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Abstract

The memory system is a significant contributor for most of the current challenges in
computer architecture: application performance bottlenecks, and operational costs
in large data-centers as HPC supercomputers. With the advent of emerging memory
technologies, the exploration for novel designs on the memory hierarchy for HPC
systems is an open invitation for computer architecture researchers to improve and
optimize current designs and deployments. System simulation is the preferred approach
to perform architectural explorations due to the low cost to prototype hardware sys-
tems, acceptable performance estimates, and accurate energy consumption predictions.
Despite the broad presence and extensive usage of system simulators, their validation
is not standardized; either because the main purpose of the simulator is not meant to
mimic real hardware, or because the design assumptions are too narrow on a particular
computer architecture topic.

This thesis provides the first steps for a systematic methodology to validate system
simulators when compared to real systems. We unveil real-machine’s micro-architectural
parameters through a set of specially crafted micro-benchmarks. The unveiled pa-
rameters are used to upgrade the simulation infrastructure in order to obtain higher
accuracy in the simulation domain. Next, to evaluate the accuracy on the simulation
domain with respect to the real machine, we propose the retirement factor, an extension
to a well-known application’s performance methodology. Our proposal provides with a
new metric to measure the impact of simulator’s parameter-tuning when looking for
the most accurate configuration for the simulator’s parameters. We further present the
delay queue, a modification to the memory controller that imposes a configurable delay
for all memory transactions that reach the main memory devices. Evaluated using the
retirement factor, the delay queue allows to identify the sources of deviations between
the simulator infrastructure and the real system.

Memory accesses directly affect application performance, both in the real-world
machine as well as in the simulation accuracy. From single-read access to a unique
memory location up to simultaneous read/write operations to a single or multiple
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memory locations, HPC applications memory usage differs from workload to workload.
A property that allows to glimpse on the application’s memory usage is the workload’s
memory footprint. In this work, we found a link between HPC workload’s memory
footprint and simulation performance.

Actual trends on HPC data-center memory deployments and current HPC appli-
cation’s memory footprint lead us to envision an opportunity for emerging memory
technologies: to include them as part of the reliability support on HPC systems.
Emerging memory technologies such as 3D-stacked DRAM are getting deployed in
current HPC systems but in limited quantities in comparison with standard DRAM
storage; therefore, they are suitable for low memory footprint HPC applications. We
exploit and evaluate this characteristic enabling a Checkpoint-Restart (CR) library to
support a heterogeneous memory system deployed with an emerging memory technology.
Our implementation imposes negligible overhead while offering a simple interface to
allocate, manage, and migrate data sets between heterogeneous memory systems.
Moreover, we showed that the usage of an emerging memory technology it is not a
direct solution to performance bottlenecks; correct data placement and crafted code
implementation are critical when comes to obtain the best computing performance.

Overall, this thesis provides a technique for validating main memory system simu-
lators when integrated in a simulation infrastructure and compared to real systems. In
addition, we explored a link between the workload’s memory footprint and simulation
performance on current HPC workloads. Finally, we enabled low memory footprint
HPC applications with resilience support while transparently profiting from the usage
of emerging memory deployments.



Contents

Abstract vi

1 Introduction 1
1.1 Current challenges for Memory Systems in HPC . . . . . . . . . . . . . 2
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 System Simulation for Memory Exploration . . . . . . . . . . . 4
1.2.2 Opportunities for Emerging Memory Technologies . . . . . . . . 4

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State Of The Art 7
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 CPU Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Memory Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Hardware Performance Counters . . . . . . . . . . . . . . . . . . . . . . 14
2.5 CPU Micro-benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Memory Micro-benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Validation in the State Of The Art . . . . . . . . . . . . . . . . . . . . 17
2.8 Decision Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Experimental Methodology 20
3.1 Hardware Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Micro-benchmark Design 26
4.1 Micro-benchmarks Proposal . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Instruction Latency and Port Utilization . . . . . . . . . . . . . . . . . 29

4.2.1 Micro-benchmark Evaluation . . . . . . . . . . . . . . . . . . . . 30
4.3 Memory Hierarchy Discovery Characterization . . . . . . . . . . . . . . 32
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Performance Evaluation 35
5.1 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 SPEC CPU2006 Performance Evaluation . . . . . . . . . . . . . . . . . 37



Contents ix

5.3 SPEC CPU2006 Cache Miss Analysis . . . . . . . . . . . . . . . . . . . 39
5.3.1 SPEC CPU2006 integer set . . . . . . . . . . . . . . . . . . . . 40
5.3.2 SPEC CPU2006 floating-point set . . . . . . . . . . . . . . . . . 41

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Top-Down Method and the Retirement Factor 44
6.1 The Top-Down Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Top-Down Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Top-Down for Micro-architecture Comparison . . . . . . . . . . . . . . 48
6.4 The Retirement Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 The Delay Queue and Top-Down Evaluation 53
7.1 The Delay Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 SPEC CPU2006 Analysis Using Top-Down and the Retirement Factor . 55
7.3 Impacts of Hardware Prefetchers and Address Translation . . . . . . . 57
7.4 Memory Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.4.1 Real-World Memory Footprint and HPC Data Center Deployments 62
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Opportunities For Emerging Memory Systems: Check-pointing in
Heterogeneous Systems 65
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 System Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2.1 libc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2.2 Computer Topology and System Libraries . . . . . . . . . . . . 68
8.2.3 Memory Allocation . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.2.4 Checkpoint-Restart Libraries . . . . . . . . . . . . . . . . . . . . 71

8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.4.1 FTI Integration with AML . . . . . . . . . . . . . . . . . . . . . . 75
8.4.2 FTI’s Native Implementation . . . . . . . . . . . . . . . . . . . 76

8.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.5.2 Sensitivity to Code Implementation and Data Location . . . . . 78
8.5.3 Implementation Impacts on FTI_Checkpoint() . . . . . . . . . . 80
8.5.4 Impacts on Real-World HPC Applications . . . . . . . . . . . . 81

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Conclusions 85
9.1 Impacts of System Simulation . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Opportunities for Emerging Memory

Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



Contents x

A Instruction Latencies 89

References 103

List of Figures 119

List of Tables 121



CHAPTER 1

Introduction

Supercomputers, also known as High Performance Computing (HPC) systems, had
become a technology pillar of our society’s lifestyle. Governments and enterprises
through public and private funded institutions, make available cutting-edge computing
systems to a multi-disciplinary group of researchers to solve the most challenging
defiances of humanity. For example, to find appropriate treatments and a possible
vaccine for the COVID-19 throughout the SARS-CoV-2 outbreak in Europe, researchers
from different scientific fields requested High Performance Computing (HPC) resources
that were quickly allocated from the European Union representatives [42].

A HPC system comprises large clusters of thousands of single-computers connected
through high-speed networks. Each one of these single-computers has a computing
performance peak, which combined adds to a greater computing power. The preferred
metric to measure computing power is Floating-point Operations per Second (FLOPS).
During the 2010’s decade, the performance of HPC systems went from a few peta FLOPS
(PFLOPS: 1015 FLOPS) up to hundreds of PFLOPS: as per June 2020, the fastest
supercomputer peaks at 415.5 PFLOPS [40]. It is expected that in 2021 the HPC road-
map will meet a tangible milestone: the power-on of the first exascale computer [5]1.
An exascale supercomputer is a system that could compute at least a single exaFLOPS
(EFLOPS): 1018 FLOPS. To reach the global peak computing power, every processor
in the supercomputer must maximize its throughput by minimizing idle time. Code
and data must be delivered to the processor at the right moment in the right shape.
Bringing and returning data into and out of the CPUs cores are challenging tasks that
are constantly revisited by the research community.

1There is a chance for China’s Tianhe-3 supercomputer will be powered-on in late 2020. On July
2020, China’s National University of Defense Technology (NUDT), the research institution that will
host the supercomputer, have not disclosed any further information.
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From the abstraction of an infinite tape in the formal definition of a Turing Machine
up to today’s banks of electronic memory cells, the memory subsystem is an inherent
piece of a computing system. Nowadays, the memory subsystem comprises a multi-level
memory hierarchy where the closest levels to the CPU have faster access time than
the subsequent levels. In fact, CPU silicon vendors built the first levels of the memory
hierarchy within the same silicon package; these levels are known as memory caches.
The memory that is found outside the silicon package is known as main memory.

The different access times on the memory hierarchy generally translates to idle
times for the processor. As the manufacturing processes had evolved, the processor
could compute data faster than what the memory subsystem could load or store. This
behavior was first named the memory wall [145] and studied in subsequent years [58].
Even with CPU micro-architectural techniques such as CPU’s Out of Order (OoO)
execution or data-prefetching as attempts to minimize processor’s idle time, sometimes
the processor must stall its execution until the memory transactions completes, making
the memory subsystem a major contributor to bottlenecks for computing performance.

1.1 Current challenges for Memory Systems in
HPC

Throughout the last 40 years, in a combination of cost and performance [77, 63], the
predominant technology used for main memory is DRAM. Unfortunately, application
requirements are pushing DRAM to its physical limits: as memory capacity rises, the
energy consumption also increases; the manufacturing miniaturization process affects
reliability and therefore security; and lastly, the DRAM protocol imposes bandwidth
limitations.

Memory capacity: The trend to have more data-intensive applications in the
HPC data-centers is growing [153, 118, 25]. To run such applications, larger amounts
of memory are required to be physically installed in the computing node. Due to
the internal structure of DRAM, which includes a capacitor that must be constantly
refreshed even when the memory cells are not used, the main memory is responsible for
an approximate two-thirds of the power consumption of a computing system [23]. This
represents a major challenge for scalability with respect to power efficiency in HPC
data centers: the more DRAM devices, the higher the power consumption will be.

Memory reliability and security: In an attempt to reduce the number of main
memory devices in a system, DRAM manufacturers have increased the density of
the memory cells within the same device; an approach that has strong consequences:
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uncorrected error rates in DRAM devices increase when manufacturing technology
scales down [150]. Researchers have analyzed the impact of the miniaturization process
finding serious implications for data integrity. Particularly, Rowhammer [84] is a
technique that exploits the electrical characteristics of DRAM devices leading to
critical system failures, or even computer security breaches [109]. Even with the
presence of Error Correcting Codes (ECC) logic and software-counter measures in HPC
computing systems [60], reliability in DRAM devices is still an open challenge.

Memory bandwidth: The inclusion of several cores into the same processing unit
allows HPC applications to exploit parallel processing; multiple cores might request
for several memory transactions at the same time. The amount of in-flight requests
in the memory hierarchy stresses the cache coherency protocol increasing the latency
per memory request. Each one of the processing cores within a processor is generally
designed so that their first and second levels of memory caches are not shared with
the other cores. The capacity of such caches holds from some KiB up to a few MiB.
Moreover, in HPC systems, a third level of cache (commonly referred as Last Level
Cache (LLC)), is found to be shared among all cores in the same processor package
with capacities that hold up to tens of MiB. In multi-threaded applications, the
Operating System (OS) schedules the execution of threads trough context switching.
If the HPC application wisely exploits memory locality and memory level parallelism,
the theoretical maximum bandwidth for DDR3 and DDR4 might be quickly achieved
while the CPU cores could still have idle cycles due to in-flight memory transactions.

Software interfaces: Furthermore, as the emerging memory technologies continue
to evolve, so must the software interfaces. A common rule from OS designers is
to provide the application developer with hardware-abstraction layers that require
little or no understanding of the underlying hardware. Unfortunately, for emerging
heterogeneous memory technologies, this is not always the case. Most HPC applications
are not prepared to support emerging memory technologies integration. Although
some important efforts have been made to bring automatic assignment for memory
resources to the applications, developers must know the low-level details of the memory
hierarchy to exploit emerging memory technologies; in most cases, this is a specialized
knowledge that ends up in a computer programmer specialist coding for this purpose.
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1.2 Thesis Contributions
System simulation is the preferred option for computer architecture researchers to
propose and evaluate novel designs to solve memory hierarchy challenges. This thesis
analyzes the implications of system simulation for memory exploration in HPC systems,
and proposes a methodology for their validation in regards of real systems. Moreover,
we analyzed the performance impact of enabling HPC applications to use an emerging
memory system.

1.2.1 System Simulation for Memory Exploration

Nowadays, system simulators require the modeling of sophisticated features found in
real-world computing platforms such as multi-core CPUs, different memory devices and,
the interconnects which couple them together. In this work we describe a methodology
to validate system simulators in regards to real-world hardware so that results are
suitable for memory exploration.

Using a real machine as the target system to mimic in simulation, we proposed
a set of micro-benchmarks to discover micro-architectural parameters on both, the
CPU and the memory hierarchy. Then, we integrated the obtained parameters on
the real machine into the simulator infrastructure so that the simulator infrastructure
behaves accordingly. After an initial evaluation, we discovered a discrepancy on
memory simulation, particularly on workloads with high memory usage. In order
to locate the source of the differences between the real machine and the simulator
infrastructure, we proposed an architectural modification to the memory controller
that inserts a delay of the memory transactions that goes to main memory. To
identify the impacts of such change, we further proposed an extension to a well-known
Cycle Per Instruction (CPI) stack analysis to evaluate different configuration scenarios.
Finally, we analyzed the effects of hardware prefetching and address translation. By
analyzing the address translation and virtual memory usage, our results pushed us to
further explore the memory footprint of HPC applications where we found a link with
simulation performance.

1.2.2 Opportunities for Emerging Memory Technologies

One way to overcome hardware reliability problems in HPC systems is done through
Checkpoint-Restart (CR). CR is a technique used in current HPC applications where
application’s data status is saved into a secondary storage so that in the event of a
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failure, the computation performed up to that moment along with current application’s
status is not completely lost.

Emerging memory technologies bring improvements to the memory hierarchy either
by decreasing access times, reducing power consumption, or some advances in the
manufacturing process. Although they are still deployed with in small capacity config-
urations making their usage suitable for low memory footprint HPC workloads. Given
these conditions, we envision an opportunity for these workloads to profit from actual
emerging memory technologies such as Multi-Channel DRAM (MCDRAM) integrations
found in some HPC data centers. To achieve this goal, we enabled a software CR
library to make usage of different memory technologies. If the memory footprint of
a given variable within the scope of the HPC application is compact enough to fit
into the current deployment of an emerging memory technology, we enable the HPC
application with the reliability support while transparently profiting from the usage of
such emerging memory technology.

1.3 Thesis Organization
This thesis is comprised by this introduction, 7 chapters, an appendix, and an overall
conclusion with the following structure:

• Chapter 2 describes the basic definitions and requirements for the simulation in-
frastructure. Moreover, introduces the state-of-the-art projects that we considered
relevant for this research.

• In Chapter 3, the experimental methodology is described along with a description
of the micro-architectural models for the real targeted HPC system as well as
the for the two system simulators we used in this work is presented.

• In Chapter 4, the design assumptions and the challenges of the proposed micro-
benchmarks for parameter-discovery in the real system CPU and the memory
hierarchy are described. The Chapter elaborates on the execution environment
for the micro-benchmarks in both systems (real and simulated). Lastly, the
Chapter describes the formal mechanism to extract experimental measurements.

• In Chapter 5, a classical approach to validate system simulators in the state-of-
the-art is presented. The results are discussed.

• In Chapter 6, we propose the usage of the Top-Down methodology for micro-
architectural comparison. Furthermore, we extend the methodology to allow us
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measure the differences among the real system and the simulator infrastructure.
This extension is named the retirement factor.

• In Chapter 7, we propose an architectural modification to the memory controller
to mitigate gaps in memory simulation. We further stretch-out our retirement
factor for two purposes: 1. we used our memory simulation mitigation to locate
the source of differences between the systems under test, and 2. to measure the
impact of hardware prefetchers and address translation in the real system when
compared to the simulation infrastructure. Lastly, we found a relation between
workload’s memory footprint and simulation performance.

• In Chapter 8, we conduct a case-study for low-memory footprint applications
to use heterogeneous memory systems while transparently enabling them with
reliability support.

• In Chapter 9, the conclusions and further directions of this work are presented.

• Finally, Appendix A extends Chapter 4 with a table that includes the upgraded
instruction latencies on the CPU simulator.



CHAPTER 2

State Of The Art

In the last years, the trend to propose new designs in computer architecture is steeply
changing. The tendency had been known as a new golden age in computer architec-
ture [64]. In the previous decades, the hardware tech giants were the only players in the
proposal’s stage. Year after year, Independent Hardware Vendors (IHVs) position their
latest products to the market so that everyone would have to consume their designs.
For computer architecture researchers, it meant a spiral where a product is reviewed
extensively, and new proposals arose to extend commercial designs. Unfortunately,
industrial hardware designs are not publicly available; researchers had to find an
open mechanism to reproduce results from actual hardware. Such restrictions had
driven researchers to work in system simulators that enable the community to test and
evaluate their designs, comparing them with real-world computers.

Memory Controller

CPU Silicon package

CPU Simulators Main memory simulators

Simulator’s interface

LLCL2

Core

L1Core

L1

DIMM

DIMM

DIMM

DIMM

Memory Silicon package

Figure 2.1 When CPU and memory simulators are coupled, the timings of the memory
request between the LLC and the memory controller could be easily overlooked or
misinterpreted.
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Figure 2.1 depicts two major domains of system simulators: CPU system simulators
include micro-architectural logic along with its memory caches while memory system
simulators integrate the memory controller logic and up to the passive memory devices
(the DRAM DIMMs). The significant difference between the simulator domain and
the real domain is the memory controller’s location. To the best of our knowledge, all
current HPC systems integrate the memory controller into the same silicon package
as the CPU. The reason relies in the physical improvements to decrease the latency
imposed by current DRAM technologies. In the simulation domain, the physical
constraints are not always included in the simulated model.

As the exascale era is getting closer [5], cycle-accurate simulators are hitting a wall
in simulation time. Researchers showed that a full execution of a single benchmark
of the SPEC CPU2006, takes over 1 year in the most detailed configuration of the
gem5 CPU simulator [21] and, over 1 week in the most simplified configuration possible.
In contrast, the same workload execution in a native system consumes less than 1
hour [126]. New strategies to speed up CPU and main memory simulation are being
proposed [85, 90, 30, 125] in an exchange of cycle-accuracy simulation [21, 122]. Though,
every benefit comes with a price; when cycle-accurate simulation is combined with
approximate simulation, results must be taken with caution [91, 138].

2.1 Background

A system simulator 1 is generally a software or software-hardware (hybrid) solution
that mimics to some extent a hardware design. It provides the researcher with tools
to propose changes to the baseline design or extend the characteristics towards a new
solution.

According to state-of-the-art definitions [43, 8], system simulators could be catego-
rized as follows:

• Detail of Simulation

– Functional simulators: emulate the behavior of the simulated processor,
generally not considering the micro-architectural characteristics. For this
reason, the execution is faster than any other simulation.

1For the scope of this thesis, we will use the term computer simulator or system simulator to refer
a software entity that provides an evaluation of computer architecture programmed model.



2.1 Background 9

– Timing simulators: they consider the micro-architectural states of the
processor. According to the details provided in the internal states, they can
be sub-categorized as:

∗ Cycle-level: mimics the micro-architecture at cycle level; although
they are not as accurate as a Register-Transfer Level (RTL) cycle-
accurate simulation, they could provide information on some of the
underlying components of a micro-architecture.

∗ Event-driven and Interval-driven: targets simulation by events in-
stead of cycles. Both simulators could break the simulation in windows
of events like cache-misses or number of instructions.

– Integrated Timing and Functional simulators: in order to speed sim-
ulation time, these techniques are mixed to provide a new type of simulator.
Two commonly referred techniques are: Functional-first simulator and
Timing-first simulator. As an example of the first, a functional simulator in
the frontend could feed with execution traces (in memory or through a file
system backed-up file) to a backend timing simulator. An example of the
second would be to use a functional simulator to validate (within a given
error range) the execution of a timing simulator.

• Scope of the target

– Full-system: simulates an entire platform allowing the simulator to boot
the simulated machine and load an OS.

– User-level or Application-level: the simulator executes the targeted
workload within OS process execution boundaries.

• Input Driven

– Trace-driven: the simulator consumes execution traces (often, file-system
backed-up files) which consist of collected information useful to the simulator
to recreate the execution of the targeted workload.

– Execution-driven: As oppose to the trace-driven approach, the simulator
executes the targeted workload as if it were the targeted machine.

2.1.1 Requirements

At the Barcelona Supercomputing Center (BSC) memory systems group, we are
not focused uniquely in the CPU features but also in the memory hierarchy where
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the interactions with the main memory devices are in our particular interest. The
requirements of the Memory Systems group for HPC for the simulation study are:

• Simulation time

– Simulation time: we considered a reasonable time for executing a simulation
in less than 72 hours. e.g., it is impractical to wait for a week or more into
a single experiment to complete [126].

• HPC applications

– Simulation of large-scale HPC applications: Message Passing Interface (MPI)
applications with tens, hundreds, even thousands of processes [16].

– HPC applications have repetitive behavior: the main loop of the applications
performs similar processing on different data.

– In an exploratory execution on the real platform, our targeted workloads
lasts in average 10 s to complete the 50 billion of instructions.

– User-level simulation (not full-system) is sufficient for our research. We
prefer to avoid full-system simulation in order to reduce the simulation time.

• CPU

– The simulator has to be validated against real hardware. Although the
correctness of the system simulator is often provided via validation of real
hardware. Most of the CPU simulators in the state-of-the-art, are validated
versus outdated micro-architectures.

– Simulation of high-end x86 multi-core processors such as Intel’s Sandy
Bridge: the HPC architecture installed on most of the MareNostrum 3
nodes.

– We cannot simulate only in-order cores. Our purpose is to stress the memory
hierarchy up to the main memory. This decision implies to include OoO
cores, to allow the micro-architecture to continue fetch, decode, and dispatch
instructions after a single load or store.

– Simulation of at least one socket. BSC memory group is interested in the
memory hierarchy: in current architectures main memory is shared among
all the processes that run on a node. In order to have a representative use
case, we have to simulate all the processes that execute on a single node. A
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possible option is to simulate a single socket and the corresponding memory
(the memory directly connected to this socket) claiming that this is good
enough because:

∗ The HPC system should be advanced enough to allocate application’s
data into the same Non-Uniform Memory Access (NUMA) node, (see
Section 8.2.2).

∗ Access to remote memory location causes additional latency and system
contention that leads to performance loss [107, 37]. Nodes in the
MareNostrum 3 supercomputing cluster are 2-socket systems. Memory
transactions originated in on socket with reference to the other, are
served through the Intel technology.

– Main memory

∗ The primary objective of the simulation infrastructure is the analysis
of HPC main memory systems.

∗ DRAMsim2 [122] is considered the standard tool for memory system
simulation. DRAMsim2 is a cycle-accurate model of a DRAM memory
controller, DIMMs, and buses by which they communicate. All major
components in a modern memory system are modeled as their own
respective objects within the source code, including ranks, banks, com-
mand queue, the memory controller, etc. DRAMsim2 was developed
by University of Maryland and validated against manufacturer Verilog
models. DRAMsim2 can be integrated with various CPU simulators
(although not all of them) using a reasonably fairly simple interface.

2.2 CPU Simulators
The most widely used CPU system simulator is gem5 [21]. Since 2002, more than a
hundred publications are referred to improve, extend, or use this simulator. It originated
as a merge of the CPU’s pipeline M5 simulator [22] and the memory hierarchy inherited
from GEMS [99]. The gem5 is a multi-architecture simulator that can perform cycle-
accurate, event-driven or hybrid (both, event-driven and cycle-accurate) simulation.
Moreover, gem5 can perform as a full-system or user-level simulator. Regarding the
x86 Instruction Set Architecture (ISA), the micro-architecture implementation is not
explicitly bound to a specific Intel’s or AMD’s product; gem5 act as a functional ISA
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simulator. To achieve main memory simulation, gem5 might use internal memory
models or integrate an external memory simulator.

Sniper [30] is among the most used simulators. Sniper is the result of an enhance-
ment of the Graphite parallel simulation infrastructure [106]. The simulator implements
several features for the x86 micro-architecture, such as multi-threading, DVFS support,
or the implementation of hardware prefetchers. Sniper is a user-level, event-based
(Interval-Core model) simulator [52]. For main memory access, the simulator uses a
fixed latency model with the option to add a normal distribution on top of it. Sniper
does not provide the possibility to add an external memory simulator.

MARSSx86 [112] is a full-system x86 simulator built on top of QEMU [14]
enabling OS execution. For the CPU simulation, MARSSx86 extends PTLsim [147],
a cycle-accurate simulator that models a generic processor’s pipeline. For the x86

micro-architecture, it aims to behave as an Intel Core 2, Intel Pentium 4, or an AMD
K8. In 2005, MARSSx86 was the first available full-system x86 open-source simulator.

TaskSim [120] is a trace-driven multi-core simulator developed at the BSC aimed to
simulate large-scale HPC applications. A task in TaskSim is the computation performed
between application’s synchronization events; these events are used as milestones in an
interval-based simulation. MUSA [59] implements a simulation infrastructure that
uses TaskSim for the computation phases. Traces are recorded during an execution of
a compile-time instrumented binary. Some of the details of the underlying architecture,
such as the Instruction Per Cycle (IPC) performance, are measured and recorded so
that the simulator uses this information to extrapolate performance metrics. MUSA
allows detailed DRAM simulation through external memory simulators.

ZSim [125] is a user-level simulator developed by researchers at Stanford University
and the MIT. Currently, it is the fastest CPU simulator attaining up to 300 MIPS being
capable of performing a simulation of over a thousand cores. It uses Dynamic Binary
Translation (DBT) through Intel PIN [97] allowing faster execution times compared to
other simulators. ZSim is an interval-based simulator, where two phases are involved;
1) the Bound phase, where every core is simulated in isolation from each other to enable
fast parallel simulation, and 2) the Weave phase, where the simulation is corrected to
account for a potential collision between concurrent memory accesses. ZSim supports
two alternatives for the main memory simulation: an internal memory model based
on the M/D/1 queue contention, and a software interface to use an external memory
simulator.

In HSCC [94], authors propose a mechanism to exploit the memory access patterns
on application’s memory working-set with a page-locality granularity. In their proposal,
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the authors have extended ZSim CPU simulator with a one-level Translation Look-
aside Buffer (TLB) allowing virtual-to-physical address translations and tracking
application’s memory requests at page level. In the proposal, a flat memory space
is divided between two memory technologies: a DRAM and a non-volatile region,
where the DRAM acts as a cache for the non-volatile region. To provision memory
heterogeneity, HSCC’s researchers had used NVMain2.0 [114] as the external main
memory simulator for both DRAM and non-volatile memory.

2.3 Memory Simulators
For a detailed simulation on the DRAM devices, a specialized DRAM simulator has to
be integrated with a CPU simulator. On the main memory simulators, an effort has been
made to address a detailed simulation of the DRAM devices, the memory controller,
and the interconnect to access it. In 2012 ISCA, winners of the Memory Scheduling
Championship presented USIMM [32]: a trace-based simulation infrastructure for
DRAM devices focusing on the memory controller scheduling algorithm. In the same
year, Jeong [80] et al. had proposed DrSim; a traced-based DRAM simulator prepared
to interact with a specific version of gem5. Unfortunately, to the best of our knowledge,
neither of these simulators are maintained any longer.

DRAMsim [142] is the first open-source cycle-accurate DRAM simulator. De-
veloped to explore different physical parameters to achieve optimal memory system
performance, authors have abstracted several timing models for technologies such
as: SDRAM, DDR, DDR2, DRDRAM, and FB-DIMMs. Limitations mentioned by
Wang et al. in DRAMsim original work, were addressed in 2011 by Rosenfeld et al. in
DRAMsim2 [122] proposal. DRAMsim2 provides a detailed timing simulation of main
memory following DDR2 and DDR3 standards. DRAMsim2 were validated against
Micron’s DDR3 DRAM Verilog models [105] where no timing constraints violations
were detected.

Ramulator [85] (2016), is the most recent open-source DRAM simulator. Because
of their state-machine abstraction model, authors claim to speed-up simulation exe-
cution up to 3 times faster with respect to state-of-the-art main memory simulators.
Moreover, Ramulator enables some of the high-end DRAM standards and technologies
such as GDDR5 or HBM. Regarding validation, DRAM DDR3 timings in Ramulator
were also validated against Micron’s DDR3 DRAM Verilog models [105], where no
constraints violations were detected.
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NVmain2.0’s [114] main focus is to simulate non-volatile technologies such as
STT-MRAM, ReRAM o PCRAM, as well as die-stacked DRAM caches. It is also
validated against Micron’s Verilog models [105]. The authors claim to outperform
DRAMsim2 in speed simulation.

By the moment of the writing of this manuscript 2 researchers released DRAM-
Sim3 [92], a cycle-accurate DRAM simulator validated against DDR4 Verilog models.
The simulator improvements from DRAMsim2 include bank-groups, self-refresh timings,
new GDDR5 models, and incorporates performance and thermal co-simulation. More-
over, it includes Hybrid Memory Cube (HMC) logic simulation and High Bandwidth
Memory (HBM) dual-command issue.

2.4 Hardware Performance Counters
Hardware Performance Counters (HWPC) are a computer architecture mechanism
that allows visibility of particular events within the micro-architecture. HWPC are
generally accessible through a set of registers mapped into a specific memory space, or
through mailbox interfaces. To access such interfaces, researchers had proposed drivers
and libraries that simplify the HWPC abstraction for programming purposes.

In Linux, the proposal that has been widely adopted in the kernel for HWPC access
is perf_events [74]. The initial version to support them was merged into mainline
kernel in version 2.6.31 [66], where the interface between user requests and the kernel
is enabled through the sys_perf_event_open system call3. On recent versions of the
Linux kernel, different access policies enable HWPCs measurements with different
granularity, such as: per process, per thread, per core or socket-wise. Moreover, for
security reasons, there are further restrictions according to the user’s credentials and
access controls.

On top of sys_perf_event_open, there are some libraries that enables user-land
access to the perf subsystem. The Performance Application Programming Interface
(PAPI) [132], is among the most used libraries that enables an easy access interface
to HWPC on diverse CPUs and also, off-chip counters for external devices such as
some GPUs. The Perfmon2 or libpfm4, in its latest release [143], supports Linux’s
perf_events, and the abstraction extends portability to Windows and MacOS.

2Therefore, not included in the results from our study but deserves to be mentioned in this
document.

3In Linux 2.6.31 was originally named, perf_counter_open() but renamed to perf_event_open() in
2.6.32.



2.5 CPU Micro-benchmarks 15

EXEgesis [57] is an ambitious project that extracts instruction-level micro-
architectural micro-operation (micro-operation) latency solely using vendor’s doc-
umentation. The researcher’s objective is to provide compilers with micro-architectural
information for code generation. At the moment of the writing of this thesis, EXEgesis
supports only Intel’s x86-64 (via an Intel Software Developers Manual [70] parser).
EXEgesis also identifies micro-operation execution port scheduling, i.e., execution
units where the micro-operations are executed.

Furthermore, HWPCs might be accessed through direct configuration of Model
Specific Registers (MSRs). Remarkable initiatives are using this approach: Agner’s
Fog [50], provides source-code of a Linux kernel module for x86-64 machines that
enables access to HWPC through a simple interface. LIKWID [134] is a framework
that provides tools for application performance. One of the tools, likwid-perfctr,
enables application developers to measure HWPCs. The measurements might be
taken externally, through a command line wrapper utility or, through an Application
Programmer Interface (API) for specific code sections within the application. HWPCs
are read using the msr mechanism deployed within the Linux kernel. Intel Architecture
Code Analyzer (IACA) [71]4 is a tool that provides estimates about execution-units
utilization for several families of Intel’s micro-architectures. To use IACA, a binary
needs to be instrumented at compile time. Once compiled, the binary is statically
analyzed. A similar approach is used by llvm-mca [38], using the information available
in LLVM’s compilation phase to measure the processor’s throughput and resource
utilization.

2.5 CPU Micro-benchmarks
A well-known on-line resource for micro-architectural details is published by Ag-
ner’s Fog [49]. He has historically collected a comprehensive list of latency, throughput,
and execution-units utilization of several CPUs from different IHVs. The list is built
upon a set of scripts that execute a set of pre-defined micro-benchmarks. The scripts
and source code for his micro-benchmarks are available on his research website [50].
His code supports execution on Linux and Windows OSs with support for single and
multiple threads. Administrative privileges are required to load and run Agner’s
micro-benchmarks.

In uops.info [1] the researchers provide a complete list [3] of instruction latency,
throughput, and execution-units utilization for all families of Intel micro-architecture.

4In Q3-2019 IACA has been declared End-Of-Life (EOL) by Intel but still available for download.
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Their proposal is based on the concept of blocking instruction, a construct that enables
them to characterize the execution-unit scheduling accurately with respect of the
state-of-the-art techniques. Although the interface to execute the micro-benchmark is
released (nanoBench [2]), at the moment of writing this document, the source code for
such construct it is not publicly available.

likwid-bench is a tool within the LIKWID framework [134], that allows an auto-
matic generation of micro-benchmarks. The framework provides a series of generic
micro-benchmark kernels which are parameterized by command line switches.

Microprobe [18] is a framework to automatically generate micro-benchmarks.
Originally designed to estimate the power consumption of multi-threaded applications
running on a multi-core system. Microprobe also allows micro-architectural parameter
characterization such as the usage of functional units. The framework is composed of
a set of modules that assist the automatic code generation through a comprehensible
configuration script. One of the modules, the ISA definition module, is provisioned
with details about the targeted micro-architecture. In the original publication [18],
researchers used an IBM’s POWER7 micro-architecture. Currently, the open-source
release [68], supports RISC-V micro-architecture.

2.6 Memory Micro-benchmarks
To the best of our knowledge, the first tool that had helped the memory research
is STREAM [102]. In STREAM’s first version, sustained memory bandwidth is
measured using impressively simple kernels written in standard C and Fortran. To
achieve multiprocessing, STREAM uses OpenMP and MPI. On the one hand, these
characteristics made STREAM platform-portable; but on the other hand, details and
control over the memory accesses are left to the compiler and OpenMP’s runtime.

LMBench [103] is constantly referred in the state-of-the-art. LMBench’s main
focus is to measure transfers between the processors and the members of the memory
hierarchy, such as the primary storage or the main memory. As a consequence, it
measures main memory latency as well as it performs cache capacity discovery.

RAMspeed [119] by Alasir Enterprises, provides 18 specialized kernels (INT,
FLOAT, and SSE), that access data in different reading/writing patterns to measure
memory performance. Another tool provided by an enterprise is the Intel Memory
Latency Checker (imlc) [141]. The tool is distributed in binary-only form, making
it difficult to operate outside the predefined command-line arguments. An essential
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contribution of this tool is the ability to switch off the hardware prefetchers (privileged
credentials are required).

Pmbw [20] collects old requirements from STREAM, LMBench, and imlc, exporting
a multi-core, multi-architecture bandwidth-latency memory tool. Pmbw provides 21
hand-crafted assembly-code and compiler-ready kernels to achieve such goal.

In PROFET [116], the authors provide two different tools to characterize main
memory latency and memory bandwidth. An interesting contribution in the proposal
is about memory bandwidth measurements: the tool instruments kernels that deliver a
ratio of read/write instructions deploying 25 kernels that achieve bandwidth utilization
from 50 % up to 100 % with a granularity of 2 %. A second contribution is cache
pollution awareness: to avoid unnecessary misses on the cache hierarchy, write memory
transactions make usage of non-temporal ISA instructions.

As an extension uops.info [1], in nanoBench [2] authors provide several Python
scripts that explore, discover, and characterize the cache levels of the memory hierarchy.
Since the objective for the main research targets CPU micro-architecture, main memory
is not covered by nanoBench.

Lastly, a remarkable framework that identifies the complexity and the challenges
to write a memory benchmark tool is found in Hopscotch [6]. Authors provide tools
that characterize the elements on the memory hierarchy such as latency and bandwidth
utilization. The tools are deployed with a configurable interface to use different memory
access patterns that resemble real-world applications.

2.7 Validation in the State Of The Art
The gem5 CPU simulator was originally validated against an Alpha machine. For newer
versions, the validation of the simulator versus the real hardware has been delegated
to the gem5 community. For instance, Burtko et al. [27], validate gem5 in dual-core
configuration versus an ARM Cortex-A9 where the researchers reported differences in
the benchmarks’ execution time ranging between 1.39 % and 17.94 %. The benchmarks
used in their work are SPLASH-2 [144] and ALPBench [88]. Anoter community
validation effort between gem5 and real hardware is presented by Gutierrez et al. [62].
In said work, researchers have modified and extended gem5 to behave as a VExpress

development board (an ARM processor with DDR2 as main memory) where they used the
CPU ARM subsystem within the gem5’s 03 Core Model and GEMS’ SimpleDRAM for the main
memory accesses. The workload chosen to evaluate performance is the SPEC CPU2006
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benchmarks. Researchers claimed to achieve an average absolute error of 5 % with this
configuration.

Sniper was validated originally against an Intel Core 2 machine [29]. On a further
effort, Sniper was validated against an Intel Xeon X5550 processor (Nehalem micro-
architecture) using a set of the SPLASH-2 benchmarks [144]. The validation results
show that Sniper’s IPC error concerning the actual hardware is below 25 %. Let’s point
out that Sniper uses a fixed memory latency for main memory accesses where a 65 ns
value is used for validation in the original paper.

TaskSim was originally validated versus an IBM Cell processor. In MUSA (that uses
TaskSim to simulate computation phases), authors validate their infrastructure against
an Intel Xeon E5-2670 machine using the NAS Parallel Benchmarks [11], HYDRO [89],
and SPECFEM3D [87]. In the study, the authors reported achieving relative errors
below 10 %.

The ZSim simulator is validated against an Intel Xeon L5640 machine (Nehalem
architecture) with the internal M/D/1 memory model using SPEC CPU2006 and PAR-
SEC [19] benchmarks. The authors reported IPC errors of below 10 % between the
two systems. The ZSim authors clarified that using DRAMsim2 will restrict the
simulation to 3 MIPS, landing outside their design goals. Therefore, the validation
with DRAMsim2 is not performed in the original paper.

Work introduced by Akram and Sawalha [7] surveys state-of-the-art x86 CPU simu-
lators. In the experimental section, they tested four simulators: gem5, Multi2sim [136],
PTLSim [147] and Sniper. The chosen workloads used for the analysis are SPEC CPU2006
and MiBench [61]. In their configuration, they have not reported the usage of any
external memory simulator. For their analysis, they used an Intel Core i7 processor
(Haswell micro-architecture) as the targeted system to model. Their results presented
a broad set of discrepancies among simulation executions.

DiagSim [81] proposes a method that detects changes in IPC’s patterns. The
method points out where the differences between the real system and a simulator drift
away. The authors categorized micro-architectural features through a set of diagnostics
bounded together through a dependency map. A diagnose is in fact, a micro-benchmark
for the targeted ISA. By running each diagnose through several iterations with different
input parameters, micro-benchmarks can identify fluctuations in the IPC behavior.
The researchers admitted that identify the IPC might need manual interaction, and no
multi-threading scenarios were considered.
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Full-system/ Trace-/Execution- Multi-threaded/ CPU Validated External DRAM
Name User-level driven Sequential complexity for simulator
gem5 [21] Both Both Sequential OoO ARM (partial) Yes
Sniper [30] User-level Both Multi-threaded OoO x86 (Nehalem) No
ZSim [125] User-level Execution Multi-threaded OoO x86 (Westmere) Yes
TaskSim(MUSA) [120, 59] User-level Trace Sequential in-order/OoO x86 (SandyBridge) Yes
MARSSx86 [112] Full-system Execution Sequential OoO x86 (Nehalem) No

Table 2.1 Overview of reviewed CPU simulators.

Trace-/Execution- Multi-threaded/ Memory
Name Sequential technologies
DRAMSim2 [122] Both Sequential No DDR{2,3}
Ramulator [85] Both Sequential No DDR{2,3,4}, GDDR5, HBM, WIO1/2
NVMain2.0 [114] Both Sequential No DDR{2,3}, STT-RAM, PCRAM, ReRAM

Table 2.2 Overview of reviewed DRAM simulators.

2.8 Decision Process
Table 2.1 summarizes the CPU simulators we considered to use for this work. In
full-system or hybrid mode simulation, gem5 lasts for a significant amount of time
(several hours up to weeks) [126]. Sniper won’t allow co-simulation with external main
memory simulator. MUSA extends TaskSim capabilities to perform OoO for multiple
ISAs and allows co-simulation with an external DRAM simulator, but it was still in
development by the moment we performed the experiments about this thesis. The
current implementation of the x86 ISA in MARSSx86 is outdated, and neither provides
an interface to simulate DRAM concurrently. The only simulator that covers our
requirements of reasonable execution time and DRAM co-simulation is ZSim.

For main memory simulators, Table 2.2 summarizes our considerations. Because
all of them technically satisfy our requirements, the decision to chose one simulator
among them was grounded on state-of-the-art reputation. Ramulator and NVmain2.0
are relatively new proposals, whereas DRAMsim2 has been extensively used within the
computer architecture since 2011. Up to 2020, the number of paper citations for each
one of them in the IEEE site is: 435 for DRAMsim2, 73 for Ramulator, and 54 for
NVMain2.0. Moreover, programming interfaces to work with DRAMsim2 are broadly
available i.e., ZSim already include support code for DRAMsim2.
Decision: For the CPU we decided to use the execution driven simulator ZSim, and
DRAMsim2 for the main memory simulation.



CHAPTER 3

Experimental Methodology

Figure 3.1 introduces the flow to design, upgrade, and tune system simulators. The first
step when approaching computer architecture simulation is recognizing the similarities
and differences between the real-world system and the state-of-the-art simulators. In
this work, we decided to use an x86 CPU simulator that was designed to behave as a
previous generation micro-architecture (Nehalem) from our targeted machine (Sandy
Bridge). Therefore, we first identified the differences between the system and the CPU
simulator using the vendor’s available documentation: the Intel’s Software Developer
Manual [70] and the Intel’s Optimization Guide [69]. Furthermore, we decided to
include current reverse engineering efforts published in the state-of-the-art [101]. For
main memory, the chosen DRAM simulator is designed to support the DDR2 and
DDR3 standards; as our target model uses DDR3 memory devices and is validated
versus Verilog models, we assume the memory model is accurate.

The second step consisted of matching and discovering those characteristics be-
yond vendor’s documentation. To achieve this goal, we used the concept of micro-
benchmarking: execution of synthetic programs with an iterative loop comprised
only of a single instruction. During micro-benchmark execution, we observed the

Figure 3.1 Iterative process of integrating and validating new features to a system
simulator (simulation model).
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micro-architectural resource activity using Hardware Performance Counters (HWPC)
in the real machine. Because only one instruction is executed per micro-benchmark,
fewer resources are utilized by the underlying micro-architecture, allowing us to dis-
cern resource utilization out of the scope of the execution of the micro-benchmark.
Moreover, the micro-benchmark kernel is specially crafted to avoid micro-architectural
optimization techniques designed to boost single-instruction performance.

To extract information from real machine execution, we used HWPC: special
registers designed to provide information about the micro-architecture. If the corre-
sponding HWPCs are not present in the simulator, we implemented them according
to vendor’s documentation. Implementing a non-existing HWPC in the simulator is
not a straightforward task; system simulators are coded in high level languages, where
the code logic attempts to mimic the micro-architectural details but it is not the same
as the micro-architecture itself. For example, speeding the simulation time became a
software-specific feature that imposes serious restrictions when attempting to implement
and extract the corresponding micro-architectural details. Finally, the last stage on
the second step consists of comparing both systems with their respective HWPC
measurements. If discrepancies arose in the simulator, we updated the simulator’s logic
with values that correspond to those extracted from our micro-benchmark execution in
the real machine.

If simulator’s accuracy is not sufficient, a third step (optional) on the validation
flow is to propose a novel design integrating it back to the simulation infrastructure so
that a new comparison and assessment could be made. It is a common practice from
IHVs to hide documentation of important architectural features so that they can keep
a commercial advantage over competitors. Also, when implementing real-world models,
researchers deliberately take some features out, for example, to speed the simulation
process. Both conditions leave space for design proposals to explore new alternatives
to achieve efficient computing, but also to accurately match existing designs.

3.1 Hardware Platform
The targeted computing system we aimed to simulate is built upon a dual-socket
platform; each socket embodies an Intel Xeon E5-2670 Sandy Bridge EP processor
operating at 3.0 GHz [72]. By the moment we began this research Sandy Bridge was
a micro-architecture still used at large by smaller Tier-0 systems [40]. Specifically,
MareNostrum 3 supercomputer was based on over 3,000 nodes with 2x Sandy Bridge
EP processors.
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In MareNostrum 3 systems, the main memory is populated by 4x 4 GiB DIMMs
devices connected to the processor using four DDR3-1600 channels [124]. Each processor
comprises eight cores; the hyper-threading feature has been disabled like in most HPC
systems [31, 40]. The running OS is a SUSE Linux distribution running on top of a
3.0 Linux kernel [93].

For the simulation infrastructure, we chose to work with the integration of ZSim
and DRAMsim2 system simulators. ZSim [125] is a user-level, execution-driven CPU
simulator originally developed to behave as an Intel Westmere micro-architecture.
DRAMsim2 [122] is a cycle-accurate model of a DRAM memory controller, the DIMMs
passive devices, and buses by which they communicate. It has been validated against
the DRAM manufacturer’s Verilog models [105].

3.2 Simulation Model
The simulation model of DRAMsim2 is depicted in Figure 3.2 In a simplistic view, the
model consist in three queues: 1. the Transaction Queue, 2. the Command Queue, 3. and
the Response Queue. When CPU memory transactions arrive, they are submitted to
the Transaction Queue. An internal algorithm translates the incoming requests into
DRAM commands which fill the Command Queue. To prevent timing violations and
data hazards among transactions, the DRAM commands are scheduled according to
the Bank State status issuing the corresponding timing simulation in an OoO manner.
Once the transaction’s simulation is finished, the Response Queue is filled with the
simulated transaction and the Memory Model updates the Bank States table while
keeping record of latency achieved during transactions. When an external simulator
is hooked to DRAMsim2 as the transaction originator, that latency is reported back
to the external simulator as the memory access latency; when DRAMsim2 is used in
traces mode, the latency is logged accordingly.

Since DRAM is an industry standard for all memory IHVs, the parameters to
configure the main memory simulator are mainly the accurate timings for the passive
devices. We configured the simulator’s technical characteristics found in the vendor’s
documentation for the DIMM packages [124]. Table 3.1 summarizes the timing param-
eters for our DDR3-1600 targeted model. Physical parameters such as temperature,
might affect the DRAM simulation; on DRAMsim2 they are treated as an external
simulation, not affecting the access latency to the passive device. Despite the fact
that updating technical characteristics should be enough for DRAMsim2 to get correct
timings (latency) between the memory controller and the passive devices, we still need
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Figure 3.2 DRAMSim2’s Memory controller model.

Parameter Description Value
tBURST Burst Length 4
tCAS/tCL Column Access Strobe latency 11
tRTP Read To Pre-charge delay 6
tCCD Column to Column Delay 4
tWTR Write To Read delay 6
tRTRS Rank to Rank Switching time 1
tCWD Column Write Delay 10
tWR Write Recovery time 12
tCKE Next power up for an idle device 4
tCMD Command transport duration 1
tXP Exit power down with DLL on to any valid command 5
tRCD Row to Column Delay 11
tRP Row Pre-charge 11
tRRD Row activation to Row activation Delay 5
tRFC Refresh Cycle time 208

Table 3.1 DRAM DDR3-1600 parameters used in our simulated model.

to characterize the maximum access time (worst-case scenario) from the CPU to retire
a memory instruction. Since this objective is part of the integration of the CPU and
main memory simulators, we designed a set of micro-benchmarks for this purpose.

For the CPU model, Figure 3.3 depicts a diagram of the Sandy Bridge micro-
architecture. The diagram is divided in two sections; the frontend on the left side, and
the backend on the right side. On Intel’s microprocessors, the frontend is the portion of
the micro-architecture that takes the byte stream from the Instruction cache, recognizes
and tags every instruction to later break them into smaller portions of execution called
micro-operations micro-operations. The smaller operations are organized into a queue
which serves the Reorder Buffer (ROB) for OoO execution. When possible, the ROB
issues up to 4- micro-operations to the micro-operation-scheduler. The micro-operation
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Figure 3.3 Simplified diagram of an Intel’s Sandy Bridge micro-architecture.

scheduler along with the execution units (also called ports of execution) make up the
backend portion of the micro-architecture. The instruction retirement takes place
when load and store transactions are cleared and data could be written back to the
micro-architectural registers.

The chosen simulator was developed with the intent to behave as an x86 Westmere
system. Westmere (2010) is a micro-architecture upgrade of the manufacturing process
of the Nehalem micro-architecture (2008) [70]. Sandy Bridge (2011) introduces
micro-architectural changes over Westmere, among the most noticeable are:

1. The four branch predictors in Nehalem are improved, non-fully documented but
mentioned that number of bits has an extended range.

2. A new micro-operation cache holding up to 1536 micro-operations.

3. The L1 instruction cache is improved in associativity from 4-way to 8-way.

4. The L1 TLB adds several entries dedicated to large pages, from 7 to 16.

5. The capacity of the ROB is increased from 128 to 160 entries.

6. The number of register files dedicated to renaming is doubled, using 160 entries
for integer operations and 144 entries for vector instructions.

7. The execution unit scheduler improved its capacity to hold from 36 to 54 micro-
operations entries in the reservation station.

8. From the six execution units available, three are kept for arithmetic operations
supporting the new vector extensions and three ports are specialized for memory
transactions. On Westmere, two ports were used for store operations and one
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micro-architecture feature Westmere Sandy Bridge ZSim

L1 iTLB entries 142 144 N/A
micro-operation cache entries N/A 1536 8-way N/A
ROB entries 128 160 128 → 160
ROB register files 128 144 int + 160 vector 128 → 144
micro-operation scheduler slots 36 54 36 → 54
execution units for loads 2 2 2
load buffer entries 32 64 32 → 64
execution units for stores 2 1 2 → 1
store buffer entries 32 36 32 → 36

L1i size associativity 32 KiB 4-way 32 KiB 8-way 32 KiB* 4-way
L1d size associativity 32 KiB 4-way 32 KiB 8-way 32 KiB* 4-way
L2 size associativity 256 KiB 8-way 256 KiB 8-way 256 KiB* 8-way
LLC size associativity 4 MiB-30 MiB 8-way 3 MiB-20 MiB 20-way 20 MiB* 20-way

Table 3.2 Comparison of micro-architectural features. On the ZSim column, the ‘*’
stands for configurable entries, and the ‘→’ for the parameters to update.

for load transactions. On Sandy Bridge, two ports are dedicated to address
generation and load requests leaving the execution unit with only one port for
store operations.

9. The number of entries of the load and store buffers is increased from 32 to 64
entries for the load buffer, and from 32 to 36 entries for the store buffer.

10. On the most exclusive product line of processors for HPC in Westmere, the LLC
size is 30 MiB. In Sandy Bridge, the largest LLC capacity is limited up to 20 MiB
with a 20-way policy. Moreover, the LLC is connected through all cores by a
ring bus. Maurice et al. [101] reversed engineered the hashing algorithm used on
Sandy Bridge to reduce congestion and equitably distribute traffic on the LLC.

Table 3.2 introduces a comparison over the two micro-architectures and the CPU
simulator. Each row in the table describes a micro-architectural feature. Every column
belongs to each one of the compared systems: the ZSim CPU simulator, Westmere (the
micro-architecture that ZSim aims to model), and Sandy Bridge (the micro-architecture
of the targeted system, also deployed on the MareNostrum 3 computing nodes). On
the ZSim’s column we also integrate the static changes derived from this upgrading
process, meaning the corresponding numbers that the simulators should update to
behave as the new targeted system.



CHAPTER 4

Micro-benchmark Design

Our micro-benchmark proposal allows to extract the number of micro-operations and
the execution unit utilization. Both parameters are a vital source for accuracy in
x86 CPU simulation since determine the instruction latency. Moreover, the micro-
benchmark proposal allows us to discover main memory access latency.

Our simulation model targets an Intel’s Sandy Bridge micro-architecture. Although
Intel’s x86 ISA is known to be a Complex Instruction Set Computer (CISC), the
processor’s frontend implements a decoder which breaks every instruction into simpler
operations that resembles a Reduced Instruction Set Computer (RISC) architecture.
Each one of these operations are known as micro-operation (micro-operation). Some
instructions are broken into a single micro-operation, while others into more. Originated
at the frontend, the micro-operations are delivered to the backend so that the computing
units execute them when possible. These units are generally known as execution units
or ports of execution. On modern architectures, some execution units are prepared to
compute not only generic processing work but specialized operations such as memory
related operations or intense arithmetic computations. To properly assign work to the
execution units, a scheduler arbitrates the execution of micro-operations. According to
scheduling policies, the execution units might present a non-balanced distribution when
executing the micro-operations. Moreover, there are some instructions which need a
sequencer intervention leading to a dynamic execution of micro-operations based on
instruction’s parameters.

In this section, we elaborate the assumptions and design considerations in the
proposal of the micro-benchmark for CPU micro-architectural parameter extraction
and main memory access latency.



4.1 Micro-benchmarks Proposal 27

Name Description Event Umask

CPU_CLK_UNHALTED Cycles where CPU is not halted 0x3C 0x01
INSTRUCTIONS_RETIRED Instructions until the last micro-operation is retired 0xC0 0x00
UOPS_DISPATCHED_PORT.PORT_0

Number of cycles during one uop is
dispatched to the execution unit
{0,1,2,3,4,5}

0xA1 0x01
UOPS_DISPATCHED_PORT.PORT_1 0xA1 0x02
UOPS_DISPATCHED_PORT.PORT_2 0xA1 0x0C
UOPS_DISPATCHED_PORT.PORT_3 0xA1 0x30
UOPS_DISPATCHED_PORT.PORT_4 0xA1 0x40
UOPS_DISPATCHED_PORT.PORT_5 0xA1 0x80

Table 4.1 Hardware Performance Monitoring Counters used to characterize instruction
latency and execution unit (port) utilization.

4.1 Micro-benchmarks Proposal
Parameters extraction is a task that has been around for some time in the com-
puter architecture community (Section 2.5). Our micro-benchmark proposal allows
micro-architectural characterization considering the micro-architecture limitations
of our targeted simulator. The micro-benchmarks are designed to run as a user-
level application on top of a Linux kernel with non-administrative privileges. The
design of the micro-benchmarks consists of two sections: the OS interactions and the
micro-benchmark main loop. Figure 4.2 portrays the general characteristics of the
micro-benchmark.

A C program encloses the OS interactions that provide all functionality such as
memory allocation and variable initialization, hardware counters initialization and
metrics collection as well all program cleanup. By only counting the execution of the
micro-benchmark kernel, the overheads of running on top of an OS are diminished.
The micro-benchmark kernel is written directly in x86 assembly to handcraft the x86

instruction sequence avoiding any compiler optimization.
There are two modes for the C program to wrap the micro-benchmark core: execution

in the real machine, and execution within the simulator. The difference between these
modes relies on the procedure to collect the measurements.

On the real system, the measurements are obtained via system calls to the Linux
perf [67] subsystem to access specific HWPC. Table 4.1 shows the HWPCs used in
the real machine execution. These calls to perform measurements are made just before
entering the main loop and immediately after the iterations are finished. The execution
environment for the micro-benchmark plays an important role in micro-benchmark’s
measurement collection.
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Silicon Package 0

�

Silicon Package 1

spinner spinner spinner spinner...

uBench spinner spinner spinner...

Figure 4.1 Execution environment: spinners in all cores except where the micro-
benchmarks is executed.

To the best of our knowledge, we must minimize the effects of the Linux sched-
uler [96], so that the micro-benchmark is always executed in the same core within the
same node. To minimize such effects, we use the taskset utility to pin the execution of
the micro-benchmark, narrowing its execution to a specific core in a particular silicon
package.

When processor’s load is not high enough, policies for energy efficiency are triggered,
affecting process scheduling and adding hardware delays derived from power switching
features. To overcome such policies, we conceived an execution environment for the
rest of the cores in the 2-processor system. We designed a small program (spinner) that
performs a busy-processing routine with a 100 % of core utilization. In one processor,
the spinner program is instantiated 15 times and pinned to each one of the cores where
the micro-benchmark is not executed. For the other processor (silicon package), we
created 16 instances pinned to each one of the cores in that processor. Figure 4.1
depicts the execution environment. Lastly, although each one of the instances are
independent of each other, creating instances of the spinner in the second silicon
package is crucial to minimize latency imposed because of the snooping messages
between the interconnect on both processors.

Furthermore, we were aware of some glitches on the perf_events subsystem on
the kernel version we used [39]. To diminish some of these artifacts, we used the
PERF_FORMAT_GROUP to inquire only once the kernel interface per measurement limiting
the number of accessed counters to 4. Being 8 counters needed to extract, we performed
twice the execution of the micro-benchmarks with different groups of counters. No
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syncing between the executions is needed since both executions cover the same micro-
benchmark kernel.

On the simulator infrastructure, we use ZSim’s fast-forward feature that allows
skipping the simulation up to a specific point in the program execution. To set the
points where the fast-forward feature is turned on/off, a special watermark on the
micro-benchmark code is set: xchg %rcx, %rcx where the value on rcx determine the
operation that is fast-forward on and fast-forward off.

There are two execution watermarks configured in the program simulation; just
before entering the micro-benchmark kernel and as soon as the micro-benchmark kernel
is finished. The simulation begins in fast-forward mode up to the first watermark is
found, from that moment the detailed simulation runs until the next watermark is found.
The simulation finishes by enabling back again fast-forward mode. The simulator
counters only record what has happened between the two execution watermarks.

To extract parameters from micro-benchmark execution in both cases, the real
machine and the simulator, a quotient is necessary:

𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑_𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝐻𝑊𝑃𝐶𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

The number of executed instructions corresponds to the length of the micro-benchmark
kernel and the count of times it has been iterated.

We conceive two categories for the micro-benchmarks; in Section 4.2, we introduce
a class of micro-benchmarks that discover per-instruction latency in the processor’s
execution units utilization, and in Section 4.3, a family of micro-benchmarks that
characterizes the memory hierarchy.

4.2 Instruction Latency and Port Utilization
The idea behind the CPU micro-benchmark is to isolate the resource utilization per
single x86 instruction. On the right side of Figure 4.2, a small example of a CPU micro-
benchmark kernel is presented. We achieve resource isolation by sequentially executing
the same x86 instruction 10 billion (109) times so that the metrics collected directly via
HWPC are inevitably distinguishable. First, the iteration count is initialized through
the general-purpose register ecx: a mandatory requirement in x86 architectures. Next,
the micro-benchmark kernel (labeled as core_loop), is a consecutive sequence of x86

single-instruction statements. Finally, after decreasing the iteration counter, the loop
is executed repeatedly until the counter register drops to zero.

Moreover, we proposed a tool that automates the generation of 358 unique cases
for different instructions of the x86 ISA. Extensions to the Intel ISA such as vector
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Memory allocation and variable setup

Hardware counters initialization

micro-benchmark kernel (main loop)

Measurement collection

Free resources

x86 pseudo-code Explanation
MOV %ecx, $10000 Initialize loop counter ecx to 10,000
core_loop: beginning of the loop

XOR %eax, %ebx single instruction
XOR %eax, %ebx single instruction
. . . . . .
XOR %eax, %ebx single instruction
DEC %ecx decrement iteration counter

JNZ core_loop iteration jump

Figure 4.2 The micro-benchmark kernel is isolated by a high-level program that wraps
all OS interactions, micro-architectural features are collected immediately after the
micro-benchmark is finished.

operations in any version of the SSE or AVX are not included in this study. We extended
the micro-benchmark kernel up to 10,000 x86 instructions for two reasons:

1. If an instruction is decoded as a single micro-operation, then the Sandy Bridge
micro-operation cache would be filled with a total of 1,536 instructions. To
overcome the micro-operation cache, at least 3,072 instructions are needed.
Extending the execution in more than three orders of magnitude would allow
performance monitoring counters to have reliable measurements.

2. In a 10,000 instruction block, the overhead incurred for the jnz (jump if not zero)
instruction is negligible.

4.2.1 Micro-benchmark Evaluation

Once we updated the CPU simulator with micro-architectural changes and upgraded
the ISA latency discovered by the micro-benchmarks (see Table A.1 in Appendix A
for a per-instruction comparison between the targeted systems), we evaluated and
compared the enhancements to the simulator and the real machine using the relative
CPI simulation error calculated as

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑒𝑟𝑟𝑜𝑟 = (𝐶𝑃𝐼𝑧𝑠𝑖𝑚−𝐶𝑃𝐼𝑟𝑒𝑎𝑙)
𝐶𝑃𝐼𝑟𝑒𝑎𝑙

.

Table 4.2 presents the evaluation results. Enhancements significantly improved
the overall accuracy, the percentage of instructions that have an absolute error of 2 %
increased from 53.9 % to 86 %. The improvement comes mainly from the 26.5 % + 8.7 %
(ZSim-original, 2nd and 3rd row) becoming only a 3.5 % + 2 % in our enhanced version.
Since ZSim-original holds for latency and execution unit utilization of a previous
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ZSim original ZSim enhanced
Error range # instructions %instructions # instructions % instructions
(−∞,−100%] 0 0.0% 0 0.0%
(−100,−50%] 95 26.5% 12 3.4%
(−50,−2%] 31 8.7% 7 2.0%
(−2, 2%] 193 53.9% 308 86.0%
(2, 50%] 23 6.4% 19 5.3%

(50, 100%] 11 3.1% 8 2.2%
(100,∞] 5 1.4% 4 1.1%

Table 4.2 Relative CPI Error (summary).
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Figure 4.3 ZSim Original: ZSim from current version [152]. ZSim Enhanced: Ar-
chitectural upgrade from Westmere to Sandy Bridge. The instruction number is an
unique identifier per instruction from our micro-benchmark execution.

generation, most of the instructions are underestimated. The overall perspective is
presented in Figure 4.3. The X-axis is labeled using an unique number as per-instruction
identifier for each one of the 358 x86 instructions in our study. On the Y-axis, the
relative CPI simulation error is used. The values are sorted from left side with negative
relative simulation error (underestimation of cycles in the instruction) to the right side,
with instructions holding a positive simulation error (overestimation of cycles in the
instruction). We identified that most of the instructions in this category fall into the
approximate instruction ZSim’s decoder. The policy for these instructions are a 1-cycle
latency and being executed on any execution port. Such conditions generate faster
scheduling and retirement from ZSim with respect to the real machine.



4.3 Memory Hierarchy Discovery Characterization 32

0

5

1

6

2

1

3

2

4

7

5

3

6

4

7

0

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦

𝑁𝑒𝑥𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦

Figure 4.4 System characteristics and illustration of the pointer chasing memory
access pattern used in the micro-benchmark.

4.3 Memory Hierarchy Discovery Characterization
The memory micro-benchmarks for main memory latency characterization are designed
to stress the cache hierarchy and main memory. Our proposed micro-benchmark [26]
follows state-of-the-art efforts (Section 2.6) but extends them in the following scenarios:
1) by overcoming the micro-operation cache, and 2) using the concept of pointer chasing
we avoid the effects of hardware prefetchers.

First, on the C program preamble, we allocate the required memory space to operate
over the pointer chase pattern. Because this memory is allocated through the OS
virtual memory allocation mechanism (via posix_memalign(3)) this is a contiguous
virtual memory region. We fill this region as a standard C array, where each element
represents a member of a circular list that holds the pointer chase pattern (Figure 4.4
depicts a pointer chasing design using a circular list). An important remark for us is
to maximize the number of cache misses, so we align the size of the elements of the
array to the size of a cache line in the real hardware (64 B).

Once the initialization is set up, the HWPC are set to zero. Then, the C program
uses inline assembly to hand off to the micro-benchmark kernel the memory addresses
of the variables used as counter and the pointer to the first element to access the array.

On a pointer chase design, there is a dependency between two consecutive instruc-
tions inducing a CPU in-order execution for the instructions in the sequence. We
target any given level of the memory hierarchy (L1, L2, L3 or the main memory) by
ranging the array size from 4 KiB up to 3.52 GiB. Table 4.3 summarizes the hardware
characteristics to explore in both systems, as well as the memory size ranges used to
perform the cache latency discovery.

For ZSim to achieve faster simulation times, the execution of the simulated workload
is split by a two-phase algorithm: 1. In the Bound phase, every memory request from
a core is simulated as if it were an standalone transaction. Furthermore, for every



4.3 Memory Hierarchy Discovery Characterization 33

Memory level Size Associativity Latency Scope Microbenchmark
array size

Number of
measurements

L1 32 KiB 8-way 4 Private 4 KiB to 32 KiB 8
L2 256 KiB 8-way 8 Private 60 KiB to 256 KiB 8
L3 20 MiB 20-way 28 Shared 2.17 MiB to 20 MiB 8
Main memory 16 GiB - variable Shared 532 MiB to 3.52 GiB 7

Table 4.3 By setting the micro-benchmark array size we can measure the latency of
different levels in the Intel Xeon E5-2670 Sandy Bridge-EP memory hierarchy.

memory request, a fixed latency is assumed. To configure this fixed latency, ZSim
enables the mem.latency parameter. 2. On the Weave phase, ZSim updates the latency
achieved by the external main memory simulator (if configured i.e., DRAMsim2) with
the corresponding value.

In Figure 4.5, we show a comparison between the real system and the ZSim +
DRAMsim2 simulators for the memory subsystem. The X-axis of the figure repre-
sents the size of the traversed array, while the Y-axis shows the memory latency in
nanoseconds (ns). On default configuration, ZSim is configured to use a mem.latency
parameter set to 100 cycles (red line). Such configuration creates a gap in memory
simulation from around 20 ns. To mitigate the gap found on memory simulation,
we chose a value of 170 CPU cycles for the mem.latency parameter (green line); we
subtract from the real machine’s most prolonged latency registered (≈ 210 CPU cycles)
the average CPU-to-LLC latency (≈ 40 CPU cycles). The latter provides an upper
bound for the minimum latency of a request dispatched from LLC to main memory.
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Figure 4.5 Memory discovery: Real machine vs. Simulator infrastructure.
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Once that micro-operation port utilization, instruction latency, and main memory
access latency are accurate enough with respect to our micro-benchmarks we proceed to
evaluate the simulation infrastructure with real-world workloads. In the next chapter,
we evaluate the simulation infrastructure versus the real hardware using the SPEC
benchmark suite as workload for execution.

4.4 Summary
In this chapter we described the technical assumptions taken to propose our micro-
benchmark design. The design was driven to overcome a series of challenges that
are not present in the state-of-the-art reverse engineering efforts. For example, our
micro-benchmarks are designed to overcome micro-architectural specific features such
as the Intel’s Sandy Bridge micro-operation cache. Moreover, by isolating the program’s
preamble and epilogue within the micro-benchmarks, the micro-benchmarks’s kernels
are prepared to measure exactly the same regions of code in both, the simulator
infrastructure and the real machine. An important remark regarding the usability in
comparison of the state-of-the-art micro-benchmarks, is that our proposal does not
require administrative privileges on the execution environment.

After extracting micro-architectural parameters from our micro-benchmark ex-
ecution and inserting them into the simulator infrastructure, we achieved 32.1 %
of performance improvement between the systems under test. Furthermore, when
executing our memory micro-benchmarks, we detected a 20 ns gap in the main memory
simulation.



CHAPTER 5

Performance Evaluation

In the previous chapter, we analyzed, configured, and proposed specific simulator’s
parameters. Also, we validated our simulation infrastructure versus real machine with
our synthetic benchmark proposal. In this chapter, we further investigate the impact
of our enhancements to the simulation infrastructure using the SPEC CPU2006 [65]
benchmark suite. Two groups conform the totality of the workloads: the SPEC
CPU2006 Integer (SPEC CPU2006 int) and the SPEC CPU2006 Float (SPEC CPU2006
fp). In our study, we executed and evaluated the simulator infrastructure with 12
workloads of the integer set and 17 workloads of the floating-point set.

Using a traditional approach [149, 82, 78], we validated the simulator infrastructure
using the relative IPC error when compared to the actual hardware. Next, we set side
by side the Misses per Kilo Instruction (MPKI) for all cache levels L1i, L1d, L2, L3.
For each experiment we targeted an execution of 50 billion of retired instructions. This
number is chosen to be congruent with ZSim’s original publication [125]. Lastly, we
analyzed if the execution is bound to a specific cache level using the CPI error between
the real and the simulated system.

5.1 Experimental Environment
Since we decided to execute 50 billion of instructions per benchmark, we needed to
detect the moment when the number of instructions has been reached so that the
workload execution in the real machine should be stopped. For this purpose, we created
a launcher program that wraps benchmark execution to poll for perf_events until
the 50 billion of instructions condition is met. An important remark is that all the
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Name Description Event Umask

L1D_ST_MISSES perf L1-data store misses N/A N/A
L1D_LD_MISSES perf L1-inst load misses N/A N/A
L1I_ST_MISSES perf L1-inst store misses N/A N/A
L1I_LD_MISSES perf L1-inst load misses N/A N/A
L2_RQSTS.DEMAND_DATA_RD_HIT Demand Data L2 Hit Rqsts 0x24 0x01
L2_RQSTS.ALL_DEMAND_DATA_RD Demand Data L2 All Rqsts 0x24 0x03
LLC_STORE_MISSES perf L3 store misses N/A N/A
LLC_LOAD_MISSES perf L3 load misses N/A N/A

Table 5.1 perf and raw Hardware Performance Monitoring Counters used to charac-
terize cache misses.

benchmarks are executed in bootstrap conditions, with no warm-up rounds before
execution.

Execution locality is important on this experiment. In the same silicon package,
the launcher program pins itself to a core while sets the execution of the benchmark’s
workload to a different one. Once that execution begins, the launcher program creates
a special thread that constantly extracts the perf_events values.

Table 6.2 presents the counters and perf macros used to obtain cache misses values.
The perf macros are a collection of hard-coded values committed to the Linux kernel
by Intel developers inside of the perf subsystem. For L2 cache misses there are no
immediate perf macro or HWPC so we use demand’s data as an estimate for the L2

cache misses:

L2_𝑚𝑖𝑠𝑠𝑒𝑠𝑠 = 𝑎𝑙𝑙_𝑑𝑒𝑚𝑎𝑛𝑑_𝑑𝑎𝑡𝑎_L2_𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − L2_𝑑𝑒𝑚𝑎𝑛𝑑_𝑑𝑎𝑡𝑎_ℎ𝑖𝑡𝑠.

We decided to use a sampling period of 500 ms. The responsible thread to read
the values from the workload execution operates as follows: 1. An alarm is set for
the thread to be awaken after the 500 ms. 2. Once awake, the thread sends a SIGSTOP

signal to the workload and performs the syscall to stop the count, reads the values for
the selected counters, and resets the counter mechanism. 3. When the values are read,
a SIGCONT signal is sent to the workload to resume execution. Internal variables in the
polling thread keep the interval and cumulative sum of all the counters. 4. Particularly
for the retired instructions, if they are equal or above the 50 billion instructions, we
halt the execution of the benchmark sending a SIGTERM signal. 5. To write to the file
system the collected data, an additional thread is created in detached state. With this
strategy, we delegate file system I/O critical sections to the OS.
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Figure 5.1 SPEC CPU2006 int benchmarks: ZSim+DRAMsim2 relative IPC error.

5.2 SPEC CPU2006 Performance Evaluation
In many computer architecture papers, IPC is the preferred metric to measure proces-
sor’s performance [9]. We performed a traditional computer architecture evaluation
using a variant of the IPC: the relative IPC error between measurements. In Figure 5.1
and Figure 5.2, we present the relative IPC simulation error having as the baseline
the real hardware measurements. In both figures, X-axis is labeled with individual
benchmark name, and Y-axis shows the relative IPC simulation error calculated as

𝐼𝑃𝐶𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑒𝑟𝑟𝑜𝑟 =
𝐼𝑃𝐶𝑧𝑠𝑖𝑚−𝐼𝑃𝐶𝑟𝑒𝑎𝑙

𝐼𝑃𝐶𝑟𝑒𝑎𝑙
.

A negative IPC simulation error (IPC simulation error < 0) means that the simulator
underestimates the IPC of a given benchmark, i.e., the benchmark is simulated to
execute slower than on a real system. While a positive IPC simulation error (IPC
simulation error > 0) means that the simulator overestimates the IPC of a given
benchmark, i.e., the benchmark is simulated so that the executions seems to be
performed faster than on a real system. Furthermore, we categorized the relative IPC
error in three groups: very good, acceptable, high error when the relative IPC error
ranges between 0 % and 25 %, 25 % and 50 %, or above 50 % respectively.
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Figure 5.2 SPEC CPU2006 fp benchmarks: ZSim+DRAMsim2 relative IPC error.

The relative IPC error of the integer subset of benchmarks (SPEC CPU2006 int) is
depicted in Figure 5.1. In the very good category we found 9 out of 12 benchmarks;
from these, only one benchmark is also on the overestimating region (simulator perform
faster than real hardware) with less than 10 % of absolute IPC error. In the acceptable
region we found 2 out of 12 benchmarks and just one of benchmarks is in the high
error category.

The relative IPC error of the floating point subset of benchmarks (SPEC CPU2006
fp) is depicted in Figure 5.2. The simulator shows fairly good accuracy. 11 out of 17
benchmarks falls into the very good category. For most of the benchmarks, 15 out of
17, the IPC error is negative, meaning that the simulated performance is slower than
one measured on the real system.

An interesting remark is that all benchmarks categorized with high IPC relative
error, are also categorized in the state-of-the-art with high bandwidth memory usage.
For instance, in a previous study [148], sphinx3 and omnetpp would be the exception
for the rule; but in a recent study [116] they showed a higher demand in recent systems.
This observation leads us to think that deviations are specifically tied to the memory
subsystem, more likely to the main memory accesses.
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5.3 SPEC CPU2006 Cache Miss Analysis
First, we analyzed the absolute difference of cache misses at every level of the caches
in memory hierarchy using:

𝑀𝐾𝑃𝐼𝑒𝑟𝑟𝑜𝑟 = 𝑀𝐾𝑃𝐼𝐿𝑋_𝑆𝑖𝑚 −𝑀𝐾𝑃𝐼𝐿𝑋_𝑅𝑒𝑎𝑙𝑀𝑎𝑐ℎ𝑖𝑛𝑒

where 𝐿𝑋 represents the analyzed cache level. As with the relative IPC error, we
picked a 25 % cut-off value that allows us to identify if the metric is suitable for our
study. The expected scenario for the 𝑀𝐾𝑃𝐼𝑒𝑟𝑟𝑜𝑟 analysis is to have a difference below
the threshold when the relative IPC error is in the very good or acceptable category,
and the difference above the threshold when the relative IPC error is in categorized
with high error. Otherwise, the 𝑀𝐾𝑃𝐼𝑒𝑟𝑟𝑜𝑟 would be discarded as a useful metric to
determine possible deviations between the systems.

Furthermore, we analyzed if the execution is bound to a particular cache level. For
this purpose, we calculated the cache miss penalty per instruction (cMPI) for every
level of the caches in the memory hierarchy:

𝑐𝑀𝑃𝐼 =
(#𝑚𝑖𝑠𝑠𝑒𝑠𝑧𝑠𝑖𝑚−#𝑚𝑖𝑠𝑠𝑒𝑠𝑟𝑒𝑎𝑙)∗𝑐𝑎𝑐ℎ𝑒_𝑚𝑖𝑠𝑠_𝑝𝑒𝑛𝑎𝑙𝑡𝑦

#𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

where the values for the penalties at different levels of the cache hierarchy are defined
by the results of our micro-benchmark execution (Table 5.2). We continue to use the
25 % rule. If the cache miss penalty per instruction at a given cache level exceeded the
threshold of 25 % the real machine’s CPI, we considered that the specific cache level
might contribute to any deviation of performance between the two systems.

Although cache miss penalty per instruction is a direct measure of an isolated
instruction, it is not reflected broadly in the overall benchmark execution time (unless
a complete dependency exists in the workload’s code). For example, using values in
Table 5.2, if a given instruction misses in L1 and hits L2, it will have to wait around
12 cycles for the corresponding data in order to continue the execution. However,
this does not mean that the processor will be stalled for these 12 cycles. While a

Memory Level Latency (CPU cycles) Miss penalty (CPU cycles)
L1 4 8
L2 12 28
L3 40 214
Main memory 254 N/A

Table 5.2 Cache-miss penalty for different levels of cache hierarchy collected through
micro-benchmark execution.
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Benchmark L1d MPKI L1i MPKI L2 MPKI L3 MPKI
ZSim Real Error ZSim Real Error ZSim Real Error ZSim Real Error

462.libquantum 23.37 31.01 -7.64 0.02 0.02 -0.00 23.38 0.51 22.87 23.23 18.68 4.55
429.mcf 49.01 79.87 -30.87 0.32 0.19 0.14 44.02 2.24 41.77 13.98 30.24 -16.26
403.gcc 26.38 43.85 -17.48 3.44 1.43 2.01 23.08 15.21 7.87 1.49 6.13 -4.65
400.perlbench 3.71 6.43 -2.71 3.97 3.50 0.47 1.70 0.94 0.75 0.07 0.91 -0.84
458.sjeng 1.50 4.22 -2.72 0.65 0.21 0.44 0.65 0.19 0.47 0.43 0.60 -0.17
464.h264ref 3.05 4.88 -1.83 0.37 0.16 0.20 1.77 0.30 1.47 0.01 0.53 -0.52
445.gobmk 4.35 8.41 -4.06 7.58 4.28 3.30 2.11 1.15 0.96 0.39 0.78 -0.38
401.bzip2 14.56 20.18 -5.63 0.11 0.05 0.06 7.69 2.57 5.12 0.23 1.41 -1.18
456.hmmer 5.48 9.47 -3.99 0.11 0.04 0.07 3.30 0.15 3.15 0.02 0.11 -0.09
473.astar 26.45 53.49 -27.03 0.18 0.09 0.09 19.84 2.21 17.63 0.92 19.23 -18.31
483.xalancbmk 24.74 33.25 -8.51 4.62 2.63 1.98 24.07 1.81 22.26 0.06 12.47 -12.41
471.omnetpp 29.54 41.19 -11.65 1.51 0.47 1.05 28.49 1.56 26.94 1.75 12.31 -10.56

Table 5.3 SPEC CPU2006 int benchmarks. MPKI error for all cache levels.

given instruction is waiting for data, the OoO engine executes other (independent)
instructions, mitigating the stalled cycles derived from cache misses in the overall
execution time. When compared to the overall CPI metrics at every level of the memory
hierarchy, the cache miss penalty per instruction provides an idea about the cache level
that impacts the most in the workload execution.

5.3.1 SPEC CPU2006 integer set

Table 5.3 presents the MPKI analysis of the SPEC CPU2006 int portion of the
benchmarks. The benchmarks are listed in the same order as in Figure 5.1, from
lowest (negative) to the highest (positive) simulation error. Following the 25 % rule,
we shaded the values beyond that threshold to easily identify them. Moreover, we
use a horizontal line to distinguish from the previous simulation error classification:
high simulation error (462.libquantum), acceptable (429.mcf, 403.gcc), and very good
accuracy (400.perlbench to 471.omnetpp).

Since most of the benchmarks are beyond the 25 % rule, we cannot conclude that
the MPKI analysis for the integer type of benchmarks is helpful to understand the
differences between the two systems.

Furthermore, in Table 5.4 the cache miss penalty per instruction bounds are
shown. We use a horizontal line to separate benchmarks with high simulation
error (462.libquantum), acceptable (429.mcf and 403.gcc) and very good accuracy
(400.perlbench up to 471.omnetpp). In the last column of the table, we also included
the simulated CPI of the benchmarks.

On 462.libquantum comparison, the most impacted cache level is L3. On the rest of
benchmarks, with the exception of 403.gcc, 483.xalancbmk and 471.omnetpp in the L2,
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cache miss penalty upper boundBenchmark L1d L1i L2 L3 Sim CPI Real CPI Sim/Real CPI

462.libquantum 0.03 0.00 0.10 0.33 2.81 0.53 5.30
429.mcf 0.06 0.00 0.15 0.16 3.59 2.78 1.29
403.gcc 0.10 0.01 0.27 0.06 1.05 0.99 1.06
400.perlbench 0.02 0.02 0.03 0.00 0.67 0.60 1.12
458.sjeng 0.01 0.00 0.01 0.02 0.89 0.75 1.19
464.h264ref 0.03 0.00 0.05 0.00 0.46 0.41 1.12
445.gobmk 0.02 0.03 0.03 0.02 0.97 0.86 1.13
401.bzip2 0.07 0.00 0.12 0.01 0.79 0.79 1.00
456.hmmer 0.04 0.00 0.07 0.00 0.54 0.49 1.10
473.astar 0.06 0.00 0.13 0.02 1.77 1.83 0.97
483.xalancbmk 0.11 0.02 0.33 0.00 0.87 1.53 0.57
471.omnetpp 0.11 0.01 0.33 0.07 1.05 1.52 0.69

Table 5.4 SPEC CPU2006 int benchmarks: cache miss penalties for all cache levels.

no other level is affected. This reading appears congruent with the relative IPC error
and the link of memory bandwidth utilization [116, 148]; 462.libquantum is known
for high memory bandwidth utilization, 471.omnetpp and 403.gcc is around half of
memory bandwidth utilization, and 483.xalancbmk barely uses the memory bandwidth.

In the integer set of benchmarks, the cache miss per instruction metric seems
promising, but since there is no clear distinction between 403.gcc, 483.xalancbmk and
471.omnetpp, we can conclude that it is representative only for the L3.

Let’s remark that the ratio between the simulated CPI and the real CPI is only
higher than 1.29 for 462.libquantum which is also catalogued as with high relative IPC
error; the rest of the benchhmarks, catalogued as acceptable or good relative IPC error,
are below this value.

5.3.2 SPEC CPU2006 floating-point set

Table 5.5 present the MPKI analysis of the SPEC CPU2006 fp portion of the bench-
marks. The results are sorted as they appear in Figure 5.2. Following the 25 % rule,
we shaded the values beyond that threshold to easily identify them. Moreover, we
use a horizontal line to separate benchmarks with high simulation error (410.bwaves
to 434.zeusmp) and low error (from 416.games to 444.namd). Just as the integer
counterpart, we cannot conclude that the MPKI analysis for the floating-point type
of benchmarks is helpful to understand the differences between the simulator and the
real system.

The benchmarks are listed in the same order as in Figure 5.2, from lowest (negative)
to the highest (positive) simulation error. We use a horizontal line to separate bench-
marks with high simulation error (410.bwaves to 434.zeusmp) and low error (416.games
to 444.namd). For each level of cache we shade the cache miss penalty error fields with
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Benchmark L1d MPKI L1i MPKI L2 MPKI L3 MPKI
ZSim Real Error ZSim Real Error ZSim Real Error ZSim Real Error

410.bwaves 35.47 36.98 -1.51 0.17 0.06 0.11 20.48 1.93 18.55 18.73 11.11 7.62
459.GemsFDTD 30.75 47.34 -16.60 0.28 0.09 0.19 24.89 1.68 23.20 17.75 15.18 2.57
437.leslie3d 33.54 48.45 -14.90 0.36 0.04 0.32 24.63 2.39 22.25 14.47 9.72 4.75
470.lbm 50.43 92.70 -42.28 0.56 0.05 0.51 31.00 6.87 24.13 15.68 8.46 7.22
433.milc 9.12 15.12 -6.00 0.03 0.05 -0.02 9.08 2.98 6.09 8.88 13.88 -5.01
434.zeusmp 22.43 35.05 -12.62 0.13 0.03 0.10 6.84 1.22 5.62 5.02 3.72 1.30
416.gamess 2.28 6.19 -3.91 0.41 0.42 -0.02 0.14 0.10 0.05 0.00 0.03 -0.03
481.wrf 3.46 5.24 -1.78 0.24 0.10 0.14 2.14 0.57 1.56 0.46 0.29 0.17
447.dealII 4.96 6.03 -1.07 0.16 0.08 0.08 1.87 0.27 1.61 0.13 0.44 -0.31
454.calculix 4.31 5.51 -1.20 0.10 0.05 0.05 2.68 0.15 2.53 0.14 0.24 -0.10
453.povray 9.47 14.44 -4.96 0.14 0.23 -0.09 0.01 0.12 -0.11 0.00 0.03 -0.02
482.sphinx3 16.16 18.82 -2.65 0.28 0.07 0.22 13.52 0.44 13.08 0.02 4.51 -4.48
450.soplex 40.35 61.71 -21.36 0.44 0.17 0.27 34.70 7.73 26.96 0.72 10.68 -9.96
436.cactusADM 8.19 24.27 -16.08 0.35 0.06 0.29 5.63 1.08 4.56 2.62 2.99 -0.37
465.tonto 3.11 5.40 -2.28 1.03 0.82 0.21 0.48 0.21 0.26 0.00 0.19 -0.19
435.gromacs 8.21 13.87 -5.66 0.09 0.04 0.05 1.59 0.10 1.49 0.01 0.22 -0.21
444.namd 7.12 12.15 -5.03 0.01 0.03 -0.01 0.18 0.06 0.12 0.02 0.11 -0.09

Table 5.5 SPEC CPU2006 fp MPKI error for all cache levels.

values higher than 25 % of the simulated CPI. Thus, is an arbitrary threshold selected
to emphasize the cache miss penalty bounds that we find important to consider.

Despite the fact that the first six listed benchmarks which correspond those on
the high error category do not show a violation on our arbitrary 25 % rule, we can
notice that their L3 CPI bound are higher than the rest of the benchmarks with the
sole exception of 436.cactusADM, which is in the very good category. Moreover, all six
benchmarks belong to the high memory bandwidth utilization [116, 148].

Only two of the benchmarks (482.sphinx3 and 450.soplex) show a possible source
of error based on these cache miss penalties per instruction not in the L3, but their
relative IPC error is under the very good category. Therefore, we can only conclude
that the cache miss penalties per instruction metric is only suitable for the L3.

Since L3’s cache miss penalties range between 15.5 % and 21.5 % with an average
of 18.8 %, and the rest of the benchmarks range between 1 % and 13 %, the threshold
for the cache miss penalties might be adjusted to the minimum of those categorized
with high relative IPC error: 15 %.

Benchmarks with ratio between the simulated CPI and the real CPI higher than
1.29 are catalogued (as their integer counterpart) with high IPC error. The ratio
between the simulated CPI and the real CPI seems to provide a hint on where the
deviations exists.
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cache miss penalty upper boundBenchmark L1d L1i L2 L3 Sim CPI Real CPI Sim/Real CPI

410.bwaves 0.03 0.00 0.05 0.17 4.65 0.79 5.89
459.GemsFDTD 0.03 0.00 0.06 0.15 4.60 0.81 6.91
437.leslie3d 0.04 0.00 0.09 0.17 3.44 0.81 4.25
470.lbm 0.06 0.00 0.12 0.20 3.20 1.07 2.99
433.milc 0.02 0.00 0.04 0.15 2.42 0.95 2.55
434.zeusmp 0.06 0.00 0.05 0.13 1.59 0.74 2.15
416.gamess 0.02 0.00 0.00 0.00 0.58 0.45 1.29
481.wrf 0.02 0.00 0.04 0.03 0.59 0.46 1.28
447.dealII 0.03 0.00 0.04 0.01 0.59 0.47 1.26
454.calculix 0.04 0.00 0.07 0.01 0.47 0.39 1.21
453.povray 0.07 0.00 0.00 0.00 0.58 0.48 1.21
482.sphinx3 0.11 0.00 0.27 0.00 0.61 0.63 0.97
450.soplex 0.15 0.00 0.38 0.03 1.11 1.28 0.87
436.cactusADM 0.04 0.00 0.08 0.12 0.90 0.91 0.99
465.tonto 0.02 0.01 0.01 0.00 0.57 0.52 1.10
435.gromacs 0.05 0.00 0.03 0.00 0.67 0.72 0.93
444.namd 0.06 0.00 0.00 0.00 0.51 0.54 0.94

Table 5.6 SPEC CPU2006 fp benchmarks: cache miss penalties for all cache levels.

5.4 Summary
The MPKI difference between the compared systems is not helpful to identify the
performance deviations between the real system and the simulator infrastructure.
When using MPKI difference to analyze the possible deviation on both integer and
floating-point workloads of the SPEC CPU2006 benchmark suite, the majority of
workloads present more than 25 % of deviation with respect of the real machine’s
measurements for the same cache level. Although the latency is accurately modeled in
the simulator, we can only conclude that the behavior of the caches is different in both
systems.

Furthermore, the cache miss penalty per instruction is not consistent throughout
the different cache levels, being the LLC the only level where it shows consistency.
Although it is an important information, it does not differentiate if the differences
between the systems are part of the memory subystem or the CPU model.

Lastly, we also showed that the CPI ratio is consistent and supportive since it
correlates the difference between the two systems. When a heterogeneous set of
instructions is evaluated through the CPI metric, it provides an overall projection of
the latency in those instructions. Therefore, we decided to further explore the CPI
metric through a method that unfolds micro-architectural details from it.



CHAPTER 6

Top-Down Method and the Retirement Factor

The CPI metric captures overall execution errors. In the previous chapter we found
that isolating CPI error bounds per cache-level was not conclusive to find the source of
differences between our systems under test, but the CPI ratio between the systems
leans towards a path to explore. CPI stacks [48] are a common way to find insights
of a workload execution. In this chapter we use a well-known CPI stack analysis to
conduct micro-architectural comparison as well as a proposal to the method so that
it helps to identify the causes of deviation in main memory simulation between the
compared systems.

6.1 The Top-Down Method
Top-Down [146] is a method to conduct performance evaluation. Designed to identify
bottlenecks in modern OoO processors, it categorizes application performance in
four main groups: Frontend bound, Bad speculation, Retiring, and Backend bound.
Applying the method and comparing the processed measurements between the real
machine and the simulator, we could identify the sources of error between the systems
under test.

Top-Down was designed by an Intel researcher, therefore it is targeting an Intel
micro-architecture. Ivy Bridge was the chosen micro-architecture used in the research
paper. Hence, the conceptualization of a modern OoO CPU was made using x86

abstractions [69]. In Top-Down, the CPU engine is broken into two major portions:
frontend and backend.

The frontend is in charge of decoding instructions taken from the memory and
translating them into simple operations called micro-operations (uops). The x86 ISA
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is a variable length opcode architecture raging from one up to 15 bytes in length. In
the frontend, a pre-decoder, an instruction queue, and specialized decoders are set
to recognize and decompose every instruction into one or several micro-operations.
Some of the instructions are micro-sequenced: the execution depends on different
parameters encoded in the instruction’s opcode such as the size and value of the input
and output registers. For these instructions, the specialized decoders generate the
necessary micro-operations.

The backend executes and retires the work generated as the outcome of scheduling
the micro-operations. Within the execution pipeline, the latency for the different types
of micro-operations is not fixed. For the frontend to deliver micro-operations, the
backend has to free up space in the 168-entry ROB. On the execution stage, a scheduler
decides the next micro-operations to be executed, where the execution engine is driven
by 6 specialized ports (execution units): port 0 and port 1 are exclusively reserved for
arithmetic operations while port 5 also includes branch calculation; port 2 and port 3
are used as Address Generator Units (AGUs) for load and store operations and to load
data. Finally, port 4 is only used to store data.

The place where the frontend feeds the backend with micro-operations is known as
the issue point. Our targeted micro-architecture, Sandy Bridge, is a 4-slot issue-point
design. On a simplified CPU architecture, the issue-point has a unique slot, meaning
that the frontend can deliver to the backend up to one micro-operation per cycle. On
the one hand, if the frontend is ready to deliver a new micro-operation but the slot is not
available, it means the backend has not freed the slot from the previous micro-operation.
In Top-Down, the time consumed in this transaction would be categorized as Backend
bound. On the other hand, if the slot is ready but frontend is unable to fill the slot,
then the time spent in the transaction would be categorized as Frontend bound.

On the backend side, issued micro-operations that are retired at the end of the
pipeline are the ones that correspond to the useful pipeline work; Top-Down classifies
the time spent in these transactions as part of the Retiring category. However, some
issued micro-operations are not retired, e.g., because they are part of the miss-predicted
branch path. As the branch predictor unit is located in the frontend, generating more
micro-operations to keep under pressure the backend translates into less free slots at
the issue-point. The difference (the cost in cycles) between the retired micro-operations
and the throughput at the end of the pipeline is categorized as Bad speculation.

Top-Down builds a hierarchical tree with subcategories beneath the main four. For
example, the Backend bound category spawns a tree over two categories: Core and
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Name Description Event Umask
CPU CYCLES perf-list cycles macro 0x3C 0x01*
INSTRUCTIONS perf instructions macro 0xC0 0x00*
UOPS_ISSUED.ANY uops RAT -> RS p/cycle 0x0E 0x01
UOPS_RETIRED.RETIRE_SLOTS uops retired slots used p/cycle 0xC2 0x02
IDQ_UOPS_NOT_DELIVERED.CORE uops slots not delivered when no stall in BE 0x9C 0x01
INT_MISC.RECOVERY_CYCLES stall cycles after machine clears 0x0D 0x03

Table 6.1 Linux perf and raw Hardware Performance Monitoring Counters for Sandy
Bridge used for the Top-Down analysis.
RAT: Resource Allocation Table. RS: Reservation Station

Memory. Reciprocally, Core splits into Divider or Execution Ports Utilization while
Memory breaks for Stores, L1, L2, L3 and External Memory.

6.2 Top-Down Implementation
In the Top-Down’s research paper, the corresponding author had given a conceptual
approach for each category. From the conceptual description along with Intel’s counter
definition, we have applied the Top-Down method using the HWPC available in the
Sandy Bridge micro-architecture, and implemented an approximate model of the
HWPC in the simulator; nevertheless, we did it for the main four categories1.

Table 6.1, presents the HWPC used for Top-Down analysis on Sandy Bridge.
On the simulator, our implementation was done as follows. CPU CYCLES and
INSTRUCTIONS are counters natively found in the simulator. The UOPS_ISSUED
counter is updated after the decoding stage had been done since the number of micro-
operations to be delivered from the frontend to the backend is available. The number of
micro-operations that do retire is available after asserting if the branch predictors had
performed a good estimation, meaning that UOPS_RETIRED is the micro-operations
that would have been in branch speculation substracted from the number of total
micro-operations. In fact, the INT_MISC.RECOVERY_CYCLES counter is updated
by subtracting the cycles spent in the branch speculation from the current simulated
cycles. Lastly, we rely on the simulator’s micro-operation scheduler to update the
IDQ_UOPS_NOT_DELIVERED counter; if there are no stalls in the backend, but
the frontend could not update the count of delivered micro-operations, the counter is

1Further engineering effort must be considered for implementing the remaining counters if the full
Top-Down Method is needed.
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Name Description

Total Slots CPU_CLK_UNHALTED.THREAD * 4
Slots Issued UOPS_ISSUED.ANY
Slots Retired UOPS_RETIRED.RETIRE_SLOTS
Fetch Bubbles IDQ_UOPS_NOT_DELIVERED.CORE
Recovery Bubbles INT_MISC.RECOVERY_CYCLES * 4

Retiring Slots Retired / Total Slots
Bad speculation (Slots Issued - Slots Retired + Recovery Bubbles) / Total Slots
Frontend Bound Fetch Bubbles / Total Slots
Backend Bound 1 - (Frontend Bound + Bad speculation + Retiring)

Table 6.2 Top Down Category definitions and association with HWPC needed.

updated. ZSim is an approximate simulator, any attempt to mimic specialized HWPC
will require a full refactor of current simulator’s code. Regarding the objective to
determine the differences between a simulator infrastructure and a real system, the
four base categories are sufficient for our study.

In the real machine using a Linux kernel 3.0, the perf-list macros
used for cycles and instructions translate2 into the needed counter:
CPU_CLK_UNHALTED.THREAD is translated to a Processor Event-Based Sampling
(PEBS) event [70] if the precise bit is set for the ’cycles’ macro; for the ’instructions’
macro, INST_RETIRED.ANY is indirectly used to occupy a second PEBS event.
PEBS is an Intel technology that allows sampling access to HWPC and internal CPU
execution state with high accuracy and low overhead; we are not using PEBS explicitly,
but the kernel indirectly uses it to optimize the read of specific HWPC. Next, Table 6.2,
depicts the conversion and operations needed to perform the Top-Down analysis.

As we can intuit from the bottom section on Table 6.1, all metrics share a common
denominator: the Total Slots abstraction. The abstraction translates into the total
number of unhalted cycles of the execution thread multiplied by 4-slots, which is
the maximum theoretical value for the amount of micro-operations delivered at the
issue-point. On the numerator, the Retiring and Frontend bound are measured in slots
at a given point in the pipeline. The Bad speculation and the Backend bound are
expressions resulting as an arithmetic expression from the same units. The Top-Down
units are expressed as:

𝑇𝑜𝑝𝐷𝑜𝑤𝑛𝑢𝑛𝑖𝑡𝑠 =
𝑠𝑙𝑜𝑡𝑠
𝑐𝑦𝑐𝑙𝑒

𝑐𝑦𝑐𝑙𝑒𝑠∗4 𝑠𝑙𝑜𝑡𝑠
𝑐𝑦𝑐𝑙𝑒

= 1
𝑐𝑦𝑐𝑙𝑒𝑠 .

2See event_constraint and intel_snb_event_constraints definitions in
arch/x86/kernel/cpu/{perf_event,perf_event_intel}.c from Linux kernel 3.0 source code [93].



6.3 Top-Down for Micro-architecture Comparison 48

473.astar
0.0

0.2

0.4

0.6

0.8

1.0
Cy

cle
 P

or
tio

n

Top-Down Analysis on: 473.astar

Backend Bound
Frontend Bound
Bad Speculation
Retiring

Figure 6.1 Top-Down analysis of the 4 main categories for 473.astar.

Because the Top-Down is performed after an execution, the resulting tuple of
values is an overall representation of how much of a cycle is spent in each one of the
main Top-Down categories. Since the slots are used by micro-operations which are
transitively the result of decoding instructions, we can say that Top-Down is a special
type of a CPI stack. As an example, in Figure 6.1 we present the Top-Down analysis for
the SPEC 473.astar benchmark after a 50 billion instructions execution. The X-axis
is just used to horizontally locate the values corresponding to the benchmark. On the
Y-axis, 1-overall-cycle is presented from [0 to 1.0]. From Table 6.1 we can see that the
values are normalized to 1.0 (Backend bound is expressed: 1− 𝑠𝑢𝑚_𝑜 𝑓_𝑡ℎ𝑒_𝑜𝑡ℎ𝑒𝑟𝑠).
To show the powerful insights provided by Top-Down, for our example 473.astar, we
can notice that the Bad speculation is dominating most of the waiting times; a known
behavior explored manually in previous research [110].

6.3 Top-Down for Micro-architecture Comparison
In the research publication, Top-Down is mentioned to act as a tool for micro-
architecture comparison. Although our simulator attempts to mimic the targeted
micro-architecture, we used the Top-Down to dig into the possible locations (Top-Down
categories) where the deviations between the systems are present.

Figure 6.2 shows the Top-Down comparison between the real-system measurements
and the simulator. At this point, we are not specifying any particular order for the
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Figure 6.2 Top-Down analysis and IPC comparison. For each benchmark, left bars
correspond to real-system measurements, while the right bars correspond to the
simulator.

benchmarks. The upper plot shows the Top-Down breakdown for the integer set of
benchmarks, while the lower plot shows the floating point set of benchmarks. We
considered the plot to be powerful, as it presents condensed information of the overall
execution. When used for micro-architectural analysis, side to side comparison allows
fast visual inspection of the treated categories. Information on how to read this plots
lists as follows:

1. For all experiments, two bars are presented: the left bar for the real system and
the right bar for the simulated environment.

2. The X-axis lists the benchmark used in the study.

3. The right-Y-axis are normalized to 1.0 as they represent the per-cycle portion of
the given execution.
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4. The left-Y-axis are scaled up to 4.0 which means the maximum IPC achievable
by the real system.

5. IPC is shown through the black crosses overlapped on each bar. A black-dashed
line has also been drawn to visualize the difference between the two obtained
metrics.

In Figure 6.2, we can note that for very good labeled benchmarks, the comparison
between Top-Down categories is acceptable. As the retirement categories are approxi-
mately the same we could trust that all other categories are comparable. Unfortunately,
we could not state the same for the high error labeled benchmarks.

A major drawback using the Top-Down method is that it summarizes the execution
in a normalized environment, meaning that the sum of all of its members projects from
0 to 1.0 (in other words, from 0 % to 100 % of an overall cycle execution). For example,
if we compare two Top-Down results from the same execution in slightly different
conditions where all Top-Down categories are modified, we will not know which one(s)
triggered the differences, either because one(s) has grown forcing the others to shrink
or vice-versa. To deal with this ambiguity, we propose an extension to the Top-Down
method.

6.4 The Retirement Factor
Our proposal to the Top-Down method for micro-architectural comparison requires
to limit the execution of a target workload to a specific amount of instructions. In
our work, we set up all benchmarks to execute the same number of instructions (50
billion). Our assumption states that since the number of executed instructions are
the same in both systems (the real machine and the simulator infrastructure), it also
should be the same for the micro-operations that eventually retire. Lets remember
that the Top-Down’s Retirement category counts the delivered micro-operations which
eventually do retire [146]. The assumption is valid because we integrate the differences
found for the execution units corresponding to the micro-benchmark execution for the
358 cases of the x86 ISA. So the number of micro-operations generated by a given
instruction is already incorporated into the CPU simulator. Those micro-operations
which were not retired because of a bad speculation are not taken in the final count.
Therefore, for any given workload in the 50 billion instruction window, the Retiring
category should be approximately the same for the real system and the simulation
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Figure 6.3 Top-Down analysis using the retirement factor. For each benchmark, left
bar corresponds to real-system measurements while the right bar corresponds to the
simulator.

infrastructure. We define the retirement factor as the ratio between the Retiring
category in the real system and the simulation infrastructure:

𝑟𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑓 𝑎𝑐𝑡𝑜𝑟 =
𝑅𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑎𝑡𝑒 𝑔𝑜𝑟𝑦𝑟𝑒𝑎𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒

𝑅𝑒𝑡𝑖𝑟𝑒𝑚𝑒𝑛𝑡 𝑐𝑎𝑡𝑒 𝑔𝑜𝑟𝑦𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
.

Using the retirement factor, we proceeded to scale all the Top-Down categories.
In a value-to-value comparison, this means that the retirement category will match
the same value, but the rest of categories will scale dynamically. As an example, in
Figure 6.3, we can notice that the lower level of the stacked bar (the Retiring category)
is kept the same for all experiments but not in the upper layers of the bars (particularly
in the Backend bound category).

The Backend bound category seems to be the culprit between the two systems.
It is affected by the retirement factor with up to 9 and 8 times for the integer and
floating-point benchmarks accordingly. An important remark linked with the previous
research, is that with the exception of 482.sphinx3 and 450soplex, all high error
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categorized benchmarks are documented as high-bandwidth utilization [148]. The
Frontend bound category seems to be affected as well with up to 4 times the scaling
factor. Unfortunately, even in the Top-Down research paper, it is mentioned that
Frontend bound is somehow misleading. Bad speculation category seems not to play a
significant role in the high error classified benchmarks. Moreover, it does not seem
to be affected by the normalization factor, meaning that the branch predictors in the
simulator are a rightful representation of the actual hardware with the exception of
434.zeusmp that holds a scaling factor of 4 times with respect to the original value.

6.5 Summary
Although the Top-Down method is a tool to conduct an application’s performance
analysis, it is also well-suited to perform micro-architectural comparison, including
simulator’s performance. In this chapter, we presented the retirement factor, an
extension to the Top-Down method that allows us to identify the most suitable
micro-architectural section responsible for the differences between a real system and a
simulator infrastructure. The retirement factor accentuates the differences for each one
of the Top-Down categories providing the researcher with a new tool to measure the
differences between the systems under test. In our evaluation, the major differences
are found in the Backend bound category.

Since the benchmarks where the retirement factor has a larger magnitude are found
in the state-of-the-art as the ones with more interactions with the main memory, the
major contributor of the differences must be on the memory subsystem.



CHAPTER 7

The Delay Queue and Top-Down Evaluation

In this chapter, we propose an architectural modification to the memory controller (the
Delay Queue) that allows us to inject a delay for every memory transaction that reaches
the main memory. Let’s remember that there are two micro-architectural components
that alter the amount of memory transactions during workload execution but are not
modeled by ZSim: the hardware prefetchers and the TLBs. To measure the impact of
not having neither of these two features in our study, we split the current evaluation
setting the real machine in two different scenarios: 1. with the hardware prefetchers
disabled, and 2. with the hardware prefetchers enabled. For the TLB, we measured
the address translation impact by using HSCC (a ZSim extension) [94], where a first
layer of address translation is modeled in the simulator infrastructure.

Although we were unable to replicate the proper HWPC in the simulator infras-
tructure to determine the full set of Top-Down categories under the Backend-bound
branch, we managed to control the external parameters that affect workload behavior;
particularly those that affect memory performance. In the real machine, we can alter
the amount of memory transactions by disabling and enabling the hardware prefetchers;
in the simulator infrastructure, we can modify latency parameters of main memory
access including our Delay Queue proposal.

The before-mentioned scenarios create a difference in the amount of memory
transactions that reached the main memory, jointly with the retirement factor allows
us to determine the source of deviations between the systems under test.
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Description mem.latency Delay Queue

Df.0 - Default configuration 100 0
Df.1 - Only mem.latency 170 0
PQ.0 - Delay Queue as 15 ns 170 24
PQ.1 - Delay Queue as 60 ns 170 100

Table 7.1 Different simulator parameter proposals.

7.1 The Delay Queue
We have enhanced the DRAMsim2 memory controller with a naive model to insert delay
cycles in the main memory simulation. We named this proposal as the Delay Queue.
We categorized the Delay Queue per memory request in one of the following scenarios.
1. The request is traversing the Network on a Chip (NoC) to the memory controller,
the request is notably longer for write transactions. 2. The request is arbitrating for
the right to be en-queued in the memory controller’s request queue. 3. The request
is potentially stalling if one of the transactions queues are full. 4. At the end of a
read request, the multi-cycle cost of transferring the data over the NoC between the
memory controller and the core.

To find the best possible theoretical value for DRAMsim2’s Delay Queue, we use the
same strategy to propose values for the ZSim’s mem.latency parameter. From 70 ns of
the worst-case machine latency, we subtract 56 ns from the ZSim’s mem.latency fixed
parameter. These 14 ns should be expressed in the DRAM clock domain (800 MHz),
turns into 22.4 clock cycles. To use square numbers, we decided to use 15 ns that
becomes 24 DRAM clock cycles.

Furthermore, a remarkable feature using Delay Queue in this analysis is that it
creates a bubble in the simulation environment affecting the Top-down analysis as
follows: if the Backend bound category increases, the problem is directly related to the
memory subsystem; if the Backend bound category decreases or has little change, we
can say that it is a problem of the execution engine. Using the retirement factor these
changes should be easier to spot.
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Figure 7.1 Rerirement factor Top-Down analysis excluding overheads of hardware
prefetchers.

7.2 SPEC CPU2006 Analysis Using Top-Down and
the Retirement Factor

The SPEC CPU2006 suite [65] is a well-known collection of real-world benchmarks. We
executed and evaluated the simulator infrastructure enhancements on a set of eleven
integer and fourteen floating-point benchmarks from the suite.

Figure 7.1 and Figure 7.2 are divided into two sections: integer and floating point
set of benchmarks. The upper plot belongs to the integer category and the lower plot
belongs to the floating-point category. On the X-axis, we use the canonical name of
the SPEC CPU2006 benchmarks. On the Y-axis, the Top-Down scale is used. For each
benchmark in the X-axis, we plot five bars representing a combination of simulator
parameters. Table 7.1 summarizes these configurations. The order of the bars in both
figures from left to right is: Df0, Df.1, PQ.0, PQ.1. The 5𝑡ℎ bar corresponds to the real
machine, this is the reason why it is bound to 1.0.

In Figure 7.1, the retirement factor helps us to effortlessly identify two cases of
interest in the integer category and five cases in the floating-point category. For
memory intensive benchmarks, simulator enhancements based on the changes in the
mem.latency ZSim parameter (2𝑛𝑑 and 3𝑟𝑑 bar) show moderate changes with respect to
the default ZSim + DRAMsim2 configuration (1𝑠𝑡 bar). The simulator enhancements
based on the Delay Queue in the DRAMsim2 (4𝑡ℎ bar), show much larger differences.
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Figure 7.2 Retirement factor Top-Down analysis including overheads of hardware
prefetchers. Regarding Figure 7.1, the retirement factor helps to identify the bench-
marks which are sensitive to prefetcher intervention.

We also detected a huge difference in the Backend bound issue stalls between the real
platform (5𝑡ℎ bar) and all the simulator configurations.

For the integer set, 429.mcf and 462.libquantum show a substantial difference in
the 4𝑡ℎ bar (Delay Queue-only scenario). The rest of configurations seems to be stable
across all the integer benchmarks, ranging between 1.5 and 2.2 in the Top-Down
scale. For the floating-point set, 410.bwaves, 437.leslie3d, and 459.GemsFDTD present
a larger difference not only in the 4𝑡ℎ bar but also in the remaining of the simulation
configurations. An interesting behavior, similar to the integer set, is found in 433.milc

and 470.lbm that present a moderate increase in the Delay Queue-only scenario ranging
between 2.0 and 3.0 in the Top-Down scale.

Following our assumptions, we proceeded to enable the hardware prefetchers in
the real machine and compare the measurements with the simulation infrastructure.
Figure 7.2 presents the results of this comparison. A striking similitude from Figure 7.1,
is that for most of the benchmarks, there is a low-to-moderate difference between the
different simulator configurations, mainly from the fact that these benchmarks have
low memory usage [36]. Moreover, the most impacted benchmarks remain the same as
in Figure 7.1.

Between the two comparisons, the Top-Down scale grew on average 0.4 for the
integer benchmarks and 0.27 for the floating-point category. For the most impacted
benchmarks, the increment in the Top-Down scale for the Backend category between
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the two real machine scenarios behave on average as follows: 3.62 for 462.libquantum,
and 1.76 , 1.42 and 1.70 for 410.bwaves, 437.leslie3d and 459.GemsFDTD respectively.

Moreover, we can notice that for benchmarks 458.sjeng on the integer set,
410.bwaves, 447.dealII, 459.GemsFDTD, and 470.lbm for the floating-point set the 3𝑟𝑑

bar (DQ=24 and mem.latency=170) there is a decrement on the backend category. This
result leads us to think that a discrepancy exists in the execution engine and not solely
in the memory simulation.

7.3 Impacts of Hardware Prefetchers and Address
Translation

Modern OSs use the Virtual Memory (VM) technique to provide multiple processes
execution and shared resources access on the same computer. Process’ code and data
segments belong to a unique given address space in which each location is known
as Virtual Memory Address (VMA). For the running process to reach resources on
the machine, the VMAs must be translated into physical locations. All mappings
between VMAs and their specific physical locations must be kept for recurrent processes’
look-ups. The more resources the process would use, the larger the mapping storage
must be. The mapping storage is known as the Address Translation Table (ATT) and
is usually located in main memory. If an application constantly accesses the ATT its
performance will degrade. The procedure of transforming a processes’ virtual addresses
into the computer’s physical location in main memory is known as Virtual-to-Physical
Address Translation (V2PAT). Nowadays in a high-end general-purpose architecture,
V2PAT is a process that is achieved jointly between the OS and the hardware through
the operation of the Memory Management Unit (MMU). The TLB is the component of
the MMU that speeds up the V2PAT acting as an additional memory cache that serves
solely for the translation purposes. When the TLB does not hold for the correct record
of translation, a TLB miss event is generated triggering a page walk. A page walk is a
hardware mechanism that looks-up into the main memory’s ATTs mappings for the
corresponding translation. The TLB is on the critical path so every miss on the TLB
(page walk) degrades the overall workload performance. In contemporary hardware
more than one level of TLBs can be found, minimizing the amounts of requests to the
main memory’s ATTs.

Although ZSim provides lightweight user-level virtualization [125], it does not take
into account V2PAT, meaning that the simulator ignores TLB overheads along with
its corresponding page walks. In HSCC [94], researchers introduced a TLB mechanism
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Figure 7.3 dtlb-access ratios for the enhanced ZSim-HSCC vs. the Sandy Bridge
machine for each of the SPEC CPU2006 benchmarks.

to improve multi-memory management. The authors had implemented a 1-level TLB
scheme on top of ZSim. To quantify the impact of address translation, we used and
extended their work.

As we mentioned in Section 6, a modification to the source of the simulator implies
a projection of new architecture in the real world. Therefore, ZSim-HSCC is an ideal
target to test our validation proposal.

First, we integrated our Sandy Bridge upgrades (Section 4) with ZSim-HSCC.
Next, using hardware performance counters, we collected and compared the data-
TLB (dtlb-access) in both architectures. In the simulator, accesses are calculated
as hits + misses, whereas in the real machine, a HWPC provides this information.
Figure 7.3 shows the ratio calculated as

𝑑𝑡𝑙𝑏_𝑟𝑎𝑡𝑖𝑜 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑜𝑟_𝑑𝑡𝑙𝑏𝑎𝑐𝑐𝑒𝑠𝑠
𝑆𝑎𝑛𝑑𝑦 𝐵𝑟𝑖𝑑𝑔𝑒_𝑑𝑡𝑙𝑏𝑎𝑐𝑐𝑒𝑠𝑠 .

Each one of the two bars represents the comparison of the simulator and the real machine
in two scenarios: on the left bar with the prefetchers disabled and the right bar with the
prefetchers enabled. On average1, ZSim-HSCC overestimates the dtlb-misses by 32 %.
Moreover, except for five benchmarks (465.tonto, 470.lbm, 471.omnetpp,473.astar,
483.xalancbmk), we can identify that the address translation is not affected by the
prefetcher configuration.

In Figure 7.4, we used the Top-Down retirement factor to identify the effects of
address translation. For each benchmark, three bars are presented. The baseline in
our work is the real execution with prefetchers enabled (1𝑠𝑡 bar), the next two bars

1From our previous comparison we excluded 401.bzip, 450.soplex, 447.dealIII,459.GemsFDTD, and
482.sphinx3 because of timing violations that caused a simulation crash.
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Figure 7.4 Top-Down Analysis for ZSim-HSCC SPEC CPU2006 benchmarks. From
left to right: the 1𝑠𝑡 bar corresponds to the real execution with prefetchers enabled
(baseline in our case study), the 2𝑛𝑑 bar to the simulation vs. real execution with
prefetchers enabled, and the 3𝑟𝑑 bar, corresponds to the simulation vs. real machine
execution with prefetchers disabled.

correspond to the simulation executions. To use the retirement factor, we compared
the simulation with the real machine execution with prefetchers enabled (2𝑛𝑑 bar), and
with prefetchers disabled (3𝑟𝑑 bar).

When prefetchers are enabled, the retirement factor grows bigger than in the
opposite case. The average increments in the Backend bound category with respect to
the real machine with prefetchers enabled are: for the integer set of benchmarks 6.38
and 2.58 for the floating-point set. When prefetchers are disabled the average decreases
to 4.06 for the integer set, and 1.81 for the floating-point set. This result heavily
supports the argument that hardware prefetchers improve workload performance.

The memory intensity workloads that appear to be most affected by address
translation in both comparisons are: for the integer set, 445.gobmk, 462.libquantum,
471.omnetpp, 473.astar, and 483.xalacbmk with Top-Down scale differences ranging
from 2.26 up to 9.1; for the floating-point set, 433.milc and 437.milc present Top-
Down scale differences of 2.47 and 5.14 respectively. The average difference for the
benchmarks that shows small effects because of address translation is 0.2 for the integer
set, and 0.1 for the floating-point set. This behavior implies a little temporal data and
code locality.
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Figure 7.5 SPEC CPU2006 memory footprint for the first 50 billion instructions. The
red horizontal lines mark the proposed 320 MiB threshold.

7.4 Memory Utilization
A characteristic not available in baseline ZSim but brought-in by ZSim-HSCC is the
memory footprint accountability. In modern OSs, the memory usage, or memory
footprint, is calculated by the amount of page tables a process requests. For example,
given that the default page size for most of the Linux systems is 4 KiB, a process that
allocates and uses 10 KiB will report 12 KiB as memory footprint since 3 pages were
allocated for the process’ request. Taking the same example for depicting purposes,
the 2 KiB difference between the reported memory footprint and the used memory
leaves room for the Resident Set Size (RSS) definition: which is the amount of physical
memory used by the process. Furthermore, in most computer programs, several memory
allocations and deallocations happen throughout the lifetime of their execution. The
peak of RSS memory used by a process is also known as the high watermark. This
metric is in particularly interest for HPC applications, since it determines the minimal
amount of memory expected by the HPC application developer to be physically available
in the HPC running node.

Figure 7.5 depicts the memory footprint reported by the ZSim-HSCC simulator
during the first 50 billion of instructions execution on different SPEC CPU2006
benchmarks. Let’s remark that as opposed to the regular 4 KiB Linux metrics, the
memory footprint in ZSim-HSCC is measured with a 64 B granularity. Meaning that
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Integer Floating-point

mean 120.5 MiB 272.0 MiB
std-dev 105.5 MiB 334.1 MiB
minimum 25.05 MiB 1.8 MiB
maximum 343.8 MiB 928.4 MiB

Table 7.2 Memory footprint characteristics of the first 50 billion instructions execution
of the SPEC CPU2006 benchmark suite.

for ZSim-HSCC both terms, high watermark and memory footprint can be used
interchangeably.

In Table 7.2 we displayed the differences between the minimum and maximum
memory footprint recorded for the 50 billion of instructions execution. These values
are tighter for the integer set than for the floating point set of benchmarks. It is
distinguishable that for the SPEC CPU2006 suite, the memory footprint for the
integer set of benchmarks does not fluctuate as much as the floating-point counterpart.
Since the minimum and maximum values for the integer set of benchmarks are close
(25.05 MiB, 343.8 MiB) to a known reference value in our simulated platform (the
20 MiB LLC) we decided to establish an arbitrary threshold of 16× the LLC which in
this analysis results in 320 MiB.

Using Figure 7.5 and our results from the relative IPC error analysis, we can identify
those benchmarks that surpassed the 320 MiB threshold and that were catalogued with
high relative IPC error. For the floating-point set of benchmarks, there is only one
exception, 436.cactusADM which was cataloged with very good relative IPC error but
surpasses the threshold. For the integer set of benchmarks, 462.libquantum have a high
relative IPC error but it is located under the 320 MiB threshold whereas 401.bzip2

surpasses the threshold but was catalogued with very good relative IPC error.
Given that 22 out of 24 benchmarks in the SPEC CPU2006 suite follows the

hypothesis that workloads not crossing the 16× the LLC threshold are correlated with
good simulation accuracy, we propose our chosen threshold for further simulation
validation. For any targeted execution of a workload, if the application’s memory
footprint is lower than the 16× the LLC threshold, we will have good simulation
accuracy for CPU and DRAM co-simulation.
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7.4.1 Real-World Memory Footprint and HPC Data Center
Deployments

Even with computers’ robustness at 2020, categorizing an application with 16× the
LLC might sound as a small memory footprint for HPC workloads; but recent studies
on the state-of-the-art show otherwise.

The common metric used to characterize memory in regards of CPU perspective
is the memory per core; nevertheless, there are two contexts where the same concept
applies but have different readings. In the context of job allocation for HPC workloads,
the memory per core ratio is defined as the quotient of all the allocated memory for the
job divided by the number of the assigned cores (logical or physical). In the context of
data center deployment, the ratio is calculated in a single-node basis being deined as
the quotient of the total amount of physical main memory divided by the number of
physical cores2.

Although there is a mild increasing trend in memory footprint throughout time, low
memory footprint workloads are not uncommon in HPC data centers. Researchers have
found that 48 % of workloads sent to the ARCHER supercomputer (UK) utilizes less
than 0.5 GiB per core [135]. This result is compatible with researchers at University
of Buffalo analyzing NSF’s (USA’s National Science Foundation) Innovative HPC
resources, where in average HPC workloads do not exceed more than 1.0 GiB per core
utilizing only 19 % of available memory [129]. In a separate study, researchers from
Virginia Tech (USA) in the Los Alamos National Laboratory HPC, has concluded that
HPC workloads used in average 29 % of available memory [111]. Lastly, researchers
from BSC (Spain) have found similar results; HPC applications with good scalability
present low memory footprint per process with less than 0.5 GiB per core [151]. The
study also shows that most HPC applications with a distributed design decrease the
memory footprint per working process node, whereas the master process (only 1 node)
increases its memory footprint.

A remark found in such studies is that workloads managers in HPC data centers
such as SLURM are configured by default to allocate an HPC job exclusively on a given
node [131]; meaning that no other allocation could use the machine’s resources even if
those are underutilized. IBM’s lsf also provides a queue for job exclusiveness in its
scheduling policy.

2In HPC data centers, Simultaneous multithreading (SMT) technologies such as Intel’s Hyper-
Threading are disabled by default because of performance loss in HPC applications [31].



7.4 Memory Utilization 63

Generation Micro-architecture Nodes Sockets Processors Cores Main Memory Main Memory per Core
1st IBM PowerPC 970FX 4,812 1 1 4,812 9.6 TiB 2 GiB
2nd IBM PowerPC 970MP 10,240 1 1 10,240 20 TiB 2 GiB
3rd Intel SandyBridge-EP E5-2670 2,752 2 16 88,064 176.128 TiB 2 GiB
3rd Intel SandyBridge-EP E5-2670 128 2 16 4,096 16 TiB 4 GiB
3rd Intel SandyBridge-EP E5-2670 128 2 16 4,096 32 TiB 8 GiB
3rd Intel Xeon Phi 7230 16 1 64 1,024 1.5 TiB + 256 GiB 1.5 GiB + 256 MiB
4th Intel Xeon Platinum 8160 3,240 2 24 155,520 303.75 TiB 2 GiB
4th Intel Xeon Platinum 8160 216 2 24 10,368 81 TiB 8 GiB
4th IBM Power9 8335-GTH 52 2 20 2080 26 TiB 12.8 GiB | 3.2 GiB

Table 7.3 MareNostrum core and main memory evolution.

Modern releases of hardware from IHVs and Original Equipment Manufacturers
(OEMs) follow the trend in HPC workload’s memory footprint. For instance, providing
service to 1,059 researchers from 51 research groups [12], the MareNostrum super-
computer is constantly identified as one of the fastest and most robust HPC systems.
Currently in its fourth iteration, it has continuously incremented computer power and
memory capacity since the previous generations. Table 7.3 presents a brief survey of
the technical characteristics and evolution of the MareNostrum supercomputer. Among
these, the main memory capacity and the ratio between the main memory and processor
count are in our particular interest. Only a subset of nodes of the supercomputer in
the last two generations offers a different memory configuration; either with bigger
capacity, or access to an emerging memory technology.

In the MareNostrum supercomputer, the memory per core has been a constant
of 2 GiB per core. To situate MareNostrum with respect to other HPC systems, in
Figure 7.6 we present the evolution of the first 100 systems 3 in the Top500 list [40].
We can notice an existing trend to provision systems with 2 GiB per core and up to
8 GiB per core. Furthermore, the dominant micro-architecture of systems using more
than 2 GiB is x86.

Lastly, emerging memory technologies such as 3D-stacked DRAM, are becoming
a common architectural decision to deploy among HPC OEMs [130, 123, 4]. Albeit
emerging memory technologies are being targeted for GPU specific purposes such as
for Machine Learning (ML) or faster visualization workloads, attempts such as Intel’s
Xeon Phi products provisioned with MCDRAM memory gave us a glimpse on how to
profit using emerging memory technologies. Notwithstanding, memory capacity on
such deployments are still modest with respect to main memory meaning that the
machine’s memory per core using emerging memory technologies it is also still under
our simulation ranges for good accuracy.

3There were some systems with incomplete information or that we could not determine if all
memory belongs to main memory, or if it is shared with GPU devices. From the 100 list we used: 53,
51, and 51 systems for the years: 2019, 2018, 2017 correspondingly.
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Figure 7.6 Evolution of the RSS/core. First 100 ranked systems in the Top500 list.

7.5 Summary
To identify the source of errors in the memory hierarchy simulation, we proposed
an architectural modification that consists of injecting a delay for every memory
transaction that crosses the memory controller. We named this proposal the Delay
Queue. By injecting a delay for every memory transaction that missed the LLC,
we achieved 2 goals: 1. we reached the maximum expected latency in main memory
simulation for dependent back-to-back memory transactions and, 2. we created a
bubble in the CPU executing pipeline that is easy to spot using our retirement factor
Top-Down modification.

The Delay Queue allow us to design experiments to identify if the main memory
simulation error is in the CPU or DRAM simulation. When comparing the results using
the our Top-Down’s retirement factor, we could identify that the gap of main memory
simulation comes from the CPU simulation. As some of the simulated workloads show
a decrease in the Backend bound Top-Down category while increasing the latency for
memory transactions, we concluded that the simulation error must come from the CPU
engine. This line was studied in a separate work: Rethinking Cycle Accurate DRAM
Simulation [91].

Moreover, we noticed a link between memory footprint, high memory utilization,
and large simulation error. We propose to use the memory footprint threshold of
16× the LLC to estimate if the simulated workload will execute with good simulation
accuracy.



CHAPTER 8

Opportunities For Emerging Memory Systems:
Check-pointing in Heterogeneous Systems

As we shown in the previous chapter, a portion of the HPC data center time is
consumed by low memory footprint workloads (less than 2 GiB per core). Given that
some IHVs are deploying small capacity emerging memory technologies into their
products, such as the Intel’s Xeon Phi Processor that is deployed with 16 GiB of
3D-stacked DRAM, we envision a clear opportunity to use these deployments with low
memory footprint HPC applications. The intent for emerging memory technologies
is to boost application’s performance, or in the case of non-volatile memories, improve
reliability support. In this work, we expose a case study where real-world low-memory
footprint HPC applications use an emerging memory technology for data reliability,
while improving their current execution performance.

Checkpoint-Restart (CR) is a common technique that saves hours of application’s
execution in the case of a failure event. Currently, CR it is considered a best-practice
for HPC programmers. Moreover, some data centers are questioning to impose a CR
requirement for HPC applications. Therefore, some HPC applications have incorporated
some CR functionality. We extended the CR Fault Tolerant Interface (FTI) library [13]
to work with heterogeneous memory subsystems. For those users who already use
the library, small changes are needed to explicitly use different memory nodes. For
those who do not, the library empowers the application developer with a simple API,
that performs transparent data migrations between different memory technologies,
consolidating a robust system tolerant to failures.
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Figure 8.1 An example of a NUMA system: a tile-mesh architecture with two
associated memory technologies.

8.1 Background
A computer architecture design that deals with dynamic memory latency, is known as
a NUMA architecture. The tile-mesh design shown in Figure 8.1 is an example of a
NUMA system. Each tile is composed of compute cores sharing a physical connection
with the fabric, where two memory technologies are found: MCDRAM and Double
Data Rate (DDR). From the computing cores standpoint, once a memory transaction
is issued the obtained latency is variable. The complexity of the fabric adds dynamic
delays to the latency of memory transactions: transactions for package routing, data
coherency, or data location.

For an application to make usage of the memory, it has to interact with the OS.
For the scope of this work, we will use the term OS and Linux interchangeability1.
The interaction from the application to the Linux kernel, might be summarized as
follows. First, the application requests for a memory range via OS system calls. Next,
the OS scrubs into its internal structures for an available memory range. Using the
concept of virtual memory, the OS is responsible for managing physical-to-logical
address mappings, so that all running applications might use portions of the memory
as the applications demanded it. If it is possible to fulfill the request, the OS assigns a
virtual address which is then delivered to the application request. When the application
receives the OS assigned address, two options are available for the application: either
begin to use the requested space, or apply for a change of policy of the given space,
i.e., being located into a different memory node. For our case study, we use both
mechanisms conveniently.

1We base our assumption on the fact that as per 2019, all HPC systems listed on the Top500 site
are running a software distribution with a Linux kernel [40].
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Figure 8.2 Software stack representation. Dependencies exist if the boxes vertically
overlap.

Figure 8.2 abstracts the HPC application development environment. Each box
represents a software entity of our particular interest. If the boxes vertically intersect,
it means that the upper box relies on the support of the layer underneath. For example,
the HPC application overlaps completely with the kernel base layer; all applications
need support from the kernel. Moreover, the application might use system libraries
which iteratively use the libc, or they can directly access the syscall kernel interface.
The box diagram aids in the understanding of the dependency support between HPC
application and the system libraries.

8.2 System Libraries
Most computing applications rely on external pieces of code that abstract some
functionality to achieve some goal: reading and writing specific file formats, perform
specific data manipulation, or orchestrate distributed environments. These external
pieces of code or libraries help researchers to focus on the task to solve rather than
dealing with computing infrastructure problems. In this section, we will discuss the
most important libraries that affects our case study.

8.2.1 libc

The C library is the most relevant library among the Linux distributions [51]. The library
provides all functionalities imposed by the ISO C standard, the Portable Operating
System Interface (POSIX), the Berkeley Unix and System V Interface Description, and
the X/Open Portability Guide standard. Nowadays, most of the Linux applications
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and Linux system libraries are written in languages that somehow are linked against
libc. In fact, some of the traditional languages Fortran (GNU) or Perl are directly
implemented in C. Some other languages implement a bootstrap mechanism: first they
are compiled with C/asm (therefore using libc) to get a small compiler based on the
target language; then, the resulting compiler is used to build the rest of the language.
Examples like these are: C++, Java (OpenJDK), Python (CPython) or Go. There are
some other libc implementations, but mostly related to the embedded world.

8.2.2 Computer Topology and System Libraries

In NUMA architectures as the one depicted in Figure 8.1, the OS might assign different
memory nodes (also known as NUMA nodes) to the memory allocations requested
by the running applications. Moreover, depending on the process-load of the system,
the Linux scheduler might migrate a process from one core to another within the
same processor or even to another processor’s core out of the current silicon package.
Such policy directly impacts application’s performance either by the variations in the
memory access latency, the cost of process migration, or pollution to the memory
caches.

To minimize the effects of process migration and cache pollution, a common
solution is to pin the process to a specific core. For Symmetric Multi Processing (SMP)
systems, the support was added in kernel 2.5.8 [121], and wrapped in libc in version
2.3.3. For different memory nodes, kernel engineers provide an API to assign certain
memory requests to specific memory nodes as the developer feels convenient. The
NUMA support was introduced since kernel version 2.5.40 [100], but an API to handle
different memories policies was only introduced in kernel 2.6.26 [133]. The user-level
library that abstracts the NUMA support is known as libnuma [86]. The library is part
of the numactl package, which enables applications to communicate with the kernel to
request for specific processor location.

A requirement to use the libnuma library is the knowledge of the running com-
puter topology. If the topology is unknown, the Portable Hardware Locality (hwloc)
library [24] aids the application developer to identify processors in the system [55],
enumerate and characterize the memory hierarchy [54], as well to perform device tree
discovery [53].

Furthermore, the libraries are commonly deployed with command-line tools that
help the application developer to further abstract the policies so that no changes to
the code are required. These tools wrap the execution of the application by creating
an environment where the application is pinned to a particular core binding all the
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memory transactions to a particular NUMA node. Although that solution might be
the right fit for simple applications, HPC applications require stricter granularity for
different code regions.

Traditionally, HPC applications scale out into large data centers. To communicate
among nodes of the data center cluster, they use a standardized parallel paradigm: the
MPI [104]. The standard mandates a set of operations that translates into a specific
library interface implemented in C and Fortran. The implementation of such standard
is carried out by multiple entities: from free and open source ones (MPICH, Open
MPI), up to the industry support (Intel MPI or Microsoft MPI). MPI distributions are
deployed with tools that ease the compilation process and the correct execution in the
supported environments.

8.2.3 Memory Allocation

A Linux application is composed of three memory regions for data: the global area,
the stack, and the heap [63]. These three regions are found in the .data section of an
object file. On the one hand, the global area and the stack, are constrained in size by
the micro-architecture and the compiler. On the other hand, once the object file is
loaded into application’s memory, the heap is the region where the application might
request as much memory as the OS’ virtual space policies allow.

For the application to use some memory from the heap, it has to issue a special
request to the Linux kernel. If the request is valid, the OS responds to the application
with the starting address of a memory region along with the right permissions and
policies to bind that request. Generally, the request to allocate memory for application
usage is performed through the libc’s malloc(3) or mmap(2) function calls. Both family
of functions wrap the Linux kernel API for virtual memory allocation: brk(2) and
mmap(2). These interactions generate on overhead in the total application’s performance.
Although a single request does not deteriorate the application’s performance, a large
number of requests might do so. The penalties on performance are associated with the
overhead in kernel scrubbing, page allocation, and potential cases of cache pollution.

A solution to minimize performance degradation generated because of the large
amount of memory allocation requests is the usage of a heap manager. A heap manager
is a user-land interface that aims to optimize the OS virtual memory management;
the most used heap manager is provided by the libc’s library through the malloc(3)

family of functions. Despite the convenience to simply use libc’s heap manager,
researchers have found that, for some cases [95], building a granular manager for memory
requests increases application performance. Some the most popular heap managers are:
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Hoard [17] Google’s TCMalloc [56], Intel’s TBBMalloc [73], and Jemalloc [75]. Our
particularly interest is in the latter, Jemalloc, since is in constant evolution [76] and is
regularly cited as a reference in most of the state-of-the-art works [41, 95, 128, 45, 137,
113, 95].

Jemalloc achieves performance efficiency by reducing the number of kernel in-
teractions [46] by pre-allocating and managing the memory resources with different
granularity throughout the lifetime of the application. Granularity is accomplished
using the arena concept. In Linux, an arena is a contiguous unused memory from the
heap region. In jemalloc, an arena is a structure that categorizes the memory into
buckets based on the requested size. Three buckets are provided: small, large, and
huge. For small and large portions, jemalloc pre-initializes regions of the memory in
chunks of 4 MiB that iteratively are split into smaller regions (chunks) of 1 MiB. Huge
portions are allocated independently through adjacent memory chunks. The easiest
way to use Jemalloc by the application programmer is to wrap (shim) application’s
execution using the Linux’s LD_PRELOAD environment variable. That way, all calls to
libc’s malloc(3) are transparently routed to Jemalloc.

Memkind is a library that enables access to emerging memory technologies. Since
the library is mainly maintained by Intel Corp [28], it supports emerging technologies
such as non-volatile Intel’s Optane (3D-Xpoint), or HBM (MCDRAM) on Intel’s KNL
products. It is built on top of Jemalloc and Intel’s Threading Building Blocks as
heap managers, as well as the hwloc and libnuma libraries. In general, the library
might be used for any emerging technology which is exposed as independent NUMA
node. One of the most promising features of the library is the AutoHBW feature. In
a NUMA system, the library transparently allocates memory blocks into the HBM
NUMA node without code modifications. Just as with Jemalloc, Memkind uses the
Linux’s LD_PRELOAD environment variable to wrap the application’s execution.

Lastly, a library from the Argo project of the LLNL [127], AML Building Blocks
for Explicit Memory Management, provides a mechanism that allows the application
developer to place, align, and move data through a tiling scheme, exploiting data
locality to boost application’s performance. AML provides interfaces that request and
manage the virtual memory from the OS. At the moment of the writing of this work,
AML uses jemalloc [75, 76] to improve virtual memory usage. As opposed to the usage
of Memkind or Jemalloc, AML needs substantial changes in the source code to exploit
data locality; therefore, applications must be compiled and linked with AML’s support.
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8.2.4 Checkpoint-Restart Libraries

Computing resources are susceptible to failures: manufacturing nuances, thermal
conditions in data center, or estimated time of product’s life, are among the common
sources of errors. In addition, corner cases in software logic or non-validated input
conditions might cause software to crash. A portion of these errors are recoverable:
some computing devices are designed with ECC for main memory and storage devices,
preventing application errors because of data corruption in the memory hierarchy.
Unfortunately, not all errors can recover once they happened, i.e., the shutdown of a
computing node because of a power surge.

Regularly, distributed executions on several computing nodes stop running when
a single instance crashes. In such cases, all previous computation in all nodes is lost
if data was not properly saved. Checkpoint-Restart (CR) is a technique to provide
applications with resilience support. Given a certain amount of time or when special
milestone is met in application’s lifetime, a photograph of the current application’s
execution is saved. The photograph is the current checkpoint of the application. The
checkpoint might be composed of all the data of the application including internal
application control variables or just a selected subset of the data. In regards of the
application’s recovery, depending on the set-up of the CR policy, the CR subsystem
will read the data from the last checkpoint and restart the execution from there.

In the state-of-the-art, CR systems might be categorized as Application-Level, User-
Level and System-Level [44]. System-Level checkpointing is out of the scope of our
study since it requires administrative privileges on the executing nodes. Application-
Level and User-Level checkpointing might overlap in design; the main difference lies
in an automated or explicit manner to perform the checkpoint. Two system libraries
with a growing user base that provide CR support are: SCR as Application-Level
checkpoint, and the FTI library on the User-Level checkpoint.

The Scalable Checkpoint/Restart (SCR) for MPI [108] is a multi-level check-
pointing library focused to optimize I/O operations. The library is extensively used in
the LLNL since 2007. SCR is built on top of CRUISE [117]: an in-memory user-level
file system for checkpoints that support a variety of storage technologies, including
emerging persistent memory. SCR integrated with CRUISE extends the possibilities
of check-pointing where storage resources are insufficient in local nodes. Moreover,
SCR enables a cache for fast and slow storage systems. The multi-level checkpoint is
provided as a hierarchy of checkpoints where the lower levels are the weaker regarding
resiliency, and the higher levels offer a robust checkpoint mechanism. This is because
SCR wraps the running environment performing an incremental checkpoint from all
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application related data. From the application developer standpoint, few changes are
needed since only some logic is required to make the application to be aware of the
checkpoint.

The Fault Tolerant Interface (FTI) library provides a framework to enable
low-overhead CR capabilities to an HPC application [13]. The library allows for a
multi-level checkpoint scheme mainly on the back storage. At the moment of this
implementation, FTI supports a special memory technology aside from the main
memory: the GPUs memory. This implementation is different from the scope of this
study as the memory from the GPU is not addressable from the CPU, and it relies on
the manufacturer’s support, e.g., CUDA proprietary drivers from Nvidia [98].

FTI enables a multi-level checkpoint scheme for CR. The levels refer to the secondary
storage where the checkpoint is stored: on local storage (L1 ), local storage + partner-
copy (L2 ), L1 with erasure code (L3 ), and on global storage (L4 ). Through a
configuration file, the developer controls the library specifying parameters for the
general execution of the HPC application, e.g., paths to the local storage (L1, L2, L3 ),
paths to the parallel file system (L4 ), number of reserved processes per node, group
information (for L2 and L3 ), or time to automatically perform the check-pointing.

The usage model for FTI is that the HPC application developer performs a call to the
FTI library to initialize, protect, and clean the FTI run-time environment. To protect
and check-point the data, an explicit call to FTI_Protect() and FTI_Checkpoint()

respectively, is required. Furthermore, the check-point might be configured to happen
periodically, indistinctly of the corresponding function call.

We chose to work with FTI due to the user-level design that allows us to explicitly
specify the desired NUMA node while controlling the memory footprint with an
in-variable granularity.
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Figure 8.3 Software stack - FTI’s current scenario.

8.3 Methodology
In Figure 8.3, the software stack related to FTI’s integration with system libraries is
depicted. In this scenario, all pieces of the software stack are using libc and the HPC
application must be compiled with FTI and MPI support.

Several approaches might be taken to support memory heterogeneity in the HPC
application. 1. The HPC application directly supports the memory heterogeneity: the
application must discover the hardware topology for each one of the MPI processes
where the distributed execution is taking place. This means all MPI processes must
synchronize to identify concurrent node execution and then split the hardware resources
accordingly. 2. The HPC application uses system libraries that manage memory
heterogeneity: the application uses data structures proposed by the system libraries
modifying the source code accordingly. This approach needs to ensure concurrent
execution conditions so that hardware resources do not starve, for example, running out
of memory because there are multiple process assiginments on the same NUMA node.
3. The HPC application instructs the system libraries to manage memory heterogeneity:
this is a hybrid approach. Although the delegation for managing the different NUMA
nodes is passed down to libraries, some parameters also need to be discovered or set
up. For example, if Memkind is selected to manage different NUMA nodes, then an
execution environment must be discovered and configured so that each MPI process has
a maximum amount of memory to be used per NUMA node allocation. 4. The HPC
application uses system libraries that transparently manage the memory heterogeneity:
as the checkpoint libraries already support the MPI standard and deal with the memory
allocations, the libraries can synchronize with all MPI processes, so that hardware
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Figure 8.4 Software stack of the FTI’s proposed scenarios.

discovery and context set-up might happen without or very little intervention of the
HPC application.

We decided to pursue the hybrid approach proposing two scenarios: 1. Extending
the FTI library using the AML library: AML combines memory heterogeneity through
jemalloc with a data-tiling scheme, making it attractive for the HPC application
development. 2. Native support of memory heterogeneity in FTI. Both proposals are
depicted in Figure 8.4. For the application developer, few changes are needed in both
scenarios, mainly driven by two new FTI function calls; FTI_ProtectedVariable(),
which reserves the amount of requested memory in the selected NUMA node, and
FTI_Migrate(), used to move data from one NUMA node to other. Because the latter
is the most expensive operation, we elaborated on the implementation. We expect the
application developer to use the migration only once.
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8.4 Implementation
Within the FTI architecture, the library holds for an internal pointer list of variables to
protect. To insert variables in the list, the application developer uses the FTI_Protect()

call. When the checkpoint takes place, FTI traverses the list of protected variables
according to the CR level requested. Therefore, the impact of integrating memory
heterogeneity is expected to change the FTI_Checkpoint() performance. Furthermore,
we evaluated two important characteristics within this proposal: sensitivity to data
locality and code implementation. Both aspects are crucial to break ambiguity when
more than one NUMA nodes are used i.e., in a heterogeneous memory system.

8.4.1 FTI Integration with AML

Our primary objective is to provide HPC applications with a robust failure management
system that supports heterogeneous memory. Since AML shares the same objective,
two significant changes were needed for FTI and AML to be integrated. First, we
have extended the same concept of jemalloc arenas into FTI. Second, we needed to
implement AML’s memory tiling model into FTI’s.

At the moment of the integration, AML used jemalloc as a heap manager, meaning
that jemalloc’s workflow heavily influences some design principles in AML. For example,
an arena for every NUMA node has to be initialized and bounded accordingly. To
translate FTI’s memory model to AML’s, we assumed a contiguous virtual memory
region for the protected variable to migrate. This assumption allows us to use the
AML’s 1D-tiling scheme using memory chunks of size: 4 KiB (commonly, a single page).

1 AML_DMA_LINUX_SEQ_DECL(dma);

2 AML_TILING_1D_DECL(tiling);

3 struct aml_area_linux_mmap_data mmapconfig;

4 szVariable = sizeof(variableToCkpt);

5 ptr = aml_area_linux_mmap_generic (&mmapconfig , NULL , checkpointSize);

6 nRequests = szVariable/pageSize;

7

8 aml_tiling_init (&tiling , AML_TILING_TYPE_1D , pageSize , szVariable);

9 aml_dma_linux_seq_init (&dma , &nRequests);

10 for( request = 0; request < nRequests; request ++ )

11 aml_dma_copy (&dma , &tiling , ptr , variableToCkpt ,request);

12 aml_dma_linux_seq_destroy (&dma);

13 aml_tiling_destroy (&tiling , AML_TILING_TYPE_1D);

Listing 8.1 FTI-AML enabled pseudo-code for FTI_Migrate() procedure.
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Listing 8.1 presents a pseudo-code of the process involved to use the AML library
for migrating a variable between memory nodes. For each of the variables on the FTI
protected list, the following procedure is executed. From line 1 to line 6, initialization
of variables is required by the AML library, where nRequests holds for the number of
pages the copy has to perform from main memory to the file system for the current
variable. Lines 8 and 9 initialize the AML tiling scheme. The migration for each variable
is done through the loop on lines 10 and 11, which iterates nRequests times. Lastly,
in lines 13 and 14 for each AML structure it is required to clean the state of the used
variables.

8.4.2 FTI’s Native Implementation

In our proposed implementation, during FTI initialization, the library verifies if the
system is provisioned with non-traditional memories. If the technologies are available,
and the application developer instructs FTI to use them, the appropriate data structures
are configured accordingly.

Two opportunities are available to profit from emerging technologies: 1. If the
application developer is still using libc’s malloc(3), FTI will manage the allocation,
so the application transparently uses the emerging technology. 2. To avoid expensive
data migrations, we enforce FTI to align all the protected data, so that the remainder
of operations would be as effective as the hardware could perform.

We provisioned FTI with a set of functions similar to libc’s malloc(3) family of
functions: the most critical call translates into a virtual memory request (mmap(2))
followed by a NUMA allocation petition (mbind(2)). The requests keep the data aligned
to the page size (in most of Linux systems this is 4 KiB) to alleviate the check-point
operations when writing the data to the file system. Both of our implementations
of FTI_ProtectVariable() and FTI_Migrate() use our FTI’s alloc() family of functions
making their usage transparent to the application developer.

Listing 8.2 presents a pseudo-code version of the FTI_Migrate() function. In lines
1-3, the context pointers and variable holding the control sizes are initialized. In line
5, the function identifies if the memory to migrate is aligned or not. If the memory
is not aligned, then the lines 6-9 process the request with two operations. The first
copy operation begins with line 6 which contains the maximum aligned pages on the
migrated data. The migration process is finalized on line 9, copying the trail of bytes
that were not aligned. As the original allocation used a call to FTI_ZeroAlloc(), the
remainder of space in the last page is padded with zeros. In line 12 if the function
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identifies that the memory is aligned, the process is performed only using a single
function call. Finally, on line 13, a validation check is performed.

1 alignedSize = getAlignedSize(size , pageSize);

2 newPtr = FTI_ZeroAlloc(FTI_Align(alignedSize), placement);

3 startPtr = basePointer;

4

5 if ( (remainder = (size % pageSize)) != 0 ) {

6 FTI_Memcpy(newPtr , sourcePtr , alignedSize)

7 newPtr = newPtr + alignedSize;

8 sourcePtr = sourcePtr + alignedSize;

9 FTI_Memcpy(newPtr , sourcePtr , remainder)

10 } else {

11 FTI_Memcpy(newPtr , startPtr , pageSize);

12 }

13 FTI_Memcmp(newPtr , basePointer , alignedSize);

Listing 8.2 FTI_Mirate() - Native Implementation. No external overheads.



8.5 Evaluation 78

8.5 Evaluation

8.5.1 Experimental Setup

We evaluated the checkpoint for heterogeneous memory hierarchy in a 4-node Intel
Knights Landing (KNL) cluster. The platform remains valid for the scope of this study
since 3D-stacked DRAM is becoming a de facto component in HPC designs. Each
node of the cluster has an Intel Xeon Phi 7230 processor comprising 64 cores operating
at 1.30 GHz. The memory available in the system consists of two NUMA nodes: an
external DDR4 node populated with 6x16 GiB DIMMs running at 1200 MHz and an
in-socket MCDRAM module. The NUMA nodes are distributed through the fabric
as eight MCDRAM memory controllers with 2 GiB each, and two DRAM memory
controllers managing three channels each.

Three configurations are possible for the Intel KNL to expose the DDR4 and
MCDRAM memory to the OS [79]. 1. Cache mode: the MCDRAM is used as cache for
the DDR4 memory. In this mode, the OS wouldn’t notice the MCDRAM’s presence.
2. Flat mode: both memory technologies are exposed as two different NUMA nodes
increasing the amount of total memory available in the system. 3. Hybrid mode: a
partition is made so that the two previous modes are used in small but dedicated
portions (half or quarter of the MCDRAM).

We chose to use the flat mode as we are interested in exploring the implications
of the usage of MCDRAM in the checkpoint process while exploiting the maximum
available memory in the system. The OS used in this evaluation is a SUSE Linux
distribution running a Linux kernel version 4.4.21. The cluster resources are managed
through the SLURM workload manager.

8.5.2 Sensitivity to Code Implementation and Data Location

In order to test sensitivity to data locality, we use a Double precision General Matrix
Multiplication (DGEMM) application where input and output data are bound to a
particular NUMA node using our FTI_ProtectedVariable() interface. The DGEMM
implementation is provided by the Intel Math Kernel Library (MKL) through the
cblas_dgemm() library call. In this implementation, there are two input matrices (A,B),
and one output matrix (C). The size of the matrices ranges from 512 MiB to 1800 MiB.
We designed an experiment to find the allocation of input and output matrices that
allow the best computing performance. The experiment is about allocating the input
and output matrices in different NUMA nodes. We acknowledge that in a scientific



8.5 Evaluation 79

600 800 1000 1200 1400 1600 1800
Matrices size in MiB

600

800

1000

1200

Gf
lo

ps

test
ABC_DDR
ABC_MCDRAM
AB_DDR_C_MCDRAM
AB_MCDRAM_C_DDR

Figure 8.5 Maximum Gflops achieved by allocating different sizes of matrices in
different NUMA nodes. A,B are the input matrices and C is the output matrix.

application such matrices might need to migrate from one NUMA node to another
depending on the application workload.

Figure 8.5 presents the results for the best allocation experiment. For different
sizes of the matrices, diverse performance metrics are reached. For the smallest size
in the experiment (512 MiB), the best allocation corresponds to all three variables
placed on the DDR. As the size of the matrices increases, the result is overcome by
two allocations: 1. having the input matrices in the MCDRAM and the output matrix
in the DDR 2. having all three matrices in the DDR. Overall, the best performance
is achieved by allocating the input values in the MCDRAM and the output values in
the DDR. The results make sense as the MCDRAM provides an increment in memory
bandwidth, so that the Intel MKL kernels, written with AVX2 extensions, take direct
benefit from such feature.

For testing sensitivity to code implementation, two variants of the DGEMM were
used: the Intel’s MKL cblas_gemm() family of functions, and an auto-generated
DGEMM algorithm from the BOAST programming framework [140].

Figure 8.6 presents the results for the two code implementations. The first two sets
of bars on the left side of the figure correspond to the BOAST implementation, the
two sets of the right correspond to the Intel’s MKL implementation. For each group,
we show four sets of bars that corresponds to different input sizes: 32 MiB, 128 MiB,
512 MiB, and 2048 MiB. The Intel’s MKL module is a specialized crafted version of
the DGEMM algorithm compiled explicitly for the KNL architecture. In contrast, the
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Figure 8.6 Giga FLOPS sustainied for different DGEMM implementations on a 64-
core execution. The dotted lines depict the average value for each experiment after 10
time iteration. The size of matrices are expressed in MiB.

auto-generated BOAST implementation leaves the architecture-specific details to the
compiler. In both cases, the average improvement of using MCDRAM as input and
the DDR node as the output matrix is 23 %.

8.5.3 Implementation Impacts on FTI_Checkpoint()

For this evaluation, we used Intel’s DGEMM implementation with matrix sizes of
8 MiB, 18 MiB, and 32 MiB. The experiment was executed using the 64-cores on each
of the nodes of the KNL cluster. Table 8.1 shows the total memory footprint per-node
in the experiment, where the memory footprint of the checkpoint for the three variables
is defined as:

𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡_𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡=(𝑚𝑎𝑡𝑟𝑖𝑥_𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠) ∗ sizeof(double) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟_𝑚𝑎𝑡𝑟𝑖𝑥𝑒𝑠) ∗ (𝑛𝑢𝑚𝑏𝑒𝑟_𝑐𝑜𝑟𝑒𝑠).

Number of elements Total checkpoint size per-node
1024 1536 MiB
1536 3456 MiB
2048 6144 MiB

Table 8.1 Total checkpoint size per-node in a 3 matrix experiment running in 64 cores.
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Figure 8.7 Comparison of performance of the FTI_Checkpoint() function with different
NUMA allocations for the DGEMM test.

The performance impact of the implementation of FTI with AML and the native
FTI is depicted in Figure 8.7. Results are measured in seconds.

Although MCDRAM latency is slightly higher than DDR [115], the Multi-Channel
technology allows the checkpoint to benefit from larger bandwidth. The difference is
noticeable on larger memory sizes. For small and medium sizes, when the input matrices
are located in the DDR, both implementations behave similar. Not the same when
when input matrices are located in MCDRAM: the native implementation takes longer.
Moreover, when the size of the input matrices is large, the native implementation is
considerably faster. The exception happens when input matrices are located in DDR.

8.5.4 Impacts on Real-World HPC Applications

We used three HPC applications to stress the FTI_Checkpoint() function call:
CoMD [33], CoSP2 [35] and LULESH [83]. LULESH and CoSP2 are part of the
ExMatEx [47] project, whereas CoMD is part of the CoPA [34] project. All three
applications were executed in the 4-node KNL cluster. CoMD and LULESH ran with
216 MPI processes distributed as 54 MPI processes per node, while CoSP2 ran with 192
MPI processes distributed as 48 MPI processes per node. For each HPC application,
we chose up to 4 variables to checkpoint with FTI. We consider two scenarios for the
checkpoint: when the variables are placed in the MCDRAM, and when they are placed
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Figure 8.8 Relative difference of counter measurements for FTI_Checkpoint() with
the baseline variables located in the DDR NUMA node.

in the DDR. The total size of the protected variables (the checkpoint size) is displayed
in Table 8.2.

To compare the performance we used HWPC, accessed via Linux perf [67]. We
collected measurements for three counters: CPU unhalted cycles (CPU_CYCLES), retired
instructions (INSTRUCTIONS), and L2 cache misses (CACHE_MISSES). We considered the
average of all measurements in the cluster. In Figure 8.8, we present the relative
difference between measurements taking the checkpoint on DDR as the baseline for
the calculation.

On the one hand, CoMD barely presents a significant difference but CoSP2 presents
a negative difference of −17.9 % in CPU cycles and −13.4 % for retired instructions,
meaning that checkpointing on the MCDRAM is a lighter and faster process. On the
other hand, LULESH presents the opposite case. The reason for this is that in the
main iteration cycle, LULESH destroys and allocates a portion of memory. On FTI’s
native implementation we are not using a heap manager, generating an additional
overhead on the overall application but not more than 11.8 %. In all three applications,

Application Size per MPI process Total checkpoint size per-node
CoMD 53.47 MiB 2887.38 MiB
LULESH 124.81 MiB 6739.74 MiB
CoSP2 48.09 MiB 2308.32 MiB
Table 8.2 Individual checkpoint size and Per-Node total checkpoint size
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the overhead of cache misses is around 4.2 %. This is expected as the L2 cache in all
cores mainly contains information from variables stored in the DDR.

8.6 Emerging Hardware and Workload Trends
Although we have worked with a specific memory technology, it is important to remark
that the two promising memory technologies are taking orthogonal directions. On the
one hand, non-volatile memory (NVM) is increasing the amount of memory available
to the application but at latency cost. On the other hand, 3D-stacked DRAM is
minimizing the CPU idle time through its high bandwidth, but its capacity is limited.

Turner and McIntosh-Smith [135] explored the HPC application’s footprint for
over a year (2017) in the ARCHER supercomputer. They found that considering the
characteristics of their system, 60 % of all allocated jobs used less than 0.5 GiB per
core. In this work, we presented a case study conducted on an Intel KNL cluster, where
only 16 GiB of MCDRAM is available throughout the 64 cores in every node, that is
256 MiB per core. Doubling the size available in near memory architectural designs
will suffice to replace DRAM for most of the current HPC workloads.

New workloads for ML and data-analytics such as map-reduce are considered
to use large amounts of memory. However, the traditional HPC core applications
would not increase their memory footprint dramatically in the next years. Specifically,
3D-stacked memory seems to be a good match for HPC core applications, whereas
Non-Volatile Memory (NVM) can be a good match for the ML and Big Data workloads.
Furthermore, researchers had noticed [15] that there is an incremental adoption of MPI
communications in ML frameworks.

Interacting with hybrid memory systems is not always easy; features like the
automatic migration technique presented in this work can help users leverage such deep
memory hierarchies. The convergence of HPC and industrial data-mining applications
is pushing computer designs to adopt hybrid memory architectures where both types
of applications can thrive. Therefore, it is crucial to strengthen the existing run-time
libraries such as FTI with new hybrid memory technologies as the one presented in
this thesis.
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8.7 Summary
In this chapter we proposed a solution to support heterogeneous memory systems
through a software implementation in a CR library. Moreover, we conducted an
evaluation of such implementation targeting small memory footprint HPC applications.

The heterogeneous memory system used for this study is composed of an emerging
memory technology (MCDRAM) working together with traditional memory (DRAM).
Our software implementation to support heterogeneous memory systems exhibits low
overhead and does not translate into any difficulties to the application programmer,
as it is exported only through two new function calls within the traditional API
of the CR library. We further showed that in-memory data location, and code-
specific implementations are important parameters that directly affect the application
performance. For instance, using the most efficient in-memory data placement, the
performance could improve by 23 % while at the same time for reliability purposes the
data are protected and the checkpoint’s time is minimized.

New memory technologies are becoming ubiquitous into exascale data centers where
resiliency support for HPC applications will not take long to turn into a mandatory
requirement. Fortunately, our proposal complies with these requirements: we encourage
the community to try out our implementation.



CHAPTER 9

Conclusions

In this thesis we analyzed, through system simulation, the implications of the processor’s
micro-architectural details concerning main memory. We also explored a link between
the HPC application’s memory footprint and simulation accuracy. Finally, we proposed
and evaluated a software implementation to support memory heterogeneity in HPC
applications focusing on low-memory footprint workloads while enabling them with
checkpoint-restart capabilities.

9.1 Impacts of System Simulation
Focusing on the memory subsystem, we have shown the importance of validation
for computer architecture simulation. When using a system simulator, a myriad
of parameters are available to researchers to design diverse experiments. A slight
modification at any level of the computing architecture model directly affects the
outcome of the simulation, including the performance of the simulated workload.

In this thesis, we validated a simulation infrastructure based of the co-simulation
of two state-of-the-art system simulators: ZSim and DRAMsim2. The simulated
infrastructure attempts to mimic a real system composed of an Intel Sandy Bridge
E5-2670 processor populated with DDR3 memory devices. Our results showed that in
comparison to the real machine measurements, the default configuration of the CPU
simulator deviates 33 %, and for the main memory simulator approximately 20 ns of
the main memory latency was not taken into account.

The memory subsystem behavior is driven by the processor’s micro-architectural
details such as instruction latency or execution unit utilization. To characterize these
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parameters, we designed a family of micro-benchmarks that allows us to extract them
from the real machine so that we could enhance the simulator infrastructure accordingly.

With the extracted parameters, we upgraded the simulator infrastructure to achieve
29 % of accuracy gain (considering 5 % of relative CPI error) in CPU simulation. To
tackle the memory simulation gap, we explored a combination of CPU parameters
for memory simulation, along with a simulation model proposal (the Delay Queue) to
inject configurable delays for every transaction that crosses the memory controller.

Moreover, to compare our measurements, we proposed an extension to the Top-
Down CPI stack analysis: the retirement factor. Our extension provides us with a
metric to measure the differences when comparing two micro-architectures such as
our simulation infrastructure and the targeted real machine. We further analyzed the
impact of hardware prefetchers and virtual-to-physical address translation in the real
system when compared to the simulation infrastructure. Our Top-Down extension
helped us to promptly recognize how significant the gap is between the systems under
test. We found that six applications of the SPEC CPU2006 (four in the integer domain
and two in the floating-point domain) are profoundly affected by the address translation
mechanism when prefetchers are disabled, exposing a high-data-locality behavior for
these applications. The average difference between the Top-Down’s Backend bound
category when assessing the impact of hardware prefetcher in the SPEC CPU2006
benchmark suite is: 0.75 for the floating point subset and 1.21 for the integer subset.

Using the Delay Queue and comparing the performance executions using the retire-
ment factor we found that the responsible for the differences between the simulator
infrastructure and the real machine is the approximate simulation technique used in
the CPU simulator.

Finally, we found a link between the simulation accuracy and the HPC application’s
memory footprint. Particularly, our simulation infrastructure shows good accuracy for
low memory footprint HPC workloads. The memory footprint of HPC applications
is a crucial parameter to consider in supercomputing scalability and data center
provisioning; specially when emerging memory technologies are about to be integrated
in new deployments.

9.2 Opportunities for Emerging Memory
Technologies

We envisioned an opportunity to use emerging memory technologies, particularly for
workloads that exhibit a low memory footprint profile. In this thesis, we evaluated
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the impact of enabling HPC applications to use a heterogeneous memory system
provisioned with an emerging memory technology. We implemented support for memory
heterogeneity in a CR library for HPC applications. The implementation enables HPC
workloads to benefit from the emerging memory technology while endowing reliability
support.

We showed that performance improvement in HPC workloads is sensitive to data
location and code implementation, particuarly if an emerging memory technology
is used. We further showed that using a heap manager can boost the workload’s
performance by handling virtual memory for small data-transfers, primarily when
memory resources are claimed continuously by the HPC application and returned
to the OS; nevertheless, native (direct) OS support is more suitable for large data-
transfers. Moreover, we showed that curated data locality favors memory performance:
we identified an improvement in one of our experiments with up to 15 % of computing
cycles.
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9.3 Future Work
In the near future, system simulation will remain to be the chosen approach to conduct
computer architecture prototyping and performance exploration. To attain simulation
results in a feasible time, models for approximate system simulation need to be explored.
We plan to evaluate an approach that accurately couples CPU interval simulation and
approximate but detailed main memory simulation. For example, in a collaborative
research [91] a novel model according to these principles has already been proposed.

Moreover, we plan to abstract current NUMA functionality into the simulator
infrastructure, so that policies for data locality would also be considered when simulating
a real workload. Furthermore, models for emerging memory technologies should be
available in the simulator infrastructure. For example in a separate work [10], we
provided a set of parameters for an emerging non-volatile memory acting as main
memory.

In regards of real system comparison with a simulation infrastructure, we plan to
generalize our proposed micro-benchmark for different micro-architectures, extended
to support SMT and SMP beyond the spinner strategy we used in this work.

We also plan to extend our discussion on memory footprint in HPC data centers
with real data collected from an HPC cluster. The data collection must consider
including information such as: 1. periodic sampling of HWPCs to conduct Top-Down
analysis 2. periodic sampling of RSS, the high watermark, and the Working Set Size
(WSS) 3. if possible, source code pointers of the algorithms used for the workload
execution.

Lastly, we plan to incorporate error injection profiles into the simulation infrastruc-
ture and the corresponding support on the CR software library.



APPENDIX A

Instruction Latencies

Table A.1 shows the comparison between the real machine (Intel Xeon E5-2670 Sandy
Bridge), ZSim (enhanced) with the parameters extracted from the micro-benchmark
execution in the real machine (Sandy Bridge), and ZSim (original) without the micro-
architecture upgrade. The table presents the CPI for each one of the targeted instruc-
tions. Since the micro-benchmarks are executed only for a specific instruction, this
is considered the latency of the instruction. Instructions with fractional CPIs, means
that the instruction is composed of more than one micro-operation and effectively
distributed into the Execution Unit ports at the same cycle.

Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

ADC 2.00 2.00 2.00
ADD 1.00 1.00 1.00
ADDPD 3.00 3.00 3.00
ADDPS 2.99 3.00 3.00
ADDSD 3.00 3.00 3.00
ADDSS 3.00 3.00 3.00
ADDSUBPD 3.00 3.00 3.00
ADDSUBPS 3.00 3.00 3.00
AESDEC 7.97 8.00 1.00
AESDECLAST 7.97 8.00 1.00
AESENC 7.97 8.00 1.00
AESENCLAST 7.97 8.00 1.00
AESIMC 2.04 2.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

AESKEYGENASSIST 7.97 8.00 1.36
AND 1.00 1.00 1.00
ANDNPD 1.01 1.00 1.00
ANDNPS 1.00 1.00 1.00
ANDPD 1.01 1.00 1.00
ANDPS 1.00 1.00 1.00
BLENDPD 1.08 1.37 1.37
BLENDPS 1.08 1.37 1.37
BLENDVPD 2.01 2.00 1.00
BLENDVPS 2.00 2.00 1.00
BSF 2.99 3.00 0.33
BSR 2.99 3.00 0.33
BSWAP 1.00 1.00 1.00
BT 0.97 1.00 0.67
BTC 1.00 1.00 1.00
BTR 1.00 1.00 1.00
BTS 1.00 1.00 1.00
CBW 1.00 1.00 1.00
CDQ 1.00 1.00 0.50
CDQE 1.00 1.00 1.00
CLD 3.99 4.00 1.00
CMC 1.00 1.00 1.00
CMOVB 1.00 1.00 1.00
CMOVBE 1.01 1.00 1.00
CMOVL 1.00 1.00 1.00
CMOVLE 1.00 1.00 1.00
CMOVNB 1.00 1.00 1.00
CMOVNBE 1.01 1.00 1.00
CMOVNL 1.00 1.00 1.00
CMOVNLE 1.00 1.00 1.00
CMOVNO 1.00 1.00 1.00
CMOVNP 1.00 1.00 1.00
CMOVNS 1.00 1.00 1.00
CMOVNZ 1.00 1.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

CMOVO 1.00 1.00 1.00
CMOVP 1.00 1.00 1.00
CMOVS 1.00 1.00 1.00
CMOVZ 1.00 1.00 1.00
CMP 0.34 0.67 0.67
CMPPD 3.02 3.00 3.00
CMPPS 3.01 3.00 3.00
CMPXCHG 4.98 5.00 5.00
COMISD 1.00 1.00 1.00
COMISS 1.00 1.00 1.00
CQO 0.98 1.00 0.50
CRC32 3.01 3.00 3.00
CVTDQ2PD 1.02 1.03 1.49
CVTDQ2PS 1.02 1.00 1.00
CVTPD2DQ 1.01 1.03 1.49
CVTPD2PI 1.01 1.03 1.49
CVTPD2PS 1.01 1.03 1.49
CVTPI2PD 1.02 1.03 1.49
CVTPI2PS 3.98 2.00 1.00
CVTPS2DQ 1.03 1.00 1.00
CVTPS2PD 1.00 1.00 1.00
CVTPS2PI 1.01 1.00 1.00
CVTSD2SI 1.01 1.03 1.00
CVTSD2SS 1.01 1.03 1.49
CVTSI2SD 3.00 1.03 1.49
CVTSI2SS 3.00 1.03 1.00
CVTSS2SD 1.00 1.03 1.00
CVTSS2SI 1.01 1.03 1.00
CVTTPD2DQ 1.01 1.03 1.49
CVTTPD2PI 1.01 1.03 1.49
CVTTPS2DQ 1.03 1.00 1.00
CVTTPS2PI 1.01 1.00 1.00
CVTTSD2SI 1.01 1.03 1.00
CVTTSS2SI 1.01 1.03 1.00



92

Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

CWD 1.00 1.00 0.50
CWDE 1.00 1.00 1.00
DEC 1.00 1.00 1.00
DIVPD 10.00 10.00 7.00
DIVPS 9.99 10.00 7.00
DIVSD 10.00 10.00 7.00
DIVSS 10.01 10.00 7.00
DPPD 9.00 9.00 1.36
DPPS 11.97 12.00 1.36
ENTER 9.05 10.82 1.04
EXTRACTPS 1.08 1.36 1.36
FABS 1.00 1.00 1.00
FADD 2.99 3.00 1.00
FCHS 1.00 1.00 1.00
FCMOVB 2.00 1.99 1.04
FCMOVBE 2.00 1.99 1.04
FCMOVE 2.00 1.99 1.04
FCMOVNB 2.00 1.99 1.04
FCMOVNBE 2.00 1.99 1.04
FCMOVNE 2.00 1.99 1.04
FCMOVNU 2.00 1.99 1.04
FCMOVU 2.00 1.99 1.04
FCOM 1.00 1.00 0.67
FCOMI 1.00 1.00 0.67
FDECSTP 1.00 1.00 0.33
FDIV 9.99 10.00 1.00
FDIVR 9.99 10.00 1.00
FFREE 1.00 1.00 0.33
FFREEP 2.00 2.00 0.33
FINCSTP 1.00 1.00 0.33
FMUL 4.98 5.00 1.00
FNOP 1.00 1.00 0.33
FNSTSW 1.00 1.00 0.33
FST 1.00 1.00 0.33
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

FSTP 1.00 1.00 0.33
FSUB 2.99 3.00 1.00
FSUBR 2.99 3.00 1.00
FTST 1.00 1.00 1.00
FUCOM 1.00 1.00 0.67
FUCOMI 1.00 1.00 0.67
FWAIT 1.00 1.00 0.33
FXAM 2.02 2.00 1.00
FXCH 0.50 1.00 1.00
HADDPD 4.98 5.00 1.00
HADDPS 4.98 5.00 1.00
HSUBPD 4.98 5.00 1.00
HSUBPS 4.98 5.00 1.00
IMUL 2.99 3.00 3.00
INC 1.00 1.00 1.00
INSERTPS 1.08 1.36 1.36
LAHF 1.00 1.00 0.33
LZCNT 3.00 3.00 0.74
MAXPD 3.00 3.00 3.00
MAXPS 2.99 3.00 3.00
MAXSD 3.00 3.00 3.00
MAXSS 3.00 3.00 3.00
MFENCE 33.07 0.33 0.33
MINPD 3.00 3.00 3.00
MINPS 2.99 3.00 3.00
MINSD 3.00 3.00 3.00
MINSS 3.00 3.00 3.00
MOV 0.34 0.33 0.33
MOVAPD 1.01 1.00 1.00
MOVAPS 1.00 1.00 1.00
MOVD 1.00 1.00 0.33
MOVDDUP 1.01 1.00 1.00
MOVDQ2Q 1.00 0.74 0.74
MOVDQA 0.33 0.74 0.74
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

MOVDQU 0.33 0.74 0.74
MOVHLPS 1.00 1.00 1.00
MOVLHPS 1.00 1.00 1.00
MOVMSKPD 1.01 1.00 1.00
MOVMSKPS 1.00 1.00 1.00
MOVQ 0.33 0.74 0.74
MOVQ2DQ 0.33 0.74 0.74
MOVSHDUP 1.01 1.00 1.00
MOVSLDUP 1.01 1.00 1.00
MOVSS 1.01 1.00 1.00
MOVSX 1.00 1.00 1.00
MOVSXD 1.00 1.00 1.00
MOVUPD 1.01 1.00 1.00
MOVUPS 1.00 1.00 1.00
MOVZX 1.00 1.00 1.00
MPSADBW 5.99 6.00 1.36
MULPD 4.99 5.00 5.00
MULPS 4.98 5.00 4.00
MULSD 4.99 5.00 5.00
MULSS 4.99 5.00 4.00
NEG 1.00 1.00 1.00
NOT 1.00 1.00 1.00
OR 1.00 1.00 1.00
ORPD 1.01 1.00 1.00
ORPS 1.00 1.00 1.00
PABSB 0.50 1.00 1.00
PABSD 0.50 1.00 1.00
PABSW 0.50 1.00 1.00
PACKSSDW 1.01 1.00 1.00
PACKSSWB 1.01 1.00 1.00
PACKUSDW 1.02 1.00 1.00
PACKUSWB 1.01 1.00 1.00
PADDB 1.01 1.00 1.00
PADDD 1.01 1.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

PADDQ 1.00 1.00 1.00
PADDSB 1.01 1.00 1.00
PADDSW 1.01 1.00 1.00
PADDUSB 1.01 1.00 1.00
PADDUSW 1.01 1.00 1.00
PADDW 1.01 1.00 1.00
PALIGNR 1.08 1.36 1.36
PAND 1.01 1.00 1.00
PANDN 1.01 1.00 1.00
PAUSE 10.95 11.00 9.00
PAVGB 1.01 1.00 1.00
PAVGW 1.01 1.00 1.00
PBLENDVB 1.00 1.00 1.00
PBLENDW 1.08 1.36 1.36
PCMPEQB 1.01 1.00 1.00
PCMPEQD 1.01 1.00 1.00
PCMPEQQ 1.02 1.00 1.00
PCMPEQW 1.01 1.00 1.00
PCMPESTRM 11.01 1.36 1.36
PCMPGTB 1.01 1.00 1.00
PCMPGTD 1.01 1.00 1.00
PCMPGTQ 5.06 5.00 3.00
PCMPGTW 1.01 1.00 1.00
PEXTRB 1.00 1.36 1.36
PEXTRD 1.00 1.36 1.36
PEXTRQ 1.00 1.43 1.43
PEXTRW 1.00 1.00 1.00
PHADDD 2.02 2.00 1.00
PHADDSW 2.02 2.00 1.00
PHADDW 2.02 2.00 1.00
PHMINPOSUW 5.06 5.00 1.00
PHSUBD 2.02 2.00 1.00
PHSUBSW 2.02 2.00 1.00
PHSUBW 2.02 2.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

PINSRB 1.08 1.36 1.36
PINSRD 1.08 1.36 1.36
PINSRQ 1.07 1.43 1.43
PINSRW 1.08 1.00 1.00
PMADDUBSW 4.99 5.00 1.00
PMADDWD 4.99 5.00 1.00
PMAXSB 1.00 1.00 1.00
PMAXSD 1.00 1.00 1.00
PMAXSW 1.01 1.00 1.00
PMAXUB 1.01 1.00 1.00
PMAXUD 1.00 1.00 1.00
PMAXUW 1.00 1.00 1.00
PMINSB 1.00 1.00 1.00
PMINSD 1.00 1.00 1.00
PMINSW 1.01 1.00 1.00
PMINUB 1.01 1.00 1.00
PMINUD 1.00 1.00 1.00
PMINUW 1.00 1.00 1.00
PMOVMSKB 1.01 1.00 1.00
PMOVSXBD 1.00 1.00 1.00
PMOVSXBQ 1.00 1.00 1.00
PMOVSXBW 1.00 1.00 1.00
PMOVSXDQ 1.00 1.00 1.00
PMOVSXWD 1.00 1.00 1.00
PMOVSXWQ 1.00 1.00 1.00
PMOVZXBD 1.00 1.00 1.00
PMOVZXBQ 1.00 1.00 1.00
PMOVZXBW 1.00 1.00 1.00
PMOVZXDQ 1.00 1.00 1.00
PMOVZXWD 1.00 1.00 1.00
PMOVZXWQ 1.00 1.00 1.00
PMULDQ 4.99 5.00 1.00
PMULHRSW 5.00 5.00 1.00
PMULHUW 4.99 5.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

PMULHW 4.99 5.00 1.00
PMULLD 4.99 5.00 1.00
PMULLW 4.99 5.00 1.00
PMULUDQ 4.99 5.00 1.00
POPCNT 3.00 3.00 1.00
POR 1.01 1.00 1.00
PSADBW 4.99 5.00 1.00
PSHUFB 1.02 1.00 1.00
PSHUFD 0.50 1.00 1.00
PSHUFHW 0.50 1.00 1.00
PSHUFLW 0.50 1.00 1.00
PSHUFW 0.50 0.74 0.74
PSIGNB 1.02 1.00 1.00
PSIGND 1.02 1.00 1.00
PSLLD 1.00 1.00 1.00
PSLLDQ 1.02 1.00 1.00
PSLLQ 1.01 1.00 1.00
PSLLW 1.00 1.00 1.00
PSRAD 1.00 1.00 1.00
PSRAW 1.00 1.00 1.00
PSRLD 1.00 1.00 1.00
PSRLDQ 1.02 1.00 1.00
PSRLQ 1.00 1.00 1.00
PSRLW 1.00 1.00 1.00
PSUBB 1.01 1.00 1.00
PSUBD 1.01 1.00 1.00
PSUBQ 1.00 1.00 1.00
PSUBSB 1.01 1.00 1.00
PSUBSW 1.01 1.00 1.00
PSUBUSB 1.01 1.00 1.00
PSUBUSW 1.01 1.00 1.00
PSUBW 1.01 1.00 1.00
PTEST 1.00 1.01 1.01
PUNPCKHBW 1.01 1.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

PUNPCKHDQ 1.01 1.00 1.00
PUNPCKHQDQ 1.01 1.00 1.00
PUNPCKHWD 1.01 1.00 1.00
PUNPCKLBW 1.01 1.00 1.00
PUNPCKLDQ 1.01 1.00 1.00
PUNPCKLQDQ 1.01 1.00 1.00
PUNPCKLWD 1.01 1.00 1.00
PXOR 1.01 1.00 1.00
RCL 2.05 2.00 2.00
RCPPS 1.02 1.00 1.00
RCPSS 5.04 5.00 1.00
RCR 2.06 2.00 2.00
ROL 1.00 1.00 1.00
ROR 1.00 1.00 1.00
ROUNDPD 1.07 1.37 1.37
ROUNDPS 1.08 1.37 1.37
ROUNDSD 3.01 3.00 1.37
ROUNDSS 3.01 3.00 1.37
RSQRTPS 1.02 1.00 2.00
RSQRTSS 4.99 5.00 2.00
SAHF 1.99 1.00 0.33
SAR 1.00 1.00 1.00
SBB 2.00 2.00 2.00
SETB 1.00 1.00 0.33
SETBE 1.00 1.00 0.33
SETL 1.00 1.00 0.33
SETLE 1.00 1.00 0.33
SETNB 1.00 1.00 0.33
SETNBE 1.00 1.00 0.33
SETNL 1.00 1.00 0.33
SETNLE 1.00 1.00 0.33
SETNO 1.00 1.00 0.33
SETNP 1.00 1.00 0.33
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

SETNS 1.00 1.00 0.33
SETNZ 1.00 1.00 0.33
SETO 1.00 1.00 0.33
SETP 1.00 1.00 0.33
SETS 1.00 1.00 0.33
SETZ 1.00 1.00 0.33
SFENCE 5.98 2.00 0.33
SHL 1.00 1.00 1.00
SHLD 1.01 1.00 3.00
SHR 1.00 1.00 1.00
SHRD 1.01 1.00 4.00
SHUFPD 1.02 1.00 1.00
SHUFPS 1.01 1.00 1.00
SLDT 5.97 0.33 0.33
SMSW 9.95 0.33 0.33
SQRTPD 9.96 10.00 7.00
SQRTPS 9.95 10.00 7.00
SQRTSD 10.00 10.00 7.00
SQRTSS 10.00 10.00 7.00
STC 0.34 0.33 0.33
STD 3.98 1.00 1.00
STR 5.97 0.33 0.33
SUB 1.00 1.00 1.00
SUBPD 3.00 3.00 3.00
SUBPS 2.99 3.00 3.00
SUBSD 3.00 3.00 3.00
SUBSS 3.00 3.00 3.00
TEST 0.34 0.67 0.67
TZCNT 3.00 3.00 0.74
UCOMISD 1.00 1.00 1.00
UCOMISS 1.00 1.00 1.00
UNPCKHPD 1.01 1.00 1.00
UNPCKHPS 1.00 1.00 1.00
UNPCKLPD 1.01 1.00 1.00
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Instruction CPI real
(Sandy Bridge)

CPI ZSim
(Enhanced)

CPI ZSim
(Original)

UNPCKLPS 1.00 1.00 1.00
XADD 2.02 2.00 4.00
XCHG 1.53 1.50 1.50
XOR 1.00 1.00 1.00
XORPD 1.01 1.00 1.00
XORPS 1.00 1.00 1.00
Table A.1 Comparison of the Cycles per Instruction (CPI) – Instruction latency – of
our 358 targeted x86 instructions in the real machine, the enhanced version ZSim , and
the original version of ZSim.
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