macroscopic properties
or into the critical points [158–160], or to which extent networks with different interaction
patterns (heterogeneous or homogeneous, modular or bipartite) and types of interactions
(pair-wise or higher-order, multilayer or monolayer) can be tuned to reach a targeted dy-
namical behavior [69, 135, 161, 162]. We know several stories in this line, for instance
that random networks with a given degree sequence can behave as an all-to-all network
with weights representing the product of degrees [6, 102] and also that networks with two
clusters can be mapped into an all-to-all network with bimodal distribution [163], to name
a few, but a complete picture is still missing.

In this thesis, we will try to advance in the understanding of network synchronization by
studying the unexplored roles that structural uncertainty have on the collective dynamics
of coupled-oscillators. What do we mean by uncertainty here? Essentially a lack of inform-
ation, when we only have partial information from the system at hand, and we still aim at
predicting and controlling things. In this sense, the problems we study are also inspired
by realistic scenarios, where usually data from measurements is noisy or incomplete [115,
164–166], we do not know the specific details of the system at hand [118, 164, 165], and
the large size of the system make spectral computations and numerical optimization very
costly [130]. Working under uncertainty is the norm in most applied disciplines, but has
only lately become relevant in our field, once we have started gaining access to more data
[128, 133, 135], and we have been able to start validating the theories from the last decades.
However, there is a clear lack of theoretical works dealing with incomplete information in
the modeling, prediction and control of network synchronization [6, 7, 62, 143, 165].

Looking back, treating uncertainty as information has been a key concept in our success-
ful description of the world and in quantifying how well and efficiently we can measure
its properties. Under the light of C. Shannon’s seminal works on information theory [167],
in 1957 E.T. Jaynes showed [32] that the core principles of statistical mechanics can be
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derived by imposing a maximum entropy principle on our probabilistic descriptor of a
system, when subject to known constraints from the physics at hand. These ideas are
behind the success of state-of-art Bayesian inference and maximum likelihood methods
in community detection [42, 96, 168–170] and statistical calibration of model parameters
[39], and also in the foundations of null-models for networks exploiting only structural
information (using the so-called exponential random graphs) [2, 95, 171, 172]. However,
this line of thought has not percolated much into the study of phase-oscillatory dynamics
on networks, the modelling of which usually treated uncertainty as noise, incorporated
directly into the microscopic dynamics [5, 62, 72, 160, 173] or in the coupling of inter-
actions [62, 73, 158]. An important exception are inference methods [164, 168, 174, 175],
where stable oscillatory dynamics have been indeed useful to predict structures that are
compatible with the observed behavior, although numerical black-boxes tend to appear
again in the obtained solutions, hindering interpretation. There are also works where un-
certainty is introduced as difficulties in empirical measurements of power-grids [166, 176]
or brain networks [177]. More similar to our approach are the seminal works of Arenas et
al. and Gómez-Gardeñes et al. [116, 121] that show how networks can display particular
synchronization paths, and the more recent work of Skardal et al. [165], where the linear-
ized synchronization dynamics are studied by considering uncertainty on the frequency
allocation, which reveals the underlying effect of the structure, smoothing out the role of
frequencies. Other recent works that may have resemblances to ours are models that study
how a network non-trivially amplifies the output signal when noise is added to the system
[115, 159]. We have learned the benefits of noise in optimization [111], robustness to col-
lective phenomena as explosive synchronization [178], or the possibility to use oscillator
networks as noise-cancelling filters [159]. Can we gain novel and more general analytical
insight by dealing with partial, incomplete information from the oscillator network?

1.4 thesis contributions and outline

Overall, the main focus of this research is to explore the synchronization dynamics of
coupled oscillators in the presence of different sources of uncertainty in the complex net-
work of interactions. We will borrow some ideas from classical physics and its mathematics
(error propagation, Lagrange optimization, truncated expansions, stability analysis, etc. . . )
and combine them with numerical simulations and several techniques suitable to model
coupled oscillators (network generative models and spectral graph theory, dimensional
reductions and also mean-field, perturbative and algebraic approaches, to name a few ex-
amples). The aim is to find quantitative predictions, but there is a bias towards the search
for mechanistic explanations that deepen our understanding of the global problem, i.e. the
interplay between the structure and the dynamics in networks of coupled oscillators. The
most relevant contributions and finding of this thesis are included in the following list.

• An error propagation analysis to unveil how a complex network can non-linearly
amplify noise in the weights towards the macroscopic onset of synchronization.
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• A composite Laplacian framework applied to the study of optimal synchronization
in networks that can balance pair-wise and higher-order interactions.

• An extended mean-field approach to approximate functionally invariant dynamics
by weight-tuning networks with different degree distributions.

• An exact geometric unfolding of the synchronized state to unveil the mechanistic
interplay between structure and dynamics and to tackle decentralized systems.

• A model of a synchronization bomb, where abrupt synchronization transitions
emerge by adding or removing single links following an optimal local rule.

• An explicit connection between the recent algebraic solution of a linear complex-
valued oscillator system and the heuristic origin of the Kuramoto model, which leads
to a direct estimation of the onset of synchronization in complex networks.

The reader will find that the novel results are a mixture of analytical methods and predic-
tions of different phenomena in several idealized problems of coupled oscillators, which
are motivated by empirical problems in neuroscience and engineering, but mainly driven
by theoretical curiosity. The remainder of this dissertation is organized as follows:

Chapter 2 reviews several well-known mathematical techniques suitable to deal with
network-coupled phase-oscillators. We go through the classical solution of the Kur-
amoto model, the well-known approximations of the onset of synchronization and
the tools to deal with optimization problems. We also introduce the Ott-Antonsen
and the Collective Coordinate model reductions. All the methods reviewed here are
used in the next chapters.

Chapter 3 focuses on the question: how do structural constraints in the complex network
affect the range of possible synchronization behaviors? We consider fixed structures
and allow fine-tuning or fluctuations in the link weights to explain how network
properties as degree heterogeneity and higher-order interactions affect the dynamical
range. Some of these heuristic approaches pave the way for further works, including
our next results.

Chapter 4 presents the results on the geometric expansion of the synchronized state and
the associated proofs. We discuss its implications in our problems and related ones.
We perform a convergence analysis and derive a local approximation of synchrony
to explain several features that were only understood numerically. In this context, we
also predict the Braess’ Paradox (the effect of links removals that improve synchrony)
in directed networks exploiting only decentralized information.

Chapter 5 introduces a model of a synchronization bomb, where explosive transitions are
induced by perturbations of single links. The framework is a competitive percolation
process driven by a local rule, derived using the machinery introduced in chapter
4. We find that phenomena hold in models of chaotic oscillators and cardiac pace-
makers, and we provide an analytical characterization in the Kuramoto case. We
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also discuss the benefits of noise in this decentralized process and the link between
explosive synchronization, percolation and optimization in complex networks.

Chapter 6 shows an explicit connection between an algebraic approach to the Kuramoto
model, proposed by Muller et al. [147], and the heuristic derivation of Kuramoto
starting from a coupled system of complex oscillators in 1975 [4]. These results point
towards the potential of using a matrix, complex-valued formalism in several open
problems of network synchronization, as the prediction of the critical threshold. As
a first step in this line, a novel derivation of the mean-field synchronization onset
is presented using a linear algebra framework and a rank-reduction of the complex
network.

Chapter 7 concludes this thesis. First, we briefly summarize our work and discuss our
results in the broad context of the theory of network synchronization. We highlight
some limitations and interesting points that we did not cover, and we suggest a
particularly promising line of further work.
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2
T H E O R E T I C A L B A C K G R O U N D

Hello everyone, I’m Kuramoto, I’m sending a message from Tokyo. This workshop,
especially its title, makes me realize how far I have come and how old I’m getting.

Prof. Yoshiki Kuramoto1

In this dissertation, we focus on the interplay that emerges between the complex network
and the dynamics of coupled oscillators described by the Kuramoto model (KM). After
almost fifty years of theoretical research on this model, there are many important math-
ematical results that we can exploit in our problems of interest. Overall, we will leverage
some key results that provide simple, closed-form expressions relating dynamical proper-
ties of the system with structural ones, and use them to understand how different sources
of uncertainty in the structure can affect the dynamical predictions and the functionality
of the oscillator network.

Accordingly, this chapter introduces the technical results available in the literature that
are more relevant to our purposes. In section 2.1, we introduce the original solution de-
rived by Kuramoto for his mean-field model of weakly-coupled phase oscillators [4, 38].
In section 2.2 we introduce several known approximations of the synchronization onset
in complex networks, in particular the closed-form expressions obtained by Restrepo et al.
[103] and Ichiminoya [102]. In section 2.3 we present the Synchrony Alignment Framework
introduced by Skardal et al. in [118] to study optimal synchronization in networks, and
we discuss its relation with the formula for the critical loss of phase-locking predicted by
Dörfler et al. [44]. Finally, in section 2.4 we present two model reduction techniques of the
KM, that decrease the dimensionality of the system for further analysis: in section 2.4.1
we introduce the exact mean-field reduction for the infinite size, globally-coupled network
derived from the celebrated Ott-Antonsen ansatz [122], and in section 2.4.2 we present a
more recent technique to deal with finite systems and complex structures, based on the
collective coordinates ansatz introduced by Gottwald in the globally-coupled case [145]
and extended to complex networks by Hancock and Gottwald in [146].

Before diving into these technical results in detail, we suggest that the reader takes a
look at Kuramoto’s speech, transcribed in the appendix of this thesis, which tells a brief
story on the origins of the KM, in the words of Y. Kuramoto himself. This speech begins

1 In a video message to the international conference “Dynamics of coupled oscillators: 40 years of the Kuramoto
model”, organized by A. Pikovsky, A. Politi and M. Rosenblum, held at Max Planck Institute of Complex
System, Dresden, Germany, on 27th July 2015. The full speech is transcribed in the appendix.
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with the sentence at the head of the chapter and explains a fascinating, and quite recent
chapter in the history of science. We found it interesting to learn about the birth and fate
of this key model and also to know where we come from, and to appreciate some of the
difficulties and uncertainties that most novel research lines have to face.

2.1 classical results

Inspired by several problems in biology, A. Winfree was the first in proposing a system of
interacting non-identical, limit-cycle oscillators to model synchronization phenomena [71].
The minimal assumptions of his model were that oscillators had to be heterogeneous and
self-sustained. Self-sustained means that each oscillator has a stable limit cycle with a con-
stant amplitude (a circular trajectory in the phase-space which is attracting to surrounding
trajectories), and oscillators are able to sustain their motion in absence of external forcing
and return to their limit-cycle after a perturbation is applied (known as non-conservative
systems), unlike systems of mechanical oscillators studied in many-body physics [5, 38,
179]. If the interactions between the oscillators are sufficiently weak (compared to their in-
trinsic frequencies), the oscillators are said to be weakly-coupled and then their dynamical
state can be well described by a single variable, its phase in a circle. Our starting point
here are phase-models, which can be simply understood as systems of oscillators that ro-
tate in a circle, and we will focus in more detail in chapter 6 on how to connect systems of
non-linear limit-cycle oscillators to one-dimensional phase-models. In his original model,
Winfree proposed to use

θ̇i = ωi +

(
N

∑
j=1

x(θj)

)
Z(θi) ∀ i ∈ 1, . . . , N, (2.1)

where θi is the phase of the i-th oscillator at a given time, θ̇i its time derivative and ωi

its internal frequency. x(θ) and Z(θ) are the stimulus and sensitive functions mentioned
by Kuramoto in its speech, which capture the interaction of neighboring oscillators and
the dependence on the internal phase, respectively. Using some numerical simulations
and analytical approximations, Winfree was able to show that the system displayed a
phase-transition from disorder to order depending on the relation between the internal fre-
quencies and the coupling [71], but the model appeared at that moment to be analytically
intractable (a solution was later found by J. T. Ariaratman and S. H. Strogatz [76]).

In 1975, Y. Kuramoto proposed his celebrated model of sinusoidal coupling instead of
using a product of two functions. In his original work, he derived his model from a system
of non-linear limit-cycle oscillators, the Ginzburg-Landau equations [4] (as we will see in
chapter 6), although his main interest was in solving the resulting dynamical system

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi), ∀ i ∈ 1, . . . , N, (2.2)
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where K ≥ 0 is the coupling strength the natural frequencies ωi are drawn from a probab-
ility distribution g(ω), which is assumed unimodal and symmetric about a mean ω0, that
can be set without loss of generality ω0 = 0, by going to a co-rotating frame at the speed
given by the mean frequency, and shifting the phases by θi + ω0t. The sinusoidal coupling
captures the simplest non-linear 2π-periodic function of the phase differences, and repres-
ents a force that tends to synchronize (by pushing or pulling) the oscillator speeds θ̇i if the
phases are not exactly equal (θi = θj) or in complete anti-phase (θi = θj + π). A mean-field
coupling (all-to-all) is considered, and the normalization of the size N is chosen to ensure
a non-trivial behavior in the thermodynamic limit N → ∞.

Kuramoto proposed to use a complex order parameter to measure the degree of phase-
synchrony in the system, given by the centroid of the phases in the complex circle

r(t)eiΨ(t) =
1
N

N

∑
j=1

eiθj(t), (2.3)

where the modulus r measures the degree of synchrony between r ≈ 0 (incoherence or
complete splay) and r = 1 (complete synchronization) and Ψ(t) the average phase of the
system, as shown in Fig. 2.1.a). By setting the average phase Ψ(t) = 0 by an appropriate
choice of the origin in the co-rotating frame, multiplying both sides of the order parameter
by e−iθi , using Euler’s formula eix = cos x + i sin x and equating the imaginary parts of
both sides, the coupling terms in Eq. (2.2) vanish and one can write the evolution for the
phases depending only on the mean-field parameter r as

θ̇i = ωi − Kr(t) sin(θi), ∀ i ∈ 1, . . . , N, (2.4)

To find a solution, Kuramoto assumed that r was constant and looked for long-term solu-
tions of his self-consistent system (note that the evolution of the phases depends on the
mean-field r, which in turn depends on the value of the phases). The fixed points –the
stationary states– of the system are obtained by setting θ̇i = 0, finding that oscillators
with sufficient small frequency |ωi| < Kr will lock their frequency to the mean frequency,
following

ωi = Kr sin θi, (2.5)

with its phase locked at θi ≤ π/2. The oscillators with |ωi| > Kr are not locked to the
mean pace, instead they are drifting on the circle, with a time-varying frequency. In order
to satisfy the assumption that r was constant, Kuramoto required the drifting oscillators
to be distributed in a stationary manner in the whole circle, with a distribution

ρ(θ, ω) =
C

|ω− Kr sin θ| , (2.6)
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assuming that the density of oscillators is inversely proportional to the speed (oscillators
would aggregate at slow paces and splay out at fast places). The normalization condition
is just determined by the integral

∫ π
−π ρ(θ, ω)dω, leading to

C =
1

2π

√
ω2 − (Kr)2. (2.7)

Here comes a key step of the derivation, by invoking the self-consistent condition that the
order parameter defined in Eq. (2.3) must be constant and equal to the sum of contributions
of locked and drift oscillators r = 〈eiθ〉lock + 〈eiθ〉dri f t where the angular brackets mean
population averages. In the case of the locked oscillators, we have that

〈eiθ〉lock =
∫ Kr

−Kr
cos θ(ω)g(ω)dω + i

∫ Kr

−Kr
sin θ(ω)g(ω)dω. (2.8)

Note that the phases θ have the explicit dependence on the frequency, as dictated by the
fixed point relation of Eq. (2.5). The imaginary part of the integral in Eq. (2.8) vanishes
because of the symmetry of g(ω) and the fact that sin() is an odd function. A direct
change of variables from ω to θ leads to

〈eiθ
lock〉 = Kr

∫ π
2

− π
2

cos2 θg(Kr sin θ)dθ. (2.9)

The contribution of the drifting oscillator also vanish, in this case because of the symmetry
of g(ω) = g(−ω) and ρ(θ + π,−ω) = ρ(θ + ω). Under these considerations, the self-
consistent condition reduces to

r = Kr
∫ π

2

− π
2

cos2 θg(Kr sin θ)dθ. (2.10)

The trivial solution r = 0 is always a solution, and corresponds to the incoherent state with
ρ(θ, ω) = 1/(2π). Kuramoto showed that another branch of solutions (corresponding to
partial synchrony of the locked oscillators) exists and bifurcates continuously from r = 0
at a critical value K = Kc, obtained by cancelling r in both sides of Eq. (2.10), letting r → 0+

and integrating. Then, Kuramoto had then arrived at his famous result,

Kc =
2

πg(0)
, (2.11)

the exact formula for the onset of synchronization in the mean-field model of infinite size.
Kuramoto also found that the amplitude of the order parameter around the onset obeys

a square-root scaling law (the usual scaling for a mean-field model [58]), and, for the case
of a Lorentzian, or Cauchy distribution with

g(ω) =
γ

π(γ2 + ω2)
, (2.12)
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Here ∆ is the width parameter (half-width at half-maximum) of each Lorentzian and ±ω0

are their center frequencies, as displayed in Fig. 1. A more physically relevant interpretation

of ω0 is as the detuning in the system (proportional to the separation between the two center

frequencies). Note that we have written the distribution g(ω) so that it is symmetric about

2 ! 2 !

"Ω0 Ω0
Ω

g!Ω"

FIG. 1: A bimodal distribution of natural frequencies, g(ω), consisting of the sum of two

Lorentzians.

zero; this can be achieved without loss of generality by going into a suitable rotating frame.

Another point to observe is that g(ω) is bimodal if and only if the peaks are sufficiently

far apart compared to their widths. Specifically, one needs ω0 > ∆/
√

3. Otherwise the

distribution is unimodal and the classical results of [2, 3, 4, 5] would still apply.

B. Derivation

In the limit where N → ∞, Eq. (1) can be written in a continuous formulation [3, 4, 5] in

terms of a probability density f(θ, ω, t). Here f is defined such that at time t, the fraction of

oscillators with phases between θ and θ+ dθ and natural frequencies between ω and ω+ dω

is given by f(θ, ω, t) dθ dω. Thus

∫ ∞

−∞

∫ 2π

0

f(θ, ω, t) dθ dω = 1 (3)

and ∫ 2π

0

f(θ, ω, t) dθ = g(ω), (4)

5

B. Crawford’s center manifold analysis

Crawford [10] obtained the first mathematical results for the system studied in this paper.

Using center manifold theory, he calculated the weakly nonlinear behavior of the infinite-

dimensional system in the neighborhood of the incoherent state. From this he derived the

stability boundary of incoherence. His analysis also included the effects of white noise in

the governing equations.

FIG. 7: Left: Results from our analysis. white: incoherence, dark gray : partial synchronization,

light gray : standing wave (limit cycles), vertical lines: coexistence of incoherent and partially

synchronized states, horizontal lines: coexistence of partial synchronization and standing waves.

Right: Crawford’s bifurcation diagram in [10]. In our study there is no noise, and so the diffusion

is D = 0. Crawford’s ε corresponds to our ∆. I : Incoherent states, PS : partially synchronized,

SW : standing wave, equivalent to what we describe as two counterrotating flocks of oscillators.

(Permission to print by Springer Verlag.)

Figure 7(b), reproduced from Fig. 4 in Ref. [10], summarizes Crawford’s findings. Here

D is the noise strength (note: our analysis is limited to D = 0), ε is the width of the

Lorentzians (equivalent to ∆ in our notation), and ±ω0 are the center frequencies of the

Lorentzians (as here). The dashed line in Fig. 7(b) shows Crawford’s schematic depiction of

the unknown stability boundary between the standing waves and the partially synchronized
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Fig. 2. Schematic illustration of the typical evolution of r(t) seen in numerical simulations of the Kuramoto model (3.1).

3.3. Simulations

If we integrate the model numerically, how does r(t) evolve? For concreteness, suppose we fix g(ω) to be a
Gaussian or some other density with infinite tails, and vary the coupling K. Simulations show that for all K less
than a certain threshold Kc, the oscillators act as if they were uncoupled: the phases become uniformly distributed
around the circle, starting from any initial condition. Then r(t) decays to a tiny jitter of size O(N−1/2), as expected
for any random scatter of N points on a circle (Fig. 2).
But when K exceeds Kc, this incoherent state becomes unstable and r(t) grows exponentially, reflecting the

nucleation of a small cluster of oscillators that aremutually synchronized, thereby generating a collective oscillation.
Eventually r(t) saturates at some level r∞ < 1, though still with O(N−1/2) fluctuations.
At the level of the individual oscillators, one finds that the population splits into two groups: the oscillators

near the center of the frequency distribution lock together at the mean frequency " and co-rotate with the average
phase ψ(t), while those in the tails run near their natural frequencies and drift relative to the synchronized cluster.
This mixed state is often called partially synchronized. With further increases in K, more and more oscillators are
recruited into the synchronized cluster, and r∞ grows as shown in Fig. 3.
The numerics further suggest that r∞ depends only on K, and not on the initial condition. In other words, it seems

there is a globally attracting state for each value of K.

3.4. Puzzles

These numerical results cry out for explanation. A good theory should provide formulas for the critical coupling
Kc and for the coherence r∞(K) on the bifurcating branch. The theory should also explain the apparent stability of
the zero branch below threshold and the bifurcating branch above threshold. Ideally, one would like to formulate
and prove global stability results, since the numerical simulations give no hint of any other attractors beyond those
seen here. Even more ambitiously, can one formulate and prove some convergence results as N→ ∞?
As we will see below, the first few of these problems have been solved, while the rest remain open. Specifically,

Kuramoto derived exact results for Kc and r∞(K), Mirollo and I solved the linear stability problem for the zero

Fig. 3. Dependence of the steady-state coherence r∞ on the coupling strength K.
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Fig. 1. Geometric interpretation of the order parameter (3.2). The phases θ j are plotted on the unit circle. Their centroid is given by the complex
number r eiψ , shown as an arrow.

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the whole population. It
corresponds to the centroid of the phases. The radius r(t) measures the phase coherence, and ψ(t) is the average
phase (Fig. 1).
For instance, if all the oscillators move in a single tight clump, we have r≈ 1 and the population acts like a giant

oscillator. On the other hand, if the oscillators are scattered around the circle, then r≈ 0; the individual oscillations
add incoherently and no macroscopic rhythm is produced.
Kuramoto noticed that the governing equation

θ̇i = ωi + K

N

N∑

j=1
sin(θj − θi )

can be rewritten neatly in terms of the order parameter, as follows. Multiply both sides of the order parameter
equation by e−iθi to obtain

r ei(ψ−θi ) = 1
N

N∑

j=1
ei(θj −θi ).

Equating imaginary parts yields

r sin(ψ − θi ) = 1
N

N∑

j=1
sin(θj − θi ).

Thus (3.1) becomes

θ̇i = ωi + Kr sin(ψ − θi ), i = 1, . . . , N. (3.3)

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quantities r and ψ .
Specifically, the phase θ i is pulled toward themean phaseψ , rather than toward the phase of any individual oscillator.
Moreover, the effective strength of the coupling is proportional to the coherence r. This proportionality sets up a
positive feedback loop between coupling and coherence: as the population becomes more coherent, r grows and so
the effective coupling Kr increases, which tends to recruit even more oscillators into the synchronized pack. If the
coherence is further increased by the new recruits, the process will continue; otherwise, it becomes self-limiting.
Winfree [10] was the first to discover this mechanism underlying spontaneous synchronization, but it stands out
especially clearly in the Kuramoto model.

THOMAS PERON et al. PHYSICAL REVIEW E 100, 042302 (2019)

FIG. 1. Comparison between the estimations of Kc by suscepti-
bilities χ [Eq. (14)] and χr [Eq. (15)]. Networks generated according
to the UCM with degree distribution P(k) ∼ k−γ , with γ = 2.25 and
kmin = 5. Natural frequencies are assigned according to Eq. (13).
Each point is an average over 100 network realizations. Error bars
are smaller than symbols.

especially for low values of N . Similar results are found for
different values of γ . Thus, we henceforth detect the critical
points via χr .

Let us now analyze how the mean-field theories perform
in comparison with simulations for the different regimes of
γ . First, for γ < 5/2, as discussed in the previous section,
both HMF and QMF predict a vanishing Kc, which should
scale with 〈k〉/〈k2〉. Indeed, as it is seen in Fig. 2(a), for
γ = 2.25, both theories predict quite accurately the onset of
synchronization.

Discrepancies between the approximations appear when
γ > 5/2. To be precise, in this regime, HMF yields Kc ∼
〈k〉/〈k2〉, while QMF gives Kc ∼ k−1/2

max . As depicted in

Fig. 2(b), the mean-field theories provide a satisfactory
approximation of the synchronization thresholds for networks
with γ = 2.7. Note that, although QMF contains in its for-
mulation the whole information about the network topology,
it performs slightly worse than HMF (see inset). Similar
dependencies with the system size are found for epidemic
thresholds in SF networks with 5/2 < γ < 3 [16,17].

For γ = 3.5 [Fig. 2(c)], we observe that the numerical
calculation of Kc converges to a constant value as N increases,
in agreement with the HMF prediction, whereas QMF theory
clearly fails in capturing the onset of synchronization. That
is, while simulations show that large SF networks in this case
exhibit a finite synchronization threshold, QMF reveals a van-
ishing Kc. Furthermore, it is interesting to point out discrep-
ancies between synchronization and the epidemic spreading
described by the susceptible-infected-susceptible (SIS) model
[24,25] regarding the dependence on the system size for
γ > 3. In contrast to the finite onset of synchronization seen in
Fig. 2(c), epidemic thresholds of the SIS model are known to
decay as N increases for γ > 3 [16,17]. In fact, Chatterjee and
Durrett [26] proved rigorously that, for uncorrelated random
networks with a power-law degree distribution P(k) ∼ k−γ

with any γ , the SIS model presents an unstable absorbing
phase in the thermodynamic limit, resulting in a null epi-
demic threshold. Afterwards, Boguñá et al. [27] physically
interpreted this proof with a semianalytical approach taking
into account a long-range reinfection mechanism between
hubs and found a vanishing epidemic threshold including for
γ > 3.

Actually, the behavior of the SIS model is distinct and more
intricate than other dynamical processes that also present a
phase transition from active to inactive states. This epidemic

(a)

(c)

(b)

FIG. 2. Critical coupling Kc against network size N for UCM networks with power-law exponent (a) γ = 2.25, (b) γ = 2.7, (c) γ = 3.5.
All networks have kmin = 5. Insets in (a) and (b) depict the difference between numerical estimation of Kc and mean-field theories. Each point
is an average over 100 network realizations. Error bars are smaller than symbols.
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Figure 2.1: a) Order parameter proposed by Kuramoto. The modulus r measures the degree of syn-
chrony and the phase Ψ indicates the average phase of the system (here it is displayed a
system of only 7 oscillators). b) Synchronization curve given by the time-averaged modu-
lus of the order parameter, depending on the coupling strength K, with g(ω) Lorentzian.
A second order-phase transition emerges at the critical coupling Kc, where r > 0 and
r → 1 only when K → ∞, due to the heterogeneity in the internal frequencies.

he could integrate exactly Eq. (2.10), leading to the remarkable result

r =
√

1− Kc/K, (2.13)

which was shown to match accurately numerical simulations [179]. Kuramoto had just
solved his mean-field model of synchronization, which showed the emergence of a smooth,
second-order phase transition at a critical strength Kc, as shown in Fig. 2.1.b).

In the next years, many important results on this mean-field model were obtained, in-
cluding the solution of the local stability problem at the onset mentioned by Kuramoto
in his speech. Strogatz and Mirollo managed to show that the incoherent solution was
marginally stable before the transition and become unstable afterwards [179]). The model
was also extended in many directions [5], including noise, delays or considering regular
lattices of different dimensions, but here we are particularly interested in the complexity
and irregularities of the interaction patterns. The first analytical results tackling the on-
set of synchronization in arbitrary complex networks beyond the all-to-all case or regular
lattices were obtained at the beginning of the current century, and from now on, we will
focus more on this modified KM, which goes beyond the original model by including the
adjacency matrix A of the complex network into the description.

2.2 threshold approximations in networks

It was around 2005, in the agitated early times of the study of complex networks, when
Ichinomiya [102] and Restrepo and colleagues [103, 104] found several approximations for
the onset of synchronization in complex networks. Here, we will follow the work of [103]
since the results of [102] also emerge from the same derivation.
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2.2 threshold approximations in networks 27

The authors considered the KM of Eq. (2.2) but allowing for an arbitrary network of
interactions. The KM in complex networks reads as

θ̇i = ωi +
K
N

N

∑
j=1

aij sin(θj − θi), ∀ i ∈ 1, . . . , N, (2.14)

where aij are the elements of the adjacency matrix that capture the presence and intensity
of the connections. We allow the coupling matrix A to be non-symmetric and weighted, in
general. A local order parameter is defined in a straightforward manner

rieiΨi =
N

∑
j=1

aij〈eiθj〉. (2.15)

Then, the equations of motion can be uncoupled as

θ̇i = ωi + Kri sin(Ψi − θi), ∀ i ∈ N. (2.16)

One impose equilibrium solutions by fixing θ̇i = 0, i.e.

sin(Ψi − θi) =
ωi

Kri
. (2.17)

Now we consider that only the locked oscillators (the ones that can satisfy Eq. (2.17))
contribute to the order parameter ri, and crucially assume that the solutions (ri, θi) are
independent of the intrinsic frequency wi (a strong assumption which turn out to be valid
for dense enough networks). Then, we can write

ri = ∑
|ωj|≤Krj

aijei(θj−Ψi) = ∑
|ωj|≤Krj

aijei(θj−Ψj)ei(Ψj−Ψi). (2.18)

By taking only the real part of Eq. (2.18) and using Eq. (2.17), we obtain

ri = ∑
|ωj|≤Krj

cos(Ψj −Ψi)

√
1− (

wj

Krj
)2. (2.19)

It can be argued that the smallest critical coupling is obtained when cos(Ψj −Ψi) = 1. Eq.
(2.19) can be solved numerically if the full vector of frequencies is known. Furthermore, if
we assume again that the network is dense enough and if the frequencies are randomly
allocated, then the frequencies of the neighbors {wj} can be approximated by the distribu-
tion g(w). Using this idea, one obtains

ri = K
N

∑
j=1

aijrj

∫ 1

−1
g(xKrj)

√
1− x2dx. (2.20)
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28 theoretical background

The critical point can be determined by letting rj → 0+. At first order, g(xKrj) ' g(0), and
we obtain

r0
i =

K
K0

N

∑
j=1

aijr0
j , (2.21)

where K0 = 2/(πg(0)) is the critical coupling derived for the all-to-all network, as obtained
in the previous section. Eq. (2.21) is an eigenvalue equation (i.e. Ar = λr). Since we are
interested in finding the smallest K satisfying Eq. (2.21), thus the critical value can be
determined by the largest eigenvalue λ∗ of the adjacency matrix A, obtaining

Kc =
K0

λ∗
. (2.22)

For the all-to-all network, λ∗ = N − 1, and Eq. (2.22) recovers the critical coupling de-
rived by Kuramoto in his original work. Eq. (2.22) is known in [103] as the perturbative
approximation of the threshold, but it has been also called the quenched approximation
because it exploits information of the fixed structure, given by the largest eigenvalue of the
adjacency matrix λ∗(A). We remark that this result does not use the information on the
frequency vector, equivalent to assuming a random allocation of frequencies in the nodes
in a sufficiently large and dense network.
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Here ∆ is the width parameter (half-width at half-maximum) of each Lorentzian and ±ω0

are their center frequencies, as displayed in Fig. 1. A more physically relevant interpretation

of ω0 is as the detuning in the system (proportional to the separation between the two center

frequencies). Note that we have written the distribution g(ω) so that it is symmetric about

2 ! 2 !

"Ω0 Ω0
Ω
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FIG. 1: A bimodal distribution of natural frequencies, g(ω), consisting of the sum of two

Lorentzians.

zero; this can be achieved without loss of generality by going into a suitable rotating frame.

Another point to observe is that g(ω) is bimodal if and only if the peaks are sufficiently

far apart compared to their widths. Specifically, one needs ω0 > ∆/
√

3. Otherwise the

distribution is unimodal and the classical results of [2, 3, 4, 5] would still apply.

B. Derivation

In the limit where N → ∞, Eq. (1) can be written in a continuous formulation [3, 4, 5] in

terms of a probability density f(θ, ω, t). Here f is defined such that at time t, the fraction of

oscillators with phases between θ and θ+ dθ and natural frequencies between ω and ω+ dω

is given by f(θ, ω, t) dθ dω. Thus

∫ ∞

−∞

∫ 2π

0

f(θ, ω, t) dθ dω = 1 (3)

and ∫ 2π

0

f(θ, ω, t) dθ = g(ω), (4)

5

B. Crawford’s center manifold analysis

Crawford [10] obtained the first mathematical results for the system studied in this paper.

Using center manifold theory, he calculated the weakly nonlinear behavior of the infinite-

dimensional system in the neighborhood of the incoherent state. From this he derived the

stability boundary of incoherence. His analysis also included the effects of white noise in

the governing equations.

FIG. 7: Left: Results from our analysis. white: incoherence, dark gray : partial synchronization,

light gray : standing wave (limit cycles), vertical lines: coexistence of incoherent and partially

synchronized states, horizontal lines: coexistence of partial synchronization and standing waves.

Right: Crawford’s bifurcation diagram in [10]. In our study there is no noise, and so the diffusion

is D = 0. Crawford’s ε corresponds to our ∆. I : Incoherent states, PS : partially synchronized,

SW : standing wave, equivalent to what we describe as two counterrotating flocks of oscillators.

(Permission to print by Springer Verlag.)

Figure 7(b), reproduced from Fig. 4 in Ref. [10], summarizes Crawford’s findings. Here

D is the noise strength (note: our analysis is limited to D = 0), ε is the width of the

Lorentzians (equivalent to ∆ in our notation), and ±ω0 are the center frequencies of the

Lorentzians (as here). The dashed line in Fig. 7(b) shows Crawford’s schematic depiction of

the unknown stability boundary between the standing waves and the partially synchronized

22
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Fig. 2. Schematic illustration of the typical evolution of r(t) seen in numerical simulations of the Kuramoto model (3.1).

3.3. Simulations

If we integrate the model numerically, how does r(t) evolve? For concreteness, suppose we fix g(ω) to be a
Gaussian or some other density with infinite tails, and vary the coupling K. Simulations show that for all K less
than a certain threshold Kc, the oscillators act as if they were uncoupled: the phases become uniformly distributed
around the circle, starting from any initial condition. Then r(t) decays to a tiny jitter of size O(N−1/2), as expected
for any random scatter of N points on a circle (Fig. 2).
But when K exceeds Kc, this incoherent state becomes unstable and r(t) grows exponentially, reflecting the

nucleation of a small cluster of oscillators that aremutually synchronized, thereby generating a collective oscillation.
Eventually r(t) saturates at some level r∞ < 1, though still with O(N−1/2) fluctuations.
At the level of the individual oscillators, one finds that the population splits into two groups: the oscillators

near the center of the frequency distribution lock together at the mean frequency " and co-rotate with the average
phase ψ(t), while those in the tails run near their natural frequencies and drift relative to the synchronized cluster.
This mixed state is often called partially synchronized. With further increases in K, more and more oscillators are
recruited into the synchronized cluster, and r∞ grows as shown in Fig. 3.
The numerics further suggest that r∞ depends only on K, and not on the initial condition. In other words, it seems

there is a globally attracting state for each value of K.

3.4. Puzzles

These numerical results cry out for explanation. A good theory should provide formulas for the critical coupling
Kc and for the coherence r∞(K) on the bifurcating branch. The theory should also explain the apparent stability of
the zero branch below threshold and the bifurcating branch above threshold. Ideally, one would like to formulate
and prove global stability results, since the numerical simulations give no hint of any other attractors beyond those
seen here. Even more ambitiously, can one formulate and prove some convergence results as N→ ∞?
As we will see below, the first few of these problems have been solved, while the rest remain open. Specifically,

Kuramoto derived exact results for Kc and r∞(K), Mirollo and I solved the linear stability problem for the zero

Fig. 3. Dependence of the steady-state coherence r∞ on the coupling strength K.

4 S.H. Strogatz / Physica D 143 (2000) 1–20

Fig. 1. Geometric interpretation of the order parameter (3.2). The phases θ j are plotted on the unit circle. Their centroid is given by the complex
number r eiψ , shown as an arrow.

is a macroscopic quantity that can be interpreted as the collective rhythm produced by the whole population. It
corresponds to the centroid of the phases. The radius r(t) measures the phase coherence, and ψ(t) is the average
phase (Fig. 1).
For instance, if all the oscillators move in a single tight clump, we have r≈ 1 and the population acts like a giant

oscillator. On the other hand, if the oscillators are scattered around the circle, then r≈ 0; the individual oscillations
add incoherently and no macroscopic rhythm is produced.
Kuramoto noticed that the governing equation

θ̇i = ωi + K

N

N∑

j=1
sin(θj − θi )

can be rewritten neatly in terms of the order parameter, as follows. Multiply both sides of the order parameter
equation by e−iθi to obtain

r ei(ψ−θi ) = 1
N

N∑

j=1
ei(θj −θi ).

Equating imaginary parts yields

r sin(ψ − θi ) = 1
N

N∑

j=1
sin(θj − θi ).

Thus (3.1) becomes

θ̇i = ωi + Kr sin(ψ − θi ), i = 1, . . . , N. (3.3)

In this form, the mean-field character of the model becomes obvious. Each oscillator appears to be uncoupled
from all the others, although of course they are interacting, but only through the mean-field quantities r and ψ .
Specifically, the phase θ i is pulled toward themean phaseψ , rather than toward the phase of any individual oscillator.
Moreover, the effective strength of the coupling is proportional to the coherence r. This proportionality sets up a
positive feedback loop between coupling and coherence: as the population becomes more coherent, r grows and so
the effective coupling Kr increases, which tends to recruit even more oscillators into the synchronized pack. If the
coherence is further increased by the new recruits, the process will continue; otherwise, it becomes self-limiting.
Winfree [10] was the first to discover this mechanism underlying spontaneous synchronization, but it stands out
especially clearly in the Kuramoto model.

THOMAS PERON et al. PHYSICAL REVIEW E 100, 042302 (2019)

FIG. 1. Comparison between the estimations of Kc by suscepti-
bilities χ [Eq. (14)] and χr [Eq. (15)]. Networks generated according
to the UCM with degree distribution P(k) ∼ k−γ , with γ = 2.25 and
kmin = 5. Natural frequencies are assigned according to Eq. (13).
Each point is an average over 100 network realizations. Error bars
are smaller than symbols.

especially for low values of N . Similar results are found for
different values of γ . Thus, we henceforth detect the critical
points via χr .

Let us now analyze how the mean-field theories perform
in comparison with simulations for the different regimes of
γ . First, for γ < 5/2, as discussed in the previous section,
both HMF and QMF predict a vanishing Kc, which should
scale with 〈k〉/〈k2〉. Indeed, as it is seen in Fig. 2(a), for
γ = 2.25, both theories predict quite accurately the onset of
synchronization.

Discrepancies between the approximations appear when
γ > 5/2. To be precise, in this regime, HMF yields Kc ∼
〈k〉/〈k2〉, while QMF gives Kc ∼ k−1/2

max . As depicted in

Fig. 2(b), the mean-field theories provide a satisfactory
approximation of the synchronization thresholds for networks
with γ = 2.7. Note that, although QMF contains in its for-
mulation the whole information about the network topology,
it performs slightly worse than HMF (see inset). Similar
dependencies with the system size are found for epidemic
thresholds in SF networks with 5/2 < γ < 3 [16,17].

For γ = 3.5 [Fig. 2(c)], we observe that the numerical
calculation of Kc converges to a constant value as N increases,
in agreement with the HMF prediction, whereas QMF theory
clearly fails in capturing the onset of synchronization. That
is, while simulations show that large SF networks in this case
exhibit a finite synchronization threshold, QMF reveals a van-
ishing Kc. Furthermore, it is interesting to point out discrep-
ancies between synchronization and the epidemic spreading
described by the susceptible-infected-susceptible (SIS) model
[24,25] regarding the dependence on the system size for
γ > 3. In contrast to the finite onset of synchronization seen in
Fig. 2(c), epidemic thresholds of the SIS model are known to
decay as N increases for γ > 3 [16,17]. In fact, Chatterjee and
Durrett [26] proved rigorously that, for uncorrelated random
networks with a power-law degree distribution P(k) ∼ k−γ

with any γ , the SIS model presents an unstable absorbing
phase in the thermodynamic limit, resulting in a null epi-
demic threshold. Afterwards, Boguñá et al. [27] physically
interpreted this proof with a semianalytical approach taking
into account a long-range reinfection mechanism between
hubs and found a vanishing epidemic threshold including for
γ > 3.

Actually, the behavior of the SIS model is distinct and more
intricate than other dynamical processes that also present a
phase transition from active to inactive states. This epidemic

(a)

(c)

(b)

FIG. 2. Critical coupling Kc against network size N for UCM networks with power-law exponent (a) γ = 2.25, (b) γ = 2.7, (c) γ = 3.5.
All networks have kmin = 5. Insets in (a) and (b) depict the difference between numerical estimation of Kc and mean-field theories. Each point
is an average over 100 network realizations. Error bars are smaller than symbols.
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Figure 2.2: Numerical estimations of the critical threshold (blue) via direct integration of Eq. (2.14)
and using susceptibility measurements, against the predictions of the QMF (light pink)
and HMF (dark pink) approximations, for different exponents of a scale-free network,
where it is confirmed that the critical threshold vanishes in the infinite size if the ex-
ponent is γ ≤ 3, similarly to the epidemic onset in the SIS model [40]. Reprinted by
permission of [180].

A further approximation of Kc can be obtained by using a mean-field approach in the
derivation [102]. The main assumption here is to consider that the local order parameter ri
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is proportional to the global r, weighted by the incoming strength of the node (or simply
the degree for unweighted networks), i.e.

ri = sir, (2.23)

where si = ∑N
j=1 aij and r = 1/N| ∑j eiθj . By inserting Eq. (2.23) into Eq. (2.21), and sum-

ming over all i, one directly obtains

Kc = K0
〈s〉
〈s2〉 , (2.24)

where 〈·〉 are the moments of the strength (or degree) distribution. We will call this approx-
imation the Heterogeneous Mean-Field (HMF) because it exploits the information of the
strength (or degree) sequence, which can be potentially heterogeneous, and to distinguish
against the Quenched Mean-Field (QMF) introduced before. Also, worth to note, the HMF
approximation has been recovered recently using another technique, a Gaussian ansatz
for the phase distribution [7], and the validity of both approximations has been revisited
by Peron et al. in [180], where it is shown (see Fig. 2.2 for details) that the HFM works
slightly better than the QMF, specially for scale-free networks with large exponent (thus,
towards homogeneous networks). Lastly, we note that Eq. (2.24) can be further extended
to the case of directed networks [103], where one has to distinguish between input and
output strengths, i.e. sin

i = ∑j aij and sout
i = ∑i aij. The ansatz in this case is simply given

by
ri = sin

i r. (2.25)

By inserting again Eq. (2.25) into Eq. (2.21), summing over all nodes and taking into ac-
count the asymmetry of the network, one obtains

Kc = K0
〈sin〉
〈sinsout〉 . (2.26)

In this thesis, we will use some of the aforementioned results. In particular, in section
3.2 of the following chapter, when relating the structural constraints posed by the network
and the critical range of synchronization onsets in the presence of noisy weights in the
network, and in section 3.4, to motivate and justify our extended mean-field approach to
tackle the mapping problem between different networks via weight-tuning schemes.

2.3 synchrony alignment framework

An important problem in network synchronization is optimization, i.e. how should one ar-
range the structure and frequencies such that the degree of phase synchrony is maximized?
A relevant result in this thesis is the work of Skardal et al. in 2014 [118], which triggered
a series of further works [79, 129, 130, 165], on the study of optimal synchronization in
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the strongly-synchronized regime using the so-called Synchrony Alignment Framework.
In this approach, one considers a quite general system for the oscillator dynamics

θ̇i = ωi + σ
N

∑
j=1

aijH(θj − θi) ∀ i ∈ 1, . . . , N, (2.27)

where H(θj − θi) is an arbitrary 2π-periodic non-linear coupling function of the state dif-
ferences of pairs of connected oscillators. While the particular choice of H(θ) depends on
the application at hand, notable choices H(θ) = sin(θ) and H(θ) = sin(θ − α), where
α ∈ [−π/2, π/2], yield the network Kuramoto and Sakaguchi-KMs, respectively [118].
Invoking maximum synchronization, one is concerned with the strongly synchronized re-
gime, where a phase-locked state becomes attainable (all the oscillators rotate at the same
frequency and there are fixed phase differences between them). To reach this regime, we
have to assume that |H(0)| � 1, so that for a strongly synchronized state where |θj − θi|
we have that H(θj − θi) ≈ H(0) + H′(0)(θj − θi) [118]. We note here that for the clas-
sical KM we have H(0) = 0 and H′(0) = 1. Now, by defining the effective frequency
ω̂i = ωi + σH(0)kin

i and entering a suitable rotating frame, the synchronized state is then
described by the fixed point satisfying θ̇ = 0. After the linearization, the synchronized
state then satisfies the following equation,

ω̂ = σH′(0)Lθ, (2.28)

where L = D − A is the Laplacian of the network, and D is a diagonal matrix with the
in-degrees or in-strengths of the nodes, i.e. Dii = ki = ∑N

j=1 aij. Since the matrix L has zero
row sum, it has a trivial eigenvalue λ1 = 0 with a constant associated eigenvector v1 ∝ 1,
and therefore it is singular and not invertible [118, 181]. Moreover, this spectral property
reveals an important physical characteristic of the system, namely that the dynamics are
invariant to a constant shift to the phases, i.e., translation along the synchronization mani-
fold defined as the span of the trivial eigenvector v1. Thus, while solutions to Eq. (2.28) are
not unique, that which minimizes the norm ||θ|| is likely the most useful and is given by

θ∗ =
L†ω̂

σH′(0)
, (2.29)

where L† is the Moore-Penrose pseudo-inverse of the Laplacian matrix [181]. Importantly,
to write down the exact pseudo-inverse we require a full spectral decomposition of the
Laplacian matrix (i.e., global information of the network) if the network is undirected. In
the general case, i.e. for a possibly directed network, the pseudo-inverse can be computed
via the singular value decomposition of L as

L† =
N

∑
n=2

vnuT
n

µn
, (2.30)

where 0 < µ2 ≤ ... ≤ µN are the N − 1 singular values of L and {vn} and {un} are the set
of right and left singular vectors. Note that for the particular case of undirected networks
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the singular values are given by the eigenvalues of L and the left and right singular vectors
are given by the eigenvectors of L, so L† is defined by its eigenvalue decomposition.

Eq. (2.29) gives precisely the linearized synchronized state and therefore is critical to un-
derstand the interplay between structure and synchronization dynamics in tasks involving
the fully synchronized state, and for this reason there is a myriad variety of phenomena
and applications involving it [6, 44, 62, 118, 165]. In the context of optimization, one aims
at minimizing the norm ||θ||, because this makes the degree of synchrony to increase. To
see this, we linearize the order parameter in Eq. (2.3) to first order (valid for sufficiently
small phases, as occurs here) and find that r ∼ 1− ||θ||2. In order to minimize the norm
of the phases, and according to Eq. (2.30), the frequency vector should be aligned with
the eigenvector associated with the largest eigenvalue (or singular value) of L. Alignments
of ω with different eigenvectors of L are shown in Fig. 2.3.a), where it is observed that
the maximum synchronization (for any value of the coupling K) is obtained by the align-
ment with the eigenvector v1000 associated here to the largest eigenvalue in a scale-free
network of N = 1000 nodes. This optimal alignment can be also approximately reached
by starting with a random configuration and performing a process of links rewiring such
that the optimal alignment increases, as shown in Fig. 2.3.b), where the initial network
is random with a Gaussian distribution of frequencies, also randomly allocated. After the
rewiring, the network evolves towards a configuration with non-trivial microscopic correla-
tions between the structure and the dynamics, as observed in Fig. 2.3.c), where nodes with
larger positive (blue) or negative (red) frequencies accumulate more links, and the con-
nections are usually between nodes with large frequency differences. Importantly, these
correlations could be only studied a posteriori, from the outcome of numerical optimiza-
tions of the spectral black box.Figure-chap2-4
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FIG. 3. (Color online) Eigenvector alignments: (a) r vs K for fre-
quency alignments ω ∝ v100, v200, . . . , v1000 (red to blue). (b) r vs
i for ω ∝ vi with fixedK = 0.08 (blue circles), 0.25 (red crosses),
and 1 (green triangles). Each point is averaged over 50 SF network
realization of size N = 1000 with γ = 3 and d0 = 2.

few isolated coupling strengths: K = 0.08, 0.25, and 1, again
averaged over 50 realizations. For all three cases r tends to
increase with i, provided i is not too small. ForK = 0.08 the
majority of alignments yield incoherence with r undergoing
a sharp increase only near the most dominant eigenvectors,
while the increase in r is more gradual for K = 0.25 and 1.
We also point out that for very small i we observe a short in-
crease in r, which we attribute to local synchronization that
yield large fluctuations in r.
Before concluding, we investigate the dynamical and struc-

tural properties present in optimized networks. In partic-
ular, we consider local degree-frequency and neighboring
frequency-frequency correlations. In Figs. 4 (a) and (b) we
plot the frequency magnitude |ωi| vs degree di for (a) a net-
work with optimally allocated frequencies and (b) a network
with pre-chosen frequencies (blue circles) and a rewired net-
work (red crosses). Networks are SF with N = 1000, γ = 3,
and d0 = 3 and frequencies in (b) are normally-distributed. In
each case we observe a strong positive degree-frequency cor-
relation, indicating that the largest frequencies correspond to
the network hubs. Moreover, in Figs. 4 (c) and (d) we plot for
each node i the average frequency of its neighboring oscilla-
tors 〈ω〉i =

∑N
j=1 Aijωj/di vs ωi. The results are qualita-

tively similar for each case, showing a strong negative corre-
lation between neighboring frequencies. These observations
agree with those of Refs. [27, 28], where similar positive and
negative correlations were found to promote global synchro-
nization. We finally note that such degree-frequency correla-
tions may help explain the increased sharpness of transitions
shown in Figs. 1 and 2 (a) and (b), since similar correlations
can lead to discontinuous transitions [18].
In this Letter we presented a synchrony alignment function

that measures the interplay between network structure and os-
cillator heterogeneity and allows for a systematic optimiza-
tion of synchronization. Focusing on Kuramoto coupling, we
highlighted its utility through numerical experiments for ran-
dom networks with two general classes of optimization prob-
lems: frequency allocation and network design. We found that
synchronization is promoted by a strong alignment of the fre-
quency vector with the most dominant Laplacian eigenvectors
and that, relatively speaking, more (less) heterogeneous net-
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FIG. 4. (Color online) Correlations in optimized networks: (a), (b)
Frequency magnitude |ωi| vs degree di and (c), (d) average neighbor
frequency 〈ωi〉 vs frequency ωi for networks with optimally chosen
frequencies (green triangles), pre-chosen frequencies (blue circles),
and a rewired network (red crosses). Networks are SF with N =
1000, γ = 3, and d0 = 3. Frequencies for the arranged and rewired
cases are normally distributed.

works better synchronize more (less) heterogenous frequen-
cies. In all cases we found that in optimized networks the large
frequencies are localized to hubs and frequencies of neighbor-
ing oscillators are negatively correlated.
Although the theoretic approach developed herein is valid

for systems given by Eq. (1), extension to more general os-
cillator models, e.g., Landau-Stuart oscillators [34], Winfree
oscillators [35] and chaotic oscillators remains an outstanding
problem. One promise stems from Kuramoto’s phase reduc-
tion methods which give Eq. (1) as an approximating of the
dynamics of weakly-interacting limit-cycle oscillators [10].
Another exciting venue of research would be on the optimiza-
tion of other dynamical patterns such as multistability, hys-
teresis, and/or explosive synchronization, none of which was
observed in our numerical examples (despite the sharp tran-
sitions seen in Figs. 1 and 2) but can potentially arise under
more general coupling and dynamics.
Finally, we compare our results on heterogeneous oscilla-

tors to the well-developed theory regarding identical oscilla-
tors [29], for which the synchronizability of a network is given
by the ratio λN/λ2 of Laplacian eigenvalues [30] – a result al-
lowing for optimization to be independent of the node dynam-
ics [31]. In contrast, we find here that the synchronization of
a network of heterogeneous oscillators generally depends on
not only the full set of eigenvalues and eigenvectors of the net-
work Laplacian, much like the case of nearly-identical oscil-
lators [32] and real-world experiments [33], and how the net-
work structure pairs with the heterogeneity of node dynamics
(here oscillator frequencies). A network that is easily synchro-
nizable with identical oscillators may have poor synchroniza-

3

λN for i != N , an inexpensive first-order minimization of the
objective function leads to maximizing |〈vN , ω〉|. This can be
done simply by finding the index permutations i1, . . . , iN and
j1, . . . , jN that place eigenvector entries in ascending order,
vN

i1
≤ · · · ≤ vN

iN
, and frequencies in ascending (or descend-

ing) order, ωj1 ≤ · · · ≤ ωjN (or ωj1 ≥ · · · ≥ ωjN ). In
principle both pairings must be checked to select the best re-
sult. To find a near-optimal allocation we begin with an initial
choice ω and construct a new vector ω′ by exchanging two
randomly chosen entries. If J(ω′, L) < J(ω, L) we accept
ω′, otherwise we reject it. This procedure is then repeated for
S proposed exchanges.
In Fig. 1 (b) we compare synchronization profiles for near-

optimal, first-order, and random allocations where frequencies
are drawn from the unit normal distribution. As expected,
the near-optimal allocation yields the best results, however,
the first-order allocation also performs well, providing an in-
expensive way to improve upon purely random allocation.
These results also allow us to compare the allocation of pre-
chosen frequencies to freely chosen frequencies [Fig. 1 (a)].
In both cases, the transition from incoherence to strong syn-
chronization is sharp, however it occurs at a larger coupling
strength (K ≈ 0.4) when frequencies are pre-chosen, yield-
ing two distinct regimes: for small K strong synchronization
is only attainable when frequencies are freely tunable, while
for larger K strong synchronization is attainable even when
the frequency set is fixed.
Next we address the complimentary problem of optimal

network design for a fixed set of frequencies. Given ω and
a fixed number of links, we look for a network that mini-
mizes J(ω, L). As an algorithmic method for obtaining an
approximate solution, we initialize an accept/reject algorithm
with a network satisfying these constraints, and allow it to
evolve as follows. A new network with Laplacian matrix
L′ is constructed by randomly deleting a link and introduc-
ing another between two previously disconnected nodes. If
J(ω, L′) < J(ω, L) we accept the new network, otherwise
we reject it. This procedure is then repeated for S proposed
rewirings. In Fig. 2 we present the results of this rewiring al-
gorithm for two experiments. We consider two networks: one
with relatively homogeneous frequencies drawn from a unit
normal distribution (left column) and a second with heteroge-
neous frequencies drawn from a symmetric power-law distri-
bution, g(|ω|) ∼ |ω|−3 (right column). Both networks con-
tain N = 1000 oscillators. In Figs. 2 (a) and (b) we plot the
synchronization profiles for the initial networks and the net-
works obtained after 2 · 104 rewirings. In both experiments,
the rewired networks display better synchronization proper-
ties with sharp transitions from incoherence to strong synchro-
nization. Each experiment is initialized with a different net-
work topology: a SF network constructed by the configuration
model with γ = 3 and d0 = 2 and an Erdős-Rényi (ER) [26]
network with average degree 〈d〉 = 4 are paired with the nor-
mal and power-law distributed frequencies, respectively. In
Figs. 2 (c) and (d) we plot the initial and rewired degree dis-
tributions. In both experiments the degree distribution evolves
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FIG. 2. (Color online) Optimal network design: (a)-(b) r vs K for
initial (red crosses) and rewired (blue circles) networks with normal
and power-law distributed frequencies. (c)-(d) Degree distributions
of the initial (red crosses) and rewired (blue circles) networks. (e)-(f)
Illustrations for N = 40 and 36 of networks after rewiring.

to better match that of the frequencies, either becoming less
[Fig. 2(c)] or more [Fig. 2(d)] heterogeneous. This is further
emphasized by the shifts in the maximal degrees d∞, which
decreases from 75 to 15 and increases from 10 to 26, respec-
tively. This suggests that a more heterogeneous network bet-
ter synchronizes a more heterogeneous set of frequencies. To
illustrate this phenomenon, we show in Figs. 2 (e) and (f) net-
works resulting from the same experiment with fewer nodes
(N = 40 and 36, respectively). The radius of each node is
proportional to its degree and the coloring of the node indi-
cates its frequency from most positive (red) to most negative
(blue). Here the phenomenon is easily observable with the
emergence of network hubs in (f) but not (e).
We now study in more detail the synchrony alignment func-

tion given in Eq. (7). Just as aligning ω with vN maxi-
mizes r, it follows that in the strong coupling regime, align-
ing ω with other eigenvectors vi of decreasing index yields
weaker synchronization. We consider the alignments ω ∝ vi

and plot the synchronization profiles in Fig. 3 (a) for i =
100, 200, . . . , 1000 (red to blue) averaged over 50 realizations
of SF networks with parameters N = 1000, γ = 3, and
d0 = 2. As expected, we observe weaker synchronization
with decreasing index. We also plot in panel (b) r vs i for a

3

λN for i != N , an inexpensive first-order minimization of the
objective function leads to maximizing |〈vN , ω〉|. This can be
done simply by finding the index permutations i1, . . . , iN and
j1, . . . , jN that place eigenvector entries in ascending order,
vN

i1
≤ · · · ≤ vN

iN
, and frequencies in ascending (or descend-

ing) order, ωj1 ≤ · · · ≤ ωjN (or ωj1 ≥ · · · ≥ ωjN ). In
principle both pairings must be checked to select the best re-
sult. To find a near-optimal allocation we begin with an initial
choice ω and construct a new vector ω′ by exchanging two
randomly chosen entries. If J(ω′, L) < J(ω, L) we accept
ω′, otherwise we reject it. This procedure is then repeated for
S proposed exchanges.
In Fig. 1 (b) we compare synchronization profiles for near-

optimal, first-order, and random allocations where frequencies
are drawn from the unit normal distribution. As expected,
the near-optimal allocation yields the best results, however,
the first-order allocation also performs well, providing an in-
expensive way to improve upon purely random allocation.
These results also allow us to compare the allocation of pre-
chosen frequencies to freely chosen frequencies [Fig. 1 (a)].
In both cases, the transition from incoherence to strong syn-
chronization is sharp, however it occurs at a larger coupling
strength (K ≈ 0.4) when frequencies are pre-chosen, yield-
ing two distinct regimes: for small K strong synchronization
is only attainable when frequencies are freely tunable, while
for larger K strong synchronization is attainable even when
the frequency set is fixed.
Next we address the complimentary problem of optimal

network design for a fixed set of frequencies. Given ω and
a fixed number of links, we look for a network that mini-
mizes J(ω, L). As an algorithmic method for obtaining an
approximate solution, we initialize an accept/reject algorithm
with a network satisfying these constraints, and allow it to
evolve as follows. A new network with Laplacian matrix
L′ is constructed by randomly deleting a link and introduc-
ing another between two previously disconnected nodes. If
J(ω, L′) < J(ω, L) we accept the new network, otherwise
we reject it. This procedure is then repeated for S proposed
rewirings. In Fig. 2 we present the results of this rewiring al-
gorithm for two experiments. We consider two networks: one
with relatively homogeneous frequencies drawn from a unit
normal distribution (left column) and a second with heteroge-
neous frequencies drawn from a symmetric power-law distri-
bution, g(|ω|) ∼ |ω|−3 (right column). Both networks con-
tain N = 1000 oscillators. In Figs. 2 (a) and (b) we plot the
synchronization profiles for the initial networks and the net-
works obtained after 2 · 104 rewirings. In both experiments,
the rewired networks display better synchronization proper-
ties with sharp transitions from incoherence to strong synchro-
nization. Each experiment is initialized with a different net-
work topology: a SF network constructed by the configuration
model with γ = 3 and d0 = 2 and an Erdős-Rényi (ER) [26]
network with average degree 〈d〉 = 4 are paired with the nor-
mal and power-law distributed frequencies, respectively. In
Figs. 2 (c) and (d) we plot the initial and rewired degree dis-
tributions. In both experiments the degree distribution evolves
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FIG. 2. (Color online) Optimal network design: (a)-(b) r vs K for
initial (red crosses) and rewired (blue circles) networks with normal
and power-law distributed frequencies. (c)-(d) Degree distributions
of the initial (red crosses) and rewired (blue circles) networks. (e)-(f)
Illustrations for N = 40 and 36 of networks after rewiring.

to better match that of the frequencies, either becoming less
[Fig. 2(c)] or more [Fig. 2(d)] heterogeneous. This is further
emphasized by the shifts in the maximal degrees d∞, which
decreases from 75 to 15 and increases from 10 to 26, respec-
tively. This suggests that a more heterogeneous network bet-
ter synchronizes a more heterogeneous set of frequencies. To
illustrate this phenomenon, we show in Figs. 2 (e) and (f) net-
works resulting from the same experiment with fewer nodes
(N = 40 and 36, respectively). The radius of each node is
proportional to its degree and the coloring of the node indi-
cates its frequency from most positive (red) to most negative
(blue). Here the phenomenon is easily observable with the
emergence of network hubs in (f) but not (e).
We now study in more detail the synchrony alignment func-

tion given in Eq. (7). Just as aligning ω with vN maxi-
mizes r, it follows that in the strong coupling regime, align-
ing ω with other eigenvectors vi of decreasing index yields
weaker synchronization. We consider the alignments ω ∝ vi

and plot the synchronization profiles in Fig. 3 (a) for i =
100, 200, . . . , 1000 (red to blue) averaged over 50 realizations
of SF networks with parameters N = 1000, γ = 3, and
d0 = 2. As expected, we observe weaker synchronization
with decreasing index. We also plot in panel (b) r vs i for a
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where r(t) 2 C, |r(t)| 2 [0, 1] is the order parameter at
time t, and ✓j(t) 2 [1, N ] is the phase of oscillator j at
time t (n.b. ✓j,re(t) in the case of the analytical expres-
sion Equation 10). Figure 3 shows the time-average or-
der parameter over 1-second simulations. As  increases
in the KM, the order parameter begins at a low value
(desynchronized state) and increases until approaching
unity (synchronized state) at values of  ranging from 1
to 10. As observed in Figure 2, the numerical and analyt-
ical versions of the KM exhibit very similar macroscopic
synchronization dynamics.

Lastly, we considered the numerical and analytical so-
lutions of the KM on undirected Erdős-Rényi and Watts-
Strogatz random graphs. For each realization of a ran-
dom graph, we obtain a numerical estimate of the eigen-
spectrum of its adjacency matrix A to use in the an-
alytical expression Equation (10). We first considered
the KM on an Erdős-Rényi random graph (GER), which
displays synchronization dynamics similar to those pre-
viously observed (Fig. 4, top). We then considered the
KM on a Watts-Strogatz network (GWS), which is de-
fined as a ring graph GRG where each node is first con-
nected to its k neighbors in each direction and each edge
is rewired to another node with uniform probability q
[11]. The KM on GWS displays non-trivial spatiotempo-
ral dynamics before converging to the synchronized state
(Fig. 4, bottom middle). Importantly, these spatiotem-
poral dynamics were also well described by the analytical
expression introduced here (Fig. 4, bottom right).

In this work, we have introduced a complex-valued for-
mulation of the KM whose argument corresponds to the
original Kuramoto dynamics. This formulation permits
an exact analytical solution for individual realizations of
the KM. Here, we have first considered the case of ho-
mogeneous intrinsic frequency; however, this approach
generalizes to the inhomogeneous case (Supplement [7]).
We then compared the analytical version to numerical in-
tegration of the KM equations and found the analytical
version displays similar dynamics, from the macroscopic
synchronization behavior to the specific trajectories of
individual oscillators.

Previous research, including an inspiring technical re-
port written by van Mieghem [6], has studied complex-
valued formulations of the KM [5, 12]; however, no exact
analytical expression was previously obtained. In par-
ticular, the expression derived in [6] was noted to hold
only for the repulsive cosine variant of the KM, and the
linear reformulation in [5] requires tuning a parameter to
create the correspondence to the original KM. Thus, the
results reported in this Letter, while representing only an
initial study utilizing the analytical expression in Equa-
tion (10), to the best of our knowledge represent the first
analytical version of the Kuramoto model.

Importantly, we emphasize that the analytical version
introduced here is valid at finite scales and for individual
realizations of the KM. This analytical version allows fu-
ture mathematical study of synchronization dynamics in
networks with many nodes and connections, potentially
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FIG. 4. Numerical and analytical realizations on the Erdős-
Rényi and Watts-Strogatz random graphs. (top left) The
Erdős-Rényi random graph GER is plotted with nodes (black
dots) and edges (blue lines) (N = 200, p = 0.2). (top right)
The numerical integration of the KM (Eq. 1) and the ana-
lytical evaluation of Eq. (10) are plotted ( = 50/N). As
previously, dark colors indicate values close to �⇡, and light
colors indicate values close to ⇡. (bottom left) The Watts-
Strogatz (WS) graph GWS (N = 200, k = 10, and rewiring
probability q = 0.1). (bottom right) Numerical and analytical
evaluations of the KM are plotted as above.

using new tools from spectral graph theory, in addition
to allowing one to obtain the future state of the system at
an arbitrary future moment without numerical integra-
tion of the di↵erential equations defined on the network.
Because the KM has been extensively studied both as a
model for neural dynamics [8, 13, 14] and as a fundamen-
tal model for neural computation [15], these results open
up several possibilities for studying the connections be-
tween network structure, nonlinear dynamics, and com-
putation. Recurrent connections have previously been
shown to produce powerful computations through non-
linear interactions [16]. The approach introduced here
may have applications in understanding such recurrent
interactions, which have been increasingly acknowledged
to play an important and unexplained role in visual pro-
cessing in the brain [17]. Understanding more clearly
the connection between networks and computation thus
may have implications for fields such as neuroscience and
beyond.

In this work, we have specifically studied the KM de-
fined on a ring graph GRG, whose highly regular structure
permits analytical study of the eigenspectrum of its adja-
cency matrix. The regular structure of this graph means
that its adjacency matrix belongs to the class of circulant
matrices, whose eigenspectrum can be calculated analyt-
ically. Further, when k is maximal, such that the num-
ber of neighbors to which a node is connected equals the
rest of the graph, GRG corresponds to KN , the complete
graph on N nodes. The KM defined on KN , in turn, cor-
responds to the case of all-to-all connectivity first con-
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Figure 2.3: a) Synchronization curves r(K) for different allocations of ω (different alignments with
the eigenvectors of L) in a scale-free network with N = 1000, minimum degree kmin = 2
and exponent γ = 3. b) Synchronization curves for the initial and rewired (near-optimal)
configurations of links, in a random network with Gaussian frequencies. c) Visualization
of a toy network of N = 40 after the link rewiring to maximize the optimal alignment.
Color-coding represents the frequency of the node (ranging from blue to red) and the
size is proportional to the degree. Reprinted by permission of [118].

In this thesis, we will use this framework in several places. In section 3.3 of the following
chapter, we will extend this formalism to study optimal synchronization in networks with
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32 theoretical background

both pair-wise and higher-order interactions, finding the benefits of higher-order interac-
tions in both optimizing synchronization and maximizing the range of synchronized states
in a fixed structure. Furthermore, in chapter 4, we will see how this spectral optimization
can be decomposed in small pieces of information ranging from local terms to more global
neighborhoods of the nodes, which turns out to be a very suitable technique when dealing
with decentralized optimization procedures (where the global information contained in
the spectra is not available). A particular example of this decentralized approach is the
model of a self-organized synchronization bomb, which we introduce in chapter 5.

Before closing this section, it is worthy to mention that the Synchrony Alignment Frame-
work, given by the interplay between the Moore-Penrose Laplacian pseudo-inverse object
and the frequency vector in Eq. (2.29) emerges in many other problems beyond the op-
timization of phase synchrony [44, 133, 159, 182]. A particularly interesting example is the
result of Dörfler et al. [44], where a critical condition for the loss of global phase-locking in
the KM in a complex network is given by ||L†ω||ε,∞ < 1 where the sub-index indicates that
the condition is given by the maximum difference in the entries of the L†ω vector among
connected nodes (where aij = 1). In this sense, this spectral object provides another predic-
tion of the synchronization onset, here meaning the lower value of the coupling strength
K that sustains a state of global phase-locking (frequency synchronization) in the network.

2.4 model reduction techniques

The goal of model reduction techniques is to reduce the dimensionality of a system of
network-coupled oscillators, from the large (or infinite) set of coupled equations to a sys-
tem of one or few variables, which becomes much more tractable, both analytically and
numerically. In the following, we consider two of these techniques (the ones that we use
in our work), but it is important to remark that there are a few more available for differ-
ent purposes [7]. In particular, here we introduce the Ott-Antonsen (OA) model reduction
[122], based on the OA ansatz, which is an exact reduction valid for globally coupled
oscillators in the infinite size, and also a model reduction for finite size systems, based
on a collective coordinates (CC) ansatz and studied both in the globally coupled case by
Gottwald [145] in 2015 and in the complex network case later by Hancock and Gottwald
[146] in 2018. In this thesis, we will apply both techniques in chapter 5, in order to analyt-
ically predict the transition points in our model of a synchronization bomb. It is important
to remark that, beyond its practical usage in many specific problems, this kind of model
reductions of coupled oscillators are next-generation techniques, which allow understand-
ing the dynamics of a high-dimensional and non-linear system by studying the behavior
of a few macroscopic variables, sometimes in an exact manner, without having to rely on
heuristics or strong approximations [7]. However, the complex network case poses more
difficulties than the globally-coupled one, and we still lack a reduction approach that
captures the rich repertoire of behaviors emerging from the oscillator dynamics and the
complex structure [7, 146].
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2.4 model reduction techniques 33

2.4.1 Ott-Antonsen ansatz

The Ott-Antonsen ansatz is the particular form that the authors guessed for the coefficients
in a specific a Fourier expansion, as we will see, but the whole method is now known as the
Ott-Antonsen model reduction [7]. This method applies to the mean-field limit (globally-
coupled oscillators in the infinite size) of several models of coupled phase oscillators. The
KM is our problem of interest, although it is important to remark that this technique can be
extended to variations of the original model and to more realistic descriptions of neuronal
dynamics [7].

In the following, we will restrict to the KM with a single population, thus being equival-
ent to the system studied by Kuramoto in his original work. In the thermodynamic limit,
a distribution for the phases ρ(θ, ω, t) can be defined, and due to the conservation of the
number of oscillators, this distribution has to satisfy the transport equation2

∂ρ

∂t
+

∂

∂θ
(θ̇ρ) = 0, (2.31)

where θ̇ is the velocity dictated by the KM, which can be written as

θ̇ = ω + Im[KZ(t)e−iθ ], (2.32)

where Im[x] is the imaginary part (corresponding to the sinusoidal term), i is the imaginary
unit and Z(t) is the standard Kuramoto order parameter. Eq. (2.32) can be easily rewritten
as

θ̇ = ω +
K
2i
[Ze−iθ + Z∗eiθ ], (2.33)

with Z∗ the complex conjugate. In this continuous description, the order parameter Z(t) is
given by

Z(t) =
∫ ∞

−∞

∫ π

−π
ρ(θ, ω, t)eiθdθdω. (2.34)

Thanks to the periodicity of the phases, the density function ρ(θ, ω, t) can be expanded in
a Fourier series in the variable θ, in the form

ρ(θ, ω, t) =
g(ω)

2π

∞

∑
n=−∞

αn(ω, t)einθ , (2.35)

with α0 = 1, and α−n = α∗n. In this form, the order parameter given by Eq. (2.34) reads as

Z(t) =
∫ ∞

−∞

∫ π

−π

g(ω)

2π

∞

∑
n=−∞

αn(ω, t)ei(n+1)θdθdω. (2.36)

Here, it is important to note that ei(n+1)θ is an odd function, meaning that the integral
from (−π, π) will vanish for all n except n = −1, when the exponential becomes one and

2 Note that the transport equation in Eq. (2.31) just ensures that the number of oscillators is fixed, in the same
way as in an incompressible fluid the mass density is conserved.

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



34 theoretical background

the integral over the phases is simply
∫ π
−π dθ = 2π. Therefore, the order parameter only

depends on the coefficient α−1 = α∗1 as

Z(t) =
∫ ∞

−∞
α∗1(ω, t)g(ω)dω. (2.37)

On the other hand, by plugging the expressions for the density function, Eq. (2.35) and the
velocity, Eq. (2.33), into the continuity equation, Eq. (2.31) and taking the derivatives, it is
straightforward to show that each coefficient αn(ω, t) in the expansion evolves following
the differential equation

α̇n = −inωαn +
K
2
(nαn−1Z∗ − nαn+1Z) ∀ n = −∞, . . . , ∞. (2.38)

We still have to deal with an infinite system of coupled differential equations. The miracle
of the Ott-Antonsen ansatz (OA) is to assume a special form for the coefficients. In par-
ticular, the OA ansatz guesses that the coefficients are just powers of the first coefficient
α1(ω, t), i.e.

αn(ω, t) = α1(ω, t)n. (2.39)

Using this ansatz in Eq. (2.38), one rapidly sees that the equations for all n become identical,
collapsing into a single differential equation for the first coefficient as

α̇1 = −iωα1 +
K
2
(Z∗ − α2

1Z), (2.40)

where Z is given by Eq. (2.37). To proceed further, it is important to note that the integral
in Eq. (2.37) can be analytically studied with the residue theorem of complex analysis if
α(ω, t) satisfies some conditions [7, 122]. In particular, let us consider a Lorentzian distri-
bution g(ω) with mean ω0 and width γ, given by

g(ω) =
γ

π

1
(ω−ω0)2 + γ2 , (2.41)

which has two poles in the complex plane at ω = ω0± iγ. In this case, the order parameter
can be directly written as

Z(t) =
γ

π

∫ ∞

−∞

α∗1(ω, t)/(ω−ω0 − iγ)
ω−ω0 + iγ

dω. (2.42)

By Cauchy’s integral formula, we know that if a complex integral can be written as a
contour integral in a path Γ enclosing a pole, then the integral is given by

∮

Γ

f (z)
z− z0

= 2πi f (z0), (2.43)
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where z0 is the pole. From Eq. (2.42), we identify z0 = ω0 + iγ and f (z) = α∗1(ω, t)/(ω −
ω0 − iγ), therefore, the order parameter is given by Z(t) = α∗(ω0 − iγ, t). Finally, by
plugging this last result into Eq. (2.40) and using ω = ω0 − iγ, one arrives at

Ż = (−γ + iω0)Z +
K
2

Z(1− |Z|2), (2.44)

where |Z| is the modulus of the complex order parameter Z. Remarkably, we end up
with a two-dimensional system (since Z is complex-valued), which is quite surprising
considering that we started with an infinitely-coupled one. Now, by writing the order
parameter in polar coordinates Z = reiΨ, and separating real and imaginary parts, one
obtains a two-dimensional system

ṙ =
(
−∆ +

K
2
− K

2
r2
)

r (2.45)

Ψ̇ = ω0. (2.46)

Since the equation for the mean phase Ψ is completely uncoupled (Ψ(t) = ω0t + C), we
only need to solve the first equation. By doing a straightforward calculation of the fixed
points, we find that r = 0 is stable for K < Kc = 2γ and loses the stability where the
solution r =

√
1− Kc/K becomes stable, recovering the exact same solution obtained by

Kuramoto in his original derivation.

2.4.2 Collective-Coordinates ansatz

The OA technique is very powerful, but it is usually valid in the thermodynamic limit of
globally coupled populations of oscillators. In the following, we introduce another tech-
nique, based on collective coordinates, that is suitable for finite size systems and allows
introducing the complex network into the description. Let us focus on the scenario of a
single synchronizing cluster in a complex network, introduced in [146], which generalizes
the results of [145] for the all-to-all case. Interestingly, in [146], the technique is extended
to several synchronizing clusters, but we will restrict to the single cluster because it is the
scenario that we will face when solving the synchronization bomb, in chapter 5.

The key idea of the CC method is to consider that in the phase-locking, synchronized
regime, the phases of the oscillators can be described with the ansatz

θi(t) = α(t)
N
K

L†ω, (2.47)

assuming that the phase of the i-th oscillator (which is synchronized to the cluster) is
proportional to the phase in the linearized regime. As we have seen in section 2.3, the
solution in the linearized regime is given by the product of the pseudo-inverse Laplacian
and the frequency vector, i.e. L†ω, thus, it is reasonable to assume that for a sufficiently
large coupling K, the dynamics of the fully non-linear KM in a complex network, given by
Eq. (2.14) will approach its linearized limit. The variable α(t) is the collective coordinate,
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and it is the scaling that controls how far the non-linear solution of the phases departs
from the linearized version. The goal of this approach is to write the coupled system of N
equations as a single equation for the evolution of the collective coordinate α(t).

The first step is to insert the ansatz given by Eq. (2.47) into Eq. (2.14), obtaining the error
made by the ansatz in the full dynamics as

εi = α̇Φi −ωi −
K
N ∑

j
aij sin(α(Φj −Φi), (2.48)

where we have defined the vector Φ = (N/K)L†ω. One wants to minimize the error ε,
which is achieved by imposing that the error has to be orthogonal to Φ, i.e. ∑i εiΦi =

0. Imposing this constraint, one obtains an equation for the evolution of the collective
coordinate as

α̇ =
K
N

ΦT LΦ
ΦTΦ

+
K

NΦT LΦ ∑
i

∑
j

Φiaij sin(α(Φj −Φi). (2.49)

After an appropriate rescaling of time, one ends up with

α̇ = 1 +
1

ΦT LΦ ∑
i

∑
j

Φiaij sin(α(Φj −Φi). (2.50)

Remarkably, this is a single differential equation on α. The equilibrium solution can be
found implicitly by setting α̇ = 0 and finding α(K), and then the phases can be obtained
by substituting this solution into Eq. (2.47). In [146], numerical simulations confirm the
validity of the ansatz for the dynamics of the KM in the phase-locking regime, where all
the oscillators rotate at the same frequency and are phase-locked to their neighbors. In this
sense, this ansatz also extends the validity of the SAF results in previous section 2.3 to the
non-linear regime.

The CC method can be heuristically extended to find the value of the phases for the
oscillators that are synchronized even if the system is not in the phase-locking regime.
This occurs when K is lowered, and some oscillators desynchronize from the cluster, while
the rest remain synchronized. If K is further lowered below the critical threshold, all the
oscillators break synchrony and the incoherent state is recovered. In the partially synchron-
ized state, thus between the incoherent and full phase-locking regimes, the ansatz in Eq.
(2.47) still applies, but only to the largest subset of nodes Cm that can synchronize. In or-
der to find this subset of nodes, in [146] the authors propose a dynamical criterion based
on linearizing the dynamics of the KM around an equilibrium solution α∗, and finding
numerically the spectra of the Jacobian matrix (the matrix of derivatives evaluated at the
equilibrium point). The set of nodes to be excluded from the synchronized cluster (where
the ansatz still applies) is selected from the largest components of the eigenvector asso-
ciated with the positive eigenvalues, because positive eigenvalues of the Jacobian matrix
indicate unstable modes of the dynamics.

We will use the Jacobian matrix to determine the stability of the non-linear system in sec-
tion 5.3.2, in order to find the critical point of our synchronization bomb. For more details
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on the method used to extend the collective coordinates ansatz to the partially synchron-
ized state, we refer the reader to [146], but it is important to note that this method becomes
computationally prohibitive as one approaches the critical coupling strength, where many
small subsets of nodes compete to become the giant synchronized cluster. In this sense, this
ansatz requires using numerical methods which can be as costly as simulating the full dy-
namics around the critical point, and does not provide a reduction in terms of order para-
meters where bifurcations can be studied, as occurs with the OA method. Nevertheless,
this CC technique becomes very useful to unveil the interplay between the microscopic
dynamics and the complex structure in the phase-locking regime [146].

Having introduced the CC method, we close the chapter dedicated to expose several
techniques that we found appropriate for our problems of interest. It is time to move to
the chapters where we actually apply them in novel problems.
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3
O N S T R U C T U R A L C O N S T R A I N T S A N D
D Y N A M I C A L R A N G E

3.1 introduction

The range of collective dynamical behaviors that a complex, interconnected system can
show is clearly bounded by the specific network of interactions between its microscopic
constituents. Paradigmatic examples include biological [15, 21, 22, 31, 63, 183, 184] and arti-
ficial neuronal circuits [24, 25, 37]. In the brain, the networked architecture of neurons and
synapses [15, 184], coupled with the adaptation mechanism of synaptic plasticity [21, 22],
constrain the number of functional patterns and associated tasks that can be achieved [31,
63, 183]. In artificial neural models, ranging from the classical three-layer perceptron [24],
to the Hopfield model for memory storage [37] and state-of-art predictive algorithms such
as deep neural networks [25], the topology of the network is a leading factor affecting the
processing, storing and learning capacities of the system. In complex ecological systems
like food-webs, the structure of predator-pray interactions between species controls the
stability of an equilibrium state against external perturbations or intrinsic fluctuations [43,
87]. Furthermore, in infrastructure networks, the spatial distribution and capacity of the ex-
isting transmission lines and roads determine the operational range of stable power-grids
[44, 133, 166] and the potential effects of congestion in traffic flows [185–187].

The previous examples illustrate a ubiquitous feature in most complex systems, i.e. the
structure critically constrains the dynamical range, and they serve also to highlight a com-
mon feature that is present across problems in the different mentioned fields. In many
realistic circumstances, biological, ecological and engineered systems need to change or
adapt their configurations to achieve a target dynamical response, but this process is usu-
ally limited by the constraints posed by the underlying structure, such as a fixed number
of specific connections that are inevitably present or absent. It is therefore natural to won-
der to which extent a system of interacting units on top of a fixed structure can display
a range of macroscopic dynamical behaviors. In other words, what are the accessible dy-
namical states that can be reached from a given set of structural constraints? These types
of questions play a central role in the theory of statistical mechanics, which, in its most
elegant derivation [32], gives the less-biased statistical, macroscopic description of a phys-
ical system when subject to constraints on the accessible configurations. This framework
has proven tremendously useful in classical [29] and quantum mechanics [188], condensed
matter and biophysics [189, 190] and in pioneer works studying disordered systems [34–

38
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36], and the foundations of complex network models [90, 95, 171]. However, the technical
requirements of the theory rapidly become very challenging or even unfeasible as we in-
crease the complexity in the dynamics or in the structural patterns of the model at hand.
Nevertheless, the important and, perhaps, counterintuitive idea that introducing uncer-
tainty and probabilistic arguments on the microscopic –kinetic– description can enhance
the comprehension of macroscopic properties is persistent in the successful modeling of
many network dynamics [57, 58, 99, 191].

In this chapter, we leverage the concept of uncertainty to unveil the relation between
structural constraints and dynamical range within the framework of the Kuramoto model.
We focus on three specific problems: In section 3.2 we study how small uncertainty or
noise in the weights of the interactions (noisy links) affect the location and range of the
critical threshold at which we predict the standard phase-transition from incoherence to
partial synchrony. Using error propagation techniques in a mean-field approximation of
the threshold, we derive analytical results for the critical range depending on the underly-
ing connectivity patterns, unveiling interesting noise-amplyfing properties of the network.
Results of this section are based on the published work [192]:

• “Uncertainty propagation in complex networks: From noisy links to critical proper-
ties", L. Arola-Fernández, G. Mosquera-Doñate, B. Steinegger and A. Arenas, Chaos
2 023129 (2020).

In section 3.3, we move from the critical regime to the strongly phase-locking state, and
study the dynamical range of synchrony in the presence of different interaction mechan-
isms, balancing between pair-wise and higher-order interactions in a fixed structure. By
imposing explicit uncertainty on the frequencies and analyzing the spectral properties of
the Laplacian, we reveal how higher-order interactions can improve optimal synchrony
and also increase the dynamical range without altering the structure. Results of this sec-
tion are based on the published work [79]:

• “Higher-order interactions can better optimize network synchronization", P. S.
Skardal, L. Arola-Fernández, D. Taylor and A. Arenas, PRR 3 043193 (2021).

In section 3.4, we focus on a generalization of previous set-ups, by considering the problem
of predicting the dynamical range within different synchronization regimes (i.e. from the
critical threshold to the linear regime). By using information-theoretic optimization tools
and an extended mean-field approach, we derive weight-tuning schemes that illustrate the
fact that a fixed network can map a wide range of behaviors, but this mapping is limited by
local structural constraints. Results of this section are based on the published work [162]:

• “Synchronization invariance under network structural transformations", L. Arola-
Fernández, A. Díaz-Guilera and A. Arenas, Phys. Rev. E 97, 060301(R) (2018).

Finally, in section 3.5 we give a summary of the main findings presented in the chapter
and explain the limitations and unsolved issues of the proposed approaches, paving the
way for new analysis to come. Highlighting the continuist spirit of the thesis, in chapter
4, we will introduce the geometric unfolding of the synchronized state, a technique that
turns out very useful to tackle the problems we discuss here and many more to come.

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



40 on structural constraints and dynamical range

3.2 uncertainty propagation : from noisy links to critical properties

3.2.1 A measurement problem

We begin our journey on the study of structural constraints and dynamical range by fo-
cusing on the critical regime of the system. The critical point (or threshold) refers to the
minimum value of a tuning parameter that triggers a phase transition in a dynamical pro-
cess [5, 58]. In the context of networks of coupled oscillators, the critical threshold refers to
the precise value of the interaction strength at which the system transits from incoherence
to partially coherent dynamics. This point is known as the synchronization onset and its
prediction is of upmost importance to control and analyze oscillatory dynamics like the
brain or power-grids [6]. We have seen in section 2.2 that the available approximations are
obtained in terms of the spectral or degree properties of the network, and interestingly,
they are equivalent to the results found for other dynamical processes, including percola-
tion [2, 143] epidemic spreading [40, 193–195] and spin dynamics [58], which highlight the
universal properties of phase-transitions of dynamical processes on networks.

Figure 3.1: a) Illustrative sketch of a network with noisy links, with small quenched disorder, rep-
resented by curved links propagate to the value of the global coupling strength that
predicts the onset of synchronization, b). This propagation of uncertainty in a fixed
structure induces a distribution of critical onsets, which serves as a proxy of the dynam-
ical range of the network in the critical regime.

Beyond the realm of theoretical models, empirical data is never free of errors and the
measurement of interaction strengths, or links’ weights of real networks is not an exception.
The increasing data collected from empirical settings present experimental errors, induced
for example by device accuracy, sampling biases, or mistakes in data entry [196, 197]. In-
terestingly, the literature on network science usually dismisses these error sources, and
produces results that are only valid if data is error free, without providing any confidence
intervals (error-bars) on the estimation of macroscopic properties. Some authors have con-
centrated their attention on inference of missing data in networks [96, 170, 196–198] and to
incorporate the effect of external fluctuations or noise in the modeling side [5, 6, 159, 160,
165]. However, to the best of our knowledge, less attention has been paid to the propaga-
tion of uncertainty from the structure to the properties of dynamical processes running on
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top of it. The reasons behind the lack of works devoted to the analysis of error propagation
from structural to dynamical properties may be that many studies considered, for the sake
of simplicity, networks to be unweighted, where a link is a binary variable denoting its
existence or not [2]. However, the vast majority of empirical networks are weighted, i.e.
the existence or not is valued by its intensity [199]. In practice, the accurate determination
of the weight is unlikely, and therefore, the error in their numerical values will influence
any particular measurement of the network properties. Moreover, the weights of the links
may fluctuate intrinsically [22, 41] and usually these variations in the weights occur at
faster scales than changes of links [2, 22, 31]. These scenarios highlight the importance of
studying a fixed structure of links affected by small noise in their weights.

In this section, we present a study of error propagation in networks where fixed links are
subject to uncertainty in their weights, and we wonder about the effect that this uncertainty,
amplified by the complex network, will have in the determination of the critical threshold.
We consider synchronization to illustrate the effects, but our results find validity for a
wider class of processes where the threshold is determined by the inverse of the largest
eigenvalue of the adjacency matrix. Motivated by an inaccurate measurement problem, our
findings here will attempt to answer the question raised on the relation between structural
constraints and dynamical range, at least in the interesting critical regime of the system.

3.2.2 A mean-field trick

We start by considering the classical Kuramoto model on top of a complex network [5, 6,
62]. For the sake of clarity, we recall here that the dynamics of the system are described by
the following set of coupled differential equations

θ̇i = ωi + K
N

∑
j=1

wijaij sin(θj − θi), ∀ i ∈ 1, . . . , N, (3.1)

where we have introduced small quenched noise in the weights of the links, given here
by the entries wij. For the sake of simplicity, we assume Gaussian and uncorrelated noise,
meaning that each weight is independently drawn from a normal distribution N (µ, σ2),
being µ > 0 the average weight and σ2 its variance. Nevertheless, the proposed analysis
can be extended to other distributions of noise, either theoretical or obtained through em-
pirical measurements, if the covariance matrix of the noise is known (we refer the reader
to the method presented below for more details on the covariance matrix of the noise). Im-
portantly, our restriction µ > 0 implies that we are not considering a model with disorder
in the classical sense [73, 158], where negative fluctuations can induce frustration and the
standard transition may disappear.

The degree of phase synchrony in the system is captured, as will be common praxis
during the course of this thesis, by the modulus of the complex order parameter r(t) =

(1/N)
∣∣∣∑N

j=1 eiθj(t)
∣∣∣ which gives a value of r ≈ 0 in the incoherent regime (with fluctuations

of order N−1/2) and r ≈ 1 in the fully-synchronized regime. The synchronization onset
is given by the critical value of the coupling strength Kc at which the order parameter
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transits from zero to some r > 0 [5, 6, 62]. In section 2.2 we saw that for a unimodal and
symmetric distribution g(ω) and a sufficiently well-connected network with only positive
interactions, one expects to observe the standard second-order transition from incoherence
to partial synchrony [6, 62]. After neglecting small time-fluctuations and assuming a ran-
dom allocation of the frequencies (i.e. without strong dynamical correlations) the critical
threshold Kc is well approximated by the inverse of the largest eigenvalue λmax of the net-
work connectivity matrix C whose values represent the weighted structure of the network
and in our case have entries cij = wijaij, i.e.

Kc ≈
K0

λmax(C)
, (3.2)

where Kc is a constant that depends on the specific details of the process. In the clas-
sical Kuramoto, K0 = 2/(πg(0)), i.e. the critical coupling of the all-to-all network [5, 38].
Without loss of generality, we fix K0 = 1 here because Eq. (3.2) acts as our starting point
in the problem and a constant scaling will not alter our results. The main goal of this
section is to understand, by analytical means, how small noise in the entries of the matrix
C affects the statistical properties of the macroscopic threshold in the context of the Kur-
amoto model, but the ubiquity of Eq. (3.2) allows our findings to be extended to the other
dynamical processes [2, 40, 99, 194].

In order to study the exact statistics of Kc in Eq. (3.2) induced by the presence of noise,
one should take into account the powerful machinery of Random Matrix Theory [84, 85]
and Spectral Graph Theory [67, 68]. However, we rapidly found that it becomes very chal-
lenging to study noisy sparse networks with arbitrary degree distributions in these frame-
works. We proposed a shortcut, a mean-field trick to analytically approximate the value of
Kc and then apply well established error propagation techniques to the approximated ex-
pression of Kc. This chain of approximations will obviously restrict the validity range of the
analysis, however, the results are found to be very accurate in some scenarios and, more
importantly, they provide clear analytical insight on how the uncertainty in the structure af-
fects the determination of the critical threshold. In other words, we honestly compromise
the expected range of validity of our results to gain analytical insights and a better un-
derstanding of the phenomenology at hand, i.e. the prediction of the critical range in our
system. The proposed trick is based on the weighted mean-field approximation of Eq. (3.2),
which, under the conditions of small noise and undirected (symmetric) interactions, reads
as [103, 180, 200, 201]

Kc ≈
〈s〉
〈s2〉 , (3.3)

where 〈sn〉 is the n-moment of the strength distribution (the strength of a node is the sum
of incoming weights). As we have seen in the theoretical background section 2.2, Eq. (3.3)
can also be obtained directly from the equations of motion of the dynamical process by
assuming that the local field in a node is proportional to the global field weighted by the
in-strength of the node [102], (i.e. ri ∼ sir). For the remaining of the section, we will refer
to Eq. (3.3) as the Mean-Field approximation (MFA).
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Figure 3.2: Empirical distribution of the critical point Kc governed by the exact Eq. (3.2) (boxes)
and MFA Eq. (3.3) (solid lines) in an Erdös-Rényi, random network with N = 200,
p = 0.3, K0 = 1, µ = 1 for two different noise intensities (σ = 0.2 gray and σ = 0.5 red).
The distribution corresponds to 104 independent realizations of the noise. Reprinted by
permission of [192].

Before going into the details of our method, we test the accuracy of the critical threshold
in the MFA, Eq. (3.3), by comparing it to Eq. (3.2), in Erdös-Rényi, random networks with
explicit uncertainty in the positive weights. In Fig. 3.2 we plot the threshold distribution
for two different values of the intensity of the uncertainty σ. We observe that the MFA
accurately determines the distribution, and we also can see that the values of the expected
critical threshold Kc and its variance are clearly dependent on σ. In general, we expect
our results to be accurate in the cases in which the approximation of Eq. (3.3) remains
valid, and we refer the reader to the references [103, 201] where the range of validity of
the mean-field approach is discussed. We would like to remark that in our current mean-
field approach, we are only using the information contained on the strength (or degree)
distribution, assuming that the networks are drawn from a random configuration model
[2]. This means that we are neglecting by assumption the effects of clustering, modularity
and other non-trivial interaction patterns in the networks and focusing on the non-trivial
role of degree heterogeneity.

3.2.3 Error propagation in the critical threshold: Main results

Let us introduce our error propagation method. First, we compute the mean value of the
critical threshold in the presence of small noise in the weights of the links under the MFA.
To do so, we write the degrees and strengths in terms of the binary connections (aij = 0 or
1) and weights (wij ∈ R) of the connectivity matrix C, i.e. ki = ∑N

j=1 aij and si = ∑N
j=1 aijwij.

For the average strength 〈s〉, we have

〈s〉 = 1
N

N

∑
i=1

(
N

∑
j=1

aijwij). (3.4)

Note that we can write Eq. (3.4) equivalently as 〈s〉 = (1/N)∑i µiki, where µi is the average
weight of node i. For a sufficiently large degree (ki � 1), one can approximate µi = µ, and
therefore 〈s〉 = µ〈k〉. However, in general, it is important to keep the contribution of each
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node because each µi has a specific uncertainty depending on the degree of node i, and
this affects the overall uncertainty on Kc. For the second moment 〈s2〉, we have

〈s2〉 = 1
N

N

∑
i=1

(
N

∑
j=1

aijwij)
2

=
1
N

N

∑
i=1

(
N

∑
j=1

aijw2
ij +

N

∑
j 6=k

aijaikwijwik).

(3.5)

We note that ∑j 6=k aijaik = k2
i − ki, to get

〈s2〉 = 1
N
[

N

∑
i=1

µ2
i (k

2
i − ki) +

N

∑
i=1
〈w2〉iki], (3.6)

where 〈w2〉i is the average second moment of the i-node. Plugging Eq. (3.4) and Eq. (3.6)
into the critical approximation of Eq. (3.3), one obtains

Kc ≈ ∑N
i=1 µiki

∑N
i=1 µ2

i (k
2
i − ki) + ∑N

i=1〈w2〉iki
, (3.7)

where µi is the average weight of a node i, and 〈w2〉i the average second moment of the
weight distribution for node i. Note that there are 2N random variables (two for each node)
and interestingly, for sufficiently large degree (ki � 1), we can approximate µi = µ, and
〈w2〉i = σ2 + µ2 in Eq. (3.7). This approximation allows writing down a simple relation
between the mean of the critical threshold and the uncertainty of the network as

〈Kc〉 ≈
µ〈k〉

µ2〈k2〉+ σ2〈k〉 . (3.8)

The simple approximation of Eq. (3.8) already tell us that the critical threshold decreases
as the noise intensity σ increases. This can be understood because the noise in the weights
is another source that can increase the structural heterogeneity of the network, and hetero-
geneity tends to make the critical threshold to vanish [6, 40, 193]. Note that for µ = 1 and
σ = 0, we recover the usual threshold for unweighted, undirected networks [201], given
by Kc = 〈k〉/〈k2〉.

Having computed the expected mean of the threshold, 〈Kc〉, we proceed now to estimate
confidence intervals (i.e. error bars) for the uncertainty of Kc, that is the standard deviation
named here δKc (or the variance (δKc)2). For this purpose, we use a well-known method of
experimental physics, the error propagation [202] technique, that quantifies how the error
in the microscopic variables of a system (the 2N random variables in our nodal description)
propagate through a macroscopic quantity (the critical threshold Kc). The propagation of
uncertainty of a non-linear function of the random variables as Eq. (3.3) requires using
a truncated Taylor expansion [202]. Up to second-order, the approximate variance of the
function is given by

(δKc)
2 ≈ JT

0 V J0 +
1
2

Tr[(H0V)2], (3.9)
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3.2 uncertainty propagation : from noisy links to critical properties 45

where J0 ∈ R2N is the Jacobian vector evaluated at the mean values of the random variables
~µ and ~〈w2〉, V ∈ R2N×2N is the covariance matrix, which depends on the full connectivity
matrix C and H0 is the Hessian (squared) matrix, which entries evaluated again at the
mean values of the random variables ~µ and ~〈w2〉.

The Jacobian of the system in Eq. (3.7) is given by

J = (
∂Kc

∂µ1
, ...,

∂Kc

∂µN
,

∂Kc

∂〈w2〉1
, ...,

∂Kc

∂〈w2〉N
). (3.10)

First, we compute the partial derivatives in Eq. (3.10) explicitly from Eq. (3.7), obtaining

∂Kc

∂µi
≈ 1

N
ki(µ

2〈k2〉+ σ2〈k〉)− 2µ2(k2
i − ki)〈k〉

(µ2〈k2〉+ σ2〈k〉)2 ,

∂Kc

∂〈w2〉i
≈ − 1

N
kiµ〈k〉

(µ2〈k2〉+ σ2〈k〉)2 , (3.11)

where the sign ≈ stands for assuming, in good approximation, that the input parameters
µ and σ2 are the actual mean values of the random variables ~µ and ~σ2 = ~〈w2〉 −~µ2.

The Hessian matrix, the square matrix of the second-order partial derivatives of the
function in Eq. (3.7) can be directly obtained by taking derivates from Eq. (3.11). After
some algebra, and defining Q = µ2〈k2〉+ σ2〈k〉, we obtain

∂2Kc

∂µi∂µj
≈ 1

N2Q3 [Q(2µ(k2
j − k j)ki − (2 + 2δijµ(k2

i − ki)k j))

− (ki − 8µ3〈k〉(k2
i − ki)(k2

j − k j)).
(3.12)

The Hessian matrix of our system is symmetric, such that ∂2Kc/∂µi∂〈w2〉j =

∂2Kc/∂〈w2〉i∂µj. We obtain

∂2Kc

∂µi∂〈w2〉j
≈ 1

N2Q3 [−Qkik j + 4µ2〈k〉k j(k2
i − ki)], (3.13)

and for the last term we have

∂Kc

∂〈w2〉i∂〈w2〉j
≈ 2µkik j〈k〉

N2Q3 . (3.14)

For the covariance matrix, we can obtain explicit expression for the entries Vij when the
noise in the weights is assumed Gaussian and uncorrelated. By assumption, the network
is symmetric and so it will be the covariance matrix, which can be written in block form
as

V =


 vµ

2 vµ,〈w2〉

vµ,〈w2〉 v〈w2〉
2


 ,
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where vµ
2, vµ,〈w2〉 and v〈w2〉

2 are symmetric matrices in RN×N that capture each covariance
term between the two random variables (µi, 〈w2〉i) of all nodes. Explicitly,

(vµ
2)ij =

σ2

ki
(δij +

aij

k j
), (3.15)

(vµ,〈w2〉)ij =
2µσ2

ki
(δij +

aij

k j
), (3.16)

(v〈w2〉
2)ij =

2σ2(2µ2 + σ2)

ki
(δij +

aij

k j
). (3.17)

The first term in the sums is the contribution of the diagonal entries. The Gaussian vari-
ances (σ2 and 2σ2(2µ2 + σ2)) and covariance (2µσ2) of a single weight wij drawn from
(µ, σ2) are divided by the number of elements (the degree ki) involved in computing the
averages µi and 〈w2〉i. The second term accounts for the non-diagonal entries. If two nodes
(i, j) are neighbors (aij = 1), then we have to add another correlation due to the presence
of the shared weight, which is divided by the product of their degrees (ki and k j).

Let us now consider only the first order expansion (neglecting the Hessian term in
Eq. (3.9)). Then, we can compute explicitly (δKc)2 in terms of the noise parameters (µ, σ)

and the moments of the degree distribution. Then, we can write Eq. (3.9) as

(δKc)
2 ≈

N

∑
i=1

N

∑
j=1

[(
∂Kc

∂µi
)(

∂Kc

∂µj
)(vµ

2)ij,

+ (
∂Kc

∂〈w2〉i
)(

∂Kc

∂〈w2〉j
)(v〈w2〉

2)ij + 2(
∂Kc

∂µi
)(

∂Kc

∂〈w2〉j
)(vµ,〈w2〉)ij], (3.18)

and after some algebra, we obtain

(δKc)
2 ≈ 2σ2〈k〉

NQ4 [Q2 − 4µ2〈k2〉Q + 2µ2(2µ2 + σ2)〈k〉2

+2µ4(〈k〉〈k3〉+ 〈k2〉(〈k2〉 − 4〈k〉) + 2〈k〉2) + 8µ4〈k〉(〈k2〉 − 〈k〉)], (3.19)

where we have used that ∑i ∑j aijkik j = N〈k2〉2/〈k〉. Simplifying further, we get

(δKc)
2 ≈ a[µ4(2〈k〉〈k3〉〈k2〉2)− 2µ2σ2(〈k〉〈k2〉 − 〈k〉2) + σ4〈k〉2], (3.20)

with a = 2σ2〈k〉/[N(µ2〈k2〉+ σ2〈k〉)4].
Eq. (3.20) shows that, beyond the non-linear dependence on the network and noise para-

meters, the uncertainty in the threshold is a finite-size effect, and decays with N−1/2. To
compare networks of different sizes, we will scale the threshold by the size N in the cur-
rent analysis. In Fig. 3.3.a), we show the accuracy of the derived analytical expressions for
an Erdös-Rényi network, confirming the validity of the approach, at least for small noise
and homogeneous and random structures.
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3.2 uncertainty propagation : from noisy links to critical properties 47

Figure 3.3: Numerics (Eq. (3.2)) vs theory (Eq. (3.7) and Eq. (3.20)): mean and standard deviation
of the threshold Kc depending on the noise intensity σ for a) a single, fixed Erdös-
Rényi network with N = 200, p = 0.3, µ = 1, and 5000 independent realizations for
each value of the noise intensity σ. For this random network, analytical results show a
good agreement with numerical simulations. In b) we show the results applied to four
empirical networks with different size, density and patterns of interactions, namely the
brain network of the Macaque cortex (N = 242, 〈k〉 ≈ 33), the Facebook network of the
trinity college (N = 2613, 〈k〉 ≈ 85), the Airport network (N = 3154, 〈k〉 ≈ 12) and the
US power-grid network (N = 4914, 〈k〉 ≈ 2). Network data is obtained from the online
repository www.network-repository.com, except for the Airports network (see below for
more details). Panel a) is reprinted by permission of [192].

Before discussing in more details the accuracy of our estimation in the empirical net-
works shown in Fig. 3.3.b), we remark here that, in terms solely of the error propagation
technique, the linear approximation used in Eq. (3.9) is valid as far as [202]

JT
0 V J0 �

1
2

Tr[(H0V)2]. (3.21)

Both terms in Eq. (3.21) depend implicitly on the value of the noise, so the scaling of each
term with σ will determine the range of validity of Eq. (3.20). We numerically examine the
goodness of both the linear, Eq. (3.20) and the second-order approximation for the uncer-
tainty δKc of Eq. (3.9) against the numerical results obtained for the Erdös-Rényi network
analyzed before, and also for a real world network with large size and heterogeneous
connectivity patterns (the worldwide air transportation network). This empirical air trans-
portation network was constructed using data from the website openflights.org, which has
information about the traffic between airports updated to 2012, data available from [41].
This network accounts for the largest connected component, with 3154 nodes and 18,592
edges.

From Fig. 3.4, one can extract several important facts. First, the figure shows that the
first and second order solutions are practically indistinguishable for small noise, therefore
validating the result in Eq. (3.20) in this regime. Second, the significative difference in
the magnitude of the fluctuations for both networks occurs for the difference in size N
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Figure 3.4: Numerics vs theory: standard deviation of the critical threshold δKc depending on the
noise intensity σ with µ = 1 for a (left) fixed Erdös-Rényi network (N = 200, 〈k〉 = 60,
p = 0.3) and (right) the empirical network of airports (N = 3154, 〈k〉 ≈ 12) for 2000
independent realizations for each value of the noise. Results have been rescaled by N.
Reprinted with permission from [192].

and density L/N2. The mean value of the threshold is highly affected by the density [58],
decreasing with the mean degree, and the same occurs for the fluctuations, as predicted
by Eq. (3.20). Third, the deviation of the theory from the actual values in some empirical
networks (right plots in both Fig. 3.3 and Fig. 3.4) points towards another direction: the
goodness of the MFA itself. Basically, the theory is expected to be accurate for networks
that deviate from a random structure as long as the MFA in Eq. (3.3) holds. As mentioned
before, it is not our main goal here to convey an exhaustive verification of the theory for
particular networks. Interestingly, as observed in the right plots in both Fig. 3.3 and Fig.
3.4, for the particular example of the airports network (and also the Facebook network),
even if the mean value of the threshold is not well predicted by the mean-field approach,
its dependence with noise is still well captured by the theory, and more importantly, the
precise value of the fluctuations remains accurate for sufficiently small noise.

Moreover, it is important to remark that even if the MFA holds, the method of error
propagation (at any order) can only be applied in our problem when the mean of the signal
µ is sufficiently large compared to the noise. For σ� µ, many negative weights appear and,
the eigenvalues of the adjacency matrix become strongly correlated random variables and
the statistics of Kc cannot be estimated using approaches based on normality assumptions
[67, 203] as the one we are using here. Furthermore, the usual transition from incoherence
to partial synchrony may disappear in the presence of many negative interactions, due
to frustration effects that can hinder the appearance of a giant synchronized cluster [204],
and therefore our initial goal to infer the uncertainty in the synchronization onset losses its
meaning. While being the scenario of large noise a definitely interesting venue of research
(especially in the context of the brain, which presents a combination of excitatory and
inhibitory interactions [205], and also in ecological networks, where negative interactions
may capture a competitive relation between species [43]) here we restricted the analysis
to systems dominated by the mean of the signal (µ > σ), where mostly positive weights
appear in the entries of the adjacency matrix.
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3.2.4 The role of network heterogeneity

The mathematical machinery has been presented, and we are in a position to answer some
questions raised in the introduction of this section regarding the dynamical range in the
critical threshold, the so-called critical range. As one can see already from the highly non-
linear dependencies in Eq. (3.20), the network structure will play an important role in
the uncertainty range of Kc. Interestingly, the dependence of δKc on the heterogeneity and
density of the network leads to a rich phenomenology that is worth studying in more detail.
The effect of density can be already observed in Fig. 3.3.b) and Fig. 3.4: basically, the denser
the network, the smaller will be the fluctuations of the threshold. Regarding heterogeneity
in the degree distribution, some interesting questions arise: does the heterogeneity induce
an increase of the critical fluctuations with respect to a homogeneous network? Is the
behavior of (δKc) monotonous with the moments of the degree distribution of the network?
If not, is there any particular structure that maximizes the uncertainty of the critical point
induced by noise in the weights?

To answer these questions, we consider the regime where networks are sufficiently large
and σ� µ. Then, we can approximate Eq. (3.20) by its leading term, neglecting terms in σ

larger than O(σ2)

(δKc)
2 ≈ 2σ2 2〈k〉〈k3〉 − 〈k2〉2

N〈k〉3 〈Kc〉4. (3.22)

Note that Eq. (3.22) we can also be written as

(δKc) ≈ σ f (C)〈Kc〉2, (3.23)

where f (C) =
√

2〈k〉〈k3〉−〈k2〉2
N〈k〉3 encapsulates the structural dependence on the critical range.

Quite surprisingly, one can note that δKc increases linearly with the noise intensity and
scales with 〈Kc〉2. We know that 〈Kc〉2 is reduced by the heterogeneity of the degree distri-
bution [6, 40, 193], and therefore one would expect δKc to follow the same trend. However,
the nonlinear dependence on the moments of the degree distribution is counterintuitive.
In particular, due to the correcting structural factor f (C), some networks may show the
contrary effect, meaning that even if the mean value of the critical threshold is smaller, the
uncertainty in δKc can be still be larger. To understand this effect, we choose first a homo-
geneous (regular) network as a reference, where ki = k, ∀ i. We can compute Kc and δKc

for a regular network in a straightforward manner from the previous results, obtaining

〈Kc〉reg ≈
1

µk
, (δKc)

2
reg ≈

2σ2

Nµ4k3 . (3.24)

We propose to compare (δKc)2 with (δKc)2
reg for networks with the same size and average

degree, and for the same noise parameters µ and σ. After some straightforward algebra,
the condition for a network to display higher uncertainty in Kc than a random regular one
reads

〈k3〉 > 〈k
2〉2

2〈k〉

(
1 +
〈k2〉2
〈k〉4

)
. (3.25)
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50 on structural constraints and dynamical range

Now, we can use the resulting Eq. (3.25) to evaluate the role of heterogeneity. In particu-
lar, let us consider a power-law distribution p(k) ≈ k−γ, where the exponent γ controls the
tail of the distribution. For the value γ = 3, one recovers the well-know scale-free network
that emerges from preferential attachment [55]. For lower (higher) values of γ, the net-
work becomes more (less) heterogeneous. It is well understood that, for a finite power-law
network, the moments of the degree distribution [2] are given by

〈kn〉 = (−γ + 1)(kn−γ+1
max − kn−γ+1

min )

(n− γ + 1)(kγ+1
max − kγ+1

min )
. (3.26)

By fixing the value of kmin, we can explore the space of networks with a given (γ, kmax),
thus revealing the effect of heterogeneity and size. To simplify the visualization, we define

q = log


 2〈k〉〈k3〉
〈k2〉2

(
1 + 〈k2〉2

〈k〉4
)


 . (3.27)

This way, when q = 0, the uncertainty of the critical threshold of a network will be the
same as that of the regular one, and for positive (negative) values of q, we are measuring
an increase (decrease) of δK with respect to the homogeneous network. In Fig. 3.5 we show
the theoretical results obtained for the q value of networks in the space (γ, kmax).
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Figure 3.5: Colormap showing the theoretical dependence of q on the exponent γ and the maximum
degree of the network kmax. The value of kmin is fixed to kmin = 5 and the resolution of the
map is 100x100. White color represents equal fluctuations than a homogeneous network,
while red (blue) colors capture higher (lower) fluctuations. Reprinted by permission of
[192].

The reader should note that the three horizontal lines correspond to the cases where
the network has an integer exponent of 2, 3 or 4. In there, the first, second or third mo-
ments diverge [2, 55]. It is also important to remark that, below γ = 2, it is not feasible to
generate networks with a pure power-law distribution [2]. Besides that, we observe what
we believe to be a very interesting result. As expected, for large values of the exponent γ,
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the networks show similar uncertainty to that of a regular network (towards white color).
However, for γ < 4, uncertainty significantly increases, reaching a maximum as the expo-
nent approaches γ = 3, before decreasing again. In other words, when approaching the
value of γ = 3, the network maximizes the third moment of the degree distribution (while
minimizing its second moment), and therefore emerges as the optimal uncorrelated struc-
ture amplifying the uncertainty in the threshold. On the other hand, our theory estimates
that uncertainty is minimal for maximally heterogeneous networks corresponding to an
exponent γ ≈ 2. Furthermore, the non-monotonous dependence on γ is amplified as we
increase the size of the system (in terms of its maximum degree). In other words, the the-
ory predicts the existence of a region of uncorrelated networks where the structures satisfy
the condition in Eq. (3.25) and therefore show higher fluctuations than a regular network
with the same average degree. This occurs for networks that are very heterogeneous in
the degree distribution, but up to some extent. When approaching the famous value of
γ = 3, the network is able to maximize the third moment while minimizing the second
moment of the degree distribution (if the network has a finite size), and therefore emerges
as the optimal uncorrelated structure to amplify the critical range (i.e. the uncertainty in
the threshold).

Figure 3.6: Relative value of the theoretical (left) and numerical (right) uncertainty δKc for scale-
free networks in the range γ ∈ [2, 6] of sizes N = 500, 1000 and 2000, µ = 1, σ = 0.05
and minimum degree fixed at kmin = 5 compared to regular networks with the same
average degree, and the same characteristics of the noise. The results are obtained with
200 realizations of the noise for each network and then averaging with 200 networks for
each configuration of the modified preferential attachment algorithm. The high variance
at each point shows that the results are very sensitive to the particular structure of the
network, although the general trend is captured. Reprinted by permission of [192].

To validate the previous theoretical prediction, we generate synthetic power-law net-
works using the modified preferential attachment algorithm with an attractiveness para-
meter that control the exponent, introduced by Dorogovtsev in [91]. Fixing the value of
the minimum degree kmin, and tuning the exponent and the size of the network, we are
able to detect a maximum in the uncertainty δKc for the exponent γ = 3, as shown in Fig.
3.6, thus confirming the prediction of the theory. We observe good qualitative agreement
for the non-monotonous dependency on the heterogeneity, and also that system size rein-
forces this dependency. We suspect that the slight mismatch, in the form of a shift, may
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be originated by the fact that, for scale-free networks with γ > 5/2, the critical threshold
is better approximated by Kc ≈ 1/

√
kmax than by the ratio of moments proposed in our

approach [103, 193, 200, 201]. Furthermore, the small sizes that are considered in the nu-
merical analysis produce significant degree correlations (not captured by the MFA) which
may contribute to the mismatch. Despite these flaws, the mean-field approach captures
well the dependence on the exponent and size of these networks.

Our results here point towards the difficulty to accurately determine the critical
threshold of scale-free networks, with exponent γ ≈ 3, since δKc is maximized in the
presence of noisy weights for these networks. Conversely, the scale-free network with ex-
ponent γ ≈ 3 can be seen as the one that has a larger critical range due to noisy links in
a fixed structure, and in this sense, it becomes the most versatile configuration in terms
of maximizing the critical dynamical range when there are structural constraints on the
presence (and absence) of links. We will give a summary and a more detailed discussion
of these results in the conclusive section 3.5 of this chapter, connecting these findings with
the results that are presented in the following lines. Before moving to the next problem,
we introduce some more results using our error propagation method, here in a simple
network, the star-graph.

3.2.5 Exact results for the star graph

In the star-graph, the exact statistics of the largest eigenvalue can be analytically com-
puted using the error propagation technique, without requiring to use the mean-field trick.
Importantly, the following results are not useful to predict the synchronization onset and
its uncertainty (because in a star-graph, the values of the frequencies in the hub and the
leaves strongly determines the location of the threshold [108]) but to show that the er-
ror propagation technique can be used to estimate the fluctuations in the global spectral
properties from the microscopic, noisy variables of the network.

The star-graph is a simple network of only two type of nodes, the so-called hub and
leaves, the hub being connected to all the leaves (we assume here that connections are
symmetric) that has been used in the literature to illustrate the role of large hubs and to
understand the properties of very heterogeneous networks as the scale-free ones [108]. For
the sake of analytical consistency with previous shown results, we keep using the notation
Kc = 1/λmax although we remark that in the star-graph, the statistics of the inverse of
the largest eigenvalue do not necessarily translate into the statistics of the synchronization
onset.

We consider noisy undirected weights in the star-graph as illustrated in Fig. 3.7.a) and
we wonder how this microscopic noise propagates to the global uncertainty of the inverse
of the largest eigenvalue Kc. For this simple and deterministic network, the exact expres-
sion for the largest eigenvalue (and therefore for its inverse Kc) is known [68] and it can
be easily computed by induction starting from smaller sizes where diagonalization can
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Figure 3.7: a) Illustrative sketch of a small star network with noisy weights, where the central node
is referred to as the hub. b) Standard deviation of the inverse of the largest eigenvalue
(named here Kc) depending on the noise intensity in a log-log plot for a star network
with µ = 1, and two network sizes. We observe a perfect agreement between numerical
results and the theory and the non-monotonous behavior of δKc for large noise.

be done by analytical means and then one can set N arbitrarily large. The inverse of the
largest eigenvalue for the weighted, symmetric star is given by

Kc =
1√

∑N
l=1 w2

hl

, (3.28)

where whl is the symmetric weight between the hub to the l-th leaf. Using the tools of 3.2.3,
it is straightforward to obtain the mean and standard deviation of Kc up to first-order
approximation. After some simple algebra, omitted here for the sake of clarity, one gets

〈Kc〉 ≈
1√

(N − 1)(µ2 + σ2)
, (3.29)

(δKc)
2 ≈ σ2(2µ2 + σ2)

2(N − 1)2(µ2 + σ2)3 . (3.30)

From Eq. (3.29), we can see that the dependence of the mean value of Kc is monotonous
with size N and the intensity of noise σ, decreasing to zero as size or noise increases.
Regarding the fluctuations δKc, Eq. (3.30) tell us that the dependencies become highly
non-linear. In Fig. 3.7.b), we plot the comparison between theory and numerics for δKc,
showing a perfect match. We observe a non-monotonous behavior of the spectral fluctu-
ations with noise, which can be explained as a competition between two terms in Eq. (3.30).
Fluctuations grow linearly with σ, δKc ∼ σ for σ � µ, and decays with σ−2 for σ � µ. In
between, a maximum appears for which a specific value of the noise maximizes the fluctu-
ations of the threshold. For instance, when µ = 1, the critical value of the noise in the star
graph is independent of N and reduces to σ = 1, which corresponds to the peak in Fig.
3.7.b). These technical results proving the validity of error propagation on the spectra of a
star graph conclude the section. It is time to dive into our second problem of the chapter.
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3.3 synchrony optimization : from pair-wise to higher-order interac-
tions

3.3.1 A balance problem

We have seen the effect that uncertainty in the network weights has on the fluctuations
of the synchronization onset. As we increase the coupling strength between the oscillator
units well beyond this synchronization onset, more and more oscillators become entrained
to a mean pace, entering the giant synchronization cluster until all of them rotate with the
same effective frequency and the phase difference between the oscillators remains locked
in time [6, 38, 62]. This dynamical regime is known as the phase-locking state, the so-called
synchronized state, and it is one of the most paradigmatic examples of collective behavior
emerging from local interactions among the microscopic constituents, which in our case
are the heterogeneous phase oscillators.

The optimization of collective behaviors as the phase-locked, synchronized state is a key
problem for predictive and control purposes in a variety of empirical network-coupled sys-
tems, ranging from brain dynamics, where strong phase synchronization is a recurrently
observed state, to engineered systems like the power grid [44, 45, 133], where the critical
condition for having spontaneous synchrony and stable phase-locked dynamics is directly
controlled by the phase differences in the synchronized state [44]. In section 2.3 we saw
that the optimization of strong synchrony in networked systems of heterogeneous oscil-
lators coupled with standard, pair-wise interactions, is well understood in terms of the
Synchrony Alignment Framework (SAF). As occurred in the prediction of the synchroniz-
ation onset, the spectra of several network matrices show up as the key global properties
that determine the dynamical behavior of the system, a result that persists among many
dynamical processes on top of networks [2, 6, 57, 58].

Interestingly, recent works point toward the presence of higher-order (triadic, beyond
pair-wise/dyadic) interactions in brain networks [138, 206, 207] and generic limit-cycle os-
cillator systems with phase and amplitude variables [77, 78]. The presence of these higher-
order interactions can be encoded in mathematical objects that generalize the concept of
networks to higher dimensions. These objects are known as simplicial complex or hy-
pergraphs [139, 208, 209] and, in the recent years, many tools have been developed to
characterize them and to understand the effect of higher-order interactions on the collect-
ive dynamics of networked systems [139]. In the realm of heterogeneous oscillators, the
higher-order paradigm has led to the discovery of a variety of regimes such as multi-
stability and abrupt desynchronization [125, 137, 140], and new forms of chaos [210], or
explosive transitions [211] to name a few examples. Nevertheless, as also occurred in most
of the seminal works on theoretical models of synchronization dealing with standard, pair-
wise networks, the former studies have focused on the analysis of random configurations
or globally coupled systems under the usage of global mean-field assumptions. Further-
more, the possibility to combine several interaction mechanisms (including both pair-wise
and higher-order interactions) in the optimization problem has not been explored in the
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past, neither the analysis of the accessible dynamical configurations that can be reached
by a network structure by leveraging these different types of interactions. Considering
the increasing evidence on the presence of both pair-wise and higher-order interactions in
several empirical systems, it sounds relevant to study the relation between the structural
constraints posed by a fixed network structure and the variety of collective regimes that
can be reached by balancing both pair-wise and higher-order interactions.

Figure 3.8: An illustration of a small network with a) 1-simplex (pair-wise) vs b) 2-simplex (higher-
order) dominated coupling. Shading indicates the relative strength of each type. In c)
we point at the synchronized regime of the system (far beyond the synchronization
onset Kc),and the question mark illustrates the idea of studying the dynamical range of
r when balancing the coupling strength between pair-wise and higher-order (triangles
here) interactions. Reprinted by permission of [79].

In this section, we address this problem by introducing a composite Laplacian matrix
that encodes the interactions at multiple orders in a weighted simplicial complex, and we
generalize the SAF to account for these new type of interactions. The reader should note
that, while the problem and settings here are quite different from results in the previous
section, there is a natural continuation that relates the structural constraints (in terms of a
fixed structure of links) and the range of accessible collective behaviors. Before, we studied
how noisy weights affect the range of the synchronization onset, and now we will look
at how different interaction mechanisms (interpolating pair-wise and higher-order ones)
affect the range of the synchronized state. From noisy links to higher-order interactions,
we keep attempting to prove that the dynamical range of an oscillator network can be
explored within an approach based on network uncertainty.

3.3.2 The composite Laplacian framework

We begin by introducing the generalization of the Kuramoto model of coupled phase-
oscillators [38] that includes higher-order (here three-body) interactions as described in
[140]. The N heterogeneous oscillators with phases θi evolve following

θ̇i = ωi
K1

〈k(1)〉
N

∑
j=1

Aij sin
(
θj − θi

)
+

K2

2〈k(2)〉
N

∑
j=1

N

∑
l=1

Bijl sin(2θj − θl − θi), (3.31)

where ωi represents, as usual, the natural frequency of the i-th oscillator and K1 and K2

are coupling strengths that are associated with 1- and 2-simplex interactions, respectively
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(namely pair-wise and three-body interactions). In this setting, A is the standard adjacency
matrix, and B is a 2-simplex adjacency tensor. We assume the network to be unweighted
and undirected so that the entries aij = aji = 1 if a link exists between oscillators i and j,
and bijl = bil j = bjil = bjli = blij = bl ji = 1 if and only if a triadic interaction (a triangle)
exists between oscillators i, j and l. An additional assumption here is that our system is a
simplicial complex, meaning that the existence of a three-body interaction (i, j, l) requires
the presence of dyadic connections (i, j), (j, l) and (l, i). In general, the 1- and 2-simplex
coupling topologies may be uncorrelated for a general hypergraph [139]. Furthermore, we
restrict our analysis to the so-called ‘clique complexes’ [212], where all triangles existing
in the network give rise to 2-simplices. In this case, the 3-tensor B can be completely
determined by the adjacency matrix as Bijl = Aij Ajl Ali.

The coupling strengths K1 and K2 in Eq. (3.31) are scaled by the 1- and 2-simplex mean
degrees 〈k(1)〉 and 〈k(2)〉, which are just the pair-wise and three-way degree averages k(1)i =

∑N
j=1 Aij and k(2)i = 1

2 ∑N
j=1 ∑N

l=1 Bijl . This scaling ensures that the overall connectivity is
maintained when balancing, and the factor 1/2 ensures that we are not counting triangles
twice. In other words, we are conserving the sum K = K1 + K2, fixing the overall amount
of coupling strength available in the network, regardless of the specific topologies encoded
in A and B. In this context, we introduce a new bias parameter α ∈ [0, 1], defined via K1 =

(1− α)K and K2 = αK, so that α ≈ 0 corresponds to a system where 1-simplex interactions
are stronger (as displayed in the toy network of Fig. 3.8.a)) than 2-simplex interactions and
vice-versa if α ≈ 1 (as displayed in Fig. 3.8.b)). The parameter α essentially controls the
balance between both type of couplings. We also note that other higher-order interaction
terms may exist in alternative formulations of a higher-order Kuramoto model [77, 78]. In
this section, we will focus our attention on the particular configuration given by Eq. (3.31).
As shown in [79], other type of higher-order interaction terms would yield similar results
to the ones presented in the following.

Once we have introduced our dynamical model, we can shift our focus towards the
optimization of phase synchrony. We consider the strongly synchronized regime where
|θj − θi| � 1, allowing us to linearize Eq. (3.31) to

θ̇i ≈ ωi − K

[
(1− α)

(
k(1)i θi −

N

∑
j=1

Aijθj

)
/〈k(1)〉

+ α

(
k(2)i θi −

N

∑
j=1

Aij

(
N

∑
l=1

Ajl Ali

)
θj +

1
2

N

∑
j=1

Aji

(
N

∑
l=1

Ail Al j

)
θj

)
/〈k(2)〉

]
, (3.32)

which in vector form can be written simply as,

θ̇ = ω− KLθ, (3.33)

where L = (1− α)L(1) + αL(2) is a composite Laplacian, defined as a weighted average of
the first and second-order Laplacian. In particular, L(1) = (D(1) − A(1))/〈k(1)〉 and L(2) =

(D(2) −
(

A(2) − A(2)T/2
)
)/〈k(2)〉. The matrix L(1) is simply a scaled version of the typical
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combinatorial Laplacian with D(1) = diag(k(1)1 , . . . , k(1)N ) and A(1) = A, while L(2) encodes
the 2-simplex interactions with D(2) = diag(k(2)1 , . . . , k(2)N ) and A(2) = A ∗ (A2)T, where ∗
represents the Hadamard (i.e., element-wise) product.

The reader should note that Eq. (3.33) already showed up in the context of the Synchrony
Alignment Function introduced in section 2.3, where the optimization of strong synchrony
in pair-wise, networks, takes the same form, but using the standard Laplacian matrix of
the network, here L(1). We will not delve into the details of the SAF results here, just recall
that the stationary solution of Eq. (3.33) is given by

θ∗ =
L†ω

K
. (3.34)

where L† here is the Moore-Penrose pseudoinverse of the composite Laplacian, which
can be constructed as usual from their eigenvalues and eigenvectors. For optimization
purposes, where one wants to have as higher phase synchrony as possible (meaning that
phases are very close to one another), the magnitude r of the Kuramoto order parameter
z = reiψ = N−1 ∑N

j=1 eiθj can be linearized to first order as r ≈ 1− ‖θ∗‖2/2N. Key to our
interest here, the usage of the composite Laplacian framework allows us to encapsulate
the effect of both pair-wise and three-body interactions in a unique Laplacian matrix, and
the dynamics of our system can be understood from the interplay between the spectra
of this composite Laplacian and the vector ω capturing frequencies of the oscillators. In
particular, optimal synchrony can be still achieved by aligning the frequency vector ω with
the eigenvalue associated with the largest eigenvalue of L. We remark that, with respect to
section 3.2 where the synchronization onset was estimated by assuming a random alloca-
tion of frequencies, here we are dealing with the explicit interplay between the structure
and the oscillator dynamics. The case of random frequency allocation can still be recovered
and in this case we can extract results solely in terms of the structure. Overall, the picture
in the linearized regime in the presence of higher-order interactions can be richer. Before
focusing on the spectral analysis of the composite Laplacian, we find worthy to introduce
first some numerical results on synthetic geometric networks.

3.3.3 Results for noisy geometric networks: random vs optimal cases

In our first experiment, we consider a class of random geometric networks [2] that con-
tain both geometrically (spatial) constrained and unconstrained edges between nodes uni-
formly placed on the unit disc in R2. In these spatial networks, triangles (2-simplexes) arise
from the geometrically constrained edges. We can tune the number of triadic interactions
using a probability p ∈ [0, 1]: (i) with probability p each of the total M = N〈k(1)〉/2 edges
is placed between the two closest nodes that are not yet connected and (ii) with probability
(1− p) each edge is placed randomly, where 〈k(1)〉 is the target mean 1-simplex degree.
In the limit p → 1, the network is purely geometric (spatial), and many triangles exist,
while in the limit p → 0 the network is Erdős-Rényi [81, 82]. The choice of this geometric
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model for the network design is motivated here by the evidence pointing at the existence
of simplicial complexes in physically embedded networks as the brain [138, 139].
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the linear approximation is equivalent to optimizing the con-
sensus dynamics.

To optimize Eqs. (1)–(3) we enter the rotating reference
frame θ !→ θ + 〈ω〉t (which allows us to effectively set the
mean frequency to zero in both the nonlinear and linear
dynamics), and we search for fixed points. Applying the
Moore-Penrose pseudoinverse of the composite Laplacian
[46], L† =

∑N
j=2 λ−1

j v jv jT , where 0 = λ1 < λ2 ! · · · ! λN

are the eigenvalues of L and its eigenvectors {v j}N
j=1 form an

orthonormal basis for RN , yields the fixed point

θ∗ = L†ω

K
. (4)

From the viewpoint of consensus dynamics, the degree of
consensus may be evaluated directly by the variance of
the fixed point, ‖θ∗‖2/N . On the other hand, the degree
of synchronization in the higher-order Kuramoto model is
given by the magnitude r of the order parameter z = reiψ =
N−1 ∑N

j=1 eiθ j , which represents the centroid of all oscillators
when placed on the complex unit circle. To leading order,
the degree of synchronization of the fixed point is r ≈ 1 −
‖θ∗‖2/2N . Thus, consensus and synchronization dynamics
are both optimized by minimizing the variance of the fixed
point, ‖θ∗‖2/N . Using the form of L† given above and that
‖θ∗‖2 = 〈θ∗, θ∗〉, we have that

‖θ∗‖2

N
= J (ω, L)

K2
, where J (ω, L) = 1

N

N∑

j=2

〈v j,ω〉2

λ2
j

. (5)

The function J (ω, L) is known as the synchrony alignment
function (SAF), which was first introduced in Ref. [36] in the
context of an objective function for optimizing the synchro-
nization properties of a network of heterogeneous oscillators.
Minimizing J (ω) serves to optimize ‖θ∗‖2/N and r and can
be explored under a wide variety of constraints [37–41]. In-
specting the contributions to the SAF, we note that each term
corresponds to a squared projection of the frequency vector
ω onto the eigenvector v j that is scaled by inverse square of
the associated eigenvalue λ j . Thus, under the constraint of
fixing the variance the frequency vector to σ 2, the collective
behavior is strengthened by aligning the frequency vector ω
as closely as possible with the most dominant eigenvectors
(those associated with larger eigenvalues) and orthogonalizing
ω as good as possible to the least dominant eigenvectors
(those associated with smaller eigenvalues). Thus, the optimal
solution is obtained by setting ω = σ

√
NvN .

IV. HIGHER-ORDER INTERACTIONS IMPROVE
COLLECTIVE BEHAVIOR FOR OPTIMIZED SYSTEMS

In our first experiment, we highlight that random and opti-
mized systems generally behave very differently, especially
in the context of higher-order interactions. Specifically, we
will show for optimized systems that collective behavior is
improved by a stronger reliance on higher-order interactions,
whereas it is diminished for random systems. Since simplicial
complexes are geometrically embedded [47] we consider a
class of noisy geometric networks [48] that contain both geo-
metrically constrained and geometrically unconstrained edges
between nodes uniformly placed on the unit disk in R2. With

FIG. 2. Optimal synchronization in networks with higher-order
interactions. (a) The synchronization error 1 − r vs K for random
(open symbols) and optimal (closed symbols) frequencies for two
choices of the bias parameter: α = 0 (red triangles) and 0.8 (blue cir-
cles), representing cases where interactions are exclusively defined
by 1-simplexes and dominated by 2-simplexes, respectively, for a
noisy geometric network (see text). (b) The synchrony alignment
function (SAF) J (ω, L) as a function of α for randomly allocated
(open squares) and optimal (closed squares) frequency averages over
103 networks.

connected triangles, i.e., 2-simplexes, arising from geomet-
rically constrained edges, we tune the prevalence of triadic
interactions using a probability p ∈ [0, 1]: (i) with probability
p each of the total M = N〈k(1)〉/2 edges is placed between
the two closest nodes that are not yet connected and (ii) with
probability (1 − p) each edge is placed randomly, where 〈k(1)〉
is the target mean 1-simplex degree. Thus, p tunes the preva-
lence of low-dimensional geometry in the network: in the limit
p → 1 the network is purely geometric, while in the limit
p → 0 the network is Erdős-Rényi [49]. In Appendix B we
provide a more complete algorithm implementing the network
model described above.

Taking one such network of size N = 500 with mean
degree 〈k(1)〉 = 10 and p = 0.25, we illustrate the effect of
higher-order interactions on optimizing collective dynamics
in Fig. 2(a). We plot the synchronization error 1 − r from
direct simulations of Eq. (1) as a function of K for four cases,
all under the constraint that the natural frequency vector has
unit variance. First we consider the fully 1-simplex dominated
case, i.e., α = 0, so that coupling is purely dyadic, and plot the
results for random and optimal choices of natural frequencies
in open and closed red triangles, respectively. Note that the
optimal choice of natural frequencies outperforms the random
case, given by a set of natural frequencies drawn from the
standard normal distribution, by about an order of magnitude.
Next, we set α = 0.8, thereby strengthening higher-order in-
teractions at the expense of pairwise interactions, and plot the
results for random and optimal choices of natural frequencies
in open and closed blue circles, respectively. We note here
that all simulations are done using Heun’s method with a time
step of 't = 0.02, integrating over a transient of 5 × 103 time
steps and then averaged over a steady state of 2 × 103 time
steps. We also plot the predicted synchronization error, given
by J (ω, L)/2K2, for each case in dashed curves, which accu-
rately capture the dynamics for sufficiently large coupling.

This example highlights a critical feature of higher-order
interactions in networks and their effect on collective dy-
namics. In particular, focusing on the optimal cases, the
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FIG. 5. Constrained optimization. The SAF J (ω, L) as a function
of α obtained after optimal perturbations of sizes ‖δω‖/‖ω‖ = 0
(blue circles), 0.4 (red triangles), 0.8 (green crosses), and 1.2 (black
squares) are applied to a randomly drawn vector of frequencies
(a) without and (b) with preprocessing the frequency vector using
a (near) optimal permutation. Results are obtained from an ensemble
of 102 networks of size N = 100 with mean degree 〈k(1)〉 = 10 and
p = 0.25.

likely do not exist for more general cases of hypergraphs and
simplicial complexes that are not clique complexes where 1-
and 2-simplex structures may be uncorrelated.

VII. CONSTRAINED OPTIMIZATION

Lastly, we consider optimization of collective behavior in
a more constrained scenario. Rather than just constraining
the variance of a frequency vector ω and allowing frequen-
cies to be freely chosen otherwise (thereby allowing them
to be aligned perfectly with a particular eigenvector), we
assume a randomly chosen initial frequency vector is given
and may only be modified by a perturbation of constrained
size. Denoting this perturbation by δω = ωnew − ω, we then
constrain the relative size ‖δω‖/‖ω‖ while maintaining the
variance of the frequency vector itself. This perturbation
may be optimally designed in terms of the eigenvector ex-
pansion ω =

∑N
j=2 c jv

j by orthogonalizing away from the
eigenvectors with smallest associated eigenvalues in order to
eliminate the largest contributions to the SAF. To do this,
we let δω =

∑N
j=2 β jv

j and, for as large k as possible, let
β j = −c j for j = 2, . . . , k, β j = c j for j = k + 1, . . . , N −
1, and βN = cN (

√
1 +

∑k
j=2 c2

j/c2
N − 1), resulting in ωnew =

∑N
j=2 γ jv

j with γ j = 0 for j = 2, . . . , k, γ j = c j for j =

k + 1, . . . , N − 2, and γN = cN

√
1 +

∑k
j=2 c2

j/c2
N . Note that

this both orthogonalizes ωnew against the eigenvectors with
smallest eigenvalues while increasing the alignment with vN
in order to conserve the variance of ω. In Fig. 5(a), we plot
the resulting SAF J (ω, L) averaged over 102 networks from
an ensemble using the same parameters as in Figs. 2 and 3
after imposing such a perturbation of sizes ‖δω‖/‖ω‖ = 0,
0.4, 0.8, and 1.2 (plotted in blue circles, red triangles, green
crosses, and black squares) to a random frequency vector with
normally distributed entries. Note that the maximum possible
perturbation that conserves the standard deviation of the fre-
quencies is ‖δω‖/‖ω‖ = 2, obtained by ωnew = −ω.

Another realistic possibility is that, before a perturbation is
applied, the frequencies are (nearly) optimally rearranged to

obtain a permutation of the initially given frequency vector.
Here we obtain such a permutation using a simple accept-
reject algorithm that interchanges randomly chosen pairs of
frequencies if the exchange decreases the SAF. This pre-
processing technique allows for more efficient perturbations,
as we see in Fig. 5(b), which improve upon the results in
Fig. 5(a). In particular, in such a constrained optimization
scenario, we observe that there is often an ideal balance of
dyadic to triadic interactions, i.e., a critical value of α that lies
between zero and one, for a given perturbation size.

This phenomenon can be viewed as a combination be-
tween the cases of random frequencies, where higher-order
interactions impede collective, and the case of optimal (freely
tunable) frequencies, where higher-order interactions improve
collective behavior. Specifically, the presence of a constraint
allows higher-order interactions to improve the constrained
optimal states, but only to a certain point since the purely
optimal choice of frequencies is unattainable, as the frequency
vector cannot be precisely aligned with the eigenvector
vector vN .

VIII. DISCUSSION

Given the role of collective behavior in the function of
physical, biological, and neurological systems where higher-
order interactions may play a critical role in shaping system
dynamics, understanding how higher-order interactions bal-
ance with dyadic interactions and affect collective behavior
is an important question for a wide range of disciplines and
applications. In this paper, we have addressed the topic of
optimization for collective behavior in networks with higher-
order interactions, focusing on clique complexes, and found
that as higher-order interactions are equitably strengthened
relative to dyadic interactions, optimal collective behavior
improves. This phenomenon stems from the broadening of
the eigenvalue spectrum of a composite Laplacian matrix that
encodes the collective dynamics and network structure at mul-
tiple orders and generalizes the synchrony alignment function
framework to this important case. In particular, as the spec-
trum broadens the dominant eigenvalue(s) increase, which
leads to this improvement. Moreover, we find that optimal
solutions are robust over different balances between the rel-
ative strengths of dyadic and triadic interactions and that the
broadening of the eigenvalue spectrum also widens the range
of possible collective states supported by the network. We
also find in more tightly constrained optimization scenarios
that an ideal balanced between dyadic and triadic interactions
occurs at a nontrivial, critical value of the bias parameter for
networks to support the strongest possible collective behavior.
Interestingly, the improvement of optimal collective behavior
stemming from the broadening of the eigenvalue spectrum for
the case of heterogeneous dynamical units lies in contrast to
the case of identical units, where optimal networks stem from
the concentration of the nontrivial eigenvalue spectrum [42].

These results shed light on the question of why higher-
order interactions may be important in various applications
that exhibit collective behavior. In particular, by modifying
one’s balance between dyadic and higher-order interactions,
a system may self-regulate not only to modify (improve
or worsen) its current collective state, but also broaden or
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Figure 3.9: a) We plot the synchronization error 1− r vs K for random (open symbols) and optimal
(closed symbols) frequencies for two choices of the bias parameter: α = 0 (red triangles)
and 0.8 (blue circles), for cases where interactions are exclusively defined by 1-simplexes
and dominated by 2-simplexes, respectively, for a random geometric network (see text).
b) The Synchrony Alignment Function (SAF) J(ω, L) as a function of α for randomly-
allocated (open squares) and optimal (closed squares) frequencies averages over 103

networks. Reprinted by permission of [79].

Using the geometric model, we generate one network of size N = 500 with mean degree
〈k(1)〉 = 10 and p = 0.25. In Fig. 3.9a), we plot the synchronization error 1− r from direct
integration of Eq. (3.31) as a function of coupling strength K for four cases (explained
as follows), all under the constraint that the natural frequency vector has unit variance,
σ2(ω) = 1. All simulations of Eq. (3.31) are done using Heun’s method with a time step
of ∆t = 0.02, integrating over a transient of 5 × 103 time-steps and then averaged over
a steady state of 2 × 103 time steps. We also plot the predicted synchronization error,
given by J(ω, L)/2K2 for each case in dashed curves, where the SAF function is given by
J(ω, L) = (1/N)∑j〈vj, ω〉/λ2

j (minimizing the SAF is therefore equivalent to maximize
synchrony), which accurately capture the dynamics for sufficiently large coupling.

First, let us consider the fully 1-simplex (pair-wise) dominated case, i.e., α = 0 so that
coupling is purely dyadic, and plot the results for random (uncertain) and optimal (via
alignment of ω ∼ vN) choices of natural frequencies in open and closed red triangles,
respectively. Note that the optimal alignment outperforms the random case, given by a set
of natural frequencies drawn from the standard normal distribution, by about an order of
magnitude, and for all range of K. Next, we set α = 0.8, thus strengthening higher-order
interactions at the expense of pair-wise ones, and plot the results for random (open blue)
and optimal (closed blue) choices of natural frequencies. Focusing on the optimal case, the
presence of higher-order interactions improves the optimal collective behavior supported
by the system. Moreover, the more 2-simplex dominated a network is (i.e., the larger α is),
the better the optimal states become. This is illustrated in Fig. 3.9b), where we plot the
value of the SAF as a function of the bias parameter α for randomly chosen frequencies

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



3.3 synchrony optimization : from pair-wise to higher-order interactions 59

and the optimal choice in open and closed squares, respectively. We see that as α increases,
thus making the network more 2-simplex dominated, the optimal state improves while the
random states worsen. Thus, strengthening higher-order interactions not only improves
the optimal states, but also widens the range of possible synchronized states that are
supported by the underlying network, which we remark has a fixed structure of links
(constraints) regardless of the value of the bias parameter α.

3.3.4 Spectral analysis and the variance proxy

Now we explore the spectral properties of the composite Laplacian L = (1− α)L(1) + αL(2)

to explain the improvement that occurs in the optimization of synchrony in the presence of
higher-order interactions. From the definition of the SAF and the analysis shown in section
2.3, one can see that the eigenvectors of L, their alignment with ω, and the eigenvalues of
L affect the range of possible states. In fact, the optimal choice of ω occurs when ω =

σ
√

NvN , thus aligning with the largest eigenvector, and synchrony is r = 1− 1/(2NK2λ2
N).

Complementary, the decrease that would lead to the worst-case optimization is obtained by
setting the frequency vector proportional to the first non-trivial (the smallest) eigenvector,
ω ∝ v2. Furthermore, in the case of random (uncertain) allocation, using the eigenvector
basis of L one can write ω = ∑N

j=2 cjvj, with ∑N
j=2 c2

j = Nσ2 (where the variance σ2 is
fixed to one for simplicity). When frequencies are random and independent of network
structure, the expected value of each coefficient is E[cj] = ±

√
N/(N − 1) and therefore

the expected value of r is given by

〈r〉 ≈ 1− 1
2K2 〈λ

−2〉, (3.35)

where the average is taken over all eigenvalues except for the trivial eigenvalue λ1 = 0.
Now we attempt to provide analytical insight on the previous effects by using a variance

trick. As given by Eq. (3.35), in the random scenario, the range of r is controlled by the
distribution of λ−2. It seems difficult to unfold this distribution in terms of the properties
of the network (degree, clustering, etc., . . . ), but we can find other spectral statistics, and
then relate these statistics to the ones of its inverse. We acknowledge here that Prof. P. S.
Skardal performed the following calculations involved in the variance trick. First, due to
the conservation of the overall weighting of L(1) and L(2), the mean is always conserved
to one: 〈λ〉 = N−1Tr(L) = N−1[(1 − α)∑i k(1)i /〈k(1)〉 + α ∑i k(2)i /〈k(2)〉] = 1. Then, the
variance of the spectra of L can be written as

Var(λ) = 〈λ2〉 − 〈λ〉2 = N−1Tr(L2)− 1. (3.36)

Our focus turns to the quantity Tr(L2). First, using the fact that the network is undirected,
and therefore A(2) = A(2)T we write

L2 =

[
(1− α)

D(1) − A(1)

〈k(1)〉 + α
D(2) − A(2)/2
〈k(2)〉

]2

, (3.37)
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By expanding the terms in the binomial, one finds

L2 = (1− α)2 D(1)2 − D(1)A(1) − A(1)D(1) + A(1)2

〈k(1)〉2

+ α(1− α)
D(1)D(2) − D(1)A(2)/2− A(1)D(2) + A(1)A(2)/2

〈k(1)〉〈k(2)〉

+ α(1− α)
D(2)D(1) − D(2)A(1) − A(2)D(1)/2 + A(2)A(1)/2

〈k(1)〉〈k(2)〉

+ α2 D(2)2 − D(2)A(2)/2− A(2)D(2)/2 + A(2)2/4
〈k(2)〉2 . (3.38)

By the properties of the trace, one can compute it as the sum of traces for each term
in Eq. (3.38). Noting that, since no self-links exist and triangles only exist between three
distinct nodes, we have that A(1)

ii = A(2)
ii = 0 for i = 1, . . . , N, so that Tr(D(1,2)A(1,2)) =

∑N
i=1 D(1,2)

i A(1,2)
ii = 0, and all mixed terms vanish. After rearranging the whole expression,

one obtains

Tr(L2) =
(1− α)2

〈k(1)〉2
[
Tr(D(1)2) + Tr(A(1)2)

]

+
2α(1− α)

〈k(1)〉〈k(2)〉
[
Tr(D(1)D(2)) + Tr(A(1)A(2))/2

]
+

α2

〈k(2)〉2
[
Tr(D(2)2) + Tr(A(2)2)/4

]
.

(3.39)

The traces of each of the matrices D(1)2, D(1)D(2), and D(2)2 are given simply by Tr(D(1)2) =

∑N
i=1 k(1)2i , Tr(D(1)D(2)) = ∑N

i=1 k(1)i k(2)i and Tr(D(2)2) = ∑N
i=1 k(2)2i , while the traces of each

of the matrices A(1)2, A(1)A(2), and A(2)2 are given by

Tr(A(1)2) =
N

∑
i=1

(
N

∑
j=1

A(1)
ij A(1)

ji

)
=

N

∑
i=1

k(1)i (3.40)

Tr(A(1)A(2)) =
N

∑
i=1

(
N

∑
j=1

A(1)
ij A(2)

ji

)
=

N

∑
i=1

k(2)i (3.41)

Tr(A(2)2) =
N

∑
i=1

(
N

∑
j=1

A(2)
ij A(2)

ji

)
=

N

∑
i=1

qi. (3.42)

We have used that A(1) and A(2) are undirected, A(1) is unweighted, and qi = ∑N
j=1 A(2)2

ij .
Finally, inserting the expressions for the traces into Eq. (3.39), dividing by N and using the
relation given by Eq. (3.36), yields

Var(λ) = (1− α)2

(
〈k(1)2〉
〈k(1)〉2 +

1
〈k(1)〉

)

+ 2α(1− α)

(
〈k(1)k(2)〉
〈k(1)〉〈k(2)〉 +

1
2〈k(1)〉

)
+ α2

(
〈k(2)2〉
〈k(2)〉2 +

〈q〉
4〈k(2)〉2

)
− 1, (3.43)
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3.3 synchrony optimization : from pair-wise to higher-order interactions 61

where qi = ∑N
j=1 A(2)2

ij . Eq. (3.43) tell us that varying α interpolates the variance between
〈k(1)2〉/〈k(1)〉2 + 1/〈k(1)〉 − 1 and 〈k(2)2〉/〈k(2)〉2 + 〈q〉/(4〈k(2)〉2)− 1 in the extremes where
connections are completely dominated by 1-simplex (pair-wise) and 2-simplex (three-way)
coupling, respectively. The variance trick relates the statistics and of λ with the statistics of
λ−2, and also the behavior of the extreme eigenvalues. One can see that when α = 0 (only
pair-wise interactions), the variance is only controlled by degree heterogeneity, indicating
that heterogeneous networks have broader Laplacian spectra [68, 165], which translate into
a broader range of synchronized states than in homogeneous networks. Interestingly, the
role of clustering, modularity, and other types of structural correlations is absent in the
dependence with the variance of λ, which lies in contrast to the effect of these network
properties on the second eigenvalue of the Laplacian matrix [2, 6]. By switching on α > 0,
we can also examine the effect of higher-order interactions. From Eq. (3.43), we expect
that, when the ratio of moments in the 2-simplex degree (the ’triangles’) is larger than in
the 1-simplex case, variance increases, occurring when the 2-simplex degree distribution
is more heterogeneous than the traditional 1-simplex degree distribution.
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presence of higher-order interactions improves the optimal
collective behavior supported by the system. Moreover, this
phenomenon is generic: the more 2-simplex dominated a net-
work is (i.e., the larger α is), the better the optimal states
become. This is illustrated in Fig. 2(b), where over an en-
semble of 103 networks built using the same parameters as
the network using in Fig. 2(a) we plot the value of the SAF
as a function of the bias parameter α for randomly cho-
sen frequencies and the optimal choice in open and closed
squares, respectively. (The average over this ensemble is plot-
ted with dashed curves indicating one standard deviation up
and down.) Specifically, we see that as α increases, thus mak-
ing the the network more 2-simplex dominated, the optimal
state improves very smoothly and monotonically while the
random states worsen. Thus, strengthening higher-order inter-
actions in collective network dynamics not only improves the
optimal states, but also widens the range of possible states that
are supported.

V. BROADENING OF COMPOSITE LAPLACIAN
EIGENSPECTRUM UNDERLIES DICHOTOMY FOR

OPTIMIZED AND NONOPTIMIZED SYSTEMS

To explain and further illustrate the improvement that oc-
curs in collective network dynamics as a result of increased
higher-order interactions, we investigate the spectral prop-
erties of the composite Laplacian L = (1 − α)L(1) + αL(2).
Importantly, from Eq. (5) we can see that while the structure
of the eigenvectors of L dictate the geometry of the optimal
choice for the frequency vector ω, it is the eigenvalues that
give insight into the quality of these optimal states. As an
example, in Fig. 3(a) we plot the eigenvalue spectrum of
L averaged across 103 networks of size N = 500 and built
using the model described above with mean degree 〈k(1)〉 =
10 and p = 0.25 for α = 0 (solid blue), 0.4 (dashed red),
and 0.8 (dot-dashed green). Note that as α increases and the
higher-order interactions strengthen at the expense of pairwise
interactions, the eigenvalue spectrum becomes broader.

In fact, it is the broadening of the eigenvalue spec-
trum, and specifically the increase in the dominant eigen-
value λN , that corresponds to improving the optimal states,
since, given the optimal choice ω = σ

√
NvN , we have

‖θ∗‖2/N = J (ω, L)/K2 = σ 2/(KλN )2. Here, we provide rig-
orous analytical insight on this mechanism by computing
exactly the mean and variance of the eigenvalue spec-
trum in terms of moments of the various degrees using
the trace of different powers of L. First, due to the
conservation of the overall weighting of L(1) and L(2),
the mean is always conserved to one: 〈λ〉 = N−1Tr(L) =
N−1[(1 − α)

∑
i k(1)

i /〈k(1)〉 + α
∑

i k(2)
i /〈k(2)〉] = 1. Next, the

variance Var(λ) = 〈λ2〉 − 〈λ〉2 = N−1Tr(L2) − N−2Tr2(L) of
the eigenvalue spectrum about this mean is given by

Var(λ) = (1 − α)2
( 〈k(1)2〉

〈k(1)〉2
+ 1

〈k(1)〉

)

+ 2α(1 − α)
( 〈k(1)k(2)〉

〈k(1)〉〈k(2)〉
+ 1

2〈k(1)〉

)

+ α2
( 〈k(2)2〉

〈k(2)〉2
+ 〈q〉

4〈k(2)〉2

)
− 1, (6)

FIG. 3. Spectral properties of a composite Laplacian. (a) The
eigenvalue spectrum P(λ) of the composite Laplacian L for α = 0
(solid blue), 0.4 (dashed red), and 0.8 (dot-dashed green) obtained
from 103 networks of size N = 500 with mean degree 〈k〉 = 10
and p = 0.25. (b) The variance of the eigenvalue spectrum along
with the extremal eigenvalues (c) λ2 and (d) λN from the same
ensemble. (e) 2-simplex degrees k(2) vs 1-simplex degrees k(1) for
a single network realization and (f) the quantities 〈k(1)2〉/〈k(1)〉2

and 〈k(2)2〉/〈k(2)〉2 (blue circles and red crosses, respectively) ob-
tained from an ensemble of 103 networks as a function of the
parameter p.

where qi =
∑N

j=1 A(2)2
i j . [See Appendix C for the derivation

of Eq. (6).] In particular, varying α interpolates the variance
between 〈k(1)2〉/〈k(1)〉2 + 1/〈k(1)〉 − 1 and 〈k(2)2〉/〈k(2)〉2 +
〈q〉/(4〈k(2)〉2) − 1 in the extremes where connections are
completely dominated by 1-simplex and 2-simplex coupling,
respectively. Thus, when the latter form of the variance is
larger, which we may expect when the 2-simplex degree dis-
tribution is more heterogeneous than the traditional 1-simplex
degree distribution, strengthening higher-order interactions in
turn broadens the eigenvalue spectrum of L. In general, as α
is varied the eigenvalues interpolate between their respective
values for L(1) and L(2); however, their intermediate behavior
is more complicated and left for future research.

In Fig. 3(b), we plot the mean variance of the spectral
density as a function of α which we calculated from the same
ensemble as in panel (a) (indicating standard deviation with
dashed curves). We observe a monotonic increase in the vari-
ance of the eigenvalue spectrum as higher-order interactions
are strengthened, which is consistent with the broadening
shown in panel (a). The extremal eigenvalues λ2 and λN
follow this trend, decreasing and increasing, respectively, as
illustrated in Figs. 3(c) and 3(d). Moreover, we show over a
full range of networks, from completely random to strongly

043193-4
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Figure 3.10: a) The eigenvalue spectrum P(λ) of the composite Laplacian L for α = 0 (solid
blue), 0.4 (dashed red), and 0.8 (dot-dashed green) obtained from 103 networks of
size N = 500 with mean degree 〈k〉 = 10 and p = 0.25. b) The spectral variance
and the extreme eigenvalues, c) λ2 and d) λN from the same ensemble. e) 2-simplex
degrees k(2) vs 1-simplex degrees k(1) for a single network realization and f) the quant-
ities 〈k(1)2〉/〈k(1)〉2 and 〈k(2)2〉/〈k(2)〉2 (blue circles and red crosses) obtained from 103

networks as a function of the parameter p. Reprinted by permission of [79].
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We validate the analytical results in Fig. 3.10. In Fig. 3.10.a), we plot the eigenvalue
spectrum of L averaged across 103 networks of size N = 500 and built using the model de-
scribed above with mean degree 〈k(1)〉 = 10 and p = 0.25 for α = 0 (solid blue), 0.4 (dashed
red), and 0.8 (dot-dashed green). Note that as the higher-order interactions strengthen at
the expense of pairwise interactions (larger α), the eigenvalue spectrum becomes broader.
In Fig. 3.10.b), we plot the mean variance of the spectral density as a function of α which
we calculated from the same ensemble as in panel a) (one standard deviation is repres-
ented with dashed curves). We observe a monotonic increase in the variance of the ei-
genvalue spectrum as higher-order interactions are strengthened, which is consistent with
the broadening shown in panel a). As shown in Fig. 3.10.c)-.d), the extreme eigenvalues
λ2 and λN follow the same trend, decreasing and increasing, respectively, for increasing
α. We have also checked that the effect is sustained over a large range of networks. In
Fig. 3.10e) we show results for networks ranging from completely random to strongly geo-
metric (interpolating with parameter p). We can see that the 2-simplex degree distribution
is more heterogeneous than the 1-simplex one for all values of p, which translates into the
broadening of the spectra. This property is captured by the concave form in each of the
three curves of panel e), and in panel f), where the ratios of the degree distributions in
pair-wise and three-body interactions (in blue circles and red crosses, respectively) across
a full range of the parameter p of the geometric network model, ranging from random
networks (p ≈ 0) to completely spatial ones (p ≈ 1). All points in panels e) and f) are
obtained from averaging over an ensemble of 103 networks. These results support the pre-
dicted role of higher-order couplings, namely the broadening of the synchronized range
and the improvement of optimal states. We have also check that these results hold for
networks drawn from different degree distributions (as Poisson or power-laws) and em-
pirical ones. However, there may be particular, although we believe rare, cases where the
increases in the variance predicted in Eq. (3.43) does not hold. In this section, we restric-
ted to geometrically-embeded networks due to its practical relevance in biological and
engineered systems where higher-order interactions presumably play a role [139, 140].

3.3.5 Optimization in constrained scenarios

To close this section, we consider a more realistic optimization scenario where optimal
alignment may not be possible (due to structural constraints). The following results also
bridge the random and optimal allocation methods under the same framework.

We assume an initial random allocation of frequencies, and allow some perturbations
to optimize synchronization. We denote this perturbation by δω = ωnew − ω, and con-
strain the relative size ‖δω‖/‖ω‖ while fixing the variance of ω. The perturbation can
be optimally chosen in terms of the eigenvector expansion ω = ∑N

j=2 cjvj by orthogonal-
izing away from the eigenvectors with smallest associated eigenvalues in order to elimin-
ate the largest contributions to the SAF. To do this, one lets δω = ∑N

j=2 β jvj and, for as
large k as possible, let β j = −cj for j = 2, . . . , k, β j = cj for j = k + 1, . . . , N − 1, and

βN = cN(
√

1 + ∑k
j=2 c2

j /c2
N − 1), resulting in ωnew = ∑N

j=2 γjvj with γj = 0 for j = 2, . . . , k,
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γj = cj for j = k + 1, . . . , N − 2, and γN = cN

√
1 + ∑k

j=2 c2
j /c2

N . Note that this both or-
thogonalizes ωnew against the eigenvectors with the smallest eigenvalues while increasing
the alignment with vN in order to conserve the variance of ω. This method can be fur-
ther improved by applying a permutation to the initially random vector ω. We do so with
an accept-reject algorithm that interchanges chosen pairs of frequencies if the exchange
improves the degree of strong synchrony (in terms of the SAF).

Now we explore the results of these two methods. In Fig. 3.11.a), we plot the resulting
SAF J(ω, L) averaged over 102 networks using the same parameters as before, after impos-
ing perturbations of sizes ‖δω‖/‖ω‖ = 0, 0.4, 0.8, and 1.2 (blue circles, red triangles, green
crosses, and black squares) in a random frequency vector normally distributed. Note that
the maximum possible perturbation that conserves the standard deviation of the frequen-
cies is ‖δω‖/‖ω‖ = 2, obtained by ωnew = −ω. In Fig. 3.11.b), we observe that the method
with a preliminary permutation of frequencies minimizes better the SAF (increasing syn-
chrony). One sees that there is often an ideal balance of dyadic to triadic interactions, i.e.,
a critical optimal α that lies between zero and one, for a given perturbation size.
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the linear approximation is equivalent to optimizing the con-
sensus dynamics.

To optimize Eqs. (1)–(3) we enter the rotating reference
frame θ !→ θ + 〈ω〉t (which allows us to effectively set the
mean frequency to zero in both the nonlinear and linear
dynamics), and we search for fixed points. Applying the
Moore-Penrose pseudoinverse of the composite Laplacian
[46], L† =

∑N
j=2 λ−1

j v jv jT , where 0 = λ1 < λ2 ! · · · ! λN

are the eigenvalues of L and its eigenvectors {v j}N
j=1 form an

orthonormal basis for RN , yields the fixed point

θ∗ = L†ω

K
. (4)

From the viewpoint of consensus dynamics, the degree of
consensus may be evaluated directly by the variance of
the fixed point, ‖θ∗‖2/N . On the other hand, the degree
of synchronization in the higher-order Kuramoto model is
given by the magnitude r of the order parameter z = reiψ =
N−1 ∑N

j=1 eiθ j , which represents the centroid of all oscillators
when placed on the complex unit circle. To leading order,
the degree of synchronization of the fixed point is r ≈ 1 −
‖θ∗‖2/2N . Thus, consensus and synchronization dynamics
are both optimized by minimizing the variance of the fixed
point, ‖θ∗‖2/N . Using the form of L† given above and that
‖θ∗‖2 = 〈θ∗, θ∗〉, we have that

‖θ∗‖2

N
= J (ω, L)

K2
, where J (ω, L) = 1

N

N∑

j=2

〈v j,ω〉2

λ2
j

. (5)

The function J (ω, L) is known as the synchrony alignment
function (SAF), which was first introduced in Ref. [36] in the
context of an objective function for optimizing the synchro-
nization properties of a network of heterogeneous oscillators.
Minimizing J (ω) serves to optimize ‖θ∗‖2/N and r and can
be explored under a wide variety of constraints [37–41]. In-
specting the contributions to the SAF, we note that each term
corresponds to a squared projection of the frequency vector
ω onto the eigenvector v j that is scaled by inverse square of
the associated eigenvalue λ j . Thus, under the constraint of
fixing the variance the frequency vector to σ 2, the collective
behavior is strengthened by aligning the frequency vector ω
as closely as possible with the most dominant eigenvectors
(those associated with larger eigenvalues) and orthogonalizing
ω as good as possible to the least dominant eigenvectors
(those associated with smaller eigenvalues). Thus, the optimal
solution is obtained by setting ω = σ

√
NvN .

IV. HIGHER-ORDER INTERACTIONS IMPROVE
COLLECTIVE BEHAVIOR FOR OPTIMIZED SYSTEMS

In our first experiment, we highlight that random and opti-
mized systems generally behave very differently, especially
in the context of higher-order interactions. Specifically, we
will show for optimized systems that collective behavior is
improved by a stronger reliance on higher-order interactions,
whereas it is diminished for random systems. Since simplicial
complexes are geometrically embedded [47] we consider a
class of noisy geometric networks [48] that contain both geo-
metrically constrained and geometrically unconstrained edges
between nodes uniformly placed on the unit disk in R2. With

FIG. 2. Optimal synchronization in networks with higher-order
interactions. (a) The synchronization error 1 − r vs K for random
(open symbols) and optimal (closed symbols) frequencies for two
choices of the bias parameter: α = 0 (red triangles) and 0.8 (blue cir-
cles), representing cases where interactions are exclusively defined
by 1-simplexes and dominated by 2-simplexes, respectively, for a
noisy geometric network (see text). (b) The synchrony alignment
function (SAF) J (ω, L) as a function of α for randomly allocated
(open squares) and optimal (closed squares) frequency averages over
103 networks.

connected triangles, i.e., 2-simplexes, arising from geomet-
rically constrained edges, we tune the prevalence of triadic
interactions using a probability p ∈ [0, 1]: (i) with probability
p each of the total M = N〈k(1)〉/2 edges is placed between
the two closest nodes that are not yet connected and (ii) with
probability (1 − p) each edge is placed randomly, where 〈k(1)〉
is the target mean 1-simplex degree. Thus, p tunes the preva-
lence of low-dimensional geometry in the network: in the limit
p → 1 the network is purely geometric, while in the limit
p → 0 the network is Erdős-Rényi [49]. In Appendix B we
provide a more complete algorithm implementing the network
model described above.

Taking one such network of size N = 500 with mean
degree 〈k(1)〉 = 10 and p = 0.25, we illustrate the effect of
higher-order interactions on optimizing collective dynamics
in Fig. 2(a). We plot the synchronization error 1 − r from
direct simulations of Eq. (1) as a function of K for four cases,
all under the constraint that the natural frequency vector has
unit variance. First we consider the fully 1-simplex dominated
case, i.e., α = 0, so that coupling is purely dyadic, and plot the
results for random and optimal choices of natural frequencies
in open and closed red triangles, respectively. Note that the
optimal choice of natural frequencies outperforms the random
case, given by a set of natural frequencies drawn from the
standard normal distribution, by about an order of magnitude.
Next, we set α = 0.8, thereby strengthening higher-order in-
teractions at the expense of pairwise interactions, and plot the
results for random and optimal choices of natural frequencies
in open and closed blue circles, respectively. We note here
that all simulations are done using Heun’s method with a time
step of 't = 0.02, integrating over a transient of 5 × 103 time
steps and then averaged over a steady state of 2 × 103 time
steps. We also plot the predicted synchronization error, given
by J (ω, L)/2K2, for each case in dashed curves, which accu-
rately capture the dynamics for sufficiently large coupling.

This example highlights a critical feature of higher-order
interactions in networks and their effect on collective dy-
namics. In particular, focusing on the optimal cases, the
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FIG. 5. Constrained optimization. The SAF J (ω, L) as a function
of α obtained after optimal perturbations of sizes ‖δω‖/‖ω‖ = 0
(blue circles), 0.4 (red triangles), 0.8 (green crosses), and 1.2 (black
squares) are applied to a randomly drawn vector of frequencies
(a) without and (b) with preprocessing the frequency vector using
a (near) optimal permutation. Results are obtained from an ensemble
of 102 networks of size N = 100 with mean degree 〈k(1)〉 = 10 and
p = 0.25.

likely do not exist for more general cases of hypergraphs and
simplicial complexes that are not clique complexes where 1-
and 2-simplex structures may be uncorrelated.

VII. CONSTRAINED OPTIMIZATION

Lastly, we consider optimization of collective behavior in
a more constrained scenario. Rather than just constraining
the variance of a frequency vector ω and allowing frequen-
cies to be freely chosen otherwise (thereby allowing them
to be aligned perfectly with a particular eigenvector), we
assume a randomly chosen initial frequency vector is given
and may only be modified by a perturbation of constrained
size. Denoting this perturbation by δω = ωnew − ω, we then
constrain the relative size ‖δω‖/‖ω‖ while maintaining the
variance of the frequency vector itself. This perturbation
may be optimally designed in terms of the eigenvector ex-
pansion ω =

∑N
j=2 c jv

j by orthogonalizing away from the
eigenvectors with smallest associated eigenvalues in order to
eliminate the largest contributions to the SAF. To do this,
we let δω =

∑N
j=2 β jv

j and, for as large k as possible, let
β j = −c j for j = 2, . . . , k, β j = c j for j = k + 1, . . . , N −
1, and βN = cN (

√
1 +

∑k
j=2 c2

j/c2
N − 1), resulting in ωnew =

∑N
j=2 γ jv

j with γ j = 0 for j = 2, . . . , k, γ j = c j for j =

k + 1, . . . , N − 2, and γN = cN

√
1 +

∑k
j=2 c2

j/c2
N . Note that

this both orthogonalizes ωnew against the eigenvectors with
smallest eigenvalues while increasing the alignment with vN
in order to conserve the variance of ω. In Fig. 5(a), we plot
the resulting SAF J (ω, L) averaged over 102 networks from
an ensemble using the same parameters as in Figs. 2 and 3
after imposing such a perturbation of sizes ‖δω‖/‖ω‖ = 0,
0.4, 0.8, and 1.2 (plotted in blue circles, red triangles, green
crosses, and black squares) to a random frequency vector with
normally distributed entries. Note that the maximum possible
perturbation that conserves the standard deviation of the fre-
quencies is ‖δω‖/‖ω‖ = 2, obtained by ωnew = −ω.

Another realistic possibility is that, before a perturbation is
applied, the frequencies are (nearly) optimally rearranged to

obtain a permutation of the initially given frequency vector.
Here we obtain such a permutation using a simple accept-
reject algorithm that interchanges randomly chosen pairs of
frequencies if the exchange decreases the SAF. This pre-
processing technique allows for more efficient perturbations,
as we see in Fig. 5(b), which improve upon the results in
Fig. 5(a). In particular, in such a constrained optimization
scenario, we observe that there is often an ideal balance of
dyadic to triadic interactions, i.e., a critical value of α that lies
between zero and one, for a given perturbation size.

This phenomenon can be viewed as a combination be-
tween the cases of random frequencies, where higher-order
interactions impede collective, and the case of optimal (freely
tunable) frequencies, where higher-order interactions improve
collective behavior. Specifically, the presence of a constraint
allows higher-order interactions to improve the constrained
optimal states, but only to a certain point since the purely
optimal choice of frequencies is unattainable, as the frequency
vector cannot be precisely aligned with the eigenvector
vector vN .

VIII. DISCUSSION

Given the role of collective behavior in the function of
physical, biological, and neurological systems where higher-
order interactions may play a critical role in shaping system
dynamics, understanding how higher-order interactions bal-
ance with dyadic interactions and affect collective behavior
is an important question for a wide range of disciplines and
applications. In this paper, we have addressed the topic of
optimization for collective behavior in networks with higher-
order interactions, focusing on clique complexes, and found
that as higher-order interactions are equitably strengthened
relative to dyadic interactions, optimal collective behavior
improves. This phenomenon stems from the broadening of
the eigenvalue spectrum of a composite Laplacian matrix that
encodes the collective dynamics and network structure at mul-
tiple orders and generalizes the synchrony alignment function
framework to this important case. In particular, as the spec-
trum broadens the dominant eigenvalue(s) increase, which
leads to this improvement. Moreover, we find that optimal
solutions are robust over different balances between the rel-
ative strengths of dyadic and triadic interactions and that the
broadening of the eigenvalue spectrum also widens the range
of possible collective states supported by the network. We
also find in more tightly constrained optimization scenarios
that an ideal balanced between dyadic and triadic interactions
occurs at a nontrivial, critical value of the bias parameter for
networks to support the strongest possible collective behavior.
Interestingly, the improvement of optimal collective behavior
stemming from the broadening of the eigenvalue spectrum for
the case of heterogeneous dynamical units lies in contrast to
the case of identical units, where optimal networks stem from
the concentration of the nontrivial eigenvalue spectrum [42].

These results shed light on the question of why higher-
order interactions may be important in various applications
that exhibit collective behavior. In particular, by modifying
one’s balance between dyadic and higher-order interactions,
a system may self-regulate not only to modify (improve
or worsen) its current collective state, but also broaden or
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Figure 3.11: The SAF J(ω, L) as a function of α obtained after optimal perturbations of sizes
‖δω‖/‖ω‖ = 0 (blue circles), 0.4 (red triangles), 0.8 (green crosses), and 1.2 (black
squares) are applied to a randomly drawn vector of frequencies a) without and b) with
preprocessing the frequency vector using a (near) optimal permutation. Results are ob-
tained from an ensemble of 102 networks of size N = 100 with mean degree 〈k(1)〉 = 10
and p = 0.25. Reprinted by permission of [79].

This last experiment connects the random allocation of frequencies, where higher-order
interactions decrease collective coherence, and optimal (unconstrained) allocation, where
higher-order interactions improve collective behavior. Specifically, constraints in the op-
timization allow higher-order interactions to improve the optimal state, but only to some
extent, since the frequency vector cannot be precisely aligned with the eigenvector vector
vN . With these findings, we conclude the section and move on to the third problem of the
chapter, where we heuristically study a more general problem joining the critical point
and the strong synchronized regime. We leave a summary of the previous findings and a
discussion of some limitations and open problems for the final section 3.5.
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3.4 dynamical invariance under network transformations

3.4.1 A mapping problem

Up to now, we have explored the role of network uncertainty in the critical and the lin-
earized regime of our oscillatory system separately, but we lack a holistic view on the
full dynamics. This broader picture is still missing even for the most simple form of the
Kuramoto model (with pair-wise, undirected connections, positive weights, etc . . . ) in ar-
bitrary complex networks, due to the irregularities in the specific network patterns. We
attempt to contribute to this research direction by introducing a novel mapping problem
that tackles an apparently simple question: can different network structures, when tuned
appropriately, achieve the same range of functionality? Which are the constraints that limit
the possible mapping of behaviors? In the literature of network synchronization, it is well
understood that different interaction structures can give rise to a common functionality,
usually in terms of a macroscopic observable as the order parameter r. This idea of multi-
valuation has been explored in the context of network inference [164, 168], prediction [177,
213, 214] and control [44, 69], but, to our knowledge, the particular ranges of synchrony
for different type of structures have not been studied in the past. Considering the intricate
patterns of real world networks [2] and the ubiquity of synchronization phenomena [3,
6], improving the understanding of the relation between network structure and potential
range of behaviors seems of upmost relevance to the field.

Figure 3.12: a) Illustrative sketch of a network with two configurations of links (black solid and
red dashed, respectively), inducing in b) two different synchronization curves. Can we
map the dynamical behavior of both networks for all range of coupling K by tuning
the weights in one of the structures?

In this section, we address this problem driven again by the pace of uncertainty. The in-
formation we can obtain from the network is usually incomplete, because of experimental
errors, lack of resolution, or, as shown before, due to noisy weights, random frequencies
or diverse interaction mechanisms. Moreover, the non-linearities in the dynamics and the
complex network patterns difficult the analytical treatment even in possession of complete
information of the system. An example of this limitation, is how the spectra of the adja-
cency A and the Laplacian L matrices show up in the critical and linearized regimes of
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the Kuramoto model, but there is no available theory that relates both regimes or spec-
tral objects by analytical means. Motivated by these uncertain conditions, we study the
mapping between different structures, wondering how can one transform the interactions
in one of the networks such that the collective behavior remains invariant in both. Such
transformation must adjust the weights of the interactions in the targeted configuration
to achieve the goal, if possible, of having an equivalent steady-state functionality to the
original structure. In Fig. 3.12 we show an illustrative sketch on the mapping problem.

Inspired by the derivation of statistical mechanics from information theory as a partic-
ular case of statistical inference [32], we propose to tackle the mapping problem as an
optimization problem for the unknown weights subject to structural constraints on the net-
works that capture our prior, incomplete knowledge on the system. Our constraints will
rely on an extended mean-field approach, exploiting different scales of structural informa-
tion, from local to further-neighborhoods. The proposed method is heuristic, and we show
results only for the standard Kuramoto model. We impose several strong assumptions:
namely random networks drawn from a known degree distribution, uncertain allocation
of frequencies, and we allow only positive weights on the interactions. Despite the lim-
itations of our experiment, we will unveil that the mapping of homogeneous networks
into heterogeneous ones is usually less accurate and requires more –costly– microscopic
information than the reverse process, which points to symmetry-unbalance phenomenon
that emerges from the partial impossibility of preserving the local structural constraints
of hubs. While certainly not the definitive answer to the ambitious mapping problem, the
following results anticipated some further works, which improve our capacity to control
and predict the relation between structure and dynamical range in oscillator networks, but
usually rely on global, complete information and numerical methods that treat networks
as black-boxes [44, 129, 135, 162]. The results of this chapter rely on negating this complete
information, and this section is not an exception. Hopefully, the proposed heuristics can
be useful to enhance our mechanistic comprehension of the system and to pave the way
to more rigorous findings. In fact, the results presented in the next chapter will somehow
confirm that the uncertain and intuitive route followed in these initial steps was heading
towards the good direction.

3.4.2 Heuristic extension of mean-field constraints

As it is a common praxis in the course of the thesis, we focus on the well-known Kuramoto
model (KM) to study a novel problem. Here, we use it to motivate our method to generate
functionally invariant networks. To this purpose, we return to the standard version of the
KM [5, 6, 38, 62], considering the dynamical system

θ̇i = ωi + K
N

∑
j=1

aij sin(θj − θi), ∀ i ∈ 1, . . . , N. (3.44)

It is well understood that, when the frequencies are randomly allocated and one neglects
the effect of structural correlations (thus working in the random ensemble of the config-
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uration model), particular unweighted instances drawn from the same degree distribution
will produce the desired invariant collective behavior [2, 6, 58]. Here we wonder if the
former invariance can be achieved for weighted networks drawn from different degree
distributions, preserving the number of nodes N. To tackle this problem, we consider a
reference network A with a given coupling matrix A, which might be non-symmetric and
directed with fixed entries aij, and a candidate network B, with a different coupling matrix
B. We look for transformations of B in the form B′ = W ◦ B, with entries wijbij, where
wij are the parameters to find and bij are the binary entries of B. Then, our condition for
having synchronization invariance can be written as

〈r2(ω, K, A)〉 = 〈r2(ω, K, B′)〉, ∀ K > 0, (3.45)

where the measurements are in the steady-state, the average refers to different initial con-
ditions and frequency allocations, accounting for fluctuations of order 1/

√
N. The invari-

ance condition of Eq. (3.45) is written in terms of the usual KM complex order parameter
reiΨ(t) = (1/N)∑N

j=1 eiθj . We assume that the macroscopic order parameter r is the only
available observable from measurements (in fact we use r2 to better capture the differences
in both networks for small values of r around the synchronization onset, which does not
alter the results) and we look for network transformations (via weight tuning of the entries
of W) that keep this observable invariant, for any value of the control parameter K.

To the best of our knowledge, a method appropriate to solve the mapping problem,
as defined above for the Kuramoto model, is not available in the literature. The multi-
valuation of synchronization dynamics [164] and the vast number of network configura-
tions and frequency choices that can possibly generate invariant dynamics in Eq. (3.44)
[6, 62, 135, 149, 163], highlight the difficulty of finding solutions to the weight tuning
problem in general. Furthermore, we know, from results presented in previous sections,
that the preservation of the adjacency and Laplacian spectra and the precise alignment
of the frequencies play a crucial role in generating the invariant transformations, but we
do not know yet which spectrum nor alignment has to be preserved and how a spectral
invariance would translate into actual network modifications (such as weight adjustments
of fixed links). Considering these limitations, we decide to tackle the mapping problem
guided by physical intuition and uncertainty assumptions.

We propose a heuristic approach based on exploiting decentralized structural inform-
ation, extending a detailed balance, in terms of the mean-field constraints of the nodes,
from local to higher-orders. With this idea in mind, we treat the mapping as an optim-
ization problem for the unknown weights subject to the structural constraints (the pro-
posed mean-field balances) posed on the network. In particular, the key assumption is to
achieve Eq. (3.45) by imposing a local detailed balance for the main structural properties
of the nodes: the overall coupling intensities –the sum of incoming weights– received from
neighbors (or input strengths [2]). For each node, we define the zero-order input strength
as s(0)i = ∑j aij, the first-order as s(1)i = ∑j aij(∑k ajk) and so on. For a fixed order M, the
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detailed balance is given by a set of N(M + 1) equations for the s(m)
i . If we let q be the

N-vector of ones q = (1, 1, ..., 1), we can write

Am+1q = B′Amq, ∀ 0 ≤ m ≤ M, (3.46)

where (Am+1q)i = s(m)
i are the node structural bounds in the optimization of the weights

in B′. The local constraint (m = 0) can be written explicitly as

N

∑
j=1

aij =
N

∑
j=1

wijbij, ∀ i ∈ 1, . . . , N, (3.47)

which ensures to preserve the overall coupling in the transformation (∑i ∑j aij =

∑i ∑j wijbij). Eq. (3.47) can be seen as a local mean-field ansatz that relies on the weighted
annealed approximation [215, 216], assuming statistical similarity among nodes with the
same s(0)i . This weighted description is known to be valid in the linear regimes of the dif-
fusion of random walkers [216] and the Master Stability Function (MSF) [80, 161]. In the
context of the Kuramoto model, Eq. (3.47) appears in an implicit manner when relating the
local order parameter of Eq.(3.44), ri = |(1/N)∑j aijeiθj |, with the global order parameter

r via the in-strength s(0)i of the nodes as ri ≈ s(0)i r [103, 104]. In section 3.2 we showed an
application of this weighted mean-field description when computing the synchronization
onset in the presence of noisy weights, and we confirmed its validity by numerical means,
at least in the context of random networks with small noise on weights. Furthermore, we
note that within the mathematical tool presented in the following chapter 4, the validity of
the local ansatz will also be recovered by the first-order (local) truncation of the geometric
expansion of the linearized synchronized state.

The previous arguments point that the local mean-field constraint given by Eq. (3.47) can
be a reasonable choice to impose in the mapping problem, at least for networks drawn from
the configuration model (in absence of strong clustering or modular structures), with small
variations of weights among the existing links. Our additional guess is that higher order
constraints (m > 0) might be required when the non-linearity of Eq. (3.44) plays a crucial
role, or the connectivity patterns of the units become highly non-trivial (as a large het-
erogeneity of degrees). Importantly, we remark that the proposed constraints only exploit
structural information of the system (the M-order input strengths) but neglect information
about the frequencies, given by the vector ω in Eq. (3.44). Thus, we are working with un-
certain information of the nodal dynamics, and structural transformations proposed here
should be taken into account only for very large systems with random frequencies, or en-
sembles of systems with frequencies randomly drawn from a given distribution g(ω). Fur-
thermore, we allow the unknown weights in the matrix W to be non-negative, restricting
our problem to finding positive solutions for the interaction strengths. This last assump-
tion is motivated by empirical oscillatory systems where negative weights are not allowed
(as in excitatory networks or power-grids [6, 135]) and it constrains even more the space
of configurations. Overall, the intuition behind the mean-field ansatz is that the dynam-
ical mapping can be achieved for different networks by tuning the interaction weights in
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one network such that the distribution of (generalized) input strengths become invariant
(assuming a random allocation of frequencies), even if the initial distribution of links is dif-
ferent between two networks (for instance, a different degree distribution). The hypothesis
that we are testing is if we can generate functionally invariant networks by satisfying these
structural constraints.

3.4.3 Analytical solutions of maximal entropy

To solve the mapping problem under the chosen constraints, we take advantage of inform-
ation theory [167], to define an appropriate objective function to optimize the unknown
weights. In an uncertainty scenario, the best we can do is to rely on the maximum entropy
principle [32]. It states that, subject to the available data (i.e. the constraints in Eq. (3.46)),
the probability distribution which best captures our lack of information is the one that
maximizes the entropy. Here, we can interpret the weights’ distribution in probabilistic
terms, where the input strength s(0)i is the normalization condition, and define the entropy
[167] of a node Si as a sum of weights over the accessible states, i.e. where bij = 1,

Si = −
N

∑
j=1

wij log wij, ∀ i ∈ N, (3.48)

where the normalization constant has been neglected for simplicity, and it is assumed that
wij ≥ 0. Now we use the method of Lagrange multipliers [32] to solve this optimization
problem. The Lagrangian function reads as

L =
N

∑
i=1

(Si −
M

∑
m=0

β
(m)
i [(Am+1q)i − (B′Amq)i]), (3.49)

where β
(m)
i is the m-order Lagrange multiplier of i-node. By optimizing Eq. (3.49) with

respect to the unknown weights and finding the values of the multipliers, we can derive
analytical expressions for the entries of B′. For the zero-order case (M = 0), we obtain

w(0)
ij =

∑N
k=1 aik

∑N
k=1 bik

, ∀ i, j ∈ N, (3.50)

that can be written as w(0)
ij = s(0)i /kB

i , where kB
i is the degree of node i in B. This solution

is very intuitive, since it homogeneously allocates the input strength of a node into the
available links. The weights are therefore equal for all the incoming links of a node (wij

is independent of the node j), implying usually a non-symmetric coupling. The solution
in Eq. (3.50) is precisely the scheme used in [80, 161] to transform a network topology
into a purely homogenous one to optimize the stability of the synchronized state in the
scope of the MSF. That means that the solution should be valid in the linear regime, close
to the synchronization attractor. However, this solution is yet to be validated in the fully
non-linear regime of Eq. (3.44).
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To validate the naive, zero-order solution of Eq. (3.50), we simulate the dynamics of
N = 2000 oscillators following Eq. (3.44) with fixed g(ω) ∈ (−π, π), measuring 〈r2〉 in
a quasi-static process controlled by the control parameter K ∈ [0, 0.5/N]. We try to map
pairs of uncorrelated networks drawn from different degree distributions, that range from
homogeneous in degree, Erdös-Rényi networks, to power-law in degree (SF) networks,
which are initially unweighted and symmetric. We interpolate between both degree dis-
tributions with a single parameter α, using the model proposed in [121]. For α = 0 we
have pure power-law (SF) distributions p(k) ∼ k−γ with exponent γ = 3 while for α = 1
we obtain homogeneous (ER) random networks, keeping the average degree fixed, in our
case 〈k〉 = 10. In practice, we fix the binary links of a network A drawn from the model
for a certain value α, i.e. the target network Aα, and the candidate network Bα′ drawn
for another value α′. Then, we compute the weights, using Eq. (3.50), and transform the
weights of the candidate network to map the behavior of the original one, obtaining the
resulting matrices T0(Bα′ |Aα), where the sub-index of T means that the method exploits
only zero-order information (the local constraint of Eq.(3.47)).
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should have the same phase. We expect this process to
occur at different time scales if a clear community struc-
ture exists. Thus, the dynamical route towards the global
attractor will reveal different topological structures, pre-
sumably those which represent communities. Therefore,
it is the complete dynamical process what unveils the
whole organization at all scales, from the microscale at a
very early stages up to the macroscale at the end of the
time evolution. On the contrary, those systems endowed
with a regular topological structure will display a trivial
dynamics with a single time scale for synchronization.

To study this phenomena, instead of considering a
global observable, we define a local order parameter mea-
suring the average of the correlation between pairs of os-
cillators

ρij(t) =< cos(θi(t) − θj(t)) > (2)

where the brackets stand for the average over initial ran-
dom phases. The main advantage of this approach is that
it allows to trace the time evolution of pairs of oscillators
and therefore to identify compact clusters reminiscent of
the existence of communities.

To give evidence of the aforementioned facts we have
analyzed the dynamics towards synchronization –time
evolution of ρij(t)– in computer-generated graphs with
a hierarchical community structure. In [21] the authors
proposed models of networks with a well defined commu-
nity structure, that have been used as a benchmark for
different community detection algorithms [6]. Here, we
propose a generalization of this model that includes two
hierarchical levels of communities. The graphs we gen-
erate are as follows: we prescribe, in a set of 256 nodes,
16 compartments that will represent our first community
organizational level, and four compartments containing
each one four different compartments of the above first
level, that define the second organizational level of the
network. The internal degree of nodes at first level zin1

and the internal degree of nodes at second level zin2
keep

an average degree zin1
+ zin2

+ zout = 18. From now
on, networks with two hierarchical levels are indicated as
zin1

- zin2
, e.g. a network with 13-4 means 13 links with

the nodes of its first hierarchical level community (more
internal), 4 links with the rest of communities that form
the second hierarchical level (more external) and 1 link
with any community of the rest of the network.

In Fig. 1 we represent ρij(t) at the same time t for two
slightly different hierarchical networks 13-4 and 15-2. In
the two figures we can identify the two levels of the hier-
archical distribution of communities. The network 13-4
(left) is very close to a state in which the four large groups
are almost synchronized whereas the network 15-2 (right)
still presents some of the smaller groups of synchronized
oscillators, and the larger group starting to synchronize,
coherently with their topological structure.

The visualization of the correlation matrix of the sys-
tem helps in elucidating the topology of the network. To

FIG. 1: Color on-line. Average of the correlation between
pairs of oscillators. The structure networks are 13-4 (left)
and 15-2 (right). See text for a description of the networks.
The colors are a gradation between blue (0) and red (1).

extract the quantitative information it is useful to intro-
duce some threshold T to convert the correlation matrix
into a binary matrix, that will be used to determine the
borders between different groups. We define a dynamic

connectivity matrix

Dt(T )ij =

{

1 if ρij(t) > T
0 if ρij(t) < T

(3)

that depends on both the underlying topology and the
collective dynamics. For a fixed time t, by moving the
threshold T , we obtain different representations of Dt(T )
that inform about the structure of the dynamic corre-
lations. When the threshold is large enough the repre-
sentation of Dt(T ) becomes a set of disconnected clumps
or communities. Decreasing T a hierarchical structure
of communities is devised. Note that since the function
ρij(t) is continuous and monotonic (because the existence
of a unique attractor of the dynamics), we can redefine
DT (t), i.e. fixing the threshold and evolving in time.
We obtain the same information about the structure of
the dynamic connectivity matrix at different time scales.
Let us show that these time scales unravel the topological
structure of the connectivity matrix at different topolog-
ical scales.

From the eigenvalue spectrum of DT (t), S(DT (t)), one
can extract the number of disconnected components of
the system as the number of null eigenvalues. The evo-
lution of S(DT (t)) traces the hierarchy of communities
as follows: at short times, all units are uncorrelated and
then we have N disconnected sets, being N the number of
nodes in the network; as time goes on, nodes become syn-
chronized in groups according to their topological struc-
ture. In Fig. 2 (top) we plot, for the two networks ana-
lyzed in Fig. 1, the number of disconnected components
as a function of time, for a fixed threshold T [22]. We can
observe the relative stability of the two partitions for the
two networks, corresponding to the two prescribed hier-
archical levels. For the 13-4 network the synchronization
of the 4 groups of 64 nodes each is much more stable than
the 16 groups of 16 nodes, i.e. the community structure

one order of magnitude, which demonstrates that this result does not depend on the

modified eigenvalue-eigenvector pairs dominating the resulting system dynamics.

Figure 5. We modify a random (Erdős-Renyi) matrix in order to produce

an equilibrium point given by a twisted state. Here, the original matrix (a)

is modified (b) due to changes in some of the eigenvectors. The equilibrium

point (c) is then used as initial condition to the simulation. The Kuramoto

order parameter (R(t)) as a function of time shows that for the random ma-

trix, the system reaches a phase synchronized state, while for the modified

matrix, the system stays in a wave (“twisted”) state. The spatiotemporal

patterns corroborate these features (e, and f).

The equilibrium point for these systems is then represented in Fig. 5c, which is given

by Eq. (3.1). Using this phase configuration as initial condition for the simulation leads

the systems to di↵erent states: in the case of the random matrix, the system reaches a

phase synchronized state (R = 1); in the case of the modified matrix, the system stays

in a twisted state, which is a phase-locked but not phase synchronized state (R = 0) –

see Fig. 5d. These features can be observed in the spatiotemporal dynamics of these

networks, which are depicted in Figs. 5e and f, respectively.
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FIG. 4. Two-dimensional slices of state space reveal the in-
tricacy of basin geometry. (a) Random slice. Basins are color
coded by the winding number q of the corresponding attrac-
tor. The basins appear fragmented. (b) Slice centered at the
twisted state with q = 15. The color scheme highlights the
onion-like structure of the basins; the core (basin for q = 15)
is wrapped inside many layers corresponding to basins with
gradually decreasing q.

plot shown in the inset of Fig. 3, which depicts the ↵-
dependent convergence back to the in-phase state (q = 0)
for 100 representative rays. We see that no ray is inside
the basin for all ↵. But for each ↵, there are always rays
that are inside the basin. Moreover, if a ray leaves the
basin at a certain value of ↵, it often reenters the same
basin at a larger value of ↵.

In fact, such repeated reentries can be seen as the defin-
ing feature of basins with tentacles. For any given fixed-
point attractor, we say its basin is octopus-like if there
is a nonzero probability that a ray emanating from the
attractor along a random direction intersects the basin at
disjoint intervals. Note that an octopus-like basin is nec-
essarily concave, but not all concave basins are octopus-
like. Moreover, we say an octopus-like basin has long
tentacles if the basin cannot be confined within any hy-
percubes other than the full state space, which is the case
for the Kuramoto systems studied here.

Figure 4 is a further attempt to visualize the structure
of high-dimensional basins, now by examining randomly
oriented two-dimensional (2D) slices of state space, either
far from a twisted state or close to one. Specifically, we
look at slices spanned by ✓0 +↵1P1 +↵2P2, ↵i 2 (�⇡, ⇡].
Here, P1 and P2 are n-dimensional binary orientation
vectors in which bn/2c randomly selected components
are 1 and the rest of the components are 0. The results
below are not sensitive to the particular realizations of
P1 and P2. However, the choice of the base point ✓0 mat-
ters a great deal. For example, in Fig. 4(a), we choose
✓0 to be a random point in the state space. Despite the
fact that each basin is connected (because the dynamics
are described by di↵erential equations), the basins look
fragmented in this 2D slice. Perhaps another metaphor
than tentacles—a ball of tangled yarn—better captures
the essence of the basin structure in this regime, far from
any attractor, in which di↵erently colored threads (rep-
resenting di↵erent basins) are interwoven together in an
irregular fashion. As one might expect, a random slice of

the state space such as this one is dominated by basins
corresponding to small values of |q|.

The basin structure near an attractor is strikingly dif-
ferent. In Fig. 4(b), we set ✓0 to be the twisted state
with q = 15. Here, the central basin (q = 15) is sur-
rounded by competing basins in a structured fashion. As
made evident by the color scheme, the basins near an
attractor are organized like an onion. As we peel away
the onion layer by layer, the winding number of the basin
gradually increases and finally reaches q = 15 at its core.
(Although we know from above that there must be holes
in the onion for the “tentacles” of the center basin to
snake through.)

Finally, we explain why octopus-like basins should be
prevalent in high-dimensional dynamical systems. Con-
sider an n-dimensional compact state space with side
length L in each direction (after suitable rescaling). We
say a basin is boxy if it can be confined in a hypercube of
side length ` < L. If all basins of a system are boxy for an
` that does not depend on n, then to fill the entire state
space we need at least (L/`)n di↵erent basins. So if the
number of attractors in a system grows sub-exponentially
with n, the basins cannot all be boxy. In particular, this
is true for the Kuramoto systems we consider here, whose
number of attractors grows linearly with n.

Basins can be non-boxy because they are octopus-like,
with long tentacles that slither throughout state space
and escape any potentially confining hypercube. But
other scenarios can also occur. Imagine a limiting case
where the head of the octopus expands to engulf the ten-
tacles; then the basins stretch continuously across state
space in some or all directions (as they do, for instance,
in a system with just one attractor). Nevertheless, we
predict that basins with tentacles are generic for high-
dimensional dynamical systems with a modest number
of attractors, because they provide the least constrained
way to fill the state space. Our prediction is supported by
studies on basins in diverse physical systems [20, 38, 39],
from neuronal circuits to jammed sphere packings. In
some cases one can already visually identify tentacles in
low-dimensional slices of the basins [22, 41].

By illuminating the structure of octopus-like basins
and establishing their prevalence, we hope this work
will motivate future studies of basin structure in high-
dimensional systems. Some promising directions include
the definition of octopus-like basins for chaotic attrac-
tors, understanding the role of saddles in creating basin
tentacles, and generating new insights on reservoir com-
puters [47] and adversarial examples in neural networks
[48] by characterizing their basin geometries.

We thank Stefano Martiniani for sharing insights and
references on basin structures in jammed sphere pack-
ings and Robin Delabays and Ralph Andrzejak for stim-
ulating discussions. Y.Z. acknowledges support from the
Schmidt Science Fellowship and the Santa Fe Institute.
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FIG. 1: (color online) Evolution of a, the KM order parameter de-
fined in Eq. (2), and b the fraction of synchronized links rlink, Eq.
(4), as a function of λ. The curves separate when the incoherent so-
lution for SF networks destabilizes. The figure clearly illustrates that
the synchronizability of the networks does depend on the value of the
coupling strength. Both plots are represented for Erdös-Renyi (ER)
and scale-free (SF) networks as indicated. The size of the networks
is N = 1, 000 and their average degree is 〈k〉 = 6. The exponent of
the SF network is γ = −3.

We study the dynamics of Eq.(3) in ER and SF networks,
preserving the total number of links, Nl and nodes, N for
a proper comparison [24]. We concentrate in two aspects:
global and local synchronization. First, we follow the evo-
lution of the order parameter r, as λ increases, to capture the
global coherence of the synchronization in the networks. Sec-
ondly, we propose and follow the same evolution for a new pa-
rameter, rlink . This parametermeasures the local construction
of the synchronization patterns and allows for the exploration
of how global synchronization is achieved. We define

rlink =
1

2Nl

∑

i

∑

j∈Γi

∣∣∣∣∣ lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei(θi(t)−θj(t))dt

∣∣∣∣∣ ,

(4)
that represents the fraction of all possible links that are syn-
chronized in the network (averaged over a large enough time
interval ∆t, after the system relaxes at some large time tr),
being Γi the set of neighbors of node i.
We solved Eq.(3) using a 4th order Runge-Kutta method

for different values of λ, with a uniform distribution of nat-
ural frequencies g(ω) in the interval [−π, π] up to achieving
the stationary state. The networks are built following a model
[25] that generates a one parameter family of complex net-
works. This parameter, α ∈ [0, 1], measures the degree of
heterogeneity of the final networks. A network of size N is
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FIG. 2: (color online) Size of largest synchronized connected com-
ponent (GC) and number of synchronized connected components
(Nc), as a function of λ for the different topologies considered. De-
spite r being vanishing and hence no global synchronization is yet
attained, a significant number of clusters show up. This indicates
that for any λ > 0 the system self-organizes towards macroscopic
synchronization. The network parameters are as in Fig. 1.

generated starting from a fully connected core of m0 nodes
and a set U(0) of N − m0 unconnected nodes. At each time
step, a new node (not selected before) is chosen from U(0)
and linked to m other nodes. Each of the m edges is linked
with probability α to a randomly chosen node (avoiding mul-
tiple and self-connections) from the whole set of N − 1 re-
maining nodes and with probability (1−α) following a linear
preferential attachment strategy [26]. Repeating these steps
(N − m0) times, networks interpolating between the limiting
cases of ER (α = 1) and SF (α = 0) topologies are generated
[27].
In Fig. 1 we represent the evolution of both order parame-

ters, r and rlink , as a function of the coupling strength λ. The
global coherence of the synchronized state, represented by r,
shows that the onset of synchronization first occurs for SF net-
works. A detailed finite size scaling analysis performed for
both topologies shows that the critical value of the effective
coupling, λc, corresponds in SF networks to λSF

c = 0.05(1),
and in ER networks to λER

c = 0.122(2), accordingly with
Fig. 1. If λ is further increased, there is a value at which r for
the ER crosses over the SF curve. From this value up in λ, the
ER network remains slightly more synchronized than the SF
network.
The behavior of rlink shows a change in synchronizability

between ER and SF and provides additional information. In-
terestingly, the nonzero values of rlink for λ ≤ λc indicate
the existence of some local synchronization patterns even in
the regime of global incoherence (r ≈ 0). Right at the onset

r l
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FIG. 1. Synchronization diagram. We plot r2 as a function of the
coupling strength K of the Kuramoto model, with !(K/N ) = 0.01
simulated with a fourth-order Runge-Kutta method with !t = 0.01,
for one instance of A1 (Erdös-Rényi) and A0 (power-law) networks
and their respective transformations using Eq. (8), averaged over 50
realizations with θ0 ∈ [−π,π ] (standard deviations are smaller than
the size of the symbols).

p(k) ∼ k−γ with exponent γ = 3, while for α = 1 we obtain
homogeneous random networks, keeping the average degree
fixed; in our case, 〈k〉 = 10. The mapping transformation is
then as follows: we fix the topologies of a network A drawn
from the model for a certain value α, i.e., the target network
Aα , and the candidate network Bα′ drawn for another value
α′. Then, we compute the weights, using Eq. (8), to map the
candidate network into the target one and obtain the resulting
T0(Bα′ |Aα), where the subindex of T refers to the fact that the
method exploits only zero-order information.

In Fig. 1 we present the results of the transformation
for the extreme cases T0(B0|A1) and T0(B1|A0). The results
evidence that the functional invariance is attained in the linear
regime (K ' Kc) for both transformations. However, there is
a clear discrepancy in the transformation T0(B1|A0), i.e., from
a homogeneous in-degree network toward a heterogeneous,
power-law network. This discrepancy shows that, when Eq. (8)
is applied, homogeneous networks are not able to capture the
role of heterogeneous connectivity patterns.

To improve the accuracy of the T0 method in the mapping,
we need to include higher-order constraints. We extend the
detailed balance to a further order (M = 1) by imposing that,
for each node, the transformation must also preserve the first-
order input strengths s

(1)
i , i.e.,

N∑

j=1

λA
ij s

(0)
j =

N∑

j=1

wijbij s
(0)
j , ∀ i ∈ N. (9)

Note that s(0)
j is the same at both ends of Eq. (9) because we still

retain the constraint presented in Eq. (5). We aim to maximize
Eq. (6) subject to Eq. (5) and Eq. (9). The Lagrangian in Eq. (7)
can be written explicitly as

L =
N∑

i=1



−
N∑

j=1

wij log wij − β
(0)
i



s
(0)
i −

N∑

j=1

wijbij





−β
(1)
i




N∑

j=1

λA
ij s

(0)
j −

N∑

j=1

wijbij s
(0)
j







. (10)

By imposing dL/dwij = 0 and isolating the unknown weight
wij , we obtain the implicit expression

w
(1)
ij (βi) = s

(0)
i e−βi s

(0)
j

∑N
k=1 bike

−βi s
(0)
k

, ∀ i,j ∈ N. (11)

The values of the multipliers βi are found by substituting
Eq. (11) back into Eq. (9) and numerically solving the resulting
system. However, the existence of real and non-negative
solutions cannot be ensured apriori. Indeed, the structural
bounds are easily estimated by considering the worst-case
scenarios, i.e.,

s
(0)
i × min

∀j∈N

(
bij s

(0)
j

)
! s

(1)
i ! s

(0)
i × max

∀j∈N

(
bij s

(0)
j

)
, ∀ i ∈ N.

(12)

The inequality in Eq. (12) turns out to be unfeasible for most
nodes if the reference network is very heterogeneous in local
input strength. Let us illustrate this by considering, on one
hand, that A follows a power-law distribution with p(s) =
cs−γ . Then, if network B is sufficiently well connected (kB

i '
1 ∀ i ∈ N ) and assuming N large, we can approximate the
constraints by

s
(0)
i * kB

i

∫ ∞

0
e−βi sp(s)ds = ckB

i

β
1−γ
i

∫ ∞

0
e−xx−γ dx, (13)

s
(1)
i * kB

i

∫ ∞

0
se−βi sp(s)ds = ckB

i

β
2−γ
i

∫ ∞

0
e−xx−γ+1dx. (14)

The first integral can be written as the gamma function∫
e−xx−γ dx = ((1 − γ ). Using the well-known property

((z + 1) = z((z) and dividing both equations, we obtain

βi * s
(0)
i

s
(1)
i

(1 − γ ), ∀ i ∈ N, (15)

which is negative for γ = 3, thus unveiling the structural
restrictions that emerge when mapping any arbitrary network
into a highly heterogeneous one. On the other hand, Eq. (8)
is recovered from Eq. (11) only when s

(0)
i * 〈s(0)〉, ∀ i ∈ N ,

i.e.,when A is very homogeneous in local input strength,
regardless of the topology of B.

The previous reasoning unfolds the symmetry unbalance
observed in Fig. 1 and suggests that the mapping can indeed
be enhanced, although it is strongly limited by the structural
bounds. To provide an analytical transformation that improves
the performance of Eq. (8) while still preserving wij " 0, we
expand Eq. (11) to first order around its average value, i.e.,

w
(1)
ij (βi) * s

(0)
i [1 − βi(sj − 〈s〉)]

∑N
k=1 bik[1 − βi(sk − 〈s〉)]

, ∀i,j ∈ N, (16)

where 〈s〉 = (1/kB
i )

∑
j bij s

(0)
j . We insert Eq. (16) into Eq. (9)

to obtain an approximate value β∗
i * βi as

β∗
i = 1

s
(0)
i

(
s

(0)
i 〈s〉 − s

(1)
i

〈s2〉 − 〈s〉2

)

, ∀ i ∈ N. (17)

The solution is finally obtained by direct substitution of
Eq. (17) into Eq. (11), and we denote this transformation
T1(Bα′ |Aα). Note that T1 does not provide uniform weighting,
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but depends explicitly on the balance between input strengths
and heterogeneity in each node.

Now we can compare the performance of transformations
T0 and T1 in the mapping. We define, for each transformation,
the dynamical error

σd = N−1
∫ K∞

0
[〈r2( $ω,K,A)〉 − 〈r2( $ω,K,B′)〉]2dK, (18)

as a measure of the total difference in the synchronization
diagrams between the target and transformed networks, and
we define the structural error

σs = N−1
N∑

i




N∑

j

(
λA

ij s
(0)
j − wijbij s

(0)
j

)



2

, (19)

as a measure of the total difference in the first-order local struc-
ture. In Fig. 2(a) we present the synchronization diagram for the
extreme cases T1(B0|A1) and T1(B1|A0) in the same setup as
before (N = 2000). We can observe a significant improvement
in the transformation T1(B1|A0) with respect to the zero-order
method in Fig. 1, although there still are nonvanishing errors
around the critical point due to the unfeasible structural bounds
of Eq. (12). In Fig. 2(b), we plot the dynamical σd and structural
σs errors for different values of the parameter α in T (Bα|A1−α).
Note how the accuracy of the transformations is enhanced by
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FIG. 2. (a) Synchronization diagram. We plot r2 as a function
of K , for one instance of A1 and A0 networks and transformations
T1(B0|A1) and T1(B1|A0) using Eqs. (11) and (17), averaged over
50 realizations with θ0 ∈ [−π,π ]. (b) Dynamical (left) error curves
for T0(Bα|A1−α) and T1(Bα|A1−α), averaged over 100 independent
network instances for each α (standard deviations fall in the shaded
region). In (b) right, associated structural error curves (standard
deviations are of the size of the symbols and the values of σs are
properly normalized).

T1 for any value of α, and it is associated to a decrease in the
structural error, thus validating the main assumptions of our
approach.

Furthermore, the approximate solution of Eqs. (11) and
(17) can still be improved by (i) considering higher-order
constraints (M > 1), but then the system would become cou-
pled and it should be solved simultaneously for all nodes, (ii)
extending the expansion of Eq. (11) with additional terms, (iii)
allowing the presence of negative interactions or indistinguish-
able units (without labeling the nodes in the transformation),
and also (iv) imposing global constraints instead of local
ones (requiring costly numerical methods and global objective
functions [30]).

Summarizing, we have presented an analytical method-
ology that successfully produces synchronization invariant
networks for the KM, by transforming the weights of the
interactions, while preserving the underlying topologies, and
exploiting only local structural information. We have shown
that different microscopic configurations can produce the same
macroscopic dynamical observables if the weights are adjusted
in a way that the main local properties of the nodes are
preserved. Furthermore, we have unveiled that the mapping
of homogeneous networks into heterogeneous ones requires
one to exploit additional (up to first order) information and it
is more complicated than the reverse process, due to intrinsic
structural limitations of the networks.

The presented formalism can be applied in a wide spectra
of problems beyond the mapping scenario. Our framework
provides a more comprehensive understanding of the collective
behavior of oscillators on weighted and directed networks
from a local perspective and can be used to make analytical
predictions on them (when transformed to unweighted struc-
tures) [18,23]. Also, the transformations can induce specific
features of heterogeneous networks in homogeneous ones
and vice versa, without changing the underlying structure.
Straightforward examples include the possibility to induce
explosive transitions in homogeneous networks (by correlating
the intrinsic frequencies with the input strengths [31]) and to
control the critical point of a macroscopic phase transition
[3,18] only by a local readjustment of weights. From a
theoretical point of view, our results are sheltered by previous
works that explore information-theoretic tools to study the
structure of complex networks [32–34] and to tackle recon-
struction problems [35–37]. Nevertheless, here we introduce
a novel connection between purely structural constraints and
collective dynamical behavior. This connection can help in
refining state-of-the-art inference methods with driving signals
[10,11] (by inferring appropriate network candidates from the
available structural and dynamical information), it deepens our
understanding on findings that relate weighted, directed, and
inhibitory interactions to optimal synchronization performance
[38–40], and provides another approach for evolving networks
models [3,5,18], in which a network of biological units might
evolve, due to an evolutionary pressure, toward heterogeneous
structures that maximize the number of accessible transforma-
tions and, consequently, their potential dynamical range [41].

L.A.-F. thanks G. Mosquera-Doñate for proposing the
method of Lagrange multipliers and B. Steinegger and A.
Arola for fruitful discussions. L.A.-F. and A.A. acknowledge
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Figure 3.13: We plot r2 as a function of the coupling strength K of the Kuramoto model, with
∆(K/N) = 0.01 simulated with a 4th-order Runge-Kutta method with ∆t = 0.01, for
one instance of A1 (ER) and A0 (SF) networks and their respective transformations
using Eq. (3.50), averaged over 50 realizations with θ0 ∈ [−π, π] (standard deviations
are smaller than the size of the symbols). Reprinted by permission of [162].

In Fig. 3.13 we present the results of the transformation for the extreme cases T0(B0|A1)

and T0(B1|A0). These results show that the dynamical invariance is attained in the linear
regime (K � Kc) in both directions of the transformations, as expected. However, there is a
clear discrepancy in the transformation T0(B1|A0), i.e. from a homogeneous in degree net-
work towards a heterogeneous, power-law, network. This discrepancy shows that, when
Eq. (3.50) is applied, homogeneous networks are not able to capture the role of hetero-
geneous connectivity patterns. In other words, when trying to map a very heterogeneous
network, a reallocation of the weights preserving the heterogeneous (zero-order) input
strength is not sufficient to fully map the synchronization behavior, thus invalidating the
local ansatz of Eq. (3.47) beyond the linear regime of the system.
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70 on structural constraints and dynamical range

Following our theory, to improve the accuracy of the T0 method in the mapping, one
should include higher-order constraints in the optimization problem. We extend the de-
tailed balance to first order (M = 1) by imposing that, for each node, the transformation
must also preserve the first-order input strengths s(1)i , i.e.

N

∑
j=1

aijs
(0)
j =

N

∑
j=1

wijbijs
(0)
j , ∀ i ∈ 1, . . . , N. (3.51)

Note that s(0)j is the same at both ends of Eq. (3.51) because we still retain the constraint
presented in Eq. (3.47). We aim to maximize Eq. (3.48) subject to Eq. (3.47) and Eq. (3.51).
The Lagrangian in Eq. (3.49) can be written explicitly as

L =
N

∑
i=1

[−
N

∑
j=1

wij log wij − β
(0)
i (s(0)i −

N

∑
j=1

wijbij)− β
(1)
i (

N

∑
j=1

λA
ij s(0)j −

N

∑
j=1

wijbijs
(0)
j )]. (3.52)

By imposing dL/dwij = 0 and isolating the unknown weight wij, we obtain the implicit
expression

w(1)
ij (βi) =

s(0)i e−βis
(0)
j

∑N
k=1 bike−βis

(0)
k

, ∀ i, j ∈ N. (3.53)

The values of the multipliers βi are found by substituting Eq. (3.53) back in Eq. (3.51) and
numerically solving the resulting system. However, the existence of real and non-negative
solutions cannot be ensured a priori. Indeed, the structural bounds can be estimated by
considering the worst-case scenarios, i.e.

s(0)i ×min
∀j∈N

(bijs
(0)
j ) ≤ s(1)i ≤ s(0)i ×max

∀j∈N
(bijs

(0)
j ), ∀ i ∈ N. (3.54)

The inequality in Eq. (3.54) turns out to be unfeasible for most nodes if the reference
network is very heterogeneous in local input strength. This effect is consistent with the
loss of accuracy found in mean-field approaches [217], which depends on the degrees of
first neighbors of the nodes. In a very heterogeneous network, the hubs have a very large
number of links, thus connect to other hubs in the network with high probability. In a
homogeneous network, even if we tune the incoming weights of a given node to satisfy
the input strength of a given hub at local order, the preservation of first-orders strengths
will not be usually possible to achieve since the neighbors of the ’transformed’ hub do not
necessarily have a large input strength. Intuitively, one cannot fake the structural import-
ance of hubs simply by tuning the weights in homogeneous networks. On the other hand,
Eq. (3.50) is recovered from Eq. (3.53) only when s(0)i ' 〈s(0)〉, ∀ i ∈ N, i.e. when A is
very homogeneous in local input strength, regardless of the topology of B. This last obser-
vation explains why the mapping from heterogeneous to homogeneous ones was already
working in the initial transformation shown in Fig. 3.13.

The previous reasoning unfolds the symmetry-unbalance between homogeneous and het-
erogeneous networks observed in Fig. 3.13 and suggests that the mapping can indeed be
enhanced, although it is strongly limited by the structural bounds. To provide an analytical

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



3.4 dynamical invariance under network transformations 71

transformation that improves the performance of Eq. (3.50) while still preserving wij ≥ 0,
we expand Eq. (3.53) to first order around its average value, i.e.

w(1)
ij (βi) '

s(0)i [1− βi(sj − 〈s〉)]
∑N

k=1 bik[1− βi(sk − 〈s〉)]
, ∀ i, j ∈ 1, . . . , N, (3.55)

where 〈s〉 = (1/kB
i )∑j bijs

(0)
j . We insert Eq. (3.55) into Eq. (3.51) to obtain an approximate

value β∗i ' βi as

β∗i =
1

s(0)i

(
s(0)i 〈s〉 − s(1)i
〈s2〉 − 〈s〉2 ), ∀ i ∈ N. (3.56)

The approximate first-order solution is finally obtained by direct substitution of Eq. (3.56)
into Eq. (3.53), and we denote this transformation T1(Bα′ |Aα). Note that T1 does not
provide uniform weighting for each node anymore, but depends explicitly on the balance
between input strengths and heterogeneity in each node.
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should have the same phase. We expect this process to
occur at different time scales if a clear community struc-
ture exists. Thus, the dynamical route towards the global
attractor will reveal different topological structures, pre-
sumably those which represent communities. Therefore,
it is the complete dynamical process what unveils the
whole organization at all scales, from the microscale at a
very early stages up to the macroscale at the end of the
time evolution. On the contrary, those systems endowed
with a regular topological structure will display a trivial
dynamics with a single time scale for synchronization.

To study this phenomena, instead of considering a
global observable, we define a local order parameter mea-
suring the average of the correlation between pairs of os-
cillators

ρij(t) =< cos(θi(t) − θj(t)) > (2)

where the brackets stand for the average over initial ran-
dom phases. The main advantage of this approach is that
it allows to trace the time evolution of pairs of oscillators
and therefore to identify compact clusters reminiscent of
the existence of communities.

To give evidence of the aforementioned facts we have
analyzed the dynamics towards synchronization –time
evolution of ρij(t)– in computer-generated graphs with
a hierarchical community structure. In [21] the authors
proposed models of networks with a well defined commu-
nity structure, that have been used as a benchmark for
different community detection algorithms [6]. Here, we
propose a generalization of this model that includes two
hierarchical levels of communities. The graphs we gen-
erate are as follows: we prescribe, in a set of 256 nodes,
16 compartments that will represent our first community
organizational level, and four compartments containing
each one four different compartments of the above first
level, that define the second organizational level of the
network. The internal degree of nodes at first level zin1

and the internal degree of nodes at second level zin2
keep

an average degree zin1
+ zin2

+ zout = 18. From now
on, networks with two hierarchical levels are indicated as
zin1

- zin2
, e.g. a network with 13-4 means 13 links with

the nodes of its first hierarchical level community (more
internal), 4 links with the rest of communities that form
the second hierarchical level (more external) and 1 link
with any community of the rest of the network.

In Fig. 1 we represent ρij(t) at the same time t for two
slightly different hierarchical networks 13-4 and 15-2. In
the two figures we can identify the two levels of the hier-
archical distribution of communities. The network 13-4
(left) is very close to a state in which the four large groups
are almost synchronized whereas the network 15-2 (right)
still presents some of the smaller groups of synchronized
oscillators, and the larger group starting to synchronize,
coherently with their topological structure.

The visualization of the correlation matrix of the sys-
tem helps in elucidating the topology of the network. To

FIG. 1: Color on-line. Average of the correlation between
pairs of oscillators. The structure networks are 13-4 (left)
and 15-2 (right). See text for a description of the networks.
The colors are a gradation between blue (0) and red (1).

extract the quantitative information it is useful to intro-
duce some threshold T to convert the correlation matrix
into a binary matrix, that will be used to determine the
borders between different groups. We define a dynamic

connectivity matrix

Dt(T )ij =

{

1 if ρij(t) > T
0 if ρij(t) < T

(3)

that depends on both the underlying topology and the
collective dynamics. For a fixed time t, by moving the
threshold T , we obtain different representations of Dt(T )
that inform about the structure of the dynamic corre-
lations. When the threshold is large enough the repre-
sentation of Dt(T ) becomes a set of disconnected clumps
or communities. Decreasing T a hierarchical structure
of communities is devised. Note that since the function
ρij(t) is continuous and monotonic (because the existence
of a unique attractor of the dynamics), we can redefine
DT (t), i.e. fixing the threshold and evolving in time.
We obtain the same information about the structure of
the dynamic connectivity matrix at different time scales.
Let us show that these time scales unravel the topological
structure of the connectivity matrix at different topolog-
ical scales.

From the eigenvalue spectrum of DT (t), S(DT (t)), one
can extract the number of disconnected components of
the system as the number of null eigenvalues. The evo-
lution of S(DT (t)) traces the hierarchy of communities
as follows: at short times, all units are uncorrelated and
then we have N disconnected sets, being N the number of
nodes in the network; as time goes on, nodes become syn-
chronized in groups according to their topological struc-
ture. In Fig. 2 (top) we plot, for the two networks ana-
lyzed in Fig. 1, the number of disconnected components
as a function of time, for a fixed threshold T [22]. We can
observe the relative stability of the two partitions for the
two networks, corresponding to the two prescribed hier-
archical levels. For the 13-4 network the synchronization
of the 4 groups of 64 nodes each is much more stable than
the 16 groups of 16 nodes, i.e. the community structure

one order of magnitude, which demonstrates that this result does not depend on the

modified eigenvalue-eigenvector pairs dominating the resulting system dynamics.

Figure 5. We modify a random (Erdős-Renyi) matrix in order to produce

an equilibrium point given by a twisted state. Here, the original matrix (a)

is modified (b) due to changes in some of the eigenvectors. The equilibrium

point (c) is then used as initial condition to the simulation. The Kuramoto

order parameter (R(t)) as a function of time shows that for the random ma-

trix, the system reaches a phase synchronized state, while for the modified

matrix, the system stays in a wave (“twisted”) state. The spatiotemporal

patterns corroborate these features (e, and f).

The equilibrium point for these systems is then represented in Fig. 5c, which is given

by Eq. (3.1). Using this phase configuration as initial condition for the simulation leads

the systems to di↵erent states: in the case of the random matrix, the system reaches a

phase synchronized state (R = 1); in the case of the modified matrix, the system stays

in a twisted state, which is a phase-locked but not phase synchronized state (R = 0) –

see Fig. 5d. These features can be observed in the spatiotemporal dynamics of these

networks, which are depicted in Figs. 5e and f, respectively.
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FIG. 4. Two-dimensional slices of state space reveal the in-
tricacy of basin geometry. (a) Random slice. Basins are color
coded by the winding number q of the corresponding attrac-
tor. The basins appear fragmented. (b) Slice centered at the
twisted state with q = 15. The color scheme highlights the
onion-like structure of the basins; the core (basin for q = 15)
is wrapped inside many layers corresponding to basins with
gradually decreasing q.

plot shown in the inset of Fig. 3, which depicts the ↵-
dependent convergence back to the in-phase state (q = 0)
for 100 representative rays. We see that no ray is inside
the basin for all ↵. But for each ↵, there are always rays
that are inside the basin. Moreover, if a ray leaves the
basin at a certain value of ↵, it often reenters the same
basin at a larger value of ↵.

In fact, such repeated reentries can be seen as the defin-
ing feature of basins with tentacles. For any given fixed-
point attractor, we say its basin is octopus-like if there
is a nonzero probability that a ray emanating from the
attractor along a random direction intersects the basin at
disjoint intervals. Note that an octopus-like basin is nec-
essarily concave, but not all concave basins are octopus-
like. Moreover, we say an octopus-like basin has long
tentacles if the basin cannot be confined within any hy-
percubes other than the full state space, which is the case
for the Kuramoto systems studied here.

Figure 4 is a further attempt to visualize the structure
of high-dimensional basins, now by examining randomly
oriented two-dimensional (2D) slices of state space, either
far from a twisted state or close to one. Specifically, we
look at slices spanned by ✓0 +↵1P1 +↵2P2, ↵i 2 (�⇡, ⇡].
Here, P1 and P2 are n-dimensional binary orientation
vectors in which bn/2c randomly selected components
are 1 and the rest of the components are 0. The results
below are not sensitive to the particular realizations of
P1 and P2. However, the choice of the base point ✓0 mat-
ters a great deal. For example, in Fig. 4(a), we choose
✓0 to be a random point in the state space. Despite the
fact that each basin is connected (because the dynamics
are described by di↵erential equations), the basins look
fragmented in this 2D slice. Perhaps another metaphor
than tentacles—a ball of tangled yarn—better captures
the essence of the basin structure in this regime, far from
any attractor, in which di↵erently colored threads (rep-
resenting di↵erent basins) are interwoven together in an
irregular fashion. As one might expect, a random slice of

the state space such as this one is dominated by basins
corresponding to small values of |q|.

The basin structure near an attractor is strikingly dif-
ferent. In Fig. 4(b), we set ✓0 to be the twisted state
with q = 15. Here, the central basin (q = 15) is sur-
rounded by competing basins in a structured fashion. As
made evident by the color scheme, the basins near an
attractor are organized like an onion. As we peel away
the onion layer by layer, the winding number of the basin
gradually increases and finally reaches q = 15 at its core.
(Although we know from above that there must be holes
in the onion for the “tentacles” of the center basin to
snake through.)

Finally, we explain why octopus-like basins should be
prevalent in high-dimensional dynamical systems. Con-
sider an n-dimensional compact state space with side
length L in each direction (after suitable rescaling). We
say a basin is boxy if it can be confined in a hypercube of
side length ` < L. If all basins of a system are boxy for an
` that does not depend on n, then to fill the entire state
space we need at least (L/`)n di↵erent basins. So if the
number of attractors in a system grows sub-exponentially
with n, the basins cannot all be boxy. In particular, this
is true for the Kuramoto systems we consider here, whose
number of attractors grows linearly with n.

Basins can be non-boxy because they are octopus-like,
with long tentacles that slither throughout state space
and escape any potentially confining hypercube. But
other scenarios can also occur. Imagine a limiting case
where the head of the octopus expands to engulf the ten-
tacles; then the basins stretch continuously across state
space in some or all directions (as they do, for instance,
in a system with just one attractor). Nevertheless, we
predict that basins with tentacles are generic for high-
dimensional dynamical systems with a modest number
of attractors, because they provide the least constrained
way to fill the state space. Our prediction is supported by
studies on basins in diverse physical systems [20, 38, 39],
from neuronal circuits to jammed sphere packings. In
some cases one can already visually identify tentacles in
low-dimensional slices of the basins [22, 41].

By illuminating the structure of octopus-like basins
and establishing their prevalence, we hope this work
will motivate future studies of basin structure in high-
dimensional systems. Some promising directions include
the definition of octopus-like basins for chaotic attrac-
tors, understanding the role of saddles in creating basin
tentacles, and generating new insights on reservoir com-
puters [47] and adversarial examples in neural networks
[48] by characterizing their basin geometries.

We thank Stefano Martiniani for sharing insights and
references on basin structures in jammed sphere pack-
ings and Robin Delabays and Ralph Andrzejak for stim-
ulating discussions. Y.Z. acknowledges support from the
Schmidt Science Fellowship and the Santa Fe Institute.
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FIG. 1: (color online) Evolution of a, the KM order parameter de-
fined in Eq. (2), and b the fraction of synchronized links rlink, Eq.
(4), as a function of λ. The curves separate when the incoherent so-
lution for SF networks destabilizes. The figure clearly illustrates that
the synchronizability of the networks does depend on the value of the
coupling strength. Both plots are represented for Erdös-Renyi (ER)
and scale-free (SF) networks as indicated. The size of the networks
is N = 1, 000 and their average degree is 〈k〉 = 6. The exponent of
the SF network is γ = −3.

We study the dynamics of Eq.(3) in ER and SF networks,
preserving the total number of links, Nl and nodes, N for
a proper comparison [24]. We concentrate in two aspects:
global and local synchronization. First, we follow the evo-
lution of the order parameter r, as λ increases, to capture the
global coherence of the synchronization in the networks. Sec-
ondly, we propose and follow the same evolution for a new pa-
rameter, rlink . This parametermeasures the local construction
of the synchronization patterns and allows for the exploration
of how global synchronization is achieved. We define

rlink =
1

2Nl

∑

i

∑

j∈Γi

∣∣∣∣∣ lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei(θi(t)−θj(t))dt

∣∣∣∣∣ ,

(4)
that represents the fraction of all possible links that are syn-
chronized in the network (averaged over a large enough time
interval ∆t, after the system relaxes at some large time tr),
being Γi the set of neighbors of node i.
We solved Eq.(3) using a 4th order Runge-Kutta method

for different values of λ, with a uniform distribution of nat-
ural frequencies g(ω) in the interval [−π, π] up to achieving
the stationary state. The networks are built following a model
[25] that generates a one parameter family of complex net-
works. This parameter, α ∈ [0, 1], measures the degree of
heterogeneity of the final networks. A network of size N is
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FIG. 2: (color online) Size of largest synchronized connected com-
ponent (GC) and number of synchronized connected components
(Nc), as a function of λ for the different topologies considered. De-
spite r being vanishing and hence no global synchronization is yet
attained, a significant number of clusters show up. This indicates
that for any λ > 0 the system self-organizes towards macroscopic
synchronization. The network parameters are as in Fig. 1.

generated starting from a fully connected core of m0 nodes
and a set U(0) of N − m0 unconnected nodes. At each time
step, a new node (not selected before) is chosen from U(0)
and linked to m other nodes. Each of the m edges is linked
with probability α to a randomly chosen node (avoiding mul-
tiple and self-connections) from the whole set of N − 1 re-
maining nodes and with probability (1−α) following a linear
preferential attachment strategy [26]. Repeating these steps
(N − m0) times, networks interpolating between the limiting
cases of ER (α = 1) and SF (α = 0) topologies are generated
[27].
In Fig. 1 we represent the evolution of both order parame-

ters, r and rlink , as a function of the coupling strength λ. The
global coherence of the synchronized state, represented by r,
shows that the onset of synchronization first occurs for SF net-
works. A detailed finite size scaling analysis performed for
both topologies shows that the critical value of the effective
coupling, λc, corresponds in SF networks to λSF

c = 0.05(1),
and in ER networks to λER

c = 0.122(2), accordingly with
Fig. 1. If λ is further increased, there is a value at which r for
the ER crosses over the SF curve. From this value up in λ, the
ER network remains slightly more synchronized than the SF
network.
The behavior of rlink shows a change in synchronizability

between ER and SF and provides additional information. In-
terestingly, the nonzero values of rlink for λ ≤ λc indicate
the existence of some local synchronization patterns even in
the regime of global incoherence (r ≈ 0). Right at the onset
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FIG. 1. Synchronization diagram. We plot r2 as a function of the
coupling strength K of the Kuramoto model, with !(K/N ) = 0.01
simulated with a fourth-order Runge-Kutta method with !t = 0.01,
for one instance of A1 (Erdös-Rényi) and A0 (power-law) networks
and their respective transformations using Eq. (8), averaged over 50
realizations with θ0 ∈ [−π,π ] (standard deviations are smaller than
the size of the symbols).

p(k) ∼ k−γ with exponent γ = 3, while for α = 1 we obtain
homogeneous random networks, keeping the average degree
fixed; in our case, 〈k〉 = 10. The mapping transformation is
then as follows: we fix the topologies of a network A drawn
from the model for a certain value α, i.e., the target network
Aα , and the candidate network Bα′ drawn for another value
α′. Then, we compute the weights, using Eq. (8), to map the
candidate network into the target one and obtain the resulting
T0(Bα′ |Aα), where the subindex of T refers to the fact that the
method exploits only zero-order information.

In Fig. 1 we present the results of the transformation
for the extreme cases T0(B0|A1) and T0(B1|A0). The results
evidence that the functional invariance is attained in the linear
regime (K ' Kc) for both transformations. However, there is
a clear discrepancy in the transformation T0(B1|A0), i.e., from
a homogeneous in-degree network toward a heterogeneous,
power-law network. This discrepancy shows that, when Eq. (8)
is applied, homogeneous networks are not able to capture the
role of heterogeneous connectivity patterns.

To improve the accuracy of the T0 method in the mapping,
we need to include higher-order constraints. We extend the
detailed balance to a further order (M = 1) by imposing that,
for each node, the transformation must also preserve the first-
order input strengths s

(1)
i , i.e.,

N∑

j=1

λA
ij s

(0)
j =

N∑

j=1

wijbij s
(0)
j , ∀ i ∈ N. (9)

Note that s(0)
j is the same at both ends of Eq. (9) because we still

retain the constraint presented in Eq. (5). We aim to maximize
Eq. (6) subject to Eq. (5) and Eq. (9). The Lagrangian in Eq. (7)
can be written explicitly as

L =
N∑

i=1



−
N∑

j=1

wij log wij − β
(0)
i



s
(0)
i −

N∑

j=1

wijbij





−β
(1)
i




N∑

j=1

λA
ij s

(0)
j −

N∑

j=1

wijbij s
(0)
j







. (10)

By imposing dL/dwij = 0 and isolating the unknown weight
wij , we obtain the implicit expression

w
(1)
ij (βi) = s

(0)
i e−βi s

(0)
j

∑N
k=1 bike

−βi s
(0)
k

, ∀ i,j ∈ N. (11)

The values of the multipliers βi are found by substituting
Eq. (11) back into Eq. (9) and numerically solving the resulting
system. However, the existence of real and non-negative
solutions cannot be ensured apriori. Indeed, the structural
bounds are easily estimated by considering the worst-case
scenarios, i.e.,

s
(0)
i × min

∀j∈N

(
bij s

(0)
j

)
! s

(1)
i ! s

(0)
i × max

∀j∈N

(
bij s

(0)
j

)
, ∀ i ∈ N.

(12)

The inequality in Eq. (12) turns out to be unfeasible for most
nodes if the reference network is very heterogeneous in local
input strength. Let us illustrate this by considering, on one
hand, that A follows a power-law distribution with p(s) =
cs−γ . Then, if network B is sufficiently well connected (kB

i '
1 ∀ i ∈ N ) and assuming N large, we can approximate the
constraints by

s
(0)
i * kB

i

∫ ∞

0
e−βi sp(s)ds = ckB

i

β
1−γ
i

∫ ∞

0
e−xx−γ dx, (13)

s
(1)
i * kB

i

∫ ∞

0
se−βi sp(s)ds = ckB

i

β
2−γ
i

∫ ∞

0
e−xx−γ+1dx. (14)

The first integral can be written as the gamma function∫
e−xx−γ dx = ((1 − γ ). Using the well-known property

((z + 1) = z((z) and dividing both equations, we obtain

βi * s
(0)
i

s
(1)
i

(1 − γ ), ∀ i ∈ N, (15)

which is negative for γ = 3, thus unveiling the structural
restrictions that emerge when mapping any arbitrary network
into a highly heterogeneous one. On the other hand, Eq. (8)
is recovered from Eq. (11) only when s

(0)
i * 〈s(0)〉, ∀ i ∈ N ,

i.e.,when A is very homogeneous in local input strength,
regardless of the topology of B.

The previous reasoning unfolds the symmetry unbalance
observed in Fig. 1 and suggests that the mapping can indeed
be enhanced, although it is strongly limited by the structural
bounds. To provide an analytical transformation that improves
the performance of Eq. (8) while still preserving wij " 0, we
expand Eq. (11) to first order around its average value, i.e.,

w
(1)
ij (βi) * s

(0)
i [1 − βi(sj − 〈s〉)]

∑N
k=1 bik[1 − βi(sk − 〈s〉)]

, ∀i,j ∈ N, (16)

where 〈s〉 = (1/kB
i )

∑
j bij s

(0)
j . We insert Eq. (16) into Eq. (9)

to obtain an approximate value β∗
i * βi as

β∗
i = 1

s
(0)
i

(
s

(0)
i 〈s〉 − s

(1)
i

〈s2〉 − 〈s〉2

)

, ∀ i ∈ N. (17)

The solution is finally obtained by direct substitution of
Eq. (17) into Eq. (11), and we denote this transformation
T1(Bα′ |Aα). Note that T1 does not provide uniform weighting,
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but depends explicitly on the balance between input strengths
and heterogeneity in each node.

Now we can compare the performance of transformations
T0 and T1 in the mapping. We define, for each transformation,
the dynamical error

σd = N−1
∫ K∞

0
[〈r2( $ω,K,A)〉 − 〈r2( $ω,K,B′)〉]2dK, (18)

as a measure of the total difference in the synchronization
diagrams between the target and transformed networks, and
we define the structural error

σs = N−1
N∑

i




N∑

j

(
λA

ij s
(0)
j − wijbij s

(0)
j

)



2

, (19)

as a measure of the total difference in the first-order local struc-
ture. In Fig. 2(a) we present the synchronization diagram for the
extreme cases T1(B0|A1) and T1(B1|A0) in the same setup as
before (N = 2000). We can observe a significant improvement
in the transformation T1(B1|A0) with respect to the zero-order
method in Fig. 1, although there still are nonvanishing errors
around the critical point due to the unfeasible structural bounds
of Eq. (12). In Fig. 2(b), we plot the dynamical σd and structural
σs errors for different values of the parameter α in T (Bα|A1−α).
Note how the accuracy of the transformations is enhanced by
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FIG. 2. (a) Synchronization diagram. We plot r2 as a function
of K , for one instance of A1 and A0 networks and transformations
T1(B0|A1) and T1(B1|A0) using Eqs. (11) and (17), averaged over
50 realizations with θ0 ∈ [−π,π ]. (b) Dynamical (left) error curves
for T0(Bα|A1−α) and T1(Bα|A1−α), averaged over 100 independent
network instances for each α (standard deviations fall in the shaded
region). In (b) right, associated structural error curves (standard
deviations are of the size of the symbols and the values of σs are
properly normalized).

T1 for any value of α, and it is associated to a decrease in the
structural error, thus validating the main assumptions of our
approach.

Furthermore, the approximate solution of Eqs. (11) and
(17) can still be improved by (i) considering higher-order
constraints (M > 1), but then the system would become cou-
pled and it should be solved simultaneously for all nodes, (ii)
extending the expansion of Eq. (11) with additional terms, (iii)
allowing the presence of negative interactions or indistinguish-
able units (without labeling the nodes in the transformation),
and also (iv) imposing global constraints instead of local
ones (requiring costly numerical methods and global objective
functions [30]).

Summarizing, we have presented an analytical method-
ology that successfully produces synchronization invariant
networks for the KM, by transforming the weights of the
interactions, while preserving the underlying topologies, and
exploiting only local structural information. We have shown
that different microscopic configurations can produce the same
macroscopic dynamical observables if the weights are adjusted
in a way that the main local properties of the nodes are
preserved. Furthermore, we have unveiled that the mapping
of homogeneous networks into heterogeneous ones requires
one to exploit additional (up to first order) information and it
is more complicated than the reverse process, due to intrinsic
structural limitations of the networks.

The presented formalism can be applied in a wide spectra
of problems beyond the mapping scenario. Our framework
provides a more comprehensive understanding of the collective
behavior of oscillators on weighted and directed networks
from a local perspective and can be used to make analytical
predictions on them (when transformed to unweighted struc-
tures) [18,23]. Also, the transformations can induce specific
features of heterogeneous networks in homogeneous ones
and vice versa, without changing the underlying structure.
Straightforward examples include the possibility to induce
explosive transitions in homogeneous networks (by correlating
the intrinsic frequencies with the input strengths [31]) and to
control the critical point of a macroscopic phase transition
[3,18] only by a local readjustment of weights. From a
theoretical point of view, our results are sheltered by previous
works that explore information-theoretic tools to study the
structure of complex networks [32–34] and to tackle recon-
struction problems [35–37]. Nevertheless, here we introduce
a novel connection between purely structural constraints and
collective dynamical behavior. This connection can help in
refining state-of-the-art inference methods with driving signals
[10,11] (by inferring appropriate network candidates from the
available structural and dynamical information), it deepens our
understanding on findings that relate weighted, directed, and
inhibitory interactions to optimal synchronization performance
[38–40], and provides another approach for evolving networks
models [3,5,18], in which a network of biological units might
evolve, due to an evolutionary pressure, toward heterogeneous
structures that maximize the number of accessible transforma-
tions and, consequently, their potential dynamical range [41].

L.A.-F. thanks G. Mosquera-Doñate for proposing the
method of Lagrange multipliers and B. Steinegger and A.
Arola for fruitful discussions. L.A.-F. and A.A. acknowledge
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Figure 3.14: We plot r2 as a function of K, for one instance of A1 and A0 networks and transform-
ations T1(B0|A1) and T1(B1|A0) using Eqs.(3.55,3.56), averaged over 50 realizations
with θ0 ∈ [−π, π]. The mapping is significantly improved with respect to Fig. (3.13).
Reprinted by permission of [162].

Now we can test the performance of the T1 in the mapping and compare it to the pre-
vious T0 case. In Fig. 3.14 we present the synchronization diagram for the extreme cases
T1(B0|A1) and T1(B1|A0) in the same set-up as before (N = 2000). We can observe a
remarkable improvement in the transformation T1(B1|A0) with respect to the zero-order
method in Fig. 3.13, although there still are non-vanishing errors around the critical point,
which we attribute to the unfeasible structural bounds of Eq. (3.54).

To qualitatively validate these last findings, we define, for each transformation, the dy-
namical error

σd = N−1
∫ K∞

0
[〈r2(~ω, K, A)〉 − 〈r2(~ω, K, B′)〉]2dK, (3.57)
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as a measure of the total difference in the synchronization diagrams between the reference
and transformed networks, and we define the structural error

σs = N−1
N

∑
i
[

N

∑
j
(aijs

(0)
j − wijbijs

(0)
j )]2, (3.58)

as a measure of the total difference in the first-order local structure. In Fig. 3.15, we plot
a) the dynamical σd and b) structural σs errors for different values of the parameter α

in T(Bα|A1−α). Note how the accuracy of the transformations is enhanced by T1 for any
value of α, and it is associated to a decrease in the structural error, thus validating the main
assumptions of our approach.

Figure 3.15: a) Dynamical (left) error curves for T0(Bα|A1−α) and T1(Bα|A1−α), averaged over 100
independent network instances for each α (standard deviations fall in the shaded re-
gion). In b) right, associated structural error curves (standard deviations are of the size
of the symbols and the values of σs are properly normalized). Reprinted by permission
of [162].

Last, we further support these results using an analytical argument. Our extended mean-
field ansatz is equivalent to consider that the ratio between the local and global order
parameters is not simply given by the zero-order input strength (or degree) as in [102,
103] but by a more general property of the node, that is a function of M-orders of input
strengths, where each term is weighted by an unknown coefficient αk. Explicitly,

ri ≈ (
M

∑
k=0

αks(k)i )r, (3.59)

where s(k)i is the input strength of order k, defined as s(0)i = ∑j aij, s(1)i = ∑j aijs
(0)
j and

so on, and the αk are unknown coefficients. Note that if α0 = 1 and all the rest are zero,
we recover the previous mean-field solution. The only condition that we impose is that
αks(i k)� αk+1s(k+1)

i , i.e. it is a decreasing function of the order k. By using this ansatz and
following the results presented in 2.2, one obtains

λc ≈ Kc
∑N

k=0 αk〈s(k) 〉
∑N

k=0 αk〈s(k+1)〉
, (3.60)
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where Kc = 2/(πg(0)). We can compute the difference in the critical strength ∆λc among
networks A and B as

∆λc ≈ Kc
∑n ∑m αnαm(〈s(n)A 〉〈s

(m+1)
B 〉 − 〈s(n+1)

A 〉〈s(m)
B 〉)

∑n ∑m αnαm〈s(n+1)
A 〉〈s(m+1)

B 〉
. (3.61)

Assuming that αks(k)i � αk+1s(k+1)
i we can approximate this expression by keeping only

the dominant terms, i.e. the ones with α2
0. Imposing also that the zero-order constraint is

fixed in both networks, 〈s(0)A 〉 = 〈s
(0)
B 〉, we obtain

∆λc ≈ Kc
〈s(0)〉

〈s(1)A 〉〈s
(1)
B 〉

(〈s(1)B 〉 − 〈s
(1)
A 〉). (3.62)

At first approximation, the resulting expression shows that the error in the critical
threshold scales with the differences of average first-order strength, thus confirming the
origin of the inaccurate mapping from homogeneous networks to heterogeneous ones. We
have checked that this expression approximately matches the error between the curves
around the observed in Fig. (3.13) and in Fig. (3.14), but we leave the analysis of its valid-
ity for further work.

In any case, the proposed approach to the mapping problem is by no means the defin-
itive solution. In the current setting, there are several ways to improve the method, for
instance i) by considering higher-order constraints (M > 1), but then the system would
become coupled, and it should be solved simultaneously for all nodes, ii) allowing the
presence of negative interactions or indistinguishable units (without labelling the nodes in
the transformation), and also iii) imposing global constraints instead of local ones, which
may require costly numerical methods and global objective functions [42]). However, our
results indicate the need for better constraints that exploit both the structural and dynam-
ical information from the system (the network and the frequencies of the oscillators). In the
following pages, we will comment on some interesting directions that can lead to an im-
provement of the previous results, including our geometric unfolding of the synchronized
state, a novel technique that it is introduced in the next chapter.

3.5 summary and discussion

In this chapter, we have studied three theoretical problems on oscillator networks that
allowed us to introduce different sources of uncertainty in the network structure and to
predict the range of collective behaviors induced by these noisy sources. Besides the applic-
ability of our results in realistic scenarios of imperfect information, the methods developed
in this chapter have enhanced our fundamental understanding of the interplay between
structure and dynamics in oscillator networks. A brief summary and discussion of the
main results are given as follows.

In section 3.2 we have wondered about the critical range in the presence of uncertainty
on the coupling weights of the network. By means of novel developments of error propaga-
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tion techniques for network dynamics, we have characterized the non-linear amplification
of noise from the microscopic interactions to the macroscopic properties of the system as
the synchronization onset (which is controlled by the inverse of the largest eigenvalue of
the adjacency matrix). Analytical, closed form results have been derived for the critical stat-
istics of random heterogeneous networks, and we have shown that particular structures,
such as scale-free networks with a scaling exponent of three, are able to maximize the crit-
ical range. These results are relevant to problems of adaptation and evolution in biological
systems [218–220], specially considering the ubiquity of scale-free networks [2, 55, 66] and
the well established hypothesis that brain networks are operating near critical points [6,
15, 183, 221]. From the methodological side, this formalism represents a first step towards
the analysis of error propagation in network dynamics, which we conjecture will receive
more attention in the future due to the increasing amount of data (not free of errors), that
is being collected for a large variety of systems.

In section 3.3 we have switched our focus from noisy weights to higher-order interac-
tions, and from the critical to the strongly synchronized regime. We have wondered about
the effect that different interaction patterns (pair-wise vs. three-body) have on the dynam-
ical range and the optimization of synchrony in spatially embedded and random networks.
By means of a composite Laplacian framework and a detailed spectral analysis, we have
revealed that both optimal synchronization and dynamical range can be enhanced by the
presence of higher-order interactions. This phenomenon stems from the broadening of the
Laplacian spectra as three-body interactions are strengthened. The self-regulatory mechan-
ism of interaction strengths described in this section is relevant to the analysis of adaptive
biological systems like the brain, where there is an increasing evidence that interactions
beyond pair-wise ones and the concept of dynamical range [183, 219] play an important
role in memory and other cognitive processes [138, 206, 207]. From a theoretical stand-
point, these results represent a first step on the analysis of optimal synchronization in the
emergent field of dynamics on hyper-graphs or simplicial complexes [139].

Finally, in section 3.4 we have considered a functional mapping of networks via weight-
tuning transformations. We have shown that different structures can have an invariant
dynamical response and that this invariance can be approximately achieved by exploiting
the structure at the surroundings of the nodes, in a decentralized manner. In particular, we
have solved the weight-tuning optimization using a maximum entropy principle under ex-
tended mean-field constraints, deriving analytical expressions for the transformed weights
depending on the amount of accessible information from the network. We have found that
heterogeneous networks, as scale-free ones, are more difficult to map than homogeneous
ones, specially around the critical point, due to the impossibility to satisfy the structural
constraints posed by the hubs. This result connects with the findings of section 3.2, con-
firming that scale-free networks have a larger dynamical range with respect to random,
homogeneous, ones. Overall, we showed that by locally tuning the weights, networked
systems can adapt to different configurations and show distinct behaviors, including a
shift in the synchronization onset or a change in the synchronization profile, although the
range of behaviors is critically bounded by the structural constraints of the network. These
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results may be of interest when designing or controlling artificial and biological neural
systems, where the mechanisms of back-propagation [25] and synaptic plasticity [21, 22]
are specific weight-tuning transformations that allow the neuronal circuits to learn and to
adapt their response to a changing environment. However, a more relevant result has been
to unveil the potential of exploiting local information to navigate in global optimization
problems.

There are several limitations faced by the proposed methods of the chapter. As explained,
the three problems are tackled with heuristic and approximate tools that rely on several
mean-field and spectral tricks. In the problem of critical range, the current methodology
should be improved by taking into account correlations in the structure, such as cluster-
ing and modularity [2]. Also, the presence of large amount of noise and negative weights
should be studied in detail, since these are prevalent conditions in brain networks [43,
205]. In the end, the critical range depends on the fluctuations of the largest eigenvalue
of the adjacency matrix, and more sophisticated tools are required to describe these spec-
tral fluctuations by exact means. Up to date, the spectral theory of complex networks is
still at its infancy [203, 222–224] and many key results await to be found. Similarly, in the
higher-order problem, the spectra of the Laplacian determines the dynamical range, but
it is not well understood how particular network constraints or local perturbations affect
these spectral properties [118, 130], and consequently the dynamics of the system. Addi-
tionally, current results should be extended by optimizing other collective regimes beyond
the strongly synchronized one and by considering a variety of networks wider than ran-
dom and geometric ones. Finally, in the mapping problem, the heuristic method should
be improved by imposing more informed constraints [32], i.e. prior guesses based also
on dynamical information (as the oscillator frequencies), or more ideally, exact objective
functions. In fact, some further works that explore this mapping problem by more rigorous
means have showed up recently, when working in reaction diffusion systems [225] or in the
same Kuramoto case using convex optimization black-boxes [135]. These works confirm
some of our results, as the presence of structural constraints that bound the mapping in
positive-weighted networks, in a research line that attempts to advance towards a general
theory of functional control in complex networks [44, 69, 131, 135, 162, 226].

Overall, the results presented in this chapter illustrate that the addition of uncertainty on
the structure can induce non-trivial effects on the dynamical range of the system at hand.
We have explained some of these effects using several mean-field shortcuts that allowed us
to analytically solve (sometimes under strong approximations) quite ambitious problems
that require global information contained in the network spectra and the usage of numer-
ical methods and black-boxes that are difficult to interpret. In the following chapter, we
are able to present a novel mathematical tool, the geometric unfolding of the synchronized
state, that, fortunately, will allow us to approach these types of problems under a more
rigorous framework and to explicitly work with partial, incomplete information. The lack
of information captures a key feature of many biological and engineered systems: the fact
that units operate using only decentralized information and are subjected to noise.
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4
O N T H E G E O M E T RY O F T H E S Y N C H R O N I Z E D
S TAT E

4.1 introduction

The solution to the phase-locking, synchronized state in a network of coupled heterogen-
eous oscillators is an excellent framework to study the interplay between structure and
dynamics in a complex system. In section 2.3 we already introduced the derivation in
the context of the synchrony alignment framework, and in section 3.3, we exploited its
properties to explain the role of higher-order interactions in optimal synchronization. This
framework finds applications in a broader variety of synchronization problems, including
the prediction of phase-locking loss [44], the control of specific dynamical patterns [69]
and the inference of the unknown structure from the observed stationary response [164].
The synchronized state also shows up beyond the realm of coupled oscillators, in the con-
text of consensus dynamics [99] or the theory of electric circuits [182], and in problems of
signal processing on network domains [227], where the synchronized state can be seen as
the output of a filtering process. The network acts as a diffusive filter that transforms the
input signal of the nodes (the microscopic dynamics or frequencies of the oscillators, in
our context) into the observed stable response (our synchronized state).

The standard way to solve the strong phase-locking problem in an arbitrary network
is by using the spectral properties of the network, via the singular value decomposition
of the Laplacian pseudo-inverse object [118, 181]. This decomposition requires the usage
of numerical methods, which for large networks can translate into high computational
costs. Also, the analysis of the subtle interplay between the structure and dynamics and
the interesting properties that emerge in optimal configurations can only be observed a
posteriori, from the outcome of these numerical schemes that are usually treated as black-
boxes [118, 135, 159, 225]. In other words, to compute and interpret the synchronized
state one usually exploits global information of the network, which is not available at
the level of the nodes. In fact, having access to partial –incomplete– information from the
structure is a common constraint in both artificial and biological neuronal circuits and in
the decentralized power-grid, as discussed in the introduction of this thesis. It remains
unsolved how the synchronized state can be estimated in these conditions of network
uncertainty, and how the global –spectral– information contained in the synchronized state
can be decomposed into smaller pieces of partial or local information.

76
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Motivated by the previous limitations, in this chapter we propose an alternative, geomet-
ric approach to compute the synchronized state in arbitrary networks of heterogeneous
oscillators, without exploiting the spectral information of the system. More concretely, we
will see that the steady-state solution of the linearized synchronization dynamics may be
written as a geometric series whose subsequent terms represent different spatial scales of
the network. In particular, each addition term in the proposed expansion incorporates con-
tributions from wider network neighborhoods, providing a spatial and multi-resolution
description of the state. This analytical tool will be used to obtain a decentralized, fast
and accurate computation of the synchronized state up to a desired degree of accuracy (or
amount of available information) and to unveil interesting analytical insights that deepen
our understanding of the interplay between structure and dynamics in network synchron-
ization problems and beyond. Results presented in this chapter are mainly based on the
published work:

• “Geometric unfolding of synchronization dynamics on networks", L. Arola-
Fernández, P. S. Skardal and A. Arenas, Chaos 31, 061105 (2021).

In the paper, the mathematical results were introduced in a rigorous manner, but the ex-
ploration of the potential usages of the proposed machinery was rather concise. In this
thesis, we take the opportunity to explore the nuances of the geometric unfolding of net-
work synchrony, justifying the relevance and implications of our results in related prob-
lems, as the ones introduced in the previous chapter, and the potential applications in
more depth. The reader will have to wait until the next chapter to find a last proof of
concept that demonstrates the utility of this novel geometric approach.

4.2 geometric unfolding of synchronization dynamics

We recall that the strong synchronized state is the solution to the linearized dynamics of a
system of coupled phase-oscillators, captured by a coupled forced-diffusion system with
the set of equations

θ̇i = ωi + K
N

∑
j=1

aij(θj − θi). (4.1)

After some considerations discussed in detail in section 2.3, one ends up with a simple
linear system, that in matrix form reads as

ω = Lθ. (4.2)

Eq. (4.2) expresses the stationary relation between the microscopic dynamics of the units
(the frequencies in the ω vector) and the actual phases (the θ vector) via the Laplacian mat-
rix of the network, L = D − A, where D is a diagonal matrix with the in-degrees or
in-strengths of the nodes, i.e. Dii = ki = ∑N

j=1 aij. We recall here that, since the matrix L
has zero row sum, it has a trivial eigenvalue λ1 = 0 with a constant associated eigenvector
v1 ∝ 1, and therefore it is singular and not invertible [2, 118]. Moreover, this spectral prop-
erty reveals an important physical characteristic of the system, namely that the dynamics
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are invariant to a constant shift to the phases, i.e., translation along the synchronization
manifold defined as the span of the trivial eigenvector v1. Thus, while solutions to the
underdetermined system of Eq. (4.2) are not unique, that which minimizes the norm ||θ||
is likely the most useful and is given by

θ∗ = L†ω, (4.3)

where L† is the Moore-Penrose pseudo-inverse of the Laplacian matrix [181] introduced
also in more detail in Section 2.3. Importantly here, the reader should note that to write
down the exact pseudo-inverse, one requires a full spectral or singular value decomposi-
tion of the Laplacian matrix (i.e., global information of the network). For the general case
of a directed network, the pseudo-inverse can be computed via the singular value decom-
position of L as [129]

L† =
N

∑
n=2

vnuT
n

µn
, (4.4)

where 0 < µ2 ≤ ... ≤ µN are the N − 1 singular values of L and {vn} and {un} are the set
of right and left singular vectors. Note that for the particular case of undirected networks,
the singular values are given by the eigenvalues of L and the left and right singular vectors
are given by the eigenvectors of L, so L† is defined by its eigenvalue decomposition.

Our main goal here is to solve Eq. (4.2) without using the Moore-Penrose pseudo-inverse,
or equivalently without exploiting the global –spectral– information of the system. To
achieve this goal, it is better to focus our attention more directly on L. First, using L =

D− A, we write
L = D(I − D−1 A). (4.5)

While D is invertible (assuming that the network is connected and thus each node has some
positive degree), (I − D−1 A) is not. This can be seen by noting that D−1 A is a stochastic,
row-sum matrix, and therefore has a leading eigenvalue λ1 = 1. Then I − D−1 A has a
zero eigenvalue, making it singular. However, replacing D−1 A with matrix X that yields
(I − X) invertible, we have that

[D(I − X)]−1 = (I − X)−1D−1. (4.6)

Moreover, the matrix (I − X)−1 may be expanded in the geometric series

(I − X)−1 =
∞

∑
m=0

Xm. (4.7)

The issue now arises that X cannot be replaced by D−1 A, or more specifically, we have that

[D(I − D−1 A)]−1 6=
∞

∑
m=0

(D−1 A)mD−1, (4.8)

namely, on the left-hand side the inverse is ill-posed, and this is reflected by the fact that
the series on the right-hand side diverges. However, this does not rule out the possibility

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



4.2 geometric unfolding of synchronization dynamics 79

of the right-hand side converging when it is applied to a vector of particular form. In fact,
under the relatively mild conditions of the network having a primitive adjacency matrix,
when the series is applied to an appropriately shifted frequency vector ω, the right-hand-
side does converge and yields a solution to Eq. (4.2), which leads to the formulation of our
first main result for undirected networks.

Theorem 1 (Convergence of the geometric series for undirected networks) Consider an
undirected network with primitive adjacency matrix A and a frequency vector ω with zero mean,
i.e., 〈ω〉 = 0. Then, the infinite series

φ =
∞

∑
m=0

(D−1 A)mD−1ω, (4.9)

converges.

Proof 1 We begin by denoting the symmetric normalized adjacency matrix as B = D−1/2AD−1/2.
Since A is symmetric, so is B, and therefore its normalized eigenvectors {vj}N

j=1 form an orthonor-
mal basis for RN . Moreover, since A is primitive, that is, there exists some integer M > 0 such
that AM is strictly positive (note that this is equivalent to A being both irreducible and aperiodic),
so is B. The Perron-Frobenius theorem [2] then implies that B has a single largest eigenvalue λ1

that is real and larger in magnitude than all other eigenvalues, i.e., λ1 > |λj| for j = 2, . . . , N.
Moreover, since B is normalized, we have λ1 = 1 and |λj| < 1 for j = 2, . . . , N. Finally, the
leading eigenvector associated with the leading eigenvalue λ1 = 1 has entries that are proportional
to the square root of the degrees of the respective nodes, i.e., v1 ∝ k1/2.

Next, it is useful to define
φm = D−

1
2 BmD−

1
2 ω, (4.10)

so that the right-hand-side of Eq. (4.9) is given by ∑∞
m=0 φm. Defining the vector x = D−

1
2 ω, we

now expand x via the orthonormal basis of eigenvectors of B, namely,

x = α1k
1
2 + α2v2 + ... + αNvN , (4.11)

where αi = 〈xi, vi〉 are the coefficients given by projections of X onto the different eigenvector
directions and we assume that the eigenvector v1 = k1/2 is also appropriately normalized. Inserting
Eq. (4.11) into Eq. (4.10) yields

D
1
2 φm = Bmx

= α1λm
1 k

1
2 + α2λm

2 v2 + ... + αnλm
n vn.

(4.12)

Note now that for terms j = 2, . . . , N, λm
j decays geometrically while λm

1 = 1. However, we now
show that the coefficient α1 must be zero. To see this, recall that the natural frequency vector has
mean zero, or in other words, ω is orthogonal to the constant vector 1, i.e., 〈1, ω〉 = 0. This is
equivalent to 〈D1/21, D−1/2ω〉, or more simply, 〈k1/2, x〉 = 0, which is precisely α1. Thus,

D
1
2 φm = α2λm

2 v2 + ... + αnλm
n vn. (4.13)
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The convergence of the right-hand-side of Eq. (4.9) now follows quite easily: since each of the finitely-
many series ∑∞

m=0 αjλ
m
j vj converges to αjvj/(1− λj) for j = 2, . . . , N, we have that the full series

converges to

φ = D−1/2
∞

∑
m=0

D1/2φm

= D−1/2
∞

∑
m=0

N

∑
j=2

αjλ
m
j vj

= D−1/2
N

∑
j=2

αjvj

1− λj
,

(4.14)

which concludes the proof.

The reader should note that we have only proved convergence of the proposed expan-
sion, but we have not proved that the expansion converges to the solution of the synchron-
ized state. We provide here an additional argument to support the fact that the expansion
converges to the synchronized state. First, since we are considering undirected networks
here and the Laplacian L is symmetric and L1 = 0. Then, we can apply a standard rank-one
correction to the Laplacian matrix and write the pseudo-inverse in the form

L† = (L + τ J)−1 − 1
τN2 J, (4.15)

where J = 11T is a rank-one matrix of all ones and τ is a real parameter that can take
an arbitrary value different from 0. By defining the modified matrix A′ = A − τ J and
rearranging the first term, we can write

L† = (I − D−1 A′)−1D−1 − 1
τN2 J. (4.16)

When τ is set small and positive, the spectral radius (and the norm) of D−1 A′ is smaller
than one. This can be proved by applying first-order perturbation theory to the leading
eigenvalue of D−1 A, showing that, when τ > 0, the perturbed eigenvalue always de-
creases. We will omit this calculation here for the sake of simplicity, but assuming that
ρ(D−1 A′) < 1, Eq. (4.9) admits a geometric expansion in terms of a convergent series.
Using the definition of the series, we can write

L† =
∞

∑
m=0

(D−1 A′)mD−1 − 1
τN2 J. (4.17)

We are interested in Eq. (4.3), where the matrix L† is applied to the vector ω, which has
zero mean. Since J is the matrix of all ones, the product (1/τN2)Jω = 0 for any value of τ

and we can already neglect this term. On the other hand, the value of τ can be set arbitrary
small and, in the limit of τ → 0+, we can finally approximate Eq. (4.3) as

θ ≈
∞

∑
m=0

(D−1 A)mD−1ω. (4.18)
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Eq. (4.18) shows how the proposed expansion converges to a solution of the linear system
Eq. (4.2). However, even if the infinite series applied to the zero-mean vector ω converges
to a solution of our system, it does not necessarily converge to the minimum norm solution
given by Eq. (4.3), which turns out to be the zero-mean solution obtained by the Moore-
Penrose pseudo-inverse approach. This can be seen, for instance, by noting that at initial
truncation of the geometric series we have that 〈φ0〉 = 〈ω/k〉, which is not necessarily zero.
However, this issue can be fixed by simply applying a constant shift to the resulting vector
to ensure that it is orthogonal to the constant eigenvector v1 and the solution converges to
the one with minimal norm. This correction leads us to a generalization of our main result,
which importantly applies to both undirected and directed networks.

Theorem 2 (Convergence of the geometric series: General case) Consider a network with
primitive adjacency matrix A. Then, the infinite series

φ =
∞

∑
m=0

(φm − 〈φm〉) , (4.19)

where

φm = (D−1 A)mD−1ω, (4.20)

converges.

Proof 2 Rather than making use of the symmetric normalized adjacency matrix, as in the Proof of
Theorem 1, here we use the more classically stochastic matrix D−1 A. However, this matrix shares
similar properties with its symmetric counterpart, namely, because A is primitive, then so is D−1 A,
and the Peron-Frobenius theorem guarantees similar eigenvalue properties, namely there is a single
largest eigenvalue λ1 that is real and larger in magnitude than all other eigenvalues, i.e., λ1 > |λj|
for j = 2, . . . , N. Also, since D−1 A is stochastic, λ1 = 1 and |λj| < 1 for j = 2, . . . , N. On
the other hand, the leading eigenvector is now given by the constant vector v1 ∝ 1. Importantly,
since D−1 A is not symmetric (even if A is), the eigenvectors are not orthogonal to one another and
cannot be used to form an orthonormal basis for RN . Nonetheless, we may use these eigenvalues
as a (non-orthogonal) basis for RN and uniquely expand the vector x = D−1ω using this basis,
specifically

x =
N

∑
j=1

αjvj. (4.21)

We then look at each eigenmode j = 1, . . . , N of the term φm, namely φ
(j)
m = αj(D−1 A)mvj so that

φm = ∑N
j=1 φ

(j)
M . In terms of the full expression for φ, we then have that

φ =
∞

∑
m=0

N

∑
j=1

(
φ
(j)
m − 〈φ(j)

m 〉
)

=
N

∑
j=1

∞

∑
m=0

(
φ
(j)
m − 〈φ(j)

m 〉
)

.

(4.22)
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We now treat the contribution of each eigenmode separately. We begin with the eigenmodes j ≥ 2
for which |λj| < 1. First, we have that

φ
(j)
m = αj(D−1 A)mvj = αjλ

m
j vj, (4.23)

and

〈φ(j)
m 〉 = 〈αjλ

m
j vj〉 = αjλ

m
j 〈vj〉, (4.24)

so together we have that

∞

∑
m=0

(
φ
(j)
m − 〈φ(j)

m 〉
)
=

∞

∑
m=0

αjλ
m
j
(
vj − 〈vj〉

)

=
αj

1− λj

(
vj − 〈vj〉

)
,

(4.25)

i.e., each component converges for j ≥ 2.
To complete the proof, we now show that the j = 1 eigenmode, for which λ1 = 1, converges.

In fact, it turns out that this component has no contribution due to the shift of the mean. As in
Eqs. (4.23) and (4.24), we have that

φ
(1)
m = α1(D−1 A)mv1 = α1λm

1 v1 = α1v1, (4.26)

and

〈φ(1)
m 〉 = 〈α1λm

1 v1〉 = α1λm
1 〈v1〉 = α1〈v1〉, (4.27)

so

φ
(1)
m − 〈φ(1)

m 〉 = α1 (v1 − 〈v1〉) , (4.28)

but since v1 ∝ 1, i.e., it’s constant, we have that v1 = 〈v1〉 and each term φ
(m)
1 − 〈φ(m)

1 〉 vanishes,
which completes the proof.

Before proceeding to discuss the implications and applications of the proposed expan-
sions, we remark that Theorem 2 includes no zero mean condition on the frequency vector
nor is it restricted to undirected networks, thus it has a potential usage that is wider
than Theorem 1. In Fig. 4.1 we illustrate the goodness of the more general case given by
Eqs. (4.19) and (4.20) when applied to random Erdös-Rényi and Scale-Free networks with
random allocated frequencies. We truncate the expansion at different neighborhood orders
M and compare the approximated solution against the exact one given by Eq. (4.3), show-
ing that, for these network configurations, the approximation is accurate even for small M,
and also that the larger dispersion of SF networks with respect to ER ones is well captured
by the truncated approximations.
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Figure 4.1: Scatter-plot of the exact Eq. (4.3) vs the truncated Eq. (4.19) approximation of the sta-
tionary phases in a fixed Erdös-Rényi networks of size N = 1000, mean degree 〈k〉 = 10
with a normal distribution of frequencies N (0, 1) for three different truncation orders.

4.2.1 Implications of main results

Now we investigate more deeply the implications of our main results described in Eq. (4.9)
and Eqs. (4.19) and (4.20). First, we note that the geometric expansion expresses the solu-
tion of the linear system as a sum of contributions of terms ∼ ω/k coming from increas-
ingly further neighborhoods of the nodes. In particular, by explicitly writing the entries
of Eq. (4.9) (where we have chosen the undirected case for simplicity here) for the initial
truncation orders, we have that

θi =
ωi

ki
+

1
ki

N

∑
j=1

aij
ωj

k j
+

1
ki

N

∑
j=1

aij

k j

N

∑
k=1

ajk
ωk

kk
+ . . . ∀ i ∈ 1, . . . , N. (4.29)

From Eq. (4.29), it is clear that the matrix expansion in Eq. (4.9) expresses the steady-state
solution of a node in terms of its local properties (the intrinsic frequency ωi and the input
degree or strength ki), the properties of the first neighbors, second neighbors and so on,
with the contributions usually decaying faster as we move further from a node. That is,
the mth order term consists of terms ωj/k j corresponding to oscillators located precisely
m-hops away from a given oscillator. Thus, the series represents the Taylor expansion of
the solution expanded around each oscillator, with higher-orders corresponding to larger
network neighborhoods. In this sense, it constructs the exact solution by adding infinitely
many incremental pieces of local information in a polynomial basis that is not necessar-
ily orthogonal. Interestingly, this differs from the spectral decomposition used for L† in
Eq. (4.3). In the latter, the solution is constructed by adding N − 1 pieces of global inform-
ation (i.e. rank-one matrices for each non-zero eigenvalue and its associated eigenvector),
analogously to a Fourier expansion that expresses the solution in the basis of orthogonal
eigenmodes with its associated eigenfrequencies (which carry global information on the
original function, see for instance the works of [117, 227]).

There are several more connections between our method and key results from stochastic
processes and network science. First, in the context of Markov chains for random walks in
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discrete domains as networks [228], the transition matrix of probabilities P for the random
walk is given by the normalized matrix P = D−1 A (or AD−1, depending on the defini-
tion of the random walk), and the stationary distribution, if it exists, as the vector π, such
that πP = π. If the Markov chain is irreducible and aperiodic (the same requirements
we had here for our networks to converge), then there is a unique stationary distribution
reached as limm→∞ Pm = 1π. Here D−1 A appears in the geometric series because the solu-
tion is expressed in terms of “in-neighborhoods” of radius zero, one, two, three, etc., and
convergence of the expansion implies that eventually these neighborhoods must include
the whole network, i.e. each node must be reachable from each node in a manner that
is eventually well-mixed, hence the need for the network adjacency matrix to be irredu-
cible and aperiodic, i.e. primitive [228]. Consider, as a counterexample, a bipartite network
such as a star-graph or a one-dimensional ring. These networks are periodic and there-
fore the Markov chain does not converge to a unique stationary distribution, but oscillates
between two possible states because of the presence of a group of nodes connecting only
to the other group of nodes, meaning that all nodes cannot be reached at a given iteration
of the Markov process (or at a given truncation order of our expansion), which hinders
convergence.

Furthermore, the spectral density of the adjacency matrix A can also be expressed in
terms of a series expansion of closed walks of order M [229]. In particular, the spectral
density ρ(z) is given by

ρ(z) = − 1
nπz

∞

∑
m=0

Tr[Ar]

zr , (4.30)

where n is the number of nodes (rows or columns) in A. The quantity Tr[Ar] counts the
number of walks at a given m-hop, and thus computing the spectral density is equival-
ent to count number of closed walks returning to the nodes. These calculations can get
complicated pretty fast [229], but luckily in our case, the product of the m-neighborhoods
matrix powers with the frequency vector (which has zero mean, or the mean is appropri-
ately shifted) make higher-order terms to decay faster to zero compared to initial terms
and allow an early truncation of the expansions to be accurate (as we will prove in the
following lines). We note that similar expressions to Eq. (4.30) show up when computing
network properties as the Katz or Betweenness centrality [2, 230], but to the best of our
knowledge, our results are the first ones that exploit the geometric properties of the linear
Laplacian system of Eq. (4.2) and apply them to the context of synchronization dynamics
of coupled heterogeneous oscillators.

Lastly, it is worthy to remark here that one could tackle the problems relating structural
constraints and dynamical range (presented in the previous chapter) by means of trun-
cated expressions of the synchronized state, providing a mechanistic shortcut to spectral
black-boxes. Particular examples include the possibility to extend the error propagation tech-
nique to the phase-locking regime by propagating the error in the weights, which explicitly
appear in the geometric series of the synchronized state. Also, the mapping problem could
be tackled by using improved, more rigorous constraints, based on the truncation of the
expansion at different orders, as the ones given by Eq. (4.29) (thus exploiting dynamical
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information in terms of the frequencies, not only structural one as we did in our heuristic
approach) and the geometric technique would allow us analyzing the effect of higher-
orders from a decentralized perspective. Finally, we note that our results can be extended
to the non-linear phase-locked regime by leveraging the Collective Coordinate method
(CC) [145, 146], introduced in section 2.4.2. We can combine these results with our pro-
posed geometric expansion, to write an equation that reduces the fully non-linear coupled
system of the Kuramoto Model to a single differential equation in terms of collective co-
ordinate parameter αM, approximated at any resolution level M of available information
from the network as

α̇M ≈ 1 +
1

θ(M)T Lθ(M) ∑
i,j
[θ(M)]i sin(αM([θ(M)]j − [θ(M)]i)), (4.31)

where θ(M) = ∑M
m=0(D−1 A)mD−1ω is the truncated expansion in the undirected case. For

instance, when truncating at the local order M = 0, Eq. (4.31) reduces to

α̇0 ≈
∑i,j

ωi
ki

sin(α0(
ωj
k j
− ωi

ki
))

∑i,j aij(
ωi
ki
− ωj

k j
)2

+ 1, (4.32)

By setting α̇0 = 0, solving for α0 and using our local version of the CC ansatz, which states
that the phases θi ≈ α0K−1ωi/ki, one can obtain the solution of the phases in the non-linear
phase-locking regime at any value of the coupling strength K (which is set to K = 1 for
simplicity in the rest of this chapter). This shows that the geometric approach can be used
to gain analytical insight beyond the linearized regime of synchronization dynamics when
dealing with partial, incomplete information from the network structure.

We expect some of the aforementioned problems to be addressed in future work and,
now we move to more practical questions regarding the geometric expansions.

4.3 convergence analysis

4.3.1 Error scaling

It is time to address a more computationally practical question related to our expansions.
We return to the safer realm of the linearized regime controlled by Eq. (4.1) to investigate
the rate of convergence of this expansion, to understand how fast can we truncate the
expansion to get a desired degree of accuracy in the approximation.

We consider again the case of undirected networks with a frequency vector of zero mean,
such that we can use results of Theorem 1. We recall that the M-order approximation
defined as θ(M) = ∑M

m=0(D−1 A)mD−1ω. Using Eq. (4.12), the error is given by

D
1
2 (θ∗ − θ(M)) =

∞

∑
m=M+1

(α2λm
2 v2 + · · ·+ αnλm

n vn)

=
α2v2

1− λ2
λM+1

2 + · · ·+ αNvN

1− λN
λM+1

N .
(4.33)
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As the order M of the approximation increases, the dominant term in Eq. (4.33) is that
which corresponds to the second largest (in magnitude) eigenvalue λ2 of the normalized
adjacency matrix B (recall that the largest of eigenvalue of B is λ2 = 1). If we discard
the unlikely scenario where x = D−1/2ω is exactly orthogonal to v2 (in which case α2

vanishes) then for large enough M the mean square error will scale geometrically with the
magnitude of this second-largest eigenvalue, i.e.,

||θ∗ − θ(M)|| ∼ |λ2|M+1. (4.34)

Therefore, the smaller |λ2| is, the quicker the approximation will converge. On the other
hand, convergence will be slower for sparse networks with either strong modularity or
clustering as well as strong bipartite structure, in which cases λ2 tend to be close to 1
and −1, respectively [2, 228] and a larger number of terms are needed to obtain a desired
level of accuracy. In Fig. (4.2) we plot the error of the truncated approximation depending
on the truncation order for different values of the network density, modularity, clustering
coefficient and small-worldness and compare against the theoretical scaling predicted by
Eq. (4.34) observing a perfect agreement for sufficiently large order M in all the cases.
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Figure 4.2: Error of the approximation depending on the truncation order for several interpolating
network models, with fixed size N = 1000. We study the effect of density (varying
the average degree), modularity (interpolating from a random network to a 2-modules),
clustering (using the algorithm [92] to generate SF networks with controllable clustering)
and the small-world model to interpolate between a ring and a random network [54]. In
all the scenarios, we observe that, for sufficiently high truncation order M, the error is
dominated by λ2, the second-largest eigenvalue of the normalized adjacency matrix B.
λ2 increases with sparsity, modularity, and clustering as expected. From [231].
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The prediction of Eq. (4.34) is clearly accurate for large truncation order M. However, it
tells us nothing about the error at lower orders (when taking only a few terms in the
expansion) and this situation is very much relevant in contexts of decentralized informa-
tion, when the information is available only at the surrounding of the nodes. To overcome
this issue, in the following lines, we explicitly introduce uncertainty in the allocation of
frequencies to obtain closed-form expressions for the error at any truncation order. Inter-
estingly, these expressions will reduce to very short formulas (with a clear interpretation)
when considering the local truncation case.

4.3.2 Closed forms for uncertain dynamics

Let us introduce a well-known theorem from Probability Theory for Quadratic Forms
[165]. Given an operator X and random vector y with mean µ and covariance matrix Σ, the
expected value of the quadratic form yTXy is

〈yTXy〉 = Tr[XΣ] + µTXµ. (4.35)

This theorem was applied in [165] to compute the squared norm of the exact solution, and
from there the linearized synchronization order parameter since r ≈ 1− ||θ∗||2/(2K2N2).
From the exact solution of Eq. (4.3), one can write

||θ∗||2 = ωT(L†)T L†ω. (4.36)

From the spectral decomposition of L†, we have that L† = VSVT, where S is a diagonal
matrix with entries sii = λ−1

i for 2 ≤ i ≤ N and s11 = 0. V is the matrix with the
eigenvectors of L in columns and VT is its transpose. Plugging it Eq. (4.36), one can write

||θ∗||2 = ωTVS2VTω. (4.37)

Then, applying Eq. (4.35) with X = VS2VT, noting that the second term in Eq. (4.35) gets
cancelled because µ = 0, and setting Σ = σ2 I (valid when the components of ω are drawn
independently from the same distribution), one obtains [165]

〈||θ∗||2〉 = σ2N〈λ−2〉, (4.38)

where N〈λ−2〉 = Tr[X]. Eq. (4.38) tell us that the expected value of the exaction solution
increases with the variance of the distribution of ω and with the spectral heterogeneity
of the underlying network. The reader should note that we already derived Eq. (4.38) by
different means in Eq. (3.35) of the previous chapter. We remark that we have assumed that
the entries of ω are independent random variables drawn from a known distribution. This
is equivalent to a scenario with uncertainty where we have knowledge on g(ω) but the
specific ωi are not accessible [165]. Here we consider this scenario and work with expected
quantities, thus removing the dependence on the choice of the ω vector.
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Having introduced the mathematical machinery, we proceed to apply it to compute the
expected error made by the geometric approximations. We define φM = 〈||θ∗ − θM

g ||2〉, as
the averaged mean square error between the exact solution θ∗ and the truncated one θM.
In the following, we omit the bracket notation in φM for simplicity, since we work only
with expected errors due to the random frequency allocation. First, we express the error
in terms of the spectrum of the normalized adjacency matrix B. From Eq. (4.33), note that
we can write

θ∗ − θM
g =

∞

∑
m=M+1

D−
1
2 BmD−

1
2 ω, (4.39)

where Bm is the m-th power of the normalized adjacency matrix defined before. By defining
the vector z = D−

1
2 ω, we can write

θ∗ − θM
g = D−

1
2 (

∞

∑
m=M+1

Bm)z. (4.40)

Again, we write the squared norm of (θ∗ − θM
g ) as a quadratic form. Noting that the

random vector z has mean µ = 0 and covariance Σ = σ2D−1, and applying Eq. (4.35), we
have that

φM = Tr[(D−
1
2

∞

∑
m=M+1

Bm)T(D−
1
2

∞

∑
m=M+1

Bm)σ2D−1]. (4.41)

Now, we apply the property of the trace of symmetric matrices Tr[A, B] = Tr[B, A] and
use the spectral decomposition ∑∞

m=M+1 Bm = ∑∞
m=M+1 UHmUT, with H a diagonal matrix

containing the eigenvalues of the normalized adjacency matrix B, i.e. Hii = µi, and U is the
matrix with the columns populated by its orthogonal eigenvectors. Since z is orthogonal to
the leading eigenvector uN of B because 〈ω〉 = 0, see [231], this mode will not contribute
to the error, and we can set µN = 0 for the remaining of the analysis. Then, we can write

φM = σ2Tr[D−2
∞

∑
m=M+1

(UHmUT)2]. (4.42)

Expanding the squares of the sum using the binomial theorem, we get

φM = σ2Tr[D−2U
∞

∑
m=M+1

mHm+1UT]. (4.43)

Eq. (4.43) is exact but requires computing an infinite sum. Luckily, we can exploit the
convergence of the series

∞

∑
M+1

mµm+1
i = (

µi

µi − 1
)2[2− µM

i (Mµi −M + 1), (4.44)

valid when |µi| < 1, as in our case. Defining the diagonal matrix XM with entries xM
ij =

δij(
µi

µi−1 )
2[2− µM

i (Mµi −M + 1), we finally obtain

φM = σ2Tr[D−2UXMUT]. (4.45)
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Eq. (4.45) is an exact, analytical expression for the geometric error φM in terms only of
the degrees in D−2 and the spectra of B. Note that in the 0-order approximation (local
truncation), the entries of the diagonal matrix are simply x0

ij = δij(
µi

µi−1 )
2. From here, it is

worth distinguishing between the regular and the heterogeneous degree distribution.
In the regular case D−2 = k−2, i.e. a constant, and we can write φ0 as a very simple

formula given by

φ0 = σ2k−2
N−1

∑
i=1

(
µi

µi − 1
)2. (4.46)

Using the affine transformation µi = 1− λi/k [117], we can express the result also in terms
of the more familiar spectra of L. Explicitly

φ0 = σ2k−2
N−1

∑
i=1

(
k
λi
− 1)2. (4.47)

Expanding the previous expression, we get the clean result

φ0 = σ2N(〈λ−2〉+ k−2 − 2k−1〈λ−1〉), (4.48)

which can be further approximated by

φ0 ≈ σ2N[〈λ−1〉 − k−1]2. (4.49)

Both Eq. (4.48) and Eq. (4.49), and also the more compact expression of Eq. (4.47) tell
us that, for networks with homogeneous degree distributions, the local accuracy of the
expansion is controlled by the whole spectra of L and not only by a single eigenvalue. In
other words, as the eigenvalue spectra broadens with respect to the degree k, the error
grows, a result that confirms that random dense networks or, for instance, the all-to-all
one (where the eigenvalues are all peaked at k = N − 1 [2]) are very local, meaning that
a low truncation of the expansion will provide accurate results for the synchronized state
(in the case of the all-to-all, the local truncation is just exact). Instead, if the whole spectra
broadens (and not only one eigenvalue), the accuracy gets reduced, and gradually more
global information is required.

For the non-regular case (heterogeneous degree distribution), one cannot explicitly com-
pute the trace Tr[D−2UXMUT] in general. Several approaches can be used at this point to
approximate this object in an algebraic manner. The straightforward choice is to expand
the matrix D−2 in a power series, which is valid for small heterogeneity in the degrees. We
have that

(D−2)ij = δij
1

(〈k〉+ εi)2 , (4.50)

with εi = ki − 〈k〉. Then, expanding D−2(ε) around ε = 0, we get

D−2(ε) ≈ 〈k〉−2 I − 2〈k〉−3εI + 6〈k〉−4ε2 I −O(ε3) + . . . , (4.51)
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where I is the identity matrix. Now, plugging Eq. (4.51) into Eq. (4.45), decomposing the
resulting expression as a sum of traces and approximating the smaller (higher-order) terms
by its expectation value Tr[εmX] ≈ 〈Tr[εmX]〉 = 〈εm〉Tr[X] (assuming that the components
of εm are random variables), one obtains

φ0 ≈ σ2N
∞

∑
n=0

(−1)n(n + 1)!σ2
n

〈k〉n+2 [
N−1

∑
i=1

(
µi

µi − 1
)2], (4.52)

where σ2
n = 1

N ∑i(ki− 〈k〉)n is the n-th central moment of the degree distribution. Note that
σ2

0 = 1/N, σ2
1 = 0 and σ2

2 is the variance of the degree distribution. Explicit approximations
could be obtained by truncating Eq. (4.54) at a given n.

An alternative approach is to directly approximate the matrix D−2 by its average (i.e.
approximating the trace in Eq. (4.45) by its expected value), obtaining

φ0 ≈ σ2N〈k−2〉[
N−1

∑
i=1

(
µi

µi − 1
)2], (4.53)

and then apply the affine transformation µi ≤ 1− λi/〈k〉 to obtain a tight upper-bound.
Expanding the resulting expression, one finally obtains

φ0 ≈ σ2N〈k−2〉(〈k〉2〈λ−2〉 − 2 〈k〉〈λ−1〉+ 1). (4.54)

In the absence of heterogeneity, 〈k−2〉 = k−2 and one recovers Eq. (4.48). Interestingly, we
can further approximate Eq. (4.54) assuming small heterogeneity in spectra and degree,
which leads to

φ0 ≈ σ2N[〈λ−1〉 − 〈k−1〉]2. (4.55)

This last result shows how the error in the local truncation is controlled by both the mo-
ments of the spectral and degree distributions. Note that, if instead of computing the mean
square error of the phases in the local truncation case, we compute the error between
the squared modulus (which is equivalent to compute the error in synchrony because
∆r(M) ∼ ||θ∗||2 − ||θM||2), following the same tools as before, we obtain that

|||θ∗||2 − ||θ0||2| = σ2N|〈λ−2〉 − 〈k−2〉|, (4.56)

which tells us that, when the second inverse moment is the same for both the spectra and
degrees, the local error is zero. Interestingly, if the degree distribution becomes hetero-
geneous at the same rate as the spectral one, the local error will still be small, and this
is indeed what occurs to random scale-free networks, that have both large heterogeneity
in degree and spectra [68], but not to clustered scale-free networks, for which the spectra
heterogeneity increases (due to small eigenvalues approaching zero [68, 92]) and in this
case the local error grows. A more pronounced effect occurs for homogeneous networks
with communities, where the degree of heterogeneity is small, but the spectral broadening
is large, and the local error will be even larger, as predicted by Eq. (4.54) and Eq. (4.55).
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4.3.3 Damped harmonic oscillatory decays

We consider a final point regarding the convergence of the expansions. In particular, we
unveil an interesting analogy between the convergence paths of the proposed series and
the type of decays in a classical damped harmonic oscillator. This analogy will provide a
key insight into the range of microscopic configurations that can be reached by a given
structure, therefore advancing in the understanding of structural constraints and dynam-
ical regimes in oscillator networks.

Let us consider first the scenario where frequencies are randomly allocated on the nodes.
This means that, in average, there will not be any amount of frequency-frequency correla-
tions among connected nodes, and it is equivalent to say that ω does not have a preferred
direction, i.e. it is not aligned with any eigenvector of B in particular while still being
orthogonal to the constant eigenvector (due to the constraint 〈ω〉 = 0). Then, when the
truncation order of the expansion is sufficiently large, (m � 0), we have that the m-term
of the expansion, ψm = (D−1 A)mD−1ω is well approximated by

ψm ≈ D−
1
2 (α∗λm

∗ v∗), (4.57)

where again the subscript ∗ accounts for the largest eigenvalue in absolute value (which
can be positive or negative). The rest of terms in Eq. (4.33) decay much faster for large m
so they can be neglected. The entries of ψm can change their sign if λ∗ = λmin < 0, because,
in this case, λm

∗ > 0 for odd values of m and λm
∗ > 0 for even values of m.

The previous observation indicates that, if we study the error in the modulus of the
phases (which is a proxy of the synchronization error) insteand of using the mean square
error of the vector as in the previous sections, then the convergence path can follow differ-
ent routes. To see this effect, note that the modulus of the exact solution can be written as
||φ|| = ||∑∞

m Ψm||. Truncating at a large m, we have that

||φm|| = ||φm−1 + ψm||. (4.58)

From Eq. (4.57), we see that the difference in modulus ||φm|| − ||φm−1|| can change sign in
alternating powers of m (if λ∗ < 0) while decreasing to zero. In other words, the difference
in the modulus between the exact solution and the m-order approximation, i.e. ∆||φ||m =

||φ∗|| − ||φm|| can follow different paths of convergence for large m depending on the sign
of the largest eigenvalue λ∗ (in magnitude).

We can classify the paths between convergent and divergent ones. In the first class,
we can distinguish between i) the underdamped regime (−1 < λ∗ < 0), where ∆||φ||m
converges to 0 in an oscillatory way (oscillatory decay), ii) the overdamped regime
(0 < λ∗ < 1), where ∆||φ||m converges to 0 exponentially, without oscillators (exponential
decay) and iii) the critically damped regime λ∗ → 0, where ∆||φ||m converges to 0 as fast as
possible (optimal decay). Furthermore, there are two cases where the expansion does not
converge: iv) the undamped regime (λ∗ = −1), when the network is completely bipartite
(it can be separated in two groups of nodes that connect only to the other group). In this
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case, the solution never converges and ∆||φ||m oscillates around 0 indefinitely, and finally
v) the infinitely damped regime (λ∗ = 1), when the network is completely disconnected in
modules. The solution never converges but grows indefinitely due to the mode associated
to λ∗, which never decays.

The aforementioned regimes are therefore equivalent to the solutions of the differential
equation for a damped harmonic oscillator [8], which universal form is given by

d2q
dτ2 + 2ζ

dq
dτ

+ q = 0. (4.59)

Here, the leading eigenvalue of the normalized adjacency matrix λ∗ plays the role of the
damping ratio ζ, the error in the approximation ∆||ψ||m is our q and instead of differentiat-
ing over time, here we do it over increasingly further neighborhoods m. We have explained
that for a large truncation order, λ∗ will determine the type of decay of the system if fre-
quencies are randomly allocated. However, if λ∗ is not very close to one in magnitude or
if the frequency vector is not specifically aligned with its associated eigenvector v∗, then
convergence will be very fast (’critically-damped’) for most configurations and its decay
will be determined by the combination of the eigenmodes in Eq. (4.33). The system will
only show the fingerprint of strongly exponential or oscillatory decay for lower truncation
order M when α∗λ∗ is sufficiently large in magnitude compared to the rest of terms in
Eq. (4.33), so depending both on the structure (via λ∗) and on how the frequencies are
allocated (via the coefficient α∗).

The previous observation is of a technical nature, although the classification of micro-
scopic configurations using the signature given by its convergence path in the geometric
domain seems a promising line of thought. In fact, we can exploit this idea by noting
that the spectral gap ∆λ∗ = λmax − λmin –if the eigenvalue λN = 1 is not considered–
constrains the possible range of decays that a given system can show. Furthermore, de-
pending on how the frequencies are allocated (so depending on the specific values of the
coefficients α), one can go from the maximal oscillatory to the maximal exponential de-
cay that are permitted by the spectral gap of the underlying structure. This effect, in turn,
translates into a constrained range of synchronized behaviors. To see this, one returns to
the local construction given by the geometric expansion in Eq. (4.29), and realizes that
having an oscillatory (exponential) decay in the real space is equivalent to having negat-
ive (positive) frequency correlations among connected neighbors. Since the type of decay
is constrained by the spectral gap ∆λ∗ of the underlying structure, the range of dynam-
ical correlations (frequency-frequency correlations among neighbors) is also constrained
by the same spectral gap. In other words, the spectra of the normalized adjacency matrix,
and the magnitude of the largest negative and positive eigenvalues determine the range
of convergence paths, which in turn bound the amount of dynamical correlations among
neighboring nodes in an oscillator network, and this effect also determines the range of
synchronized states. Overall, the previous connection shows how the shape of the network
bounds the range of phase-locking states, in terms of some spectral properties, and the
well-known types of decay in a classical damped oscillator provide a geometric interpreta-
tion, and a classification of these results.
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In order to clarify the reasoning above, we choose a particularly simple network model.
We consider a stochastic block model with two groups, where connections inside the
groups are assigned with probability p+ and connections between the groups with probab-
ility p−. The random network model [81, 82] is recovered when p+ = p− = p, and the all
to all is reached in the limit of p = 1. A modular-like network (bipartite-like) is obtained
when p+ > p− (p− > p+), leading to a disconnected network of two groups if p− = 0
and a purely bipartite if p+ = 0. We also introduce a measure to capture the dynamical
correlations in the system. A straightforward choice is to use the smoothness of the net-
work [227], given by the positive-semi-definite quadratic form S = ωT Lω which can be
explicitly written as

S = ∑
i

∑
j

aij(ωj −ωi)
2. (4.60)

If we normalize S by the number of links ∑i ∑j aij, such that Ŝ = S/(N〈k〉), we have that
Ŝ = 〈∆ω2〉 is just the average squared difference of frequencies among connected nodes.
If the frequencies ω are drawn from a normal distribution, Ŝ for the all-to-all network or
in absence of frequency correlations is the mean of a chi-squared variable with one degree
of freedom, so Ŝ0 = 1. If a given system has 1/Ŝ > 1, we have positive correlations and
1/Ŝ < 1 means negative correlations. Note that if the original distribution of frequencies
is not normal (and even not unimodal or symmetric), we can always compare a given
amount of dynamical correlations against its random counterpart.
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Figure 4.3: Left: relative error of the modulus depending on the truncation order M in three net-
works generated from our model: an extremely bipartite one with negative frequency
negative correlations –underdamped– (p+ = 0.1, p− = 0.9, ω ∼ v1), an extremely
modular one with frequency positive correlations –overdamped– (p+ = 0.9, p− =
0.1, ω ∼ vN), and a random network without frequency correlations –critically damped–
(p+ = 0.5, p− = 0.5, ω ∼ N (0, 1)). Right: dynamical correlations depending on
the largest eigenvalue of B, λ∗ for frequency allocations ranging from ω ∼ v∗ to
ω ∈ N (0, 1), thus interpolating from maximal correlations to no correlations, preserving
the variance σ2, for 103 networks generated with different p+, p− ∈ (0, 1). The center
(λ∗ = 0) is the all-to-all network, where no correlations are possible regardless of the
particular alignment of ω. The color indicates the logarithm of the squared norm of the
phases of the system, such that higher (lower) synchronization is captured with blue
(yellow) colors.

In Fig. (4.3)-left, we can see the three examples of convergent paths depending on the
underlying network and the frequency allocation (see caption). In the right figure, we can
observe that, for the particular block-model that we considered, the region of accessible

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



94 on the geometry of the synchronized state

dynamical correlations is clearly bounded by the spectra of the network, and in turn, the
degree of synchronization is affected by both axis. In this sense, the synchronization of
the system is determined by an effective geometry that emerges from the constrained
interplay between the structure and the frequencies. In the following, we discuss these
results by going through several well-known network examples.

First, the all-to-all network has the smallest spectral gap ∆λ∗ = 0 [2]. In this case, the
decay will be always optimal (critically damped). In our theory, this means that it is not pos-
sible to induce any kind of positive or negative correlations, since every node is connected
to the rest. Equivalently, the same synchronized behavior is reached by any rearrangement
of the frequencies, as observed in the phase-space of Fig. (4.3)-right, where all configur-
ations in this network collapse to a single point –the origin–, where synchronization is
maximal. Second, a random (ER) network has a larger ∆λ∗ than the all-to-all case, which
increases for smaller density, but it is still quite localized around 0 and symmetric for large
p [68, 94, 165]. In this networks one can induce the three different type of decays and some
amount of positive and negative dynamical correlations but up to some extent. Third, it is
well-known that a scale-free (SF) network has a triangular, symmetric shape of the spectra
[68] and a larger ∆λ∗ than the random network with the same average degree. From our
theory, we can predict that the SF will have a broader dynamical range than the random
one. More positive and negative correlations can be generated and the range of synchron-
ized states will also be larger. In this sense, the SF network can be seen as slightly more
modular than the random one, and also slightly more bipartite. In general, when some
eigenvalues are large in magnitude and of a preferred sign, then the symmetry of the sys-
tem is “broken" and the network becomes more modular (if ∆λ∗ � 0) or more bipartite (if
∆λ∗ � 0). In these limits, the network will have a tendency to show one specific type of
decay. For modular-like networks, the convergence of the geometric expansion will be usu-
ally exponential and slow and only positive to random frequency-frequency correlations
can be induced. For bipartite-like networks, the convergence will be usually oscillatory
and fast and only negative to random frequency-frequency correlations can be induced.
These effects can also be observed in (4.3)-right, in terms of the effective cone where the
networks can fall in. As a fifth example, we consider spatial embedded networks such as
rings, low-dimensional lattices or grids, where the spectral distribution is broad and λmin

and λmax are large in magnitude, so ∆λ∗ ≈ 2 [68, 100]. In this case, maximal oscillatory
and exponential decay can occur, and equivalently, one can induce maximal positive and
negative dynamical correlations among the nodes. For instance, imagine a ring where the
frequencies can be placed in alternating order (negative correlations) or smoothly (positive
correlations). Intuitively, the network is at the same time modular and bipartite and this
can be shown by the fact that the ring has an eigenvalue λmin = −1 (so it is completely
bipartite) and λmax → 1 for large size (so it is also extremely modular).

Overall, the results introduced in this section suggest a promising view to analyze os-
cillator networks in the synchronized state. We presented some introductory points emer-
ging from our convergence analysis, and we expect to follow this line of though in further
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works. Now we shift our focus towards more practical applications of the geometric un-
folding technique, in the context of decentralized systems.

4.4 the local approximation of synchrony and its applications

In this last section of results, we generate a local approximation from the geometric ex-
pansion presented above to describe the degree of synchronization of a system given by
the Kuramoto order parameter [38], reiψ = N−1 ∑j eiθj . First, after the linearizing about a
strongly synchronized state where all |θi| � 1 (note that an appropriate shift in initial
conditions allows us to set the mean phase ψ = 0) one obtains [118] r ≈ 1− 1

2K2 N2 ||θ∗||2.
Note that the degree of synchronization increases, i.e., tends towards one, as the disper-
sion in the phases is reduced. By truncating Eq. (4.9) at the first-order term and neglecting
the contribution of the shift to the mean, an approximation which is accurate for locally
tree-like networks for which |λj| � 1 for j = 2, . . . , N, we have that

θi ≈
ωi

ki
+
〈ω

k

〉(1)
i

, (4.61)

with 〈ω
k 〉

(1)
i = 1

ki
∑N

j=1 aij
ωj
k j

being the average contribution of the first neighbors arriving at
node i. We can then directly write the order parameter as

r ≈ 1− 1
2K2N2

N

∑
i=1

(
ωi

ki
+
〈ω

k

〉(1)
i

)2

. (4.62)

The local unfolding of synchronization dynamics from the geometric expansion that we
use to write Eq. (4.62) allows us to gain analytical insight into the interplay between topo-
logy and dynamics that improves synchronization as well as understand several features
that to date have only been investigated numerically [118, 129, 130, 132, 232, 233].

4.4.1 Insights on the interplay topology vs dynamics

We give several observations in this line, included in the following list.

• Degree-frequency correlations. For uncorrelated and sufficiently dense networks,
θi ∼ ωi/ki, thus higher frequencies must be placed in the nodes of higher degree
in order to decrease the absolute value of the phases and therefore increase syn-
chronization [108, 129, 232].

• Frequency-frequency correlations. Negative frequency-frequency correlations
between connected neighbors tends to make the first order term of opposite
sign (but smaller) to the local term, and this reduces the dispersion (increasing
synchronization) [118, 129].

• Weight localization. At first-order θi ≈ ωi/ki + ∑ aij(ωj/k j)/ki, thus, the sum of the
contributions of the neighbors are divided by the node’s degree. For denser and
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uncorrelated networks, the number of neighbors is higher, and therefore the sum ap-
proaches faster to 0, leading, in average, to smaller values of the phases and therefore
to a higher synchrony [165].

• Homogeneity vs heterogeneity. Using the local approximation, one can show that
r ≈ 〈s−2〉 in the linearized regime, where s are the strengths (or degrees of the nodes).
The inverse second moment is larger for homogeneous networks, thus homogeneity
promotes synchronization in the linearized regime. This is opposite to what occurs
in the critical threshold, where Kc ∼ 〈s〉/〈s2〉 [6, 165].

The interpretability of these effects emerge naturally from the local description of syn-
chrony, and although the particularities of each phenomenon may require further analysis,
the geometric unfolding allows unveiling the underlying mechanistic rules that control the
interplay of structure and dynamics in synchronization.

4.4.2 Quantifying the impact of link perturbations

Using the local approximation of synchrony derived in the previous lines, we aim at quan-
tifying the impact of link perturbations (additions and removals) using only local inform-
ation, this is information available at the first –immediate– neighborhood of the nodes.

We want to study how modifications to the network structure affect the degree of syn-
chronization in the system. This problem has already been tackled in [133] by studying
the linear stability of the system in the context of power-grids, and more precisely in [130]
by applying a perturbative expansion on the Laplacian eigenvectors. For a removal (−) or
addition (+) of a specific edge (p, q), the authors in [130] obtain

∆r ≈ ±εQpq + O(ε2), (4.63)

where ε is the intensity of the perturbation (usually ε = 1 for unweighted networks) and
Qpq is

Qpq =
2
N

N

∑
n=2

(
ωTv(n)

λ3
n

)(
N

∑
m=1

[ωTv(n)](v(m)
p − v(m)

q )(v(n)p − v(n)q )

(1− λm/λn)− δnm
). (4.64)

The first-order perturbation result in Eq. (4.64) is found to be very accurate when applied
to a wide variety of networks, and it is significantly faster than re-computing Eq. (4.3)
exactly after a single removal or addition of link. However, the impact of the perturbation
is explicitly given by the products of differences in eigenvector components (p, q) among
all eigenvectors pairs, which complicates the understanding on the effect that specific per-
turbations have on the system and still requires global information on the whole network
structure.

Here we propose to tackle the problem of finding an analytical expression for ∆r that
provides a more physical interpretation on how the parameters affect the system, beyond
the intriguing interplay between the eigenvectors of L and the frequencies in Eq. (4.64),
while still being accurate when applied to real networks. We will consider the case of
perturbations in the form of link removals and additions, distinguishing between directed
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perturbations (where only one direction is affected) and undirected scenarios (where the
perturbation affects both directions). In the strongly synchronized regime, we have that

∆rpq ≈
1

2N

N

∑
i=1

(θ2
i − θ′i |2pq), (4.65)

where θi ≡ θ∗i is the unperturbed phase of the i-th oscillator (we neglect the superscript
∗ in the following) and θ′i is the phase in the new steady-state after the removal of link
(directed or undirected) (p, q). Writing the perturbed phase as θ′i |pq = θi + δθi|pq, we have
that

∆rpq ≈
1

2N

N

∑
i=1

(−2θiδθi|pq + δθi|2pq). (4.66)

Instead of using the spectral decomposition of L† to quantify the response to a perturb-
ation as in [130], we exploit here the spatial expansion of Eq. (4.3) in terms of increas-
ing neighborhoods. We recall that, at first-order expansion, which is approximately valid
for sufficiently large and uncorrelated networks, we have that θi ≈ 1

ki
(ωi + zi), where

zi = ∑N
j=1 aij

ωj
k j

is the term accounting for the influence of first-neighbours connected to the
i-th node.

We will quantify the response to perturbations only in the surroundings of the link that
is being removed, and therefore we are estimating the local impact of the perturbation in
the global value of ∆rpq, neglecting non-local effects. As we will see, this approximation
works sufficiently well in many situations, which means that it is possible to estimate
the impact that a single link has in the overall synchrony of the system by using only
local information. This mechanism is presumed to occur in many empirical decentralized
systems, where the units do not have access to global information on the system but still
they are able to optimize the collective performance in a very efficient way.

Directed links: We focus first on the problem of removing or adding a directed link (p, q),
this is a link received at p-node by an incoming q-neighbor. Under the local approximation
of Eq. (4.61), the removal or addition of the link will affect only the phases of the p-node
and the neighboring nodes that received an input from p, leaving all the rest of phases
unchanged. After some algebra, we can write

δθi|pq ≈ ±δpi[
θi − θ0

q

ki ∓ 1
]± aip[

θ0
p

ki(ki ∓ 1)
], (4.67)

where the upper (lower) operator accounts for a removal (addition) of the directed link
(p, q) and θ0

q = ωq/kq is the approximation of Eq. (4.61) without the contribution of first-
neighbours (zq = 0). Substituting Eq. (4.67) back into Eq. (4.66), performing the sum, and
noting that in the crossed term of the binomial we have that dpiaip = 0 in absence of
self-loops, we explicitly obtain

∆rpq ≈
∓1

N(kp ∓ 1)
[θp(θp − θ0

q) + θ0
pXp +

(θp − θ0
q)

2 + (θ0
p)

2Yp

2(kp ∓ 1)
], (4.68)
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with Xp = ∑N
i=1 aip(

wi+zi
k2

i
) and Yp = ∑N

i=1 aip(
1
k2

i
). The result in Eq. (4.68) estimates the

effect of a removal/addition of a link in the degree of synchrony by neglecting the terms
further than first-neighbours in the spatial expansion of Eq. (4.67) and therefore it shares
the same range of validity as the former. Eq. (4.68) is considerably faster than the spectral
perturbative approach of Eq. (4.64) but it still misses a clear physical interpretation due to
the complicate interaction among several variables.

In order to get more analytical insight from Eq. (4.68), we can approximate ∆rpq by
assuming that the degrees of the nodes are large enough, such that (kp ∓ 1) ≈ kp. This
implies that zp ≈ 0 (because the value 〈ω/k 〉p converges to zero as more neighbors the
p-node has), and therefore θp ≈ θ0

p. Also, for large degree kp � 1, the quantities Xp and
Yp will decay to zero faster than zp and they can be neglected. After these simplifications,
one obtains

∆rpq ≈ ∓
1

Nkp
(θ0

p∆θ0
pq +

(∆θ0
pq)

2

2kp
). (4.69)

By considering the largest term in the right-hand side of Eq. (4.69), we explicitly obtain

∆rpq ≈ ∓
1

Nkp
[
ωp

kp
(

ωp

kp
− ωq

kq
)], (4.70)

which is our main result for directed networks in the limit of sufficiently large degree
and low clustering. We can make several interesting observations by directly inspecting
Eq. (4.70). The absolute value |∆rpq| will be larger if the p-node has a high value of the
ratio ωq/kq (large frequency or low degree) and the difference of phases (or ratios) between
nodes (p, q) is large. In other words, the links that have more impact on the degree of
synchrony are the ones that connect nodes that fall in the tails of the effective distribution
p(ω/k). On the other hand, the links that will have the lowest impact on the synchrony
are the ones connecting very similar nodes or if one of them falls in the center of p(w/k).

To the best of our knowledge, these relations were only observed a posteriori, [118, 129,
130, 132, 232, 233] after performing a numerical optimization of the network to maximize
its degree of synchrony or to measure its stability, and here we have provided a rigorous
derivation of them from scratch.

Undirected links: We focus now on the problem of removing or adding an undirected link
(p, q), this is a link both sent and received by p and q nodes. Under the local approximation
of Eq. (4.61), the removal or addition of the link will affect only the phases of the (p, q)-
nodes and the neighboring nodes that received an input from p or q, leaving all the rest of
phases unchanged. After some algebra and again neglecting small terms, we finally obtain

∆rpq ≈ ∓
1
N
(

wp

kp
− wq

kq
)(

wp

k2
p
− wq

k2
q
). (4.71)

We note that Eq. (4.71) will be used in the following chapter. In Fig. 4.4 we confirm the
accuracy of the approximations when applied to a random network.

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



4.4 the local approximation of synchrony and its applications 99

-8 -6 -4 -2 0

∆r(link) ×10
-7

0

0.1

0.2
p
(∆

r
)

exact (directed links)

approximation

-8 -6 -4 -2 0 2

∆rpq (approx.)
×10

-7

-8

-6

-4

-2

0

2

∆
r
p
q
(e
x
a
ct
)

×10
-7

-10 -5 0

∆r(link)
×10

-7

0

0.1

0.2

p
(∆

r
)

exact (undirected links)

approximation

-8 -6 -4 -2 0 2

∆rpq (approx.)
×10

-7

-8

-6

-4

-2

0

2

∆
r
p
q
(e
x
ac
t)

×10
-7

Figure 4.4: Numerical distribution of the impact of removed directed (left) and undirected (right)
links in the overall synchronization for the exact Eq. (4.3) -blue boxes- and the directed
(left) and undirected (right) approximations -red dots-. The network is an Erdös-Rényi
with N = 500 and 〈k〉 = 20, and the frequencies are Gaussian g(ω) with N (0, 1). In the
inset figure: scatter plot of the exact vs the approximation for the same network, where
the straight line means zero error.

4.4.3 Predicting Braess’ Paradox

Going one step further, we can predict which directed links will produce the counter-
intuitive effect of increasing (decreasing) synchrony after its removal (addition). This effect,
known as Braess Paradox in the context of road traffic [2], has been studied for oscillatory
networks [111, 132, 233] although the identification of these particular links relied on nu-
merical schemes or expressions in terms of the spectral decomposition of L. Also, while
these works study if the perturbations break the stability of the current state, here we as-
sume that the perturbations in the links drive the system towards a new steady-state. In
our formalism, we can directly impose ∆rpq > 0 for a link removal to obtain the condition

ωp

kp
(

ωp

kp
− ωq

kq
) < 0. (4.72)

The condition in Eq. (4.72) describes two regions of the (ωp/kp, ωq/kq)-plane, namely
the wedges ωq/kq > ωp/kp for ωp > 0 and ωq/kq < ωp/kp for ωp < 0. In terms of their
area, these wedges describe a quarter of (ωp/kp, ωq/kq) space. In Fig. (4.5) we plot the
resulting change ∆rpq for each possible link removal in an Erdös-Rényi network of size
N = 500 with mean degree 〈k〉 = 50, color-coding the change so that positive (negative)
changes are shaded more red (blue). We note that the positive changes fit well within
the wedges predicted by our local theory, which are plotted in dashed black lines. In fact,
approximately a quarter of directed links have the potential to increase synchronization
after its removal as expected. While this phenomenon has been investigated in the context
of identical oscillators [6, 234], here the frequencies of the oscillators play a critical role in
determining which directed links are harmful or redundant, and we have shown that the
local approximation is sufficient to capture this phenomenon.
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Figure 4.5: Distribution of removed directed links (p, q) in the phase-space (ωp/kp, ωq/kq) for an
Erdös-Rényi network with N = 500 and 〈k〉 = 50, and Gaussian g(ω) with N (0, 1).
The color indicates whether if the removed link decreases (blue) or increases (red) the
degree of synchrony, calculated exactly from Eq. (4.3). Straight lines bound the region
predicted by Eq. (4.72) in the local approximation. Reprinted by permission of [231].

4.5 summary and discussion

In this chapter, we have introduced a novel mathematical technique to analyze synchroniz-
ation dynamics with a controllable amount of uncertainty on the network of interactions,
gradually ranging from purely local to global information. In particular, in section 4.2 we
have shown that the synchronized state can be written as a geometric –Taylor– series in
contributions from increasingly further network neighborhoods and that these geometric
series converge under relatively mild conditions on the network at hand, namely that the
network has a primitive adjacency matrix (meaning that it is connected, aperiodic and
not bipartite). We have also discussed the implications of our results in the problems of
the previous chapter and related problems in the field. In section 4.3 we have provided a
convergence analysis of the proposed expansions, showing that the truncated error is con-
trolled by the spectra of the normalized adjacency matrix. After deriving exact results for
uncertain frequency allocations, we have unveiled a connection between the convergence
paths in the expansion and the decays of a classical damped harmonic oscillator. Using
this analogy, structure and dynamics emerge as two faces of the same coin, meaning that
the structural bounds determine the dynamical ones, and vice-versa. As a consequence,
the range of behaviors and dynamical configurations that can be achieved from a given
network can be understood by the spectral distribution and by the alignment of the fre-
quencies with the extreme eigenvectors. Finally, in section 4.4, we have applied our results
to derive a local approximation of synchrony, which is used to give analytical insight on the
microscopic requirements of optimal synchrony and other relevant phenomena, including
the local prediction of directed links that induce the counter-intuitive Braess’ Paradox.

The results included in this chapter are key findings of this thesis. The geometric ap-
proach constructs the synchronized state from its local origin and provides a spatial basis
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to unfold the oscillatory dynamics, in an alternative manner to standard spectral results
found in the literature. This novel spatial approach facilitates the control, optimization and
prediction of the system when having access only to decentralized information available
at the nodes’ scale. Under these uncertain conditions, the current theory can be used to
tackle important practical problems such as network inference [164] and optimization [118,
129, 130], the prediction of phase-locking loss [44] and the effect of noisy frequencies or
weights [165, 192], or the control of synchronized states by local weight tuning or structure
modifications [69, 162], just to name a few. In fact, the geometric unfolding provides nodal
constraints in the form ωi/ki that exploit both dynamical and structural information and
could be directly applied to the mapping problem, improving the constraints proposed in
section 3.4.2. However, the current constraints are derived from the linearized regime, and
the study of the performance in the full mapping problem is left for further research.

There are also some limitations and improvements that await for further work. We have
proposed, in section 4.2.1, a potential extension of our formalism beyond the linearized
regime by means of the Collective Coordinates ansatz, but a detailed exploration of the
geometric unfolding on the fully non-linear system is still missing. Also, the connection
between the spectra and the possible ways to allocate the frequencies should be addressed
within the emergent context of metadata-enriched networks [235, 236], the recent epidemic
models considering homophily and behavioral effects [237–239] and also in exponential
random graphs [240], with the possibility to provide spectral-based null-models for dy-
namical network measures such as assortativity and effective community structure. Lastly,
the dichotomy between spectral and spatial unfolding of the synchronized state resembles
the interesting uncertainty principle found for graphs, a result from the field of graph sig-
nal processing [227] that bounds the joint spectral and real representation of a signal in a
graph, analogously to the classical uncertainty principle in harmonic analysis, that limits
the joint representation of a function and its Fourier transform (thus in time and frequency
domains). From the findings of this chapter, one might wonder to which extent these un-
certainty bounds can be found when combining the spectral and spatial representations of
the synchronized state.

It is time to move to the next chapter, where we give a final proof of the potential of this
geometric formalism. In particular, we introduce the concept of synchronization bombs
in a model that bridges the network optimization of synchrony under uncertainty (using
local information and noise) to the emergence of explosive transitions [108], one of the
most striking and relevant phenomenon in network synchronization and in the physics of
phase transitions [6, 58, 143, 241].
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5
O N T H E E M E R G E N C E O F S Y N C H R O N I Z AT I O N
B O M B S

5.1 introduction

Uncertainty and noise play a decisive role in the evolution and adaption processes of many
complex biological and ecological systems, as the wiring of neuronal circuits in the human
brain or the course of interactions in a flock of birds. In these systems, individual units
operate under noisy conditions and in a decentralized manner (exploiting only the local
information that is available in their immediate surroundings) but they can abruptly dis-
play coherent collective behavior, which seem to require specific network configurations
to be optimized for these specific global tasks. There is an ongoing consensus and increas-
ing empirical evidence that abrupt synchronization plays a role in the malfunctioning of
neuronal circuits during periods of epileptic seizures [242, 243], in the onset of anesthesic-
induced unconsciousness [30, 244, 245] and in chronic pain diseases as fibromyalgia [246].
In infrastructural and power-grids networks, it is also key to detect and control small
vulnerabilities that can lead to abrupt structural damages and global desynchronization
blackouts [2, 247]. While the theoretical requirements for the emergence of abrupt phenom-
ena are becoming more understood [143, 241], there is far less knowledge on the specific
routes that empirical systems may follow to display these kinds of behaviors. It is natural
to wonder which are the mechanisms or rules that the units obey in order to self-organize
in a way that the collective –ordered– behavior can emerge.

In this chapter, we address this question from a theoretical perspective, in an attempt
to explain the emergence of abrupt, explosive phenomena in the structural and dynam-
ical properties of a networked-coupled system of oscillators using minimal self-organized
principles. We do so within the framework of competitive link percolation –a process of
network growth that is discussed in more detail in the following section–, and using the
new mathematical machinery presented in the previous chapter –the local rule that max-
imizes the gain of global synchrony when connecting or disconnecting pairs of oscillators–.
We will see that, when this local rule is applied during the percolation process, the system
self-organizes towards network structures that display the well-known structural finger-
prints of ES behavior and in fact induces abrupt transitions in the evolution of both struc-
tural and dynamical macroscopic properties. We are able to analytically predict the critical
points using state-of-art model reduction techniques. We show that phenomena are robust
to changes in the main parameters and also hold for chaotic oscillators, paving the way
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for its implementation in the lab, and in a model of cardiac pacemaker cells, pointing to
potential biological applications. Interestingly, noise turns out to be beneficial in the model
because it improves the decentralized optimization of synchrony driven by the proposed
local rule. Results presented in this chapter are based on the submitted work [248]:

• “Self-organized explosive synchronization in complex networks: Emergence of syn-
chronization bombs", L. Arola-Fernández, S. Faci-Lázaro, P. S. Skardal, E. C. Boghiu,
J. Gómez-Gardeñes and A. Arenas. In peer-review process (Comm. Phys. 2022)

where the naming of synchronization bombs is chosen to illustrate the idea that we can
design networks of oscillators to be at the onset of total synchrony in which they show no
dynamical coherence but, after applying a minimal wiring (just one or few links), display
synchronization explosions. Before exploring our proposed model in depth in section 5.3,
we employ section 5.2 to give some historical background on the key advances made
about the study of explosive percolation and synchronization phenomena. A brief review
of these pioneer results will allow us to better motivate our model and to highlight the
open problems that can be addressed here.

5.2 percolation and synchronization : a missing explosive link

Network percolation studies the behavior of macroscopic structural properties –measured
by the so-called order parameters– when links or nodes are added/removed into the net-
work. The most used order parameter in percolation is the relative size of the giant compon-
ent (SGC), which captures the proportion of the nodes that belong to the largest connected
cluster. It is bounded between zero (a system of isolated, disconnected units) and one (a
single connected component spanning the whole network). Accordingly, one important
goal of percolation theory is to predict the behavior of the SGC under small changes in the
density of links or nodes in the network, which play the role of the control parameter.

Percolation represents one of the simplest models in which macroscopic phase-
transitions emerge, and its analysis finds several applications. The first results were intro-
duced in the study of polymers growth in the 1940s [249, 250], and the problem was then
addressed by the mathematical community, under the so-called bond-percolation frame-
work [251] (considering the addition or removal of links or edges). Later on, more soph-
isticated frameworks were developed to study percolation in random, Erdös-Rényi graphs
[81] and lattices of different dimensions, focusing on the prediction of the threshold and
the classification of the transitions in different universality classes depending on the scal-
ing of the order parameter near the transition point. We refer the reader to [252] for a
careful review of these results. With the renewed advance of network theory and the in-
creasing amount of available data in the current century, percolation theory gained even
more popularity. Researchers have studied the robustness and resilience of systems like
the power-grid or the Internet against structural failures and the fragility of ecological
systems and food webs, to name a few examples [2, 57, 58, 87]. A milestone in percola-
tion research was achieved in 2009 with the discovery of explosive percolation (EP), an
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abrupt growth of the giant component of the network induced by the addition or removal
of single links, that was found to occur when competitive rules (also known as Achlioptas
processes, check Fig. 5.1 for more details) are applied on the choice of the links in a way
that the formation of a giant cluster is delayed [253]. Discovering this abrupt structural
transition, which was shown to be continuous (i.e. second-order) in the thermodynamic
limit but with anomalous scaling properties [143], triggered further analyses to understand
the mechanisms that can lead to the explosive behavior in the network growth. We refer
the reader to detailed reviews [143, 241] but we remark the idea that allowing choices on
the links that are selected in the percolation process is crucial to control the anticipation or
delay of the percolation transition.

Advancing in parallel, abrupt transitions have been analyzed when a physical process
is running among the units, as the spreading of a disease [195, 254], opinion diffusion
[255] or traffic flow [256, 257], to name a few examples [143, 241]. Among the myriad of
processes, the synchronization of heterogeneous coupled oscillators emerged as a partic-
ularly suitable framework to model the birth of explosive transitions [5, 6, 62, 258, 259].
For populations of globally coupled phase-oscillators, abrupt transitions in synchrony as
the coupling parameter is increased and hysteresis were found to occur for particular
frequency distributions as the bounded uniform [260] and the bimodal one [123]. How-
ever, the phenomena of explosive synchronization (ES) emerging from the interplay of
structure and dynamics was firstly discovered for scale-free networks when one imposes
positive correlations between the internal frequencies and the nodal degrees [108]. Further
analyses showed that this is only one of the possible mechanisms that inhibit the emer-
gence of a large synchronization cluster, and it was found that, by imposing frequency
anti-correlations among connected units in the form of frequency gaps [109] or adapt-
ive anti-Hebbian rules for the weights [261], explosive transitions occur as the coupling
constant is tuned. Furthermore, they can appear in multilayer and dynamically coupled
systems [142, 262] and they can be enhanced by the presence of noise in the frequencies
[178] and higher-order -beyond pair-wise- interactions [125].

Research on ES and EP has focused on abrupt changes on macroscopic dynamical and
structural properties, respectively, under small variations of the control parameter (the
coupling strength or the density of links). In [263], it was found that a particular choice
of frequency-dependent coupling (inducing again anti-correlations) produces ES process
and the formation of synchronized clusters is delayed analogously to its percolation coun-
terpart. These results unveil a first connection between both phenomena, but the choice
on the coupling dependence is heuristic and the system produces the explosive behavior
under changes in a global control parameter (the coupling strength), unlike the EP which
is induced locally, by addition or removal of single links. Interestingly, in the previous
chapter we have seen that the microscopic requirements for ES (namely frequency-degree
correlations and frequency-frequency anti-correlations) naturally emerge from the optim-
ization of the strongly synchronized, linearized, state [231]. Also, very recently, it has been
found that these requirements can also be found by minimizing the threshold at which the
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phase-locking state is lost, and when these constraints are imposed ad-hoc in the system,
explosive transitions indeed emerge [264].

Figure 5.1: a) Evolution of the relative size of the giant component depending on link density for
different percolation models. a) Black curve corresponds to the standard –random– per-
colation process in the ER model, blue corresponds to a Bohman-Frieze (BF) process,
and the red one to the Product Rule (PR) process. Both BF and PR are considered Achli-
optas Processes, i.e. competitive m-link percolation processes (with a fixed m = 2) but
only the PR process induces an abrupt jump of the giant component at a critical density
of links. The BF uses a bounded-size rule (in which connected components of size larger
or equal than two are treated equally) to decide the selected link and the PR is based
on an unbounded-size rule, that takes into account the actual size of the components
merging the potential links. In b) we show a schematic representation of the PR process,
where two links are randomly sampled but only the link for which the product of the
size of the giant components connecting the links is larger, is selected (in this example
e1). Bottom: pioneer results on ES phenomena under the framework where the frequen-
cies of the oscillators are correlated with the degrees of the nodes [108], i.e. ωi ∼ ki. c)
corresponds to the evolution of the synchronization order parameter r depending on
the coupling strength, here named K, for a fixed random ER network where the correla-
tion does not induce the explosive phenomena and d) corresponds to the same process
in a fixed SF network with exponent γ = 3. In the latter, we observe that the imposed
correlation leads to an abrupt jump in the synchronization order parameter r and the ap-
pearance of a hysteresis cycle, where large synchronization values are sustained in the
backward process (blue curve, decreasing K) below the forward transition (red curve,
increasing K). The hysteresis cycle indicates bi-stability, meaning that, in this region of
K there are two stable points of the order parameter depending on the initial conditions
of the oscillators. Reprinted by permission of [108, 253].

By gathering all these previous results, we realize that our fundamental understanding
of ES has significantly increased lately, but due to the analytical challenges faced when
modeling synchronization dynamics on arbitrary complex networks, a rigorous framework
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analogous to EP is still missing [143]. Apart from the theoretical interest, there is a strong
empirical evidence that ES phenomena is behind the operation of biological switches and
neural systems displaying abrupt responses to external perturbations [30, 242–246, 265,
266]. Evidence show that biological units operate with limited, decentralized information
and are affected by noise [16, 155–157]. Thus, the ubiquity of ES cannot be driven by
global and deterministic optimization routes, specific network and oscillator designs or
global fine-tuning of coupling parameters, and it is still not very well understood how
complex biological systems like the brain can self-organize to display the observed abrupt
behavior [243, 265, 267].

5.3 the model

We return to the more controllable realm of theory to tackle the aforementioned empir-
ical challenges by proposing and solving a minimal model of a self-organized dynamical
network that behaves as a synchronization bomb, i.e. showing an abrupt synchronization
transition in the course of a self-organized wiring process. Our model attempts to bridge
the conceptual gap between ES and EP by imposing local structural perturbations instead
of global ones and proposes a self-organized and stochastic route to ES by invoking a
simple principle of synchrony maximization in a decentralized and noisy environment.

We begin, as always, with the standard Kuramoto model, and we extend it later on to
other dynamics. We consider a large ensemble of N heterogeneous Kuramoto oscillators
interacting on top of a network follows the equations of motion

θ̇i = ωi + K
N

∑
j=1

aij sin(θj − θi), ∀ i ∈ 1, . . . , N, (5.1)

where, as usual θi is the phase and ωi is the intrinsic frequency of the i-oscillator, aij

are the entries of the adjacency matrix A, that capture the interactions among the units
and K is a constant coupling strength. We will also consider here that the macroscopic
behavior of the system is captured by the modulus of the Kuramoto order parameter r(t) =
(1/N)

∣∣∣∑N
j=1 eiθj(t)

∣∣∣, which measures the degree of phase synchronization and is bounded
between zero and one. In the following, we will work only with temporal averages of the
order parameter, i.e. r = 〈r(t)〉, neglecting fluctuations in time, and we initially consider
unweighted (aij = 0, 1) and undirected networks (aij = aji), although results will also be
extended to more general set-ups. Regarding the distribution of internal frequencies, we
assume g(ω) with zero mean and fixed variance, giving special attention to the uniform
distribution g(ω) ∈ [−γ, γ] for analytical convenience, but we will also show results for
alternative, perhaps more realistic, choices of g(ω).

A first ingredient of our model that makes it deviate from most of previous works [143]
is that we keep the coupling strength K constant during the percolation process, and it is
the density of links or connections in the network, p, that acts as the control parameter,
with the parameter p ranging from 0 (disconnected network) to 1 (fully-connected, all-to-all
network). We initialize our system from scratch, with a completely disconnected network
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(p = 0) of oscillators with assigned random phases drawn from (−π, π). We then run
the percolation processes in the forward –construction– direction by adding undirected
links (increasing p) in a sufficiently slow manner such that the system in Eq. (5.1) reaches
the stationary state at each network step in the process (what is known as an adiabatic
process). In the backward –destruction– process, we assume that the system has some sort
of memory and choose to remove the links in the reversed order of the forward process,
Numerical results show that the phenomena of this model also holds in a scenario with an
alternative backward stochastic branch (therefore with a lack of memory), but its study is
left for further research.

The second novel ingredient of the model is that the percolation rule that is used to
select the added/removed link in the process is derived from a minimal self-organized
principle, with the assumption that the system attempts to maximize the overall degree
of synchrony using only local information available at the surroundings of the units. For
this purpose, we use the geometric unfolding of the synchronized state, introduced with
rigorous detail in the previous chapter, since is the mathematical tool that allow us to study
networks of phase-oscillators in the scenario of decentralized information. Using this tool,
in section 4.4.2 we obtained a local approximation of the degree of synchrony r and applied
it to estimate the impact that adding or removing single directed and undirected links has
on the global behavior. The calculation for the directed case was then used in 4.4.3 to
successfully predict the counter-intuitive Braess Paradox effect in random networks.

Here, we initially consider the calculation obtained for the undirected case, given by
Eq. (4.71), the formula that approximates the impact of adding or removing an undirected
link using only local information. The key point here is that we use this result to optimize
the synchrony of the system in a link percolation process that evolves under stochastic,
noisy dynamics. The self-organized ingredient is precisely the fact the system exploits
decentralized information in a competitive manner, since there is no global function that
optimizes the growing structure. We rewrite here the approximation of ∆r in Eq. (4.71) for
the sake of clarity, which is given by

∆rij =
±1

K2N

(
ωi

ki
− ωj

k j

)(
ωi

k2
i
− ωj

k2
j

)
, (5.2)

referring the reader to section 4.4.2 for details on the derivation. We note that alternative
lines of calculations, including both discrete (considering single link perturbations) and
continuous (using derivatives with respect to the degrees) in the limit of large degrees
(ki � 1) all lead to Eq. (5.2). It is important to remark that one could obtain more accur-
ate rules for the maximization of r by using the exact result for the phases given by the
SAF framework introduced in the previous chapter, or by including higher-order terms
beyond the local approximation, although this increase of accuracy would require to use
either spectral (thus global) information or to go beyond the local variables up to second-
neighbors and so on. Interestingly, we note that a quadratic approximation of Eq. (5.2) as
∆r ∼ (ωi/ki − ωj/k j)

2 also induces the explosive phenomena via linear correlations of
frequencies and degrees, and it may simplify the analytical treatment, but its study is left
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for further research. Importantly, we use Eq. (5.2), a particular rule from a broader class of
rules p(ki, k j, ωi, ωj) because it is the one that satisfies our decentralized and self-organized
assumptions.

The addition (removal) of a new link at each p-step is made in a competitive man-
ner, by randomly sampling M pairs of oscillators and selecting the connection (i, j) that
maximizes the decentralized gain (or minimizes the loss) of synchrony after its addition
(removal) given by the rule in Eq. (5.2). The reader should note that the proposed model is
stochastic in nature and belongs to the family of m-edge Achlioptas Process [143], becom-
ing completely deterministic in the limit M → ∞ and equivalent to a random percolation
for M = 1. Importantly, the function o select the link among the M sampled ones does
not depend only on structural properties as occurs in standard percolation cases, but also
on dynamical information contained in the frequencies of the units, i.e. a feature-enriched
percolation process [235].

Figure 5.2: a) Illustrative network of N = 50 oscillators where the size of the node is proportional
to its degree, the color is related to its natural frequency (blue for ω = −1, gray for
ω = 0 and red for ω = 1) and the black lines represent the links between the oscillators.
Green lines mark the M = 5 potential links sampled in that p-step. The continuous line
represents the chosen link and the dashed ones are the discarded ones. b) Histogram of
the ∆r values for the existing links of the network, where red lines correspond to the
values of the five sampled links. c) Example of the typical synchronization transition
in our bomb-like model, with the order parameter r depending on the fraction of links,
p in a system of N = 200 Kuramoto oscillators for three values of noise M. Temporal
averages of r are taken at each link change. In d), we represent the oscillators phases
for the M = 10 case before (left) and after (right) the forward transition. Note that the
jump in the Kuramoto order parameter from incoherence to complete phase–locking
takes place just with the addition of one link. Reprinted by permission of [248].
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We can already explore the basic mechanisms and phenomenology that our system
displays. In the left panels of Fig. 5.2, we illustrate a schematic representation of the process
when the number of sampled links at each p-step is fixed to M = 5. In the right panels of
Fig. 5.2, we show the forward and backward synchronization curves r(p) when different
values of M are used. In Fig. 5.2.c), we observe both the abruptness of the jump and the
region of hysteresis increase with M. In Fig. 5.2.d), we observe that the transition from
incoherence (r ≈ 0.05) to full phase-locking (r ≈ 0.9) when a single link is added to the
system, in the so-called synchronization bomb.

5.3.1 Emergence of structural explosive fingerprints

We focus on the evolution of network structural properties during the course of the
percolation process when the rule of Eq. (5.2) is applied. This mechanism induces the
emergence of several patterns that are usually associated with explosive transitions in the
literature [143, 231]. In Fig. 5.3, depicted at the end of the section, we visualize a summary
of these three findings.

Degree-frequency correlations and frequency-frequency anti-correlations. The competi-
tion between degrees and frequencies that occurs in the rule of Eq. (5.2) –since ωi appears
in the numerators and ki in the denominators of the expression– produces a stationary de-
gree distribution that scales with system density. The rule tends to connect oscillators with
very different frequencies, which in turn increases their degree and reduces the chances of
making new connections. The dynamical balance of both quantities tends to homogenize
the values of ∆rij among the new potential links and naturally induces a stationary posit-
ive correlation between frequencies and degrees. Since the scaling of the rule is given by
∆r ∼ ω2/k3, we find that, in the deterministic (large M) regime and considering a uniform
distribution with ω ∈ [−γ, γ] the correlation is given by

ki '
5
3

pNγ−2/3|ωi|2/3, (5.3)

where the scaling factor that depends on p is obtained by imposing a normalization
condition ensuring that the sum of degrees equals the number of links 〈k〉 = pN. Eq. (5.3)
becomes more accurate as noise is reduced in the system, as observed Fig. 5.3.a). In
Fig. 5.3.b), we also see that, as a direct consequence of applying the percolation rule,
frequency anti-correlations among connected nodes are also present in the system and
increase as the rule becomes more deterministic (large M). These type of correlations are
explicitly imposed in the majority of studied mechanisms that induce ES [143, 241], but
interestingly here they emerge from a decentralized optimization of the synchronized
state. We explain now, using the spectral properties of the network, how these dynamical
anti-correlations translate into structural ones.
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Spectral signatures: towards optimal and bipartite networks. We observe in the central
panels of Fig. (5.3) that the network evolves towards maximizing the largest eigenvalue of
the Laplacian matrix L = D − A and the largest negative eigenvalue of the normalized
Adjacency matrix Â = D−

1
2 AD−

1
2 . In the insets, we can see how the frequency vector

ω tends to align with the entries of the associated extreme eigenvectors. These spectral
signatures unveil that the system is evolving towards optimal and bipartite configurations.

First, it is well understood that optimal synchronization is reached by the alignment
of the frequencies with the largest eigenvector of the Laplacian matrix and by increasing
the magnitude of the associated eigenvalue µmax(L) [118]. This concept is introduced in
detail in previous chapters, specifically in chapter 2.3, where we discuss the main results
in the context of the SAF framework. We also explored the connection between optimal
synchronization and local correlations in chapter 4.3.3 where we explained how the
alignment of the frequencies with the largest eigenvector of L induces anti-correlations
among the neighbor frequencies of the nodes. Second, considering that the normalized
Adjacency matrix, defined here as Â is a stochastic row sum, its spectra is bounded in
µ̂ ∈ [−1, 1], with the largest eigenvalue µmax(Â) = 1 if the network is connected. The
remaining of the spectra follows Wigner’s semicircle law for random networks, becoming
narrower as the link density increases, and it deviates from the random case in the
presence of modules (shifting towards positive eigenvalues) or bipartite-like structures
(shifting towards negative eigenvalues), an effect that we already discussed in section
4.3.3 and in [231]. Accordingly, in Fig. 5.3.d) we observe that bipartite patterns arise as
determinism is increased (larger M) and the trajectory of the extreme eigenvalues tuple
follows a clear asymmetric path in the route towards the all-to-all (p = 1) limit. This effect
clearly shows that the rule derived in Eq. (5.2) induces negative structural correlations (in
terms of bipartite patterns) as a consequence of the negative dynamical correlations that
emerge in terms of natural frequencies, and vice-versa.

Delayed percolation threshold. Now we wonder to which extent this synchrony-driven
percolation process deviates from the natural one (when links are chosen at random) and
what occurs to the critical threshold. To tackle these points, we measure the growth in size
of the giant component (SGC) as we increase the control parameter p in our model, for
different values of the noise parameter M and network sizes N. In Fig. 5.3.e) we observe
how the proposed rule clearly delays the percolation threshold with respect the random
case, producing in fact more abrupt transitions. The nature of the transition appears to be
continuous (i.e. second order) even for large system sizes, although the proposed rule signi-
ficantly delays the structural transition. We confirm this effect by studying more closely the
effect of systems parameters in Fig. 5.3.f), where it is shown that increasing both the size
of the system (large N) and the determinism in the rule (large M), percolation transitions
become sharper and occur at higher p.

We can obtain a rough approximation for the critical density associated to the value
of the percolation threshold by using the well-known Molloy and Reed criterion [268], a
celebrated result that is derived in the context of random networks with arbitrary degree
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distributions. This criterion involves a rather technical mathematical proof but relies on
the simple idea that in order to have a connected component spanning the whole network,
each node has to be connected, in average, to two neighbors (as it would occur in a one-
dimensional chain). The Molloy-Reed criterion for random graphs predicts the critical
density for a macroscopic giant component to exist when the condition

〈k2〉 = 2〈k〉, (5.4)

is satisfied. Eq. (5.4) has been used to predict the percolation threshold in random ER and
SF networks [2], unveiling the interesting effect that networks with very heterogeneous
degree distributions have a vanishing small random percolation threshold, making them
very robust to random attacks to the nodes or links.

Here, we can use this criterion in the deterministic limit of our model (large M) and
neglecting the negative structural correlations that the rule induces (the bipartite patterns).
Then, by using the emergent correlation between frequencies and degrees explored in the
previous lines, we can compute the moments of the degree distribution depending on the
g(ω) and in terms of our control parameter, the density of the links p. For a uniform
distribution g(ω) = 1/(2γ) with ω ∈ [−γ, γ], we have that the correlation is given by
Eq. (5.3). Then, we can compute the moments as

〈k〉 = 5
3

pNγ−2/3〈|ω|2/3〉 (5.5)

〈k2〉 = 25
9

p2N2γ−4/3〈|ω|4/3〉. (5.6)

The moments of the distribution of |ω| are computed by direct integration. After substitut-
ing in Eq. (5.4) the resulting expressions, we obtain

prule
c =

42
25
· 1

N
. (5.7)

For the random percolation case, it is well understood that the threshold occurs at pc =

1/N [2] and therefore, the new threshold induced by applying our percolation rule can be
written as

prule
c = 1.68 · prand

c , (5.8)

which highlights that the rule delays the threshold with respect to the random case, as a
consequence of having a broader degree distribution. In Fig. 5.3.e) we observe that Eq. (5.8)
works well for sufficiently large M. The reader should note that a similar calculation could
be done for other g(ω), but results would change because the distribution of frequencies
affects the percolation threshold in our rule-dependent process. Importantly, the previous
calculation, despite its remarkable success at predicting the percolation threshold, neglects
important structural correlations in the underlying network. More sophisticated analytical
tools, as the recently developed feature-enriched percolation framework [235], could im-
prove the predictions under local rules, such as Eq. (5.2), that exploit information both
from the degrees and the frequencies of the units.
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Figure 5.3: a) Scatter plot of the tuples (|ωi|, ki) and b) (|ωi|, 〈ω〉i) -where 〈ω〉i is the average fre-
quency of the neighbors of the ith-node- for each oscillator at p = 0.1, in a single realiz-
ation of the forward process, for three values of noise and N = 200, including in a) the
deterministic prediction of Eq. (5.3). c) Scatter plot of the largest negative and positive
eigenvalues of the Laplacian matrix and the normalized Adjacency matrix (d) at differ-
ent p-steps of the forward process for different values of M. In the inset, we plot the
relative correlation αi = 〈ω, vi〉 between the frequency vector and the eigenvector of L
(or Â) associated with the largest (or minimum) eigenvalue. e) Evolution of the average
size of giant component (SGC), for noise ranging from the random scenario of (M = 1)
to a more deterministic one with (M = 20) in a network of size N = 5000. Results are
averaged over 20 realizations of the process. Inset in e) shows a single realization in
log scale. In f) we show the effect of network size on the percolation transition for the
M = 1 (left) and M = 20 (right) scenarios. It is observed that larger and more determin-
istic networks under the rule of Eq. (5.2) experiment sharper transitions. Reprinted by
permission of [248].
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5.3.2 Analytical characterization of the Kuramoto bomb

It is time to focus on the dynamical aspects of our model, in particular on the interesting ES
transitions induced by single link changes that we observed in Fig. 5.1. The main questions
that we can address by solving the model here are related to the dependence of the main
parameters, namely how the coupling strength K, the noise parameter M in the percolation
process, the size of the network N and the choice of the frequencies via g(ω) affect the
nature and location of the synchronization transitions. The main findings of this section
are summarized in Fig. 5.4.

Backward predictions using the CC ansatz

To this date, one of the most precise approaches in the literature to capture the reduce the
dimensionality in oscillator networks described by Eq. (5.1) and also to take into account
the finite-size effects of the system is given by the model reduction technique based on
Collective Coordinates, introduced first by Gottwald to mean-field systems [145] and ex-
tended to complex networks in [146]. We have already discussed this approach in section
2.4.2. The idea is that we can use this technique to estimate the values of the phases for the
oscillators at any given p-step, the corresponding order parameter r(p) in the backward
branch and, additionally, we can calculate the backward synchronization threshold, that
we define as pb

c . As we explained, the key step of the method is to reduce the dimension-
ality of the system by considering, as an ansatz, that the phases of the oscillators in the
phase-locking regime are in the form θi = q(t)ψi where ψi is the exact solution of the
linearized dynamics of Eq. (5.1) [118], i.e. ψi = K−1L†ω. By minimizing the error made by
the ansatz in the full system and after some manipulation [146], one ends up with only
one differential equation for the evolution of the q coefficient, thus drastically reducing
dimensionality, from N coupled differential equations to a single one. We rewrite here the
reduced equation, that reads as

q̇ = 1 +
1

ψT Lψ ∑
i,j

ψi sin(q(ψj − ψi)). (5.9)

At a given p-step of the process, we compute the linearized solution ψ via the exact
pseudo-inverse of the Laplacian matrix. Then, we numerically find the value of q that im-
plicitly solves Eq. (5.9) for q̇ = 0 and finally compute the phases by applying the CC ansatz.
This method allows estimating the whole stationary curve for the order parameter r(p, K)
in the backward direction, when the system is in the phase-locking regime (meaning that
all of them rotate at the same frequency). This approach requires some a fast numerical
computation and it just exploits static and global information of the system (from A and
ω) meaning that we can use it off-line, without any need of integrating the full dynamics. It
is worth mentioning here that one could exploit the truncated geometric unfolding of the
synchronized state, introduced in detail in the previous chapter, and in particular the geo-
metric version of Eq. (5.9) given by Eq. (4.32) to estimate the solution of the full non-linear
system using only local information in terms of frequencies ω and degrees ki and that this
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approach may allow obtaining approximated closed form solutions for the evolution of
r(p) in the backward process of our model.

Furthermore, we employ an explosive trick to predict the appearance of the backward
critical threshold (pc, Kc) with the same technique. The trick relies on assuming before-
hand that, in the explosive regime of our system, the backward process transits from full
phase-locking to complete incoherence. With this idea in mind, we predict the backward
threshold by looking at the last value of pc for which Eq. (5.9) has a solution. Additionally,
we need to check that the solution is stable, meaning that the system returns to the state
after a small perturbation is applied. We apply here a standard linear stability analysis to
check for stability, described as follows.

Our non-linear dynamics given by the system in Eq. (5.1) can be expressed as

dθ

dt
= F(θ). (5.10)

By applying a Taylor expansion around an equilibrium point θ∗, we get

F(θ) ≈ F(θ∗) +
∂F
∂θ
|θ=θ∗(θ − θ∗). (5.11)

The equilibrium θ∗ is a fixed point of the system, meaning that F(θ∗) = 0. Setting δθ =

θ − θ∗, we can write
d(δθ)

dt
= J(θ∗). (5.12)

The matrix J is known as the Jacobian matrix, a non-linear matrix that encapsulate all
the partial derivatives of the non-linear system with respect to the system variables. Since
the matrix is evaluated around a fixed point, θ∗, J is constant and independent of θ, and
therefore the system of Eq. (5.12) can be solved exactly as a superposition of normal modes
[116]. The general solution of Eq. (5.12) reads as

θ(t) = θ∗ +
N

∑
i=1

aivieKit, (5.13)

where Ki and vi are the i-th eigenvalue and eigenvector of J(θ∗) and ai are constants
determined by initial conditions of the perturbation, θ(t = 0). From Eq. (5.13) one can see
that, for an arbitrary small perturbation, the system will relax towards the equilibrium θ∗

if and only if all the eigenvalues of J are negative. For the particular case of the Kuramoto
model, the entries of the Jacobian matrix evaluated at the equilibrium point θ∗ = q∗Ψ are
computed using Jij = ∂θ̇i/∂θj. It is straightforward to show [69, 146] that the Jacobian of
our system reads as

Jij = aij cos(q∗(ψj − ψi)), i 6= j

Jij = −∑
k

aik cos(q∗(ψk − ψi)), i = j. (5.14)

As mentioned, the system is stable if all the eigenvalues of J are negative. Thus, the back-
ward critical threshold occurs at the last value of the link density pc (which appears impli-
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citly in J via the adjacency matrix A) at which Eq. (5.9) admits a solution that is linearly
stable. The explosive trick is particularly useful to simplify the calculation because, when
considering transitions from full phase-locking to incoherence, we do not need to compute
a partial synchronized solution involving clusters of smaller size than the whole network
[146]. In other words, we predict the loss of stability of the full phase-locking state, which
in the explosive regime of our system corresponds to the desired backward synchroniza-
tion threshold. The agreement between this prediction based on collective coordinates and
numerical simulations becomes evident in the backward synchronization diagrams shown
in Fig. 5.4.a) for K = 0.02 and 0.04 (M = 10).
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Figure 5.4: a) Examples of synchronization curves, r(p) for a rule dependent (M = 10) case in a
network of size N = 200 and fixed coupling to K = 0.02 and K = 0.04. Measurements
here are taken every 40 links and results are obtained in a single realization of the pro-
cess. b) Synchronization phase-space depending on M and p for a fixed K = 0.05. In
the three panels, dashed (solid) lines correspond to the theoretical predictions of the for-
ward (backward) synchronization thresholds, and circle markers in a) to the analytical
prediction of the whole backward curve. c) Synchronization phase-space depending on
K and p for a certain level of sampling noise M = 10, where the color-map indicates
whether the system is in the incoherent, bistable or phase-locking regime. Results are
averaged over 20 realizations. Reprinted by permission of [248].
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Forward predictions with OA ansatz

Since our system departs from the incoherent state, in the forward direction we cannot
use the CC approach anymore, because the ansatz θi = q(t)ψi is not valid. From numerical
experiments, one sees that usually for M > 1, the incoherent state r ≈ 0 remains stable bey-
ond the backward critical transition, thus creating a bistable region and a delayed forward
transition. To predict the forward critical threshold by analytical means, we take the limit
of large size N and sampling/noise M (towards a deterministic rule applied in a large
system). In practice, the results become valid even for quite small values like N = 200 and
M = 5, but we remark that the theory is derived in the thermodynamic and deterministic
limit. Our approach is based on the celebrated OA ansatz [122], introduced in section 2.4.1,
which has been successfully used to deal with frequency and degree correlations [110, 126,
269]. Our calculations benefit from the recent development of [126], where the mean-field
dynamics of Janus oscillators (a verstaile model of synchronization) are solved.

We begin by defining the local order parameter Ri = ∑j aijeiθj such that Eq. (5.1) can be
written as

θ̇i = ωi + Im[eiθi Ri] ∀ i ∈ 1, . . . , N. (5.15)

Following [126], we take a large ensemble of systems, which state is captured by the joint
probability density ρ(θ, ω, t), with θ = (θi, . . . , θN) and ω = (ωi, . . . , ωN). The evolution of
the joint probability has to satisfy the continuity equation [122]

∂ρ

∂t
+

N

∑
i=0

∂

∂θi
(ρθ̇i) = 0. (5.16)

where θi follows Eq. (5.15). One multiplies the density function ρ by ∏j 6=i dωjdθj and integ-
rates to obtains the evolution for the marginal oscillator density, ρi(θi, ωi, t) as

∂ρi

∂t
+

∂

∂θi
(ρi θ̇i) = 0. (5.17)

Now, one can apply the OA ansatz by expanding ρi in a Fourier series and setting the coef-
ficients of the expansion to bi,n = αn

i [122, 126], as explained in section 2.4.1. By inserting
the Fourier series with the OA ansatz in Eq. (5.17), one obtains

α̇i + iαiωi +
K
2
(α2

i Ri − R∗i ) = 0, ∀ i ∈ 1, . . . , N (5.18)

Ri = ∑
j=1

aij

∫ ∞

−∞
α∗j (ωj, t)g(ω)dωj, ∀ i ∈ 1, . . . , N. (5.19)

where R∗ and α∗j are the complex conjugate and i the imaginary unit. Now we invoke
the large M assumption. In this limit, the underlying network is purely bipartite, separ-
ated between nodes with positive frequencies and nodes with negative ones (see previous
Fig. 5.3.c)-d)). Also, the frequencies of the oscillators are completely controlled by their
degrees. Then, we look for solutions αi = αk,± [126], reducing the problem to find the
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coefficients of degree classes in the two groups. The local order parameter in this setting
is written as [126]

Rk,± =
k
〈k〉∑

k′
k′pk′α

∗
k′,±. (5.20)

The frequencies of the degree classes in the two groups are driven by the percolation rule.

For a wide p range, we have ωk,± = ±
(

k
c

)3/2
. The parameter c is a scaling constant given

in Eq. (5.3). Then, the resulting system can be written as

α̇k,+ = −i
(

k
c

)3/2

αk,+ +
Kk

2〈k〉

[
∑
k′

k′pk′αk′,− − α2
k′,+ ∑

k′
k′pk′α

∗
k′,−

]
(5.21)

α̇k,− = +i
(

k
c

)3/2

αk,− +
Kk

2〈k〉

[
∑
k′

k′pk′αk′,+ − α2
k′,−∑

k′
k′pk′α

∗
k,+

]
. (5.22)

We aim at evaluating the stability of the incoherent state, here αk,± = 0. To do so, we
linearize the system and evaluate it around αk,± = δαk,± � 1. After neglecting small terms
of order δα2, and doing some algebra, the dependence on the complex conjugates vanish
and one ends up with the following system for each degree class

δα̇k,+ = −i
(

k
c

)3/2

δαk,+ +
Kk

2〈k〉∑
k′

k′pk′δαk′,− (5.23)

δα̇k,− = +i
(

k
c

)3/2

δαk,− +
Kk

2〈k〉∑
k′

k′pk′δαk′,+. (5.24)

We define the variables δx = ∑k′ k′pk′δαk′,+ and δy = ∑k′ k′pk′δαk′,−, and sum over degree
classes (taking into account the degree distribution), to be able to write

∑
k

kpkδα̇k,+ = −i ∑
k

(
k
c

)3/2

kpkδαk,+ + ∑
k

Kk2 pk

2〈k〉 δy (5.25)

∑
k

kpkδα̇k,− = +i ∑
k

(
k
c

)3/2

kpkδαk,− + ∑
k

Kk2 pk

2〈k〉 δx. (5.26)

Approximating ∑k k5/2 pkδαk,+ ≈ 〈k3/2〉δx and ∑k k5/2 pkδαk,− ≈ 〈k3/2〉δy, one arrives at a
2-dimensional variational system for the evolution of δx and δy that reads as

δẋ = − i〈k3/2〉
c3/2 δx +

K〈k2〉
2〈k〉 δy (5.27)

δẏ =
K〈k2〉
2〈k〉 δx ++

i〈k3/2〉
c3/2 δy (5.28)

It is now straightforward to show that the critical condition for the stability of the incoher-
ent state is

c3/2K〈k2〉 = 2〈k3/2〉〈k〉. (5.29)

The eigenvalues of the Jacobian matrix change from being both imaginary to become both
real as density increases in the system. The fully imaginary spectrum predicts the exist-
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ence of a center attractor [179], indicating a marginal stability of the incoherent state. Ac-
cordingly, one may expect stationary oscillations of the order parameter [126]. Here these
oscillations appear too small to be observed in the forward process, because the system
is initialized with isolated units –in the incoherent state– and stays there as the network
evolves adiabatically. Fortunately, the forward abrupt transition to phase-locking is still
well predicted by the critical condition given by Eq. (5.29). When the eigenvalues become
real (a pair of positive and negative values), the marginal stability of the incoherent state
is lost via the appearance of what is known as an unstable saddle point, and the system
transits from incoherence to full phase-locking.

Finally, invoking the deterministic limit, we have that ki = c|ωi|2/3, and for a general
g(ω) the constant is given by c = 〈k〉/〈|ω|2/3〉. Then, a closed form for the forward critical
threshold p f

c is finally obtained as

p f
c =

2〈|ω|2/3〉2〈|ω|〉
KN〈|ω|4/3〉 . (5.30)

For a uniform distribution g(ω) ∈ [−γ, γ], one can explicitly solve the integrals that give
the expected moments and, after plugging these results in Eq. (5.30), one ends up with the
simple formula

p f
c =

21γ

25KN
. (5.31)

The predicted value p f
c is plotted in Fig. 5.4.a) showing again a remarkable agreement.

This analytical estimation allows addressing the aforementioned issue about the relation
between synchronization and percolation onsets by making use of Eq. (5.7) and Eq. (5.31).
Combining both expressions, a simple relation for the percolation pc and forward syn-
chronization p f

c thresholds is given by

pc ≈ 2Kp f
c . (5.32)

Eq. (5.32) is probably the most remarkable analytical result of the chapter. It illustrates the
natural connection between the structural and dynamical aspects of our model, proving
by analytical means that EP and ES transitions can emerge under the same mechanistic
framework, i.e. in a competitive percolation process.

We close our analysis by looking at the synchronization diagram in the (p, M)-plane,
shown in Fig. 5.4.b), and in the (p, K)-plane, shown Fig. 5.4.c). In Fig. 5.4.b), we observe
that, fixing K = 0.05, a saddle-node bifurcation collides/appears with a pitchfork bifurca-
tion and bistability emerges [125], i.e. the collision of the theoretical backward curve and
the approximated forward threshold successfully predicts the codimension-two point. This
critical point for which ES shows up takes place around M ≈ 5. In Fig. 5.4.c), we see that K,
the coupling parameter that does not play a role in the percolation process, it is crucial to
synchronization dynamics. The precise location of the synchronization thresholds can be
controlled from occurring simultaneously with the percolation one for large values of K,
to occur much later for smaller values of K and to finally disappear for sufficiently small K.
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Interestingly, the system transits more sharply for large K (low p), but has a wider region
of hysteresis for low K (large p).

In the remaining of this section, we explore the dynamics of the model for different
system sizes and values of the sampling noise, unveiling an interesting effect. We also show
that the phenomenology is robust to changes in the distribution of intrinsic frequencies,
and that our results also hold for directed networks. To round off proving the generality
of these findings, in the following section we will also extend the model to more realistic
biological and engineering contexts.

5.3.3 Finite-size and noise effects

First, we jointly consider the effect of size N and noise (via sampling parameter M). We
corroborate that the abruptness of the transitions occurring at single link changes holds
for increasing size, such that ∆r in a single step does not vanish as size grows [143]. We
observe in Fig. 5.5.a) and Fig. 5.6.a) that the mean maximum jump value increases with
size (towards red colors) and induces a macroscopic jump in r at single link changes, even
at large system sizes. The same effect occurs for the hysteresis area (which is normalized by
size N for proper comparison), which increases for large system sizes, as observed in Fig.
5.5.b) and Fig. 5.6.b). Interestingly, the dependence on noise, via the sampling parameter
M, is non-monotonous, showing a peak around M ≈ 50, maximized again at the largest
studied size.
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Figure 5.5: a) We plot the maximum difference of the average r between two consecutive link
changes in the forward (top) and backward (bottom) directions for different values of
M in log scale and for different sizes (from blue to red colors). b) We plot the nor-
malized hysteresis area A/N (sum of differences between r backward and r forward)
for increasing M and different sizes. We observe the monotonous dependence with N
and the non-monotonous dependence with M. Results are averaged over 10 realiza-
tions of the process. Each percolation process is run in both directions from p = 0 to
p = 20/N, corresponding to a maximum mean degree 〈k〉 = 20, using Heun’s method,
with dt = 0.05 and 103 steps, discarding the first half for averaging r. Coupling strength
is set to K = 0.05 and g(ω) ∈ [−1, 1]. Reprinted by permission of [248].
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We explain the counter–intuitive effect of the local rule better sustaining synchrony as
noise is widely present with the following argument: The rule is derived using local in-
formation, such that higher-order effects are neglected by assumption. However, applying
the rule itself makes higher-order effects more important (inducing structural and dy-
namical anti–correlations). Therefore, the local prediction of ∆r deviates from the exact
one as we advance in the percolation process, producing negative feedback that penal-
izes the maximization of ∆r as the M-sampling increases. In this context, a precise value
of sampling (noise) leads to the optimal performance. Luckily, we can still find the op-
timal value of M in a particular setting without running the dynamics. Due to the proven
goodness of the CC ansatz in the explosive regime, finding the M that maximizes syn-
chrony in the linearized regime (which can be directly computed via the aforementioned
pseudo-inverse Laplacian) will turn out to be the M that maximizes ES behvior. However,
the reader should note that the proposed model is intrinsically noisy, and the location of
the synchronization transitions may vary between different realizations of the process. Al-
ternative –deterministic– methods to build synchronization bombs may be interesting to
remove this uncertainty, but the current mechanism is intentionally designed in the pres-
ence of noise. The noisy aspect turns out to be crucial to the optimal performance of our
synchronization bomb.
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Figure 5.6: a) We plot the maximum difference of the average order parameter between two consec-
utive link changes in the forward (top) and backward (bottom) directions for increasing
size N in log scale and for different sampling/noise M (from blue to red colors). b) We
plot the normalized hysteresis area A/N (sum of differences between the values in the
backward and forward curves) for increasing values of N and for different samplings
M. We observe, from a complementary perspective, the monotonous dependence with
N and the non-monotonous one with M shown in Fig. 5.5. Parametrization is the same
as in the previous figure. Reprinted by permission of [248].
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5.3.4 Robustness to varying parameters

Here we extend our results considering a more general parametrization of the model.
In particular, we analyze the output of the model for different distributions of internal
frequencies and considering also the case of directed (non-symmetric) interactions.

Effect of the frequency distribution

Here we consider that g(ω) is drawn from a normal distribution and a bounded bimodal
one, generated with a Beta(0.1, 0.1) distribution, a family of continuous probability distri-
butions defined on the interval [0,1], fixing the mean to zero and the variance to σ2 = 1/3,
in order to compare against the uniform case in [-1,1] used in all the other experiments,
which has the aforementioned variance. From Fig. 5.7, one can observe that a clear bistable
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Figure 5.7: We plot the synchronization phase-space depending on M and p for a fixed K = 0.05
for a) Gaussian a) and b) bimodal distribution of frequencies with mean zero, 〈ω〉 = 0
and variance σ2 = 1/3. Dashed (solid) lines correspond to the theoretical predictions of
the forward (backward) synchronization thresholds, and the colorbar shows the legend
for both rb (backward) and r f (forward). Reprinted by permission of [248].

region in the plane (p, M) is present for these choices of g(ω). The bistable region is lar-
ger for the bimodal distribution than for the Gaussian one, which means that having a
more polarized distribution of frequencies enhances the explosivity of the system, a result
that one could expect from the construction of the model. In the Gaussian case (less po-
larized than the uniform one), the bistable region is much narrower, as can be observed
in Fig. 5.7.a). In the latter case, the prediction of the backward synchronization threshold
(solid line) is less accurate than in other scenarios for low M. This source of error can
be explained by noting that the CC method [145, 146] used in our model is based on an
explosive trick. The trick assumes that the whole system is in the phase-locking state before
the (backward) transition. This assumption does not hold for a Gaussian distribution of
g(ω). It seems that the global phase-locking state is not supported by the overall network
(but by a large fraction of the oscillators), and the value at which the full phase-locking
state loses the stability does not coincide with the backward synchronization threshold.
Nevertheless, this theory can be still used by finding the largest synchronized cluster of a
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given size smaller than N, although this improvement would require larger computational
costs [146]. The forward prediction (dashed line), based on the OA ansatz [122], does not
suffer from this issue and captures well the critical threshold even for high values of noise
(low sampling M).

Extension to directed networks

We close this section by shifting from undirected networks to a more general setting by
allowing directed, asymmetric connections. We can leverage the results presented in [231]
and in section 4.4.2, and use a modified version of our percolation rule, Eq. (5.2), that
accounts for the directionality of links and predicts the change of synchrony with local
information. The directed rule given by Eq. (4.70) can be written as

∆rij = ±
1

Nki

[
ωi

ki

(
ωj

k j
− ωj

k j

)]
, (5.33)

where ∆rij accounts for the change in r after adding (or removing) a directed link coming
from j to i, and ki = ∑j aij is the in-degree of the i-node.

Figure 5.8: a) We plot the synchronization curves depending on p for two values of sampling/noise,
M = 2 (black) and M = 10 (red). Measurements are taken at every single link. Paramet-
rization is the same as in previous figures, and coupling strength is set to K = 0.025. b)
Numerical diagram in the (p, M)-plain. Colormap shows the corresponding values of r
in the forward and backward directions. Results are averaged over 25 realizations of the
process. Reprinted by permission of [248]

We wonder to which extent the ES found in our model remain present in the directed
scenario. The answer is affirmative: we numerically found that the bomb-like transitions
occur at single directed link changes when the rule of Eq. (5.33) is applied. In Fig. 5.8.a),
we show two examples of the synchronization curves in the forward and backward dir-
ections, observing an abrupt synchronization diagram, with its associated hysteresis, that
occurs for a sampling parameter M = 10, but it is completely absent for a much lower
value M = 2. In Fig. 5.8.b) we plot the phase-space depending on both the density p and
sampling/noise M. Interestingly, for the coupling value K = 0.025, the hysteresis window
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is quite small, and it is only present for M ∈ [5, 20]. Nevertheless, the phenomenology
is qualitatively similar to the undirected case (see Fig. 5.4 for a proper comparison). We
expect the region of hysteresis to be enhanced by an increase in the coupling strength (up
to some value), as occurs in the undirected case.

The previous results confirm that the synchronization bomb can be extended to directed
networks, which perhaps represent a more realistic scenario, at least in biological systems
like the brain, where synaptic interactions are directional [15]. A more detailed analysis
of the directed synchronization bomb, including the results on the structural properties
such as the percolation threshold and microscopic correlations and its extension to other
dynamical processes, is left for further work. However, these preliminary results confirm
that the results are robust to changes in model assumptions, such as link directionality.
Furthermore, the already known appearance of Braess’ Paradox in directed networks [231],
studied in more detail in section 4.4.3, unveils the counter–intuitive possibility of designing
reversed synchronization bombs, meaning that the transition from incoherence to global
synchrony (or vice-versa) can be induced by the removal (or addition) of a single directed
link. Up to now, the reversed design of the synchronization bomb is a mere conjecture, but
hopefully it will be proven true in the future.

5.4 synchronization bombs beyond phase models

Here we show our final results. We extend the results for our bomb-like model beyond
the dynamics of idealized coupled phase-oscillators. We go beyond the Kuramoto model
and consider a coupled Rössler system of chaotic units and a standard model of cardiac
pacemaker cells. In both cases, we confirm, by numerical means, the existence of abrupt
transitions induced by single link perturbations in a competitive percolation process driven
by the local rule of Eq. (5.2).

5.4.1 Chaotic oscillators

Synchronization phenomena observed when coupling chaotic systems [6] is a quite
counter–intuitive phenomenon. This type of synchronization process achieves a perfect
dynamical coherence between systems that, when isolated, display deterministic chaos, i.e.
exponential divergence of nearby trajectories. We consider the Rössler system, a paradig-
matic model for the emergence of chaotic dynamics [50], to show the robustness of our
bomb-like model in this context.

We choose to work with a large ensemble of diffusively coupled heterogeneous chaotic
oscillators [270–272], a modified, piece-wise linear Rössler system [50], which evolves in a
3-dimensional space following the equations of motion

ẋi = − fi

[
τ
(

xi − K ∑N
j=1 aij(xj − xi)

)
+ βyi + δzi

]
,

ẏi = − fi (−xi + νyi) ,

żi − fi (−g(xi) + zi) ,

(5.34)
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Figure 5.9: a) Examples of synchronization curves for several values of M and K. As observed,
hysteresis cycle appears when M > 1 and lower (higher) values of K translate into wider
(narrower) cycles and less (more) abrupt transitions. b) Synchronization phase-space in
the (p, M)-plain, for a fixed strength K = 0.02. Results are qualitatively similar to the
ones found in Fig. 5.4.b)), although here the transitions are blurrier than in the Kuramoto
case, and the birth of hysteresis occurs for higher noise (lower M). c) Evolution of the
oscillators trajectories in the Rössler attractor for M = 10 and K = 0.02 at two different
p-steps, before (left) and after (right) the forward synchronization transition. The color
bar captures the frequency of the oscillator relative to the mean. Eq. (5.34) is numerically
integrated using Heun’s method, with dt = 0.05, 103 time-steps and temporal averages
of r are taken at every 5 link changes. Reprinted by permission of [248]

where the non-linear function inducing the chaotic behavior is defined as g(x) = 0 if
x ≤ 3 and g(x) = µ(x − 3) if x > 3. The other parameters are set following [271, 272],
with τ = 0.05, β = 0.5, δ = 1, ν = 0.02− 100/R. The parameter R = 100 ensures a phase-
coherent regime (even in the uncoupled case) [270–272], where a phase can be defined after
projecting onto the xy-plane, i.e. θi = arctan(yi/xi), such that the synchronization order
parameter r can be measured by the standard Kuramoto order parameter r. In Fig. 5.9.c),
we plot a 3D representation of the trajectories of the chaotic, phase-coherent, oscillators at
two different p-steps of the forward process, where the notion of phase from the projection
into the xy-plane becomes evident. As in Eq. (5.1), K is the (fixed) coupling strength and
the entries aij of the adjacency matrix A capture the presence of undirected and symmetric
interactions between the oscillators, evolving under the rule of Eq. (5.2). The instantaneous
velocity of the units is determined by fi, which we assign proportional to the frequency,
fi = 10 + 0.2ωi, drawn again from a uniform distribution g(ω) in [−1, 1].
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Figure 5.9.a) displays three examples of synchronization transitions r(p) for a system
of N = 200 and different choices of K and M. Similarly to the Kuramoto case, in the
construction process, for noise values of M > 1, the order parameter r experiments abrupt
jumps from incoherence (r ∼ 0.1) to a more coherent state (r > 0.7), that continues to grow
to stronger synchronization (r ∼ 0.9) as the density of links, p, increases. For the backward
transition, the jump from phase-locking to incoherence happens at a lower value of p,
resulting in a small hysteresis cycle. In panel 5.9.c) we visualize the diagram in the (p, M)-
plane, unveiling that the bistable region appears even for very small values of M.

The presented success of the chaotic synchronization bomb is supported by some avail-
able results that exploits optimal [272] and ES properties [271] of Kuramoto oscillators
on the diffusively coupled Rössler system. However, as numerical results in Fig. 5.9.a)-b)
indicate, the bomb is slightly noisier than in the KM. The fine-tuning of more parameters
and the chaotic behavior may difficult its control and design from scratch. In any case,
from a more practical standpoint, these results predict that synchronization bombs can be
implemented in the lab, at least by means of electronic circuits of Rössler chips [271].

5.4.2 Cardiac pacemaker cells

In our final application, we consider as a biologically-plausible extension of our results,
a model of cardiac pacemaker cells –the collection of cells responsible for generating a
strong, coherent pulse that propagates through the entire heart and initiates each con-
traction [273]–. We consider a standard system of network-coupled pacemaker cells con-
sisting of, for each pacemaker, a two-variable system describing the dimensionless trans-
membrane voltage v and gating variable h which summarizes ionic concentrations. For
more details on the model, we refer the reader to the reference [273]. For a system of N
pacemakers, the equations of motion are given by

v̇i = τ−1
i f (vi, hi) + Kv

N

∑
j=1

aij(vj − vi),

ḣi = τ−1
i g(vi, hi) + Kh

N

∑
j=1

aij(hj − hi). (5.35)

The local dynamics of each vi and hi are described by

f (v, h) =
h(v + 0.2)2(1− v)

0.3
− v

6
, (5.36)

g(v, h) =
1

150
+ (8.333× 10−4)[1− sgn(v− 0.13)]× {0.5[1− sgn(v− 0.13)]− h}. (5.37)

In this model, the timescales τi capture local heterogeneity between the different pace-
makers, scaling the period of each isolated cell, which is equivalent to having an effective
natural frequency for each pacemaker proportional to τ−1

i . Using a system of N = 200
pacemakers with τ−1

i randomly distributed in [0.4, 1.6] and coupling strengths Kv = 0.009
and Kh = 0.0044 (imposing a stronger coupling via the voltage diffusion compared to ionic
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diffusion [273]) we implement the already familiar competitive percolation process driven
by our proposed local rule.
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Figure 5.10: a) We plot the voltage error (captured by the standard deviation) as a function of the
percolation parameter p, under percolation dynamics in the forward and backward
processes, plotted in dot-dashed and solid lines respectively. b) and c) Right before
and after the explosive transition observed in a), we show the individual voltage (light
blue) time series vi(t) and the mean (dark blue). Reprinted by permission of [248].

Instead of using the standard order parameter computed from the phases, here we meas-
ure the collective synchrony by considering the error in the voltage variable, in terms of
its overall standard deviation. We compute temporal means of the error as the percolation
process evolves in both directions, and plot the voltage error in Fig. 5.10.a). Note that at
around p ≈ 0.02 the system displays ES, jumping from considerably large to small errors,
indicating an abrupt synchronization transition. In Figs. 5.10.b-c) we visualize the actual
voltage dynamics just before and after the transition. Individual voltage time series vi(t)
are plotted in light blue color, and the overall (average) voltage is plotted in dark blue.

Note that the physiological features of the pacemakers dynamics, more complex than
the ones of Kuramoto phase-oscillators, still allow to reproduce the key phenomenology
of the synchronization bomb. These experiments illustrate the fact that our bomb-like
model can be extended to many types of oscillator networks. The dynamics of cardiac
pacemaker cells describe one of many plausible scenarios of biological units (synchron-
ized heart pulses) and the reader should note that the system described in Eq. (5.35) is
mechanistically similar to other type of relaxation oscillators with membrane potentials,
including the well-known Van der Pol and FitzHugh-Nagumo models [46, 47, 274], which
are used to capture the dynamics of neuronal circuits. We expect our results to be relev-
ant in these neuronal-inspired models, but the current work already proves the potential
design of synchronization bombs in systems of biological units, beyond phase oscillators
with sinusoidal periods.

5.5 summary and discussion

The main findings introduced in this chapter are three-fold. First, we have proposed a
model that serves as a proof of concept to validate the theoretical machinery developed
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in this thesis. In this sense, we have successfully applied several mathematical tools that
were introduced in the previous chapters, allowing us to characterize the behavior of the
synchronization bombs and to explain the dependence of the main parameters by ana-
lytical and numerical means. Second, with our model we have bridged the decentralized
and noisy optimization of synchrony with the emergence of explosive behavior, showing
that a minimal self-organized mechanism of network growth can be used to understand
and control ES in adaptive biological systems like the brain or the heart and engineered
ones like power-grids or electronic circuits. And third, and focusing more on the theoretical
challenges of the problem, the emergence of synchronization explosions and bi-stability in-
duced by localized structural perturbations –without any fine-tuning of global parameters–
has allowed us to join explosive synchronization and percolation under the same mechan-
istic framework [143, 263].

The nuances of the self-organized synchronization bomb unveiled several interesting
phenomena. Besides the birth of ES due to single link perturbations, the effects of the
proposed local rules include a delayed percolation threshold and a non-monotonous de-
pendence of the bistable region with noise (in terms of a sampling parameter), meaning
that a significantly large amount of noise produces the optimal synchronization bomb.
This finding highlights the fact that noise is a necessary feature of decentralized optimiza-
tion processes, here in the context of a self-organized network growth driven by the gain
of synchrony. Furthermore, we have seen the persistence of our results in the extensions
to directed networks and in models beyond phase-oscillators, as the Rössler system of
chaotic units or a model of cardiac pacemaker cells, pointing to potential implementations
and applications in empirical settings. It is worth mentioning that, alternative, determin-
istic approaches could lead to a better optimization of the explosive behavior and a more
precise control of the location of the transitions in empirical networked systems. This de-
terministic approach is still missing. From a theoretical perspective, our results unveils a
mechanistic origin of ES in phase models that aligns well with the recent framework of self-
organized bistability [275] and make a step towards the missing explanation for the birth of
abrupt synchronization in pair-wise networks via a universal route [276]. By switching on
a single additional parameter (the amount of sampling in a percolation process), we have
seen how an oscillator network can self-organize towards a high-dimensional correlated
state where explosive behavior spontaneously emerges.

The design of synchronization bombs is almost the final result of this thesis. Uncertainty
has also played an important role here, controlling the pace of a decentralized and noisy
percolation process. Before concluding our dissertation, we take a loop of time from the
most recent results in our field back to the origins of synchronization theory, and leverage
this loop to pave further lines of research.
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6
O N T H E L O O P O F T I M E

What is a matrix? Werner Heisenberg (1925)
What is the matrix? Keanu Reeves (1999)

Andreas Wirzba

6.1 introduction

This chapter is a bit of an outlier, self-consistent on its own, but somehow related to the
previous chapters and to future work to come.

Very recently, L. Muller and colleagues [147] have proposed an algebraic approach to
study a particular complex-valued extension of the Kuramoto model (KM), which admits
an analytical solution in closed form. The dynamics of the linear model is different from
the Kuramoto one, as explained in [150]. However, the striking resemblance between both
allows to predict and control different synchronization regimes [147, 150, 151], including
equilibrium solutions in the non-linear dynamics for a system of identical oscillators and
chimeras or twisted states as shown in Fig 1.8.a) of the introduction of this thesis. Inter-
estingly, this complex linear model, with an additional damping parameter that bounds
the amplitude of the oscillators, was already studied in detail by D. Roberts in 2008 [277].
Roberts found a phase-transition from incoherence to full phase-locking at a critical value
of the coupling strength, instead of going through a partial phase-locking state, as occurs
in the KM. This research line was not continued in depth, and we indeed discovered this
paper from the recent work of Muller et al. [147].

In this chapter, we show that the derivation of the results in [147] is actually the reverse
way that Kuramoto followed in his short report of 1975 to introduce his model for the
first time, starting from a system of non-linear Stuart-Landau oscillators in the weakly
coupling limit [4]. This ironic time loop raises whether Kuramoto was not aware of the
potential advantages of solving the linear system of coupled complex oscillators, or he
was not particularly interested on it. He was looking for macroscopic phase transitions [3],
and that is exactly what he found using the self-consistent analysis in the phase model. In
any case, the story deserves a mention and the explicit connection between both models
appears to be a promising line for further work.

In fact, we will make a first step in this direction here by realizing that the phase trans-
ition in the linear system can be linked to the onset of synchronization in the KM on
top of complex networks. This connection allows us to exactly recover the mean-field ap-
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proximation of [102] from the solution of a spectral problem in linear algebra, using the
configuration model (a rank-one network approximation) and assuming a random alloc-
ation of frequencies. We will discuss how these findings already sketch a more general
method to estimate the onset of synchronization in arbitrary networks with any kind of
correlations and frequency distributions, a quest that we will tackle in the very near future.
We close the chapter by noting that the analytical solution of the complex linear system is
analogous to the solution of the linearized phase system in terms of the Laplacian eigen-
modes, and it also provides an alternative view of diffusion geometry [119] and a novel
origin to network communicability [230], a well-known metric in the field. We argue that
these recent observations seem to align surprisingly well with the research lines followed
during the course of this thesis.

6.2 a review of the novel algebraic approach

Let us begin by summarizing the recent result of [147]. The derivation starts with a vari-
ation of the KM, with an additional imaginary component in the interaction term

θ̇n = ωn + γ
N

∑
j=1

anj[sin(θj − θn)− i cos(θj − θn)], ∀ n ∈ 1, . . . , N, (6.1)

where θn ∈ C is now a complex-valued variable. Multiplying both sides by the imaginary
unit i and using Euler’s formula, Eq. (6.1) transforms into

iθ̇n = iωn + γe−iθn
N

∑
j=1

anjeiθj , (6.2)

or in matrix form
θ̇ = ω +

γ

i
diag[e−iθ ]Aeiθ . (6.3)

Multiplying both sides by the matrix diag[eiθ ] and using the derivative relation

diag[eiθ ]θ̇ =
1
i

d
dt

eiθ . (6.4)

one ends up with the linear autonomous system given by

ẋ = Ĥ(γ, A, ω)x, (6.5)

where x = eiθ is a complex-valued vector and its argument arg(x) is a vector of real-valued
phases (here we take the first argument, i.e. θ ∈ [−π, π] without loss of generality). The
operator Ĥ(γ, A, ω) = iW + γA (with W a diagonal matrix with entries wij = δijωi) is
a time independent matrix, and non-hermitian if the frequencies are heterogeneous (i.e.
ω 6= 0). The general solution of Eq. (6.5) is given by

x(t) = etĤ(γ,A,ω)x(0), (6.6)

UNIVERSITAT ROVIRA I VIRGILI 
SYNCHRONIZATION IN COMPLEX NETWORKS UNDER UNCERTAINTY 
Lluís Arola Fernández 



130 on the loop of time

with x(0) being the initial condition x(0) = eiθ0 . The matrix exponential can be expressed
in the basis of eigenvectors of Ĥ, diagonalizing the matrix using the decomposition
Ĥ = VΛV−1, where Λ is a diagonal matrix with the eigenvalues and V is the matrix
of eigenvectors in columns. Finally, the solution can be written as

x(t) = VetΛV−1x(0). (6.7)

In terms of the eigenmodes of Ĥ, Eq. (6.7) is explicitly given by

x(t) =
N

∑
j=n

αnetλn vn, (6.8)

where the coefficients are given by the alignment between the initial condition and the
eigenvectors, i.e. the inner product αn = 〈x(0), vn〉. Also note that the eigenvalues can be
complex-valued in general, due to the non-hermiticity of Ĥ. Using that the vector θ ∈ C,
decomposing it in real and imaginary parts θ = θre + iθim and plugging it in x = eiθ , one
finds that

x(t) = eθim(t)eiθre(t), (6.9)

thus the argument of the complex variable is related to the imaginary part of θ as |xn| =
e(θn)im . Taking the time derivative of Eq. (6.9) and separating real and imaginary parts, one
obtains [150, 277]

˙(θn)re = ωn + γ
N

∑
j=1

ajn
|xn|
|xn|

sin(
(
θj)re − (θn)re

)
, (6.10)

˙(θn)im = γ
N

∑
j=1

|xj|
|xi|

cos(
(
θn)re − (θj)re

)
. (6.11)

The KM is given by the first equation assuming that the amplitudes are constant and of
equal value, and neglecting the imaginary equation. This means that the linear system of
Eq. (6.5) is not equivalent to the Kuramoto one, although they share some properties that
deserve more exploration.

This line was initiated, almost fifteen years ago by Roberts [277], who found a critical
point in the case of heterogeneous frequencies, as we will see later on, and he also derived
an asymmetric coupling scheme in an all-to-all network that maps exactly to the KM. More
recently, the authors in [150, 151], following the work of [147] have considered the situation
where ω = 0, i.e. identical oscillators. Then, the operator Ĥ reduces to γA, and equilibrium
solutions of the non-linear model can be obtained from the eigenvectors of A. They put
special focus on ring networks where the spectra of the adjacency matrix is known, and
to explain the origin of several synchronization phenomena (as partial synchro, chimeras
or waves) from the geometry of the adjacency spectra. Before moving further, let us take a
step back in time.
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6.3 closing the loop

Now we show that an alternative, much shorter derivation of Eq. (6.7) can be obtained
by going back to the inception of the KM, and we discuss some immediate consequences
of this finding. In his seminal paper of 1975 [4], Y. Kuramoto considered, as the start-
ing point, a coupled system of heterogeneous Stuart-Landau oscillators, the simplest non-
trivial model for a temporally organized system of macroscopic self-sustained oscillations
in two dimensions. The system is modeled by a set of coupled differential equations for
the complex-valued vector Q, with entries Qn = ρneiφn where ρn is the amplitude and φ the
angle, or equivalently the modulus and phase of a complex variable. The system evolves
following

Q̇n = (iωn + α)Qn − β|Qn|2Qn + k
N

∑
j=1

anjQj, ∀ n ∈ 1, . . . , N. (6.12)

In order to simplify this model, Kuramoto made the following assumptions: i) the system
is globally coupled, meaning anj = 1 ∀ n 6= j, ii) the system is in the thermodynamic limit,
N → ∞ and iii), the oscillators are weakly coupled, meaning that parameters α, β → ∞
while the ratio α/β remains finite. This last assumption is equivalent to say that there are
two different time-scales, a very fast one where oscillators evolve towards a fixed limit-
cycle with constant amplitude, and a slow scale where oscillators interact with the rest
without leaving the limit cycle. The previous argument can be understood by plugging
Qn = ρneiφn into Eq. (6.12). Using assumption iii) to set the amplitude of the limit-cylce to
a constant value, given by

ρ =
√

α/β, (6.13)

then the terms αQn and β|Qn|2Qn in Eq. (6.12) cancel each other because αρeiφn = βρ3eiφn .
Note that this procedure is exactly the same as setting α = β = 0 in the model (thus
considering only the evolution in the slow timescale of the system). After using the weakly-
coupled trick, Eq. (6.12) reduces to

Q̇n = iωnQn + k
N

∑
j=1

anjQj, ∀ n ∈ 1, . . . , N, (6.14)

or in matrix form
Q̇ = [iW + kA]Q. (6.15)

Eq. (6.15) is nothing but Eq. (6.5) with Q = x and Ĥ = [iW + kA]. The fun part is that
Kuramoto used the exact same procedure of Muller and co. in [147] introduced before, but
in the reverse direction, to arrive to the sinusoidal form of Eq. (6.1) and then he solved the
model in the thermodynamic limit by finding the phase transition of the order parameter!
Note that in this derivation, the KM is a limit, and the full complex-valued linear system
never shows up. The KM can be reached by less heuristic means using a phase-reduction
technique from Eq. (6.12) up to a first-order approximation [38, 78]. In any case, the linear
problem of Eq. (6.15) is not the KM (even if arg(x) approaches the phases of KM for short
time windows [150]). This does not mean that the similarity cannot be further exploited.
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We focus here on the onset of synchronization in complex networks, where we unveil a
spectral shortcut that provides an accurate estimate of the threshold without requiring
self-consistent arguments as in the usual cases [102–104, 179].

6.4 spectral shortcut to the synchronization onset

As noted by Roberts [277], the continuum limit of the linear model in Eq. (6.5) (in the noise-
free/damping-free scenario) has the same form as the equation describing a fundamental
mode in the stability analysis of Strogatz and Mirollo in the KM, see for instance [3, 179].
This mode describes the evolution of a perturbation to the incoherent state in the mean-
field case, and its growth determines the birth of synchronization in the KM. The two
equations are equivalent if γ = k/2, with k being the usual coupling in the KM. In other
words, the linear model has two times the same effective coupling than the equation of
the fundamental mode that is used to find the change of stability of the incoherent state
at the critical point in the KM [179]. This way, Roberts was able to show that his linear
model also had a phase transition, although from incoherence to full phase-locking. At
a critical γc = 1/(πg(0)) in the all-to-all, infinitely large network, an eigenvalue of the
infinite dimensional operator equivalent to our matrix H = [iW + γA] separates from the
imaginary axis and becomes real. Exactly as occurs with the growth of a perturbation in
[179], thus predicting the synchronization onset in the KM at the threshold

kc = 2γc. (6.16)

In Fig. 6.1 we illustrate the differences between the models in terms of the order parameter,
in an all-to-all network with normal frequency distribution. After the appropriate scaling
of the coupling given by Eq. (6.16), one can see the match in the transition point.
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Figure 6.1: Average order parameter r depending on coupling k in a simulation of the non-linear
KM in a network of N = 103 (blue), against the exact solution of the complex linear
model (with coupling γ = 2k) (red). The distribution g(ω) is Gaussian with unit vari-
ance. The vertical line predicts the onset of synchronization in the mean-field KM and
also the transition in the linear system with half the coupling.
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Here we tackle the problem of finding the synchronization onset in the KM on top of
complex networks, thus beyond the all-to-all case, by leveraging the previous results but
from a different angle. We remark that we aim at determining the γ where the real part
of the largest eigenvalue of Ĥ = [iW + γA] becomes positive, i.e. Re(λ∗ > 0). Inspired by
the work of [278] and by a recurrent assumption in this thesis –the lack of information–,
we work with a rank reduction of the adjacency matrix A. In particular, the configuration
model is the rank-one representation with A′ = kkT and entries A′ = kik j/(N〈k〉), where
only the information on the degree sequence is used [2, 94]. The eigenvalues of Ĥ are given
by the roots of the characteristic equation

det(Ĥ − λI) = 0. (6.17)

Using the rank-one reduction A ≈ kkT, we can write

det(iW − λI + γkkT) = 0. (6.18)

We apply the matrix determinant lemma det(A + uvT) = (1 + uA−1vT)det(A) to get

det(1 + γk[iW − λI]−1kT)∏
j
(iωj − λ) = 0. (6.19)

To proceed further, let us invoke a few assumptions. We consider a random allocation, i.e.
the frequencies are uncorrelated from the degrees, such that we can write

[
1 +

γ〈k2〉
N〈k〉 ∑

j
(iωj − λ)−1

]
∏

j
(iωj − λ) = 0. (6.20)

We take the continuum (infinite size) limit where ∑j(iωj − λ)−1 =
∫ ∞
−∞ g(w)dω/(iω − λ).

We also assume that the roots are in the left-hand factor of the product (since the right
factor will never vanish in the continuum limit), and therefore we end up with the equation

1 +
γ〈k2〉
N〈k〉

∫ ∞

−∞

g(w)dω

(iω− λ)
= 0, (6.21)

where g(ω) is the distribution of frequencies. By multiplying the numerator and denom-
inator in the integral by iω + λ, we have

γ〈k2〉
N〈k〉

∫ ∞

−∞

(iω + λ)g(w)dω

(ω2 + λ2)
= 1. (6.22)

Here, we consider a symmetric and unimodal distribution of g(ω) as in the original KM
and in the classical approximations to the onset in complex networks [102, 103], discussed
in section 2.2. Since we are interested in finding the value of γ at which Re(λ) > 0, we can
focus on the real part of the integral

γ〈k2〉
N〈k〉

∫ ∞

−∞

λg(w)dω

(ω2 + λ2)
= 1. (6.23)
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Since
∫ ∞
−∞ λdω/(ω2 + λ2) = π for any λ, as explained in [179], in the limit λ → 0+, the

integral in Eq. (6.23) approaches πg(0). After isolating the coupling strength, normalizing
it by N as usual, and using Eq. (6.16), we obtain

kc =
2〈k〉

〈k2〉πg(0)
. (6.24)

Eq. (6.24) corresponds to the well-known mean-field approximation to the onset of syn-
chronization in complex networks, introduced in section 2.2 and discussed throughout the
thesis. Here we have arrived at the same result using a linear algebraic approach, find-
ing the spectra of a certain non-hermitian matrix under a rank-one approximation of the
network model, without requiring any self-consistent equation for an order parameter.

The previous result confirms the validity of the approach connecting the onset of syn-
chronization in the KM and the onset of phase-locking in the complex-valued linear model.
Remarkably, a spectral transition emerges from the interplay between an imaginary matrix
and a real one. This mechanism captures the essence of synchronization, the competi-
tion between the internal rhythms and the interactions with the group. Using our matrix
framework, it is natural to wonder several things. For instance, if these spectral transitions
can capture the transitions between other macroscopic regimes observed in network syn-
chronization (as the synchronization bomb introduced in the previous chapter), and if the
previous mathematical analysis can be extended to higher-rank network models [278] and
other configurations, including negative weights, directed or higher-order interactions, etc.
Also, by numerical means, it should be possible to estimate the onset of sync in arbit-
rary networks with frequency correlations of any kind. We have validated that some of
these conjectures are correct, and we are planning to present these results in future work
[279]. Overall, here we attempted to provide a first step in this line, and before closing the
chapter, we give a few last comments on the potential of exploiting the analogy between
both models beyond the synchronization onset.

6.5 geometric unfolding in the complex plane

First, we note that the system of the complex-valued vector x in Eq. (6.5) has the same
structure as a system of identical oscillators in the linearized regime (thus for sufficiently
large coupling k), where the evolution of the real phases θ ∈ RN is given by

θ̇ = −kLθ, (6.25)

with L = D− A the Laplacian matrix of the network. This system converges to the trivial
solution θ = 0 for any K > 0 if the network is connected. Accordingly, the smallest eigen-
value of L (besides the zero eigenvalue associated to a constant eigenvector) λ2 > 0 and
thus, the solution of Eq. (6.25) θ(t) = VektΛ′V−1θ(0) converges regardless of the initial con-
ditions, where the matrix Λ′ now contains the eigenvalues of L. This idea was used in the
seminal work of [116] to unveil the topological (hierarchical) scales of complex networks
by relating the synchronization times of the different communities with the eigenvalues of
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L, and the nodes in the communities with the components of the eigenvectors. This finding
was key to understand the tight relation between the spectra of networks, synchronization
and the concept of communities. The new insight is that the linear, complex-valued model
can provide more information about dynamical communities and diffusion geometry [119]
emerging from the interplay of the structure and purely oscillatory dynamics.

In the same line, the solution of the system in Eq. (6.6) shows that the matrix etĤ is
nothing but the propagator, i.e. a Green function acting on the initial state [222]. In the
case where ω = 0, Ĥ = γA, the propagator is just the exponential of the adjacency matrix,
times γ, and the solution of the system can be written as a power series in the form

x(t) =
∞

∑
n=0

(tγA)n

n!
x(0), (6.26)

thus, expressed in terms of powers of the adjacency matrix A, meaning that the solution
can be expressed in an infinite series of increasing neighborhoods of the nodes. This idea
aligns well with some of our previous results, and also shows that the particular basis of
the exponential adjacency matrix naturally emerges from the linear dynamics in the com-
plex plane, similarly to how the geometric unfolding introduced in chapter 4 naturally
emerged from the linearized forced system (i.e. from the strongly synchronized regime).
Also, let us bring here the notion of the communicability matrix, a quite well-known meas-
ure in complex networks introduced by Estrada and Hatano [230] in 2008 to quantify dif-
fusion distances in a network, among other things. The communicability matrix was built
following a heuristic argument, with a measure that counted the number of random walks
between nodes, and the exponential of the adjacency matrix turned out to be the most
appropriate choice. Here, our results recover the communicability matrix from a temporal
snapshot of the propagator (when γt = 1), directly from the linear, complex-valued system
of identical oscillators. This finding provides an alternative explanation for the success of
the communicability object in different problems of diffusive nature [66, 119].

The results of this chapter illustrate that a linear model in the complex plane can explain
many features of network synchronization. This reminds the findings obtained using the
linearized regime of the original KM in terms of the Laplacian spectra, that we used in this
thesis to optimize synchronization with higher-order interactions (in section 3.3 of chapter
3), to find exact geometric expansions (in chapter 4) and to derive local optimal rules
that can induce explosive phenomena (in chapter 5). The current findings allow extending
these ideas to another linear system connected to the KM, which can inform us more about
properties of the synchronization onset and the non-linear regime, against the Laplacian
system that is more useful to study phase-locking properties. We recall that, in this chapter,
the persistent concept of uncertainty has been introduced in terms of a rank reduction of
the adjacency matrix and assuming a random allocation to arrive at a closed form for the
critical threshold. Our final result of Eq. (6.24) obtained by spectral means was precisely
the formula that we used at the beginning of the thesis, in chapter 3, to estimate the critical
range under noisy weights. Thus here we are closing the time loop again. With this last
observation, we feel ready to dive into the final conclusions of this thesis.
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C O N C L U S I O N S

You tell me of an invisible planetary system in which electrons gravitate around a nuc-
leus. You explain this world to me with an image. I realize that you have been reduced
to poetry. So that science that was to teach me everything ends up in a hypothesis, that
lucidity founders in metaphor, that uncertainty is resolved in a work of art.

Albert Camus1

This thesis proposed a theoretical study of synchronization phenomena emerging
from the dynamics of network-coupled oscillators. Throughout this document, we have
provided strong evidence that analytical approaches based on a minimal description of
the physical process, in terms of the celebrated Kuramoto model in complex networks,
and the usage of partial, incomplete information from the system at hand are relevant
in at least two quests. First, to find clear and interpretable mechanistic insights of the in-
terplay between structure and dynamics that were hidden inside spectral and numerical
black-boxes and second, to provide suitable tools to predict, optimize and control the func-
tionality of oscillator networks from a decentralized perspective and under conditions of
imperfect measurements.

In chapter 3, we raised a broad question that has persisted during the length of this
work. How do network constraints limit the range of synchronization behaviors? We star-
ted by providing partial answers in three specific problems, leveraging different sources
of uncertainty in the coupling weights between the oscillators. In the first one, we ap-
plied error propagation techniques to show how small quenched noise in the microscopic
weights propagates in a non-linear way towards the prediction of the global synchroniza-
tion onset. Our results give analytical confidence bars for critical predictions depending on
the heterogeneity of the structure and show that particular structures, such as scale-free
networks with an exponent of three, are able to maximize the critical range, suggesting in-
triguing implications in adaptive and noisy systems. In the second problem, we explored
the effect that balancing pair-wise and higher-order interactions has in the ranges of phase
synchrony using a composite Laplacian framework, unveiling that three-way interactions
increase the dynamical range and improve optimal properties in spatially-embbeded net-
works, a finding that is consistent with the ubiquity of higher-order interaction patterns
in self-regulatory systems like the brain. In the third one, we attempted a functional map-
ping between pairs of networks, by tuning the weights in one network in a way that the

1 In “An Absurd Reasoning", The Myth of Sisyphus and Other Essays (1955), translated by Justin O’Brien.
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synchronization behavior remains invariant in both. We proposed an information-theoretic
approach under extended mean-field constraints to heuristically solve this weight-tuning
optimization in uncorrelated networks, and we found that the mapping is reachable al-
though limited by structural constraints posed by network hubs, especially around the
critical point. These results called for further work and suggested descriptions of the os-
cillator network in terms of increasing neighborhoods as useful tools for prediction and
control purposes.

In chapter 4, the previous conjecture was confirmed, by proving that the solution of the
synchronized state in an arbitrary complex network can be written as a particular geomet-
ric series of increasing neighborhoods when assuming that the network is connected and
not purely bipartite. This method facilitates the analysis of several synchronization proper-
ties using limited information, providing an alternative, geometric view of the system with
respect to standard spectral approaches, which exploit global information that may not
be available at the operative level. The convergence analysis of the geometric expansions
showed spectral scalings of the truncation error and revealed a novel way of describing net-
work and frequency arrangements, and their associated range of synchrony, in terms of the
solutions of a classical damped harmonic oscillator. From a more practical standpoint, we
derived a local approximation of synchrony to explain the microscopic mechanisms that
optimize the system (observed before from the outcome of numerical optimizations) and
to predict the existence of the Braess Paradox effect in directed networks. In a final proof of
concept for this decentralized, geometric approach, in chapter 5 we built a minimal model
of competitive link percolation based on a decentralized optimization of synchrony driven
by a local rule. With this model, we showed that explosive, abrupt transitions and bistable
behavior can emerge during the course of a self-organized network growth, and explosive
transitions can occur at single link changes. We chose the name “synchronization bomb”
to illustrate this phenomenon. An analytical characterization of the Kuramoto bomb was
obtained using recent dimensionality reduction techniques and the robustness of the phe-
nomena was tested under different conditions and beyond phase oscillators, in models of
chaotic systems and cardiac pacemaker cells. These results suggest that synchronization
bombs can be designed in the lab and propose a mechanistic and solvable route to explain
the evidence of self-organized bistable and explosive phenomena in biological networks.

Lastly, in chapter 6, we deviated a bit from the previous line to clarify the explicit con-
nection between a recent algebraic approach to the study of the Kuramoto model and a
complex-valued linear system that shows up in the original derivation of Kuramoto from
the weakly-coupled limit of a mean-field population of phase and amplitude oscillators.
This connection allowed us to recover the prediction of the synchronization onset in com-
plex networks in the “mean-field” approximation, studied in detail in previous chapters,
from a different perspective. In particular, we found that a purely linear algebra approach
combined with a one-rank reduction of the network (the configuration model) provides a
fast shortcut to the problem. This result confirms once again the benefit of dealing with
network representations under limited information and suggests that the approach can
be extended to analyze and classify different type transitions and collective behaviors like
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incoherence, partial or explosive transitions, chaos or travelling waves, from a direct es-
timation of the spectra of a certain non-hermitian matrix. We expect that this line will
continue in further work by considering higher-rank reductions of network models and
more realistic network conditions, as directed, negative or higher-order interactions and
structural-dynamical correlations, which are known to produce even richer phenomena in
oscillator networks.

Overall, this dissertation provides analytical solutions to several key open questions
dealing with the interplay structure-dynamics in oscillator networks. The development
of robust methods to manage uncertainty and partial information has led to theoretical
discoveries in different aspects of synchronization dynamics. We have revealed the crucial
role of prevalent network features like heterogeneity, moludar and bipartite patterns or
higher-order interactions in the range-amplification and control of collective behaviors and
critical points. A global finding of this thesis is a geometric and mechanistic theoretical
framework that successfully quantifies how the constraints posed by a complex network
determine the accessible synchronization behaviors and critical transitions, i.e. the range
of collective sounds that an oscillator network can play.

Our approach relates microscopic configurations with macroscopic behaviors and also
bridges the decentralized, geometric description of the system with the global, spectral
view. The results and methods may find application in technical problems of neuroscience
and engineering, but more importantly, we advance the quest of a general mathematical
framework to classify and predict the whole palette of synchronization behaviors from
the microscopic details, at least in the flexible context of the Kuramoto model in complex
networks. This view aligns well with other recent theoretical lines that look for missing
principles in oscillator networks and in non-linear physics and complex systems more
broadly. Some of these works include the exact low-dimensional reductions of mean-field
populations of oscillators like the Ott-Antonsen technique and its extensions [7, 122, 127],
the successful analysis of complex phenomena from minimal features in ecological and ge-
netic landscapes [87, 280, 281] and in coupled dynamics of epidemics and human behavior
[142, 237–239, 282]. We expect that the mechanistic and geometric insights obtained here
will become particularly relevant when combined with the recent elegant classifications
of network models [278], non-hermitian hamiltonians [86], and random matrices [84, 283],
and also with the promising versatility of novel artificial neural nets inspired by state-of-art
neuroscience and physical systems [284].

We should also note that the community of network dynamics is gradually moving to-
wards more applied contexts, ranging from data-driven modeling of epidemics and neur-
onal systems to detailed control of large engineering networks, motivated by the urgent
needs of current times and access to large datasets. In most of these works, the manage-
ment of uncertainty is usually treated with statistical methods and inference algorithms,
since the main goal is to improve quantitative predictions. Accordingly, our results may
receive more immediate attetion in the smaller theoretical realm. We believe that our mech-
anistic view and the uncertainty-driven methods open a novel and promising path at the
fundamental level, a route connecting the geometry of synchronization with the spectra
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of complex networks. In fact, a broad strength of this work is that we have connected
tools, ideas and phenomenology from different fields, in the form of solid mathematical
results and physical predictions that balance a moderate technical and computational com-
plexity with high mechanistic insight and accuracy. A limitation may be precisely that we
found these answers in theoretical scenarios, sometimes under strong approximations and
assumptions, which might complicate a direct translation into more realistic cases. Nev-
ertheless, the path followed in this thesis has led us to analytically solve some general
problems in the field that called for clear explanations, and from a personal view, this
research has rewarded me with a global view of synchronization dynamics and diffusion
processes on top of complex networks, and with a diverse set of tools and concepts suit-
able to explore novel theoretical lines and to deal with more concrete empirical scenarios
in the future.

This thesis ends with a last personal thought. During these years, I have had the chance
to enjoy thinking about a beautiful problem that falls in a sweet spot of mathematics and
physics, with implications that pervade almost all fields of science and even arts. It is
fascinating to look back and realize how much I have learned from the brilliant people
that have thought about this problem before and alongside me, and also how all these
concepts have changed my view of the world. At the same time, the more I learned, the
more I realized how little I was aware of, ending this path with more open questions than
definitive answers. A well-known quote ascribed to A. Einstein on the idea of the perimeter
of ignorance says that learning is akin to the light of a candle: “as our circle of knowledge
expands, so does the circumference of darkness surrounding it." This metaphor appears
to hide the sad truth, as chaos theory once did, that we will never be able to predict or
know everything around us, although there is still much to discover. In complex systems,
deep learning black-boxes are doing quite a remarkable job in solving key aspects of the
tricky interplay of structure-dynamics, and theoreticians might want to hurry if they aim
to preserve their historical relevance in science. There might be some hope in current
multidisciplinary approaches driven by solid physical principles and mathematical models,
synchronization in complex networks being one of the most successful paradigms. When
one thinks on this problem for a while, it is likely to get a feeling that, in a near future,
different branches of human knowledge will be linked and apparently distant concepts
will become synchronized, in this liquid brain of collective thought [285]. Will we witness
a burst of synchrony in complex systems that will eventually shed light on a big picture
emerging from minimal principles? If that happens, I am quite confident that the picture
will still be blurred by some kind of uncertainty.
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A P P E N D I X : K U R A M O T O ’ S S P E E C H

In this appendix we include the full transcription of the speech given by Y. Kuramoto, in a
video message1 to the international conference “Dynamics of coupled oscillators: 40 years
of the Kuramoto model”, organized by A. Pikovsky, A. Politi and M. Rosenblum, and held
at Max Planck Institute of Complex System, Dresden, Germany, on 27th July 2015.

Hello everyone, I’m Kuramoto, I’m sending a message from Tokyo. This work-
shop, especially its title, makes me realize how far I have come and how old
I’m getting.

I want to take advantage of this message to tell you something from my old
memories and I focus on what motivated me to develop my model of coupled
oscillators forty years ago and also why I was nevertheless so reluctant to write
a decent paper of this work for relatively long time. I remember that it was
around 1974, that I first came across with Art Winfree famous paper which was
published seven years before, entitled “Biological rhythms and the behavior of
populations of coupled oscillators”. I was instantly fascinated by the first few
paragraphs of the introductory section of the paper, and specially my interest
was stimulated when he spoke about the analogy between the synchronization
transition and the phase transition of ferroelectrics, because my earlier research
theme was the theory of second order phase transitions, specially in ferromag-
nets, and actually there is a striking similarity between synchronization phase
transition and magnetic phase transition. Despite such analogy, there was one
thing that made me feel a little uncomfortable: the problem of mutual coupling.
Mutual coupling between two magnets or spins and mutual coupling between
oscillators is quite different. For magnetic spins, the interaction energy is given
by the scalar product of the two spin vectors, which means that for the par-
ticular case of planar spins, the coupling function is given by the sinusoidal
coupling of phase differences. In contrast, Winfree assumed that the coupling
of phase oscillators is given by the product of two period functions of the re-
spective phases, each called stimulus function and sensitivity function, and it
seemed that this product was the main problem to mathematical analysis.

I didn’t care much about this fact, however, because my main interest was to
find a solvable model. I knew that product form coupling is more natural and
realistic, but I preferred the sinusoidal form of coupling because my interest

1 From https://www.youtube.com/watch?v=lac4TxWyBOg.
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was to find a solvable model. So, I looked for some plausible reason on why the
sinusoidal coupling is not so unreasonable. In connection with this, the complex
Ginzburg-Landau (GL) equation, which I was already familiar with, helped
me. I modified the complex GL equation in such a way that the continuous
oscillator field was replaced by a discrete population of oscillators, the local
diffusive coupling was replaced by an all-to-all diffusion coupling, and random
frequency distribution was introduced in the model. If all these assumptions
are put together, it was very easy to derive my model of coupled oscillators with
sinusoidal coupling and all-to-all coupling. I was sure that, like spin systems
with global coupling, a self-consistent equation for a suitable defined order
parameter could be derived, also for the oscillator system, but there was one
subtle problem which is: how to deal with the subgroup of these oscillators
that cannot synchronize with the collective oscillation?. My intuition was that
those oscillators would form a stationary phase distribution in a co-rotating
frame, and if that is true, then those oscillators would not contribute to the
order parameter at all, for this particular model of sine coupling. In this way,
I succeeded in finding that there is a critical coupling strength above which
a new branch of solution corresponding to collective oscillation is obtained.
Although, my argument was so crude that it involved a number of unjustified
logical jumps.

Despite my success, I didn’t write a paper except for a very short report for
the proceeding of the International Symposium entitled “Mathematical found-
ations of theoretical physics” which was held in 1975 in Kyoto. I published
a short report, of just two pages long, plus a few lines, typewriting with a
lot of spacing, so I knew that such a brief report would be so unkind to the
readers, but I was reluctant to write a paper, why? maybe I was simply lazy,
but possibly there was another reason that is that I couldn’t evaluate my own
work partly because I was just a beginner in non-linear sciences those days, so
I needed advices from experienced statistical physicists and I visited several
such people to have them hear what I had done and to ask for their opinions.
But unfortunately, their reactions were not so encouraging. They showed little
interest in my work, and they were even critical by saying in some cases that
“what you have done doesn’t seem new at all, there might be a lot of similar
works in the fields of mechanical and electrical engineering, you should search
those fields for relevant works”. I was discouraged, of course, but I still had a
little hope. My hope was that there might still be some positive reactions to my
fifteen minutes talk in the symposium of Kyoto. So, I presented my model and
its analysis in that symposium. There was just one question from the audience.
The question came from one physicist, a solid state physicist, a rather famous
man2. His question was a rather conventional one: what is your relevance of

2 A comment to the speech on YouTube mentions that it was Brian Greene. This would be an ironic occurrence,
since Greene is known for his work on string theory (a theory that is quite hard to prove empirically) and also
because Greene gave a very positive criticism to the book of synchronization by Strogatz [3].
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your work to real world phenomena? uhmmm. . . well, being poor of my Eng-
lish, I replied just one word3: “circadian rhythms” and virtually nothing more.
His face looked puzzled, he gazed at me, dubiety. I sat down, without saying
one word, and the chairman called the next speaker.

Well, again, this experience wasn’t so encouraging to me. So, for the next five
years or so, the model I have developed, and its analysis, was a matter of little
concern to me. So, I concentrated myself to other problems of reaction-diffusion
systems, and it was a big surprise when I received a letter from Art Winfree, one
day in 1980 I suppose, in which he admired my short report which appeared
five years before. I don’t know how he could search out my short article, but I
later learned that about that time, Winfree was just finishing his manuscript for
the monograph about geometry of biological time, so it seems that just before
the list of references for the book was completed, that my short article got his
attention. And fortunately, my short article was included in the bibliography
of that book and moreover he spent a few paragraphs for the discussion of
my model in the book. So, I think it was the turning point of my model, in
the fate of my model. Well, in the same letter, Winfree raised a very import-
ant question. He asked, “how about the stability of the particular solution you
have discovered? Is there any change of stability between the coherent and the
incoherent solution across the critical point?" Well, naturally I didn’t have one
word to answer, but I know that several years later, a number of brilliant scient-
ists worked around this problem, and it seemed that a mathematical complete
solution was almost at hand.

3 Actually two words.
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