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Abstract

Speech is one of the most natural and direct forms of communication between human beings,
as it codifies both a message and paralinguistic cues about the emotional state of the speaker,
its mood, or its intention, thus becoming instrumental in pursuing a more natural Human
Computer Interaction (HCI). In this context, the generation of expressive speech for the
HCI output channel is a key element in the development of assistive technologies or personal
assistants among other applications.

Synthetic speech can be generated from recorded speech using corpus-based methods
such as Unit-Selection (US), which can achieve high quality results but whose expressiveness
is restricted to that available in the speech corpus. In order to improve the quality of the
synthesis output, the current trend is to build ever larger speech databases, especially following
the so-called End-to-End synthesis approach based on deep learning techniques. However,
recording ad-hoc corpora for each and every desired expressive style can be extremely costly,
or even unfeasible if the speaker is unable to properly perform the styles required for a given
application (e.g., singing in the storytelling domain). Alternatively, new methods based on
the physics of voice production have been developed in the last decade thanks to the increase
in computing power. For instance, vowels or diphthongs can be obtained using the Finite
Element Method (FEM) to simulate the propagation of acoustic waves through a 3D realistic
vocal tract geometry obtained from Magnetic Resonance Imaging (MRI). However, since the
main efforts in these numerical voice production methods have been focused on improving the
modelling of the voice generation process, little attention has been paid to its expressiveness
up to now. Furthermore, the collection of data for such simulations is very costly, besides
requiring manual time-consuming postprocessing like that needed to extract 3D vocal tract
geometries from MRI.

The aim of the thesis is to add expressiveness into a system that generates neutral
voice, without having to acquire expressive data from the original speaker. One the one
hand, expressive capabilities are added to a Unit-Selection Text-to-Speech (US-TTS) system
fed with a neutral speech corpus, to address specific and timely needs in the storytelling
domain, such as for singing or in suspenseful situations. To this end, speech is parameterised
using a harmonic-based model and subsequently transformed to the target expressive style
according to an expert system. A first approach dealing with the synthesis of storytelling
increasing suspense shows the viability of the proposal in terms of naturalness and storytelling
quality. Singing capabilities are also added to the US-TT'S system through the integration of
Speech-to-Singing (STS) transformation modules into the TTS pipeline, and by incorporating
an expressive prosody generation module that allows the US to select units closer to the
target singing prosody obtained from the input score. This results in a Unit Selection based

Text-to-Speech-and-Singing (US-TTS&S) synthesis framework that can generate both speech
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and singing from the same neutral speech small corpus (~2.6 h). According to the objective
results, the score-driven US strategy can reduce the pitch scaling factors required to produce
singing from the selected spoken units, but its effectiveness is limited regarding the time-scale
requirements due to the short duration of the spoken vowels. Results from the perceptual tests
show that although the obtained naturalness is obviously far from that given by a professional
singing synthesiser, the framework can address eventual singing needs for synthetic storytelling
with a reasonable quality.

The incorporation of expressiveness is also investigated in the 3D FEM-based numerical
simulation of vowels through modifications of the glottal flow signals following a source-filter
approach of voice production. These signals are generated using a Liljencrants-Fant (LF)
model controlled with the glottal shape parameter R;, which allows exploring the tense-lax
continuum of phonation besides the spoken vocal range of fundamental frequency values,
F0. The contribution of the glottal source to higher order modes in the FEM synthesis of
cardinal vowels [a], [i] and [u] is analysed through the comparison of the High Frequency
Energy (HFE) values obtained with realistic and simplified 3D geometries of the vocal tract.
The simulations indicate that higher order modes are expected to be perceptually relevant
according to reference values stated in the literature, particularly for tense phonations and/or
high F0s. Conversely, vowels with a lax phonation and/or low F'0s can result in inaudible HFE
levels, especially if aspiration noise is not present in the glottal source. After this preliminary
study, the excitation characteristics of happy and aggressive vowels from a Spanish parallel
speech corpus are analysed with the aim of incorporating this tense voice expressive styles into
the numerical production of voice. To that effect, the GlottDNN vocoder is used to analyse
F0 and spectral tilt variations associated with the glottal excitation on vowels [a]. These
variations are mapped through the comparison with synthetic vowels into F'0 and Ry values to
simulate vowels resembling happy and aggressive styles. Results show that it is necessary to
increase F'0 and decrease Ry with respect to neutral speech, with larger variations for happy
than aggressive style, especially for the stressed [a] vowels.

The results achieved in the conducted investigations validate the possibility of adding
expressiveness to both corpus-based US-TTS synthesis and FEM-based numerical simulation
of voice. Nevertheless, there is still room for improvement. For instance, the strategy
applied to the numerical voice production could be improved by studying and developing
inverse filtering approaches as well as incorporating modifications of the vocal tract, whereas
the developed US-TTS&S framework could benefit from advances in voice transformation
techniques including voice quality modifications, taking advantage of the experience gained in

the numerical simulation of expressive vowels.
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Chapter 1

Introduction

This thesis has been developed under the doctoral program in “Information Technologies and
its Application in Management, Architecture and Geophysics” of La Salle-Universitat Ramon
Llull (LS-URL). It has been carried out within the Grup de recerca en Tecnologies Media
(GTM) of LS-URL under the supervision of Dr. Francesc Alias and Dr. Joan Claudi Socoré.
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Figure 1.1: Phonatory system.

1.1 Motivation and objectives

This section briefly introduces the ultimate motivation behind this thesis: the synthesis of
natural expressive speech (subsection 1.1.1). Then, it gives a short description of the work
done by the GTM research group in this field (subsection 1.1.2). Finally, the objectives

addressed in this thesis are outlined (subsection 1.1.3).



1. Introduction

1.1.1 Expressive speech synthesis

Speech is an incredibly powerful mean of communication, which not only codifies linguistic
information, i.e., the message, but also provides paralinguistic cues about the emotional state
of the speaker, its mood or its intention (Schuller et al. 2013). This makes speech one of the
most natural and direct forms of communication between human beings. Hence, it has become
a key element in the development of Human Computer Interaction (HCI), by incorporating
speech recognition and speech synthesis for the input and output channels of interaction,
respectively. The first steps towards the integration of speech synthesis into HCI systems
were mainly done in the field of assistive technologies to make computer systems accessible to
people with special needs (e.g., Brodwin et al. 2004; Yamagishi et al. 2012). Nevertheless,
nowadays, synthetic speech has become ubiquitous and it is present in our daily lives in
smartphones and other devices through applications such as personal assistants (Barcelos Silva
et al. 2020).

To better understand how speech can be generated, let us see how human speech is
produced by the phonatory system (see Figure 1.1). When the airflow from the lungs cross the
vocal folds, these vibrate producing a train of glottal pulses. This signal, known as glottal flow,
is modified along its propagation path through the vocal tract and emanates from the mouth
as a speech wave. The vocal tract shape, which is controlled by the articulators (e.g., tongue,
palade, etc.), determines its acoustic behaviour and therefore which phoneme is produced.
Speech can be synthesised by imitating this process. Nevertheless, since closely mimicking the
human system is very complex and computationally demanding (Taylor 2009), simplifications
are generally applied (e.g., Story et al. 1996; Birkholz 2013). In this respect, the classical
acoustic theory of voice production proposes the source-filter model, where speech is obtained
as the combination of a sound source, such as the glottal flow produced by the vocal folds,

and the vocal tract, which can be modelled as a linear acoustic filter (Fant 1970).

Alternatively, several synthesis techniques have focused on reproducing the spoken output
instead of the voice production process itself. To this end, a speaker is recorded to build a
speech corpus. Most of nowadays speech synthesis systems follow this strategy and therefore
are known as corpus-based approaches. Within this category, the most popular systems are
those based on unit-selection, on statistical parametric models, and more recently on deep
learning (see section 1.2).

Corpus-based approaches can produce intelligible and quite natural speech. However, as
mentioned above, speech does not only convey linguistic information but also paralinguistic.
Expressiveness is therefore a crucial component of speech communication and, as such, must
be considered in speech synthesis systems. In this sense, the expressiveness achieved by
corpus-based systems is mainly restricted to the style of the recorded corpus (Taylor 2009).
Therefore, the expressive capabilities of a general-purpose Text-to-Speech (TTS) system
could be expanded by recording new corpora covering the desired speaking styles (Alias et al.
2008). This approach, however, would be very costly and difficult to scale up, given the
difficulty of gathering data to cover the wide range of expressive registers present in human

communication.
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Although corpus-based approaches have dominated the field of speech synthesis during
the last decades (especially in the development of TTS systems), the increase in computing
power has allowed the development of new methods of voice production. This is the case, for
example, of numerical acoustic simulations considering three-dimensional (3D) vocal tract
geometries to overcome restrictions of classic 1D simplifications (e.g., Blandin et al. 2015;
Arnela et al. 2016b). These simulations, which try to characterise the production of human
voice (see Figure 1.1) from an articulatory and acoustic point of view, have been mainly
focused on improving the modelling of the voice generation process. As a consequence, little
attention has been paid on providing this approaches with expressiveness. The acquisition of
glottal source and vocal tract data using technologies such as Magnetic Resonance Imaging
(MRI), electromagnetic articulograph or high-speed videoendoscopy is very costly (Y. Li
et al. 2018), and it entails subsequent time-consuming postprocessing stages (Arnela et al.
2016b). Therefore, the collection of expressive data for numerical simulations may be even
more difficult than building speech corpora. In this context, it might be interesting to consider
the incorporation of glottal source processing techniques into the numerical simulations as an

alternative means of adding expressiveness to the generated voice.

1.1.2 Research group

The Grup de recerca en Tecnologies Media (GTM) has long experience in the analysis and
synthesis of speech. This is fundamental in the development of natural HCI, which can help
people with hearing and/or visual impairments (e.g., see the INREDIS project, CEN-2007-
2011), and to interact with people with special needs (e.g., see the IntegraTV-4all project,
FIT-350301-2004-2). A special focus has been placed on incorporating expressiveness into
corpus-based speech synthesis through classic speech signal processing techniques in different
projects (e.g., CreaVeu 2010-VALOR-00164, SALERO, FP6-027122 and SAVE, TEC2006-
08043/TCM). On the other hand, the GTM has also been working on the numerical simulation
of the physics involved in voice production (e.g., see the EUNISON project, EU-FET 308874).
With the increase of computational power, it has become possible to simulate the propagation
of acoustic waves through 3D geometries of the vocal tract obtained from MRI. Up to now,
this method has been used to generate vowels, diphtongs and some vowel-consonant-vowel
utterances (e.g., Arnela et al. 2016b; Arnela et al. 2019; Arnela and Guasch 2019). However,
the voice produced with this approach is still limited in terms of expressiveness. This was
precisely the motivation behind the GENIOVOX project (TEC2016-81107-P), within which
part of the research presented in this thesis was developed. The GENIOVOX project aimed
at the computational generation of expressive voice from the parameterisation of recorded
expressive speech. To this end, a hybrid approach was proposed by incorporating speech
processing techniques into numerical voice production. The key idea of this approach is to
identify those parameters responsible for expressive effects through the analysis of speech
signals to subsequently map the variations of such parameters into the glottal pulse models

and vocal tract geometries used in the simulations.
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1.1.3 Thesis objectives

The aim of the thesis is to add expressiveness into a system that generates neutral voice,
without having to acquire expressive data from the original speaker. To this end, the system is
extended with additional modules and/or controls which allow for speech signal transformations

to approach the desired expressive styles, as depicted in Figure 1.2.

On the one hand, the thesis departs from a speech synthesiser developed in our research
group. This is a Unit-Selection TTS (US-TTS) system fed with a small-sized neutral speech
corpus (see Formiga et al. 2010 for further details). We want to extend the expressive
capabilities of this system to address specific and timely needs in the storytelling domain.
The storytelling style poses particular challenges for the generation of natural synthetic
speech, such as the subtle expressive nuances in indirect speech, which differ between different
storytelling categories (Montano and Alias 2016; Montano and Alias 2017). Another need
that may occasionally arise is to generate singing when one of the characters of the story sings
a song.

As mentioned above, adding expressive capabilities to a corpus-based TTS system by
recording additional corpora would be very costly if we want to cover each and every expressive
nuance we want to elicit (e.g., happiness, sadness, suspense, surprise,...). Therefore, applying
this strategy to address sporadic expressive needs, like in the storytelling domain, would
be difficult to justify. Furthermore, the speaker who was recorded to build the neutral
speech corpus may not be a good storyteller or singer. In this respect, this thesis addresses
the following research question: is it possible to synthesise expressive speech or singing in
the storytelling domain from a small-size neutral speech corpus through speech processing
achieving a reasonable quality? Tt may be observed that some End-to-End (E2E) approaches
outperforming US-based systems have appeared during the course of this research. However,
such approaches require large amounts of data and might not be the most appropriate to
address the research question. Moreover, the classical US pipeline allows us not only to
incorporate additional modules into the T'T'S but also to study their contribution.

In a similar vein, we aim at introducing expressiveness into the numerical simulation
of voice. In this case, the starting point of our research is a 3D acoustic model based
on the Finite Element Method (FEM), which simulates the propagation of acoustic waves
through MRI-based vocal tract geometries developed within the EUNISON and GENIOVOX
projects (Arnela et al. 2016b). As explained above, the acquisition and postprocessing of

data for numerical simulations of expressive voice may be even more difficult than recording
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Figure 1.2: Expressive capabilities are added to a neutral voice/speech synthesis system by
incorporating additional controls and modules.
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speech corpora. That is why we ask ourselves: is it possible to incorporate expressiveness in
the numerical simulation of voice without explicitly acquiring expressive data?
In accordance with the aforementioned research questions, the investigations conducted in

this thesis pursue the following two main objectives:

o O1. Adding expressive capabilities to a US-TT'S system fed with a small size neutral
corpus to address the synthesis of singing and storytelling suspense, without recording

additional voice samples.

o 02. Adding expressiveness to the 3D FEM-based numerical simulation of voice without

having to acquire expressive data.

1.2 State of the art

This section introduces the state of the art related to the objectives addressed in this
thesis. First, a brief review of the evolution of singing and speech synthesis is presented in
subsection 1.2.1. Then, subsection 1.2.2 outlines some works focused on adding expressiveness
to corpus-based T'T'S systems. Finally, subsection 1.2.3 presents investigations related to the

goal of adding expressiveness to numerical voice production.

1.2.1 Singing and speech synthesis evolution
1.2.1.1 First generation synthesis systems

Synthesis of both speech and singing has attracted the attention of the speech research
community. For instance, in the presentation of Dudley’s VODER, (Dudley 1939) apart from
spoken utterances some short singing examples were performed by the operator to show the
capabilities of the vocoder. Indeed, most of the early works facing singing synthesis were
closely linked to speech synthesis (see Cook 1996 and references therein). This was particularly
true in first generation synthesis systems (see left part of Figure 1.3). These synthesisers
were typically built on a source-filter model according to the classical acoustic theory of voice
production (Fant 1970). This model was driven by a rule-based control according to a detailed
low-level synthesis specification, including a phonetic representation along with the duration
of each phoneme as well as a FO contour (Taylor 2009). These systems can be classified
into three categories: articulatory synthesis, formant synthesis and classical linear prediction
systems.

In articulatory synthesis, voice is generated by modelling the human articulator behaviour.
Kelly and Lochbaum developed the first digital physical model of the voice where the
vocal tract was simulated as a series of one-dimensional tubes (Kelly and Lochbaum
1962). Their collaboration with Max Mathews resulted in one of the first synthetic singing
examples '. Afterwards this model was extended by means of digital waveguide synthesis in
the SPASM/Singer system (Cook 1993), which could be used for both text-to-speech and
singing synthesis purposes through control files (Cook et al. 1993).

thttps://ccrma.stanford.edu/~jos/wav/daisy-klm.wav
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Figure 1.3: First generation (left) and second generation (right) synthesis systems.

Regarding formant synthesis approaches, an impulse train for voiced sounds and noise
for unvoiced are passed through a bank of filters reproducing the resonances (formants) of
the vocal tract transfer function. One of the most popular examples is the Klatt synthesiser
(Klatt 1980), used by Charles Dodge in 1973 to produce singing synthesis. Inspired by Gunnar
Fant’s speech synthesiser (Fant 1970), the KTH developed the Music and Singing Synthesis
Equipment (MUSSE) and the subsequent MUSSE DIG (Sundberg 2006). In a similar vein, the
CHANT project (Rodet et al. 1984) used formant wave functions (in French, Forme d’Onde
Formatique or FOF), so each formant is represented by its impulse response, and is excited
by a pseudo-periodic controlling source. Very good singing results could be achieved but a
costly process of refinement of the control parameters was required. The first generation
of rule-based synthesis systems evolved to data-driven approaches due to the difficulty of
determining the control parameters to get natural and high quality results. Nonetheless, it is
worth mentioning that formant synthesis is still used in the context of performative singing

synthesis (Feugere et al. 2017), where flexibility and real-time are the main requirements.

1.2.1.2 Second generation synthesis systems

Second generation synthesis systems (see right part of Figure 1.3) use a data driven approach
to generate the verbal content of the signal and explicit algorithms to determine the prosodic
content. To this end, a set of units (typically diphones) is recorded guaranteeing that
there is one unit for each unique type. Pitch and timing of diphones are modified applying
signal processing techniques to match the synthesis specification which includes the verbal
specification, one or more F0 values and duration (Moulines and Charpentier 1990). Some
works have exploited signal processing capabilities to generate singing from a spoken database.
Flinger (Flinger 2001) for instance uses residual LPC synthesis and provides several modules
allowing the Festival T'TS (Festival 2016) to sing. Multi-Band Resynthesis OverLap Add
(MBROLA, Dutoit and Leich 1993) has been used to generate both speech and singing from
speech units (Uneson 2002) even in real-time as in MAXMBROLA (D’Alessandro et al. 2005).
More recently, Ramcess synthesiser (D’Alessandro et al. 2008) generates singing by convolving
vocal tract impulse responses from a database with an interactive model of the glottal source.
The manipulation of both excitation and filter parameters allows to resemble singing even the

database content is somewhere in between speech and singing.
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The deployment of the data-driven paradigm led to the creation of databases explicitly
designed for singing. In this context, sinusoidal models, that had been extensively used in
speech synthesis (McAulay and Quatieri 1986) and speech modification (Quatieri and McAulay
1992), were extended to the synthesis of singing voice in the LYRICOS system (Macon et al.
1997) using a singing voice dataset. A bigger database is used in (Bonada and Serra 2007)
trying to better cover the sonic space of a singer by means of performance sampling and
spectral models. This approach is able to produce good quality synthetic singing and has
successfully resulted in the Vocaloid (Kenmochi 2012).

1.2.1.3 Corpus-based synthesis systems

Speech and singing synthesis systems evolved towards corpus-based approaches, also known
as third generation techniques (Taylor 2009). These techniques build on larger speech (or
singing) corpora and they can be based on unit selection (US), statistical parametric models,
and more recently deep learning.

In unit selection synthesis, units (usually diphones) are selected from a speech database
according to their matching to a specification and how well they can be concatenated (Hunt
and Black 1996; Clark et al. 2007; Alias et al. 2011). For a long time, US has been widely
used in commercial speech synthesis systems because of the high degree of naturalness that
can be achieved (King 2014). The US based approach was early adopted for the synthesis of
singing in (Meron 1999). More recently, a singing synthesiser combining US and a Wideband
Harmonic model was proposed in (Bonada et al. 2016). In this system, units from a database
of expressive singing vowels were concatenated to obtain an expressive vowel performance.
This performance together with the lyrics was introduced as input control of the synthesis,
which used a timbre database of monotonic singing of a set of sentences.

Statistical Parametric Speech Synthesis (SPSS) pursued flexibility by training a model
of speech (Taylor 2009). Speech is represented by vocal tract parameters and excitation
parameters using a simplified speech production model known as vocoder. The parameters
corresponding to phoneme sequences and linguistic specification context are modelled using
a time-series stochastic generative model, being Hidden Markov Model (HMM) the most
popular approach to build such models (Zen et al. 2007). HMM-based synthesis have also
been applied to the generation of singing (Nose et al. 2015), resulting in systems like Sinsy
(Oura and Mase 2010). The main advantage of statistical parametric speech synthesis is
the flexibility in changing voice characteristics, speaking styles or emotions (Tokuda et al.
2013). Nevertheless, the naturalness achieved by this approach is limited mainly by vocoding
artifacts and oversmoothing of the generated acoustic parameters (King 2014).

Deep learning was firstly introduced into speech synthesis with the aim of replacing HMM-
based acoustic models (Zen et al. 2013). Nevertheless, the release of WaveNet (Oord et al.
2016) demonstrated the ability of deep learning autoregressive models to directly handle the
generation of raw waveforms, outperforming the naturalness achieved by SPPS systems or even
US-based synthesis. Moreover, Wavenet can be conditioned by acoustic parameters to be used

as a vocoder. However, their high computational requirements have motivated the development
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of other neural vocoders such as SampleRNN (Mehri et al. 2016), FETNet (Jin et al. 2018),
LPCNet (Valin and Skoglund 2019) or WaveGlow (Prenger et al. 2019). Autoregressive models
were also applied to singing synthesis by (Blaauw and Bonada 2017), who proposed a model
for singing synthesis based on a modified version of WaveNet architecture. The proposal
included a parametric vocoder to separate the contribution of pitch and timbre, thus allowing

for the pitch modification and training with smaller datasets.

Deep learning has been used to replace not only the acoustic model or the vocoder,
but every component of a classical T'T'S pipeline, as is the case in DeepVoice (Arik et al.
2017). Furthermore, some approaches have abandoned the typical TTS pipeline by proposing
E2E architectures like Tacotron (Wang et al. 2017), which use sequence-to-sequence models
and attention mechanisms, thus avoiding the need for pre-aligned data. In this respect,
(Blaauw and Bonada 2020) presented a sequence-to-sequence singing synthesiser, where a
simple duration model yields an initial alignment that is subsequently refined by a decoder
based on a feed-forward variant of the Transformer model to obtain the target acoustic
features. Waveform generation in E2E synthesis systems can be tackled by neural vocoders.
Nevertheless, Generative Adversarial Networks (GANs) have been successfully applied to this
end for the synthesis of speech (Kumar et al. 2019). GANs have been used also in singing
synthesis as in (Chandna et al. 2019), which proposed a multi-singer singing synthesiser
inspired by the Deep Convolutions Generative Adversarial Networks (DCGAN) architecture
and optimised by means of the Wasserstein-GAN algorithm (Martin Arjovsky and Bottou
2017). Vocoder features are used to separate the influence of pitch and timbre. Linguistic
and F0 features, together with global singer identity are trained in a block-wise approach.
Synthesis is performed using overlap-and-add to concatenate inferred sequential blocks. In
(Lee et al. 2019), a Korean E2E singing voice synthesis system was proposed, where a GAN
converts the input information into a Mel-spectrogram that is subsequently upsampled into a

linear-spectrogram by a super-resolution network.

1.2.2 Adding expressiveness to a corpus-based TTS

Corpus-based T'T'S systems can achieve quite natural synthetic speech if they are asked for
contents that are well represented in the corpus. However, there is still room for improvement
regarding expressiveness (Alias et al. 2008). Until the beginning of the 215¢ century, works on
analysis and synthesis of expressive speech were primarily focused on emotions either in a
dimensional space of arousal and valence or considering a small number of discrete emotions
such as "the big six" (see Scherer 2003; Schroder 2001, and references therein). From that
time on, interest in other expressive speaking styles has been growing, especially through
corpus-based approaches (see, for example, Schroder 2009). Nevertheless, building ad-hoc
corpora for each desired expressive style (e.g., Iriondo et al. 2007; Alias et al. 2008) can be
extremely costly or even unfeasible if the speaker is unable to properly perform all the required
styles. To address this issue, several works have presented alternative methods to generate

expressive synthetic speech.
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Some studies proposed to transform neutral speech into expressive synthetic speech
according to a set of fixed acoustic rules (Theune et al. 2006; Zovato et al. 2004; Montano
et al. 2013). For the same purpose, adaptation techniques have been used in HMM-based
synthesizers, thus allowing the interpolation between statistical models trained on different
expressive corpora (Yamagishi and Kobayashi 2007). Hybrid approaches can also be found in
the literature. In (Erro et al. 2010) a Harmonic plus Noise Model (HNM) was incorporated into
a US-based conversion system for the generation of emotions from neutral speech. (Lorenzo-
Trueba et al. 2015) proposed an emotion transplantation approach, where HMM-based models
were modified through adaptation functions used as pseudo-rules. These two approaches
require 6-30 min and 10 min of speech data per style, respectively. Although this amount of
data is quite small it is non-negligible. Moreover, these works present other limitations, such
as the need of parallel recordings in (Erro et al. 2010) or the over-smooth quality typical of
speech generated with statistical based approaches (Barra-Chicote et al. 2010). In recent E2E
approaches like Tacotron (Wang et al. 2017), prosody is implicitly learned from the training
speech data. Nevertheless, prosody can be transferred to Tacotron by conditioning the system
with prosody embeddings learned from expressive reference signals (Skerry-Ryan et al. 2018).
In that work, a single-speaker database of 147h and a multi-speaker dataset of 296h were

used.

Among the different expressive speaking styles, storytelling is especially challenging to
model and synthesise because of its high variability and degree of expressiveness. It is not
strange then that audiobooks have been used in several editions of the Blizzard Challenge®.
Some works have directly used audiobooks containing stories to generate expressive synthetic
speech through corpus-based strategies (see e.g., Jauk et al. 2015; Charfuelan and Steiner
2013; Prahallad and Black 2011). Although these approaches can deliver expressive speech
with good quality on average, storytelling style has several subtle expressive nuances that
require deeper analysis to meet the needs of storytelling applications (see e.g., Leite et al.
2015; Alofs et al. 2015). Specific prosodic characteristics have been studied in detail for the
storytelling style (Theune et al. 2006; Doukhan et al. 2011; Montafio and Alias 2016). Some
works have modelled the characteristics of particular types of storytelling to synthesise them
from neutral speech. (Theune et al. 2006) defined a set of fized prosodic rules for global
storytelling style and suspense that were applied in a diphone-based TTS synthesiser, thereby
obtaining a significant improvement of storytelling quality and higher suspense scores. It
should be noted that since suspense is rarely found in stories the prosodic rules for this style
were derived from very few sentences (e.g., only one sentence for increasing suspense and two
sentences for sudden suspense). (Montano et al. 2013) analysed speaking rate, mean pitch,
pitch standard deviation and mean intensity of several sentences for different storytelling
categories. Moreover, a hybrid US-HNM framework was considered to transform the prosody of
neutral speech to the different categories according to mean values of each category. Although
converted utterances were preferred over the neutral ones, the use of constant conversion

factors was found insufficient to accurately capture subtle expressive nuances.

2https://www.synsig.org/index.php/Blizzard_Challenge
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Besides entailing the generation of subtle expressive nuances, storytelling may also require
the synthesis of singing if one of the characters begins to sing (Montano and Alias 2016; Fridin
2014). Therefore, a TTS with singing capabilities could be very useful in storytelling, but also
for other applications. For instance, in voice output communication aid devices for individuals
with vocal disabilities (Yamagishi et al. 2012) to allow them not only to talk, but also to sing.
It could be also incorporated in assistive technologies, where the use of songs can improve
the engagement of autistic children (Wood et al. 2017), reduce the procedural distress in
children with cancer (Jibb et al. 2018), or to augment the positive memories of people with
dementia (Khosla et al. 2017), to name a few. In order to enable a corpus-based TTS system
to sing, a supplementary singing database would be required, among other things. However,
building an additional corpus would lead to high costs that would not be justified by eventual
singing needs and it may become even unfeasible if the original speaker is unavailable or
unable to sing properly (Blanco et al. 2016). Alternatively, singing could be generated from
speech following the so-called Speech-to-Singing (STS) conversion approach (see e.g., Robel
and Fineberg 2007; Saitou et al. 2007; Dong et al. 2014). STS conversion can be applied
to the output of a T'T'S system, thus transforming the synthetic speech into singing while
maintaining the identity of the speaker (J. Li et al. 2011). However, this straightforward
approach is suboptimal in terms of flexibility and computational costs (J. Li et al. 2011). It
is worth mentioning that STS is the subject of active research, as evidenced by some recent
works such as (Parekh et al. 2020), where a encoder-decoder framework is proposed to perform
the STS.

This section has been built around some relevant works that have proposed alternative
methods to generate expressive synthetic speech without having to record ad-hoc corpora for
each desired expressive style. Specifically, since our goal is the synthesis of speech and singing
for the storytelling domain, the focus has been placed on studies dealing with this style and

on STS conversion.

1.2.3 Adding expressiveness to numerical voice production

Human voice production is a very complex mechanism. For this reason, the first generation of
synthesis systems opted to consider simplified source-filter models inspired by the classical
acoustic theory of voice production (Fant 1970). Thus, for many years, articulatory speech
synthesis approaches have considered a one-dimensional (1D) representation of the vocal
tract, the so-called vocal tract area function (see e.g., Story et al. 1996). This function, which
describes the cross-sectional area variations along the vocal tract center midline, has been
widely used to generate synthetic speech (see e.g., Story 2013; Birkholz 2013; Stone et al.
2018). However, 1D approaches can only reproduce the propagation of plane waves along the
vocal tract midline, and therefore, their accuracy is limited up to about 4-5 kHz. Beyond this
frequency, higher order modes also propagate, so it is important to model them if the aim is
to adequately characterise the voice production process. These modes produce resonances and
anti-resonances that cannot be obtained with 1D models and which strongly affects the High
Frequency Energy (HFE) content of the spectrum (Blandin et al. 2015; Arnela et al. 2016b).
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For years, requirements of storage and speed have prevented high sampling rates being used
when dealing with speech signals. Moreover, it has been shown that listeners can discriminate
sounds by only the first three formants (Taylor 2009). This has motivated that little attention
has been traditionally paid to the high frequency range of speech. Nevertheless, HFE has
been found important for speech localisation and speaker recognition, and in the intelligibility

and quality of the voice (see Monson et al. 2014 and references therein).

The increase of computational resources has allowed for the development of three-
dimensional (3D) acoustic models, which can handle with higher order modes propagation.
To date, 3D-based approaches have been applied to generate vowels (Arnela et al. 2016b),
diphtongs (Arnela et al. 2019) and some vowel-consonant-vowel sequences (Arnela and Guasch
2019). For instance, in (Vampola et al. 2008) FEM was used to simulate the production
of Czech vowels using 3D vocal tracts, obtained from MRI data. Similarly, in (Takemoto
et al. 2010), the MRI-based vocal tracts of Japanese vowels were analysed using a finite-
difference time-domain method. Moreover, the results of the simulations were contrasted with
experiments conducted with physical models built from the same MRI data. In a similar
vein, in (Arnela et al. 2016a), measurements on 3D-printed mechanical replicas yielded very
similar results to those obtained from 3D FEM acoustic simulations on MRI-based vocal tract
geometries. Nevertheless, the use of a 3D acoustic model does not necessarily imply that
higher order modes propagate. For instance, these modes will rarely appear in a straight
and axisymmetric vocal tract geometry excited at the glottis, as observed in (Arnela et al.
2016b). Indeed, several geometric simplifications were analysed in (Arnela et al. 2016Db).
Specifically, their cross-sectional shapes and midline curvature were varied while preserving
their cross-sectional areas. Results obtained for the analysed configurations were similar
in frequencies below 4-5 kHz but very large deviations appeared beyond that value. This
highlights the limit of the plane wave assumption and also show that variations of the vocal
tract shape modify the HFE content. Nonetheless, the HFE levels strongly depend on other
factors such as phonation type. For instance, in (Monson et al. 2011) significant differences in
HFE content were observed between loud and soft phonations of sustained vowels. Moreover,
results also showed that modifications of HFE levels are more easily detected by listeners in a

loud phonation case.

Despite the progress made in this area, to the authors’ knowledge, expressiveness has
not been central in the research conducted in this field. The generation of expressive voice
would require to properly model the two key elements in the voice production approximation:
the source and the filter. Glottal source and vocal tract characteristics of expressive voice
production can be derived from experimental measurements using technologies such as MRI,
electromagnetic articulograph or high-speed videoendoscopy (Y. Li et al. 2018). However,
data acquisition with this technologies is very costly (Y. Li et al. 2018). Furthermore, they
typically require of subsequent data processing, like that needed to obtain a fine 3D geometry
of the vocal tract from MRI (Arnela et al. 2016b), which implies time-consuming manual

tuning.
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Alternatively, emotional speech characterisation can be done through the extraction of
several acoustic features from the speech signal (Eyben et al. 2016). In this respect, some works
propose an analysis inspired by the acoustic model of voice production. To that effect, they
inverse filter the speech waveform to estimate the glottal flow and subsequently parameterise
it using attributes such as the normalised amplitude quotient or the maximum flow declination
rate. This strategy was applied in (Sundberg et al. 2011) to analyse the interdependencies
between voice source parameters on sustained vowels uttered with different emotions. A
similar approach was followed in (Waaramaa et al. 2010) to study the role of voice source and
formant frequencies on the perception of emotional valence. The recent progress in inverse
filtering and glottal source processing techniques (see Drugman et al. 2014 and references
therein) have enabled the development of glottal vocoders. These vocoders decompose the
speech signal into glottal source and vocal tract, which are independently parameterised
(Drugman et al. 2014). Moreover, the features obtained from these vocoders have been proven
effective in the analysis of expressive nuances (Lorenzo-Trueba et al. 2012). Although the
aforementioned works have shed light on the production of emotional voice, they have not
been explicitly focused on the generation of emotional speech.

Several works have proposed to bridge the gap between the analysis and synthesis of
emotional speech through source-filter based approaches. For instance, (Birkholz et al. 2015)
analysed the contribution of phonation types to the perception of emotions. To that effect, a
set of utterances was resynthesised with different phonation types using an articulatory-based
synthesiser, which incorporates a self-oscillation model of the vocal folds. With the same aim,
(Burkhardt 2009) considered a formant-based synthesiser with a modified Liljencrants-Fant
(LE) glottal flow model (Fant et al. 1985). This synthesiser was also used in (Yanushevskaya
et al. 2018) to study how F0 contours and voice quality maps on affect for different languages,
by varying the parameters of modal stimuli (e.g., amplitude of voicing, open quotient, spectral
tilt, etc.). The LF model was controlled in (Murphy et al. 2017) by modifying the R4 glottal
shape parameter (Fant 1995) to simulate the tense-lax continuum and explore its influence to
emotion perception. Similarly, (Y. Li et al. 2018) proposed an Auto-Regressive eXogenous
LF (ARX-LF) model to analyse the contribution of glottal source and vocal tract to the
perception of emotions in a valence-arousal space. Nevertheless, the study only considered
isolated vowels, and suffered from the considered prosody neutralisation process.

This section covers two main topics related to the goal of adding expressiveness to numerical
voice production. On the one hand, the development of 3D acoustic models that, unlike 1D
models, can handle with higher order modes propagation. On the other hand, the analysis
of expressive speech, especially those studies inspired on the source-filter model and that

therefore are closest to voice production methods.

1.3 Contributions

This thesis, presented in the form of a collection of articles, addresses the objectives described

in subsection 1.1.3. Besides the three publications which form the compendium (Paper I,
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Paper II and Paper III), three complementary articles are also included as an appendix
(Paper IV, Paper V and Paper VI). This section overviews the main contributions of these

works.

1.3.1 Adding expressiveness to a unit-selection TTS system

The starting point for the objective O1 (see subsection 1.1.3) is a classical US-TTS system fed
with a small corpus of neutral speech (see left part of Figure 1.4a). A preliminary approach to
add expressive capabilities to that system consists of appending neutral-to-expressive modules
at the output of the T'T'S system as depicted in Figure 1.4b. The synthetic neutral speech
yield by the T'T'S system is parameterised and subsequently modified to obtain the synthetic
expressive speech. This transformation is driven by expression controls derived from the
input text/score according to an expert system that captures the desired expressive style.
A second approach that pursues a higher degree of integration is depicted in Figure 1.4h.
Corpus utterances are not directly stored as waveforms but as parameters. In this way, units
are selected according to a raw input text specification as in a standard US-TTS system, but
instead of retrieving waveforms a sequence of parameters is obtained. These parameters are

concatenated and transformed to get the synthetic singing/expressive speech.
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' : speech 1 expressive speech
text/lyrics i model : : : 1
s ;,,..mw e Waveform |i o |} Ik”"‘“‘"”“‘
H Prosody target - v . Generation [T T gy
H Model 9 - Speech Generation e H H
E Prosody > Unit I | ] I neutral Transformation '
E Prediction | |linguistic [Selection TD'PSOLA] f ' parameters expressive '
l\ target Q ' ‘ parameters .
L e - ' | Expression controls :
> Control d
j duration,F0,spectral
text/score " Generation p )

'\._ neutral-to-expressive modules .-’

(a) The neutral-to-expressive transformation modules are appended to the original US-TTS system
output.

, " flexible US-TTS system -

Parameterised
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: prosodic . WM\ .
ics ! Prosod ™ e
textflyrics | Mode|y target Speech Parameter Generation " ’

»
>
3
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2l i |
expressive '\ dw ‘MM“wa\fJ\:_
parameters el
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Expression Control
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(b) The neutral-to-expressive transformation modules are integrated into the T'TS pipeline. The
US-TTS system has been adapted (modified/new modules in green) to work with parameterised speech
units that can be transformed before the waveform generation. Moreover, an expressive prosody
generation module has been also added to select units according to the expressive prosodic target.

Figure 1.4: Extending the expressive capabilities of a US-TTS system.
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1. Introduction

Paper I aims at adding singing capabilities to a neutral US-TTS system through the
implementation of both the approach depicted in Figure 1.4a and a preliminary integration of
STS transformation modules into the TT'S pipeline. The lyrics of the score are used as input
of the TTS. Duration, F'O and spectral controls are generated from the input score following
a STS approach. Paper Il presents the Unit Selection based Text-to-Speech-and-Singing
(US-TTS&S) synthesis framework designed to generate both speech and singing using the
same neutral speech corpus, following the approach depicted in Figure 1.4b. In this framework,
STS integration goes a step further by incorporating an expressive prosody generation module
so the prosody from the score can be considered in the unit selection process as shown
in Figure 1.4b. Finally, Paper IV presents a complementary research in the storytelling
domain, in particular it addresses the synthesis of storytelling increasing suspense by means

of an expert system derived from a small but representative set of sentences of this style.

lax/tense voice

FEM synthesis LF-FEM synthesis

neutral voice

glottal flow

yiviviw |

Fo @ LF N
Rd “ model[ giottal flow

(a) An LF model is incorporated in order to generate the glottal flow signals required as the excitation
of the FEM synthesis. This allows for exploration of the lax-tense continuum by modifying the Ry
parameter.
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(b) The excitation characteristics of expressive speech are analysed by means of inverse filtering to
derive the LI parameters to incorporate these expressive styles into the LF-FEM synthesis.

N

Glottal source [T

model tuning
J

_______________________________________________________

Figure 1.5: Adding expressiveness to the numerical simulation of voice.

1.3.2 Adding expressiveness to numerical voice production

The research conducted under objective O2 is based on the numerical voice production system
represented in the left part of Figure 1.5a, which generates neutral voice by means of a
FEM-based simulation of a glottal flow signal propagating through a 3D vocal tract geometry.
In order to add expressiveness to these simulations, we propose to modify the glottal flow

signals by means of an LF model as shown in the right part of Figure 1.5a. This model allows
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controlling the FO but also the shape of the glottal pulses by means of the R; parameter,
which permits the reproduction of the lax-tense continuum of phonation (see glottal flow
illustrative examples in green, black and red in Figure 1.5a). Paper V presents a preliminary
analysis of the influence of tense, modal and lax phonation on the synthesis of vowel [a],
focusing on the effect on the higher order modes. To this end, an LF model is implemented
and incorporated in the FEM-based simulation. In Paper III the analysis is extended to
vowels [i] and [u] and covering the spoken vocal range of F0 and the complete Ry range from
lax to tense. Moreover, aspiration noise is incorporated into the LF model to analyse its
contribution to higher order modes.

Figure 1.5b depicts the approach proposed to add specific expressive styles to the
simulations. Expressive vowels from a parallel corpus are inverse filtered and analysed
following a source-filter based strategy. According to this analysis on real speech data the F'0
and Ry parameters of the LI model are tuned to resemble the desired expressive style. This
approach is applied to the generation of happy and aggressive vowels [a] in Paper VI. To that
effect, the Glott DNN vocoder is used to analyse F'0 and spectral tilt variations associated
with the glottal source, which are mapped through the comparison with synthetic vowels to
F0 and R, parameters to perform the LF-FEM synthesis of vowels resembling the tense voice
expressive styles. The analysis of the vocal tract response and the corresponding tuning of

the vocal tract geometry is left for future works.

1.3.3 Author’s contribution

Indexed articles

Paper I: Marc Freixes, Joan Claudi Socord, Francesc Alias. ‘Adding Singing Capabilities
to Unit Selection TTS through HNM-Based Conversion’. In: Advances in Speech and
Language Technologies for Iberian Languages. IberSPEECH 2016. Lecture Notes in
Computer Science. volume 10077, pp. 33-43. DOIL: 10.1007/978-3-319-49169-1_ 4.
Author’s contributions: Marc Freixes significantly contributed in the design and
implementation of the ST'S conversion and its integration with the US-T'TS system.
Moreover, besides leading the manuscript writing, his contribution to the generation

and analysis of perceptual tests and results was particularly relevant.

Paper II: Marc Freixes, Joan Claudi Socoré, Francesc Alias. ‘A Unit Selection Text-to-Speech-
and-Singing Synthesis Framework from Neutral Speech: Proof of concept’. In: FEURASIP
Journal on Audio, Speech and Music Processing. December 2019, volume 2019, article
number 22. DOI: 10.1186/s13636-019-0163-y.

Author’s contributions: Marc Freixes had a significant participation in the design of
the US-TTS&S framework besides leading the generation and analysis of results, the
perceptual tests conduction and the manuscript writing. His work on the US-TTS&S
framework, included the implementation of a new HNM model and the expressive
prosody generation module, and the adaptation of the original US-TTS system to

integrate all the components within it.
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Paper lll: Marc Freixes, Marc Arnela, Joan Claudi Socord, Francesc Alias, Oriol Guasch.

‘Glottal Source Contribution to Higher Order Modes in the Finite Element Synthesis of
Vowels’. In: Applied Sciences - Special Issue "IberSPEECH 2018: Speech and Language
Technologies for Iberian Languages'. October 2019, volume 9(21), pp. 4535. DOLI:
10.3390/app9214535.

Author’s contributions: Marc Freixes significantly contributed in the design of
the approach and leaded the manuscript writing and the generation, analysis and
visualisation of results. He implemented and incorporated the aspiration noise model
and the Ry control on the LLE' model to generate the glottal flow signals and synthesised
the vowels according with the vocal tract responses obtained from the simulations

performed by Marc Arnela and Oriol Guasch.

Other articles

Paper IV: Raul Montafio, Marc Freixes, Francesc Alias, Joan Claudi Socoré. ‘Generating

Storytelling Suspense from Neutral Speech using a Hybrid TTS Synthesis framework
driven by a Rule-based Prosodic Model’. In: Proceedings of IberSPEECH 2016.
November 2016, pp. 129-138.

Author’s contributions: Marc Freixes significantly contributed in the design and
implementation of the increasing suspense approach and in the conduction of the
perceptual tests, besides participating in the manuscript writing. His contribution to
the implementation of the expert system and its integration together with the aHM

model within the US-TTS system was particularly relevant.

Paper V: Marc Freixes, Marc Arnela, Joan Claudi Socoré, Francesc Alias, Oriol Guasch.

‘Influence of tense, modal and lax phonation on the three-dimensional finite element
synthesis of vowel [a]’. In: Proceedings of IberSPEECH 2018. November 2018, pp. 132
136.

Author’s contributions: Marc Freixes had a significant participation in the design of the
approach and leaded the manuscript writing and the generation and analysis of results.
He worked on the LF model to generate the glottal flow signals and synthesised the
vowels using the vocal tract responses obtained from the simulations performed by Marc
Arnela and Oriol Guasch.

Paper VI: Marc Freixes, Marc Arnela, Francesc Alias, Joan Claudi Socoré. ‘GlottDNN-based
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spectral tilt analysis of tense voice emotional styles for the expressive 3D numerical
synthesis of vowel [a]’. In: Proceedings of 10th ISCA Speech Synthesis Workshop (SSW10).
September 2019, pp. 132-136. DOI: 10.21437/SSW.2019-24.

Author’s contributions: Marc Freixes significantly contributed in the design of the
approach and leaded the manuscript writing and the generation and analysis of results.
He generated the glottal flow signals and obtained the synthetic vowels using the vocal

tract responses from the simulations performed by Marc Arnela and Oriol Guasch.
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Abstract

Adding singing capabilities to a corpus-based concatenative text-to-speech (TTS) system
can be addressed by explicitly collecting singing samples from the previously recorded
speaker. However, this approach is only feasible if the considered speaker is also a singing
talent. As an alternative, we consider appending a Harmonic plus Noise Model (HNM)
speech-to-singing conversion module to a Unit Selection TTS (US-TTS) system. Two
possible text-to-speech-to-singing synthesis approaches are studied: applying the speech-to-
singing conversion to the US-TTS synthetic output, or implementing a hybrid US+HNM
synthesis framework. The perceptual tests show that the speech-to-singing conversion
yields similar singing resemblance than the natural version, but with lower naturalness.
Moreover, no statistically significant differences are found between both strategies in terms
of naturalness nor singing resemblance. Finally, the hybrid approach allows reducing more

than twice the overall computational cost.
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Abstract

Text-to-speech (TTS) synthesis systems have been widely used in general-purpose
applications based on the generation of speech. Nonetheless, there are some domains, such
as storytelling or voice output aid devices, which may also require singing. To enable a
corpus-based TTS system to sing, a supplementary singing database should be recorded.
This solution, however, might be too costly for eventual singing needs, or even unfeasible
if the original speaker is unavailable or unable to sing properly. This work introduces
a Unit Selection based Text-to-Speech-and-Singing (US-TTS&S) synthesis framework,
which integrates Speech-to-Singing (STS) conversion to enable the generation of both
speech and singing from an input text and a score, respectively, using the same neutral
speech corpus. The viability of the proposal is evaluated considering three vocal ranges
and two tempos on a proof-of-concept implementation using a 2.6h Spanish neutral speech
corpus. The experiments show that challenging STS transformation factors are required
to sing beyond the corpus vocal range and/or with notes longer than 150 ms. While
score-driven US configurations allow the reduction of pitch-scale factors, time-scale factors
are not reduced due to the short length of the spoken vowels. Moreover, in the MUSHRA
test, text-driven and score-driven US configurations obtain similar naturalness rates of
around 40 for all the analysed scenarios. Although these naturalness scores are far from
those of Vocaloid, the singing scores of around 60 which were obtained validate that the

framework could reasonably address eventual singing needs.

II.1 Introduction

Text-to-speech (TTS) synthesis systems have been widely used to generate speech in several

general-purpose applications, such as call-centre automation, reading emails or news, or
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providing travel directions, among others (Taylor 2009). However, there are other domains
that may require the eventual generation of singing in addition to speech. For instance, in
storytelling (Montanio and Alias 2016; Fridin 2014), when one of the characters sings at one
point in the story, or in voice output communication aid devices for individuals with vocal
disabilities (Yamagishi et al. 2012) to allow them not only to talk, but also to sing. Moreover,
a TTS with singing capabilities could also be useful in assistive technologies, where the
incorporation of songs has been proved to be an effective form of improving the engagement
of autistic children (Wood et al. 2017), or to reduce the procedural distress in children with
cancer (Jibb et al. 2018), or to augment the positive memories of people with dementia (Khosla

et al. 2017), to name a few.

In this sense, it is worth mentioning that early works on speech synthesis already enabled
the generation of both speech and singing (e.g. see Cook 1993), as they stood on a source-filter
model inspired by the classical acoustic theory of voice production (Taylor 2009). However,
the difficulty of defining and adjusting the necessary control parameters to obtain high
quality speech led the research towards data-driven approaches (Taylor 2009). Although some
approaches used diphone-based TTS systems to generate singing (Flinger 2001; Uneson 2002),
most works opted to use databases specifically recorded for singing purposes (Macon et al.
1997; Bonada and Serra 2007; Blaauw and Bonada 2017). Meanwhile, the speech synthesis
investigations also moved to corpus-based approaches, deploying TTS systems based on Unit
Selection (US), Hidden Markov Models (HMM) or hybrid approaches, and more recently,
including Deep Neural Networks (DNN) (e.g. Oord et al. 2016; Wang et al. 2017). Even
though these systems can deliver very natural synthetic speech (King 2014), as far as we

know, they are not able to speak and sing at the same time.

In order to add singing capabilities to a corpus-based TTS system, the first idea that
may come to mind is to incorporate a supplementary singing database. However, occasional
singing needs do not justify the cost of building an additional corpus, which may become
unfeasible if the original speaker is unavailable or unable to sing properly (Blanco et al. 2016;
Freixes et al. 2016). As an alternative, we could take advantage of those approaches which
focus on the production of singing from speech following the so-called speech-to-singing (STS)
conversion (Robel and Fineberg 2007; Saitou et al. 2007; Dong et al. 2014). These techniques
can be applied to the output of a T'TS system to transform speech to singing by maintaining
the identity of the speaker (Freixes et al. 2016; Li et al. 2011). However, this straightforward
approach has been proved suboptimal in terms of flexibility and computational costs (Freixes
et al. 2016).

Building on the preliminary approach presented in (Freixes et al. 2016), this work introduces
a Unit Selection based Text-to-Speech-and-Singing (US-TTS&S) synthesis framework that
allows the generation of both speech and singing from an input text and a score, respectively,
using the same neutral speech corpus. To this end, the framework incorporates Speech-
to-Singing (STS) conversion within a TTS system pipeline. The viability of the proposal
is evaluated objectively and subjectively through a proof-of-concept implementation of the

US-TTS&S framework using a 2.6h Spanish neutral speech corpus.
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Figure I1.1: US-TTS&S framework. Block diagram of the unit-selection text-to-speech and
singing (US-TTS&S) synthesis framework from neutral speech. In the speech mode, an input
text is converted into synthetic speech by the TTS subsystem (above in the blue box). In the
singing mode, the incorporation of the Speech-to-Singing (STS) subsystem (below in the red
box) enables the framework to produce synthetic singing from an input score S (containing
both the notes and the lyrics), considering optional input values: tempo 7' in beats per minute
and transposition x in semitones.

The paper is structured as follows. Section 1.2 reviews the singing and speech-to-singing
literature. Then, Section 11.3 describes the proposed US-TTS&S framework and the proof-
of-concept implementation. The methodology employed for the objective and the subjective
evaluation is detailed in Section I1.4. Finally, after presenting and discussing the results

(Section I1.5), the conclusions of this work are drawn in Section II.6.

II.2 Related work

This section includes a review of the singing synthesis approaches which are closely related to

speech synthesis and a description of speech-to-singing techniques.

I.2.1 Singing synthesis

Until the late 80s, most of the singing synthesis approaches were closely linked to sound
synthesis (Chowning 1980) or to speech synthesis (see Cook 1996 and references therein).
The latter correspond to first generation synthesis systems, where according to a synthesis
specification (verbal component, pitch values and durations) a rule-based control drives a
source-filter model built on the classical acoustic theory of voice production. On the one
hand, articulatory speech synthesis (Kelly and Lochbaum 1962) was used to generate one of
the first synthetic singing examples'. This technology evolved giving rise to systems such
as SPAM/Singer (Cook 1993), which could be used for TTS and singing synthesis through
control files (Cook et al. 1993). On the other hand, formant speech synthesis inspired the
development of singing systems as the MUSSE (MUsic and Singing Synthesis Equipment)

thttps://ccrma.stanford.edu/~jos/wav/daisy-klm.wav
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and the subsequent MUSSE DIG (MUSSE, DIGital version) (Sundberg 2006) or the CHANT
project (Rodet et al. 1984). First generation rule-based systems gave way to data-driven
approaches mainly due to the difficulty of generating the control parameters to get high
quality results (Taylor 2009). However, formant synthesis is still used nowadays in the context
of performative singing synthesis (Feugere et al. 2017), where flexibility and real time are the
main issues.

In second generation synthesis systems, a unit (typically a diphone) for each unique type
was recorded. Pitch and timing of units were modified applying signal processing techniques
to match the synthesis specification (Taylor 2009). Some works exploited signal processing
capabilities to generate singing from a spoken database. Flinger (Flinger 2001) for instance
used residual LPC synthesis and provided several modules in order to enable the Festival
TTS system (Festival 2016) to sing. MBROLA was also used to generate both speech and
singing from speech units (Uneson 2002; D’Alessandro et al. 2005). Similarly, the Ramcess
synthesiser (D’Alessandro et al. 2008) generated singing by convolving vocal tract impulse
responses from a database with an interactive model of the glottal source. However, the
data-driven paradigm of second generation synthesis systems naturally led to the creation of
singing databases.

Finally, it should be noted that there have been some recent attempts to produce singing
from speech in a corpus-based T'TS system. Some works used the system to get a spoken
version of the song and transform it into singing by incorporating a signal processing stage.
For instance, in (Li et al. 2011) the synthetic speech was converted into singing according to
a MIDI file input, using STRAIGHT to perform the analysis, transformation and synthesis.
In (Blanco et al. 2016) an HMM-based TTS synthesiser for Basque was used to generate a
singing voice. The parameters provided by the TTS system for the spoken version of the

lyrics were modified to adapt them to the requirements of the score.

I.2.2 Speech-to-Singing

Speech-to-singing conversion is the task of transforming the spoken lyrics of a song into singing,
while retaining the identity of the speaker and the linguistic content (Vijayan et al. 2019).
In (Saitou et al. 2007), the authors proposed a method to transform speech into singing, by
modifying the pitch contour, the duration of the phonemes and the spectrum according to
the analysis of the features of the singing voice. Phoneme target durations were obtained by
applying STS duration conversion rules derived from the analysis of real performances. The
pitch contour was derived from a stepwise melody curve by applying a filtering that models
the behaviour and dynamics of the fundamental frequency (F0) in singing: preparation,
overshoot, fine fluctuation and vibrato. Finally, two spectral control models were applied to
the envelope to add the singing formant, and to apply a formant amplitude modulation that
was synchronised with the vibrato. Analysis, transformation and synthesis were carried out
using STRAIGHT (Kawahara et al. 1999).

In order to obtain more natural contours, other approaches have used real singing

performances, but they require spoken and sung parallel recordings. In (Robel and Fineberg
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2007), a set of phrases was recorded by a female singer to get a spectral envelope database. The
same speech sentences, recorded by an actor, were time-stretched, transposed and aligned with
the singing phrases. Finally, the spectral envelope from the singer database was transferred
to the speech signal. The transformation was performed by a phase vocoder in this case.
However, improved signal models were subsequently proposed (Roebel et al. 2012; Huber
and Roebel 2015). In (Dong et al. 2014), I2R Speech2Singing system was presented. This
application was able to convert speech or poor singing into high-quality singing, using a
template-based conversion (Cen et al. 2012) with professional singing as a reference model.
Parallel singing templates were aligned with the speech input in a 2-step Dynamic Time
Warping-based method. Thus, the pitch contour could be derived from actual singing voice
and applied to the input speech through STRAIGHT. An improved dual alignment scheme
for this system has been recently presented in (Vijayan et al. 2017).

Finally, apart from appropriate timing and FO contours, spectral transformation is a
very important issue in speech-to-singing conversion. Voice conversion and model adaptation
techniques were extended to this scenario in (Lee et al. 2014), using a large collection of
singing recordings and their corresponding spoken lyrics. The comparison between these
methods and the spectral transformation applied in (Saitou et al. 2007) showed that model
adaptation outperforms the other approaches in singing quality and similarity provided there

is enough data.

.3 US-TTS&S synthesis framework from neutral speech

This section is organised as follows. Section I1.3.1 describes the proposed US-TTS&S synthesis

framework. Next, Section [1.3.2 details the proof-of-concept implementation of the framework.

11.3.1 Framework

The block diagram of the proposed synthesis framework is depicted in Fig. I1.1. It consists of
two main subsystems: the text-to-speech subsystem (at the top), which allows the framework
to produce neutral synthetic speech for a given input text, and the speech-to-singing subsystem
(at the bottom), which provides the framework with singing capabilities.

In the speech mode, the input text is analysed by the Natural Language Processing (NLP)
module, which yields a linguistic target (including the phonetic transcription and the linguistic
context) and predicts a speech prosodic target (i.e. phrasing and intonation appropriate
for the message). The unit selection block searches the corpus for the units that best meet
these targets and that can be smoothly joined. Finally, the parametric representations of
the selected units are concatenated, thus obtaining a stream of speech parameters that is
rendered into synthetic speech through the waveform generation module.

In the singing mode, the input score S, which contains the lyrics as syllables assigned
to the notes, is parsed by the score processing module, which extracts the lyrics, integrates
score and phonetic information and provides a singing prosodic target to perform the unit

selection according to S and the optional tempo and transposition values. Subsequently,
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the transformation module converts the retrieved speech parameters into the singing ones,
according to the controls computed by the expression control generation module. Finally, the
waveform generation module renders the modified parameters into synthetic singing.

The following subsections describe the key modules for the singing mode.

1.3.1.1 Score processing

This module joins the syllables extracted from S in order to get the full lyrics of the song, which
are fed into the TTS subsystem (see Fig. I1.1). Subsequently, it obtains the links between the
phonetic transcription of the lyrics (provided by the NLP module) and the notes. To this end,
the phonemes are distributed among the notes according to the assignment of syllables to
notes in the score. Furthermore, since a note onset coincides with a vowel (Sundberg and
Bauer-Huppmann 2007), the preceding consonants are assigned to the preceding note.

Moreover, this module allows for score transposition according to the input value =z,
obtaining thereby a transposed score Sx. This score is then used, together with phoneme-note
links and tempo 7', to compute the singing prosodic target (see Section 11.3.1.2) and to
generate the expression controls (see Section I1.3.1.3).

With regard to tempo, the value of T' in beats per minute (bpm) can be extracted from
S, or alternatively indicated as an input of the synthesis framework (see Fig. I1.1). Tempo
is used to compute the duration of each note according to its note value (e.g. quarter note,
eighth note, etc.).

Regarding score transposition, this process consists of moving the entire set of notes
up or down in pitch by a constant interval in order to fit it within the vocal range of the
singer. Accordingly, the notes of S are shifted to get the score Sx, whose pitch range midpoint
FOTS;BL‘ is x semitones above the speech corpus vocal range midpoint FOS17 which represents an
intermediate value within the pitch range covered by the vowels in the corpus C. To this end,
the note pitches in S are translated into an integer notation following a twelve-tone equal
temperament, which divides the octave into 12 semitone steps equally spaced on a logarithmic
scale. Thus, a note number N5(7) is obtained for each note in S, where i = {1..K}, being K

the total number of notes in the score S. Subsequently, the note numbers for Sx are computed

as
NS(i) = N5(i) + & — d(F0S,, F03,) (IL1)
where
FoS
d(F0S . F05) = [12] —m 1.2
i k) = o (225 2

is the distance in semitones from the speech corpus vocal range midpoint F O% to the input
score pitch range midpoint F03,, and [-] denotes that the result of the operation is rounded to
the nearest integer. Since the perception of pitch is logarithmic, F' Ofn is computed from the
lowest and the highest note as the geometric mean of their F0 values, i.e.,

FOS, = /F0S, -FOS,,.. (I1.3)

min
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I.3.1.2 Singing prosody generation

This block translates the note durations and F'Os obtained from Sx and T into a prosodic
representation of the singing target consisting of phonetic timing and F0s. This singing
prosodic target enables the US-TTS&S framework to perform the unit selection according to
Sx and T. The phonetic timing is obtained by adjusting the duration of the phonemes so that
they fit the duration of the notes to which they are linked. Similarly, the FO of each note is
assigned to its phonemes considering that the note F'0 is reached at the vowel onset, so the

transition occurs in the precedent phoneme (Sundberg and Bauer-Huppmann 2007).

1.3.1.3 Expression control generation

Expression control in singing synthesis, also known as performance modelling, consists in the
manipulation of a set of voice features (e.g. phonetic timing, pitch contour, vibrato, timbre,
etc.) that relates to a particular emotion, style or singer (Umbert et al. 2015). Accordingly,
the expression control generation module provides the duration, F'0 and spectral controls
required by the transformation module to convert the sequence of speech parameters into
singing parameters. To this end, and following the phoneme-note links, this module aligns the
units retrieved by the US block with the notes, and generates the controls to transform the
spoken features (durations, F'0 and spectra) into singing ones in accordance with Sx and 7.
Since obtaining control parameters that are perceived as natural is one of the main issues
regarding singing synthesis, several approaches can be found in the literature (see Umbert

et al. 2015 and references therein for further details).

I.3.1.4 Speech parameter generation and transformation

In contrast to pure unit selection, where an overlap and add (OLA) method is applied to the
retrieved units, with the aim of modifying the original waveforms as little as possible (Taylor
2009), the US-TTS&S framework is based on a parametric representation of the speech.
This enables the use of more flexible processing techniques to address the highly significant
transformations (including spectral ones) involved in the STS conversion.

The framework signal processing pipeline consists of three modules. The speech parameter
generation module performs the unit selection (according to the linguistic and prosodic
targets) and concatenates the parametric representation of the selected units to obtain a
speech parameter sequence. In the speech mode this sequence is directly fed into the waveform
generation module to produce synthetic speech. Conversely, in the singing mode the sequence
is previously processed by the transformation module, which applies time-scaling, pitch-scaling

and spectral transformations to convert the speech parameters into singing ones.

1.3.2 Proof-of-concept implementation

In the following paragraphs, the main elements of the implementation of the US-TTS&S

framework are described.
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Figure I1.2: Example of a song excerpt synthesised with transposed scores S0, S4 and S7.
The phonemes from the lyrics phonetic transcription are represented below the input score
S, together with their durations, which are: i) predicted from the lyrics by the NLP module
when computing the singing prosodic target for the US block (see Fig. I1.1), or; ii) those
of the retrieved speech units when generating the expression controls. At the bottom, the
phoneme durations have been time-scaled to fit the note durations. The crosses represent the
F0 values of the singing prosodic targets obtained from S0, S4 and S7. The pitch contours
(time-scaled) of the retrieved speech units are depicted as dashed grey lines. Finally, the solid
blue lines represent the singing pitch contours generated by the expression control generation
module. The score-driven US configuration Sxp and 7" = 100 bpm have been used for this
example.

1.3.2.1 Text-to-Speech subsystem

The US-TTS system of La Salle - Universitat Ramon Llull (Formiga et al. 2010) has been used
as text-to-speech subsystem. This T'TS synthesis system includes a Case-Based Reasoning
(CBR) prosody prediction block, trained with acoustic prosodic patterns from the speech corpus,
and a unit selection block following a classical scheme (Hunt and Black 1996). This block
retrieves the units that minimise the prosodic, linguistic and concatenation costs (see Formiga
et al. 2010 for more details). The weights for the prosodic target and concatenation subcosts
were perceptually tuned by means of active interactive genetic algorithms for speech synthesis
purposes (Alias et al. 2011).

The Time-Domain Pitch Synchronous Overlap and Add (TD-PSOLA) waveform generation,
used in the original US-TTS system, has been replaced by a Harmonic plus Noise Model
(HNM) implementation (Calzada Defez and Socord 2013). Accordingly, the corpus has been
parameterised with HNM representation. The harmonic component (for the voiced frames) is
modelled by a sum of sinusoids (each with a certain amplitude and phase) at the multiples of
the fundamental frequency up to the 5 kHz maximum voiced frequency (Erro and Moreno
2008). This component is subtracted from the speech signal to get the stochastic (noise)

component, which is analysed using an autoregressive model and it is represented with 15-order
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Linear Prediction Coefficients (LPC) and the noise variance (Erro and Moreno 2008). The
HNM analysis has been performed pitch-synchronously, applying a window around the centre

of gravity to avoid phase mismatches when units are concatenated (Stylianou 2001).

1.3.2.2 Score processing

The proof-of-concept implementation of this module has adopted the MusicXML? format
for the score S. To this end, the scripts from (Nichols et al. 2009) have been considered. In
MusicXML, each syllable of the lyrics is assigned to a note with the lyric element. This
contains a texrt element with the syllable and a syllabic element that indicates how the syllable
fits into the word. The latter can take the values single, begin, end, or middle, and is used
to recompose the words and obtain the whole text of the song. The syllabic element also
provides the syllabic distribution, which is considered to assign the phonemes from each word
to their corresponding notes. An example of this alignment is depicted at the top of Fig. 11.2.

With regard to the F0, each MusicXML note in S is parsed into a MIDI note number
NS(i), whose F0 is computed as

F05(i) = 440-2N°()=69)/12 (IL.4)

since the MIDI note 69 corresponds to A4 (440 Hz)?. If a transposition value of z semitones is
introduced into the framework, the shifted MIDI note numbers for Sx are computed following
equations (I1.1), (I1.2) and (IL.3).

The speech corpus vocal range is defined from the F'0 mean values of the vowels within it.

According to this, the speech corpus vocal range midpoint is computed in this implementation

FOS, = \/F0S-F0S, (IL.5)

where F' O5C and F 0905 are the 5th and the 95th corpus vowel F'0 percentiles, respectively, thus

as

avoiding possible outliers.

I1.3.2.3 Singing prosody generation

This block generates a singing prosodic target according to the durations and F'0s obtained
from score Sx and tempo T'.

On the one hand, the phoneme durations predicted by the prosodic model (represented
below the score S in Fig. I1.2) are adjusted to fit the note durations by applying the STS

conversion rules derived by Saitou from the analysis of real performances (Saitou et al. 2007):

a) When phonemes tied to a note have to be shortened, their original durations are

multiplied by the same factor.

b) When phonemes have to be stretched, three parts are differentiated around the boundary
between a consonant and a vowel: the consonant, the transition (from 10 ms before to

30 ms after the boundary) and the vowel.

2https://www.musicxml.com
3https://www.midi.org/specifications
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Figure I1.3: Singing pitch curve generation. Preparation (upper left), overshoot (upper right),
the applied masks (middle) and the resulting mix (bottom).

(i) The consonant part is extended according to fixed rates (1.58 for a fricative, 1.13

for a plosive, 2.07 for a semivowel, 1.77 for a nasal, and 1.13 for a /y/).
(ii) The transition part (depicted as a shadowed area in Fig. I1.2) is not extended.

(iii) The vowel part is extended until the phoneme fits the note duration.

In the current implementation the transition length within the vowel (30 ms) has been
limited to a maximum of half of its duration, since the corpus contains very short vowels.

On the other hand, the FO target (represented by crosses in Fig. 11.2) is assigned at
a semiphoneme level. The FO from each note in Sx is assigned to all its corresponding
semiphonemes, except in the transitions where the right semiphoneme receives the F0 of the

following note.

I.3.2.4 Expression control generation

This module computes the duration, F'0 and spectral controls required to perform the STS
conversion, in accordance with Sx and 7.

Regarding the duration control, the durations of the phonemes retrieved by the US block
are scaled to fit the durations of the notes, by applying the conversion rules detailed in
Section [1.3.2.3. The correspondence between the original and the scaled durations will drive
the time-scaling process performed by the transformation module.

With respect to the F'0 control, a singing pitch contour (the blue solid lines in Fig. 11.2)
is obtained following the approach described in (Saitou et al. 2007). According to this, a
stepwise pitch contour is built from FOs and durations of the notes. Then, this contour is
filtered to obtain the singing F'0 characteristic fluctuations: overshoot, preparation and fine

fluctuation. Fig. 1.3 depicts an example of a pitch curve generation. Overshoot (upper right)
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is obtained by directly filtering the stepwise contour. Alternatively, preparation (upper left)
can be obtained by filtering (from the end towards the beginning) a slightly delayed version of
the stepwise curve. The mix (bottom) of both fluctuations is obtained by applying the masks
(middle), which prioritise the overshoot at the beginning of the note, preparation at the end,
and consider a simple cross-fading in between. In this proof of concept, the implementation
of vibrato is left for future research.

Finally, the spectral control tries to emulate the singing formant by emphasising the

spectral envelope peak around 3kHz within the vowels (Saitou et al. 2007).

1.3.2.5 Speech parameter generation and transformation

The HNM parameters of the retrieved units are concatenated, removing pitch and spectrum
mismatches by applying a simple linear interpolation technique around the joins (Stylianou
2001). Transformation and synthesis are performed pitch-synchronously. Thus, when a
prosody modification is performed, the HNM parameters in the new epochs are obtained
pitch-synchronously through the time-domain linear interpolation of the original parameters.
Furthermore, if pitch scaling is done, amplitudes and phases are interpolated in frequency to
preserve the original spectral envelope shape (Erro et al. 2007). The new harmonic amplitudes
are calculated by the linear interpolation of the spectral envelope in a logarithmic amplitude
scale. The phases of the target harmonics are obtained by interpolating the real and the
imaginary parts of the harmonic complex amplitudes at the new frequencies. Finally, the

amplitudes are scaled to preserve the energy despite the variation in the number of harmonics.

1.4 Methods

This section describes the methods used for the evaluation of the proposed US-TTS&S
synthesis framework through the proof-of-concept implementation using a Spanish corpus.
The study has been carried out for three vocal ranges and two tempos, and considering a
text-driven and three score driven US configurations. The experiments setup is described in
Section I1.4.1. Then, the objective evaluation (Section I1.4.2) analyses the magnitude of the
transformations required by the STS process to allow the framework to sing. Finally, the
subjective evaluation (Section I1.4.3) assesses both the singing capabilities of the framework

together with the naturalness of the synthesised singing.

I.4.1 Experiments setup

.4.1.1 Corpus

The experiments have been performed using a 2.6h Spanish neutral speech corpus recorded by
a female professional speaker (Alias et al. 2008). The duration and F0 histograms of the corpus
vowels are depicted in the Fig. I1.4a. Regarding duration, about half of the vowels last 50 ms
or less, and there are virtually none beyond 200 ms. The F0 histogram has been depicted

so each bin coincides with a semitone in an equal temperament. Even though the corpus
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contains vowels from 123 until 330, three out of four are between 139 and 196, so only cover
7 semitones. The 5th and the 95th percentiles (F0S and FO§;) are 134.4 Hz and 235.5 Hz,
respectively. Therefore, the corpus vocal range midpoint is F' 0% =,/ F 05C-F 055 = 178 Hz.

1.4.1.2 Vocal ranges and tempos

The first evaluation scenario considered corresponds to singing in the corpus vocal range
(SO). However, in order to evaluate the capability of the proposed US-TTS&S system to
work in a singer vocal range, a contralto set up has been also examined; this is 7 semitones
above the speech corpus pitch range midpoint (S7). Moreover, the study has been completed
with an intermediate anchor point (S4). Finally, regarding the tempo, two values have been

considered: T'= 100 bpm corresponding to a moderate speed, and a slow one (7" = 50 bpm).

1.4.1.3 Unit selection configurations

The evaluation has included a text-driven US configuration, MLC, which considers linguistic
(L) and concatenation (C) costs, and the prosodic target predicted from the lyrics by the
CBR prosodic model (M). This would correspond to the default US-TTS setting.

Moreover, the study has also considered three score-driven configurations. In this case,
the prosodic target is that obtained by the singing prosody generation block according to Sx
and T'. These configurations are: SxpdLC, which uses the pitch (p) and duration (d) from
the score instead of those from the model, SxpdC, which also disables the linguistic cost, and

finally Sxp, which only considers the pitch.

I.4.2 Objective evaluation

The objective analysis has been conducted by feeding a score dataset into the framework to be
sung in the aforementioned vocal ranges and tempos with the considered US configurations.
Then, the pitch and time-scale factors required to transform the retrieved units into singing
have been computed. More specifically, the analysis has been focused on the vowels, where the
bulk of the signal processing takes place. Moreover, the approach described in (Karabetsos
et al. 2010) has been implemented to get a binary concatenation quality prediction (poor/good)
for each join (within the vowels). The subsequent paragraphs describe the details of the

experiments.

I.4.2.1 Score test dataset

From a score compilation of songs for children (Bensaya 2018), a subset of 279 musical phrases
has been selected, by applying a greedy algorithm (Francois and Boéffard 2002) to ensure its
phonetic coverage in Spanish. This has resulted in a dataset containing 3899 notes, which
spans 29 min and 57 s with 7" = 100 bpm and 59 min and 54 s for 7" = 50 bpm.

Fig. I1.4b presents the vowel duration and F0 targets generated from the dataset by the
singing prosody generation block. The left of Fig. I1.4b shows the histogram of the vowel
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(b) Vowel target duration and FO histograms predicted from the test score dataset sung with
T = 100 bpm, and 0, 4 and 7 semitones above the speech corpus vocal range midpoint SO, S4 and S7,
respectively).

Figure II1.4: Corpus (above) and target (below) vowel duration and F0 distributions.

Table II.1: Pitch-scale intervals expressed in absolute number of semitones (|ag|) and as
multiplying factors («).

|t | \ [0-4] (4-7] (7-12] >12
a<l [0.8-1) [0.67-0.8)  [0.5-0.67) <0.5
a>1 (1-1.26]  (1.26-1.50]  (1.50-2] >2

duration target for the score dataset sung at 100 bpm, while the right section depicts the
histogram of the vowel FO target for the dataset performed with SO, S4 and S7.
1.4.2.2 Transformation requirements

A time-scale factor () has been calculated for each retrieved vowel as

Durige — Durgep

B (IL.6)

Durorig - Durtrn

where Durg is the singing target duration and Durg the original duration of the retrieved

vowel. When the vowel is stretched, Dury,.,, accounts for the duration of the unscaled transition
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Figure I1.5: Pitch-scale factors (as:) for different vocal ranges S0, S4, S7) and unit selection
configurations. Whiskers are set to 2nd and 98th percentile. Differences between all
configurations are statistically significant (p<0.01) except for the pair SOpdC-SOpdLC.

(shadowed areas in Fig. 11.2), otherwise Dury-, = 0.
Regarding the pitch-scale factors («), since the core US-TTS works with diphones, we
have obtained two values for each vowel, i.e. one for each semiphoneme. The pitch-scale factor

has been computed as

Fotgt
. LA— II.
@ mean(F0orig) (IL7)

where F0.y is the target F0 assigned from Sx, and mean(F0yiq) is the mean of the F0 values
within the retrieved semiphoneme. Pitch-scale factors are expressed in number of semitones
as ag = 12loge (), since these units are more meaningful from a musical point of view and
closer to the logarithmic perception of the pitch.

Moreover, transformation factors have been categorised taking into account reference
values in the literature. Regarding time-scale factors, authors in (Moulines and Laroche 1995)
considered the values below 4 as moderate, whereas in (Kafentzis et al. 2014) only factors
smaller than 2.5 received this consideration. According to this, time-scale factors have been
grouped in three categories: low (<2.5), moderate (2.5,4] and high (>4). Similarly, pitch-scale
values have also been categorised according to typical values (Kafentzis et al. 2014) (see
Table 11.1).

Finally, the statistical significance of the differences among the results has been analysed
using the Wilcoxon signed-rank test for the transformation factors, and McNemar for the

discretised factors.
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I.4.3 Subjective evaluation
1.4.3.1 MUSHRA test setup

The subjective evaluation is based on the MUSHRA (MUlItiple Stimuli with Hidden Reference
and Anchor) test (ITU 2003), and it was done using the Web Audio Evaluation Tool (Jillings
et al. 2015). For the evaluation, five sentences were chosen from the speech corpus so that their
phonetic stress distribution could coincide with the music stressed beats. These sentences were
set to music using eighth notes (the most common note value), thus getting five scores. These
songs were synthesised in the 3 vocal ranges (S0, S4 and S7) and the 2 tempos (100 bmp and
50 bmp) considering the 4 US configurations under study. The obtained audios were analysed
following the procedure described in Section 11.4.2 to check that the transformation factors
obtained for the different US configurations fit with those seen in the objective evaluation
with the score dataset.

Forty-nine Spanish native speakers took part in the test. From the 30 evaluation sets (5
scores x 3 vocal ranges x 2 tempos), each user evaluated 6 sets corresponding to the 6 case
scenarios (3 vocal ranges x 2 tempos). For each set, the participants were told to rate different
versions of the same melody compared to a reference on a scale of 0 to 100. Specifically,
they were told to evaluate the naturalness and the singing (i.e. how well sung is each stimuli
regardless the naturalness). Moreover, they were instructed to give the highest score to the
reference. Thus we excluded 14.5% of the sets where participants rated the hidden reference
below 70.

Regarding the singing evaluation, the score performed by Vocaloid (Kenmochi 2012) was
used as the upper reference and the lyrics synthesised by the TTS (i.e. not sung) as the lower
anchor. Since the STS process applied is the same for all the US configurations, only MLC
was included together with the hidden reference and the anchor, to minimise the fatigue of the
participants. For the naturalness assessment, the upper reference was the original sentence
from the corpus, i.e. natural speech, while no lower anchor was available. In this case 7
stimuli were evaluated within each set: MLC, the 3 score-driven configurations (Sxp, SxpdC
and SxpdLC), Vocaloid (V) and the hidden reference.

II.5 Results and discussion

This section presents and discusses the results obtained from both the objective and the

subjective evaluation.

I.5.1 Objective evaluation
I.5.1.1 Pitch-scale and concatenation analysis

The distributions of the pitch-scale factors (a) required to convert the retrieved spoken units
into singing are depicted in Fig. I1.5. Their probability densities are represented by violinplots
superposed on the standard boxplots, whose whiskers are set to 2nd and 98th percentiles. The

percentages for the categorised pitch-scale factors and for concatenation quality can be seen in
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Table I1.2: Pitch-scale factor (| ag |) percentages and good concatenation percentages.

| st | Concat.
Configuration [0-4] (4-7] (7-12] >12 Good
STp 942 45 1.2 01 331

S7pdC (100 bpm) 48.0 24.0 22.9 5.1 675
S7 S7pdC (50 bpm)  47.1 24.0 237 51  68.1
S7pdLC (100 bpm) 36.2 24.6 30.8 83 705
S7pdLC (50 bpm) 36.2 24.1 31.2 84 70.4
MLC 14.3 242 469 146 72.3

S4p 98.6 1.2 03 0.0 442
S4pdC (100 bpm) 69.2 19.0 11.1 0.7 70.4
S4 S4pdC (50 bpm)  68.7 18.9 11.7 0.7 712
S4pdLC (100 bpm) 60.4 22.6 15.7 1.3 72.1%
S4pdLC (50 bpm) 59.8 22.8 16.2 1.3 717
MLC 37.7 314 28.6 23 723

SOp 99.8 02 00 00 529
SOpdC (100 bpm) 88.1 10.3 1.5 0.0 78.4
SO SOpdC (50 bpm)  87.5 10.9 1.6 0.0 77.8
SOpdLC (100 bpm) 82.5 14.2 3.3 0.0 76.7
SOpdLC (50 bpm) 82.1 14.6 3.3 0.0 76.5
MLC 68.1 256 6.3 00 723

Each row shows the percentages corresponding to a particular vocal range (S0, S4 or S7) and
US configuration. Differences with respect to MLC are statistically significant (p<0.01) for
all configurations, except *.

Table I1.2. The values obtained at the two tempos have been included for the configurations
that consider durations from the score (SxpdC and SxpdLC). However, since the differences
due to the tempo are very small, only the distributions obtained with 7" = 100 bpm have been
depicted in Fig. [1.5.

When singing in the corpus vocal range (look at SO scenario in Fig. I1.5), the distribution
of pitch-scale factors is centred around 0 semitones in all the configurations. The interval
defined by the 2nd and 98th percentiles ranges from [-6.9,8.2] for MLC to [-0.8,0.9] for SOp.
Therefore, the distributions are narrowed when the score is considered. This implies that the
percentage of small factors (| ag |< 4) increases from 68.1% in MLC until 99.8% for SOp as
can be seen in Table I1.2.

When singing beyond the speech corpus vocal range (S4 and S7), the distribution of MLC
pitch-scale factors with SO shifts up 4 semitones for S4 and 7 for S7 as seen in Fig. 11.5.
Conversely, when the score is taken into account this increase can be mitigated, or even
neutralised if only pitch is considered (Sxp). However, Table I1.2 shows that 72.3% of good
concatenations obtained with MLC drop to 52.9% for SOp, 44.2% for S4p and 33.1% for S7p.
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Figure I1.6: Time-scale factors (/) obtained with the S4pdLC configuration at 100 bpm and
50 bpm for different note durations. Whiskers are set to minimum and 98th percentile.

By contrast, the intermediate configurations (SxpdC and SxpdLC) still allow for a statistically
significant reduction of the pitch-scale factors while minimising the concatenation quality
degradation. Finally, it should be noted that in the score-driven configurations the percentage
of good concatenations decreases as the distance from the speech corpus vocal range midpoint

increases.

I.5.1.2 Time-scale analysis

Regarding the time-scale factors, although the differences between configurations are in some
cases statistically significant, they are barely relevant compared to the differences which
arise from the tempo and the note values. According to this, and for the sake of clarity, the
results of the intermediate configuration S4pdLC are presented for the two tempos under
study, breaking them down according to the three most frequent note values: sixteenth note
(j), eighth note () and quarter note (4). These note values respectively account for 14.0%,
59.1% and 21.7% of the notes in the score dataset, and they last 150 ms, 300 and 600 ms for
T = 100 bpm and double for T" = 50 bpm.

Fig. 11.6 shows the distributions of the time-scale factors (), with the boxplot whiskers set
to the minimum and the 98th percentile. The time-scale factor percentages by category are
presented in the Table I1.3. We can see in Fig. [1.6 that when the tempo goes from 100 bpm
to 50 bpm, notes doubled their duration, while time-scale factors more than doubled. This
behaviour is also observed between note values within the same tempo. Similarly, Table 11.3
shows that while almost all (97.8%) of the shortest notes (150 ms) can be addressed with
small time-scale factors (5 < 2.5), when moving to medium duration notes (300 ms) 15.2% of
high time-scale factors emerge at 100 bpm, and 17.4% at 50 bpm. Finally, as seen in Fig. 11.6
time-scale factors up to 28 can be required when singing long notes (600 ms), and even greater

than 50 for notes lasting 1200 ms.
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Table I1.3: Time-scale factor () percentages obtained with the S4pdLC configuration at
100 bpm and 50 bpm for different note durations (in ms).

T =100 bpm T = 50 bpm

Note I5] Note 153
dur(ms) <2.5 (2.5-4] >4 dur(ms) <2.5 (2.5-4] >4

600 9.0 23,5 67.5 1200 0.0 02 998
300 55.1 29.7 15.2 600 3.5 84 881
150 97.8 1.8 0.3 300 50.1 326 174

Table 11.4: Singing MUSHRA average scores and 95% confidence interval. Best values are in
italics.

Configuration 7'= 100 bpm 7T = 50 bpm

ST MLC 62 £ 6 61 £ 7
S4 MLC 59 £ 6 60 £ 6
S0 MLC 60 £ 8 o8 £ 7

I.L5.2 Subjective evaluation

Results from the MUSHRA test are shown in Table 11.4 and Table I1.5. Regarding the singing
assessment (see Table 11.4) the US-TTS&S framework has received MUSHRA scores of around
60. Although a slight preference for the contralto vocal range (S7) can be observed (62 at
100 bpm, and 61 at 50 bpm), similar results have been obtained for all the analysed scenarios.

With regard to naturalness (see Table I1.5), singing produced by the US-TTS&S framework
is far from the Vocaloid (around 40 and 69, respectively). Although the differences between
the US configurations are not statistically significant (according to the Wilcoxon signed-rank
test), some tendencies can be observed. For instance, looking at the MUSHRA scores in
Table 11.5 it can be seen that Sxp configurations have received the lowest ratings in all the
analysed scenarios except for S4 and T = 50 bpm. Conversely, when the concatenation cost is
enabled (SxpdC and SxpdLC), the naturalness is similar to that of MLC, or in some cases
slightly improved, as with SO and SOpdC at 50 bpm, or with S4 for both configurations and

the two tempos.

11.5.3 Discussion

The experiments have been designed to evaluate the proposal through a proof-of-concept
implementation. From the objective tests, it can be observed that large time transformation
factors arise when dealing with medium duration notes (300 ms), but especially when long
and very long notes (600 ms and 1200 ms) are present in the song (see Fig. I1.6). This result
is in concordance with the corpus characteristics, which contains almost no vowels longer than
200 ms (see Fig. [1.4a). As a consequence, we can conclude that score-driven US configurations

hardly impact on the time-scaling requirements.

56



Results and discussion

Table I1.5: Naturalness MUSHRA average scores and 95% confidence interval. Best values
achieved by the proposed system in each scenario are in italics.

Configuration T’ = T =50 bpm
100 bpm
\Y 74+6 70 £ 6
S7pdLC 41 £ 5 L6
S7 S7pdC 39 £ 6 43 + 6
STp 36 £ 5 40 + 6
MLC 42+ 5 44+ 5
A% 69 £ 7 67 £ 7
S4pdLC 42+ 6 38 £6
S4 S4pdC 39+ 6 41+ 6
S4p 35+ 6 38 £6
MLC 38+ 6 37+ 6
\Y% 66 £ 7 70 £ 6
SOpdLC 445 38 +4
S0 SOpdC 44+ 5 42+ 6
SOp 41 + 6 35+ 6
MLC 44+ 6 39+5

Regarding pitch-scaling, the obtained moderate transformation factors required to sing in
the speech corpus vocal range (S0) are consistent with the overlap between the F0 distribution
from the score dataset and that from the corpus vowels (see Fig. 11.4). Conversely, when
moving towards a contralto singer vocal range (S7), the overlap between FO0 distributions
is significantly reduced as it can be seen in Fig. [1.4. Thus, even though Sxp configurations
are able to find almost all the vowels close to the desired pitch, it becomes harder to find
units that also join adequately and meet the other target specifications (SxpdC and SxpdLC).
This can be observed in the last column of Table 1.2, in the decreasing percentage of good
concatenations when moving away from the corpus vocal range. Hence, although the score-
driven US strategies have been proved helpful to reduce the pitch-scaling requirements, their

effectiveness could be higher if a larger speech corpus with a greater coverage was available.

From the perceptual tests, a slight preference for singing in an actual singer vocal range
(S7) has been observed (see Table 11.4). However, this preference is not significant with respect
to the other vocal ranges under study (with MUSHRA scores of around 60). With regard
to naturalness (see Table 11.5), the ratings achieved by the proof-of-concept with respect
to natural speech are significantly different to those obtained by Vocaloid (with MUSHRA
ratings around 40 and 69, respectively). Nevertheless, this is not surprising since Vocaloid is a
commercial high-quality singing synthesiser exclusively designed for this purpose, which uses
databases including diphones, sustained vowels and optionally triphones, sung by professional
singers in several pitches to cover their vocal range (Kenmochi 2012). Conversely, the proposal
has to deal with the spoken units available in the corpus, which are low-pitched and very short
compared to what could be found in a singing database. Therefore, converting them into

singing involves high demanding transformations factors as seen in the objective evaluation.
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In this context, it has also been observed that the substantial pitch-scale factors reduction
achieved by the score-driven US configurations has had a small impact on the naturalness,
obtaining scores similar to those received by the text-driven US configuration. Besides the
aforementioned restrictions due to the corpus size,this could be explained by the impossibility
of relaxing the time-scale requirements. This may be important, considering that the ability
to reproduce the behaviour of sustained vowels is known to be essential in singing synthesis
(Kenmochi 2012).

Finally, it is worth mentioning that the validation of the proposal has been carried out
with a specific speech corpus on a US-TTS system, since this approach enabled the study of
the STS transformation factors required to produce singing from speech. Nevertheless, other
corpus and adjustments of the cost function weights could be considered, and even other

corpus-based approaches, such as statistical parametric speech synthesis using HMM or DNN.

1.6 Conclusions

This work has proposed a synthesis framework that provides singing capabilities to a US-TTS
system from neutral speech, through the integration of Speech-To-Singing (STS) conversion.
The proposal has been evaluated by means of a proof-of-concept implementation on a 2.6h
Spanish neutral speech corpus, considering different vocal ranges and tempos and studying
diverse text-driven and score-driven US configurations.

Results show that high demanding STS transformation factors are required to sing beyond
the corpus vocal range and/or when notes longer than 150 ms are present. However, the
pitch-scale factors can be reduced by considering score-driven US configurations. Conversely,
the time-scale requirements can not be reduced because of the short length of the vowels
available in the corpus.

Regarding the subjective evaluation, text-driven and score-driven US configurations have
obtained a similar naturalness in all the analysed scenarios, with MUSHRA scores around
40. Although these values are far from those of Vocaloid (around 69), the obtained singing
ratings around 60 validate the capability of the framework to address eventual singing needs.

The obtained results encourage us to continue working on the proposal to improve the
performance of the system. To this aim, the focus will be placed on the generation of long
sustained vowels, exploring advanced time-scale and spectral transformation strategies, and
incorporating vibrato to the singing expression control generation module. Furthermore, other
signal processing techniques could be considered for the transformation module to better cope

with the challenge of generating singing from neutral speech.
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Abstract

Articulatory speech synthesis has long been based on one-dimensional (1D) approaches.

They assume plane wave propagation within the vocal tract and disregard higher order
modes that typically appear above 5 kHz. However, such modes may be relevant in
obtaining a more natural voice, especially for phonation types with significant high
frequency energy (HFE) content. This work studies the contribution of the glottal source
at high frequencies in the 3D numerical synthesis of vowels. The spoken vocal range
is explored using an LF (Liljencrants—Fant) model enhanced with aspiration noise and
controlled by the Ry glottal shape parameter. The vowels [a], [i], and [u] are generated
with a finite element method (FEM) using realistic 3D vocal tract geometries obtained
from magnetic resonance imaging (MRI), as well as simplified straight vocal tracts of a
circular cross-sectional area. The symmetry of the latter prevents the onset of higher
order modes. Thus, the comparison between realistic and simplified geometries enables us
to analyse the influence of such modes. The simulations indicate that higher order modes
may be perceptually relevant, particularly for tense phonations (lower R, values) and/or
high fundamental frequency values, F0s. Conversely, vowels with a lax phonation and/or
low F0Os may result in inaudible HFE levels, especially if aspiration noise is not considered

in the glottal source model.

Introduction

DOI:

Voice can be generated simulating acoustic wave propagation within the vocal tract. For

years only plane waves were considered, which allowed the use of 1D vocal tract models to

produce a voice of fairly good quality (see e.g., Story 2013; Birkholz 2013). Nonetheless,
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the accuracy of 1D models is limited up to about 4-5 kHz, depending on the generated
sound (see e.g., Arnela et al. 2019 which compares vowels and diphthongs generated in 1D
and 3D). Beyond this frequency, higher order modes also exist, resulting in resonances and
anti-resonances that cannot be predicted in 1D and which strongly modify the high frequency
energy (HFE) content of the spectrum (Blandin et al. 2015; Arnela et al. 2016b). Until now,
however, little attention has been paid to the high frequency range. An exception is found
in some recent works that point out that HFE may be important for voice quality, speech
localisation, speaker recognition, and intelligibility (see Monson et al. 2014 and references

therein).

Plane wave propagation along the vocal tract midline is not a constraint for 3D acoustic
models. Some examples of the latter can be found, for instance, in (Vampola et al. 2008) where
the finite element method (FEM) was used to study the production of Czech vowels using 3D
vocal tracts, reconstructed from magnetic resonance imaging (MRI) data. In (Takemoto et al.
2010), a finite-difference time-domain method was adopted to analyse the MRI-based vocal
tracts of Japanese vowels. Moreover, the results of the simulations were validated through
experiments performed in physical models constructed from the same MRI data. Similarly,
in (Arnela et al. 2016a), measurements on 3D-printed mechanical replicas presented very close

results to those from 3D FEM acoustic simulations on MRI-based vocal tracts.

Nevertheless, the use of a 3D acoustic model does not necessarily entail the propagation
of higher-order modes. For instance, these will rarely appear in a straight, axisymmetric vocal
tract excited at the glottis, as observed in (Arnela et al. 2016b). In fact, several geometric
simplifications were analysed in (Arnela et al. 2016b) which preserved the cross-sectional areas
of the vocal tract but introduced modifications in their cross-sectional shapes and midline
curvature. Results showed a similar behaviour for the analysed configurations in frequencies
below 4-5 kHz but very large deviations beyond that value. This highlights the limits of
the plane wave assumption and also shows that changes in the vocal tract shape modify the
HFE content. Nonetheless, there are other important factors that must be considered to
determine the HFE content of a voice such as phonation type. In (Monson et al. 2011) for
instance, loud and soft phonations of sustained vowels showed significant differences in HFE
content. Moreover, results showed that modifications of HFE levels are more easily detected

by listeners in a loud phonation case.

In this work, we study the contribution of the glottal source excitation in the 3D numerical
synthesis of vowels, paying special attention to HFE content. 3D realistic vocal tracts for
vowels [a], [i], and [u] were considered for this purpose, as well as their simplified counterparts
consisting of straight ducts of varying circular cross-section (Arnela et al. 2016b). The latter
allowed us to mitigate the onset of higher order modes and thus examine their influence on
HFE by comparison with the 3D realistic outputs. Vocal tract impulse responses have been
computed from FEM simulations in the time domain (Arnela and Guasch 2013). Vowels
have finally been synthesised by convolving impulse responses with the desired glottal source
excitations. An LF (Liljencrants—Fant) model (Fant et al. 1985) enhanced with aspiration

noise has been employed to generate the latter. Although this model does not take into
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account the interaction between the vocal tract and the vocal folds (Murtola et al. 2018; Erath
et al. 2013), it has proven useful to explore the phonatory tense-lax continuum (Murphy et al.
2017) by controlling the Ry glottal shape parameter (Fant 1995). The Ry parameter has thus
been incorporated in the LF model and used to examine different phonation types, ranging
from a lax to a tense phonation. Moreover, the influence of the fundamental frequency F0
on HFE content has also been examined. Several plausible combinations of R; and F'0 were
considered, thus covering to a large extent the phonation range for male speech. Finally,
aspiration noise was also evaluated to study its impact on HFE levels. A preliminary version
of this work was presented in (Freixes et al. 2018).

The paper is structured as follows. Section I11.2 details the methodology we propose to
study the production of vowels [a], [i], and [u] for different phonation types and for both, the
realistic and simplified vocal tract geometries. Computations are carried out and the results
are analysed and discussed in Section I11.3. Finally, conclusions and future work close the

paper in Section [11.4.

.2 Methodology

Figure I11.1 represents the process used to synthesise the different versions of the vowels [a], [i],
and [u]. These were obtained by convolving the glottal source signals with the impulse
responses of the vocal tract geometries. As explained in the Introduction, the realistic
vocal tract geometries from (Arnela et al. 2016b) were used as well as their simplified
counterparts with straight mid-line and circular cross-sections (see Section I11.2.1). With

regard to the impulse responses h(t), those were computed using the 3D FEM acoustic model

h(t) ug(t)
IR i 4 S
- VW

Figure IIL.1: Synthesis of vowels [a], [i], and [u] with realistic vocal tract geometries (above)
and their simplified counterparts of circular cross-sections set in a straightened midline (below).
The output pressure signal p(t) is computed as the convolution of the glottal source uy(t)
with the vocal tract impulse response h(t) obtained from a 3D FEM (finite element method)
simulation. Three phonation type examples are represented in the figure: Tense (dashed red
line), modal (solid black line), and lax (dotted green line).

67



lll. Glottal Source Contribution to Higher Order Modes in the Finite Element Synthesis of
Vowels

detailed in Section I11.2.2. Besides, the glottal source signals u4(t) were generated by means
of a Ry controlled LF model enhanced with aspiration noise, described in Section [11.2.3.
The synthesised acoustic pressure p(t) for each vowel was finally analysed according to the

methodology in Section I11.2.4.

l1.2.1 Vocal Tract Geometries

The two vocal tract representations (realistic and simplified) of vowels [a], [i], and [u] used in
this work are depicted in Figure III.1. They were generated in (Arnela et al. 2016b) from
adapted versions of the 3D complex vocal tract geometries reconstructed from MRI data
in (Aalto et al. 2014). Neither the realistic nor the simplified vocal tracts include the subglottal
tube, lips, and face (see Arnela et al. 2013 and Arnela et al. 2016a for the influence of the
head and lips on simulations) or the side branches, such as the piriform fossae and valleculae
(see e.g., Takemoto et al. 2010; Takemoto et al. 2013 for their acoustic effects).

In fact, the realistic representations consist of cross-sections extracted from the adapted
MRI-based vocal tract geometries. An adaptive grid approach, which considers the cross-
sections as being perpendicular to the vocal tract midline, was used for that purpose. The
cross-sections were then linearly interpolated to reconstruct a 3D vocal tract geometry. It was
shown in (Arnela et al. 2016b) that such types of geometries correctly mimic the behaviour of
MRI-based vocal tracts without side branches.

The simplified representations involve strong additional modifications of realistic vocal
tracts. First, the shape of each cross-section was replaced with a circle of an equivalent
area. Second, the resulting cross-sections were set in a straightened vocal tract midline,
obtained by computing the Euclidean distance between the centers of the cross-sections
(sagittal variations of the cross-section centers were excluded from the computations to avoid
an artificial lengthening of the vocal tract Story et al. 1996). Linear interpolation was then

applied to obtain the 3D vocal tract geometry (see Arnela et al. 2016b).

lll.2.2 Vocal Tract Impulse Response

The impulse response of each vocal tract was obtained from the time-domain FEM
simulations (Arnela and Guasch 2013). The propagation of acoustic waves within the 3D

vocal tracts was provided by the FEM solution to the acoustic wave equation:
O5p — gV?p =0, (T11.1)

where p(x, t) stands for the acoustic pressure, 97 for the second order time derivative, and cg
for the speed of sound. ¢y was set to the usual value of 350 m/s. An exterior domain was
included to let waves emanate from the mouth and account in this way for radiation losses.
A perfectly matched layer (PML) was imposed on the computational domain boundaries to
prevent wave reflections. Wall losses were considered by prescribing a boundary admittance
coefficient 1 on the vocal tract walls which was set to = 0.005. Sound waves were generated

within the vocal tract imposing a volume velocity u4(t) on the glottal cross-sectional area.
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Specifically, the following Gaussian pulse was used:
ug(t) = e_[(t_Tgp)/O'nggp]z[m?’/s], (I11.2)

with Ty, = 0.646/ f. and f. = 10 kHz.

Numerical simulations were performed with a sampling frequency of fs = 8000 kHz.
This unusually large value was selected to ensure the stability of the explicit discrete time
scheme used to solve the wave Equation (II1.1). Time events of 20 ms were simulated, tracking
the acoustic pressure, po(t) at a mesh node located 4 cm away from the mouth exit. The

vocal tract transfer function H(f) was then obtained as:

H(f)= , (IIL.3)

with P,(f) and Uy(f) respectively being the Fourier transforms of p,(t) and u4(t). Note that
this compensates for the slight spectral decay introduced by the Gaussian pulse. H(f) was
computed up to 12 kHz in order to generate speech at 24 kHz. This sampling frequency
allowed us to cover the whole 8 kHz octave band, in which the HFE levels would be computed.

Figure I11.2 shows the computed vocal tract transfer functions H(f) of [a], [i], and [u] for
the realistic and simplified geometries. Observe that below 5 kHz the two representations
behaved very similarly, whereas above that frequency strong differences emerged. This is
consistent with the results presented in (Arnela et al. 2016b), where it was observed that plane
wave propagation, which dominates below 5 kHz, is barely affected by the cross-sectional shape
and vocal tract bending. Beyond that limit, however, higher order modes also propagate and
play a significant role in the realistic configurations. In contrast, radial symmetry prevents
the onset of most higher order modes in the simplified vocal tracts for the examined frequency
range (Blandin et al. 2015; Arnela et al. 2016b). As observed in Figure I11.2, the depicted
vocal tract transfer functions show an almost flat global trend in contrast to the spectral

characteristics of speech because they do not include the effect of the glottal source.

[u]
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110 — - -simplified]

=100

{ ——realistic
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——realistic
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Figure II1.2: Vocal tract transfer function magnitude |H(f)| of vowels [a], [i], and [u] for

realistic and simplified vocal tract geometries.

The vocal tract impulse responses h(t) were finally obtained from the inverse Fourier

transform of the vocal tract transfer functions H(f) (see Figure II1.1).
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ll.2.3 Voice Source Signal

Voice source signals were generated according to the LF model (Fant et al. 1985). Specifically,
Kawahara’s implementation (Kawahara et al. 2017) was chosen to obtain aliasing-free glottal
flow derivative waveforms ufq(t). The shape of a glottal pulse is controlled by the parameters
Ty, Te, Ta, Tt, and Ty (see Figure I11.3). However, this control can be simplified as described
in the transformed LF model (Fant 1995). The latter reduces parameter redundancy in the
glottal pulse description. To this end, a global waveshape parameter, R4, is introduced as:
Ty 1 Uy FO

=2 = — I11.4
Tp 110  E. 110 ° ( )

d

where T}, is the declination time, Ty the period, and FO the fundamental frequency. The
declination time 7y corresponds to the quotient between the glottal flow peak Uy and the
negative amplitude of the differentiated glottal flow E.. The scale factor was chosen so
as to make the numerical value of R; the same as the declination time in seconds for
F0 =110 Hz (Fant 1995). The glottal shape parameter R; was integrated into Kawahara’s
implementation, thereby allowing us to simulate from a tense, very adducted phonation
(Rq = 0.3) to a lax, very abducted phonation (R = 2.7). T}, T,, and T, are derived from
Rg according to the equations in (Fant 1995) and T is set to Tp. The glottal flow w,(t) is
computed by performing the cumulative integration of u’g(t) using the composite trapezoidal
rule (Davis and Rabinowitz 2007).

Furthermore, the voice source model was extended to incorporate aspiration noise, Sz (t),
which is added to the glottal flow wu,(t). To this end, the method presented in (Gobl 2006)
was implemented. This consists of automatically generating the temporal dynamics of Sz (t)

according to the voice source parameters as follows:

Sap(t) = AH EF°F0M% n(t) Uac

Uy (1) + Uge, (I1L.5)

where Uy = (379/Ry) — 91, Uy = 83Ty + 34 and T,; = 110 Ty Ry, according to (Gobl 2006).
The noise amplitude factor AH was perceptually adjusted to 3 x 1074, The noise signal n(t)

was generated by filtering white Gaussian noise with a 2nd order Butterworth bandpass

Uo—mc
u; (t) A\ *Ta;* Ug (t)
T \\ |
T.
o\ ]
- E,.

T, = Uy/E.

Figure ITL.3: Glottal flow u,(t) and its time derivative w;(t) according to the LF (Liljencrants-
Fant) model (Fant et al. 1985). T, is the rise time, T, is the duration of the open phase, Ty,
corresponds to the effective duration of the return phase, T, is the location of the complete
closure, T} is the declination time, and Tj is the period. Uy is the peak of the glottal low and

E. corresponds to the negative amplitude of the differentiated glottal flow.
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filter with cutoff frequencies of 300 and 3000 Hz as in (Story 2013). Finally, a SoX
resampling (http://sox.sourceforge.net/SoX/Resampling) was incorporated to adapt the glottal
flow signals originally generated at 44,100 Hz to the sampling rate at which the speech signals
were synthesised (24 kHz).

The glottal flow signals generated for this work cover the R; range [0.3,2.7] (Fant 1995),
considering 49 logarithmically spaced values of Ry (24 steps from 0.3 to 1 and 24 more steps
from 1 to 2.7). Regarding FO0, a pitch contour was extracted from a real sustained vowel
lasting for 2 s. This curve was successively pitch-shifted from a F0 mean value of 75.6 Hz
to 240 Hz in 81 steps of 0.25 semitones, thereby covering the male speech range (Pabon
and Ternstrom 2018). For each possible combination of R; and F0 values, two glottal flow
versions were obtained with and without aspiration noise. The pulse amplitude, Uy, was
selected to have 70 dBgpr, with the realistic geometry, F'O = 120 Hz and R; = 1, which
resulted in values Uy = 6.296 x 1075 m3 /s for vowel [a], Uy = 3.455 x 1075 m3/s for [i] and
Up = 6.657 x 1075 m3 /s for [u].

lll.2.4 Acoustic Analysis

The Welch’s power spectral density (PSD) estimate of each synthesised vowel was computed
using a 2048-point FFT, with a 15 ms Hanning window and 50% overlap. The PSD was
scaled by the equivalent noise bandwidth of the window to get the long-term average spectrum
(LTAS). Moreover, HFE levels were computed as the integral of the PSD estimate within
the 8 kHz octave band, as in (Monson et al. 2012; Monson et al. 2011) and in the three
1/3 octaves conforming that band, i.e., 6.3 kHz, 8 kHz, and 10 kHz. In the same way, the
overall energy levels were obtained by considering the full bandwidth from 0 Hz to 12 kHz.
The 16 kHz octave band was not considered in this study because its HFE variations have

been shown to be almost perceptually irrelevant (see Monson et al. 2011).

1.3 Results

The vowels [a], [i], and [u] were synthesised modifying the glottal source model in the whole
phonation range, defined in this work as the space comprising fundamental frequencies
F0 € [75.6,240] Hz for R, € [0.3,2.7]. Amplitude variations of the glottal pulses, Uy, could
have also been incorporated in the study. However, they were not considered because they
simply produce a level increment proportional to Uy. For instance, doubling the amplitude of

Up simply generates a constant level offset of +6 dB at all frequencies.

In the following subsections we will start examining tense, modal, and lax phonations
with Ry = {0.3,1,2.7}, respectively, for an intermediate F0 value of 120 Hz. The
analysis will be then extended over the whole simulated phonation range, namely for
(FO, Ry) € [75.6,240] x [0.3,2.7].
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ll.3.1 Analysis of Tense, Modal, and Lax Phonations for Fixed F0 and R,
Values

Figure I11.4 shows the LTAS of vowels [a], [i], and [u] for tense, modal, and lax phonations
(Rq=1{0.3,1,2.7}) with 0 = 120 Hz. The figure thus contains nine subplots covering all
possible combinations. In turn, each subplot presents four curves. Those correspond to the
results with the realistic and simplified vocal tract geometries for activated and deactivated
aspiration noise. The overall and HFE levels of the LTAS curves are shown in Table I11.1 for
the 8 kHz octave frequency band and also for its corresponding 1/3 octave bands, 6.3 kHz,
8 kHz, and 10 kHz. Values in parentheses indicate the level rise produced by including

aspiration noise in the glottal source model.
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Figure III.4: Long-term average spectra (LTAS) of the FEM synthesised vowels [a], [i], and
[u] using the realistic and simplified vocal tract geometries with and without aspiration noise.
Vowels were generated with a tense (R; = 0.3), a modal (R; = 1), and a lax (Rq = 2.7)
phonation with F0 = 120 Hz. Vertical lines depict the boundaries of the 1/3 octave bands
6.3 kHz, 8 kHz, and 10 kHz.

Let us first focus on the comparison between the realistic and simplified vocal tract
geometries. Looking at Figure I11.4, we can observe that the vocal tract geometry did not
have a significant effect on frequencies below ~5 kHz, as already mentioned before, in contrast
to the high frequency range. As explained, this is because planar modes mainly propagate at
lower frequencies, whereas the higher order ones mostly appear in the high frequency range.
This was clearly the case for the realistic geometry. Note, for instance, that a large valley is
produced close to 6 kHz in the realistic configuration of [a] (generated by a transverse mode,
see Arnela et al. 2016b), whereas a resonance appears instead in the simplified configuration.
The lack of higher order modes in the latter due to radial symmetry will allow us to determine
their influence by comparing the results from the two configurations.

In general, higher order modes diminished the HFE levels, regardless of the phonation
type and examined vowel. Note that in the 8 kHz octave band of Table II1.1 the level of
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Table III.1: Overall and high frequency energy (HFE) levels (in dB) obtained in the realistic
and simplified vocal tract configurations of vowels [a], [i], and [u]. Values correspond to vowels
with a tense (R; = 0.3), a modal (R; = 1), and a lax (R; = 2.7) phonation without
considering aspiration noise. The values in parentheses denote the increment in dB obtained
due to adding aspiration noise.

Vowel Geometry R; Overall 1/1 Octave Band 1/3 Octave Band
8 kHz 6.3 kHz 8 kHz 10 kHz
0.3 82.3 (+0.0) 415 (+0.2) 35.3 (40.1)  37.6 (+0.2)  37.2 (+0.2)
realistic 1.0 70.0 (+0.0)  14.5 (+3.8) 8.7 (43.0) 106 (+3.7) 9.8 (+4.4)
al 2.7 635 (+0.0)  —45 (+14.4)  —10.3 (+13.1) —85 (+14.3) —9.1 (+15.2)
0.3 83.5 (+0.0) A7.4 (40.1) 434 (+0.1) 424 (+0.2)  41.9 (+0.2)
simplified 1.0 71.4 (40.0) 20 5 (+3.5) 17.0 (42.8) 153 (+3.6)  14.5 (+4.4)
2.7 64.9 (+0.0) 6 (+13.8) —1.8 (+12.4) —3.7 (+14.3) —4.4 (+15.3)
0.3 73.6 (+0.0)  41.0 (+0.2) 37.0 (+0.1)  37.9 (+0.2)  31.8 (+0.2)
realistic 1.0 70.0 (+0.0)  14.2 (+3.3) 10.6 (+2.7) 109 (+3.5) 4.4 (+4.4)
i 27 65.6 (+0.0)  —4.7 (+13.4)  —8.2 (+12.3) —8.0 (+13.8) —14.5 (+15.2)
0.3 73.4 (+0.0) 44.8 (+0.2) 38.5 (+0.1)  40.7 (+0.2)  40.5 (+0.2)
simplified 1.0 70.0 (+0.0)  17.8 (+3.7) 12.2 (42.7) 137 (+3.6)  13.1 (+4.4)
2.7 65.6 (+0.0)  —1.0 (+14.0)  —6.6 (+12.2) —5.0 (+13.8) —5.7 (+15.2)
0.3 74.0 (+0.0) 228 (+0.2) 19.6 (+0.1)  16.3 (+0.2)  18.0 (+0.3)
realistic 1.0 70.0 (40.0)  —4.0 (+3.6) —6.9 (+3.0) —10.6 (+3.3) —9.4 (+4.5)
] 2.7 64.2 (+0.0)  —23.2 (+14.1)  —26.4 (+13.5) —29.3 (+13.3) —28.3 (+15.3)
0.3 75.0 (+0.0)  29.9 (+0.2) 215 (+0.1) 254 (+0.2)  27.0 (+0.2)
simplified 1.0 71.1 (+0.0) 2.7 (44.0) —52 (4+3.2) —17(+3.7) —0.4 (+4.4)
2.7 64.2 (+0.0)  —16.0 (+14.4)  —23.6 (+12.6) —20.5 (+14.2) —19.2 (+15.1)

the realistic geometry became between 5.6 dB and 6.1 dB lower than that of the simplified
geometry for vowel [a], between 3.6 and 4.3 dB for vowel [i], and between 6.7 and 7.5 dB
for [u]. More details can be obtained from the 1/3 octave bands levels at 6.3 kHz, 8 kHz,
and 10 kHz. The first one at 6.3 kHz only presents small spectral differences for [u] and [i,
which ranged from 1.8 dB to 2.8 dB for [u] and were of the order of 1.5 dB for [i]. Actually,
this 1/3 octave band did not contain higher order modes for these vowels (see Figure I11.4).
Conversely, the dip around 6 kHz in the realistic [a] vowel caused level decreases of between
7.8 dB and 8.5 dB. For this vowel, the onset of higher order modes took place at a lower
frequency since vowel [a] has a bigger oral cavity than [u] and [i]. In the second 1/3 octave
band, centred at 8 kHz, the largest differences were found for [u]. In this case, the realistic
configuration presented a valley close to 9 kHz, whereas resonances appeared for the simplified
geometry. This results in variations ranged from 8.8 dB to 9.6 dB. Finally, [i] and [u] exhibited
the largest deviations for the third 1/3 octave band at 10 kHz, which varied from 8.8 dB to
9.0 dB for the realistic configuration. According to (Monson et al. 2011), minimum difference
limen scores of about 1 dB were obtained for normal-hearing listeners in the 1/1 octave band
of 8 kHz. Therefore, one could hypothesise taking into account the aforementioned differences,
that higher order modes could be perceptually relevant. However, this relevance may also

depend on the HFE levels, which in turn greatly depend on the glottal source.

The glottal source not only modified the overall energy level but also introduced a spectral
decay that can be appreciated by comparing the LTAS in Figure I11.4 with the H(f) of
Figure I11.2. This decay, also known as the spectral tilt, is strongly dependent on the
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phonation type. In Figure I11.4, it can be observed that the laxer the phonation (i.e., for
growing Ry) the stronger the spectral tilt, especially at higher frequencies. For instance,
moving from the modal phonation to the lax one produces an overall energy decay between
4.4 dB and 6.9 dB, considering all values in Table II1.1. However, this reduction is much
larger in the high frequency range. It can reach ~19 dB if no aspiration noise is considered.
When aspiration noise is present, the decrease was not so prominent and only ranged from
8.0 dB to 9.4 dB. On the other hand, going from a modal to a tense phonation resulted
in the opposite behaviour. The spectral tilt was reduced, which increased the overall levels
between 3.5 dB and 12.2 dB. Again, the HFE levels were more sensitive and increased from
23.1 dB to 27.4 dB. It is worthwhile observing that in this case the aspiration noise did not
play a determinant role, since as the LTAS of Figure I11.4 shows, the tense phonation remained
unaltered.

Let us then analyse the influence of aspiration noise in more detail. As seen from
Table I11.1, the aspiration noise had no effect at all on the overall levels of any of the analysed
configurations. It only affected the HFE content, resulting in significant energy increments
for laxer phonations but in negligible differences for the tense ones. Level increments in the
8 kHz octave band of Table I11.1 were less than 0.2 dB for the latter. In the case of modal
phonation, the energy slightly increased beyond 4 kHz (see Figure I11.4), which resulted in a
level rise from 3.3 dB to 4.0 dB in the 8 kHz octave band. As expected, the most sensitive
phonation type was the lax one, which was strongly influenced by aspiration starting from
~2.5 kHz. The 8 kHz octave band levels increased from 13.4 dB to 14.4 dB in this case.

To summarise, higher order modes diminished HFE levels between 3.6 dB and 7.5 dB
in the 8 kHz octave band when considering all tested configurations. These level reductions
were comparable to those in (Monson et al. 2011) and could therefore be perceptually relevant.
Nevertheless, the differences induced by the higher order modes would only be perceivable if
the energy input at the high frequency range was substantial. This seems to be the case of the
tense phonation, whose levels in the aforementioned frequency band were higher than 41 dB
for [a] and [i], and above 22 dB for [u] (see Table III.1). When the phonation was modal,
higher order modes might still have been relevant for [a] and [i], which presented HFE levels
above 14 dB, in contrast with [u], where the levels remained between —4.0 dB and 6.7 dB.
Finally, in the case of a lax phonation, perceptually significant HFE values could only be
achieved for [a] and [i] if aspiration noise was considered (with variations between 8.7 dB and

15.4 dB). Higher order modes became irrelevant for [u].

lI.3.2 Analysis for the Whole Phonation Range

The analysis for the whole phonation range comprises of the overall and HFE levels in the
8 kHz octave band for the realistic geometry of the three vowels, with and without aspiration
noise in the glottal source model. That results in the nine contour subplots are shown in
Figure I11.5. A rainbow colour scale is used for all of them, with red and blue respectively
representing the highest and lowest energy levels. Note that the realistic cases analysed in

the previous Section I11.3.1 correspond to the vertical lines in the subplots, which have been
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indicated with a diamond symbol.

The colour maps in Figure I11.5 exhibit a pattern of diagonal contours with a general
tendency to increase the overall and HFE levels from bottom left to top right. That is to
say the minimum levels were obtained for the lowest F'0 and laxest phonation, Ry = 2.7,
and gradually increased when moving to higher F'0 and smaller Ry values. This means that
the obtained energy levels not only depended on Ry, as already observed in the previous
Section I11.3.1, but also on the FO of the excitation. In regards to the overall levels (first
column in Figure I11.5), the lowest values were similar for all vowels ranging between 57.6 dB
and 59.7 dB. In contrast, the highest levels depended on each vowel and reached 91.6 dB,
80.4 dB, and 78.8 dB for [a], [i], and [u], respectively. The vocal tract of vowel [a] produced
the highest overall levels thanks to its first three formants, which are the most prominent ones
as seen from the VI'TFs in Figure [11.2. Moreover, these resonances took place below 2.5 kHz,
where the energy decay of the tense voice source was still moderate (see the top-left subplot
in Figure I11.4). On the other hand, the contours for the overall levels in Figure I11.4 present
some deviations with respect to the aforementioned diagonal pattern, especially for [i] and
[u]. These deviations occurred at those F'0s that were sub-multiples of the frequency of each
vowel first formant F. For instance, vowel [a] presented level increases at F'0 = 168.3 Hz and
F0 = 224.3 Hz, which correspond to Fi/4 and Fi/3, respectively. This effect was even more
exaggerated for vowels [i] and [u], since they had a lower F frequency. Note that the levels of

these two vowels significantly increased at 110 Hz and 144.5 Hz, i.e., at F /2.

An even more interesting analysis is the examination of HFE content at 8 kHz with and
without aspiration noise. When comparing the second and third columns in Figure I11.5,
we can appreciate how the inclusion of aspiration curves the iso-contours in the bottom left
corner of the subplots. Hence, the impact of aspiration noise increased as the phonation
became laxer, whereas its effect was negligible for tense phonations (Ry < 0.74) as quoted in
Section I11.3.1. The contour maps also revealed the effect of aspiration noise increased for
decreasing F'0. When the aspiration noise was not considered, the HFE levels were similar for
[a] and [i], ranging between —14.6 dB and 54.5 dB, while they were much lower for vowel [u]
with variations ranging from —32 dB to 33 dB. Vowel [u] produced lower HFE values despite
having similar overall levels to [i]. On the other hand, when the aspiration noise was added,
the minimum HFE levels for [a] and [i] were 3.3 and 2.1 dB, respectively. Thus, the levels
for these two vowels were above the theoretically audible threshold of 0 dB, in the analysed
phonation range. Conversely, the region of [u] with higher Ry values and lower F0s remained
below 0 dB even if aspiration noise was incorporated. The minimum HFE level for this
vowel was —15.7 dB. Therefore, depending on the phonation type and also on the vowel, the
HFE levels may have been too small to perceive differences in simulations with the realistic
or simplified vocal tract geometries. This may occur for high R; values and/or low FOs,
especially if there was no aspiration noise. In this respect, the presence of the latter seemed
to suffice to obtain audible HFE levels for vowels [a] and [i], but not for [u], in the very lax

region.

Let us next examine the influence of the geometry and consequently that of higher order
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Figure II1.5: Contour plots showing the overall and HFE levels (dB) in the 8 kHz 1/1 octave
band for the realistic vocal tract geometry of vowels [a], [i], and [u]. HFE levels are computed
with and without introducing aspiration noise in the glottal source model. Each plot depicts
the equal level contours for the whole phonation range, representing the F0 in the abscissas
and the Ry value in the ordinates. Diamonds represent the points analysed in Section [11.3.1.

modes in the considered phonation range. To do so, HFE level differences between the vowels
generated with the realistic and simplified geometries were computed for each combination of
F0-R4-AspirationNoise. Table I11.2 depicts the mean increments of the simplified configuration
over the realistic ones in 1/1 and 1/3 octave frequency bands. It is worth mentioning that the
standard deviation of these increments was less than 0.3 dB for all vowels and bands, since
the LF model does not consider the interaction between the vocal tract and the vocal folds.
The differences obtained in the 8 kHz 1/1 octave band were similar for [a] and [u], with mean
increments of 6.0 dB and 6.8 dB, respectively. Nevertheless, vowel [a] primarily concentrated
the differences in the first 1/3 octave band, while changes for [u] mainly occurred in the other
two bands. In turn, differences for [i] basically manifested in the 10 kHz band, the mean
increment in the 8 kHz 1/1 octave band being only ~3.6 dB . All these values could slightly
vary when aspiration noise is included (see the increments in parentheses in Table I11.2).
Note that the above observations were in line with the analysis derived in Section I11.3.1 for
the selected three pairs of (F0, Ry).
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Table I11.2: HFE level mean increments (in dB) obtained for the simplified geometries with
respect to the realistic ones. The values have been computed for the 8 kHz octave band and its
corresponding 1/3 octave bands. The values in parentheses denote the additional increment
in dB due to aspiration noise.

Vowel 1/1 Octave Band 1/3 Octave Band
8 kHz 6.3 kHz 8 kHz 10 kHz
(] 6.0 (—0.2) 8.2 (—0.2) 4.8 (+0.0) 4.7 (+0.0)
[i] 3.6 (40.3) 1.5 (+0.0) 2.8 (+0.1) 8.8 (+0.0)
(] 6.8 (+0.4) 1.8 (+0.0) 9.2 (+0.3) 9.0 (+0.0)

lI.4 Conclusions

In this work, we analysed the relevance of higher order modes in the 3D finite element synthesis
of vowels [a], [i], and [u], considering different glottal source excitations. It was shown that
higher order modes induced a reduction of between 3.6 dB and 7.2 dB in the HFE levels of
the 8 kHz octave band which, according to previous works in literature, may be perceptually
relevant. However, the influence of higher order modes strongly depended on the phonation
type and fundamental frequency F0. Influence was greater for phonations with high HFE
levels, such as the tense ones (small Ry), and/or for high F0s. On the other hand, HFE levels
dropped rapidly for lax phonations and/or low F0s. The presence of aspiration noise could
partially alleviate such decreases for [a] and [i] vowels. Conversely, the levels obtained for [u]
suggested that differences between realistic and simplified geometries may not be perceptually
relevant for this vowel when the phonation was lax, even if aspiration noise is included. Future
work will focus on the perceptual validation of the results presented herein. To this end, we
will generate pseudowords containing vowels and consonants to have a broader assessable
phonetic context, instead of only considering sustained vowels. However, the synthesis of such

utterances is still being developed in FEM-based approaches for voice simulation.

Finally, we would like to point out that the outcomes for the realistic vocal tracts in this
work correspond to those of a specific individual. Analysis for other speakers may result in
some differences, yet we believe that the reported general tendencies will still be valid for
them. In the future, though, it would be interesting to extend the investigation to further

MRI-based geometries and using other glottal source models as well.
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Chapter 2

Conclusions and future work

The aim of this thesis has been mainly focused on incorporating expressiveness in the generation
of synthetic voice without recording or collecting specific expressive data from the original
speaker. The conclusions derived from the research conducted for this purpose are presented
in this chapter together with some future research directions. Section 2.1 describes the main
outcomes obtained after adding expressiveness to a unit-selection TT'S system to generate
singing and storytelling increasing suspense, in accordance with objective O1. Section 2.2
details the main findings regarding the first steps taken to incorporate expressiveness in
the numerical voice production (objective O2). Finally, results are discussed and future

perspectives are pointed out in section 2.3 .

2.1 Adding expressiveness to a unit-selection TTS system

In order to add expressiveness to a US-TT'S system in the context of storytelling without the
need of recording new corpora from the original speaker, we have proposed to incorporate
neutral-to-expressive speech transformation modules into the classic TT'S system pipeline.
Regarding the expressive styles, the work has focused on singing and increasing suspense both
in the storytelling domain.

In an initial stage, we proposed two approaches to add singing capabilities to a US-TTS
synthesis system by: i) adding HNM-based STS transformation modules to the output of the
TTS system, and; ii) integrating the STS modules within the TTS pipeline, thereby building
a hybrid US++HNM TTS system. The conducted perceptual tests show that it is viable to
generate singing of reasonable quality with a US-TTS system fed with neutral speech, without
the need of explicitly recording a singing database. Moreover, although the two considered
approaches received similar rates in terms of naturalness and singing resemblance, the hybrid
strategy reduced the computation cost by almost a 250% with respect to the chaining-based
approach.

Building on the findings of this first work, we have designed a Unit Selection based
Text-to-Speech-and-Singing (US-TTS&S) synthesis framework that allows the generation of
both speech and singing from an input text and a score, respectively, using a small corpus of
neutral speech. Besides the integration of the ST'S transformation modules as in the hybrid
approach, a score prosody generation module has been incorporated to enable a score-driven
US strategy beyond the default text-driven US mode. The proposal has been evaluated by
means of a proof-of-concept implementation using a 2,6 h Spanish neutral speech corpus, and
considering different vocal ranges and tempos as well as several text-driven and score-driven
US configurations. Results have revealed that high demanding ST'S transformation factors

are required to sing beyond the corpus vocal range and/or when notes longer than 150 ms
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are present in the input score. Score-driven US configurations have been proved effective
in reducing the required pitch-scale factors but not the time-scale ones, mainly due to the
short length of the vowels available in the neutral corpus as it was originally designed for
general purpose T'TS synthesis purposes. With respect to the subjective evaluation, a similar
naturalness has been achieved by text-driven and score-driven US configurations in all the
analysed scenarios. Compared to the first work, the perceptual test has incorporated reference
stimuli generated with the professional singing synthesiser Vocaloid'. Although the obtained
naturalness is obviously far from that achieved by Vocaloid, the received singing ratings
validate the capability of the framework to satisfactorily address eventual singing needs.
The hybrid approach has been also applied to generate storytelling suspense speech using
an adaptive Harmonic Model (aHM) and an expert system based on prosodic rules derived from
the analysis of few but representative utterances of increasing suspense. The results obtained
from the conducted perceptual test show that our approach has achieved a better naturalness
and storytelling quality than those obtained with the rules from (Theune et al. 2006), which
have been used as a baseline. Nevertheless, that work provided evidences that there is room
for improvement regarding suspense arousal. In this respect, some participants commented
that a warmer and more whispery voice could improve this aspect. These commentaries
suggest that Vo(Q) plays an important role in storytelling suspense and it should be therefore

included in further investigations.

2.2 Adding expressiveness to humerical voice production

As a first step to incorporate expressiveness in the numerical simulation of voice, a decoupled
source-filter based approach has been considered and the study has focused on the source
component, thereby avoiding the need to acquire additional vocal tract MRI-based geometries.
Our proposal has been built on: i) the generation and manipulation of glottal source signals
using a LF glottal flow model; and ii) the extraction of glottal source characteristics from the
analysis of speech signals by means of glottal source processing techniques. In particular, we
have analysed the contribution of the glottal source to higher order modes in the FEM synthesis
of vowels considering realistic vocal tract geometries. Moreover, a GlottDNN based analysis
of emotional vowels from a parallel corpus has been proposed with the aim to characterise
and incorporate their expressive particularities into the numerical production of vowels.
The first work done in this line analysed the influence of phonation on the 3D FEM
synthesis of vowel [a], comparing the results of the simulations when considering a realistic
and a simplified vocal tract geometry. Specifically, the study has focused on three predefined
R4 values corresponding to tense, modal and lax phonation, and considering a standard
F0 value of 120 Hz. As expected, LTAS for both geometries are very similar below 5 kHz.
Nevertheless, significant differences appear beyond this frequency due to the propagation
of higher order modes, which only happens in the realistic geometry. These modes imply a
reduction of the HFE levels at the 8 kHz band between 5.6 and 5.9 dB, depending on the

http://www.vocaloid.com/en/
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phonation type. Although these differences are expected to be perceptually relevant according
to previous studies in the literature, such relevance is conditional on the phonation type.
The lax phonation yields to small HF'E levels, which suggests the influence of higher order
modes may be imperceptible so a simpler 1D simulation would suffice for this phonation type.
Conversely, HF'E levels given by a modal or a tense voice indicate that a realistic 3D vocal

tract geometry would be needed for the accurate FEM simulation of vowel [a].

The contribution of the glottal source into the 3D finite element simulation of vowels
has been further analysed considering not only vowel [a] but also vowels [i] and [u], besides
covering the complete R; range from lax to tense as well as the spoken vocal range of F0,
beyond the three R4 values and the single F'0 value considered in the first work. Moreover,
aspiration noise has been incorporated into the LF model to analyse its contribution to higher
order modes depending on the phonation types. The performed simulations show that higher
order modes lead to decreases in the HF'E levels at the 8 kHz octave band between 3.6 dB
and 7.2 dB, mainly depending on the vowel, hence a wider range of values compared with
those obtained when only vowel [a] was analysed. These decreases may still be perceptually
relevant according to the literature, conditioned on the HFE levels. In this respect, the
relevance of higher order modes is greater for phonations with high HFE levels, namely the
tense ones (small R;) and/or for high F0s. Conversely, lax phonations and/or low F0s present
lower HEF'E levels, especially if aspiration noise is not incorporated. The results suggest that
differences between realistic and simplified geometries may be perceptually relevant for tense
and modal phonations. This seems also to be the case for lax phonations if aspiration noise is
incorporated, except for the vowel [u], whose HFE levels are significantly lower due to the

frequency response of this vowel, which presents the lowest gain at high frequencies.

In the aforementioned works, the Ry values have been modified to explore the phonation
tense-lax continuum. Nevertheless, we also wanted to know which R; values should be
considered to introduce certain expressive styles into the numerical simulations of vowels.
To this end, we have explored the glottal source differences between happy and aggressive
emotional styles with respect to neutral speech through the analysis-by-synthesis of vowel
[a]. The analysis has focused on features that could be translated to a LF model controlled
by the R4 parameter, which has been used to generate the excitation for the 3D FEM-based
simulation of [a] vowels. More specifically, we have considered the variations of F'0 and spectral
tilt associated with the glottal source, extracted from the corpus by means of the Glott DNN
vocoder. These variations have been subsequently translated into LF' parameters in order
to add expressiveness to the LF-FEM based synthesis of vowels [a] and ['a]. The conducted
experiments suggest that the synthesis of aggressive and happy vowels requires greater F'0
and lower R, values than those used for neutral speech. The differences are greater for happy
than for aggressive especially for the stressed ['a]. Finally, it is worth mentioning that the Ry
values obtained from the analysis of expressive speech are not as extreme as the theoretical
values considered in our previous studies, where the aim was to study the phonation tense-lax

continuum.
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2.3 Discussion and future perspectives

This thesis has addressed the generation of expressive speech on two neutral voice synthesis
systems, specifically: i) a corpus-based US-TTS system and; ii) FEM-based numerical
simulation of voice.

Expressiveness in corpus-based synthesis systems is restricted to that available in the
corpora. In this sense, the overall trend in current speech synthesis approaches is to build ever
larger corpora, especially in E2E systems. However, collecting data to cover any expressive
style remains time-consuming and costly and besides, it is not always possible to record
additional samples from the original speaker. In this respect, we found interesting to explore
alternative approaches to augment the expressive capabilities of a TTS fed with a small
neutral corpus so as to extend its basic capabilities of synthesising neutral utterances. To this
end, we have proposed a framework which integrates several modules into a US-T'TS system
to enable the synthesis of singing through: i) the selection of speech units from the corpora
according to that expressive target and; ii) the transformation of the selected speech signals
to singing.

Classical US-TTS systems build on the idea of choosing the best to modify the least (Balestri
et al. 1999). Inspired by this strategy, an expressive prosody generation module has been
incorporated to choose the units from the neutral corpus that are closer to the desired target
prosody, which is determined by the score in the case of singing. While this approach seems
useful to reduce the pitch modification requirements, it has entailed a small impact on time-
scaling in the performed experiments. Time-scale factors remain very high, especially those
needed to generate long notes. This may justify, in part, why in the conducted perceptual
tests the score-driven US strategy has yield similar results to that obtained with the default
text-driven US. The very different nature of speech and singing may also explain such results.
Units that are closer to the musical prosody can be seen as outliers from the speech synthesis
point of view, especially when singing beyond the corpus vocal range.

It would be interesting to adapt the expressive prosody generation module to other
storytelling speaking styles. It seems reasonable to expect better results of the proposed
US-based strategy for such styles because their prosody would not be as extreme as that
of singing, so it may be easier to find units in the corpora closer to the desired expressive
prosody. On the other hand, it could be explored the use of expressive speech corpora in
addition to the neutral corpus. Expressive corpora, besides covering a wider range of prosodic
patterns, may contain speech conveying different Vo(Q). The selection of units from these
corpora could therefore be explored as a means of achieving expressive Vo(Q) effects without
requiring of timbre transformations. It would be interesting to study the combination of
different expressive styles and corpora, starting for example with singing and subsequently
extending the analysis to other expressive speaking styles of the storytelling.

Another fundamental aspect of the proposal is the transformation of speech signals from
the neutral corpora into expressive speech or singing. This goal sets very high transformation
requirements, especially for the latter. In order to address those requirements, harmonic

modelling of speech has been used. This model allow for an almost transparent resynthesis
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of speech and it has already been integrated in US-TTS systems as it can also smooth the
joints between the selected speech units. In the present work, this model has been applied in
a much more demanding scenario: the transformation of neutral speech to singing. One of
the major challenges for such transformations is the generation of long sung vowels from short
spoken vowels given the large time-scale factors involved. Further work should therefore be
undertaken in this aspect, exploring for instance other time-scale and spectral transformation

approaches, besides incorporating a vibrato model.

Work done on singing has mainly focused on prosodic transformations. Nevertheless,
the results obtained from the experiments conducted on storytelling increasing suspense
show the need for Vo(Q) transformations in addition to the prosodic ones. Specifically, the
responses of the participants suggest that this style requires a more whispered voice. Such
work considered an aHM model, which outperforms the HNM model regarding the resynthesis
accuracy. Conversely, the HNM model appears to be more flexible to handle potential
Vo(@) transformations because it separately parameterises the harmonic and the stochastic
component of speech instead of modelling the whole speech signal as a sum of sinusoids. In this
way, a more whispered voice could be obtained by increasing the amplitude of the stochastic
component. Moreover, the aspiration noise should be incorporated pitch-synchronously to
ensure it sounds integrated with the harmonic component. Accordingly, and with a view
towards further developments, a pitch synchronous HNM model has been implemented for the
US-TTS&S framework, replacing a previously considered constant frame-rate model. This
new HNM implementation also incorporates some of the improvements introduced by the
aHM model, such as the adaptive iterative refinement of the F0, which allows for a more

accurate modelling of the voiced speech component.

Informal tests suggest that the incorporation of aspiration noise should be done together
with changes in the tension of the phonation to achieve convincing results. This observation is
consistent with the aspiration noise model implemented for the numerical simulation of vowels,
where the noise amplitude depends on the R; parameter, which correlates with the phonation
tension. In this sense, we could profit from the experience in the numerical simulation of
voice both exploring the tense-lax continuum of phonation and analysing the glottal source
characteristics of expressive vowels. It would also be interesting to consider alternatives closer
to the source-filter model than the HNM model, like the one provided by the GlottDNN
vocoder. These alternatives could facilitate the independent modification of the glottal source
and the vocal tract characteristics to achieve a more lax or even a breathy voice, which is
necessary to resemble specific expressive speaking styles such as the aforementioned increasing

suspense.

Numerical 3D simulations are a very powerful tool to study the physics involved in human
voice production. Up to now, only few phonemes, diphthongs and vowel-consonant-vowel
sequences have been generated so far. While research is being done to broaden the range of
simulated utterances, the work presented in this thesis has focused on adding expressiveness to
the FEM-based numerical simulation of vowels following the source-filter paradigm. To pursue

this aim, we have focused on the modelling and modification of the excitation component,
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leaving the study of the relevance of the vocal tract response for future works. To this end, we
have considered the glottal flow LF model to generate the excitation signal for the numerical
simulations of expressive voice. Despite the simplifications made by this approach, such as
the assumption of independence between glottal source and vocal tract, it has allowed us
to generate different phonation types and study their effect on the numerical simulations
of expressive vowels, considering different vocal tract geometries. Nevertheless, in order to
complete the investigations other glottal source models could be considered in the future, like
the two-mass model for instance. The latter can account for the dependency between glottal
source and vocal tract, though its control is more complicated. It is worth mentioning that the
results obtained in these works correspond to vocal tract geometries from a specific individual.
Although the evaluation has been done through relative comparisons between simplified and
realistic geometries, analysis for other speakers may result in some differences. Therefore, in
the future it would be interesting to extend the study to other MRI-based 3D geometries to

evaluate to what extent the obtained results can be generalised to other speakers.

The analysis of expressive speech through inverse filtering has allowed us to study the
characteristics of the glottal source of different expressive styles with tense voice. Nevertheless,
the accuracy of inverse filtering algorithms is still an open issue, especially for female voices
and for expressive speech styles which include irregular phonation patterns such as those of a
creaky voice, for instance. Furthermore, it has been observed that a voice with a lax phonation
affects the estimation of the glottal source spectral tilt because of the presence of aspiration
noise. Regarding the studied vowels, inverse filtering performs better for [a] than for other
vowels as reported in the literature. Therefore, further work should be done on studying and
developing inverse filtering approaches to extend the analysis to other vowels and expressive
styles with the goal of integrating the characteristics of real voice into the numerical production
model of voice. The work done in this thesis has shown the relevance of the glottal source in
the generation of expressive vowels. Future work will also analyse the contribution of vocal
tract to the production of expressive voice. Moreover, in order to incorporate expressive effects
associated with the vocal tract into the numerical simulations, modifications of the vocal
tract geometry should be performed. Dynamic vocal tract geometries could be considered
to simulate expressive utterances like diphthongs. The synthesis of such utterances longer
than static vowels could also facilitate the perceptual evaluation, which would complement

the investigations presented herein.

Our proposal builds on the idea of controllability and modularity. The control allows
for a gradual transition from a style to another. This aspect is of great importance because
of the theoretically infinite expressive possibilities of the human voice. This is especially
relevant in storytelling, which is an expressive speaking style with a great variability and
expressive subtle nuances. Control has been also very useful to study the influence of the
glottal source characteristics in the numerical simulation of vowels. It has allowed to explore
the tense lax-continuum of phonation, and the effect of F'0 and aspiration noise in these
simulations. On the other hand, modularity opens the door to evolve the proposed frameworks

according to the aforementioned directions by upgrading their modules or by incorporating
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additional ones. In this respect, the work done on singing has focused on the integration
of ST'S modules within the US-TTS pipeline, analysing the transformation requirements
and how to reduce these requirements by means of a score-driven US strategy. However,
recent advances in ST'S transformations including voice conversion could be incorporated by
upgrading the modules of US-TTS&S framework responsible for the transformation and the
expressive control. The transformation module could be also adapted to work with other
models of speech, as well as to handle Vo() transformations. Similarly, the expressive control
module could be extended to other expressive categories of the indirect storytelling speech or
even to direct speech (i.e., characters interventions). The US-TTS&S framework has been
built on top of a US-TTS system. Nevertheless, US-based synthesis systems have been recently
outperformed by approaches based on deep learning. It would therefore be interesting to
study how our proposal, where the availability of data is very limited, could benefit from those
approaches, which typically rely on large amounts of speech data. In this respect, although
the US-TTS&S framework is far from a E2E pipeline, other options such as the use of neural
vocoders could be considered in future works.

With regard to the numerical simulation of vowels, a module to deal with vocal tract
modifications could be envisioned to account for the expressive effects associated with the
filter component of the source-filter model. In this respect, although first steps have been
taken to incorporate expressiveness into the FEM-based numerical production of voice, there
is still a long road ahead to achieve an approach able of generating expressive voice considering
excitation and a realistic vocal tract in a unified manner.

Finally, possible applications of the developed investigations could be envisaged. The
US-TTS&S framework could be incorporated in applications where the synthesis of speech
plus singing could be of interest. For instance, in storytelling when one of the characters
sings, or in assistive technologies such as voice output communication aid devices, which could
allow people with special needs to talk and sing. It could also be used in the production of
videogames or animated series, or as a support tool for children studying music, choir singers,
composers, etc. The 3D numerical simulation of voice can help understanding and modelling
of the physics of the vocal apparatus, which could be useful in the study of VoQ) effects and
pathological voices, and it could also be potentially applicable in the field of speech therapy.
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Abstract

There is a growing interest in the analysis and synthesis of expressive speech containing
particular speaking styles. However, collecting enough representative speech data for each
and every specific expressive style is a very daunting task, becoming almost unfeasible for
those styles sporadically present in the speech. This is of special relevance for storytelling
speech, where many subtle speech nuances and characters impersonations may take place.
In this paper, we describe a hybrid Unit Selection-adaptive Harmonic Model text-to-speech
synthesis framework that integrates a prosodic rule-based model derived from a small but
representative set of utterances to convey suspense from neutral speech. The perceptual
tests conducted on increasing suspense show that the introduced synthesis framework
achieves better naturalness and storytelling resemblance than previous approaches, and

similar suspense arousal.

IV.1 Introduction

Until the beginning of the 215 century, the main focus of the research community working
on the analysis and synthesis of expressive speech was placed on emotions (see Scherer 2003;
Schroder 2001, and references therein). From then on, a growing number of studies have
coped with other expressive speaking styles mainly following corpus-based approaches (cf.,
Schréder 2009).

In order to bridge the daunting task of building ad-hoc corpus for each and every expressive
speaking style when possible (e.g., Iriondo et al. 2007; Alias et al. 2008), some works have
tackled the generation of synthetic expressive speech following quite diverse approaches. In

(Theune et al. 2006; Zovato et al. 2004; Montano et al. 2013), basic fixed acoustic rules were
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applied to transform neutral to expressive synthetic speech. Differently, adaptation techniques
have been considered in Hidden Markov Model (HMM)-based synthesizers to interpolate
between statistical models trained on different expressive databases (Yamagishi and Kobayashi
2007). Hybrid approaches have also been introduced with the same aim. An Unit Selection
(US)-based conversion system using Harmonic plus Noise Model (HNM) was developed to
generate emotions from neutral speech in (Erro et al. 2010). Later, an emotion transplantation
approach consisting of adaptation functions as pseudo-rules for modifying the HMM-based
models was presented in (Lorenzo-Trueba et al. 2015). Although both approaches are based
on rather small corpora, they still need non-negligible speech data for each expressive style
(e.g., 6-30 min. Lorenzo-Trueba et al. 2015 and around 10 min. in Erro et al. 2010 per style),
besides presenting other limitations such as the need of parallel corpora (Erro et al. 2010) or
yielding over-smoothed speech quality characteristic of statistical approaches (Barra-Chicote
et al. 2010). In this respect, adaptive Harmonic Model (aHM) (Degottex and Stylianou 2013)
has been proved to provide better synthesis quality than HNM (Kafentzis et al. 2014) and
other vocoders (Hu et al. 2013). However, as far as we know there are still no expressive

speech synthesis works applying aHM.

One recently studied speaking style with rich expressive content is storytelling. While some
studies have directly used audiobooks containing stories to generate corpus-based expressive
synthetic speech (Jauk et al. 2015; Charfuelan and Steiner 2013; Prahallad and Black 2011),
others have been focused on the detailed analysis of specific prosodic aspects of oral storytelling
(Theune et al. 2006; Doukhan et al. 2011; Montano et al. 2013). Even though using audiobooks
can be used to generate expressive speech with good quality in average, there are several
subtle expressive nuances within the storytelling speaking style that need further analysis to
fully accomplish the requirements of storytelling applications (see e.g., Leite et al. 2015; Alofs
et al. 2015).

As initial steps to this aim, some works have analysed and modelled specific types of
storytelling speech to synthesize them from neutral speech. In (Theune et al. 2006) a set of
fized prosodic rules (including mathematical functions) was defined and applied in a diphone-
based text-to-speech (TTS) synthesizer, reaching a significant improvement of storytelling
and suspense perception. However, the prosodic rules for suspense were derived from very
few sentences (e.g., only one sentence for increasing suspense and two sentences for sudden
suspense) as they are rarely found in stories. Conversely, in (Montatio et al. 2013) speaking
rate, mean pitch, pitch standard deviation and mean intensity of several sentences were
analysed for different storytelling categories. A hybrid US-HNM framework was considered to
prosodically transform neutral speech to the different expressive categories according to mean
values of each category. As a consequence of using simple constant conversion factors, subtle

expressive nuances were not captured accurately.

In this paper, we focus on the analysis and synthesis of increasing suspense as a key
expressive style in storytelling speech, but with the added difficulty that is present in very
specific instants of the story (i.e., very few sentences can be found). A hybrid US-aHM TTS

synthesis framework is introduced to generate suspenseful storytelling speech from neutral
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speech. To that effect, the T'TS system is driven by a rule-based prosodic model that captures
the subtle nuances of increasing suspense from a reduced set of representative utterances.
This paper is structured as follows. Section V.2 reviews the main works dealing with
suspense in storytelling speech. Next, Section V.3 explains the proposed US-aHM synthesis
framework. Then, Section [V.4 describes the development of the approach on increasing
suspense as a proof of concept. After that, Section V.5 describes the conducted perceptual
evaluation and the results obtained after comparing our approach to the prosodic rules from

(Theune et al. 2006). Finally, Section IV.6 end this paper with the conclusions.

IV.2 Related work

Suspense is the feeling of excitement or anxiety that the audience (listeners or readers) feels
because of waiting for something to happen, i.e., the outcome is uncertain (Lehne and Koelsch
2015). Up to our knowledge, only two works have shed some light in how suspense can be
evoked in the audience by means of modifying speech prosody. In (Doukhan et al. 2011), the
authors suggested that a low intensity may induce suspense, but no further analyses were
applied. On the contrary, (Theune et al. 2006) observed and defined two kinds of suspense
found within their speech material: the sudden suspense and the increasing suspense. The
former corresponds to an unexpected dramatic moment in the story, such as a startling
revelation or a sudden momentous event. In the latter, the dramatic event is expected in
advance and the suspense is built up until a pause, which is followed by the revelation of
the important information. In this paper, we focus on the increasing suspense, whereas the
sudden suspense is left for future works.

In (Theune et al. 2006), the authors defined a set of fixed prosodic rules for the increasing
suspense based on the analysis of one sentence uttered by a professional actor. The acoustic
characteristics observed in that utterance were a gradual increase in pitch and intensity,
accompanied by a decrease in tempo. Then, a pause was present before the description of the
actual dramatic event. Thus, this type of suspense was divided into two zones (Theune et al.
2006): before (zone 1) and after (zone 2) the pause. From this analysis the following prosodic
modifications were applied to a neutral synthetic utterance generated with the Fluency Dutch
TTS system. In the first zone, a sinusoidal function applied to stressed syllables was proposed
to model the gradual increase of pitch (from +25 to +60Hz), whereas a constant increase up
to +10 dB (on the whole signal) and +150% (on stressed vowels) was considered for intensity
and duration transformations, respectively. In the second zone, pitch and durations gradually
decreased to their normal values, whereas for intensity an increase of +6 dB was applied to

the first word with no further modifications afterwards.

IV.3 Hybrid US-aHM synthesis framework

The US-aHM TTS synthesis system depicted in Fig. IV.1 builds on the idea of enabling US-
TTS synthesis to manage different expressive styles within the same synthesis framework (Alias

et al. 2008). The process starts by building the rule-based prosodic model from utterances
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Figure IV.1: Hybrid US-aHM TTS expressive synthesis framework based on a rule-based
prosodic model.
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containing the desired expressive speaking style. During the synthesis stage, the TTS system
converts any input text to the target expressive speaking style from a neutral Spanish female

voice.

IV.3.1 Expressive prosodic model generation

Firstly, it is worth remarking that the basic intonation unit considered in our synthesis
framework is the stress group (henceforth SG) defined as a stressed syllable plus all succeeding
unstressed syllables within the same compound sentence (Erro et al. 2010; Iriondo et al. 2007).
As it can be observed in Fig. [V.1, each selected expressive utterance is linguistically analysed

and segmented, obtaining the following SG-level attributes (see Fig. IV.2):

o Intonational Phrase (IP): This attribute identifies to which IP within the utterance
the SG belongs to.

e« nSGs: Refers to the total number of SGs within each IP.

e SGpos: The SGpos indicates the position of the SG within each IP, differentiating PRE
(unstressed SG of initial position), BEG (Beginning), MID (Middle), PEN (Penultimate),
and END (Final SG).

=
Py

Intensity(dB)

50 ~ - 35
la | ko la Del|pa to se a xi to j sus |0 Xo0s se en tor na ron SG
1 T T T 2 2 1P
4 4 4 4 3 3 3 nSGs
PRE BEG MID END PRE BEG END SGpos
4 (D) 2 (N) 23 (N) 1(V) 4 (D) 2 (N) 1(V) POS
0 2 1 3 0 1 1 StressPos

Figure IV.2: Increasing suspense example: La cola del pato se agito, y sus ojos se entornaron
(“The duck’s tail twitched, and its eyes narrowed”). Stressed syllables are in bold. The
phonetic transcription of the SG tier is in SAMPA for Spanish. Blue solid line: F0. Green
dotted line: Intensity.
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o Part Of Speech (POS): Freeling POS labels for Spanish are used (Lloberes et al. 2010).
A relevance score is assigned to each POS label: verbs (1), nouns and adjectives (2), adverbs
(3), and rest (4). If a SG complements another SG, its relevance score is degraded (except
in verbs).

e StressPos: is a numerical value that represents the position of the stressed vowel end
within the SG, i.e., first (1), second (2), and third (3) SG part. Unstressed SG before the

first stressed syllable is assigned a 0.

The expressive utterances considered to derive the prosodic model are also analysed
by means of the aHM technique implemented in the COVAREP (version 1.4.1) algorithms
(Degottex et al. 2014) to extract the FO and amplitude parameters. A pitch contour is obtained
for each SG by considering both the aHM FO parameters and the SG segmentation. The
SG-level attributes together with the 4th-order coefficients obtained from the polynomial
fitting of the pitch contour (Iriondo et al. 2007) are used to define each SG codeword (i.e., a
vector containing attributes and polynomial coefficients) that is stored in the pitch codebook
(CB). Regarding intensity and durations, a set of rules is also derived from a detailed analysis

of the utterances.

IV.3.2 Expressive synthesis stage

At run time, the input text to be synthesized is fed into the US-aHM TTS system. The TTS
system extracts the aforementioned linguistic attributes and accesses the rule-based prosodic
model to get the corresponding expressive prosodic conversions (see Fig. IV.1). After retrieving
the selected units from the neutral speech database, the corresponding aHM parameters are
converted according to the target expressive style. Finally, the aHM-based synthesis generates

the synthetic expressive speech.

Linguistic attributes combined with some rules are used to retrieve from the pitch codebook
the possible pitch contours for each SG. Then, a simple yet effective combination cost is
defined to assess which combinations are more suitable to be concatenated. Concretely, when
two consecutive SG pitch contours come from different utterances, the cost is increased by
1. If several combinations contain the minimum cost, the final sequence is randomly chosen
in order to increase synthesis variability (Alias et al. 2005). Following a similar approach
to (Alias et al. 2005), an interpolation technique is applied to avoid discontinuities between
consecutive SGs pitch contours. Thereupon, since we deal with two different speakers, the
obtained pitch contour must be scaled, shifting it from the source f0 reference value (f0 mean
of the expressive utterances) to the target fO reference value (f0 mean of neutral corpus used
in the synthesis). Finally, SG-level 4th order polynomial fitting is applied to the original
fO curve and the resulting pitch contour is replaced by the pitch contour obtained from the
codebook (see Fig IV.3.).
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IV.4 Developing a rule-based prosodic model of increasing
suspense

IV.4.1 Material

The increasing suspense speech was obtained from an audiobook interpreted by a Spanish
professional male storyteller. The storyteller interpreted a story that belongs to the fantasy
and adventures genres (with children and pre-teenagers as its main target audience). The
audiobook contains around 4 hours of storytelling speech. However, only eight utterances that
fully fit the expressive profile of increasing suspense have been found. All the utterances were
manually segmented to allow reliable subsequent analyses. Fig. IV.2 depicts an example of

the complete labelling at the SG-level of an increasing suspense utterance.

IV.4.2 Analysis oriented to synthesis

In this section the rule-based prosodic model specifically conceived for our US-aHM Neutral

TTS synthesis framework is described.

IV.4.2.1 Duration.

Theune et al. observed a pause of 1.04 s between both zones in their utterance. However
in our set of utterances, such pause duration is much lower (mean duration of 0.4 s+0.1 s).
Furthermore, Theune et al. observed a progressive increase of stressed vowels durations in
the first zone. This pattern was detected in one of the eight increasing suspense utterances.
Nevertheless, as 7 out of the 8 sentences did not present that pattern, we opted for not
including this Theune et al. observation in our rules. Despite further detailed analyses
of rhythm patterns and changes of speech tempo between both zones, no clear patterns
whatsoever were found. Therefore, in this work, the only duration rule included in the

synthesis framework is to apply a value of 0.4 s to the pause between both zones.

IV.4.2.2 Fundamental Frequency.

Similarly to Theune et al. we have observed a tendency consisting of a F0 increase along zone

1 and a gradual decrease in zone 2 in all the utterances. However, not all the utterances show
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= = = original polynomial fO
scaled CB polynomial fO |
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Figure IV.3: Pitch modification example. “Caperucita llamdé a la puerta, pero nadie contestaba”
(“Little Red Cap knocked on the door, but no one answered”).
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a gradual FO increase in all the stressed syllables of the first zone. For instance, in Fig. [V.2
it can be observed that the word “pato” (“duck”) is not FO-accented in the stressed syllable.
On the contrary, the FO curve drops as if the storyteller wanted to emphasize even more
the last SG “agité” (“twitched”). This phenomenon also manifests in the rest of utterances
without a gradual increase, being related to the POS of the SG. Other examples can also
be an adjective complementing a verb, e.g., “era evidente” (“it was clear”), or an adjective
complementing a noun, e.g., “hombre alto” (“tall man”). Another clear pattern observed in
all the utterances is a substantial rise of FO in the last SG of zone 1. This rise is preceded
in all cases by a downfall except if the penultimate SG of zone 1 is a verb, e.g., “inundd la
habitacion” (“flooded the room”), where two F0 rises are present (reaching a higher point in
the last SG). Finally, within zone 2 the only clear pattern observed is a FO boost in the first
SG whose POS corresponds to a verb, a noun, an adjective, or an adverb, accompanied with

a gradual decrease until the end of the utterance.

From this analysis the rules to access the pitch codebook are derived, i.e. which linguistic
attributes are used and in what order. Thus, codeword candidates are obtained through a
selection based first on the first attribute, a subsequent selection within the previous subset
which meet the second attribute, and so on. When in a selection step none of the codewords

meet the attribute, codewords nearest to this attribute are chosen and the process is finished.
For the first zone:

o Pitch contours for each SG are retrieved according to its position within the zone (note
that the IP is equivalent to the zone in increasing suspense) and its stress position, in that
order.

o In case of having more than one MID SG, the POS is also considered (before the stress
position) in order to establish which SG should be F0-accented.

For the second zone:

e The SG pitch contours are retrieved according to the number of SGs, the SG position, and

the stress position, in that order.

IV.4.2.3 Intensity

Similarly to what was observed in the analysis of FO, the gradual intensity increase reported
by Theune et al. was not observed either within the analysed material. Therefore, we opted
for modifying energy coherently with the FO curve following (Sorin et al. 2015), which is based
on the fundamental relationship between the instantaneous FO and instantaneous energy
of a speech signal. In order to validate this approach, we performed a correlation analysis
between FO and intensity curves in our speech corpus obtaining a value of r = 0.654 and a
linear regression slope of 9.8 dB/octave. These values confirm the viability of the considered
approach as they are very similar to the » = 0.670 and 9 dB/octave obtained in (Sorin et al.
2015).
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IV.5 Perceptual evaluation

The perceptual evaluation was conducted by means of a 5-point scale ([—2,+2]) Comparative
Mean Opinion Score (CMOS) on 5 synthetic utterances using the TRUE online platform
(Planet et al. 2008). Such utterances, were generated from made-up sentences with a semantic
content related to stories (see for example Fig. IV.3). In each comparison, two utterances
synthesized through the aHM-US TTS framework were presented to the evaluator (randomly
ordered in each comparison), using either the introduced rule-based prosodic model, the fixed
rules of Theune et al., or the neutral synthetic speech as baseline (5 utterances x 3 methods
= 15 comparisons).

All subjects were asked to relatively grade both speech fragments in terms of naturalness,
storytelling resemblance, and expression of suspense. As no specific target was available,
no reference audio was included to avoid biasing the CMOS towards our method if some
of the prosodic patterns of the analysed utterances were included. It is worth noting that
three control points were added to remove unreliable evaluators from subsequent analyses (18
comparisons plus a final survey in total). From the total of 32 subjects (mean age 344+10), 4
were discarded for the aforementioned reliability criterion. The results from the subjective test
were analysed in terms of percentage scores (see Fig. IV.4) and differences in the CMOS median
(Mdn) values. The latter, were analysed by means of a one-sample Wilcoxon signed-rank test
with significance level p < 0.05.

Regarding naturalness, our approach significantly outperforms Theune et al. (Mdn =
1; 55% US-aHM better/much better) and it is perceived equal to the neutral synthetic
counterpart (Mdn = 0; 53% US-aHM no difference/better /much better). On the contrary,
the method of Theune et al. obtains significantly lower results than the neutral synthetic
speech (Mdn = -1; 74% neutral better/much better). Moreover, storytelling quality results
indicates that the proposed method outperforms both Theune et al. (Mdn = 1; US-aHM 63%
better/much better) and the neutral synthetic speech (Mdn = 1; US-aHM 53% better /much
better). Differently, Theune et al. is perceived similar to neutral in this evaluation (Mdn = 0;
neutral 63% no difference/better/much better). Finally, results regarding the expression of
suspense show that all methods are perceived similarly, even though the proposed method is
perceived as slightly better with respect to Theune et al. (26% preferred Theune et al. and
40% preferred the US-aHM method) together with a significant preference in front of the
neutral synthesis (Mdn = 1; US-aHM 48% better/much better).
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IV.6 Conclusions

In this paper, a hybrid text-to-speech synthesis framework based on unit selection and adaptive
Harmonic Model has been adapted to generate storytelling suspense speech using a rule-based
prosodic model derived from the analysis of few but representative utterances of increasing
suspense (less than 1 min of speech). The US-aHM approach has been evaluated on a subjective
test comparing it to the fixed prosodic rules introduced in (Theune et al. 2006), using the
neutral synthetic speech as baseline. Our proposed approach obtains better naturalness and
storytelling resemblance, although it is similar to the baseline in terms of suspense arousal.
In this respect, some evaluators commented that a warmer and more whispery voice could
improve the suspenseful perception. From these results, we reckon that voice quality should
be included in future works as a means to fully resemble suspense. Moreover, we will keep
working to gather more data to improve the robustness of the model. Finally, since comparable
acoustic patterns among storytellers of similar linguistic communities have been observed
(Montano and Alias 2015), we plan to study to what extent the current results obtained for

Spanish are generalizable.
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Abstract

One-dimensional articulatory speech models have long been used to generate synthetic
voice. These models assume plane wave propagation within the vocal tract, which holds
for frequencies up to ~5 kHz. However, higher order modes also propagate beyond this
limit, which may be relevant to produce a more natural voice. Such modes could be
especially important for phonation types with significant high frequency energy (HFE)
content. In this work, we study the influence of tense, modal and lax phonation on the
synthesis of vowel [a] through 3D finite element modelling (FEM). The three phonation
types are reproduced with an LF (Liljencrants-Fant) model controlled by the R4 glottal
shape parameter. The onset of the higher order modes essentially depends on the vocal
tract geometry. Two of them are considered, a realistic vocal tract obtained from MRI
and a simplified straight duct with varying circular cross-sections. Long-term average
spectra are computed from the FEM synthesised [a] vowels, extracting the overall sound
pressure level and the HFE level in the 8 kHz octave band. Results indicate that higher
order modes may be perceptually relevant for the tense and modal voice qualities, but not

for the lax phonation.

V.1 Introduction

For many years, works on articulatory speech synthesis have considered a simplified one-
dimensional (1D) representation of the vocal tract. This is built from the so-called vocal tract
area functions, which describe the cross-sectional area variations along the vocal tract center
midline (see e.g., Story et al. 1996). Voice is then synthesised by simulating the propagation
of acoustic waves within this 1D representation of the vocal tract (see e.g., Story 2013;

Birkholz 2013; Stone et al. 2018). However, 1D approaches assume plane wave propagation,
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so they can only correctly approximate the acoustics of the vocal tract in the frequency range
below 4-5 kHz. Beyond this limit, not only planar modes get excited but also higher order
propagation modes appear, which strongly change the high frequency energy (HFE) content
of the spectrum (Blandin et al. 2015; Arnela et al. 2016b) compared to that from a 1D model.
Although the high frequency range has not received much attention in the literature, some
recent studies point out that the HFE may be relevant for voice quality, speech localisation,

speaker recognition and intelligibility (see Monson et al. 2014 and references therein).

On the other hand, three-dimensional (3D) models do not need to assume plane wave
propagation, since they can directly deal with 3D vocal tract geometries to emulate the
complex acoustic field generated during voice production (Vampola et al. 2008; Takemoto
et al. 2010; Arnela et al. 2016a). However, higher order modes do not always appear even if
a 3D acoustic model is used. As shown in (Arnela et al. 2016b), a straightened vocal tract
based on circular cross-sections prevents the onset of such modes due to radial symmetry, in
contrast to what occurs for realistic vocal tract geometries based on MRI data. Other vocal
tract geometries simplifications were studied in that work, all of them showing large variations
in the HFE while keeping a similar behaviour for low frequencies. One can then assert that
the vocal tract shape is determinant for the HFE content of the generated sound. However,
the vocal tract shape is not the only factor affecting the HFE. The type of phonation can also
modify it, as shown for instance in (Monson et al. 2011) for sustained vowels with loud and

soft phonation.

In this work we study the effect of tense, modal and lax phonation on the synthesis of
vowel [a], paying special attention to the HFE content. These three phonation types are
reproduced using an LF (Liljencrants-Fant) model (Fant et al. 1985). Although this model
cannot consider the interaction between the vocal tract and the vocal folds (Murtola et al. 2018;
Erath et al. 2013), it has proved to be useful to explore the phonatory tense-lax continuum
(Murphy et al. 2017) by controlling the Ry glottal shape parameter (Fant 1995). Regarding
the vocal tract, we consider an MRI-based realistic geometry, and its simplified counterpart
considering circular cross-sections in a straightened midline (Arnela et al. 2016b). This allows
us to somewhat "activate" and "deactivate" the higher order modes. Different versions of vowel
[a] are generated by convolving the LF glottal source signals with the vocal tract impulses
responses obtained using a 3D acoustic model based on the Finite Element Method (FEM)
(Arnela and Guasch 2013). In order to analyse the relevance of the higher order propagation
modes for the lax, modal and tense phonation, the long-term average spectra (LTAS) and the

HFE levels of the synthesised vowels are computed and compared.

The paper is structured as follows. The methodology used to study the production of
vowel [a] with the three phonation types and the two vocal tract geometries is explained in
Section V.2. Next, the obtained results are discussed in Section V.3. Finally, conclusions and

future work are presented in Section V.4.
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Figure V.1: Synthesis of vowel [a] with a realistic vocal tract geometry (above) and its
simplified counterpart of circular cross-sections in a straightened midline (below). Three
phonation types are considered to reproduce a tense (dashed red line), a modal (solid black
line) and a lax (dotted green line) voice production. The output pressure signal p(t) is
computed as the convolution of the glottal source u,(t) with the vocal tract impulse response
h(t) obtained from 3D FEM simulations.

V.2 Methodology

Figure V.1 depicts the process followed to synthesise six versions of vowel [a]. These were
obtained by convolving three glottal source signals with the FEM impulse responses of two
vocal tract geometries that produce this vowel. In particular, and as mentioned before, we
used the realistic vocal tract and the simplified straightened simplification with circular
cross-sections from (Arnela et al. 2016b) (see Section V.2.1), and computed their impulse
responses h(t) using the FEM (see Section V.2.2). The glottal source signals uy(t) were
generated by means of an Ry controlled LF model. The values R; = 0.3,1 and 2.7 were
selected from the R, range [0.3,2.7] (see Fant 1995) to reproduce a tense, a modal, and a lax

phonation, respectively (see Section V.2.3).

For each vowel, the LTAS was computed as the Welch’s power spectral density estimate,
with a 15 ms hamming window, 50% overlap and a 2048-point FFT. The overall energy levels
and the HFE levels in the 8 kHz octave band were also extracted as in (Monson et al. 2011).
The 16 kHz octave band was not considered, since HFE changes in this frequency range were

found almost perceptually irrelevant in (Monson et al. 2011).
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Figure V.2: Vocal tract transfer function H (f) for the vowel [a] with the realistic and simplified
vocal tract geometries.

V.2.1 Vocal Tract Geometries

Two vocal tract geometry simplifications of vowel [a] have been employed in this work, namely,
the realistic configuration and the simplified straight vocal tract with circular shape (see
Fig. V.1). These geometries were obtained in (Arnela et al. 2016b) by simplifying the MRI-
based vocal tract geometries in (Aalto et al. 2014). In a nutshell, the procedure consisted in
the following. First, the subglottal tube, the face and the lips were removed from the original
geometry (see Arnela et al. 2016a for a detailed analysis of the lips influence on simulations).
Moreover, side branches such as the piriform fossae and valleculae were occluded (see e.g.
Takemoto et al. 2010; Takemoto et al. 2013 for their acoustic effects). Cross-sections were
next extracted as typically done to generate 1D area functions, but preserving their shapes
and locations in the vocal tract midline. The realistic configuration was generated by linearly
interpolating the resulting cross-sections. As shown in (Arnela et al. 2016b), this simplification
provides very similar results to the original MRI-based vocal tract geometry without branches.

In the simplified straight vocal tract configuration, the cross-sectional shapes were modified
to be that of a circle, preserving the same area. These circular cross-sections were located
in a straightened version of the vocal tract midline and then linearly interpolated. The two

configurations are hereafter referred as the realistic and the simplified vocal tracts.

V.2.2 Vocal Tract impulse response

The impulse response of each vocal tract geometry was computed using a custom finite element

code that numerically solves the acoustic wave equation,
O5p — gV?p =0, (V.1)

combined with a Perfectly Matched Layer (PML) to account for free-field propagation (Arnela
and Guasch 2013). In Eq. (V.1) p(x,t) is the acoustic pressure, 92 stands for the second
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To

Tqa=U/E.

Figure V.3: Glottal flow uy(t) and its time derivative ug(t) according to the LF model (Fant
et al. 1985).

order time derivative, and ¢ is the speed of sound which is set to the usual value of 350 m/s.
A Gaussian pulse was introduced on the glottal cross-sectional area as an input volume

velocity ug(t). This pulse is of the type
ug(t) = e~ [0 Top)/0-29T5p* 13 /] (V.2)

with T, = 0.646/ f. and f. = 10 kHz. Wall losses were considered by imposing a boundary
admittance coefficient of p = 0.005 on the vocal tract walls. A 20 ms simulation was then
performed capturing the acoustic pressure pg(t) at a node located outside of the vocal tract,
4 cm away from the mouth aperture center. The sampling frequency was set to fs = 8000 kHz,
which ensures a restrictive stability condition of the Courant-Friedrich-Levy type required by
explicit numerical schemes (see Arnela and Guasch 2013 for details on the numerical scheme).

A vocal tract transfer function H(f) was computed from each simulation to compensate

for the slight energy decay in frequency of the Gaussian pulse. This is defined as

Bo(f)
Ug(f)’
with P,(f) and Uy(f) being the Fourier Transform of p,(t) and u4(t), respectively. H(f)
was computed up to 12 kHz, to allow the calculation of HFE level in the 8 kHz octave
band (Monson et al. 2011). The vocal tract transfer functions H(f) for the realistic and

the simplified geometries of vowel [a] are shown in Fig. V.2 (also reported in Arnela et al.

H(f) =

(V.3)

2016b, but only up to 10 kHz). As can be observed, planar modes are mainly produced below
5 kHz giving place to the first vowel formants. Beyond this value, higher order modes can also
propagate, resulting in the more complex spectrum of the realistic geometry. Note, however,
that these modes do not appear in the spectrum of the simplified configuration. The radial
symmetry of this geometry prevents their onset (Blandin et al. 2015; Arnela et al. 2016b).

Finally, the inverse Discrete Fourier Transform was applied to the vocal tract transfer
functions H(f) to obtain the vocal tract impulse responses h(t) of the two geometries (see
Fig. V.1).

V.2.3 Voice Source Signal

An LF model (Fant et al. 1985) was used to produce the voice source signal. This model

approximates the glottal flow u,(t) and its time derivative u(t) in terms of four parameters

107



V. Influence of tense, modal and lax phonation on the three-dimensional finite element
synthesis of vowel [a]

Ul

— — —Tense(Rg=03)| }

. Modal (Rg=1) | J
= Lax (Rg=27) |{:
5 T i
3 \ i

0 N A : ‘

0 5 10 15 20 25

Time [ms]
(a) Waveform
0
— — —Tense (Rq=0.3)
-20 [, Modal (Rg=1) |
L RCSCAREAER EELIEL-LEEEEE IERERRESEE REL RS NUUROR Lax (Rq=2.7)

-40 FN\"
S 60} -
1%
S ot
-

-100

-120

-140 :

0 5 4 6 8 10 12

Frequency [kHz]

(b) Long-term average spectrum

Figure V.4: Glottal source for a tense (Ry; = 0.3), a modal (R; = 1), and a lax (Ry = 2.7)
phonation.

(T, Te, T, E.) that describe its time-domain properties (see Fig. V.3). The control of this
model can be simplified with the single glottal shape parameter R; (Fant 1995). This is
defined as _ U R

Rd:?jfozﬁz%’ (V.4)
where T, is the declination time, 7 the period, and Fy the fundamental frequency. The
declination time Ty corresponds to the quotient between the glottal flow peak Uy and the
negative amplitude of the differentiated glottal flow E..

In this work, we used the Kawahara’s implementation of the LF model (Kawahara et al.
2017), which generates a free-aliasing excitation source signal. We adapted this model to our
purposes, modifying the sampling frequency from its original value of 44100 Hz to 24 kHz.
Moreover, we introduced the R, glottal shape parameter. This allows one to easily control the
voice source with a single parameter, which runs from R; = 0.3 for a very adducted phonation,
to Rq = 2.7 for a very abducted phonation (see Fant 1995). From the R; range [0.3,2.7]
two extreme values plus a middle one were chosen. We used R4 = 0.3 to generate a tense
phonation, Ry = 2.7 for a lax production, and R; = 1 for a normal (modal) voice quality.
With regard to FO, a pitch curve was obtained from a real sustained vowel lasting 4.4 seconds.
This pitch contour was placed around 120 Hz to generate all the source signals. Figure V.4a
shows four periods of the three simulated voice source waveforms. Moreover, the LTAS of the
glottal source signals are represented in Fig. V.4b. As observed, the phonation type obviously
changes the glottal pulse shape, thus modifying the spectral energy distribution of the source

signal.
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Figure V.5: Long-term average spectra (LTAS) of the FEM synthesised vowel [a] using the
realistic and simplified vocal tract geometries with a tense (Rq = 0.3), a modal (R4 = 1), and
a lax (R4 = 2.7) phonation.

V.3 Results

Six versions of vowel [a] (see Fig. V.1) have been generated using the three glottal source
signals corresponding to a tense, a modal and a lax phonation, and the two impulse responses
obtained from the 3D FEM simulations of the realistic and simplified vocal tract geometries.
The six synthesised vowels are normalised with the same scaling factor to obtain reasonable
sound pressure levels. This factor has been selected so as to produce 70 dBgpy, in the realistic
geometry with a modal phonation (R; = 1). The LTAS have then been computed for each
audio.

Figure V.5 shows the obtained LTAS for the six generated vowels. As also appreciated
in the vocal tract transfer functions (see Fig. V.2), small differences between geometries
are produced for frequencies below 5 kHz, whereas beyond this range higher order modes
propagate in the realistic case, thus inducing larger deviations. This behaviour can be observed
for the three phonation types. Essentially the glottal source modifies the overall energy level
and also introduces an energy decay in frequency (compare Fig. V.2 with Fig. V.5). This
decay, known as the spectral tilt, strongly depends on the phonation type. The laxer the
phonation the larger the spectral tilt (Fant 1995). Furthermore, the voice source also affects
the energy balance of the first harmonics (below ~ 500 Hz). For instance, the lax phonation
has the lowest overall energy values among all phonation types. However, one can see that
the first harmonic (close to 120 Hz) has larger amplitude levels than the rest of the spectrum,
in contrast to what occurs for the other phonations.

HFE levels have been computed by integrating the power spectral density in the 8 kHz
octave band, as in (Monson et al. 2011). In addition, the overall energy levels have been
calculated following the same procedure but for the whole examined frequency range.

The obtained results are listed in Table V.1. Note first that in the realistic case with a
modal phonation (R; = 1) the overall level is 70 dBgpr,. Remember that this value was fixed

to compute the scaling factor used to normalise the audio files. The overall level variations
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Table V.1: Overall and High-Frequency Energy (HFE) levels (in dB) obtained in the realistic
and simplified vocal tract configurations of vowel [a] with a tense (R; = 0.3), a modal
(Rg= 1), and a lax (Rq = 2.7) phonation. A denotes the difference between the two vocal
tract geometries.

Ry ‘ Geometry ‘ Overall ‘ AOverall ‘ HFE ‘ AHFE

realistic 82.2 41.4

0.3 simplified | 83.4 1.2 47.3 08
realistic 70.0 14.9

1 simplified | 71.3 13 20.8 5
realistic 63.5 1.0

2.7 simplified | 64.9 14 6.6 56

for the other configurations will thus correspond to modifications either introduced by the
vocal tract geometry or by the glottal source. As expected, the larger the R, value (laxer
phonation) the smaller the overall levels.

Far more interesting is to compare the results between geometries. The HFE levels decay
between 5.6 dB and 5.9 dB for the realistic vocal tract depending on the phonation type,
which only manifests as an overall level difference of 1.2 dB and 1.4 dB. The higher order
modes tend to reduce the levels in the HFE content. According to (Monson et al. 2011),
minimum difference limen scores of about 1 dB are given for normal-hearing listeners in the
8 kHz octave band, so one may hypothesise that the higher order modes may be perceptually
relevant. However, depending on the phonation type the HFE could be too small to notice
any difference. This seems to be the case of the lax phonation (R4 = 2.7), which gives HFE
levels of 1.0 dB and 6.6 dB, depending on the geometry. We may then conjecture, that for
this phonation type no differences in the outputs from the two geometries will be perceived.

In other words, we would not notice the influence of higher order modes.

V.4 Conclusions

In this work we have studied the influence of tense, modal and lax phonation on the 3D finite
element synthesis of vowel [a], considering a realistic and a simplified vocal tract geometry.
The 3D simulations behave very similarly for both geometries below 5 kHz, but significant
differences appear beyond this frequency because of the rising of higher order propagation
modes. It is worth mentioning that these modes only appear when using the realistic vocal
tract. They induce a reduction of the HFE levels at the 8 kHz octave band from 5.6 to 5.9 dB,
depending on the phonation type. These differences may be perceptually relevant, according
to previous works in the literature. Specifically, a realistic 3D vocal tract geometry would
be required for an accurate synthesis of vowel [a] through 3D FEM, when trying to simulate
a modal and a tense voice production. Conversely, when a lax phonation is considered, the
influence of higher order propagation may be imperceptible, since the HFE levels are very
small. Therefore, a simpler 1D simulation would suffice in this case.

Future work will consider other R; values and geometry simplifications as well as other

vowels to complete the study. Finally, we also plan to include aspiration noise in the LF
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Abstract

Three-dimensional (3D) acoustic models allow for an accurate modelling of acoustic wave
propagation in 3D realistic vocal tracts. However, voice generated by these approaches
is still limited in terms of expressiveness, which could be improved through proper
modifications of the glottal source excitation. This work aims at adding some expressiveness
to a 3D numerical synthesis approach based on the Finite Element Method (FEM) that uses
as input an LF (Liljencrants-Fant) model controlled by the glottal shape parameter Ry. To
that effect, a parallel Spanish speech corpus containing neutral and tense voice emotional
styles is analysed with the GlottDNN vocoder, obtaining F'0 and spectral tilt parameters
associated with the glottal excitation. The variations of these two parameters are computed
for happy and aggressive styles with reference to neutral speech, differentiating between
stressed and unstressed vowels [a]. From this analysis, F0 and Ry values are then derived
and used in the LF-FEM based synthesis of vowels [a] to resemble the aforementioned
expressive styles. Results show that it is necessary to increase F'0 and decrease R, with
respect to neutral speech, with larger deviations for happy than aggressive style, especially

for the stressed vowels.

VI.1 Introduction

Three-dimensional (3D) acoustic models are currently being developed to generate synthetic
voice. These models simulate the propagation of 3D acoustic waves through realistic vocal
tracts, typically obtained from Magnetic Resonance Imaging (MRI) (see e.g., Aalto et al. 2014).
The classical plane wave assumption required by 1D models is thus avoided, increasing the

accuracy of the generated voice especially above 5 kHz where higher order modes also propagate
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(Blandin et al. 2015; Arnela et al. 2016). Many 3D approaches can be found in literature.
The most extended ones are those based on the Finite Element Method (FEM) (Arnela and
Guasch 2013), but also on finite differences (Takemoto et al. 2010), digital waveguides (Speed
et al. 2014), and multimodal approaches (Blandin et al. 2015). However, to the authors’

knowledge, 3D acoustic models still present limitations in the generation of expressive voice.

This expressiveness can be incorporated to a 3D acoustic model through the proper
modification of the glottal excitation characteristics. The glottal flow is closely linked to some
of the primary prosodic features, such as pitch and energy, which are important to reproduce
a certain speaking style. However, expressiveness is also conveyed by secondary prosodic
features associated to voice quality (Birkholz et al. 2017). Given that the latter are difficult to
obtain from speech signals (Birkholz et al. 2015), several works have studied the contribution
of voice quality on the generation of expressive speaking styles by means of inverse filtering and
copy-synthesis. In (Yanushevskaya et al. 2018), the parameters of modal stimuli were modified
with the KLSYNS8S8 synthesiser to study the mapping of F'0 contours and voice quality on affect
for different languages. Similarly, a 1D articulatory synthesizer was used in (Birkholz et al.
2015) to analyse the impact of the phonation type on the perception of emotions in German
vowels. Some approaches have introduced parametric glottal flow models in the copy-synthesis
process. For instance, an LF (Liljencrants-Fant) model controlled by the Ry glottal shape
parameter (Fant 1995) was used in (A. Murphy et al. 2017) to simulate the tense-lax continuum
and explore its affective correlates. Likewise an Auto-Regressive eXogenous variant of the
LF model was proposed in (Li et al. 2018) to analyse the contribution of glottal source and
vocal tract to the perception of emotions. The aforementioned approaches usually involve
manual tuning in the inverse filtering process. However, recent advances in inverse filtering
techniques (Chien et al. 2017) have allowed for competitive glottal vocoders (Airaksinen et al.
2018). These are able to automatically analyse a speech corpus, decompose glottal source
and vocal tract response, and parameterise them independently. These parameters have been
proved useful to capture expressive nuances (Lorenzo-Trueba et al. 2012). In this context,
it has been recently proposed a GlottDNN-based speaking style conversion from natural to
Lombard speech (Seshadri et al. 2019).

In this work, we aim at incorporating some expressiveness to a 3D FEM-based acoustic
model that uses an LF model as glottal excitation. In (Freixes et al. 2018), the Ry parameter
was considered to control the LF model in the generation of synthetic voice with lax, modal,
and tense phonations. That preliminary work is here extended by investigating how the LF
model could be configured to generate tense voice emotional styles. To that effect, we use the
GlottDNN vocoder to analyse the glottal excitation characteristics of a parallel speech corpus
composed of paired utterances in neutral, happy and aggressive speaking styles. Subsequently,
the values derived from this analysis are translated to the LF-FEM based synthesis of vowel [a],

and the results are compared in terms of the obtained long term average spectra.

The paper is organised as follows. Section VI.2 details the methodology followed to analyse
the glottal source properties on an expressive speech corpus, and subsequently incorporate

some of these characteristics in the LF-FEM based synthesis. Next, the obtained results
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Figure VI.1: Workflow diagram used for the analysis and comparison of expressive natural
speech respect with synthetic speech generated with 3D FEM-based acoustic model that uses
an LF model as glottal excitation.

are described and discussed in Section VI.3. Finally, Section VI.4 closes the paper with the

conclusions.

VI.2 Methodology

Figure VI.1 depicts a workflow diagram describing the methodology proposed to incorporate
some expressiveness in the LF-FEM based synthesis approach. On the one hand, there is a
natural speech parallel corpus of paired utterances, which contain N vowels for each of the K
expressive styles (EX Py) and for the neutral style (NEU). On the other hand, a synthetic
speech corpus (LF-FEM) is built using a 3D FEM-based acoustic model with the glottal source
generated with an LF model, doing a sweep from F0; to F'Or, and from Ry to Rgy. Both
the natural and synthetic utterances are then inverse filtered by the GlottDNN (Airaksinen
et al. 2016), which parameterises the resulting glottal source signals. From the parameters
of each analysed vowel a spectral tilt (ST) and an F0 value are obtained. In the synthetic
speech corpus, each ST value is associated with the F0 and Ry used to generate that vowel.
Regarding the natural speech corpus, for each vowel the increment of F'0 and ST from neutral
to each of the expressions is computed. Finally, when a pair of F'O and R; neutral values
is input, it is converted by applying the previously computed increments to obtain a pair
of values with the target expressive style. The following subsections describe the processes

appearing in Figure VI.1.
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VI.2.1 LF-FEM based synthesis

Synthetic speech is generated with a realistic vocal tract by combining a 3D FEM-based

acoustic model with an LF model for the glottal source.

VI.2.1.1 Vocal Tract Acoustic Model

The 3D acoustic model uses the FEM to simulate the propagation of 3D acoustic waves within
a vocal tract (Arnela and Guasch 2013). In particular, it numerically solves the acoustic wave

equation for the acoustic pressure p(x,t),
d5p — gVip =0, (VL1)

with ¢y = 350 m/s being the speed of sound and 92 denoting the second partial time derivative.
This model also uses a Perfectly Matched Layer (PML) to absorb sound waves emanating from
the mouth aperture, thus considering radiation losses. Wall losses are introduced through the
boundary admittance coefficient © = 0.005, set on the vocal tract walls. Details about the
implementation of this model can be found in (Arnela and Guasch 2013).

A vowel sound can be synthesised introducing a train of glottal pulses at the vocal tract
entrance, i.e. at the glottal cross-section. However, that would require a new FEM simulation
for every glottal source configuration. To circumvent it, the vocal tract impulse response h(t)
is computed instead, and convolved with the desired input signal uy(t) to generate the output

sound p,(t),
Po(t) = h(t) * ug(t). (VI.2)

The impulse response h(t) can be simulated by introducing at the glottal cross-section the
Gaussian Pulse
gplt) = e (07 Tan) 029 Tonl iy (VL3)

with Ty, = 0.646/ f. and f. = 10 kHz, while capturing the acoustic pressure p,(t) at the vocal

tract exit. The vocal tract transfer function

(VI4)

can next be computed, with P,(f) and G,(f) respectively denoting the Fourier Transform of
Po(t) and g,(t). The impulse response h(t) is finally obtained by applying the inverse Fourier
transform to H(f).

VI.2.1.2 Glottal Source Model

An LF model (Fant et al. 1985) is used to generate the train of glottal pulses u4(t) needed in

(VI.2) to synthesise a vowel sound. In particular, the Kawahara’s implementation (Kawahara

/
g9

the parameters T),, T¢, Ty, Te and Tj (see Figure VI.2). The original code ! has been adapted

et al. 2017) is adopted to obtain aliasing-free glottal flow derivative pulses v/ (t) according to

https://github.com/HidekiKawahara/SparkNG
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Figure VI.2: Glottal flow u,(t) and its time derivative uj(t) according to the LF model (Fant
et al. 1985). T, is the rise time, T, is the open phase duration, 7. corresponds to the
complete closure, Ty is the period, T, is the effective duration of the return phase and Ty
is the declination time. The maximum amplitudes of the glottal flow and its derivative are

respectively Uy and E..

to introduce the glottal shape parameter Ry (Fant 1995), defined as
_ Uo FO
- E.110°
In Eq. (VL5), Uy is the glottal flow peak, E,. is the negative amplitude of the differentiated

d (VL5)

glottal flow, and F0 the fundamental frequency. The R; parameter greatly simplifies the
control of the LF model (Fant 1995). For instance, high values of Ry generate a lax phonation,
whereas low values of Ry produce a very abducted phonation, i.e., a tense voice (Gobl 2017).
The glottal flow ug4(t) is obtained by performing the cumulative integration of u’g(t) using the
composite trapezoidal rule. Finally, an SoX resampling  has been incorporated to adapt the

signals originally generated at 44100 Hz to the sampling frequency of h(t).

VI.2.2 Spectral tilt analysis

This section describes the spectral tilt analysis applied to both the natural speech corpus and

the synthetic speech.

VI.2.2.1 GlottDNN-based spectral tilt extraction

The GlottDNN vocoder (Airaksinen et al. 2016) is used in this study. This glottal vocoder
applies the quasi-closed phase (QCP) inverse filtering technique to decompose speech into
glottal source and vocal tract filter, and parameterise their corresponding spectra with 10 and
30 Line Spectral Frequencies (LSF) per frame, respectively. The QCP method has a tendency
to include some tilt in the vocal tract estimate. To compensate for this, the spectral tilt of
the vocal tract filter is parameterised with a first order LP filter and transferred to the glottal
source, as done in (Seshadri et al. 2019). Finally, a glottal source LSF vector is computed
for each vowel by averaging the vectors obtained at a frame level on its stable part, thus

minimising coarticulation effects. Similarly, an F'0 mean value is computed for each vowel.

VI.2.2.2 Spectral tilt representation

Glottal source LSF can be used to derive a scalar meaningful representation of the glottal

source spectral tilt. In this work, following (P. Murphy et al. 2008; Kakouros et al. 2017) a

2http://sox.sourceforge.net/SoX/Resampling
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scalar-based measure of the spectral tilt, ST, has been computed as

fa
ST = 101log; (ISSCW(f)) ,

VI.6
[ Sua(f) (V16)

where Szx is the power spectral density computed from the glottal excitation LSF, and the
frequencies that delimit the bands where the energy is integrated are f; = 50 Hz, fo = 1 kHz,
fs =1kHz and fy = 5 kHz.

VI.2.3 Expressive LF-FEM based synthesis
VI.2.3.1 Comparison of spectral tilt between expressive styles

The values obtained from the vowels in the parallel expressive corpus are compared with
respect to the neutral style. Considering a vowel from the target expressive style and their

corresponding in the neutral one, the increment of F0 (in semitones) is computed as

FO
AF0 = 12log, (F()t> , (VL)

and the increment of spectral tilt (in dB) as
AST = STy — ST, (VL)

where F0; and ST} are respectively the fundamental frequency (in Hz) and spectral tilt of the

expressive vowel, while F0,, and ST, are those obtained from the neutral vowel.

VI1.2.3.2 Spectral tilt transplantation

The AF0 and AST increments computed in the previous section are used to obtain LF
parameters that can incorporate some expressiveness in the LF-FEM based synthesis (see
Fig. VI.1, bottom). To this end, given an input pair F0,e, and Rgne, corresponding to a
neutral style, a vowel generated with these values is searched in the LF-FEM corpus to obtain
its spectral tilt ST}, Then, the increments previously computed for the target expression
are applied on F0ye,, and ST}, thus obtaining an F0.,, and an ST¢,,. Finally, looking for

the LF-FEM vowel closest to these values, an Ry, value can be derived.

VI.3 Experiments and results

This section details the setup of the experiments and the results obtained from the conducted
analyses.

VI.3.1 Experiments setup

VI1.3.1.1 Expressive natural speech

This work has used an emotional Spanish speech corpus, which was explicitly designed to

elicit expressive speech (see Iriondo et al. 2009 for further details). To that effect, the corpus
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was built by recording a professional female speaker reading texts whose semantic content
helped to express the desired style (stimulated speech). The audios were sampled at 16 kHz
using a non-compressed pulse coded modulation and 16 bits per sample.

The study has focused on the analysis of tense voice emotional styles with respect to
neutral speech. Accordingly, among the five expressive categories available in the corpus three
have been selected: (i) neutral (NEU), which denotes certain maturity; (ii) happy (HAP),
which transmits a feeling of extroversion; (iii) and aggressive (AGR), which express hardness.

A subset of 836 paired utterances from the NEU, HAP and AGR expressive styles has
been selected for this work (i.e., totalling 2508 utterances), composed of one or two words
with at least one vowel [a], either stressed or unstressed. In total, 679 [a] and 495 ['a] have

been analysed for each style.

VI.3.1.2 LF-FEM synthesis

Synthesis of vowel [a] has been done using the LE-FEM based model described in Section VI.2.1.
For this purpose, we have used the 3D vocal tract geometry originally generated from MRI in
(Aalto et al. 2014) and latter adjusted in (Arnela et al. 2016), in which the trachea and part
of the face were removed, preserving the lips. This geometry was set on a rectangular baffle
being part of a radiation space that allows sound waves emanate from the mouth aperture.
Unstructured tetrahedral elements were used to mesh the computational domain, with an
average size of 1 mm within the vocal tract and 3-4 mm in the radiation space.

FEM simulations were first performed to obtain the vocal tract impulse response h(t),
considering a time event of 20 ms and setting the sampling frequency to fs = 8000 kHz. Such
a high fs was needed to ensure stability of the numerical schemes. The acoustic pressure py(t)
was captured at the vocal tract exit, 4 cm from the mouth aperture, which permits to first
compute H(f) using Eq. (VI.4), and next h(t) through its inverse Fourier transform. Finally,
h(t) was resampled to 16 kHz so as to match with the sampling frequency of the natural
speech corpus.

Several vowels [a] have been then synthesised convolving h(t) with the glottal pulses
generated by the LF model. The latter has been configured to generate synthetic voice using
different pairs of F'0 and Ry. For the Ry 25 logarithmically spaced values covering the range
from 0.3 to 2.7 (Gobl 2017) have been used. Regarding the F0, a pitch contour has been
extracted from a real sustained vowel lasting for 2 seconds. This curve has been successively
pitch-shifted from an FO mean value of 71.4 Hz to 240 Hz in steps of 1 semitone Note, however,
that Eq. (VL.5) still requires to determine Uy or E.. Uy has been deemed fixed through all
synthesised vowels and adjusted to obtain realistic sound pressure levels in a modal phonation,
as in (Freixes et al. 2018).

VI.3.2 Results

The increments AF0 and AST from neutral to both happy and aggressive styles have been
computed for the stressed and unstressed vowels [a] of the parallel corpus. Figure VI.3 depicts

the results, where each circle represents the AF0 and AST from a neutral vowel to its
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Figure VI.3: Distributions of AF0 and AST for stressed and unstressed [a] vowels from
neutral to aggressive (NEU2AGR), and from neutral to happy (NEU2HAP). The centroid of
each distribution is represented as a white dot indicated with an arrow.

Table VI.1: F0, spectral tilt (ST) and R, values obtained for the LF-FEM synthesis of vowels
[a] and ['a] in neutral, aggressive and happy styles.

Vow NEU AGR HAP

a] 100.0 150.4 155.1
'a]  106.3 189.7 211.2

[
[
[a] -25.6 -21.8 -19.8
[
[
[

FO0 (Hz)

ST (dB) 'a] -24.5 -19.7 -16.3

a] 1.00 0.82 0.74
'a] 090 0.74 0.61

R,

corresponding expressive counterpart. As can be observed, the two expressive styles increase
both the F0O and the ST with respect to the neutral speech. In the aggressive style, the AF0
and AST with respect to the neutral speech are, in average, 7.1/10.0 semitones and 3.8/4.9 dB
for the unstressed/stressed [a], respectively, whereas the happy ones are 7.6/11.9 semitones
and 5.8/8.3 dB. Note then, on the one hand, that stressing a vowel produces a significant
increase of the F'0 and ST independently on the speaking style, although the variation is more
prominent for the happy speech. On the other hand, comparing the two expressive styles,
happy vowels entail higher values of AST and AF0 than the aggressive ones.

Table VI.1 shows the values derived from the above analysis and that have been used for
the synthesis of unstressed and stressed [a] in the neutral, aggressive and happy styles. First, a
pair of LF parameters F'0 = 100 Hz and R; = 1 has been used as a reference for a neutral [a].

The vowel that was generated with these parameters has been retrieved from the LF-FEM
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Figure VI.4: Long Term Average Spectra of the unstressed (top) and stressed (bottom) [a]
vowels synthesised with the LF-FEM model for the neutral, aggressive and happy styles.

corpus, and as Table VI.1 shows it has an ST=-25.6 dB. The F'0 and ST values for a reference
neutral ["a] have then been obtained according to the increments observed in the neutral
speech corpus between the stressed and the unstressed [a]. This results in F'0 = 106.3 Hz
and ST=-24.5 dB, which correspond to an R; = 0.90. From these neutral reference values
(first column in Table VI.1), the F0s and STs for the expressive styles (second and third
column) have been obtained applying the AF0 and AST increments corresponding to the
centroids in Fig. VI.3. Note, however, that ST values do not directly map with any of the
input parameters of the LF glottal model. This link has been achieved by looking for those
vowels in the LF-FEM corpus with the closest F'0 and ST. As a result, we have derived the
R, parameters that, together with the FO values, have been used to resemble the analysed

expressive styles.

Figure V1.4 shows the Long Term Average Spectra (LTAS) computed from the synthesised
vowels [a] with neutral, happy and aggressive styles, for both the unstressed (top) and stressed
(bottom) versions. Observe that below 4-5 kHz the classical formants of vowel [a] are generated.
However, beyond this frequency, some dips and asymmetrical modes are also produced. Most
of them are the so called higher order modes, which as said in the introduction, can only be
captured with a 3D acoustic model. Besides, it is to be mentioned that the strongest dip
between 5 and 6 kHz is mainly generated by the piriform fossae —a pair of side branches
located close to the larynx— although a higher order mode also contributes (Arnela et al.

2016). Focusing now on the comparison between expressive styles, as observed, the happy
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and aggressive not only increase the total sound pressure levels (SPL) with respect to the
neutral one, but also reduce the relative differences between low and high frequencies. The
latter are a direct consequence of increasing the ST, as one could expect. The curves are also
very similar between the two tense styles for the unstressed [a]. However, this is not the case
when the stressed version is generated. As also observed in the distributions of Figure V1.3,
the happy style entails a higher ST than the aggressive one, thus producing the observed

increment in the high frequency range.

V1.4 Conclusions

In this work, we have explored the glottal source variations of happy and aggressive emotional
styles with respect to neutral speech. The analysis has focused on those features that could be
translated to a 3D FEM-based acoustic model that uses as excitation an LF model controlled
by the Ry parameter. In particular, we have considered the variations of F0 and spectral
tilt associated with the glottal source, extracted from the corpus by means of the Glott DNN
vocoder. These variations have then been translated into LF parameters for the expressive
LF-FEM based synthesis of vowels [a] and [’a]. Results have shown that to generate aggressive
and happy styles, it is necessary to increase the F'0 and to decrease the R4 with respect to the
neutral style, presenting larger deviations the happy emotion than the aggressive one. These
differences of F'0 and Ry values are even greater for the stressed version of the vowel. Future

work will focus on extending the analysis to other vowels and emotional styles.
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