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Abstract

This Ph.D. thesis provides a fast engineering approach to the design of digital predistortion
(DPD) linearizers from several perspectives: i) enhancing the off-line training performance of
open-loop DPD, ii) providing robustness and reducing the computational complexity of the
parameters identification subsystem and, iii) importing machine learning techniques to favor the
automatic tuning of power amplifiers (PAs) and DPD linearizers with several free-parameters
to maximize power efficiency while meeting the linearity specifications.

One of the essential parts of unmanned aerial vehicles (UAV) is the avionics, being the radio
control one of the earliest avionics present in the UAV. Unlike the control signal, for transferring
user data (such as images, video, etc.) real-time from the drone to the ground station, large
transmission rates are required. The PA is a key element in the transmitter chain to guarantee
the data transmission (video, photo, etc.) over a long range from the ground station. The more
linear output power, the better the coverage or alternatively, with the same coverage, better
SNR allows the use of high-order modulation schemes and thus higher transmission rates are
achieved. In the context of UAV wireless communications, the power consumption, size and
weight of the payload is of significant importance.

Therefore, the PA design has to take into account the compromise among bandwidth, output
power, linearity and power efficiency (very critical in battery-supplied devices). The PA can be
designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal
with this inherent trade-off is to design high efficient amplification topologies and let the PA
linearizers take care of the linearity requirements. Among the linearizers, DPD linearization is
the preferred solution to both academia and industry, for its high flexibility and linearization
performance. In order to save as many computational and power resources as possible, the
implementation of an open-loop DPD results a very attractive solution for UAV applications.

This thesis contributes to the PA linearization, especially on off-line training for open-loop
DPD, by presenting two different methods for reducing the design and operating costs of an
open-loop DPD, based on the analysis of the DPD function.

The first method focuses on the input domain analysis, proposing mesh-selecting (MeS)
methods to accurately select the proper samples for a computationally efficient DPD parameter
estimation. Focusing in the MeS method with better performance, the memory I-Q MeS method
is combined with feature extraction dimensionality reduction technique to allow a computational
complexity reduction in the identification subsystem by a factor of 65, in comparison to using
the classical QR-LS solver and consecutive samples selection. In addition, the memory I-Q MeS
method has been proved to be of crucial interest when training artificial neural networks (ANN)
for DPD purposes, by significantly reducing the ANN training time.
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The second method involves the use of machine learning techniques in the DPD design
procedure to enlarge the capacity of the DPD algorithm when considering a high number of free
parameters to tune. On the one hand, the adaLIPO global optimization algorithm is used to
find the best parameter configuration of a generalized memory polynomial behavioral model for
DPD. On the other hand, a methodology to conduct a global optimization search is proposed
to find the optimum values of a set of key circuit and system level parameters, that properly
combined with DPD linearization and crest factor reduction techniques, can exploit at best dual-
input PAs in terms of maximizing power efficiency along wide bandwidths while being compliant
with the linearity specifications.

The advantages of these proposed techniques have been validated through experimental tests
and the obtained results are analyzed and discussed along this thesis.



Resum

Aquesta tesi doctoral proporciona unes pautes per al disseny de linealitzadors basats en predis-
torsió digital (DPD) des de diverses perspectives: i) millorar el rendiment del DPD en llaç obert,
ii) proporcionar robustesa i reduir la complexitat computacional del subsistema d’identificació
de paràmetres i, iii) incorporació de tècniques d’aprenentatge automàtic per afavorir l’auto-
ajustament d’amplificadors de potència (PAs) i linealitzadors DPD amb diversos graus de llib-
ertat per poder maximitzar l’eficiència energètica i al mateix temps acomplir amb les especifi-
cacions de linealitat.

Una de les parts essencials dels vehicles aeris no tripulats (UAV) és l’aviònica, sent el ra-
diocontrol un dels primers sistemes presents als UAV. Per transferir dades d’usuari (com ara
imatges, v́ıdeo, etc.) en temps real des del dron a l’estació terrestre, es requereixen taxes de
transmissió grans. El PA és un element clau de la cadena del transmissor per poder garantir la
transmissió de dades a grans distàncies de l’estació terrestre. A major potència de sortida, més
cobertura o, alternativament, amb la mateixa cobertura, millor relació senyal-soroll (SNR) la
qual cosa permet l’ús d’esquemes de modulació d’ordres superiors i, per tant, aconseguir veloci-
tats de transmissió més altes. En el context de les comunicacions sense fils en UAVs, el consum
de potència, la mida i el pes de la càrrega útil són de vital importància.

Per tant, el disseny del PA ha de tenir en compte el compromı́s entre ample de banda,
potència de sortida, linealitat i eficiència energètica (molt cŕıtic en dispositius alimentats amb
bateries). El PA es pot dissenyar per maximitzar la seva eficiència energètica o la seva linealitat,
però no totes dues. Per tant, per afrontar aquest compromı́s s’utilitzen topologies amplificadores
d’alta eficiència i es deixa que el linealitzador s’encarregui de garantir els nivells necessaris de
linealitat. Entre els linealitzadors, la linealització DPD és la solució preferida tant per al món
acadèmic com per a la indústria, per la seva alta flexibilitat i rendiment. Per tal d’estalviar tant
recursos computacionals com consum de potència, la implementació d’un DPD en llaç obert
resulta una solució molt atractiva per a les aplicacions UAV.

Aquesta tesi contribueix a la linealització del PA, especialment a l’entrenament fora de
ĺınia de linealitzadors DPD en llaç obert, presentant dos mètodes diferents per reduir el cost
computacional i augmentar la fiabilitat dels DPDs en llaç obert.

El primer mètode se centra en l’anàlisi de l’estad́ıstica del senyal d’entrada, proposant mè
todes de selecció de malla (MeS) per seleccionar les mostres més significatives per a una esti-
mació computacionalment eficient dels paràmetres del DPD. El mètode proposat IQ MeS amb
memòria es pot combinar amb tècniques de reducció del model del DPD i d’aquesta manera
poder aconseguir una reducció de la complexitat computacional en el subsistema d’identificació
per un factor de 65, en comparació amb l’ús de l’algoritme clàssic QR-LS i selecció de mostres
d’entrenament consecutives.
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El segon mètode consisteix en l’ús de tècniques d’aprenentatge automàtic pel disseny del
DPD quan es considera un gran nombre de graus de llibertat (paràmetres) per sintonitzar. D’una
banda, l’algorisme d’optimització global adaLIPO s’utilitza per trobar la millor configuració de
paràmetres d’un model polinomial amb memòria generalitzat per a DPD. D’altra banda, es
proposa una estratègia per l’optimització global d’un conjunt de paràmetres clau per al disseny
a nivell de circuit i sistema, que combinats amb linealització DPD i les tècniques de reducció del
factor de cresta, poden maximitzar l’eficiència de PAs d’entrada dual de gran ample de banda,
alhora que compleixen les especificacions de linealitat.

Els avantatges d’aquestes tècniques proposades s’han validat mitjançant proves experimen-
tals i els resultats obtinguts s’analitzen i es discuteixen al llarg d’aquesta tesi.
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Chapter 1

Introduction

1.1 Motivation

Since the time that the first airplane was first invented at the generation of Wright and Curtis

until now, the airplane has gained importance as a general aviation platform. In the commer-

cial area, airplanes usually work in two scenarios: to carry the cargo (or human, as well) to

other places, and to carry the airborne electronic devices, which is also called avionics, to given

places in the sky. The benefits of being carried into a high altitude boosts the performance of

most electronic devices, especially in the area of aerial photography, weather forecast, typhoon

observation and also emergency mobile station.

Figure 1.1: Facebook Aquila internet relay solar UAV.

With the development of aviation technology, avionics systems play an increasingly important

role. For example, the most accepted concept of a fifth-generation fighter contains five elements

[BRI]: stealth, high maneuverability, advanced avionics, networked data fusion from sensors and

avionics, multi-role capabilities. Despite the literal word ’avionics’, three of those five elements

are directly determined by the performance of electronics devices on the plane.

Similarly, it shares the same trend of the unmanned aerial vehicle (UAV). At the beginning

1



2 1.1. Motivation

Figure 1.2: The WV-3 Warning Star storm observe [WV2].

Figure 1.3: The trend of avionics cost published by General Electric [GE].

age, UAV was literally only an unmanned plane for some special usage, with unacceptable price

and operation cost for commercial market. Advances in electronics have made drone control

systems less expensive and more accurate, enabling drones to be adapted to increasingly complex

application scenarios. With the rapid development of electronic sensors and communication

systems, the market for civilian drones has begun to grow explosively in the 21st century.

Technically, the vehicle itself of unmanned aerial vehicle has never been a barrier to its

development in the whole history. The avionics took this job. During the early history of UAV,

the limitation of the electronics was the responsible for several critical problems, e.g. the accuracy

of inertial navigation system, the body size of radio devices and also the performance of the motor

and battery. During most of the 20th century, the UAV needed to carry a big electronic cargo

in case to maintain the flight ability, which may contain inertial navigation devices, a VHF

communication station, and analog controlled actuator and maybe a mechanical scanned radar.

The drone was born at a time that the technology of electronics was too well developed to

lead an avionic revolution. The microelectromechanical systems (MEMS) sensor replaced most

of the traditional devices with a body size that is even hard to observe; the microwave and
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Figure 1.4: One of the earliest UAV of the world, designed by Charles Franklin Kettering [UAV].

Figure 1.5: Typical avionics on UAV [RFB].

its semiconductors are commercially available; the first layer of Long-Term Evolution (LTE)

standards can be easily copied and implemented by small communication companies; and also

the promotion of motor and battery makes it easy to build a small power block. After 2011, the

drone have been known and used by people for daily work and even leisure.

Even if we often regard UAV as a product of the aerospace industrial market, in reality, the

truly technical core of the modern drone is the avionics. In comparison to the mechanical body,

which works as the flight platform, the electronic sub-system of the drone provides its brain,

eyes and hands.

One of the earliest avionics present in the UAV is the radio control (RC) and it is always the

most irreplaceable part of an UAV. With the development of radio frequency (RF) technology,

the control system also grew from the single radio command mode to more complex and flexible

controlled modes. Modern control systems of UAV are usually based on a flight planning platform

integrated with an auto-navigation system. The inertial and radio navigation block supports the

UAV flies on a given path and velocity. The flight plan can be pre-stored into the UAV before

take-off or it can be transferred to the UAV via wireless communication in real-time. The ground



4 1.1. Motivation

Figure 1.6: A famous concept of follow-and-record of modern aerial photography drone [TDO].

station will receive lots of information from UAV during the mission procedure, e.g. current

location, photographs or videos. The video information is usually the most attractive part as it

can allow the operator to do more work remotely on the ground in real-time.

After 2010, a boom of commercial aerial photography drones appears on the market. The

DJI Co., Ltd. is one of the most famous company in this field. The typical aerial photography

drone (see Fig. 1.7 for example) use a video transfer block (VTB) to send the real time video to

the control device, thus the owner can handle it to take a photo or video from above. Following

this trend, the VTB became an important part of the whole UAV system, not only to support

the main function of aerial photography drone, but also for industrial usage like, for example,

electronic power line patrolling, as depicted in Fig. 1.8.

Figure 1.7: DJI Aerial Photography Drone [DJI].

Unlike control signal, transferring videos from the drone to the ground station requires big

data rates. This becomes the main challenge for the whole RF system. The simplest VTB is

an analog modulator - demodulator with RF front-end. It offers a data rate of 300-400 Kbps

thus the video quality is lower than 320p, which cannot meet the requirement of most video-

demanding applications. The original 1024p quality video has a data rate of 500 Mbps, which

is even hard for CAT5 cable to transfer. The modern video compression technology, like H.264,

offers a data compress ratio of 80, but it takes time for calculation. The VTB for commercial

usage transfer the H.264 video with 200 ms calculation delay on a data rate around 7 Mbps. As
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Figure 1.8: The drone operates for Electric power line patrol [WET].

far as the RF front-end is concerned, a wide-band power amplifier (PA) is also required at the

final stage of VTB. In addition, the PA should be linear because there is mostly no linearization

technology embedded on the VTB.

The transfer range of VTB is also an attractive performance, especially for industrial usage.

Due to the requirement of signal bandwidth, the VTB usually works on the L and S band (1

− 6 GHz). Thus the transfer loss of atmosphere is more significant than at lower frequencies. A

high PA is required when the aerial photography drone is designed to work over a long range

from the ground station. Combining requirements of bandwidth and linearity, a class A linear

PA often appears on VTBs, which is featured with low efficiency and massive heat emission.

As the final stage of the data flow between the drone and ground station, the PA design has

to take into account the compromise among bandwidth, in-band and out-of-band linearity (i.e.,

evaluated in terms of error vector magnitude (EVM) or adjacent channel power ratio (ACPR))

and power efficiency. The classic straight forward design topology is to use high linearity PA

without focusing on its power efficiency. Although comparing with the propulsion power of

drones, the heat emitting of PAs will not impact the flight endurance of large size UAVs, but it

becomes significant because it decreases UAVs’ take-off weight. The high emitting heat of high

power amplifier also affects other electric systems since the small size UAVs usually do not have

enough space for complex cooling system.

The last generation of industrial video transfer takes advantage of 3rd Generation Partnership

Project (3GPP) Long-Term Evolution (LTE) techniques. The data rate increased significantly

by using advanced coding and modulation methods. The Orthogonal Frequency Division Mul-

tiplexing (OFDM) is one of the most efficient way to increase the physical layer performance,

e.g. high spectral efficiency, robustness against interference and facilitates single frequency net-

works. However, the use of OFDM-based signal aggravates the inherent linearity and efficiency

trade-off in PAs, due to the high peak-to-average power ratios (PAPR) that present that kind

of waveforms. The linearity challenges become even worse when facing the next generation com-
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munication techniques, e.g., 5G New Radio (NR), with wider bandwidths at higher frequencies

but with similar high PAPRs. Ensuring that the whole system operates with certain linearity

levels (required to guarantee a certain quality of service), has become one of the most challeng-

ing objectives in system design, since it cannot longer be solved by simply sacrificing the PA’s

power efficiency for linearity.

New design amplification topologies tend to involve specialized linearization methods to

improve the linearity of the power amplifier. High efficient amplification architectures based on

dynamic supply or dynamic load modulation techniques have been proposed to be implemented

in the modern communication systems. Among other linearization methods such as feedback or

feed-forward, digital predistortion (DPD) has been widely recognized as an effective and flexible

approach to cope with the increasing demands of linearity in PAs.

The principle of DPD linearization is straightforward, consists in preceding the PA with a

subsystem (nonlinear function in a digital signal processor) that counteracts to the nonlinear

characteristic of the PA. Therefore, a lot of research has been devoted to find mathematical

models capable to characterize and compensate for the PA nonlinear behavior and its dynam-

ics [Kat16]. Fig. 1.9 shows the block diagram of an adaptive DPD. Operating the identification

system in real-time increases the system complexity by involving a feedback observation path to

acquire the PA output characteristics in real-time [Woo17]. From a high level view, a communi-

cation system with adaptive DPD means that it has one more receiver than normal systems. The

feedback observation path provides real-time awareness of the PA non-linear behavior, which

allows the DPD algorithm to continuously adapt to any time-variant scenario. Thus, adaptive

DPD shows high robustness and high reliability. The DPD adaptation process, however, can

be designed to follow different strategies depending on the timing constraints imposed by the

changes in the PA behaviour. Therefore, real-time adaptation will be necessary when the PA be-

haviour changes very fast, while non real-time adaption can be considered when the PA changes

in a more relaxed time scales, for example, due to temperature or aging.

Figure 1.9: Block of typical adaptive digital predistortion.

Focusing again in the linearity requirements of the UAV video transmitting communication
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system, in order to save as many computational and power resources as possible, the implemen-

tation of an open-loop DPD results a very attractive solution. With an open-loop DPD we can

save the additional circuitry required in the feedback or observation path (i.e., downconverters,

ADC) and the computational complexity associated with the parameter’s estimation. However,

the price to pay is the loss of robustness and flexibility to adapt to a time-variant scenario. The

considered operating scenario is pretty time-invariant contemplating line of sight (LOS) UAV

transmissions. In this context, open-loop DPD can be considered as a suitable solution and the

linearization performance will rely on the accuracy of the off-line (factory) training.

Therefore, one of the main purposes of this dissertation, is to provide a series of methodologies

for off-line DPD training oriented at improving the performance and robustness of open-loop

DPD and reducing the computational complexity of the identification/adaptation subsystem.

In addition, taking into account the vast amount of literature dedicated to propose single-

input single-output (SISO) behavioral models [Sch09], or multiple-input single-output (MISO)

behavioral models [Gil19], in this dissertation, a machine learning based method is proposed and

tested aiming to simplify the DPD design procedure in a scenario with several free-parameters

to tune.

1.2 Outline of the Thesis

In the general context of designing open-loop DPD linearizers for high efficient but non-linear

power amplifiers for UAV communications, in this thesis we propose two different techniques

for reducing the design and operating costs in practical DPD designs based on the analysis of

the DPD function. The first method focuses on the input domain analysis, aiming to provide

an efficient way to reduce the computational of the DPD adaptation function and enhance the

robustness of the estimation by proposing a mesh-selection technique to select the most relevant

training samples for the DPD parameter extraction. The second method involves the use of

machine learning techniques in the DPD design procedure, to enlarge the capacity of the DPD

algorithm and to maximize the power efficiency in dual-input PAs when several free-parameters

need to be properly configured.

The main body of this Thesis is schematically depicted in Fig.1.10, and it is organized as

follows.

First, Chapter 1 presents the motivation of the work, the outline of the dissertation and a

list of research publications related to the work developed by the PhD candidate.

Chapter 2 presents an overview of high efficient PA topologies and summarizes the linearity

versus efficiency trade-off in PAs.

Chapter 3 includes the state-of-the art in DPD and presents some design challenges regarding
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the open-loop DPD. The main objectives pursued in this thesis will be detailed in this chapter.

Chapter 4 discusses the effects of applying under-sampling techniques in the DPD adaptation

subsystem and presents a selecting method, named mesh-selecting, to find a small subset of

the original test signal for DPD coefficients extraction while keeping the same accuracy level.

Experimental results will show the advantages in computational complexity reduction of the

proposed memoryless mesh-selecting technique when combined with the principal component

analysis (PCA) dimensionality reduction technique.

Chapter 5 presents a series of improved mesh-selecting methods to provide enhanced select-

ing performance. The reduction capabilities vs. accuracy degradation of the new mesh-selecting

methods are evaluated and compared. Moreover, focusing on the method with better selecting

performance (the memory I-Q mesh-selecting method), experimental results will show the com-

putational complexity reduction achieved when this mesh-selecting method is combined with

feature extraction dimensionality reduction techniques.

Unlike the two previous Chapters focused on the testing signal for DPD coefficients adap-

tation, in Chapter 6 and Chapter 7 we propose a machine learning based DPD tuning method

to assist the DPD design procedure. A global optimization algorithm is first applied to find the

optimal configuration of parameters of a Generalized Memory Polynomial (GMP) PA behavioral

model to linearize a Class-J PA. Then, in Chapter 7 the optimization method is extended to

operate in a scenario where the free-parameters to tune correspond to a dual-input load modu-

lated balanced amplifier (LMBA). Experimental results, will show the capability of the proposed

optimization method to find the best configuration of the LMBA from the power efficiency point

of view while the linearity levels are guaranteed by means of DPD linerization.

To provide offline DPD 
to reduce the design 

and operation difficulty

DPD Function input 
domain analysis

DPD Function Tuning 
and Coefficients

Analysis

Under-sampling and 
Dimensionality 

Reduction
Reduction matrix size 
while extracting the 

DPD coefficients.

Enhanced Memory 
Mesh-Selecting 

Method
Robust Improvement 
and Operational Cost 

Reduction

Machine learning 
based LMBA tuning 

algorithm Extend the capacity of 
DPD algorithm to high 

degree freedom 
applications.Machine learning 

based DPD tuning 
algorithm

Figure 1.10: Overview of main chapters of this dissertation.
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Finally, Chapter 8 gives the conclusion on the dissertation and discusses possible future

research lines in the field of DPD input signal analysis and artificial intelligence applications.

1.3 Research Contributions

This Ph.D. dissertation contributes to the PA linearization, specially on off-line training for

open-loop digital predistortion. As described in previous subsection, mesh-selecting methods

are proposed to accurately select the proper samples for DPD coefficients extracting calcu-

lation and machine learning assist methods are presented to support DPD in scenarios with

large free-parameters to be configured. The presented solutions reduce the computational and

tuning complexity of the open-loop DPD linearization system and, at the same time, increase

its robustness. Experimental tests have been carried out to validate the performance of these

techniques.

The research reported in this thesis has generated publications in international conferences

and journal papers. The publications are listed in the following.

• T. Wang, P. L. Gilabert and G. Montoro, ”Under-sampling effects and computational cost

reduction in RF power amplifier behavioral modeling,” in Proc. 10th European Microwave

Integrated Circuits Conference (EuMIC), Paris, France, Sept. 2015, pp. 57-60.

• G. Montoro, T. Wang, M. N. Ruiz, J. A. Garćıa and P. L. Gilabert ”Reducción de la

frecuencia de muestreo en los conversores ADC y DAC usados en predistorsionadores dig-

itales,”in Proc. XXX Simposium Nacional de la Unión Cient́ıfica Internacional de Radio

(URSI), Pamplona, Spain, Sept. 2015, pp. 1-4.

• D. López-Bueno, T. Wang, P. L. Gilabert and G. Montoro, ”Amping Up, Saving

Power: Digital Predistortion Linearization Strategies for Power Amplifiers Under Wide-

band 4G/5G Burst-Like Waveform Operation,” in IEEE Microwave Magazine, vol. 17, no.

1, pp. 79-87, Jan. 2016.

• P. L. Gilabert, G. Montoro, T. Wang, M. N. Ruiz and J. A. Garćıa, ”Comparison of

model order reduction techniques for digital predistortion of power amplifiers,” in Proc.

46th European Microwave Conference (EuMC), London, UK, Oct. 2016, pp. 182-185.

• Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ”Multidimen-

sional LUT-based digital predistorter for concurrent dual-band envelope tracking power

amplifier linearization,” in Proc. IEEE Topical Conf. on RF/Microw. Power Amplifiers

for Radio and Wireless Applications. (PAWR), Anaheim, USA, Jan. 2018, pp. 47-50.
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• Q. A. Pham, D. López-Bueno, T. Wang, G. Montoro, and P. L. Gilabert, ”Partial least

squares identification of multi look-up table digital predistorters for concurrent dual-band

envelope tracking power amplifiers,” in IEEE Transactions on Microwave Theory and

Techniques, vol. 66, no. 12, pp. 5143-5150, Dec. 2018.

• T. Wang, P. L. Gilabert, R. Quaglia, G. Montoro, ”Machine-Learning Assisted Optimi-

sation of Free-Parameters of a Dual-Input Power Amplifier for Wideband Applications”

Submitted for publication in IEEE Transactions on Microwave Theory and Techniques.

First submission rejected. Pending to be re-submitted in Nov. 2020.

• T. Wang, P. L. Gilabert, ”Mesh Selecting for Computational Efficient Power Amplifier

Behavioral Modeling and Digital Predistortion Linearization” IEEE Microwave and Wire-

less Components Letters. Accepted for publication in Oct. 2020 (to be published in late

2020 or early 2021).

1.4 Awards

• David López and Teng Wang. First prize in the Power Amplifier (PA) Linearization

Through Digital Pre-distortion (DPD) Linearization international competition. The event

took place in the frame of the Student Design Competitions organized by the IEEE Mi-

crowave Theory and Techniques Society (MTT-S) during the International Microwave

Symposium (IMS) held in Phoenix, AZ on 17-22 May 2015.

Figure 1.11: First prize winners of the 2015 Power Amplifier (PA) Linearization Through Digital Pre-
distortion (DPD) Linearization international competition.



Chapter 2

High Efficiency Power Amplifier
Architectures and Digital
Predistortion Linearization

2.1 High Efficiency Power Amplifier Architectures

The power amplifier (PA) is one of the most critical components present in the transmitter of

both modern wireless and wired communications. In macro base-stations the PA is responsible

for most of the direct current (DC) consumption of the transmitter. In handsets and small cells,

the processing part has also a significant impact in the DC consumption but, in any case and

independently on the size and power of the base-station, the PA is one of the main sources

of signal distortion in the whole communications system. The simple way to avoid introducing

nonlinear distortion is to operate the PA far from saturation, i.e., with significant power back-

off levels. In order to prevent the peaks of the signal operate in the compressed region, the

back-off level of operation has to be similar to the peak-to-average power ratio (PAPR) of the

transmitted signal. This means that, when considering linear but inefficient Class-A or -AB

PAs, for amplitude and phase modulated signals with high PAPR, linear amplification can be

achieved only at the price of a significant power efficiency degradation, since the PA power

efficiency rapidly decays when backing-off from compression.

System-level linearization approaches for PA, such as digital pre-distortion (DPD), can ex-

tend the linear range of the PA. Further more, by properly combining linearization with the

crest factor reduction (CFR) techniques, we can drive the PA further into compression while

meeting the linearity requirements [Lop14]. Therefore, DPD and CFR techniques are usually

applied to overcome or at least mitigate the trade-off between efficiency and linearity of the

whole power amplification sub-system. However, the power efficiency obtained by applying lin-

earization techniques to PA operated as a controlled current source (e.g., Class A, B, AB) is

11
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limited. To avoid wasting excessive power resources when processing high PAPR signals, the

current source mode PA can be forced to follow its envelope (dynamic supply solutions), or

a high-efficient switch mode amplification stage can be introduced. Among all the techniques

targeting dynamic bias or load modulation, envelope tracking (ET) PA [Wan15b,Pop17,Wat18],

Doherty PA [Pen16b, Dar16], load modulated balanced amplifiers (LMBA) [Qua18] and linear

amplification with nonlinear components (LINC) or outphasing PA [Bar16,Pop18] are the most

widely researched in literature. In either case, these efficient topologies require linearization

techniques to ensure the degree of linearity specified in communication standards.

2.1.1 Class-E PA

PAs are classified into different classes according to the conduction angle of the drain current.

Thus, the power transistor operation class is determined by the fraction of the RF cycle over

which the power transistor conducts. Theoretically, 100% (conduction angle 2π) corresponds to

class A, 50% (conduction angle π) to class B, between 50 % and 100 % to class AB, and finally

less than 50 % to classes C, D, E and F. The performance trade-off among the different operation

classes includes efficiency, linearity, power gain, signal bandwidth and output power [Raa02].

up to 1 GHz at any output power level can benefit 
from this technology. With proper design, class-E 
can meet all technical requirements while simultane-
ously achieving considerable improvements in power 
efficiency compared to conventional amplification 
techniques. Additionally, industrial, medical, and 
scientific (ISM) applications can use class-E amplifiers 
to generate RF efficiently for a broad range of appli-
cations in the medium-frequency (MF), high-fre-
quency (HF), and very-HF (VHF) bands.

In practice, the maximum frequency at which a 
device can switch is influenced by a combination of 
semiconductor technology, passives technology, and 
packaging and interconnection technologies. the 
maximum operating frequency of the class-E ampli-
fier is limited mainly by the output capacitance of the 
switching device [14]–[15]. this capacitance is deter-
mined primarily by the semiconductor technology. 
Currently, frequencies in the gigahertz range are pos-
sible with gallium nitride (GaN) transistors.

Among all amplification classes, class-E is one of the 
most tolerant against transistor switching imperfections 
and exhibits smooth degradation with nonzero switch-
ing times and capacitances larger than the maximum 
required for nominal operation [16]. Suboptimum class-
E operation is used when the semiconductor capaci-
tance exceeds that for nominal operation. the drain 
efficiency degrades as frequency increases, but it is still 
a very good choice, even at three times the maximum 
frequency for nominal operation [17]. the boundary 
between nominal class-E and suboptimum class-E is 
sometimes not very distinct, and many so-called class-
E amplifiers actually operate in the suboptimum mode.

Building Techniques and Components  
for Class-E PAs at HF and VHF
the proper selection of solid-state technology, cir-
cuit topology, components, and RF building tech-
niques is crucial for achieving the high-efficiency 
goal in class-E amplifiers.

What Is a Class-E Power Amplifier?
Class-E refers to a single-ended RF power amplifier 
(PA) whose active device (transistor) is driven to act as 
a switch. The circuit (Figure S1) has an RF choke for dc 
feed, drain-shunt capacitance, and a series-tuned output. 
The series-tuned output circuit passes the fundamental-
frequency current but blocks harmonic currents. In con-
trast, a class-B or class-C amplifier has a parallel-tuned 
output circuit.

For nominal (or optimum) operation, the series-
tuned output is adjusted to produce a net inductive 
reactance X of 1.152/R, and the drain-shunt 
capacitance (including drain capacitance) is adjusted 
to produce a susceptance B of 0.1836/R. The 
resulting waveforms are shown in Figure S2. The drain 
voltage drops to zero and has zero slope at the instant 
the transistor turns on; thus, power losses associated 
with discharging the drain-shunt capacitance are 
eliminated. Because drain current flows only when 
the drain voltage is zero, the drain voltage is nonzero 
only when there is no drain current; if there is no 
discharge loss, the efficiency of an ideal class-E PA  
is 100%.

The essential design parameters are
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In suboptimum class-E, the drain voltage drops 
to zero at the time of turn on, but the slope is not 
zero. When used as a linear amplifier, the PA reaches 
class-E operation only at peak output.

True transient class-E operation is possible at 
frequencies through VHF. At ultrahigh-frequency 

and higher, class-E operation is approximated by 
waveforms built from a finite number of harmonics.

+VDD

+jXvDIdc

iD

Drive

Ro

vo

CoLo

C

Figure S1. A simplified class-E PA circuit.

4

0

0

2

0 2π

0 2π

v D
i D

Figure S2. The waveforms of an ideal class-E PA. 

up to 1 GHz at any output power level can benefit 
from this technology. With proper design, class-E 
can meet all technical requirements while simultane-
ously achieving considerable improvements in power 
efficiency compared to conventional amplification 
techniques. Additionally, industrial, medical, and 
scientific (ISM) applications can use class-E amplifiers 
to generate RF efficiently for a broad range of appli-
cations in the medium-frequency (MF), high-fre-
quency (HF), and very-HF (VHF) bands.

In practice, the maximum frequency at which a 
device can switch is influenced by a combination of 
semiconductor technology, passives technology, and 
packaging and interconnection technologies. the 
maximum operating frequency of the class-E ampli-
fier is limited mainly by the output capacitance of the 
switching device [14]–[15]. this capacitance is deter-
mined primarily by the semiconductor technology. 
Currently, frequencies in the gigahertz range are pos-
sible with gallium nitride (GaN) transistors.

Among all amplification classes, class-E is one of the 
most tolerant against transistor switching imperfections 
and exhibits smooth degradation with nonzero switch-
ing times and capacitances larger than the maximum 
required for nominal operation [16]. Suboptimum class-
E operation is used when the semiconductor capaci-
tance exceeds that for nominal operation. the drain 
efficiency degrades as frequency increases, but it is still 
a very good choice, even at three times the maximum 
frequency for nominal operation [17]. the boundary 
between nominal class-E and suboptimum class-E is 
sometimes not very distinct, and many so-called class-
E amplifiers actually operate in the suboptimum mode.

Building Techniques and Components  
for Class-E PAs at HF and VHF
the proper selection of solid-state technology, cir-
cuit topology, components, and RF building tech-
niques is crucial for achieving the high-efficiency 
goal in class-E amplifiers.

What Is a Class-E Power Amplifier?
Class-E refers to a single-ended RF power amplifier 
(PA) whose active device (transistor) is driven to act as 
a switch. The circuit (Figure S1) has an RF choke for dc 
feed, drain-shunt capacitance, and a series-tuned output. 
The series-tuned output circuit passes the fundamental-
frequency current but blocks harmonic currents. In con-
trast, a class-B or class-C amplifier has a parallel-tuned 
output circuit.

For nominal (or optimum) operation, the series-
tuned output is adjusted to produce a net inductive 
reactance X of 1.152/R, and the drain-shunt 
capacitance (including drain capacitance) is adjusted 
to produce a susceptance B of 0.1836/R. The 
resulting waveforms are shown in Figure S2. The drain 
voltage drops to zero and has zero slope at the instant 
the transistor turns on; thus, power losses associated 
with discharging the drain-shunt capacitance are 
eliminated. Because drain current flows only when 
the drain voltage is zero, the drain voltage is nonzero 
only when there is no drain current; if there is no 
discharge loss, the efficiency of an ideal class-E PA  
is 100%.

The essential design parameters are

. / ,P V R0 577o DD
2=

. ,v V3 56maxD DD=  

. .i I2 86 dcmaxD =

In suboptimum class-E, the drain voltage drops 
to zero at the time of turn on, but the slope is not 
zero. When used as a linear amplifier, the PA reaches 
class-E operation only at peak output.

True transient class-E operation is possible at 
frequencies through VHF. At ultrahigh-frequency 

and higher, class-E operation is approximated by 
waveforms built from a finite number of harmonics.

+VDD

+jXvDIdc

iD

Drive

Ro

vo

CoLo

C

Figure S1. A simplified class-E PA circuit.

4

0

0

2

0 2π

0 2π

v D
i D

Figure S2. The waveforms of an ideal class-E PA. Figure 2.1: Class-E PA simplified circuit and waveforms [Med18].

Since Nathan Sokal’s invention of the class-E PA, several designs have been reported in

literature ranging from kHz and up to mm-wave [Pop18]. To achieve high efficiency, the transistor

is driven to act as a switch, thus avoiding that high drain voltage and drain current appear at

same time to reduce power loss. A typical configuration of class-E PA is showed in Fig. 2.1.

As described in [Med18], the circuit in Fig. 2.1 has an RF choke for DC feed, drain-shunt

capacitance, and a series-tuned output. The series-tuned output circuit passes the fundamental-

frequency current but blocks harmonic currents. In contrast, a class-B or class-C amplifier has a

parallel-tuned output circuit. In an ideal Class-E amplifier, the drain voltage drops to zero and

has zero slope at the instant the transistor turns on as shown in Fig. 2.1. Because drain current
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flows only when the drain voltage is zero, the drain voltage is nonzero only when there is no

drain current. Consequently, if there is no discharge loss, the efficiency of an ideal class-E PA is

100%.

As it will be shown in the following subsections, an ideal class-E amplifier can be used in the

design of high efficient amplifying topologies, such as, for example, the outphasing PA [Rui16]

[Bel09], [Veg17].

2.1.2 Doherty PA

The Doherty PA, named after W.H. Doherty from Bell Labs [Doh36], is one of the most popular

solutions for high efficiency amplification in cellular base stations because thanks to its particular

configuration is able to accommodate signals with high PAPR whilst still retaining a good level

of power efficiency. The Doherty configuration uses two amplifiers biased differently in order to

carry out different functions. The carrier amplifier normally operates in a linear class of operation

and provides gain at any power level. While, the peaking amplifier is only functioning when the

carrier amplifier is getting towards its limits. Therefore, the peaking amplifier complements the

carrier amplifier by providing the extra power capability that the carrier amplifier on its own

cannot provide. As shown in Fig. 2.4, two separate power amplifier are assembled by quarter

wave length transmission-line (λ/4 T-line). The most significant aspect in the operation of the

Doherty amplifier is to activate the peaking amplifier only when it is required.

Figure 2.2: Classical topology of a Doherty PA [Zha17].
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The output load of the Doherty PA is modulated by the current ratio between the carrier

and the peaking amplifiers. Only the carrier PA is turned on during low-power operation, while

the two PAs are turned on at high power. Therefore, following the dynamic load modulation

concept, it achieves high efficiency at backed-off output power level as well as at the peak power.

The carrier amplifier usually operates in Class-AB, while the peaking amplifier works in Class-C

to boost the whole output power when the input is higher than 6 dB back-off [Zha17,Pen16b].

The Doherty PA suffers from nonlinear distortion, mainly due the gain compression that

appear just before the peaking amplifier starts conducting. This phenomenon of double gain

compression can be compensated using DPD linearization [Dar16].

2.1.3 Outphasing Power Amplifier

The outphasing modulation topology was first conceived by H. Chireix in 1935 [Chi35], and

later revised and re-introduced by D. Cox in 1974 [Cox74] under the name of linear amplifica-

tion with nonlinear components (LINC). Basically, the outphasing architecture is designed to

amplify an amplitude-modulated signal by combining the amplification of two phase-modulated

representations of the original input signal.

As show in Fig. 2.3, in the LINC transmitter the input signal is converted into two constant

envelope signals. These two signals are amplified independently by two high-efficient switched-

mode PAs in parallel branches. Because both signals have constant envelope, the two branch

PAs can operate close to saturation. At the PA outputs, both signals are added in a two-to-one

combiner obtaining a linear amplified replica of the input signal.

Digital 
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ADC 1

RF PAX

X

XRF_out(t)
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X2_RF(t)

DAC 1 RF PAX
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Figure 2.3: Simplified block diagram of a LINC amplifier [Gil11].

There are two popular approaches to the outphasing amplifier, the LINC and the Chireix

outphasing. The main difference is the type of employed power combiner: isolated or non-isolated.

It also affects to the system operation. The LINC combines the amplified constant envelope

signals with an isolated combiner, which has the benefits of obtaining a linear amplified replica

of the original signal at the output, but at the price of dissipating power at the combiner. Instead,
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when considering the outphasing topology but with a Chireix (non-isolated) combiner, the power

efficiency can be remarkable high but at the price of having severe nonlinear distortion. [El-

12] [Rui16].

The linearization of a Chireix outphasing PAs in pure outphasing mode can be very challeng-

ing when the signal bandwidth is in the order of tenths of MHz. Hybrid outphasing operation

modes have been proposed, which when properly combined with a DPD linearization can help

to mitigate the linearity versus efficiency trade-off [Gil20].

2.1.4 Load Modulation Balanced Amplifier

The load modulated balanced amplifier (LMBA) was first introduced in [She16] by Shepphard

et al., and it was based on a balanced PA where a control signal power injected at the isolated

port of the output 90◦ coupler modulated the load at each balanced device.

Figure 2.4: Classical topology of Load Modulated Balanced PA [Qua18].

As described in [Qua18], the key feature of the LMBA is that the control signal power can be

fully recovered at the output of the LMBA. and thus it is always contributing positively to the

total ouptput power no matter what load modulation it is imposing. In the Doherty PA instead,

the auxiliary output phase determines the load modulation on the main, but its power is only

fully recovered when the phase is aligned with the main. Therefore, unlike in the Doherty PA,

in the LMBA the control signal power recovery is independent to the load modulation. Another

key property of the LMBA is its wider bandwidth of operation, since the load modulation can

be applied for the whole frequency band of the 90◦ coupler, that is normally larger than the

bandwidth of a Doherty combiner.

The additional degrees of freedom offered by a dual-input LMBA can be used to optimize

the performance on the same or larger bandwidth, or to improve other performance metrics such
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as linearity and average efficiency. In Chapter 7 of this thesis, we will present an auto-tuning

approach to take advantage of the possibilities given by the extra degrees of freedom in dual-

input LMBAs to enhance the power efficiency figures along wide signal bandwidths and high

PAPR values, while meeting the linearity requirements through DPD linearization.

2.1.5 Envelope Tracking

PA dynamic supply modulation techniques can achieve better power efficiency figures than the

ones that can be achieved with fixed supply, even when using linearization techniques to extend

the linear output power dynamic range.

One popular dynamic supply solution is envelope tracking (ET) [Wan15b], where the RF

PA device is operating as a current source amplifying an amplitude and phase modulated signal

while it is dynamically supplied, as shown in Fig. 2.5. The supply modulator plays a key role to

determine the efficiency of the whole ET transmitter because it is defined as the product between

the RF PA efficiency and the supply modulator power efficiency. One of the main limitations of

ET is that the supply modulator has to efficiently supply the power required by the PA transistor

at the speed (i.e. slew-rate) required by the signal’s envelope. In ET the supply voltage of the

PA is adjusted to save energy and thus the envelope tracking speed can be selected to trade-off

the bandwidth/slew-rate requirements of the supply modulator (or envelope amplifier) and the

overall ET power efficiency.

Some shaping strategies can be applied to the signal’s envelope to reduce its bandwidth or

slew rate [Mon10a], while still improving the overall power efficiency in comparison to fixed

supply. However, the use of slew-rate or reduced bandwidth envelopes generates a particular

nonlinear distortion. The slow envelope dependent nonlinear behaviour can be compensated by

means of DPD linearization [Mon11,Gil12a].

Digital 

Signal 

Processor

DAC 1

DAC 2

ADC 1

Supply 

Modulator
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A(t)
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Figure 2.5: Block diagram of an envelope tracking PA [Gil11].
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2.2 Predistortion Linearization Method

The aforementioned high power efficient amplification architectures based on dynamic load or

dynamic supply modulations are oriented at maximizing the PA’s power efficiency, however,

in order to guarantee the linearity levels specified in the communications standards (e.g., in

LTE we have to meet at least -45 dBc of adjacent channel power ration (ACPR)), linearization

techniques, such as predistortion, have to be included. In the following subsections we will

introduce predistortion linearization in both its analog and digital form.

2.2.1 Analog Predistortion

To compensate for the nonlinear distortion introduced by the inherent nonlinear behavior of the

PA, an intuitive idea consists of compensating this non-ideal behavior by adding a nonlinear cir-

cuit that generates the inverse behavior working in series with the PA. The additional nonlinear

circuit will first distort the input signal and then the PA, by amplifying the previously distorted

signal will generate a linear amplified version at the output. The basic idea behind predistortion

(independently if it is analog or digital) is depicted in Fig. 2.6.

F(·)

Predistorter

Power 

Amplifier

G(·)
x y=G(F(x))=K·xF(x)

Pin

Pout

Pin

Pout

Pin

Pout

Figure 2.6: The concept of predistortion.

Analog predistortion (APD) uses an analog circuit to predistort the input signal. One of

the advantages of ADP is that the bandwidth expansion is taking place in the analog domain,

which relaxes the clock rate requirements in the digital-to-analog converter (DAC) to generate

the analog transmitted signal. For the design of analog predistorters, the key point is to tune

a nonlinear circuit that has to show the exact inverse nonlinear characteristic as the targeted

PA. Several solutions have been proposed to generate the inverse characteristic using analog

circuitry. In the following, some examples are discussed.

The company Scintera (acquired by Maxim Integrated), for example, commercialized an APD

solution based in Volterra series polynomials implemented with analog multipliers. Alternatively,
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some solutions considered the use of the nonlinear characteristics of diodes [Yam96,Yu99].

As explained in [Den18] , composite right-left-handed transmission lines (CRLHTLs) were

used for ADP purposes since they can vary its nonlinear transmission characteristics with the

input power or bias voltage (see Fig. 2.7). The authors reported 8.1 dB enhancement in the

inter-modulation distortion at -6 dB output power back-off when linearizing a C-band 40 W

solid-state PA.

Figure 2.7: The non-linear CRLHTL circuit predistorter [Den18].

Another commonly used solution to generate the nonlinear characteristic using analog cir-

cuitry is the use of transistors. In [Qi 16] a transistor-based APD was presented. The proposed

APD (see Fig. 2.8) showed that considering a two-tone test, more than 10 dB IMD3 improve-

ment was reported. In addition, the output 1 dB gain compression point (P1dB) was increased

from 35 dBm to 38.5 dBm.

Figure 2.8: The transistor based Analog Predistorter Schematics [Qi 16].

Another straightforward benefit of APD is that can be designed to be implemented in the

same analog RF circuitry as the PA [Gao18,Gum18], although this solution provides less flexi-

bility in comparison to adaptive digital predistortion.
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2.2.2 Digital Predistortion

With the development of signal processing hardware (e.g. system-on-chip (SoC) and field pro-

grammable gate arrays (FPGAs)) with high speed processing and memory capabilities, digital

predistortion linearization has become the dominant linearization technique.

The principles of DPD are the same as in APD and summarized in Fig. 2.6. However,

unlike in APD solutions, the predistortion of the transmitted signal is carried out at base-

band in a digital signal processor. By applying DPD to the complex digital base-band signal,

the predistorter signal to be transmitted suffers a bandwidth expansion (e.g., 3× to 5× the

original signal bandwidth) that has to be taken into account to determine the DAC clock rate.

In addition, as depicted in the block diagram of Fig. 2.9, a feedback or observation path is

necessary to monitor the amplified signal and estimate the coefficients of the DPD. Again, the

ADC in the observation path has to be able to capture the output signal taking into account

the spectrum regrowth that appears due to the PA nonlinear behavior.

The digital predistorter is usually described by behavioral models or black-box models, that

are mathematical descriptors of the inverse non-ideal behavior of power amplifiers. Unlike phys-

ical models, where it is necessary to know the electronic elements that comprise the PA, their

constitutive relations and the theoretical rules describing their interactions, the extraction of

PA or DPD behavioral models relies only on a set of input-output observations. Consequently,

as it will be discussed in the following Chapters the performance of the DPD depends on the

adopted model structure and the parameter extraction procedure.

In literature it is possible to find a vast amount of published PA and DPD behavioral models

to address not only SISO systems [Sch09] but also MISO systems, for example when having to

characterize concurrent multi-band transmissions or dynamic supply modulation strategies for

the PA [Gil19]. In Chapter 3 of this thesis the principles of digital baseband predistortion will

be described and analyzed more in depth.
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Figure 2.9: Simplified block-diagram of an adaptive DPD.
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2.2.3 Hybrid Predistortion

With the increasing signal bandwidth requirements in 5G New Radio (NR), specially at mm-

wave bands (i.e., several hundreds of MHz), new hybrid analog/digital predistortion solutions

have been proposed.

Figure 2.10: The block diagram of the hybrid digitally controlled analog predistorter [Gum18].

Usually, the most powerful predistortion algorithms are achieved by employing digital signal

processing able to predistort complex baseband I-Q signals. With DPD we can compensate

for both static and dynamic nonlinearities (i.e., memory effects). However, one of the main

drawbacks of DPD compared to APD, is that requires higher baseband sampling and processing

speed with respect to the nominal processing performed in the modem and highly demanding

matrix operations, which increases the radio equipment power consumption. In order to relax

the baseband sampling requirements (i.e., DACs and ADCs) of DPD, hybrid solutions combining

APD with some sort of baseband processing have been proposed.

In [Gum18], for example, the authors present an hybrid digitally controlled (HDC) analog
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Figure 2.11: Photograph of the analog compensation circuit [Tom19].

predistorter (APD) in which linearization is performed by RF components in the analog domain.

The hybrid predistorter eliminates the constraint on the system bandwidth of the conventional

DPD. The requirements of data converters and reconstruction filters are relaxed in the APD

architecture, whereas HDC-APD eliminates the need of analog components by compensating the

delay digitally. The APD architecture alone is able to deliver ACPR of -46.4 dBc with an ACPR

improvement of 13.4 dB at 1 dB back-off. Furthermore, with digital intervention, the HDC-

APD further provides a significant improvement in the linearization performance and delivers

an ACPR of -53.5 dBc with an ACPR improvement of 20.5 dB.

A different approach is considered in [Tom19], where a hybrid analog/digital linearization

scheme for gallium nitride high-electron-mobility transistor (GaN HEMT) PAs is proposed. The

authors combine the conventional DPD based on a generalized memory polynomial (GMP)

behavioral model, with an analog feed-forward circuit specifically design for the compensation

of long-term memory effects due to the self-biasing caused by electron trapping in GaN HEMTs.

Experimental results demonstrate that by combining the analog predistortion with digital, it

achieves a level of inter-modulation distortion 6.8 dB better than the GMP DPD only.
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Chapter 3

Principles and Challenges in
Open-Loop DPD

3.1 Overview on Digital Predistortion Linearization

Digital predistortion (DPD) is one of the most extended linearization techniques used to mitigate

the well-known power amplifier (PA) trade-off between linearity and power efficiency. One of the

major benefits of digital predistortion is that it separates linearization and PA design into two

independent parts, which allows researchers to focus in what they are good at. It also boosts the

complexity of both parts. For more researchers come up with innovative, complex and efficient

power amplifiers, people in the field of DPD will also offer new coming promoted algorithms to

respond to the challenges posed by the new PAs.

DPD can be adaptive (closed-loop) or non-adaptive (open-loop). To be able to compensate

for eventual changes of the PA conditions (temperature, aging, etc), the DPD incorporates a

feedback path to allow adaptation of the DPD coefficients. Sometimes, the adaptation may

not be carried out in real-time but in a slower time-scale. Including a closed-loop adaptation

subsystem, inevitably increases the cost, usually on the bill-of-materials (BOM), and energy

consumption of the digital processing part. However, the consumption related to the adaptation

part can be mitigated by properly defining an adaptation policy in which, for example, some

subsystems can stay in idle mode when they are not used. In any case, in both open-loop and

closed-loop DPD the identification of the coefficients has to be properly carried out to ensure

the robustness of the DPD. That is, once properly estimated, the DPD coefficients should be the

optimum ones in a global (not local) sense for a given transmitted signal with certain statistical

features.

In general, a memoryless DPD can be seen as a single input single output (SISO) system,

where the output of the DPD function depends only on the nonlinear transformation of the

23
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actual input signal,

x = fDPD
(
u
)

(3.1)

When targeting also the compensation of the PA memory effects, the DPD function can be seen

as a multiple input single output (MISO) system, where the output of the DPD depends on

several input signals that are delayed versions on the actual input signal.

x = fDPD
(
u0, u1, · · · , uk, · · · , uK

)
(3.2)

where uk = u[n − τk] with k = 0, · · · ,K and where τk (τ0 = 0) are the most significant sparse

delays characterizing the memory of the PA. We now rewrite (3.2) as

x = fDPD
(
ν
)

(3.3)

where ν =
(
u0, u1, · · · , uk, · · · , uK

)
is the (K + 1) × 1 vector of (multiple) input signals to the

nonlinear DPD function fDPD.

3.1.1 DPD behavioral models

The DPD model is the basic part of the whole DPD algorithm. In general, it can be divided into

two major families: memoryless behavioral models and dynamic (with memory effects) models.

In memoryless model, the PA behavior is regarded as simple nonlinear mapping between the

input and output signal, then the reversed mapping will be exactly the pre-distorting function

to generate the PA input signal. The Saleh Model [Sal81] was initially applied to characterize

traveling wave tube (TWT) amplifiers. The two general functions to approximate the amplitude-

amplitude (AM-AM) and the amplitude-phase (AM-PM) inverse envelope characteristics of the

PA are:

fA(|u[n]|) =
αA |u[n]|

1 + βA |u[n]|2
(3.4)

fφ(|u[n]|) =
αφ |u[n]|2

1 + βφ |u[n]|2
(3.5)

where αA, βA, αφ, βφ are constant parameters chosen to approximate the inverse PA char-

acteristics.

Together with Saleh’s models, memoryless polynomial approximations are used to estimate

the PA inverse nonlinear static behavior,

x[n] =
P∑
p=0

αpu[n] |u[n]|p (3.6)
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where P the order of the polynomial function and αp complex coefficients.

However, to accurately compensate for the unwanted PA distortion we have to consider that

RF power amplifiers are not only a function of the input signal amplitude at the same instant,

but also related with the recent history of the input signal, especially when the input signal has

a large bandwidth. This phenomenon is usually called the memory effects of PA. The memory

effects model is designed to also consider the output signal of PA is the mapping of several input

signals in a short time period, which end up with a MISO function.

It is possible to find in literature an enormous amount of publications on PA or DPD behav-

ioral modeling to address not only SISO systems [Sch09] but also MISO systems, for example

when having to characterize and compensate the nonlinear distortion in concurrent multi-band

transmissions or in dynamic supply modulation strategies for the PA [Gil19]. Some of the most

commonly used polynomial-based behavioral models can be regarding as a simplified approx-

imation of the general Volterra series. Volterra series are aimed at describing time-invariant

nonlinear systems with fading memory. The discrete-time low-pass equivalent Volterra series

formulation considering complex signals is described in the following. The DPD output x[n]

taking into account the full Volterra series is defined as

x[n] =

P∑
p=1

Q−1∑
q1=0

Q−1∑
q2=q1

· · ·
Q−1∑

qp=qp−1

· · ·
Q−1∑

q2p−1=q2p−2

h2p−1(q1, q2 · · · , q2p−1) (3.7)

p∏
i=1

u[n− qi]
2p−1∏
j=p+1

u∗[n− qj ]

The series is composed by 2P − 1 kernels of increasing dimensional order. The main drawback

of using the full Volterra series is that the number of parameters grows exponentially when con-

sidering higher order kernels and typical communication signals do not present enough richness

to fully excite these kernels, which ultimately may lead to an ill-conditioned problem.

One of the most commonly used behavioral models found in literature is the memory poly-

nomial (MP) [Kim01], mainly for its simplicity to characterize the PA nonlinear behaviour

and its memory effects. An extension of the MP is the generalized memory polynomial (GMP)

behavioral model, proposed in [D. 06]. Unlike the MP, the GMP has bi-dimensional kernels (con-

sidering cross-term products between the complex signal and the lagging and leading envelope

terms) which increases the accuracy of the modeling at the price of increasing the number of

parameters. The input-output relationship in the DPD taking into account a GMP model is

defined as:
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x[n] =

Na−1∑
i=0

Pa−1∑
p=0

αpi · u[n− τai ]
∣∣u[n− τai ]

∣∣p
Mb∑
j=1

Nb−1∑
i=0

Pb−1∑
p=1

βpij · u[n− τ bi ]
∣∣u[n− τ bi − τ bj ]

∣∣p (3.8)

Mc∑
j=1

Nc−1∑
i=0

Pc−1∑
p=1

γpij · u[n− τ ci ]
∣∣u[n− τ ci + τ cj ]

∣∣p
where Pa, Pb, Pc are the nonlinearity orders of the polynomials, Na, Nb, Nc,Mb,Mc are the

lengths of memories. αpi, βpij and γpij are the complex coefficients describing the model, and

τa, τ b and τ c (with τ ∈ Z and τ0 = 0) are the most significant non-consecutive delays of the

input signal u[n] that better contribute to characterize memory effects. The total number of

coefficients of GMP model is O = PaMa+PbMbNb+PcMcNc. Note that the first branch (out of

three) of the GMP behavioral model in (3.8) corresponds to the definition of the MP behavioral

model.

3.1.2 Closed-Loop Adaptive DPD

The block diagram of a closed-loop adaptive DPD is shown in Fig. 3.1. In the forward path, the

input-output relationship at the DPD block can be described as

x[n] = u[n]− d[n] (3.9)

where u[n] is the input signal, x[n] is the predistorted signal and d[n] is the additional

distortion term, that can be described by any of the proposed DPD behavioral models published

in literature.

DPD DAC I Q
Mod PA

u[n] x[n]

ADC I Q
DeMod

~

coefficients 
UPDATE

y[n]

w

Figure 3.1: Block diagram of a closed-loop DPD.

Following a matrix notation, the L × 1 vector d =
(
d[0], · · · , d[n], · · · , d[L − 1]

)T
, with L

being the number of samples, is defined as

d = Uw (3.10)
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where the DPD coefficients, w, are iteratively extracted following a gradient descent approach

as,

wi+1 = wi − µ∆w (3.11)

with µ being a weighting factor and where the gradient ∆w is calculated using the LS algorithm.

∆w =
(
UHU

)−1
UHe (3.12)

where U is the L×O data matrix,

U =


ψ1[0] · · · ψq[0] · · · ψO[0]

...
...

...
ψ1[n] · · · ψq[n] · · · ψO[n]

...
...

...
ψ1[L− 1] · · · ψq[L− 1] · · · ψO[L− 1]



with ψq[n] (q = 1, · · · , O) being each of the specific basis functions at time n. For example,

taking into account the GMP behavioral model in (3.8), O = NaPa+MbNb(Pb−1)+McNc(Pc−1)

represents the order (i.e., number of columns) of the DPD function and w =
(
w1, · · ·wq, · · ·wO

)T
is the O × 1 vector of coefficients. The mapping between the GMP specific coefficients

(αpi, βpij , γpij) in wq and the general purpose DPD coefficients wq in (3.10) is shown in the

following:

wq =



αpi with q =
Na−1∑
i=0

Pa−1∑
p=0

iPa + (p+ 1)

if q ≤ NaPa

βpij with q = NaPa +
Mb∑
j=1

Nb−1∑
i=0

Pb−1∑
p=1

(j − 1)(Pb − 1)Nb + i(Pb − 1) + p

if NaPa < q ≤ NaPA +MbNb(Pb − 1)

γpij with q = NaPa +MbNb(Pb − 1)+
Mc∑
j=1

Nc−1∑
i=0

Pc−1∑
p=1

(j − 1)(Pc − 1)Nc + i(Pc − 1) + p

if NaPA +MbNb(Pb − 1) < q ≤ NaPa +MbNb(Pb − 1) +McNc(Pc − 1)

Finally, the L× 1 error vector is defined as
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e =
y

G0
− u (3.13)

with e =
(
e[0], · · · , e[n], · · · , e[L− 1]

)T
. Similarly, u is the L× 1 input signal vector, y is the

L× 1 PA’s output signal vector and G0 is the targeted linear gain.

For adaptive DPD, when the adaptation process is finished and the coefficients values have

converged, the DPD will perform well (with low ACLR and NMSE value) for the same input

signal. But when considering different test signals with the same bandwidth, same mean power

and similar PAPR, the DPD linearization has different performance with each set of signal.

Julieta Flomenbaum - 14/02/2017

Experimental Campaign
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Figure 3.2: Typical test-bench for DPD linearization of an RF PA using commercial boards from Texas
Instruments for signal generation and capturing [Flo17].

A test or design bench for DPD is usually assembled in a way to have the higher reliability.

The typical closed-loop DPD test bench consists in a powerful computer as the computational

core, with Matlab as the software platform, the device-under-test (DUT) and instrumentation

or commercial boards to generate and capture the RF signal, as shown in Fig. 3.2. The PA under

test will be connected to an arbitrary waveform generator (AWG) or commercial boards (with

DACs and up-converters) to generate the RF signal and, to close the loop, to a digital storage

oscilloscope (DSO) or commercial boards (ADCs) to digitize the RF signal with high accuracy.

An FPGA is often used to implement the DPD function to operate in real-time. The powerful

parallel computing capabilities of FPGAs make them a suitable platform to run the DPD func-

tion. In this thesis however, the DPD function will be also carried out in Matlab running in a

PC. The code that will be written in Matlab includes the signal alignment, normalization and
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coefficients extraction. The DPD model and parameters need to be precisely adjusted to match

the specific nonlinear behavior of the PA under test and the specific characteristics of the input

signal. This is usually the most important part.

3.1.3 Look-Up Table Implementation of DPD Models

In a mathematical sense, functions have three expressions: parsing, tables, and images. Given

a precision, known function parsing equations can be converted into tables, which is called the

look-up table (LUT).

The programmable logic (PL) unit, for example, of a system-on-chip (SoC) FPGA device,

can be used as the platform when targeting the DPD forward path into a digital signal processing

platform implementation. For example, by following a LUT approach as in [Gil08], [Mol17], or by

considering a polynomial approach using the Horner’s rule as in [Mra12], or by combining both

complex multipliers/adders and memory as in [Cao17]. As a result, those approaches provide

simplified design methods (i.e., including the minimum and most relevant basis functions) for

the DPD function in the forward path to save as many hardware logic resources and memory as

possible.

For DPD function, the look-up table between input and predistorted signal can be converted

according to a given set of coefficients. Particularly, the authors in [Ma13] discussed the ad-

vantages of LUT-based over polynomial/parsing based implementation of a DPD model. First,

the computational complexity of LUTs is much lower in terms of using fewer multipliers, while

reducing the number of multipliers means reducing the hardware resources requirements for the

DPD implementation. Secondly, also thanks to the lower number of multipliers, LUTs are more

numerically stable than polynomials, especially when the order of the polynomials is high. For

example, a 32-bit processor cannot handle polynomials greater than sixth order according to

practical experience. Thus, with higher order polynomials LUT takes further advantage as the

numerical instability becomes apparent. Third, the change of numerical scale will deteriorate

the predistorter’s robust performance when using polynomial multipliers, in the case that the

signal peak power changes significantly over time.

In hardware implementation, FPGA is the most attractive solution for implementing the

DPD function, thanks to its fast prototyping, high-speed processing, high density integration,

flexible implementation and parallel operation mechanisms [Gua10]. The DPD function can

be implemented in FPGA in form of either the polynomial-based or the LUT-based methods.

The polynomial-based implementation requires several complex multiplications and additions

[Kwa13]. function.

Due to the significant advantages of the LUT solution that discussed above, most research

has focused on the LUT direction. Several papers have shown the advantages of LUT-based
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implementations [Gil08,Gil11].

Figure 3.3: Block diagram of adaptive DPD on FPGA implementation [Gil11]

3.1.4 Sampling Rate Requirements in the Observation Path

The behavior of PAs usually changes with temperature and aging. Moreover, behavioral models

are very dependent on the signal characteristics, i.e., power levels, signal bandwidth, PAPR,

modulation type. It is therefore not possible to create a unique DPD function to predict and

compensate for all PA unwanted effects in the whole life time of a communication system. A

better idea is to monitor the changing of PA behavior and then update the DPD function

accordingly. The adaptive DPD is designed based on this idea, to make the DPD function

adaptive to the PA changes.

In DPD, the inverse behavior of PA is extracted with input-output data observations of the

PA. Thus, in adaptive DPD implementations an observation path is included to acquire the PA

output signal. This signal is then properly attenuated and time-aligned to compare it to the

original transmitted signal and thus evaluate the linearity of the whole system. The feedback

or observation path usually includes a analog down converter to move the RF output of the

PA into base-band or IF, as shown in Fig. 3.4. In case of down-converting it to IF, after the

ADC, further digital down-conversion to base-band is required. The most expensive component

is the ADC and the price is proportional to the sampling rate. Intuitively, to reduce the required

sampling rate at the observation path has significant economic benefits.

It is well known that due to the nonlinear behavior of the PA, the PA output signal suffers
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Figure 3.4: Block diagram of adaptive DPD.

spectral regrowth (3x to 5x the bandwidth of the original signal, depending on the severity of

the nonlinear distortion). Therefore, in order to identify the PA nonlinear behavior and train the

DPD, it is common to sample the output signal at twice the maximum output frequency to meet

the Shannon-Nyquist criteria and capture the out-of-band distortion without aliasing. First Zhu

in [Zhu92] for nonlinear memoryless systems and later Frank in [Fra96] extending it for nonlinear

systems with memory, formulated a general sampling theorem showing that it is sufficient to

sample at twice the maximum input frequency to reconstruct undersampled signals [Zhu92].

Recent research has demonstrated that several techniques can be used to reduce the sampling

rate requirement of DPD. For example, constraining the bandwidth of the DPD model and

linearize the PA within a limited bandwidth [Yu12]. In this way, the feedback signal can be

filtered before sampling without affecting system performance. A different approach consists

in filtering also the feedback signal before sampling, but the DPD produces full-band signals

in [Gua12a, Liu14, Ma14, Liu15, Bra15]. In this case, the model extraction algorithms need to

apply spectral extrapolation to the loss function to achieve full-band distortion cancellation.

Another method is to remove the anti-aliasing filter before sampling [Wan15a, Wan16, Koe06,

Wan17,Che17]. The aliased feedback signal is then used together with specially processed input

signals to extract model coefficients. The under-sampling method do not effect the accuracy of

the sampled signal in time domain, which means the original undersampled signal is able to be

used for DPD update estimation (see Fig. 3.5).

In [Wan16, Wan15a] researchers from Ireland and Spain published the idea to re-define the

sampling problem for the extraction of the DPD coefficients. For example, in [Che17] the authors

showed the possibility of using up to 80 times lower Nyquist frequency to retrieve the non-linear

characteristics of the PA and fulfill the requirements for DPD parameters extraction (see Fig.

3.6). Applying under-sampling methods to DPD parameter extraction facilitates the use of ADCs

with significantly lower sampling frequency, which offers cost advantages. In [Wan16], Z. Wang
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Figure 3.5: The undersampled signal in time domain

et al. showed that if the acquired signal from the PA output has the same normalized magnitude

distribution as the original input signal, this is sufficient to update the DPD function. In other

words, it has nothing to do with the sampling rate. In [Wan15a], T. Wang et al. proposed a

mesh-method to accurately choose (consecutive or non-consecutive) samples from the PA output

signal to reduce the computational cost of the parameters extraction. Therefore, the selection

results in decimated training signals that present aliasing and yet are valid to obtain effective

parameter identification. The mesh-selection method will be further discussed in Chapters 4 and

5 of this thesis.

Figure 3.6: Performance of under-sampling method on (a) Class AB PA (B) Doherty PA [Che17].

3.1.5 Dimensionality Reduction in DPD Linearizers

Dimensionality reduction techniques aim at analyzing a given number of features, such as di-

mensions, variables, basis functions or components, under consideration in a given set of data.

Based on the result of such analysis, outstanding features are able to be highlighted while the

redundant or irrelevant ones will be eliminated. Thus, the model’s performance is improved or

kept at the same level at least [Pha19a]. These techniques can be sorted into:
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• Feature selection, selecting the most relevant variables from a random set of original vari-

ables.

• Feature extraction, creating a reduced set of new variables that are linear or nonlinear

combinations of the original variables.

Feature selection techniques are used in the field of DPD linearization to reduce the number

of parameters of the DPD function. The objective of feature selection is to enforce the sparsity

constraint on the vector of parameters by minimizing the number of active components (i.e.,

`0-norm) subject to a constraint on the `2-norm squared by the identification error. In litera-

ture several approaches have been proposed targeting both a well-conditioned identification and

model order reduction, such as: least absolute shrinkage and selection operator (LASSO), used

for example by Wisell et al. in [Wis08] and consisting in a `1-norm regularization; the Ridge re-

gression, used for example by Guan et al. in [Gua12b] and consisting in a `2-norm regularization;

the sparse Bayesian learning (SBL) algorithm, used by Peng et al. in [Pen16a]; or the orthogonal

matching pursuit (OMP), a greedy algorithm for sparse approximation used in [Rei15] by Reina

et al. to select the most relevant basis functions of the DPD function.

A different approach to reduce the parameters of the DPD system, are the feature extraction

techniques. Unlike feature selection techniques, feature extraction techniques do not reduce the

number of coefficients of the DPD function in the forward path. With techniques such as the

principal component analysis (PCA) [Gil13a] or the partial least squares (PLS) [Pha18a], it is

possible to create a new reduced set of orthogonal components, which are linear combinations

of the original basis functions, and then apply dimensionality reduction in the DPD adaptation

system. These techniques can be seen as an alternative to common solutions used to solve the

least squares regression problem, such as the QR factorization combined with recursive least

squares (QR-RLS) [Mur06]. Feature extraction techniques ensure a proper well-conditioned esti-

mation and a reduction in the number of parameters in the identification process. Alternatively,

both feature selection and future extraction techniques can be properly combined as in [Pha18b]

by:

• Doing an a priori off-line search (e.g., OMP, LASSO) to reduce the number of basis func-

tions of the DPD function in the forward path.

• Using PCA or PLS techniques for the parameter extraction in the adaptation path.

3.2 Challenges of Open-Loop DPD

Even though, as stated above, DPD linearization is able to boost PA power efficiency while guar-

anteeing linearity values (even when considering high bandwidth signals) most of the avionics
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companies refuse to import this technology into their product development chain. This phe-

nomenon is especially obvious in commercial VTB companies, even the top level video transfer

providers, like the AMIMO company of Israel and DJI of China. This means the DPD method

still presents some drawbacks for being considered in large scale implementation in the field of

avionics.

3.2.1 High Technical Requirements

From the industry perspective, to build a team for designing a transmitter with DPD (even an

open-loop one where the parameters are pre-calculated off-line in the factory), it is necessary

to have engineers that master Matlab-controlled RF system design to assemble a test-bench for

validation and engineers that master real-time implementations with system-on-chip (SoC) FP-

GAs. The first ones have to be familiar with academic papers to prototype the DPD algorithms

and the RF system, while the second ones have to have good FPGA coding skills.

In addition, the instrumentation required to assemble a laboratory test-bench to carry out

DPD research can be significantly expensive. For signal generation, arbitrary waveform gener-

ators are required. While, high resolution oscilloscopes, high-speed digitizers or even spectrum

analyzers are necessary to capture the PA output data. Yet most commercial VTB companies

only need to deal with the RF front-end after the transceiver chip.

Last but not least, a radio frequency (RF) transmitter with DPD linearization incorporated

means that is going to have significantly higher complexity than a transmitter without lineariza-

tion. Not only due to the additional observation path including a down-converter and an ADC,

which can be deminished in open-loop approach, but also due to the additional computation

required in the FPGA and the higher DAC clock requirements (due to the bandwidth expansion

after DPD) in the forward path. The cost will grow up with the new system requirements and

taking into account the extra investment on its development team.

3.2.2 Non-Robustness

Even with a trained team and sufficient tests, the open-loop DPD is still a high risk approach due

to its non-adaptive nature. The PA behavior may change with the fluctuation of temperature,

aging and other factors. Thus, most non-adaptive DPD cannot compromise the avionics scenario,

where the size and cooling power is limited in the sky. When it goes to the adaptive DPD, the

DPD function is updated all the time to track possible variations in the PA characteristics. But

if the input signal goes out of the range of the test area of the DPD method, unlike the behavior

of analog chips, the digital part has a possibility to generate unwanted results (i.e., bad points).

These bad points will appear as extra peaks of the RF signal, extending the PAPR or peak to

unexpected power levels, which may lead irreversible damage of the PA. Moreover, if the DPD is
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Figure 3.7: DPD linearization test-bench implemented for the IMS2017 student design competition.

not carefully designed, when the PA enters in hard saturation, it may make the DPD algorithm

to diverge.

Recent Studies of the DPD Robustness

DPD behavioral models become more and more complex in order to achieve better performance

and to compensate for unwanted distortion in more complex amplification scenarios. In addition,

some researches has dedicated their efforts to improve the DPD robustness.

For example, the authors in [Isl17] focus on the numerical problem of the DPD procedure.

They identify the cause of divergence in dynamic rational function, i.e. the function of the DPD

behavioral model, and propose a new computational process called constrained coefficient identi-

fication procedure to avoid the divergence. The experimental results on a GaN Doherty PA with

40 MHz and 80 MHz bandwidth signals proved the validation of the constrained identification

procedure.

It is not very difficult for researchers and engineers to have an accurate DPD behavioral

modelling performance in the laboratory by considering the PA behavior to be time-invariant.

However, the evolution of the PA non-linear behavior will directly deteriorate the performance

of DPD in practical cases. In adaptive implementation, the DPD method is able to capture

eventual changes of the PA behavior through a feedback path and then update the DPD function

coefficients to compensate for it. But if the PA variant behavior approximates the adaptation

rate of the DPD algorithm on a time scale, it causes a relatively obvious robustness problem.

To enhance DPD robustness in front of thermal variations, a direct solution is to take the
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Figure 3.8: Scaling of the AM-AM characteristic to equalize the small signal RF gain feature. [Wol10]

temperature as an independent variable to the DPD behavioral model. In [Yu17], for example,

the authors propose a canonical piecewise linear (CPWL) functions based DPD modeling to

compensate thermal memory effects. In [Wol10], instead, the authors provide a simple way to

linearize a power amplifier with only static characteristics (AM-AM and AM-PM curve) over

the entire temperature range. The author illustrated the variance of PA gain feature which

significantly effects the DPD performance (see in Fig. 3.8). The system will first gather all

characteristic curves at different temperatures and map them by means of scaling factors into a

combined resultant curve. The inverse static curve is mapped into a LUT and properly combined

with the temperature scaling factors are able to implement a DPD that takes into account

temperature variations, as shown in Fig. 3.9. As a result, the linearization performance is shown

to be constant over the entire temperature range from -30℃ to 90℃.

Figure 3.9: Temperature independent predistortion system using only one LUT for all temperatures
[Wol10]

Robustness Analysis of the DPD Function

In PA behavioral modeling or DPD linearization, the mathematical model (or fitting function)

consists of a linear combination of nonlinear basis functions composed not only of the actual

sample but also past samples of the input (in order to take into account memory effects). The



Chapter 3. Principles and Challenges in Open-Loop DPD 37

coefficients of this fitting function are extracted from the original input data matrix (containing

the basis functions of the PA behavioral model or the DPD linearizer) through some adap-

tive algorithms, either sample-by-sample or block-by-block stochastic gradient algorithms. The

widely used LS algorithm for linear regression (despite the fact that the DPD fitting function

is nonlinear, it is however linear in parameters) can be seen as a simplified alternative to the

Wiener filter theory. As explained in [Hay91], the Wiener filter is derived from a set of averages

with the result that its coefficients are optimum (in the probabilistic sense) and are obtained for

all realizations of the operational environment (assumed to be wide-sense stationary). Instead,

the LS method is considered a deterministic approach, involving the use of time averages, with

the result ( optimal filter coefficients ) strongly depend on the number of samples used in the

computation.

Therefore, a priory, the LS estimator may need a large number of data samples (or equa-

tions) to obtain the best approximation of the coefficients of the fitting function. As reported

in [Gua12b], using short sequences of data samples leads to two consequences: a) the ill-

conditioning problem due to the rank deficiency of LS matrices; and b) the statistical mis-

match problem, because the short data sequence often cannot fully represent (accuracy prob-

lem) the statistical property of the PA output signal. Some efforts have been made to solve the

ill-conditioning problem as well as to reduce the model extraction errors when using a small

number of data samples to characterize PA behavioral models [Gua12b]. Alternatively, reducing

the order of the DPD model has beneficial effects in both the computational complexity and

in the conditioning of the data matrices. The idea of using dominant eigen-values/eigen-vectors

for reducing the model order was presented in [Bra08, Gil13b]. However, to the best author’s

knowledge, few works have addressed the problem of determining statistical features that allow

avoiding the accuracy problem in DPD linearization.

Because the fitting function is based on the data matrix, the domain of this function is

also determined by the data matrix. The data matrix is generated from several sets of training

signal, thus the range and distribution of the training signal determines the domain of the fitting

function. The relation between the training signal and the fitting function shows how to analyse

and evaluate its domain.

3.2.3 Design Complexity

As an edge technology, DPD now is still a hot topic in academia research. Although there are

always several new publications per year and lots of them are shining, it is still difficult for

engineers from industry to find a proper way to develop the DPD method taking into account

the academic research. In other words, the product development of DPD implementation is kind

of semi-research procedure, technicians need to search and test lots of methods and behavioral

models proposed in all the research papers to figure out the proper fit for their own product. So
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the project timeline becomes much more unpredictable at the same time.

All the drawbacks mentioned above does not mean that DPD linearization has no usage or

market in the avionics sector, but indicates that there is still a long way to go to make it more

popular and easy to use in the commercial industrial avionics. Furthermore, the main point of

this journey is not purely academic DPD research, but the link between research and industrial

implementation.

3.3 Design, Test and Implementation Strategies to Facilitate
Open-loop Industrial Development

This thesis aims to contribute to facilitate an engineering approach for industrial DPD imple-

mentation in the avionics field, addressing some of the limitations discussed in the preceding

subsection. This research focuses on two main parts, first is to reduce the computational con-

sumption of the DPD algorithm and the update procedures, second is to provide an artificial

intelligence reinforced DPD tuning method.

3.3.1 Test Signal Evaluation and Computational Reduction

Before being implemented in a FPGA platform for real-time linearization of the PA, the DPD

is first prototyped and tested in a test-bed. As explained before, this test-bed is usually based

on instrumentation (or commercial boards) connected to a PC running Matlab (or Python) to

carry out the digital signal processing. In any case, during the test some signal will be first used

as the training signal to train the DPD function. Then, several validation signals will be sent to

the PA via the DPD linearizer to validate the robustness and stability of the DPD.

In order to train a DPD to be able to operate in open-loop, the test signal is of crucial

importance, since its characteristics, i.e., mean power, bandwidth, type of modulation, PAPR

will determine the coefficients of the specific DPD. Since the DPD model is signal dependent

(since the PA behaviour is dependent on the type of excitation), the off-line DPD training should

take into account all possible configurations at which the open-loop DPD will operate. Therefore,

the training signal should be enough representative (from a statistical point of view) to be able

to capture the all the features of the signal that will be later used in the real scenario, otherwise

it will lead to a non-robust DPD identification.

One of the contributions of this thesis is to propose a new method based on mesh-selecting

to generate a test signal that is able to capture the required statistical information with the

minimum number of samples, as it will be detailed in chapters 4 and 5. Considering a LS extrac-

tion of the DPD coefficients, the proposed mesh-selecting methods will contribute to decrease

the number of rows of the data matrix and thus reduce the computational load.
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3.3.2 Artificial Intelligence Reinforced DPD Tuning

In a first approach to the use of artificial intelligence (AI) to help with the DPD design, the

weblab-based DPD test mode will be widely used in this research, which contains a different

way to organize and link the experimental set up, the digital processing computer (or the server

in the cloud platform ) and the physical researchers all together.

A time demanding part of DPD design is to choose a proper DPD behavioral model and

then adjust its parameters. And it usually includes a combining of different methods together

to compensate wider bandwidth and higher PAPR. This procedure not only requires some

knowledge of DPD algorithm and experience adjusting the DPD linearizer, but also dealing

with some non-logical phenomena, such as the tuning of CFR and internal signal gain. Thus,

actually the trial and error is one of the popular approach in real DPD design/implementation,

which results time consuming and sometimes leads to unpredictable results. Besides, for obvious

reasons, usually it is not possible to try all the parameter configurations by hand in the laboratory

and test them properly with large amount of signals to have statistically representative results.

The final result is often a trade-off between performance and time limitation.

An artificial intelligence structure will be established as an auto-design platform. The global

optimization methods (e.g., the simulated annealing, genetic algorithms, adaLIPO or ant colony

algorithms) will be first implemented to match PAs with DPD algorithms and tuning the param-

eters automatically. The algorithm will automatically test different DPD models with different

parameters combined with a large amount of representative test signals. The chosen DPD behav-

ioral model and its adjusted parameters will appear as the solution when the artificial intelligence

algorithm finishes all its test and analysis.

The state of the art in AI strongly rely on the computing power. An effective AI approach,

such as YOLO v3 [YOL] in the field of object detection, requires large amount of storage

space and parallel computing power, which ends up with random access memory (RAM) space

and a big number of graphics process unit (GPU). Thus, a cloud-based platform is better for

implementing the AI software rather than to buy more and more computers in the microwave

laboratory. The prerequisite is to link the RF platform containing the device-under-test (DUT)

to the cloud-based AI software. The concept of a webLab provides an internet data interface

to exchange I-Q data between a RF test-bench containing the DUT and the digital processing

machine where the base-band processing algorithms will run. In this thesis, most of experimental

results were obtained in webLabs with different PAs: Class-AB PAs, class-J PAs or even load

modulated balanced amplifiers. The details of the webLabs used to obtain the experimental

results are given in section 5.4 of Chapter 5

The long-term objective (or the prospect vision) is that multiple remote test-beds will be

allowing access to the artificial intelligence core algorithm (AICA). Researchers from all over the
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world will be able to upload their new idea of DPD model or linearization method. The AICA

will test the new methods/models with all available PAs (test-beds) automatically and then will

show the researcher a wide variety of results to evaluate the potential linearization performance.

PAs designers will receive a suitable DPD solution to linearize their designs that will be chosen

automatically by AICA selected from the most relevant academic publications.

In this dissertation, the author is focusing on the basic approach of the vision. The global

optimization algorithm is implemented to optimize power amplifier behavior modeling, DPD

linearization and high complex PA tuning. The analysis and experimental results will be shown

in Chapter 6 and Chapter 7. The result of global optimization algorithm illustrates the advantage

of applying artificial intelligence in the digital communication front-end and also envisages the

benefits of the AICA vision.



Chapter 4

Under-sampling Effects and
Complexity Reduction Techniques
for the Parameters Identification
Subsystem

4.1 Introduction

In adaptive digital predistortion (DPD) linearization, one of the key elements is the observation

or feedback path. It has to be linear to allow a correct identification of the DPD coefficients

and, in order to be competitive, it has to be as cheap as possible.

On the one hand, several efforts [Zhu92,Fra96,Bra11] have been dedicated to overcome the

standard approach where, the power amplifier output signal is down-sampled and digitized at a

sampling rate that is several multiples of the Nyquist rate to capture the out-of-band distortion

(bandwidth expansion 5x according to the rule of thumb) without aliasing. Since the price of

an ADC increases with the sampling rate and resolution, it is possible to reduce costs by using

under-sampling ADCs in the observational path. For example, considering a 10 MHz band-pass

bandwidth LTE signal and a bandwidth expansion after the PA of 5 times, we may need a

minimum sampling rate of 50 MS/s. However, as it will be shown later in the paper it is possible

to identify the coefficients with significantly lower sampling rates reducing the cost of the ADC

several factors (e.g. using a 4.25 MS/s instead of a 105 MS/s ADC with the same resolution can

reduce costs at least by a factor of 5).

On the other hand, the adaptation algorithm has to be as computationally efficient as possi-

ble. As discussed in Chapter 3, in PA behavioral modeling or DPD linearization, the mathemat-

ical model consists of a set of basis waveforms from nonlinear transformations of the input (or

several inputs) signals. To estimate the coefficients describing the PA behavioral model or its

41
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inverse DPD function, we have to address a quadratic minimization problem, which typically is

conducted by a least squares (LS) o recursive least squares (RLS) linear regression, since these

models are composed by nonlinear basis functions but linear in parameters.

The number of parameters required by these behavioral models grows dramatically when

considering memory effects. This has a negative impact in the LS-based model extraction be-

cause it increases the computational complexity and compromises the conditioning of the LS

estimation. Because the data samples used for the LS regression are not independent from each

other, the LS estimator needs a large number of data samples (or equations) to obtain the best

approximation of the model coefficients. As reported in [Gua12c], using short sequences of data

samples leads to two consequences: a) the ill-conditioning problem due to the rank deficiency

of LS matrices; and b) the statistical mismatch problem, because the short data sequence often

cannot fully represent (accuracy problem) the statistical property of the PA output signal.

Some efforts have been made to solve the ill-conditioning problem as well as to reduce the

model extraction errors when using a small number of data samples to characterize PA behavioral

models [Gua12c]. Alternatively, reducing the order of the DPD model has beneficial effects in

both the computational complexity and in the conditioning of the data matrices. The idea of

using dominant eigenvalues/eigenvectors for reducing the model order was presented in [Gil13b].

In this Chapter we present a first attempt of reducing the computational complexity of the

least squares (LS) identification of the parameters describing PA behavioral models. To reduce

the dimensions of the input data matrix, two strategies are proposed:

i. Model order reduction based on the principal component analysis (PCA) theory.

ii. Apply a mesh-selecting method to reduce the number of required equations.

In this context, the effect of using under-sampling ADCs for the LS parameter extraction aim-

ing at reducing the costs of PA identification is also discussed. Finally, the trade-off between

the cost/complexity reduction and quality (or identification accuracy) loss is evaluated. The

proposed strategies can also be considered for low-computational cost digital predistortion im-

plementations.

As it will be described in the following, in this Chapter we combine an AM-AM mesh-

memoryless selecting method to reduce the number of rows (i.e., equations) with the PCA

feature selection technique, oriented at reducing the number of columns (i.e., basis functions)

of the data matrix. Chapter 5 will focus in the reduction of the number of required samples

to extract the PA or DPD behavioral models, proposing improved mesh-selecting techniques.

We will combine these mesh-selecting techniques with dimensionality reduction techniques to

reduce the computational complexity of the adaptation subsystem. The topic of dimensionality

reduction techniques, however, falls out of the main scope of this thesis. Instead, we will used
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the research developed by a member of our research group, Dr. Thi Quynh Anh Pham, in her

PhD Thesis [Pha19c].

4.2 Complexity Reduction Techniques for the Parameters Iden-
tification Subsystem

4.2.1 The Application of Under-Sampling ADC

The Shannon-Nyquist theorem ensures perfect reconstruction of a band-limited signal from

samples taken at rate of 2fmax. According to [Fra96], for modeling a Volterra-based nonlinear

system excited by a band-limited signal, it is sufficient to sample the continuous-time input and

output signals at twice the maximum input frequency rather than double the output frequency.

As a consequence, we may only need to sample the extended bandwidth (due to the spectral

regrowth caused by the PA nonlinear behavior) of the output signal at twice its maximum

baseband input frequency.

At this point, we will define the under-sampling ratio (USR) as the ratio between the

Nyquist-rate ADC sampling frequency required for capturing the extended PA output signal

(fsExtended BW
) and the actual ADC sampling frequency (fsADC ) employed to capture the PA

output signal:

USR =
fsExtended BW

fsADC

(4.1)

As it will be shown later in the experimental results section, since the PA output signal will be

only used for the parameter extraction (we do not need to reconstruct it in the analog domain),

the aliasing will not be an issue. Therefore, generally speaking, there is no USR limit in order to

be capable of extracting the PA behavioral model (or DPD) parameters. The only constraint for

a good identification comes from the minimum amount of equations (or samples) required for the

LS extraction. The number of linear independent equations relies on the ability to capture the

statistics of the output signal. Therefore, the accuracy of the LS estimation will not rely on the

sampling frequency, but on the fact that the number of captured samples are enough statistically

rich. As a consequence, if we will use very high USR, the only problem is that it will take more

time to gather a representative set of equations to perform an accurate LS identification.

4.2.2 Dimensionality Reduction Using Principal Component Analysis

Principal component analysis (PCA) is is a statistical learning technique suitable for converting

a basis of observed and eventually correlated data into a basis of uncorrelated data, named

principal components. The principal components are linear combinations of the original basis

functions oriented at capturing the maximum variance of the data contained in the data matrix.
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Consequently, it is possible to apply dimensionality reduction by discarding those components

(eigenvectors) with smaller eigenvalue.

An example on how to apply the PCA theory to reduce the model order of a DPD was

published by the authors in [Gil13a]. With this technique, we can perform a change of basis

where the number of required coefficients decreases by a certain reduction factor (RDF), i.e.,

number of coefficients of the original basis divided by the number of coefficients of the new basis.

The reduced order LxR data matrix X̂ is defined as

X̂ = XP (4.2)

where X is the L×O original data matrix and P is the O×R transformation matrix obtained

by finding the eigenvalues and eigenvectors of the covariance matrix XHX.

With PCA, thanks to the orthogonality property of the resulting transformed matrix, the

DPD coefficients extraction can be carried out with simple dot products (avoiding the Moore-

Penrose matrix inversion in the LS solution). In addition, by using the adaptive PCA tech-

nique [LB18] it is possible to apply dimensionality reduction in the coefficients estimation by

selecting only the minimum necessary number of principal components required to meet the tar-

get linearity levels, specified in terms of adjacent channel power ratio (ACPR) and normalized

mean square error (NMSE).

4.2.3 AM-AM Memoryless Mesh-Selecting Method

For PA behavioral modeling and DPD linearization, it is essential to collect enough statistically

representative input and output data samples. Normally, this data collection is carried out by

taking all the samples in a given time period and taking into account a certain sampling rate.

If the number of collected samples is not sufficiently high, it may not be enough to properly

represent the PA nonlinear behavior and its dynamics (accuracy problem). Besides, the number

of collected samples is directly related to the computational complexity of the LS extraction. In

order to reduce the input data matrix dimensions, we propose a method that consists in creating

a mesh to properly select the most significant input-output data according to the statistical

distribution of the PA AM-AM characteristic.

The principle of this mesh selecting method consists in dividing the AM-AM characteristic

into several segments and calculating the number of samples in every segment, obtaining thus a

two-dimensional histogram of the PA AM-AM characteristic, as shown in Fig. 4.1. Then, in the

mesh-selecting process, the data is collected according to the probability of each segment of the

mesh. Therefore, for a given or fixed amount of data (or number of equations) to extract the PA

coefficients, instead of using sets of consecutive data samples (as it would be the case shown in

Fig. 4.2), by using the mesh-selecting method the data is gathered with the objective of fitting
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Figure 4.1: 2-D histogram of the PA AM-AM characteristic taking into account 25, 600 samples.

Figure 4.2: Collection of a fixed number of consecutive data samples for the LS coefficients extraction.

the original PA AM-AM characteristic histogram (see Fig. 4.3). As depicted in Fig. 4.3, with

the same number of collected samples as in Fig. 4.2, thanks to the mesh selecting method it is

possible to better represent the PA AM-AM characteristic histogram.
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4.3. 2-Dimensional MISO Model for Envelope Tracking PA behavioural modeling and DPD

linearization

Figure 4.3: Collection of a fixed number of data samples for the LS coefficients extraction using the
mesh-selecting method.

4.3 2-Dimensional MISO Model for Envelope Tracking PA be-
havioural modeling and DPD linearization

Figure 4.4: Block diagram of an envelope tracking PA system with DPD.

The block diagram of the envelope tracking (ET) system with DPD that we have used to

capture input-output data records to run the experimental tests is depicted in Fig. 4.4 and

a photo of the test-bench is shown in Fig. 4.5. This system is intended to be used for DPD

purposes, however, for the sake of simplicity, in this Chapter we will be showing results for

PA behavioral modeling, while in Chapter 5, results using mesh-selecting techniques for DPD

linearization will be shown.

The well-known and widely used metrics to evaluate the accuracy of the behavioral models
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Figure 4.5: Picture of the experimental ET PA test-bench [Gil15].

are the normalized mean square error (NMSE) and the adjacent channel error power ratio

(ACEPR). Finally, the test signal is a LTE signal with 10 MHz and an extended bandwidth

after the PA amplification of around 50 MHz. To properly characterize the nonlinear distortion

of the PA with dynamic supply we will consider the behavioral model described in [Gil12b], with

the following input-output relationship.

ŷ[n] =

M−1∑
j=0

Q−1∑
q=0

N−1∑
i=0

P−1∑
p=0

αpiqj φpiqj [n] (4.3)

Note that two-dimensional (2-D) basis functions are used to characterize the ET PA behavioral

modeling:

φpiqj [n] = (Es[n− τj ])q x[n− τi] |x[n− τi]|p (4.4)

with Es[n] being the envelope of the input signal after the shaping function [Mon10b], x[n] being

the input signal and τ being the most significant sparse delays. Following a matrix notation, the

L× 1 estimated output vector results

ŷ = Xw (4.5)

with w =
(
α0000, · · · , α(M−1)(Q−1)(N−1)(P−1)

)T
being the O×1 vector of coefficients of the model

and where O = P ·N ·Q ·M . The input data matrix
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X =


φ0000[0] · · · φ(M−1)(Q−1)(N−1)(P−1)[0]

...
...

φ0000[n] · · · φ(M−1)(Q−1)(N−1)(P−1)[n]
...

...
φ0000[L− 1] · · · φ(M−1)(Q−1)(N−1)(P−1)[L− 1]


has dimensions L × O, where L is the number of data samples or equations. Finally, the least

squares solution is defined as,

w = (XHX)−1XHy (4.6)

with y being the L× 1 output data vector captured with the under-sampling ADC, and where

the error vector is e = y − ŷ.

4.4 Experimental Results

Fig. 4.6 shows the NMSE and ACEPR for different reduction factors (RDFs) when applying

model order reduction based on the PCA theory. The original number of coefficients was O =

144. Without PCA reduction (RDF = 1), the LS identification may be ill-conditioned when

considering a small number of equations, while for low RDF values (e.g. RDF = 3 → R = 48

coefficients) the ACEPR and NMSE are kept almost the same. Unfortunately, for high RDF

values the identification accuracy will be degraded.

Figure 4.6: NMSE and ACEPR for different RDFs.

To evaluate the data matrix dimensions taking into account the complexity of the model

(in terms of number of coefficients), we define the data matrix ratio as the ratio between the

number of equations (rows) and the number of coefficients (columns).
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Fig. 4.10 and Fig. 4.8 show the NMSE and ACEPR for different USRs taking into account

different number of equations. The PA behavioral model after PCA model order reduction has 48

coefficients. As observed, at least 1000 equations (matrix ratio of around 20) are required in order

to obtain good NMSE and ACEPR values. Moreover, the variability shown when considering

a fixed number of equations is not due to the USR, or for not being compliant with Nyquist.

Instead, this variability is due to the fact that for some specific set of captured data it is not

possible to properly represent the statistical property of the PA output signal.

Figure 4.7: NMSE for different USRs and data matrix sizes.

Figure 4.8: ACEPR for different USRs and data matrix sizes.

Fig. 4.6 shows the NMSE and ACEPR for different PCA reduction factors and number of

equations. It can be observed that for low values of PCA it is necessary to use a lot of equations

and yet we can end up with an ill-conditioned LS identification. On the other hand, as shown

before, the NMSE/ACEPR is degraded with high RDFs no matter how many equations we use.
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Finally, with a proper RDF it is possible to keep the NMSE/ACEPR accuracy and significantly

reduce the number of required equations necessary to extract the behavioral model coefficients.

Figure 4.9: NMSE for different RDFs and data matrix sizes.

Figure 4.10: ACEPR for different RDFs and data matrix sizes.

The performance of the proposed AM-AM memoryless mesh-selecting method is depicted in

Fig. 4.11 and Fig. 4.12. The NMSE and ACEPR values are plotted for different data matrix ratios

and considering different mesh densities. The advantage of using the mesh-selection method in

comparison to using the consecutive original data, is that we can slow-down the drop of accuracy

(measured in terms of NMSE and ACEPR) when decreasing the matrix ratio. In other words,

thanks to the proposed AM-AM memoryless mesh-selecting method we can reduce the number

of required equations to extract the parameters of the PA behavioral model and thus reduce

the computational complexity of the LS identification. As expected, the higher the mesh density

the better the NMSE/ACEPR for a given matrix ratio. However, the improvement achieved
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Figure 4.11: NMSE for different data matrix sizes considering the AM-AM memoryless mesh-selecting
method with different mesh densities

Figure 4.12: ACEPR for different data matrix sizes considering the AM-AM memoryless mesh-selecting
method with different mesh densities
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when considering high density mesh values is not significant enough to compensate for the extra

complexity introduced.

4.5 Conclusion

In this Chapter we have discussed how there is not apparent limit for the maximum USR that

can be applied to properly identify the coefficients of a PA behavioral model. Instead, the key

factor relies on both the basis functions (and thus number of parameters) used to characterize

the PA nonlinear behavior; and the minimum amount of equations (or samples) required for the

LS extraction. Consequently, it should be possible to significantly relax the specifications (and

costs) of the ADC.

By using model order reduction based on the PCA theory combined with a proper selection

of the equations through the AM-AM memoryless mesh-selecting method, we can significantly

reduce the data matrix dimensions as well as to improve the matrix conditioning. However, the

price for reducing the computational complexity is some accuracy loss. Because of this trade-off,

the amount of quality loss that we can allow will determine the bottleneck for computational

cost reduction. For example, considering our 2-D PA behavioral model, an original data matrix

of dimensions 3500× 144 can be reduced up to 384× 48 with less than 3 dB of accuracy loss in

both NMSE and ACEPR.

In next Chapter we will present and compare alternative mesh-selecting methods and we will

take the I-Q with memory mesh-selecting method as a reference to properly combine it with an-

other feature extraction dimensionality reduction technique in the context of DPD linearization.



Chapter 5

Enhanced Mesh-Selecting Methods

5.1 Introduction

The parameters identification of power amplifier (PA) behavioral models or digital predistortion

(DPD) linearizers rely on measured input-output data observations and the specific mathemati-

cal models chosen to characterize the PA nonlinear behavior and its dynamics. These models are

usually described as linear combinations of nonlinear basis functions, defining a linear regression

problem where the data matrix is tall, i.e., significantly more data samples than basis functions.

Therefore, the problem of behavioral modeling or DPD linearization has no exact solution since

it is over-determined (i.e. more equations than unknowns).

While the method of least squares (LS) performs well to extract the coefficients of over-

determined systems when considering big data sets, it may face the risk of over-fitting when

the behavioral model contains more parameters than the model really needs. In addition, when

the number of training data samples is not statistically rich enough, the LS solution may suffer

from uncertainty leading to an inaccurate parameter extraction. Reducing the computational

complexity in the identification subsystem and avoid the poor predictive performance derived

from over-fitting or the lack of significant training data is one of the objectives pursued in the

field of PA behavioral modeling and DPD linearization.

Reducing the tall data matrix in the dimension of the columns (i.e., basis functions) has been

widely addressed in literature to both reduce the computational complexity and avoid over-fitting

problems (e.g., [Pha19b, LB18, Pha19c, RT15]). Reducing the number of rows (i.e., equations)

has been indirectly addressed by several papers targeting undersampling strategies to reduce

the sampling rate of the A/D converters in the observation path. For example, techniques based

on filtering the feedback signal before sampling and then applying some additional processing

to be able to achieve full-band distortion cancellation in the forward path [Liu15, Bra15]; or

directly linearizing the PA within a limited bandwidth [Yu12]; or even including techniques

53
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Mesh-Selecting

based on poly-phase filters to reduce the DPD clock rate in the forward path [Li20]. In this

dissertation however, we assume that the behavioral model coefficients can be extracted with

aliased signals [Wan15a,Wan17] obtained by applying undersampling techniques with no filtering

in the observation path.

Assuming, therefore, that the PA or DPD behavioral model coefficients can be extracted with

aliased signals obtained by applying undersampling techniques, some sample selection methods

were presented in [Wan15a, Kra20]. The genetically optimised histogram (GOH) in [Kra20],

calculates an optimized histogram of signal magnitudes taking into account both PA input-

output signal characteristics. The GOH method shows very good sample reduction performance

but at the price of a high computational cost required for the optimisation. In the previous

Chapter we have presented a mesh-selecting (MeS) method [Wan15a] where the selection of

samples is carried out taking into account the PA AM-AM static characteristic.

In this Chapter we first define and compare alternative mesh-selecting methods to the one

proposed in Chapter 4, by including memory and re-defining the signals involved to generate

the mesh. Later, we focus in the in-phase (I) and quadrature (Q) with memory MeS method

that significantly improves the reduction performance of our previous work in [Wan15a] when

considering wideband signals. In addition, unlike in [Kra20], no optimization process is required

and the selection of samples only relies on the transmitted data characteristics, being therefore

agnostic to the PA used. Consequently, it is significantly less computationally complex than

the GOH method in [Kra20], but requires generating a bigger mesh than in [Wan15a], since

memory is included in the mesh-selection to ensure the tracking of very fast amplitude variations.

Experimental results will show how the proposed I-Q with memory MeS method can significantly

reduce the overall computational load in the parameters extraction, it is independent on the

solver used and it can be properly combined with dimensionality reduction techniques.

5.2 General Description of PA Behavioral Modeling and DPD
Linearization with Mesh-Selecting

In this section we review the mathematical description of the PA behavioral modeling and DPD

linearization in section 3.1.2 taking into account a general mesh-selecting method used to select

the most relevant samples to estimate the PA or DPD model coefficients.

Following the notation in Fig. 5.1, the estimated PA behavioral model output ŷ[n] (for

n = 0, 1, · · · , N − 1), can be defined following a matrix notation as

ŷ = Xwpa (5.1)

where wpa =
(
wpa1 , · · · , w

pa
i , · · · , w

pa
M

)T
is the M × 1 vector of parameters and X is the N ×M
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Figure 5.1: PA behavioral modeling and DPD linearization with mesh-selecting.

data matrix (with N �M) containing the basis functions. The data matrix is defined as

X =
(
ϕx[0],ϕx[1], · · · ,ϕx[n], · · · ,ϕx[N − 1]

)T
(5.2)

where ϕx[n] =
(
φx1 [n], · · · , φxi [n], · · · , φxM [n]

)T
is the M×1 vector of basis functions φxi [n] (with

i = 1, · · ·M) at time n (with n = 0, · · · , N − 1). This general equation can be particularized for

any behavioral model.

After applying the mesh-selecting method, the least squares (LS) solution to extract the

coefficients wpa is given by

wpa = (Xcut
HXcut)

−1Xcut
Hycut (5.3)

where the T×M matrixXcut (with T � N) is the data matrixX containing the basis functions

after a proper selection of equations (rows), for example:

Xcut =
(
ϕx[0],ϕx[1], ϕx[2], · · · ,���

��XXXXXϕx[n− 1] ,��
�HHHϕx[n] , (5.4)

ϕx[n+ 1] · · · ,���
���XXXXXXϕx[N − 3] ,���

���XXXXXXϕx[N − 2] ,���
���XXXXXXϕx[N − 1]

)T
and with ycut being the corresponding output data vector after selecting the most relevant

equations,

ycut =
(
y[0], y[1], y[2], · · · ,����XXXXy[n− 1] ,���HHHy[n] , (5.5)

y[n+ 1] · · · ,���
��XXXXXy[N − 3] ,���

��XXXXXy[N − 2] ,���
��XXXXXy[N − 1]
)T
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Similarly, as shown in Fig. 5.1, the input-output relationship in the DPD forward path is

described as

x = u−Uwdpd (5.6)

where x = (x[0], · · · , x[n], · · · , x[N − 1])T and u = (u[0], · · · , u[n], · · · , u[N − 1])T are the pre-

distorted and input N × 1 signal vectors, respectively. Moreover, wdpd is the M × 1 vector of

coefficients and the N ×M data matrix U , similarly to X, contains the basis functions of the

DPD, φui [n] (with i = 1, · · ·M), at time n. Targeting an adaptive DPD direct learning approach,

the LS solution to extract the DPD coefficients after mesh-selecting is defined as

w
(j+1)
dpd = w

(j)
dpd + µ(Ucut

HUcut)
−1Ucut

Hecut (5.7)

where the T ×M matrix Ucut (with T � N) is the data matrix U after mesh-selecting,

Ucut =
(
ϕu[0],ϕu[1], ϕu[2], · · · ,���

��XXXXXϕu[n− 1] ,��
�H
HHϕu[n] , (5.8)

ϕu[n+ 1] · · · ,���
���XXXXXXϕu[N − 3] ,���

���XXXXXXϕu[N − 2] ,���
���XXXXXXϕu[N − 1]

)T
and with the residual error after mesh-selecting, ecut = ycut/G0 − ucut, being

ecut =
(
e[0], e[1], e[2], · · · ,����XXXXe[n− 1] ,�

�Z
Ze[n] , (5.9)

e[n+ 1] · · · ,���
��XXXXXe[N − 3] ,���

��XXXXXe[N − 2] ,���
��XXXXXe[N − 1]
)T

5.3 Improvements to the Mesh-Selecting Method

The basic mesh selecting method presented in Chapter 4 consisted in obtaining a two-dimensional

histogram of the PA AM-AM static characteristic. Therefore, instead of selecting sets of consec-

utive data samples we proposed selecting samples with the objective of fitting the original PA

AM-AM characteristic histogram. The proposed method worked well for a specific PA operated

with a narrow-band signal and combining it with the principal component analysis (PCA) re-

duction technique. However, as it will be shown in the following, when considering wide-band

signals, the reduction performance of this specific memoryless mesh-selecting method is limited.

Therefore, with the new mesh-selecting approaches that will be presented in this Chapter, we can

outperform the reduction capabilities achieved by the previous AM-AM mesh-selecting method.

In modern telecommunication systems using digital modulations (e.g., in 5G NR or former

LTE, etc.) the RF signal is modulated from complex amplitude and phase modulated signals,

i.e., from base-band signals defined by their I-Q components. Therefore, one of the improvements

of the new mesh-selecting method will consist in considering the numerical value of each I-Q

component separately to build the mesh.

In addition, as discussed in Chapter 3, current PA and DPD behavioral models include

memory terms to characterize the PA memory effects. Consequently, the distribution of the input
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signal should contain not only the information of the present sample but also of past samples.

Thus, another improvement that can included in the mesh-selecting algorithm is to extend the

coverage taking into account historical samples, which is called mesh-selecting method with

memory.

These two new approaches, i.e., considering the I-Q components and including past samples,

will be combined in different mesh-selecting strategies, tested and compared in the following

sections of this Chapter.

5.3.1 Mesh-Selecting Method with Memory

As previously discussed in Chapter 3 the general input to a given DPD function can be defined

as ν =
(
u0, u1, · · · , uk, · · · , uK

)
, where uk = u[n − τk] with k = 0, · · · ,K and where τk (with

τ0 = 0) are the most significant sparse delays characterizing the memory of the PA. Therefore,

ν is a (K + 1)× 1 vector of (multiple) input signals to the nonlinear DPD function fDPD, with

K defining the memory depth of this given fDPD. When K = 0 the system is considered to be

memoryless.

The result of the mesh-selecting is not related to the choice of the specific DPD function

fDPD, i.e., the mesh-selecting is an accurate description of the statistic feature of the fDPD

input domain independently of the function itself. Let’s take K = 3 as an example. For a given

Figure 5.2: Part of a signal sequence
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ν =
(
u6, u7, u8, u9), the present sample is u6 while u7, u8, u9 are past samples (i.e., the historical

ones). Let’s assume the use of the simple mesh-selecting method described in Chapter 4 with

a mesh density of 8 for values ranging from 0.3 to 1.1, as shown in Fig. 5.2. The sample u6

is allocated in mesh segment 7, just like sample u4. The index of u4 and u6 in the mesh will

be 7, while the indexes of u7, u8 and u9 are 6, 5 and 4, respectively. From the perspective of

ν =
(
u6, u7, u8, u9), the index of ν is the combination of indexes of

(
u6, u7, u8, u9), i.e. (7, 6, 5, 4).

Since the mesh density is assumed to be 8 in this example, the index vector can be changed into

an octal number O(7654) for simplicity.

In general, given a mesh-selecting method with memory, with a mesh density of D and a

memory depth of K, an index vector of (K + 1) × 1 is used to describe the allocation of the

equivalent ν =
(
u0, u1, · · · , uk, · · · , uK

)
. The index vector can be translated into a K-digit N-

decimal number to defined the mesh index number. Further more, the distribution of this index

number also represents the distribution of the original input vector ν =
(
u0, u1, · · · , uk, · · · , uK

)
.

5.3.2 I-Q Mesh-Selecting Method

Unlike the memoryless AM-AM mesh-selecting method in Chapter 4, the I-Q with memory mesh-

selecting method proposed in this Chapter relies only on the transmitted signal characteristics.

Consequently the mesh values do not depend on the PA output (it is independent on the system).

Instead, the mesh is created relying only in the distribution of the complex input data and its

memory which improves the reduction capabilities when considering wide-band signals.

The base tool of the proposed mesh-selecting method for evaluating the transmitted signal

is inspired in the traditional histogram calculation (i.e., uniformly dividing the magnitude of

the input signal values into different segments and counting the proportion of samples in each

segment). However, the memoryless AM-AM mesh-selecting method, the I-Q with memory mesh-

selecting method consists in evaluating each complex value of the multiple input vector to the PA

behavioral model or DPD function (i.e., fDPD(u0, u1, · · · , uK)) and build a multi-dimensional

histogram (mesh) by addressing each independent value into its corresponding mesh bin. The

number of segments or mesh bins is

q = 22(K+1)nbits (5.10)

with K being the memory depth (i.e., number of memory taps) and nbits the number of bits

defining the histogram resolution.

Fig. 5.3 outlines the principles of the I-Q mesh-selecting method but, in order to simplify the

mesh representation, depicting only a memoryless approach. Therefore, the I-Q mesh-selecting

method can be described as follows:

i. The multi-dimensional histogram is created considering both I-Q components. It is a bi-
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Figure 5.3: Principles of the mesh-selecting algorithm for a complex-valued input signal and considering
a memoryless system.

dimensional histogram when considering a memoryless approach (as in the simplified ex-

ample in Fig. 5.3), it will be a tetra-dimensional histogram if it includes one memory tap

(u1), etc.

ii. Each I-Q bi-dimensional histogram is converted into a uniform linear mesh histogram

(i.e., taking into account all the bi-dimensional histograms for u0, u1, u2, etc.). Then, the

number of samples per bin are reduced by a factor R, by keeping the first Ti samples from

the original Ni samples at mesh bin i. The minimum number of samples per mesh bin

is 1. Thus, the number of samples per mesh bin is reduced proportionally respecting the

original multi-dimensional distribution, i.e., Ni
Ti
≈ Nj

Tj
≈ R.

iii. Finally, with the remaining samples it is possible to build the corresponding data matrix

(Xcut in (5.3) or Ucut in (5.7)) and select the corresponding output samples (ycut in Fig.

5.1) to extract the coefficients of the PA or DPD model.

Regarding the way in which the method selects the samples inside each specific bin, again,

for simplicity, is done sequentially. However, we could consider any other approach as long as

we select the required number of samples that corresponds to this specific bin. The advantage

of doing it this way is that, if we consider that we process the samples in order of appearance,

the faster we have the minimum number of samples per bin, the faster we can proceed to the

adaptation.

As discussed in Chapter 4, reducing the number of samples to carry-out the coefficients

extraction impacts the computational complexity independently on the solver used. For exam-

ple, the computational complexity of the QR decomposition using Givens rotation is O(NM2)
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[Wes96]. While the computational complexity of using a feature extraction dimensionality re-

duction approach such as the principal component analysis combined with dynamic partial least

squares (PCA-DPLS) for the coefficients identification is approximately O(NML+M2 +ML).

As proved in [Pha19b], if the number of estimated transformed coefficients is significantly smaller

than the number of coefficients in the forward path (i.e., L�M), the PCA-DPLS approach will

introduce significantly less computational complexity than the QR-LS. By reducing the num-

ber of samples, i.e., T � N , the computational complexity of the identification subsystem will

decrease proportionally. In section 5.5.3 of this Chapter, we will show experimental results that

will evidence the computational complexity reduction that can be achieved properly combining

both dimensionality reduction and mesh-selecting approaches.

5.3.3 Description of Different Mesh-selecting Methods

As previously discussed, by introducing memory to the mesh-selecting approach and considering

the I-Q components instead of the absolute value of the signals, it is possible to define several

alternative mesh-selecting approaches to the one first proposed in Chapter 4. In this subsection

we will introduce several mesh-selecting methods combining the aforementioned approaches. A

simple-select method will be included to facilitate the comparison of the proposed mesh-selecting

methods. A comparison of the performance obtained with each of these methods will be provided

in the following subsections.

To allow a fair comparison among the different mesh-selecting methods, a mesh density of 8

is set as default. For every method, the histogram will be cut to 10 %. Accurately, the percentage

of selected samples cannot be exactly the same among different methods due to the effect when

transferring a fractional number into a integer. For example, if one segment of the histogram for

method A has 101 samples and another for method B has 99. By keeping 10 % of the samples

this will result in 10.1 and 9.9 respectively. Practically the ground value will be use as 10 and

9. This phenomenon induces a slightly difference of the number of selected samples, in small

quantity level.

Method 1: AM-AM or ABS Memoryless Mesh-selecting

The first method is the basic AM-AM Memoryless mesh-selecting method which only considers

the absolute value of the present input sample and the corresponding PA output value, as pre-

sented in Chapter 4. Neither memory nor complex I-Q components are taken into consideration.

In the following, this method will be considered as the reference method to later try to further

enhance the performance of the mesh-selecting methods. In addition, to unify the nomenclature,

this method will be also referred in the results section as the memoryless absolute value (ABS)

method. The selecting result is shown in Fig. 5.4. The selected sub-set contains 10 % percent of
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the original signal samples.

Figure 5.4: Selecting result of Memoryless ABS method

Method 2: Memoryless IQ Mesh-selecting

For the complex signal, which is widely used in modern telecommunication systems, the memo-

ryless I-Q mesh-selecting considers the real and imaginary part of the PA input signal indepen-

dently. A two-dimensional mesh is used to map each sample of the PA input signal according to

the value of real part and imaginary part, which provides additional accuracy than the previous

one. The I-Q memoryless method is schematically described in Fig. 5.3. Similarly to the previous

method, since it is a memoryless method, the historical samples are not taken into consideration.

The selecting result is shown in Fig. 5.5. The selected sub-set contains 10 % of the original

signal samples. In comparison to the memoryless ABS mesh-selecting, we can see from the

time domain figure that there are more samples in the high amplitude area that have been

selected, which predicts that by considering the separation of I-Q parts, the mesh-selecting

method provides enhanced accuracy.
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Figure 5.5: Selecting result of Memoryless IQ method

Method 3: Memory ABS Mesh-selecting

When considering DPD linearization, most of the DPD behavioral models include memory terms

to be able to compensate for the memory effects in PAs. As we have discussed previously, the

other approach to enhance the accuracy of mesh-selecting is to consider not only the present

sample but also historical samples. The histogram of the memory mesh-selecting method will be

multi-dimensional and will be determined by the memory length of the chosen DPD function.

For example, if a DPD function contains a memory depth of 5 taps, the histogram will be

6-dimensional, since it includes also the present sample value.

It is important to note that, for Memory ABS MeS, the PA output value is not taken into

consideration. Thus it is not a simple extension from the previous AM-AM MeS method by

adding memory samples.

The selecting result is shown in Fig. 5.6. The selected sub-set contains 10 % of the original

signal samples.
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Figure 5.6: Selecting result of Memory ABS method

Method 4: Memory I-Q Mesh-selecting

This method has been already introduced in section 5.3.2, despite the fact that Fig. 5.3 was only

schematically describing the memoryless version for simplicity.

The number of dimensions of the mesh will be doubled in comparison to the previous method,

i.e., the Memory ABS Mesh-selecting (method 3). It is important to note that in a real-case

implementation of the memory I-Q mesh-selecting, the consumption of the RAM storage space

will increase exponentially. The total RAM requirement of a mesh-selecting method with mesh

density of 10 and memory depth of 5 could be thousands of Gigabytes (on MatLab platform),

which will never be acceptable for implementation even on a cloud platform. Thus, the mesh

density and memory depth have to be selected accurately to achieve the properly performance

under the trade-off with affordable RAM storage consumption.

The selecting result is shown in Fig. 5.7. The selected sub-set contains 10 % of the original

signal. It is obviously that the selection of samples in the time domain is the most homogeneous

in comparison to the previously described methods.
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Figure 5.7: Selecting result of Memory I-Q method

Method 5 and 6: Memory-Y Approaching Mesh-selecting

For cross comparison, the memory-Y series mesh-selecting are designed to take also into con-

sideration the PA output signal. The histogram is extended to involve the value of the output

signal, taking into account both its absolute value (method 5) and its I-Q components (method

6).

The selecting result is shown in Fig. 5.8 and Fig. 5.9. The selected sub-set contains 10

% of the original signal samples. Note that by the display of the Matlab figure, the coverage

area of a dot or a circle is much larger than the correspondingly accurate math value on the

coordinate system. Besides, the overlap of dots and circles will neither induce darker color nor

other displayable hints. Thus, it appears like that the number of selected samples is much larger

if samples are distributed on a large coverage of the figure, in comparison to a set of narrow

distributed samples, even if they have the same number. This phenomenon can be observed by

comparing the selecting result of Fig 5.8 and Fig 5.9.
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Figure 5.8: Selecting result of Memory-Y ABS method

Figure 5.9: Selecting result of Memory-Y I-Q method
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Method 7: Simple-select

The mesh-selecting method, as presented above, is designed to select a sub-set of the original

transmitted signal not only covering the range of sample values of the input signal, but also

keeping the distribution of the original histogram. For cross-comparing purposes, a simple-select

method is designed to only consider the range of input sample values but not taking into account

the distribution of the original histogram. Consequently, with the simple-select method, the

number of samples in each segment of the multi-dimensional histogram is irrelevant, because this

method will use a uniform given number to replace it and then do the selection. This method

is designed to validate the importance of keeping the distribution of the multi-dimensional

histogram of the mesh-selecting.

The selecting result is shown in Fig. 5.10. The selected sub-set contains 10 % of the original

signal samples.

Figure 5.10: Selecting result of Simple select method
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5.4 Experimental test-benches

In order to validate the proposed techniques in this thesis, experimental results were obtained

using 3 different test-beds implemented for DPD linearization, that were accessible remotely.

This means that the digital processing computing could run in a cloud and then, the access

to the specific remote Weblab (containing the DUT and instrumentation) is done though the

internet, exchanging PA input and output I-Q signals.

Two of the remote Weblabs used in this thesis are located in the research laboratory of

the CSC research group of the UPC, the other one is the remote Weblab located at Chalmers

University [Cha].

5.4.1 UPC Weblab

The permanent UPC Weblab based on a transceiver board (Zynq-AD936 platform from Analog

devices) is depicted in Fig. 5.11. The AD9361 transceiver evaluation board is used as ADC and

DAC while connecting with Zynq-7000 board.

Figure 5.11: The Zynq-AD936 platform assembled with pre-amplifier and PA and it data flow



68 5.4. Experimental test-benches

The FPGA - Linux platform is used to replace the expensive loop for signal generation

and acquisition based on instrumentation (e.g., an arbitrary waveform generator (AWG) and a

digital storage oscilloscope (DSO)). An internet interface is set to allow users to send their test

signals and receive the PA output. This part is now implemented on Zynq 7000 FPGA-Linux

board to establish the internet connection. The board also works as a driver to the AD936 direct

converting transceiver to access the DUTs, composed by a driver PA from Mini-circuits and a

class-J PA operating at center frequency of 900 MHz. The high efficient Class-J PA was designed

by José Angel Garćıa’s research group from the University of Cantabria. The AD936 transceiver

allows RF signal generation from 70 MHz to 6.0 GHz with up to 56 MHz bandwidth [ANA]

which allows around 20 MHz DPD operation bandwidth.

5.4.2 Chalmers University Weblab

Chalmers University organized the International Microwave Symposium (IMS) Digital Pre-

Distortion Student Design Competition in 2014 and 2015. For the competition they assembled

a remote Weblab to allow PhD students all around the world to test their DPD algorithms,

as depicted in Fig. 5.12. Since then, they made this Weblab permanent and accessible to all

through Matlab and an internet connection.

Figure 5.12: The Test bench of Chalmers WebLab [Cha]

The measurement setup is based on a PXI Chassis (PXIe-1082) with embedded host PC

from National Instruments. The chassis is equipped with a Vector Signal Transceiver (PXIe-

5646R VST) with 200 MHz instantaneous bandwidth. The signal generated (center frequency

2.14 GHz) from the VST transmitter is fed to a linear driver amplifier before the GaN PA

DUT (Cree CGH40006-TB, testboard for the transistor CGH40006P). A 30 dB RF attenuator

is placed at the DUT output from which the output signal is connected to the VST receiver.

A PC embedded in the PXI chassi is used to control the instruments and to down- and upload
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data files at request from the users. The DUT is supplied by a power source module (PXI-4130)

which also measures the current consumption of the power amplifier [Cha].

5.4.3 LMBA test-bench at UPC

This instrument-based test-bench consisted in a Matlab-controlled setup interfacing the Keysight

M8190A AWG for signal generation and the Keysight 90404A DSO for direct RF analog to digital

conversion, as shown in Fig. 5.13.
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Drivers Minicircuits:
 ZHL-16W-43-S+
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Figure 5.13: Picture of the test setup employed for LMBA experimental validation.

The baseband processing in Matlab is carried out with a baseband clock of 614.4 MSa/s in

order to be able to process predistorted signals of hundreds of MHz of bandwidth. The DUT

is a dual-input load-modulated balanced amplifier (LMBA) designed by Roberto Quaglia et al.

from Cardiff University in [Qua18]. Therefore, the main and auxiliary signals required by the

dual-input LMBA are generated, predistorted, time-aligned and phase-shifted in Matlab to later
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digitally up-convert them to the 2 GHz RF frequency and digitally-to-analog convert them (i.e.,

both main and auxiliary RF signals) using the two RF channels of the Keysight M8190A AWG

with a clock rate of 7.9872 GHz and 14 bits. Both RF signals are pre-amplified with two high

gain linear amplifiers from Minicircuits to feed the LMBA. The PA output signal is RF sampled

with a Keysigh 90404A DSO at 20 GSa/s with 8-bit resolution, digital down-converted and re-

sampled for DPD processing. A Keysigh N9020A MXA signal analyzer was used to characterize

the spectrum and ACPR at the output of the PA.

5.5 Experimental results

In order to evaluate and compare the mesh-selecting techniques proposed in this Chapter, ex-

perimental results were obtained using the 3 aforementioned test-benches implemented for DPD

linearization, that were accessible remotely.

First, a whole coverage experiment is made using the UPC WebLab to cross compare the

performance of the different mesh-selecting approaches presented before. Then, some preliminary

tests, conducted in the Chalmers WebLab from 2014 to 2015, are shown. Theses results focus

on the comparison of the performance between the ABS mesh-selecting approach and the I-Q

mesh-selecting approach for different mesh-densities. Then, more in deep tests were made on

the UPC LMBA test-bench. The tests were aimed at showing the benefits of the memory I-Q

mesh-selecting when properly combined with dimensionality reduction techniques when taking

into account both PA behavioral modelling and also DPD linearization.

Similarly to the methodology used in Chapter 4 to illustrate the performance of the AM-AM

(or ABS) memoryless mesh-selecting, the performance of the memory mesh-selecting method

will be evaluated in terms of NMSE and ACLR degradation when considering different data

matrix ratios (MRs). In this chapter we will also focus on the tuning parameters of the mesh-

selecting method itself, such as for example, the influence of the number of mesh-segments (also

called as mesh density).

5.5.1 Evaluation of the Proposed Mesh-Selecting Methods

A full scale test comparing the different mesh-selecting methods was run in the UPC WebLab.

The test-bench is depicted in Fig. 5.11 and described in section 5.4.1 of this Chapter.

Taking into account the bandwidth expansion of the predistorted signal and given the band-

width limitations of the Zynq-AD936 platform (up to 56 MHz bandwidth with a clock rate of

61.14 MSa/s), the test signal used was a LTE 10 MHz waveform with 131,072 samples. The

DPD was based in a GMP behavioral model with a total of 80 coefficients.
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Experimental results of MemoryLess ABS Mesh-selecting

As shown in Fig. 5.14 and Fig. 5.15, by using the MemoryLess ABS mesh-selecting method we

can only achieve a MR of 400 with less than 5 dB of performance loss. We can also observe how

the performance is highly dependent on the mesh density, which will reduce the mathematical

robustness.

Experimental results of MemoryLess I-Q Mesh-selecting

As shown in Fig. 5.16 and Fig. 5.17 with the MemoryLess I-Q Mesh-selecting it is only possible

to achieve a MR of 400 with less than 5 dB performance loss, which is not significantly different

from the previous MemoryLess ABS MeS. The number of mesh density has been limited to

the same level of the MemoryLess ABS mesh-selecting method for a fair comparison. From

the figures we can see that the performance is highly dependent on the mesh density, but the

fluctuation of performance is smaller than with the ABS method.

Experimental results of Memory ABS Mesh-selecting

As shown in Fig. 5.18 and Fig. 5.19, Memory ABS Mesh-selecting it possible to achieve a MR of

200 with less than 3 dB performance loss in ACPR. The performance is even better in NMSE.

With high mesh density tuning, it is possible to go beyond a MR of 100 almost without accuracy

loss in NMSE and only 2 dB in ACPR. The effect of mesh density is demising with the numerical

increase. This property provides a mathematical stability to the designers to choose the mesh

density in real-case DPD implementation.

Experimental results of Memory I-Q Mesh-selecting

As shown in Fig. 5.20 and Fig. 5.21 with the Memory I-Q mesh-selecting method it is possible to

achieve smaller MRs than 100 with less than 2 dB performance loss in ACPR. The performance

is even better in NMSE. In high mesh density tuning, it is able to achieve less than a MR of 50

almost without accuracy loss in NMSE and only 1 dB in ACPR. The effect of mesh density is

becoming demising with the numerical increase.

Experimental results of Memory-Y ABS Mesh-selecting

As shown in Fig. 5.22 and Fig. 5.23, the Memory-Y ABS mesh-selecting method presents similar

reduction capabilities than the Memory I-Q mesh-selecting method. Thus, it can achieve smaller

MRs than 100 with less than 2 dB performance loss in ACPR. The performance is even better

in NMSE. In high mesh density tuning, it is able to achieve MRs less than 50 almost without
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Figure 5.14: Performance of Memoryless ABS Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.15: Performance of Memoryless ABS Mesh-selecting Method: NMSE values vs. Matrix Ratio
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Figure 5.16: Performance of Memoryless I-Q Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.17: Performance of Memoryless I-Q Mesh-selecting Method: NMSE values vs. Matrix Ratio
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Figure 5.18: Performance of Memory ABS Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.19: Performance of Memory ABS Mesh-selecting Method: NMSE values vs. Matrix Ratio
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Figure 5.20: Performance of Memory I-Q Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.21: Performance of Memory I-Q Mesh-selecting Method: NMSE values vs. Matrix Ratio
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Figure 5.22: Performance of Memory-Y ABS Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.23: Performance of Memory-Y ABS Mesh-selecting Method: NMSE values vs. Matrix Ratio
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accuracy loss in NMSE and only 1 dB in ACPR. The effect of mesh density is becoming demising

with the numerical increase.

Experimental results of Memory-Y I-Q Mesh-selecting

As shown in Fig. 5.24 and Fig. 5.25, by using the Memory-Y I-Q Mesh-selecting method it is

possible to achieve MRs smaller than 100 with less than 2 dB performance loss in ACPR. The

performance is even better in NMSE. With high and even moderate mesh density values, it

is able to achieve less MRs than 50 almost without accuracy loss in NMSE and only 1 dB in

ACPR. It means the selection range of the mesh density has become wider by adding the I-Q

components into consideration along with the PA output value.

Experimental results of Simple-select Mesh-selecting

The performance of the control experiment is illustrated in Fig. 5.26 and Fig. 5.27. It is obvious

that when ignoring the multi-histogram distribution of the transmitted signal, it is hard to

achieve an acceptable DPD performance. With moderate mesh density values we are able to

achieve a performance loss of 3 dB, but it is not predictable with neither the increasing of the

mesh density nor by reducing the MR. This performance is not a properly guidance to DPD

engineers for a real case implementation.

Conclusions after the Evaluation of the Different Mesh-Selection Methods

As shown above, the performance of mesh-selecting increases with respect to the original ap-

proach in Chapter 4 when including memory and consider I-Q signals. However, when increasing

the mesh-density and memory depth the demands for storage space grows exponentially. It is

therefore not possible to build a mesh with high mesh-density, long memory depth while con-

sidering both I-Q components. In practical applications, trade-offs must be made among these

factors. As a summary of the experimental results shown above, some trends can be pointed out

as a design guide:

• The simple select method, which demands almost the highest storage requirements when

applied in I-Q mode in same memory depth, provides nearly the lowest selecting per-

formance. This phenomenon illustrates the importance of keeping the distribution of the

multi-dimensional histogram of mesh-selecting. It is one essential property of the mesh-

selecting methods.

• The benefits of increasing mesh density fades away as the number rise. To choose a middle

level mesh density is a recommendable trade-off between complexity and performance.
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Figure 5.24: Performance of Memory-Y I-Q Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.25: Performance of Memory-Y I-Q Mesh-selecting Method: NMSE values vs. Matrix Ratio
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Figure 5.26: Performance of Simple-Select Mesh-selecting Method: ACPR values vs. Matrix Ratio

Figure 5.27: Performance of Simple-select ABS Mesh-selecting Method: NMSE values vs. Matrix Ratio
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It is also notable that the mathematical stability of the mesh density is very good at

middle-high range.

• Including the PA output signal in the mesh-selecting process (i.e., Memory-Y ABS MeS and

Memory-Y I-Q MeS) in some cases can slightly enhance the samples reduction capabilities

when estimating the DPD coefficients, but considering the exponentially growth of storage

consumption, it is a low priority option when applying mesh-selecting.

Above all, the memory mesh-selecting is the base for all mesh-selecting methods during the

practical DPD coefficients estimation, by properly choosing the memory length and mesh density

to control storage level. Deploying an I-Q approach instead of ABS is recommendable if enough

storage resources are available.

5.5.2 Advantages of Memory I-Q vs. ABS memoryless Mesh-Selecting

As concluded in the previous subsection, the memory enhancement of MeS is the most efficient

way to provide better performance on the DPD implementation. On the contrary, considering

the PA output samples to build the mesh is not a suitable option when targeting the MeS

implementation, since it unnecessarily increases the required memory resources. Considering

the I-Q components instead of the absolute value, seems to be a trade-off solution, and it is

suggested to be taken into consideration when enough storage resources are available. A further

test is operated on the Chalmers Weblab with more complex PA input signal. The test will also

help us to see the detail performance of I-Q enhancement for MeS, both on technical indicators

and robustness.

Some experimental results were obtained using Chalmers Weblab to detail compare the

performance between the ABS mesh-selecting approach and the I-Q mesh-selecting approach .

The Chalmers Weblab is depicted in Fig. 5.12 and described in section 5.4.2 of this Chapter. A

LTE 20 MHz bandwidth burst-mode signal is used to feed the power amplifier. The spectrum

and time domain waveform is shown in Fig. 5.28. The original signal contains 230k samples.

Again, the DPD used to linearize the PA was based in a GMP behavioral model (described

in (3.8)). The number of coefficients increased to 296 in order to compensate the nonlinear

distortion introduced by the DUT in the Chalmers Weblab when excited with the burst-mode

signal.

Fig. 5.29 and Fig. 5.30 show how by using Memory ABS mesh-selecting it is possible to

achieve a MR of 100 with less than 2 dB performance loss. When considering high mesh densities,

it is possible to achieve MRs smaller than 50 almost without accuracy loss in ACLR and only

1 dB in NMSE. Another interesting performance is that the effect of mesh density demised
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Figure 5.28: Spectrum and absolute value of the time-domain waveform of the test signal used in the
Chalmers Weblab.

with the numerical increase. This property provides a mathematical stability to the designers

to choose the mesh density in a real-case DPD implementation.

On the contrary, the mesh density is limited to a low value when considering I-Q mesh-

selecting, because the storage of a normal server is not capable to contain a very large mesh. As

depicted in Fig. 5.31 and Fig. 5.32, by using Memory I-Q mesh-selecting it is possible to achieve a

MR of 200 with less than 2 dB performance loss, considering a mesh density value. The stability

when using high density values is also as good like with the Memory ABS mesh-selecting, which

further illustrates the mathematical robustness of this method.

A critical trade-off for I-Q memory MeS is the insufficiency of the RAM storage for a given

computer, thus it can not reach as much mesh density as the ABS MeS. Apart from the tremen-

dous RAM consuming, I-Q enhancement provide an excellent performance with very low matrix

radio. Thus, in summary:

• If the storage space is limited, ABS MeS provides higher robustness with higher mesh

density.

• If the storage space is not a limitation, the memory I-Q approach makes the MeS able to

achieve lower matrix ratios with the same DPD performance and robustness.

• If an extreme low matrix ratio is required, the I-Q enhancement is the first priority.
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Figure 5.29: ACLR Performance of ABS Memory Mesh Selecting

Figure 5.30: NMSE Performance of ABS Memory Mesh Selecting
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Figure 5.31: ACLR Performance of I-Q Memory Mesh Selecting

Figure 5.32: NMSE Performance of I-Q Memory Mesh Selecting
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5.5.3 Combination of Memory I-Q Mesh-Selecting with Dimensionality Re-
duction Techniques

The following experimental results were obtained using the LMBA test-bench depicted in Fig.

5.13 and described in section 5.4.3 of this Chapter.

In a first approach we carried out a comparison of the different mesh-selecting (MeS) methods

proposed in section 5.3.3 and their capability to reduce the number of samples while maintaining

acceptable PA behavioral modeling capabilities. For PA behavioral modeling, we considered

a test signal composed by 4 non contiguous channels of 64 QAM modulated LTE-20 signals

spread in 200 MHz instantaneous bandwidth. Fig. 5.33 shows the identification performance

when reducing the number of samples (or equations) for different 6 mesh-selecting techniques

and the case of no mesh-selecting, i.e., considering removing simply consecutive samples (CoS).

The 6 MeS techniques are: i) ABS (or AM-AM) memoryless MeS; ii) I-Q memoryless MeS;

iii) ABS memory MeS; iv) I-Q memory Mes; v) Memory-Y ABS MeS and vi) Memory-Y I-Q

MeS. This comparison is for PA behavioral modeling when considering the 200MHz signal and

a GMP polynomial model with 139 coefficients. As observed in Fig. 5.33, focusing in the I-Q

signal rather than in the AM-AM characteristic and including memory improves the reduction

capabilities (i.e., NSME vs. number of samples used).

ZOOM

Figure 5.33: Comparison of mesh-selecting methods

In addition, the robustness (or resilience) of the model estimation when we remove samples is

much more significant with the memory I-Q mesh-selecting method than by removing consecutive
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samples. When removing consecutive samples without any specific criteria we end up removing

samples from high amplitude values (which are less probable) and consequently the identification

suffers from ill-conditioning degrading the overall NMSE. As an example, Fig. 5.34 shows two

AM-AM plots when considering a) I-Q with memory mesh-selecting (MeS) and b) consecutive

samples (CoS) selection. We have considered here a selection of 1,136 out of a 153,600 samples.

----

Figure 5.34: Comparison of Memory I-Q MeS vs. Consecutive sample selection.

Now, focusing on the Memory I-Q Mes (since it is the one providing better reduction per-

formance) and in order to show the advantages of mesh selecting when properly combined with

dimensionality reduction techniques, we conducted two tests: one in the context of PA behavioral

modeling and another for DPD linearization.

Fig. 5.35 shows the NMSE between the measured and the modeled data when considering a

GMP behavioral model, described in (3.8) section 3.1.1 of Chapter 3. The nonlinear functions

associated to the memory and cross-memory terms in the GMP model can be particularized

by polynomials (as in the original definition) or by interpolated look-up tables, such as, for

example, B-splines. The NMSE of identification when using the GMP model implemented with

polynomials and considering 139 coefficients is shown in Fig. 5.35-top, while Fig. 5.35-bottom

shows the NMSE of identification for the GMP model implemented with B-splines of degree 3

and considering 189 coefficients. As previously observed, unlike discarding consecutive samples

(CoS) or selecting samples with the AM-AM memoryless MeS method [Wan15a], by using the

Memory I-Q MeS method (with memory D=3 and nbis=3 in (5.10)) it is possible to maintain the

NMSE value below -30 dB even when significantly reducing the number of required equations

(samples) from an original number of 153,600 identification samples. The advantage of the

Memory I-Q MeS is more evident when considering the GMP B-splines model [Bar14], since

due to its piece-wise nature every segment requires a minimum number of samples to guarantee

a proper estimation. Piece-wise models can benefit from higher locality, but at the same time

it is necessary to guarantee a minimum number of samples for each ’piece’ or segment. This is
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PA beh. Modeling 
with 1136 samples

Figure 5.35: PA behavioral modeling: NMSE vs. identification samples.

the reason why the necessity of the proposed I-Q with memory mesh-selecting method is more

evident when considering GMP-B-splines for PA behavioral modeling.

For DPD linearization purposes we considered a signal composed by two LTE-20 MHz carriers

separated 20 MHz with 10.5 dB of PAPR centered the RF frequency around 2 GHz and exciting

the LMBA providing 34 dBm of mean output power with 25% drain power efficiency. Fig. 5.36

shows the out-of-band linearity levels obtained (in terms of ACPR) for different number of

samples used in the identification/adaptation subsystem.

The DPD coefficients of the GMP behavioral model (108 coefficients) in the DPD forward

path have been extracted in the adaptation subsystem considering two solvers: the QR-LS al-

gorithm and the PCA-DPLS algorithm described in [Pha19b]. This technique, based in the

combination of the PCA transformation with the dynamic PLS (DPLS) extraction of compo-

nents, is used to dynamically estimating and updating the DPD coefficients. The PCA-DPLS

approach is equivalent to a canonical correlation analysis (CCA) updating solution, which is

optimal in the sense of generating components with maximum correlation. The number of DPD

coefficients used to update or estimate the DPD functions is significantly reduced by using the

PCA-PLS algorithm [Pha19b].

As shown in Fig. 5.36, independently on the type of LS solver used, the mesh selecting method

(with D=3 and nbis=3) allows significantly reducing the number of samples (in comparison to

removing consecutive samples) and still presenting acceptable ACPR values. Table 5.1 shows

the minimum number of samples required for both LS solvers, to meet the ACPR threshold of

-45 dBc when considering the proposed mesh selecting (MeS) method and simply discarding
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Linearization 
with 482 samples

Figure 5.36: DPD linearization: ACPR values vs. identification samples.

consecutive samples (CoS).

Table 5.1: DPD Performance Comparison.

Solver (GMP Technique/ Coeff. NMSE ACPR SP∗

108 coeff.) # Samp. ID. [dB] [dBc] [%]

No DPD – / 259,823 – -25.9 -33.7 100

DPD QR-LS CoS / 16,513 108 -36.4 -45.5 6.4

DPD QR-LS MeS / 1,522 108 -36.1 -45.1 0.6

DPD PCA-DPLS CoS / 16,513 10 -36.2 -45.6 6.4

DPD PCA-DPLS MeS / 2,731 10 -36.1 -45.1 1.1

∗SP is the percentage of selected samples with respect to the total.

Properly combining the proposed mesh selecting method with feature extraction techniques

such as the PCA-DPLS (e.g., only 10 coefficients with 1.1% of the total available samples are

required to meet the -45 dBc of ACPR) the computational complexity in the identification

subsystem can be reduced by a factor of 65 in comparison to using the classical QR-LS and

consecutive samples selection (e.g., 120 coefficients with 6.4% of the total available samples are

required to meet the -45 dBc of ACPR).
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5.5.4 Memory I-Q Mesh-Selecting for Training Artificial Neural Networks
for DPD Linearization

The first set of results were obtained using the Chalmers Weblab (described in section 5.4.2

of this Chapter) with a 40 MHz OFDM-like test signal. A feed-forward ANN composed by 4

hidden layers with the following neuron configuration per layer [20, 20, 10, 10] was used for DPD

linearization purposes. The original number of samples available to train the ANN was 230,160

samples. By applying the memory I-Q MeS, it is possible to reduce the number of training

samples by a given reduction factor (RDF) without significantly degrading the performance of

the trained DPD. The number of training samples are approximately the original number (i.e.,

230,160 samples) divided by the reduction factor. Fig. 5.37 shows the results obtained when

training the ANN considering several reduction factors using the memory I-Q MeS technique

and simply removing consecutive samples.
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Figure 5.37: NMSE and ACPR after DPD linearization using ANN for different reduction factors.

As shown in Fig. 5.37 for reduction factors higher than 60, the memory I-Q MeS is more

robust against NMSE and ACPR degradation than simply remove consecutive samples. Another

contribution of MeS method is that the performance of DPD is degraded in a more stable curve

in comparison to the CoS methods. The reason behind this effect is because the MeS method is

able to keep the distribution and statistic sufficiency of the original signal by maintaining the
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multi-histogram distribution. Instead, with the CoS method removing some relevant samples

may cause a significant degradation by losing the statistic sufficiency suddenly.

In addition, by considering a reduction factor of 70 (taking into account both I-Q MeS and

CoS approaches), thus the number of training samples is approximately 3K as 230,160/70=3,288

samples. We compare the evolution of the NMSE and ACPR when updating the DPD along

several iterations with different data, which is illustrated in Fig. 5.38. It is obvioused that MeS

provides a better and more stable performance than the CoS.
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Figure 5.38: Evolution of the ACPR and NMSE for different ANN DPD iterations, considering a RDF
of 70 with memory I-Q MeS and CoS.

Further more, the same feed-forward ANN configuration [20, 20, 10, 10] was used to linearize

the LMBA described in section 5.4.3 of this Chapter. With the ANN DPD it is possible to meet

the linearity specs (i.e., ACPR<-45 dBc) when driving the LMBA with a test signal composed

by 4 non contiguous channels of 64 QAM modulated LTE-20 MHz signals spread in 200 MHz

instantaneous bandwidth, as shown in Fig. 5.39.

In order to linearize the LMBA when operated with such wide-band signal, the amount of

data required at each update iteration is quite important. However, by using the memory I-Q

mesh-selecting algorithm it is possible to reduce the number of samples and still maintain the

linearization performance of the ANN DPD to meet the targeted linearity specs. In Fig. 5.40 we

can see the time required for the ANN to update the coefficients considering different reduction
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Figure 5.39: AM-AM and Output Power Spectra before and after ANN DPD considering a 200MHz
multi-carrier signal.

factors (RF), while Fig. 5.41 shows the degradation suffered in terms of NMSE and ACPR when

reducing the number of samples for the training.

Figure 5.40: ANN DPD training time for different reduction factors

As observed, thanks to the memory I-Q MeS method it is possible to trade-off the compu-

tational complexity (and time) and the linearity performance, in terms of ACPR and NMSE

degradation.

5.6 Conclusion

In this Chapter we have presented several mesh-selecting approaches that resulted from modify-

ing the original AM-AM (or ABS) memoryless mesh-selecting method presented in Chapter 4, by

considering memory or the I-Q components to build the mesh. In addition, the PA output signal

can also be included to generate the mesh. After a comparison of the different mesh-selecting
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Figure 5.41: Evolution of the ACPR, NMSE, Power Efficiency and Output Power along several update
iterations when considering different reduction factors of the training samples.

techniques, we have concluded that by properly choosing the mesh-density and memory depth,

the memory I-Q mesh-selecting method presented superior trade-off between the sample reduc-

tion capabilities and the memory storage requirements.

In order to prove the possibility of further reducing the computational complexity in the

DPD adaptation subsystem, the memory I-Q mesh-selecting method has been combined with

a feature extraction dimensionality reduction technique. Considering the example of the GMP-

based DPD linearization of the LMBA, excited with a 60 MHz test signal, the computational

complexity in the identification subsystem has been reduced by a factor of 65 when using the

memory I-Q MeS combined with the PCA-DPLS solver in comparison to using the classical

QR-LS solver and consecutive samples selection.

Finally, the memory I-Q MeS has been proved to be of crucial interest when training ANN for

DPD purposes. In an adaptive DPD approach where the ANN has to be periodically trained,

the memory I-Q MeS can be used to trade-off the required training time and the linearity

performance, in terms of ACPR and NMSE degradation.
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Chapter 6

Automatic Tuning to Find the Basis
Functions of a Digital Predistorter

6.1 Introduction

An underfitted model lacks of essential coefficients in the model description, while an overfitted

model contains more parameters than the model really needs. Both underfitted and overfitted

models tend to misrepresent the training data and will therefore have poor predictive perfor-

mance.

One of most demanding part of the DPD design is to choose a proper DPD behavioral model

and then properly select the required basis functions, which assuming a polynomial implemen-

tation, depends on the number of memory terms and order of the polynomials chosen for the

model. This procedure not only requires large knowledge of the DPD algorithm and experience

dealing with DPD linearization, but sometimes also to deal with non-straightforward relations.

Most of the times, the trail and error is the most popular method, but is time consuming and

provides no guarantee of the optimality of the solution found, since it is sometimes not possible

to try manually all the possible combinations. Additionally, our preconceptions may limit the

testing coverage and ignore some possible good results.

In the field of DPD linearization, dimensionality reduction techniques are used with a double

objective. On the one hand to ensure a proper, well-conditioned parameter identification and,

on the other hand, to reduce the number of coefficients to be estimated and thus relaxing

the computational complexity and memory requirements of a hardware implementation. As

previously discussed, several approaches have been proposed targeting both robust identification

and model order reduction such as LASSO [Wis08], the Ridge regression [Gua12b], the sparse

Bayesian learning (SBL) algorithm [Pen16a] or the orthogonal matching pursuit (OMP) [Rei15].

In this Chapter we propose a slightly different approach, where machine learning is applied to
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trade-off the search time and the performance of the optimum configuration found. Therefore,

the use of a global optimization method is proposed to select the optimum DPD parameter

configuration in the whole search area. Experimental results using the UPC Weblab are presented

and discussed.

6.2 Adaptive Lipschitz Optimisation (adaLIPO)

In this Chapter we have considered the use of the adaptive Lipschitz optimisation (adaLIPO)

algorithm to determine the best parameter configuration (e.g., memory terms, non-linear or-

der) of a DPD behavioral model. A brief description of the adaLIPO algorithm is given in the

following.

The smoothness-based approach to global optimisation assumes that the system presents

some regularity with respects to the input. In particular, the use of the Lipschitz constant (the

bound of the first derivative of a Lipschitz function, i.e., a continuous function limited in how fast

it can change) in [Shu72, S.A72], played a key role in the development of many efficient global

optimisation algorithms. The adaLIPO algorithm proposed in [Mal17] is oriented to exploit the

global smoothness of the unknown function for global optimisation and, according to the authors,

it can achieve faster rates of convergence on globally smooth problems than the previously known

methods.
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Figure 6.1: Graphical example of the adaLIPO algorithm.

The principles of the adaLIPO algorithm are summarized in the example depicted in Fig. 6.1,

consisting in the optimisation of a one-dimensional function. The blue line is the given function

to be optimised. The basics of the adaLIPO algorithm consist in maintaining a piece-wise upper
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bound of the given function to be optimized, according to the up-to-date Lipschitz constant.

At the beginning, for few iterations, the Lipschitz constant and the bound (the orange line) are

estimated. Then, as shown in Fig. 6.1, the algorithm finds the maximum value of the upper

bound (the red circle) and obtains its real value (the black circle) after the evaluation of the

given function. In the next iteration, the up-to-date Lipschitz constant and the bound will be

updated and using a Bernoulli distribution, among all cross points of the upper bound, the next

point will be selected. The optimizing procedure will converge after several iterations.

6.3 Overview on the Tuning Parameters of the GMP Behav-
ioral Model

As described in Chapter 3, the Generalized Memory Polynomial (GMP) proposed by Morgan et

al. in [D. 06], is one to the most popular PA behavioral models because it allows to cover several

cross-memory interactions.

For convenience, let us review again the input-output relationship in the DPD taking into

account a GMP model

x[n] =

Na−1∑
i=0

Pa−1∑
p=0

αpi · u[n− τai ]
∣∣u[n− τai ]

∣∣p
Mb∑
j=1

Nb−1∑
i=0

Pb−1∑
p=1

βpij · u[n− τ bi ]
∣∣u[n− τ bi − τ bj ]

∣∣p (6.1)

Mc∑
j=1

Nc−1∑
i=0

Pc−1∑
p=1

γpij · u[n− τ ci ]
∣∣u[n− τ ci + τ cj ]

∣∣p
The first term is the expression of the memory polynomial behavioral model, with Pa being

the nonlinear order and Na the memory depth. In general, for wireless communications applica-

tions with fractional bandwidth (defined as the ratio between the signal bandwidth and the centre

frequency of operation) significantly smaller than 1, only odd order terms of the polynomial are

considered to characterize the intermodulation distortion (the effect of harmonic distortion is

considered negligible since it can be filtered). However, in the global optimization search with

the adaLIPO algorithm we will consider both odd and even terms for the polynomial orders.

The second and third terms of (6.1) introduce both negative and positive cross-term delays to

the memory polynomial model, with Pb and Pc being the polynomial orders and Nb, Nc,Mb,Mc

relates to memory depths. The coefficients describing the model are αpi, βpij , while τa, τ b and τ c

(with τ ∈ Z and τ0 = 0) are the most significant non-consecutive delays of the input signal u[n]

that better contribute to characterize memory effects. Thus, the total number of coefficients of
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the GMP model is O = PaNa +PbNbMb +PcNcMc. Theoretically, each of these parameters can

be tuned independently in the DPD design within reasonable ranges.

As discussed in Chapter 3 the GMP behavioral model is a simplification of the general

Volterra series, and can be seen as a good trade-off between complexity and accuracy. The

number of possible combinations for defining the optimum number of nonlinear orders and

memory parameters is huge and is highly dependent on the specific PA and transmitted signal.

In the following we will use the adaLIPO global optimization algorithm to determine the

optimum combination of parameters to meet the linearity specifications with the minimum

number of coefficients possible. In order to favor certain combinations we will have to properly

define a cost function that prioritizes the solutions that uses the minimum number of coefficients

with the maximum linear output power possible.

6.4 Experimental Results

The following experimental results were obtained using the UPC Weblab depicted in Fig. 5.11

and described in section 5.4.1 of Chapter 5. The test signal was an LTE 10 MHz signal. Taking

into account the bandwidth expansion that experience the predistorted signals, the bandwidth

of the transmitted signal was determined by the bandwidth limitations of the Zynq-AD936

platform (up to 56 MHz bandwidth with a clock rate of 61.14 MSa/s).

In the global search, a part from the GMP parameters, an internal gain (KGain that controls

the input back-off of operation) is considered into the tuning area. The range of each value is

listed below, with a total number of possible combinations around 5.8 · 106.

• Polynomial order Pa ∈ [1, 13] , with Pa ⊂ N,.

• Polynomial order Pb ∈ [1, 13] , with Pb ⊂ N,.

• Polynomial order Pc ∈ [1, 13] , with Pc ⊂ N,.

• Memory length Na ∈ [1, 5] , with Na ⊂ N,.

• Memory length Nb ∈ [1, 5] , with Nb ⊂ N,.

• Memory length Nc ∈ [1, 5] , with Nc ⊂ N,.

• Memory length Ma ∈ [1, 3] , with Ma ⊂ N,.

• Memory length Mb ∈ [1, 3] , with Mb ⊂ N,.

• Internal Gain KGain ∈ [0.8, 1.3] , with KGain ⊂ Q, with one fractional digit.
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The adaLIPO algorithm will therefore search for the best DPD parameters configuration

taking into account a given score (or cost) function. The score function that we want to maximize,

i.e., the higher the better, is defined in (6.2),

Score = λ1 · (−NMSE + NMSEth) + λ2 ·max
(
(−ACPR + ACPRth), 0

)
(6.2)

+λ3 ·max
(
Max N◦ coeff−N◦ coeff GMP), 0

)
· α+ λ4 · (Pout − Pout,th) · α

with α = max
(
(−ACPR + ACPRth), 0

)
. As observed, in the definition of the score function

we have tried to find a balance among linearity performance (NMSE and ACPR), computational

complexity (N◦ of coefficients) and power efficiency (indirectly, through the mean output power).

Consequently we have included the NMSE (the lower the better), the ACPR (the lower the better

but it is necessary to at least meet the threshold on -45 dBc), the number of coefficients (the

lower the better but cannot exceed the Max N◦ coeff threshold) and the mean output power (the

higher the better). The score function in (6.2) includes some thresholds and some weights to give

more importance to certain figures of merit. Therefore, for example, unless we meet the ACPR

specs (determined by the threshold ACPRth) the benefits of using few coefficients or delivering

high mean output power are not taken into account. The specific weights and thresholds used

in this particular adaLIPO search are:

• Weights: λ1 = 1; λ2 = 20; λ3 = 0.5; λ4 = 5.

• Thresholds: NMSEth=-30 dB; ACPRth=-45 dBc; Max N◦ coeff=100; Pout,th=30 dBm.

Figure 6.2: Results of the AdaLIPO search on the best configuration of the GMP model for DPD
linearization.
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Figure 6.3: Detail of the adaLIPO search on the best GMP model configuration for DPD linearization

Fig. 6.2 and its zoomed version in Fig. 6.3 show the score values of the different configurations

considered in the adaLIPO search. Table 6.1 lists the top best configurations found by the

adaLIPO search. Note that some of the configurations providing very good score (and thus

finding a good trading-off between linearity, computational complexity and power efficiency)

are not obvious, and they wouldn’t have been conceived in a manual search. Fig. 6.4 and Fig.

6.5 show the AM-AM and AM-PM characteristics and the output power spectra, respectively,

before and after DPD linearization when considering one of top best configurations of the GMP

model DPD reported in Table 6.1.

Figure 6.4: The AM-AM and AM-PM characteristics using of one of top best configurations of the GMP
model DPD.
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Table 6.1: Linearization results with the LTE 10 MHz bandwidth signal

ACLR NSME No.of Optput Total
Opt. Config. (dBc) (dB) Coeff Power Score

(dBm)

PA=4, PB=2, PC=1,
LA=3, LB=3, LC=4, -48.0 -31.1 38 31.39 99.1
MB=1, MC=3, KG=1.3

PA=1, PB=4, PC=10,
LA=2, LB=2, LC=1, -48.7 -29.2 42 31.22 108.2
MB=1, MC=1, KG=1.3

PA=4, PB=2, PC=1,
LA=3, LB=3, LC=4, -46.1 -29.6 21 31.37 67.0
MB=1, MC=3, KG=1.3

PA=5, PB=1, PC=3,
LA=2, LB=1, LC=5, -46.4 -29.7 29 31.41 71.1
MB=2, MC=1, KG=1.3

PA=5, PB=1, PC=10,
LA=2, LB=4, LC=1, -47.9 -28.3 42 31.56 92.2
MB=1, MC=1, KG=1.3

PA=6, PB=3, PC=9,
LA=4, LB=2, LC=1, -46.9 -30.2 70 31.34 59.5
MB=2, MC=1, KG=1.3

PA=8, PB=4, PC=1,
LA=1, LB=2, LC=1, -48.7 -30.1 40 31.37 110.6
MB=2, MC=1, KG=1.3

PA=10, PB=4, PC=1,
LA=1, LB=1, LC=1, -47.1 -31.7 38 31.42 81.9
MB=2, MC=3, KG=1.3

PA=11, PB=3, PC=2,
LA=2, LB=3, LC=1, -47.1 -30.5 62 31.49 68.0
MB=2, MC=3, KG=1.3

6.5 Conclusion

In this Chapter, we used a global optimization algorithm, adaLIPO, to find the best parameter

configuration of a GMP behavioral model for DPD. In our particular context, the adaLIPO algo-

rithm is capable to find the best configuration among 5.8 ·106 possible combinations constituting

the searching space. The definition of the score function is of key importance since prioritizes

the different figures of merit (FOM) under evaluation. In our particular case, the linearity per-

formance (evaluated in terms of NMSE and ACPR), the model complexity (evaluated in terms

of number of coefficients) and the power efficiency (indirectly evaluated in terms of mean output

power) are the FOMs weighted to define the adaLIPO score function.

The proposed approach has been validated through experimental results obtained with the
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Figure 6.5: Linearized and unlinearized spectra using one of top best configurations of the GMP model
DPD.

UPC Weblab. In our particular case, some of the best configurations found by the adaLIPO

algorithm to linearize a class-J PA operated with a LTE-10 MHz signal were able to deliver

around 31.4 dBm of mean output power, with approximately -48 dBc of ACPR and -31 dB of

NMSE, with a total number of GMP parameters around 40. Besides, having a look at the top

best configurations we can observe that are quite different among each other, which shows how

the adaLIPO search can find configurations that may have never been considered in a manual

tuning.



Chapter 7

Auto-Tuning and Digital
Predistortion of Power Amplifiers
with Several Free-Parameters

7.1 Introduction

In this Chapter we present an auto-tuning approach for dual-input PAs, using a combination

of global optimization search algorithms and adaptive linearization in the optimization of a

multiple-input PA. The objective is to exploit the extra degrees of freedom provided by dual-

input topologies to enhance the power efficiency figures along wide signal bandwidths and high

PAPR values, while being compliant with the linearity requirements. By using heuristic search

global optimization algorithms, such as the simulated annealing (SA) or the adaLIPO algorithm

(described in section 6.2 in Chapter 6) it is possible to find the best parameter configuration for

PA biasing, signal calibration and DPD linearization to help mitigating the inherent trade-off

between linearity and power efficiency.

All power amplifier architectures based on active load modulation, such as Doherty, LMBA

and outphasing, rely on the non-linear interaction between multiple transistors to enhance the

average efficiency in presence of modulated signals with large dynamic range. While these ar-

chitectures can be designed with a single RF input to simplify their use in a transmitter, there

are benefits in maintaining separate inputs controlled by different upconverter chains. For ex-

ample, some of the record bandwidth Doherty PAs have separate inputs [Bat11, And13], and

the advantages of dual-input Doherty compared to single input have been explored in specific

studies [Pia18]. This does not mean that single-input Doherty PAs with good bandwidth do not

exist, see for example [Gio14,Rub18]. However, the additional degrees of freedom offered by the

separate inputs can be used to optimize the performance on the same or larger bandwidth, or

to improve other performance metrics such as linearity and average efficiency [Dar16, Kal19].
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Similar considerations can be made for the LMBA, which was originally proposed for telecom

applications as a dual-input structure [Qua18]. However, single-input solutions have also been

proposed [Ped18], and critically compared to the dual-input case [Col18]. Also in this case the

single input solutions are viable, with a clear advantage in terms of simplicity, but at the cost

of compromised performance. The outphasing represents a very different case, since it requires

in principle separate inputs that are with constant amplitude and phase modulated only. This

is best achieved with separated inputs; however, some attempt has been made to realise single-

input narrowband outphasing circuits [Bar15] that demonstrated comparable performance to

dual-input cases.

Focussing on dual-input PAs, it is reasonable to state that evaluating the performance of a set

of free-parameters often requires experimental cross-validations with significant computational

cost and time, especially when the search space is vast. The idea behind global optimization is to

find the optimum output value (i.e., the globally best solution in the presence of multiple local

optima) of an unknown function with limited evaluations. Several techniques have been proposed

in the literature [Hor02] to find the most suitable set of parameters among large tunable ranges.

Among the exact methods we can find, for example, Bayesan search algorithms, branch and

bound algorithms, adaptive stochastic search methods or successive approximation methods;

while among the heuristic methods we can find, for example, evolution strategies (e.g., genetic

algorithms), the tabu search or the simulated annealing [Hor02].

In this Chapter we propose an auto-tuning approach to take advantage of the possibilities

given by the extra degrees of freedom in dual-input PAs by using the simulated annealing and

the adaLIPO heuristic search approaches. The objective is to find the best configuration for PA

biasing, signal calibration and digital predistortion linearization that guarantees the linearity

specifications, in terms of Normalized Mean Squared Error (NMSE), Error Vector Magnitude

(EVM) and Adjacent Channel Leakage Ratio (ACLR), and maximizes power efficiency of dual-

input PAs.

7.2 Description of the LMBA and its Free-Parameters

7.2.1 Multiple-Input Power Amplifier Architectures

All the aforementioned PA architectures based on active load modulation (Doherty, LMBA and

outphasing) and separate inputs can be visualised, by generalisation, as the block diagram of

Fig. 7.1. The amplifier has N RF inputs, a drain or collector bias (or, in some cases, more than

one at different rail voltages), and M different gate voltages to control the stages independently.

A typical example of PA with independent gate voltages is the Doherty, where the Main is biased

in class AB, and the auxiliary in class C. The instantaneous amplitude and phase of each input,
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as well as the M gate bias voltages, can be controlled and adjusted separately, allowing for a

large number of degrees of freedom that can be exploited to optimize a target Figure of Merit

(FoM).

PA

Drain Bias 
Supply

RF Output
Synchronised

RF Inputs

vOUT

v1

v2

vN

PDC

Gate Bias 
SuppliesV

G
G

,1

V
G

G
,2

V
G

G
,M

Figure 7.1: General block diagram of a multiple-input power amplifier.

The LMBA presented in [Qua18] is used as Device Under Test (DUT). Its block diagram is

shown in Fig. 7.2. There are two separate RF inputs; v1 controls the balanced amplifier (BPA)

pair, based on two CGH40025F transistors from Wolfspeed, biased in class AB with VGG,1 at

-2.8 V corresponding to 80 mA of quiescent drain current; v2 controls the Control Signal Power

(CSP) amplifier, also based on a CGH40025F, and biased in class C, with VGG,2 left as a

free parameter within the range of DC voltages -5.5 V to -3.5 V. The matching networks and

the output hybrid couplers are based on soft-board microstrip networks, with surface mount

device (SMD) capacitors and resistors for the by-pass and stabilisation networks. An off-the-

shelf hybrid coupler is used on the input. The circuit is mounted on an aluminium fixture, and

SMA connectors coaxial launchers are used for the RF ports.
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Figure 7.2: Block diagram of the LMBA used as DUT in this paper and described in detail in [Qua18].

The continuous wave (CW) measurements reported in [Qua18] showed, a maximum power

exceeding 63 W, and a 8 dB back-off efficiency exceeding 39%, over the 1.7–2.5 GHz frequency
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range. Modulated signal measurements were also performed with 5 MHz and 20 MHz channel

LTE signals, showing the ’linearisability’ (which indicates whether the PA is able or easy to

be linearized in practical implementation) of the LMBA under these conditions. Both sets of

measurements were performed with a manual search for the optimum amplitude, phase and

bias settings. In particular, the relative phase was maintained at a constant offset that led to

a good compromise between output power and back-off efficiency, while the relative amplitude

was following a square relation between the BPA and CSP inputs [Qua18].

The relative amplitude between the two inputs will be now defined through a shaping func-

tion, where it will be possible to tune two degrees of freedom. Similarly, the relative phase will

be also a parameter to be optimized.

7.2.2 Free-Parameters of the Dual-Input PA

The DUT used to validate the proposed tuning approach is the LMBA presented in [Qua18].

In order to maximize the power efficiency of the LMBA when operated with wideband signals

presenting high PAPR while meeting at the same time the in-band and out-of-band linearity

specifications, we have considered some free-parameters, which when properly tuned, should

help to mitigate the inherent linearity versus power efficiency trade-off.

The FOMs that we are considering to define the cost or objective function and determine

the values of the free-parameters are: the ACLR, the PA power efficiency (η), the NMSE and

the EVM. The out-of-band (defined in terms of ACLR) and the in-band (defined in terms of

EVM) linearity specifications must be met (being compliant with the communications standard)

while the power efficiency is a figure of merit that justifies the election of one topology instead

of another.

The parameters to be tuned are schematically depicted in Fig. 7.3 and listed in the following:

• Shaping functions parameters; Offset percentage (OP ) and degree of the root p.

• Relative phase (ψrel) between the BPA and CSP signals.

• The DC gate voltage of the CSP amplifier, VGG,2.

• The maximum PAPR (max PAPR) in dB, of the complex baseband signal (u[n]) to be

sent.

• The baseband gain (GainBB), which controls the mean input power and thus the input

back-off (IBO).

As depicted in Fig. 7.3, by applying some CFR technique (such as, peak cancellation

in [Lop14]) it is possible to limit the maximum PAPR. Consequently, the input back-off can



Chapter 7. Auto-Tuning and Digital Predistortion of Power Amplifiers with Several
Free-Parameters 105

Dual-

input PA

( )y t

CFR

{max_PAPR}
DPD

1[ ]x n

Phase 

ShifterShaping 

Function 

{OP, p}

[ ]u n[ ]s n
{GainBB}

VGG,1 {VGG,2}
{ψrel}

VDD

2[ ]x n

SAToutP

inPinP

outPoutP
A 

B

C

B C 

A

PA (no DPD)

DPD 

(Linearized)

DPD + Clipping B-B 

DPD + Clipping C-C 

OP=0%p=3

a)

b)

c) d)

Figure 7.3: Simplified block-diagram showing the degrees of freedom of the dual-input PA system
including DPD and CFR.

be reduced (by increasing GainBB) and thus operating closer to compression, as graphically

described in Fig.7.3-b).

The BPA signal is defined directly as x1[n] = x[n]. The CSP signal x2[n] is generated by

using a shaping function previously employed in envelope tracking (dynamic supply modulation)

and outphasing (dynamic load modulation) applications [Gil19], because it provides two degrees

of freedom. One of the parameters can be tuned to allow some level of detroughing (preventing

the signal from dropping to zero), while the other parameters controls the shape of the AM/AM

characteristic. More specifically, the CSP signal x2[n] is defined as

x2[n] = xsf [n] eiψrel (7.1)

with ψrel being the relative phase (in radians) between the BPA and the CSP signals; and where

the signal after the shaping function xsf [n] is defined as

xsf [n] = As[n] K0 e
iφx (7.2)

where K0 = max{|x[n]|}
max{As[n]} , φx = phase{x[n]} and the amplitude relation between signals is charac-

terised by the following shaping function:

As[n] =
((
xmin

)6
+
(
|x[n]|

)6)1/p
(7.3)

with p being the degree of the root (pth root) and the lower bound xmin defined as

xmin = max{|x[n]|} OP (7.4)

where OP is the offset percentage, defining the threshold for the detouring function. The input-

output characteristics of the shaping function when sweeping the parameters OP and p are

depicted in Fig.7.3-c) and Fig.7.3-d).
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Figure 7.4: Flowchart of the proposed auto-tuning technique for dual-input PAs.

7.3 Description of the Dual-Input PA Auto-tuning Approach

7.3.1 Dual-Input PA Tuning Approach

The tuning approach proposed to configure the dual-input PA is summarized in the flowchart

in Fig. 7.4. More specifically, the steps are described in the following:

i. Define the degrees of freedom (free-parameters) to be tuned. Typically, device and system

parameters that have an impact on the linearity v.s. efficiency trade-off.

ii. Define the tuning range of free-parameters (upper and lower bounds). Typically, some

preliminary tests, or information about the DUT, are necessary to determine this range.
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iii. Decide whether to include the DPD in the optimization process. If included, the final

linearity specs can be targeted inside the optimization algorithm. If not included, lower

linearity specs can be targeted assuming that a later application of DPD will be able to

meet system requirements. When considering wide-band signals, where the linearity speci-

fications will be more difficult to meet, it is better to include the DPD in the optimization

process. This way we can avoid solutions where the power efficiency is optimum but then

the linearity levels (mainly in terms of ACLR) cannot be met (even with DPD) without

significantly degrading the original power efficiency figures. When including the DPD in

the optimization, the behavioural model needs to be oversized to linearize the dual-input

power amplifier under significantly different operation modes. Then, once the optimum

configuration is fixed, model order reduction techniques can be applied to the DPD to

reduce the number of required parameters.

iv. Choose the optimization algorithm and design the cost (or objective) function. In this cost

function, all the FOMs should appear weighted according to their importance. Additionally,

some thresholds values for each FOM can be also be defined to further penalize not meeting

the desired specifications. This is an important feature when dealing with mandatory

system requirements such as ACLR limits.

v. Configure the DUT characterisation and capture input-output data searching for the pa-

rameters values until the cost function threshold is achieved.

vi. Carry out an off-line model order reduction of the DPD behavioural model. A feature

selection technique, such as the orthogonal matching pursuit (OMP), is used to reduce

the number of parameters of the DPD behavioural model and ensure a well-conditioned

estimation.

vii. Check the linearity specification after model reduction. If not satisfactory, go back to step

5 and increase the number of coefficients.

viii. Check the linearity vs. power efficiency trade-off which is obtained with the free-parameters

found. If not satisfactory, go back to step 4 and re-define the cost function changing its

weights and thresholds.

In the following we will provide a more in-depth description of the specific details involving

each one of the steps of the proposed tuning approach. Similarly as in Chapter 6, we will use

the adaLIPO algorithm for global optimization. In addition, the simulated annealing search

algorithm will be also considered.
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7.3.2 Digital Predistortion Linearization

Despite the fact that the principles of the closed-loop DPD have been already addressed in section

3.1.2 of Chapter 3, the DPD behavioral model used in this Chapter has not been previously

introduced. Therefore, for completeness, we review again the principles of closed-loop DPD.
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Figure 7.5: Block diagram of the dual-input PA with CFR and DPD linearization.

The block diagram of our closed-loop adaptive DPD architecture is shown in Fig 7.5. The

input-output relationship at the DPD block can be described as

x[n] = u[n]− d[n] (7.5)

where x[n] is the signal at the output of the DPD block, u[n] is the input signal and d[n] is the

distortion signal, described by the following simplified Volterra-based model,

d[n] =

N1−1∑
i=0

αi u[n− τ1i ] +

N3−1∑
j=0

j∑
i=0

i∑
k=0

βkij u[n− τ3j ] u[n− τ3i ] u∗[n− τ3k ] + (7.6)

N5−1∑
j=0

j∑
i=0

i∑
k=0

k∑
l=0

l∑
s=0

γslkij u[n− τ5j ] u[n− τ5i ]

u∗[n− τ5k ] u[n− τ5l ] u∗[n− τ5s ] +

Na−1∑
i=0

Pa−7
2∑

p=0

δpi u[n− τai ]
∣∣u[n− τai ]

∣∣2p+6

where τ1, τ3, τ5 and τa (with τ1,3,5,a ∈ Z and τ1,3,5,a0 = 0) are the most significant sparse delays

of the input (u[n]) that contribute to characterise memory effects. As it can be observed in (7.6),

the first, third and fifth-order kernels have been included (limiting the number of combinations to

avoid repetitions) and for higher odd-order non-linearities, a simple memory polynomial model
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has been considered. Since we are targeting the linearization of wideband signals, we want to be

able to capture as many cross-memory products as possible.

In a more compact notation, (7.5) can be rewritten as

x[n] = u[n]−ϕT [n]w[n] (7.7)

where w[n] =
(
w1[n], · · · , wi[n], · · · , wM [n]

)T
is a vector of coefficients at time n with

dimensions M × 1, where M , is the order of the behavioural model, and ϕT [n] =(
ϕ1[n], · · · , ϕi[n], · · · , ϕM [n]

)
is the vector containing the basis functions ϕi[n] (with i =

1, · · · ,M) following the Volterra-based model in (7.6). The mapping between the simplified

Volterra-based model specific coefficients (αi, βkij , γslkij and δpi) in (7.6) and the general pur-

pose DPD coefficients wi[n] in (7.7) is straightforward.

Finally, when expressed in matrix notation, (7.5) can be rewritten as

x = u−Uw (7.8)

where x = (x[0], · · · , x[n], · · · , x[N − 1])T and u = (u[0], · · · , u[n], · · · , u[N − 1])T , with

n = 0, · · · , N − 1, are the predistorted and input vectors respectively, and U =

(ϕ[0], · · · ,ϕ[n], · · · ,ϕ[N −1])T is the N ×M data matrix, with N being the number of samples

and M being the number of basis functions or the order of the model.

Following a closed-loop error minimization technique as in [Bra, LB18], the coefficients can

be extracted iteratively finding the least squares (LS) solution. At the ith iteration (i.e., when

considering buffers of N data samples) the coefficients are obtained as

wi+1 = wi + µ
(
UHU

)−1
UHe (7.9)

with µ (0 ≤ µ ≤ 1) being the weighting factor and e = (e[0], · · · , e[n], · · · , e[N − 1])T is the

N × 1 vector of the error defined as

e =
y

G0
− u (7.10)

where G0 determines the desired linear gain of the PA, and where y and u are the N ×1 vectors

of the PA output and the transmitted input, respectively.

In addition, if we want to further simplify the number of basis functions defining our DPD

model, we can apply some feature selection algorithm. As discussed in section 3.1.5 of Chapter

3, one of the algorithms used for dimensionality reduction is the orthogonal matching pursuit

(OMP), a greedy algorithm for sparse approximation used in [Rei15, Pha18a] for model order

reduction purposes.

7.3.3 Global Optimization Algorithms

In this Chapter we have considered the use of two heuristic search algorithms to determine the

free-parameters of the dual-input PA, namely, the well-known simulated annealing (SA) and the



110 7.4. Experimental Results

adaptive Lipschitz optimization (adaLIPO) algorithm. A brief description of the SA is given in

the following, while a description of the adaLIPO algorithm is given in section 6.2 of Chapter 6.

Simulated Annealing (SA)

One of the most famous large scale heuristic searching method is the simulated annealing, which

was first introduced by Kirkpatrick in 1983 [Kir83]. The SA method (named after a technique

in metallurgy involving heating and controlled cooling of a material to increase the size of its

crystals and reduce their defects) performs well in the case of large scale searching, and also

has a good property of converging. Following the analogy with metallurgy, the slow cooling in

the simulated annealing has to do with a slow decrease in the probability of accepting worse

solutions as the solution space is explored. To find the global optimum solution, the algorithm

has to be able to carry out an extensive search, that is the reason why accepting worse solutions

is a fundamental property. Therefore, at each iteration, the algorithm randomly selects a solution

and evaluates it, then decides the next move based on either one of two probabilities according

to the quality of the new solution in comparison to the previous ones. During the search, the SA

parameter named temperature (again, in analogy with metallurgy) is progressively decreased

(until reaching the zero value) and the probabilities of moving to a better new solution and

moving to a worse new solution updated accordingly.

7.4 Experimental Results

7.4.1 General Considerations

The following experimental results were obtained using the LMBA test-bench depicted in Fig.

5.13 and described in section 5.4.3 of Chapter 5.

The proposed auto-tuning approach for LMBA or dual-input PA systems was tested with

LTE (OFDM-like) waveforms. In particular, we considered two types of test signals: i) a 64

quadrature amplitude modulation (QAM) 20 MHz bandwidth LTE signal (LTE-20) at 2 GHz

RF frequency with 10.2 dB of PAPR, and ii) a non contiguous intra-band carrier-aggregated

(CA) LTE system consisting in 4 channels of 64 QAM modulated LTE-20 signals (CA-4×LTE-

20) spread in 200 MHz instantaneous bandwidth at 2 GHz RF frequency and a PAPR of 10.7

dB. To be noted, these signals are more demanding than the ones previously used to characterise

the same DUT [Qua18].

Following the proposed procedure schematically described in Fig. 7.4, the first step is to

define the free-parameters to be optimized. In order to show the difficulty of properly tuning the

parameters defined in Section 7.2.2, Fig. 7.6 shows the evolution of the best-case and worst-case
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ACLR, best-case and worst-case EVM, the NMSE, the output power and the power efficiency

for a 200 MHz CA-4×LTE-20 test signal, when:

• Sweeping the relative phase (ψrel) but keeping p = 3, OP = 0 and VGG,2 = −3.5 V.

• Sweeping the OP but keeping p = 3, ψrel = 190◦ and VGG,2 = −3.5 V.

• Sweeping p but keeping, OP = 0, ψrel = 190◦ and VGG,2 = −3.5 V.

• Sweeping VGG,2 but keeping p = 3, OP = 0 and ψrel = 190◦.

For simplicity, no CFR has been considered and the input gain has been kept fixed. As observed

in Fig. 7.6, by sweeping the values of one parameter and fixing the values of the rest, it is possible

to evaluate the different FOMs and determine the best configuration for each one individually.

However, by fixing some of their values, we are already limiting the search space and thus, there

is no guarantee that the solution found for this specific set of parameters is a global optimum.

Therefore, to properly tune the free-parameters, the next step, according to the flow diagram

in Fig. 7.4, is to define the search range (upper and lower bounds). This is empirically determined,

and in our particular case, we considered the same search range for both test cases. The upper

and lower bounds defined for the free-parameters under search were:

• Offset percentage, OP = [0.01, 0.40]. We empirically found (as an example, see Fig. 7.6)

that for OP > 0.4, the linearity and efficiency performance was significantly degraded.

• degree of the root, p = [1.0, 10.0]. We empirically found that for p > 10, no significant

variations are appreciated in the linearity performance.

• Relative phase, ψrel = [0, 359]o.

• The gate voltage of the CSP amplifier, VGG,2 = [−3.5, −5.5]V . This provides a reasonable

variation between a deep-class C condition that should favour efficiency, and a near-class

B bias where linearity should improve.

• The maximum PAPR, max PAPR = [7.0, 12.0]dB. For PAPR values lower than 7 dB

the EVM degradation resulted unacceptably high, while no CFR was applied for PAPR

values higher than 11.5 dB.

• The baseband gain, GainBB = [16.0, 19.0]. This range of baseband gain values provides

a variation of 1.5 dB to adjust the IBO.
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Figure 7.6: Evaluation of the FOMs when sweeping some parameters (degrees of freedom) individually.
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At this point it is necessary to decide: i) if the DPD linearization needs to be included in

the search procedure, ii) the optimization algorithm to be used, and iii) the FOMs, weights

and thresholds of the cost function. As it will be shown in the next subsections, we considered

to include DPD lineariation in the search process only for the CA-4×LTE-20 test signal case.

In addition, despite the fact that in both test cases we considered the use of both SA and

adaLIPO algorithms to determine the values of the free-parameters, the cost functions used in

each test-case were different.

7.4.2 Test case 1: 20 MHz Bandwidth LTE Signal (LTE-20)

In the case of amplifying a 20 MHz LTE signal, the required linearization is not that challenging

(i.e., the linearity specs are easy to meet with DPD linearization after fixing the free-parameters).

Consequently, we can conduct an optimization for selecting the optimum value of the free-

parameters without the need to include DPD linearization in the search process.

The cost function for the LTE-20 case is defined in (7.11),

J = (ηth − η)λeff + (ACLR−ACLRth)λACLR (7.11)

+(NMSE−NMSEth)λNMSE + (EVM− EVMth)λEVM

As depicted in Table 7.1, with this configuration of weights, more importance is given to mini-

mize the out-of-band distortion (i.e., ACLR) and maximize power efficiency, while the in-band

distortion (i.e., NMSE and EVM) requirements are more relaxed, since they are easier to meet.

The results obtained when considering both SA and adaLIPO optimizations are listed in

Table 7.1. As an example, Fig. 7.7 shows the solution found by the adaLIPO algorithm (out

of 4.3507 1010 possible configurations) for the given objective or cost function. Note that the

adaLIPO algorithm searches the maximum of the cost function, consequently, we have to change

the sign of the cost function described in (7.11) to run the algorithm. In addition, taking into

account that the weights of the cost function are multiplying the FOMs, the threshold values

defined in this cost function have no real impact or penalization effect. In this particular case,

they are simply included to create an offset for better interpreting the score value (i.e., positive

score values correspond to configurations where most of the targeted thresholds are met).

With the free-parameters found in Table 7.1 using both SA and adaLIPO optimization

algorithms, we applied the DPD and we obtained the results listed in Table 7.2. To be noted,

no CFR was applied, since both algorithms discard to apply CFR reduction. In addition, in

Table 7.2 we can observe a triple compromise between the power efficiency, the linearity and

the computational complexity. The power efficiency is around 31% (with less than 1 percentage

point of variation) independently on the optimization method or the number of coefficients

of the DPD, since the PA power efficiency is more sensitive to the chosen input power back-
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Figure 7.7: Example of the adaLIPO search for the LTE-20 signal test case.

Table 7.1: Parameters configuration for a LTE 20 MHz bandwidth signal

Opt. Config. Threshold Weight Optim. values

OP = 0.31
Simulated p = 6
Annealing ψrel = 245o

(No DPD) maxPAPR = 10.8dB
η = 25% λeff = 10 VGG,1 = 5.4V

ACLR =-45 dBc λACLR = 7 GainBB = 6.0
NSME=-26 dB λNMSE = 2 OP = 0.26

EVM= 4 % λEVM = 5 p = 4.6
adaLIPO ψrel = 254o

(No DPD) maxPAPR = 11dB
VGG,1 = 5.3V
GainBB = 6.1

off. The linearity levels are easily met (e.g., the EVM after DPD is always below 1%), but

we can trade-off the ACLR levels and the number of coefficients by using a dimensionality

reduction method such as the OMP algorithm. Therefore, as depicted in Fig. 7.8 and listed

in Table 7.2, we can meet the ACLR specifications (i.e., ACLR < −45 dBc) with only 66

coefficients or, alternatively, achieving better spectral regrowth compensation by including more

DPD coefficients (e.g., up to 108 coefficients) when considering the parameters’ configuration

found by the adaLIPO algorithm and listed in Table 7.1.
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Table 7.2: linearization results with the LTE 20 MHz bandwidth signal

Worst NSME Worst Optput η
Opt. Config. ACLR (dB) EVM Power (%)

(dBc) (%) (dBm)

SA config.
without DPD -38.7 -29.0 2.0 36.6 31.1

SA config.
with DPD (108 coeff.) -49.0 -37.6 0.8 36.6 30.3

SA config.
with DPD (62 coeff.) -48.3 -37.8 0.7 36.4 30.7

adaLIPO config.
without DPD -36.7 -27.5 2.3 36.2 31.0

adaLIPO config.
with DPD (108 coeff.) -53.4 -40.9 0.6 36.2 31.5

adaLIPO config.
with DPD (66 coeff.) -46.7 -38.5 0.7 36.2 31.8
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Figure 7.8: LTE-20 signal test case. Output power spectra before and after DPD linearization, when
considering a DPD behavioural model with 66 and 108 coefficients, respectively.
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7.4.3 Test case 2: 200 MHz Bandwidth CA-4×LTE-20 Signal

For the CA-4×LTE-20 test signal case, the attempts of optimization without DPD inclusion

in the process did not lead to a configuration where the output signal was compliant with the

ACLR and EVM thresholds. Therefore, we included DPD linearization to run the optimization

search process. We wanted to make sure that the solution found resulted in a PA behaviour

that could be later linearised with the 200 MHz instantaneous bandwidth signal. We considered

a general Volterra-like behavioural model (as described in (7.6)) with a generic configuration

that yielded to a DPD behavioural model with 592 coefficients. Another change compared to

the 20 MHz LTE case was related to the definition of the cost function, where some thresholds

were added together with the weights (this time defined as exponents) to not only emphasize

the desired behaviour, but also to add further penalization in case of not meeting the linearity

threshold values.

J = (ηth − η)λeff + (ACLR−ACLRth)λACLR (7.12)

+(NMSE−NMSEth)λNMSE + (EVM− EVMth)λEVM

The results obtained when considering both SA and adaLIPO optimizations including DPD are

listed in Table 7.3. As an example, Fig. 7.9 and Fig. 7.10 show the evolution of free-parameter

values and the evolution of the FOMs respectively, along 200 SA iterations. The values to which

the free-parameters converged are shown in Fig. 7.9 and listed in Table 7.3.

With the free-parameters found in Table 7.3 using both SA and adaLIPO optimization algo-

rithms, we applied CFR (defined by the maxPAPR parameter) and DPD (using the Volterra-

based DPD model in (7.6)) and we obtained the results showing the linearity vs. efficiency

trade-off listed in Table 7.4. As it can be observed, even when the parameters’ configuration

differ between SA and adaLIPO, their performance is quite similar. For the 200 MHz instanta-

neous bandwidth signal tested, we can meet the out-of-band and in-band linearity specifications

with a mean output power around 33 dBm and a power efficiency around 22%.

In addition, after applying the OMP algorithm for feature selection, we were able to reduce

the number of coefficients of the DPD behavioural model up to 374 coefficients in the case of

the SA configuration, and 364 coefficients in the case of the adaLIPO configuration, and still

being compliant with the required linearity specifications. Fig. 7.11 shows the spectra of the 200

MHz instantaneous bandwidth CA-4×LTE-20 test signal before and after DPD linearization

(considering the SA configuration in Table 7.4); while Fig. 7.12 depicts the AM-AM and AM-

PM characteristics before and after DPD linearization. Note that in both cases CFR was applied

to the original signal to limit the PAPR to 9.8 dB (as described in Table 7.3).
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Figure 7.9: Evolution of the parameters’ values for different SA iterations for the CA-4×LTE-20 signal
test case.
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Table 7.3: Parameters configuration for the CA-4×LTE-20 200 MHz bandwidth signal

Opt. Config. Thresholds Weight Optim. values

OP = 0.09
p = 1.12

Simulated ψrel = 213o

Annealing maxPAPR = 9.8dB
(with DPD) η= 19% λeff = 5 VGG,1 = 4.2V

ACLR =-45 dBc λACLR = 5 GainBB = 16.3
NSME=-30 dB λNMSE = 1 OP = 0.02
EVM=1% λEVM = 1 p = 1.5

adaLIPO ψrel = 182o

(with DPD) maxPAPR = 9.6dB
VGG,1 = 4.6V
GainBB = 16.3
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Figure 7.10: Evolution of the FOMs along different SA iterations for the CA-4×LTE-20 signal test case.
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Table 7.4: linearization results with the CA-4×LTE-20 200 MHz bandwidth signal

Worst NSME Worst Optput η
Opt. Config. ACLR (dB) EVM Power (%)

(dBc) (%) (dBm)

SA with CFR and
without DPD -30.3 -20.0 4.1 33.8 24.8

SA with CFR and
with DPD -45.2 -35.8 0.9 32.9 22.2

Adalipo with CFR and
without DPD -30.4 -20.1 4.3 33.7 24.7

Adalipo with CFR and
with DPD -45.1 -35.5 0.9 32.8 22.2
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Figure 7.11: Output power spectra before and after DPD linearization for the CA-4×LTE-20 signal test
case..

7.5 Conclusion

In this Chapter we proposed an approach to exploit at best dual-input PAs in terms of maxi-

mizing power efficiency along wide bandwidths while being compliant with the linearity specifi-

cations. The proposed technique relies on conducting a global optimization to find the optimum

values of a set of key circuit and system level parameters that properly combined with DPD

linearization and CFR techniques can find a good compromise for the inherent linearity vs.

efficiency trade-off.
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Figure 7.12: AM-AM and AM-PA before and after DPD for the CA-4×LTE-20 signal test case.

The proposed approach has been validated through experimental results. In our particular

case, we have used the SA and adaLIPO heuristic search global optimization algorithms to find

the best parameter configuration, taking into account two different test cases with different cost

functions each one. By using a LMBA and after properly tuning the selected free-parameters, it

was possible to achieve power efficiency values greater than 30% when considering the LTE-20

test signal. Moreover, up to 22% of mean power efficiency was obtained when considering the

CA-4×LTE-20 test signal with 200 MHz instantaneous bandwidth. In both test-cases the peak-

to-average power ratio (PAPR) of the signals was greater than 10 dB. The out-of-band linearity

requirements (ACLR < −45 dBc) were met, and the error vector magnitude was kept always

below 1%.

Despite obtaining different parameter’s configurations depending on the type of heuristic

search algorithm used, in both test cases (i.e., LTE-20 and CA-4×LTE-20 test cases) the lin-

earization performance (in terms of ACLR and EVM) and power efficiency figures obtained were

quite similar independently on the optimization algorithm used.



Chapter 8

Conclusions and Future Prospects

8.1 Conclusions

In the context of UAV wireless communications, the power consumption, size and weight of the

payload is of significant importance. The power amplifier, present in every transmitter chain, can

be designed to maximize its power efficiency or its linearity, but not both. Therefore, a way to deal

with this inherent trade-off between linearity and power efficiency is the use of PA linearizers.

Among them, DPD linearization is the preferred solution to both academia and industry, for

its high flexibility and linearization performance. In order to save as many computational and

power resources as possible, the implementation of an open-loop DPD results a very attractive

solution for UAV applications. However, engineers have to deal with the complexity of DPD

linearization since its both time and knowledge demanding.

The research presented in this Thesis was aimed to provide a fast engineering approach from

several perspectives:

• To enhance the off-line training performance of open-loop DPD, which provides simplicity

to the DPD implementation.

• To reduce the computational complexity for both the DPD design and real-case application.

• To automate the DPD tuning procedure by importing artificial intelligence to the experi-

mental part.

The main contribution of this research consisted in providing two different methods for

reducing the design and operating costs of an open-loop DPD, based on the analysis of the DPD

function. The first method focuses on the input domain analysis, aiming to provide an efficient

way to reduce the computational resources of the DPD adaptation function and enhance the

robustness of the estimation. The second method involves the use of machine learning techniques

121
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in the DPD design procedure to enlarge the capacity of the DPD algorithm when considering a

high number of free-parameters to tune.

In particular, in Chapter 4 we presented a mesh-selecting method to find a small subset

of the original test signal for DPD coefficients extraction while keeping the same accuracy. By

using model order reduction based on the PCA theory combined with a proper selection of the

equations through the AM-AM memoryless mesh-selecting method, we were able to significantly

reduce the data matrix dimensions as well as to improve the matrix conditioning. The price to

pay for reducing the computational complexity is some accuracy loss.

While in Chapter 5 we proposed and compared a series of improved mesh-selecting meth-

ods (resulted from modifying the original AM-AM memoryless mesh-selecting) to provide en-

hanced selecting performance. Focusing in the mesh-selecting method with better performance,

the memory I-Q mesh-selecting method was combined with the PCA-DPLS feature extraction

dimensionality reduction technique to allow a computational complexity reduction in the iden-

tification subsystem by a factor of 65, in comparison to using the classical QR-LS solver and

consecutive samples selection. In addition, the memory I-Q mesh-selecting has been proved to

be of crucial interest when training ANN for DPD purposes, since it can significantly reduce the

ANN training time.

Finally, in Chapter 6 and Chapter 7 we proposed a machine learning based tuning method

to assist the DPD design procedure. The adaLIPO global optimization algorithm, was used in

Chapter 6 to find the best parameter configuration of a GMP behavioral model for DPD. While

in Chapter 7 we proposed a methodology to conduct a global optimization search to find the

optimum values of a set of key circuit and system level parameters that properly combined

with DPD linearization and CFR techniques can exploit at best dual-input PAs in terms of

maximizing power efficiency along wide bandwidths while being compliant with the linearity

specifications.

With the achievements reported in this thesis, we have contributed to the long-term ob-

jective that consists in designing an artificial intelligence core algorithm (AICA) that will help

researchers around the world test the new methods/models with all available weblabs, automat-

ically. This way, the factory calibration of open-loop DPDs will be significantly simplified and

available to SMEs around the globe which, in the field of avionics, could foster the adoption

open-loop DPD linearization solutions. Given the LOS transmission characteristics in UAVs and

the available behavioral models to account for the time-variant behavior of PAs due to temper-

ature changes, a properly off-line tuned open-loop DPD would become a feasible solution in

UAVs communications to extend the coverage and battery autonomy of UAVs. This idea will

be further developed in the following and final section.
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8.2 Future Prospects

The research work developed in this thesis can be extended in a number of directions as follows:

• Mesh-Selecting Method with Arbitrary Distribution. As shown in previous chap-

ters, by keeping the original distribution of the multi-dimension histogram, the MeS pro-

vides a good selecting performance that keeps the DPD performance and reduces the

computation complexity. This illustrates the importance of the original statistics of the

DPD training signal.

However, some other researches also point out that some supplementation is required to

the original input signal statistical feature. The most famous approach is the piece-wise

method provided by Kim at [Kim06]. By dividing the signal into high and low amplitude

and predistorting via independent DPD functions, it operates on the foundation of the

signal amplitude distribution. As the higher part of the signal gains high importance

when applied a separate DPD function, the performance improved accordingly. Another

recent research in [Kra20] proposes a method for sample selection based on a Genetically

Optimised Histogram (GOH), which is a histogram of signal magnitudes optimized with

respect to characteristics of the PA and of the transmitted signal.

A undergoing work to enhance the MeS is to include a arbitrarily set multi-dimension

histogram to improve the DPD performance. Unlike the traditional histogram optimized

like in the GOH method or even manually, the optimized distribution will be obtained

with a machine learning method.

• Mesh-Selecting Method with Signal Similarity based Selecting. As mentioned

several times in this dissertation, the demanding of the storage is the major problem

of the MeS method. The reason for keeping the tremendous large mesh inside the RAM

storage is to find the way to map a new coming PA input sample to the coordinate position,

i.e., the original objective of the MeS.

A further work to improve the performance of MeS is to get rid off the original multi-

dimensional histogram or find another approach to map the new signal into the original

statistical feature. The information of the mesh could also be saved in the selection result

of the PA input signal. Comparing the similarity between different signals, by means of

the mean square error, would be a possibility and it is now under test. The experimental

result would be illustrated in further publications.

• A full AI assisting approach that includes the PA, DPD model and the DPD

methods. In its final format, multiple test-benches will be allowing access to the artificial

intelligence core algorithm (AICA). Researchers will be also able to upload their new ideas

of DPD models or linearization methods, as envisaged in Fig. 8.1. The AICA will test
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Figure 8.1: The structure of new DPD AI paradigm

the new methods with all PAs automatically and then will show the researcher a panoply

of results evaluating the DPD linearization performance. PA designers and manufacturers

will receive a suitable DPD solution that will be chosen among all the available academic

publications automatically by AICA.
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[Gui20] Estefańıa Guillena, Linealización de un Amplificador Balanceado con Modulación de

Carga Mediante un Predistorsionador Digital Basado en Redes Neuronales para Comu-

nicaciones en Veh́ıculos Aereos no Tripulados, Graduate thesis, Universitat Politècnica
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