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Abstract

Future Critical Real-Time Embedded Systems (CRTES), like those is
planes, cars or trains, require more and more guaranteed performance in
order to satisfy the increasing performance demands of advanced complex
software features. While increased performance can be achieved by deploy-
ing processor techniques currently used in High-Performance Computing
(HPC) and mainstream domains, their use challenges the software timing
analysis, a necessary step in CRTES’ verification and validation. Cache
memories are known to have high impact in performance, and in fact,
current CRTES include multicores usually with several levels of cache. In
this line, this Thesis aims at increasing the guaranteed performance of
CRTES by using techniques for caches building upon time randomization
and providing probabilistic guarantees of tasks’ execution time.

In this Thesis, we first focus on on improving cache placement and re-
placement to improve guaranteed performance. For placement, different
existing policies are explored in a multi-level cache setup, and a solution
is reached in which different of those policies are combined. For cache re-
placement, we analyze a pathological scenario that no cache policy so far
accounts and propose several policies that fix this pathological scenario.

For shared caches in multicore we observe that contention is mainly caused
by private writes that go through to the shared cache, yet using a pure
write-back policy also has its drawbacks. We propose a hybrid approach
to mitigate this contention. Building on this solution, the next contribu-
tion tackles a problem caused by the need of some reliability mechanisms
in CRTES. Implementing reliability close to the processor’s core has a
significant impact in performance. A look-ahead error detection solution
is proposed to greatly mitigate the performance impact.

The next contribution proposes the first hardware prefetcher for CRTES
with arbitrary cache hierarchies. Given its speculative nature, prefetchers
that have a guaranteed positive impact on performance are difficult to
design. We present a framework that provides execution time guarantees
and obtains a performance benefit.

Finally, we focus on the impact of timing anomalies in CRTES with caches.
For the first time, a definition and taxonomy of timing anomalies is given
for Measurement-Based Timing Analysis. Then, we focus on a specific
timing anomaly that can happen with caches and provide a solution to
account for it in the execution time estimates.
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Chapter 1

Introduction

1.1 Trends in Critical Real-Time Embedded Systems

Traditionally, the use of computers has been mainly focused on automation of func-
tions in personal computing, office/scientific work, and media consumption. The
systems used for these purposes have usually been relatively big and composed of
several components (separated CPU, GPU, memory, etc). Some of the most used
computing systems are laptops, desktops or servers/mainframes. However, in the
last decades a different kind of computing systems have gained relevance in our lives:
embedded systems. Such is the omnipresence of embedded systems that they alredy
accounted for 98% of the total number of computer systems [113] a few years back.
In the past, embedded systems have been related to low-performance, cheap, and
function-specific devices. In recent years, however, embedded systems have started
implementing more complex functions requiring significant performance on general
purpose processors [63]. This change has been driven by the increased functionality
and demand of these systems, such as for instance the increase of automation in al-
most all industries. Furthermore, with the introduction of System on Chip (SoC) in
mobile devices, the line between embedded systems and dedicated computers (such
as personal computers) has blurred.

A subset of embedded systems are used in industries such as automotive, aerospace,
space or railway. As an example, in a car lots of functions previously performed by
the driver are now automatically performed by the car. These functions can go from
relatively simple ones such as automatically managing the air conditioning so the car
always has the same temperature, to complex ones such as automatically steering the
car. Depending on the criticality of the function performed, special considerations
related to correct and timely operation have to be taken into account to ensure safety.
These systems are referred to as Critical Real-Time Embedded Systems (CRTES) or
real-time systems. The additional requirements of CRTES can be mainly summa-
rized into two: functional correctness and timing correctness. Functional correctness
implies that the system behaves as it was specified. Timing correctness, which is
targeted in this Thesis, requires the overal system functionalty to behave in a timely
manner. This carries that each task executes before a specific time, called deadline.
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Guaranteeing that deadlines are met, in turn, builds on deriving estimates to the
Worst-Case Execution Time (WCET) of critical real-time functionalities.

In terms of growth, the computer industry has experienced a significant growth
since its conception, possibly more than any other industry. As an example, if the
automotive industry had grown at the same pace of processor’s performance since
1971, the fastest car would now travel at a tenth of the speed of light [149]. The
CRTES industry has also grown, driven by the increasing critical real-time features
demands of industries such as aerospace, automotive, rail or space, which require
higher levels of performance than those provided by simple microcontrollers used tra-
ditionally [35, 121] Taking automotive as representative domain, on-board software
in cars already comprises hundreds of millions of lines of code [40], with its perfor-
mance requirements expected to rise by two orders of magnitude [2] by 2024. It is
widely accepted that timely executing those software functionalities will rely on pro-
cessors comprising high-performance features. Those performance levels can only be
achieved using powerful processors implementing high-performance features includ-
ing cache memories, multicore processors and/or prefetchers. Unfortunately, these
components usually rely on speculation and hard to predict dynamic behavior, which
challenge the estimation of WCET.

Overall, the need for increased performance in CRTES along with the challenging
timing analyzable requirements, calls for new designs and methodologies that can
synergistically provide both.

1.2 Challenges in the Memory Subsystem of CRTES

The trends described in the previous section challenge CRTES. In this Thesis we
focus on providing high performance while increasing time analyzability (with special
focus on timing anomalies and time composability) and reliability. We address the
combined challenge specifically at the memory subsystem level which is known to
have a huge impact on average and predictable performance.

1.2.1 High Performance

Using powerful processors that implement high-performance features provides high
average performance but challenge the estimation of WCET, a fundamental step for
timing validation and verification and hence for assessing the correct timing behavior
of CRTES [157]. In this line, using complex hardware in CRTES requires increased
performance guarantees (i.e. reduced WCET estimates) – and not just increased
average performance as needed in the mainstream market.

A prominent feature that improves average performance are cache memories with
high-performance processors, which are already ubiquitously deploying several levels
of cache (e.g. IBM POWER 9, Intel Core i7-based systems, and the ARM A Series).
This is also true of the latest embedded processors (NXP P4080 [119], Xilinx Zynq
UltraScale+ [163], NXP PowerQUICC III [136]...). This emanates from the signif-
icant impact that Multi-Level Caches (MLC) have on overall system performance.
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However, MLC design is delicate, because it involves high complexity when dealing
with coherence, inclusion, placement and replacement policies; and can also affect key
metrics like cycle time, energy/power (and hence temperature), reliability and design
complexity.

1.2.2 Time Analyzability

The main challenge when bringing HPC hardware features to the real-time domain
is their impact on guaranteed performance, (i.e. the ability to produce tight WCET
estimates). The process of obtaining timing guarantees for a piece of software is
called software timing analysis or simply timing analysis. Several families of tech-
niques exist, with the most prominent ones being Static Timing Analysis (STA) and
Measurement-Based Timing Analysis (MBTA), each one approaching timing analysis
from a different perspective.

Traditionally, STA has been the reference technique, and given the longevity of
many real-time systems there are still lots of systems nowadays that have been an-
alyzed using this technique. STA derives the WCET without actually executing the
application. It does so with models and abstract representations of the software and
the timing behavior of the underlying hardware. However, as hardware complexity
increases, STA suffers from some limitations to the point that it might result in overly
pessimistic (and hence not useful) timings [156]. For instance, it has been shown that
adding a new hardware feature to improve average performance can result in a worse
WCET estimate than the same system without the feature enabled [152]. Further-
more, STA requires in-depth information about the hardware used. It is normal for
manufacturers to not provide this information for confidentiality reasons, and even
sometimes they do not know all the possible timing states that the system can have.

In this context, MBTA has proliferated as the most used timing analysis technique
nowadays. MBTA executes the task on the target hardware under stressful scenarios
and collects execution task measurements. However, MBTA also has its constraints
and challenges [4]. An important challenge to MBTA is the representativity of the
analysis runs. In a nutshell, MBTA obtains timings from what are called analysis runs.
These runs are performed in the same system that will later be used in deployment.
These analysis runs must be representative of the worst possible scenario that the
system can undergo at deployment. However, obtaining the worst-case in the analysis
runs is not trivial. Furthermore, not all the hardware conditions and states are
accessible to the programmer, so in some cases it may even be impossible to set up
the specific worst conditions.

In the recent years, Measurement-Based Probabilistic Timing Analysis (MBPTA)
has emerged in order to address this representativity problem. While it is also based
on the measurement-based paradigm, it moves the problem of representativity from
the engineer to the system. The explanation and considerations of STA, MBTA and
MBPTA are explained in depth in Section 2.1.

All in all, time analyzing a task for a real-time system is becoming more and more
challenging as hardware complexity continues to increase. While classic methodologies
such as STA were sufficient for old systems, new complex systems that have increased
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performance require new techniques to obtain timing guarantees.

1.2.2.1 Timing anomalies

As a major source of complexity in timing verification, modern processors are gener-
ally prone to timing anomalies [105, 78, 158], a well-known phenomenon causing that
local worst-cases are not guaranteed to lead to the global worst-case.

Hence, dealing with timing anomalies is required to enable and support the anal-
ysis of complex computing platforms. This applies to both STA, for which timing
anomalies have been deeply analyzed [78, 158], and MBTA [155], for which, instead,
timing anomalies have been totally neglected so far.

The challenge with timing anomalies is related to the Measurement-Based tech-
niques. As MBTA is increasingly used in CRTES, potential timing anomalies must
be identified and handled correctly.

1.2.2.2 Time composability

The process of designing and integrating a CRTES has several stages. Usually, dif-
ferent vendors provide the software that will run in the system. First, they develop
the software. Then, they time analyze their software on the system where it will run.
However, due to factors such as development time constraints or confidentiality, only
their software is being tested on the system, when in deployment it will run with
other tasks. Then, at the end of the process, software from different vendors will be
integrated in the same system. However, since the tasks have been only time analyzed
in isolation, the timings obtained will not be valid when running them together. This
is due to potential effects that can emerge from contention.

Time composability eases the development of CRTES since it allows deriving
timing estimates in early design stages with assurance that they remain valid as dif-
ferent software components, which are developed independently, are incrementally
integrated. Usually time composable WCET estimates introduce some overheads,
since some pessimistic assumptions are made to guarantee that the timing estimates
hold when running with other tasks. Time composibility is becoming a fundamen-
tal property in increasingly-complex multi-provider software projects in integrated
systems like Integrated Modular Avionics (IMA) [1, 161] in the avionics domain or
AUTOSAR in the automotive domain [62].

1.2.3 Hardware Reliability

One of the trends that has allowed processors to keep increasing performance at
Moore’s law pace has been shrinking transistor size. It has allowed the integration of
more transistors in the same die area, which has several advantages such as allowing
more complex designs, operate at higher frequencies or reducing power dissipation,
amongst others. However, the reduction in transistor size impacts the reliability of
processors. This is so because a smaller transistor size usually holds less charge, and
a smaller charge is typically easier to flip.
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While this is an important problem for High Performance Computing (HPC), it
is specially critical for CRTES. Critical systems must undergo a strict certification
process to provide evidence that hardware failure rates are below specific thresholds
set in applicable safety standards, e.g. ISO26262 [77] in cars. Critical systems include
safety mechanisms for fault tolerance to ensure low-enough acceptable failure rates.

Specifically, the sensitivity of caches to errors (faults) in CRTES is a challenge
for system designers. A bit flip in a cache could cause an unexpected result on
the executing task, leading to a non-safe scenario. Thus, some sort of reliability
mechanism is required in caches to make them certifiable in CRTES.

1.3 Motivation

The challenges described in Section 1.2 open the door to several research lines. With
focus on cache memories, the main focus of this Thesis is to enable the use HPC
features in CRTES under the umbrella of MBPTA. This can have a positive impact
in four specific areas: improving guaranteed performance and time analyzability in
caches, reducing multicore contention while taking into consideration reliability and
guaranteed performance constraints, improving the guaranteed performance with the
addition of a prefetcher to the memory subsystem, and improving the confidence in
timing analysis by tackling timing anomalies in MBTA.

• Caches guaranteed performance and time analyzability. Caches are
used in CRTES in order to improve guaranteed performance. MBPTA can be
used as a timing analysis methodology to overcome several limitations of STA
and MBTA with caches. In order to enable MBPTA, time randomized caches
have been introduced, both using random placement and Random Replace-
ment (RR). However, more complex systems implement several cache levels
to improve performance. The use of random placement policies in MLC chal-
lenges the time composability of such systems, as well as their performance.
In addition, existing RR policies have several pathological scenarios that can
significantly reduce the guaranteed performance of the system.
• Multicore contention. Multicore architectures in CRTES present some per-

formance challenges [126]. Mainly, the potential contention on the shared re-
sources comes from the bus or the shared last-level cache. The cache write policy
of these systems has a big impact on the contention they suffer. Furthermore,
the write policy used in these systems affects the reliability mechanisms that
must be put in place to pass safety regulations. Specifically, when allowing the
possibility of having dirty data in L1 caches, the addition of Error Correction
Codes (ECC) mechanisms close to the core can negatively affect performance.
Alternatively, avoiding dirty data in L1 caches requires sending abundant data
to L2 caches, which increases performance degradation due to contention.
• Hardware prefetcher. Given the time guarantees necessary for CRTES, it is

challenging to use certain HPC features, mostly because in general they make
use of speculation. A component that has not been brought to CRTES is the
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Table 1.1: Contributions, focus of work and publications.

Topic Subtopic Focus Publications
1. Caches Placement High-Performance DATE 2018

Time Analyzability
Time Composability

2. Caches Replacement High-Performance SAC 2018
Time Analyzability JSA 2019

3. Multicore Contention High-Performance ECRTS 2018
Time Analyzability

4. Multicore Reliability High-Performance DATE 2019
Time Analyzability
Reliability

5. Prefetching High-Performance, Submitted to JSA 2022
Time Analyzability

6. Timing anomalies Time Analyzability ASPDAC 2019
Timing Anomalies

hardware prefetcher, both for data and instructions, while providing guaranteed
times. Prefetchers are critical to hide memory latencies for cold and capacity
misses.
• Timing anomalies in MBTA. The consideration of timing anomalies is criti-

cal for the confidence on the timing estimates. Because of this, timing anomalies
have been deeply studied in the context of STA. However, there is neither a def-
inition of timing anomalies for MBTA systems, nor solutions to account for
them in WCET estimates.

1.4 Contributions

This Thesis advances the hardware designs of CRTES to increase their guaranteed per-
formance while guaranteeing the specific needs of CRTES. In particular, the main fo-
cus of the work is the memory subsystem, specifically the caches and prefetcher, which
have shown to have a high performance impact in HPC systems. Since CRTES inherit
these high-performance designs (multi-level caches, multicore systems, prefetchers...),
several challenges arise to make sure that these designs are suitable for and can cover
the needs of CRTES’ needs.

The contributions in this Thesis are divided into six major themes. As a summary,
Table 1.1 shows the topic and subtopic of each contribution, as well as the areas where
each of them focus and the publications related to each one of them (in more detail
in Section 1.6).

1. The first contribution of this Thesis is about bringing MBPTA compliant cache
placement policies to multi-level cache systems. The main challenges when tack-
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ling this problem are obtaining good guaranteed performance, maintaining time
composability and managing the implementation complexity. In this contribu-
tion we analyze several combinations of placement policies for multilevel caches
building on top of existing random placement policies for single-level caches.
We quantify in a simulator which is the best one in terms of guaranteed per-
formance that satisfies the time composability constraints and implement that
one in an FPGA multicore prototype.

2. The second contribution also relates to random caches that enable MBPTA,
but in this case we focus on the replacement policies. RR, the standard random
policy used in MBPTA, suffers from pathological scenarios that decrease its
guaranteed performance. First, we identify those scenarios, which are also suf-
fered by most non-random replacement policies, such as Least Recently Used
(LRU), Non-Most Recently Used (NMRU) and Binary Tree (BT). Then, we
propose two different policies that are also time randomized but do not suffer
from those pathological cases. Finally, we quantify the impact on guaranteed
performance of the improved policies in a simulator.

3. The next contribution is about write policies in multicore systems. Assuming a
multicore system with several levels of cache, whose last level is shared amongst
all cores, the contention caused by the shared resources (interconnect, Shared
Last-Level Cache (SLLC)) can increase significantly the guaranteed execution
time. The write policy of private caches (write-through, write-back) has a
huge impact on the number of messages sent to the SLLC, as well as on the
complexity of the coherency protocol and energy consumption. We analyze both
write policies and conclude that the optimal is a hybrid policy that behaves as
write-though with shared data and as write-back with private data. We design
this policy along with a simple solution to discriminate private and shared data,
and implement it in a simulator, obtaining a significant improvement in terms
of guaranteed performance, energy and complexity.

4. The fourth contribution tackles on an open challenge of the previous contribu-
tion. One drawback of the proposed hybrid write solution is that it requires
error correction in the L1 cache, since it may have dirty data. Implementing
ECC so close to the core can have a significant impact in performance due
to the latency to check and generate codes. First, we analyze the potential
performance impact of putting ECC in the L1 data cache. Then, we propose
several incremental improvements culminating in our proposal: a look-ahead
mechanism that allows us to mitigate the timing impact of ECC. Finally, we
implement this solution in a simulator and quantify the improvement in the
guaranteed execution time increase as a result of using our proposed technique.

5. The next contribution of the Thesis focuses on reducing cold and capacity
misses. To this end, a component commonly used in the HPC domain is
brought to CRTES: the hardware prefetcher. Since providing timing guarantees
with HPC components is challenging due to their speculative nature, we pro-
pose a formal framework that allows hardware prefetchers to be implemented.
We simulate the proposed framework and obtain improvements in performance
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guarantees.
6. Our final contribution tackles the topic of timing anomalies in MBTA. While

timing anomalies have been deeply analyzed for STA, they have not been studied
for MBTA. We define timing anomalies in the context of MBTA and classify
the different types of timing anomalies. Then, we focus on a specific timing
anomaly than can happen in a real system, and propose a solution to properly
handle it.

1.5 Thesis Organization

The thesis is organized as follows:

• Chapter 1 - Introduction. It introduces the main topics addressed, explains
the different contributions and lists the publications that have been produced
as a result of the work done in this Thesis.
• Chapter 2 - Background. It presents the background required to understand

the rest of the Thesis. It explains the basics of Timing Analysis as well as the
details of some specific TA families. The next topic tackled is caches in the real-
time systems domain, as well as other challenges such as contention, reliability
and prefetching.
• Chapter 3 - Experimental Setup. It describes the experimental setup start-

ing with the overall methodology used in the Thesis. Then, the reference proces-
sor used, the simulator infrastructure and the Hardware Description Language
(HDL) setup are described. Then, the MBPTA tools and methodology that
allow for Probabilistic Worst-Case Execution Time (pWCET) computation are
discussed. The Chapter concludes explaining the different benchmarks used.
• Chapters 4 to 9 - Contributions. Each contribution of this Thesis is pre-

sented as an individual Chapter. The organization each of these Chapters is
similar: the first section introduces the topic and the challenges. The next
section (or sections if needed) attack the main problem, explaining the issues
and our proposed solution. Afterwards, the setup and evaluation are explained.
The following section collects the related work in that topic. Finally, at the end
of each section, the conclusions of the contribution are summarized.

– Chapter 4 - Cache placement policies

– Chapter 5 - Cache replacement policies

– Chapter 6 - Cache write policies

– Chapter 7 - Cache redundancy

– Chapter 8 - Prefetching

– Chapter 9 - Timing anomalies

• Chapter 10 - Conclusions Finally, Chapter 10 concludes the work done in
this Thesis and discusses the potential work that could be inspired in the future.
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1.6 List of Publications

1.6 List of Publications

As a product of the work done in this Thesis, 6 publications have been made (5
in international conferences and 1 in a journal) and 1 more publication has been
submitted to a journal.

1. Design and Integration of Hierarchical-Placement Multi-level Caches
for Real-Time Systems [22]
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
Design, Automation and Test in Europe (DATE), 2018
DOI: 10.23919/DATE.2018.8342052

2. RPR: A Random Replacement Policy with Limited Pathological Re-
placements [24]
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
ACM Symposium on Applied Computing (SAC), 2018
DOI: 10.1145/3167132.3167197

3. HWP: Hardware Support to Reconcile Cache Energy, Complexity,
Performance andWCET estimates in Multicore Real-Time Systems [23]
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
EUROMICRO Conference on Real-Time Systems (ECRTS), 2018
DOI: 10.4230/LIPIcs.ECRTS.2018.3

4. Improving Time-Randomized Cache Design [27]
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
5th BSC Severo Ochoa Doctoral Symposium, 2018

5. Towards Limiting the Impact of Timing Anomalies in Complex Real-
Time Processors [21]
Pedro Benedicte, Jaume Abella, Carles Hernandez, Enrico Mezzetti, Francisco
J. Cazorla
Asia and South Pacific Design Automation Conference (ASPDAC), 2019
DOI: 10.1145/3287624.3287655

6. LAEC: Look-Ahead Error Correction Codes in Embedded Processors
L1 Data Cache [25]
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
Design, Automation and Test in Europe (DATE), 2019
DOI: 10.23919/DATE.2019.8714877

7. Locality-aware Cache Random Replacement Policies [26]
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
Journal of Systems Architecture (JSA), 2019
DOI: 10.1016/j.sysarc.2018.12.007

8. A Formal Framework and Its Instantiation for the Design of Time-
Predictable Hardware Prefetchers
Pedro Benedicte, Carles Hernandez, Jaume Abella, Francisco J. Cazorla
Submitted to Journal of Systems Architecture (JSA)
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Additional publications, although not directly related to the contributions in this
Thesis, have been published in the same domain and with related objectives.

8. Modelling the confidence of timing analysis for time randomised caches [28]
Pedro Benedicte, Leonidas Kosmidis, Jaume Abella, Francisco J. Cazorla
IEEE Symposium on Industrial Embedded Systems (SIES), 2016
DOI: 10.1109/SIES.2016.7509421

9. A confidence assessment of WCET estimates for software time ran-
domized caches [29]
Pedro Benedicte, Leonidas Kosmidis, Jaume Abella, Francisco J. Cazorla
IEEE International Conference on Industrial Informatics (INDIN), 2016
DOI: 10.1109/INDIN.2016.7819140
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Chapter 2

Background

2.1 Timing Analysis

Responsiveness of Critical Real-Time Embedded Systems (CRTES) is essential to
their correct operation. As such, these systems must react within a limited time
called deadline (for instance a steering system may need to react within 50ms [90])
to prevent any timing related miss-behavior.

In order to satisfy this time constraint, for each task an upper-bound of the exe-
cution time is estimated during the development of the software and its integration
in the platform to assess it against the task deadline. This upper-bound is usually
called Worst-Case Execution Time (WCET) estimate and it is derived via a process
called timing analysis.

The first step to deriving WCET estimates is identifying the possible factors that
can affect the execution time of a program. For instance, sources of jitter at a hard-
ware level can be complex and hard to predict in specific features of the processor (e.g.
cache memories). Undocumented system functionalities, which are not controlled by
the end user, can also lead to unexpected timing behavior across runs of the same
task.

At the software level, another possible source of time variation can be the (data)
inputs of the program. The inputs can have an effect on the control flow of the
program, executing different parts of the software. Moreover, different inputs can
result in different execution times even when the same instructions are executed.
For example, some floating point or mathematical operations such as multiplication
or division can take a different number of execution cycles depending on the input
operands.

An additional potential source of time variation is resource sharing. For perfor-
mance and cost reasons, some components are shared amongst different programs in
multicores, such as the computing core (e.g. multithreaded cores), memory hierarchy
or interconnects. When different programs access the same resource at the same time,
it can result in contention in the shared resource. If this happens, it will likely affect
the execution time of the programs sharing the resource, and variability will emanate
from the contention caused by other programs and low level arbitration effects.
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Figure 2.1: Execution time distributions (from [157])

Figure 2.1 illustrates in dark grey the distribution of all the possible execution
times. The Figure shows in the horizontal axis the different potential execution
times, and in the vertical axis the frequency of occurrence of that specific execution
time. We observe that, typically, most of the potential execution times fall under the
same range of values; while the highest possible execution time values happen only a
small number of times.

Obtaining the complete distribution of all the possible execution times of a pro-
gram (the dark grey distribution in the Figure) is a challenging task, since an ex-
haustive search of all the possible factors that affect the execution time would need
to be done. A more realistic approach is to analyze only a subset of all the potential
execution times. In Figure 2.1 this subset is the distribution of possible execution
times in light grey.

2.1.1 WCET

The computation of the WCET is a complex endeavor. Taking into account that it is
commonly unfeasible to obtain the distribution of all possible execution times, three
different relevant execution times are defined (as seen in Figure 2.1):

• Maximum Observed Execution Time, or High-Water Mark (HWM) is the largest
execution time observed. The method for obtaining this value can change de-
pending on the timing analysis technique used.
• Real WCET is the maximum execution time that the specific program under

analysis can produce in the system operation stage.
• Estimated WCET is the execution time that results from the timing analysis

and it is intended to upper-bound the real WCET.

The difference between the estimated WCET and the real WCET is defined as
the tightness. The bigger this difference is, the more overestimation has been in-
curred when computing the estimated WCET. Another important parameter when
obtaining the estimated WCET is that the value is trustworthy. Trustworthiness of
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the estimated WCET is related to the evidence that the real WCET does not exceed
the estimated WCET. Thus, an important objective of timing analysis is to obtain
WCET estimates as tight as possible while being trustworthy.

This presents an interesting differentiation with respect to High Performance Com-
puting (HPC) design goals. In HPC, the main objective is to improve average per-
formance [69], which in Figure 2.1 would result in shifting the bulk of the execution
time distribution to the left, even if that meant adding a small number of cases that
increase the WCET. While usually not being the primary objective, improving aver-
age performance can also be beneficial for CRTES. Specifically, in mixed criticality
systems, where tasks that have critical time requirements and others that do not are
executed on the same platform, potentially simultaneously. In improving the aver-
age execution time, the programs that do not have critical constraints improve their
performance.

Deriving WCET estimation is challenging and has evolved with the complexity
of the hardware and software in CRTES. We first introduct Static Timing Analysis
(STA) and Measurement-Based Timing Analysis (MBTA); and then cover Measurement-
Based Probabilistic Timing Analysis (MBPTA) a more recent timing analysis method-
ology based in MBTA that has rapidly evolved in the last decade to tackle the limi-
tations of STA and MBTA.

2.1.2 STA

STA is a family of timing analysis techniques based on deriving the WCET through
analytic methods, without actually executing the application on the hardware. Usu-
ally mathematical models and abstract representations are used to achieve this pur-
pose. STA has been used in relatively simple CRTES. The trustworthiness of this
technique is based on the input information provided, like timing information about
the execution of instructions and flow facts. As the complexity of both hardware
and software increases in future more ambitious CRTES, the use of STA has prob-
lems to guarantee that this analytic methods accurately describe hardware and soft-
ware [111, 4].

Usually, STA consists of mainly two phases: low-level and high-level analyses [157].
In the low-level analysis an accurate model of the architecture of the process is de-
signed. In order to derive WCET estimates, the potential states that the hardware
can have at any given point are modelled [123]. Thus, the trustworthiness of this
technique is directly related with the fidelity with which the model resembles the
actual hardware. While this is an achievable task with simple hardware, it becomes
unattainable with complex modern hardware features. Furthermore, it relies on hard-
ware manufacturers providing detailed information about the implementation and
timings of their designs, which is not often available due to the confidential and com-
petitive nature of the market. Even in the cases that this information is available, it is
detailed in lengthy complex documents, that are usually accompanied by subsequent
errata documents, which reflect the unreliability of this information [4].

The high-level analysis focuses on the program structure by means of its control-
flow graph. All the different paths that can be taken are analysed. However, given the
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complexity of programs and the fact that the control path can change significantly
with different inputs, it is sometimes highly challenging or unfeasible to provide a
sound analysis.

While STA is still used in some specific domains, with the complexity increase of
both software and hardware it is increasingly challenging to apply STA to derive safe
WCET estimates.

2.1.3 MBTA

The most extended timing analysis practice nowadays is MBTA [157]. MBTA relies
on collecting task’s execution time measurements on the target hardware during the
system analysis (or design) phase under different stressing conditions with guarantees
that those conditions capture the worst scenarios that can arise during operation.
MBTA can be used for the timing analysis of the highest-criticality tasks, as it has
been shown for avionics software [99].

In order to better understand the timing analysis methodology of MBTA, two
stages need to be defined: analysis and operation. First, in the analysis or develop-
ment stage the system designers, software developers, systems integrators and others
obtain WCET estimates. During this stage, engineers can have extensive access to
software and hardware to make several tests. Then, the operation stage is when the
system is already in operation in the real world performing the task it was designed to
perform. The WCET estimates derived in the analysis stage need to hold during the
operation stage. In order for the resulting WCET estimates to be trustworthy, the
conditions that the system will undertake in operation must be carefully understood
and taken into consideration in the analysis stage. This is one of the most important
challenges of MBTA, and is commonly referred to as representativeness.

Another key component of MBTA is the collection of measurements. Software in-
strumentation can be used to include instructions that perform this collection. How-
ever, they modify the code and can result in a different timing behavior if deployed
without such instrumentation. A solution to this problem is to deploy the instru-
mented code or a nop-instruction-based code with the same memory layout: it will
have a small overhead due to the instrumentation/nop code but the WCET estimates
computed at analysis will not suffer the probe effect [50].

Another potential challenge with MBTA is the gap between the Maximum Ob-
served Execution Time and the Real WCET (as seen in Figure 2.1). Obtaining the
Real WCET in the analysis runs is a challenging task. Not only it requires infor-
mation about the hardware in order to set up this specific case, but even with this
information sometimes setting up this case is unfeasible or highly challenging. This
happens since there may be no specific knobs in the hardware to set certain param-
eters, such as forcing several cores to make a request to a shared bus at the same
instant. In order to solve this problem, the Maximum Observed Execution Time
is increased by a safety margin. This margin usually depends on the domain and
criticality, and tries to account for uncertainties on the timing of the system. As an
example, a 20% margin may be used in the avionics industry [154]. This margin has
been deemed to be acceptable due to past experience: systems with this margin have
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Figure 2.2: pWCET estimate curve derived from the CCDF measurements

never experienced any overruns. This has important implications, since some works
point out that this 20% is not sufficient for multicore processors [56].

Finally, an additional challenge with this methodology is the number of runs that
need to be performed at analysis to provide a trustworthy WCET estimate. Ideally,
an exhaustive number of runs exploring all the possible combinations of both inputs
and hardware states should be ran. In reality, it is unfeasible, so it is the task of the
engineer to design and execute a set of experiments that are deemed representative
of the worst possible timing outcomes. Hence, the trustworthiness of the resulting
WCET estimates depends on the design of these tests.

2.1.4 MBPTA

In order to address the main challenges of timing analysis that suffer STA and MBTA
techniques, a new paradigm has arisen in the last decade: MBPTA [39, 48]. Instead
of providing a single execution time as a result of different executions of a program
(given the same program inputs and hardware state), MBPTA benefits from injecting
some changed in the platform to handle representativity, which we describe later in
this section. Some of these changes relate to adding randomization to the timing
behavior of hard-to-predict hardware components which cause variability in tasks’
execution time that is bounded not with single WCET estimate, but a Probabilistic
Worst-Case Execution Time (pWCET) curve.

MBPTA builds on a set of execution time measurements taken during the system
analysis phase, whose Complementary Cumulative Distribution Function (CCDF)
is shown with a dashed red line in Figure 2.2 for a given synthetic example. Those
measurements are passed as input to Extreme Value Theory (EVT) [132], a statistical
technique to estimate an upper-bound distribution tails.

Another feature of MBPTA is that it controls how execution time measurements
are collected so they capture those conditions that lead to higher or equal execution
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times than those during system operation. EVT requires that the execution times
meet several statistical properties related to the degree of independence and identical
distribution of the random variable (execution times) modeled. Also, MBPTA con-
trols whether execution times can be modeled with an exponential tail, which is the
most convenient distribution for pWCET estimates of real-time programs [45, 5].

MBPTA delivers a pWCET distribution, often depicted as a CCDF, so that for
each particular execution time value we obtain an upper-bound probability with which
it can be exceeded (see blue solid line in Figure 2.2). Therefore, the pWCET esti-
mate is the value such that its upper-bound exceedance probability can be regarded
as irrelevant in relation to acceptable failure rates in the corresponding safety stan-
dards (e.g. ISO26262 in automotive [77]). For instance, as shown in Figure 2.2, the
probability of the program to take 22,000 cycles or longer is below an exceedance
probability of 10−12 per run.

Interestingly, EVT is able to predict the probabilities for combinations of events
that have not occurred simultaneously in any of the observations in the sample. For
instance, if those observations correspond to the execution time when experiencing
between 10 and 20 cache misses, EVT can predict the probabilities for execution times
caused by a larger number of misses (e.g. caused by 50, 100 or 1,000 misses) [7].

In order for MBPTA to provide sound estimates, it requires the sources of exe-
cution time variability (jitter) to be either upper-bounded (during analysis) or time-
randomized (during both analysis and operation). For instance, latencies due to val-
ues operated in variable-latency units are typically upper-bounded, and cache place-
ment is typically randomized. By applying these techniques to the different sources
of jitter of the processor, MBPTA relieves the user from controlling during testing
low level aspects of those resources causing jitter, for which the end user may lack
means to determine and enforce their worst timing behavior at analysis.

MBPTA is a mature technology that has been successfully assessed with case
studies in the automotive, railway, space, and avionics domains [153, 57]. MBPTA
builds on the underlying (complex) platform having certain properties in its timing
behavior as a means to facilitate the analysis of software timing.

2.1.5 Timing Anomalies

When providing guarantees that the WCET estimates are trustworthy, a phenomenon
that deserves special attention is that of timing anomalies. A high-level definition of
timing anomalies, from the perspective of timing analysis, is given [78] as those cases
where a local worst-case does not lead to the global worst-case. An illustrative timing
anomaly is shown in Figure 2.3 where instructions in each row execute serially due
to data dependencies (i.e. E consumes some data produced by A), and C and E use
the same resource. We see that, by experiencing a longer latency for A (local effect),
the overall execution time decreases (global effect).

For STA, timing anomalies jeopardize the formal reliability of the approach. STA
is in fact forced to resort to some form of abstraction to be able to model all possi-
ble inputs and hardware states, as shown later in Chapter 9. Abstractions in turn
introduce non-determinism in the model, where an abstract state can have multi-
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Figure 2.3: Timing anomaly example

ple successor states. Since modeling all possible transitions between abstract states
rapidly becomes computationally intractable, STA approaches typically discard those
states that are unlikely to lead to the global worst-case behavior. In particular, the
underlying assumption in STA approaches is that timing can be safely analyzed at
the level of single execution blocks as a function of an initial state and a given input,
so that local worst-cases transitions are always assumed to lead to the global worst-
case timing. Timing anomalies clearly spoil this assumption, forcing STA to take the
appropriate countermeasures.

A relevant STA timing anomaly classification looks into the effects on timing on
the analysis scope, distinguishing between bounded and unboundable timing anoma-
lies [158]. Anomalies are classified as k-bounded if their effect can be factored in by
adding a conservative (possibly overly-pessimistic) constant to the computed WCET
bound. Instead, to account for unboundable timing anomalies, leading to the so-called
domino effect, STA is forced to consider all possible states and transitions, which is
evidently untenable.

In contrast with the extended research existing on timing anomalies for STA, there
is still no definition or way to handle timing anomalies on MBTA or MBPTA.

2.1.6 Time composability

With the performance increase of CRTES, more and more tasks and functionalities
are being integrated in the same system (for instance in a System on Chip (SoC)).
However, integrating several tasks adds complexity to their design and integration.

The timing of these tasks needs to be assessed against their allocated time budgets
early in the design process to take corrective actions with limited effort and time
costs [112]. Otherwise, not only regression tests are more complex to design but
also, as software gets integrated, finding an overrun late can cause costly system
redesigns and even delay product’s time to market. Hence, it is desirable for system
engineers to have time composable timing bounds that are estimated in early design
stages and remain valid upon integration of other software components, thus enabling
incremental software integration. This is a fundamental property in increasingly-
complex multi-provider software projects like IMA [1] in avionics or AUTOSAR [62]
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in automotive domains.
Typically, there exists a tradeoff between time composability and tightness. This

happens, for instance, in systems where resources are shared amongst tasks. In such
systems, a common way to make tasks time composable is to assume that contender
tasks are always using the shared resource whenever possible, thus increasing al-
lowances needed on the task under analysis but guaranteeing that the derived WCET
estimates will hold no matter the usage of resources (activity) made by the con-
tenders.

2.2 Caches in Real-Time Systems

Cache memories are one of the processor components with highest impact on perfor-
mance. Most HPC processors include several cache levels: Intel Core family, AMD
Ryzen, IBM Power 9 etc. Processors in the CRTES domain also include caches like
the NXP T2080, Cobham Gaisler NGMP, and ARM Cortex A9/A53.

Caches have a key impact on the WCET estimates and present challenges to the
CRTES industry. Mainly, they hinder obtaining sound WCET estimates, since they
introduce jitter in the execution time. Without caches, memory accesses usually have
longer yet constant access time; while with caches they can result in either a (shorter)
hit, or a (longer) miss.

Despite the complexity caches add to timing analysis, the potential performance
benefits of caches have resulted in several research works to enable their use in CRTES.
In the context of STA, cache analysis has been used in order to predict the WCET by
analyzing the cache behavior [36]. However, these techniques are usually limited to
simple single-level cache systems, with few works tackling the challenge of multi-level
caches in STA.

With MBPTA randomizing the timing behavior of the cache placement policy, the
cache replacement policy, or both, representativity is easier to achieve. In particular,
random placement relieves the end user from controlling the memory location of code
and data – and the impact it has on timing – since addresses have no effect on place-
ment anymore. Random Replacement (RR) instead removes systematic pathological
performance cases, thus enabling tighter WCET estimates with MBPTA. In the next
subsections the different placement and replacement policies currently existing for
MBPTA are introduced.

2.2.1 Placement

The placement policy determines the cache set accessed by a given memory address.
It is important that a single address always maps to the same set, or else it would
not be retrievable. Figure 2.4 shows a block diagram of a cache and how randomized
placement would fit in its overall design. As shown, for the generation of the index –
used to feed standard modulo placement – specific logic combines the accessed address
and a random number from a pseudo-random number generator (PRNG). State-of-
the-art PRNGs deliver value series long enough to exclude repetition in short periods,
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Figure 2.4: Hardware schematic of a random placement cache

thereby preventing any potential correlation of events [9].

2.2.1.1 hRP placement

The hash Random Placement (hRP) policy [92] uses a parametric hash function whose
input includes the memory address to be accessed (factoring out those determining
the offset within the cache line) and a random seed. It produces the (random) set
where the address is placed with that random seed. The hash function uses a set of
rotator blocks and XOR gates so that the set chosen for any given address is random.
Thus, whether two addresses are placed or not in the same set is a random event.
Upon change of the random seed, addresses are randomly and independently mapped
into sets. hRP provides homogeneous distribution of addresses across sets, so the
probability of each address to be placed in each set is 1/S, where S is the number of
sets.

hRP is used by flushing cache contents and setting a (new) random seed, usually at
task execution boundaries1. This leads to a random placement of addresses, that holds
during the whole execution, so addresses placed in the same set compete for the set

1Tasks sharing a cache memory require coordination for seed update and cache flushing. This can
be achieved by changing seeds at execution time partition boundaries as described in the context of
IMA and proven in [153].
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space during the whole run, whereas addresses placed in different sets have no conflict
in that run. hRP imposes that cache line alignment during analysis and operation is
preserved. Thus, objects can be shifted in memory freely at the granularity of cache
line size upon integration without impacting (random) placement.

2.2.1.2 Random Modulo (RM) placement

Unlike hRP, RM placement [72] breaks the dependence between memory location and
cache placement while preserving the advantages of spatial locality as the standard
modulo placement does. In particular, RM prevents conflicts between cache lines with
identical tag bits, which we refer to as a cache segment. This is achieved by using a
random seed, hashed with tag bits (T bits), that determines a random permutation
of I (index) bits. Such random permutation changes across addresses by varying T
bits and across random seeds. Thus, addresses are placed in random and independent
sets across runs. However, two addresses with identical T bits and different I bits
are necessarily placed in different cache sets given a fixed random seed. Thus, nearby
addresses (those sharing the same T bits) cannot be placed in the same set.

RM poses constraints on integration: addresses in a cache segment (same T bits)
during analysis must belong to the same cache segment upon integration. Hence,
addresses may be shifted at the granularity of 2I+O bytes (the size of a cache segment),
which is practically achieved by making cache way size (Wsize) match that granularity
(Wsize = 2I+O), which is further made match memory page size. Thus, at software
level objects are aligned at page boundaries and cache ways need to match that size
(or be divisors of that size). As discussed later in this Thesis, this is a good tradeoff
for L1 caches, but not for L2 caches.

2.2.2 Replacement

The replacement policy selects, in an associative cache, which line to evict from a set.
The main cache replacement policy used in MBPTA systems is the RR.

2.2.2.1 Random replacement

RR evicts a specific cache line with a probability of 1/N for an N -way cache. Hence,
the probability of a line surviving an eviction is (N − 1)/N , and hence, there is a
non-null probability of survival for cache lines for any access sequence. In particular,
even if the cache set space is exceeded (e.g. placing 5 lines in the same set in a
4-way set associative cache), RR provides a survival (hit) probability larger than 0

by construction (e.g.
(
3
4

)4
= 0.316 for a cache line after 4 replacements in a 4-way

cache).
On the other hand, if we consider a sequence with N addresses instead of N + 1,

then we realize that the most popular deterministic policies (e.g. Least Recently Used
(LRU), FIFO) would lead to all-hit sequences except for cold misses. Instead, RR
has non-null probability of evicting some cache lines before (randomly) placing all
addresses in distinct physical cache lines so that all remaining accesses become hits.
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This occurs because RR is unaware of temporal locality since it does not preserve any
history.

Since pWCET estimates with MBPTA need to account for the worst case that
can occur with non-negligible probability, pathological cases occurring with relevant
probabilities need to be accounted for. In the case of RR, some low-probability high-
execution time eviction scenarios need to be accounted for, but those scenarios will
not include the absolute worst case, which is the actual case for deterministic policies
under systematic pathological cases. Still, the fact that these eviction sequences can
occur under RR may lead to high pWCET estimates, which relates to the fact that
RR is a locality-unaware replacement policy.

2.2.3 Write policy in multilevel caches

When designing a multilevel cache hierarchy there are several design choices to be
made, which are not independent of each other but quite tightly correlated. The
write policy is an important design choice that can have a big impact in the resulting
design [69]. Mainly two policies exist: write-though (WT) and write-back (WB).
With WT, every time a write to the cache is made, the write propagates to the upper
level. On the contrary, with WB when the write is made the line is marked as dirty,
and the write to the upper level will only be made when the dirty line is evicted.

Another decision with writes to caches is whether to fetch a cache line on a write
miss, i.e. write allocate (WA) or no-write allocate (nWA) [69]. With WA, on a write
miss data is fetched into cache, as it is the case for read misses, and once fetched,
the write operation occurs. With nWA, on a write miss the write operation is simply
forwarded to the next cache level (or memory). Both WT and WB can use either of
these write-allocation policies, but we only consider WB-WA and WT-nWA caches
in this Thesis, since they are the most common choices. However, our research work
presented later could be extended to other combinations.

2.2.4 Cache inclusion

The inclusivity of the lower cache levels into the upper cache levels (those closer to
memory), imposes that all contents in the lower level cache are also included in the
upper level cache [69]. Hence, whenever a cache line is evicted from the upper level
cache, all cache lines in the lower level cache holding any of the contents of the cache
line evicted in the upper level cache are also evicted. Under an exclusivity approach,
cache lines can be stored only in one of the two levels involved. When a new cache
line is fetched by the processor, it is typically fetched into the lower level and removed
from the upper level. When a cache line is evicted from the lower level it is moved
up to the next level. Finally, non-inclusive caches are those where no constraint is
imposed on whether cache lines are stored in upper or lower cache levels. This is
a common choice for instruction caches since they are typically read-only and thus,
cache lines can be simply removed on an eviction.
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2.2.5 Reliability

In the CRTES industry, one of the main requirements of the systems deployed is a
certain level of reliability. This means that the system must operate correctly and in
a timely manner under a variety of conditions, which will depend on the specific field
and the criticality of the task. A potential system disruption are soft errors. Soft
errors can be caused, for instance, by atmospheric neutrons [116] The result can be a
bit flipped from 0 to 1 or from 1 to 0. If this bit is accessed by the program, it can
result in an error.

This can happen with a greater chance in cache memories due to their relative size
with respect to the core. In order to detect and fix soft errors in caches, some sort
of redundancy mechanism is added to the cells. Error Correction Codes (ECC) [66]
are a common solution. ECC add extra bit cells per cache line to check if there is an
error and correct it. The number of bits per line that can be detected to be flipped
and corrected in case of a flip depend on the number of extra bits added and the
detection and correction algorithms. A simple solution is Single Error Correction,
Double Error Detection (SECDED), which can detect two errors and correct one.
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Chapter 3

Experimental Setup

3.1 Methodology

In the context of this Thesis, the methodology used in order to evaluate new ideas or
approaches is as follows, see Figure 3.1:

Derive WCET
estimates

Implementation

Results

Evaluation

Proposal

Architectural
simulator

Other techniques

MBPTA tools

Run experiments

HDL

Figure 3.1: Methodology used in the evaluation of the Thesis

1. Proposal. A proposal, i.e. change in the design of the processor, is made to
capture specific challenges.
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2. Implementation. The proposal is implemented in the architectural simulator
or in the Hardware Description Language (HDL) implementation in an Field-
Programmable Gate Array (FPGA).

3. Run experiments. Experiments are run with an appropriate set of bench-
marks on a representative hardware setup.

4. Results. Statistics from the exection in either the architectural simulator or the
FPGA are collected. Some statistics that could be interesting are for example
execution cycles, cache misses, bus requests etc. The set of specific statistics
depends on what the expected effect of the proposal is.

5. Derive Worst-Case Execution Time (WCET) estimates In order to de-
rive WCET estimates a process must be followed depending on the particular
timing analysis used. In our work, we mainly use Measurement-Based Proba-
bilistic Timing Analysis (MBPTA), so we use a specific set of tools to derive
Probabilistic Worst-Case Execution Time (pWCET) estimates.

6. Evaluation. After we have the results and the WCET estimates, we can com-
pare results with our target. If they don’t reach our target, we can propose
further changes and start again the process.

3.2 Reference processor architecture

The reference processor we are going to use is a multicore, multi-level cache repre-
sentative of the recent trend in the processors used in critical real-time domains. In
particular, we model Cobham Gaisler’s Next Generation Microprocessor (NGMP).
This chip is a solid candidate for future missions of the European Space Agency
(ESA). Competing companies have chips with similar configurations with few simple
cores (2-8) and 2 level cache hierarchy (ARM Cortex R5 [16], ARM Cortex M7 [15],
Freescale PowerQUICC [136], Freescale P4080 [119], etc).

To better understand the particularities of the specific platform used, we provide
some background on the LEON core family. Afterwards, we explain more in detal
the NGMP SoC used.

3.2.1 LEON 3

The LEON 3 [60] processor core is compliant with the SPARC V8 architecture. It
features an advanced 7-stage pipeline that can be clocked up to 125MHz in an FPGA
and 400MHz on 0.13 µmASIC technologies. The pipeline stages are: fetch (F), decode
(D), register access (RA), execution of non-memory operations (Exe), dL1 access (M),
Exceptions (Exc) and write back (WB). The execution units are equipped with an
integer and a floating-point unit (FPU).

Designs of SoC based on the LEON 3, such as the GR712RC, have private L1
instruction and data caches. The GR712RC also features two cores without any
shared cache. One particularity of this SoC is that the designer, Cobham Gaisler,
provides an IP library (called GRLIB) under GNU GPL license. GRLIB provides the
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LEON 3 core as well as several buses such as the AMBA bus or the SRAM controller,
amongst others.

3.2.2 LEON 3+

The LEON 3 processor has been extended as part of the PROXIMA project [128] to
support a probabilistic timing analysis platform. We will call this design the LEON
3+ [70]. The main changes done to the platform were in order to reduce jitter. This
has been achieved by both:

1. Making the floating point operation latencies constant to the maximum.
2. Changing cache placement and replacement policies to introduce randomization

in the timing behavior.

These are the cores that we will use in our work, since they set the baseline design
that enables probabilistic timing analysis.

3.2.3 LEON 4

The LEON 4 [58] core is based on its predecessor the LEON 3. It is also a SPARC
V8 processor with a 7-stage pipeline, although this one includes branch prediction.
LEON 4 runs at 150MHz in an FPGA and at 1.500MHz in a 32nm ASIC.

Designs based on the LEON 4 such as the GR740 now have 4 cores and introduce
an L2 cache shared amongst all the cores. They also introduce the changes made in
the LEON 3+ to allow for probabilistic timing analysis.

The designer also specifies that the LEON 4 SoCs are fully parametrizable with
HDL generics, so several custom-tailored SoCs can be made.

3.2.4 NGMP

In particular, the SoC that we will mainly use in this Thesis, is the Next Generation
MicroProcessor (NGMP) [59]. This processor has been designed with future spacial
missions in mind, specifically for the European Space Agency (ESA). This design
features four LEON 4 cores, each with its own private L1 instruction and data caches,
connected by a bus to the shared L2 cache.

The only change we make to the standard NGMP is that our design uses LEON
3+ cores. This is due to the public unavailability of the LEON 4 core HDL. However,
although the core is different, it has the same characteristics that enable us to use
probabilistic timing analysis. Furthermore, for the rest of the changes in the SoC,
mainly the new L2 shared cache, is still the standard NGMP one.

We model 4KB 4-way dL1 and iL1 caches per core, with 16 and 32B/line respec-
tively, and a shared 512KB 4-way L2 cache that can be partitioned so that each core
receives an independent L2 cache way of 128KB. The dL1 is write-through no write-
allocate, so store operations are always forwarded to the L2 cache and do not fetch
data to dL1 on a miss. The L2 is write-back write-allocate, so on a store miss, the
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Figure 3.2: Architecture schematic of the NGMP SoC

cache line is fetched into L2 – and modified. Caches are non-inclusive, so no control
is exercised on whether cache lines must or must not reside in any particular cache
memory. Bus arbitration implements Random Permutations (RP) [82]. RP are also
used to arbitrate memory requests (L2 cache misses). Memory latency is 16 cycles to
serve a request and 27 cycles until the next request is started [125].

3.3 Architectural simulator

The architectural simulator used in this Thesis is SoCLib [138], which is Cycle Accu-
rate/Bit Accurate (CABA). Specifically, we use a modification of SoCLib that models
the NGMP SoC. The version of the SoCLib simulator that has been used in this The-
sis has several modifications to tune it to the NGMP specific architecture, with results
in less than 3% error on average [80].

The simulator uses the instructions generated by an emulator that can emulate
both the SPARC and PowerPC ISAs. As part of this Thesis we adapted the simulator
to also work with instruction traces that were generated running the benchmarks on
QEMU for SPARC. We also modified several emulator instructions for SPARC to
provide more information to the simulator. These modifications have enabled the
work in Chapter 7 about redundancy, since specific dependencies between registers
were needed also on the simulator.

Several changes have been also introduced in the simulator, basically to support
new features. New placement (Chapter 4) and replacement (Chapter 5) policies have
been implemented, as well as a hybrid write policy (Chapter 6). We used the SoCLib
simulator in all the contributions of the Thesis, except the contribution in Chapter 9
that has exclusively been done with the FPGA implementation (explained in the
following subsection).
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3.4 Energy simulator

In addition to the performance improvements, in some contributions the energy con-
sumption of the solution has been taken into consideration. We used CACTI [115] to
obtain energy results. CACTI is a cache and memory simulator that computes access
time, cycle time, area, leakage and dynamic power. It is one of the most used energy
simulators in the research community.

The CACTI simulator has been modified to take into consideration different ECC
solutions, so that the overhead of the additional memory cells could be considered.
For the rest of the experiments the latest CACTI version (6.5) has been used.

3.5 FPGA implementation

In order to implement and test some of our proposed techniques, we use an FPGA
board with the HDL implementation of the NGMP. Cobham Gaisler has provided the
basline implementation of this board, since it has collaborated with our research group
in the PROXIMA FP7 European project [128]. In order to generate the bitstreams
needed for the FPGA, we use the programmable logic device design software Altera
Quartus II [11]. The FPGA board used is a Terasic Stratix-IV able to operate at
100Mhz.

As explained in the previous section, the NGMP has some random placement and
replacement functions already implemented to allow for probabilistic timing analysis.
The main issue we have with the implementation is that all the code is not available
to us. Some parts, such as the L2 cache, are closed source, so we could not implement
all the techniques in the FPGA. For the techniques that could not be implemented,
we used the architectural simulator.

All in all, the FPGA implementation of the NGMP has been used in 2 contribu-
tions of this Thesis:

• Placement policies. We implemented a new placement policy. More about this
implementation is found in Chapter 4.
• Timing anomalies. We obtained the timing samples from the FPGA board, see

Chapter (Chapter 9).

3.6 MBPTA tools

As explained in section 2.1.4, to apply MBPTA two elements are required: to handle
the sources of jitter to ensure representativity, and to use statistical analysis tech-
niques to compute the pWCET curve. The sources of jitter are handled by the LEON
3+ processor, either by upper bounding or randomizing the sources of timing vari-
ation. In this section we describe how to handle the second part: applying EVT to
obtain pWCET curves.

In order to obtain pWCET curves we use the methodology presented in [5]. The
basic idea is that obtaining enough variability in the analysis runs can allow us to
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derive an exponential curve that will upper-bound any possible timing in operation.
However, for this process to be valid, the execution times obtained must meet some
criteria. Let us go through this process to explain the different challenges. In Fig-
ure 3.3 we see the overall process for deriving a pWCET curve from the analysis
runs.

Run and obtain
execution times Check i.i.d. tests Fit distribution Obtain pWCET curve

Figure 3.3: Schematic of the procedure to derive a pWCET

The first step is to obtain different execution times from running the program a
number of times. The variability in the results could be, for instance, due to the
timing randomization of some components.

Once these timings have been collected, independence and identical distribution
(i.i.d.) tests have to be passed (step 2 in the figure). Specifically we use the Ljung-Box
independence test [34] and the Kolmogorov-Smirnov two-sample i.d. test [53].

Empirically we have found that with around 1000 execution runs, we can usually
obtain representativity that passes the iid tests, although it can depend. For example
in some cases with just a few hundred runs the tests can already be passed.

Figure 3.4: Types of tails the pWCET curve can have (from [5])

Then, the distribution is tested to see what kind of tail it has. In order to derive
the pWCET, the distribution should be upper-bounded by an exponential tail, as
shown in Figure 3.4. If it is a heavy tail, instead, more runs need to be collected. For
fully understanding the reasoning behind the types of tails, we direct the reader to
the full work [5].

Once the tests are passed, the sample points are fitted to an exponential distri-
bution (step 4 in the figure), and a pWCET curve that upperbounds the tail of the
distribution under analysis is derived.
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Table 3.1: EEMBC Automotive benchmarks

Name Description
a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache "Buster"
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matric Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

3.7 Applications

In this Thesis we use different benchmarks and applications, mainly related with
the real-time systems industry. The main benchmark suite we use is the EEMBC
Automotive [127]. As additional benchmarks we sometimes use Mediabench [101],
Mälardalen [64] and a railway case study. In this section, we first explain the different
benchmark suites, and finally we explain the limitations and use cases of each of them
and how are they used in this Thesis.

3.7.1 Benchmarks and case study

• EEMBC Automotive. The EEMBC automotive suite [127] is developed by
the Embedded Microprocessor Benchmark Consortium with the objective of
measuring the performance of Embeded Systems with the use of programs used
commonly in automotive systems. The structure of these benchmarks is the
following: each program has a main loop, executed a number of iterations (con-
figurable by the user) with some calls in the loop body. The number of iterations
we use is the default one provided with each benchmark. The input data is al-
ready included in the benchmark suite. In Table 3.1 we can see the list of
benchmarks of this suite.

• Mediabench. The Mediabench benchmark suite [101] is open source and com-
prises a set of media algorithms, for instance for video, audio, image, security...
Most benchmarks come with a separate decode and encode variant. We use the
default input files that come along with the suite. In Table 3.2 there is a list of
the benchmarks and what their task is.

29



3. EXPERIMENTAL SETUP

Table 3.2: Mediabench benchmarks

Name Description
adpcm.d Adaptive differential pulse-code modulation, decode
adpcm.e Adaptive differential pulse-code modulation, encode
epic.d An experimental image compression utility, decode
epic.e An experimental image compression utility, encode
g721.e Voice compression G721, encode
g721.d Voice compression G721, decode
gsm.d GSM 06.10 standard for full-rate speech transcoding, decode
gsm.e GSM 06.10 standard for full-rate speech transcoding, encode
jpeg.d Image lossy compression JPEG, decode
jpeg.e Image lossy compression JPEG, encode
mesa.m 3-D graphics library clone of OpenGL, mipmap application
mesa.o 3-D graphics library clone of OpenGL, osdemo application
mesa.t 3-D graphics library clone of OpenGL, texgen application
mpeg2.d Standard for high-quality digital video transmission, decode
pegwit.d A program for public key encryption and authentication, decode
pegwit.e A program for public key encryption and authentication, encode
pgp.d Security algorithm PGP, decode
pgp.e Security algorithm PGP, encode
rasta A program for speech recognition

• Mälardalen. The Mälardalen benchmark suite [64] consists of various open
source programs. Each application has its own specific input set, and the struc-
ture is fairly simple with mostly linear code and a few loops. Table 3.3 shows
the programs used.

• Railway case study. As a real world case study, we use the safety function
part of the European Train Control System (ETCS), called European Vital
Computer (EVC). This study [110] consists of 10 different parameter config-
urations, each using different combinations of speed and acceleration. Each
configuration is used as a different case, labelled from 0 to 9 in our results.

3.7.2 Limitations and use cases

The 3 different benchmark suites and the case study have not all been used in each
contribution. Not all benchmarks were able to be executed in the FPGA board, since
the executions were on bare metal and some benchmarks relied on operating system
calls.

The most representative benchmarks for the domain we focus in are the EEMBC
Automotive. However, the current trend to bigger, more complex software is not
always reflected in the EEMBC Automotive benchmarks. Specifically, we found that
most programs could fit in the L2 cache of a processor such as our reference one,
the Gaisler NGMP. In order to make a more complete study, we complemented the
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Table 3.3: Mälardalen benchmarks

Name Description
bs Binary search for the array of 15 integer elements
bsort Bubblesort program
cnt Counts non-negative numbers in a matrix
compress Data compression program
cover Program for testing many paths
crc Cyclic redundancy check computation on 40 bytes of data
duff Using "Duff’s device" from the Jargon file to copy 43 byte array
fac Calculates the faculty function
fdct Fast Discrete Cosine Transform
insertsort Insertion sort on a reversed array of size 10
jfdctint Discrete-cosine transformation on a 8x8 pixel block
qsort-exam Non-recursive version of quick sort algorithm
qurt Root computation of quadratic equations
select Selection of the Nth largest number in a floating point array
statemate STAtechart Real-time-Code generated code
ud Calculation of matrixes

EEMBC Automotive with Mediabench that for some benchmarks does not fit in L2.
Furthermore, in some specific scenarios we also used the Mälardalen and the Rail-

way case study to provide a more comprehensive evaluation when the EEMBC Auto-
motive and Mediabench were not representative enough. For example, in the Chapter
were we experiment with replacement policies (Chapter 5), we could not see significant
impact on EEMBC Automotive or Mediabench, since the nature of these benchmarks
meant that no significant reuse was being done in L1 cache levels, and thus the re-
placement policy had little impact. In this case we used the Mälardalen and the
Railway case study.
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Chapter 4

Cache placement policies

4.1 Introduction

Time randomized caches simplify deriving trustworthy Probabilistic Worst-Case Exe-
cution Time (pWCET) estimates that upper-bound deployment-time execution times.
In this line, as introduced in section 2.2, mainly two random placement policies have
been proposed: hash-based random placement [92] and Random Modulo (RM) place-
ment [93]. As previously stated in Sections 2.2.1 and 2.2.2, modern real-time sys-
tems usually have several levels of cache. For instance the ARM Cortex R5 [16],
ARM Cortex M7 [15], Freescale PowerQUICC [136], Freescale P4080 [119] all have
at least 2 levels of cache. Despite the existence of several cache placement proposals
with random policies that enable Measurement-Based Probabilistic Timing Analysis
(MBPTA), it is not yet well understood how to design efficient multi-level time-
randomized cache hierarchies and how different randomization policies in each level
impact average performance and Worst-Case Execution Time (WCET).

In order to fill this gap, our contributions in this Chapter are as follows:

• We perform a design space exploration of multi-level random cache designs in
a cycle-accurate simulator. We explore monolithic designs by applying existing
L1 placement policies to both L1 and L2. We show that these policies are
not designed for L2 caches and have performance (average/worst-case) or time
composability issues.

• To tackle the observed deficiencies, we introduce, for the first time, hierarchical
placement designs that solve L2 related issues while still being MBPTA compli-
ant. Our results show that the proposed hierarchical designs have no negative
impact on average performance, improve worst-case results with respect to the
monolithic designs, and favor time composability.

• We implement and integrate the most cost-effective cache hierarchy in our
NGMP RTL model. Our results show that it has almost the same performance
as modulo placement, provides tight WCET estimates, and enables MBPTA
time-analyzability.
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4.1.1 Time composability in caches

As introduced in the background (Section 2.1.6), time composability allows system
engineers to have timing bounds that remain valid from early design stages until
integration with other software components, enabling incremental software integration
and reducing the costs and time of the project.

With caches, the relative position of program’s memory objects may change across
software integrations leading to different cache layouts with arbitrary impact on ex-
ecution time. This breaks time composability and shifts timing analysis and verifi-
cation to the latest design stages (when the binary is fixed) with increased risk of
failing to meet execution time bounds. In this context, random placement policies
together with MBPTA have been shown to enable incremental verification in the
presence of cache memories [38]. In particular, random placement policies break the
dependence of cache placement on the actual memory addresses, i.e. in each run
software experiences random placement of memory objects in cache. As a result, the
actual memory addresses are irrelevant for cache placement and the space of potential
cache placements is randomly sampled in each run. Since the probability distribution
for cache placements observed at analysis matches that during operation, impact of
cache placement can be analyzed with MBPTA to produce probabilistic bounds on its
impact on execution time. In fact, MBPTA is capable of considering different sources
of random variation (e.g. cache placement for multiple caches, random arbitration in
buses) simultaneously. However, while random caches remove WCET estimate depen-
dence on memory location of objects, thus relieving the user from controlling memory
placement, it has not been explored how the different random placement policies need
to be combined into multi-level cache hierarchies. In particular the desired properties
are:

1. WCET reduction as the main metric to optimize.
2. Reduced impact on average performance due to the importance of this

metric for mixed-critical scenarios executing tasks with different criticality lev-
els.

3. Increase time composability to favor incremental software development as
described above.

4. MBPTA compliance to reduce the cost of changing existing timing analysis
tools.

Next, we present several multi-level cache designs and assess them against these
metrics. Multi-level cache designs build upon the two main random placement poli-
cies that enable MBPTA, namely hash Random Placement (hRP) and RM, already
introduced in Section 2.2.

4.2 Multi-level Random Cache Approaches

Time-randomized cache placement policies have been evaluated mainly for single-
level cache hierarchies. An exception to this is hRP that has been shown to keep
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Table 4.1: Placement policies analysed

Setup MOD hRP RM hRP2 hRP+MOD hRP+RM
L1 MOD hRP RM RM RM RM
L2 MOD hRP RM hRP hRP PL + MOD hRP PL + RM

its MBPTA-compliance properties for multi-level caches [93]. However, hRP is the
existing random placement policy with lowest average and guaranteed performance.
Hence, there is significant room for improvement in multi-level random cache de-
sign. In this line, this section presents several approaches that use, individually or
in a smartly-combined way, different random placement policies to provide higher-
performance MBPTA-compliant multi-level cache designs. For clarity, we use the L2
placement policy as the identifier for the multi-level configuration. See Table 4.1 for
the list of configurations.

4.2.1 L2 Monolithic Placement

4.2.1.1 MOD setup

MOD setup is the reference setup against which we compare other randomized setups
in terms of average performance. This setup uses MOD placement – deployed in many
multi-level cache designs as placement policy for all cache levels – see Figure 4.1(a). It
determines cache placement based on cache index bits (I bits) and it is not amenable
for MBPTA. This is mainly due to MOD deterministic behavior: although conflictive
memory alignments can be infrequent, they may occur upon integration with a sys-
tematic and pathological nature, resulting in the so-feared (for measurement-based
techniques) cache risk patterns.

4.2.1.2 hRP setup

In this setup hRP placement is used for first level data and instruction caches, respec-
tively referred to as dL1 and iL1, and the second level cache (L2), see Figure 4.1(b).
This setup was already considered in [93] given that hRP was the first random place-
ment policy proposed compatible with MBPTA. This design only imposes preserving
cache line alignment between analysis and operation phases. However, hRP allows
all cache lines to be randomly placed completely independently. Therefore, few cache
lines may be placed in the same cache set in L1 caches (either dL1 or iL1) with a
relevant probability for pWCET estimation, and also in L2 cache. Thus, while those
bad placements occur with relatively low probability, having low impact on average
performance, they may lead to large impact in pWCET estimates to account for very
bad placements that can occur even with very small working sets.

4.2.1.3 RM setup

RM placement implements a Benes network (Figure 4.1(c)) that produces a random
permutation of the index bits – XORed with the random seed – being the permutation
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(d) RM in dL1/iL1 and hRP in L2
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(e) RM in dl1/iL1 and hRP+RM in L2

dL1 set 

 
 

i/dL1 
 
 

D

E

C

O

D

E

R 

RM 

dL1 tag 

address 

XOR 

 
 

L2 
 
 

D

E

C

O

D

E

R 

RS 

RS 

L2 tag L2 set [5-0] L2 set [9-6] 

XOR 

XOR 

XOR 

>
>

 
>

>
 

>
>

 

hRP 

(f) RM in dl1/iL1 and hRP+MOD in L2

Figure 4.1: Hardware schematic of the different placement policies implemented and
analysed

controlled by the T tag bits. With RM, cache-segment alignment must be maintained
between analysis and operation: all addresses fitting in a cache segment in the ex-
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periments carried out at analysis, must remain in a segment during operation. As
explained before, the Real-Time Operating System (RTOS) can easily achieve this
goal by matching memory page size with cache segment size, or making page size be
a multiplier of cache segment size. In fact, this assumption has already been shown
compatible with complex avionics case studies [153].

RM can be soundly used for first level caches whose way size (i.e. cache segment
size) is typically equal or smaller than the page size. When the way size is larger
than the page size, usually the case for L2 whose size is easily above 128KB-256KB,
then RM can be used if the RTOS preserves page alignment at that granularity. For
instance, if the cache way size is k times larger than the page size, the RTOS should
maintain the alignment of pages at k× page_size bytes granularity to soundly apply
MBPTA. However, dealing with this constraint is unaffordable in practice due to
memory fragmentation (the subsequent memory space waste). Further, it also adds
complexity to the RTOS. Hence, RM can be used in L1 caches, and hRP in the L2
instead as presented next.

4.2.1.4 Summary

Neither MOD nor RM in L2 are MBPTA compliant and defeat achieving time com-
posability. We keep the former for average performance comparison purposes, while
we discard the latter. hRP is MBPTA compliant and maintains time composability,
and hence, we use it as reference randomization policy for L1 and L2.

4.2.2 L2 Hierarchical Placement

Next we propose hierarchical designs based on multiple policies to get the best of
each policy.

4.2.2.1 hRP2 setup

This setup combines the advantages of RM in L1 caches to preserve spatial locality,
and the flexibility of hRP in L2, avoiding posing undue constraints on memory object
alignment, see Figure 4.1(d). Thus, qualitatively, this setup is far more convenient
than those presented so far by smartly combining in different cache levels appropriate
random placement policies. However, hRP has been shown to have low but non-
negligible hardware cost, due to the expensive barrel shifters followed by a tree of
XOR gates, whose number and size – and so impact on area – grows significantly
with the number of address bits to handle. Therefore, we examine other hybrid
solutions for L2 caches.

4.2.2.2 hRP+RM setup

This setup – that uses RM in L1 caches – performs hRP at page size in L2 and RM
within page size, as seen in Figure 4.1(e). We build on the observation that, as L2
cache ways are conceptually split into cache segments, hRP can be used to randomly
select the cache segment where an address is placed and RM to select the set within
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the segment. This setup requires preserving page alignment between analysis and
operation phases. However, such constraint is already imposed by L1 caches, so
constraints remain the same as for any other setup using RM in L1 caches.

This hierarchical design has a positive impact in the implementation cost of the
L2. First, hRP only operates on tag (T ) bits instead of on T + I bits. RM, instead,
randomizes placement within page boundaries thus operating on the remaining I bits.
However, RM is much cheaper than hRP in terms of area. This is further detailed
later in Section 4.3.2 and in Table 4.3. While the impact on the critical path is
roughly null, hRP logic becomes the critical path for large caches (larger than L2
caches evaluated in this work). Hence, the hybrid solution would also mitigate delay
issues in those cases.

As this design uses RM at the page level, the low performance of hRP is mitigated.
The other side of the coin is that it can be the case that two pages are randomly
mapped to the same cache segment. The fact that we use RM inside L2 segments
reduces the likelihood that pages (segments) evict each other’s lines systematically.

4.2.2.3 hRP+MOD setup

While the previous setup reduces the hardware overhead of L2 compared to those with
hRP in L2, the hardware for L2 cache placement must still accommodate hRP across
cache segments and RM within segments. This overhead can be further reduced by
removing RM from L2 cache segments (and sticking to MOD), see Figure 4.1(f).

This approach reduces hardware complexity, but the degree of randomization
achieved in L2 also decreases. While it has been shown that higher degrees of ran-
domization lead to less abrupt execution time variations (and thus to lower pWCET
estimates) [151], the fact that addresses go through RM placement and Random Re-
placement (RR) in L1 caches, hRP across cache segments in L2, and RR in L2 (if
more than 1 way is used per core), already brings high degrees of randomization.
Hence, we regard this setup as a good trade-off between randomization achieved and
hardware cost. In particular, this setup decreases transistor count slightly and may
reduce cache placement latency for caches with large number of L2 cache sets due to
the decreased logic depth.

4.3 Evaluation

Our evaluation of this work is twofold. First, we make an extensive exploratory
simulation with all the different placement approaches described. Later, we choose
the best setup (hRP+MOD) and we implement it in RTL to compare it with the
default MOD policy.

4.3.1 Simulator evaluation

We perform the evaluation in the architectural simulator described in Section 3.3.
The configuration of the caches if the one described in subsection 3.2.4. We evaluate
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a large subset of both EEMBC Automotive and Mediabench, previously described in
Section 3.7.

4.3.1.1 Results

Our designs aim at (a) maintain MBPTA compliance; (b) reduce pWCET estimates
w.r.t. simpler MBPTA-compliant designs; (c) obtain comparable performance to
non-randomized (and hence non MBPTA-compliant) modulo+Least Recently Used
(LRU) based multilevel cache hierarchies; and (d) preserve time composability.

To assess MBPTA compliance, we have followed the approach proposed in [93]
checking that cache events preserve its random/probabilistic nature. Our results –
not shown for space constraints – show that an address can be randomly mapped to
any dL1 (iL1) and L2 set. Further, independence and identical distribution tests on
execution times are passed [5].

To derive pWCET estimates, and obtain solid average performance results, we
carry out 500 runs for each benchmark-setup pair. pWCET estimates are shown
for an exceedance threshold of 10−12 per run, since they are enough for the highest
criticality software [153].

4.3.1.2 MediaBench

In Table 4.2 columns 2-3 show the pWCET estimates obtained with each placement
policy normalized to the monolithic setup hRP. We observe that hierarchical setups
consistently reduce the pWCET estimates of hRP, by 28% and 34% for hRP+MOD
and hRP+RM respectively.

In terms of average performance, columns 4-6 show that the three hierarchical se-
tups obtain comparable results to those of the deterministic approach (MOD+LRU),
only up to 2% worse. This is so because bad placements occur seldom even for the
worst setups, so average results hide outliers. We repeated the same analysis for exe-
cutions resulting in the highest 5% miss counts, as they shape the tail of the execution
time distribution, and hence WCET [5]. Our results show that hRP achieves worst
results than hierarchical approaches: with hRP, by allowing each cache line to be
placed randomly and independently in L2, any pair of cache lines can, in the worst
cases, be placed in the same set and produce high miss counts, and hence execution
times. This explains why hierarchical placements improve hRP for pWCET (columns
2-3).

4.3.1.3 EEMBC Automotive

EEMBC Automotive trends are similar to MediaBench. We observed similar average
execution time for all placements, and hRP being the worst policy in terms of worst-
case execution time. Results are omitted since they bring no further insights.
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Table 4.2: Placement policies: MediaBench results

pWCET vs hRP avg perf vs MOD
hRP + MOD hRP + RM hRP hRP + MOD hRP + RM

ad.d 0.08 0.05 1.01 1.00 1.00
ad.e 0.25 0.18 1.01 1.01 1.00
ep.d 0.89 0.90 0.99 1.00 0.99
ep.e 0.90 0.65 1.00 1.00 1.00
gs.d 0.94 1.00 1.00 1.00 1.00
gs.e 0.75 0.75 1.01 1.01 1.01
jp.d 0.84 0.77 1.02 1.02 1.02
jp.e 0.91 1.10 1.01 1.02 1.01
m.m 0.99 0.89 1.01 1.01 1.02
m.o 0.48 0.49 1.00 1.00 1.00
m.t 0.87 0.83 1.01 1.01 1.01
pe.d 0.71 0.72 1.01 1.00 1.00
pe.e 0.65 0.64 1.01 1.00 1.00
pg.d 0.73 0.75 1.01 1.00 1.00
pg.e 0.69 0.16 1.02 1.00 1.01
rast 0.87 0.76 1.00 1.00 1.00

4.3.1.4 Summary

hRP+RM and hRP+MOD avoid some systematic effects of hRP, which reduces their
L2 miss rate (and execution time) for pathological cases w.r.t. hRP. Also, it cannot
be claimed whether hRP+RM or hRP+MOD is superior, since our results show that
conclusions change across different benchmarks. Moreover, although the cost of im-
plementing hRP+RM is only slightly higher than that of implementing hRP+MOD in
L2, hRP+MOD can be regarded as an effective setup. Furthermore, this combination
is interesting because it synergistically combines 3 different placement policies: RM
in L1 caches, hRP across L2 cache segments, and modulo inside L2 cache segments.
For these reasons, we implemented this setup in RTL.

4.3.2 Design Validation: RTL implementation

In order to validate the simulation results we implemented the hRP+MOD in the
FPGA setup described in Section 3.5, with the parameters described in subsec-
tion 3.2.4.

4.3.2.1 Area overhead

Table 4.3 shows the area and delay overhead introduced by the different random
placement functions considered in this study. As shown, RM requires significantly
lower area than hRP since it uses a permutation network consisting of few pass
transistors per index bit. The actual permutation carried out is driven by XORing
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Table 4.3: Placement policies: hardware cost and delay

dL1 L2
hRP RM hRP hRP+MOD hRP+RM

Trans. Count 49488 240 49440 24360 24600
Delay (ns) 0.65 0.26 0.52 0.52 0.52

address bits and seed random bits. Instead, hRP requires combining the seed random
bits and the address by means of barrel shifters and several levels of XOR gates [92].
The hierarchical random placement implementation reduces area overheads of hRP by
roughly 50%. This, coupled with the good performance results it provides, confirms
the hierarchical approach as the most suitable option to implement random placement
in L2 caches.

In terms of overall hardware occupancy, the baseline design occupied 70% of the
resources in the FPGA, whereas the design including the random placement in all
L1 caches and L2 occupies less than 72%, thus showing that all cache modifications
required to achieve MBPTA-compliance incur very low overheads.

4.3.2.2 Critical Path

RM is faster than hRP-based approaches since the latency of the latter is mainly
determined by the depth of the XOR gates tree employed to combine address and
random bits. In the case of RM, the XOR gates tree must produce the bits required
for configuring the permutation network while for hRP, XOR gates are combined to
produce the randomized index itself. For the L1 we see that RM outperforms hRP
being able to reduce its latency by 2.46×. For the L2, hRP delay is lower than for
the L1 since fewer XOR gates are required to produce a wider cache index. However,
hierarchical implementations do not necessarily reduce the delay since, despite fewer
bits are combined to produce the random index, since this index has fewer bits, more
XOR gates are required to produce the output. While in our implementation of the
hierarchical approach the two effects compensate each other, thus making latency
remain the same, different implementations may provide slightly different results.

Overall, the hierarchical implementation (hRP+MOD/RM) decreases area over-
heads and reduces the number of critical paths (≈ 3X), which in this case correspond
to the index bits, w.r.t. the hRP implementation. The latter significantly mitigates
the impact that process variations have on the maximum achievable frequency [33]. In
particular, for hRP+MOD, the L1 access latency slightly increases by two XOR gates
w.r.t. modulo placement. For the L2, hRP+MOD causes a larger impact on critical
path due to the higher complexity of its design (XOR gates and barrel shifters). Still,
this impact was not enough to decrease the maximum operating frequency.

4.3.2.3 Performance Validation

To validate performance results of the hRP+MOD setup, we run the EEMBC auto-
motive benchmark suite in the FPGA prototype. Our platform does not implement a
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4. CACHE PLACEMENT POLICIES

floating-point unit so we excluded those benchmarks using FP operations. Also, Me-
diaBench requires some I/O RTOS support that is not yet available for this particular
configuration, so we did not include them. We made 500 runs of each benchmark and
averaged hit ratios, and compared the implemented hRP+MOD and the default MOD
against results in the simulator. Results (not shown for space constraints) reveal that
the FPGA implementation of hRP+MOD shows almost the same behavior observed
in the simulation evaluation. Hit rates are quite high for all EEMBC, specially for
the L1 but also for the L2, proving the effectiveness of these placement policies.

4.3.2.4 Average and Worst-Case Performance Results

The first bar in each pair in Figure 4.2 shows that hRP+MOD achieves very similar
average performance to that of MOD: 1% worse on average and up to 3%, making
hRP+MOD very competitive in terms of average performance. For WCET estima-
tion, we build on current industrial practice for WCET analysis on real boards that
takes as WCET estimate a margin (e.g. 20%) over the high watermark (HWM) ex-
ecution time [153]. The second bar in each pair in Figure 4.2 shows the pWCET
estimate obtained for hRP+MOD w.r.t. to the highest execution time observed for
MOD (i.e. the HWM). For all benchmarks we observe that the pWCET estimate
is above the HWM (as expected) and for all benchmarks but one the pWCET esti-
mate with hRP+MOD is below HWM+20% obtained for MOD. Hence, hRP+MOD
helps reducing WCET estimates w.r.t. current practice while increasing the confi-
dence on estimates w.r.t. just increasing the HWM by a fudge factor of 20%. On
average, pWCET estimates are just 8% over the HWM (12 percentage points below
HWM+20%).
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Figure 4.2: Results from the chosen random hardware placement policy compared with
modulo placement
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4.4 Related Work

In [133] authors propose a pseudo-random hash function to distribute the data across
sets and thus, make the cache performance less sensitive to different placements
compared to conventional modulo placement. Topham [150] also explores different
pseudo-random hashing functions to reduce conflict misses. With skewed associative
caches [32], each way uses a distinct hash function for randomized placement across
banks, which reduces conflict misses for programs that process large matrices. In [13]
the authors study the performance impact different cache placement parameters have
on the real-time domain. A commonality of these solutions is that placement uses
only the address of the access. As a result, for a given memory layout a single place-
ment is produced across all runs of the program. This poses the same limitations
for MBPTA as conventional deterministic architectures based on modulo placement:
time composability is lost since performance changes arbitrarily if memory addresses
change upon integration.

4.5 Conclusions

While cache memories (in particular multi-level cache hierarchies) offer benefits for
RTES, they challenge timing analysis. Some studies show that MBPTA combined
with time-randomized caches facilitate factoring in the impact of caches in WCET
estimates. However, those studies mostly focus on single-level cache hierarchies. We
propose several multi-level configurations and implement them on a simulator. These
configurations include both, monolithic and new hierarchical solutions. Finally, we
implement the most cost-effective hierarchical configuration in an FPGA, and com-
pare it against a conventional deterministic cache. Our results show that this solution
results in negligible average performance degradation and improved (reduced) WCET
estimates, while preserving time composability.
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Chapter 5

Cache replacement policies

5.1 Introduction

The impact of caches on execution time is highly program-dependent. For instance,
some programs barely exploit cache space. In the context of Critical Real-Time Em-
bedded Systems (CRTES), programs may be produced by means of automatic code
generation tools (e.g. SCADE [146]), typically leading to programs with few thou-
sands of instructions. For these programs, Random Replacement (RR) (as described
in Section 2.2) may produce a first pathological scenario (ps1) in which few cache
lines fitting in a cache set, randomly evict each other on each miss despite there are
some available lines in that set. This occurs because nothing prevents unfortunate
replacement choices whose probability decreases, but still must be accounted for with
Worst-Case Execution Time (WCET) estimates, which may be relatively high. RR
can also cause a second pathological scenario (ps2) resulting in the replacement of
cache lines that have been just accessed, losing some temporal locality. Both effects
have the same root cause: cache lines recently fetched can be randomly evicted shortly
after fetched. In order to tackle this challenge, we make the following contributions:

1. We make an in-depth analysis of pathological behavior of RR in terms of prob-
ability of each pathological scenario and its potential impact on performance.

2. We propose Random Permutations (RP) and Non-Most Recently Used Random
Permutations (NMRURP) that restrict random choices to prevent pathological
cases. RP evicts all lines in a set, yet in a random order, before it starts evicting
occupied lines, whereas NMRURP additionally prevents the last cache line ac-
cessed from being replaced. Both techniques reduce the number of evictions that
can occur before all lines are placed in a cache set (ps1) and increase temporal
locality (ps2) by reducing the chance of evicting recently accessed lines.

3. We perform a detailed analysis of the suitability of the presented replacement
policies, both deterministic policies and their random counter-parts, with re-
spect to the properties needed by Measurement-Based Probabilistic Timing
Analysis (MBPTA).
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4. Finally, we assess RP and NMRURP complexity and benefits with the Mälar-
dalen benchmarks as well as a railway case study, providing evidence of their
feasibility and gains in terms of WCET reduction.

5.2 Analysis of Replacement policies

Several replacement policies have been proposed over the years. We classify them
into two main categories: those with a fully deterministic behavior and those with a
randomized behavior.

5.2.1 Deterministic Replacement Policies

We analyze Least Recently Used (LRU), Non-Most Recently Used (NMRU) and Bi-
nary Tree (BT) replacement policies as a representative of deterministic policies. It
is noted that the latter two have been proposed to reduce the hardware requirements
of the former [97]. Our analysis shows that all of them have systematic pathological
cases, i.e. addresses sequences for which they result in evictions that occur system-
atically.

5.2.1.1 LRU

LRU keeps the order in which lines in the set have been last accessed, from the most
recently used (MRU) to the (LRU). Upon a cache hit, the cache line accessed is
promoted to the first position in the list (MRU). Upon a cache miss, the last cache
line in the list (LRU) is replaced and used to store the newly fetched cache line, which
is then promoted to the first position in the list.

5.2.1.2 NMRU

NMRU can be seen as a simplified version of LRU. Keeping the full order of cache
lines in a set is increasingly costly for high associative cache memories: for an N-way
cache, LRU requires keeping the full order across the N elements. NMRU instead
only prevents the MRU line from being evicted, without imposing any particular
order on the other cache lines. This can be achieved, for instance, with a single
pointer indicating the next line to be evicted in the set (e.g. in a round-robin fashion)
skipping the MRU line if it is selected for eviction. In general, such a solution may not
preserve temporal locality as much as LRU, since the 2nd MRU line could be evicted
instead of the LRU line on a miss. On the positive end, NMRU scales to arbitrarily
highly associative caches with limited cost: a pointer to the next line to be evicted
(incremented upon an eviction) and another pointer to the MRU line to protect it
from being evicted.
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5.2 Analysis of Replacement policies

Figure 5.1: Schematic of BT placement operation

5.2.1.3 BT

BT protects the MRU line, as NMRU does, but also keeps some partial order on the
remaining lines. Hence, BT lays in-between LRU and NMRU in terms of ability to
preserve temporal locality and complexity. In particular, BT partitions cache lines in
a set into two halves (left and right) recursively indicating in each partition the side
from where to select the line to be evicted. This is illustrated in Figure 5.1 for an
8-way cache set. In the figure, cache line 2 is the candidate to be replaced. Upon an
access, all arrows in the path to the cache line accessed are moved away. For instance,
as shown in the figure, on a miss all arrows pointing to 2 are changed, thus pointing
now to 4. Then, upon a hit on cache line 0, only the arrow pointing to the pair 0-1
is changed to point to the pair 2-3. Note that within the pair 2-3, the corresponding
arrow points to 3, thus providing some temporal locality protection for 2, which has
been accessed recently. While such protection does not guarantee full order as in the
case of LRU, it provides some further temporal locality protection than in the case
of NMRU. BT has a logarithmic cost on the associativity, thus limiting the overhead
w.r.t. LRU, although it is slightly higher than that of NMRU. In particular, it requires
1 bit for each left/right choice. Hence, N-1 bits are needed per set for an N-way cache.

5.2.1.4 Pathological cases

All deterministic policies have, at least, one pathological case for which accesses
systematically result in misses. One such cases for all deterministic policies above is
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5. CACHE REPLACEMENT POLICIES

an access sequence with N+1 different addresses accessed in a round-robin fashion.
For instance, for a 4-way cache, a pathological case would be repeating the se-

quence ABCDE an arbitrary number of times.

• LRU: after the first 4 accesses, A is the LRU line, so E evicts A. Then we access
A, which is a miss and evicts B. Then access B results in a miss that evicts C,
and so on and so forth.
• For NMRU it can be seen that 5 different addresses are enough to evict cache

lines in the 4 sets in a round-robin fashion. In this particular example we never
try to evict the MRU line, so the behavior is analogous to a FIFO policy.
• In the case of BT, although less obvious, after 4 misses, the tree points to the

first line fetched out of those for replacement systematically, so E evicts A, A
evicts B, B evicts C and so on and so forth, analogously to the case of LRU
and NMRU.

While our analysis is limited to a subset of replacement policies, it serves the pur-
pose of illustrating that systematic pathological cases exist for deterministic policies
due to their intrinsic deterministic nature. Such systematic cases can only be broken,
in general, by means of some form of random choice. For instance, this is the case of
RR, which randomly selects the cache line to be evicted in the set upon a miss.

5.2.2 RR

The basics about RR have been introduced in Section 2.2. Now we focus on how RR
behaves with the pathological cases under study.

RR evicts a specific cache line with a probability of 1/N for an N-way cache.
Hence, the probability of a line surviving an eviction is (N-1)/N, and hence, there is a
non-null probability of survival for cache lines for any access sequence. In particular,
for the systematic pathological case above for deterministic replacement policies, RR
provides a survival (hit) probability of

(
3
4

)4
= 0.316.

On the other hand, if we consider a sequence with N addresses instead of N+1,
then we realize that all deterministic policies would lead to all-hit sequences except for
cold misses. Instead RR has non-null probability of evicting some cache lines before
(randomly) placing all addresses in distinct physical cache lines so that all remaining
accesses become hits. This occurs because RR is unaware of temporal locality since
it does not preserve any history.

Since Probabilistic Worst-Case Execution Time (pWCET) estimates with MBPTA
need to account for the worst case that can occur with non-negligible probability, the
pathological cases of deterministic policies need to be accounted. In the case of RR,
some low-probability high-execution time eviction scenarios need to be accounted for,
but those scenarios will not include the absolute worst case, which is the actual case
for deterministic policies under systematic pathological cases. Still, the fact that
these eviction sequences can occur under RR may lead to high pWCET estimates,
which relates to the fact that RR is a locality-unaware replacement policy. This is
illustrated with the following examples, which we refer to as pathological scenario 1
and 2 respectively (ps1 and ps2 for short).
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5.3 Locality-aware RR

5.2.2.1 ps1 - The number of objects mapped to a cache line is smaller
than or equal to W

Let us consider a fully-associative data cache with 4 ways (W = 4) and a program
accessing alternatively addresses A and B, which belong to different cache lines, 20
times each. First, A is placed in a random line. Then, B will be placed in a random
line, with a probability of 3/4 of not replacing A and 1/4 of replacing it. If B replaces
A, then A has a 1/4 probability of replacing B again. And they can keep replacing
each other with probability 1/4. Overall, this program experiences M + 2 misses (2
cold misses are always experienced), where M ≥ 0, with a probability:

P (M) =

(
1

4

)M

× 3

4
(5.1)

For instance, P (4) (the probability of having 4 + 2 = 6 misses) is ∼ 0.003, P (10) ≈
7 · 10−7 and P (20) ≈ 7 · 10−13 (see blue line in the top chart of Figure 5.2). Assuming
10 cycles per miss and 1 cycle per hit, and considering only the impact of cache in
execution time, the pWCET at an exceedance threshold of 10−12 per run can only be
at least 238 cycles to account for 22 misses and 18 hits, since the probability of having
at least 22 misses (the accumulated probability of [22,40] misses) is ∼ 9 · 10−13, see
blue line in the bottom chart of Figure 5.2.

5.2.2.2 ps2 - The number of objects mapped to a cache line exceeds W

Another pathological case arises when the number of objects mapped to the same
set exceeds W . In this case, RR can lead to the loss of temporal locality, since
random eviction patterns can make recently touched objects (i.e. cache lines) be
evicted from cache on a miss, whereas old-standing (unlikely to be reused) objects
remain in cache. For instance, in the repeating sequence ABACADAE..., where A is
continuously interleaved with accesses to addresses that lead to a cold miss, RR may
evict A sometimes. Conversely, deterministic policies presented in previous section
would always protect A from eviction since it is the MRU line upon the access to any
other address. As the number of objects mapped per set increases, cold and capacity
(unavoidable1) misses become the main contributors to miss rates, naturally reducing
the benefit of any replacement policy.

5.3 Locality-aware RR

In this section we introduce our proposed (temporal) locality-aware RR policies. In
particular, we propose RP and NMRU NMRURP, which aim at avoiding systematic
pathological cases such as those of deterministic policies as well as preserving higher
levels of temporal locality than RR, thus improving RR.

1They could only be avoided prefetching cache lines, but still prefetch requests would need to
fetch data from upper memory levels.
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Figure 5.2: Comparison of pWCET and probabilistic miss count curves between RR
and RP

5.3.1 RP

RP limits pathological RR scenarios by increasing temporal reuse and enforcing ran-
dom evictions to occur across all cache ways.

• When accessed data fits in a cache set, they will eventually be placed in different
cache lines, thus avoiding potentially long mutual evictions by construction.
This would result in a single replacement for the previous example, thus leading
to a maximum execution time of 67 cycles (3 misses and 37 hits), see red lines
in Figure 5.2.
• When the number of accessed lines exceeds the size of a set, RP effects are also

positive increasing reuse, though the impact of replacement naturally reduces.

To reach its goals, RP leverages the concept of RP [82], which we first introduce
and then explain how can be used and implemented in RP. We finally show how the
resulting RP limits pathological eviction patterns.

5.3.1.1 Logic Behind RP

RP avoid potentially infinite starvation in the arbitration for shared resources, where
one requester (unluckily) loses all arbitrations with decreasing probabilities. This
occurs with standard random (lottery) arbitration [98], with which on every arbitra-
tion round the grant is randomly given to one of the requesters without taking into
account how long requests have been waiting. Hence, while each of the Nr requesters
is granted access 1/Nr of the times in the long run, one requester could suffer long
starvation periods.
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Instead, RP generates in every arbitration (or permutation) window a random
permutation of all potential requesters. While the particular requester that is granted
access in each arbitration round is random, each of the Nr requesters is granted access
exactly once every arbitration window. For instance, for a resource shared across
Nr = 3 requesters (r1, r2 and r3) each requester has 1/3 chances to be granted access
first. If r2 is granted access, then r1 and r3 have 1/2 chances to be granted access
second, whereas r2 cannot be granted access second. If r3 is granted access second,
then r1 is automatically granted access third.

RP is implemented by creating a list where each requester appears once and sorting
it randomly. Note that a requester could request access to the shared resource at any
point in time w.r.t. the current arbitration window. Thus, the worst case occurs
when, for instance, r2 arrives in the second slot of the current arbitration window,
r2 was the first one in the window (so it just missed its opportunity), and has to
wait for its slot in the next window, which, potentially, can be the last one. Recalling
the example before, we could have the following arbitration windows: < r2, r3, r1 >,
< r3, r1, r2 >, and r2 could arrive right after its slot in the first window has elapsed.
Overall, in general the maximum number of slots a requester may have to wait is
2 · (Nr − 1). This limits how long a request waits to be granted access.

RP can be applied with the same logic to the replacement policy. Instead of ran-
domly choosing the way within the cache set that will be evicted next, RP generates
a random permutation window per set in which the number of elements matches the
number of cache ways W . Whether a line is evicted next is a random event (each
line can be evicted with 1/W probability), but the eviction choices, though random,
are not independent among them. In other words, each different permutation has the
same probability to be created, each way number is in each of the W positions of the
NPerm different permutations NPerm/W times and permutations are chosen (gener-
ated) randomly. However, given that each permutation contains each way number
exactly once, it is impossible that a way is not selected for more than 2 · (W − 1)
evictions, and a particular way can be evicted at most twice consecutively (if it is the
last in one permutation and the first in the following one).

5.3.1.2 Implementing RP

For a W -way cache the total number of potential permutations of cache ways is
Nperm = W !. At hardware level, implementing such an ideal solution could require
W ! · dlog2(W )e ·W bits for the permutations table, dlog2(W !)e bits per set for the
pointer that selects the permutation, and dlog2(W )e bits for selecting the current
permutation entry, plus the control logic for such an implementation. For a 4-way
cache this would mean 192 bits for the table and 7 (5+2) bits per set. In an 8-way
cache or higher this number significantly increases. In this section we implement
a low-complexity solution that limits the number of potential permutations while
preserving the properties of the ideal solution, and matching its average and WCET
performance. We use area and logic as main metrics to assess the hardware feasibility
of our approach.

Registers area: We implement RP by adding a bit vector per cache set, similar
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Figure 5.3: Random permutation operation example for a 4-way cache

to that needed for LRU replacement. In the vector each way number is represented
exactly once. Given a cache with W ways, this vector requires W fields with dlog2W e
bits each, plus a pointer of dlog2W e bits to point to the current position in the vector.
Thus, a 2-way cache requires 2+1 (vector+pointer) bits, a 4-way cache 8+2 bits and
a 8-way cache 24+3 bits. For comparison purposes, LRU requires the same number of
vector bits per set to keep the eviction order. Hence RP has similar area requirements
in terms of bits to keep the replacement state as LRU, and only adds the bits of the
pointer indicating the current position in the permutation.

Additional logic: The vector part of RP for a 4-way cache is depicted in Fig-
ure 5.3 (left). We denote the id assigned to cache ways as w1, w2, w3 and w4 re-
spectively. Whenever the pointer wraps up, a new random permutation is generated.
This is done, as shown in the picture, swapping different parts of the vector based
on some random bits: R1, R2 and R3. R1 determines whether the first two elements
are (randomly) swapped or not. R2 does the same for the last two elements. Finally,
R3 determines whether the first pair of elements is swapped or not with the second
pair. This simple implementation allows to generate a new permutation quickly and
efficiently. LRU, instead, needs being able to extract any element from the list, place
it at the beginning and shift all leftmost elements one position (dlog2W e bits) right.
Thus, multiplexers (as for RP) and expensive parametric shifters are needed for LRU
which compromises its scalability.

Random bits can be easily generated with a single low-cost linear feedback shift
register [9, 122], which meets the requirements of MBPTA. Although each cache set
has its own random permutation, the number of new permutations needed in one cycle
in the cache is, at most, as many as cache ports exist since, in the worst case, all
simultaneous accesses could produce a miss that requires a new random permutation
in their respective cache sets. This would require 3 random bits per cache port
simultaneously. The PRNG used has been proven capable to produce at least 32 bits
per cycle if needed, thus making a PRNG able to feed multiple caches. On average,
however, each cache port will require one new permutation every W cache misses,
which occur seldom. Thus, usual random bit requirements per cycle are very low and
a single PRNG could fit all caches in one or several cores.

One feature of our implementation is that it generates a subset of all potential
permutations (8 of the possible 24 in a 4-way cache). For instance, w1 and w2 can
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never be in separate pairs. This means that permutation < w1, w3, w2, w4 > could
never be produced. Yet our implementation still preserves the properties needed by
MBPTA on RR: a given way occupies each position in the permutation with identical
probabilities and where they are allocated is a purely random choice. The right side of
Figure 5.3 shows an example of the generation of a new random permutation for the
replacement of one cache set. Initially, we have the permutation < w1, w2, w3, w4 >.
Given that random bit R1 = 1, w1 and w2 are swapped. Since R2 = 0, w3 and w4
are not swapped. Finally, R3 = 1, so < w2, w1 > and < w3, w4 > are swapped,
leading to the new permutation < w3, w4, w2, w1 >.

In Figure 5.4 we compare the implementation costs of the fully randomized design
and our cost efficient one of RP. For caches with 2 or 4 ways, the implementation
cost is roughly the same. However, from 8 ways to 32 the cost of the ideal solution
requires a million to 1037 bits respectively, while the efficient solution only needs 2000
to 10000 bits.

Figure 5.4: Hardware implementation cost for a 64-set cache of random permutation for
different design choices

5.3.1.3 Controlling Pathological Scenarios

RP controls the pathological scenarios drawn for RR, i.e. ps1 and ps2, as presented
next.

ps1: when W or fewer lines are (randomly) placed in the same set, they can
replace each other a limited number of times. Let us recall the example in Section 5.2
where addresses A and B are accessed repeatedly. With RP two scenarios can occur
(illustrated in Figure 5.5):

1. A and B are granted access with the same permutation window to take eviction
decisions. In this case, A and B will be placed in different random ways.

2. A evicts a line using the last element of one permutation window and B uses the
first element of a new permutation window. In this case, again, two scenarios
can occur. Firstly, A and B use different ways. And second, A and B are
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randomly mapped to the same way. In the latter case, B evicts A, but next
time that A is fetched will necessarily use the same permutation window as B,
so it will be placed in a different way. Thus, at most one mutual eviction will
occur.

0 1 01

A B

0 1 01

A B

A & B use the same
permutation window

A & B use different
permutation windows

Figure 5.5: Example of the two different scenarios that can occur in pathological
scenario 1 with RP

Overall, when 2 different addresses compete for the space in a given cache set,
at most 1 mutual eviction will occur. In the general case, if K different addresses
are accessed, where K ≤ W , the worst case occurs when K − 1 addresses use the
last elements of a permutation and the last address uses another permutation so that
it evicts one of the other K − 1 addresses which, in turn, evicts another and so on
and so forth. However, eventually the K addresses produce K consecutive evictions
using elements of the same permutation, thus being placed in different cache ways and
avoiding pathological evictions. Thus, the maximum number of pathological evictions
can be expressed as:

Nmaxevict ≤ K − 1,∀K ≤ W (5.2)

ps2: when the number of addresses mapped to a set exceeds the number of ways,
i.e. K > W compete for the same cache set, on every miss, RR can randomly evict
recently touched lines hence decreasing temporal reuse. To show this we run an
experiment in which we access a given number of addresses K in a sequence of size
2 × K in which the addresses are randomly selected. We assume that all addresses
are mapped to the same set and analyze the average hit rate of RR and RP when
processing the same random sequence 1,000 times. Figure 5.6 shows the hit rate, for
a 4-way cache (e.g. DL1-like) and a 8-way cache (e.g. L2-like), of RR and RP as K
varies from W + 1 to W ∗ 3. We see that RP consistently lowers miss rates for both
setups, with the benefit decreasing as the number of addresses increases w.r.t. the
way size W since the overall miss rate naturally equalizes for high address counts, i.e.
K >> W , when cache set capacity is largely exceeded.

5.3.2 NMRURP

NMRURP, in the same line as RP, limits pathological RR scenarios by increasing
temporal reuse and enforcing random evictions to occur across all cache ways, but
additionally, it guarantees that the MRU line cannot be evicted. In particular, it
avoids potentially long mutual evictions by construction, thus behaving as RP in the
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(a) DL1 (W = 4). (b) L2 (W = 8).

Figure 5.6: Miss rate as a function of the number of accessed addresses for cache sizes
similar to L1 and L2 respectively between RR and RP

example in Figure 5.2. Whenever the number of cache lines exceeds the space of the
corresponding cache set, NMRURP has still some positive effects on reuse, but obvi-
ously the impact of replacement policies diminish as the set capacity is increasingly
exceeded.

In order to introduce NMRURP, we build upon our other proposed randomized
replacement policy, RP. First, we show how in specific cases RP may not favor locality
sufficiently, and then how NMRURP improves over RP.

5.3.2.1 Locality Awareness of RP

RP improves locality over RR by avoiding the replacement of a given cache line within
a permutation (window). Hence, cache lines recently fetched cannot be evicted before
crossing the boundary to the next window. However, there are two scenarios where
RP may fail to preserve locality:

1. RP places no constraint across arbitration window boundaries. Hence, poten-
tially, the same physical cache line could be evicted twice consecutively, which
would allow the MRU line to be evicted. This occurs whenever a cache line is
the last in a window and the first in the following window.

2. Also, RP does not keep any history on whether cache lines have been hit recently.
Hence, if a given cache line can be the candidate for replacement according to
RP, be hit, and then be evicted immediately due to a miss, thus causing an
eviction of the MRU line.

Next, we illustrate those two scenarios with specific examples that serve the pur-
pose to motivate the introduction of NMRURP.

RP example 1: window boundaries. Let us assume a 4-way cache whose
current and next arbitration windows are < w1, w2, w3, w4 > and < w4, w2, w3, w1 >
respectively. Let us further assume that the next eviction is dictated by the last slot
of the current window (w4 in the first window), and w4 in the cache set contains cache
line A. The sequence B1A1B2, where the subscript only indicates access ordering to
a given address, would cause 3 misses. First, B1 would miss and would evict the line
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in w4, so address A. The pointer in the arbitration window would move to the first
position in the next permutation, which is w4 again. Then A1 would also miss, thus
evicting B. Finally, B2 would also miss and would replace the address in w2.

As shown, RP allows evicting the MRU cache line even if it has just been fetched
when crossing arbitration window boundaries if the last slot of one window and the
first slot of the following window randomly point to the same cache way, which occurs
with probability 1/W , where W is the number of cache ways.

RP example 2: MRU hit. Let us assume the same example, so the current
arbitration window is < w1, w2, w3, w4 >, the candidate for eviction is w4, and A is
stored in w4. In this case, the sequence A1B1A2 would produce 2 misses since A1 is
a hit, thus becoming w4 (so A) the MRU line, B1 is a miss and evicts A, and then
A2 also misses.

As shown, on a hit there are 1/W chances that the candidate for eviction is the
cache line recently hit, so a subsequent cache miss may evict the MRU cache line with
a non-negligible probability.

5.3.2.2 NMRURP Replacement Policy

NMRURP is a hybrid policy between NMRU and RP. In particular, it works as RP
but, whenever the cache line to be evicted is the MRU, the following candidate in
the arbitration window (or the first one in the next window if window boundaries are
exceeded) is selected for eviction. This prevents, by construction, the eviction of the
MRU cache line.

Let us recall RP example 1 above. In this case, B1 would evict A from w4, but
A2 would not be allowed to evict B since B is stored in the MRU way (w4). Hence,
w2 would be replaced instead and access B2 would hit. In the case of RP example
2, the behavior is similar. A1 hits in w4, B1 is not allowed to evict w4 and evicts w2,
and A2 is therefore a hit.

Overall, NMRURP increases locality w.r.t. RP in both cases, whenever the MRU
was either hit or fetched due to a miss.

5.3.2.3 Implementing NMRURP

Implementation costs of NMRURP are slightly higher than those for RP. In particular,
it requires a register of dlog2W e bits to store the identifier of the MRU cache line, two
comparators to compare the current and next candidates for eviction with the MRU,
and a priority decoder to select the appropriate candidate for eviction. Note that the
output of the comparisons drive both, the priority decoder and the pointer shift in
the arbitration windows to select the following eviction candidate. A schematic of the
additional logic w.r.t. RP is depicted in Figure 5.7 for illustration purposes. As shown,
only two slots need to be compared with the MRU since at most two consecutive slots
may point to the same cache way given that each way has only one occurrence per
window, and thus they can only repeat once across window boundaries. Thus, up to
two slots may need to be bypassed, as it would be the case in RP example 2 above.
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Figure 5.7: Additional logic for NMRURP with respect to RP

Overall, the additional hardware cost is small and increasingly associative caches
only require a slightly larger MRU pointer, thus justifying the scalability of this
replacement policy.

5.4 MBPTA compliance

MBPTA requires that execution time distributions occurring during operation are
matched or upper-bounded by those enforced at analysis. This is achieved by means
of time randomization or time upper-bounding [96], as previously explained in Sec-
tion 2.1.4. In the particular case of replacement policies, this needs to be enforced
too. In this section we review the MBPTA compliance of the different replacement
policies discussed in this Chapter, namely LRU, NMRU, BT, RR, RP and NMRURP.

5.4.1 Cache Controllability

In general, it is unaffordable predicting the cache state before running a program
during operation, unless an explicit cache flush command is executed right before
accessing the cache. Flush commands, however, can only be executed at specific time
points due to the inability of the Real-Time Operating System (RTOS) to intervene in-
between each software unit, the intrusiveness of those interventions, and the impact on
time and energy consumption of flushing cache contents often. Hence, cache flushing
often occurs only across time partitions for the sake of memory consistency, but not
across software units runs within a given time partition [153].

In this context, the most convenient solution to ensure worst-case cache effects
are properly captured consists of enforcing an initial cache state at analysis time that
leads to equal or higher execution times than any potential initial cache state that
may occur during operation. In general, one would expect that the empty cache state
provides this behavior, since no data is reused from previous runs and, consequently,
more accesses should miss in cache. However, as shown in this section, this is not
always the case for all replacement policies.

57



5. CACHE REPLACEMENT POLICIES

5.4.2 LRU

The LRU policy keeps the order in which the cache lines in a set have been last
accessed. Therefore, two setups starting from different initial cache states will reach
the same state for a given cache set after W accesses to different cache lines in that
cache set, where W stands for the number of cache ways.

This occurs because, whenever a cache line is accessed, whether it is a hit or a
miss, it is promoted to the MRU position, and the remaining cache lines are shifted
as needed to the LRU position to make room for this line be the MRU. If the access
is a miss, all lines are shifted one position closer to the LRU position, and the LRU
line is evicted. Conversely if the access is a hit, only those lines closer to the MRU
position than the one hit are shifted towards the LRU position.

The only difference across two different initial cache (set) states with LRU relates
to whether the first access to each of the first W different addresses accessed is a hit
or a miss, which depends on the initial state.

Therefore, we can upper-bound the behavior during operation by doing one of the
following things at analysis:

• Flush the cache before each run at analysis. This ensures that the first w
accesses to different addresses in each set miss, and after those accesses the
cache state is the same as that during operation regardless of the initial state
during operation.
• Add the latency of w misses per set to the WCET estimate, which upper-

bounds the gain obtained between the best and the worst initial cache states.
This method could result in a more pessimistic outcome since we could be
accounting for some gains that do not occur in practice because the program
could also miss in the first w accesses to different addresses in each set.

If either of these two approaches is followed, the execution times of the program at
analysis with the LRU replacement policy upper-bound those during operation and
hence, LRU is MBPTA compliant. Note, however, that despite LRU its compliance
with MBPTA requirements, it may still exhibit systematic pathological cases that,
nevertheless, would already be captured during the test campaign at analysis.

5.4.3 NMRU

NMRU policy selects the replacement based on a round-robin mechanism but pro-
tecting the MRU cache line in a set. Given two initial cache states, the MRU value
in a specific set will be the same after just one access. The rest of the addresses,
however, will depend on the initial state and the access sequence.

The example in Figure 5.8 shows the same set for two different initial cache states
c0 and c1. c0 corresponds to the empty state, whereas c1 has some contents. The
pointer in each set indicates the next element to be replaced (following a round-robin
policy). The bold cache line indicates the MRU line, so the one protected from
eviction.
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Figure 5.8: Pathological scenario of NMRU: sequence that has more hits in the empty
cache than in the one initialized

In this example, first, we make three accesses to fill the empty cache: a, b and c.
Afterwards, we access a new cache line d that misses in both caches. Since c0 and
c1 have different pointers and orders, they will evict different lines. c0 will evict line
a, whereas c1 will evict line b, since the eviction pointer points to c that is protected
(MRU line). The next access is to line c, which hits in c0 and misses in c1. After two
more accesses that hit and then miss in both caches, the same case arises: an access
to line c that hits in c0 and misses in c1.

As shown in this example, there is no guarantee that an empty initial cache
state upper-bounds the execution time of a non-empty cache, and the execution time
difference can be arbitrarily large since both initial states may not converge to the
same state. Hence, we can claim that the empty cache state is not an acceptable
initial state for analysis runs since it does not upper-bound all initial cache states
and access sequences. Moreover, our example already illustrates that specific access
sequences may make any given initial state perform worse than another given state
without converging to the same state, thus indicating that MBPTA compliance is not
achieved for NMRU.

Only if we could enforce the same initial cache state at analysis and during op-
eration, NMRU could be made MBPTA compliant. However, as explained before,
the initial cache state during operation may not be controlled (e.g. flushed) in many
cases.

5.4.4 BT

The BT replacement policy has an auxiliary tree structure that defines the state of
the replacement algorithm for each cache set. The fact that cache lines are already
stored in a particular location and such location, together with the access sequence,
determines the replacement order, can lead to a pathological scenario where some
accesses always miss. This can easily be seen with an example.

The example in Figure 5.9 shows a set of two different initial cache (set) states
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Figure 5.9: Pathological scenario of BT: sequence that has more hits in the empty cache
than in the one initialized

c0 and c1, one empty and one initialized respectively. The first 4 accesses, namely a,
c, b and d are performed in both caches. In this example, the arrows point to the
cache line to be replaced. Since the cache has 4 ways, we need 2 levels of arrows. The
first level indicates the pair to be replaced first, and the second level what cache line
inside the pair must be replaced. After these 4 accesses c0 is filled (4 misses) and c1
maintains its state (4 hits).

Another access to c occurs and hits in both caches. Then, we make a sequence
of 3 accesses to cache lines e, b and e (all mapped to the same set). The first access
misses on both caches, and the last hits on both. However, the second access (b) hits
on the empty initial cache state, whereas it misses on the already initialized cache.
The final state is equivalent to the third state shown in the example (after accessing
c), but with the following conversions: a′ = e, b′ = c, c′ = b, d′ = a, e′ = c, where
the prime mark indicates the new state. This means that a sequence a′, c′, a′ would
again result in the same behavior: miss for both, then a hit for c0 and a miss for c1,
and finally a hit for both. This pattern (shown in a box for illustration purposes),
with the appropriate addresses, could repeat an arbitrarily long number of times, thus
making the empty initial cache state lead to arbitrarily lower execution times than
the non-empty state.

As for NMRU, given any initial cache state, we can devise an access sequence
that makes a different initial cache state lead to systematically lower execution times.
Hence, an initial state that upper-bounds all others does not exist. This implies
that, measurements collected on an empty initial cache state do not upper-bound
operation-time behavior, and differences across initial states cannot be upper-bounded
in general. Because of this, we regard this cache policy as non MBPTA compliant.
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5.4.5 RR

RR policy chooses where to allocate a new cache line randomly. Hence, it does not
keep any state on replacement order. With RR we cannot determine how many
accesses to different addresses will make two different initial cache states reach the
same state. However, since eviction choices are random and have uniform proba-
bilities across lines, we can claim that whether accesses hit or miss does not alter
cache replacement state (which is none for RR). Thus, any non-empty state leads,
probabilistically, to equal or lower miss rates that an empty initial state.

This behavior can already be inferred from the work in [95]. In particular, authors
prove that with RR, given an initial cache state, causing random evictions can only
lead to a probabilistically worse execution time. In our case, by causing an infinite
number of evictions, we would reach the empty cache state that, therefore, would
lead to a probabilistically worse execution time than any other initial state.

Hence, on a non-empty initial cache state during operation, we may experience
additional hits and thus, lower execution times than those experienced at analysis with
an empty cache state. We can conclude, therefore, that RR is MBPTA compliant
with an empty initial cache state at analysis.

5.4.6 RP

RP generates a permutation that will replace all cache lines in a cache set in w replace-
ments. However, a program can start its execution in the middle of a permutation,
so there can be a scenario where we need to perform (2 · w)− 1 replacements before
all cache lines in the set have been replaced. This occurs when a given cache line
is in the first slot of a window and in the last of the next window, and initially we
start replacing the cache in the second slot. For instance, given the permutations
< w1, w2, w3, w4 > and < w4, w2, w3, w1 >, if the eviction pointer is in the second
slot of the first permutation, we need 7 evictions to evict the line in w1, whereas if
we are at the beginning of a permutation, we only need w replacements to evict all
lines.

Let us build our argument on the MBPTA compliance of RP in two steps. First,
we show that the difference between two empty initial cache states with different
window alignment is up to w − 1 misses. Then, we show that for a non-empty cache
state exists an empty cache state that upper-bounds the non-empty state. Such empty
cache state is, by construction, up to w− 1 misses better than the worst empty cache
state. Hence, at analysis we can enforce an empty initial cache state, where window
alignment per set can be any, and increase WCET estimates w − 1 misses per set.

Difference across empty initial states. With RP there is a dependence be-
tween the position of the eviction slot of the current window and miss probabilities.
In particular, given two initial empty cache states with different permutation window
alignment, it may take up to w − 1 evictions until their eviction probabilities match
(e.g. both align at the beginning of the permutation window), and from that point
onwards, eviction probabilities are identical. Whether those up to w−1 replacements
lead an additional hit or miss each, depends on the access sequence. Hence, if we
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increase the WCET estimate by the impact of w−1 misses per set, we can claim that
RP is MBPTA compliant.

This can be better illustrated comparing RP with NMRU. Since MRU protection
is a subcase of LRU, which is MBPTA compliant, let us consider only the round-robin
part of NMRU for the sake of this discussion. NMRU fails to be MBPTA compliant
because the eviction order of addresses is fixed (round-robin). Hence, the particular
location of the pointer in the sets determines evictions. In the case of RP, evictions
occur randomly and uniformly distributed across cache ways within a permutation
window. Once two initial cache states reach the same window alignment, eviction
probabilities are random and follow the same distribution across both states, thus
having similar properties to those of RR. Hence, reaching such identical alignment
(e.g. between the current window alignment and the worst potential alignment for
the program under analysis) requires up to w − 1 evictions.

Difference between empty and non-empty states. Note that since cache
hits do not alter RP state, a non-empty initial cache state c1 can only lead to lower
execution times that, at least, an empty initial cache state c0. In particular, given an
access a hitting in a preexisting line in c1 and missing in c0, the likelihood of a being
evicted in c0 is lower since the pointer moves to the following slot in the window.
Eventually, this may make that a access to a is a hit in c0 and a miss in c1, thus
producing the opposite effect. However, such extra miss in the non-empty cache state
can only occur after an extra miss in the empty cache state, which guarantees that
the empty cache state is probabilistically worse than the non-empty one.

Need for padding WCET estimates. So far we have shown that, theoretically,
we may need to account for up to w−1 extra misses per set. However, this holds under
the assumption that the initial alignment is deterministic. However, we can break
such dependence by randomizing the initial alignment with the permutation window
both at analysis and during operation. We can enforce the flush process to choose
randomly the window alignment in each set. At analysis, such flush is performed
before each run. During operation, it is only needed at boot time. After that, the
random alignment is modified by random choices for replacement, thus leading to a
random alignment before running the program under analysis, even if the number of
evictions before its execution is deterministic (e.g. programs performing only cold
misses). Therefore, RP provides MBPTA compliance by simply starting from an
empty cache state with random window alignments in each set.

5.4.7 NMRURP

The case of NMRURP is analogous to that of RP, with the difference that the MRU
line is protected. Hence, the difference in terms of permutation window alignments is
up to w − 2 lines. However, the MRU pointer may also differ across different initial
states, so the maximum difference across empty initial cache states is again w − 1
misses per set, as for RP. Also, the same reasoning that applies for empty and non-
empty cache states for RP, applies for NMRURP, as well as the concept of enforcing
a random window alignment on a cache flush.

Overall, by using an empty initial cache state and enforcing random window align-
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ment in each set on a cache flush (flush must be used at boot time during operation),
NMRURP can also be regarded as MBPTA compliant.

5.5 Evaluation

In this section, we evaluate RP and NMRURP in terms of average execution time
and pWCET estimates, and compare them against LRU, NMRU, BT (average per-
formance) and RR, LRU (average performance and pWCET).

5.5.1 Framework

5.5.1.1 Processor model

We evaluate our proposal using the system and simulator described in Sections 3.2
and 3.2.4. L1 caches implement Random Modulo (RM) placement [72], whereas L2
cache implements hash-based random placement [92], given that this has been shown
a very convenient setup [72] for MBPTA. Note that, since we build upon a random-
ized placement policy, execution times change across runs, even if the replacement
policy is deterministic as, for instance, in the case of LRU. By choosing a randomized
placement policy, we enable MBPTA compliance for all those replacement policies
also MBPTA compliant, and have a fair comparison across replacement policies since
all of them build upon the same placement policy. In fact, we enforce the same set
of random placements (e.g. the same set of 1,000 random placements for each of the
1,000 runs) across replacement policies so that the only source of variation across se-
tups is the replacement policy. For average performance evaluation we consider that
all caches use the same replacement policy, which can be either LRU, NMRU, BT,
RR, RP or NMRURP. The L2 has no replacement policy since each core has a single
L2 way, thus requiring no replacement policy. For pWCET estimation purposes, we
compare our proposals, namely RP and NMRURP, with the existing MBPTA com-
pliant replacement policies, namely RR and LRU. Note that, despite considering a
multicore, evaluation is performed for programs in isolation since we focus on cache
replacement effects.

5.5.1.2 Applications

We make a solid evaluation of our proposal with three different application setups.

• For illustration purposes, we consider a synthetic benchmark traversing a con-
figurable number of times a vector with varying sizes ranging from 4KB to 40KB
in 4KB steps, on a setup with modulo placement, so that we access in a round-
robin fashion between 1 and 10 different lines in the same set. This allows us
illustrating the different timing behavior for each replacement policy.
• We use a representative subset of the well-known Mälardalen Benchmark

Suite [64].
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(a) LRU/NMRU/BT. (b) RR.

(c) RP/NMRURP.

Figure 5.10: Relacement policies result comparison: L1 data hit rate for the synthetic
benchmark when varying the number of cache lines and iterations

• We also use a real railway application implementing a critical real-time function
from the European Train Control System (ETCS) reference architecture.

5.5.2 Average Performance

For these experiments, we use the same random seeds (and so, the same placements)
for all configurations so that differences are produced due to the replacement policy.
Miss rates as well as average execution time are obtained as the mean across all
measurements for each input set and replacement policy.

5.5.2.1 Synthetic Benchmark

Figure 5.10 analyzes the hit rate (y-axis) of the synthetic benchmark varying the
number of cache lines accessed in round-robin (x-axis) and the number of iterations
of the loop (z-axis).
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• Figure 5.10(a) shows the matching results results for LRU, NMRU and BT
replacement. We observe that a very high hit rate is obtained for up to 4
addresses accessed, which matches DL1 associativity. Above that point, all
addresses are evicted systematically before being reused.
• In the case of RR (Figure 5.10(b)), we observe that it obtains decreasing hit

rates as the number of addresses increases, but they are never zero. However,
we also observe that hit rates slowly increase with the number of iterations for
4 addresses due to the cases where lines evict each other despite fitting in cache.
A similar trend occurs for 2 and 3 addresses, but it is omitted in the plot since
visually it is not so obvious.
• Finally, Figure 5.10(c) shows the matching results for RP and NMRURP. We

observe that the hit rate grows rapidly with the number of iterations for 4
addresses. It also grows faster than RR for 2 and 3 addresses. However, for
larger address counts the hit rate decreases faster than for RR being zero for 8
addresses. However, in that case the real problem is not the replacement policy,
but the fact that cache capacity has been largely exceeded.
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Figure 5.11: pWCET reduction (p = 10−12) for the Mälardalen benchmarks w.r.t. RR.

Table 5.1: Replacement policies: average results for the 10,000 executions and the worst
100 (1%) for the Mälardalen benchmarks

All
LRU NMRU BT RR RP NMRURP

Cycles 45522 45036 44776 46076 44998 44989
IL1 m.r. 0.017 0.017 0.017 0.018 0.017 0.017
DL1 m.r. 0.133 0.133 0.128 0.135 0.132 0.131
L2 m.r. 0.465 0.460 0.478 0.459 0.464 0.465

Worst 1%
Cycles 46472 45428 45218 46991 45357 45358
IL1 m.r. 0.018 0.018 0.018 0.019 0.018 0.018
DL1 m.r. 0.134 0.137 0.132 0.138 0.136 0.136
L2 m.r. 0.424 0.400 0.405 0.416 0.401 0.401
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5.5.2.2 Mälardalen

Table 5.1 shows the average number of cycles and miss rates for IL1, DL1 and L2
for the 10,000 executions performed for each replacement policy. For the MBPTA
compliant replacement policies, we also show the average of the 1% of simulations that
had the highest execution times. The worst 1% runs for RP and NMRURP perform
as good as the average of all runs for LRU and the other deterministic policies. As
shown, for the highest 1% execution times, the gap between RR and RP/NMRURP
increases due to the bounded pathological evictions with RP/NMRURP. Also, there
is a significant gap with LRU, which also triggers some pathological cases in some
sets for some placements, thus showing that RP and NMRURP are the best MBPTA
compliant replacement policies. LRU only performs slightly better than RR but worse
than RP/NMRURP. This occurs because it preserves temporal locality better than
RR, but its pathological cases make it worse than RP/NMRURP. Note that L2 miss
rates are lower for the worst 1% than on average for all runs. This relates to the
fact that DL1 accesses dominate execution time, and higher execution times occur
for higher DL1 miss rates. Thus, although the number of L2 misses remains barely
constant for the worst 1%, the number of accesses increases and hence, the L2 miss
rate decreases.

Differences between RP and NMRURP in terms of average performance are margi-
nal for the evaluated benchmarks. While differences among them exist and may be
relevant in some specific cases, most programs do not exhibit often those specific cases
where NMRURP is superior to RP and hence, their average performance is roughly
identical. Although NMRU and BT are not compatible with MBPTA, as discussed
before, we also include them in this evaluation, showing that their performance, both
across all measurements and across the worst 1%, is roughly identical to that of RP
and NMRURP, which, however, attain MBPTA compliance.

Table 5.2: Replacement policies: average results for the 10,000 executions and the worst
100 (1%) for the railway case study

All
LRU NMRU BT RR RP NMRURP

Cycles 3299 3288 3288 3311 3288 3289
IL1 m.r. 0.151 0.151 0.151 0.152 0.151 0.151
DL1 m.r. 0.302 0.302 0.302 0.305 0.302 0.302
L2 m.r. 0.781 0.781 0.781 0.776 0.781 0.781

Worst 1%
Cycles 3389 3306 3299 3408 3305 3306
IL1 m.r. 0.151 0.151 0.151 0.153 0.151 0.151
DL1 m.r. 0.303 0.314 0.307 0.312 0.315 0.314
L2 m.r. 0.794 0.772 0.776 0.783 0.772 0.772

For the sake of completeness, we have also considered 8-way caches, despite the
target processor (LEON4 multicore) only implements 4-way caches. However, other
embedded processors also implement 8-way L1 caches. Since the L1D cache has shown

66



5.5 Evaluation

to be the most sensitive cache to the replacement policy used for this benchmark suite,
we have only varied L1D cache set-associativity (using 8 instead of 4 ways). Results
across all benchmarks barely changed, showing less than 1% variation w.r.t. the 4-
way setup in terms of execution time. For instance, results for NMRURP with an
8-way DL1 are 44789 cycles on average, and 45071 cycles for the worst 1%. Since no
further insight was observed, detailed results have been omitted.

Figure 5.12: pWCET for jfdc-tint Mälardalen Benchmark for all MBPTA compliant
replacement policies

0 1 2 3 4 5 6 7 8 9
-20%

-10%

0%

10%

20%

30%

pW
C

E
T

re
du

ct
io

n

LRU RP NMRURP

Figure 5.13: pWCET reduction (p = 10−12) for the rail case study for all MBPTA
compliant replacement policies
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5.5.2.3 Railway case study

For the railway case study, average results across input sets are shown in Table 5.2.
As shown, RP and NMRURP provide small gains w.r.t. RR in terms of cycles, DL1
and IL1 miss rates. RP and NMRURP are slightly worse in terms of L2 miss rate.
When compared against LRU and the other deterministic policies, we also observe
negligible differences. However, if we keep only the highest 100 measurements (the
worst 1% of them), we observe that differences increase, evidencing that RR may
produce pathological scenarios ps1 and ps2, as we have further verified inspecting the
sequences of events for the worst RR runs. Conversely, RP and NMRURP limit the
maximum number of evictions so that its worst case is better than that of RR. As for
Mälardalen, LRU performs slightly better than RR but worse than RP/NMRURP
since LRU produces sporadic but significant pathological cases.

Analogously to the case of Mälardalen benchmarks, differences between RP and
NMRURP in terms of average performance for the railway case study are marginal,
and NMRU and BT, which are not MBPTA compliant, perform roughly as RP and
NMRURP.

5.5.3 Worst-Case Performance

As shown in the previous section, the differences between RR/LRU and RP/NMRURP
grow at the tail of the distribution (i.e. for the highest values): for instance, average
execution time for RP is 1% lower than for RR and 3% lower for the 1% high-
est execution times of RR. The latter translates into tighter pWCET estimates for
RP/NMRURP.

Figure 5.14: Replacement policies: pWCET curve for input 9 of the railway case study
w.r.t. RR
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5.5 Evaluation

5.5.3.1 Mälardalen

For Mälardalen, in Figure 5.11 we present the reduction of pWCET estimates at 10−12

w.r.t. those of RR2. We observe that RP and NMRURP are consistently better than
those for RR. The improvement ranges from 1% to 86%, being 24% on average for
RP and NMRURP. This significant reduction in pWCET evidences the advantage of
using RP or NMRURP instead of RR or LRU. LRU is on average 1% better than
RR, performing a better on some cases and worse in others.

While discrepancies between RP and NMRURP are larger in terms of pWCET
estimates than in terms of average performance, they are low across individual bench-
marks and marginal on average. In fact, if we consider confidence intervals of 95% for
pWCET estimates, intervals overlap for RP and NMRURP, thus indicating that dif-
ferences are not statistically significant. Part of our future work consists of investigat-
ing whether specific patterns causing different behavior between RP and NMRURP
exist to a sufficient extent in some industrial programs so that a better selection
among RP and NMRURP replacement policies can be performed.

Figure 5.12 shows the pWCET distribution when using RR, LRU, RP and NM-
RURP for the jfdctint Mälardalen Benchmark. Red dotted lines and black straight
lines represent the CCDF for the measured data and the pWCET curves respectively.
RP and NMRURP provide increasingly higher gains as the exceedance threshold
decreases due to the fact that RP and NMRURP avoid pathological evictions by
construction. Since RR can produce some such pathological evictions with relevant
probability, MBPTA accounts for that by smoothening the shape of the curve and
shifting it to the right. Analogously, LRU can produce some pathological cases, which
has also some significant impact on pWCET estimates.

5.5.3.2 Railway case study

For the rail application Figure 5.13 shows the pWCET estimates at 10−12 w.r.t. those
of RR. We observe that the pWCET estimates of RP and NMRURP are consistently
better than those for RR , while LRU is sometimes better and sometimes worse,
although on average LRU performs worse since its pathological cases can occur sys-
tematically as opposed to those of RR, which occur with decreasing probabilities. RP
pWCET reduction w.r.t. RR is 11% on average, reaching 22.6% for input set 7.

For illustration purposes, Figures 5.14 shows the pWCET distribution when using
LRU, RR, NMRURP and RP for the railway case study (input set 9). Observed
trends are similar to for Mälardalen benchmarks: the lower the exceedance probability
considered, the larger the gap between RP/NMRURP and RR/LRU. Moreover, in
this particular case, we observe that LRU is significantly worse than RR (almost 20%
worse) due to the systematic nature of its pathological cases.

Overall, RP and NMRURP provide slightly better average performance than RR,

2BT and NMRU have been excluded from this comparison since they are not MBPTA compliant
and hence, the result of applying MBPTA on those policies would not have a practical meaning.
Thus, despite the values obtained are very similar to those of RP and NMRURP, they are not true
pWCET estimates and cannot be used in the context of CRTES.
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and similar performance as deterministic policies. However, in terms of pWCET
estimates, our proposed replacement policies, RP and NMRURP, are consistently
better than RR and LRU by preserving locality and avoiding pathological cases by
construction.

5.6 Related Work

Research on replacement policies is abundant, but often targets either improving
average performance or achieving deterministic predictability. Among those we find
FIFO and LRU replacement policies as well as enhanced versions of them such as
protected LRU [85] and pseudo-LRU, which has already been deployed in some IBM
processors [145]. A performance comparison of these replacement policies including
also NMRU is presented in [10]. Also, an oracle replacement policy has been defined
as a reference but not made implementable [20]. Work on optimizing replacement
policies for second (L2) and third level (L3) caches is abundant [129, 41, 79, 19, 135].
Those works, either for uniform [129, 41, 79] or non-uniform [19, 135] cache access
architectures, leverage the fact that L1 caches filter many accesses, so that access
patterns in L2 and L3 caches differ noticeably from those in L1 caches. In general,
those cache policies have systematic pathological cases due to their deterministic
nature, thus being unfriendly for MBPTA, as it is the case for LRU.

5.7 Conclusions

In this work we analyze the impact of cache replacement policies showing that deter-
ministic ones can cause systematic pathological cases, thus degrading the quality of
the WCET estimates. Conversely, RR makes pathological cases non systematic, but
they can still occur with decreasing probabilities. This ultimately enforces MBPTA
to account for some unfortunate cases with large number of random replacements.

We, then, propose two new randomized replacement policies, RP and NMRURP.
We show that they completely remove pathological cases by preserving cache locality
to some extent. This allows avoiding pathological cases and hence, improving WCET
estimates drastically. Our evaluation on a set of benchmarks and a railway case study
show that both policies largely outperform RR in terms of WCET estimates, despite
average performance gains are rather modest. Whether one of the two randomized
replacement policies proposed in this Chapter, namely RP and NMRURP, is superior
to the other remains to be proven since differences among them in our evaluation
cannot be regarded as statistically significant. Thus, as part of our future work we
plan to verify whether large discrepancies among both policies can be found in other
applications.
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Chapter 6

Cache write policies

6.1 Introduction

The cache write policy determines how writes to lower (L1) cache levels, those closer
to the cores, are handled. Under write-through (WT), write operations are performed
in the lower cache and are forwarded to the higher (L2) cache level so that both caches
hold consistent data. With write back (WB), write operations are only performed
in the lower level cache, and the update of the next level is postponed until the
cache lines containing the dirty data is evicted from the lower level cache. The write
policy impacts the write-miss policy (write-allocate or not write-allocate), the cache
coherence solution (e.g. in snooping-based protocols the write miss policy determines
– together with the inclusivity protocol – the set of actions to take on a read/write
to local and global data), and the reliability solution (e.g. WT usually requires low-
overhead parity in lower level caches and ECC in higher level caches, whereas WB
requires ECC in dL1 to keep the reliability of data not backed up in L2). Due its
remarkable impact on the overall MLC cache design, the write policy affects metrics
as important as guaranteed performance, energy/power, and reliability.

Interestingly, each write policy offers a different trade-off among the different
metrics and Multi-Level Caches (MLC) complexity. Hence, the design of the write
policy requires finding a balance between them. The latter goes beyond a simple
high-performance and real-time classification. Instead, for a given area (e.g. real-
time), the particular application domain defines the relevance of each metric and
hence, the write policy to use. For instance, in the space domain, due to exposure
to radiation, hardware reliability plays a much more important role than in railway.
Likewise, performance is much more relevant in automotive, where performance needs
are expected to increase by 100x in coming years [2], than in space. In this line, we
make the following main contributions:

1. We make an in-depth analysis of both write policies, WT and WB, with empha-
sis on those metrics of relevance for real-time systems. WT simplifies coherence
since most updated data is always in L2, and reliability since the more costly
ECC is only needed in L2 with only parity being used in dL1. However, as
the pressure on the interconnection (NoC) increases – as a result of integrat-
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ing more cores – the contention on the NoC generated by writes under WT
greatly reduces guaranteed performance (i.e. increases Worst-Case Execution
Time (WCET) estimates). Further, WT increases energy consumption as each
write accesses the NoC and the larger L2. With WB, each write to dL1 does
not result in accessing the NoC, with considerable energy consumption reduc-
tion; and exceptional WCET reductions. Yet, WB complicates coherence and
reliability, increasing cache complexity.

2. We propose Hybrid Write Policy (HWP), a low-overhead mechanism that takes
advantage of the good properties of each policy. Building on WT, we attack its
average and guaranteed performance issues, with a mechanism that builds on
shared/private data classification hardware and applies WT to shared data and
WB to private data. HWP removes write-through operations on private data,
which in general are the most accessed data, while keeping it for shared data,
so cache coherence can be managed as in pure WT caches. At hardware level,
in the Memory Management Unit (MMU) or Memory Protection Unit (MPU),
HWP incurs negligible cost for tracking whether memory pages are shared or
private along with other page properties such as read/write permissions.

3. We evaluate WCET estimation, reliability, energy consumption and coherence
cost of HWP. Our results show that for those scenarios in which tasks have
limited data sharing, HWP delivers performance similar to WB. Even when
the percentage of shared data is as high as 40% HWP remains competitive
in all evaluated metrics (other works estimate the percentage of shared data
in multiprocessor programs ranges from 25% [67] to 17% [73]). Overall, our
design has a simplicity comparable to WT in terms of coherence, while achieving
average/guaranteed performance and energy consumption comparable to WB.

6.2 Tradeoffs in the Design of Cache Write Policy

MLC are one of the main hardware blocks in a multicore architecture devoted to
improve performance and reduce the energy/power profile of applications. MLC aim
at rapidly and efficiently satisfying data/instruction requests coming from the cores,
while maintaining the coherence (i.e. the particular value returned on a read), consis-
tency (i.e. when data is available), reliability (physical integrity) and more recently
security (i.e. protection against unwanted/unauthorized actions). The cache write
policy, which handles write operations, is at the core of the complexity of MLC since
it has a direct impact on the design of other policies. In this section we analyze the
impact of WT and WB policies on reliability, inclusivity, and coherence choices. We
also analyze their impact on performance (average and guaranteed), reliability, and
energy/power. For the latter, the results obtained from several controlled experiments
are used as supporting argument.
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Table 6.1: Percentage of stores executed by the EEMBC Automotive and MediaBench
suites

EEMBC % MediaBench %
a2time 5% adpcm.d 13%
aifftr 18% adpcm.e 14%
aifirf 8% epic.d 6%
aiifft 18% epi.e 5%
basefp 2% g721.d 8%
bitmnp 11% g721.e 9%
cacheb 16% gsm.d 3%
canrdr 15% gsm.e 3%
idctrn 8% jpeg.d 6%
iirflt 7% jpeg.e 10%
matrix 3% mesa.m 12%
pntrch 0% mesa.o 14%
puwmod 12% mesa.t 9%
rspeed 14% mpeg2.d 10%
tblook 6% pegwit.d 6%
ttsprk 4% pegwit.e 6%

pgp.d 5%
pgp.e 13%
rasta 8%

6.2.1 Write-Through (WT)

Under WT, each store operation is sent to the L2 so it uses the NoC, which can
significantly increase the pressure on it. In the core, the store buffer decouples the
commit (finalization) of the stores so that they do not block the pipeline. To that
end, once a store reaches the commit/writeback stage, it updates dL1 and in parallel
it is placed in the FIFO store buffer allowing the execution to continue. The store is
forwarded to L2 when it reaches the head of the store buffer and there is available
NoC bandwidth. The store buffer can significantly mitigate the impact of stores in
single-core architectures, but rapidly becomes insufficient in multicore. This is better
illustrated with an example: let us assume that a bus connects dL1 and L2 caches
and each store operation uses it for k cycles. As long as the frequency of stores is (on
average) below 1/k, they will not significantly affect processor performance – unless
they are bursted which we do not assume in this simple example. However, in a
multicore architecture with Nc cores, as soon as the pressure in the bus increases, the
actual duration of a store becomes k×Nc, i.e. k× (Nc−1) cycles of contention and k
cycles for the bus access. In this scenario, stores become a performance issue as soon
as their density reaches 1/(k ×Nc). As an illustrative example, Table 6.1 shows the
percentage of store operations executed by EEMBC and Mediabench benchmarks,
see Section 6.4 for more details on the experimental setup. The average percentage
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Core 0 Core 1 Core 2 

Bus 

L2 

Ƭi Ƭj Ƭk 

(a) Setup

(b) Same duration (li = lj = lk) (c) Different duration (2 · li = lj = lk)

Figure 6.1: Contending tasks in a multi-core: τi aBAT and wBAT as a function of its
load and its contenders’ (τj and τk) load

of stores is 9%. Further k × Nc ∈ [15, .., 20] – and hence it is higher than 1/9, for
multicores with 4-8 cores. To make things worse, the percentage of memory opera-
tions is growing in emerging data-intensive real-time applications, e.g. applications in
cars managing data coming from different sensors such as radar, LIDAR, and stereo
cameras. Intuitively, this problem can be alleviated by using a crossbar between the
dL1 and the L2, at the expense of increased hardware cost. However, this would
just shift the problem from the bus to the L2 itself, since L2 access latency is longer
than that of the crossbar. Further, to preserve coherence, each store must be allowed
to reach any part of the entire L2 cache, which defeats any attempt to mitigate the
problem by partitioning the cache space.

The impact of WT on average performance due to NoC contention magnifies for
guaranteed performance, causing inflated WCET estimates. This comes from the fact
that worst-case time allowances must be done in the WCET estimates to factor in the
impact of NoC contention. In general, no assumption can be made on how the requests
of the different running tasks are interleaved in the use of the bus. The exception to
this are some Static Timing Analysis (STA) techniques that keep track of the worst-
time when each request from each core can be issued, and hence are able to exactly
determine how requests overlap in the access to shared resources [104, 68, 103]. This,
of course, comes at a significant cost, including the increasing effort of making a cycle-
accurate model of the MLC system and processor, and increased analysis computation
time. Further, this analysis, despite producing (in general) tighter WCET estimates,
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makes them non time-composable so that any shift in any task requires performing
the WCET estimation for all tasks. Hence, to increase time composability and reduce
costs, worst-case assumptions are made on how tasks’ request are aligned [117, 51, 87].
This is better illustrated with an example. Let us assume a bus connecting the L2
to 3 cores (respectively executing tasks τi, τj, τk) and all bus requests using the bus
for the same duration l (shown in Figure 6.1 (a)). The best overlapping scenario for
average Bus Access Time (aBAT) happens when requests of the task under analysis
(τi) and the contender tasks (τj, τk, ...) do not overlap as long as the bus utilization
of all tasks is below 100%, and when the utilization goes over 100% the minimum
overlap happens. For instance if a τi uses the bus for 20% of the time and τj for 90%
of the time, τi gets affected only 10% of its time. The worst overlapping scenario for
bus access time (wBAT) is assuming that requests from τi arrive in the same cycle as
the requests from the contender tasks, but τi systematically gets the lowest priority.
Figure 6.1(b) shows how worst-case BAT gets much more affected than average BAT
due to contention for different scenarios of bus utilization of τi and its contenders.
We see that wBAT is significantly affected even for low bus utilization. For instance,
for utilization ui = 20%, uj = 25%, uk = 25% for τi, τj, and τk respectively (see
red rectangle in Figure 6.1(b)), τi suffers no delay in the best case aBAT and in the
worst case it goes to 60% (a 2.4 increase). Further, typically store operations take
shorter than load operations accessing the cache (no need to wait for a response),
which translates into a scenario in which τi requests take shorter than its contenders’
request. We see in Figure 6.1(c), for a scenario in which τi requests take half of its
contenders, that the impact of contention on WCET estimates increase. For instance,
for utilization ui = 20%, uj = 25%, uk = 25% for τi, τj, and τk respectively (see red
rectangle in Figure 6.1(c)), τi suffers no delay in aBAT but a 100% in the wBAT.

Continuous store accesses to the L2 cause performance and WCET degradation
but can also increase power consumption. Updating values with WT policy implies
accessing the bus and L2, even if the core updating the values is the only consumer
of this data. This can have a significant impact on the overall power consumption.
For example, when running a2time from the EEMBC automotive benchmark suite
in our reference processor setup (see Figure 6.4 and Section 6.4.1), the 14% of the
energy consumption comes from the bus and L2.

Under WT, reliability can be handled with reduced overhead. A usual tradeoff
consists of using only parity for error detection in dL1 caches, and (usually) apply
it at double-word level, that is, using 1 parity bit for 64 data bits (8 bytes). This
results in low overhead of around 1.6% (1/64). Furthermore, the operations needed
to compute the parity (XOR) can be carried out in parallel and hence are unlikely
to affect cycle time. On a parity error, however, hardware support is needed to
squash the execution of the instruction that obtained erroneous data and following
instructions. On completion, error-free data is fetched from L2 and execution resumes.
Alternatively, parity can be checked before delivering the data to remove the need
of squash logic. However, this would likely increase cache latency since XOR gates
to compute the parity bit may easily need an extra cycle. WT parity-protected dL1
caches are used in combination with SECDED-protected L2 caches. The latter is
achieved with ECC that carries an inherent area and logic for its implementation.
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Figure 6.2: Visual comparison of the different write policies for different metrics

Typically, SECDED requires 8 code bits per 64 data bits (so ≈ 12.5% extra bits),
with negligible impact on L2 performance, since although an additional cycle may be
needed to deliver data corrected, this operation is fully-pipelined. Hence, L2 latency
may increase by 1 cycle, thus slightly increasing the latency of dL1 read misses, which
are generally scarce, but without affecting L2 throughput. Note that on the event of
detection of an error in dL1 in a given cache, it is simply discarded and data is fetched
from upper cache levels since a correct copy of the data exists in L2 or beyond.

dL1 WT caches simplify coherence management. In particular, dL1 WT caches
are made inclusive L2. As a result, when shared data exists in data dL1 (dL1), up-
to-date copies of the data is also present in L2. Hence, coherence can be managed in
L2 and, upon shared data modifications, the corresponding cores’ dL1 caches receive
(infrequent) invalidation requests. With WT caches a simple invalidation protocol
(V/I)) is enough.

Overall, WT can negatively affect average and worst performance – the latter
more intensely– and energy. On the positive side, it can be used with low-overhead
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coherence and reliability solutions. These properties are summarized in Figure 6.2(a)
in a qualitative manner, with Figure 6.2(d) showing the ideal scenario.

6.2.2 Write-Back (WB)

For low core counts, the small average performance improvement of WB over WT does
not compensate its additional validation and design costs. However, as the number
of cores of multicore real-time systems increases, WB becomes more attractive.

WB significantly reduces the number of bus and L2 accesses compared to WT.
Furthermore, since worst-case contention is quite proportional to the number of ac-
cesses, WCET estimates are typically much lower with WB than with WT.

WB access count reduction to shared resources decreases the power consumed
by those resources. In our setup, the bus and L2 accounts on average for 13% of
the system energy, and hence reducing its utilization translates into a non-negligible
energy reduction. Also, the need for higher reliability in the data dL1 cache (dL1)
increases the power used by the system due to the extra bits and logic needed to
implement, for instance, SECDED codes. Finally, since invalidation operations due
to shared data accesses may require invalidating dirty lines in dL1, this may cause
extra energy consumption to write data back to L2.

When WB is used in the dL1, the data most frequently updated/sensible can be
spread between multiple caches (the different dL1 caches and L2). In this scenario,
error detection in dL1 and error correction in L2 is not enough, since some data is
only updated in dL1 and, upon an error, it could be detected but not corrected. In
this case, there are two possible implementations of ECC in dL1, each one with its
advantages and drawbacks:

• Under Data delivery after correction data is read from dL1, then ECC
checked (and eventually data corrected), and finally data is delivered. Unfortu-
nately, checking the ECC code increases access latency by 1 cycle. While such
operation can be pipelined, thus not increasing dL1 utilization, the effective
latency for data read increases.
• Under Data delivery before correction data is read from dL1 and delivered

as if it was error-free. In parallel, ECC is checked and, upon an error detec-
tion, the affected instruction and subsequent ones need to be squashed. Then,
the execution can be resumed using the corrected data. While such process
has negligible impact in performance (radiation errors occur only sporadically),
the logic for squashing instructions and resuming execution may be complex.
However, such logic is analogous to that of WT caches when operating with
parity.

With WB caches V/I is not enough because data can be in another state apart
from valid or invalid, namely, modified state. Because of this, we will use MESI (an
enhancement over MSI) for WB caches. Maintaining cache coherence in multicores
with WB dL1 caches requires frequent accesses to other cores’ dL1 caches to verify
whether shared data is there and, eventually, retrieve them (if dirty) or invalidate
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Table 6.2: Commercial processors and their relevant write policy and general
characteristics

Processor Cores Frequency L1 WT? L1 WB?
ARM Cortex R5 1-2 160MHz Yes, ECC/parity Yes, ECC/parity
ARM Cortex M7 1-2 200MHz Yes, ECC Yes, ECC
Freescale PowerQUICC 1 250MHz Yes, ECC Yes, parity
Freescale P4080 8 1.5GHz No Yes, ECC
Cobham LEON 3 2 100MHz Yes, parity No
Cobham LEON 4 4 150MHz Yes, parity No

them (if the ongoing access is a write or data is not dirty). Depending on the in-
clusivity of the cache system, we find two possible scenarios (exclusive caches are
infrequent so we do not discuss them here):

• Inclusive. In an inclusive cache system (the most convenient solution) the
updated data is in dL1 or L2, but L2 has all the tags. This means that all
coherence requests can go to L2, and only upon a match ask dL1 for the data
it needs.
• Non-inclusive. If the system is non-inclusive, there is no unique cache that

“knows” where all the data is. This means that any request for data has to be
communicated to all caches (all the private dL1 and L2), and any cache can
answer with the data. This complicates the coherence protocol design. Hence,
we disregard this option.

Either case, whenever some data is requested and the L2 experiences a hit on
shared data, it must stall the request and block further L2 accesses. Then, the
corresponding dL1 caches deliver the data if dirty. Since dirtiness in dL1 caches is
not known a priori by the L2 cache, it must remain blocked long enough to allow the
dirty data to be read from the corresponding dL1 and be sent to L2. Then, the L2
can update its contents, deliver the data and hence, serve the request. However, the
complexity of the logic to manage all this process synchronously and across multiple
cycles and components may affect critical circuit paths, which can carry a reduction
of the operating frequency.

Figure 6.2(b) presents in a graphical manner the assessment we have done on WB.
We can see that while WT is better in reliability and coherence simplicity, it performs
worse on performance (both average and worst-case) and power.

6.2.3 Cache Write Policy in Some Commercial Architectures

To better illustrate the quandary chip vendors face when selecting the write policy,
we have analyzed the miss policy of several commercial processors1.

1Core and frequency numbers have been obtained from specific processor implementations [148,
142, 118].
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The ARM Cortex R5 [16] is a 1 (or 2) core processor that implements both WB
and WT in the dL1 cache, both with parity and ECC. This means that either policy
can be selected in a configuration register. The ARM Cortex M7 [15] is a low-
performance processor. Like the previous one, it implements both write policies in
the dL1 cache, but it only has ECC in the L2 cache. ARM acknowledges that using
dL1 ECC may have an impact on operating frequency due to the XOR trees for
the ECC when getting the data from the cache. Thus, depending on the particular
chip implementation of the ARM IP processor we might have to decrease maximum
operating frequency or require two cycles to access the dL1 to support ECC in the
dL1 and have the possibility of recovering from errors in the cache when WB is
enabled. Hence, despite in general WB caches perform better the strong reliability
constraints in safety-critical systems and the associated overheads incurred due to
implementing ECC in WB caches makes chip vendors offer the users the possibility
to choose between WT/WB according to the needs of their application. However,
this forces chip vendors to carry with the effort and responsibility to implement and
validate both.

The Freescale PowerQUICC [136] implements WB in the dL1 with parity and the
L2 with ECC. This lead to a system where not all cache bit-flips can be recovered. In
that respect, Freescale states that the probability of errors is so low that the target
application domain should accept the possibility of having “unrecoverable" errors.

The Cobham Gaisler LEON3 [60] is a dual-core running at 100MHz, with a 5
stage in-order pipeline. It is designed for critical real-time systems, and implements
WT in the dL1 cache, so that reliability can be handled in L2 with more robust ECC.
The LEON4 [58] comprises with 4 cores running at 150MHz with a 7 stage pipeline.
It has the same critical real-time systems scope as its predecessor, and the same write
policies in the dL1.

WT has been widely implemented in the last level of private caches (mainly in dL1)
due to its simplicity (no need for reliability and simple coherence) and its acceptable
single-core performance. However, in future multi- and many-cores, the increased
number of accesses to shared resources will cause a dramatic increase in average
execution time and the WCET estimates. WB caches have performance and energy
consumption benefits over WT in mid to high core count processors. However, this
performance comes at a complexity cost in the coherence protocol mainly and, to a
lower extent, in the reliability mechanisms.

6.3 Hybrid Write Policy (HWP)

HWP low-overhead approach, which we propose, addresses WT average and guaran-
teed performance issues while reducing overheads w.r.t. WB. HWP eliminates the
additional cost of coherence for WB caches and, simultaneously, keeps WT operations
limited to a small fraction of write operations so that efficiency is close to that of WB
caches, see Figure 6.2(c).

In order to reach its goals HWP builds on the following observations. First, cache
coherence management with WB caches is costly and complex because cache lines
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accessed may reside dirty in local dL1 caches. Second, private data is not affected
by cache coherence, so conceptually it is irrelevant whether such data is dirty or not
in dL1 caches. And third, a significant percentage of memory data is only accessed
by one processor (also in parallel applications) and, thus, does not require keeping
coherence (e.g. 75% of the access are reported as private in [67] and around 83%
in [73]).

From those observations, we design a new policy (HWP) that manages private data
as in WB caches and shared data as in WT caches. With HWP, memory contents
are classified at page granularity as either shared or private, which has been shown
to be a very convenient granularity for private/shared data classification [73, 46]. In
particular, as long as a page contains any shared data, it is (pessimistically) classified
as shared. Otherwise, it is classified as private. On a write to shared data, HWP
writes it through to L2 cache (a la WT). Meanwhile write operations to private pages
are not propagated to L2 (a la WB), hence decreasing contention in the access to L2.

Next, we discuss the key characteristics and implementation details of HWP, with
emphasis on how to classify data as private or shared (and the appropriate granularity
to do so), how to check whether data is shared or private to decide whether to proceed
as in a WT or WB cache, how cache coherence needs to be managed, what the
reliability implications are, and how contention in the access to L2 is mitigated.

6.3.1 Data Classification

Orthogonally to HWP, a mechanism is needed to classify data as private or shared.
Techniques exist to that end, with some of them [73] already integrated on a real
hardware platform (LEON3 processor) and Linux, providing evidence of its feasibility.
Interestingly, private/share data classification can be performed at different levels (e.g.
cache line size).

Private/shared information can be managed at fine granularity (e.g. cache line
level). This would allow a much finer classification but at the cost of higher area
and energy overheads [73]. Additionally, performing the shared/private classifica-
tion at page granularity makes it possible using OS functionality to reduce hardware
implementation overheads [46].

Ho et al. [73] and Cuesta et al. [46] show that the most convenient granularity
to classify data is page level. With this solution, whenever a piece of data is shared
between two cores, the whole page in which the data is is marked as shared. Hence,
this solution pessimistically assumes that all data in a shared page is shared. As
part of that solution, the information on private/share information can be stored in
the Memory Protection Unit (MPU) or Memory Management Unit (MMU) for each
page along with other information such as whether pages are user-level or supervisor-
level, whether they are read/write or read-only, and whether they are cacheable or not.
Such information is often cached in the Translation Lookaside Buffer (dTLB) together
with address translation. In most processors dTLBs are accessed in parallel with dL1
caches for fast address translation and for verification of the permissions to read/write
in specific memory pages. Hence, they can store private/shared information.

In real-time systems an alternative approach to those hardware approaches is
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Figure 6.3: Schematic of HWP cache access protocol

possible with software address space partitioning. Many OS use address spaces (i.e.
a range of addresses) to map specific I/O devices. Also Real-Time Operating System
(RTOS) like PikeOS use separate address spaces to implement resource partition.
Furthermore, in the automotive domain, AURIX architectures come equipped with
caches and different memory types (e.g. flash, ram). From the software side, address
ranges are defined to map data/instructions to the desired memory and or to make
data cacheable or non-cacheable. Hence, address space can be partitioned assigning
a particular address range to shared data.

The main disadvantage of dynamic hardware solutions is that data re-classification
is needed. This happens, for instance, when a page is first loaded by one core (hence
classified as private) and then accessed by another core (being reclassified as shared).
This does not only create predictability issues in real-time systems, but it also adds
complexity to HWP, including writing through all data (dL1 lines) of this page in
the owner core, while managed those same data with WB in the other cores. This
complexity is avoided with the classification based on software address partitioning,
which is the solution we assume in this Chapter, without loss of generality.

6.3.2 Private/Shared Data Management

The way in which data is accessed under HWP varies depending on whether data is
shared or private. This is graphically illustrated in Figure 6.3.

On a load/store access, the dL1 and the dTLB are accessed in parallel. In case of
a dTLB miss, it is served first before proceeding with the access, as done regularly in
most processors. Note that address translation is typically needed before accessing
the L2. Therefore, while serialization of dTLB misses and dL1 accesses may be
unnecessary for some dL1 hits, dTLB miss rates are usually extremely low, and their
occurrence together with dL1 hits is even more unlikely since this can only occur if
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Table 6.3: Timing of a dL1 hit (dTLB hit) under HWP

L/S cycle 1 cycle 2
LOAD Read dL1, Read dTLB
STORE Private Write dL1, Read dTLB Update dirtiness bit
STORE Shared Write dL1, Read dTLB Write L2

data from the page has been fetched and sufficient evictions occurred in the dTLB
but not in the dL1.

6.3.2.1 Hit in dL1

In case of a dL1 hit (and dTLB hit), the shared/private information determines
whether the line hit needs to be marked as dirty or not. If the line belongs to a private
page (S/P = 0) and the access is a write operation (W/R = 1), the dirtiness bit is
set. The separation of data and dirtiness information poses no issue since dirtiness
information can be accessed systematically one cycle after, as it is only needed in case
of a miss to decide whether the evicted cache line needs being written back. Also, in
case of dL1/dTLB hit, if the line belongs to a shared page (S/P = 1) and the access
is a write operation, data is written through L2 as in a regular WT MLC.

In terms of timing, Table 6.3 shows the different possible scenarios and their
timing. After the processor request, regardless of whether it is a read or a write, both
the dL1 and the dTLB are accessed in parallel. In the case of a read, at the end of the
first cycle the data is available and is served to the processor. In the case of a write,
at the end of the first cycle the dTLB determines whether it is a write to a shared or
private page. If the store targets a private page, the dirtiness bit is updated in the
dL1 cache in the second cycle, and the request is completed. However, if it is a write
to a shared page, a write request is issued to the L2.

6.3.2.2 Miss in dL1

On a dL1 miss, WT management is performed as for hits. However, if the miss
corresponds to a read operation (W/R = 0) or the address is private (S/P = 0), the
line is fetched from L2 and allocated in the dL1 data cache. Note that we assume
the usual case where WT implements no-write-allocate (nWA) policy on write misses,
whereas WB implements write-allocate (WA). Different write allocate policies could
be implemented such as, for instance, WA (or nWA) regardless of the privateness of
the data accessed.

In Table 6.4 we see the different scenarios that can happen with a dL1 miss. In
the first cycle, both the dL1 and the dTLB are accessed in parallel. At the end of
the cycle, if the line to be evicted is dirty, the dL1 sends a dirty eviction request to
the upper level. In the load scenario, the next cycle (3 if the line was dirty, 2 if it
was clean) the line is requested to the L2. After n cycles, the cache line arrives to
the dL1 and the data is be available. In the case of a store private, it also requests
the line to the L2. When the answer comes, it updates the dL1 and update the dirty
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Table 6.4: Timing of a dL1 miss (dTLB hit) under HWP

L/S cycle 1 cycle 2 cycle 3 ... cycle n+3
LOAD Read dL1, if dirty → Eviction Request line L2 Read dL1

Read dTLB
STORE Private Write dL1, if dirty → Eviction Request line L2 Write dL1,

Read dTLB Update dirty bit
STORE Shared Write dL1, if dirty → Eviction Write L2

Read dTLB

bit (allocate on private data). Finally, on a store to a shared line, a request for the
write is sent to the L2, and no update occurs in dL1 (no allocate for shared data).

6.3.3 Non-Functional Metrics

This section makes a qualitative assessment of the benefits of HWP over WT and
WB. Quantitative comparisons are carried out in the Section 6.4.

Under HWP, shared data is consistently stored in L2, making that all shared data
in dL1 caches is necessarily non-dirty. As a result, with HWP coherence is managed
as in the case of pure WT caches, hence keeping its low- cost and complexity benefits
and avoiding the overheads related to WB caches. With HWP V/I is enough, as for
WT, because the shared data will always be updated in a single place (L2), so we
do not need a Modified state in the dL1 to keep track of who has the most updated
data.

Since shared contents are written through to L2, the fraction of dirty dL1 cache
contents is smaller than in pure WB caches. Yet some dL1 cache contents can be
dirty. Hence, error correction capabilities are still required in dL1, as in the case of
pure WB caches. A simple software solution to reduce the associated costs consists
in marking the pages storing error-sensitive data as shared. This way the only data
that could be lost would be the private one. However, for critical applications, the
same reliability technique used in WT (SECDED in dL1) can be used.

Under WT, performance issues relate to contention in the NoC and the L2 due
to write-through stores. With HWP, this problem is alleviated, restricting write
throughs to stores to shared data. Obviously, the lower the number of accesses to
shared data, the lower the number of WT operations, and hence, the lower the con-
tention and the lower the sensitivity to contention. In general, programs are designed
to reduce access count to shared data (25% [67] and 17% [73]), which usually carries
a serialization of tasks.

In general, power consumption relates to the activity performed (dynamic power)
and execution time (static power). By limiting the number of WT operations, dy-
namic power is reduced drastically w.r.t. pure WT designs. By reducing contention,
execution time is also lower than for pure WT designs, thus reducing static power.

Overall, our HWP hybrid cache design offers a globally better tradeoff than WB
and WT. This is illustrated in Figure 6.2(c). As shown, our design offers performance
and power close to that of WB, with similar reliability overheads, but much lower
complexity for the management of shared data. When compared against WT, coher-
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Figure 6.4: Block diagram of the main elements of our NGMP-based 8-core architecture

ence management cost is identical, performance and power are much better, and only
reliability costs are higher.

6.4 Evaluation

In this section we quantitatively assess the benefits of HWP over conventional write
policies (WT and WB). We use the metrics presented in previous sections, namely,
guaranteed and average performance, energy consumption, coherence overhead, and
reliability.

6.4.1 Reference Architecture and Benchmarks

We use the simulator infrastructure described in section 3.3 and the configuration
described in Section 3.2.4. As benchmarks we use both EEMBC automotive as well
as MediaBench. We create several scenarios in which we vary the percentage of
accesses targeting the address range for shared data, as detailed in the corresponding
experiments.

6.4.2 Energy

As presented in Section 6.2 each cache write policy carries side effects on the write-
miss policy, the reliability solution, inclusivity, and the coherence solution. This
affects the set of activities carried out by each task, the energy cost of each activity
and hence the overall energy profile of each task. Further, the complexity of each
write policy varies which affects its ’intrinsic’ energy consumption.

We assess the energy usage under each policy using CACTI [115], the state-of-the-
art integrated model for cache and memory access time, cycle time, area, leakage and
dynamic power consumption, configured with the NGMP cache parameters. With
CACTI we breakdown the energy usage of each cache access into 5 components: dL1
access, dL1 reliability, L2 access, L2 reliability, and coherence.

We present the average cache access energy consumption, across all EEMBC and
Mediabench benchmark suites, in Figures 6.5 (a) and 6.5 (b) respectively. The differ-
ence across individual programs in each benchmark are not relevant, and hence are
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(a) EEMBC (b) Mediabench

Figure 6.5: Average energy breakdown per cache access for EEMBC and Mediabench

not shown. We compare WT, WB and HWP; and for the latter two, we assume three
different scenarios depending on the percentage of accesses to shared data: 5%, 10%,
20% and 40%. Note that WT results do not depend on the percentage of shared data,
since all writes go to L2.

We observe that the dL1 energy usage for an access is roughly the same for all
write policies. The difference in the energy of the dL1 reliability solution is small,
with WT having the lowest value due to the use of simple parity instead of ECC
(used by WB and HWP).

We also observe that the lowest access energy profile is obtained for WB and
HWT. In the case of WB, there are few L2 accesses, since stores do not access L2
every time, while the load access rate to the L2 is relatively low. HWP has a higher
L2 access rate than WB since it writes shared data directly to the L2.

On the coherence side, WB has an increased amount of coherence-related mes-
sages as the shared data increases. Taking into account all components, WB and
HWP consume roughly the same energy per access for a given ratio of accesses to
shared data. Both show approximately a 42-50% per access energy reduction (de-
pending on the percentage of shared data) with respect to WT. To sum up, when
comparing the different write policies on the energy aspect, HWP has the same re-
duced energy consumption as WB compared to WT (up to 50%), but without the
coherence complexity inherent to WB, as presented in Section 6.3.

6.4.3 Guaranteed Performance

WCET estimation is one of the most critical metrics for real-time systems, since it
determines the guaranteed performance that the system can deliver. As presented
before, WCET estimation is challenged by the use of multicores due to contention
delay suffered by tasks.

In order to assess the benefits on WCET estimate reduction of HWP, we have
created 1-, 2-, 4- and 8-task workloads, as presented in Table 6.5. Workloads have
been generated using benchmarks from the EEMBC automotive suite (eembc1.X,
eembc2.X) and from the MediaBench suite (media1.X, media2.X). Across workloads,
the first task in each workload, the one for which WCET estimates are produced,
comprise at least one benchmark with at most a 5% of stores, and at least one
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Table 6.5: Benchmark mixes used to assess WCET estimates under different core counts

Mix main cont1 cont2 cont3 cont4 cont5 cont6 cont7
eembc1.1 bitmnp
eembc1.2 puwmod
media1.1 g721.d
media1.2 jpeg.d
eembc2.1 bitmnp a2time
eembc2.2 puwmod aifftr
media2.1 g721.d adpcm.d
media2.2 jpeg.d adpcm.e
eembc4.1 bitmnp a2time matrix rspeed
eembc4.2 puwmod aifftr idctrn ttsprk
media4.1 g721.d adpcm.d gsm.d pegwit.d
media4.2 jpeg.d adpcm.e g721.e pgp.d
eembc8.1 bitmnp a2time matrix rspeed tblook canrdr aifirf aifftr
eembc8.2 puwmod aifftr idctrn ttsprk basefp cacheb tblook ttsprk
media8.1 g721.d adpcm.d gsm.d pegwit.d g721.d pegwit.d gsm.e pgp.d
media8.2 jpeg.d adpcm.e g721.e pgp.d adpcm.e jpeg.d gsm.e adpcm.e

benchmark with at least a 13% of stores. The rest of the new benchmarks in the
workload are selected randomly.

Modeling multicore contention is a concern for timing validation and verification
as witnessed by a notable amount of works on the topic, summarized in [54]. Many
measurement-based approaches – the most extended industrial practice – build on the
availability of performance monitoring counters (PMCs) [114, 117, 47, 81, 51]. From
those we build on [81] since it captures the number of requests each core performs
to the shared resources. This results in partially time composable WCET estimates,
rather than fully-time composable ones that result from assuming that every single
request of the task under analysis is delayed regardless of the load contenders put on
the shared resources.

We illustrate the model [81] with a small example comprising one task under
analysis or τa and a contender task or τb. When τb has more requests than τa, each
request of τb is assumed to delay the requests of τa. The worst-case contention that
τb can cause on τa, i.e. ∆cont

b→a, is computed according to Equation 6.1, where nt
b is

the number of τb requests of type t and latt is the latency of that request type. Note
that the model makes the worst case assumption of no overlap of requests, so each
τb’s request delays τa by its latency, i.e. latt.

∆cont
b→a =

∑
t∈T

min(na, n
t
b)× latt (6.1)

In our case the request types are T = {L2h, L2m, s2h, s2m} corresponding to
loads hitting and missing in the L2 cache, and stores hitting and missing in the L2
cache respectively, which can be tracked with existing PMCs [59]. The corresponding
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latency of each of these event type is [81] (in processor cyles): latL2h = 9, latL2m = 7,
lats2h = 1, and lats2m = 1.

Note that it does not matter the type of τa requests but just it overall number
na =

∑
t∈T n

t
a. That is, the contention τa suffers depends on its total number of

requests and the number of requests of each type of its contenders (τb in this case).
The model factors in the case when τb has fewer accesses than τa that results in some
τa requests not being delayed by any request from τb. The approach presented in
Equation 6.1 for τb is followed for all the Nc − 1 tasks simultaneously running with
τa, where Nc is the number of cores. The reader is referred to [81] for more details.

Figure 6.6 shows the WCET estimate obtained for the first task under each cache
write policy. WCET estimates are shown as the number of cores varies from 1 to
8. In order to simplify the comparison, all WCET estimates are normalized to the
WCET estimate of the first task when run in isolation under WB. We see that in all
cases the tightest WCET estimates are obtained with WB. HWP obtains comparable
results to those of WB and much better than those for WT. The latter gets rapidly
worse as the core count increases. Note that Figures 6.6 (a), (b), (c), and (d) are not
directly comparable, since for each figure WCET estimates are normalized to that of
WB when the task runs on isolation.

We also see that WT is not affected by the percentage of shared data, since it
always updates the L2 regardless if the data is shared or not. WB does not show
meaningful variations either, while HWP has small variations (mainly for eembc2
and media2). In all cases HWP is significantly better than WT.

Across all shared-data scenarios for WT we can observe that:

• Mix eembc2 suffers a significant increase in WCET estimates (more than 5x in
the 8 core configuration). This is due to the combination of memory instructions
the program under analysis executes (30% of all instructions) and the number
of stores the competing tasks have (9% of all instructions on average).
• Mixes eembc1 and media2, have lower, yet significant, WCET increases (more

than 2x and 3x respectively). This is caused by the combination of the two
metrics just mentioned is lower than that of eembc2.
• Finally, media1 has a small WCET estimate increase due to a lower number of

memory instructions executed by the main program (23%) and a lower percent-
age of stores in the challenger tasks (6% on average).

WB is the write policy with lower WCET estimate performance penalty. WB
causes a small increase in WCET estimates even when we have 40% of data shared
(higher than what is usually found in parallel applications [67, 73]). This is so, because
only data requested by other cores is exchange via the bus.

HWP lies in between WT and WB, though it is much closer to WB. For eembc1
and media1, the WCET estimate is remarkably low. This is also contributed by low
percentage of memory instructions combined with the low percentage of stores in
the challenger tasks. For eembc2 and media2, HWP suffers high increase in WCET
estimates in the 40% shared data scenario: despite HWP reduces the pressure on
the bus, (i) the high percentage of share data, (ii) the high percentage of memory
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(a) 0% shared (b) 10% shared

(a) 20% shared (b) 40% shared

Figure 6.6: Normalized WCET estimate for the first task in the workload under
different core counts and percentage of shared data for the different write policies
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(a) EEMBC (b) Mediabench

Figure 6.7: Number of broadcasts and write-backs per memory access

instructions these benchmark mixes execute (30% and 23% respectively), and (iii) the
number of instructions that are stores in the competing tasks (8 and 9% respectively),
cause the pressure on the bus to increase. Yet, HWP stills performs better than WT,
specially in high-core setups (4-8), where WT grows to 3-6x and HWP only grows to
less than 2x in the worst setups. The penalty difference with WB as the number of
cores and shared data increase is mainly due to the fact that all accesses to shared
data is sent to the L2 (write-through on shared data), without the need of another
core requesting the data. This means that the same core could write several times
directly to L2 without another core requesting the data in between.

To sum up, HWP obtains similar WCET estimates to WB, but significantly
smaller than WT (up to 5x) in multi-core setups. This difference in WCET esti-
mates increases significantly with the number of cores being used.

6.4.4 Coherence

The write policy impacts the selection of the coherence solution. With WT caches
a simple invalidation protocol V/I is enough, while for WB caches a more complex
policy such as MESI is required. For HWP, an invalidation protocol such as the one
used in WT is enough.

The potential impact of the coherence protocol, in particular MESI, is two-fold.
First, the complexity of its design, implementation, and validation. And second, its
impact on performance since the number of messages to exchange between processors
and the L2 cache to maintain coherence.

Since the complexity has been qualitatively assessed in Sections 6.2 and 6.3, here
we focus on the number of messages that will be sent in every coherence protocol as a
proxy to coherence performance overheads. In particular we focus on the invalidation
messages and the number of write-backs caused because of coherence (not due to
cache capacity issues).

Figure 6.7 shows the average number of coherence messages per memory access
for EEMBC (a) and Mediabench (b). We evaluate the 3 write policies: WT, WB and
HWP; considering 5%, 10% and 20% of shared accesses in the last two policies. The
number of invalidations in WT is high in both benchmark suites because every write
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access requires that an invalidation message is sent to the bus, since any other private
cache can have a copy of the data. For WB and HWP the number of invalidations is
much smaller, since the cache directory tracks the core having a copy of each cache
line, and only shared data that actually is in private caches will be invalidated.

The other coherence metric we analyze is the number of write-backs related to
coherence, which only happen for the WB policy. This occurs when a core c0 modifies
some data in its private dL1 and another core c1 wants to access that data. Since the
L2 knows that c0 has this data in a Modified state, the L2 asks c0 to write back the
modified data to L2, and then the L2 sends it to c1. In the WT policy, the L2 always
has the most updated values, so there are no write-backs due to coherence. Likewise,
HWP only writes back private data, treating shared data like WT, so there are no
write-backs due to coherence either.

Note that while the trend for the coherence cost shown in this section is similar to
that of energy (Figure 6.5), the absolute values are not the same. This is so because
the energy cost of a write-back is higher than that of an invalidation. As a result,
when comparing WT to WB/HWP, the energy consumed in coherence is not that
high as the number of messages as shown in this section.

Overall, HWP offers the best of WT and WB in terms of coherence: it generates
as little invalidations as WB without the coherence related write-backs of WB.

6.4.5 Reliability

We assume that caches are able to detect and correct single-bit upsets (SBU), while
multi-bit upsets (MBU) may occur when their probability is high enough. We assume
that solutions such as word interleaving2 are applied so that a N-bit MBU becomes
N SBUs. Hence, the criteria to assess reliability consists of whether designs are able
to detect and correct single-bit errors. Note that such reliability criteria are already
implemented in processors targeting the highest criticality levels in the space [59] and
automotive [17] domains.

Since in WT all the updated data is always in L2, only parity is required in dL1
to detect single-bit errors given that correct data can be retrieved from L2. WB
and HWP allow dirty data in the dL1 cache, and thus they require error correction
capabilities in dL1, such as SEC-DED. The L2 cache always implements SEC-DED,
since there can be dirty data at this cache level when using all policies.

The difference in the reliability technique used in dL1 has limited impact on area.
Parity, used in WT, imposes a 1.6% increase in the number of cells needed (1 bit per
64-bit word), as well as few XOR gates and a comparator. SEC-DEC, used in WB
and HWP, increases by 12.5% the number of cells (8 bits per 64-bit word), and also
adds extra XOR gates and comparators [74]. Note that the relative area of dL1 cache
w.r.t. L2 cache is typically low, and all write policies implement SEC-DED in L2,
thus lowering the relative additional cost of SEC-DED vs parity in dL1 when put in
the context of the complete cache system.

2Interleaving K words at bit level ensures that bits of a given word, and hence protected with
the same parity/ECC code, are at a distance of at least K bits.
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6.5 Related Work

This section complements the comparison that has been made in Sections 6.2
and 6.3.3.

6.5 Related Work

Relevant related works relate to WB caches and their use in real-time systems, pri-
vate/ shared data classification mechanisms, models for computing WCET estimates
for multi-core contention, and the use of other hybrid techniques for high-performance
computing.

Due to the recent interest in the use of WB caches for critical real-time systems,
mainly due to its potential increase in guaranteed performance, some works [140, 31]
have studied static WCET analyses of this write policy, since it is more challenging
than for WT caches. Authors in [140] propose an eviction-focused technique, ana-
lyzing for each cache miss if it could result in a write-back in order to estimate the
WCET. In a more recent work [31], a new method has been proposed to comple-
ment the previous work by using a store-focused technique. This method consists in
checking whether a store may transform a currently clean line into dirty, and hence
result in a write-back later on. Those techniques can be retargeted to capture HWP
to tighten WCET estimates over WB/WT. In this line, previous works [134] also
propose new cache systems that take into account shared/private data to improve
WCET estimates, but with more radical changes required in the architecture.

Regarding private/shared data classification, different methods and hardware de-
signs based on them have been proposed [67, 73]. Some authors [67] classify the
different types of cache access patterns, and use such classification to implement a
specific distributed cache design. Authors study the percentage of data that is pri-
vate, shared/read-only and shared/modified. In [73] the authors propose a dynamic
classification of shared and private pages. This technique needs some WB mechanism
when a page changes its status from private to shared. While this technique may also
improve performance over WT, it also has to deal with the coherence complexity of
WB.

WCET estimation in multicores has been subject to intense study [114, 117, 47,
81, 51]. In [81, 51], the authors propose techniques for computing partially time
composable Execution Time Bounds for bus accesses based on the number of requests
the contenders can generate, regardless of when they access the bus. These technique
provides tighter WCET estimates than simpler fully time composable models that
always assume the worst case on a bus access. We have built on these techniques for
WCET estimation.

Techniques for a hybrid approach on coherence management have been studied
in high-performance domains [130, 46]. In [130], the authors implement a similar
technique to [73] that dynamically changes the status of memory pages from private
(default) to shared when they are accessed by more than one core. In [46], the authors
propose a similar technique to differentiate private and shared pages at OS level, thus
reducing the size of cache directories since they do not need to keep track of private
lines. In [86] they tackle the task of making a coherence protocol predictible for real-
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time. However, in these works there is still a non-trivial coherence mechanism with
transient states, while our proposal targets a simpler (static) coherence mechanism.

6.6 Conclusions

The relentless trend towards the adoption of multilevel caches in real-time systems
is a fact, in the line of high-performance systems. Our analysis of the write miss
policy shows that WT simplifies coherence and reliability, while WB performs better
in performance and energy. From the analysis we propose a new Hybrid Write Policy
(HWP) that discriminates among shared and private data to smartly write through
dL1 data or keep it dirty in dL1. Experimental results show that HWP results
in remarkably better guaranteed performance than WT. HWP results for energy
consumption per memory access improve those of WT. In terms of complexity of
the coherence protocol, HWP implements a simple Valid/Invalid protocol like WT,
compared to the complex MESI protocol used in WB.
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Chapter 7

Cache redundancy

7.1 Introduction

As shown in the previous Chapter, the write policy can have a big impact in guaran-
teed performance. In particular, a write-through DL1 cache can increase Worst-Case
Execution Time (WCET) up to 6x just for the bus contention compared to write-back
designs

The sensitivity of caches to errors (faults) is another issue of upmost importance in
critical systems. Critical systems must undergo a strict certification process to provide
evidence that specific failure rates are below specific thresholds set in applicable safety
standards, e.g. ISO26262 [77] in cars. Critical systems include safety mechanisms for
fault tolerance to ensure low-enough acceptable failure rates.

It follows that chip designers for critical systems face a conundrum in the design of
DL1 caches to provide both reduced WCET estimates (high guaranteed performance)
and keep low rates under control. On the one hand, instruction (read-only) caches and
write-through DL1 never keep a dirty copy of any data. Hence, they can implement
low-cost error detection mechanisms such as parity, since error-free copies of the
data exist elsewhere (e.g. in the L2 that is ECC protected). This however comes
at the cost of increased WCET estimates. On the other hand, write-back or hybrid
write-through/write-back DL1 caches [23] contain the impact of contention in WCET
estimates by avoiding that every store access shared resources. DL1 write-back caches
design may keep dirty data and hence, error correction means are needed to keep
failure rates low enough. However, tolerating faults in DL1 cache memories requires,
in general, the use of Error Correction Codes (ECC) to allow recovering data that has
been corrupted, which carries significant impact in either DL1 cache latency or design
complexity. If DL1 cache data is delivered before correction, ECC does not impact the
critical path and can be computed offline. However, upon the detection of an error,
direct and indirect consumers of erroneous data are squashed and restore a correct
state before resuming operation. In general, simple microcontrollers used for critical
real-time systems lack such support. If cache data is delivered after correction, an
additional stage is needed after loading data to compute ECC and validate whether
data is correct. Thus, back-to-back execution of consumers after a load operation
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occurs with an additional delay (typically one cycle), which has non-negligible impact
in performance.

In this Chapter, we present an alternative deployment of ECC in L1 caches for
critical real-time microcontrollers aimed at mitigating the impact of ECC calcula-
tion in L1 caches. We propose a Look-Ahead Error Correction (LAEC) scheme that
anticipates the whole DL1 access process by one cycle, thus allowing to eliminate
any performance overhead whenever such anticipation is possible. In particular, for
in-order cores common in critical real-time embedded systems (e.g. LEON4, ARM
Cortex-R5 cores), whenever the input address registers are not computed by the im-
mediate predecessor instruction of a load instruction and the predecessor instruction
is not a load instruction, we can perform the address calculation, DL1 access, and
ECC computation one cycle ahead of time. In this way, data can be delivered in the
same cycle it would be delivered in a non-protected DL1 cache without anticipation.
We note that the constraints that could preclude the effectiveness of our mechanism
occur seldom, thus allowing LAEC to achieve a performance close to that of an error-
free processor without ECC, while outperforming designs that require an additional
cycle before delivering error-free data.

We have evaluated LAEC by implementing it with Single-Error Correction
Double-Error Detection (SECDED) in the DL1 cache of a cycle accurate proces-
sor model of the LEON4 [59]. Our results show that our look-ahead error correction
scheme outperforms the baseline read-and-correct scheme by 6% on average across
EEMBC Automotive [127] benchmarks, and is within 3.9% the performance of an
ideal error-free design without any ECC support.

7.2 Motivation

Current processor designs for critical systems employ different approaches to include
ECC schemes in caches. This is partially motivated by the fact that actual latency
overheads depend on the particular ECC technique employed. For instance, using
a parity bit is the simplest and fastest technique, and SECDED is more complex
and slower. In general, processors targeting safety critical systems require having the
ability to recover from faults which forces processor designers to architect solutions
able to achieve that goal. As shown in Table 6.2 (from previous Chapter 6) processors
available in the market use different approaches to protect caches from errors. For
instance, the LEON family of processors advocates for using write-through caches
with parity in the L1. The Freescale PowerQUICC offers the user the possibility to
configure L1 caches as write-through or write-back restricting recovery capabilities to
write-trough configuration only. They pay the costs in contention to reduce faults,
since in the space domain these are more common. Finally, in the Arm Cortex
family the processor IP is sold with the possibility of implementing both write policies
and allowing using ECC or parity in L1 caches. However, as acknowledged in the
datasheet [15], using ECC in the L1 can impact the maximum operating frequency
of the processor. In this case the final decision on whether to tradeoff performance
for reliability is left to the integrator.
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7.2.1 Correcting Errors in Write-Through (WT) DL1 caches

A practical solution typically found in processors for critical system consists of us-
ing a cache hierarchy with inclusive caches and write-through (WT) policy in the
DL1 [59, 136, 16]. A commonality in these designs is to include a parity bit in DL1
caches and SECDED in the L2 cache since the relative impact of latency overhead of
SECDED in the L2 is lower. The main reason is that, even if L2 read hit latencies are
increased due to the introduction of SECDED, its impact in overall performance is
low due a two-fold reason. First, L2 read accesses occur seldom, and second, having
an additional L2 cycle causes limited impact due to the already high L2 access laten-
cies to send requests, access the L2 itself and return data read to the core. Overall,
this configuration (DL1 parity + L2 SECDED) ensures that errors can be detected
with the parity bit with virtually no impact in latency in the DL1, and recovered
with the SECDED mechanism implemented in the L2.

While configurations using WT caches offer a workaround to the problem of cor-
recting data in the DL1, this configuration presents the drawbacks that are inherent
to the use of WT caches such as lower performance and higher energy consumption
since every store operation is always propagated from the DL1 to the upper levels
of the memory hierarchy (i.e. hardware shared resources). To mitigate this issue
processors may include a store-buffer and/or use an L2 cache implementing a write-
back (WB) policy. However, it has been shown [23] that performance guarantees
(WCET estimates) on multicore processors incorporating WT caches are quite poor
when compared with their WB counterpart despite implementing store-buffers and a
WB L2 cache. This result is especially important since processors targeting critical
systems do not only require guaranteeing reliable operation, but also offering high
performance and time-predictable behavior [77], which calls for multicore processors
implementing ECC in WB DL1 caches in an efficient manner.

7.2.2 Correcting Errors in Write-Back (WB) L1 caches

WB policies do not update, on a DL1 hit, the upper levels of the memory hierarchy.
Hence, in our setup modified data can reside exclusively in the DL1, so using a WB
policy requires implementing error correction capabilities to recover from errors in
the DL1. However, as explained before, this has generally an impact in the access
time to DL1 cache. Several approaches exist to deal with the increase in DL1 access
latency and they are implemented in commercial processors already. The particular
processor architecture, the target operating frequency, and the manufacturing tech-
nology determine when to use one approach or the other. Below we describe four
existing approaches:

1. Decrease the operating processor frequency is the most trivial approach
to allow SECDED in the DL1 so that the error correction process can be ac-
commodated within the last cycle of the cache access. However, this has a
significant impact in the performance of the system. Some commercial pro-
cessors for which the targeted operating frequency is sufficiently low or whose
critical path is determined by other components may opt for this solution [15].
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2. Extra cache cycles. Adding extra (non-pipelined) cycles in the DL1 access so
that ECC computation fits in the L1 cache access time without impacting oper-
ating frequency. However, such a solution virtually doubles the time utilization
of the DL1.

3. Extra stage. Pipelining cache accesses such that instructions proceed nor-
mally, adding a final cycle for ECC computation. Pipeline stalls will be intro-
duced in the case of data dependencies (i.e. an instruction requires data for
which ECC computation is not yet performed). The delay of the logic that
detects and corrects errors can vary depending on the number of bits corrected.
For SECDED, considered in this Chapter, this latency is smaller than an DL1
cache access [52, 143], and thus fits in a single additional cache cycle or stage
pipeline.

4. Speculate and flush. Using a speculate and flush approach consists of pro-
cessing accesses and delivering unchecked data, which may be used in parallel
with ECC computation. Whenever the result of the ECC determines that the
propagated data was erroneous, the pipeline is flushed or some instructions
squashed, and a previous correct state needs to be recovered.

From these four approaches, we discard the former due to its noticeable perfor-
mance degradation, and the latter due to the implementation complexity required to
implement a flush mechanism in simple microcontrollers for critical systems like the
ones we target. The extra stage and cache cycles solutions offer acceptable cost and
implementation complexity trafeoffs, and will be the reference policies we compare
our proposal with. Our proposal builds upon the Extra stage one, but anticipates the
load access and ECC computation whenever possible so that no additional stalls are
introduced due to ECC computation. In the next section we introduce details of the
baseline approaches and present our look-ahead scheme.

7.3 Look-ahead Error-Correction

We propose an alternative approach to deploying ECC in DL1 caches. It consists
in anticipating one cycle the address computation, the load access, and the ECC
computation. This can be done when no data or structural dependence with older
instructions occurs. Effectively anticipating one cycle the processing of DL1 load hits
allows anticipating ECC computation by one cycle too. As a result, an instruction
dependent on the loaded data can be executed back-to-back with the load without
experiencing any delay due to ECC computation.

In this section, we first introduce the mechanism used to anticipate the address in
our Look-Ahead Error-Correction (LAEC) proposal. Then, we describe the proces-
sor model on which the implementation and experiments will be conducted. Finally,
we describe the implementation details of Extra Cache Cycle and Extra Stage ap-
proaches, as well as LAEC.
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7.3.1 Address anticipation mechanism

There are several ways to predict the address of cache access. For instance, cache
designs could incorporate a predictor similar to the ones employed in hardware data
prefetchers [137]. However, since the focus of this Chapter is deploying ECC in
relatively simple processors, we opt for an alternative method to predict the next
DL1 access address. LAEC avoids mispredictions by anticipating address calculation
only when it is guaranteed that such anticipation will deliver correct results.

In particular, LAEC avoids speculating on the address to prevent unnecessary
accesses to the DL1. We anticipate address computation by reading the base register
one cycle earlier if it has not to be modified by any previous instruction. This allows
the address of the access to be computed one cycle earlier using an adder to add the
register and the offset. LAEC also requires including two extra ports to the register
file to retrieve the registers one cycle earlier, but in general an in-order single-issue
processor has a small register file with few ports, so this would incur low power cost.
In fact, it has been shown that energy is largely dominated by cache memories, so
the energy consumption of the register file is small [106]. An access look-ahead can
be performed when following two conditions hold:

1. No resource hazard. Since we anticipate the DL1 access and ECC computation
by one cycle, we may conflict with the previous instruction if it accesses the DL1
simultaneously with the anticipated instruction. This occurs when the previous
instruction is a non-predicted (i.e. branch speculated) load.

2. No data hazard. When the instruction prior to the load produces the address
register of the load, we cannot anticipate the address computation. This is
so because the input data for the ongoing instruction (load) is not yet ready
whenever we want to anticipate its execution.

If none of these hazards occur, then we can compute the address, access DL1, and
compute the ECC one cycle ahead of time. With no resource hazard, we guarantee
that the DL1 read port is available. With no data hazard we guarantee that we are
loading the right data, so no misprediction can occur and there is no need to flush.

7.3.2 Processor Model

In order to implement LAEC in the DL1, we use a system resembling the NGMP [59]:
a multicore processor that includes 4 single-issue in-order pipelined cores with L1
private caches and a shared L2 cache. In the NGMP, error recovery is guaranteed
by using WT DL1 caches with a parity bit and implementing SECDED in the WB
shared L2. However, to implement LAEC we modify the baseline implementation to
include a WB DL1 cache. Note that this modification is already in the roadmap of the
LEON processor family whose providers have already announced LEON5 processor
implementing WB DL1 caches [43]. Also, using a WB DL1 cache has already been
shown effective for this setup [23].

The original NGMP system has a seven stage pipelined design (see Figure 7.1).
The memory stage uses a write buffer (not shown in Figure 7.1 for simplicity) where
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Figure 7.1: Baseline NGMP-like processor pipeline

all writes are stored until they can access DL1. A load that misses in DL1 blocks the
pipeline. All loads stall the memory stage until the write buffer is empty to avoid
consistency issues. Writes also stall the pipeline with backpressure when the write
buffer is full, until it gets completely empty.

r3 = load(r1+r2) F D RA Exe M Exc WB
r5 = r3 + r4 F D RA Exe Exe M Exc WB

Figure 7.2: Chronogram of a data dependency stall on the NGMP

In Figure 7.2 we show an example of two consecutive instructions with a data
hazard between them that results in a 1 cycle stall for the younger instruction. In red
we show the stage in which the young instruction stalls and in black the stage where
the DL1 cache is accessed. In this case, it matches the memory stage, but this is not
always the case in our proposed approach.

Next, we present the implementation details for existing Extra Cache Cycle and
Extra Stage solutions as well as for LAEC. We also show how they could be imple-
mented in a processor like the NGMP.

7.3.3 Extra Cache Cycle Implementation

A first simple approach that would require little changes to the current architecture
is to make the ECC check in the memory stage so that this stage spans across two
cycles, thus increasing the latency of a load hit from 1 cycle to 2 cycles.

In terms of hardware cost and implementation complexity, besides the ECC logic
and its associated array in the DL1, little extra logic is needed in order to stall earlier
processor stages (those before the memory stage), since stall logic already exists to
stall the pipeline upon a DL1 cache miss.

The performance impact that this solution can have is relatively high, since it will
double the cycles in the memory stage for DL1 hits.

r3 = load(r1+r2) F D RA Exe M M Exc WB
r5 = r3 + r4 F D RA Exe Exe Exe M Exc WB

Figure 7.3: Data dependency stall with Extra Cache Cycle

Figure 7.3 extends the example in Figure 7.2 when the Extra Cache Cycle solution
is applied. Now the young instruction that depends on the loaded data needs to stall
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one additional cycle for the value to be both loaded and checked. The stage in blue
performs the ECC computation, which is done on the second cycle of the memory
stage.

7.3.4 Extra Stage Implementation

Another simple approach would be to add a new pipeline stage after the Memory one:
the ECC stage. This stage would compute the ECC for DL1 load hits, and compare it
with the existing value stored in its ECC array. For writes that hit, it would compute
the new ECC and store it in the ECC array.

In terms of timing, this solution can stall the pipeline when a load that hits in cache
is followed (distance 1 or 2) by an instruction that uses the loaded value. In particular,
the instruction immediately after the load cannot use the loaded value because its
execute stage overlaps with the load memory stage. The second instruction starts
its execution stage right after the load fetches the data from DL1 on a cache hit.
Hence, if the second instruction after the load was allowed to use the loaded value as
a source operand before computing its ECC and this value was incorrect, a complex
recovery mechanism would be required to restore the processor state to a previous
correct state. Instead, in our implementation, if this scenario happens, the processor
stalls to avoid continuing the execution with a potential incorrect value.

It is worth noting that this only happens for loads that hit on the DL1 cache.
For loads that miss, and have to request the data to higher levels (L2 or memory),
the ECC of the data is checked in the corresponding cache level or main memory, so
there is no need to check it again in the new ECC stage. For stores, the write buffer
is usually enough to hide this latency.

In addition to the ECC logic and ECC array in the DL1, small extra hardware
is needed in order to stall the stages before the Memory one. However, as explained
before, this logic already exists to manage DL1 load misses.

In terms of potential impact, this solution is affected negatively by the number of
times that an instruction consuming the loaded data is stalled due to the ECC stage,
which can occur often since it is common having a consumer for loaded data in the
range of the 2 following instructions.

r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r3 + r4 F D RA Exe Exe Exe M ECC Exc

Figure 7.4: Data dependency stall with Extra Stage

Figure 7.4 shows a scenario similar to that of the Extra Cycle solution. The
young instruction needs to stall for 2 cycles due to the data hazard. The advantage
over the previous solution is shown in Figure 7.5: when there is no data hazard,
consecutive instructions can continue execution without a stall, since Memory and
ECC are pipelined.
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r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r6 + r4 F D RA Exe M ECC Exc WB

Figure 7.5: No data dependencies with Extra Stage

7.3.5 LAEC implementation

LAEC anticipates the load and ECC computation by 1 cycle. To that end, the address
registers are read one cycle earlier, so two additional read ports are required in the
register file. If any of the registers has been generated but not yet stored in the register
file, it can be obtained from existing bypasses. Since the address computation for the
load needs to be performed one cycle earlier (RA stage), an additional adder is also
required (see Figure 7.6). We have checked with CACTI [115] the access times of a
register file and an DL1 cache like the ones found in the LEON4 [59] (1088 bits for
the register file, 16KB for the DL1 in 65nm). The difference between both is enough
to include a 32 bit adder [8], so this addition does not increase the stage time of the
memory stage.

L1D 

Cache 

Logic 

Array 
+ 

@ 

F D RA Exe M ECC Exc WB 

ECC 
Register 

Bank 

Figure 7.6: Modified NGMP-like processor to support ECC using LAEC

If the previous instruction generates one of the source operands of the load instruc-
tion, this technique cannot be used, since it would require the operands a cycle earlier
than they are available. In this case, the processor operates normally (like in the Ex-
tra Stage implementation), with no look-ahead. Then, if any of the 2 instructions
right after the load requires the loaded data, there will be a cycle penalty due to the
address not being previously computed. Analogously, if the previous instruction is a
non-predicted load, it will require the DL1 port (memory stage) simultaneously with
the current anticipated load. In this case, the current load cannot be anticipated due
to a resource hazard. These two scenarios are the only ones where our solution can
introduce a penalty in execution time. This means that LAEC always performs equal
or better than the Extra Stage implementation since, in the worse case, it cannot
anticipate the load and just operates the same way as the Extra stage.

Figure 7.7 (a) shows a scenario where the added ECC penalty cycle can be avoided
because of prediction. Registers r1 and r2 are both read and added on the RA (Reg-
ister Access) stage. Then, on the Exe (Execution) stage, the DL1 cache is accessed.
Afterwards, on the M (Memory) stage the ECC is computed. This results in the
loaded data being ready to the younger instruction without additional penalty when
compared to the baseline no-ECC solution (Figure 7.2). Conversely, Figure 7.7 (b)
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r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r3 + r4 F D RA Exe Exe M ECC Exc WB

(a) Look-ahead on LAEC

r1 = r4 + r6 F D RA Exe M ECC Exc WB
r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r3 + r4 F D RA Exe Exe Exe M ECC

(b) Normal (no look-ahead) execution on LAEC

Figure 7.7: Possible look-ahead and normal scenarios with LAEC

Table 7.1: Cache redundancy: performance impact of existing approaches
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shows a scenario where there is still penalty due to a data dependency that prevents
the look-ahead. Now the load is preceded by an instruction that computes one of its
source registers. This means that r1 is not ready in the RA stage, so a normal execu-
tion (DL1 access on the M stage and ECC computation on ECC stage) is performed,
resulting in a 1 cycle extra stall.

The schematic of the modifications required is shown in Figure 7.6. Note that
the DL1 cache can now be accessed in two different stages: Exe or M. It will be
accessed in Exe when there is a look-ahead (in red) and in M when there is not (in
blue). Likewise, the ECC logic and array can also be accessed in two different stages:
M (for look-ahead, in red) and ECC (normal execution, in blue). Since the baseline
processor already includes most of the control logic needed for this solution, as well
as bypasses from the desired stages, there is no significant cost in terms of hardware.
The only explicit changes apart from the logic are a 32-bit adder and two extra read
ports on the register file. Overall, implementing our LAEC proposal in an NGMP-like
processor incurs in low hardware cost and implementation complexity.

7.4 Evaluation

We use the simulator setup described in Section 3.3 and the configuration of sub-
section 3.2.4. As benchmarks we use EEMBC Automotive [127], introduced in Sec-
tion 3.7. The simulations are run in a multicore system but only a single core executes
a task, since the focus of this work is on core performance.

The overhead of the existing approaches is due to stalls that happen when there
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Figure 7.8: Execution time increase of the different solutions compared to the baseline
no-ECC system.

is a DL1 hit that has a data dependency with the preceding instruction.
The first row in Table 7.1 shows the percentage of load instructions that hit in

the DL1 cache. We see that with an average of 89% hit rate, most of the loads
generate hits in cache, hence potentially generating stalls. The second row shows
the percentage of load instructions followed, at a distance 1 or 2, by an instruction
that uses as a source operand the loaded data. On average 60% of the loads cause a
stall. Finally, loads represent between a 20% and 30% of all the executed instructions,
significant enough to impact performance.

7.4.1 Experimental results

Figure 7.8 shows the increase in execution time with respect to a no-ECC system.
Extra cycle shows the highest performance degradation, with a 17% execution time
increase on average w.r.t. a configuration without ECC stage, reaching up to 20% for
some benchmarks (aifftr and matrix).

Extra stage shows around 7% less performance degradation than Extra cycle,
with a 10% on average. This occurs because its pipelined designed avoids some
stalls. All benchmarks perform similarly, except cacheb. This benchmark shows
little performance degradation compared with the baseline no-ECC (2%). This is
due to the number of loads that are followed by dependent instructions. While in
rest of benchmarks between 50% and 80% of the loads have this property, in cacheb
just 13% of the loads have it. This results in fewer cases that stall the pipeline an
additional cycle, and thus in lower performance degradation.

Finally, LAEC, due to its anticipated load execution, saves most of the stalls. On
average, LAEC increases execution time less than 4%, being such increase below 1%
in several benchmarks such as basefp, cacheb, canrdr, puwmod, rspeed and ttsprk.
Out of the two potential conditions that LAEC needs to meet to cause a stall (resource
and data hazards), most of them are due to data hazards. That is, the scenario where
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an instruction generates the address to be loaded, the next instruction performs the
load that hits in cache, and the next 1 or 2 instructions consume the loaded data
(as shown in Figure 7.7 a)). There are four benchmarks (aifftr, aiifft, bitmnp,
matrix) that show almost no improvement when comparing LAEC with Extra Stage.
This is because most of the loads that have dependent instructions executed right
after, so causing stalls for Extra Stage, also have their source operand produced by
the previous instruction, which prevents load anticipation and causes stalls for LAEC.

In terms of power, the proposed solution has minimal impact (less than 1%).
However, since the execution time is increased, leakage energy consumption increases
proportionally to the increase in execution time. This means that for extra cycle
and extra stage, leakage energy consumption increases by around 17% and 10% on
average; and for LAEC by less than 4%.

Note that, as explained before, while compiler optimizations could help mitigating
stalls, they are normally forbidden in critical software due to traceability between
source and binary files needed for certification. Moreover, those systems often execute
legacy code where no binary modifications are possible. On average, LAEC shows a
13% decrease in performance degradation when compared to Extra cycle and a 6%
decrease compared to Extra stage.

7.5 Related Work

The most common microarchitectural solution to error correction relies on the use of
parity or error ECC [42] to detect and correct errors. Parity suffices for read-only
caches (e.g. instruction caches) and write-through caches. When data can be dirty,
then ECC is required.

Several works aims at providing support for both, permanent and transient faults.
Those works often consider high permanent fault rates due to low voltage operation,
and propose mechanisms to tolerate those faults while providing resilience against
transient faults. Some works propose disabling faulty entries at different granular-
ities [109, 3], potentially setting up spare cache lines to replace faulty ones [91], or
combining faulty entries to form fault-free ones [160, 89], potentially combining these
designs with heterogeneous ECC depending on the faultiness of cache lines [159].

Some authors combine fault tolerance in caches with real-time requirements by
ensuring that ECC guarantees that non-correctable permanent fault rates are below
specific thresholds [107, 108], or by guaranteeing that spares (in the form of a victim
cache) suffice to guarantee sufficiently low non-correctable permanent fault rates [6].

Some techniques target specifically soft errors. Some authors propose early evict-
ing dirty cache lines to mitigate the probability of uncorrectable errors due to multi-bit
upsets (MBUs) in caches with single-error-correction capabilities [162]. In our work
we do not consider MBUs since technologies used in critical real-time systems are
intended to suffer sufficienly low MBU rates. In any case, this concern is orthogonal
to our work. Coarser-grain solutions such as lockstep execution are also common in
critical real-time systems [76, 75]. However, those designs often combine also lockstep
execution with ECC protection in caches, as in the case of the LEON3FT processor
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for the space domain [60], thus being orthogonal to our approach.

7.6 Conclusions

Emerging real-time applications require increased performance in embedded systems,
but also enough reliability levels for specific domains. Write-back L1 caches can help
increase performance of such multi-core systems, but dirty data requires additional
error correction. Unfortunately, implementing ECC, such as SECDED, increases the
end-to-end latency to fetch and correct data. This can result in significant perfor-
mance degradation due to data dependencies between loads that hit in the L1 cache
and the following (consumer) instructions. We propose a novel approach to mitigate
this issue, called Look-Ahead Error-Correction (LAEC) that anticipates data loading
by one cycle whenever possible to avoid potential stalls. Our results show that our
technique improves performance by 6%-13% w.r.t. existing solutions, and is only
within 4% of the ideal case where no ECC is needed. Our proposal not only has low
execution time overhead but also low design complexity and hardware cost since no
costly instruction flush and state recovery is needed.
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Chapter 8

Prefetching

8.1 Introduction

Prefetching is an effective means to mitigate the impact in execution time of cache
misses [84, 18, 83]. Prefetching mitigates the impact of large data retrieval latencies
in program’s execution time by fetching data, before it is actually needed. While
prefetching is effective to increase average performance in many high-performance
processors [147, 44], high-integrity systems are often precluded from using prefetch-
ing whenever it is not explicitly controlled by the programmer. In particular,when
prefetches occur as a result of explicit instructions in the code (software prefetching),
they can be analyzed virtually with analogous complexity to that of non-prefetch
memory accesses. However, when prefetching is produced automatically by hard-
ware, then it becomes an overwhelming complex task to provide reliable and tight
Worst-Case Execution Time (Worst-Case Execution Time (WCET)) estimates for
programs due to the difficulties to reason on the worst-case timing behavior, and to
relate analysis and operation conditions in the case of Measurement-Based Timing
Analysis (MBTA).

In this Chapter, we work towards leveraging the benefits of hardware prefetchers
in a safe manner in high-integrity systems. To that end, we present a formal frame-
work for the design of time-predictable cache hierarchies with hardware prefetchers
(or prefetchers for short), thus compatible with the requirements on high-integrity
systems. In particular, we show how some access sequences can be proven to domi-
nate others, meaning that they lead necessarily to higher execution times in timing
anomaly free processors. Furthermore, we elaborate on the dominance relationships
upon composition of specific cache-related components (e.g. buffers, caches, prefetch-
ers), showing that complex cache hierarchies with hardware prefetchers can be made
time-analyzable by construction, thus enabling the reliable use of hardware prefetch-
ers in high-integrity systems, reducing WCET estimates. Our results show that our
proposed time-predictable prefetcher, for the EEMBC Auto benchmark suite, achieves
average WCET reductions ranging from 10% to 39%, 28% on average, with respect
to a memory system without prefetcher.

The rest of this Chapter is organized as follows. Section 8.2 provides some back-
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ground on caches and prefetchers. Section 8.3 introduces our formal framework for
the design and analysis of prefetchers. Section 8.4 presents specific realizations of
our framework to build time-analyzable systems. Those realizations are evaluated in
Section 8.5 in the context of a NGMP-like processor. Related work is presented in
Section 8.6. Finally, we summarize the main findings of this work in Section 8.7.

8.2 Background

Large cache memories and multi-level cache hierarchies allow mitigating capacity
misses [100], whereas high associativity mitigates conflict misses. Instead, cold misses
can only be partially mitigated by using larger cache lines so on a miss more data, as
much as they fit in a cache line, are brought to cache. Yet, cache capacity and mem-
ory bandwidth limitations make that cache lines rarely exceed some tens of bytes.
Thus, many cold misses cannot be avoided by modifying cache characteristics, which
leads to poor performance for programs with low data reuse.

Prefetching reduces the delays caused by cache misses by fetching data in advance
before it is actually needed [102]. Prefetching techniques trade off several factors
including (1) fetching data early enough not to cause program stalls, (2) fetching
data late enough to keep storage demands low, and (3) fetching low amounts of
data to reduce memory bandwidth needs hence avoiding side effects on on-demand
accesses.

High-integrity systems either build upon no prefetching at all, or upon software
prefetching [139, 49], in which prefetching occurs as a result of explicit instructions
added to program’s code. Simplifying cache predictability analysis. However, software
prefetch suffers several limitations: (1) it can only be applied on operated data (code is
excluded); (2) information on whether accesses hit or miss is unknown in many cases,
which makes more difficult the insertion of prefetch operations; (3) end users (or
compilers) have only static information to predict dynamic cache hit/miss behavior;
and (4) prefetch operations are inserted explicitly in the code, limiting the particular
data and when it can be prefetched.

Hardware prefetchers, widely used in high-performance processors [147, 44], cir-
cumvent the limitations of software prefetching boosting average performance. How-
ever, (hardware) prefetchers challenge timing analysis:

• Prefetch operations do not appear explicitly in the code, challenging the ability
of timing analyses to predict their beneficial and detrimental effects, i.e. whether
some data has been prefetched and whether some data has been evicted by
prefetch operations.
• The particular data prefetched and when they are prefetched depends on dy-

namic information related to the timing of events. In general, timing varies
in non-obvious ways between the analysis and operation phases of the system
which, in the case of MBTA, normally defeats any attempt to relate measure-
ments collected during the analysis phase with the timing behavior during op-
eration.
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Therefore, arbitrary (hardware) prefetcher schemes are not allowed in the context
of critical real-time embedded systems if those prefetchers cannot be proven to adhere
to specific properties to enable reliable timing analysis.

8.3 Formal Framework

We build our framework for the design of time-predictable hardware prefetchers upon
the concept of component (C), which receives one or several input time-stamped ad-
dress sequences (I, O, Z...), has an internal state S, and produces one or several output
sequences. In the context of prefetchers and cache memories, input and output se-
quences consist of a series of tuples where each tuple u has two elements, u=(u.a, u.t):
an address u.a, and a timestamp associated to such address u.t. Sequences are sorted
by the timestamp of their tuples so that:

Z =< u1, u2, ...un >,∀i, j : 1 ≤ i < j ≤ n : ui.t ≤ uj.t

A component C is queried with a input sequence I and produces an output se-
quence O, see Figure 8.1, where I =< u1, u2, ...un >, O =< v1, v2, ...vm > and ui and
vj are tuples. C has an initial state S = {a1, a2, ...ap} where ak is a (memory) address.
The addresses in the internal state S refer to, in the context of caches, prefetchers or
buffers, those addresses whose data is stored in the element.

𝑆 = 𝑎1, 𝑎2, …𝐼 = 𝑢1, 𝑢2, … , 𝑢𝑘 , 𝑂 = 𝑣1, 𝑣2, … , 𝑣𝑘 ,
C

Insertion, inclusion, time dominance, dominance

State dominance, input dominance

Figure 8.1: Formal framework sequences and componenents with their properties

8.3.1 Sequence Operators and Relationships

The Insertion operator when applied to a sequence Z and a tuple w produces a
sequence Z ′ including all tuples in Z and w preserving the time order of tuples.

Z ′ = insert(Z,w) =< u1, u2, ..., ui, w, ui+1, ...un >

Hence, ui.t ≤ w.t ≤ ui+1.t. For multiple insertions, insert can be represented as
follows for the sake of notation brevity:

Z ′′ = insert(Z,w1, w2, ...wk) = insert(...insert(insert(Z,w1), w2)...wk)

Inclusion captures whether a sequence Zi is a subset of another sequence Zj.
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For instance, given Z1 =< u1, u2, ...un > and Z2 =< v1, v2, ...vm >, where n ≤ m,
inclus(Z1, Z2) holds if all elements in Z1 are included in Z2.

inclus(Z1, Z2) ⇐⇒ ∀i : 1 ≤ i ≤ n : ui ∈ Z2

Obviously, inclus(Z1, Z1) and inclus(Z1, insert(Z1, w)) hold true. If several ac-
cesses to the same address X appear in Z1 and inclus(Z1, Z2) holds, then X appears
in Z2 at least as many times as in Z1.

Time dominance. Given Z1 =< u1, u2, ...un > and Z2 =< v1, v2, ...vn >, with
exactly the same addresses in the same order, Z2 is said to time-dominate tdom Z1 if
each address in Z2 has a timestamp equal or higher than its counterpart in Z1.

tdom(Z1, Z2) ⇐⇒ ∀i : 1 ≤ i ≤ n : vi.a = ui.a ∧ vi.t ≥ ui.t

Dominance. Given Z1 =< u1, u2, ...un > and Z2 =< v1, v2, ...vm >, where
n ≤ m, Z2 fully dominates Z1 if there exists a sequence Z ′1 that is time-dominated by
Z2 and Z ′1 is obtained by performing zero or more insertions on Z1. No constraints
are put on the address or the time stamp of the tuples added.

dom(Z1, Z2) ⇐⇒ ∃Z ′1 : Z ′1 = insert(Z1, w1, ...wm−n) : tdom(Z ′1, Z2)

Whenever Z2 has more than one access to the same address, the same principle
applies with some particularities. For instance, let assume Z1 =< (X1, 4), (X2, 10) >
and Z2 =< (X1, 5), (X2, 8), (X2, 12) >. If Z ′1 = insert(Z1, (X2, 8)) then
dom(Z1, Z2) holds true as X1 : 5 ≥ 4 and for all instances (access to) X2 it holds
that vi.t ≥ ui.t, in particular, 8 ≥ 8 and 12 ≥ 10. This would not be the case for
Z ′1 = insert(Z1, (X2, 12)) since there is once X2 instance for which vi.t ≥ ui.t does
not hold. It follows that dominance requires that Z2 at least as many tuples as Z1.
That is, if |Z2| ≤ |Z1|, Z2 necessarily does not dominate Z1.

8.3.2 Component Operators and Relationships

State dominance. Let us assume a component C with an initial state S2. For a
given an input sequence I, S2 state dominates sdom another initial state S1 if the
output sequence under the former dominates the output sequence under the latter.
That is

sdom(C, I, S1, S2) ⇐⇒ O1 = C(I, S1) ∧O” = C(I, S2) ∧ dom(O1, O2)

If a given initial state Smax dominates all other states for a given input I, then
state dominance is generalized as follows, where S stands for the set of all potential
initial states.

sdom(C, I, S∗, Smax) ⇐⇒ ∀Si : Si ∈ S : sdom(C, I, Si, Smax)

State dominance can also be generalized for the case where a state dominates all
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others for any given input sequence, where I stands for the set of all potential input
sequences.

sdom(C, I∗, S∗, Smax) ⇐⇒ ∀Ij, Si : Ij ∈ I ∧ Si ∈ S : sdom(C, Ij, Si, Smax)

State dominance is of prominent importance for MBTA: by determining and
enforcing Smax at analysis, WCET estimates hold during operation, when the
initial necessarily lead to shorter execution times than those caused by Smax.

Input dominance is a component property such that given a sequence I2 that
dominates another sequence I1, a component C with initial state S delivers a sequence
O2 for I2 that dominates O1 delivered for I1. That is:

idom(C, I1, I2, S) ⇐⇒ O1 = C(I1, S) ∧ O2 = C(I2, S) ∧ dom(I1, I2) ∧ dom(O1, O2)

Input dominance ensures that by using at analysis an input sequence Imax that
dominates the input(s) sequence(s) of interest (e.g. Ij) together with Smax, so that
idom(C, Ij, Imax, Smax), the WCET estimates at analysis hold during operation.
This is so since any input sequence and initial state lead to shorter execution
times than those caused by Imax and Smax.

It stands, therefore, that a key objective of the analysis is determining Imax and
Smax so that WCET estimates obtained at analysis hold valid during operation.

8.3.3 Components with Multiple Input/Output Sequences

Definitions so far has focused on single-input single-output components. Those def-
initions can be extended to multiple-input multiple-output components, with some
constraints:

Input dominance applies to all input sequences, and output dominance applies
to all output sequences. For instance, in the case of state dominance, given <
O1

1, ...O
1
n >= C(< I1, ...Im >,S1) and < O2

1, ...O
2
n >= C(< I1, ...Im >,S2), state

dominance sdom for a given component C with inputs < I1, ...Im > is defined as

sdom(C,< I1, ...Im >,S1, S2) ⇐⇒ ∀i : 1 ≤ i ≤ n : dom(O1
i , O

2
i )

Analogously, input dominance is also formulated as follows:

idom(C,< I11 , ...I
1
m >,< I21 , ...I

2
m >,S) ⇐⇒

< O1
1, ...O

1
n >= C(< I11 , ...I

1
m >,S) ∧ < O2

1, ...O
2
n >= C(< I21 , ...I

2
m >,S) ∧

∀i : 1 ≤ j ≤ m : dom(I1j , I
2
j ) ∧ ∀i : 1 ≤ i ≤ n : dom(O1

i , O
2
i )

8.3.4 Component Composition

Building upon the formulation above, we can compose components to conform a
memory system. In particular, we focus on serial and parallel component composition,
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which allow building complex systems by applying recursively these basic composition
methods.

Serial composition. Given components C1 and C2, we connect them serially so
that O1 = C1(I1, S1) and O2 = C2(O1, S2), see Figure 8.2 (left). If we use an input
sequence I ′1 for C1 that dominates I1, then we will obtain an output sequence O′2 for
C2 that dominates O2. That is, if dom(I1, I

′
1), then a component preserving input

dominance idom(C1, I1, I
′
1, S1) guarantees that dom(O1, O

′
1). Therefore, if the second

component also preserves input dominance idom(C1, O1, O
′
1, S2) it guarantees that

dom(O2, O
′
2).

𝑠1
𝐶1𝐼1

𝑂1 𝑂2
𝑠2
𝐶2

𝑠2
𝐶3

𝐼3

𝐼2

𝑠1
𝐶1

𝑂1
𝐼1

𝑂2

𝑠3
𝐶3 𝑂3

Figure 8.2: Formal framework sequential and parallel component composition
Analogous reasoning applies to multiple-input multiple-output components and

state dominance, since sequence dominance properties become transitive. Thus, by
composing serially components that preserve input dominance and state dominance,
we can model them as a single component. The input sequences of that atomic
component are those provided to all components excluding those produced by any
of the components. The output sequences are those provided by all components
excluding those consumed only by any of the components. For instance, we can
define a serial composition of the following components:

< O1
1, O

1
2 >= C1(I1, S1)

< O2
1, O

2
2 >= C2(< I2, O

1
1 >,S2)

O3
1 = C3(< O2

1, O
2
2 >,S3)

where I1 and I2 for components C1 and C2 respectively are provided externally, and
outputs O1

2 and O3
1 are given as external outputs. Externally, these component com-

position could be modelled as a single component as follows:

< O1
2, O

3
1 >= C1+2+3(< I1, I2 >,S1 ∪ S2 ∪ S3)

Parallel composition. We can also components in parallel, see Figure 8.2 (right),
that preserve input and state dominance. For instance, we could have the following
parallel components:

O1 = C1(I1, S1)

O2 = C2(< I2, I3 >,S2)

O3 = C3(I2, S3)
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and building upon input and state dominance, we can prove that by using, for in-
stance, an input I ′2 such that dom(I2, I

′
2), then dom(O2, O

′
2) and dom(O3, O

′
3) hold.

Note that O1 remains unmodified, so given that domination preserves the identity
function (dom(O1, O1)), the output of C1 also preserves dominance. Thus, domi-
nance holds for the output sequences of all components. As for serial composition,
we can model them as a single component as follows:

< O1, O2, O3 >= C1||2||3(< I1, I2, I3 >,< S1, S2, S3 >)

Overall, since both serial and parallel composition of input and state dominant
components allows modelling the resulting composition as a single input and state
dominant component, they can be applied recursively for as many components as
needed preserving their properties.

8.4 On Building Memory Systems

Building upon components that adhere to input and state dominance (ISD) proper-
ties, in this section we provide the semantics and approach to create a memory system
that matches the needs of MBTA. In particular, the memory system must allow (1)
reasoning about worst-case timing behavior, and (2) relating analysis and operation
conditions.

To reach this goal, we first provide a way to describe typical types of hardware
blocks in a memory system, e.g. caches and buffers, with our ISD components (ISDCs
for short). Then we describe how to include hardware prefetchers on the memory
system such that in can be modelled with our ISDC. We also cover implementation
considerations for memory systems and how ISD properties can still be preserved.

8.4.1 Mapping hardware blocks to ISDC

Processor core. Cores interface memory by delivering a sequence of addresses to
read/write from/to at specific times. The input sequence for the memory system, I,
can be described as a sequence of tuples consisting of an address and a timestamp
when the address is delivered to the memory systems. While tuples may contain other
metadata, such as the operation type, we disregard such information for the sake of
this discussion.

The answer provided by the memory system for read operations consists of the
data requested. For write operations the answer may have either no answer or an
acknowledgment of request reception. Either the case, we can attach an address to
each answer identifying the memory location accessed as well as a timestamp when
the answer is delivered back to the core. Thus, we can build an output sequence O
for the memory sequence with the same form as those for our ISDCs.

We build the following assumptions:

1. Addresses in I are independent of the output sequence O, thus meaning that
the core issues memory requests in order, and only timestamps in I may vary
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due to different O sequences. For instance, this could be the case of a fully
in-order core with no speculation which, therefore, issues those read and write
requests dictated by load and store instructions in the strict order they are
found and memory system behavior can only create varying stalls in the core
progress which, in turn, can only alter the timestamps of the requests issued.

2. The core, and the other components considered in this work, is free of timing
anomalies, so that an increased delay in the requests issued in I can only lead
to an increased delay in responses in O, but never the opposite.

Overall, the processor core can be modeled as an ISDC with its output sequence
Ocore corresponding to the requests issued, its input sequence Icore to the responses
from the memory system, and an empty initial state. From a memory address stand
point, cores (excluding caches, scratchpads and the like that belong to the memory
system) keep no state since they may store values temporary in the register file or
internal buffers, but they are managed explicitly and without using their addresses.
Hence, the core is modeled as follows:

Ocore = Ccore(Icore,∅)

The core, which is the initiator ISDC, can produce multiple output sequences and
receive multiple input sequences. The most common case would be that of separated
data and instruction requests and responses.

Main memory is a complete container so that it contains the data of all ad-
dresses. Also its response time is constant and requests are processed in order. Its
input sequence may come from the core or from another type of ISDC. Hence, we can
model main memory as follows:

Omem = Cmem(Imem,U)

where U stands for the universe of all potential addresses within the address range of
the memory. For instance, in a 32-bit machine with a single main memory, U includes
the 232 potential addresses of the system.

Main memory may have multiple input request sequences and multiple output re-
quest sequences. For instance, different components could generate input request se-
quences for different address memory ranges, and separate output response sequences
could be produced to answer each of those components. However, in this case main
memory could be better represented as separated main memory components, one for
each address range, so that those memory components have a single input and a single
output sequence.

Cache memories. Unlike main memory, caches have limited capacity and vary-
ing initial state so they store a subset of the actual address space. Caches are subject
to implementation constraints that affect their state upon the processing of input
sequences. However, implementation constraints are considered later while in this
section caches are considered as unlimited containers.

Caches have at least one input sequence provided by a core or another ISDC
sitting in between the cache and the core serially connected. Typically, caches have
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also at least another input sequence coming from memory or another ISDC sitting in
between this cache and main memory serially connected.

Caches have typically two output sequences: one to respond requests coming
directly or indirectly from the core and another to send requests to main memory
or other cache memories in case of a miss. While this does not need to be this way
necessarily, the usual cache model is as follows:

< O1
Li, ...O

n
Li >= CLi(< I1Li, ...I

m
Li >,S)

where cache CLi has m input sequences, n output sequences, and an initial state S.
We use the identifier Li since typically we instantiate caches as L1, L2, etc. depending
on their location in the memory hierarchy.

Interestingly, unlike the core and main memory, caches may have varying initial
states. Given an unlimited container and a population of addresses U, the number of
potential initial states include any address set S such that S ⊂ U. We assume that,
whenever a cache receives a request of an address not included in the cache state, i)
it cannot serve it, so it either generates a request to another component, ii) responds
with a negative answer (typically encoded in the metadata); or iii) simply ignores
the request. While the former corresponds to the typical case, our model admits all
three scenarios. In any case, we assume that a well-designed cache provides its fastest
answer in case of a cache hit, and a cache miss cannot take shorter to be answered.
Under such constraints, for caches of unlimited space, we can claim that Smax = ∅
(i.e. the empty state), since it is the state leading to the lowest number of cache hits
regardless of the input sequences.

Queues and buffers are another form of container intended to temporarily hold
requests and forward them, either “as they are” or transformed. For instance, a queue
or buffer may simply hold requests and forward them after some delay at a given
rate so that requests received as input are sent in order of arrival as output with an
increased timestamp. As for caches, we assume that queues and buffers are unlimited
in size and leave for later consideration implementation constraints.

Queues and buffers may have multiple input sequences (e.g. from several caches)
and multiple output sequences (e.g. to different memories mapping different address
ranges). The most common case corresponds to single-input single-output queues and
buffers, which would be described as follows:

Oqueue = Cqueue(Iqueue, S)

where S stands for the initial state including the requests not yet processed. For
instance, a queue taking 3 time units to process each request may hold an arbitrary
number of unprocessed requests, as well as up to one request that has been processed
during 1 or 2 cycles already.

Determining Smax for queues and buffers with unlimited size would require assum-
ing that they hold an infinite number of requests, which would be useless in practice
since it would lead to an infinite WCET estimate. Therefore, in order to obtain reli-
able and meaningful WCET estimates, the initial state of queues and buffers needs to
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be carefully controlled at analysis and during operation so that operation conditions
do not lead to higher execution times than those obtained with the initial state at
analysis.

Other hardware blocks. While other hardware blocks could be described with
our framework (e.g. scratchpads, interconnection networks), we do not further elabo-
rate on additional components since, for the discussion in this work, the components
already described suffice.

8.4.2 Memory Systems

A cache-less memory system. A simple memory system comprises a single core
Ccore and a main memory Cmem. Such a system is modelled in our framework by
making Ocore = Imem and Icore = Omem, as depicted in Figure 8.3, where the initial
state is shown within each component.

Figure 8.3: Simple system consisting of a core and main memory

A single-cache memory system comprises the core, a single cache memory
(L1), and the main memory that are connected serially, see Figure 8.4. In particular,
CL1 has two input and two output sequences connecting it to the core and main
memory, and is described as follows:

< Icore, Imem >= CL1(< Ocore, Omem >,S)

Figure 8.4: System consisting of a core, a single cache and main memory composed
serially

As discussed before, we consider cache memories with unlimited size with shortest
response for hits. Therefore, the initial state that dominates all other states, Smax, is
the empty state. Hence, by enforcing Smax at analysis, we can estimate the WCET
reliably for any set of input sequences.
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A simple memory system with queues. In this case, core requests are sent to
a queue Cq1 to be later forwarded to main memory. Analogously, memory responses
are sent to another queue Cq2 to be later forwarded to the core, see Figure 8.5.

Figure 8.5: Single core, main memory and unidirectional queues composed serially

Cpref(Spref)Cqp1(Sqp1)

Cqp2(Sqp2)

Cqp3(Sqp3)

O1
core

I1core

I1’core

Ccore(Ø)

CIL1(SIL1)

Cmem(U)

Cq1(Sq1)

CDL1(SDL1)

Cq2(Sq2)

Cq3(Sq3)

Cq4(Sq4)

Cq5(Sq5)

Cq6(Sq6)

CL2(SL2)

Cq7(Sq7)

Cq8(Sq8)

Cqp4(Sqp4)

(a) Component-based representation.
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IL1 DL1
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qp3 qp4

(b) Architectural
representation.

Figure 8.6: Complex system including a prefetcher component and its associated queues

In this case, determining the initial state Sq1 and Sq2 for the queues requires
exercising some explicit control during operation to ensure that operation conditions
are not worse than those at analysis. For instance, one could enforce empty initial
states for all queues during operation, which would guarantee that any other state
can only lead to higher response times for queues since they are ISDCs.

More complex system. Our framework allows describing more complex sys-
tems. For the sake of illustration, the part inside a dotted box of Figure 8.6 (both the
component-based representation (a) and the architectural representation (b)) depicts
a system consisting of a core (dark blue) that interfaces two first level caches (light
blue), one for data (DL1) and one for instructions (IL1) with independent unidirec-
tional queues. Queues interface a second level cache, L2, with shared unidirectional
queues, so that incoming requests are received from IL1 and DL1 in one of the queues
(Cq5) and responses are split across caches by another queue (Cq6). The L2 cache
interfaces main memory (dark shaded) with independent unidirectional queues. Note
that all queues managing requests in the way from the core to main memory are

115



8. PREFETCHING

drawn with thick lines, whereas queues in the way from main memory to the core are
drawn with dashed lines.

8.4.3 Including Prefetchers

Basic prefetcher. A set of sufficient conditions to include prefetcher in a memory
system without affecting its key properties can be summarized as follows.

1. The prefetcher does not remove any content from caches.
2. The prefetcher uses separated queues.
3. The prefetcher is not placed serially with components of the original system.
4. Whenever it is necessary merging traffic between the original system and the

prefetcher (e.g. in main memory), this must occur preserving dominance of the
output sequence in the original system w.r.t. the output system in the system
with prefetcher.

5. Smax for the prefetcher is the empty state, as for caches.

In order to illustrate how to meet the conditions above, we consider the base
system in Figure 8.6 (the one inside the dotted box) to which we add a prefetcher
component meeting the conditions above. The first step consists in describing the
prefetcher itself, which we regard as a cache-like component whose fetch policy differs
from that of regular caches. In particular, we define prefetchers as unlimited con-
tainers that, unlike caches, may issue requests upon hits and, also unlike caches, may
request memory addresses different to those of the address in the input sequence (e.g.
with a specific stride aiming to bring data needed in the future). Overall, we can
define a prefetcher component as follows:

< O1
pref , ...O

n
pref >= Cpref (< I1pref , ...I

m
pref >,S)

and we can include it in the base system as shown in the big box in Figure 8.6. In
particular, we include Cpref as the prefetcher component, and 4 independent unidirec-
tional queues (Cqp1−4), shown in grey in the figure. Their connections are shown with
thick red arrows. As shown, one of the queues, Cqp1, receives a duplicated output of
the core, O1

core. At some point the prefetcher may produce requests that reach mem-
ory, Cmem, through queue Cqp3. Memory must be able to respond requests from the
prefetcher (Cqp3) and from the original system (Cq7) in parallel without causing any
disturbance in the output sequence delivered to Cq7. Finally, the core receives two
sequences from one of the caches (DL1) and the prefetcher through the correspond-
ing queues. The sequence from the cache, I1core, remains unaltered w.r.t. the original
system as long as the core delivers the same output sequences to the components in
the original system. However, the core also receives the sequence from the prefetcher,
I1

′
core. In general, such sequence will include some of the addresses requested by the
core with a lower timestamp than those delivered by the cache. Hence, the core
will be able to use the earliest response, thus effectively merging the input sequence
by obtaining the same addresses in the same order but with some potentially lower
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timestamps. Hence, by construction, the merged sequence is time-dominated by I1core,
guaranteeing that the timing behavior with the prefetcher is necessarily better than
without it.

A second effect of the prefetcher relates to the existing dependence between the
output sequences of the core and its input sequences, as explained in Section 8.4.1
for the core component. In particular, by receiving a (merged) input sequence time-
dominated by the original sequence (e.g. with some data prefetched), the ISD core
component necessarily produces output sequences that are also time-dominated by
the original ones, in line with the transitivity property of ISDC explained before for
serial composition. In other words, by receiving some data earlier from the prefetcher,
the core can make progress faster and issue its requests to the cache system earlier.
Thus, such time-dominated output sequences can further lead the other components
sitting serially after the core to deliver sequences also time-dominated by those in the
original system. This is a cascade effect that may make the whole system process
requests earlier, hence sending requests to other components earlier, which in turn
also process them earlier and so on and so forth. Hence, the circular serial composition
of components leads to time-dominated sequences as long as any of its components
leads to time-dominated sequences as a consequence of having a suitable prefetcher
in place. As a result, WCET estimates obtained with the prefetcher are necessarily
better than without it.

WCET estimation can be performed by enforcing a worst-case initial state for
the prefetcher at analysis. However, prefetchers presented so far are modelled similar
to cache components, though they do not produce requests under the same circum-
stances. In particular, to be able to guarantee that the same Smax exists for caches
and prefetchers (the empty state), we must guarantee that the behavior of prefetchers
can never be worse on a hit than on a miss. A simple way to reach this goal consists
in issuing the same requests upon a cache hit as upon a miss. This guarantees that
misses do not lead to a different (potentially better) state than hits. Note that, if
we issue requests upon a miss (e.g. accessing address X1) that bring any address
different to that in the input request (e.g. address X2), this could make such miss
to X1 lead to future hits (to X2) that may be misses under X1 hit. This is not an
issue for cache components since, upon a miss, they only request contents that would
already be present in cache upon a hit, thus never leading to a different (better) state
for misses than for hits.

Relaxed conditions. While the conditions described so far are sufficient for
enabling the use of prefetchers in Critical Real-Time Embedded Systems (CRTES),
they may be too demanding since they impose that the system with prefetcher leads
to lower execution times than that without the prefetcher. In practice, this constraint
is not needed as long as we always use the prefetcher, both at analysis and during
operation. In that case, we only need that the initial state of the prefetcher at analysis
leads to dominant sequences w.r.t. those with any other state.

The simplest strategy to reach this goal builds again upon the use of the empty
initial state for caches and prefetchers since it is their Smax. In this case, we can
simplify the integration of prefetchers and use them as shown in Figure 8.7, where
we have exactly the original system but with the prefetcher integrated with the cache

117



8. PREFETCHING

component. Given a cache that, upon an access (e.g. to address X1) generates a
sequence of requests OX1

Li (typically an empty sequence on a hit or a sequence with
one request for X1 address on a miss), and a prefetcher that upon the same access
generates a sequence of requests OX1

pref , the merged cache and prefetcher component
issues a set of requests OX1

Li∪pref as follows:

OX1
Li∪pref = OX1

Li ∪OX1
pref

Since sequences, as defined in this work, consist of tuples with addresses and
timestamps, the union operator is applied to addresses. For instrance, let assume
tha a given address appears in the cache and prefetcher sequences with different
timestamps, which could be the case since each component produces it at a different
time. The union of such two addresses would result in a single element with the
common address and the timestamp of the slowest component.

Figure 8.7: Complex system with prefetcher (relaxed conditions)

Hence, the merged output sequence will include addresses in OX1
pref upon a hit,

and at least addresses in OX1
pref upon a miss. Hence, the sequence upon a miss can

only be worse than that upon a hit.

dom(OX1
pref , O

X1
Li∪pref )

By enforcing Smax (the empty state) as the initial state for the merged component,
we enforce a state-dominant behavior for any input sequence. Any component C
receiving as input the output sequence of the merged component receives, hence, an
input-dominant sequence compared to that with any other initial state for the merged
component.

idom(C,OX1
pref , O

X1
Li∪pref , S)

where S stands for the initial state of such other component.
Overall, under relaxed conditions the prefetcher does not remove any content from

caches and Smax for the prefetcher is the empty state, as for caches.
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8.4.4 Implementation Constraints

Limited-size Buffers and queues. Typically, in the case of buffers and queues, at
least as defined in this work, entries are released as early as possible, so if the queue or
buffer is full, there is no way of releasing entries faster and the new request cannot be
admitted. Thus, limited-size buffers and queues produce backpressure when they are
full. This, in our formulation, leads to increased timestamps that may back-propagate
to an arbitrary number of requests.

Building upon time-dominance principles, we can argue that the increased times-
tamps for the input sequence of the buffer or queue imply that the input sequence
for a limited-size buffer or queue is time-dominant w.r.t. that with an unlimited size.
The arbitrary propagation of such backpressure, due to the transitive nature of the
dominance properties in our framework, leads to time-dominant input and output
sequences for all components connected directly or indirectly to those buffers and
queues. Thus, imposing limited size buffers and queues does not break any of the
properties of our framework.

Limited-size cache components impose the implementation of a form of re-
placement policy and, while not strictly needed, a form of placement policy, that is
not independent of the replacement policy. For the sake of this discussion, we first
stick to a limited-size set, which could be implemented as a fully-associative cache
where we can potentially replace any element upon an eviction.

Our framework builds, explicitly or implicitly, upon several properties of unlimi-
ted-size caches that are impacted by using limited sizes. Those properties are as
follows:

1. Fetching new data does not harm future requests since they create/generate no
eviction.

2. Cache hits do not alter cache state.
3. The actual address accessed is irrelevant and it only matters whether the access

hits or misses.

The first property (no eviction) cannot be preserved due to the finite capac-
ity of the cache, which has some implications upon sequence dominance. Time-
dominance remains unaffected since it imposes that request ordering is not altered
and, for common replacement policies, the only relevant feature is the order of the
addresses accessed. For instance, this is the case for Least Recently Used (LRU),
first-in first-out (FIFO), Random Replacement (RR), and pseudo-LRU among oth-
ers. Dominance, instead, may not hold for some replacement policies [26], such as
LRU dominance. Let us illustrate this fact with an example. Given the sequence
S1 =< (X1, 1), (X2, 2), (X3, 4), (X1, 5) > and a LRU cache with 2 entries, all accesses
miss in cache since the access to address X3 evicts X1 and hence, the last access of
the sequence is a miss. Now we create a new sequence S2 = insert(S1, (X1, 3)), thus
obtaining S2 =< (X1, 1), (X2, 2), (X1, 3), (X3, 4), (X1, 5) >. Since S2 is built by in-
serting a tuple in S1, S2 should dominate S1. However, with LRU replacement the
second and third accesses to X1 become hits, so S1 has 4 misses whereas S2 has 3
misses and 2 hits. Thus, it cannot be proven that S2 dominates S1. If, instead, we
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use RR, it has already been proven that, by inserting accesses in a sequence, either
the number of hits or misses increases, but none of them decreases [94]. This occurs
because RR does not keep any replacement state information. Hence, dominance
holds for RR caches.

Let us review this statement in more detail. When performing a new access to
address X, there can be two outcomes depending on whether it hits or misses:

Hit: On a hit, the addresses in the cache remain unaltered, so future memory
accesses will have the same outcome they would have had if w, where w.a = X,
had not been inserted. Thus, the timing will be the same sequence of hits and
misses as before inserting w, but with an additional hit. Hence, we have a sequence
S1 =< u1, u2, ..., ui, ui+1, ..., un > and insert w such that ui.t ≤ w.t ≤ ui+1.t, thus
meaning that w access occurs in between ui and ui+1. The resulting sequence, S2 is
obtained as S2 = insert(S1, w). Therefore, S2 =< u1, u2, ..., ui, w, ui+1, ..., un >, and
hence, dom(S1, S2), meaning that the new sequence S2 dominates the original one S1.
Note that the insertion of an access in between ui and ui+1 could potentially delay
accesses after w by the latency of a hit access.

Miss: On an access miss to address X, we could have several possible outcomes
depending on future memory accesses. Those cases depend on whether X is accessed
later and whether the address evicted would have accessed later.

• Evicted address never accessed again.

– The simplest case happens when the access inserted w, with w.a = X,
corresponds to an address, X, which is never accessed again. In this case,
we just insert a miss access, so the same reasoning as for the hit holds
since the insertion has no impact on the remaining of the sequence, and
accesses after w may get delayed by the latency of a miss.

– Alternatively, we may have S1 =< u1, u2, ..., ui, ui+1, ..., ui+j, ui+j+1, ..., un >
where w.a = ui+j.a = X. In this case, we insert w, which incurs an extra
miss, but a former miss (ui+j) could become a hit. Hence, we insert w such
that ui.t ≤ w.t ≤ ui+1.t, and where the following holds

∀k : i+ 1 ≤ k ≤ i+ j : uk.a 6= w.a

meaning that no access in the subsequence < ui+1, ..., ui+j > accesses ad-
dress w.a = X. In this case, accesses in the subsequence < ui+1, ..., ui+j >
remain being hits and misses as before the insertion of w, so they may get
delayed due to the added miss. However, access ui+j becomes a hit, so
accesses in the subsequence < ui+j+1, ..., un > may benefit from ui+j being
processed faster. In practice, those accesses experience a miss (w), the hits
and misses in < ui+1, ..., ui+j >, and a hit (ui+j), whereas in the original
sequence they only experienced the hits and misses in < ui+1, ..., ui+j >
and a miss (ui+j). Thus, the insertion of w would lead to an additional hit
and the same number of misses in this case.

• Evicted address is accessed later. In this case, the eviction would cause an
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additional miss. Hence, the same casuistics as before hold and, additionally, an
extra miss would occur. When serving such miss, it could potentially evict an
address never accessed again, or an address that would be accessed again. In the
latter case, a further additional miss would be caused and the reasoning would
repeat until no additional misses are caused, which eventually occurs at the end
of the sequence. Overall, Evicting an address that would be hit otherwise, can
only lead to additional misses and no additional hit.

The second property (hits do not alter cache state), as shown in the example
before, does not hold for some replacement policies such as LRU, since the LRU stack
and hence, future replacement choices, are affected by hits. Instead, in the case of
RR cache hits have no impact in cache state, thus preserving this property.

The third property (addresses are irrelevant) holds for fully-associative caches.
However, set-associative caches and direct-mapped caches are sensitive to the actual
addresses accessed since they determine the actual set accessed and hence, what
address can be replaced upon a miss. We note, however, that, if dominance holds
for all cache sets individually, then it holds for the cache as a whole. In this type of
caches we would need to perform the analysis in a set by set basis, thus by splitting
the input sequence across sets keeping for each set the tuples targeting addresses in
that set. Then, by inserting an address in a sequence, this means that, in practice,
it is inserted only in the sequence of the corresponding set, whereas the sequences
for the other sets remain unaffected. Thus, if insertion preserves dominance in the
affected set, dominance is preserved in all sets. As discussed before, this holds only
for some replacement policies such as, for instance, RR, but not for some others such
as LRU.

Let us assume the sequence S =< (X1, 1), (X2, 2), (X3, 3), (X1, 4), (X4, 5) >.
Further assume that each address belongs to a set with modulo the number of sets.
If we have 2 sets, then sequence S would be separated in two sequences, one for each
set: S0 =< (X1, 1), (X3, 3), (X1, 4) > and S1 =< (X2, 2), (X4, 5) >.

Then, each subsequence S0 and S1 would only affect sets 0 and 1 respectively.
When inserting a new access in the global sequence S, it will only affect the set that
it maps to. Thus, the sequence of the other sets will remain unaffected.

In summary, limited cache space does not affect the required dominance properties
for RR caches, regardless of their associativity, but it does for other replacement
policies such as LRU.

Another relevant aspect for caches is whether contents evicted are dirty (written)
or not. In the case of write-through caches, all contents are clean and thus, no
dirty contents can exist. However, write-back caches, where write operations are
not forwarded to the upper memory level, are common. In general, on a miss, the
cost of evicting a dirty line is higher than that of evicting a clean line since a clean
line can be simply invalidated, whereas the dirty eviction requires a write operation
to the upper memory level. Therefore, for a write-back cache, the empty cache is
not its Smax. Instead, Smax corresponds to the case of a cache full of dirty useless
contents unless some control is exercised both at analysis and operation to guarantee
that analysis conditions can only lead to worse execution times than those during
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operation. Since, as discussed before, RR caches guarantee the properties needed
by dominance relationships, we need to devise a valid strategy for these caches. In
particular, we see several alternatives:

• Use only write-through caches and Smax = ∅.
• Build upon some hardware support to enforce all cache lines be marked as dirty

for addresses neither used by the program under analysis nor with any functional
impact in the system since they will be written back upon cache evictions.
• Make the system enforce all dirty cache lines be written back upon program

execution completion so that any program finds the cache with no dirty contents.
In this case, Smax = ∅ is the dominant state.

Prefetcher components can be managed identically to caches, although allow-
ing them to hold dirty contents brings unnecessary complexity. Instead, the wisest
solution is using prefetchers as fast memories for caches so that, upon a cache miss
and prefetch hit, contents in the prefetcher are transferred to the cache and invali-
dated from the prefetcher. By operating this way, Smax = ∅ is the dominant state
for the prefetcher.

Some prefetcher implementations use, instead of a separate storage space, the
cache itself to store data prefetched. While this may be efficient in terms of storage,
it may pollute cache contents, thus challenging dominance properties and so, the
assumptions upon which our framework builds. Thus, a sufficient condition to avoid
such an issue is keeping separated storage space for the prefetcher.

Prefetchers balance bringing as much useful contents as possible and making an
efficient use of the memory bandwidth. As explained before, prefetch choices must not
discriminate among hits and misses since, otherwise, this may create timing anomalies
where a cache miss prefetches useful data that ends up leading to some hits and thus,
a shorter execution time than having a hit in the original access. Instead, filters to
limit the number of prefetches issued must be based on other parameters independent
of the hit/miss behavior of accesses such as, for instance, prefetching only for some
addresses (e.g. those addresses that follow specific patterns), prefetching periodically
(e.g. once every 4 accesses), and the like.

For illustration purposes, we will use a prefetcher with separate storage that,
upon an access to address A, it fetches the following cache line in memory on every
cache access. This policy guarantees that each cache access produces exactly one
prefetch request. While this mechanism can be improved to obtain more prefetching
hits, it complies with the necessary restriction of producing the same access sequence
regardless if the accesses hit or miss in cache. We leave for future work prefetcher
optimization (in terms of hits and memory bandwidth) for prefetchers adhering to
the framework constraints.

Time compositionality. Our proposal, similar to time compositionality [65],
relies on separating the system in simpler and analyzable components. However,
the key difference between both proposals is that time compositionality is used to
simplify the timing analysis of a system, whereas our proposal takes into account
the relationships between two states of a component, and use those relationships to
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Figure 8.8: Prefetching results: average execution time and Probabilistic Worst-Case
Execution Time (pWCET) speedup

enable the use of complex components (such as prefetchers). In our framework we
extend the composability analysis to consider also the case of two components that
interact between them in terms of functionality and timing. Our framework builds
around this case to specify the constraints that the relationship between caches and
prefetchers must preserve.

8.5 Evaluation

Architectural Simulator: We use a cycle accurate simulator that models a basic
core like the one described in subsection 3.2.4. To model the system used by the
framework described in this work, we make all instructions that do not miss in cache
take 1 cycle to execute. Since the prefetching mechanism and our framework are
independent of core operation, more complex cores (free of timing anomalies) could
be used and the framework and methodology proposed would still be valid.

Benchmarks: We evaluate all benchmarks of the EEMBC automotive [127] suite
as described in Section 3.7.

8.5.1 Realistic prefetcher system

For space constraints we omit the results of the base prefetcher and focus on the re-
sults of the more interesting realistic prefetcher, whose setup has limited size caches
and prefetchers. In the case of the caches, we use 16KB 4-way 32B/line first level data
cache (DL1) and instruction (IL1) caches, and a 256KB 4-way 32B/line second level
(L2) cache. We also use a 4 entry (cache line) prefetcher that fetches the following
address (+1). Given the expected short reuse time, with just 4 entries we achieve rea-
sonable performance. With more complex prefetchers that fetch several consecutive
addresses (+1, +2, +3...) bigger prefetcher capacity could give significantly better
results.
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Figure 8.9: Normalized DL1 miss rate of the prefetcher

The prefetching in the L1 caches can be done for DL1, IL1 or both. On average,
speedups at around 40% for each, DL1 and IL1, and around 55% for both together.
Since DL1 caches have been regarded as particularly challenging due to their more
irregular access patterns, and due to lack of space, we perform a detailed analysis
only using prefetching on DL1.

Average execution time improvements with the prefetcher (Figure 8.8) are around
40% , with some benchmarks (idctrn, pntrch) showing more than a 60% speedup.
For instance, for the 5 benchmarks that have more than a 50% speedup increase
(aifirf, idctrn, matrix, pntrch, puwmod) their L2 miss rate goes from 85%-98%
down to less than 50% in all them, reaching as low as 15% in idctrn, which is the
one with the highest average speedup. In these benchmarks 30-40% of all instructions
are memory operations (ld/st), which adds to the e significant decrease and high cost
of L2 misses. For the two benchmarks that show a smaller average speedup increase
(a2time and bitmnp), even though their decrease in L2 is significant, the total number
of L2 accesses is low (in the order of thousands), limiting the impact of prefetching.

Regarding pWCET estimates, they are improved by 28% on average. Note that
the particular variability of the execution times may cause pWCET curves to behave
differently with and without prefetcher, thus leading to cases where pWCET gains are
either lower or higher than average performance gains. Also as pWCET computation
builds on those executions high execution times, benchmarks showing less pWCET
improvement than average improvement correlate with those benchmarks wigh higher
variations in the different execution runs with respect to the baseline results. In
general, however, average and worst-case gains are similar in absolute terms but,
since pWCET estimates are higher than average execution times, the relative gains
tend to decrease.

In terms of DL1 miss rate, prefetchers reduce by 30% the total number misses (see
Figure 8.9), and given the relative contribution of misses to execution time is high,
this miss rate reduction has a high impact in execution time.

While the prefetcher naturally increases the total number of L2 accesses naturally
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Figure 8.10: L2 hits/misses using as a baseline the L2 accesses without prefetcher

increases, prefetch accesses do not cause processor stalls since no particular instruction
that could block the pipeline issued those requests. Moreover, contention in the access
to L2 and memory caused by prefetch requests turns out to be tiny, as reflected in the
performance results. Therefore, we study the impact of the prefetcher on on-demand
L2 accesses caused by the program. In particular, Figure 8.10 shows, in two plots,
program-triggered L2 hits and misses per access (hpa and mpa) normalized to the
total number of L2 accesses produced without prefetcher. Note that:

hpanopref +mpanopref = 1

while this does not hold for the prefetcher and instead since DL1 experiences fewer
misses thanks to the prefetcher.

hpapref +mpapref < 1

In the no prefetch setup, the L2 has mostly misses (almost 90%), since most of
them are cold misses. In the prefetch setup, the number of hits is decreased from 12%
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to 4%, but since hits take short latency and this number is really low, the impact on
execution time is negligible. More interestingly, the 88% of misses that the L2 had
drastically reduces down to 31% when the prefetch is active. Since L2 misses represent
slow memory accesses, any reduction in these accesses will have a significant impact
in execution time, as shown before.

8.6 Related Work

Software prefetching [37] adds prefetch instructions to the code that explicitly instruct
the hardware to fetch data. However, the addition of these prefetch instructions not
only affects the timing behavior of tasks, but also increase code size [102]. Despite
these limitations, the use of software prefetching has been shown effective in the
context of CRTES typically for managing scratchpads [139, 49, 144, 131].

Hardware prefetchers are commonly used in high performance systems [147, 44].
The most common hardware prefetchers are stream based [84] or stride based [18].
Other works propose methods for prefetching irregular access patterns [83]. Recent
works in the literature focus on improving bandwidth efficiency [141], increasing ac-
curacy [88] and improving the difficult-to-predict patterns [137].

When the Prefetchers used in embedded processors [14, 120] cannot be properly
disabled, this creates uncertainty on the behaviors captured in measured execution
times [55, 120].

Previous work has proposed the use of hardware prefetchers for Real-Time Sys-
tems [61, 12]. The study in [61] introduces prefetchers that improve average non-
guaranteed execution time, guaranteeing the same WCET that would be had without
prefetching. On the contrary, the prefetching schemes presented in this work are able
to achieve performance improvements in WCET too. The authors of [12] propose a
prefetcher for the instruction cache, building upon a model that uses ILP to compute
WCET and cache parameters. The solution proposed in that paper is specific for the
instruction cache, and cannot be easily used in the data cache.

8.7 Conclusions

The increasing need for higher performance in CRTES has led to the adoption of
complex hardware features such as cache hierarchies and multicores. This work takes a
step forward by enabling the use of hardware prefetchers to improve WCET estimates.
In particular, our formal framework allows designing hardware prefetchers preserving
time predictability by construction, which we show to deliver large performance gains,
both on the average and worst-case, thus motivating the adoption of those features
in future CRTES.
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Chapter 9

Timing anomalies

9.1 Introduction

Dealing with timing anomalies, as explained in Section 2.1.5, is mandatory to enable
and support the analysis of complex computing platforms. This applies to both Static
Timing Analysis (STA), for which timing anomalies have been deeply analyzed [78,
158], and Measurement-Based Timing Analysis (MBTA) (MBTA) [155], for which
instead timing anomalies have been totally neglected so far.

In this Chapter we promote a change of perspective, analyzing timing anomalies
in the context of MBTA. This is particularly relevant for the automotive domain,
where MBTA is the most widely used timing analysis technique. In particular, our
contributions are:

1. We analyze timing anomalies in MBTA, concluding that anomalies cannot be
handled as they are for STA. In particular, we observe that the challenges they
bring to MBTA are not related to analysis (i.e. model) assumptions, but rather
to the generic difficulty for the user to exercise sufficient control of all factors
with bearing on timing during program runs in the analysis phase. Based on
this observation, we tackle, for the first time, the challenge posed by timing
anomalies on MBTA of high-performance processor designs, by analyzing their
impact on Worst-Case Execution Time (WCET) estimates.

2. With emphasis on the probabilistic variant of MBTA, called MBPTA [5], we
show how the use of those hardware features that can potentially cause timing
anomalies can still be safely enabled in critical real-time systems. To that
end, we leverage the use of time-randomized hardware designs (e.g. random
placement and replacement caches, random arbitration in shared resources)
that make the occurrence of timing anomalies probabilistic.

3. We instantiate the aforementioned key principles on a particular example of a
type of timing anomaly as it may happen on a commercially available time-
randomized processor design.
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9.2 Timing Anomalies in MBTA

MBTA approaches have not considered timing anomalies as a concern so far, since
the usual standpoint from which practitioners are used to consider timing anomalies
is specifically that of STA. In our opinion, instead, some form of timing anomalies
are to be considered relevant even in the scope of MBTA.

It is worth noting that, in the context of end-to-end program analysis, timing
anomalies can happen due to hardware resources having variable latencies. Consider-
ing a sequence of instructions with fixed input data, accessing a fixed set of hardware
resources, the sequence can lead to different execution times only in response to differ-
ent initial processor states, inducing a variable response time (jitter) of a subset of the
involved hardware components. While it is true that anomalies do not explicitly break
any MBTA assumption, their potentially erratic impact on timing may jeopardize the
fundamental conditions for measurement-based methods. For this reason, anomalies
in MBTA need to be understood from the perspective of the representativeness of
analysis-time observations.

Representativeness covers whether the measurements performed in the test cam-
paigns during the analysis phase capture the worst-case relevant effects that can
arise during system operation. Timing anomalies have the potential to distort the
correspondence between analysis and operation conditions.

Observation 1. With MBTA, dealing with timing anomalies builds on the ability
to argue whether they have been triggered or not when running a program; whether
they can actually occur during system operation; and whether their observed impact
during analysis tests upperbounds the impact they may incur during operation.

Figure 9.1, compares different ways in which timing anomalies – referred to as TA
in the figure – can be attacked under the STA and MBTA paradigms. Similarly to
STA, analyzing a system that can be proved to be timing-anomaly free would be the
most favorable scenario. Unfortunately, assessing the lack of timing anomalies is not
realistically affordable in the general case, and can only be possibly achieved with
highly-specialized hardware designs [99].

Interestingly, modeling timing anomalies is not a challenge for MBTA. The chal-
lenge instead is to trigger anomalies during analysis tests and to size their impact,
as they can manifest during operation. Theoretically, users are required to design
experiments that capture the potential increase in execution time they entail.

Dealing with anomalies poses a challenge analogous to the one faced by end users
to trigger specific low-level hardware interactions, since the user lacks explicit control
knobs over them. To conclude the parallelism with STA, from the MBTA perspective,
a relevant classification of timing anomalies does not focus on whether an anomaly
has k-bounded versus domino effects but rather on controllability, which refers to
whether or not an MBTA user is able to trigger them in a controlled way. Next, we
look into timing anomalies from the perspective of MBTA, in the specific context of
Measurement-Based Probabilistic Timing Analysis (MBPTA)-compliant hardware.
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Figure 9.1: STA and MBTA management of Timing Anomalies

9.3 Timing Anomalies in MBPTA

Timing anomalies in time-deterministic processors may potentially occur systemati-
cally. This is not an issue for the way STA deals with anomalies as the relevant aspect
is whether an anomaly can either happen (and it is always assumed to) or not. Under
MBTA, instead, the frequency at which an anomaly occurs has a variable impact
on the execution time, which in turn could challenge the reliability of the WCET
estimate. This concern is partially cured under MBPTA. In fact, for MBPTA, and in
particular time-randomized hardware, certain timing events exhibit a random behav-
ior, which can potentially break systematic patterns and allow building probabilistic
arguments on the appearance of timing anomalies.

Observation 2. Time-randomized processors (e.g., implementing caches [92] and
buses [82] with time randomization properties), used in combination with MBPTA,
trigger a number of random timing events that potentially break systematic timing
behavior.

As a result, the occurrence of some timing anomalies becomes inherently proba-
bilistic. Moreover, the accumulation of timing anomalies occurs with decreasing prob-
abilities. In fact, a given event potentially triggering an anomaly, necessarily repeats
(chain of occurrence) with decreasing probabilities so that execution time variations
end up being of lower magnitude than those produced by randomized hardware re-
sources themselves. We will consolidate this argument while reasoning on a practical
example in Section 9.4.

However, MBPTA and randomization do not prevent that some other timing
anomalies may be systematically triggered, because they depend on non-time-randomized
sources of execution time variation. Under some conditions, however, also these
anomalies can be conveniently controlled.

9.3.1 Taxonomy of Timing Anomalies in MBPTA

In MBPTA-compliant processors, some individual sources of jitter (i.e. resources with
variable latency) are controlled in a way that they are upper-bounded, whereas others
– those with highest impact in WCET estimates – are time-randomized (e.g., cache
memories, bus arbitration, etc.). These different sources of jitter have been analyzed
in a LEON-like processor, currently assessed for future space missions, as part of the
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Figure 9.2: Processor architecture considered in this analysis. IL1, DL1 and L2 stands
for first-level instruction and data caches; and L2 cache

PROXIMA Project [128].
Observation 3. Constant execution time events cannot trigger any timing

anomaly (but can propagate them).
Those resources exhibiting a constant timing behavior exhibit the same behavior

at analysis and operation, regardless of any execution condition. They cannot trigger
any timing anomaly but cannot compensate nor prevent the effects of other anomalies
potentially triggered.

Observation 4. Random events whose execution time distribution does not
change between analysis and operation, will exhibit probabilistically boundable tim-
ing anomalies.

If the response time distribution of the resource remains unaltered between analy-
sis and operation, then the occurrence and impact of timing anomalies can be related
to the probability distribution observed at analysis. MBPTA is still responsible for
guaranteeing representativeness of the observations.

From the observations above, we introduce a taxonomy of timing-anomaly sce-
narios for randomized architectures. Each hardware resource can be characterized as
potentially triggering:

1. No timing anomalies. Fixed-latency timing events exhibit the same behavior
at analysis and during operation. Hence, they trigger no timing anomaly. This
classification applies to deterministic resources if the deterministic upper bound
is enforced (by hardware means) even during operation.

2. Probabilistically-controlled timing anomalies. Some timing anomalies
may be triggered by random events. Thus, they will be observed with a given
probability in analysis runs. A rigorous MBPTA application [5] will guarantee
that their timing impact is properly captured in the execution time measure-
ments used to derive the Probabilistic Worst-Case Execution Time (pWCET)
estimate, as long as their probabilistic behavior is preserved from analysis time
to operation.

3. Potentially uncontrolled timing anomalies. Some timing anomalies may
be triggered due to latent systematic effects, or due to probabilistic events
whose probability distribution differs between analysis time and operation.
Thus, their timing impact may not be properly captured in the execution time
measurements used to feed MBPTA. As a result, the end user needs to account
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for their effect without explicit support from the hardware or the timing anal-
ysis tool, which is a cumbersome task. In general, end users lack the degree of
control needed to determine the impact of those anomalies and whether their
impact has been properly accounted for, thus decreasing the quality of WCET
estimates.

9.4 Dealing with Timing Anomalies

To illustrate how to deal with timing anomalies on an MBPTA-compliant hardware
design, we use as example the platform described in Section 3.5. The main timing
characteristics of such processor are illustrated in Figure 9.2 and further discussed
in Section 9.5. We identify a number of sources of jitter – and so potential sources
to trigger timing anomalies – in the processor design: FDIV/FSQRT operations, cache
memories and randomly arbitrated resources. In the next sections we review the
potential timing anomalies that could be triggered in such design, and discuss how
jittery resources need to be controlled to avoid harmful (i.e., potentially uncontrolled)
timing anomalies.

9.4.1 Upperbounding Variable-Latency Units

In our reference processor, FDIV and FSQRT incur jitter depending on the values op-
erated. Following existing solutions for STA, we force these operations to take their
worst latency [124], removing the jitter with minimum impact on average perfor-
mance.

9.4.2 Priority Inversion in Cache Access

The requests sent to each cache (IL1, DL1 and L2) are served in arrival order. All
requests to IL1 (DL1) are sent from the same pipeline stage, fetch (execution), and
hence, the request arrival order matches the program order.

Let us assume instructions ix and iy are executed in program order, i.e., x < y,
then all the requests these instructions can generate to IL1 (ix,IL1, iy,IL1) and DL1
(dx,DL1, dy,DL1) will be served in program order. However, this does not apply to
L2, since the requests sent to L2 can be generated by instructions in two different
stages (fetch and execute), which can generate inversion i.e. the instruction request
of the second instruction iy,L2 is served by the L2 before the data request of the first
instruction dx,L2. In case both requests to L2 are generated in the same cycle, dx,L2
is prioritized.

When a memory request misses in a private L1, it needs to get access to the
bus shared across the 4 cores to reach the L2 cache. Several MBPTA-compliant time-
composable arbitration policies have been proposed [82], including round-robin policy.
With this policy, we guarantee that, in a 4-core processor, each core will be able to
access the shared L2 cache 1 out of every 4 time slots. Hence, the worst latency to

131



9. TIMING ANOMALIES

DL1 

IL1 L2 miss 

IL1 L2 miss 

L2 miss C
as

e 
1

 
C

as
e 

2
 

0 12 1 2 3 4 5 6 7 8 9 10 11 13 14 

fetch 

memory 

L2 hit 

fetch 

memory 

Bus 

Bus 

DL1 Bus 

Bus 

Figure 9.3: Priority inversion causing a timing anomaly

reach the L2 cache is 4 time slots minus 1 cycle (if requests can only be sent the first
cycle of the slot).

Given this bus behavior, we can see in Figure 9.3 an example of a timing anomaly
that occurs due to priority inversion. MBPTA-compliant time-composable arbitra-
tion policies impose accounting for worst-case contention during analysis, regardless
of whether the arbitration policy is deterministic (e.g. round robin) or randomized
(e.g. Random Permutations (RP) [82]). Either case, this makes that the delay expe-
rienced to access the bus may be typically high during analysis (case 2). Then, during
operation, for efficiency reasons (e.g. average performance, power, etc.), worst-case
contention is not enforced and requests experience actual contention, which will be
typically lower, thus increasing the chances of experiencing timing anomalies (case
1).

In general, depending on the observed behaviours at analysis time (AT) and op-
eration time (OT), we have two possible scenarios: (a) Priority inversion happens
systematically at AT, or with the same (or higher) probability at AT than during
OT. And (b) Priority inversion does not happen at AT, or occurs with lower prob-
ability than during OT. Scenario (a) is covered by MBPTA since execution time
measurements during analysis account for worse conditions than those during op-
eration [5]. In scenario (b), however, timing anomalies have not been accounted for
properly, typically because their occurrence has been prevented (or heavily put down)
as a side-effect of the analysis configurations and setups.

In scenario (b), the potential impact on timing that events not captured at AT can
have later during OT needs to be understood and gauged. We do so by leveraging on
the probabilistic nature of the enhanced LEON3 MBPTA-compliant platform, where
random placement and replacement caches are used. In the particular case of the
cache-access-inversion timing anomaly, we can reason on the probability of occurrence
of its root causes: besides the bus delay, a cache miss in L2 – which has a fixed latency
– is causing the eviction of a cache line that is accessed by an instruction sufficiently
close in the pipeline. With random caches [92] the probability of an L2 miss to evict
the useful cache line referenced by the DL1 miss is bounded by the number of cache
sets (SL2) and ways (WL2) in L2, as shown in Equation 1 (Pevict). To upperbound
the overall timing effect, we use the number of L2 misses potentially triggering the
anomaly, which can be in general obtained by exploiting accurate hardware counters
(e.g., L2_MISS_COUNT) as provided by the standard debug support unit (DSU). The
total L2 miss count is a conservative overapproximation as it includes L2 misses that
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can never cause an anomaly by construction, or that were already triggering timing
anomalies at AT. Equation 1 derives an upperbound to overall effects of cache-access-
inversion anomaly (∆) on a given program by collecting the cost of each potential
anomaly, which is in turn bounded by the cost of the additional L2 cache miss.

∆ ≤ 1

SL2 ·WL2︸ ︷︷ ︸
Pevict

× L2_MISS_COUNT× L2_MISS_LATENCY (9.1)

In the particular case of our target processor, the L2 cache is a 512KB 4-way
32B/line cache [71]. Moreover, since the L2 cache is partitioned across the 4 cores,
each one receives exactly 1 cache way, which means that Pevict ≤ 1

4096·1 ≈ 0.000244.
The cost of an additional L2 cache miss is 28 cycles in the target platform.

The probability of occurrence of the anomaly (per-se objectively low), rapidly
decreases when we consider for example the repeated execution of the same set of
instructions within a loop since accesses in the following iterations will likely hit in
IL1 and DL1. Looking at the specific anomaly, we also observe that both L2 accesses,
instruction and data ones jointly contributing to the anomaly, must be initiated by
instructions that can actually suffer from some form of inversion in the pipeline, which
is only 7-stages in the LEON. As a result, the effect of an anomaly cannot propagate
outside of its pipeline window. Borrowing the terminology used in the scope of static
analysis, this anomaly can be classified as boundable.

9.4.3 Priority Inversion due to Initial Cache State

A similar priority inversion could occur due to the initial cache state. While worst-
case initial state is enforced during analysis (e.g. empty write-through caches and
useless dirty contents in write-back ones), some useful contents may be stored in
cache during operation so that some accesses become hits. If those hits lead to
timing anomalies, they do it with the same (very low) probability described before.
Moreover, by turning misses into hits, execution time is lower and hence, less likely
to be close to the WCET.

Equation 1 provides a parametric bound that depends on the number of misses
generated by a program. In practice, however, the fact that the probability of occur-
rence of such anomalies is low and rapidly decreasing (when considering sequences of
instructions) makes it arguable whether and to what extent they do actually pose a
threat to the trustworthiness of pWCET bounds.

9.4.4 Managing Arbitration Effects on Requests

As shown in the previous section, the bus and memory controller arbitration policies
can also impact timing anomalies. In particular, they determine the latency to serve
L2 and memory requests and, indirectly, the order in which requests are served, which
can generate a timing anomaly. However, these components process requests in order
in the LEON processor, so they cannot produce further anomalies by themselves.
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Table 9.1: Timing anomalies: identical distribution test results with timing anomalies
(and 10X timing anomalies) w.r.t. no timing anomalies

P-value P-value
timing anomalies 10X timing anomalies

a2time 1.0000 0.0009
basefp 1.0000 0.9987
bitmnp 1.0000 0.0196
cacheb 1.0000 0.0072
canrdr 1.0000 0.0010
matrix 1.0000 0.0776
pntrch 0.9995 0.0001
puwmod 1.0000 0.0546
rspeed 0.9689 0.0000
tblook 1.0000 0.9999
ttsprk 1.0000 0.9999
% PASSED 100% 44.4%

9.5 Evaluation

We use the Hardware Description Language (HDL) implementation of the NGMP
processor described in Section 3.5, as well as the EEMBC [127] benchmarks (Sec-
tion 3.7).

9.5.1 Impact of Timing Anomalies on Execution Time

In order to assess the impact of timing anomalies on execution time distributions, we
perform the following experiment: from each execution time trace (i.e. execution time
measurements for a given benchmark) we produce an additional execution time trace
by decreasing each execution time by the expected upper-bound number of timing
anomalies (IL1 misses divided by WL2 · SL2 = 4, 096) multiplied by the upper bound
timing impact of a timing anomaly (28 cycles). The number of timing anomalies is
obtained as the quotient of dividing the number of misses by 4, 096, and it is increased
by 1 with a probability matching the remainder divided by 4, 096. For instance, if a
program runs for 2,000,000 cycles and experiences 10,000 IL1 misses, the quotient of
10,000
4,096

is 2 and the remainder 1, 808, so we decrease its execution time by 56 cycles with
probability 4,096−1,808

4,096
and by 84 cycles with probability 1,808

4,096
. Then we compare the

those execution distributions against the original ones with the Kolmogorov-Smirnov
two-sample identical distribution test with a significance level of α = 0.05 [53]. This
test returns a P-value in the range [0, 1] that indicates that the identical distribution
hypothesis cannot be rejected if the P-value is higher than 0.05.

The results of the test are shown in Table 9.1. As shown in the second column, even
if the upper bound number of timing anomalies is applied with their upper bound
timing impact, execution time distributions cannot be proven different. We have
further multiplied the number of timing anomalies by a factor of 10, and then some
benchmarks failed the test as shown in the third column. We have tried to correlate
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Table 9.2: Timing anomalies: average execution time (cycles) and minimum, average
and maximum number of IL1 misses

Execution Time IL1 misses
Average Stdev Minimum Average Maximum

a2time 334,854,930 918,841 626 30,336 543,753
basefp 944,861,123 41,471 506 955 59,143
bitmnp 870,384,078 387,726 452,891 527,722 636,748
cacheb 71,522,108 47,282 414 428 450
canrdr 132,303,886 115 332 338 353
matrix 1,940,292,855 55,143 71,048 74,097 89,117
pntrch 269,247,000 99 328 333 348
puwmod 87,946,616 224 409 421 436
rspeed 74,743,468 43 291 296 309
tblook 343,703,627 539,749 755 22,491 273,231
ttsprk 154,567,711 7,811 685 735 806

test pass/fail results with the IL1 miss distribution or the execution (see Table 9.2),
but no clear correlation has been identified. This indicates that keeping the same
execution time distribution (or not) directly depends on the particular distribution
regardless of the execution time average or standard deviation. Still, in the case of
the upper bounded timing anomalies (not increased by 10X) all programs obtain the
same execution time distribution, so timing anomalies can be regarded as irrelevant.
For the 10X case, since 10X timing anomalies lead to different distributions, this may
affect the quality of the pWCET estimates. Next we analyze pWCET estimates in
detail.

9.5.2 Impact of Timing Anomalies on pWCET

We have studied the impact that execution time distributions have on pWCET esti-
mates. For that purpose we compute pWCET estimates at an exceedance threshold
of 10−12 per run with MBPTA [5], although the same observations hold for other
values. First, we have computed those pWCET estimates and computed confidence
intervals for a significance level of α = 0.05, thus meaning that the true pWCET
value should fall in that interval with 95% confidence.

Since it is virtually impossible determining whether timing anomalies occurred
as well as preventing or enforcing them in a real processor, we perform a statistical
assessment of the potential impact of timing anomalies on execution time distribu-
tions. In particular, we perform the following experiment: from each execution time
trace we produce an additional execution time trace by decreasing each execution
time by the expected upper-bound number of timing anomalies (IL1 misses divided
by WL2 · SL2 = 4, 096) multiplied by the upper bound timing impact of a timing
anomaly (28 cycles). The number of timing anomalies is obtained as the quotient of
dividing the number of misses by 4, 096, and it is increased by 1 with a probability
matching the remainder divided by 4, 096. Then we compare those execution distri-
butions against the original ones with the Kolmogorov-Smirnov two-sample identical
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distribution test with a significance level of α = 0.05. This test, which returns a
P-value in the range [0, 1], indicates that the identical distribution hypothesis cannot
be rejected when P-value > 0.05.

In order to compare pWCET estimates with and without timing anomalies, we do
so in relative terms, by computing the ratio between the difference of both pWCET
estimates and the actual pWCET estimate obtained without timing anomalies. Dif-
ferences are completely negligible. The highest differences correspond to a2time and
tblook (0.007% and 0.004% respectively), with most of them below 0.001%. We have
further compared the confidence intervals to assess how much they overlap. This com-
parison is depicted in Figure 9.4 (left bar in each pair), where we can see that the
overlap is huge, being always above 88% (95.5% on average) despite having very nar-
row confidence intervals in some cases. Therefore, pWCET estimates and execution
time distributions cannot be proven different. Hence, the effect of timing anomalies
on the overall timing is much lower than that already incurred by the variability of
finite random samples.

We have repeated the very same analysis in the case where the upper-bounded im-
pact of timing anomalies is further increased by a 10X factor. The difference between
pWCET estimates with and without timing anomalies (with an impact increased by
10X) is very small. In particular, the difference is always below 0.1% and below 0.01%
in most of the cases. In terms of confidence intervals, Figure 9.4 (right bar in each
pair) shows that they overlap in all cases, so we cannot reject the hypothesis that
both execution time distributions lead to the same pWCET estimate. However, we
see that the relative overlap in the cases of pntrch and rspeed is comparatively low
(25% and 34% respectively). This effect is produced by the extremely narrow con-
fidence intervals (186 and 79 cycles respectively), so, in practice, pWCET estimates
just differ by few tens of cycles.

9.6 Related Work

Different timing analysis strands deal with timing anomalies in the context of safety-
related real-time systems [105, 78, 158, 30]. Among those works, an interesting classi-
fication is provided in [158], where processors are broken down into several categories
depending on whether they are free of timing anomalies (ideal case), whether they
have timing anomalies whose impact can be upper bounded with limited pessimism
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(good case), or whether they can trigger domino effects that might lead to high ex-
ecution time impact (challenging case). Existing MBPTA-compliant processors are
deemed as free of timing anomalies or have left their consideration for future work.
This includes single [92] and multi-core [82, 153].

9.7 Conclusions

Timing anomalies can affect the quality of WCET estimates in the increasingly com-
plex hardware used in critical real-time systems. We provide, for the first time, a
definition of timing anomaly for MBTA that differs from that used in STA. We have
also made an analysis of how to design hardware and collect measurements to limit
– or even remove – the impact of certain timing anomalies for MB(P)TA. With an
MBPTA-compliant RTL processor implemented in a FPGA, we assess the influence
of timing anomalies on WCET estimates and show that their impact falls within the
range of noise w.r.t. the own execution time variability.
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Chapter 10

Conclusions

10.1 Contributions

The work carried out as part of this Thesis advances the state of the art of the
critical real-time systems domain in several aspects. The main challenges tackled
are the increase of guaranteed performance of multi-core processors, enabling of the
use of reliability mechanisms on low level caches (those closest to the core) and the
improvement of the confidence in Measurement-Based Probabilistic Timing Analysis
(MBPTA).

These challenges have been tackled in the different contributions of the Thesis,
which are the following:

• Our first contribution focuses on placement policies for multi-level caches. The
solution sought takes into account the guaranteed performance, cost and com-
plexity of the proposal and enables time composability in caches. Our pro-
posal smartly combines existing placement policies so that composability is
kept, which is key to reducing development cost and time, while preserving
high performance and low complexity.
• Our second contribution focuses on MBPTA-compliant replacement policies

that improve the guaranteed performance of the already existing Random Re-
placement (RR). We build on RR and Non-Most Recently Used (NMRU) with
convenient properties such as limited pathological cases and preservation of data
locality respectively. Moreover, we compare our policies with other policies like
Least Recently Used (LRU) and Binary Tree (BT). We focus on two specific
pathological scenarios that make some policies such as LRU and RR have bad
performance. Our proposed solutions, Random Permutations (RP) and Non-
Most Recently Used Random Permutations (NMRURP), do not suffer from
such pathological scenarios while enabling MBPTA.
• Our third contribution focuses on reducing the contention in shared last-level

caches. Our focus is to reduce average guaranteed execution times while reduc-
ing energy consumption and reducing the coherence messages and complexity.
To that end, we propose a hybrid write technique that uses (1) write-back for
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private data used by just one core, thus greatly reducing off-core accesses and
hence, contention in the access to shared resources, and (2) write-through for
data shared amongst cores, thus keeping the complexity to guarantee cache
coherence low.

• We also focus on another important consideration for critical real-time systems,
specially in some domains such as space and avionics where transient fault rates
can be high due to radiation, thus requiring redundancy to mitigate potential
errors. The use of write-back policies in low level caches (e.g. L1) challenges
the cycle times of the memory pipeline stages due to the time needed to check-
/generate Error Correction Codes (ECC). We consider several solutions to this
problem, such as decreasing the frequency, pipelining ECC computation and the
like, and propose adding an extra ECC stage and using a look-ahead technique
to advance the computation of ECC to remove the cost of the extra stage most
of the times. Our technique has small performance degradation w.r.t. unreliable
designs while allowing the use of write-back in L1 caches.

• Our fifth contribution is a framework for enabling hardware prefetching in
critical real-time systems. Hardware prefetching is commonly used in high-
performance processors, but is not used in critical real-time systems since it is
challenging to obtain timing guarantees. Our contribution is a formal frame-
work that gives guarantees on the reduced execution times provided by a system
with caches and a prefetcher, and provides the properties needed for a prefetcher
to fit critical real-time systems requirements.

• The last contribution of this Thesis is about the definition, classification and
management of timing anomalies in Measurement-Based Timing Analysis (MBTA).
Timing anomalies, although studied extensively in Static Timing Analysis (STA),
have not been studied in MBTA. We provide a definition of timing anomalies for
MBTA as well as a classification of the types of timing anomalies for MBPTA-
compliant processors. This first exploration of TA for MBTA is key to enable
the use of these processors in a safe manner.

10.2 Impact

The design of high-performance multicore systems delivering timing guarantees is
a real challenge that critical real-time industry faces when developing and bringing
a product to the market. The work done in this Thesis eases this process in the
following aspects:

The use of MBPTA can help lowering the costs of verification and validation of
critical real-time systems, which are mandatory for products in this market. Since
our proposed techniques are mostly based on MBPTA and focus on increasing the
guaranteed and average performance delivered by processors for those systems, their
addition to commercial processors should, in most cases, reduce the timing analysis
costs and time when compared to solutions that use other Timing Analysis techniques,
as well as increase confidence on the timing guarantees obtained.
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The work done related to redundancy in Section 7 is a real challenge that Cob-
ham Gaisler must address when designing the next generation of the LEON processor
(LEON 5). While the actual design is proprietary and unknown to the general public,
our proposal could serve as a starting point to solve this problem by preserving reli-
ability levels with far lower performance cost than available solutions. Our proposal
could also serve similar chip designs that are also challenged with this problem.

The contents of this Thesis relate mainly with two European Projects:

• PROXIMA: The aim of the PROXIMA project was to provide industry ready
software timing analysis using probabilistic analysis for many-core and multi-
core critical real-time embedded systems and to enable cost-effective verification
of software timing analysis including worst case execution time. The work in
this Thesis has been closely related with the findings obtained in the PROXIMA
project. For instance, several placement and replacement policies proposed in
PROXIMA (random placement, RR) have been used as the base to develop the
contributions in Chapters 4, and 5. Furthermore, the setup used both in the
simulator and in the Hardware Description Language (HDL) were developed in
this project.
• SuPerCom: In the same line, the work on this Thesis has served as a basis

for future techniques that will be explored in SuPerCom, an ERC consolida-
tion grant that explores the combination of high-performance hardware and
advanced statistics (including machine learning) for the critical-real time in-
dustry. This work will be done in the same research group where the Thesis
has been developed, and as such, the techniques and proposals that have been
developed in this Thesis will be in many cases the basis upon which to build
new techniques in SuPerCom to improve guaranteed performance.

Last but not least, the work in this Thesis also contributes to answering key
research challenges in the critical real-time domain, thus becoming the basis for future
research:

• Prefetchers: Although software prefetching has been previously used in Crit-
ical Real-Time Embedded Systems (CRTES), there have been no proposals for
a hardware prefetcher. This first step could enable multiple future research on
the topic either improving the prefetching technique itself or iterating on the
methodology used to enable the use of the prefetcher.
• Timing anomalies: Timing anomalies have been deeply studied in the context

of STA, but this is the first work that defines and classifies timing anomalies
in the context of MBTA. Future work could find other examples of timing
anomalies in MBTA and propose how to tackle them, increasing the confidence
in the Worst-Case Execution Time (WCET) estimates.

10.3 Future Work

The results and contributions of this Thesis can be further extended in several direc-
tions. We list some of these directions, presented in order of feasibility, from short
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term to long term.
Similar to the work done on replacement policies, still several already existing

high-performance techniques are unexplored. For instance, other replacement policies
for last-level shared caches such as RRIP [79] or BRRIP [79] could be adapted to be
MBPTA compliant, thus improving guaranteed performance. Work related to this
area will be more critical with future multi-cores that will increase the core count,
making shared last-level caches’ performance crucial for overall system performance.

Related to the previous point, contention in last-level caches is going to be a
more relevant challenge with the increase of core counts. More intelligent coherence
techniques that minimize the movement of data across the memory hierarchy will
also be crucial to performance. In the same line of the previous research direction,
more advanced write policies and coherence policies for complex NoCs should be
investigated, such as limiting the timing impact of coherence management of mesh-
based many-cores. While adapting write and coherence policies to be efficient and
safe in critical real-time systems can be a hard task, the potential improvement makes
it an interesting topic to research.

In terms of hardware prefetching, the prefetching technique itself that was used
in this Thesis was relatively simple, since the main challenge was to be able to enable
prefetching. Abundant solutions on high-performance prefetchers could be adapted to
fit in a more relaxed version of our proposed framework. Future work could improve
the prefetcher proposed in this Thesis to provide higher guaranteed performance with
limited complexity and costs.

An even more challenging research area are systems comprising CPU and GPU
on the same die (System on a Chip). These setups are becoming increasingly pop-
ular due to the performance and power needs of industries such as the automotive
one. Autonomous driving is gaining importance in both the academic and industrial
communities due to its potential impact on people’s lives. However, several of its ma-
chine learning algorithms (for instance for object detection) require huge computing
resources that can be satisfied by GPUs. Thus, these systems will be key in bringing
these features to consumers. However, the use of GPUs in critical real-time systems
is in its infancy. The difference in the computing paradigm of CPUs vs GPUs, more
focused on throughput than latency, can make it challenging to obtain timing guaran-
tees. Several techniques developed in this Thesis could be used as a starting point for
GPUs, including at least write policies, prefetch schemes and management of timing
anomalies.
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