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ABSTRACT

This dissertation intends to provide theoretical and practical contributions on estima-
tion, diagnosis and control of complex systems, especially in the mathematical form of
descriptor systems. The research is motivated by real applications, such as water net-
works and power systems, which require a control system to provide a proper manage-
ment able to take into account their specific features and operating limits in presence
of uncertainties related to their operation and failures from component malfunctions.
Such a control system is expected to provide an optimal operation to obtain efficient

and reliable performance.

State estimation is an essential tool, which can be used not only for fault diagnosis
but also for the controller design. To achieve a satisfactory robust performance, set the-
ory is chosen to build a general framework for descriptor systems subject to uncertain-
ties. Under certain assumptions, these uncertainties are propagated and bounded by
deterministic sets that can be explicitly characterized at each iteration step. Moreover,
set-invariance characterizations for descriptor systems are also of interest to describe

the steady performance, which can also be used for active mode detection.

For the controller design for complex systems, new developments of economic
model predictive control (EMPC) are studied taking into account the case of under-
lying periodic behaviors. The EMPC controller is designed to be recursively feasible
even with sudden changes in the economic cost function and the closed-loop conver-
gence is guaranteed. Besides, a robust technique is plugged into the EMPC controller

design to maintain these closed-loop properties in presence of uncertainties.

Engineering applications modeled as descriptor systems are presented to illustrate
these control strategies. From the real applications, some additional difficulties are

solved, such as using a two-layer control strategy to avoid binary variables in real-time

xi



optimizations and using nonlinear constraint relaxation to deal with nonlinear alge-
braic equations in the descriptor model. Furthermore, the fault-tolerant capability is
also included in the controller design for descriptor systems by means of the designed

virtual actuator and virtual sensor together with an observer-based delayed controller.

Keywords: Robust state estimation, fault diagnosis, economic model predictive
control, fault-tolerant control, set theory, descriptor systems, water distribution net-

works, smart grids.
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RESUMEN

Esta tesis propone contribuciones de caracter tedrico y aplicado para la estimacién del
estado, el diagndstico y el control 6ptimo de sistemas dinmicos complejos en partic-
ular, para los sistemas descriptores, inluyendo la capacidad de tolerancia a fallos. La
motivacion de la tesis proviene de aplicaciones reales, como redes de agua y sistemas
de energia, cuya naturaleza critica requiere necesariamente un sistema de control para
una gestion capaz de tener en cuenta sus caracteristicas especificas y limites operativos
en presencia de incertidumbres relacionadas con su funcionamiento, asi como fallos
de funcionamiento de los componentes. El objetivo es conseguir controladores que

mejoren tanto la eficiencia como la fiabilidad de dichos sistemas.

La estimacién del estado es una herramienta esencial que puede usarse no solo
para el diagnéstico de fallos sino también para el disefio del control. Con este fin, se
ha decidido utilizar metodologias intervalares, o basadas en conjuntos, para construir
un marco general para los sistemas de descriptores sujetos a incertidumbres descono-
cidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos
que se pueden caracterizar explicitamente en cada instante. Por otra parte, también se
proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descrip-
tores que permiten describir comportamientos estacionarios y resultan ttiles para la

deteccién de modos activos.

Se estudian también nuevos desarrollos del control predictivo econémico basado
en modelos (EMPC) para tener en cuenta posibles comportamientos periddicos en la
variacion de parametros o en las perturbaciones que afectan a estos sistemas. Ademas,
se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, in-
cluso frente a cambios repentinos en la funcién de coste econémico y se garantiza la
convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto
pata garantizar que las estrategias de control predicitvo econémico mantengan las

prestaciones en lazo cerrado, incluso en presencia de incertidumbre.
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Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de
aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia
de control de dos niveles para evitar incluir variables binarias en la optimizacién y el
uso de la relajacion de restricciones no lineales para tratar las ecuaciones algebraicas no
lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también
una contribucién al disefio de estrategias de control con tolerancia a fallos para sistemas

descriptores.

Palabras clave: Estimacién de estado robusta, diagnéstico de fallos, control pre-
dictivo econémico basado en modelos, control tolerante a fallos, métodos intervalos,
métodos basados en conjuntos, sistemas descriptores, redes de distribucién de agua,

redes inteligentes.
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RESUM

Aquesta tesi proposa contribucions de caracter teoric i practic sobre I'estimacié d’estat,
el diagnostic i el control optim de sistemes complexos en particular, per als sistemes
descriptors, incloent-hi la capacitat de tolerancia a fallades. La motivacié de la tesi
prové d’aplicacions reals, com ara xarxes d’aigua i sistemes d’energia que, per la seva
naturalesa critica necessariament requereixen d’un sistema de control capag de tenir en
compte les seves caracteristiques especifiques i els limits de funcionament, la preséncia
d’incerteses relacionades amb el seu funcionament i situacions de malfuncionament
dels components. Es pretén que aquest sistema de control millori I'eficiencia i la fiabil-

itat d’aquests sistemes.

L’estimaci6 d’estat és una eina essencial no només per al diagnostic de fallades,
siné també per al disseny del sistema de control. Amb aquest objectiu, s’utilitzen
tecniques intervalars i basades en conjunts per a generar un marc general per als sis-
temes de descriptors sotmesos a incerteses desconegudes pero limitades. Aquestes
incerteses es propaguen i limiten amb conjunts deterministics que es poden caracter-
itzar explicitament en cada instant. D’altre part, també es proposen caracteritzacions
basades en conjunts invariants per a sistemes descriptors, que permeten descriure com-
portaments estacionaris i que son d’utilitat per a la deteccié dels modes actius en cas

de sistemes amb miltiples modes.

S’estudien, a més nous desenvolupaments del control predictiu economic basat en
models (EMPC) per a tenir en compte el cas de comportaments periodics. Es demostra
que el controlador EMPC desenvolupat garanteix la factibilitat recursiva, fins i tot amb
canvis sobtats en la funci6é de cost econdmic, aixi com la convergencia de llag tancat.
Finalment, s’utilitzen téecniques de control robust per a garantir les prestacions en llag

tancat, considerant la presencia d’incerteses.
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Els desenvolupaments de la tesi es mostren amb casos d’estudi realistes. Per a al-
gunes aplicacions reals, es resolen també problemes addicionals, com ara 1'as d"una
estrategia de control de dues capes per evitar variables binaries en I'optimitzaci6 i la
relaxaci6 de restriccions no lineals en el model descriptor en les xarxes d’aigua. Final-
ment, s’inclou també una contribuci6 al disseny d’estratégies de control amb toleréncia

a fallades per a sistemes descriptors.

Paraules clau: Estimacié robusta d’estat, diagnostic de fallades, control predictiu
economic basat en models, control tolerant a fallades, teoria de conjunts, sistemes de-

scriptors, xarxes de distribuci6é d’aigua, xarxes intel-ligents.
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NOTATION

By Y
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7

_l’_

aQ =z

S<o

positive (negative) definite

positive (negative) semi-definite

set of real numbers

set of non-negative real numbers, defined as Ry = R\ (—o0, 0]
set of natural numbers

set of complex numbers

set of integer numbers

set of non-negative integer numbers

set Z in an interval between a and b

set of symmetric matrices of dimension n

set of positive definite symmetric matrices of dimension n

set of positive semi-definite symmetric matrices of dimension n
set of negative definite symmetric matrices of appropriate dimension
set of negative semi-definite symmetric matrices of appropriate dimension
hypercube defined as B" := [-1,1]"

Minkowski sum of two sets X and )

Pontryagin difference of two sets & and Y

Cartesian product of two sets X and )

set X is a (strict) subset of set Y

Hausdorff distance of two sets X and Y

Cardinality of a set X, that is, the number of elements of X
Kronecker product of two matrices X and Y

identity matrix of dimension n

transpose of a vector x (a matrix X)

inverse matrix of X

pseudo-inverse matrix of X

rank of a matrix X
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trace of a matrix X

determinant of a matrix X on variable z

degree of the determinant of a matrix X on variable z

vectorization of a matrix X

He(X) =X+ X7

least/minimum singular value of a matrix X

set of eigenvalues of a matrix X, thatis, A(X) := {z : det(z] — X) =0}
set of generalized eigenvalues, thatis, A(X,Y) := {2z : det(2X —Y) =0}
Frobenius norm of a matrix X is defined by || X ||z := /tr(X T X)
weighted Frobenius norm || X || . := Vir(XTWX) with W € S. g
]g:g]‘%{Xj} = [Xj,,..., X}, ] for a set of matrices X; with j € N

2-norm of a vector z is defined by ||z||, = Vz Tz
weighted 2-norm ||z||,yy, = Vo T Wa with W € S,

L norm (peak norm) of a signal z is defined by ||z|| ., = sup ||z(k)||
k

modulo operator of two scalars a and b
operator that builds a diagonal matrix with the elements of its argument

a term induced by (Hermitian) symmetry in a block matrix
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ACRONYMS

EMPC
FD

FDI

FE

FI
GAMS
KKT
KPI
LMI
LPV
LTI
LTV
mRPI
MAE
MSE
MPC
NEMPC
REMPC
RI
RMPC
RMS
RNI
RPI

SG
SMAPE
UIO
VA

Economic Model Predictive Control

Fault Detection

Fault Detection and Isolation

Fault Estimation

Fault Isolation

General Algebraic Modeling System
Karush-Kuhn-Tucker

Key Performance Indicator

Linear Matrix Inequality

Linear Parameter Varying

Linear Time Invariant

Linear Time Varying

Minimal Robust Positively Invariant

Mean Absolute Error

Mean Square Error

Model Predictive Control

Nonlinear Economic Model Predictive Control
Robust Economic Model Predictive Control
Robust Invariant

Robust Model Predictive Control

Root Mean Squared

Robust Negatively Invariant

Robust Positively Invariant

Smart Grid

Symmetric Mean Absolute Percentage Error
Unknown Input Observer

Virtual Actuator

XX1



VDA Virtual Delayed Actuator
VS Virtual Sensor
WDN Water Distribution Network
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In modern societies, reliable and sustainable operation of certain infrastructures plays a
fundamental role in the quality of individual life, economic development and security
of nations. Large-scale critical infrastructure systems, especially those located in urban
areas, such as water distribution networks (WDNs) and smart grids (SGs), are a subject
of increasing concern. Therefore, it is of vital importance to develop management sys-
tems that guarantee a reliable and sustainable operation of these infrastructures. On
the other hand, for the management of these infrastructures, it is also significant that
their operation must use efficiently the resources that they can deliver, e.g., water and

electricity, and also be efficient from an economic point of view and guarantee future
supply.

The critical nature of these complex systems implies the need for a management
able to take into account their specific features and operating limits in presence of un-
certainties related to their operation and failures from component malfunctions. Thus,
it is of paramount importance to have a control system for the management that, from
sensor measurements and available predictions of external influential variables based
on a priori knowledge, produces a suitable way to operate the complex system in an

efficient, reliable and sustainable manner.

For designing a model-based control system, an appropriate mathematical model is
required to represent the most relevant system dynamics. In terms of aforementioned

complex systems, system dynamics are usually described by differential/difference
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equations while static relations also appearing in complex systems based on their
topologies lead to the use of algebraic equations. In the literature, the class of sys-
tems including not only differential /difference equations but also algebraic equations

is called descriptor, singular, or differential/difference-algebraic systems [25, 31].

Together with sensor measurements, the need for state predictions in a control im-
plementation requires a suitable state estimation approach also being able to attenu-
ate effects from uncertainties in order to achieve robustness. Such a state estimation
approach is also useful for implementing fault diagnosis of component malfunctions
inside systems. A plausible solution to address a robust state estimation is to use set
theory under the assumption that unknown uncertainties are bounded in a determin-
istic set with a predefined geometrical structure. Based on an iterative procedure, the
effects of these bounded uncertainties can be propagated at each time step and explic-
itly characterized in an updated set. From analysis of these effects, fault diagnosis may
also be achieved by means of these set tools. As a result, worst-case scenarios for state

and fault predictions can also be used in the controller design.

In many applications, control objectives of complex systems are mainly different
from traditional tracking or regulating problems. Thus, the challenge for the optimal
controller design is how to obtain an optimal economic cost and meanwhile guaran-
tee closed-loop stability and convergence to a certain steady trajectory. Looking into
real systems, the system behavior is usually not only constrained by some limits but
also affected by potential periodic behavior. For instance in WDNs, water demands
and economic cost of consumed energy follow periodic patterns which may lead to an
optimal periodic operation. For this purpose, periodicity can be used in the design of
the controller, where the closed-loop convergence can be guaranteed. Furthermore, in
terms of the critical nature of complex systems, fault-tolerant capability deserves to be
included in the controller design. After having a suitable fault diagnosis block in the

control system, a fault hiding strategy can be employed for the system reconfiguration.

The research in this thesis is motivated by real application of WDNs, under the
scope of the Spanish project: EConomic Operation of Critical Infrastructure Systems
(ECOCIS), which is also in line with the objectives of European research policy devel-
oped through the framework program of Horizon 2020, and the Spanish research plan
2013. This doctoral thesis is devoted to investigating an optimal economic-oriented
control and fault-tolerant control (FTC) strategies for the management of complex sys-

tems. To this end, several approaches on robust state estimation and fault diagnosis
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based on set theory taking into account descriptor models are investigated.

1.2 State of the Art

1.2.1 Descriptor Systems

Due to mass, volume or energy conservation laws, the differential /difference equa-
tions describing a dynamical system can be coupled with a set of algebraic equations.
As aforementioned, descriptor models may be used for representing this class of sys-
tems. Instances of such systems can be found in water systems [7, 94, ], chemical
processes [9], electrical circuits [102], aircraft [119], biological systems [179] and eco-
nomic models [25]. From a theoretical point of view, descriptor systems satisfying a
well-posed property, for which a solution exists and is unique, are called regular [285].
Regularity, however, does not imply causality and some models of interest in economy
may be non-causal, see e.g. the Leontief model [28, 75, ]. In terms of a control
system, stability [45] is an important property for the analysis of boundedness and con-
vergence of the closed-loop trajectory. In particular, in terms of descriptor systems,
admissibility guarantees the properties of regularity, causality and stability [25]. For
monitoring purposes and for developing control strategies, state estimation is usually
required. Some research works on state estimation for discrete-time descriptor systems
have been carried out (see as e.g. [45, 53], where system states can be estimated using

different versions of Kalman filtering).

1.2.2 Economic Model Predictive Control

Economic model predictive control (EMPC) has attracted an increasing attention dur-
ing the past decade [6, 35, 80]. Unlike conventional model predictive control (MPC)
formulations [77, 101], the main control objective of EMPC is to optimize an economic
performance index without regulating the system to a given trajectory. Economic cost
functions are not necessarily quadratic or positive-definite with respect to a given tra-
jectory as tracking MPC. EMPC has been applied to a variety of industrial applications
as a real-time control strategy, see, e.g. drinking-water networks [19, 20, 85, 89, 1,

wastewater treatment processes [175], SGs [57, 88] and chemical processes [72, 111].
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Recently, the closed-loop stability and convergence of EMPC has been widely inves-
tigated. Since the cost function in EMPC may not be a quadratic function, the conven-
tional MPC stability analysis as in [101] cannot be directly applied to EMPC. In [5, 6, 4],
stability analysis of EMPC has been established under the strong duality and the dis-
sipativity assumptions. Terminal cost and constraint around the optimal steady state
are used. In [34], a review is presented for discussing the role of constraints in EMPC,
where the convergence of EMPC can be enforced by adding terminal constraints. Be-
sides, EMPC without terminal constraints is studied in [42, 43]. Based on the turnpike
and controllability properties, closed-loop convergence is proved. In [71], EMPC with
extended prediction horizon is designed based on an auxiliary controller. An addi-
tional term with the auxiliary control law is included in the cost function in order to

guarantee closed-loop convergence.

From an application point of view, systems may also be affected by disturbances,
which implies that a proper robust MPC (RMPC) strategy should be addressed for such
systems, for instance [387]. Tube-based techniques have been proposed to guarantee
robust constraint satisfaction in the presence of uncertainties for conventional MPC
and other applications, as e.g. in distributed approaches [52]. An RMPC was proposed
to track periodic trajectories online in [90], where a local control law is used to refine
the constraints in order to guarantee recursive feasibility in closed-loop. In recent years,
several developments on adjusting the robustness of EMPC have been studied in [8, 15,

], where the strong terminal constraint and cost are used to enforce the periodicity.

1.2.3 Fault Diagnosis

As introduced in [13, 30], fault diagnosis basically consists of the following three essen-
tial tasks:

e Fault Detection (FD): detection of the occurrence of faults in malfunctioned com-
ponents that lead to undesired or intolerable behavior of the whole system;

e Fault Isolation (FI): localization of different occurred faults;

e Fault Estimation (FE): determination of the magnitude of occurred faults.

A fault detection and isolation (FDI) module usually includes robust performance

for the system affected by uncertainties. Robust FDI aims at minimizing the sensitivity
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to uncertainties (such as modeling errors, process disturbances, measurement noise as
so on) while maximizing fault sensitivity to achieve great FDI performance. For this
aim, different approaches have been studied. One category relies on the use of ro-
bust control techniques, for instance using H., and H_ norms (see e.g. [21, 30, 51, 66]).
Among these references, a generated adaptive threshold is usually computed for the
decision making of the FDI alarm. An over-approximation of the decision-making
threshold may lead to wrong FDI results. Alternatively, another category of FDI strate-
gies is built under a set-based framework, such as [11, 99, ]. System uncertainties
are considered as unknown but bounded in predefined sets (intervals, zonotopes and
polytopes) and the resulting uncertain states and generated residuals are propagated
also in bounded sets [95]. Due to the simple computation load, zonotopes are usually
chosen as the geometrical sets for bounding uncertain states or residuals [1, ]. Un-
der this framework, robustness and fault sensitivity of the FDI strategy can be achieved
by checking the consistency between the system model and the measurement informa-
tion. Unknown input observer (UIO) is a well-known tool for designing a robust FDI
strategy that can be achieved by generating residuals with decoupled unknown in-
puts [23]. The design of UIO has been well-discussed for a variety of systems with
different structures (see e.g. [23, 47, 60, ). In the design of UIO for implementing
an FDI strategy, robustness and fault sensitivity should also be taken into account. As
discussed in [169], it has shown the potential of linking UIO with a set-based frame-
work, where unknown inputs are divided into two groups: the one can be decoupled
using UIO transformation matrices; the other cannot be decoupled but bounded using
invariant sets. Besides, an extension to robust FDI based on set-based UIO has been
studied in [170].

FE has been studied by a large amount of approaches during the past decades, see
e.g. [13, 30, 125]. A suitable FE with robust performance against system uncertain-
ties is necessary for implementing an active fault-tolerant control system [39, 40, 65].
By means of alternative robust control techniques, robust FE has been implemented
in a variety of systems as e.g. [110, , ], where the effects of uncertainties are
bounded and therefore FE results can be obtained with the minimum estimation er-
ror. In the literature, several FE approaches for different types of descriptor systems
have been investigated. In [40], a Lyapunov-based robust FE approach is developed
for Lipschitz non-linear descriptor systems. Robust FE approaches for linear descrip-
tor systems can be found in [60, , ]. Besides, FE approaches have also studied

for linear parameter-varying (LPV) systems [74, , , ] and switched descriptor



6 Chapter 1 : Introduction

systems [601]. From these existing approaches, it can be seen that the obtained esti-
mation results only include punctual values. In terms of set-based approaches, with
considering system uncertainties bounded in a predefined set, the uncertain variables
are propagated by operating these sets. Regarding the possible application to robust
FE, as a benefit from using a set-based approach, the obtained estimation results can
be characterized in a deterministic set that includes not only punctual values but also
worst-case bounds. The robustness against uncertainties can be achieved by shrinking

the size of these sets.

1.2.4 Fault-tolerant Control

An increasing number of research works in the control field focus on satisfying reliabil-
ity, safety and fault tolerance of critical complex systems. In many situations, the con-
sequences of a minor fault in a control system can be catastrophic. According to [13],
FTC techniques can be divided into two types: passive and active. Passive FTC tech-
nique, also known as robust approach, aims to find a control law able to cope with the
occurred faults considering them as system perturbations. Compared with active FTC
technique, neither FD, FI and FE modules nor reconfiguration/accommodation are re-
quired for passive FTC. A literature review including a comparison of different ap-
proaches according to different criteria is addressed in [150]. In this reference, several
active FTC techniques that can be found in the literature are considered including lin-
ear quadratic, pseudo-inverse method, intelligent control, gain-scheduling approach,
model following, adaptive control, multiple model, integrated diagnostic and control,
eigenstructure assignment, feedback linearization/dynamic inversion, MPC, quantita-

tive feedback theory and variable structure control/sliding model control.

Faults may appear in actuators, sensors and other system components. Typically,

the active FTC scheme can be divided into four parts:

a reconfigurable controller;

a fault diagnosis scheme;

a controller reconfiguration mechanism;

e a command governor.
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The inclusion of both the fault diagnosis scheme and the controller reconfiguration
within a general control system is the main difference between active FTC and pa-

ssive FTC. Hence, some key issues of active FTC have to be considered:

e a controller that can be reconfigured, for instance, an MPC strategy provides an

alternative and flexible framework and it is quite easy to be reconfigured;

e a fault diagnosis scheme with high sensitivity to faults and robustness against
model uncertainties, variations of the operating conditions and external distur-

bances;

e a reconfiguration mechanism that allows recovering the fault-free system perfor-

mance as much as possible within admissible performance degradation.

In recent years, the fault-hiding paradigm has been proposed as an active FTC strat-
egy to obtain fault tolerance [76]. In this paradigm, the faulty plant is reconfigured by
inserting a reconfiguration block, named virtual actuator (VA) in the case of actuator
faults and virtual sensor (VS) when sensor faults occurred. VA and VS aim at hiding the
faults from controller and sensor failures, so that it approximately recovers the same
plant as before faults occurred. This active FTC strategy has been extended success-
fully to many classes of systems, e.g. LPV systems [107], hybrid systems [109], Takagi-

Sugeno systems [108], piecewise affine systems [103] and uncertain systems [106].

1.2.5 Set-based Approaches

Research on set-based state estimation has been quite active for the last decades,
e.g. [1, 2, 26, 56, 93, 98, ] among others. In the literature, set-based state estima-
tion approaches can be classified according to whether they follow a set-membership
or an interval observer-based paradigm. A set-membership approach relies on over-
bounding the uncertain estimated states considering unknown-but-bounded uncer-
tainties [112]. An interval observer-based approach bounds the set of estimated states
by means of an observer structure in which the gain is designed assuming that un-
certainties are modeled in a deterministic way (as e.g. using intervals for bounding
them [33]) or in a stochastic way (as e.g. using the Kalman filtering [57, 58]). From
the application point of view, the set-based approaches are very popular in the fault

diagnosis framework, e.g. [92, 165].
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Zonotopes are a special class of geometrical sets. The symmetry properties of zono-
topes help to reduce the computational load of using them in an iterative way. Worst-
case state estimation for dynamical systems using zonotopes is investigated in [93]. A
state bounding observer based on zonotopes is introduced in [24]. The zonotopic ob-
server in combination with Kalman filtering is addressed in [25, 26]. Moreover, a set-

membership approach based on zonotopes is proposed for dynamical systems in [1, 2].

On the other hand, set invariance theory has played an essential role in automatic
control with a variety of applications to control systems, which is widely used for guar-
anteeing the stability and achieving desired performance [10, 64, 67]. For systems af-
fected by disturbances, different techniques in set invariance theory are used for the
computation of invariant sets. These techniques have been applied to linear dynamical
systems [100, ], LPV systems [115, ], switched systems [12, 46, ], and non-
linear systems [3, 16, 36, 37]. In particular, ultimate boundedness methods are used to
compute invariant sets with relative low complexity [46, 62]. In this context, an iterative
strategy is proposed in [56], which leads to approximations of minimal RI sets for lin-
ear systems and its generalization to discrete-time descriptor systems is the motivation

of the present work.

Furthermore, set-invariance characterizations are instrumental for control strate-
gies, such as reference governor design [122], FDI [11, ], FTC [86, , , ]and
RMPC [81, 82]. A remarkable application of RI sets is on mode detection of systems
subject to multiple modes of operation. Indeed, since different operating modes lead
to different RI sets, the distance between these sets can be used for monitoring and
mode detection. Due to the fact that the RI sets of different modes may overlap, an ad-
ditive input signal can be conveniently designed to separate a parametrization of the RI
sets, represented by tubes of trajectories [63]. In this case, the set-based mode detec-
tion mechanism is called active. In the literature, this mechanism is also called active
fault diagnosis, which can be found in [97, ]. A set of additive inputs are designed
to guarantee fault diagnosis outputs that are only consistent with one faulty scenario.
These additive inputs can be obtained from the solution to a mixed-integer quadratic

program or using a multi-parametric approach, see e.g. [79, 122].
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Fault-tolg . Fault Diagnosis <———
Capability

! T

— >  Control >  System >

A

——> State Estimation <—

Figure 1.1: General scheme of thesis.

1.3 Thesis Objectives

According to the motivation of this thesis and state of the art, specific thesis objectives

are summarized as follows:

(i) Develop robust state estimation approaches based on set theory for descriptor systems;
(ii) Improve the limitation of set-membership approach for complex systems;
(iii) Investigate fault diagnosis strategies based on set theory for descriptor systems;

(iv) Contribute to EMPC strategies for periodic operation with applications to realistic com-

plex systems;

(v) Include fault-tolerant capability in the controller design for descriptor systems.
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1.4 Thesis Outline

The contents of this thesis are organized into 3 parts, as shown in Figure 1.1. Part I deals
with the contributions on the objectives (i)-(ii). Part II refers to the contributions on the
objective (iii). Finally, Part III summarizes the contributions towards the objectives
(iv)-(v). The road map of this thesis is shown in Figure 1.2, which gives the general
scheme and illustrates the connections among chapters. Specifically, the contents of

Chapters 2-10 are summarized as follows:
Chapter 2: Set-based state estimation approaches for descriptor systems

This chapter proposes a general set-based framework for discrete-time descriptor
systems with application to robust state estimation. Specifically, set-membership ap-
proach based on zonotopes and zonotopic Kalman observer are extended to descriptor
systems subject to unknown-but-bounded uncertainties as well as unknown inputs.
The relationship between these two approaches is discussed. As another extension, the
zonotopic set-membership approach is also investigated for discrete-time LPV descrip-
tor systems with a new zonotope minimization criterion. This chapter summarizes the

results from the following publications:

e Y. Wang, V. Puig, and G. Cembrano. Set-membership approach and Kalman
observer based on zonotopes for discrete-time descriptor systems. Automatica,
93:435-443, 2018

¢ Y. Wang, Z. Wang, V. Puig, and G. Cembrano. Zonotopic set-membership state es-
timation for discrete-time descriptor LPV systems. IEEE Transactions on Automatic

Control, 2018. (in press)

Chapter 3: Distributed set-membership approach based on zonotopes

This chapter presents a distributed approach to overcome the weakness of the set-
membership approach for potential applications to large-scale systems. Instead of
bounding uncertain system states in a single zonotope, a set of distributed zonotopes
is defined to only bound uncertain states in each agent. Each distributed zonotope is
only corrected by the measurement information of each agent. Besides, considering
the coupled states, each distributed zonotope is able to send its information to all its

neighbors. This chapter gathers the results from the following publications:
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Y. Wang, T. Alamo, V. Puig, and G. Cembrano. A distributed setmembership
approach based on zonotopes for interconnected systems. In 57th IEEE Conference
on Decision and Control (IEEE-CDC), Miami, USA, 2018. (to appear)

Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Distributed set-membership ap-

proaches based on zonotopes and ellipsoids. Automatica, 2018. (to be submitted)

Chapter 4: Set-based fault detection and isolation for descriptor systems

This chapter applies the set-based approach to FDI for discrete-time descriptor sys-

tems under the set-based framework in Chapter 2. In addition to achieving robustness

against uncertainties, the design of the FD gain also takes into account sensitivity to

faults. Two different criteria of fault sensitivity are investigated for the design of the

FD observer gain. Besides, a bank of zonotopic UIOs is designed for FI. This chapter

summarizes the results from the following publications:

Y. Wang, M. Zhou, V. Puig, G. Cembrano, and Z. Wang. Zonotopic fault detection
observer with H_ performance. In 36th Chinese Control Conference (CCC), pages
7230-7235, Dalian, PR. China, 2017

Y. Wang, V. Puig, E. Xu, and G. Cembrano. Zonotopic unknown input observer
of discrete-time descriptor systems for state estimation and robust fault detec-
tion. In 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical
Processes (IFAC-SAFEPROCESS), Warsaw, Poland, 2018. (to appear)

Y. Wang, V. Puig, and G. Cembrano. Zonotopic fault detection observer design
for discrete-time descriptor systems with 7 _ fault sensitivity. International Journal
of Control, 2018. (under review)

Y. Wang, V. Puig, F. Xu, and G. Cembrano. Robust fault detection and isolation
based on zonotopic unknown input observer for discrete-time descriptor sys-

tems. Journal of the Franklin Institute, 2017. (under review)

Chapter 5: Set-based fault estimation for descriptor systems

This chapter applies the set-based approach to FE for discrete-time descriptor sys-

tems under the set-based framework in Chapter 2. The fault detectability indices and
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matrix are used for the identification of the occurred actuator faults. Under the frame-
work of zonotopic Kalman filter, the optimal filter gain for FE is computed. Moreover,
boundedness of zonotopic FE is proved to guarantee that the estimation results do not

diverge. This chapter collects the results from the following publications:

e Y. Wang, Z. Wang, V. Puig, and G. Cembrano. Zonotopic fault estimation filter
design for discrete-time descriptor systems. In 20th IFAC World Congress, pages
5211-5216, Toulouse, France, 2017

e Y. Wang, V. Puig, and G. Cembrano. Robust fault estimation based on zonotopic
Kalman observer for discrete-time descriptor systems. International Journal of Ro-

bust and Nonlinear Control, 2018. (in press)

Chapter 6: Set-invariance characterizations and active mode detection for de-

scriptor systems

This chapter systematically presents a general set-invariance framework for
discrete-time descriptor systems considering both causal and non-causal parts. In ad-
dition to RPI sets, an RNI set for non-causal descriptor systems is defined. The compu-
tation of these sets is based on ultimate bounds. Moreover, an active mode detection
mechanism is proposed for discrete-time descriptor systems based on set invariance
theory. Active detection inputs are designed using optimization methods. This chapter

is based on the results from the following publications:

e Y. Wang, S. Olaru, G. Valmorbida, V. Puig, and G. Cembrano. Robust invariant
sets and active mode detection for discrete-time uncertain descriptor systems. In
56th IEEE Conference on Decision and Control (IEEE-CDC), pages 5648-5653, Mel-
bourne, Australia, 2017

¢ Y. Wang, S. Olaru, G. Valmorbida, V. Puig, and G. Cembrano. Set-invariance char-
acterizations of discrete-time descriptor systems with application to active mode

detection. Automatica, 2018. (under review)

Chapter 7: Economic model predictive control strategies based on a periodicity

constraint
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This chapter addresses a novel formulation of EMPC for periodic operation in both
nominal and robust cases. With the convex analysis, the closed-loop properties in-
cluding recursive feasibility, robust constraint satisfaction as well as convergence are
discussed. Moreover, an optimality certificate is also provided to check if the periodic
steady trajectory is optimal. This chapter summarizes the results from the following

publications:

¢ Y. Wang, D. Mufioz de la Pefia, V. Puig, and G. Cembrano. A novel formulation
of economic model predictive control for periodic operations. In European Control

Conference (ECC), Limassol, Cyprus, 2018. (to appear)

¢ Y. Wang, ]J. Salvador, D. Mufioz de la Pefia, V. Puig, and G. Cembrano. Economic
model predictive control based on a periodicity constraint. Journal of Process Con-
trol, 68:226-239, 2018

e Y. Wang, D. Mufioz de la Pefia, V. Puig, and G. Cembrano. Robust economic
model predictive control based on a periodicity constraint. International Journal of

Robust and Nonlinear Control, 2018. (under review)

Chapter 8: Applications of economic model predictive control strategies for com-

plex systems

This chapter collects three application results of EMPC strategies for complex sys-
tems, such as WDNs and SGs. These complex systems can be modeled by difference-
algebraic equations in a descriptor form. First, a two-layer control strategy for real-
time implementation with a realistic simulator is proposed, which includes a nonlinear
EMPC (NEMPC) in the upper layer and a pumping scheduling approach in the lower
layer. Second, an iterative approach of nonlinear constraint relaxation is proposed
for dealing with nonlinear algebraic equation in WDN and therefore an integration
to EMPC is implemented. Finally, a robust EMPC (REMPC) for periodic operation is

applied to a micro SG. This chapter collects the results from the following publications:

e Y. Wang, V. Puig, and G. Cembrano. Non-linear economic model predictive con-

trol of water distribution networks. Journal of Process Control, 56:23-34, 2017

¢ Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Periodic economic model predic-

tive control with nonlinear-constraint relaxation for water distribution networks.
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In IEEE Conference on Control Application (IEEE-CCA), pages 1137-1172, Buenos
Aires, Argentina, 2016

¢ Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Economic model predictive control
with nonlinear constraint relaxation for the operational management of water
distribution networks. Energies, 11(4):991, 2018

¢ Y. Wang, D. Mufoz de la Pefia, V. Puig, and G. Cembrano. Robust periodic eco-
nomic predictive control based on probabilistic set invariance for descriptor sys-
tems,. In 6th IFAC Conference on Nonlinear Model Predictive Control (IFAC-NMPC),
Madison, USA, 2018. (to appear)

Chapter 9: Fault-tolerant Control of discrete-time descriptor systems using vir-

tual actuator and virtual sensor

This chapter designs an FTC controller for discrete-time descriptor systems. First,
for the use of state feedback, an observer-based delayed state-feedback controller is
proposed for this class of systems taking into account the algebraic loop appeared in
the implementation that prevents using a standard state feedback. Improved admis-
sibility conditions are proposed for discrete-time descriptor system with state delay.
Then, system reconfiguration of discrete-time descriptor systems subject to actuator
and sensor faults is based on VA and VS. This chapter extends the results from the

following publications:

¢ Y. Wang, D. Rotondo, V. Puig, and G. Cembrano. Observer-based delayed con-
troller design for discrete-time descriptor systems. Automatica, 2018. (under re-

view)

¢ Y. Wang, D. Rotondo, V. Puig, and G. Cembrano. Fault tolerant control of discrete-
time descriptor systems using virtual actuators. In European Control Conference
(ECC), Naples, Italy, 2019. (to be submitted)

Other Publications

Some other publications related to the research topic that have been done during the

period of my Ph.D. training are presented as follows:



16

Chapter 1 : Introduction

. Y. Wang, C. Ocampo-Martinez, and V. Puig. Stochastic model predictive control

based on Gaussian processes applied to drinking water networks. IET Control
Theory & Applications, 10(8):947-955, 2016

. Y. Wang, G. Valmorbida, S. Olaru, V. Puig, and G. Cembrano. Static output-

feedback synthesis strategies with an extended quadratic Lyapunov function. Au-
tomatica, 2018. (to be submitted)

. Y. Wang, C. Ocampo-Martinez, and V. Puig. Robust model predictive control

based on Gaussian processes: application to drinking water networks. In Euro-
pean Control Conference (ECC), pages 3292-3297, Linz, Austria, 2015

. Y. Wang, V. Puig, and G. Cembrano. Economic MPC with periodic terminal con-

straints of nonlinear differential-algebraic-equation systems: application to drink-
ing water networks. In European Control Conference (ECC), pages 1013-1018, Aal-
borg, Denmark, 2016

. Y. Wang and V. Puig. Zonotopic extended Kalman filter and fault detection of

discrete-time nonlinear systems applied to a quadrotor helicopter. In 3rd Inter-
national Conference on Control and Fault Tolerant Systems (SysTol), pages 367-372,
Barcelona, Spain, 2016

. Y. Wang, V. Puig, G. Cembrano, and T. Alamo. Guaranteed state estimation and

fault detection based on zonotopes for differential-algebraic-equation systems.
In 3rd International Conference on Control and Fault Tolerant Systems (SysTol), pages
704-710, Barcelona, Spain, 2016

. Y. Wang, V. Puig, and G. Cembrano. Fault-tolerant periodic economic model

predictive control of differential-algebraic-equation systems. In 3rd International
Conference on Control and Fault Tolerant Systems (SysTol), pages 478-484, Barcelona,
Spain, 2016

. Y. Wang, A. Ramirez-Jaime, F. Xu, and V. Puig. Nonlinear model predictive con-

trol with constraint satisfactions for a quadcopter. Journal of Physics: Conference
Series, 783:012025, 2017

. Y. Wang, ]. Salvador, D. Mufioz de la Pefia, V. Puig, and G. Cembrano. Periodic

nonlinear economic model predictive control with changing horizon for water
distribution networks. In 20th IFAC World Congress, pages 65688-6593, Toulouse,
France, 2017
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10. Y. Wang, G. Cembrano, V. Puig, M. Urrea, J. Romera, and D. Saporta. Optimal
management of barcelona water distribution network using non-linear model
predictive control. In 20th IFAC World Congress, pages 5380-5385, Toulouse,
France, 2017

11. Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Distributed zonotopic set-
membership state estimation based on optimization methods with partial pro-
jection. In 20th IFAC World Congress, pages 4039-4044, Toulouse, France, 2017

12. Y. Wang, ]. Blesa, and V. Puig. Robust periodic economic predictive control
based on interval arithmetic for water distribution networks. In 20th IFAC World
Congress, pages 5202-5207, Toulouse, France, 2017

13. Y. Wan, V. Puig, C. Ocampo-Martinez, Y. Wang, and R. Braatz. Probability-
guaranteed set-membership state estimation for polynomially uncertain linear
time-invariant systems. In 57th IEEE Conference on Decision and Control (IEEE-
CDC), Miami, USA, 2018. (to appear)

14. Y. Wang, G. Cembrano, V. Puig, M. Urrea, ]. Romera, and D. Saporta. Model
predictive control of water networks considering flow and pressure. In Real-
Time Monitoring and Operational Control of Drinking-Water Systems, pages 251-267.
Springer, 2017

1.5 Background

In this section, some necessary definition, mathematical tools and properties are intro-

duced, which will be used in this thesis.

1.5.1 Properties of Discrete-time Descriptor Systems

Consider the discrete-time linear time-invariant (LTI) descriptor system with additive
disturbances
Ex(k+1) = Az(k) + Byw(k), (1.1)

where € R” and w € R? denote the state vector and the disturbance vector, respec-
tively, k € N. A € R**", B, € R"™*?and E € R"*" with rank(E) =r < n.
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The definitions and lemma below are related to the trajectories and solutions of a

descriptor system (1.1).

Definition 1.1 (Regularity). The descriptor system (1.1) is said to be regular if it has a
unique solution defined as an application z(k) : N — R", Vk € N which satisfies (1.1)

for any disturbance realization w(k) : N — R? and a compatible initial state x(0).

From the above definition, if the system (1.1) is regular, then it has a unique solution

for the disturbance-free case (w = 0). The matrix pair (£, A) is also called to be regular.

Definition 1.2 (Causality). The regular descriptor system (1.1) is said to be causal
if z(k), Vk € N is determined completely by the initial condition z(0) and w(j),

for j =0, ..., k. Otherwise, it is said to be non-causal.

Definition 1.3 (Asymptotic stability). The regular descriptor system (1.1) is said to be

asymptotically stable for the disturbances-free case (w = 0) if kl;ngo z(k) = 0.

Definition 1.4 (Admissibility). The descriptor system (1.1) for the disturbances-free

case (w = 0) is said to be admissible if it is regular, causal and asymptotically stable.

Lemma 1.1 ([28]). For the matrix pair (E, A) of the descriptor system (1.1), the following
properties hold:

o (Regularity) the pair (E, A) is regular if 3z € C, det(zE — A) is not identically zero;

e (Causality) the pair (E, A) is causal if 3z € C, deg(det(zE — A)) = rank(E);

o (Asymptotic stability) the pair (E, A) is asymptotically stable if |[v| < 1, Vv € A (E, A).

In the following, admissibility is not part of the assumption, i.e. the study concerns
both causal and non-causal descriptor systems.

Assumption 1.1. The descriptor system (1.1) (the matrix pair (E, A)) is regular and asymp-

totically stable in the disturbance-free case (w = 0).

The following suitable transformations are established, which decompose the de-
scriptor system (1.1) in subsystems for set-invariance characterizations and active

mode detection.
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Definition 1.5 (Equivalence of descriptor systems). Consider two descriptor systems
respectively defined by the triplets (F, A, B,,) and (E, A, B,,). If there exists a pair of

non-singular matrices @) € R"*" and P € R™*" satisfying
QEP =FE, QAP = A, QB,, = B, (1.2)
then these two systems are called restricted equivalent under the transforma-

tion (@, P).

For the descriptor system (1.1), two standard restricted equivalent forms are pre-
sented [31, Chapter 2].

Dynamics Decomposition Form

Consider the descriptor system (1.1) with rank(E) = r. There always exists a transfor-

mation (Q, P) yielding

A As

3 4

Bwl

QEP =
Bw2

aQBw = s (13)

I, 0O
QAP =
0 0

with A4; € R™", Ay € R™*(n=1) Ay ¢ Rn=1)xr 4, ¢ Rn=r)x(n=r) B . c R"™4 and
By € R(=r)%a,

Lemma 1.2 (Dynamics decomposition form [31]). The descriptor system (1.1) is causal
if and only if there exists a transformation (Q), P) yielding (1.3) with a non-singular block

matrix Ay.

Based on the above lemma, an equivalent causal descriptor system in a standard

dynamical form is presented in the following.

Lemma 1.3 (Equivalent causal descriptor system). The causal descriptor system (1.1) with

rank(E) = r can be transformed into the following form

ik +1) = Az(k) + Byw(k), (1.4)
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where
~ Al — A AT A 0
_ ) 1 240 423 ) ’ (1.5a)
— AT A3 (AL — 42471 A) 0
_ Byt — As A7 By, 0
Y = ) 17 72 21 X _ (1.5b)
— Ay A (But — A2A7 ' Bya)  —A7 ' Bugo
and Ay, As, A, Aa, By, B2 are defined in (1.3) and
71(k k
i) = [~ ptamyam = | W (1.6
To(k) w(k +1)
with 1 (k) € R, #5(k) € RO,
Proof. See Appendix A. O

Kronecker Canonical Form

The regular descriptor system (1.1) also allows the transformation in the so-called Kro-

necker canonical form according to the following lemma.

Lemma 1.4 (Kronecker canonical form [28]). The descriptor system (1.1) is reqular if and

only if there exists a transformation (Q, P) yielding

Bwl

[, o] ...
QEP= | " |, QAP = : (1.7)

OQB—
I? w

w2

with A € RP*P, B, € RP*4, B,o € R"P)X4, Moreover, N € R("=P)*("=P) js g nilpotent
matrix (that is there exists a scalar s > 0 such that N* = 0 and N°~' #£ 0, s < n — p)
and p < r = rank(E).

Computationally efficient and numerically stable methods exist to obtain these

transformations as reported in [41, 125].

Lemma 1.5 (Causality [28]). The descriptor system (1.1) transformed in the Kronecker canon-
ical form (1.7) is causal if and only if N = 0.
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1.5.2 Zonotopes

Definition 1.6 (Zonotope). The r-order zonotope Z C R" in n-dimensional space is

defined with its center p € R™ and the segment matrix H € R"*" as
Z=pH)={p+Hz ||, <1} (1.8)

Definition 1.7 (Interval hull). Given a zonotope Z = (p,H) C R", the interval
hull rs(H) € R™" is defined as an aligned box such that the inclusion property
holds: (p, H) C (p,rs(H)), where rs(H) is a diagonal matrix with diagonal elements of
rs(H)ii = >y [Hijl,i=1,...,n.

Define B" = [—1,+1]" C R" as a r-order hypercube. Using the Minkowski sum,
the zonotope Z in (1.8) can also be defined by Z = p & HB". Besides, the following
properties hold:

<p17H1> ® <P27H2> = <pl +p2) [Hl H2]>7 (193)
L(p.H) = (Lp, LH), (1.9b)
{p, H) € (p,rs(H)), (1.9¢)

where L is a matrix of appropriate dimension.

Definition 1.8 (Fyy-radius). Given a zonotope Z = (p, H) C R"™ and a weighting ma-
trix W € S™, the Fyy-radius of Z is defined using the weighted Frobenius norm of H

as

lrw = |[{p, H>HFW = HHHFW (1.10)

Definition 1.9 (W-radius). Given a zonotope Z = (p, H) C R" and a weighting ma-
trix W € S", the W-radius of Z is defined by

by = — |l = Hb|J3, - 1.11
w gleagﬁ”z pllw gg%%” I (1.11)
Definition 1.10 (Radius). Given a zonotope Z = (p, H), the radius is defined by

2 2
_ |2 = Hb|?. :
¢=max ||z — p|* = max | Hb| (1.12)
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In order to reduce the order of a zonotope Z = (p, H) C R", the weighted reduction
operator |, w (H) proposed in [26] is used, where g specifies the maximum number of
columns of H and W € S is a weighting matrix. The inclusion property (p, H) C
(p,dqw (H)) also holds. The procedure for implementing the operator |, w (H) is

summarized as follows:

e Sort the column of segment matrix H in decreasing order: |w (H) =

[h,ha, ... hel, IR |15 = ||hjga |3, where || A is the weighted 2-norm of hj;

e Take the first g-column of |y (H) and enclose a set H. generated by remaining

columns (r — ¢ > n) into an aligned box (interval hull) as follows:

If r <gq, then |,w (H) =lw (H),
Else |,w (H) = [Hs,rs(H.)] € R+,
Hs = [hi,...,hy], He = [hgs1,- -, hel.

1.5.3 Set Invariance Theory

The set-based notions are introduced for discrete-time descriptor systems. For a regular
and stable descriptor system (1.1), consider that the additive disturbances are unknown

but bounded in a known set
w(k) e W={weR?: |w| <w}, Vk € N, (1.13)

with a given w € RY.

As a consequence of the boundedness of the disturbances and the stability of the
dynamics, the system trajectories eventually converge to a bounded region of the state
space [64] for the forward trajectories. Given an initial state (0) and the unique solu-
tion to (1.1) (note that the discrete-time domain of the solution may include negative
values for backward propagations), the following definitions are introduced in terms

of the set-based analysis.

Definition 1.11 (RI set). A set {2 € R" is said to be robust invariant (RI) with respect to
the system (1.1) if z(0) € Q implies z(k) € Q, Vw(k) € W and Vk € Z.

Definition 1.12 (RPI set). A set 2 € R" is said to be robust positively invariant (RPI)
with respect to the system (1.1) if 2(0) € Q implies z(k) € €2, Vw(k) € W and Vk € N.
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Definition 1.13 (mRPI set). An RPIset 2, € R" is said to be minimal RPI (mRPI) with

respect to the system (1.1) if it is contained in every closed RPI set.

Definition 1.14 (L-step RNI set). A set 2 € R" is L-step robust negatively invariant
(RNI) with respect to the system (1.1) if (L) € Q2 implies (L + k) € Q, Yw(k) € W
and Vk € Z[,Lm.

For dynamical LTI systems (i.e. the system (1.1) with E = I,,), the mRPI sets are
characterized as a limit set of a sequence of sets and lacks finite determinedness. A
number of strategies to approximate the mRPI sets have been proposed [62, 86, 100].
The iterative strategy proposed in [56] yields a polytopic approximation of the mRPI

set and will be extended here for the class of descriptor systems.

1.5.4 Linear Algebra

Let X, A, B and C be matrices of appropriate dimensions. The following matrix calcu-

lus regarding the matrix trace holds:

;Xtr (AXTB) —ATBT, (1.14a)

;Xtr (AXBXTC) —BXTCA+B XTATCT, (1.14b)

For two matrices X and Y, it holds
tr (XTY) = vec(X) "Tvec(Y) = vec(Y)vec(X).
The Kronecker product of X and Y is denoted by X ® Y. Consider matrices A, B

and X, the following properties hold:

vec (AXB) = (BT ® A) vec (X),

vec (AB) = (I ® A) vec (B).
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Table 1.1: Selections of matrices = in different frequency domains.

LF MF HF
o 0] < 60, 0, < 0 < 65 0] > 0,
= | d radong] | 5o duivne] [“arme
= Q P—2cos(0;)Q e 79cQ P—2cos(0x)Q —Q P+2cos(0,)Q

LF: low-frequency domain, MF: middle-frequency domain, HF: high-frequency
domain.

1.5.5 H_ Index and Generalized KYP Lemma

To formulate the fault sensitivity, the H_ index is used. The definition of the #_ index

and generalized KYP lemma are introduced in the following.

Definition 1.15 (#_ index of discrete-time systems [30]). Given a transfer function
Gyu(z) of discrete-time systems as Gy, (2) = C(zI — A)~'B + D between signals yy
and uy, with z = ¢/? and Vk € N, the H_ index of Gyu(2) is defined by

. HyHQ . 1%
Gyul(z := inf =info (G (e . 1.15
|| Yy ( )H_ w0 HUHQ 0 —( ) ( )) ( )

By this definition, the 7_ index between signals y and u, k& € N can also be pre-
sented by |Gy (2)||_ > S with 8 > 0, that is

D y(k)Ty(k) = B2 ulk) u(k). (1.16)

k=0 k=0

Lemma 1.6 (Generalized KYP lemma for discrete-time systems [54]). Given a transfer
function G(z) of discrete-time systems as G(z) = C(z1—A) "' B+D with z = /%, a symmetric

matrix I1 of appropriate dimension. The following statements are equivalent:

(1) For a finite-frequency domain V8 € ©, the following condition holds:

G(e??)
1

.
G(e
|9 S0 weo. (1.17)
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(2) There exist Hermitian matrices P and Q) such that () = 0 and

T T

A B
I 0

A B
I 0

cC D
0 I

cC D
II
0 I

—
—

<0, (1.18)

—

where the selections of = are presented in Table 1.1, and 6, = 91;92, 0, = 92591 .
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Figure 2.1: Set-based state estimation scheme.

This chapter proposes a general set-based framework for robust state estimation of
discrete-time descriptor systems, which builds a bridge to fault diagnosis and con-

trol design problems. Specifically, a set-membership state estimator and a zonotopic

29
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Kalman observer are investigated. The contributions of this chapter have been pub-
lished in [148] and [160], respectively. In the first part, the considered LTI descrip-
tor systems are affected by three types of system uncertainties: unknown inputs and
unknown-but-bounded system disturbances and measurement noise. One limitation
for the use of zonotopic approaches in real applications is that some system distur-
bances are unknown and it may not be possible to bound them in a predefined zono-
tope as a priori. To overcome this problem, two classes of unknown system distur-
bances are considered: (i) bounded disturbances in a zonotope; (ii) unbounded distur-
bances, which are considered to be unknown inputs and can be decoupled in the ob-
server design. As shown in Figure 2.1, two set-based approaches with different criteria
are studied and therefore the relationship between both approaches is also established.
In particular, it is proved that the zonotopic observer in the current estimation type is
equivalent to the set-membership approach. In the second part, the set-membership
approach is extended for discrete-time LPV descriptor systems, where a new zonotope

minimization criterion based on the £, norm is defined.

2.1 Set-membership Approach and Zonotopic Kalman Ob-

server for Discrete-time Descriptor Systems

Consider the discrete-time descriptor linear system as

Ex(k +1) = Az(k) + Bu(k) + Dw(k) + Dgd(k), (2.1a)
y(k) = Cx(k) + Fu(k), (2.1b)

where x € R™ denotes the vector of system states, v € R™ denotes the vector of
known inputs, d € R™ denotes the vector of unknown inputs, y € R™ denotes the
vector of measurement outputs, E € R"**"=, A € R"*" B ¢ R"*" (' ¢ R™*",
D e R"*"™ D, e R**" and F' € R™*™ . For the descriptor system (2.1), E may be

a singular matrix and rank(E) < n,.

Assumption 2.1. The initial state x(0) is assumed to be in the inclusion zonotope X (0) =
(p(0), H(0)), where p(0) € R"™ and H(0) € R™*"= are the center and generator matrix of

this zonotope.

Assumption 2.2. The system disturbance vector w(k) € R™ and measurement noise vec-

tor v(k) € R™ are assumed to be unknown but bounded by zonotopes w(k) € W = (0,1,,,),
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v(k) €V = (0,1,,), ¥k € N.

Assumption 2.3. For the descriptor system (2.1), the unknown input d(k), Yk € N can be
decoupled, and matrices E, C and Dy satisfy the following rank condition':

E Dy
I,
c 0 E Dy
rank T | = ng - rank (2.2)
I, 0
vec
0

Thus, there exists a non-empty set of solutions of matrices 7"and N satisfying

TE + NC =1,,, (2.3a)
TDy = 0. (2.3b)

In this section, we investigate state estimation approaches based on zonotopes for
descriptor system (2.1). We propose two set-based approaches to use zonotope bound-
ing uncertain states with unknown but bounded disturbances and noise as well as

unbounded disturbances (as unknown inputs).

2.1.1 Set-membership Approach based on Zonotopes for Discrete-time De-

scriptor Systems

We now propose a set-membership state estimation approach based on zonotopes for
discrete-time descriptor system (2.1). This approach uses the structure of the param-
eterized intersection zonotope for implementing the measurement consistency test in-

cluding unknown inputs. Some preliminary definitions are introduced as follows.

Definition 2.1 (Uncertain state set). Given the descriptor system (2.1) with z(0) €
(p(0), H(0)), w(k) € W, Vk € N, the uncertain state set X' (k) is defined by

X(k)={x e R™ | Ex € AX(k —1) ® Bu(k — 1) & Dad(k — 1) & DW}.

Definition 2.2 (Measurement state set). Given the descriptor system (2.1), a measure-

ment output vector y(k) and v(k) € V, Yk € N, the measurement state set P(k) is

The proof of this condition can be found in Appendix B.
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defined by
P(k) ={x e R"™ | Cz — y(k) = Fa,Ya € B™}.

Definition 2.3 (Exact uncertain state set). Given the descriptor system (2.1), a measure-
ment output vector y(k), w(k) € W and v(k) € V, Vk € N, the exact uncertain state
set X (k) is defined by X (k) = X (k) N P(k).

Since d(k) is a unknown input vector, it is impossible to directly characterize the
uncertain state set from Definition 2.1. Meanwhile, the goal is to approximate the ex-
act uncertain state set X' (k) by an outer approximation for the descriptor system (2.1)
through implementing a measurement consistency test. In general, the proposed set-
membership approach includes three steps: (i) prediction step; (ii) measurement step; (iii)

correction step.

More specifically, assuming z(k) € X(k) € X (k) = (p(k), H(k)) at time step k €
N that also satisfies (0) € X(0) = (p(0), H(0)) when k& = 0, these three steps are
implemented as follows: (i) compute the predicted uncertain state set X'(k + 1); (ii)
compute the measurement state set P(k+1) with a measurement output vector y(k+1);
(iii) find an intersection zonotope X (k + 1) satisfying {X (k+1)NP(k+1)} C X(k+1),
where X (k + 1) is a parameterized intersection zonotope with respect to a correction

matrix A € R"=*™ . The structure of this intersection zonotope is defined as follows.

Theorem 2.1 (Intersection zonotope for descriptor systems). Given the descriptor sys-
tem (2.1), a measurement output vector y(k+1), z(0) € X(0), w(k) € W, v(k) € V,Vk € N,
w(k) € (p(k),H(k)) C (p(k),H(k)) with H(k) =lgw (H(k), T € R™>" and
N e R">*™ satisfying (2.3). Then, for any correction matrix A € R"**", z(k + 1) €
{)?(k: +1) NPk + 1)} CX(k+1) = (pk+1), H(k + 1)), where

plk+1) = (I — AC) TAp(K) + (I — AC) T Buf(k)
4+ (N+A—ACN)y(k+ 1), (2.4a)
f(k+1) = (I~ AC)TAH(K), (I-AC)TD, (I-AC)NF, AF|.  (24b)

Proof. For any z(k + 1) € {.)E'(k‘ +1)NPk+ 1)}, we know that z(k +1) € X(k + 1)
and z(k + 1) € P(k + 1). Considering the descriptor system (2.1a) with the inclu-
sion z(k) € (p(k), H(k)) C (p(k),Lqw (H(K))), there exists a vector s; € B9t such
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that

Ex(k+1) = Ap(k) + Bu(k) + Dad(k) + [Aﬁ(k), D] 51,

Besides, from x(k + 1) € P(k + 1), there exists a vector « € B™* such that

Cx(k+1)—ylk+1) = Fa. (2.5)

Consider the rank condition (2.2) is satistied. With a pair of matrices 7" and N

satisfying (2.3), (2.1) and (2.5) can be combined leading to

(TE + NC)z(k + 1) = TAp(k) + TBu(k) + TDad(k) + Ny(k + 1)
+|rAH(K), TD|si+NFa,

T
Set R(k) = |TAH(k), TD, NF} and 3 = [slT, aT} . According to (2.3), the
above equation can be simplified to be

2(k+ 1) = TAp(k) + TBu(k) + Ny(k + 1) + R(k)B. (2.6)

Therefore, with A € R™=*™ and a correction term ACR(k)3, we add and substi-
tute CR(k)p in (2.6) to obtain

2(k+1) = TAp(k) + TBu(k) + Ny(k + 1) + ACR(k) + (I — AC)R(K)B. (2.7

By substituting x(k + 1) in (2.5) by (2.6), we also have

CR(k)B =y(k + 1) — CNy(k + 1) — CTAp(k) — CTBu(k) + Fa.

And then by replacing CR(k)3 in (2.7), we have

a(k+1) = (I — AC)TAp(k) + (I — AC)T Bu(k)
B

Q

4+ (N+A—ACN)y(k+1) + [(1 ~ AC) R(k), AF}
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Thus, we obtain p(k + 1) and H(k + 1) as in (2.4). O

Due to the intersection zonotope bounding uncertain states including propagated
estimation errors and uncertainties, we would like to find a suitable (time-varying or
time-invariant) correction matrix minimizing the effects of estimation errors and un-
certainties by reducing the size of the intersection zonotope. To measure the size of a

zonotope, the Fyy-radius and the W-radius are used as in Definitions 1.8 and 1.9.

In the following, we first compute a time-varying Kalman correction matrix based
on the Fy-radius. On the other hand, with a W-radius minimization criterion, a correc-
tion matrix can be obtained by solving an off-line optimization problem. This off-line

correction matrix can also be updated following an on-line updating procedure.

Computing the Correction Matrix via Kalman Filtering Procedure

From Definition 1.8, the size of the intersection zonotope X (k + 1) can be measured by

the Fyy-radius as

Crw(k+1) = HH(k n 1)H;W — tr (ﬁ(k F)TWH K+ 1)) 29
=t (WHE+ DAk +1)T) = tr(WPE+1)), |

where P(k +1) = H(k + 1)H(k + 1)". As in the Kalman filtering procedure described
in [26, Theorem 5], a time-varying Kalman correction matrix A*(k) can be obtained by

minimizing £z (k + 1) of the intersection zonotope (p(k 4 1), H(k + 1)).

Theorem 2.2 (Kalman correction matrix). Given the intersection zonotope X (k + 1) =
(p(k + 1), H(k + 1)) in (2.4) and a weighting matrix W € S.o. The optimal correction

matrix N*(k) minimizes J = (pw (k + 1) and its explicit solution is given by

A*(k) = L(k)S(k)™1, (2.9)
L(k) = R(k)C(k) ", (2.10)
S(k) = CR(k)CT + Q,, (2.11)
R(k) =T (AP(K)AT + Qw) TT + NQ,NT, (2.12)
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Proof. From (2.4), we have

Pk+1)=(I—AC)TAP(K)ATT"T (I —AC)" + (I - AC)TQ,T" (I —AC)"
+ (I —AC)NQ,N" (I—AC)" + AQ,A".

The criterion J = {pw(k + 1) is convex with respect to A. By setting L, S and R
as in (2.10), (2.11) and (2.12), we take the partial-derivative of J = ¢ (k + 1) in (2.8)

with respect to A to obtain

aitr (WPE+1)) = a‘itr (wasaAT) - 20?\“ (wraT).

Then, A*(k) is the value of A such that a%tr(WP(k + 1)) = 0. By using (1.14a)
and (1.14b), we have that

SN (B) "W + S(k)TA*(k) "W T —2L(k)"WT =0,

from which, since that S(k) is also symmetric, we thus obtain WA*(k)S(k) = WL(k),
which leads to (2.9). O

Remark 2.1. From Theorem 2.2, the optimal correction matrix A*(k) is independent of
the weighting matrix W. Hence, this weighting matrix W can be set freely and we
can also use the non-weighted Frobenius norm to measure the zonotope size as the F-

radius.

Computing the Correction Matrix using Optimization-based Methods

From Definition 1.9, the size of the intersection zonotope X (k+1) can also be measured
by the W-radius as
2

byw(k+1) = max
zeB(at+nz+2ny)

‘f[(k:+ 1)z

2,W

= max 2z H(k+1)T(MWH(k+1)=.

ZGB(Q+HI +2ny)

(2.13)

We now present a W-radius minimization criterion and the corresponding linear
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matrix inequality (LMI) condition to find a constant correction matrix A in the follow-

ing theorem.

Theorem 2.3 (I-radius minimization criterion). Given the intersection zonotope X (k +
1) =(p(k+1), H(k+1))in(2.4), v € (0,1) and € > 0. The zonotope minimization criterion

O (k +1) < vl (k) + e, (2.14)

holds if there exist matrices W € S, Y € R"™ ™, diggonal matrices I' € SI%, T € S’%
and §2 € ST such that

tr(I7) 4+ tr(7) + tr(£2) <, (2.15a)
[ YW * * * |
0 I * * *
0 0 T * % | >=0. (2.15b)
0 0 0 2 *
(W -YC)TA (W-YC)TD (W—-YC)NF YF W]

Proof. By combining (2.13) and (2.14), we have

N 2
H(k+1 H _ (k)
i+ [, e 0

2
2.W

€ <0. (2.16)

max
ZGB(q+nz +2ny)

Let us set z = [ZT, b, by, b;]T € Blatnwt2n) with 7 € B?, b, € B™, by € B™
and bs € B". Since max ||H (k)2

2€Bd
condition of (2.16)

;W > Hﬁ(k)éHiw, Vz € BY, we obtain a sufficient

ma.

. 2 _ 5
Hk+1 H AR — 2.17
EEB‘Z,IMEB”UJ,bz}éan,bp,EB"U <H (k + )Z 2,W i H UC)ZHZW E) <0 ( )

Then, we obtain a sufficient condition of (2.17)

I (k+ 1)z — 7 [[H(K)Z|2,, — € < 0,Yz € BY, Vb, € B™, Vb, € B™, Wby € B"™.
(2.18)
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Recall H(k + 1) in (2.4b) and set Y = WA. Let us denote

R=[(W-YC)TA, (W-YC)TD, (W-YC)NF, YF|. (219

Then, (2.18) can be reformulated as

- — T - —
H(k)z H(k)z
b ~ | _ _
YU RTWHIR| TN | =42 HGR)TWH(R)Z — € <0, (2.20)
bQ b2
bs by

forany z € B%, b; € B", by € B™ and b3 € B™. If I', T and {2 are diagonal positive
semi-definite matrices, then we have b I'by = Y"1, b3I; < tr(I"), by Tby = > 10 b3T; <
tr(Y), b;ﬁbg = " b%!?i < tr(£2), for any b; € B™, by € B™ and b3 € B", where [},

T; and (2; are each diagonal element of I", 1" and (2. Therefore, we obtain

tr(I") — by I'by > 0,Y¥b; € B, (2.21a)
tr(Y) — by T'by > 0,Yby € B™, (2.21b)
tr(£2) — by b3 > 0,Vbs € B™. (2.21c)

By adding (2.21) to (2.20), we obtain a sufficient condition of (2.20)

r_ - T r_ -
H(k)z H(k)z
b _ o _ _
YO RTWIR| Y | 2 TH(K)TWH(K)E + (D) — b] Ty
b2 bQ
bs b

+ t1(T) — by Thy + tr(£2) — by 2b3 — € < 0.

If (2.15a) holds, then we obtain

- _T —_ - - -
H(k)z AW 0 0 0 H(k)z
b 3 ~ 0O I 0 0 b
! RTW-lR - "l <o
b2 0 T 0 b2
| b 0 0 0 2)| b |
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Again, from the above inequality, we have a sufficient condition

yW

—~R'"W™'R = 0.

0
r
0
0

D o o o

0
0
r
0

By using the Schur complement and Rin (2.19), we obtain (2.15b). O

Proposition 2.1 (Ultimate bound of the W-radius). Given the intersection zono-
tope X (k) = (p(k), H(k)), Vk € N, v € (0,1) and e > 0. If the criterion (2.14) holds,
then the W-radius of intersection zonotope X (k) is ultimately bounded by

€
1—7

tw(o0) < (2.22)

Proof. Given~ € (0,1)and e > 0, we take k — oo in (2.14) to obtain £y (c0) < vy (00)+
e that implies the ultimate bound (2.22) of fyy. O

Since (2.22) characterizes an ellipsoid with given v € (0,1) and € > 0, in order to
minimize the ultimate bound /¢y (c0), we can maximize a norm of W. For instance,
we choose to maximize tr(1/). Therefore, the optimization problem to find the off-line

correction matrix Ay can be expressed as

maximize tr(W), (2.23)
W,Y.[,1,0

subject to (2.15a)-(2.15b).

Then, the optimal solution of the optimization problem (2.23) gives

Ap=W"lY.

To tighten the size of the intersection zonotope during iterations, we also introduce
an on-line method to update the correction matrix A, (k) with the weighting matrix W
obtained by solving (2.23).

Theorem 2.4. Given the intersection zonotope X (k) = (p, H), Yk € N and the matrix W
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obtained by solving (2.23). If there exists a diagonal matrix M & S™* such that

M *
R = 0, (2.24)
[WH(k +1) W]

then lyy (k 4 1) in (2.13) is bounded by

ty(k+1)<  max  [[Mz];. (2.25)

zeB(at+nz+2ny)

Proof. According to [4], the vertices of the intersection zonotope X (k+1) can be approx-
imated by using a diagonal matrix. With a diagonal matrix M € R"=*"+, a sufficient

condition of (2.25) can be obtained as

JTH(k+1D)TWH(k+ 1)z < 2T Mz, Yz € Bltnat2m),

Then, from this inequality, we have a sufficient condition M — H(k + 1) W H(k +
1) > 0. By applying the Schur complement, we obtain (2.24). O

At each time step, minimizing the size of the intersection zonotope measured by
the W-radius /1 can be implemented by minimizing the trace of the diagonal ma-
trix M. Therefore, the on-line updating correction matrix A,(k) can be obtained by

solving the following optimization problem:
miniAmize tr(M), (2.26)
subject to (2.24).
Then, the optimal solution of the optimization problem (2.26) gives
Ao(k) = A.

Remark 2.2. It is worth mentioning that the off-line correction matrix Ay could already
be useful for estimating the states. Hence, sometimes A, obtained through the on-
line updating implementation with (2.26) does not provide significant improvements
since the state estimations are already satisfactory in terms of degrees of freedom of the

intersection zonotope defined in (2.4).
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2.1.2 Zonotopic Kalman Observer of Discrete-time Descriptor Systems

We now design a zonotopic Kalman observer for the descriptor system (2.1). Unlike
the presented set-membership approach with an implementation of consistency test,
this zonotopic observer structure is defined based on a standard Luenberger observer

structure.

Zonotopic Observer Structure for Descriptor Systems

With a pair of matrices 7" and N satisfying (2.3), we consider the Luenberger observer

structure for the descriptor system (2.1) in a prediction type [164] as

#(k + 1) = TA#(k) + TBu(k) + TDw(k) + Ny(k + 1)
— NFv(k+1)+ G(k) (y(k) — Cz(k) — Fu(k)),

(2.27)

where 2 € R"* denotes the estimated state vector, G € R™**"v denotes a time-varying

observer gain.

For the descriptor system (2.1), we would like to bound the uncertain system
states z(k), Vk € N in a zonotopic set. A suitable observer gain G(k) is used to reduce
the state estimation error with a measured output y(k). We first recursively define the

structure of the zonotopic observer.

Theorem 2.5 (Prediction-type zonotopic observer for descriptor systems). Given the de-
scriptor system in (2.1), measured outputs y(k), y(k+1), (0) € X(0), w(k) € W, v(k) € V,
vk € N, a(k) € (p(k), B(R) C (p(k), H(k)) with A(k) =lgw (A(k), T € Re=xns

and N € R™*™ satisfying (2.3). The zonotope bounding uncertain states can be recursively
defined by x(k +1) € X(k+1) = (p(k + 1), H(k + 1)) , where

Bk +1) = (TA— G(k)CO) p(k) + TBu(k) + G(k)y(k) + Ny(k+1),  (2.28a)
H(k+1) = [(TA~ G(K)C)A(k), TD, ~NF, ~G(k)F|. (2.28b)

Proof. Considering z(k) € (p(k), H(k)), we set 2(k) = x(k) € (p(k),H(k)).
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Since w(k) € W, v(k) € V, Vk € N, from (2.27), we can derive that

A~

c(k+1) e X(k+1)= (p(k+1), Hk +1))
= ((TA - G(k)C)(p(k), H(k))) & (T B(u(k),0))
G(k)(y(k),0)) & (N{y(k +1),0)) & (T'D(0, I,))

( 0
(=NF)0, In,)) ® (=G (k) F)0, In,)) -

By applying properties in (1.9) to the above equation, we obtain j(k+1) and H(k+1)
as in (2.28). O

From the state bounding zonotope in (2.28), the state estimation error (k + 1) is
bounded by the zonotope e(k+1) = z(k+1) —p(k+1) € E,(k+1) := (0, H(k+1)). The
objective for the zonotopic observer design is to find a time-varying observer gain G(k)

to minimize the estimation error, that corresponds to the size of £, (k + 1).

Optimal Kalman Observer Gain for Descriptor Systems

As in Theorem 2.2, the minimization criterion is based on the Fjy-radius. The optimal
observer gain G*(k) can be found by minimizing the Fyy-radius of £, (k + 1), that is
minimizing J = tr <W]3(k + 1)) with P(k+1) = H(k + )Hk +1)7.

Theorem 2.6 (Optimal Kalman observer gain for descriptor systems). Given &, (k+1) =
(0, H(k + 1)) with H(k + 1) in (2.28b) and any weighting matrix W € S . The optimal
observer gain G* (k) minimizes J = tr (Wﬁ’(kz + 1)) and its explicit solution is given by

G* (k) = TAK (k), (2.29)
K(k) = L(k)S(k)~!, (2.30)
L(k) = P(k)CT, (2.31)
S(k) = CP(k)CT + Q,, (2.32)
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Proof. Based on (2.28b), we can derive that

P(k+1)=(TA-Gk)C)H(k)H(k)(TA-G(k)C)T +TDD'TT
+NFF'NT +G(k)FFTG(k)".

Since J is convex with respect to G(k), G*(k) is the value of G(k) such
that %tr <W]5(k + 1)) = 0. By setting L(k) and S(k) as in (2.31) and (2.32), we have
that

)
aG (k)

)
aG (k)

tr (WG(k)S(k)G(k)T) 9 tr (WTAE(k)G(k;)T) ~0.

Due to the symmetry of S(k), by using (1.14a) and (1.14b), we obtain WG*(k)S(k) =
WTAL(k). Set K (k) as in (2.30). Thus, G*(k) can be found as in (2.29). O

From Theorem 2.6, G* is also independent of the weighting matrix W. To make use
of |4 w (-), a weighting matrix IV is required. One selection of W is proposed in the

following proposition.
Proposition 2.2. Given the nominal descriptor system

Ex(k +1) = Az(k) + Bu(k),
y(k) = Cu(k),

with matrices T' € R"**"» and N € R™*™ satisfying (2.3a). The Luenberger observer defined
by

#(k +1) = TA#(k) + TBu(k) + G ((y(k) — C2(k)) + Ny(k + 1),

is p-stable (stable with a decay rate p) if there exists W € S{%, Y € R"**™, and a scalar ju €
(0, 1] such that

uW *

= 0. (2.33)
WTA-YC W

Proof. With matrices T' and N satisfying (2.3a), the nominal system dynamics can be
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expressed as

a(k+1) = TAz(k) + TBu(k) + Ny(k + 1).

Define the state estimation error e(k) = z(k) — Z(k). Then, we have the error dy-
namics e(k+ 1) = z(k+ 1) — &(k + 1) = (IT'A — GC)e(k). With W € SI%, the Lyapunov
candidate function is chosen as V (k) = e(k) " We(k). With i € (0, 1], we have that

AV (k) =e(k+1)TWe(k + 1) — e(k) " uWe(k)
=e(k) (TA—GC)"W(TA - GC)e(k) —e(k) uWe(k).

For e(k) # 0, AV(k) < 0 gives a sufficient condition pW —
(TA—GC)' W (TA—GC) = 0. By applying the Schur complement with IV > 0
and Y = WG, we obtain (2.33). O

For the nominal descriptor system Ex(k + 1) = Az(k) + Bu(k), a nominal observer
gain without taking into account system uncertainties can also be found by satisfy-
ing (2.33) with G = W~1Y. We will use G with the zonotopic observer structure de-
fined in (2.28) to compare with the optimal Kalman gain G*(k) in order to assess the

state bounding performance.

2.1.3 Discussions on Set-membership Approach and Zonotopic Kalman

Observer
Relationship between the Proposed Approaches

Comparing the parameterized intersection zonotope structure proposed in Theo-
rem 2.1 and the zonotopic observer structure proposed in Theorem 2.5, the intersection
zonotope is formulated by considering the measurement output y(k + 1) to implement
the system consistency test while the zonotopic observer includes measurement out-

puts y(k) and y(k + 1).

To find the relationship between these two approaches, we also consider a current

estimation-type zonotopic observer for the descriptor system (2.1) only containing the
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current measurement output y(k + 1) as follows:

#(k + 1) = TA#(k) + TBu(k) + TDw(k) + Ny(k + 1)

’ (2.34)
—NFu(k+1)+Gylk+1)—Ci(k+1)— Fo(k+1)),

where G € R"*™ is an observer gain for the current estimation-type zonotopic ob-
server. Z(k + 1) denotes the predicted state from the previous observed state z(k) that

can be defined by
#(k+1) =TAz(k) + TBu(k) + TDw(k) + Ny(k +1) — NFv(k +1). (2.35)

Theorem 2.7. Consider the descriptor system (2.1). The proposed set-membership approach is

equivalent to the current estimation-type zonotopic observer in the structure of (2.34).

Proof. In terms of the zonotopic observer in the current estimation-type, by substitut-
ing @(k + 1) by (2.35) to (2.34), we can derive
#(k+1) = (1 - Gc) T A (k) + (I - C:C) TBu(k) + (I - GC) TDw(k)

+ (N +G - GCN) ylk+1) — (1 - GC) NFv(k+1) — GFu(k + 1).

Considering x(k) € (p(k), H(k)) with H(k) =l,w (H(k)), w(k) € Wand v(k+1) €
V, the uncertain state z(k 4 1) is bounded into the zonotope X' (k+1) = (p(k+1), H(k+
1)), where

c(k+1) e X(k+1)= (pk+1), H(k +1))
- ((I — GOYTAlp(k), H(K))) & ((1 — GO)TB(u(k), 0))
® ((1 — GO)TD, an>) ® ((N + G- GON)y(k +1), o>)
® ((—(I - GC))NF(O,IM>> @ ((—GF)(O,I%>) .

By using properties in (1.9), we obtain j(k + 1) and H(k + 1) as follows:

pk+1) = (I — GC)TAp(k) + (I — GC)TBu(k) + (N + G — GCN)y(k + 1), (2.36a)
H(k+1) = (I~ GOTAB(K), (I-GOYTD, —(I-GC)NF, ~GF|. (2:36b)
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By definition of the zonotope, the subtraction sign in the last two terms of (2.36b)

can be removed. Therefore, (2.4) and (2.36) are equivalent with A = G. O

Remark 2.3. Since the structure of (j(k + 1), H(k 4 1)) is equivalent to the intersection
zonotope (p(k + 1), H(k + 1)) in (2.4), the observer gain G can be obtained by using

methods proposed for the set-membership approach in Section 2.1.1.

Extension to Dynamical Systems with Unknown Inputs

In the case of rank(F) = n,, the system (2.1) becomes a dynamical system. The un-
known input d can be decoupled by finding matrices T' € R"*"= and N € R"*" that
satisfy

T+NC=1,, (2.37a)
TDy = 0. (2.37b)

By combining (2.37a) and (2.37b), we obtain Dy = NCDgand T = I,,, — NC. As-
sume D, to be full column rank. The condition to guarantee the existence of T'and N is
given by rank(D;) = rank(C'Dy). In this case, the proposed set-membership approach
and zonotopic Kalman observer in Section 2.1.1 and 2.1.2 can be applied to dynami-
cal systems subject to unknown inputs, which can be considered an improvement on
the methods presented in [1], [26]. Under this structure with 7' and N, the effects of
unknown inputs can be decoupled. In this way, the limitation of zonotope-based ap-

proach that requires the system disturbances to be bounded is relaxed.

2.1.4 Numerical Example

To illustrate the proposed state estimation approaches, consider a discrete-time de-

scriptor system as defined in (2.1) with

1 00 05 0 0 10
E=1|01 0|,A=108 095 0|.B=1|0 1|,Dg=10],
0 00 -1 05 1 00 0.8
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01 0 O
1 0 1 05 0
C= D=0 15 0 |,F=
1 -1 0 0 1.5
0 0.6

0.5sin(0.017k) + 1

—2cos(0.017k)
steps. The system disturbances w(k) and measurement noise v (k) are random Gaussian

white noise bounded in zonotopes: w(k) € W = (0,13) and v(k) € (0,12), Vk € N,
Vk € N.

, for 100 sampling

and the known input signal is given by u(k) = [

Since E, C' and Dy satisfy the rank condition (2.2), there exists a solution of matri-

ces T'and N satisfying (2.3). Therefore, we choose one feasible solution as follows:

0.6667  0.3333 0 0 0.3333
T=103333 06667 0f,N=]0 —0.3333
—0.6667 —0.3333 0 1 —-0.3333

The initial state zonotope X (0) is given by X'(0) = (p(0), H(0)), where

0.5 01 O
p(0)=105|,H0O0)=|0 15 0
0.25 0 0 06
The actual initial state vector z:(0) = [0.5, 0.5, 0.25]" is considered unknown for

the state estimation scheme. We choose ¢ = 15 in the zonotope reduction operator to
reduce the computation load and simulation time. Simulations have been carried out in
a PC with the CPU of Intel (R) Core (TM) i7-5500U 2.4GHz, 12GB RAM and MATLAB
R2015a. As a result, the state estimation results are shown in Fig. 2.2 and 2.3. These
plots show that both the set-membership approach and the zonotopic Kalman observer

are able to provide the interval-based state estimation results.

Recall that A*(k) behaves as the Kalman correction matrix, A is obtained by solv-
ing the off-line optimization problem (2.23), A, (k) is obtained by solving the on-line
optimization problem (2.26), G*(k) is the optimal Kalman gain and G with u = 1 is

the nominal observer gain of the prediction-type zonotopic Kalman observer, and G is
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Figure 2.2: Result of applying the set-membership approach.

the optimal Kalman gain of the current estimation type. Besides, the optimal weight-
ing matrix W* is obtained also by solving (2.23). The observation error is defined
as e(k) = xz(k) — 2(k) = x(k) — p(k), where (k) € (p(k), H(k)) and the subscript :
represents any time instant £ € N. The root mean square error (MSE) between the real

uncertain states and observed states can be computed by

1.1 2
MSE(e) := J (NZ o ||€(k)||2>

k=1 ¢

Besides, we also compute the root mean squared (RMS) value of rs(H (k)) that is
denoted by RMS(rs(H)). The weighted and non-weighted Frobenius norm as well as
the weighted 2-norm of the segment matrix of zonotopes are computed to compare the
sizes of the state zonotopes for all the scenarios. Table 2.2 and 2.1 show the comparison
results of all the cases using RMS up to the step 100 with weighted and non-weighted

zonotope reduction operator.

From the MSE(e) results of A* and G*(k) in Table 2.2, the performance of the
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Figure 2.3: Result of applying the prediction-type zonotopic Kalman
observer.

set-membership approach is better than the zonotopic Kalman observer in prediction-
type. This is because the prediction-type observer structure includes two consecutive-
step measurement outputs and noise. Both the measurement noise v(k) and v(k + 1)
should be over-approximated by the terms —NF and —G(k)F in (2.28b). Hence, this
could enlarge the size of the zonotope and gives more conservative estimation inter-
vals. In terms of the real-time implementation of control loops, in both proposed ap-
proaches, the estimate z(k + 1) depends on y(k + 1). Hence, a state feedback control
like u(k + 1) = Kz (k + 1) cannot be applied at the same time as y(k + 1) is acquired.
However, this real-time synchronization difficulty does not exist when implementing a
control loop based on the zonotopic Kalman filter in prediction-type form for dynam-
ical systems as proposed in [26]. Hence, a real-time synchronization remains an open
problem when implementing a state feedback control loop with the proposed state es-
timators for descriptor systems. The possible option can be realized by using a delayed

state feedback control.

From the results with Ay and A,(k), the mean-square error and the size of the in-
tersection zonotopes using the on-line method are smaller than the one using the off-
line method. According to RMS(rs(H)) and || H ||y of the set-membership approach,

the on-line method improves the correction matrix A with the weighting matrix W
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Table 2.2: Comparison with weighted zonotope reduction operator |, (H).

Approach A/G MSE(e) RMS(rs(H)) [Hl|z [Hlpw [Hlyy Time[s]
A* 0.0355 3.0963 1.5485  0.7070 - -
Set-membership approach Ay 0.0326 2.5443 - - 14.1385  3.809
Ao 0.0287 2.4755 - - 14.1373  46.238
G* 0.2528 3.8781 1.9694 1.959%4 . -
Zonotopic observer G 0.3027 5.0544 22605  2.2490 - -
G 0.0355 3.0963 1.5485  0.7070 - -

50
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computed off-line. Since the optimization problem (2.26) is implemented on-line, the
simulation time is longer than the off-line method. For the prediction-type zonotopic
Kalman observer, the optimal Kalman gain G*(k) deals with uncertainties better than

the nominal observer gain G.

Besides, by comparing the first and last rows of Table 2.2 and 2.1, it is numerically
shown that the set-membership approach is equivalent to the current estimation-type
zonotopic Kalman observer as the discussion in Theorem 2.7. From Table 2.1, all the
approaches are run with non-weighted zonotope reduction operator |, (H). From
results of RMS(rs(H)), the size of each zonotope is larger than the case with |, w (H).
This is because the non-weighted zonotope reduction operator can bring more over-

approximated results.

2.2 Extension of Set-membership Approach for LPV Descrip-

tor Systems

In this section, we extend the proposed set-membership approach for LPV descriptor
systems with a new defined zonotope minimization criterion based on the £, norm.

Let us consider the following LPV descriptor system

Ex(k+1) = A(0(k))z(k) + B(0(k))u(k) + D(0(k))d(k), (2.38a)
y(k) = Ca(k) + Fd(k), (2.38b)

where x € R"*, u € R™ and y € R™ denote the state, input and output vectors, re-
spectively. d € R"¢ denotes the system uncertainty vector. C' € R™*"* and F' € R™v*"4
are measurement matrices. Besides, £ € R"**"* is a singular matrix corresponding
to the definition of the descriptor system. As expressed in [165], A(0(k)), B(0(k))
and D(6(k)) are expressed in the polytopic form:

K

Bj,

h
A(O(k)) = p; (0(k)) A
j=1
h
B(6(k)) = p; (6(k))
j=1
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h
D(6(k)) =Y p; (0(k)) Dy,
J=1

where A; € R"™*" B; € R"™*™ D; ¢ R"*", Vj = 1,... h are known con-
stant matrices. (k) € R™ is a scheduling vector that can be measured online and

p; (6(k)), V5 =1,..., h are weighting functions satisfying

h

pj (0(k)) >0, Y pj(0(k)) =1,Vj=1,...,h. (2.39)
j=1

Compared to (2.1), the system uncertainty vector d in (2.38) can be divided as d :=
[w', UT]T € R™ with ng = ny + n,, where w € R™ and v € R™ are the vectors of
system disturbances and measurement noise. Besides, D(6(k)) = [D(0(k)),0], F =
[0, F] with D(0(k)) € R"»*" and F' € R™>"™,

Assumption 2.4. The uncertainty vector d(k) is unknown but bounded in a known centered
zonotope D as d(k) € D = (0, Hq), Vk € Nand the initial uncertain state x(0) is also bounded
in the zonotope X (0) = (p(0), H(0)).

Remark 2.4. Since d(k) € D, Vk € N, the worst-case d(k) on the boundary of D = (0, H;)
is given by max |Hab||. Meanwhile, by definition, the £, norm of d(k) is denoted
G n

by ||d|| ., = sup ||d(k)||, which satisfies
k

ld[| o = sup [|[d(k)[| = max [[Hqab| . (2.40)
k beB™d

Definition 2.4 (C-Observability [28]). The LPV descriptor system (2.38) is said to be
C-observable if the initial state 2(0) of the system can be uniquely determined by u(k)
and y(k), Vk € N.

Assumption 2.5. The LPV descriptor system (2.38) is assumed to be C-observable. Then,

zBE— A

matrices E, Aj and C satisfy rank =ng, Vj=1,...,h, Vz € C, 2 finite and

rank = Ng. (2.41)
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Lemma 2.1 ([162]). Since (2.41) holds, there exist two matrices T' and N such that the follow-
ing condition is satisfied:
TE+NC =1,,. (2.42)

Then, the general solutions of T and N are given by

T=wlay + 8 (Iww . WT) a1, (2.43a)
N=0lay+ 8 (Inﬁny - w*) s, (2.43b)
. E I . , . ,
with ¥ = ol o) = [ Ow] and o = ], where S is an arbitrary matrix of appropriate
vy
dimension.

Based on the result in Section 2.1.1, since the uncertain state z(k — 1) is bounded
in the zonotope X' (k — 1) = (p(k — 1), H(k — 1)), the estimated uncertain state z(k)
is over-approximated by implementing three steps including prediction, measurement

and correction. We now extend Definitions 2.1-2.3 for the LPV descriptor system (2.38).

Definition 2.5 (Uncertain state set). Given the LPV descriptor system (2.38) and As-
sumption 2.4 holds, the uncertain state set X (k) propagated by (2.38a) is defined as

X(k) = {x € R™

(Ex — B(0(k — 1))ulk — 1)) €

(2.44)
(A6 = 1) X(k = 1) @ D(O(k ~ 1))D) }.

Definition 2.6 (Measurement state set). Given the LPV descriptor system (2.38) and a
measured output vector y(k), the measurement consistent state set at time instant & is

defined as
Xy(k) ={x e R"™ | (y(k) — Cx) € FD}. (2.45)

Definition 2.7 (Exact uncertain state set). Given the LPV descriptor system (2.38), the
exact consistent uncertain state set X'(k), that encloses uncertain states consistent with

measured outputs, is defined as

X(k) = X (k) N X, (k). (2.46)
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2.2.1 Zonotopic Set-membership Approach for Discrete-time LPV Descrip-
tor Systems

We now present the set-membership state estimation approach for discrete-time LPV
descriptor systems. Based on the system model (2.38), the prediction step can be im-
plemented using the Minkowski sum and the model information through the forward
set propagation. With the output data measured from the real system, the set defined
in (2.45) can be obtained in the measurement step. Then, we compute the consistent
state set (2.46) by a suitable approximation allowing to implement the consistency test

in the correction step.

Intersection Zonotope for LPV Descriptor Systems

The set X' (k) defined in (2.46) is a polytope obtained by an intersection between the
zonotope X (k) and the polytope X, (k). To implement the steps of the set-membership
state estimation approach in an iterative way, we first construct a parameterized inter-
section zonotope to over-approximate X (k) in the following theorem, which includes

the three steps of the set-membership state estimation.

Theorem 2.8. Consider the LPV descriptor system (2.38), z(k — 1) € X(k — 1) = (p(k —
1), H(k—1)), the measured output y(k) and the measurement consistent state set X,,(k). Then,
for a parameter-varying correction matrix A (6(k — 1)) € R"**™, the consistent uncertain

state set X (k) is over-approximated by the zonotope X (k):

(k) N X (k) € (k) = (p(k), H(R)), (247)
where
p(k) = (I =A@k —1))C)TA(O(k —1))p(k
+ (I —A(6(k—1))C)TB(0(k 1))u( )
+ (N —=AB(k—1))CN+ A (6(k — 1)) )y(k), (2.48a)
H(k) = [(1 — A Ok — 1)) C)R(k), A0k —1)) FHd] : (2.48b)
R(k) = [TA(@(k — 1)) H(k—1), TD(0(k—1))H,, NFHd] (2.48¢)

Proof. For any #(k) satisfying (k) € X (k) N X, (k), it implies 2(k) € X (k) and 2 (k) €
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X, (k). First, in the prediction step, from 2 (k) € X (k) and (2.38a), there exists an unitary

vector z; such that

Ei(k) = A(6(k —1))p(k — 1) + B(0(k — 1))u(k — 1) 2.49)
+ [A@(k — ) Bk~ 1), D(6(k— 1) Hy =1 '

Therefore, in the measurement step, from (k) € X} (k) and (2.38b), there exists

another unitary vector z; such that

Ci(k) — y(k) = FHyz. (2.50)

With a pair of 7" and NV satisfying (2.42), (2.49) and (2.50) can be combined to obtain

21
<2

Set R(k) as in (2.48c) and s = [z, 2, } . Finally, in the correction step, we intro-

&(k) =TA(O(k —1))p(k — 1) + TB(6(k — 1))u(k — 1) + Ny(k)

- [TA(@(k ~1))H(k—1), TD(O(k—1))Hq, NFHd]

duce a parameter-varying correction matrix A (6(k — 1)) € R"**™ and a correction
term A (6(k — 1)) CR(k)s such that substituting (k) in (2.50) by (2.51), it becomes

CR(k)s = (I — CN)y(k) — CTA(O(k — 1))p(k — 1) — CTB(6(k — 1))u(k — 1) + F Hgz,.

Adding and subtracting this correction term A (#(k — 1)) CR(k)s in (2.51), we can

derive that

&(k) =TAO(k —1))p(k — 1) + TB(O(k — 1))u(k — 1) + Ny(k)
+AB(k—1))CR(k)s + (I — A((k — 1)) C) R(k)s
=TA(O(k —1))p(k — 1) + TB(0(k — 1))u(k — 1) + Ny(k)
Ak —1)) (I —CN)y(k) =A@k —1)) CTA(B(k — 1))p(k — 1)
— A0k —1))CTB(0(k — 1))u(k — 1) + (I — A (0(k — 1)) C) R(k)s
(0(k —1)) FHgz
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=(I—-A@B(-1)C)(TAOK —1))p(k —1) + TB(6(k — 1))u(k — 1))
+ (N —=A(0(k—1))CN +A0(k —1)))y(k)
ZQ] ’

from which we obtain the zonotope X (k) with the center (k) and the generator ma-
trix H (k) as in (2.48). O

+ (1 A8k~ 1) C)R(K), A 00k~ 1)) FH,|

Remark 2.5. Along an iterative estimation procedure, the order of X (k), Vk € Nis grow-
ing because at each time step, the term A (§(k — 1)) FHy is added into H(k), Yk € N.
From the application point of view, the order of the intersection zonotope with time
should be limited. To achieve this, we use the reduction operator |, () to fix the

maximum number of columns of the intersection zonotope to preserve the inclusion

property:
(p(k = 1), H(k = 1)) € (p(k 1), H(k ~ 1)),

with H(k — 1) =lqw (H(k — 1)), where ¢ is maximum column of H(k — 1) and W

denotes a weighting matrix of appropriate dimension.

Considering the polytopic form of the system (2.38), we introduce the polytopic

representation of the parameterized intersection zonotope in the following corollary.

Corollary 2.1. Consider the LPV descriptor system (2.38). If there exists a parameter-varying

correction matrix A (6(k — 1)) in a polytopic form:

h

A0k —1)) = pi (0(k — 1)) A, (2.51)
i=1

with A; € R™>" fori =1, ..., h, then the intersection zonotope X (k) can be reformulated as

follows
hoh
pR) =33 pi (0(k — 1)) p; (O(k — 1)) <(I — MC)TAp(k — 1) + (I — AC)TBju(k — 1))
i=1 j=1

h
+3 pi(6(k — 1) ((N ~ ACN + Ai)y(kz)>, (2.52a)
=1
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[Z 3" i (8(k — 1)) pj (8(k — 1)) ((1 — NC)TA;H(k — 1)),

=1 j=1

h h
SO pi 0k = 1) ps (606 = 1)) (I = MiC)TD;Hy),

i=1 j=1

sz = 1) ((1 = NC)NFH,),

Z pi ( A FHg|. (2.52b)

Proof. Based on (2.39), A(6(k—1)), B(6(k—1)) and D(6(k — 1)) can be reformulated by

Ak - 1)) h Aj
B(O(k — Z Bi|.ji=1..h, (2.53)
D(O(k — 1)) =1 Dj

with p; (§(k—1)) > 0 and Z?:1 p;j (6(k —1)) = 1. By combining (2.47) with (2.51)
and (2.53), we obtain (2.52). O

Computing Optimal Correction Matrix

Since all uncertain states are bounded in the intersection zonotope X' (k), we would
like to find a suitable correction matrix A (§(k — 1)) in such a way that the size of X (k)
is limited. As presented in Section 2.1.1, the size of a zonotope can be measured by
the W-radius. Based on Definitions 1.9 and 1.10, we propose the condition to limit the

size of X (k) in the following theorem.

Theorem 2.9. Consider the LPV descriptor system (2.38) and X (k) in (2.47). If there ex-
ists a positive scalar v > 0, a matrix W € R"* and a parameter-varying correction ma-
trix A (6(k — 1)) € R"**™ such that

aW * *
0 (1-a)pIl *
0 0 1-a)(1-p)I

*
*
=0, (2.54a)
*
Dy by D4 7%
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[ I *] <0, (2.54b)
YW W
with

By = W (I — A Bk — 1)) C)TAWB(k — 1)),

By = W (I — A0k — 1)) C) TD(O(k — 1)),

By =W (NF - A0k — 1)) ONF + A (0(k — 1)) F),

then the parameterized intersection zonotope X (k), Vk € 7. satisfies

EW(]{) < aéW(k — 1) + (1 — a) Ly, (2.55a)
(k) < 22w (), (2.55b)
with o, 5 € (0,1) and
_ 2 _ 2
ta= s B Habi | + e (1= B) | Haba]* (256)

Proof. By Definition 1.9, the W-radius of the intersection zonotope X'(k) in (2.47) at

time instant k can be formulated as

telk) = max |[EE (A OF - 1)z

2€Bn+2nd ’

w

where 2 € B""2" is an unitary vector. According to (2.48b), the vector 2 can be parti-
tionedas 2 = [z7, b], b]] " with z € B". By combining (2.55a) and (2.56), we obtain

. 2 . 2
max H(k);?” < max a HH(k: - 1)5” + max (1—a) 8| Hab|?
2eB"t21q w zeB™ W b1eB™d (2.57)
1—a)(1—3)|Hbs|?
+,max (1= a) (1= 8) | Habo|.
Then, we obtain a sufficient condition of (2.57) as
STHR)WHK): —az H(k—1)TWH(k —1)z — (1 — o) 8b] H] Hab, 258

—(1—a)(1—pB)by H] Hgby < 0,

for V2,Vz, Vby and Vby. Set & = H(k—1)z, ¢ = Hyby and ¢ = Hyby. By substituting H (k)
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defined (2.48b) in (2.58), it follows that

T
€ w1l % * 3
o wa W  Kx ol <O, (2.59)
¥ w31 W32 W33 ¥

with

wir = A0k = 1)) TT(I = A@B(k —1))C) W(I — Ak —1)) O)TAB(k — 1)) — aW,

war = D(O(k — 1)) ' TT(I = A0k —1))C) W (I —AO(k—1))C)TAO(k — 1)),

wag = D(O(k — 1)) ' TT(I = A(6(k —1))C) "W (I = A(6(k — 1)) C)TD(6(k — 1))
—(1—-a)pl,

wg1 = (NF — A (8(k — 1)) ONF + A (0(k — 1)) F) "W (I — A (0(k — 1)) C)TA(6(k — 1)),

wys = (NF— A(B(k — 1)) CNF + A (8(k — 1)) F) W (I — A (8(k — 1)) C)TD(8(k — 1)),

wys = (NF = A(B(k—1))CNF +A(0(k—1)) F)' W

C(NF = A0k — ))CNF+A((k 1) F) = (1—a)(1-B)I.

By the definition of a positive definite matrix, (2.59) implies w < 0. By applying

Schur complement lemma [14] to this matrix inequality, we obtain (2.54a).

On the other hand, by Definition 1.10, the radius of the intersection zonotope X (k)
H(k)z| . From (2.55b),

in (2.47) at time instant k£ can be formulated as /(k) = max
26Bn+2nd

we derive

I —~’W <0. (2.60)

Again, by applying Schur complement lemma to (2.60), we thus obtain (2.54b). [

Considering that A(6(k — 1)) and A(6(k — 1)) are defined in the polytopic
form, (2.54a) leads to a double sum problem. The following result is used for the refor-

mulation of a double sum problem.
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Lemma 2.2 ([21, 124]). Consider the following double sum inequality condition

F(k), 0(k) =D Y i (9(k)) p; (k) Ty - 0. (2.61)

i=1 j=1

Then, the condition (2.61) is fulfilled provided that the following conditions hold:

Fi,i>’07 t=1,...,7, (262a)
2

i+ L+ i 20, \1<i<j<r (2.62b)
r —

Based on Lemma 2.2, we now reformulate (2.54a) with multiple vertices in the form

of (2.61) in the following corollary.

Corollary 2.2. Consider the LPV descriptor system (2.38). If there exist matrices W € S5
and Y; € R™*™ fori=1,..., hsuch that

Ui =0, i=1,...,h, (2.63a)
%WH +¥;+¥;; =0, ,1<i<j<h, (2.63b)
with
[ aW * * ]
v = 0 (1—a)pl * 264)

*

*

0 0 (1—a)(1—B)I x

WTA; —Y,CTA; WTD; —Y,CTD; WNF —Y;,CNF+Y;F W

then (2.54a) is satisfied.

Proof. For the polytopic representation of A(6(k — 1)), D@k — 1))
and A (6(k —1)), (2.54a) can be reformulated by the double sum as (2.61). Thus,
we obtain (2.63) by means of (2.62). O

Based on the condition in Theorem 2.9, an adaptive bound, that is the upper bound

of the radius of the intersection zonotope, can be obtained in the following theorem.

Theorem 2.10. The Lo, performance of the radius of the intersection zonotope X (k) in (2.47)
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at time instant k is characterized by
£(k) < 720w (0) + 97 i3, (2.65)

with fy (0) = H(0)b(0)||%.
w (0) ) 1H(0)b(0)]p

Proof. From (2.40) and (2.56), we have {; = max |Hgb||*> = ||d||%.. From (2.55a), for
E n

some « € (0, 1), we can derive that
by (k) < aly (k= 1)+ (1 - a) |d]%,
k-1
< Pl (0) + (1—a) ) o' |ld]%
=0

< a*w (0) + [l -

Then, from (2.55b), we obtain
(k) < 720w (k) < 42 (" (0) + 1%, ) | (266)

which gives (2.65). O

Remark 2.6. Note that Theorem 2.9 provides a procedure to obtain the most ad-
justed zonotope that outer-bounds the intersection of the measurement consistent state
set X (k) and the consistent uncertain state set X, (k). The radius ¢(k) (introduced in
Definition 1.10) is used to measure the size of the resulting zonotope. According to
Theorem 2.9, this radius satisfies (2.55b). On the other hand, Theorem 2.10 introduces a
time-varying bound for this radius considering the worst-case disturbances. As shown
in the proof of Theorem 2.10, the relation of this worst-case bound with the one ob-
tained in Theorem 2.9 is given by (2.66) which leads to (2.65). This inequality estab-
lishes that the time-varying radius ¢(k) is bounded by /¢y7(0) (from the initial condi-
tion), the worst-case disturbance, a given scalar a € (0,1) as well as a scalar v > 0. As
the time k increases, the term o* is going to be zero. Hence, for k > ks (let us denote
kyr as an arbitrary large integer), a worst-case bound for ¢(k) is obtained considering

the worst-case disturbance as ¢(k) < +? Hal||c2>O for v > 0.

Based on Remark 2.6, the optimal polytopic correction matrices A; fori = 1,...,h
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can be found by solving the following optimization problem:

minimize ~, (2.67)

75/1.

subject to (2.54b) and (2.63) that allows to obtain the least conservative worst case
bound of ¢(k).

Then, the optimal solutions of the optimization problem (2.67) give
Af=W*Yr i=1,...,h.

Remark 2.7. The constraints in (2.63) are linear and hence convex with given «, 5 €
(0,1). To deal with term vW in (2.54b), the optimization problem (2.67) can be solved

by a linear programming solver with a line search to find the minimum ~.

Remark 2.8. The condition (2.55a) can be replaced by the one in Theorem 2.3, which can

be formulated as
tw (k) < obw(k—1) +e, (2.68)

with ¢ € [0,1) and € is a scalar that can be determined by system uncertainties.
From d(k) = [w(k)", v(k‘)T]T € D, Vk € N, we consider that the set D can be
rewritten by the Cartesian product as D = W x V with w(k) € W = (0, Hy)
and v(k) € V = (0,H,), Yk € N, where H,, and H, are the segment matrices of ap-

propriate dimensions. Therefore, according to Theorem 2.3, e can be estimated by

€ = max HHwinHQ + max HHv62H2 + max HHJ};W .
bieB™w boeB™v bseB™v

From (2.68), we follow the proof of Theorem 2.9 to obtain

oW * * * *

0 DO(k—-1)'T'TDOKk -1 * *
(00— 1)) (0(k = 1) * Co e

0 0 F'NTNF FTF «

@1 @2 @3 54 w

with

B =W (I — A0k —1))C)TAO(k — 1)),
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Dy =W (I —AO(k—1))C)TD(O(k — 1)),
&3 =W (NF—-A(G(k—1))CNF),
&y =WA(O(k—1))F,

which can also be reformulated to be the polytopic form as presented in Corollary 2.2.

Besides, when time tends to infinity, (2.68) can be bounded by ¢y (c0) < olyy (c0)+€

€
1—0c"

leading to fy(c0) < To minimize the P-radius ¢y (00) of the intersection zono-
tope (2.47), we can solve an eigenvalue optimization problem with a scalar 7 > 0 as

follows:

maximize T, (2.70)

P2

(1—0)W

subject to ~——~— = 71 and the polytopic form of (2.69).

Then, the optimal solutions of the optimization problem (2.70) give
N =w*lyy i=1,...,h.

Remark 2.9. The main difference between using criteria (2.55a) and (2.68) is that al-
though the resulting approaches compute the intersection zonotope based on the same
structure in Corollary 2.1, the corresponding correction matrices A} and Af fori =
1,...,h are obtained using different objectives. In the case of the approach based
on (2.55a) proposed in this section, the optimization problem (2.67) seeks to minimize
the upper bound of the time-varying radius (based on Definition 4) of the intersec-
tion zonotope, while in the approach based on (2.68), the optimization problem (2.70)

minimizes the steady W-radius of the intersection zonotope.

Finally, we summarize the proposed set-membership state estimation approach for

the discrete-time LPV descriptor system (2.38) in Algorithm 2.1.

2.2.2 Case Study: the Truck-trailer Model

From [162], the truck-trailer system is modeled by (2.38) in the polytopic form of LPV

descriptor system with the following matrices
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Algorithm 2.1 Set-Membership State Estimation for LPV Descriptor Systems
1: Given X (0) and D;
20 X(k—1) <= X(0);

: Solve the optimization problem (2.67) (or (2.70))
to obtain A} (or A});

: fork:=1:end do

Obtain 0(k — 1);

Measure y(k);

Compute the intersection zonotope by (2.52) obtaining

R (k) = (p(k), H(R));

8:  Obtain the upper and lower bounds z;(k) € [z;(k),Z;(k)] fori =1,...,n, by

zi(k) = pilk) + s (H(R)) ,
z,(k) = pilk) =rs (H(R)) ,
where p;(k) is the i-th element of p(k) and rs (f[ (k:)) “returns the i-th diagonal

element of rs (ﬁ(k))
9: end for

[N

N 9o

100 0 0
010 0 0218 1 0 0
FE = ,Alz ’
00 1 -1 0 0 1 1
000 0 0 006 0 1
105 0 0 0 [ 0.025] [ 0.05]
0436 1 0 0 0
Ag = ,B1 = , By = ,
0 0 1 1 0
0 012 0 1 0
0 0 0 0 0 0 0 0
0 00 0 0 00 0
D1: 7-D2: 3
012 0 0 0 024 0 0 0
0 00 0 0 00 0

and the sampling time is At = 0.2s. The speed of backing up 6(k) varies in
the range 6(k) € [—1.2,—-0.6] as presented in Figure 2.4 and the weighting func-
tions p; (6(k)) for j = 1,2 are computed as p; (0(k)) = 9(k321‘2 and po (6(k)) = 9(@%0‘6.
Besides, the initial state is chosen as z(0) = [0.1745, 0.3491, 3, —0.4189] " and the
initial estimation is bounded in the zonotope X (0) = (p(0), H(0)) with p(0) = x(0)

and H(0) = diag ([0.02, 0.02, 0.1, 0.02]).
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0 50 100 150 200 250 300

Figure 2.4: Time-varying parameter 0(k).

Besides, to reduce the computation time and limit the growing complexity of
the resulting zonotope, we set ¢ = 20 in the zonotope reduction operator |, w
(H) and the weighting matrix is chosen as W. d(k) € D, Vk € N with H; =
diag ([0.03, 0.004, 0.004, 0.004]).

From Lemma 2.1, since S is an arbitrary matrix in (2.43), we take

_1.01 5.92 887 2.23 0.34 448 5.57_
0.72 3.78 599 1.31 8.80 3.47 8.89

S = ,
9.05 952 6.90 1.72 522 7.57 8.40
312 742 391 9.39 8.08 3.60 2.44
to obtain

(1 27864 3.3204 2.2327 (97864 —3.3204 3.3204]
o [0 20007 3803 13126] | 3.0097 —3.8036 3.8036
0 21462 29088 1.7248|° 921462 —1.9088 2.9088
0 —0.3293 0.5831 9.3860 0.3293 —0.5831 1.5831

From (2.55a), the convergence rate of the W-radius ¢y (k) is described by «. By
simulations, we tune o € (0,1) to find a minimum . Moreover, we choose = 0.5
in (2.56). The optimization problem (2.67) is solved using the YALMIP toolbox [73]
and the MOSEK solver [83]. All the simulations are carried out in a PC with CPU of
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Table 2.3: Comparison between A} and A}.

A

Approach MSE rs(H) Computation time [s]

A 4.7362e-05 0.1332 0.0090
A 5.2623e-04 0.1459 0.0099

Intel (R) Core (TM) i7-5500U 2.4GHz and 12GB memory. By means of a line search,
we obtain the minimum ~ = 11.95 with a = 0.75 and the optimal polytopic correction

matrices A}, i =1,2,

[ 0.8359  —0.0031 0.1491] [ 0.7413  0.1768  0.0952]
g | 1055 —oa1s0 00239 .| L0728 01191 00274
_0.0558  0.9437 0.0723 _0.0547 0.9386  0.0743
0.0496  0.0466 0.9378 0.0464 0.0519 0.9371

As a comparison, we also solve the optimization problem (2.70) by a line search
with ¢ € [0,1). Then, we obtain the maximum 7 = 0.00024 with ¢ = 0.8 and the

polytopic correction matrices A} fori = 1,2,

_1.8397 —2.3403 0.8747_ _1.9712 —2.4276 0.8667_

Tt 0.9557 0.0102 0.0185 At — 0.9646 —0.0022 0.0199
! 0.0098 0.9453 0.0222] —0.0020 0.9627 0.0196
0.0200 0.0223 0.9730 0.0206  0.0203 0.9740

By implementing Algorithm 2.1 for N = 300 sampling steps with A} and A} sep-
arately, the comparison results of the state estimation are shown in Figure 2.2.2 and
Figure 2.2.2, where the real states are plotted by red stars as the validation. From these
two figures, the proposed approach with A} and the comparison approach with A} are
able to estimate uncertain states in dash lines and propagate the estimation interval in

solid lines (green ones for A} and blue ones for A}).

In order to quantitatively compare the results with A¥ and A}, we define the state

estimation error between the estimated states and real states as e(k) = z(k) — p(k)
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Figure 2.5: State estimation results of the truck-trailer case study.
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Figure 2.6: L, performance with A7.

we also measure rs(H(k)) to compare the size of the intersection zonotope with A}

and A} bounding uncertain states. Table 2.3 shows the MSE result, the root mean

and M SE. Since system uncertainties are propagated to the states during iterations,

square of rs(H (k)) as well as the computation time. For this case study, it is clear from
this table that the estimation error of the proposed approach is smaller as well as the

size of intersection zonotopes. The mean computation time per one iteration for both
approaches are similar and smaller than the sampling time.

Besides, with the proposed approach, the time-varying radius of the intersection
zonotope is expected to be lower than the adaptive bound based on « (as presented
in Theorem 2.10), which is called the L., performance. In Figure 2.6, with the optimal

solution v, we can see that the radius of the intersection zonotope at each time is always
constrained.
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2.3 Summary

This chapter has presented a general set-based framework for discrete-time descriptor
systems with application to robust state estimation. Specifically, two approaches are
proposed: (i) the zonotopic set-membership approach; (ii) the zonotopic observer. It
has been proved that the zonotopic observer in the current estimation type is equivalent
to the set-membership approach. Several zonotope minimization criteria have been
defined to find the optimal correction matrices for set-membership approach and the
optimal Kalman gain for the zonotopic observer. For the set-based approaches, one
weakness could be the assumption of unknown-but-bounded disturbances and noise.
In this chapter, unknown inputs have been considered so that this conservativeness can
be significantly reduced. Potential improvement and applications are summarized as

follows:

e In terms of large-scale systems, a single set for bounding uncertain states could
be difficult to be characterized due to the large number of variables. To overcome

this, we will study a distributed set-membership approach in Section 3;

e Under this set-based framework, fault diagnosis strategies including FDI and FE
will be studied in Part II of this thesis.
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DISTRIBUTED SET-MEMBERSHIP
APPROACH BASED ON ZONOTOPES
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Figure 3.1: Set-based distributed state estimation scheme.

Following the research line of Chapter (2), this chapter presents a distributed set-

membership approach based on zonotopes for discrete-time systems, which improves

the applicability of the set-based approach in large-scale systems. The contribution of

this chapter has been published in [

]. In fact, the set-based approaches in Chapter 2

only consider the construction of single set for bounding all the uncertain states in a

centralized way. Since that the dimension of large-scale systems is very high, it could

be difficult to propagate a high-dimensional single set bounding all the uncertain states

along iterations. As a result, a distributed set-membership approach is effective for a

71
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system with partitioned subsystems including coupled states.
3.1 Problem Statement in Distributed Set-membership Ap-
proach

Consider the class of discrete-time dynamical systems that can be decomposed into /

interconnected subsystems (called agents) with coupled dynamics. Each agent can be

modeled as
zi(k +1) = Y Aya;(k) + Biui(k) + wi(k), (3.1a)
JEN;
yz(k) = Czl'z(k?) + Ui(k), (31b)

where z; € R, u; € R™i and y; € R" denote the state, the input and the output
vectors, w; € R™:i and v; € R™: denote the state disturbance and the measurement
noise vectors of the i-th agent with i = 1,...,1, respectively. A;; € R"i*"*,6 B; €
R":i X" and C; € R™: %", Besides, N; is defined to be the set that includes all the

agents related to the agent ¢ (¢ also included).

To design an iterative approach, the following assumptions are made.

Assumption 3.1. The state disturbance and measurement noise vectors w;(k) and v;(k) are

unknown but bounded by the centered zonotopes:

w;(k) € (0, Dy,), vi(k) € (0,D,,), Yk € N, (3.2)
and for i = 1,...,1, where D,,, € R™i*"™vi and D,, € R™:*"vi,
Assumption 3.2. The initial state z;(0) is assumed to be bounded by the zonotope x;(0) €

X,(0) == (pi(0), Hi(0)) fori =1,...,1.

In this chapter, the goal is to obtain robust state estimation by finding a sequence
of distributed state zonotopes &X;(k) to independently bound the uncertain states z; (k)
fori=1,...,l,Vk € N. Instead of using a centralized zonotope, these distributed state

zonotopes can provide robust state estimation results.
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3.2 Distributed Set-membership Approach based on Zono-

topes

We now present a distributed set-membership approach for robust state estimation.
A parameterized distributed state bounding zonotope is established for each agent
considering coupled states. To determine the parameters (correction matrices) of the
distributed state bounding zonotopes for robust state estimation, we propose an opti-
mization problem based on W-radius minimization to find a set of optimal correction

matrices.

3.2.1 Distributed State Bounding Zonotope

Instead of finding a centralized state bounding zonotope, we introduce the struc-
ture of the parameterized distributed state bounding zonotope X;(k) for i = 1,...,1
and Vk € N. In this case, the coupled states are considered. Each zonotope X;(k) is
built to be consistent with its own measured output y;(k) of each agent. Considering
that the initial states x;(0) are assumed to be bounded in an initial zonotope, the param-
eterized distributed state bounding zonotopes are recursively defined in the following

proposition.

Proposition 3.1 (Distributed state bounding zonotope). Given the dynamics of the dis-
tributed systems in (3.1), suppose that Assumption 3.1 and 3.2 hold, and that z;(k — 1) €
Xi(k—1) = (pi(k—1),H;(k—1)),i=1,...,l. Then, the following inclusion holds for every

correction matrix A; € R"=: v ;

where p;(k) and H;(k) are defined as

pi(k) = (I — NiCy) ( Z Aijpj(k —1) + Biu;(k — 1)) + Ayi(k), (3.4a)
JEN;
H;(k) = [(I = AiGi) cat {4y Hj(k = 1)}, (I = AiCi) Dy, Ati} : (3.4b)

Proof. Since zi(k — 1) € (pi;(k —1),H;(k — 1)) for i = 1,...,l, by Definition 1.6, there



74 Chapter 3 : Distributed Set-membership Approach based on Zonotopes

exists a vector 6;(k — 1) with ||0;(k — 1)|| ., < 1,7 =1,...,l such that

l‘i(k— 1) :pi(/{— 1)—|—Hi(k— 1)9i(k—1), i=1,...,L

From the dynamics in (3.1), in the prediction step, we have that

zi(k) = Y Ajjaj(k — 1) + Buui(k — 1) + w;(k — 1)
JEN;

=S Ay (b — 1)+ Hy s — 105k — 1) + Bruslk — 1) + wi(k— 1), (35)
JEN;

From Assumption 3.1, there exists a vector w;(k — 1) with ||a;(k —1)||,, < 1 for

i=1,...,lsuch that w;(k — 1) = D,,w;(k — 1). Thus, from (3.5), we derive

oo

vi(k) =Y Aij (pj(k — 1) + H;(k — 1)0;(k — 1)) + Biug(k — 1) + Dy, wi(k — 1).
JEN;

Set

pi(k) = > Aijpj(k — 1) + Bius(k — 1),
JEN;

Ru(h) = | eag (A= 1) D
milk—1) = [cat {9j(k - 1)T} ik — 1)T} : ,

JEN;

where ||n;(k — 1)||, < 1. Then, we have

vi(k) = pi(k) + Ri(k)ni(k — 1). (3.6)

From Assumption 3.1, there exists a vector o;(k) with ||o;(k)||, < 1fori=1,...,1

such that v;(k) = D,,0;(k). From the output equation of (3.1), we have that

yl(/@) — CzZL‘z(k‘) — DviO'i(k) = 0. (37)

Thus, by replacing z;(k) in (3.7) with the expression in (3.6), we obtain
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yi(k) — Cipi(k) — CiRi(k)ni(k — 1) — Dy,04(k) = 0.

Pre-multiplying by A; and rearranging the terms of the above equation yields

Aiyi(k) — MiCipi(k) — A CiRi(k)ni(k — 1) — AiDy,0i(k) = 0. (3.8)

Finally, in the correction step, we add (3.8) to the right side of (3.6) obtaining
zi(k) = pi(k) + Ri(k)ni(k — 1) + Asyi(k)
— NiCipi(k) — NiCiRi(k)ni(k — 1) — AiDy,0i(k).

By setting p; (k) and H;(k) as in (3.4), the above equation becomes

£i(k) = pi(k) + Hi(k) [""("’ - 1)] .

—oi(k)

Since |[ni(k —1)|lo < 1 and |lo;(k)||,, < 1, we thus conclude that z;(k) €<
(pi(k), Hi(k)). m

o0

From (3.3) and (3.4), we can see that in order to find the distributed state bounding
zonotope X;(k) in a iterative way along the time step k € N, the correction matrices A;
fori = 1,...,l are required. In the following, we will investigate the way to compute
Ajfori=1,...,1

3.2.2 Computing Correction Matrices

For state estimation, the objective is to minimize the state estimation errors. Since all es-
timation errors and uncertainties are propagated and bounded in the distributed zono-
tope &X;(k), we would like to find A; for i = 1,...,[ to minimize the size of these dis-
tributed zonotopes. In this section, we also use the IW-radius to measure the size of a
zonotope (see Definition 1.9). In order to guarantee the global stability, we first rewrite

the interconnected subsystems (3.1) as follows.
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Denote # = [2],...,2]]" C R™ with n, = S\ me, u = [ul,... 0] C
R™ with n, = Zé:l Ny Y = [le,...,le]T C R™ with n, = 22:1 Ny W =
[w]—,...,wlT]T C R™ with n, = 22:1 Ny, and v = [’UI,...,UZT]T C R™ with

Ny = 22:1 ny,. The general system including [ agents defined in (3.1) can be formulated

as
xz(k+1) = Az (k) + Bu(k) + w(k), (3.9a)
y(k) = Ca(k) + v(k), (3.9b)
with
An Ay
A= ,
An Ay

B = diag (By,...,B;), C=diag(Cy,...,C)),

where w(k) € (0, D) and v(k) € (0,D,), Vk € N, with D,, = diag (D, , ..., Dy,) and
D, = diag (D.,, ..., Dy,).

Proposition 3.2 (Centralized state bounding zonotope). Given the dynamics of the sys-
tem (3.9) and suppose that x(k — 1) € X(k — 1) = (p(k — 1), H(k — 1)), for every correction

matrix A € R"**"v, the following inclusion holds:
2(k) € X (k) = (p(k), H(K)), (3.10)
where
p(k) = (I = AC) (Ap(k — 1) + Bu(k — 1)) + Ay(k),

H(k) = |(I - AC)AH(k 1), (I-AC)D,, AD,].

Proof. Because of its similarity to Proposition 3.1, the proof is straightforward and omit-
ted here. O

Based on the general state bounding zonotope, we present the conditions of the

W -radius minimization criterion in the following theorem.
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Theorem 3.1. Given X (k) = (c(k), H(k)) in (3.10), Vk € N, two scalars v € (0,1) and
€ > 0. If there exist matrices W € S(, Y € R"*", diagonal matrices I' € ST and T € ST,
such that

tr(I) +tr(7) <, (3.11a)
[ YW * _—
W -YC)A W
( ) o, (3.11b)
0 DWW -vyCO)" T «
0 DYT 07T

then it is guaranteed that

by (k) <~vlw(k—1)+e€ Yk € Zy, (3.12)

which leads to Ly (00) < 1= when k — +o0.

Proof. From (3.12), with W € SI{ and A € R"**"v, for every H(k — 1) and v € (0,1),

we have that (3.12) is equivalent to

max || H(k)¢||? — max ~||H(k—1)0||% —e<0. (3.13)
u<z>||oo§1” (K)ol e [ H ( lI%

Since max |H(k—1)0||3, > ||H(k—1)0||3, for any ||]| ., < 1, we obtain the following

sufficient condition of (3.13)

e 1H (F)$|If — v H(E = 1)8]F — e <0. (3.14)

Letusdenote ¢ = [§7, @', 0] Tand Y = RA, then

R= [(W —YC)A, (W —YC)D,, YDU} . (3.15)

With this notation, we have
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Therefore, we rewrite (3.14) as

T

H(k—1)0 H(k—1)0
w R'W™IR w
—y(H(k-1)0)TWH((k—1) —e <0, (3.16)

for any ||¢||,, < 1.If I"and 7" are diagonal and positive semi-definite matrices, then we

have

tr(I') —w ' T'w >0, V||, <1, (3.17a)
tr(Y) — o' Yo >0, VY|o| <1. (3.17b)

By adding (3.17) to (3.16), we can obtain a sufficient condition

Hik—1)0] Hk—1)0

w R'W™IR w

o g
—y(H(k—1)0)"WH(k —1)0 — ¢
+tr(l) —w T+ tr(Y) — o' Yo < 0.

If (3.11a) is satisfied, then we obtain

.

H(k—1)0 AW

o R'WIR—| 0
0

H(k—1)0

o N %

RO %
Q

o

From the above inequality, we have a sufficient condition

YW x %
RTWTR—| 0 I x| <0,
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and by changing the sign and applying the Schur complement, we obtain

YW * * *

0 r * *
> 0.

0 0 T *

(W-YC)A (W-YC)D, YD, W

Finally, we obtain (3.11b) through a linear coordinate transformation by the matrix

7000
T = [886?}apphedtotheaboveinequahb& O
0700

Remark 3.1. Denote C'y = C'A. The inequality (3.11b) implies

BW
> 0,
WA-YCsq W

which is related to the design of an observer gain for the system pair (A4, C4).

From the expression of the system (3.9), it includes [ agents in (3.1). Based on the
definition of A, we propose the structure of matrices W and Y to be block diagonal
matrices in order to find a group of A; for ¢ = 1,...,l. Let us define the following

structures [78]

W = diag(Wh,..., W), W; € Sy, i=1,...,1, (3.18a)
Y =diag(Y1,...,Y)), V; e R =1, .1 (3.18b)

By Definition 1.9, fyy (c0) < 1f7 leads to

€
I—x

(2(00) = p(00)) " W (z(00) — p(o0)) < : (3.19)

which is an ellipsoid. To minimize the size of this ellipsoid in (3.19), we can maximize

a norm of W, as e.g. we choose to maximize tr(W). Therefore, the correction matri-

ces A; € R"=i*™i fori = 1,...,1 can be obtained by solving the following optimization
problem:
ma?(Llfglze tr(W), (3.20)

subject to (3.11).
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From the optimal solutions of (3.20), A = WY gives A = diag(Ay, ..., A;) with

A; € R™%i*™i fori=1,...,1L

3.2.3 Distributed Set-membership Algorithm

We summarize the distributed set-membership state estimation approach in the fol-

lowing algorithm.

Algorithm 3.1 Distributed Set-membership State Estimation

1: (Offline procedure) Solve the optimization problem (3.20) with the structured W

and Y in (3.18) to obtain A; € R *™i fori=1,...,1.;

: fork:=1:end do

3:  Each agent i sends the state bounding zonotope (p;(k — 1), H;(k — 1)) to its neigh-
borsfori=1,...,land Vk € Z;

4:  Receive the information (p;(k — 1), H;(k — 1)), Vj € N; from neighbors and ob-
tain the measurement y;(k) and (p;(k — 1), H;(k — 1)). The distributed zono-
tope (pi(k), H;i(k)) of the agent i is updated by (3.3) with A; at time k.

5:  Obtain the upper and lower bounds z;(k) € [z;(k),Z;(k)] fori =1,...,n, by

zi(k) = pilk) + s (H(R)) ,
z,(k) = pulk) = rs (H(R)) ,
where p;(k) is the i-th element of p(k) and rs (ﬁ (k:)) _returns the i-th diagonal

element of rs (f[(k)).
6: end for

N

3.3 Numerical Example

Given the system including two interconnected subsystems in (3.1) (I = 2) with system

matrices:
[ 0.6848 —0.0749 0.1290 —0.2488 —0.0242
A= | 0.6671 0.9666 —0.5852| ,A12 = [—0.9545 —0.8138],
—0.2789 —0.1119 1.0251 0.3474 0.3067

o [F02180 —0.0000 02027 [os466 01632
“7 | 11606 03804 —0.9879] ~1.6068 —0.5130]
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0.8 0
Bi=10 0.58

0.6 0.8
Ch =

Dy,

D,,

0.8

732 = )
—0.75

11 0 10
702: 3
0 0 1 0 1

and wl(k‘) € <0, Dwi>, Ul(ki) S

(0, Dy,) fori = 1,2 and Vk € N, where

0.1 0 0
0.1 0
0 015 0 |, Dy, = )
0 0.15
0 0 0.25
005 0 01 O
)szz )
0 0.05 0 0.1

and the initial state is chosen as z1(0) = [0.25,1.5, —0.5] " € (p1(0), H1(0)) and z5(0) =
[0.8,0]" € (p2(0), H2(0)), where p1(0) = 21(0), p2(0) = 22(0) and

001 0 0
0.01 0

Hi(0)=1] 0 001 0 |, H0)= 0 ooil
0 0 0.01 '

The simulations with this numerical example have been carried out in MATLAB
and the optimization problems have been solved using the YALMIP [73] with the
MOSEK solver [

obtain the optimal correction matrices for the two agents:

]. By setting v = 0.8 and W and Y in block diagonal forms (3.18), we

0.2433 0.1841
1.4788 0.0093
Ay = |0.7567 —0.1841]| ,As = )
0.5687 1.0129

0.0375 1.1077

Besides, for a comparison, we also compute the centralized correction matrix A°
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10 20 30 40 50 60 70 80 90 100
k

(c) z3

Figure 3.2: State estimation result of Agent 1.

with full-dimensional W and Y obtaining

(0.3273  0.0877  0.1625  0.0479 |
0.6728 —0.0877 —0.1625 —0.0479
A= 10.0920 1.0439  0.0414 —0.0247
0.1916 0.1993  0.6911 —0.1313
02677 0.1113  —0.0047  0.7835 |

Following the proposed set-membership state estimation algorithm and the corre-
sponding centralized algorithm, robust state estimation results are shown in Figure 3.2

and Figure 3.3. From these plots, we can see that both approaches are able to provide
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(@) x4 (b) 5

Figure 3.3: State estimation result of Agent 2.

Table 3.1: Comparison between the distributed and centralized

approaches.
(W)  MSE  RMS(ZIY,(H(k))
Distributed approach 799.4855 0.0061 0.6174
Centralized approach  799.5274 0.0037 0.6066

state estimations with generated bounds, and the bounds of the distributed approach
are not significantly larger than the centralized ones. Besides, the optimal values of the
optimization problem (3.20), the MSE result and a measure of bounds are computed
and shown in Table 3.1. With the unstructured W, the optimal objective tr(1/) in the
centralized approach is slightly better than the distributed one. As a result, the state
estimation error and generated bounds in the centralized approach is slightly smaller
than the distributed ones. However, the distributed approach uses less information

and is able to get similar results as the centralized approach.
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3.4 Summary

This chapter has presented a distributed set-membership approach based on zonotopes
for interconnected systems with coupled states. The interconnected systems are af-
fected by unknown-but-bounded state disturbances and measurement noise. Instead
of finding a single zonotope for bounding all the uncertain states, a group of param-
eterized distributed state bounding zonotopes to over-bound uncertain states is de-
fined. For obtaining robust state estimation results, the parameters, that is the correc-
tion matrices, are designed by solving the proposed optimization problem based on
the W-radius minimization. The proposed approach is tested by a numerical example
and compared with the centralized approach. From the simulation results, it can be
seen that the distributed approach is not much worse than the centralized one since
less information of measured outputs is used to correct the predicted state set for each
agent. As future research, a customized geometrical set could be defined and a suit-
able communication strategy can be applied to improve the performance of distributed

set-membership approach.
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Figure 4.1: Set-based FDI scheme.

This chapter presents set-based FDI strategies for discrete-time descriptor systems. The
contributions of this chapter have been submitted in [149] and [151]. In this chapter,
we apply the set-based framework proposed in Chapter 2 into FDI for discrete-time
descriptor systems. In particular, fault sensitivity should be taken into account for
implementing an FD strategy. In this chapter, we will show two different criteria for

achieving fault sensitivity: (i) the one based on a #_ index and therefore the condition

87
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is transformed as an LMI; (ii) the other based on a new defined criterion and algebraic
solution is explicitly presented. In the first method, the effects of occurred faults are
propagated in the center of state bounding zonotopes while in the second method,
they are bounded in the segment matrix of state bounding zonotopes. Besides, the FI

strategy is implemented by adopting a bank of zonotopic UIOs.

4.1 Zonotopic FD Observer for Descriptor Systems consider-

ing the H_ Fault Sensitivity

Consider the following discrete-time descriptor system with additive actuator faults as

Ex(k +1) = Az(k) + Bu(k) + Dyw(k) + F f(k), (4.1a)
y(k) = Cz(k) + Dyv(k), (4.1b)

where z € R"», 4 € R"™ and y € R™ denote the state, the known input and the output
vectors, w € R™, v € R™ and f € R? denote the state disturbance, the measurement
noise and the additive fault vectors. A €¢ R%*" B ¢ R%X" [ ¢ RWXMw [ ¢
R™>x4, C € R™*" and D, € R™*™ are the system matrices. Besides, the matrix

E € R"*"= may be singular, that is, rank(E) < n,.

For the system (4.1), we consider Assumptions 2.1 and 2.2 hold. Besides, the de-
scriptor system (4.1) is also assumed to be C-observable. Then, matrices F, C sat-
isfy the rank condition (2.41). Thus, there exists two non-zero matrices 7' € R"=*"=
and N € R™"*™ that can be obtained by Lemma 2.1.

Based on the result in Section 2.1.2, we use a zonotopic observer in Theorem 2.5
to implement the FD strategy. Recall the result of Theorem 2.5, considering a state
observation (k) € (p(k), H(k)) C R™ at time step k € N, which also satisfies (0) =
z(0) € (p(0), H(0)) when k = 0 and no faults occurred. Then, at time step k£ + 1, the
state observation is recursively defined by z(k + 1) € (p(k + 1), H(k + 1)) with

p(k+1) = (TA - GC)p(k) + TBu(k) + Gy(k) + Ny(k + 1), (4.2a)
H(k+1)= [(TA-GC)H(k), TDy, —GD,, —ND,], (4.2b)
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where H(k) =}, w (H(k)) and G € R™*" is an observer gain. Then, from the state
zonotope (k) € (p(k), H(k)), Yk € N, we define the zonotopic FD observer for de-
scriptor system (4.1) by the residual zonotope r(k) € (p,(k), H,(k)) C R™ with

pr(k) = y(k) — Cp(k), (4.3a)
H, (k) = [Cﬁ(k), Dv} , (4.3b)

In this section, we would like to design an FD observer gain G that minimizes the
effects of uncertainties and meanwhile maximizes the sensitivity to faults based on the

H_ index. The design of this gain G will be based on two LMI conditions.

41.1 Zonotopic Observer Decomposition
For the descriptor system (4.1), with matrices 7" and N, the descriptor dynamics can be
reformulated as

z(k+ 1) =TAx(k) + TBu(k) + TDyw(k) + TF f(k)
+ Ny(k +1) — NDyo(k +1).

(4.4)

Considering a state observation Z(k) € (p(k), H(k)), we define the state estimation
error as e(k) = z(k) — p(k). Then, with (4.4), the state estimation error dynamics can be

formulated as

e(k+1)=(TA—-GCe(k) + TDy,w(k)+TF f(k)
— GDyv(k) — NDyv(k +1).

(4.5)

From (4.5), the effects of faults appear in the error dynamics. Consider that
x(k) € (p(k), H(k)) = {(p(k), H(k)) @ (ps(k),0)} is the uncertain state of the descrip-
tor system (4.1) at time step k, where p;(k) € R"* is the center of the zonotope only
affected by faults and p;(0) = 0 at time step k = 0. We recursively provide a zonotope

that bounds the uncertain state z(k + 1) in the following theorem.

Theorem 4.1 (State bounding zonotope decomposition). Given the descriptor sys-
tem (4.1), w(k) € (0,1I,) and v(k) € (0,1,,), Vk € Nand z(k) € (p(k),H(k)) =
{(p(k), H(k)) @ (ps(k),0)}, Vk € N. The uncertain state x(k + 1) is bounded by the zonotope
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in the decomposition form: x(k-+1) € (p(k+1), H(k+1)) = {(p(k+1), H(k+1)) @ (ps(k+
1),0)} where p(k + 1) and H(k + 1) are defined in (4.2) and

p(k+1) = (TA— GC)ps(k) + TFf (k). (4.6)

Proof. From (k) € (p(k), H(k)) = {(p(k), H(k)) ® (p;(k),0)}, we know that p(k) =
p(k) + ps(k) and e(k) = z(k) — p(k) € (ps(k), H(k)). Then, we have z(k + 1) = é(k +
1) + e(k + 1). Considering w(k) € (0, I, ), v(k) € (0,1,,), Vk € Nand e(k + 1) in (4.5),

we can derive that

w(k+1) € (p(k+1), H(k+ 1)) = {(p(k + 1), H(k + 1)) @ (ps(k +1),0)}
= (p(k +1),0) & (TA— GC)(ps(k), H)) & (T Dy (0, I,))
S5 TF(f(k), 0> S5 (_GDU<O7I’VZU>) @ (_ND’U<O7I’VLU>) :

By applying properties in (1.9), we thus obtain p(k + 1) and H(k + 1) defined as
in (4.2) and p¢(k + 1) as in (4.6). O

From Theorem 4.1, it can be seen that the uncertain state z(k) of the descriptor
system (4.1) is bounded in the zonotope {(p(k), H(k)) @ (ps(k),0)} and (p(k), H (k))
is only affected by state disturbances and measurement noise while (p¢(k),0) is only
affected by additive actuator faults. Besides, with z(k) € (p(k), H(k)) = {(p(k), H(k))®
(pf(k),0)}, v(k) € (0,1y,) and y(k) in (4.1b), we define the zonotopic FD observer
r(k) € (pr(k), H,(k)) in the following decomposition form:

pr(k) = Cpy(k), (4.7a)
Hy(k) = [Cﬁ(k), Dv} , (4.7b)

from which the effects of occurred faults are characterized at the center of the zonotopic

FD observer while uncertainties are propagated in the zonotope segment matrix.

4.1.2 Observer Gain Design considering H_ Fault Sensitivity

We now present the LMI results that allow achieving robustness against bounded
uncertainties and sensitivity to faults for descriptor system (4.1). From the analysis

in (4.7), we formulate the robustness condition by minimizing the size of the zonotope
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(pr(k), Hy(k)). We use the W-radius to measure the size of the zonotope. From (4.7b),
to minimize the size of (p,.(k), H,(k)) is equivalent to minimize the size of (p(k), H (k)).
Besides, we derive the #_ fault sensitivity condition for the center p, (k) as presented
in (4.7a).

Robustness Condition

According to Definition 1.9, with a matrix W € S’;IO, we recall the W-radius of the
zonotope (p(k), H(k)) as

Ly (k) = max (4.8)

zeBh

Considering uncertainties (state estimation error, disturbances and noise) are prop-
agated and bounded in the zonotope (p(k), H(k)), to reduce the effects of uncertainties,
the size of this zonotope should be minimized. Based on Section 2.1.1, we implement

the result of Theorem 2.3 to find the gain of zonotopic observer.

Proposition 4.1. Given the descriptor system (4.1), the zonotope (p(k), H(k)), Vk € N and
its W-radius in (4.8), two scalars v € (0,1) and € > 0. If there exists a matrix W € S, such

that a minimization criterion is defined as

bw(k+1) < vlw(k)+e, Yk €N, (4.9)
then the W-radius is ultimately bounded by tyw (c0) < <.
Proof. The proof can be found in Theorem 2.3 and omitted here. O

Based on (4.9), we now formulate the robustness condition of the zonotopic FD

observer.

Theorem 4.2 (Robustness condition). Given the descriptor system (4.1), matrices T €
R™=>"= and N € R"*™ satisfying (2.42), two scalars v € (0,1) and € > 0. If there ex-

ist matrices W € SU, Y € R™*™, and diagonal matrices I' € ST, T € Sl and £2 € S,
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such that

tr(I) + tr(7) + tr(£2) < e,

[ YW * * * x|
0 r * * *
0 T * * | =0,
0 0 0 n *
\WTA-YC WTD, YD, WND, W|

(4.10a)

(4.10b)

then the dynamics of H (k) in (4.2b) is stable and the W-radius minimization criterion in (4.9)

holds.

Proof. As ly (k) in (4.8), we reformulate (4.9) as follows:

2 2

max
ZeB(h+nw +2ny)

27W ZGBh 27W

Set = = [27,b],b7,b7

B(tnwt2m) e obtain a sufficient condition

]T

N 2 R 2
ke +1 H _ HH/C*H —e<0.
RV N E(OF N

)

By setting Y = W@ and recalling H(k + 1) in (4.2b), we denote

R=[WTA-YC, WI'D,, YD,, WND,].

Then, (4.11) becomes

- — T - -
H(k)z H(k)z
b b _ _
! RWIAR| ™' | —2TH AWHzZ —e < 0.
bg b2
b b

’f[(k%—l)z” < maX’yHlEI(k)ZH +e.

Based on the proof of Theorem 2.3, for any z €

(4.11)

(4.12)

(4.13)

If I', T and {2 are diagonal and positive semi-definite matrices, then we have following
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conditions:
tr(I") > b I'by, Vby € B, (4.14a)
tr(Y) > by Thy, Vby € B™, (4.14b)
tr(£2) > bs N2bz, Vb3 € B™. (4.14¢)
With (4.14), we can obtain a sufficient condition of (4.13) as
- T r_ —_
Hz H(k)z
b b _ _
"I RTwIR| ' | —ZTHTAWHz + () — b by
bg b2
b3 b3
+ tr(T) — by Thy + tr(£2) — by 2b3 — e < 0.
If (4.10a) is satisfied, then from the above condition we obtain
- —_ T — —_ - —_
H(k)z YW 0 0 0 H(k)z
b I 0 0 b
! ~RTW'R ol >o
bo 07T 0 ba
b3 0 0 b3
From the above inequality, a sufficient condition can be obtained
W 0 0 0]
I 0 0 Teor—1 L\ =
— R W R >0, VH(k)z,Vb1,Vba, Vb3,
07 0
0 0 0 2
from which, by applying the Schur complement, we thus obtain (4.10b). O

‘H_ Fault Sensitivity Condition

With p,.(k) in (4.7a) with the propagation of p(k) in (4.6), the H_ performance index 3
between the signals p, (k) and f (k) satisfies
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S pe(0) oo (k) = 875 F (k)T f (k). (4.15)
k=0 k=0

Based on the generalised KYP lemma (see Lemma 1.6), a relaxation of (4.15) is given

in the following lemma.

Lemma 4.1. Consider the fault frequency contents § € © with © defined in Table 1.1, the
dynamics of py(k) in (4.6) and suppose (T'A— GC) to be Schur. If there exist matrices P € S™*
and Q € SL5, and a scalar 3 > 0 such that

T

TA-GC TF| _[TrA-GCc TF
I, 0 I, 0
. (4.16)
¢ ol [, o]fc o
<0,
0 I, 0 Bl |0 I,

where = is chosen as in Table 1.1 with respect to § € O, then the H_ performance index (3
between the signals p, (k) and f (k) satisfies (4.15).

Proof. Without loss of generality, let us consider V6 € © in the middle-frequency do-

main. Recall §, = % and from Table 1.1, II is chosen as

—P ejecQ
e P —2cos(0,)Q]

By pre-multiplying [p}—, fT] and post-multiplying its transpose to both sides
of (4.16), we obtain a sufficient condition
Py (k)" Ppy(k) = py(k +1) " Pps(k +1) = pp(k) "pp(k) + 52 f (k)" f(k)

' (4.17)
+He (ps(k+ )7 Qps(k)) —ps(k) "2 cos(6.,)Qp; (k) < 0.

Since the term He (pf(k + 1) " e/%Qpy(k)) —ps(k) "2 cos(0,,)Qpy (k) is a number, we
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have that

He (pr(k+1)Te"Qpr(k)) = ps (k) 2c05(0,)Qps (k)

= tr (Q (He <€jacpf(k)l?f(k + 1)T) —2 COS(gw)pf(k)pf(k)T)> :

Therefore, with p;(0) = 0 and ps(co0) = 0, we sum (4.17) from k = 0 to oo obtaining

=S o)) Tpelk) + 823 £(R)T £ (k) + tr(QS) <0,
k=0 k=0

where S = 37 (He (e/%ps(k)ps(k+ 1)) — 2cos(0w)pys(k)ps(k)"). Based on the re-
sult of [55, Theorem 4] and considering the frequency range 6 € [01, 6] of occurred

faults, with (4.6), we assume that the following condition holds:
eI Z (pf(k +1) — ejelpf(k)) (pf(k +1)— ejerf(k)) <0, (4.18)
k=0

with 6,, = 2% If (4.18) holds, then we have tr(QS) > 0 and — 332, p- (k) 'pr (k) +
B2 f(k)T f(k) < 0 that implies (4.15).

Furthermore, following the above proof, by choosing 6; = —6; and 6, = 6, for the
low-frequency case or ¢ = —0}, and 6> = 2w — 0}, for the high-frequency case, we can
obtain that (4.15) is satisfied. O

Based on the result in Lemma 4.1, we then propose the H_ fault sensitivity condi-

tion for designing the observer gain in the following theorem.

Theorem 4.3 (H_ fault sensitivity condition). Given the zonotope (p.(k), H-(k)) in (4.3),
Vk € N with the fault f(k) in a finite-frequency domain 6, < 6 < 6, a scalar o, L € R7*"=,
and T € R"™*" gnd N € R"*™ satisfying (4.28). If there exist matrices W € S%

-07
Y eRW> ™ PecS"and(Q € S%, and a scalar 3 > 0 such that

Dy * *
aF "TTWT + LWTA—-LYC * * =0, (4.19)
aWT +e%Q+WTA-YC W'LT+WTF P+W+WT
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with @y = CTC — P+ 2cos(0,)Q + He (aWTA — aY C), then the zonotopic FD observer
in (4.3) guarantees the H_ performance in (4.15).

Proof. For 6; < 6 < 65 in any finite-frequency domain, from (4.16), we derive

b, By
<0, (4.20)
b3 By
where
B =P —2c0s(0,)Q —C'C—(TA—-GC)'P(TA—-GC)
+ He ((TA — G’C’)TejeQ) ,

by = e QTF — (TA—-GC)"PTF,

&3 = (TF)"eQ — (TF)"P(TA - GO),

&, = *I, — (TF)" PTF.

_ TC-—P+2 w
Set & — c'c + 2 cos(0,)Q 0

Q
,Qr = and Ay = [TA—-GC, TF].
0 )0 = & amaas - |
Then, (4.20) is equivalent to
T _
] *
0. T
e’ Qf P

I,
Ay

I,
Ay

= 0.

By using the Finsler’s lemma to above inequality, we obtain

¢ - +He(RU) -0 (4.21)
e .
i6c)T ’
e’ Q)
where U = [Ay, I,) and R € R(2"%+9*ns is an arbitrary matrix (called multiplier).

Therefore, with given ov and L € R?*", we define a structure of the multiplier as R =
[%ﬁ//} . By substituting R in (4.21), we thus obtain (4.19). O

Remark 4.1. From (4.21), we can see that the multiplier R is chosen arbitrarily. The
defined structures of R are based on parameters a and L that can be tuned to find

feasible solutions of (4.19).
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Optimization Problem Setup

The objective of designing the FD observer gain is to minimize the effects of un-
certainties and maximize the sensitivity to occurred faults. On the one hand, for

given v € (0,1) and € > 0, we have the ultimate bound of the IW-radius /1 (c0) < 1=

2
that corresponds to an ellipsoidal set. To minimize the size of this set, we can maximize

a measure of the matrix W, for instance we choose to maximize tr(7/). On the other
hand, we can maximize the H_ fault sensitivity index 8. In general, given v € (0,1),
e>0,a L eR>, T ecR" " and N € R"*" satisfying (4.28), and two prioritiza-
tion weights A\, and )y, the optimization problem for designing the FD observer gain

is expressed as follows:

imize A\t A2 4.22
maximize (W) + Ap 7, (4.22)

P?Q7ﬁ2

subject to (4.10b), (4.10a) and (4.19).

Then, the optimal solution of (4.22) gives the optimal FD observer gain G = W'Y

Remark 4.2. The weights A, and \; are set for obtaining a trade-off between robust-
ness and fault sensitivity conditions. For instance, the fault sensitivity objective can be

enhanced by choosing Ay > A,.

4.1.3 Zonotopic FD Algorithm

From the output equation (4.1b), we have 0 = y(k)—Cxz(k)—D,v(k). Hence, if f(k) = 0,
we know 0 € (p,(k), H,(k)), which can be used to determine the FD alarm x. The logics

of the determination of x(k), Vk € N is formulated as follows:

o (6) = 0  if0 e (p.(k), H,) s

1 if0 ¢ (p(k), Hr)

where x = 0 means that no fault is detected and xy = 1 means that a fault is detected.

In general, the robust FD strategy is summarised in Algorithm 4.1.
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Algorithm 4.1 Zonotopic FD for Descriptor Systems
1: Given the descriptor system (4.1), v € (0,1), € > 0, o, L, 2(0) € (p(0), H(0)) and
suppose the faults in a finite-frequency domain 6 € ©;
Obtain a pair of 7"and N satisfying (2.42);
Solve the optimization problem (4.22) to obtain G = W'Y’
while £ > 0 do
Compute the state zonotope & (k) € (p(k), H(k)) using the recursive form of (4.2);

Compute the zonotopic FD observer (p,(k), H,(k)) using (4.3);
Determine the FD alarm x/(k) using the logics in (4.23).
8: end while

N

4.1.4 Case Study: the Chemical Mixing System

Consider the chemical mixing system in [174]. By using the Euler discretization method
with the sampling time ¢, = 0.1s, we obtain a discrete-time descriptor model of the

chemical mixing system as in (4.1) with the following matrices

1 0 0 o] [0.9625 0.0067 0 0 |
0000 0  -01 0 0
o A= ,
0010 0.03 00533 095 —0.004
0000 0 01 0 -0l
001 0 0.005 0 0 0
01 0 0 0005 0 0
B— Dy, =
0 0.002 0 0 0005 0
0.1 0 0 0 0.005
01 0 0 0.005 0 0
c=10o 01 0l.Do=| 0 0005 o0 |,
0 0 0 0 0.005

and F = 3B. The initial state (0) = [0.5,0,0.5,0]" is assumed to be bounded by the
zonotope z(0) € (p(0), H(0)), where cgy
set as u = 4sin(0.3k) + 5, Vk € N. For the reduction operator |, (-), ¢ = 20 and W is

zo and Hy = 0.00114. The input signal u is

chosen as the optimal solution of (4.22). Since the rank condition (2.41) is satisfied, we
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Figure 4.2: FD alarm result.

choose one solution as follows:

! 1) [0 0]

01 0 1 1 0 0
T: 7N:

01 05 1 0 05 0

01 0 1 0 0 1

Assume that the step fault signal f(k) = [0.2,0.2] ", k > 50 otherwise f(k) = 0 in
the finite-frequency domain |#| < 0.1. We choose v = 0.7, e =1,a = 0.3, L = 10F T,
Ar = land Ay = 10. By solving the optimization problem (4.22), we thus obtain the

optimal FD observer gain G as

12194 121.2034 —3.7687]
_0.7457 —6.0439  0.0837
0.0793  1.6789  —0.0904
—0.2943 19.9514 —1.6032

and § = 0.0045 and tr(W) = 21034.9. By applying Algorithm 4.1, we obtain the FD
alarm result as shown in Figure 4.1.4. The assumed actuator faults can be detected from
time k = 51.

To compare the performance of the optimization problem with different selections



100 Chapter 4 : Set-based Fault Detection and Isolation for Descriptor Systems

Table 4.1: Comparison of the objectives in different scenarios.

Weights Robustness tr(W) Fault sensitivity 3
Scenariol A, =1land Ay =10 21034.9 0.0045
Scenario2 A, =10and A\; =1 12348.9 0.0031
Scenario3 A, =1land A\ =1 12348.9 0.0033
Scenario4 A, =land Ay =0 12348.7 0.0032

of weights ), and )\, we have carried out the simulations and the comparison results
are presented in Table 4.1 to the trade-off between the robustness against uncertainties
and the sensitivity to faults. In order to obtain a better H_ fault sensitivity perfor-
mance, we can set Ay > A, in Scenario 1. In this case, the H_ fault sensitivity index /3
increases and the robustness objective tr(1V) also increases compared to the other sce-
narios. From Scenario 2-3, with the same Ay = 1, tr(W) reaches a locally stationary
value because the fault sensitivity LMI depends on the parameters o and L, which
subsequently leads to a suboptimal solution of the optimization problem (4.22). The

similar suboptimal solution can also be found in Scenario 4.

In order to compare the performance of the FD observer gain, a time-varying ob-
server gain denoted by G(k) for state estimation is considered as presented in Sec-
tion 2.1.2, where the objective is only to minimize the effects of bounded uncertainties
by reducing the size of the uncertain state zonotope. The comparison result of the gen-
erated residual bounds with two observer gains is shown in Figure 4.3. The residual
bounds (k) € [r;(k),7;(k)] fori = 1,...,n, and Vk € N are computed by using the
interval hull of the zonotope (see Definition 1.7) by

ﬂ(k) = pr,i(k) - TS(Hr(k))i,h
T(k) = pr,i(k) + TS(Hr(k))i,i‘

<

From Figure 4.3, we can see that the residual bounds with G are more sensitive
to the fault than the others and staying far away from the coordinate origin. Since
the considered uncertainty sets are centered and the coordinate origin is used in the

decision-making of the FD module, the proposed method is more effective.
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Figure 4.3: Generated residual bounds.

4.2 Robust FDI based on Zonotopic UIOs for LTV Descriptor

Systems

In this section, we propose a robust FDI based on zonotopic UIOs for linear time-
varying (LTV) descriptor systems. The FD observer gain is designed based on a new
defined fault sensitivity criterion. Consider the discrete-time LTV descriptor systems

with additive actuator faults as

Elk+1)a(k + 1) = A(k)z(k) + B(k)u(k) + Dw(k)w(k) + F(k) f(k), (4.24a)
y(k) = C(k)z(k) + Dy(k)v(k), (4.24b)
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where x € R™, v € R™ and y € R"™ denote the state, the known input and the
output vectors, respectively. w € R", v € R" denote the state disturbance vec-
tor and the measurement noise vector. f € R™ denotes the normalized additive
fault vector. A(k) € R™*™, B(k) € R™*™, C(k) € R"™*", D, (k) € R'*"v,
D,(k) € R™*"™ and F(k) € R"™*™, Vk € N are known time-varying system matri-
ces. Besides, E(k) € R"**"= satisfies rank(E(k)) < ny, Yk € N. In particular, when
rank(E(k)) = ng, (4.24) is equivalent to a dynamical system.

Following the basic FDI framework in [23, Chapter 6.2] and [30, Chapter 3.5], the
actuator fault f is modeled in an additive form with the input u. To develop a robust

FDI strategy, the fault vector f(k), Vk € N can be rewritten in an element-wise form as

Fk) = [fu(k), ..., fi(k), ..., fm(K)] ", Vk €N, (4.25)

where the element f;(k) with i = 1,...,m in the fault vector f(k) corresponds to the

i-th actuator fault at time step k. Then, the descriptor system (4.24) can be rewritten as

E(k+ Da(k+1) = A(k)z(k) + B(k)u(k) + Dy (k)w(k)
+ Fi(k)fi(k) + Fi(k) fi(k), (4.262)
y(k) = C(k)x(k) + Dy(k)v(k), (4.26b)

where Fj(k) denotes the corresponding fault magnitude matrix on the i-th actuator,
fi(k) = f(k)\ fi(k) is the fault vector f(k) excluding the i-th element and F;(k) =
F(k) \ Fi(k) is the matrix obtained by removing i-th column from the fault magnitude
matrix F'(k) at time step k.

Assumption 4.1. Matrices E(k) and C (k) satisfy the following rank condition:

rank [E(k)] =ng, VkeN. (4.27)
C(k)

Thus, from the condition (4.27), there always exist two time-varying matrices
T (k) € R™*"= and N (k) € R™*™ such that

T(k)E(k) + N(k)C(k) = I, Vk € N. (4.28)

Assumption 4.2. The initial state vector is assumed to be bounded in the initial zonotope
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z(0) € X(0) = (p(0), H(0)) and the system disturbances and measurement noise are assumed

to be unknown but bounded by the centered zonotopes:
w(k) e W=(0,1,,), v(k) € V=(0,1,,), Vk € N. (4.29)

Assumption 4.3. The normalized fault vector f(k) is assumed to be unknown but bounded by
the centered zonotope f € F = (0, I,,), Vk € N and its magnitude is given by the distribution
matrix F (k).

The uncertain states are estimated by a zonotope considering that all the uncertain-
ties are also bounded by zonotopes. Based on a recursive procedure, estimation errors
and uncertainties are also propagated using set operations. We would like to design a
zonotopic UIO of the descriptor LTV system (4.24) and (4.26) to implement robust FDIL.

The objectives for the zonotopic UIO design are summarized as follows:

(i) Robust FD: For the LTV descriptor system (4.24), a zonotopic UIO with an ob-
server gain for robust FD is designed to minimize the effects of bounded uncer-

tainties and meanwhile to maximize the fault sensitivity on actuator faults.

(ii) Robust FI: For the LTV descriptor system (4.24) in the representation of (4.26),
a bank of zonotopic UIOs for robust FI are designed. The observer gain of the
i-th zonotopic UIO is designed to remove the effect of the corresponding actuator
fault f;, to maximize the fault sensitivity on the remaining faults fi, and mean-

while to minimize the effects of bounded uncertainties.

421 Zonotopic UIO structure of LTV Descriptor Systems

Considering Assumption 4.1, we can always find a pair of matrices T'(k + 1) € R"=*"=
and N(k + 1) € R"**™ such that (4.28) holds at the time step k£ + 1, Vk € N. From the

system (4.24), the descriptor dynamics can be transformed into
z(k+1)=T(k+1)A(k)x(k) + T(k + 1)B(k)u(k)

+ T(k + 1) Dy (k)w(k) + T(k + 1) F (k) f (k) (4.30)
+ N(k+ 1)y(k +1) = N(k + 1)Dy(k + Dok + 1).
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According to [169, 22, 44], we consider a basic UIO structure as

z(k+1) = M(k)z(k) + K(k)u(k) + G(k)y(k), (4.31a)
z(k) = z(k) + N(k)y(k), (4.31b)
(k) = C(R)E(k), (4.31¢)

where z € R"#, & € R™ and ¢ € R™ denote vectors of the observer state, the estimated
state and output. Besides, M (k) € R"=*"=, K (k) € R"=*" N(k) € R"*"™ and G (k) €
R"=*™y are time-varying matrices to be designed. In particular, G(k) is the time-varying
observer gain of the UIO (4.31).

Let us define the state estimation error as e(k) = z(k) — (k). From (4.31b), we have
e(k) = z(k) — (k) = z(k) — 2(k) — N(k)y(k). From (4.31) at time step k + 1, we can
derive

e(k+1)=xk+1)—2(k+1)
=z(k+1)—2(k+1)—NEk+Dy(k+1).

By substituting z(k + 1) by (4.30) and introducing e(k) in the above equation, we
obtain the state estimation error dynamics as
(ks +1) = M(k)e(k) + (T(k + 1) A(k) = G(R)C(k) — M(k) ) (k)
+ (T +1)B(k) = K (k) )u(k) + M(K)N (k)y(k)
+ T(k + 1) Dy (k)w(k) + T(k + 1)F(k) £ (k)
— G(k)Dy(R)v(k) = N(k + 1) Dy (k + Lok + 1).

(4.32)

We first define recursively the zonotopic UIO of the descriptor LTV system (4.24).
In this case, the fault vector f(k) is considered as the unknown input. For decoupling
the unknown input, it is desired that matrices E(k), C(k) and D, = F'(k) satisfy the
condition in (2.2), Vk € N. Therefore, there always exist two time-varying matrices
T(k) € R">*™ and N (k) € R™*" such that (4.28) and T'(k)F' (k) = 0, Vk € N. Suppose
that the state vector (k) of the descriptor LTV system (4.24) satisfies the inclusion
x(k) € X(k) = (p(k),H(k)) at time step k£ € N, which also satisfies the initial state
vector z(0) € (p(0), H(0)) at time step k = 0.
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Theorem 4.4 (Zonotopic UlIO structure of LTV descriptor systems). Consider the ad-
missible LTV descriptor system (4.24) and x(k) € X(k) = (p(k),H(k)) at time step
k € N. The zonotopic UIO of the descriptor system (4.24) can be recursively defined by
z(k+1)e X(k+1) = (p(k+1),H(k+ 1)), where

pk+1) =(T(k+1)A(k)— G(k)C(k))p(k)+ T(k+ 1)B(k)u(k)
+G(k)y(k) + N(k+ 1y(k+ 1), (4.33)
H(k+1) =[R(k), T(k+1)Dy(k),—G(k)Dy(k),—N(k + 1)D,(k + 1)],

with R(k) = (T(k + 1) A(k) — G(k)C(k)) H (k) and (k) =lqw (H(k)).

Proof. Consider z(k) € (p(k), H(k)) at time step k € N and (p(k), H(k))
holds. By setting @(k) = p(k), we have e(k) = z(k) — (k) € (0,H(k)
Therefore, at time step k + 1, wehave z(k + 1) = e(k + 1) + (k + 1).

From e(k + 1) in (4.32), let us choose

M(k) = T(k + 1)A(k) — G(k)C(k), (4.34a)
(k+1)B(k). (4.34b)

=

=
]
=

Taking into account f = 0, (4.32) becomes

e(k +1) = (T(k + 1)A(k) — G(k)C(k)) e(k)
+(T(k+1)A(k) = G(K)C (k) N(k)y (k)
+ T'(k + 1) Dy (k)w(k) — G(k) Dy (k)v(k)

— N(k+1)Dy(k+1)v(k+1).

From (4.31), we can derive

ik +1) = (T(k + 1) Ak) — G(R)C(F)) p(k)
+ Tk + ) B(kYu(k) + (G(k) = (T(k + 1)A(k) = G(K)C(k)) N(k) )y(k)

+ Nk + 1)y(k+1).

Considering e(k) € (0, H(k)), w(k) €e W = (0, 1,,) and v(k),v(k+1) € V = (0, 1I,,),
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fromz(k+1)=e(k+ 1)+ 2(k+ 1), we derive

z(k+1) € (p(k+1),H(k+1))
= ((T(k+1)A(k) — G(k)C(k
O(T(k+1)A(k) — G(k)C
@ (T'(k +1)Dy(k)(0, In,,)) ® (=G(k )D ( )0, In,))
@ (=N(k+1)Dy(k+1)(0,1,,)) ® (&(k + 1),0).

Thus, using the properties in (1.9), we obtain p(k + 1) and H(k + 1) asin (4.33). O

Remark 4.3. Note that the zonotope X' (k) = (p(k), H(k)) is used for bounding z(k),
Vk € N while the estimated state (k) in (4.31) only determines the nominal value and
the estimation error is omitted in the formulation of (4.31). According to the proof of
Theorem 4.4, from z(k) € (p(k), H(k)), we know p(k) = &(k) and the state estimation
error e(k) = z(k) — (k) € (0, H(k)).

Remark 4.4. Considering Assumption 4.2, from the output equation (4.24b), for z(k) €
X (k) = (p(k), H(k)), Vk € N, we can derive the output zonotope Y(k) = (py(k), Hy(k)),

where

y(k) € (py(k), Hy(K))
= (C(k){p(k), H(K))) © (Dy(k)(0, In,))
= (C(k)p(k), [C(R)H (K), Dy(k)])-

Since p(k) = z(k), from the output zonotope Y (k) = (py(k), H,(k)), we also know
y(k) = py(k) = C(k)p(k) and the output estimation error e(k) = y(k) — g(k) €

R(k) =y(k) © (=Y (K)) . (4.35)

We present the explicit computational result of this residual zonotope in the follow-
ing.

Corollary 4.1. Consider the admissible LTV descriptor system (4.24) and x(k) € X(k) =
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(p(k), H(k)), Yk € N. The residual zonotope is given by R(k) = (p,(k), H,(k)), where

pr(k)
H,(k)

(k) = C(k)p(k),

Y (4.36)
—C()H k), —D.(k)]-

Proof. Based on Theorem 4.4, z(k) € (p(k), H(k)) can be computed recursively, Vk € N.
According to the definition of R(k), it follows

R(k) = (pr(K), H:(K))
=y(k) @ (=C(k)p(k), [=C(k)H (k), —Dy(K)]).

By applying the properties in (1.9), we thus obtain (4.36). O

The output equation (4.24b) can be rewritten as 0 = y(k) — C(k)x(k) — Dy(k)v(k).
Taking into account that v(k) € (0, I,,), if no fault occurred until time step k in the
zonotope z(k) € X (k) = (p(k), H(k)), then the following condition holds:

0 e R(k). (4.37)

To analyze the effects of occurred actuator faults in the defined state or residual
zonotope above, we consider the normalized fault vector f(k) € F, Vk € N, i.e,, the
magnitude of the fault vector f(k) is stored in the matrix F'(k). Therefore, we present
the decomposed zonotopic UlO structure for the descriptor system in the presence of
faults considering f(k) € F, Vk € N in the following theorem.

Theorem 4.5 (Zonotopic UIO decomposition of LTV descriptor systems). Consider the
admissible LTV descriptor system (4.24) with f(k) € F and x(k) € {(pe(k), He(k)) @
(p¢(k), H¢(K))}, VE € N. The zonotopic UIO affected by actuator faults can be recursively de-
fined in the decomposition form as x(k+1) € {(pe(k+1), He(k+1))®(ps(k+1), Hp(k+1))},

where

pe(k+1) = (T(k+1)A(k) — G(k)C (k) pe(k) + T(k + 1)B(k)u(k)
+G(k)y(k) + N(k + 1)y(k + 1),

He(k+1) = |Re(k), T(k+1)Dy(k), —G(k)Dy(k), —N(k+1)Dy(k+1)|,
(4.38)



108 Chapter 4 : Set-based Fault Detection and Isolation for Descriptor Systems

and

{pf(k +1) = (T(k+1)A(k) - G(k)C(k)) ps(k), (4.39)

Hp(k+1) = [(T(k+1)A(k) — G(k)C(k)) Hy(k), T(k+1)F(k)|,

with Re(k) = (T(k+1)A(k) = G(k)C(k)) He(k), He(k) =low (He(k)), Hy(k) =lqw
(Hy(k)), Ho(k 4 1) € Rm=*ne, and Hy(k + 1) € Rrexns,

Proof. Consider w(k) € {(pe(k), He(k)) @ (ps(k),Hs(k)} C {(pe(k), He(k)) @
(pr(k), Hy(k)} = ((pe(k) +ps(k)), [He(k), Hy(k)]). By setting (k) = pe(k) + py(k),
we have e(k) = z(k) — &(k) € (0, [Ho(k), H(k)]).

Let us choose the matrices M (k) and K (k) as in (4.34). With w(k) € W = (0, 1,,,,),
v(k),v(k+1) €V =(0,1,,) and f(k) € F = (0,1,), we derive z(k + 1) = e(k+ 1) +
Z(k + 1) to obtain

z(k+1) € {{pe(k +1), He(k + 1)) & (ps(k + 1), H(k + 1))}
= ((T(k + DAK) = GRICH)) (pelk) + py(k), [Holk), Hy(k)]))
& (T(k + 1) B(R)u(k),0) @ (G(k)y(k), 0) & (N (k + D)y(k +1),0)
& (T(k + 1) Du(k)(0, In,)) & (~G(K)Dy(k)(0, 1))
& (=N (k + 1) Dy(k + 10, I, )) & (T(k + DF(k) (0, L))

Then, the zonotope (p.(k + 1), He(k + 1)) is only affected by uncertainties while the
zonotope (ps(k + 1), Hf(k + 1)) is only affected by faults if they are chosen as in (4.38)
and (4.39). O

Corollary 4.2. Consider the admissible LTV descriptor system (4.24) with f(k) € F and
(k) € {(pe(k),He(k)) @ (ps(k),Hs(k))}, Yk € N. The residual zonotope R(k) =
(pr(k), Hy(k)) can be decomposed as R(k) = {(pre(k), Hye(k)) ® (prs(k), Hy5(k))}, where

{pre(k) = y(k) = C(k)pe(k), (4.40)

= |[-c( D.(k)]
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and

(4.41)

Proof. The proof is straightforward based on the zonotope properties and therefore is
omitted here. O

From Theorem 4.5 and Corollary 4.2, we have divided the effects of system uncer-
tainties and actuator faults. Specifically, the effects of uncertainties (disturbances and
noise) are propagated to the zonotope (p.(k + 1), He(k + 1)) while the effects of actu-
ator faults are constrained in the zonotope (ps(k + 1), Hf(k + 1)). Hence, for the FD
observer gain G design, we use the decomposed zonotopic UIO structure defined in

Theorem 4.5 to discuss robustness to uncertainties and sensitivity to actuator faults.

4.2.2 Observer Gain Designs
Optimal Kalman Gain for LTV Descriptor Systems

As discussed in Theorem 4.5, we can characterize the effects of uncertainties and faults
with the zonotopes (p.(k + 1), Ho(k + 1)) and (ps(k + 1), H¢(k + 1)) separately. Hence,
the problem of designing an FD observer gain to be robust against uncertainties and
to be sensitive to faults is transformed to minimizing or maximizing the size of these
zonotopes. Following the result in Section 2.1.2, the size of a zonotope can be measured
by the Fyy-radius. For state estimation, the objective of the observer gain design is
only to minimize the effects of uncertainties. According to Theorem 2.6, the optimal
Kalman observer gain for the admissible LTV descriptor system (4.24) in the fault-free

case (f = 0) can be computed in the following corollary.

Corollary 4.3 (Optimal Kalman gain for LTV descriptor systems). Given the zonotopic
UIO structure in (4.33) of the admissible LTV descriptor system (4.24) with f = 0 and a

matrix W € SU%, the optimal time-varying Kalman gain G(k) = arg ming, J,, where J; =
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|H(k+1) H%W is computed by the following procedure:

G(k) = T(k+ 1) A(R)K (k), (4.422)
K(k) = L(k)S(k)~1, (4.42b)
L(k) = P(k)C(k)T, (4.42¢)
S(k) = C(k)P(k)C (k)" + Dy(k)Dy(k)", (4.42d)

Proof. For x(k+1) € (p(k+ 1), H(k + 1)) in (4.33), the criterion
Jo = | H(k + 1)l = tr(WP(k + 1)

with P(k + 1) = H(k + 1)(H(k + 1))T is convex with respect to G(k). The optimal

Kalman gain G (k) satisfies

d
dG (k)

tr (WP(k + 1)) = 0.

Hence, we compute derivative of J; with respect to G(k). Selecting L(k) and S(k)

as in (4.42), we have

d
dG(k)

tr (WG(k)S(k)G(k)T) - fr (WT(k n 1)A(k)L(k)G(k)T) ~0.

239G (k)

From the above equation, we obtain the optimal Kalman gain G(k) as in (4.42). [

FD Observer Gain

To design an FD observer gain, in addition to guarantee robustness to uncertainties, we
would like to maximize the fault sensitivity on actuator faults, which can be realized
by maximizing the Fyy-radius of the zonotope (p¢(k + 1), H¢(k + 1)). Assume that
there exist matrices 7'(k + 1), N(k + 1) and G(k) such that the zonotopic UIO in (4.33)
is stable. The objectives of the FD observer gain G (k) can be implemented by solving
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the following optimization problem:
miniGmizeHH (k+1) ||fp7w1 and simultaneously maxiGmizeHH r(k+1) H%,Ww (4.43)

with matrices Wy, W3 € ST,

To implement the optimization problem above, we define a performance criterion

as

1Hy(k + Dl Ew,
1He(k + 1)1,

Jo/f = (4.44)

Therefore, the optimization problem (4.43) is converted to maximize J, ;. In order
to find the solution of the FD observer gain, we first reformulate || H¢(k + 1) ”%’7W1 and
||He(k+1) H%’WQ using the properties in (1.9) as follows. From Definition 1.8, for || H¢(k+

1)||%y,, we have

V(4 1), =t ((Ep (4 1) WA H (e + 1)) = tr (Wi H( + 1) (B (k + 1))
= vec (H(k+ 1)) vec (Wi H(k + 1))
=vec (Hy(k+1))" (I, ® W1) vec (Hy(k + 1)) ,

and from (4.39), we have

—(C(k)Hy (k)" ® I, vec (T'(k + 1)A(k)

vec (Hf(k+1)) = [ vec(G(k)) +

f(k))] '

0 vec (T (k +1)F(k))
Selecting
0(k) = vec(G(k)),
and
S(k) = —(C(k)Hf (k)" © I, by = vec (T(k + 1) A(k)H(k)) |
0 vec (T(k + 1) F(k))
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we have

1Hy (k + D), = (Sp(R)O(K) + by (k)T (In, © W1) (Sy(k)O(k) + by (k))

_ [0(1/~c) [gf(k;), bf(k;)} (I, ® W1) [Sf(k), bf(k):| [0(1/-c)]
— 000 Qr(RO(K),
where
o(k) = [0(1’“)] |
and
Qy(k) = [Sf(k:), bf(lc)]T (In, @ W1) [sf(k), br(k)| - (4.45)

Similarly, || H.(k + 1)||% can be reformulated as

1He(k + DI, = 0(k) T Qe(k)8(K),

where
Qe(k) = |Se(k), be(k) ! (In, @ W) [Se(k), be(k;)] : (4.46)
and
(k). (k)T ® I, | [ vec (T(k + 1) A(k) Ho(k)) |
s = | TPW T ’
0 vec (T'(k 4+ 1)Dy(k))
0 | | —vec (N(k+1)D,(k+ 1))_

Then, the performance criterion J./; defined in (4.44) can be rewritten as

(4.47)
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0(k)
1
observer gain G by maximizing J,, in (4.44) is equivalent to finding 6*(k) such that

Due to change of variables (k) = [ ] and 0(k) = vec(G(k)), finding an FD

Je/ in (4.47) is maximum. Then, we provide the explicit solutions of the optimal 0* (k)

corresponding to maximum .J /¢ in the following theorem.

Theorem 4.6. Given the criterion J,;; defined in (4.47) with respect to (k) and matrices

=0

with Q¢ (k) as in (4.45) and Q. (k) as in (4.46), that is denoted by S/ = Amax (Qr(k), Qe(k)),
and the optimal 0* (k) belongs to the null space of (Qf(k) - J;*/er(k:)>, that is also the gen-

Wi, Wa € ST, the maximum J, ¢ is the maximum generalized eigenvalue of (Qf(k), Qc(k))

eralized eigenvector of (Q¢(k), Qe(k)) corresponding to its maximum generalized eigenvalue.

Proof. To find the optimal 6*(k) corresponding to the maximum J* ./f We take the
derivative of J, in (4.47) with respect to 0(k) as

cd o 2Qp(R)O(K) (8(k) T Qe(k)O(K)) — 2Qc (k)O(k) (8(k) " Qs (k)b (K))
i) " (B0 TQu(1)G(R))’

)

By setting -7~ d@ Jesy = 0, we obtain

2Q; (k)6" (k) (é*(kmeé*(k)) = 2Qu.()0" (k) (6" (k)T Q; (k)6 (k) = 0,

which can be simplified to be

/-\
&y
S~—
_‘
)
o
—
&y
S~—

From (4.47) and 6* (k) corresponding to the maximum J* /g We have
Q)" (k) = J2, ;Qu (k) (k). (4.48)

Then, (4.48) leads to a generalized eigenvalue problem with J7, =
Amax (Q(k), Qe(k)) being the maximum generalized eigenvalue and 6*(k) being the

corresponding eigenvector. Besides, from (4.48), we can also derive

(Qf(k) - Ji/er(k)) 0* (k) = 0.
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Hence, 0* (k) also belongs to the null space of (Qf(k) - J:/er(k)>. O

Based on the optimal solution §*(k), we derive the optimal FD observer gain in the

following theorem.

Theorem 4.7 (Optimal FD observer gain for LTV descriptor systems). Given the optimal

_ _ 0<(k)| - -
solution 0* (k) from Theorem 4.6 as 0* (k) = lé*ik; , 0% (k) € R=m0)X1 gnd % (k) € R, the
optimal FD observer gain G* (k) can be computed by
G*(k) = vec™? ev (k) . (4.49)
0+ (k)

Proof. By dividing 6*(k) in both sides of (4.48), we have

0* (k) 6" (k)
Qp(k) [ "R = T2 Qe(k) [ 7W) .
1 1
; 0(k) : ,
Based on the structure of §(k) = Ll we thus obtain G*(k) as in (4.49). O

4.2.3 Robust FDI using Zonotopic UIOs

To include robust FI, the idea is to design a bank of zonotopic UlIOs for identifying
the effect from each actuator fault. From (4.25), the single fault is considered as an
unknown input to be decoupled for the corresponding zonotopic UIO. The general
robust FDI scheme is presented in Figure 4.4. For the LTV descriptor system (4.24)
with m actuators, we would like to design m zonotopic UIOs. By checking the residual
zonotopes obtained by m zonotopic UIOs, the FDI alarm can be determined by the FDI

module.

From the LTV descriptor representation in (4.26), we treat f;j(k), i = 1,...,m as an
unknown input of the LTV descriptor system (4.26). With f;(k) and f;(k),i =1,...,m,
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Figure 4.4: Zonotopic UIO-based robust FDI scheme.

the descriptor dynamics can be reformulated as

z(k+1) = T;(k + 1) A(k)x(k) + Ti(k + 1) B(k)u(k) + Ni(k + 1)y(k + 1)
+ Ti(k + 1) Dy (k)w(k) — Ni(k 4+ 1)Dy(k 4+ v(k + 1) (4.50)
+Ti(k + 1) Fy(k) fi(k) + T;(k + 1) Fy (k) fi(k),

and from (4.50), state estimation error dynamics can also be reformulated as

e(k+1) = (Ty(k + 1) A(k) — G(k)C(k)) e(k)
+ (Ti(k + 1) A(k) — G(k)C(k)) Ni(k)y(k)
+ Ti(k + 1) Dy (k)w (k) — G(k)Dy(k)v(k) (4.51)
— Ni(k +1)Dy(k + 1)v(k + 1)
+ Ti(k + 1) Fy(k) fi(k) + Ti(k + 1) Fi(k) fi (k).

To remove the effect of fi(k) and preserve the effect of f;(k) in (4.39) and (4.51), a
pair of matrices T;(k + 1) € R"**™ and N;(k + 1) € R™*™ for the i-th zonotopic UIO
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also satisfies (4.28) and

’ (452&)
(4.52b)

Based on the condition (2.2), we present the condition for the existence of matrices
T;(k + 1) and N;(k + 1) satisfying (4.28) and (4.52a) in the following.

Assumption 4.4. For the LTV descriptor system (4.24), matrices E(k + 1), C(k + 1) and
F; (k) satisfy the following rank condition:

E(k+1) Fi(k)]
Ck+1) 0
T

Nz

rank

, Vk € N. (4.53)

Therefore, from the proof of Theorem 4.4, we know z(k + 1) = e(k + 1) + £(k + 1).
In (4.51), the effect of f; is removed in e(k + 1) by using the matrix T;(k + 1) with
T;(k+1)F;(k) = 0 and meanwhile the effect of f;(k) is preserved. Besides, for designing
the i-th observer gain, considering f;(k) € F; = (0, I,,—1), we replace T(k + 1) by
Ti(k + 1) and F(k) by F;(k) in (4.39). Following the design procedure of FD gain, the

optimal observer gain G (k) for robust FDI can be obtained.

After having m zonotopic UlOs, at each time step, a sequence of residual zonotopes
(pr,i(k),Hyi(k)), i = 1,...,m can be generated based on Corollary 4.1. Then, a fault
can be determined in the FDI module. The logics of the FDI module are proposed as

follows.

The logics of the FDI module:

' . The i-th actuator
0 € (pri(k), Hyi(k)) and 0 ¢ (py;(k), Hy5(k)), i #j=1,...,m
fault is detected

0€ (prilk),Hyi(k)), i=1,...,m No fault is detected

Remark 4.5. Note that we can also decouple m — 1 actuator faults as unknown inputs
by finding suitable T;(k) and NN;, Vk € N. For the remaining fault that is not decoupled,
if 0 ¢ (prs, Hr4), i =1,...,m, then it can be detected.
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Algorithm 4.2 Robust FDI based on Zonotopic UIOs
1: Given the discrete-time LTV descriptor system (4.24) with system matrices £(k+1),
A(k), B(k), C(k), Dy(k), Do(k), F(k) and 2(0) € (p(0), H(0)), w(k) € (0,1In,),
v(k) € (0,1,,), f(k) € (0,In), VE € N;

2 p(k) «— p(0), H(k) «— H(0)
3 pe(k) «— p(0), Ho(k) — H(0);
4: pf(k‘) — O,Hf(k‘) — 0;
5: fork=1:1"do
6:  Obtain the residual zonotope (p,i(k), H,;(k)) in (4.36);
7. Determine the FDI alarm by the logics of the FDI module;
8 fori=1:enddo
9: Reformulate F(k) to find F;(k) = F(k) \ F;(k);
10: Obtain matrices T;(k + 1) and N;(k + 1) for i = 1,...,m by satisfying (4.28)
and (4.52);
11: F+— F,T(k+1)«—Ty(k+1),N(k+1) +— N;(k+1);
12: Compute the zonotopes (p.(k+1), Ho(k+1)) by (4.38) and (ps(k+1), H¢(k+1))
by (4.39) for the i-th zonotopic UIO;
13: Compute the observer gain G} (k) for (4.33) following the proposed computa-
tion steps presented above;
14: Gather the system outputs y(k) and y(k + 1);
15: Update the state zonotope z(k + 1) € (p(k + 1), H(k + 1)) in (4.33);
16:  end for
17: end for

We now summarize the robust FDI strategy in Algorithm 4.2 considering a simula-
tion horizon of I'. Note that this robust FDI strategy based on zonotopic UIO can also
be applied to standard dynamical systems, that is when rank(E) = n,, Vk € N.

4.2.4 Case Studies

Numerical Example

To compare the FD observer gain obtained with the proposed approach with zonotopic

Kalman observer gain, we consider the LTV descriptor system (4.24) with

(1 0 0 0 (05 0.3sin(0.4k) 0 0| [ 0.1 ]
0100 0 0.3 0 0 1
E— L A(k) =  B= ,
0010 0 0 0.6 0 ~0.1
000 0 0 05 —05 08 1
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, Dy = 0.005I4, D, =0.0115, F = 2B,

Q

Il
o O O
o o =
o = O
= o O

and the initial state 2:(0) = [2,2,3,3.125] " is assumed to be bounded by the zono-
tope z(0) € (p(0), H(0)), where p(0) = z(0) and H(0) = 0.114. The weighting matrices
Wi and W5 for designing the FD observer gain are chosen to be identity matrices of ap-
propriate dimensions. The input signal u is set as u(k) = 2, Vk € N. For the reduction
operator |, w (), ¢ and W are set respectively as ¢ = 20 and W = I. With constant ma-
trices £ and C, by satisfying the condition (4.28), we consider one solution of constant

matrices T and N as follows:

0.5

0.5 0.5

o

]

ot
= o o O
= o o O

The simulation has been carried out in MATLAB for 100 sampling time steps. With
this example, we compute the time-varying Kalman gain G(k) (following Corollary 4.3)
and the designed FD observer gain G*(k) (following Theorem 4.7) at each time step.
Since the system has three measurement outputs, the residual zonotope (p,(k), H,(k)),
Vk € Nisin a 3-dimensional space. Therefore, the interval hull (see Definition 1.7) of the
residual zonotope is used to plot the individual residual bounds r;(k) € [ri(k),7i(k)]
for r;(k) € R™, where

ri(k) = pri(k) —rs(Hy(k))ii, i =1,...,ny,Vk €N,
7i(k) = pri(k) +rs(Hy(k))ii, i =1,...,ny,Vk € N.

<

Consider a step actuator fault f(k) = 0.3, & > 30. The comparative results of the
residuals and their lower and upper bounds are shown in Figure 4.5. From these plots,
it is shown that when no fault occurred (f(k) = 0, £ < 30), the coordinate origin is
inside all the residual bounds, which means it is also inside the residual zonotope.
Besides, the bounds with the Kalman gain G(k) are tighter than those obtained with
the FD observer gain G*(k). This is because the objective of the Kalman gain design is

to minimize the effects of uncertainties. On the other hand, when the system is affected
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Figure 4.5: Comparison of generated residuals.

by actuator fault f(k) = 0.3, £ > 30, the residual bounds obtained with G*(k) are

moved further away from the coordinate origin which means they are more sensitive

with respect to the occurred fault. This fault sensitivity will be useful when faults with

small magnitude occur.

Table 4.2 presents the minimal detectable faults of this example with two observer

gains obtained in simulation. It is shown that the observer with G* is able to detect

smaller faults when the fault sensitivity is considered. The trade-off between robust-

ness to uncertainties and sensitivity to faults is improved using G*(k).
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Table 4.2: Minimum detectable fault using optimal Kalman and FD
gains.

G(k) G*(k) Improvement
Minimal detectable fault 0.0135 0.0089 51.69%

Table 4.3: Unknown input decoupling for robust FDI strategy.

TN fi fo

ZonotopicUIO1 T71,N; x X
Zonotopic UIO2 T5, Ny x

The Chemical Mixing System

We also use the case study in Section 4.1.4 with F' = B and the initial state z(0) =
[0.5,0,0.5,0] " is assumed to be bounded by the zonotope x(0) € (p(0), H(0)), where
p(0) = z(0) and H(0) = 0.00114. The weighting matrices W; and W for designing the
FD observer gain are also chosen to be identity matrices of appropriate dimensions.
The input signal u is set as u(k) = [4sin(0.3k) + 5, 5], Vk € N. For the reduction oper-
ator Lo w (), ¢ and W are set respectively as ¢ = 20 and W = I. Taking into account
that this system has two actuators, two zonotopic UIOs are used. For implementing
robust FDI strategy, the actuator faults are considered to be unknown inputs for each

zonotopic UIO and the unknown input decoupling strategy is described in Table 4.3.

By satisfying the conditions in (4.28) and (4.52), and considering the strategy in
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Table 4.3, we have
11 1] 0 0 o0
0 1 1 1 0
T1: aN1: 5
01 05 1 0 05 0
01 0 1 0O 0 1
1 234588 0.1777 0.0032 (0 —0.1777 0]
0 23.4588 0.1777 0.0032 1 —-0.1777 O
T = , Ny =
0 23.4588 0.1777 0.0032 0 08223 0
0 23.4588 0.1777 0.0032 0 —-0.1777 1

The zonotopic UIO 1 is designed with 77 and N;. Besides, the sensitivity to the
second actuator fault is considered such that (k) = [0,0,0.02,1] . The zonotopic UIO
2 is designed with 75 and Nj. Because the effect of the second actuator fault is removed
by using the unknown input decoupling, this observer is designed to be sensitive to the

first actuator fault.

From Figure 4.6, it is shown that the coordinate origin is inside all the residual
bounds of zonotopic UIO 1 and 2, that is inside the residual zonotopes corresponding to
zonotopic UIO 1 and 2, which implies that there is no fault occurrence. From Figure 4.7,
it can be seen that for both zonotopic UIOs, the coordinate origin is not inside all the
residual bounds after 20 sampling time steps. Based on Table 4.3 and the designed FDI
strategy, the first actuator fault is detected at time step 21. Figure 4.8 shows that the
coordinate origin is always inside the residual bounds of zonotopic UIO 2. Besides,
after 20 sampling time steps the coordinate origin is not inside the residual bounds of
zonotopic UIO 1. According to the proposed FDI strategy, the second actuator fault is
detected at time step 21.
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Figure 4.6: FDI result of the chemical mixing system without faults.
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Figure 4.7: FDI result of the chemical mixing system with the first
actuator fault.
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Figure 4.8: FDI result of the chemical mixing system with the second
actuator fault.
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4.3 Summary

This chapter has presented two robust FD methods and an application of robust FI
based on zonotopic UIOs. For the two proposed FD methods, the first one based on
LMI conditions to find a constant FD observer gain, where the H_ fault sensitivity is
considered. The second FD method seeks for a time-varying FD observer gain with
minimizing a defined fault sensitivity criterion. The advantage of the first method
is that the stability of zonotopic FD observer can be guaranteed. However, for the
second robust FD method, the stability with a time-varying FD observer gain for LTV

descriptor systems deserves to be investigated as a future research.
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Figure 5.1: Set-based FE scheme.

The chapter presents a robust FE based on zonotopic Kalman filter for discrete-time
descriptor systems subject to unknown-but-bounded uncertainties and additive actua-
tor faults. The contribution of this chapter has been published in [147] and [159]. The
FE results provide not only a punctual value but also a deterministic set bounding the
propagated uncertainties. Following the set-based framework for descriptor systems

in Chapter 2.1.2, we first define the structure of the zonotopic FE filter based on fault

127
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detectability indices and matrix proposed in [59]. The zonotopic FE filter gain is for-
mulated in a parametrized form. The optimal filter gain is designed to achieve the
robustness against uncertainties and meanwhile the identification of occurred actuator

faults. Furthermore, we discuss the boundedness of the propagated zonotopic FE.

5.1 Problem Statement in FE

Consider the discrete-time LTI descriptor system with additive actuator faults as fol-

lows:

Ex(k+1) = Az(k) + Bu(k) + Dyw(k) + Ff(k), (5.1a)
y(k) = Cx(k) + Dyv(k), (5.1b)

where x € R" and u € R"* denote the system state and the known input vectors, w €
R™ and v € R™ denote the state disturbance vector and measurement noise vector,
y € R™ denotes the measurement output vector, f € RY denotes the actuator fault
vector. A € R"%*"e B ¢ R"%X (' ¢ RWw*", D € R"%X% and D, € R™*™ are the
system matrices. Besides, F' € R"**? denotes the fault distribution matrix describing
the directions of the fault vector. In terms of the descriptor system (5.1), the matrix
E € R"*"= might be singular, that is rank(E) < n,,.

For the system (5.1), we consider that Assumptions 2.1 and 2.2 hold. Besides, based
on [59], we assume that rank(C) = r and rank(F') = ¢ with ¢ < r and the system (5.1)
is C-observable. Then, matrices E and C satisfy (2.41). Thus, there always exist two
non-empty matrices 7' € R"**" (T also non-singular) and N € R"**™ that can be

obtained by Lemma 2.1.

In the following, we will design a set-based robust FE filter for the discrete-time de-
scriptor system (5.1) to estimate the actuator fault magnitude f. The FE filter is builtin a
zonotopic framework considering unknown-but-bounded disturbances and measure-
ment noise. Using this framework, robustness against uncertainties can be achieved
by minimizing the size of the zonotope bounding estimation errors, disturbances and

noise. The FE results are bounded using a zonotopic set.
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5.2 Zonotopic FE Filter for Descriptor Systems

We now propose a zonotopic FE filter for the descriptor system (5.1). By means of fault
detectability indices and matrix, we analyze and construct the FE zonotope to estimate
occurred actuator faults. Therefore, the optimal FE filter gain is computed. Besides, we

discuss boundedness of zonotopic FE.

5.2.1 Fault Detectability Indices and Matrix

Denote the fault distribution matrix F' = [F},---, F,] and the fault vector f(k) =
[f1(k),--- ,fq(k)]T, Vk € N, where F; is the i -th column of F' and f;(k) is the i-th ele-
ment of f(k) fori=1,...,q, Vk € N. We recall definitions of fault detectability indices
and matrix first introduced in [59, 70] and extended for descriptor systems in [163] as

follows.
Definition 5.1 (Fault detectability indices [163] ). The discrete-time descriptor system
(5.1) is said to have fault detectability indices p = {p1, p2, ..., pq} if

pi =min{o | C(TA)’'TF, #0,i=1,2,...}. (5.2)

and s = max {p1, p2, ..., pq} denotes the maximum of fault detectability indices.

Assumption 5.1. Without loss of generality, the discrete-time descriptor system (5.1) is as-

sumed with finite fault detectability indices.

Definition 5.2 (Fault detectability matrix [163] ). With the fault detectability indices of
the descriptor system (5.1) defined as p = {p1, p2, . . . , pq}, the fault detectability matrix
is given by

T=CV, (5.3)

with
U= [(TA)Pl—lTFl, (TAPTE,, .. (TAPTE,|. (5.4)

5.2.2 Zonotopic FE Filter

When the condition (2.41) is fulfilled, there exists matrices 7" and N satisfying (2.42).

We consider a state estimation filter for the discrete-time descriptor system (5.1) as
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{z(kz +1) = TAi(k) + TBu(k) + G(k) (y(k) — Ci(k)) 55)

() = z(k) + Ny(k),

where £ € R™ denotes the estimated state vector and z € R"™* denotes the filter state

vector.

Let us define the state estimation error e(k) = z(k) — Z(k) and the output estimation

error £(k) = y(k)—Cz(k). Then, the error dynamics of e and ¢ can be written as follows:

e(k+1) = (TA—-GE)C)elk) + TFf(k) + TDyuw(k)
—G(k)Dyv(k) — NDyv(k + 1),
e(k) = Ce(k) + Dyv(k).

In order to analyze the effects of uncertainties and faults, we split e and ¢ into two
parts: e = ey + e, and € = €5 + £, Where ey and ¢ are the errors only affected by
actuator faults (w(k) = 0 and v(k) = 0, Yk € N), and e,, and ¢,, are the errors only
affected by disturbances and noise (f(k) = 0, Vk € N).

{ef(k+ 1) = (TA—-G(k)C)es(k) + TFf(k), 56
er(k) = Cey(k),
and
ew(k+1) = (TA—-G(k)C)ey(k) + TDyw(k)
—G(k)Dyv(k) — NDyo(k +1), (5.7)

ew(k) = Ce(k) + Dyv(k),

with the following initial conditions ef(k) = 0 and e,(0) = e(0). Therefore, we
know e¢(k) =0, Vk € N.

We now analyze the effects of occurred actuator faults and uncertainties in the es-
timation errors using the fault detectability indices and matrix in Definition 5.1 and

Definition 5.2 in the following theorem.

Theorem 5.1 (FE condition). Consider the descriptor system (5.1). If there exists the gain
G(k) € R™*™ sych that
(TA-G(k)C)¥ =0, (5.8)
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then the effect of the faults on (k) can be expressed as
-
2() = CU [fi(k—p))T, . folk—p))T| +ewlh), (59)

Proof. By merging (5.6), we can derive from the time instant £ = 0 that

(k) = CO*e;(0) + COMITFF(0) + --- + COTFf(k — 1), (5.10)
k
where ®* = [[ (T'A — G,;C). According to [163, Theorem 1], we obtain
j=1
, C(TAP~'TFE;, j=pi,
COITF, = { (T4) = (5.11)
Substituting (5.11) into (5.10) yields
ep(k) = C®ker(0) + C(TAITF fi(k — p1)
4+ C(TAP'TF, f,(k — p,) (5.12)
T
= Cres(0)+CV [filk—pr), . fylk—py)] -
-
Since ef(0) = 0, (5.12) becomes cf(k) = CV |fi(k—p1), -, folk—pg)
Therefore, from e(k) = e¢(k) + €w(k), we obtain (5.9). O

From Theorem 5.1, we can see that the effects of faults and uncertainties can be
separated in (5.9). Therefore, we define the zonotopic FE filter for the descriptor sys-

tem (5.1) in the following theorem.

Theorem 5.2 (Zonotopic FE filter for descriptor systems). Given the descriptor sys-
tem (5.1) with w(k) € (0,1I,,) and v(k) € (0,1,,), Vk € N, matrices T € R"=*"s,
N e R™*™ satisfying (2.42). Consider the state bounding zonotope x,,(k — 1) € (p(k —
1),H(k—1)) C{p(k —1),H(k — 1)) with H(k — 1) =y w (H(k — 1)), the state bounding
zonotope x.,(k) € (p(k), H(k)), Vk € N is recursively defined by

p(k)=(TA-G(k—-1)C)p(k —1)+TBu(k—1)
+ Gk —1)y(k — 1)+ Ny(k), (5.13a)
H(k)=|(TA-G(k—-1)C)H(k—1), TD,, —G(k—1)D,, —ND,|. (5.13b)
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If there exist matrices G(k — 1) € R"*™ satisfying (5.8) and M € RY*"v satisfying

M = (Co)l =T, (5.14)
then the actuator faults is bounded by f(k) = [fl(k—pl), e fq(k:—,oq)}T €
(ps(k), Hs(k)), where

py(k) = My(k) — MCp(k), (5.15a)
Hy(k) = [~MCH(k), ~MD,]. (5.15b)

Proof. From the analysis of effects of occurred actuator faults and uncertainties in (5.9),

we can build state bounding zonotope and FE zonotope in the following.

(State bounding zonotope) With a filter gain G(k — 1), from (5.5), we can derive

(k)= (TA+ Gk —-1)C)&(k — 1)+ TBu(k — 1)
+ Gk —1)y(k—1)+ Ny(k).
For z,(k — 1) € {p(k — 1), H(k — 1)), we set &(k — 1) = p(k — 1) and we know
ew(k —1) = 2p(k — 1) —p(k — 1) € (0, H(k — 1)). From (5.7), with w(k) € (0,1,,),
v(k) € (0,1,,), Yk € N, we derive z,,(k) = #(k) + e, (k) obtaining

zw(k) € (p(k), H(k))
= ((TA=G(k=1)C){p(k - 1),0)) ® (TB(u(k - 1),0))
@ (G(k =) (y(k —1),0)) & (N{y(k),0))

@& ((TA—G(k—1)C){0,H(k —1))) & (TDy(0, I,,,))
S ((_G<k - 1)Dv)<07 nu> S2] ((_NDv)<O7Inu>) :

By using the properties in (1.9), we obtain p(k) and H (k) in (5.13).

(FE zonotope) From z,,(k) € (p(k),H(k)) and #(k) = p(k), we know e, (k)
(0, H(k)). By definition, we also have the output estimation error (k) = y(k) — Cp(k).
On the other hand, by pre-multiplying M € R?*"v on both sides of (5.9), we obtain

Me(k) = MCW [fl(k o)y e Fak—pg)] |+ Mew(h). (5.16)
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. T
Denote f(k) = |fi(k—p1), ---, fq(k— pq)] . Taking into account M satisfy-
ing (5.14), we know M CV¥ = . Therefore, from (5.16), we obtain

F(k) = Me(k) — Mey(k) = Me(k) — M (Cew(k) + Dyv(k)). (5.17)

Recall e(k) = y(k) — Cp(k), ew(k) € (0, H(k)) and v(k) € (0, I,,). From (5.17), we

can derive that

f(k) € (ps(k), Hy(K))
= (M(y(k) = Cp(k),0)) © (=MC(0, H(k))) © (=M Dy(0, I,))) -

Again, by using the properties in (1.9), we obtain ps(k) and H¢(k) asin (5.15). [

Remark 1: From the structure of the zonotopic FE filter proposed in Theorem 5.2,
it is clear that the estimated fault f(k) has delays for each element and the delays are
determined by the fault detectability indices p; fori =1, ...,q.

5.2.3 Optimal FE Filter Gain

We now present the results of optimal FE filter gain. For designing the gain of the

zonotopic FE filter, the following criteria are taken into account:

e ((k) satisfies the algebraic condition (5.8);

e G(k) minimizes the estimation error e, (k + 1), that reduces the size of the zono-
tope (p(k+ 1), H(k +1)).

Following the zonotopic Kalman gain in Section 2.1.2, the size of a zonotope can
be measured by the Fyy-radius. The objective of the zonotope minimization can be

defined by J = tr(WP(k + 1)) with a weighting matrix W € S, and the covariation
Pk+1)=Hk+1)H(E+1)T. (5.18)

Theorem 5.3 (Optimal FE filter gain). Given H(k + 1), a weighting matrix W € S5,

the fault detectability matrix Y in (5.3) with rank(Y) = ¢. The optimal gain G*(k) can be
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computed by the parametrized form:
G*(k) = M + G*(k)Q, (5.19)
with
d=TAV, M ="', Q=a(, - TM), (5.20)
where o € RP=D*P is an arbitrary matrix guaranteeing that  has full-row rank and G(k) €

R™*(P=9), Besides, G(k) = G*(k) minimizes J = tr(W P(k + 1)) with P(k + 1) in (5.18),
which is computed through the following procedure

G*(k) = L(k)S(k)™L, (5.21)
L(k) = (TA-®MC)P(E)CTQT —oMVQT, (5.22)
S(k) = Q (CP(k)CT + V) ar, (5.23)

with P(k) = H(k)H (k)" and V = D,D].

Proof. From M = YT and rank(Y) = ¢, we have MY = I,. Since rank(T) = g, we can
obtain a matrix Q € R("~9*" guch that QT = 0.

Therefore, with G(k) defined in (5.19), we derive

(TA— G(k)O)T = (TA — (BM + G(k)Q) c)qf
— TAV — TAVMCY — G(k)QCT
= TAV — TAUMY — G(k)QY.

Since MY = I, and QY = 0, the above equation leads to TAV — TAVYMTY —
G(k)QY = 0. Thus, (5.8) is satisfied with G (k) parametrized as in (5.19).

Then, the problem is converted to find G(k) minimizing J = tr(WP(k + 1)). By
definition, J is convex with respect to G(k). Thus, G*(k) is a value of G(k) such

aJ
that G = 0.

Set L(k) and S(k) as in (5.22) and (5.23). Evaluating %‘{k) = 0, we have that
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WL(E)G() ") =o0. (5.24)
( )

By means of the matrix calculus in (1.14), (5.24) can be simplified as

WS(k)G(k)T +WS(k)TG(k)T —2WL(k)T = 0.
Because S(k) is also a symmetric matrix, we thus obtain G(k) as in (5.21). O

From the proof of Theorem 5.3, we can see the independence of G*(k) with respect
to the weighting matrix W. Thus, W can be set as an arbitrary matrix, for instance
W = I. Besides, time-varying weighting matrix W (k) will be taken into account for

discussing boundedness of the proposed zonotopic FE for descriptor systems.

Remark 5.1. For the proposed zonotopic FE filter in Theorem 5.2, G that satisfies the

condition (T'A — GC)¥ = 0 is a stabilizing gain if there exist matrices W € S, and Y’

1%
-0, (5.25)
WTA-WOMC -YQC W

then the feasible solutions give G = ®M — W~1Y Q. Note that the condition (5.25) can
be found by the Lyapunov stability condition and the parametrized gain as in (5.19).

With the zonotopic FE filter defined in Theorem 5.2 and the optimal gain in Theo-

rem 5.3, we summarize the FE algorithm in Algorithm 5.1.

5.24 Boundedness of Zonotopic FE

We now study the boundedness of zonotopic FE by implementing Theorem 5.2 with

the designed optimal gain in Theorem 5.3. To find a sequence of time-varying weight-

Ny

ing matrices W (k) € S, we introduce a result for discrete-time nominal descriptor

systems in the following.

Proposition 5.1. Given the descriptor system Ex(k+1) = Ax(k) with a measurement output
y(k) = Cuz(k), matrices T and N satisfying (2.42), and v € (0,1). The filter z(k + 1) =
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Algorithm 5.1 Zonotopic FE algorithm for descriptor systems
1: Given the system matrices F, A, B, C, D,,, D, and F' and the initial state bounded
in zg € (co, Ho);
Solve the equation (2.42) by using to obtain 7"and V;
Compute the fault detectability indices p;, i = 1,...,¢q;
Compute the fault detectability matrix T = C'V;
D« TAV;
M «— YT,
Q<+— a(l, —TM);
while £ > 0 do
Compute G*(k — 1) according to the procedure in (5.21)-(5.23);
Obtain the optimal parametrized gain G*(k — 1) following (5.19) with G*(k — 1)
following (5.21)-(5.23);
11:  Compute the state bounding zonotope (c(k), H(k)) by using (5.13);
122 Compute the FE zonotope (cf(k), H¢(k)) by using (5.15);

13:  Obtain the FE f(k) = c;(k) with its bounds fi(k) € [L(k:),fl(k)},z =1,...,q

=
<

with
fi(k) = cr, (k) +rs(Hg(k))i,
fi(k) = cg (k) — rs(H(k))i,
T
14: where cf = [Cfl e Cf e qu] .

15: end while

TAz(k) + G(k)(y(k) — Cz(k)) + Ny(k + 1) is y-stable (stable with a decay rate ) if there
exist matrices G(k) € R"*P and W (k) € S, Vk > 0 such that

AW (k) (TA-GE)O) " W(Ek+1)T

> 0. (5.26)
W(k+1)(TA-G(k)C) Wik +1)

Proof. With matrices T"and N satisfying (2.42), we reformulate the system dynamics to
be x(k+1) = TAxz(k) + Ny(k + 1). Define the state estimation error e(k) = x(k) — Z(k).

Therefore, we have the error dynamics

e(k+1)=xz(k+1)—2(k+1)=(TA-G(k)C)e(k).

T

With a sequence of matrices W (k) € S, Vk > 0, we consider the Lyapunov candi-
date function as V (k) = e(k) "W (k)e(k). Given v € (0, 1), we have
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AV(K)=V(k+1)=V(E)=e(k+1) Wk + ek + 1) — e(k) W (k)e(k)
—e(k)T ((TA —GR)O)TW (k +1)(TA - G(k)C) — 7W(k)> e(k).

For any e(k) # 0, AV (k) < 0 implies

AW (k) — (TA — G(k)C) "W (k + 1)(TA - G(k)C) = 0.

By applying the Schur complement with vW (k) >~ 0, we thus obtain (5.26). O

Since the zonotope reduction operator |,y (-) is used in the proposed zonotopic FE

filter, we also introduce the following lemma to describe the boundedness of the use of

Lew ().

Lemma 5.1 ([26]). Consider H € R™*" as the generator matrix of a zonotope (p, H) C R",
a weighting matrix W € ST with all its eigenvalues in [A, \] C R. By means of the reduction
operator H =\,w (H) withn < ¢ < r, {p, H) is a reduced zonotope such that {c, H) C
(p, H). Let i = (w — 1) (n+r—"L)and B =1+ L. Then, it holds:

=112
HHHF,W <p ||H||%‘W (5.27)
Proof. The proof of this lemma can be found in [26, Theorem 10]. ]

From the structure of the proposed zonotopic FE filter in Theorem 5.2, due to that
(pf(k), H¢(K)) is a linear projection of (p(k), H(k)), Vk € N, the filter dynamics is
bounded by (p(k), H(k)) as defined in (5.13). Based on presented results above, we
now discuss the boundedness of zonotopic FE for descriptor systems in the following

theorem.

Theorem 5.4 (Boundedness of zonotopic FE). Comnsider the zonotopic FE (fil-
ter (ps(k), H¢(k)) in (5.15) with (p(k), H(k)) in (5.13) and the optimal gain G* (k) in (5.19),
W (k) € S, Vk € Nand v € (0,1) satisfying (5.26). If there exists a bounded sequence 1) (k)
such that

HTDwHi“,W(k-&-l) + HG(I{;)DUH%,W(I@—H) + HNDUH%‘,W(ICJ,J) <y(k), VkeN, (5.28)
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and when k — oo, 9 is the upper bound of 1 (k), then the Fyy-radius of (c(k), H (k)) is bounded
by

IH (k + Dl Ew sy < TINHE g + k), VEEN, (5.29)

with ¥ = v < 1. Moreover, when k — oo, the upper bound || H (co) H%’W(oo) is given by

<

1 H (00) 519/ (00) < (5.30)

1—7
Proof. Considering H (k+1) and the optimal gain G*(k), the Fyy-radius of the zonotope

(p(k+1), H(k+ 1)) is expressed as

_ 2
Ik + 1)1 1) = H[(TA-G*(k)C)H(k), TD,. ~G'(K)Dy. ~ND,)|

FW(k+1)

Since the optimal gain G*(k) is obtained by minimizing ||H (k + 1) H%’W(k +1) with
independence of W (k + 1), we thus have

VE G+ Dl < || [(0A - 6v)e) B ), 7D, ~GH)D,. ~ND,] i

FW(k+1)

for any G(k) instead of G*(k) satisfying (5.26). Then, considering the boundedness

in (5.28), from above inequality, we obtain a sufficient condition

IH (k4 Dl ey < [(TA=GER)C) B | Gy i) + 0 (R)- (531)

Based on Proposition 5.1, with W (k) € S{{, Vk € N and v € (0,1) satisfy-
ing (5.26), (T'A — G(k)C) is ~y-stable. By applying the Schur complement to (5.26), we
obtain YW (k) — (TA — G(k)C)"W (k + 1)(TA — G(k)C) = 0. Since H (k) # 0 and by

the linearity of the operator tr(-), we have

tr (H(k)T(TA —GR)C)TW (k +1)(TA — G(k:)C)ﬁ(k)) < Atr (FI(k:)TW(k:)ﬁ(k:)) .

By the Fy-radius definition, we obtain H(TA—G(k)C’)fI(k)H?W(kH) <
v ||H (k) Hi‘W(k)‘ Therefore, with (5.31), we have

IH(k + Dl Ew sy < HH<k)Hi“,W(k) + (k).
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Based on the condition (5.27) in Lemma 5.1, we obtain

Lk + D)2y essy < 18N gy + (8).

Thus, with 4 = 3, we obtain (5.29). Considering v € (0,1), ¥ € (0, 1) can also hold.

Besides, when k — oo, with the upper bound ¢(c0) = v, (5.29) becomes

1H (00) v (00) < 7 IH (00) w00 + ¥

which implies (5.30). O

According to Theorem 5.4, the boundedness of the state bounding zonotope
(p(k), H(k)), Vk € N defined in (5.13) is provided by the boundedness condition. As a

conclusion, ultimate boundedness of the proposed zonotopic FE is obtained.

5.3 Case Studies

In the following, the simulation results obtained with a numerical example and an
engineering systems are shown to verify the proposed robust FE method for discrete-

time descriptor systems.

5.3.1 Numerical Example

Consider a discrete-time descriptor system modeled by (5.1) with system matrices as

follows:

[ 0.9 0005 —0.095 0
0.005 0.995 0.0997 0
0.095 —0.0997 0.99 0

1 0 11

S = O O
o o o O

o o o =
o O = O
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0 O
03 0
0.3
0

01 O
1 1
, O=
—0.1 1
-1 0
0.1 O
, Dv - 0 01
0 0

o O

o O =

o = O

.

The initial state z(0) is setas z(0) = [0.5, 1, 0, —0.5} and the initial state zono-

tope is given by x(0) € (p(0) = x(0),0.114). Besides, w(k) € (0, I3) and v(k) € (0, I3),
T

Vk € N. The input signal is set as u(k) = [2 sin(k), 3 sin(k)}

From the general solution (2.43), we choose the matrix S as

o O = O
o = O O

1
0
0
0

_ o O O

o o = O

o = O O

0
0
0
1

and we obtain two non-empty matrices 7" and N satisfying the condition (2.42) as fol-

lows:

1 0
0 0.5
0 0

= o o O

= o o O

Since rank(F') = rank(CF) = 2, we have CTF; # 0 and CTF, # 0. The fault
detectability indexes are p; = 1 and po =1 an_d the fault _detectability matrix is T =

0.5 0.5
C¥U = |-0.05 0.5| with¥ = [Tfl sz}
-1 0

0.1 0
0.5 0.5
—-0.05 0.5
-1 0

. Therefore, we obtain the
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matrices to obtain the optimal gain G*(k) as follows:

[ 0.0973  —0.045)

0.2465  0.2737

—0.0449  0.2226
095 05

[0.2389  —0.2389 —0.8686]
M = ,

10.8925 1.1075  0.3909

2= 10.8686 —0.8686 0.4777}.

Therefore, the time-varying matrix G*(k) can be obtained following (5.21)-(5.23)
and we can find the optimal parametrized gain G*(k) in (5.19). Besides, as a compar-
ison, according to Remark 2, by satisfying (5.25), we also obtain a stabilizing gain G

as

[ 0.3283 —0.4183 0.0878 ]
0.4907  0.0566 —0.0040
—0.0279 04730  0.0073
0.30561  0.6949  1.0678

Consider the actuator faults are in the following scenarios:

0 k<80
fi(k) =

5 k>80

0 k < 100
fa(k) =

6sin(0.1k) k> 100

As aresult, the simulation has been carried out for N, = 200 sampling steps and the
robust FE results are shown in Figure 5.2 with G* (k) and G. Note that due to p; = 1 and
p2 = 1, there is one-step delay in the estimation of the faults f; and f». In the figures, for
allowing a better comparison, we plot the real faults delayed one sample, f;(k—1) with
i = 1, 2. Using the proposed zonotopic FE filter, the punctual values of estimated faults
are obtained altogether with the worst-case bounds of estimated faults are also found in

the estimation intervals under the assumption of unknown-but-bounded disturbances
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Figure 5.2: Actuator-FE results with G*(k) and G.
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Table 5.1: Comparison between G*(k) and G.

MSE RMS(rs(Hy))

G*(k) 0.0389 1.3049
G 0.0641 2.0470

and measurement noise in given zonotopes.

The actual faults in red dashed lines are bounded by estimation intervals with G*(k)
and G. From the Figure 5.2, it is obvious that the bounds obtained with G are larger
than the ones obtained with G*(k). For the comparison of the performance with G*(k)
and G, the MSE between the actual faults and estimation faults (centers of FE zono-

topes) is computed by

1 O
MSE = N; p 1f (k) — (Bl

and the root mean squared value of rs(H¢(k))) for k = 1,..., Ny is computed, which
is denoted by RM S(rs(Hy)). The computation result is shown in Table 5.1. From the
MSE results, the one obtained with G*(k) is close to zero and smaller than the other,
which means that the estimation results with the optimal gain are more accurate than
the ones obtained with the stabilizing gain G. Since the estimation errors of faults are
bounded in the zonotopes, the obtained bounds with G are larger and the RMS result
provides that the one with G is larger than the other.

5.3.2 The Machine Infinite Bus System

Consider a machine infinite bus system used in [60] and its linear continuous-time

system with parameters described in [166] as follows:

(51 = w1,
62 = w2,
03 = ws,

1

o:)4 = mil (p1 — Y12V1V2(51 - (52)) (Y15V1V2(51 - 55) + Clwl) ’

1
my
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. 1

ws = — (p2 — Y1 VaVi(02 — 81)) — — (Ya5 V2 V5(02 — d5) + cown) ,
ma ms

. 1 1

we = — (p3 — Y34Vio03) — — (Ya5V3V5(03 — 05) + c3ws) ,
ms ms

0= P, — Y51 V5Vi(05 — 61) — Y2 V5 Va(05 — 62) — Ys3V5V3(05 — 63) — Ys54V5 Voo 05,

where §1, d2, 03 and J5 denote the phase angles of the generators, wi, we and w3 de-
note the speeds of the generators, p;, p2 and p3 are the mechanical powers per unit
that are set as py = 0.1, p» = 0.1 and p3 = 0.1, and P is the unknown power
load. From [166], the other parameters are chosen as follows: the inertia m; = 0.014,
my = 0.026 and m3 = 0.02, the damping ¢; = 0.057, ca = 0.15 and ¢3 = 0.11, the poten-
tialVi =1,Vo =1,V3 =1,V =1 and V5 = 1, and the nominal admittance Y5 = 0.5,
Yos = 1.2, Y35 = 0.8, Yis = 1, Y35 = 0.7 and Yi2 = 1. Besides, the uncertain part of the

admittance is set in the state disturbances. Let us define

T T
L= 517 627 637 wi, W2, Wws, 55:| y U= |:p17 b2, p3:|

We use the Euler discretization method with the sampling time At = 0.05s to obtain

the discrete-time descriptor model in the form of (5.1) with system matrices as follows:

1 0000 0 0
0100000
0010000
E=|000100 0],
0000100
00000T10
0000000
o 0 0 005 0 0 0 |
0 1 0 0 005 0 0
0 0 1 0 0 005 0
A=|-53571 35714 0 07964 0 0 17857,
19231 —4.2308 0 0 07115 0 23077
0 0  —375 0 0 0725 2
0.025 006 004 0 0 0 —0.175
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0 0 0
0 0 0 . -
1000000
0 0 0
0100000
Bze[F1 joX F3}=3.5714 o o], C= :
0010000
0 19231 0
0000001
0 0 25 A |
0 0 0
0 0 0
0 0 0 a -
0.025 0 0 0
0 0 0
0 002 0 0
Dy,=103 0 0 0],D,=
0 0 002 0
03 0 0
0 0 0 0.025
0 03 0 I |
0 0 03

Given the initial state z(0) = 0 and the initial state zonotope z(0) € (0,0.0117),

w(k) € (0,14) and v(k) € (0,1s4), Vk € N. The input signal is set as u(k) =
T

{20, 15, 10] , Yk € N. From the general solution (2.43), we choose the matrix

(10000001000
01 0000O0OO0OT1O0TUO
001 00O0O0OO0OO0T1ITO®O
S=100010000 0 0 1| andwe obtaintwo non-empty matrices T
000O01O0O0O0OO0O0O
0000O0O1O0O0O0OO0®O
000O0O0ODO0OT1O0GO0O0O

and N satisfying (2.42) and the matrix T is also non-singular as follows:

05 0 0 00 0 0 (05 0 0 0]
0 05 0000 0 05 0 0
0 0 050000 0 0 050
T={0 0o 0 1000/,N=|0o 0o 0 0
0 0 0 0100 0 0 0 0
0 0 0 0010 0 0 0 0
0 0 0 000 1 0 0 0 1
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Therefore, for the first actuator, we have CTF; = 0 and C(T'A)TF; # 0. Hence, the
fault detectability index for f; is p; = 2. Similarly, we have p, = p3 = 2. Therefore, we

have the fault detectability matrix T as

0.0893 0 0

0 0.0481 0
T=CU=

0 0 0.0625

0 0 0

Therefore, we can obtain the matrices for the optimal parametrized gain G*(k) as

follows:

(0.1158 0 0 |
0 00582 0
0 0 0.0766 112 0 0 0

U= [17870 01717 0 |, M=|o0 208 0 0, Q:[o 0 0 1}.

01717 0.7702 0 0 0 16 0
0 0 1.0797

0.0022 0.0029 0.0025

In the simulation, consider the actuator fault f(k) in the following

0 k <98
f(k) = T
15, 12sin(0.1k), 9.5cos(0.1k) k> 98

The simulation has been carried out for N; = 200 sampling time steps and the
simulation results are shown in Figure 5.3. Because of the fault detectability in-
dices p1 = p2 = p3 = 2, the fault f(k) occurred at time k will be estimated in two
samples. For different time-varying actuator faults, all the estimated results provide
the satisfactory results including the punctual values and the worst-case bounds. By
minimizing the size of the filter zonotope bounding all the uncertainties and propa-
gated estimation errors, the obtained optimal gain G*(k) reduces the estimation errors.
Furthermore, during the propagations, the obtained FE intervals (centers of FE zono-

topes and the worst-case bounds) are bounded.
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Figure 5.3: Actuator-FE results of the machine infinite bus system.

54 Summary

This chapter has proposed a zonotopic FE filter for discrete-time descriptor systems.
The system disturbances and measurement noise are bounded in given zonotopes. To
achieve robustness against system uncertainties and identification of occurred actua-
tor faults, the optimal gain is formulated in a parametrized form and following the
set-based framework in Section 2.1.2, the optimal Kalman gain is computed. Besides,
boundedness of the proposed zonotopic FE is discussed. The proposed zonotopic FE
filter with the optimal FE gain is proved to be ultimately bounded. The proposed
method is tested in two examples. We have compared the results with a stabilizing
gain, where the robustness is not considered. The results with the optimal gain are
shown to be more accurate based on the mean squared error results. As future research,

the proposed FE method could be linked with set-based FI. Besides, the condition for
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estimating sensor faults deserves to be investigated.
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Figure 6.1: Active mode detection based on set invariance theory.
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This chapter presents a general framework of set-invariance characterizations for
discrete-time descriptor systems, and its application to active mode detection. We
use ultimate boundedness of trajectories to obtain set-invariance characterizations for
the systems subject to unknown-but-bounded disturbances. The contributions of this
chapter have been published and submitted in [141] and [142], respectively. The pro-
posed computation of invariant sets relies on partitioning the state space of descriptor
systems considering both causal and non-causal parts. For causal systems, we apply
the ultimate boundedness method to obtain an RPI set and approximation of an mRPI
set. In particular, for the case of non-causal systems, the states are split into causal and
anti-causal. When the invariance property is considered asymptotically for both causal
and anti-causal parts, the standard mRPI notation will be applied. For the computa-
tional result, the mRPI approximations will be discussed. On the other hand, consider-
ing the finite-time trajectories of the anti-causal states, a new notation of invariant sets,
namely RNI, is introduced. For the mode detection problem, we present two strate-
gies that use positive set invariance. The proposed solution is the design of additive
active detection inputs for RPI set separations. These input signals are obtained from
the solution of two mixed-integer optimization problems. We propose two active mode
detection algorithms for online monitoring of the current operating mode. Besides, the
proposed active mode detection mechanism is not only limited for being used in de-
scriptor systems. The designed active detection inputs and algorithms can also be used

for standard dynamical systems.

6.1 Set-invariance Characterizations for Descriptor Systems

We now formulate explicit expressions of several RI sets and approximations of min-
imal RI sets for discrete-time descriptor systems in both causal and non-causal cases.

Furthermore, the convergence time for each Rl set is provided.

6.1.1 RPI Sets of Admissible Descriptor Systems

For an admissible descriptor system (1.1), the set analysis will be performed using the
dynamics decomposition form. From Lemma 1.3, there exists a transformation (@), P)
leading to (1.3) and (1.4)-(1.6). We consider a partition of the matrix P as P = [P}, P]
with P, € R"™" and P, € R"*("=7)_ The structure of the mRPI set of the admissible
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descriptor system (1.1) is characterized in the following theorem.

Theorem 6.1 (mRPI set of admissible descriptor systems). Consider an admissible descrip-
tor system (1.1) with the dynamics decomposition form in (1.3) and w(k) € W, Yk € N. The
mRPI set 2 is given by

Q2° = PLd, @ Pyds, (6.1)
where
P = é AL B W, (6.2a)
1=0
By = (—A; Asdy) @ (—A; BuaW), (6.2b)

with /Nh = A1 — AQAZlAg and Bwl = Bwl — AQAZleg.

Proof. With the transformation (Q, P), the descriptor system (1.1) is equivalent to a
dynamical system including two subsystems as in (1.5). On the one hand, from (1.5)

we have

Z1(k+1) = A171(k) + Buiw(k). (6.3)

The stability of (1.1) implies that the matrix Ay is Schur. Then, the characterization
of the mRPI set of Z; can be obtained as in (6.2a) using the standard LTI notions [64].
On the other hand, from (1.3) we obtain

jg(k}) = *AzlAgi‘l(k) - Allegw(k), (64)

Since (6.4) is an algebraic equation, we obtain the mRPI set ¢, by a linear projection
image of the set @; in (6.2a), which leads to (6.2b).

By definition in (1.6) and using the Minkowski addition of the sets obtained via the
linear mapping defined by the matrices P, and P», we determine the mRPI set {2 for

the admissible descriptor system (1.1) as in (6.1). O

To approximate the mRPI set in (6.1), we use the ultimate bounds for dynamical

systems in the following lemma which represents also a starting point for an iterative
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approximation of £2¢.

Lemma 6.1 ([62]). Consider the system (1.1) with E = I and a Schur matrix A € R™"*",
the Jordan decomposition form of A = VAV ! with A = diag (A1, ..., \,) and the compact
disturbance set as in (1.13). The set

P(e)={zeR": |V 'z| <v+e}, (6.5)

where v = (I — |A])™" |V=IBy|w and e € R™ is a vector with arbitrary small and positive

components, is RPI and attractive for all the trajectories.

Corollary 6.1. Consider the mRPI set £2¢ as in (6.1) and the Jordan decomposition A =
ViAVi L. An RPI approximation of 2° is given by

Q8 = P1d1 o © Payday, (6.6)

where
431,0 = {:E eR": ’Vflx’ <7 + 5} , (6.7a)
Bog = (— A A1) @ (— A7 BuaW), (6.7b)

with 5y = (I — |Aq]) ™" ‘Vl_léwl ’ w and € € R" is a vector with arbitrary small and positive

components. Moreover, any set (2 = Plfﬁu @ Pzéz’i, i € N where

431,1’ = APy, 1 © By W,
Dy = (—A;lAgéﬁu) @ (A7 BypaW),

is also an RPI approximation of £2¢ and satisfies §2§ O 27, | D §2¢,i € Nwith € > 0 satisfying
dg (£2¢,02°) < e

Proof. By using Lemma 6.1, the RPI set @1 can be approximated by ultimate bounds
as 913170 in (6.7a). Therefore, the mRPI set 432,0 for Z can be obtained through a linear

mapping as in (6.7b).

Using [86, Algorithm 1], an iterative positively invariant approximation of the mRPI
set £2¢ O (2% , for i € N can be obtained by applying the forward i-step propagation.
Finally, with a constant € > 0, we have dy ({27, {2°) < € for a finite index i by exploiting

the convergence of the sequence ) to Q°. O
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Based on the above results, we present a practical condition for the compatibility

check of any initial state 2(0) in the following corollary.

Corollary 6.2. Consider an initial state x(0) for the admissible descriptor system (1.1) in (1.4)-
(1.6). If

52(0) ¢ (~AT A ) © (~ AT BuaW) ©69)
where x(0) = P1Z1(0) + Py2(0) and
¢"=min{¢ € R:71(0) € (1},

then x(0) is not a compatible initial state for (1.1) and it is independent of any disturbance

realization w(0) € W.

Proof. The set in (6.8) is not an RPI set but it also represents a constraint for the de-
scriptor part of states whenever this constraint is violated. As a consequence, it leads

to algebraic equations cannot be satisfied. O

Remark 6.1. By Definition 1.11 and its characterization in Theorem 6.1, the consistency
in terms of initial state 2(0) with the descriptor model (1.1) can be tested. In presence
of the disturbance w(0) € W, x(0) may not be a compatible initial state. This shows
that 2(0) should be understood as an implicit function of w(0), i.e. z(w(0)), by means

of the solution of algebraic equations.

To complete the study of admissible descriptor systems, the computation result of
the convergence time for discrete-time admissible descriptor systems is provided. This
is equivalent to an upper bound for the total number of steps necessary for the system

trajectories to reach the set (2 from a given initial state.

Lemma 6.2 (Convergence time [117]). Consider the system (1.1) with E = I and a Schur
matrix A € R™", the Jordan decomposition form of A = VAV ~L with A = diag (A1, ..., \n).
Let §(k) = V=l (k) with £(k) = [€1(k), ..., & (k)] and

E(k+1) = A(k) + V™' Buw(k),

and the initial condition £(0) = £* = [¢F,...,&]" e R™. Consider the RPI set & (¢) in (6.5)
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and define the vector v* = [v%, ..., v*] with

v* = argmin |£" — o] subject to |v] < v,
v

where the minimum is computed element-wise. Then, the system trajectory x(k) with the initial
state x(0) = V£(0) belongs to @ (), Vk > T¢, where

T, = max ({1,...,4,),
with
0, if & =7,

b =
' max (O,logpﬂ <|£*E_ZU*|>> , otherwise,

fori=1,...,n.

Based on Lemma 6.2, from any compatible initial state 2:(0), the convergence time

of the admissible descriptor system (1.1) is given in the following theorem.

Theorem 6.2 (Convergence time of admissible descriptor systems). Consider an admis-
sible descriptor system (1.1), w(k) € W, Vk € N and the set £2§ 2 £2¢ in Corollary 6.1. For
a compatible initial state x(0), the system trajectory x(k) belongs to (2§, that is, &1 (k) defined
in (1.6) belongs to 431,0, for k > T, where T, is the convergence time corresponding to (1.1)

and depends on x(0) and &.

Proof. Based on Lemma 1.3, Z3(k) has no dynamics and is a linear mapping of (k)
and w(k). By directly applying the result in Lemma 6.2 to z;(k) with its dynam-

ics #1(k + 1) = A1#1 (k) + Buiw(k), we can obtain the convergence time 7, . O

6.1.2 RPI Sets of Non-causal Descriptor Systems

In case that the descriptor system (1.1) is regular and stable but not causal, there might
exist a unique solution at each time [28]. We now consider a non-causal and stable
descriptor system (1.1) and use the Kronecker canonical form in (1.7) for the RPI char-

acterization.

From Lemma 1.4, a non-causal descriptor system (1.1) can be transformed in (1.7)
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with a nilpotent matrix N satisfying N # 0. As introduced in [28, Chapter 8], for
a regular matrix pair (F, A), there exists a suitable transformation (Q, P) with P =
[P, Py], Py € R™P, Py € R™("~P) yielding to (1.7).

For the transformed system in the Kronecker form, we use the following partition-

ing notations:

nk)] ] Bu
w) = [ = ptaw. B, = |7 69)
i’g(k‘) Bo
with Z; (k) € R?, (k) € R(=P),
Based on the Kronecker canonical form in Lemma 1.4, we have that
z1(k +1) = Az1(k) + Bypiw(k), (6.10a)
Njg(k + 1) = .TQ(k‘) + Bwa(k‘). (610b)

The structure in (6.10) highlights the fact that the non-causal descriptor system (1.1)
is stable if and only if the matrix A is Schur. We now formulate the mRPI set of discrete-

time non-causal descriptor systems.

Theorem 6.3 (mRPI set of non-causal descriptor systems). Consider a non-causal descrip-
tor system (1.1) with the Kronecker canonical form in (1.7) and w(k) € W, Vk € N. The mRPI
set 2" is given by

0" = ]51@1 D ]52@2, (611)
with
61 =P A' B, W, (6.12a)
=0
n—p—1
Oy = (=N'BuaW) . (6.12b)
=0

Proof. The non-causal descriptor system can be decomposed in two subsystems,
where (6.10a) is an ordinary difference equation. Hence, the mRPI set of Z; can be

constructed as in (6.12a). On the other hand, from (6.10b), the anti-causal state Z2(k)
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can be propagated as follows:

and after the (n — p)-step iterations, this inequality becomes

Zo(k) = N Pzy(k + n — p)

n—

-2

p—1
=0

N'Byaw(k + ). (6.13)

Since N is a nilpotent matrix with N"~? = 0, we know that for ¥ > n — p, N¥ =
0. Therefore, (6.13) becomes Z3(k) = — S F~' N'Byow(k 4 i). With w(k) € W,

n—p—1 L _
Vk € N, the set for Zp can be computed by O = @ (—N'ByoW) = (—Bup2W) @
=0

(~NBuyoW) @ -+ @® (—N""P~1B,2W). Finally, we derive the mRPI set 2" for the non-
causal descriptor system (1.1) by the linear mapping as in (6.11). O

Remark 6.2. Theorem 6.3 builds on the assumption that the time domain of solution to
the system (1.1) is N. The existence of this infinite-time trajectory leads to a positive
invariance property although the system is not causal. Theorem 6.3 should be recon-

sidered in case that the trajectories are defined only for a finite-time window.

Corollary 6.3. Consider the mRPI set 2" as in (6.11) and the Jordan decomposition A =
ViA Vit An RPI approximation of 2™ is given by

Q= P16y POy, (6.14)

with
O10={z € R™ : |V x| < oo+ &}, (6.15a)
Oy = BysW @& NBysoW @ - - & N* 71 BoW, (6.15b)

where vy = (I — |Ay ‘)_1 ‘Vl_lel‘ w and & € RP is a vector with arbitrary small and positive

components. Moreover, any set 2] = Plélyi ® P»6,, i € N where

él,z' = APy, 1 © By W,
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is also an RPI approximation of 2" and 27 O (', D ", i € N with ¢ > 0 satisfy-
ing dy (2], 2") < e.

Proof. From Lemma 6.1, the mRPI set ©; related to z; can be approximated by an RPI
set ©1 C @1,0 based on (6.15a). Similar to the proof of Corollary 6.1, we thus obtain {2}

by the iterative forward mapping all by preserving the positive invariance. O

For a non-causal descriptor system (1.1), we also present a practical condition for

the compatibility check of any initial state z(0) in the following corollary.

Corollary 6.4. Consider an initial state x(0) of a non-causal descriptor system (1.1). If 22(0) ¢
O9 where z(0) = PyZ1(0)+ P22(0), then 2(0) is a compatible initial state for (1.1) irrespective

of any disturbance realization w(0) € W.
Proof. Similar to Corollary 6.2, thus the proof is omitted. O

For any compatible initial state x(0) of a non-causal descriptor system (1.1), the

computation result of the convergence time is presented as follows.

Theorem 6.4 (Convergence time of non-causal descriptor systems). Consider a non-
causal descriptor system (1.1) affected by disturbances w(k) € W, Yk € N and let the
set (2§ D 2". For a compatible initial state x:(0), the system trajectory x(k) converges to 2
in T, iterations, that is, T, (k) defined in (6.9) belongs to él,O/ for k > T, where T is the

convergence time corresponding to (1.1) and depends on x(0) and €.

Proof. In terms of the mRPI set (2, again based on Lemma 6.2, the convergence
time 7" of the non-causal descriptor system (1.1) is determined by the partitioned
state 7, (k) with its dynamics described in (6.10b). O

6.1.3 RPI Sets for Finite-time Trajectories of Non-causal Descriptor Systems

As an extension for a non-causal descriptor system (1.1), we now focus on trajectories
defined only on a finite-time window, that is (k), k € Zo 1) with L > 0. The dynamics
of a non-causal descriptor system (1.1) obey the equivalent subsystems in (6.10) but the

set-invariance characterization need to be relaxed in order to consider the finite number
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of dynamical constraints as well as the structural particularities (algebraic equations)

related to anti-causality.

The difficulties are related to a combination of causal and anti-causal dynamics
in (6.10a) and (6.10b). For (6.10a), the positive invariance will be the appropriate con-
cept while for (6.10b), the negative invariance offers the suitable framework in a pre-

defined finite-time window L.

Theorem 6.5 (L-step RNI set of non-causal descriptor systems). Consider the anti-causal
subsystem (6.10b). A set 1" is L-step RNI if

L-1
YO NY & {~BunW} 2 2 N'T P {-N'BuaW} . (6.16)
1=0

Proof. From (6.10b), we have Z2(k) = NZo(k + 1) — Byow(k). For a finite time window
L >0, z2(L) € T. By the backward propagations of Z2(k + L) € T for any k € Z_p, |,

we can derive (6.16). O

Corollary 6.5. Given Li- and Lo-step RNI sets 1y and 15 with L1 > Ly > n — p satisfy-
ing 11 D 1», then for any | > 0, it holds

-1 -1

NP {-N'BueW} 2 N1 P {~N'BuaW} . (6.17)
=0 1=0
Proof The relationship (6. 16) holds for Il = 0a 77 2O 7. Suppose

N1y EB {-NiB,,W} 2 N'T; @ {=N"By2W} holds for some | > 0. Then, by pre-
multlplymg w1th N and M1nkowsk1 summmg the set {—B,2W} on both sides, we
obtain Nl+1T1 @ {-N'B, oW} 2 NI, @ {=N"By2W}. The proof is completed by

1=0

induction. O

Remark 6.3. The set ©5 in (6.12b) is L-step RNI with respect to (6.10b), VL > 0.
Remark 6.4. Consider the set O, as in (6.12b). An L-step RNI set with respect to (6.10b)

can be constructed iteratively starting from 7y = O3 and for i € Zp 1), the recursive

construction is given by
Ti:{meXQ:EIwEW,Nx—BwaETpl}, (6.18)

and X, C R P iga pre-defined set of state constraints for Z».
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Theorem 6.6 (L-step RI set of non-causal descriptor systems). Consider a non-causal

descriptor system (1.1) in with the Kronecker form in (1.7). The set
2= P191 D PQT, (619)

guarantees that x(k) € 2, ¥k € Zjg 1) if 71(0) € O1and To(L) € T.

Proof. From (6.12a), the set ©; is RPI for the dynamics of z;(k). If z;(0) € ©;, then
it follows z1(k) € ©1, Vk € Zjy ). Meanwhile, the set 7" is L-step RNI for Z(k) as
discussed in Theorem 6.5. If Zo(L) € T, then it follows z2(k) € T, Vk € Zyy,r)- Thus, we
obtain {2 by a linear mapping of ©; and 1" as in (6.19). ]

Proposition 6.1. Consider a non-causal descriptor system (1.1) in the restricted equivalent
form (1.7) and define a finite-time trajectory x(k) for k € Zjy 1) with L > 0. If z(0) € %
for L > s =n—puwith N°* = 0 and N5~1 # 0, then (k) € 2 for k € Zyg 5 and (k) €
24— (L—s) for k € Zjp_g 1), where £2; = P10, @ P,Y; with T in (6.18).

Proof. For k € Zjg 1,—4), from (6.13), x(k) is contained in the RI set 2y = O3 as defined
in (6.19). On the other hand, for k € Z;_, 1), the anti-causal component is contained
in 7;, which can be propagated by using (6.18) leading to the confinement of the finite
time trajectories for L — s < k < L. O

Example. Consider the closed-loop dynamical Leontief model described from [175]

in the form of (1.1), where

1 05 0.75 1.1328 0.1427 —0.3413
E=1025 0 05]|,A=]-0.1172 0.6427 -0.1913],
0 0 0 0.1328 0.1427 —-0.0913

—0.3828 —0.1427 —0.4087
By = |—-0.3828 —0.1427 —0.4087| ,
—0.3828 —0.1427 —0.4087
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Figure 6.2: RNI and RI sets of the dynamical Leontief model.

and w(k) € W, Vk € N with w = [0.2, 0.3, 0.1]". By applying the computational

method in [41], we obtain a transformation (Q, P) with

—0.5524 —0.7530 3.8890 —0.2576 0.6414  0.5385
Q=05393 —1.1540 —0.0193|,P = [—-0.3391 —0.8020 0.5596 | ,
0 0 4.6456 —0.9048 —0.3206 —0.6998

yielding the Kronecker form in (1.7) for this Leontief model with A = 0.0284 and N =
0 0.4067
0 0

To = [Tan, EQQ]T € R? as shown in Figure 6.2(a). By means of (6.19), we obtain the RI

] . With n — p = 2, by means of (6.18), we obtain the RNI sets 7 and 77 for

sets {2y and {2; of this dynamical Leontief model as shown in Figure 6.2(b). Note that

at each figure, both computed sets are overlapped.

6.2 Active Mode Detection for Multi-mode Descriptor Systems

We now propose an active mode detection mechanism based on the RPI set characteri-
zations for systems with multiple modes of operation and no switch between different
modes. The objective is the identification of the current operating mode in a finite
time with any initial state 2(0). This operating mode will be detected from a (finite)

predefined set of modes of operation. The algorithmic procedures are able to detect
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the current operating mode based on the offline design of active detection inputs and
the online monitoring. We formulate two mixed-integer optimization problems to find

suitable active detection inputs for guaranteed set separations in a finite time window.

6.2.1 Problem Formulation in Active Mode Detection

Consider a family of discrete-time descriptor systems corresponding to multiple modes

of operation as
E°x(k+1) = A%x(k) + B°u(k) + Bow(k), (6.20)

where E7 € R™" with rank(E7) < n, A2 € R™", B ¢ R"™, B7 € R"™%, and o €
Yq = {1,...,d} denotes the constant mode index and u(k) € R™ denotes an additive
input vector at time instant £. It is assumed that the descriptor system (6.20) is regular

and stable for any o € Y, then it follows that matrices (E? — A”?) are non-singular.

To simplify the notation for analysis, based on the Kronecker canonical form in

Lemma 1.4, let us denote the partitioning form:
-
x = {xlT, xﬂ , (6.21)

where x; € R? is the dynamical part corresponding to the dynamics (6.10a) and z» €
R("=P) is the algebraic part corresponding to the algebraic equation (6.10b). Based on

. . T T
this notation, we also denote B7 = [B‘I’T, BQUT] and B], = [Bg,lT, Bgf] .

The objective of the mode detection is to decide which mode ¢ € X, is ac-
tive in (6.20) by monitoring the current state (k) and without prior knowledge on
w(k) € W. The initial state x(0) is assumed to be known and we make use of the RPI
sets of (6.20) of each mode o € X, as P when u = 0. For a state x(k) of (6.20), Vk € N,
the system (6.20) in the mode i € X; can be performed by x(k) = z'(k) + &(k) with the

nominal and perturbed dynamics

Eiz'(k +1) = A'Z(k), (6.22a)
E'(k+1) = A'%(k) + BLw(k), (6.22b)

where 7¢ € R" and 7 € R".
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The basic passive mode detection mechanism (v = 0) can be summarized as follows:

Proposition 6.2. Consider the compatible initial state 2(0) = z;(0) + 7%(0) satisfying

and let the set of viable modes be initialized as ¥.(0) = X4. Given the state measured at time k,
ifx(k) ¢ {i’i(k) &) 75i}, then the mode i is not the current operating mode, that is,

%(k) = B(k) \ {7}

Proof. The error dynamics (k) = z(k) — #'(k) satisfy (6.22b) and the initialization
ensures i'(k) € P'. If the system (6.20) is operating in mode i, then the positive invari-
ance of P’ is guaranteed with respect to (6.22b). Whenever z(k) ¢ {a‘:’(k) @ 751}, the
positive invariance is violated and the mode i cannot represent the current operating

mode. O

Let us also denote the transformation (Q?, P*) for the descriptor system (6.20) at
mode i € ¥, such that Q' E' P! and Q' A’ P! satisfy the Kronecker canonical form in (1.7).
From the RPI set characterizations in Section 6.1, the RPI set P* composed by P’ =
Pidi @ Pidh with Pi = [P}, Fy].

Theorem 6.7. A state x(k) = [z1(k)", z2(k)"] " in the form of (6.21) is compatible with
respect to the descriptor system (6.20) in an operating mode i € 34 only if xo(k) satisfies

zo(k) € Pidh. (6.23)

Proof. Based on the Kronecker canonical form in (1.7), with the transformation (Q°, P*)
in mode i € X, for a compatible state x(k), the corresponding algebraic equa-
tion (6.10b) should be satisfied. Thus, the condition (6.23) could be used for checking
the operating mode i € X. O

Based on the above theorem, we state the following corollary without proof.

Corollary 6.6. For an initial state z(0) = [21(0) ", z2(0)"] " in the form of (6.21), if z2(0) &
Pi®%, then the initial operating mode set ¥4(0) = X4\ {i}.
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0.05

Figure 6.3: A passive mode detection example.

Remark 6.5. Assuming Y4(k) = S4(k — 1) \ {i}, Vi € X, such that z(k) — (k) ¢
P, then Card (X4(k)) is monotonically decreasing as time & increases. However, one

cannot guarantee Card (X4(k)) — 1.

Example. Consider three modes of operation in (6.20)'. As shown in Figure 6.3, from
an initial state (0), the mode shown in blue sets is detected after several steps. As time
k increases, the modes in red and green sets are discarded. Note that the system state
trajectory x(k) may always stay in the intersection of three sets during propagations.

In this case, we cannot discard any mode.

This passive mode detection does not guarantee the mode identifiability regardless

of the initial conditions. Indeed, (] P° # @ and thus there exists at least a realization
o EEd
w(k), Vk € N, which does not allow to decrease the cardinality of X;(k) and eventu-

ally identify the current mode of operation. The active mode detection is intended to

enhance the monitoring process by the injection of an excitation signal.

!Numerical values are provided later in the numerical example chapter.
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6.2.2 Design of Active Detection Input

In the following, we would like to design two types of active detection inputs: (i) con-
stant detection input; (ii) a sequence of variable detection inputs. For any two different
modes i,j € X, the active detection input denoted by u(k) is designed to guaran-
tee Pi(k) N PI(k) = @ for some k € N, where P(k) and P’(k) denote the tube of
trajectories parameterized by u(k). From (6.20), the system (6.20) in modes i and j can

be formulated as

E'z(k+ 1) = A'z(k) + B'u(k) + Blw(k), (6.24a)
Elx(k +1) = Aa(k) + Bu(k) + Blw(k). (6.24b)

Recall that for u(k) = 0 in (6.24), it follows P?(k) = P’ and P (k) = P7.

Similar to (6.22), assuming the system (6.20) in mode i € ¥, we split x(k) = 7' (k) +
7' (k) with

E'z'(k +1) = A'Z'(k) + B'u(k), (6.25a)
E'i'(k+1) = A% (k) + BLw(k). (6.25b)

With an active detection input u(k), Vk € N, the state 2(0) has to be decomposed
as z(0) = 7(0) + #°(0) (for instance in mode i € X,;) to satisfy the algebraic equations
in the descriptor model (6.20). Based on this observation, we introduce the following
proposition to check whether the initial state x(0) is compatible by testing the satisfac-

tion of algebraic equations in (6.20) for different modes.

Proposition 6.3. Given the set of modes X;. For any i € Xy such that rank(E?) < n,
if B # 0, then 3u(0) such that

z(0) & P (6.26)

Proof. From (6.25b), we know z(0) = Z*(0)+*(0) and #*(0) € P*. Based on the nominal
descriptor dynamics (6.25a), 7¢(0) is also constrained by u(0) at time k = 0. If B} # 0,
then z*(0) # 0. Considering the boundedness of P’ and the fact that :(0) = Z*(0)+*(0),
there exists u(0) acting on z°(0) that satisfies (6.26). O
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The result in Proposition 6.3 shows that descriptor systems have structural advan-
tages in view of mode detection, that is, the algebraic equations in a descriptor systems
must hold. When an additional detection input signal is applied, by checking (6.26),

some modes can be discarded.

Constant Active Detection Input

We first present the procedure to design a constant active detection input @ # 0 that

can be applied to the system (6.20) with a finite detection time Np as

a, ifk<Np—1,
u(k) = (6.27)

0, otherwise.

With this constant input @, (6.25) becomes

E'Z'(k+1) = A'z'(k) + B'a, (6.28a)
Bz (k+ 1) = A% (k) + BLw(k). (6.28b)

Recall z(0) = [xl(O)T,xg(O)T]T. The initial condition is given by z¢(0) = x2(0)
and 74 (0) satisfies (6.28a) with .

By definition of the RPI set, we denote &(k + 1) € P!, Vi(k) € P!, Yw(k) € W,
Vk € N. The system trajectory in mode 7 belongs to the parameterized RPI set, that is,

x(k) € P(k) = {7 (k) & '}, (6.29)

with z'(k) obtained from (6.28a) and Yw(k) € W, Vk € N.

From the nominal dynamics (6.28a), the stability is guaranteed when the system

evolves towards the equilibrium point

" B'a. (6.30)
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(a) The operating mode (b) The other modes

Figure 6.4: Propagated RPI sets with a constant active detection
input .

Theorem 6.8. For any two modes i, j € X, the sets
Pi_ = {jgo ® 752} , Pl = {fgo ® ﬁj} (6.31)
satisfy Pl NPl = @ if and only if there exists an active detection input u such that

(B~ a) "B~ (B — A1) BT )a ¢ S, (6.32)

Proof. From (6.31), Pi, NP, = @ is equivalent to

{shePln{sep}-0 (6.33)

By adding —z3° to the above both sets in (6.33), we obtain
{a‘:@o @ (-71) ® 751'} N {EZ,O @ (-72) ® 753'} = o,
which can be simplified as
{(a—:go -zl ) & P"} NPl =g, (6.34)

leading to (6.32) based on (6.30). O
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Let us denote the half-space representation of the set S;; as
Sij = {.7} e R": Hij.l‘ < bij}, Vi, j € Xy,

where H;; € RPi*", b;; € RPi, and p;; is the total number of the linear constraints

corresponding to S;;.

Based on the set separation condition in (6.32), the constant active detection input
U € [Umin, Umax] can be obtained by solving offline the following mixed-integer opti-

mization problem.

Problem 6.1 (Constant active detection input).

minimize u?, (6.35a)
subject to

¥, = (E'— A) "' By, (6.35b)
= (B - A B, (6.35¢)
Umin < U < Umax, (6.35d)
Hyj (zh, — 21) > bij — My Ajj + e, (6.35¢)
Alj = {61a"'76pi]'} € {051}7 (635f)
Pij

> o =pij—1Vi,j € Sai#j (6.358)
=1

with an arbitrary large positive scalar M, and an arbitrary small positive scalar .

The optimal solution of Problem 6.1 defines the constant active detection input @ =

Example. Consider the same three modes of operation in (6.20). By solving Prob-
lem 6.1, a constant active detection input u can be obtained. A example of the prop-
agated RPI sets with u is shown in Figure 6.4 for causal and non-causal descriptor
systems. From an initial state z(0), the system state trajectory only stays in the RPI sets
of the red mode during propagations which sometimes stays outside the others (blue

and green modes).
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With the constant detection input obtained from solving Problem 6.1, the guaran-

teed mode detection result is presented in the following theorem.

Theorem 6.9. If @ is a feasible solution of Problem 6.1, then for any initial state x(0), there
exists a finite time Nr(x(0)) such that the detection Card(X4(k)) = 1 is achieved in k <
Nr(z(0)). Moreover, the convergence time from x(0) to the set P, denoted as T can be

computed explicitly for any i € X4. Then, the upper bound for the detection time is

Nr(z(0)) = max T (6.36)

Proof. By the design of , it is guaranteed P2, N PL, = & for any two modes ¢, j € Xj.
For a given initial state 2(0) compatible with the mode i in (6.28), one has z(T}) € P,

independent of the operating mode
z(Nr(z(0))) € PL. (6.37)

But P!_.N P = o foralli # j and (6.37) only holds for the current operating mode. [

Variable Active Detection Inputs

The previous result shows that for any initial state 2(0), the mode detection can be
achieved in a finite time. However, this finite time or the energy of the active detection
input can be further optimized with variable signals [11]. Assume that the system (6.20)
is in mode i. Considering a horizon N;, we would like to design offline for a given
initial state 2:(0), a variable active detection input sequence u*(I),l = 0,..., N; — 1 such
that the operating mode of (6.20) will be detected in no more than V; time steps. The
applied active detection input for (6.20) will be

) - {u*(k), ifh< N, -1, 635

0, otherwise.

According to the discussion above, for any mode ¢ € X, the state (k) can be split
to be z(k) = (k) + #(k), where ' (k) and 7' (k) are propagated based on (6.25).

By definition of the RPI set, we know #(k + 1+ 1) € P' forl = 0,...,N; — 1,
Vw(l) € W. From (6.25), when the system (6.20), the following condition should be
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satisfied:

:z:(k+l+1)ePi(k+l+1):{fi(k+l+1)@75i},

forl=0,...,N;— 1.

For any two modes i, j € X, the variable active detection input sequence u*(l) for

[ =0,...,N; — 1along the horizon of N; can be designed to guarantee that at least one

of the following condition:
{Ei(l) ® 751'} N {a?j(l) @753} =g,

holds forl =0,..., Ny — 1.

(6.39)

We now propose the following offline mixed-integer optimization problem to de-

sign variable active detection inputs satisfying (6.39).

Problem 6.2 (Variable active detection inputs).

N¢—1

minimize : Z u(l)?,

u(0),...,u(N¢—1 —o
subject to

E'z'(1+1) = A'ZY(1) + B'u(l),
EiZi(141) = AZ9(1) + Blu(l),
Umin < U(l) < Umax,
u(Ny) =0,
71(0) = #1(0) = 1(0),
Hi; (Z'(1+1) =2/ (1+ 1))

> byj — M, A (1) + €,

Az’j(w = {51(1), . ,5pij (l)} € {0, 1}1%'3' ,
Ni—1 Pij

D> 0, (1) < Nepyj — 1,

=0 np=1

(6.40a)

(6.40b)
(6.40c¢)
(6.40d)
(6.40e)
(6.40f)

(6.40g)
(6.40h)

(6.401)

forl=0,...,Ny —land Vi,j € X4, i # j, with an arbitrary large positive scalar M, and an

arbitrary small positive scalar ;.
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The optimal solution of Problem 6.2 defines the variable active detection in-
puts u*(l) for{ =0,..., N, — 1.

The variable detection input sequence obtained from solving Problem 6.2 guaran-

tees that the mode detection result is also presented in the following theorem.

Theorem 6.10. Given an initial state x(0). If Problem 6.2 is feasible for a horizon Ny, then the
detection is guaranteed Card(Xy(k)) = 1 for k < N;.

Proof. Similar to the proof of Theorem 6.9, the feasible solution ensures that the set
separation Pi(k) N PI(k) = @ for some 0 < k < N,. Thus, the monotonic decrease of
Y4(k) is guaranteed, and consequently the convergence in finite time to Card(Xy(k)) =
1. O

Corollary 6.7. Given x(0) and assuming Problem 6.1 is feasible. Then, a feasible solution for
Problem 6.2 exists with Ny < Np(x(0)).

Proof. The feasibility of Problem 6.1 ensures a mode detection in N7 (z(0)) steps. The
sequence u(0) = u(1l) = --- = u(N7p(z(0))) = u represents a feasible solution of Prob-
lem 6.2 with Ny = Np(2(0)). Thus, the proof is complete and the optimal solution of
Problem 6.2 can only improve the detection time N; < Np(x(0)). O

6.2.3 Active Mode Detection Algorithms

Based on the above results, we next propose two algorithms for active mode detec-
tion. The first algorithm exploits the separation based on the constant input signal
(Problem 6.1) and achieves the mode detection by updating online the active input ac-
cording to the monitoring of the compatible modes. Overall, this leads to a piecewise

constant signal and a detection time upper-bounded by N (z(0)).

The second algorithm builds with a variable detection input sequence, which guar-
antees the active mode detection in N; time steps. This algorithm can be enhanced by
recomputing the active detection input sequence u*(l) for I = 0,..., N; — 1 after each

update of the set X;.
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Algorithm 6.1 Active mode detection with constant detection input

1:

_
N 22

13:
14:
15:

(Offline procedure) For any X C ¥; with Card(X) > 2, compute uyx as the solution
of Problem 6.1;
(Online procedure) Input an initial state x(0);
Compute the compatible state z*(0) with u(0) = @y, (o) and 2(0);
k=0;
while Card(Xy(k)) > 1 do
fori € X,(k) do
if (k) ¢ {azi(k) ® P} then
La(k) = Za(k) \ {i};
end if
end for
u(k) = Uz, k) ‘
Update the nominal state z*(k + 1) by (6.28a);
k=k+1;
end while
Obtain Card(X,;(k)) = 1 and the operating mode is detected.

Algorithm 6.2 Active mode detection with variable detection inputs

1:

_ =
N =

13:
14:
15:

—_
2 e

(Offline procedure) Given an initial state z(0), solve Problem 6.2 and obtain the active
detection input sequence v*(!) for{ =0,...,N; — 1;
(Online procedure) Initialize X'4(0) = Xy;
Compute the compatible state z°(0) with u(0) = u*(0) and z(0);
k=0;
while Card(Xy(k)) > 1 do
fori € Xy(k) do
if (k) ¢ {zi(k) ® P} then
La(k) = Za(k) \ {i};
end if
end for
u(k) = u*(k);
Update the nominal state z'(k + 1) by (6.25a);
k=k+1;
end while
Obtain Card(Xy(k)) = 1 and the operating mode is detected.
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6.3 Numerical Example

Given the descriptor system (6.20) with three modes (d = 3) where system matrices are

given by

1 0 0 0.8558 —0.1692 0.2212
E'=10 1 o|,A'= (0018 0.7203 —0.0929] ,

00 1 0.0292 —0.0467 0.7540

(15 08 0 1275 0.64 2
E’=10 16 0|,4%2=| 0 128 25|,

0.7 0.8 0 0.595 0.64 1

(05 0 1.8 032 18 -2
=10 0 —12|.42=|0 =12 15/,

0 0 1.5 0 15 08

from which mode 1 is a standard dynamical system, mode 2 is an admissible descriptor

system, and mode 3 is a non-causal descriptor system. Besides,

1 3.3 1.3
B'=|1|,B*=|285|,B%= |-045],
0.5 2 1.9
1 6.3 —3.7
Bl =|1|,B:=|66|,B3=1|33],
1 3.5 3.9

and w(k) € W, Vk € N, where W is defined in (1.13) with w = 0.01. By means of results
in Section 6.1, the mRPI sets of three modes P° for o € X3 = {1,2,3} can be obtained
as shown in Figure 6.5 with u = 0. Since the coordinate origin is the equilibrium point

of three modes, these three mRPI sets P7 for o € X3 overlap.

By solving Problem 6.1 with three modes in this example, we can obtain a con-
stant input @123 = —0.0202. The separated RPI sets P, for 0 € Y5 are shown in Fig-
ure 6.6. Besides, from an initial state z(0) = [0,0,0] ", using the results in Lemma 6.2,
Theorem 6.2 and 6.4, the convergence time corresponding to three modes can be com-
puted as T} = 22, T? = 33 and 72 = 10. Hence, based on Theorem 6.9, the upper
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Figure 6.5: mRPI sets of three modes.

Table 6.1: Computation result with constant active detection input.

U with u Detection time Ny (x(0))

Upper bound 0.1353 33
Online simulations  7.9686 x 10~* 3

bound for the detection time is Np(x(0)) = max; 7! = 33. Furthermore, for any two
modes i,j € X3, by solving Problem 6.1, constant detection inputs can be obtained:
u12 = 0.0202, ug3 = 0.0139 and w13 = 0.0167. These constant detection inputs will be
used in the simulation by applying Algorithm 6.1.

With the same initial state 2:(0) = [0,0,0] ', by solving Problem 6.2 with N, = 10, we
obtain the active detection input sequence v*(I) for [ = 0,...,9. This input sequence

will be used in the simulation by applying Algorithm 6.2.

The comparison result of the constant detection input and variable detection input
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Figure 6.6: Separated RPI sets of three modes.

Table 6.2: Computation result with variable active detection input.

U with u*(k) Detection time [V,

Upper bound 0.0047 10
Online simulations  1.5948 x 10~ 1

sequence is reported in Tables 6.1 and 6.2. Based on the objective of Problem 6.1 or

Problem 6.2, a measure of the effort used in active detection inputs is given by

where N}, is a detection time. From Theorem 6.9, the upper-bound of the detection time
with the constant detection input is Ny (x(0)) = max; T = 33. From Theorem 6.10, with

a given initial state 2(0), we obtain a feasible solution to Problem 6.2 with the detection
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I Mode 1
\ | I Mode 2
| I Mode 3
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(b) by Algorithm 6.2

Figure 6.7: Active mode detection results.

time Ny = 10. From the above equation with N}, = Np(z(0)) = 33 and N, = N; =
10 respectively, we obtain the computation results of energy. In Table 6.2, it can be

seen that with variable detection input sequence, less effort is taken than the one with
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constant detection input.

The online simulations of applying Algorithm 6.1 and 6.2 have been carried out un-
der the same initial conditions: 2(0) and w(k) € W within the simulation window. The
results are shown in Figure 6.7. By applying Algorithm 6.1, the operating mode can be
detected at time £ = 3 and the system (6.20) is in mode 2 since the state trajectory only
stays in the blue set at time & = 3. By applying Algorithm 6.2, the current operating
mode can be detected at time k£ = 1 since the state trajectory only stays in the blue set,
which is faster than the previous case. Moreover, from Tables 6.1 and 6.2, the effort
associated with constant detection input is larger than the one with variable detection

input sequence.

6.4 Summary

This chapter has proposed robust invariant set characterizations of discrete-time de-
scriptor systems in both causal and non-causal cases. Two restricted equivalent forms
of descriptor systems have been revisited. Based on these forms, the explicit results
on robust invariant set characterizations are provided. Besides, we have also proposed
an active mode detection mechanism based on set invariance for discrete-time descrip-
tor system with multiple modes of operation. To separate RPI sets of descriptor sys-
tems, we have proposed two methods to design active detection inputs, from which we
present two active mode detection algorithms. Finally, through a numerical example,
the results show that the operating mode can be detected in a finite time by applying

the proposed algorithms.

The future research related to this chapter is summarized in the following potential

directions:

e The unstable descriptor systems with a stabilizing feedback could be considered
in active mode detection. The RI sets can be extended to be controlled RI sets. For
implementing active mode detection, the stabilizing feedback control input and

active detection input can be designed simultaneously.

e The constraints on system states of descriptor systems can be considered, which

should also be taken into account in the design of active mode detection.
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CHAPTER 7

ECONOMIC MODEL PREDICTIVE
CONTROL STRATEGIES BASED ON A
PERIODICITY CONSTRAINT

Periodic behavior appears in some specific systems, such as WDNs [65] and electrical
networks [35]. One specific example stems from the periodic behavior of customer de-
mands in WDNs. A WDN generally consists of a large number of hydraulic elements,
such as storage tanks, pressurized pipelines, pumping stations (including several par-
allel pumps) and valves. EMPC is suitable for optimizing the economic performance
of operations in WDNs, as shown in [20, 85, 94], but these methods do not take specific
advantage of the periodic nature of the consumer demands and energy costs. Taking
into account the daily water demand patterns and periodic electricity prices, periodic

operations can also be considered in the EMPC design.

In this chapter, a novel EMPC framework for periodic operation is first proposed.
We formulate an EMPC optimization problem without setting a terminal state. Hence,
it does not need to know a periodic steady trajectory as a priori knowledge. There-
fore, the economic cost function is optimized with a periodicity constraint considering
all the periodic trajectories including the current state along the prediction horizon.
Unlike the conventional MPC optimization formulation, the current state is set as a
shifted position and not necessarily being the first prediction state. In order to investi-
gate the closed-loop convergence, an optimal periodic steady trajectory can be obtained

by the proposed finite-horizon optimization problem that is called the EMPC planner.

179
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Recursive feasibility and the closed-loop convergence to the optimal periodic steady
trajectory are discussed and an optimality certificate is provided based on the Karush-
Kuhn-Tucker (KKT) optimality conditions. Furthermore, the proposed EMPC frame-
work is extended into the robust case. The tube-based approach is used to achieve
robust constraint satisfaction as well as recursive feasibility in the presence of distur-
bances. The mismatches between the nominal model and the closed-loop system with
perturbations are limited using a local control law. Also under convexity assumption,
robust stability of the closed-loop system is analyzed using KKT optimality conditions
and an optimality certificate is provided to check if the closed-loop trajectories reach
a neighborhood of optimal nominal periodic steady trajectories. The contributions of

this chapter have been published and submitted to [157] and [136], respectively.

7.1 EMPC based on a Periodicity Constraint

Consider the class of discrete-time LTI systems
x(k+1) = Az(k) + Bu(k), (7.1)

where z € R"* and u € R denote the system state vector and the control input vector,

respectively. Moreover, A € R"**"* and B € R™ %™ are system matrices.

For (7.1), system states and control inputs are limited by the following constraints:
x(k) € X, u(k) €U, Yk € N, (7.2)

where X and U are strictly convex sets of states and inputs.

The economic performance of the system (7.1) is measured by a time-varying eco-

nomic cost function
C(x(k),u(k),pi), i = mod(k,T) (7.3)

where T' € Z, is a period index and p; is a time-varying exogenous signal usually

indicating the unit prices, which is stored in a known sequence p as

p:{p’b}u izlv"‘vTa
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and exhibiting a periodic behavior is implemented using the modulo opera-
tor mod(k, T"). It is worth mentioning that ¢ (x(k), u(k), p;) is not necessarily a quadratic
function that depends on a sequence of references for tracking. The main control ob-
jective is to minimize the closed-loop economic cost measured by ¢ (x(k), u(k), p;) that
is a strictly convex function, V& € N and the periodicity of this economic stage cost
function is given by ¢(z(k), w(k),p;) = l(x(k + T),u(k + T), p;) with i = mod(k, T).

In this section, we propose an EMPC formulation that by guaranteeing the closed-
loop system convergence to a periodic steady trajectory minimizes the economic cost
while satisfying all the constraints. A procedure to certify that the reached trajectory is
optimal with respect to the optimal economic cost. In addition, the proposed controller

does not lose feasibility even in the presence of sudden changes in the economic cost.

In principle, MPC controllers are based on solving a finite horizon optimization
problem. If a steady state trajectory is known, a terminal constraint is included forcing
the predictions to reach this steady trajectory at the end of the MPC prediction horizon.
While several controllers proposed in the literature are based on a standard terminal
region/constraint approach, we assume that a steady state trajectory is unknown in
the EMPC design. We propose a different approach in which the MPC controller seeks
to minimize the economic cost function over a single period that includes the current
state. Besides, we propose an optimization problem to find an optimal periodic steady

trajectory that will be used for the analysis of the closed-loop convergence.

The proposed controller guarantees recursive feasibility and hence the closed-loop
convergence even in the presence of sudden changes in the economic cost function,
because the constraints of the optimization problem are independent of this cost func-
tion. Note that standard approaches that depend on terminal constraints often lead to
optimization problems that have to be modified if the economic cost function changes,
which in general lead to a more complex control scheme and even to possible loss of

feasibility issues [69, 80].

7.1.1 EMPC Planner

We first present a finite-horizon optimization problem, the so-called planner, to find
the optimal periodic steady trajectory that will be used for the analysis in the next sec-

tion. Because of the periodic nature discussed above, it can be proved that the infinite
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horizon problem is equivalent to the following finite horizon optimization problem in
which a single period is taken into account [65]. This optimization problem yields the

same solution if the time frame to be considered is any period.

T-1
minimize Jr(a,u,p) = 3 ¢(2(), u(d). p), (7.42)
z(0),...,.zT, ‘
U(O),--.,u(TT—1) i=0
subject to
x(i+ 1) = Az(i) + Bu(i), (7.4b)
e (7.40)
uoed. (7.4d)
z(0) = 2(T). 740

Remark 7.1. Note that in formulation above, the time step ¢ = 0 is chosen as the first
step of one period. If a different initial step is chosen, the functions would be different
but would lead to an equivalent problem. This choice will affect the proposed EMPC
optimization problem as it will be based on solving a finite horizon optimization prob-
lem in a period that starts at some multiple of T, that is, at the same time step used to

define the planner.

7.1.2 EMPC Controller

The EMPC strategy is proposed by implementing the following optimization problem.
Considering the periodicity, the current state (k) at time step k£ € N is inserted into the

shifted position.

minimize Jr(z,u,p), 7.5a
Tonmize Jr(eu.p) (7.52)
u(0),...,u(T—-1)
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subject to

2(i +1) = Az(i) + Bu(d), (7.5b)
2(i) € X, (7.5¢)
u(i) €U, (7.5d)
2(0) = z(T), (7.5¢)
2(j) = z(k), j=mod (k,T). (7.5f)

Due to the periodic system behavior, the optimization problem (7.5) is always ini-
tialized from time step ¢ = 0. At each time step, this optimization problem is solved
with a fixed prediction horizon of T'. Note that the current state z(k) is not always set

as the first state prediction.

Let u*(i), ¢ = 0,...,T — 1 be a set of optimal solutions of the optimization prob-
lem (7.5) with the initialization of (k). According to the receding horizon strategy, the
optimal control action u(k) applied to the closed-loop system at time step & is chosen
by

u(k) =u*(j), j = mod (k,T). (7.6)

Remark 7.2. In the formulations of the optimization problems (7.4) and (7.5), the sub-
script k, Vk € N corresponds to a time instant while the index ¢ with7 =0,1,...,7 — 1

refers to a prediction step in the optimization problem.

We now provide the following two remarks regarding the properties of the pro-
posed EMPC controller. The detailed discussion and proof will be presented in the

next section.

Remark 7.3. Note that the constraints of the optimization problem (7.5) do not depend
on the economic cost function, so recursive feasibility is guaranteed even in the pres-

ence of a sudden change.

Remark 7.4. The optimization problem (7.5) is feasible if there exists a feasible periodic
trajectory over a length of T that includes the current state x(k). This implies that
the domain of attraction, that is, the feasibility region of (7.5) is in general very large,
as it is not constrained to reach a specific target in a fixed time as in standard MPC

formulations with terminal regions.
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7.1.3 The Closed-loop Properties with the EMPC Controller

We now discuss the closed-loop properties of the system (7.1) with the EMPC controller
implemented by (7.5). Recursive feasibility and convergence analysis are standard no-
tions in MPC designs [50]. In the following, we summarize and prove these closed-
loop properties of the proposed controller. In particular, under a certain assumption,
the closed-loop system trajectory converges to the optimal periodic steady trajectory
obtained by the planner (7.4).

Theorem 7.1. The system (7.1) in closed-loop with the EMPC implemented by the optimiza-
tion problem (7.5) is stable and converges to a periodic steady trajectory. This trajectory is
equal to the optimal trajectory obtained from the optimization problem (7.4), if there exists a
time step M > 0 such that for any k > M, the dual variables corresponding to the equality

constraints (7.5f) in KKT optimality conditions are zero.

Proof. We first discuss the recursive feasibility of the closed-loop control system.

(Recursive feasibility) If the optimization problem (7.5) is feasible at time step k € N,
then it is also feasible at time step k + 1. Let us denote x(j) and u(j) for j = mod(k,T")
be feasible solutions of the optimization problem (7.5) at time step £ € N. All the
constraints (7.5b)-(7.5f) are satisfied at time step k& € N. Thanks to the formulation
in (7.5), as discussed in Remark 7.2, constraints (7.5b)-(7.5e) are also satisfied at time

step k + 1 since they do not depend on the time step k + 1.

From (7.5f), we have
z(j)==z(k+1), j=mod(k+1,T),
which is equivalent to

2(j+1) =a(k+1), j=mod(kT). (7.7)

If the constraint (7.7) holds, then the optimization problem (7.5) is feasible at time
step k + 1. Recall the feasible solutions z(j) and u(j) for j = mod(k,T") and we know
z(j) = xz(k) and u(j) = u(k) hold. From (7.5b), we can derive

z(j +1) = Az(j) + Bu(j),
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and with the control action u(k) chosen in (7.6) and the system (7.1), the constraint (7.7)
is satisfied. Thus, we can conclude that the optimization problem (7.5) is also feasible

at time step £ + 1.

Since the optimization problem (7.5) is recursively feasible, we denote its optimal

MPC cost as V (k, x, p) at time step k. By optimality [15], we know that
V(k+1,2,p) <V(k,z,p), (7.8)

which implies the cost of the optimization problem (7.5) is a non-increasing sequence

and therefore the closed-loop system is stable.
Next, we discuss about the convergence of the closed-loop control system.

(Convergence analysis) For the analysis below, we first reformulate the optimization

problems (7.4) and (7.5) into standard convex formulations. Let us define the vector
T
2= 27, s 2T, w7, e wT-1T| 79)

and the cost function Jr(z,u,p) becomes Jr(z,p). Then, we rewrite the optimization

problem (7.4) to be in a standard convex form as follows

minizmize Jr (z,p), (7.10a)
subject to

hy(2) <0, m=1,...,m, (7.10b)

9i(2)=0, i=1,...,n. (7.10¢)
where the functions h, for r = 1, ..., m correspond to the constraints (7.4c)-(7.4d), and

the functions g; for i = 1,...,n represent the prediction model (7.4b) and the peri-
odicity constraint (7.4e). Besides, let us denote the optimal solution of the optimiza-
tion problem (7.10) (the optimization problem (7.4)) as 27, that is, the optimal periodic
steady trajectory.
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By the convexity assumption, it follows that there exist dual variables

A7 I
)\p = . 5 ,LLP = . 5
A 1in

such that the following KKT optimality conditions of (7.10) hold

Vi (2,p) + > NeVh (22) + > pfVg; () =0, (7.11a)
r=1 =1

hy (2%) <0, r=1,...,m, (7.11b)

g9i (") =0, i=1,...,n, (7.11¢)

AXL>0, r=1,...,m, (7.11d)

Mh, (2P) =0, r=1,...,m. (7.11e)

Similarly, with the vector z defined in (7.9), the optimization problem (7.5) can be

reformulated to a standard convex form as

minimize Jr (z,p), (7.12a)
subject to

hy(2) <0, r=1,...,m, (7.12b)

gi(2)=0, i=1,...,n, (7.12¢)

Qjz=xz(k), j=mod(k,T), (7.12d)

where Q; with j = mod (k, T') is defined based on (7.5f). Besides, we denote the optimal
solution of the optimization problem (7.12) at time k as z(k). Then, there exist dual

variables

Am (k) pin (K) Vn, ()

such that the following KKT optimality conditions of (7.12) hold
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VJr (2(k),p) + Y Ae(k)Vhe (2(k)) + Z pi(k)Vygi (2(k)) + Z v (k) Qioa(ery = 05
r=1 i=1 I=1 7150
he (2(k)) <0, r=1,...,m, (7.13b)
gi(2(k)) =0, i=1,...,n, (7.13c¢)
Qjz(k) = x(k), j=mod(k,T), (7.13d)
A(k) >0, r=1,...,m, (7.13¢)
Ao (k) (2(k) =0, r=1,...,m, (7.13f)

where Qé- is the [-th row of ); transposed.

As discussed above, the cost of the optimization problem (7.5) is a non-increasing
sequence. Taking into account that by assumption that the cost function Jr (z,p) is
strictly convex, with recalling V' (k, z, p) as the cost at time step &, it is not possible that
there exist two consecutive time steps k and k + 1 such that the costs V (k,z,p) =
V(k+1,z,p) with 2(k) # z(k + 1) due to optimality. Hence, if V (k+1,2,p) =
V (k,x,p), Vk > M, the system (7.1) in closed-loop reaches a periodic steady trajec-
tory, thatis, z(M) = 2(M +1) = ---.

Without loss of generality, we assume that mod (M,T) = 0. Let us denote z° =
z(M) as this periodic steady trajectory. The solution 2z is also feasible for the optimiza-
tion problem (7.4). On the one hand, the closed-loop solution z(k) should be equal to
the optimal solution 2*, that is z° = z(k), Vk > M. On the other hand, z* is an optimal
solution of the optimization problem (7.5) such that 2%, Vk > M satisfies the KKT con-
ditions in (7.13). If the dual variables in v(k) are zero, then (7.13d) can be disabled. As

a result, z* also satisfies the KKT conditions in (7.11). Hence, we have

which means that the closed-loop trajectory z(k) converges to the optimal periodic
steady trajectory 2, Vk > M. O

Remark 7.5. For a periodic steady trajectory z°, all the constraints of (7.12) must be
satisfied for all k = 1,...,T with 2(k) = 2® and z(k) = Q;2° with j = mod(k,T). The
solution provided by the planner (7.10) satisfies this condition by definition with dual
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variables of constraint (7.12d) equal to zero. Although it is rarely found because the
number of constraints is larger than the number of variables, other trajectories may also
satisfy the condition. In this case, the closed-loop system may converge to a periodic

trajectory different from the planner.

7.1.4 Example

To better illustrate Remark 7.5, we present the following example in which the closed-

loop system converges to a periodic trajectory different from the planner.

Consider the following system subject to additive known signal
x(k +1) = Ax(k) + Bu(k) + Bad(k),
with the following system matrices
0.5 0.5
A — 5 B =
1 025

where d is a periodic known disturbance signal with a period 7" = 3. The values of

these periodic signals are given by d(k) = d; with i = mod(k,T), where d; = —0.1,
dy = —0.2 and d3 = —0.1 for ¢ = 1,2,3. This system is controlled by the proposed
EMPC. In this example, consider the formulations in (7.10) and (7.12) and the quadratic

cost function Jr(z) = 32" Hz + fTz with

szi&g([l 1 10 1 1 20 1 1 10])7

T
fZ[O.l 0.1 01 0.1 01 01 0.1 01 0.1} )

where diag(-) returns a diagonal matrix with diagonal elements defined by its argu-
ment. The input must belong to the set i/ = {u € R: —-0.1 <u <0.1} and no con-

straints are considered for the states.

The simulation with this example has been carried out for 60 sampling steps. As
shown in Figure 7.1, the closed-loop trajectories of both entries z1(k) and zy(;) of the
state states converge to a periodic trajectory that are different from the one correspond-
ing to the planner. Figure 7.1.4 shows that the cost of the MPC optimization problem

is a non-increasing sequence that reaches a constant value when the system converges
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Figure 7.1: Closed-loop state trajectory of the example.

to the periodic trajectory. In this case, because this trajectory is different from the op-
timal one computed by the planner, its corresponding cost is higher that the planner.
Besides, we show a measurement (defined by the 2-norm) of the dual variable v(k) in
Figure 7.1.4. From this figure, we can see that dual variables corresponding to (7.12d)

are not zero at any time since the closed-loop trajectory cannot reach the planner.
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Figure 7.2: Closed-loop MPC cost and a measure of dual variables of
the example.

7.2 REMPC based on a Periodicity Constraint

Consider the system (7.1) subject to additive disturbances
z(k+1) = Az(k) + Bu(k) +w(k), (7.14)

where w € R"™ denotes the disturbance vector.
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Remark 7.6. From application point of view, the disturbance vector w(k) may include
two parts as
w(k) = Byd(k) + w(k), (7.15)

where d € R™ denotes the vector of deterministic disturbances that is considered to
be known also following a periodic behavior, that is d(k) = d(k + T') with a period
T € Z+ (see, e.g. [18, 146]). w(k) is the unknown disturbances vector. B; € R™**"d is a

distribution matrix.

For notation simplicity, we consider that in general w(k) is unknown and the fol-

lowing assumption is made.

Assumption 7.1. The disturbance vector w(k) is assumed to be unknown but bounded by a
convex set W, that is
w(k) e W, VkeN. (7.16)

The state and control input vectors, z(k) and u(k) are required to satisfy the con-
straints in (7.2). Denote the nominal state and input vectors as € R" and u € R™,
which follow (7.1). Let us recall it as

Z(k+1) = Az(k) + Bu(k). (7.17)

In principle, the nominal system (7.17) could be used as the prediction model in
an MPC design. However, due to the existence of w(k) € W, Vk € N, the predicted
states have a mismatch with the real states of the system (7.14). Hence, an REMPC con-
troller is required to guarantee recursive feasibility and robust constraint satisfaction

in closed-loop.

With the strictly convex economic cost function (7.3), the control objective is to min-
imize the closed-loop economic cost Y.~ ¢ (z(k), u(k), p;) of system (7.14) in the pres-
ence of disturbances. The mismatch between the closed-loop perturbed states and the

open-loop nominal predicted states is corrected using a local control law.

We consider that state = of system (7.14) is fully measured and the pair (A, B) is
controllable. Following the so-called tube based approach [52], to guarantee recursive
feasibility, we will use a robustly stabilizing local control gain K € R"**™ such that
(A + BK) is Schur stable to tighten the sets X and ¢/. Based on Definition 1.12 and



Chapter 7 : Economic Model Predictive Control Strategies based on a Periodicity
192 Constraint

Lemma 6.1, let an RPI set Z be a polytopic form as

Z:={zeR": H?x <V’ H* e R"™ " b* e R"™}.

Based on the robust tube-based technique, we refine the sets X and U/ to be A" and

U", where

XT=Xo2Z, (7.18a)
U =USKZ. (7.18b)

Assumption 7.2. The sets X" and U" are assumed to be not empty.

7.2.1 REMPC Planner

We now extend EMPC planner in (7.4) to the robust case that provides the best possi-
ble periodic trajectory with respect to the economic cost taking into account the set of
tightened constraints that will be used in the MPC formulation. The resulting trajec-
tory provides the optimal nominal periodic steady trajectory. The control objective of
the proposed robust MPC controller is to drive the closed-loop system to a neighbor-

hood of the optimal nominal periodic steady trajectory while robustly satisfying all the

constraints.
T-1

(0) (T 1) =

subject to
T = A B, (7.19b)
etes (7.19¢)
u(i) eUOKZ, (7.19d)
7(0) = 2(T). (7.19)

By solving the optimization problem (7.19) offline, we can obtain the optimal solu-
tion denoted as z*(0), ..., z*(T) and w*(0),...,a*(T — 1).
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7.2.2 REMPC Controller

In addition, the controller formulation is based on a tube-based approach. This implies
two facts: (i) the constraints are tightened using an RPI set; (ii) the periodic trajectory
will not meet through the current state £ at prediction time j = mod(k, T"), but instead
the difference has to be included in the aforementioned RPI set. These ingredients,
together with the controller equations aiming to reduce this difference between the
real state and the predicted state, will provide recursive robust constraint satisfaction.
The closed-loop properties of the proposed REMPC controller will be demonstrated in
the following section. In general, the REMPC controller is formulated by the following

optimization problem:

%Bnlm%%? Jr (z,u,p), (7.20a)
w(0),...u(T—1)
subject to

z(i+1) = Az (i) + Buf(i), (7.20b)
(i) e XO Z, (7.20c)
w(i) eUe KZ, (7.20d)
z(0) = z(7), (7.20e)
z(k) — %(j) € 2, j =mod (k,T). (7.20f)

From the optimal solutions of (7.20), with the local control gain K € R"**"«, the

control action at time instant k is chosen as

u(k) =a(j) + K (z(k) —z(j)),j = mod (k,T) . (7.21)

Using the formulation in (7.21), the mismatch between the predicted state z(j)
for j = mod (k,T) and the closed-loop state x(k) is attenuated by the local control gain
K. In this case, thanks to constraint (7.20f), the closed-loop state trajectory z(k) can al-
ways stay in a neighborhood of z(j), that is the tube defined by the RPI set Z. Besides,
a periodic operation with the proposed REMPC can be achieved using the periodicity
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constraint defined in (7.20e).

Remark 7.7. In the optimization problems (7.19) and (7.20), the indexi = 0,..., 7 — 1
is a prediction step along the MPC prediction horizon while the index £ € N is a time

instant for the simulation loop.

7.2.3 The Closed-loop Properties with the REMPC Controller

In this section, we study the properties of the system (7.14) in closed-loop with the
robust economic MPC controller implemented by (7.20), which are summarized in the

following theorem.

Theorem 7.2. Consider the system (7.14) with the robust economic MPC controller imple-
mented by (7.20), the following closed-loop properties hold:

(a) If the optimization problem (7.20) is feasible from an initial state x(0), then the closed-loop
system satisfies all the constraints for all possible disturbances satisfying Assumption 7.1

and the optimal MPC cost V (k,z,p), Yk € N is a non-increasing sequence.

(b) If there exists a time step M > 0 such that for any k > M, all the variables in the dual
vector corresponding to the constraint (7.5f) are zero in the KKT optimality conditions,
then the closed-loop system has reached a neighborhood (enclosed by the RPI set Z) of the
optimal nominal periodic steady trajectory z*(j) with j = mod(k,T’) obtained from the
planner (7.19).

Proof. We first prove the closed-loop property expressed in the statement (a). In the fol-
lowing, we discuss recursive feasibility and robust constraint satisfaction of the closed-

loop system. From these result, the closed-loop convergence is provided.

(Recursive feasibility) Let Z(j) and u(j) be feasible solutions of the optimization prob-
lem (7.20) at time instant k. We now prove that the optimization problem (7.20) is also
feasible at time k£ 4+ 1. From the REMPC formulation in (7.20), the constraints (7.20b)-
(7.20e) do not depend on the time instant & so z(j) and @(j) satisfy them by definition.
The only constraint that depends on the time instant & is (7.20f). From (7.20b), we have
that

z(j+1) = Az(j) + Bu(j), j=mod(k,T).



7.2 : REMPC based on a Periodicity Constraint 195

Taking into account (7.14) and the control action u(k) chosen in (7.21), we can obtain

a(k+1) = Ax(k) + B(a(j) + K (2(k) = 2(7)) ) +w(k)
= A(w(k) - 2(j) + 2() + B((7) + K ((k) - () ) + w(k)
= Az(j) + Bu(j) + A(;v(k:) — ;T:(j)) + BK(:v(k) — :E(j)) + w(k).

Therefore, by subtracting above two equations, we have

z(k+1)-z(j + 1) = (A+ BK)(z(k) — 2(j)) + w(k).

Considering the constraint (7.20f), we obtain
zk+1)—z(j+1) € (A+ BK)ZaW C Z,

for any w(k) € W. Hence, the constraint (7.20f) holds at time £+ 1 and the optimization
problem (7.20) is also feasible at time & + 1.

(Robust constraint satisfaction) With the feasible solution z(j) and u(j) at the time
instant time k, we know z(j) € X © Z and u(j) € U © KZ for j = mod(k,T'). Taking
into account that constraint (7.20f) holds, the control action u(k) at time instant & is

chosen in (7.21), which implies

wk)eUeo KZ® KZ CU.

From constraint (7.20f), we also have

zk)ez(jl)eZeceXoZqZCA.

We have proved that the optimization problem (7.20) is recursively feasible with
an initial condition x(0) and the constraints in (7.2) are satisfied. Since the optimal
solution of the previous time step is always feasible, by optimality, we can know the

optimal MPC cost V' (k, z, p) is a non-increasing sequence along the time step k, that is

V(k+1,z,p) <V(kz,p), VkeN. (7.22)
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We next prove the closed-loop property in the statement (b). For notation simplic-
ity, we denote a periodic trajectory including states and control inputs over the MPC

prediction horizon as the vector z € R"* ™" where
-
e=[207 - wD)T WO - wr-nT] (7.23)

and therefore the economic cost function Jr(z, u,p) becomes Jr(z,p). For the plan-
ner (7.19), the optimal cost can be denoted as Jr(z*,p). Taking into account that the
optimization problems (7.19) and (7.20) are strictly convex, we reformulate them in the

following convex forms. The optimization problem (7.19) is equivalent to

minimize Jr (z,p), (7.24a)
subject to

hy(2) <0, r=1,...,m, (7.24b)

gi(2) =0, i=1,...,n, (7.24¢)

where (7.24b)-(7.24c) are linear constraints. Specifically, (7.24b) corresponds to the re-
fined constraints on states and inputs in (7.18), and (7.24c) corresponds to the nominal

prediction model.

Similarly, the optimization problem (7.20) is equivalent to

minimize Jr (z,p), (7.25a)
subject to

hy(2) <0, r=1,...,m, (7.25b)

gi(2)=0, i=1,...,n, (7.25¢)

Hiz(k) — H;Q%(0)z —b; <0, j=1,...,ny, 0 =mod(k,T), (7.25d)

where H? and b% denote the j-th row of H* and b%, and Q*(0)z = z(o) with 0 =
mod(k,T).

For the optimization problem (7.25) at the time instant k, we denote
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z(k) = argminV (k, z,p) . (7.26)

According to [15, Chapter 5.5.3], we can obtain the KKT optimality conditions
of (7.25) as follows:

V1 (2(k),p) + D Ae(k)Vhy (2(k) + > pa(k) Vi (2(k)) + Z vi(k)H:Q*(0) = 0,
r=1 i=1
(7.272)
hy (z(k)) <0, r=1,...,m, (7.27b)
i (z(k)) =0, i=1,...,n, (7.27¢)
Hix(k) — H;Q%(0)z(k) —b> <0, j=1,...,ng, 0 =mod(k,T), (7.27d)
A(k) >0, m=1,...,m, (7.27e)
A (B)hy (2(K)) =0, r=1,...,m, (7.27f)
vi(k) >0, j=1,...,ng, (7.27g)
vj(k) (Hiz(k) — HiQ*(0)z(k) = b3) =0, j=1,...,ng, 0 =mod(k,T), (7.27h)
where A, (k), pi(k) and v;(k) are dual variables. Denote the following vectors
Ai(k) p () vi (k)
AR)=| ¢ k)= |k =] 1 . (7.28)
Am (F) fin (k) Vn, ()

In terms of the REMPC planner in (7.19), the equivalent convex form can be written

in a similar form as (7.25) excluding the constraint (7.25d).

Recall the optimal nominal periodic steady trajectory as z*, where the variable as-
signment for z is defined in (7.23). Therefore, there exists a set of dual vectors \* and *

this optimal solution z* also satisfies the KKT optimality conditions:

VJr (z*,p) ZMW +mez =0, (7.29a)

hy (2%) <0, r=1,...,m, (7.29b)
9 (2°)=0, i=1,...,n, (7.29¢)
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Ar>0, r=1,...,m, (7.29d)
Mhr (2%)=0, r=1,...,m. (7.29e)

(Convergence) We have proved that the optimal MPC cost V' (k,z,p), Vk € Nis a
non-increasing sequence. Without loss of generality, we also consider that this opti-
mal MPC cost is lower bounded by the optimal MPC cost corresponding to the plan-
ner (7.19). This implies that as the time step k — +o0, the optimal MPC cost can reach
a constant value. In this case, there exists a time instant M such that for any &£ > M,
V(k+1,z,p) =V (k,z,p) holds, that is, we have reached a constant cost. Because the
economic cost function Jr (z,p) is strictly convex, it follows z(k + 1) = z(k) = 2°. It

means that after M time steps, we can obtain a steady periodic trajectory z°.

(Optimality Certificate) Since z° is a feasible solution of the optimization prob-
lem (7.25), there exist dual vectors A\*, ;* and v* such that the KKT optimality con-
ditions (7.27) hold. Recall z* and J7(z*, p) as the optimal planner trajectories and the
economic planner cost obtained by solving the optimization problem (7.25). If the dual
vector v® = 0, then \* and p* satisfy the KKT conditions (7.29) of the planner, which
implies 2* = z* and V' (k, z, p) = Jr (2%, p).

The condition v; = 0 is called the optimality certificate. If this certificate is satisfied,
then from the trajectory z* = z*, we denote z*(0) = Q*(0)z*, ¢ = mod(k,T') corre-
sponding to states. From constraint (7.5f), we obtain z(k) — z*(0) € Z for any k > M,
which means the closed-loop system can reach a neighborhood (enclosed by the RPI

set Z) of the periodic nominal steady trajectory that is obtained by the planner.

Summing up, the proposed controller guarantees robust constraint satisfaction, re-
cursive feasibility and a non-increasing optimal cost of the optimization problem (7.20),
which guarantees the convergence to a neighborhood of the optimal nominal peri-
odic steady trajectory when the optimality certificate is satisfied. Based on the con-
straint (7.5f), as the time step k& — +o00, the deviation of the closed-loop system trajec-

tory from the nominal steady trajectory is bounded in the RPI set Z. O

Remark 7.8. From Theorem 7.2, we have provided an optimality certificate, that is all
the variables in the dual vector corresponding to the inequality constraint (7.25d) are
zero in the KKT optimality conditions, which can be verified online to known if the
closed-loop convergence is optimal, that is it reaches a neighborhood of the optimal

periodic steady trajectory after M time steps.
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— — — Planner z*

)

L1

Figure 7.3: Closed-loop trajectory and optimal nominal steady
periodic trajectory with tubes.

Remark 7.9. For some certain systems, due to tight constraints leading to low degree of
freedom, the optimality certificate may be not satisfied. Then, from the recursive feasi-
bility, the corresponding KKT optimality conditions (7.27) can be still satisfied. In this
case, he optimization problem (7.25) is also possible to reach a steady solution z* with
\V (k+1,2z,p) =V (k,z,p)| < ¢, Vk > M with an arbitrary small scalar . However,
from the KKT optimality conditions (7.29), 2° is a suboptimal solution. Thus, we can
conclude that 2° # 2* and Vr (k,z,p) > Jr (2%, p).

In this REMPC design, the tube-based technique is used. As an example shown
in Figure 7.3, the optimal nominal periodic steady trajectory obtained by the plan-
ner (7.19) is plotted in red dashed line, the tubes defined by the RPI set Z are plotted
in blue boundaries, and a closed-loop trajectory of system (7.14) with the proposed
REMPC (7.20) is plotted in the blue line. Hence, we can conclude that once the closed-
loop trajectory is close to the optimal nominal periodic steady trajectory, the optimal
solution does not change because the state is in a tube and the input applied in (7.21)

guarantees that it will not go outside the tube because it is defined as an RPI set.



Chapter 7 : Economic Model Predictive Control Strategies based on a Periodicity
200 Constraint

=

///////////////
///////////////

Figure 7.4: Mass model with a spring and a damper.

7.24 Example: the Mass Model

The mass model with a spring and a damper taken from [18] is shown in Figure 7.4.
Consider a discrete-time model of this mass model in the form as in (7.14) with the

following system matrices

0.9952  0.0950 0.0048
A= , B = » Ba= B,
—0.0950  0.9002 0.0950

and w(k) := Bgd(k)+w(k), where the displacement and the velocity of the mass model
are chosen as state variables in z, d is a periodic known signal with a period T = 10 that
is given by a sequence d(k) = d; with i = mod(k,T"). The disturbance w(k) € W, Vk €
W, where the set W is given by W = {w € R? | Jw| < [0.005 0.01]T}. The constraints

on states and inputs are given by the following sets:

X = {x eR?| |z < [L5 0.75]T} ,

U={uecR]||u <8}.

The local control law K € R'*2 is computed using the LQR method with weighting

0.1 0
matrices ) = [ 0 o 1] and R = 0.01 obtaining

K =[-1.8635 —2.5172].

The initial state is z(0) = [—0.0890 0.3570]". As defined in [18], the economic cost
function is chosen to be /(Z, 4, p) = 10(z2(i) — p;)? + (u(i))? with a periodic signal p. In
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order to test the proposed controller with sudden changes. These sudden changes are
given by choosing different values of periodic signals d and p. In the simulation, the

following two scenarios are considered:

e Scenario 1: For k < 50,

211

T
-

D = O.1sin(%), i=0,...,T—1.

d; = 5cos( i=0,....,T—1,

e Scenario 2: For k > 50,

21

di = 0.1sin(Z) +0.5, i=0,....T ~1,

9
D = 1.2005(%2), 1=0,...,T—1.

The optimization problems (7.19) and (7.20) are solved using the YALMIP tool-
box [73] and the MOSEK solver [53] in the MATLAB environment. For the previous
scenarios, the planner has been applied. Then, two optimal nominal periodic steady

trajectories and two different optimal MPC costs can be obtained.

The closed-loop simulation has been carried out for 120 sampling time steps with
a sudden change defined in the previous two scenarios. As shown in Figure 7.5, the

unknown disturbance w(k) is defined as follows:

w, k < 40,
w(k) =< wew, 40 < k < 80,
0, k > 80.

The closed-loop results of state and control input trajectories are shown in Figure 7.6
and Figure 7.7. For k < 50 (Scenario 1), starting from the feasible initial state z(0),
the closed-loop state and input trajectories converge to a neighborhood of the optimal
nominal periodic trajectories obtained by the Planner 1. At the time step k& = 50, there
is a sudden change of the periodic signals d and p as defined in Scenario 2. For £ > 50
(Scenario 2), the closed-loop system is also feasible and the closed-loop state and input
trajectories converge to a neighborhood of the optimal nominal periodic trajectories

obtained by the Planner 2. From these results, it proves that the closed-loop system is



Chapter 7 : Economic Model Predictive Control Strategies based on a Periodicity

202 Constraint

0.01

0.005
9

1\3/ 0

-0.005

-0.01

20 40 60 80 100 120
k

Figure 7.5: Sampled bounded disturbances.

always feasible from an initial state even with a sudden change.

Since we have discussed that the recursive feasibility mainly relies on the equality
constraint (7.5f), this constraint should be satisfied with the closed-loop state z(k), Vk €
N. As shown in Figure 7.8, the mismatch between the closed-loop state and the optimal
nominal state should be always inside the RPI set Z. Hence, this result also proves that
the closed-loop system can be always recursively feasible in the presence of unknown-

but-bounded additive disturbances.

Taking into account three different selections of bounded additive disturbances, for
k < 40, the closed-loop state and input trajectories are periodic based on the period-
icity constraints and meanwhile approaching to the optimal nominal periodic steady
trajectories obtained by the Planner 1. For 40 < k < 80, the closed-loop trajectories are
close to the optimal nominal periodic steady trajectories and with the sudden change,
the optimal nominal periodic steady trajectories are switched to the ones obtained by
the Planner 2. Besides, the closed-loop trajectories in Figure 7.6(b) and Figure 7.7 stay
close to the optimal nominal periodic steady trajectories in the tube (defined by the
RPI set Z). For k > 80, since w(k) = 0, the closed-loop state and input trajectories are
able to match the optimal nominal periodic steady trajectories of the Planner 2 after a

transient time.

Moreover, from the offline computation results of the planners, two optimal MPC
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Figure 7.6: Closed-loop state trajectories of the mass model.

costs are also shown in Figure 7.9(a). Since the optimality certificate is verified online,
the closed-loop optimal MPC cost can converge to the optimal one for each scenario

with a sudden change in the closed-loop cost between two scenarios.

As discussed in Theorem 7.2, the optimality certificate is given by checking whether
all the variables in the dual vector v(k) corresponding to (7.5f) are zero. From the

online closed-loop simulation, these dual variables can be extracted together with the
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Figure 7.7: Closed-loop input trajectory of the mass model.
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Figure 7.8: Validation of the recursive feasibility for the mass model.
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Figure 7.9: Closed-loop economic cost and online verification of the
optimality certificate for the mass model.

optimal solution of (7.20) at each time step. To verify the optimality certificate, the 2-
norm of v(k) as ||v(k)||, is shown in Figure 7.9(b). For these scenarios considered, two
steady situations are expected to be observed. Despite sudden changes in the controller
design parameters, after a transient time, the 2-norm of v (k) converges to zero. Also
as shown in Figure 7.6 and Figure 7.7, the closed-loop trajectories are able to reach

a neighborhood of the optimal nominal periodic steady trajectories obtained by each
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planner.

7.3 Summary

This chapter has presented an EMPC framework based on a periodicity constraint for
both nominal and uncertain linear systems. We have proved that with the proposed
both EMPC controllers, the closed-loop system is able to converge to a (neighborhood
of) periodic trajectory and all the system constraints can be satisfied even in the pres-
ence of disturbances and sudden changes in the economic cost function. Besides, an
optimality certificate of the proposed EMPC has been given. We have proved that if
this optimality certificate is satisfied, the closed-loop trajectories can reach (a neighbor-
hood of) the optimal periodic steady trajectory obtained by the planner. In the robust
case, the neighborhood region is defined by the considered RPI set. Besides, in some
particular cases, due to constraints of the corresponding optimization problem are set
too hard, the closed-loop trajectory may be trapped in another periodic trajectory and

the optimality certificate cannot be satisfied.

Some future directions for this EMPC framework could be

e Extension to nonlinear systems;

e Enforcing the convergence to the optimal periodic steady trajectory. In this case,

additional constraint or penalty cost function might be used;

e Application to real case studies.



CHAPTER 8

APPLICATIONS OF ECONOMIC
MODEL PREDICTIVE CONTROL
STRATEGIES FOR COMPLEX SYSTEMS

This chapter presents three application results of EMPC strategies for realistic water
distribution networks and power systems. The control-oriented model of all these sys-
tems is built in a descriptor form. The importance of this chapter is to demonstrate the
proposed EMPC strategies in real case studies. Meanwhile, some additional difficul-
ties encountered from these applications appear. To address these, a two-layer control
strategy and a nonlinear constraint relaxation approach are presented. These contri-
butions have been published in [146], [131] and [137]. Specially, this chapter includes
three parts:

o The first part presents a two-layer NEMPC of WDNs with a real simulation plat-
form. The upper layer includes a real-time NEMPC controller to provide an op-
timal flow set-point while the lower layer is based on a pumping scheduling ap-
proach to translate this optimal set-point into an ON/OFF sequence. The detailed
WDN is simulated in a realistic simulator, namely EPANET;

e The second part proposes an iterative algorithm of nonlinear constraint relax-
ation, which is used to implement with the EMPC controller designed in Sec-
tion 7.1. According to the descriptor model of WDNs, nonlinearities only appear
in algebraic equations and thus the relaxation approach is used to obtain a set of

linear constraints for bounding these algebraic equations;

207
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e The third part presents an extension of the REMPC controller designed in Sec-
tion 7.2 for the descriptor model of smart micro-grids. Since both differen-
tial / difference and algebraic equations are affected by disturbances, in particular,
algebraic equations should be satisfied at any time with unknown disturbances.
In order to guarantee recursive feasibility, the tube-based approach presented in

Section 7.2 is improved using change of variable.

8.1 A Two-layer NEMPC of WDNs

In the section, we present a two-layer control scheme that combines an NEMPC strat-
egy in the upper layer, and a pump scheduling approach in the lower layer. The
NEMPC strategy is implemented by using a nonlinear programming technique and
the pump scheduling approach is realized by solving a local optimization problem.
The proposed two-layer control strategy is validated using a hydraulic simulator that
emulates the real WDN behavior. The D-Town water network, a well known bench-
mark, is used as the case study. The closed-loop simulation is implemented using a
simulation platform with a virtual-reality hydraulic simulator that emulates the online

operation.

8.1.1 Control-oriented Modeling WDNs

We first introduce the control-oriented mathematical modeling methodology of the
WDN including the flow and hydraulic head relations for the different network com-
ponents. As result of the application of this methodology to a particular WDN, a set of
dynamic and static relationships that lead to a system of DAEs in discrete-time ready
to be used in the implementation of the MPC is obtained. A WDN can be decomposed
by a set of constitutive elements: reservoirs/tanks, control valves, pump stations, nodes and

water demand sectors, each being characterized by means of flow-head relations [35, 17].

Tanks

Water tanks supply and provide the entire WDN with the storage capacity of drinking

water to consumers guaranteeing adequate water pressure service. The mass balance
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expression relating the stored volume w in the m-th tank can be written as the discrete-

time difference equation which describes the tank dynamical evolution as

Dok +1) = (k) + AL [ Y gl (k) =Y ans(k) |, (8.1)
( J

where ¢}', (k) denotes the inflows from the i-th element to the m-th tank and g% (k)
denotes the outflows from the m-th tank to the j-th element. At is the sampling time
and k is the discrete-time instant. The physical limitation related to the storage volume
in the m-th tank is described as

W, < wm(k) <@m, VkeN, (8.2)

where w,, and @, denote the minimum and maximum admissible storage capacity,

respectively.

The head model in WDN is typically written in terms of the hydraulic head that
relates the energy in an incompressible fluid to the height of an equivalent static column

of that fluid. Note that the head is usually expressed in units of height.

Using this concept, the head related to the m-th tank with respect to the volume of

storage water inside can be determined as follows:

(k)

hm(k) = 5.

+ B, VkeEN, (8.3)

where S,,, is the cross-sectional area of the m-th tank and E,, corresponds the m-th tank

elevation.

Pumping Stations

Pumps located in pumping stations of a WDN can be of several types: fixed-speed
pumps, variable-speed pumps and variable throttle pumps [17] depending on how they
are controlled. We will consider fixed-speed pumps that are the most used in WDN
because of the simplicity of operation, i.e., they are operated in an ON/OFF manner.
However, such simplicity introduces an additional problem when implementing an
MPC strategy since the ON/OFF operation would involve including discrete variables

in the optimization problem.
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Pump flows are regarded as the manipulated variables. Therefore, the flow limita-

tions for pumps can be regarded as input constraints, which can be expressed as
Gun < Qun(k) < Gup, VK EN, (84)

where g¢,,, represents the manipulated flow of the n-th pump (or valve), gu,, and @y,
represent the minimum and maximum flow capacity of the n-th pump, respectively.
These limitations vary with the pressure according to hydraulic flow/head curve of

the pump.

The hydraulic characteristic of a pump is formulated by a nonlinear function related
to the flow and head variables. Therefore, for a pump, the hydraulic characteristics are

bounded by the following constraints:

Ahy(k) = ha(k) — he(k) > 0, Vk €N, (8.5a)
ha(k) € [ha, ha) , (8.5b)
hs(k) € [hs, hs] (8.5¢)

where hg(k) and hs(k) denote the suction head and the delivery head at time step k, re-
spectively, with the physical limitation of h4(k) > hs(k). Moreover, hy and h, denote
the minimum values of the suction and delivery heads. h; and h; denote the maximum

values of the suction and delivery heads.

Valves

In terms of the type of valves, there is a variety of options, such as pressure modulating,
non-return, pressure reducing, flow variable control, head control and so on [17]. For

simplicity, valves considered are of the flow-control type.

It is worth mentioning that unlike pumps, the characteristic of valves is difficult to
model, because different degrees of opening of the valve produce different character-
istic curves (head-flow relationships). Due to this, it is not possible to include these
curves in the control-oriented model of a WDN. Then, from control point of view, the
pressure (head) variables are left to be free decision variables within considered bounds

in the closed-loop optimization. Thus, the valve model considers only the following
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constraints

Ahy(k) = has(k) — has(k) > 0, Vk € N, (8.6a)
hus(k) € [hus, Tus) (8.6b)
hds(k) € [%7 h7d8] ; (86C)

where h,s(k) and hgs(k) denote the heads at the nodes around the valve in the up-

stream and downstream at time step £, respectively. h,s and hgs denote the minimum

values of the upstream and downstream heads. h,s and hys denote the maximum val-

ues of the upstream and downstream heads.

Nodes

Water flow through each node of the network must fulfill the mass balance relations.

The expression of the mass conservation in these nodes can be written as
Do diilk) =3 ay (k) FkEN, (8.7)
i J

where ¢! represents the non-manipulated inflow through I-th node from the i-th ele-
ment and qﬁ‘j?t represents the non-manipulated outflow through /-th node to the j-th

element.

Water Demand Sectors

A demand sector represents water demand of the network users of a certain physical
area. At a certain time step k, the consumed water in the r-th demand sector can be
expressed as d,(k). Since the optimal control strategy is considered as a predictive
one, the short-term demand forecasts are able to obtain by using a suitable demand

forecasting algorithm, such as [96, 140].
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Pipes

Pipes convey water from one place in the network to another. Water inside pressurized
pipes flows from the higher hydraulic head to that at lower head. Therefore, the head-

tflow relationship for a pipe can be described as
Gi,j(k) = ®; 5 (hi(k) — h;(k)), (8.8)

where ®; ; is a nonlinear relationship, usually described by an empirical equation, for
instance, the Hazen-Williams formula. Hence, the head drop through a pipe Ahq(k),
VE € N can be calculated as

0.852
Ahg(k) = hi(k) — h;(k) = Ri;ai;(k)|ai; (k)| (8.9)
with
_1067L;,
Rij = C1.852 487"
,L’] 17]

where L; j, D;; and C; ; denote the pipe length, diameter and roughness coefficient,

respectively.

Basically, pipes can be classified based on the flow sense into unidirectional and
bidirectional. Therefore, Ahq(k), Vk € N in unidirectional pipe is always positive with
its selected direction while in bidirectional pipe Ahg4(k), Yk € N could be varying be-

tween positive and negative since the direction of the flow can be reversed.

8.1.2 The Upper Layer: NEMPC
Control-oriented Model of WDNss

Considering the modeling methodology of each component in WDNs presented above,

the control-oriented model of WDNSs can be formulated as

x(k+1) = Az(k) + Byu(k) + Byv(k) + Bgd(k), (8.10a)
0 = Byu(k) + Eyo(k) + Eqd(k), (8.10b)
0= Pyx(k) + P.z(k) + ¢ (v(k)) . (8.10¢)
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Table 8.1: Variable assignments in the control-oriented model of the

WDN.
Type of variable Related symbols Description
Difference states: x hom Hydraulic heads at the storage
nodes (i.e. storage tanks)
Algebraic states: z ha, hs, hi, h; Hydraulic heads at the non-storage
nodes
Control inputs: u Gun, Manipulated flows through actua-
tors (pumps and valves)
Non-control inputs: v i, Non-manipulated flows through
interconnected pipes
System disturbances: d d, Water demands

where x € R"* represents the vector of hydraulic heads at storage nodes (tanks) as dif-
ference states, z € R"= represents the vector of hydraulic heads at non-storage nodes as
algebraic states, u € R™* denotes the vector of the manipulated flows through actuators
(pumps and valves) as control inputs, v € R™ denotes the vector of non-manipulated
flows through interconnected pipes and d € R"™ corresponds to the vector of water
demands as system disturbances. k& € N denotes the time step. All the considered vari-
ables are classified as control-oriented variables in Table 8.1. Moreover, v (-) denotes

the vector of nonlinear Hazen-Williams mapping functions.

Remark 8.1. Note that units of all the control-oriented variables need to be consistent.
The unit of the head is selected as m (meter). The water flows is with unit of m3/s

(cubic-meter per second).

Cost Function Settings
According to [94], the operational goals for the management of WDNs include:
e Economic: To provide a reliable water supply with the required pressure mini-

mizing operational costs;

e Safety: To guarantee the availability of enough water with suitable pressure in

each storage tank to satisfy its underlying uncertain water demands;

e Smoothness: To operate actuators (pumps and valves) in the WDN under smooth
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control actions.

The main control objective is to minimize the water distribution costs that includes
water acquisition costs and electrical costs especially for pumping water through the
pumps. The water is delivered into the nodes with different heads (including eleva-
tions) through the distribution network implying many electrical costs on the booster

pumping. Therefore, the cost function associated to this objective can be formulated as
(k) = p(k) "u(k), (8.11)

with p(k) = a1 + ag(k), where o denotes the single-column vector of static economic
costs of the water depending on the selected water sources and as(k) represents the
vector of the time-varying electrical costs. Considering the variable daily electrical

tariff, o (k) is time-varying.

For the purpose of maintaining the water supply in spite of the variation of water
demands between two consecutive MPC sampling steps, a suitable safety head for each
storage tank must be maintained. Hence, the mathematical expression for this objective

is formulated with a quadratic penalty as

(k) — x%)|3, if x(k) < z°,
o o [ 1209 =218, i) < 61
0, otherwise,

where z° denotes the vector of the safety heads for all the tanks and ||-||3 is the squared
2-norm symbol. This cost function can also be realized by means of a soft constraint

with adding a slack variable {(k), which can be reformulated as

lo(k) == [lE(R) 13, (8.13)
together with the following soft constraint:

z(k) > 2° — £(k). (8.14)

The actuators in WDN mainly include pumps and valves. Thus, the flow-based
control actions found by the EMPC controller is required to be smooth in order to max-
imize the lifespan of the actuators. In addition, the use of the smooth operations is

benefit for the lower-layer regulatory performance. To achieve a sequence of smooth
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operations, the slew rate of the control actions between two consecutive time steps is

penalized. Hence, the cost function for this part can be written as
la(k) = || Au(k)||3, (8.15)

with Au(k) := u(k) — u(k — 1).

In general, the multi-objective cost function that gathers all the control objectives

for the operational management of the WDN can be summarized as

r
> Ait(k), (8.16)
j=1

where )\; denotes the weighting term that indicates the prioritization of control objec-

tives and I" = 3 is the number of the selected control objectives.

Constraint Settings

In the real components of a WDN, there are the physical limitations associated to the
system variables. Therefore, these constraints should complement the mass balance
principles and physical relations between flow and head introduced in (8.10). In the

following, these physical constraints are described in detail.

The hard constraint on the system states = comes from the tank capacity in the
WDN, which can be described as

@ < zi(k) < T, VREN, i€ [l,m]CZy, (8.17)

where x; and 7; represent the minimum and maximum heads with respect to capacities
of the i-th tank, respectively. The tank volumetric capacity can be transformed into

hydraulic head constraints by (8.3).

Taking into account the physical capacity of different actuators, the manipulated

flows are under the following constraint
u; <wui(k) <, YkeN, iell,n]CZy, (8.18)

where u; and u; denote the minimum and maximum manipulated flows of the i-th
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actuator, respectively. On the other hand, the non-manipulated flows throughout the

interconnected pipes can be limited between v; and v; as
v; <vi(k) <7, YkeN, ie[l,n,| CZg, (8.19)

where n,, is the number of pipes.

The heads at some certain non-storage nodes are required to be up to some mini-
mum levels as in the case of the water demand sectors. Hence, the following inequality
constraint is necessary to be considered:

%(k) >z, VeeN, ie[l,n] CZy, (8.20)

where z; are the required heads at the water demand sectors. Moreover, ny, is the total

number of the water demand sectors.

NEMPC Formulation

In general, the NEMPC strategy can be implemented by solving a finite-horizon opti-
mization problem over a prediction horizon H,,, where the multi-objective cost function
is minimized subject to the prediction model and a set of system constraints. Thus, the

optimization problem associated to the NEMPC strategy can be formulated as follows:

H,—-1 r

minimize > Y Aty (i), (8.21a)
2(0),2(Hy) =g
u(0),...,u(Hp—1) = =

subject to

x(i + 1) = Az(i) + Byu(i) + By (i) + Byd(i), (8.21b)

wu(i) + Eyv(i) + Eqd(i), (8.21¢)
0 = Ppx(i) + Po2(i) + 9 (v(3)), (8.21d)
r<uz(i) <7 (8.21e)
u < u(i) <7, (8.21f)

2(i> 2 (8.21g)
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x(i) > 2® — £(k + 1), (8.21h)
x(i) = z(k). (8.21i)

Since the control-oriented model of the WDN includes the nonlinear relations
in (8.21d), the above optimization problem naturally becomes nonlinear. Thus, the
optimization problem (8.21) should be solved using a suitable nonlinear programming
technique. Assuming that the optimization problem (8.21) is feasible, the sequence of
control actions is

W= [T, e, w7 6.2

And then by deploying the receding-horizon strategy, the optimal control action at

time step £ is the first component of the sequence of control actions denoted by

u(k) = u*(0). (8.23)

8.1.3 The Lower Layer: Pumping Scheduling Approach

In practice, the main energy consumption is used for pumping water through the
pumping stations. In case of the pumps with ON/OFF operation, the flows in (8.22) be-
come discrete values and subsequently (8.21) becomes a nonlinear mixed-integer prob-
lem. In the lower layer, we propose the following pumping scheduling approach. De-
note @} = u;(k), Vj € [1,ns] C Zy with 3°7°, u;j(k) = u(k) as the optimal hourly flow
set-point of the j-th pumping station obtained from the upper layer, where n, is the
total number of pumping stations in WDN. The control objectives of the lower layer

can be summarized as follows:

e To provide enough water to reach the optimal water flow set-points.

e To use the minimum possible number of parallel pumps and avoid too many

switches in order to maximize their working lives.

In terms of the j-th pumping station, the pumping flow of the i-th pump is affected
by the factors of the suction and delivery heads. Hence, if these boundary heads are

given, the actual flow ¢/ ; through the pump is considered within an interval, which
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can be formulated as

a; € oy —oig, 4y +oig], (8.24)

where ¢;'; denotes nominal pumping flow produced through the i-th pump, and o; ;
represents the variance of the pumping flow depending on the uncertainty of the
boundary heads. It is assumed that the actual flow q; ; can be measured. In some cases,
only one pump cannot provide enough flows to maintain the optimal flow set-point.
Hence, parallel pumps are set in each pumping station. Ideally, the optimal pumping
flow Q7 can be satistied when all the pumps are open in the lower layer such that the

following condition holds:

Ne;

H,
Q5AL, =Y ) qi AL, (8.25)

i=1 t=1
where n.; is the total number of parallel pumps in the j-th pumping station and H; is

the control horizon of the lower layer.

Consider that the parallel pumps are operated in ON/OFF way, the binary variable
Xi,j(t) € {0,1} at time step ¢ is chosen, where x; ;(t) = 0 describes the OFF-status and
Xi,j(t) = 1 presents the ON-status. Therefore, the actual flow of the i-th pump can be
computed by

q,j(t) = Xi,j(t)q;:j, Vi € [l,nc].] CZy,Vte[l,ng CZy. (8.26)

Furthermore, the minimum usages of required parallel pumps and switches are
necessary to be taken into account. It is considered that the parallel pumps are selected
in a sequence order from i = 1 to i = n,;. Therefore, the required parallel pumps for

Jj-th pumping station can be constrained by the following condition:
Xi—i—l,j(t) + (1 - Xl,j(t)) < 17 Vi € [1777‘6]'] - Z+7 (827)

which means if i-th pump is not used, then ¢ + 1-th pump is also not used. Addition-

ally to (8.27), the minimum required parallel pumps with their selection orders can be
decided by maximizing the following term:
Nej  H,

Jp = Z Z wiXi,j(t), (8.28)

i=1 t=1

where 11; > 0 for Vi € [1,n.,| C Z,. Considering the pump operations in an order, the
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lexicographic prioritization is used to set this sequence of weights as ji1 > --- > M, -

On the other hand, during total horizon of the lower layer, the used parallel pumps
are switched once in order to get smooth control actions. The required pumps are used
at the beginning and then turned off when the optimal set-point is satisfied. Therefore,

this objective can be realized by
Xi,j(t + 1) — Xi,j(t) <0, Vte [1,%8] CZy, (8.29)

which means that the required parallel pumps can be switched from ON-status to OFF-

status only once.

The pump scheduling approach in the lower layer can be implemented by solving

the following optimization problem:

Tej  H;

o 4 >3 wiislo) (8.300)
subject to
ey H,
VP =" g (t)At, (8.30b)
i=1 t=1
Vi = Q;Aty, (8.30c)
i j(t) = xij ()i, (8.30d)
Xit1,5(t) + (1 = xaig(t) <1, (8.30e)
Xi(t+1) — xi;(t) <0, (8.30f)
Xij(t) = {0, 1}, (8.30g)

where the weight ¢, and ¢, are prioritization weights, where ¢, should be chosen to be
much bigger than ¢, because the main objective is to reach the optimal flow set-point

from the upper layer.

By solving the optimization problem (8.30) for each pumping station, the pump
scheduling X;‘J(t) for Vi € [1,ncj] C Z4,Vj € [1,ng] C Z4,Vt € [1,ns] C Z4 can be

obtained for the lower layer.
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8.1.4 Application: the D-Town WDN

Description

The benchmark of D-Town network contains 388 water demand sectors, 405 links
(pipes), 7 tanks, which contains multiple unidirectional and bidirectional links. The
required pressure for all the water demand sectors is selected to be equal to 20 meters.
The unidirectional pipes and water demand sectors inside can be aggregated into its
root node. Therefore, the aggregate topology of the D-Town water network is shown
in Figure 8.1. The required water demands in the root nodes are modified by aggregat-
ing the demands from a branch of unidirectional pipes and nodes while the required
head of a branch is equivalent to the maximum head in this branch taking the head-loss

through the pipes into account as well.

The required hydraulic head at each demand node is time-varying during one day
since the head-loss through the pipes has been taken into account and the head de-
pends on the water flow. For the control objectives associated to management of this
case study, the prioritization is determined considering the economic objective is the
most important and then the safety objective is more significant than the smoothness

objective.

The online simulation has been carried out in a PC with the CPU of Intel (R) Core
(TM) i7-5500U 2.4GHz, the memory of 12GB and MATLAB R2014a.The NEMPC strat-
egy is implemented by means of the GAMS! and the CONOPT3 nonlinear solver, the
EPANET? hydraulic simulator and MATLAB that is used for the communication be-
tween the GAMS model of the NEMPC controller and the EPANET hydraulic simula-
tor. Besides, the proposed pump scheduling approach is also implemented in the MAT-
LAB environment. The mixed-integer optimization problem of the pump scheduling
approach is solved by using the MOSEK solver [53]. The topological graph of the com-
munication is shown in Figure 8.2. The database includes the water demands data and

electrical tariff data.

!General Algebraic Modelling System (GAMS) is a programming language for mathematical opti-
mization and able to solve the complex, large-scale and nonlinear optimization problems [35].

ZEPANET software is a hydraulic simulator used for the hydraulic behavior analysis of a WDN.
The WDN is built in EPANET consisting of water storage tanks/reservoirs, pumps, valves, pipes and
nodes [105].
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Figure 8.1: Aggregate topology of the D-Town WDN.
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Figure 8.2: Online simulation platform.

Simulation Results

The optimization problem (8.21) is solved using GAMS programming while the op-

timization problem (8.30) is solved using linear programming. The MPC prediction
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horizon is chosen as 24 with the sampling time of 1 hour in the upper layer. In the
lower layer, the computational horizon of the optimization problem is chosen as 60
with the sampling time of 1 minute. In the upper layer, the prioritization weights for
economics, safety and smoothness objectives are chosen as 10, 1 and 0.1, respectively.
In the lower layer, the prioritization weights ¢, and ¢, are chosen to be 10 : 1. For the
pumping station having three parallel pumps, the weights of 11, p2 and p3 are chosen
as 1.5, 1 and 0.5. For the pumping station having two parallel pumps, the weights of

p1 and po are chosen as 1 and 0.5. The tolerance of the nonlinear solver is set as 10™%.

The average single-step computation time of solving the upper layer nonlinear opti-
mization problem is 53.21 seconds, being considerably smaller than the sampling time
of 1 hour used in this layer. On the other hand, the average single-step computation
time of solving the lower layer mixed-integer optimization problem is 4.19 seconds,
being also smaller than the sampling time of 1 minute used in this layer. Thus, the

proposed strategy can be applied in real-time.

Figure 8.3 shows the head evolutions of selected storage tanks. The dash blue line
denotes the optimal hydraulic heads of the storage tanks. It is obvious that the head has
daily quasi-periodic feature mainly because of the daily water demands and electricity
tariffs. Moreover, results from the EPANET hydraulic simulator are plotted in the cyan
lines. By means of this state comparison between the EPANET simulator and optimizer,
it is clear that the optimal system trajectories can be reached with the two-layer control

strategy.

The selected average hourly water flows of the pumping stations are shown in the
Figure 8.4 in the magenta lines. The average hourly water flow of a pumping station
can be calculated by

N, _
S i iy
L= == ) 8.31

The water flow in Figure 8.4(a) is associated to the pumping station S1 and the
average water flow is approximately similar and sometimes below the optimal flow
set-point because the actual pumping flow is varying during each control interval de-
pending on the boundary heads. Furthermore, the patterns of electrical tariff are added
for reference in all the plots in Figure 8.4. In general, the optimal flows are small when
the electricity price is expensive. On the contrary, the flows are increasing when the

electricity price becomes cheaper.
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Figure 8.3: Results of the head evolutions of storage tanks.

Figure 8.5 shows the optimal flow set-point and actual flow evolution of the valve
in D-Town water network. The type of the valve is flow-controlled. The simulation
flow is approximately tracking the optimal flow set-point. Hence, there is single-layer
control for the valve and the optimal flow set-point is applied to the valve during one
hour at a MPC step from the upper layer. But from this plot, there are small differences
between the actual flow and optimal flow set-point.

Figure 8.1.4 presents the economic cost achieved by the EMPC controller at each
sampling time (EMPC cost). It can be observed, that after a transient, the cost con-
verges to a stable small cost. These results are confirmed with the results presented in
Figure 8.1.4 where the EMPC cost obtained using the EPANET simulator to emulate
the real network is presented. From this last figure, it can be observed that the EMPC
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Figure 8.4: Results of the flows through pumping stations.

cost converges to a stable mean value. The cost fluctuations around this mean value

are due to the mismatch between the control-oriented model used by the EMPC and

the high fidelity hydraulic cost used by EPANET.

Table 8.2 proposes the safety tank water heads used in the online simulation to
cope with the underlying stochastic water demands, which is considered as the initial

conditions to compute the operational costs of the WDN.

The weekly electrical costs for the pumping water can be calculated by the mathe-

matical formulation below:

w A PwgA
SR T DG | (%32
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Figure 8.5: Result of the flow through the valve V2.
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Figure 8.6: Economic costs with NEMPC.

where " denotes the average weekly electricity costs for the utilization of the total
pumping stations. AH*"® denotes mean head supplied by the pump and Q**¢ repre-
sents the produced flows by the pump.

The annual electrical cost can be calculated by

52 x k¥
go = 2EXE (8.33)

0

where o is the peak-day factor of 1.3 because the variability of the electric tariff, of the
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Table 8.2: Safety heads of storage tanks.

Tank Safety head (m)

T1 72.25

T2 65.42

T3 114.38
T4 133.90
T5 106.41
T6 102.83
T7 102.97

demand, and of any other design variable, during the year and the lifetime of this case

study is not considered.

As a result, the annual operational cost of the D-Town water network is approx-
imated to be 104,482€. Compared to previous similar results for the D-Town net-
work 117, 740€ by using the successive linear programming in [91] and approximately
168, 118€ by using the pseudo-genetic algorithm in [52], the two-layer NEMPC strat-
egy is able to bring less operational costs for the management of the D-Town water
network.

8.2 EMPC with Nonlinear Constraint Relaxation for WDNs

The periodicity in WDNSs can be observed as in Figure 8.3. In order to implement
the EMPC controller proposed in Section 7.1, a linear descriptor model of WDNs is
required. We now propose an iterative algorithm to relax the nonlinear algebraic
equation (8.10c) by linear inequality constraints. For the relaxation of nonlinear con-

straints (8.10c), two cases are considered as follows.

Let us denote v;, ¢ = 1,. .., n, as the water flow for the pipe ¢ and Ah;, i =1,...,n,
as the i-th row of P,z + P,z. According to [105], ¢ (v;) = a4v; |vi|ﬂ ~L1. Therefore, the
head-flow relation in the nonlinear algebraic equation (8.10c) can be explicitly written
as

0 = a;v; [vs|P ™1 + Ah, (8.34)

where a; € Ry is the pipe resistance coefficient for the i-th nonlinear equation due to
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friction with the pipe, and f is flow exponent that depends on the particular approx-
imation, such as in Hazen-Williams, Darcy-Weisbach and Chezy-Manning formulas
but, in all cases 5 > 1 according to ([105], Table 3.1).

The interconnected pipes in WDNs may be unidirectional or bidirectional. For the

unidirectional pipe with a chosen positive direction, (8.34) becomes
0= a;v’ + Ah;, (8.35)

with
0 < v <7y, (8.36)

where v; denotes the upper bound of the i-th flow.

The goal of dealing with these nonlinear algebraic equations in (8.34) is to relax
them obtaining a set of linear inequality constraints using an iterative over-bounding
algorithm. Note that finding these linear constraints with a proper constraint relaxation
method is different than the traditional linearization method with a chosen operating

point.

8.2.1 Nonlinear Constraint Relaxation for Unidirectional Pipes

We first discuss the relaxation for unidirectional pipes. By choosing a positive direction
of the flow v;, the nonlinear term v; ]vi\ﬁ ~1 becomes v |v,~]’8 1= v? with v; > 0. As
shown in Figure 8.7, the objective is to find a set of upper and lower linear bounds for

over-bounding this term (shown in blue solid line).

The nonlinear algebraic equation (8.35) is equivalent to the satisfaction of the fol-

lowing inequalities:

a;iv? + Ah; > 0, (8.37a)
a;iv? + Ah; <0, (8.37b)

in which vf is a convex function due to 8 > 1. From 0 < v; < 7;, we have that vf <

Ef ~1v;. Therefore, the inequality (8.37a) can be relaxed considering (8.36) as

a;v? vy + Ah; > 0. (8.38)
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On the other hand, from the convex nature of viﬁ , we have that every linearization
constitutes a lower bound (dashed dotted lines in Figure 8.7). The constraint (8.37b) can
be approximated by considering N, sampled operating points v}, for j = 1,2,..., N,
as

0> av? + Ahi > ai(ajv; + bj) + Ahy, (8.39)

in which parameters a; and b; are given by
aj = Bur,7 7, (8.40a)

b= (1 - B’ (8.40b)

%,J

In general, for a unidirectional pipe, the nonlinear algebraic equation (8.35) can
be relaxed by using N, + 1 inequality constraints as presented in (8.38) and (8.39).
Figure 8.7 shows graphically the obtained relaxation. As a potential improvement, this
relaxation can be refined iteratively. The iterative algorithm of nonlinear constraint
relaxation can be improved by adding a penalty term in order to refine the region of v;.
As shown in Figure 8.8, the upper bound can be moved by a scalar 7; > 0. Therefore,

the region of v; is refined to be [v¢,v?] C [0, ;).

177

Considering a slack decision variable 7;, (8.38) can be replaced by

5y + Ahy — 7 > 0, (8.41a)
7 >0, (8.41b)

ai@’-fj

where a small positive 7; can be found in the MPC optimization loop. Hence, the cost
function for the scalar 7;(j) varying in the MPC prediction horizon H, = T can be

penalized as
e(7i(4)) = X()m (), (8.42)

where A\°(j), j = 1,2,...,T is a weight that can be set as a forgetting (monotonically

decreasing) factor along the MPC prediction horizon 7.

8.2.2 Nonlinear Constraint Relaxation for Bidirectional Pipes

As shown in Figure 8.9, the goal is to relax the nonlinear algebraic equation for bidi-

rectional pipes also by linear inequality constraints. As in the unidirectional case, the
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Figure 8.7: Relaxation for fuf in unidirectional pipes: original
function viﬁ is plotted in blue bold line, its upper bound is

in dashed line and its lower bounds are in dashed dotted
lines.

nonlinear algebraic equation (8.34) is equivalent to
;5 "Ui|ﬂ_1 + Ah; <0, (8.43a)

;0 "Ui‘ﬁ_l + Ah; > 0. (843]3)

From (8.43a) and (8.43b), we can see that these two inequality constraints are not
convex along v; < v; < ;. In order to obtain a convex relaxation for (8.43a), we

consider lower bounds for |v; |B ~1 with v; < v; < 7; in the following form:
Lo l gy BT s
a;v; + b < v |vy] ,j=1,...,Ny+1, (8.44)

where aé- and bg- forj =1,..., Ny + 1 are two scalars. With a given a;, the condition for

the parameter b; should be satisfied:

bh< min (v foil " — djs), (8.45)
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Figure 8.8: Improving nonlinear constraint relaxation for
unidirectional pipes.

and let us consider the right side of the previous inequality:

i (o o 1B _ oL
M= min (o™ = ajv) (8.46)
= mln {]\4.!,_7 M_} R (8,47)
where
— ; B _ L,

My = min, (07 = a0, (8.48)

i (o (Y31 b
M- = min (v;(~v)""" — ajv). (8.49)
We now summarize the way to find a} and b} for j = 1,..., N + 1. The minimum

al1 along v; < v; < v; can be determined by

a = (vﬁ’*)ﬁ_l , (8.50)
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V; "U;’ “341

Figure 8.9: Relaxation for v; |v; ]5 ~1 in bidirectional pipes: original
constraint is plotted in blue bold line, upper bounds are
shown in dashed line and lower bounds are shown in
dashed dotted lines.

where vﬁ’* can be obtained by satisfying the following condition

S* A
3 (vlv*)ﬁ o W (8.51)

Vi Y

*

Denote vil = vﬁ’*. By choosing N, values of Ué,j in the interval vﬁ’ < Ué,j <,
we obtain aé- =0 v%)ﬁil for j = 2,..., Ny + 1. Therefore, the parameter bé- can be
obtained by

b = (vg,j)ﬁ —abl, =1, Nyt L (8.52)

Furthermore, the upper and lower bounds are symmetric as shown in Figure 8.9.
Therefore, we can find the upper bounds in a similar way. Let us consider upper

bounds of (8.43b) in the following form

afui + b5 > v ol P =1, Ny + 1L (8.53)
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Because of symmetry, a] can be determined by
af =B (o)’ (8.54)
where UZ’* can be obtained by satisfying the following condition

_B rx\ 5
Blupt)Pt = ) (v ) - (8.55)

. T,
v —

Denote v ; = v;”. Similarly, by choosing N values of v; ; in the interval v; < v; <

-1
v"*, we obtain a” = j3 (vT ) for j = 2,..., N + 1. Therefore, the parameter b;- can

i’ J Y]
be computed as
b = v (fvf’j)ﬁ_qua;v;j, j=1,...,Ny+1. (8.56)

As aresult, (8.34) for bidirectional pipes can be relaxed as 2N, +-2 linear inequalities.

From (8.43a) and (8.43b), we obtain the relaxed linear inequality constraints

0> av; |Ui”871 + Ah; > oy (aévi + bé) + Ah;, (8.57a)

0 < oyv; |’U¢’ﬁ_1 + Ah; < o (a?vi + b;) + Ah;, (857b)

bothforj=1,..., Ny + 1.

8.2.3 EMPC with Nonlinear Constraint Relaxation for WDNs

From the above results, we can obtain the relaxed linear inequality constraints in the

MPC prediction horizon H, = T as follows:

PL()a(k+ ) + PLG)2(k +9) + Py(d)(k + ) + B(5) <0, (8.58a)
PL()a(k +5) + PLG)=(k + 3) + PL()v(k + ) + Py (7) = 0, (8.58b)
for j = 1,...,T. Taking into account the proposed iterative algorithm for the non-

linear constraint relaxation, the nonlinear algebraic constraint (8.10c) can be replaced
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by (8.58a) and (8.58b) along the MPC prediction horizon. We now formulate the opti-
mization problem for implementing the economic MPC with nonlinear constraint re-

laxation as follows

glc?(})nmil(ZTe) Jr(x,u,p) = Tzl ZF: \jl;(1), (8.59a)

w(0),...,u(T—1) =0 j=1
subject to

2(i + 1) = Az (i) + Byu(i) + Byv(i) + Bad(i), (8.59b)
0 = Byu(i) + Eyo(i) + Eqd(i), (8.59¢)
PL(i)a(i) + PL(i)z(i) + PL(i)v(i) + PL(i) <0, (8.59d)
PI(i)a(i) + P (i)2(i) + P (i)v(i) + P (i) > 0, (8.5%)
z < ax(i) <T, (8.59f)
u < u(i) <1, (8.59g)
2(0) = z(T), (8.59h)
2(j) = x(k), j=mod (k,T). (8.59i)

Let us denote the optimal solution of the optimization problem (8.59) as u*(j).
Based on the receding horizon strategy, the optimal control action u(k) at time step

k is chosen as
u(k) = u*(j), j = mod (k,T). (8.60)

8.24 Application: the Richmond WDN
Description

The topology and layout of the Richmond WDN is shown in Figure 8.10. The Rich-
mond WDN has 6 water storage tanks, 7 booster pumps and 11 water demand sectors.
Besides, there are 41 non-storage nodes and 41 pressurized pipes connected in this net-
work. The demand pattern is also given for a 24-hour period, that is 7" = 24. We use

the Chezy-Manning head-flow formula to obtain (8.10c) as follows [105]:

zi — zj = I jvij

vigl, (8.61)
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Figure 8.10: Topology of the Richmond WDN.

where z; and z; correspond to the hydraulic heads at any two adjacent nodes, and v; ; is

the corresponding water flow. The parameter R; ; in the Chezy-Manny formula is given

by ,
L] T Di]33 ? ( . )

where L; ;, D; ; and C; ; are the length, diameter and roughness coefficient of the cor-
responding pipe, respectively. L;; and D;; are given in the EPANET model of the
Richmond WDN.

As shown in Figure 8.10, this WDN has two bidirectional pipes in (8.34) and 39 uni-
directional pipes in (8.35). In addition to the economic cost function defined in (8.59a),
for the relaxed linear constraints (8.58a) and (8.58b) with the setting in (8.41), a penalty

term \°(j) is set to be a forgetting factor as

A(j) = max {\°(j — 1) —¢,0}, (8.63a)
A(0) = A%, (8.63b)

where € denotes the relaxed step and \° is the initial value of this weight.
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Therefore, the total MPC cost function is set to be

~
L

Jr(z,u,p) = _ (A1l1(3) + Aol (i) + A°(7)7(4)) , (8.64)

s
Il
o

where 7 denotes a slack variable for all the constraints in (8.41). In this simulation, we
select the weights as Ay =10, A2 = 1, A* = 0.1 and € = 0.01.

For the Richmond network, the period T is considered to be T = 24 (24 hours)
with the sampling time of an hour because of the periodicities of the water demand
and electricity price considering the variations in the daily tariff. Hence, the prediction
horizon of the proposed economic MPC strategy is also chosen to be ' = 24. The
minimal pressure at all the demand sectors is set to be 10 meters. Furthermore, for
the implementation of the proposed nonlinear constraint relaxation, we choose N, =
N, = 10. Therefore, there are 11 relaxed constraints replacing (8.35) and 22 relaxed

constraints replacing (8.34) for each pipe.

The simulations have been carried out with the MATLAB R2015a and the EPANET
simulator [105] for seven days (168 h) in a PC of Intel i7-5500U CPU and 12GB RAM.
The linear optimization problems are solved using the YALMIP toolbox [73] and
the MOSEK solver [53]. The nonlinear optimization problems are solved using the
nonlinear programming through the YALMIP toolbox and the IPOPT solver available
in the OPTI toolbox [27]. The Richmond network is given in the EPANET simulator as

the simulation model.

Recall the price signal p = a; + az. To compare the performance of the proposed
economic MPC with the nonlinear economic MPC, we define the following key perfor-

mance indicators (KPIs):
KPIy = ni 3 (pju(k;)), j = mod(k, T), (8.65a)
KPLg=—3"%" max{0, (a3 — (k) }. (8.65b)
KPLy = 33" (k) —27). (8.650)
n

where K PIf is the economic KPI that measures the operational costs at each time step.
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Table 8.3: Hydraulic heads at storage tanks to assess safety
constraints.

Tank Elevation (m) Volume (m) Hydraulic Head z® (m)

A 184.13 1.02 185.15
B 216 2.03 218.03
C 258.9 0.5 259.40
D 241.18 1.1 242.28
E 203.01 0.01 203.03
F 235.71 0.19 235.90

K PIg is the safety KPI that computes the average differences of the water storage that
are lower than safety hydraulic head z given in Table 8.3. K PI); is the measure-
ment KPI that represents the additional water reserved in storage tanks. Based on the
original benchmark available online, all the tanks are cylindrical and the relationship

between water level and stored volume is considered to be linear and constant.

On the other hand, with the optimal solutions of the optimization problem (8.59),
we would like to check whether all the nonlinear algebraic equations in (8.10c) are
satisfied. To assess the relaxation algorithm for 40 nonlinear algebraic equations in the
Richmond WDN, the error measurements for (8.10c) including MSE, mean absolute

error (MAE) and symmetric mean absolute percent error (SMAPE) are introduced as

follows:
MSE(k) := ni i(pgx(k) + Pia(k) + 9 (0(k))?, (8.66a)
o
MAE(k) = — E:U” )+ Plz(k) + 47 (v(k))]| (8.66b)
e &
100 = [Pa(k) + PLa(k) + 47 (o(k))|

, (8.66¢)

SMAPE(k) :=

ne = Pla(k)+ PL2(k) + 97 (v(k))

where P£ , Pg and 1/ (-) denote the j-th row of P,, P, and (-), respectively. n. denotes
the total number of nonlinear algebraic equations. In terms of MSE and MAE, they
represent the violation of nonlinear algebraic equations. SMAPE is an indicator based

on percentage errors.
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Simulation Results

For the notation simplicity, we denote the simulation results of applying the proposed
economic MPC with nonlinear constraint relaxation as EMPC-NCR, while the com-
parison results with the solutions of nonlinear planner in (7.4) and NEMPC controller
in (7.5) both with updated nonlinear prediction model in (8.10) are denoted by EMPC-
Planner and NEMPC, respectively. The closed-loop simulation results of system states
and control inputs are shown in Figures 8.11-8.14. In Figures 8.11 and 8.12, the state
trajectories obtained from applying the proposed EMPC-NCT are in solid lines with
circles. Due to the convexity, the steady states can be obtained from the solution of the
optimization problem (7.4) shown in dashed line. As a comparison, the state trajecto-
ries of NEMPC are also shown in solid lines with cross marks. From these results, we
can see that the closed-loop trajectories obtained using the EMPC-NCR and NEMPC
strategies are similar to those of the optimal planner trajectories (both states and con-
trol inputs). The NEMPC results are smoother and closer to the planner trajectories
since a more accurate nonlinear model is used in the NEMPC optimization problem.
Similarly, in terms of control inputs, as shown in Figures 8.13 and 8.14, three trajecto-
ries of EMPC-NCR, NEMPC and EMPC-Planner are plotted. The input trajectories of
EMPC-NCR are approaching the ones of EMPC-Planner.

To assess the performance of different control strategies, the comparison is also pro-
vided based on the defined KPIs. The computation results using the defined KPIs are
shown in Table 8.4. In general, the performances of both MPC strategies are similar.
Specifically, from the K PIf, results, the pure economic cost of EMPC-NCR is slightly
cheaper than the one of NEMPC. According to K PIs and K PIj results, small differ-
ences between the reserved water in the storage tanks can be seen for both MPC strate-
gies. This is because in the EMPC-NCR we use the pressure constraint on the variable
z to guarantee the safety objective, which implies the water levels in the storage tanks

should be greater than some certain values.

The results of error measurements for the EMPC-NCR and NEMPC strategies are
shown in Figure 8.15. Through the MSE and MAE results, it is obvious that the re-
sult of NEMPC is similar to the one of EMPC-NCR, although none of them are iden-
tically equal to zero. This is because the tolerance of the nonlinear solver is chosen
as 107°. The SMAPE of NEMPC is smaller and closer to zero than the one of EMPC-
NCR, which means that nonlinear algebraic equations are satisfied by NEMPC better
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Figure 8.11: Results of system states using EMPC-NCR and NEMPC.
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Figure 8.12: Results of system states using EMPC-NCR and NEMPC.

Table 8.4: KPI results using EMPC-NCR and NEMPC.

MPC Strategy KPIp KPIs KPIy

EMPC-NCR  0.6992 0.2604 6.7078
NEMPC 0.7028 0.1914 6.5249
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Figure 8.14: Results of control inputs using EMPC-NCR and
NEMPC.

than EMPC-NCR since the nonlinear programming technique is able to solve hard con-
straints. However, the EMPC-NCR strategy is able to produce a similar performance

according to three error measurement results.

For the comparison of simulation time in a scenario of 168 h, it takes 62.86 min for
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Figure 8.15: Comparison of error measurements using EMPC-NCR
and NEMPC.

NEMPC while 1.43 min for EMPC-NCR. Hence, the EMPC-NCR strategy has a signifi-
cant improvement in the reduction of computational load and meanwhile based on the
above comparison result, the performance of the EMPC-NCR strategy is similar to the
NEMPC strategy. This reduction in the computation time would be more relevant in

larger networks.
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8.3 REMPC of SGs

In the following, let us consider discrete-time descriptor system affected by additive

disturbances as

x(k+1) = Az(k) + Bu(k) + Bad(k) + Byw(k), (8.67a)
0 = Eyx(k) + Equ(k) + Eqd(k) + Eyw(k), (8.67b)

where z € R™, u € R™, d € R™, w € R™ denote the vectors of system states, control
inputs, endogenous demands and unknown disturbances, respectively. Besides, A ¢
RPzXte B ¢ RWXu B, ¢ RWXNd B ¢ R%XMw [ ¢ R*"e | c RWwX% B, ¢

R"*"d and E,, € R" %™ are system matrices.

Assumption 8.1. The disturbance vector w € R™" is assumed to be unknown but bounded in
the set W.

We now extend REMPC proposed in Section 7.2 for the descriptor system (8.67).
The goal is to use a robust tube-based technique based on nominal predictions that
drives the closed-loop system trajectory to a neighborhood of an optimal periodic
steady trajectory. A local controller is used to reduce the difference between nomi-
nal predictions and closed-loop trajectory. This local controller is designed to stabilize
the nominal dynamical model of (8.67a) and simultaneously to satisfy the algebraic
equation (8.67b).

8.3.1 Refined State and Input Constraints

Based on [57], an auxiliary input signal v € R™ with n, = n, — n, is used. Therefore,
the control input u(k) is structured from the solution of (8.67) satisfying the algebraic

equation (8.67b) for any w(k) as
u(k) = Myx(k) + Mad(k) + Myw(k) + Myv(k), (8.68)

where the matrices M, € R"*" M, ¢ R"w*" M, € R%wX%w and M, € R™X™

should be designed.
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By combining (8.67b) and (8.68), we have that the following condition holds:

Eya(k) + Eqd(k) + Eww(k) = — EyMya (k) — Ey,Mad(k)
— B Myw(k) — E,Myv(k).

which gives

Ey + E M, =0, (8.69a)
Ey+ E My =0, (8.69b)
Ey + E M, =0, (8.69¢)
E M, = 0. (8.69d)

From the condition (8.69), we can obtain matrices M,, My and M,,. Note that there
are infinite solutions of these matrices M,, M, and M,,. Specifically, M, is the null
space (kernel) of F,, and M,, M, and M, can be obtained in a generalized solution

with pseudo-inverse matrices.

Besides, by combining (8.67a) and (8.68), we have

z(k +1) = Az(k) + Byv(k) + Bgd(k) + Byw(k), (8.70)
where A = A + BM,, B, = BM,,, B; = By + BM, and B,, = B,, + BM,,.
Let us define the nominal dynamical model of (8.70) as
Z(k+ 1) = Az(k) + B,o(k) + Bgd(k), (8.71)

where z € R"* and v € R™, and define the error between closed-loop states and state
predictions as e(k) = x(k) — z(k). With (8.70) and (8.71), the error dynamics is given by

e(k+1) = Ae(k) + By (v(k) — 5(k)) + Bow(k). (8.72)

To attenuate the effect of this error along the prediction horizon, a local control law
K e R™*" is proposed for v(k) = Kxz(k) and v(k) = KZ(k) such that the matrix
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Ag = A+ B,K is Schur stable. Therefore, (8.72) is simplified as

e(k +1) = Age(k) + Byw(k). (8.73)

Since w(k) € W, by applying Lemma 6.1, we can obtain the set Z is RPI sat-
isfying AxZ ® B,W C Z. Therefore, for any k € N, e(k) € Z is equivalent to
xz(k) — z(k) € Z. Considering the state constraint set z(k) € X', we have

z(k)e X o 2. (8.74)

Based on (8.68), let us also denote the nominal input u € R™* as

a(k) = M,z (k) + Mad(k) + M, (k). (8.75)

By combining (8.68) and (8.75), we derive

(k) — (k) = Mo (a(k) — #(k)) + Mayw(k) + Myo(k) — M, (k)
= Mge(k) + Myw(k) + M, Ke(k).

Since u(k) € U, e(k) € Z and w(k) € W, we obtain

u(k) €U © MyZ & MyW e MK Z. (8.76)

As a result, the constraints on the nominal state and input vectors are refined as
in (8.74) and (8.76), which will be used in the robust economic MPC design.

8.3.2 REMPC Planner for Descriptor Systems

Based on the optimization problem (7.4), the optimal periodic trajectory can be ob-

tained solving the following open-loop optimization problem.

T-1
nimize Jp (z.ap) = S €(26), a(i).p) . 8.77
s Jr @ 0p) = 2 102 o

@(0),...,a(T—1)
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subject to

(i + 1) = Az(i) + Bu(i) + Bad(i), (8.77b)

= E,2(i) + Eyu(i) + Eqd(1), (8.77¢)

(i) eX o Z, (8.77d)

u(i) e U © MpZ S MW e MK Z, (8.77¢)

z(0) = z(T). (8.77f)

The feasible solutions of the optimization problem (8.77) define the optimal periodic

steady trajectory of system states and control inputs as

zP ={z(0),...,z(1)}, (8.78a)
a? ={u(0),...,a(T)}. (8.78b)

The closed-loop system with the proposed controller will be driven close to a neigh-

borhood of this trajectory.

8.3.3 REMPC Controller for Descriptor Systems

In general, the REMPC controller is proposed by implementing the following optimiza-

tion problem:

subject to

) a(%%)l)mi%l?i) Jr (Z,a,p), (8.79a)
z(i + 1) = Az(i) + Bu(i) + Bad(i), (8.79b)
0 = E,2(i) + Baa(i) + Eqd(i), (8.79¢)
Z(i) e X O Z, (8.79d)
a(i) eU S MyZ 6 MW S MyKZ, (8.79)
z(0) = z(T), (8.791)
z(k) —z(j) € Z, j=mod (k,T). (8.79g)
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From the feasible solutions of the optimization problem (8.79), the control action at

time k& is chosen to be
u(k) = u*(j) + Myw(k) + (Mz + M, K) (z(k) — 2°(5)), (8-80)

with j = mod (k, T"). Note that in the closed-loop simulation, at time k € N, the current
state z(k) and the disturbance w(k) are measurable to implement the control action
u(k) chosen in (8.80).

8.3.4 Application: the Smart Micro-grid

In this section, we apply the proposed robust control strategy into a smart micro-grid
chosen from [87]. Periodic operation has been proved to be suitable for this system

taking into account the potential periodicity of signals in the system.

Description

The micro-grid system includes three nano-grids placed in parallel. Each nano-grid
consists of a cluster of batteries and a fuel cell. These batteries are used to compensate
the voltage peaks from the fast system dynamics. Therefore, two system state vari-
ables are chosen as the state of charge of batteries and the storage level of hydrogen in
the metal hydride tank. Besides, control inputs in each nano-grid are the power of ex-
change with the electric utility, the power of exchange with the hydrogen and the load
power. The control-oriented model of this micro-grid is built by difference-algebraic
equations in the form of (8.67) with the sampling time of 30 minutes, where system

matrices are defined by

100000 (55847 0 0 0
010000 0 0 0 0
001000 0 55847 0 0
A: 7Bd_ y
0007100 0 0 0 0
000010 0 0 55847 0
0000 0 1] 0 0 0 0
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. . 5.5847  5.5847 —5.5847
and B = diag (B, By, By), By = By, with B, = . And
—3.4495 0 0

E, =0, E, =[0,0,1,0,0,1,0,0,1], E4 = [0,0,0,—1], E,, = E4. The constraint sets
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. _ - L
—0.9 0.9
) . C ~15 1
40 95
0 2
20 95
—0.9 0.9
s |40 95 0
X=<zxzecR": <z< M =cuelR’ : |-15] <u< |1
20 95
0 2
40 95
-0.9 0.9
20 95
- - ~1.5 1
0 2

The patterns of the periodic signal d(k) with the period ' = 48 are shown
in Figure 8.16. This periodic signal is repeated along the simulation time. The
variance matrix 3,, for the Gaussian white disturbance w(k) is given by ¥, =
diag ([0.0339,0.0264,0.0189, 0.0532]) and with the 95% confidence level, the set w(k) €
W, Vk € N can be obtained. The initial state z(0) is chosen as z(0) =
[67.2513,47.4267,67.0940, 47.4985, 67.3972, 47.0535]T.

According to [87], the main control objectives for the management of this micro-grid

are considered:

¢ To optimize the economic costs by maximizing the benefit of the energy exchange

taken into account a time-varying electricity prices presented in ¢;

e To minimize the usage damages of equipments.

Based on these two objectives, the cost functions are defined as follows:

0 (u(i), pi) = M(pi — Prai))?,
12 (ﬂ(l)) = A\otly (’L)2 + )\QEQ(i)Q + )\2’[14@)2 + )\2’&5(2')2 + )\2@7(i)2 + )\Qﬂg(i)Q,

where P, = [0,1,0,0,1,0,0,1,0]. Moreover, A\; and A are prioritization weights. In
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Figure 8.16: Pattern of the periodic signal d(k).

this simulation, they are chosen as A\ = 10 and Ay = 40.

Simulation Results

By satisfying the condition in (8.69), we can obtain ), as the null space of E,, and M, is
equal to M,,. For the design of the local control law K, the LQR technique is used with
the weighing matrices Q = diag ([0.0182,0.0133,0.0182,0.0133,0.0182,0.0133]), R =
diag ([0.5556, 0.4, 0.5,0.5556, 0.4, 0.5, 0.5556, 0.4, 0.5]) and an mRPI set can be obtained

using Lemma 6.1.

The simulation has been carried out for 2 hours (192 sampling time steps). The
optimization problems (8.77) and (8.79) are solved using the linear programming tech-
nique. Note that the planner implemented (8.77) is only solved once to find the op-
timal periodic steady trajectory (8.78). And the closed-loop simulation considers the
system (8.67) with the REMPC controller in (8.79). The Gaussian white disturbances

w(k) € W are sampled in a customized way as shown in Figure 8.17(c). With these
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Figure 8.17: Closed-loop state trajectory and sampled Gaussian
white disturbances of the smart micro-grid.

disturbances, the closed-loop system is recursively feasible. Besides, some simulation
results of the closed-loop state and input trajectories are shown in Figure 8.17 and Fig-
ure 8.18.

Since this micro-grid consists of three nano-grids, we show the results of the first
nano-grid. As shown in Figure 8.17, the blue lines represent the closed-loop states x1 (k)
and x2(k) while the red dashed lines represent the optimal periodic steady states z/
and x8. When the disturbances are present in Figure 8.17(c), both closed-loop states
reach a neighborhood of the optimal periodic steady states and when the disturbances

vanish, they converge to their optimal periodic steady states. For this nano-grid, as also
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Figure 8.18: Closed-loop input trajectory of the smart micro-grid.

shown in Figure 8.18 control inputs are close to a neighborhood of the optimal periodic

steady inputs.

8.4 Summary

This chapter has presented three real application results of EMPC strategies. The re-
search is motivated by the real application problem in WDNs. The mathematical model
is built in a descriptor form, where algebraic equations must be included based on mass
balance. From dealing with a nonlinear model, a linear EMPC strategy is proposed
with nonlinear constraint relaxation. In addition, uncertainties, i.e. modeling error, al-
ways exist in the mathematical model. For this reason, an REMPC is investigated in
order to guarantee recursive feasibility of the closed-loop simulation. As a future di-
rection, fault diagnosis scheme can be included in the design of EMPC. Consequently,
an active fault-tolerant EMPC with suitable system reconfiguration can be used to deal

with faults from actuator or sensor malfunctioning.






CHAPTER 9

FAULT-TOLERANT CONTROL OF
DISCRETE-TIME DESCRIPTOR
SYSTEMS USING VIRTUAL ACTUATOR
AND VIRTUAL SENSOR

This chapter presents an FTC framework for discrete-time descriptor systems using
VA and VS with delayed state feedback. As discussed in Chapter 2, the descriptor
observer is based on the Luenberger structure in (2.27). In the case of discrete-time
descriptor systems, an algebraic loop could exist in the observer-based state feedback,
which prevents the implementation. To overcome this issue, an observer-based de-
layed controller is designed for discrete-time descriptor systems. A separation princi-
ple is formulated and proved in a general manner. The contribution of this part has

been reported in [154].

With this observer-based delayed control scheme, VA and VS are defined for
discrete-time descriptor systems. The closed-loop system with reconfiguration is pre-
sented. Based on the presented separation principle, the gains of VA, VS, descriptor
observer and delayed controller can be designed independently. The preliminary re-

sult of this contribution has been reported in [155].
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9.1 Observer-based Delayed Control of Discrete-time Descrip-

tor Systems

In [31, 172], the solution of state-feedback control design for descriptor system has
been presented. However, so far, the problem of observer-based state-feedback control
of descriptor systems has only been addressed in the case of continuous-time systems
in [29], but not in the case of discrete-time systems. In particular, when formulating the
problem in discrete-time, an algebraic loop appears in the implementation, prevent-
ing the use of a classical state feedback law. In fact, let us consider the discrete-time

descriptor system

Ex(k+1) = Az(k) + Bu(k), (9.1a)

y(k) = Ca(k), (9.1b)

where x € R", u € R™ and y € R"™ denote the system state, control input and
measurement output vectors, respectively. A € R"*", B € R"*™ C € R™*™ and

E € R"*"= are the state space matrices, with £ possibly singular, such that rank(E) =

r < Ng.

Under the assumption that matrices ¥ and C' satisfy rank [ET, C’T] = n,, based

on (2.27), we use the descriptor observer as follows:

2(k+1) = (TA— LC) &(k) + TBu(k) + Ly(k), (9.2a)
#(k) = z(k) + Ny(k), (9.2b)

where z € R"* and & € R"* denote the observer state and the estimated state, respec-
tively, L € R"*™ is an observer gain. Besides, 7' € R"**"* and N € R"*™ are

matrices such that
TE + NC =1, (9.3)

whose existence is guaranteed by the above-mentioned observability and the rank con-

dition.

To make the descriptor system (9.1) admissible, i.e. regular, causal and stable, using
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a feedback law fed by the estimated state #, one might propose to use a standard state-
feedback law, that is u(k) = Kz (k), where K € R"**" is a controller gain. However,
in many cases, the choice u(k) = Kz(k) creates an algebraic loop, which makes the
practical implementation impossible. In fact, u(k) depends on & (k), which is calculated
using y(k) through (9.2b). The output vector y(k) depends on z(k) through (9.1b),
which might depend on u(k) itself if rank [E, B] # rank(FE).

For this reason, we propose a delayed state feedback to perform the observer-based

control of the descriptor system (9.1), as follows:

u(k) = Ki(k —1). (9.4)

Thus, the closed-loop system can be modeled as a descriptor system with state de-
lay. In the following, we will discuss about this choice by showing that the separation
principle still holds, so that the controller design and the observer design can be per-
formed independently. Then, by revisiting some preliminary results for discrete-time
descriptor systems with state delay given in [172], we propose an improved admissibil-
ity condition for these systems taking into account a Lyapunov functional as in [176],
which is later used to present a design procedure for the observer-based state-feedback

control of discrete-time descriptor systems.

9.1.1 Separation Principle

Let us define the state estimation error e(k) = z(k) — (k). From (9.1b) and (9.2b),
we obtain e(k) = z(k) — z(k) — NCxz(k) which, taking into account (9.3), becomes
e(k) = TEx(k) — z(k). Then, the dynamics of e(k) can be formulated as follows:

e(k+1)=TEx(k+1)—z(k+1)
— TAz(k) + TBu(k) — (TA — LC) (k) — TBu(k) — Ly(k)
— (TA— LC) (s(k) — #(1))
= (TA - LC)e(k).

Besides, using (9.4) with Z(k — 1) = «(k — 1) — e(k — 1), the descriptor system (9.1)
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can be rewritten as

Ex(k+1) = Axz(k)+ BKz(k — 1) — BKe(k — 1).

As a result, the augmented system can be expressed as the descriptor system with

state delay
_|z(k+1 —|z(k . E—1
ol A I J G B AR 95)
e(k+1) e(k) e(k—1)
with
- |E 0 o |A 0 - |BK —-BK
0 I|’ 0 (TA-LC)|’ 0 0o |
Consider the class of discrete-time descriptor systems with state delay
Ex(k+1) = Azx(k) + Age(k — 1). (9.6)

According to [172, pp. 178], we first recall the following definition for discrete-time

descriptor systems with state delay.

Definition 9.1. The discrete-time descriptor system with state delay (9.6) is said to be

o regular if det (22E — zA — Ay) is not identically zero;

e causal if it is regular and
deg (2"*det (2E — A — 271 A3)) = ny + rank(E);
e stable if it is regular and max (|v|) < 1, withv € A (E, A, A4), where
MNE, A Ag) = {z: det (zQE —zA - Ag) =0};
e admissible if it is regular, causal and stable.

The following theorem establishes the separation principle for a discrete-time de-

scriptor system with state delay in a block-triangular form, i.e. (9.5).
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Theorem 9.1. The following statements are equivalent:
o The descriptor systems with state delay
Eyzi(k+1) = Anxi(k) + Agy 21 (k = 1), (9.7a)
Eyxo(k + 1) = Agowa(k) + Agyywa(k — 1), (9.7b)
where the states x1 € R™ and x5 € R™2 are admissible.
o The descriptor system with state delay
Ei 0 z1(k+1) A Ap z1(k)
0 Ey 1‘2(/{3 + 1) 0 Agg l‘g(k?)
(9.8)
Ady Adyy z1(k —1)
0 Ad22 ZCQ(k‘ — 1) ’

where A2 € R™*™ and Ay, € R™*™ is admissible.

Proof. (Regularity) The following equality holds

o E1 0 Ay Arg Agir Aa2
det | z —
0 Ey 0 A 0 Agz
_ det 22Ey — zAn — Ag —2zA12 — Agi2
0 22E2 — ZA22 — Adgg

=det (22E1 — ZAH — Adll) det (Z2E2 — ZA22 — Adgg) .

Hence, according to Definition 9.1, the regularity of the systems (9.7a) and (9.7b) is

equivalent to that of the system (9.8).

(Causality) Let us denote

~1 ~1
2By — A — 27 Aann —A12 — 27 Agio

U —
0 2By — Agg — 271 Agoo
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According to Definition 9.1, we also have that

deg (2772 det (¥))
:deg (an det (ZEl — A11 — Z_lAdll) an det (ZEQ — A22 — Z_lAdQQ) )

=deg (z”l det (zE1 — Ay — zflAdH)) + deg (z”2 det (ZEQ — Aoy — zflAdgg)) .

From causality of the systems (9.7a) and (9.7b), it follows that

deg (z"1 det (zE1 — A — z_lAdll)) = ny + rank(Ey),
deg (z”2 det (zEg — Aoy — z_lAdzg)) = ng + rank(FEs).

Then, we know that

deg (2" "2 det (¥)) =ny + rank(E)) + ng + rank(F>)

E, 0
Es

9

= (n1 + n2) + rank [

which implies causality of the system (9.8).

On the other hand, for the pairs (E, A11, Aq,,) and (E2, Az, Ag,,), we know
deg (z”l det (zE1 — A — z_lAdn)) < ny + rank(Ey),
deg (2”2 det (zE2 — Aoy — z_lAdgg)) < ng + rank(E»).
From causality of the system (9.8), it follows
deg(2™ "2 det(¥)) = (n1 + ng) + rank(E;) + rank(E»),
which implies deg (2" det (2E1 — A1y — 27 *Aq11)) = n1 + rank(E;) and

deg (2"2 det (2B — Agp — 27 Ag20)) = ng + rank(Es), and therefore causality of
the systems (9.7a) and (9.7b).

d

(Stability) Following the proof of regularity, we know

Ey O
0 IB»

A A

Adu Ad12
0 Ag,

) )

> = A (E1, A1, Agin) U A (B, Ag, Agz2) ,
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which implies the equivalence of the stability according to Definition 9.1.

(Admissibility) Since we have proved the equivalence of regularity, causality and
stability in systems (9.7a), (9.7b) and(9.8), we can conclude the equivalence of admissi-
bility of systems (9.7a) and (9.7b) and the system (9.8). O

Theorem 9.1 is crucial, since it states that the admissibility of (9.5) can be enforced

by considering independently the systems

Ex(k+1) = Ax(k) + BKz(k — 1), (9.9a)
e(k+1)=(TA - LC)e(k), (9.9b)

where (9.9b) is in a dynamical form without state delay and the design of a stabilizing
observer gain L is available in literature. In this section, we focus on the design of a

delayed controller gain K to guarantee the descriptor system (9.9a) admissible.

9.1.2 Improved Admissibility Analysis and Controller Design

In this section, we first present an improved admissibility condition for the descriptor
system with state delay (9.6). Then, we propose the design condition of the delayed

controller using matrix inequalities.

Improved Admissibility Condition

Let us recall an admissible result in [172, Theorem 9.3], which provides a sufficient

condition for the admissibility of the system (9.6).

Proposition 9.1. The discrete-time descriptor system with state delay (9.6) is admissible if

there exist matrices P € S™= and Q) € Sg”g) such that

E'PE =0, (9.10a)

ATPA—-ETPE+Q ATPA,
=< 0. (9.10b)
AJPA AgPAd -Q
Proof. Based on [172, Theorem 9.3] with 7 = 1, we can obtain (9.10) with @ > 0.

Since 7 = 1, following the proof of [172, Theorem 9.3], we know the matrix P =
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diag(P, Q) and @ does not appear in [172, Eq. (9.33)] and hence can be positive semi-
definite. O

However, as stated by [176], conditions as the ones provided by Proposition 9.1

may lead to conservativeness, since the considered Lyapunov functional is of the type
V(k)=x(k)"ETPEx(k) + z(k — 1) Qz(k — 1),

and the possibility of introducing an additional term related to (z(k) — z(k — 1)) is ig-
nored. Inspired by the choice of the Lyapunov functional in [176, Eq. (6)], we now

present an improved admissibility condition in the following theorem.

Theorem 9.2. The discrete-time descriptor system with state delay (9.6) is admissible if there
exist matrices P € S"=, () € S"* and S € S"* such that

[ET(P+S)E —ETSE
(P+5) - (9.11a)
| -E'SE  Q+E'SE
ﬁ 2 (9.11b)
| Ps O3
with
¢1=AT(P+S8)A+Q—E'PE - He (ETSA) (9.12a)
¢y =AT(P+S)Aq— E"SA;+ ETSE, (9.12b)
¢p3=A)(P+S)Aq—Q— E'SE. (9.12¢)
Proof. Define the variable
§0) = [2(0)7, a(k—1)T]
Then, it can be verified that the system (9.6) can be rewritten as
Ee(k+1) = Ag(k), (9.13)
where
. |[E o] . 4 4
_ A= a0 (9.14)
0 1 I 0
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Set
N P+S —-SE
_ |0 . (9.15)
~-ETS Q+E'SE
For the system (9.13), it can be shown that
ATPA- ETPE = [qﬁ ¢2] <. ©9.16)
¢y b3

By noting that £ PE > 0 due to (9.11a), and employing [49, Theorem 2], we have
that the system (9.13) is admissible. From regularity of (9.13), it follows that det(zE — fl)
is not identically zero, and since det(zE — A) = det(22E — zA — A), regularity of (9.6)

follows from Definition 9.1. Moreover, from the causality of (9.13), we have that
deg (det (zE - A)) = rank(E) = n, + rank(FE),

which proves causality of (9.6) since det(2F — A) = z"= det (25 — A — 21 A,). Finally,
the stability of (9.13) implies the stability of (9.6) and, therefore, its admissibility. O

Remark 9.1. Note that Theorem 9.2 can be reduced to Proposition 9.1 when S = 0.

The condition of Theorem 9.2 includes non-strict inequalities due to (9.11a). Fol-
lowing the spirit of [172, Theorem 9.4], we next present the admissibility condition

with strict inequalities.

Theorem 9.3. The discrete-time descriptor system with state delay (9.6) is admissible if there
exist matrices P € S™, Q € S"=, S € S™ and W € R2ne>(ne=7) gych that

Pwo, (9.17a)
o1 2 e (WEl A, Ad]) <0, (9.17b)
by O3

with P as in (9.15), and ¢1, ¢o and ¢ as in (9.12).

Proof. Consider the matrix
Bl = [El, 0} ,

which is of full row rank and satisfies E-E = 0 with E defined as in (9.14). Itis
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straightforward from (9.16) that
ATPA— ETPE +He (WELA)

_ [¢1 ®2

+He (WE*L[A, A4]) < 0.
o7 b e( [ d])

Since P = 0, according to [171, Theorem 1], the system (9.13) is admissible. Fol-
lowing a discussion similar to the proof of Theorem 9.2, the system (9.6) is shown to be

admissible. 0

Remark 9.2. Note that Theorem 9.3 can also be reduced to [172, Theorem 9.4] when
S =0.

Delayed Controller Design

Based on above results, we now present the condition for the design of a controller gain
K, which is obtained by applying Theorem 9.3 taking into account that (9.9a) is in the
form (9.6) with A; = BK.

Theorem 9.4. The discrete-time descriptor system with state delay (9.9a) is admissible if there
exist matrices P € S", Q € S", S € S*, W; € R™(=") W, € R™(") gnd K € RM*"
such that (9.17a) and

(& V2 AT(P+5)
Py ¥s KTBT(P+S)| <0, (9.18)
(P+S)A (P +S)BK —(P+8)

with P as in (9.15) and

1 = Q- E' PE + He (WlELA _ ETSA) ,
T
Wy = WiELBK + AT (EL) W, — ETSBK + ETSE,
3 = He (WQELBK) Q- E'SE.
Proof. According to (9.17b), let us set W = [W,", W' | i
count that the positive definiteness of the matrix (P +5) is ensured by (9.17a), applying

and A; = BK. Taking into ac-
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the Schur complement to (9.17b), we obtain

() (> AT
Yy a3 K'BT | =<0.
A BK —(P+5)7!

Pre- and post-multiplying the above inequality by diag(/, P + S), we thus ob-
tain (9.18). O

9.2 Problem Statement in FTC

Consider the following discrete-time descriptor system subject to actuator and sensor

faults

Exp(k+1) = Axg(k) + Be(o(k)) (up(k) + fa(k)) (9.19a)
yr(k) = Cp(y(k))zp(k) + f5(k), (9.19b)

where 7y € R", uy € R"™ and y; € R" denote the vectors of faulty system states,
faulty control inputs and faulty measurement output vectors, respectively. f, € R"™
and f; € R™ denote the vectors of additive actuator and sensor faults. ¢ € R™ and

~ € R™ denote the vectors of multiplicative actuator and sensor faults with

o(k) = [p1(K), ... bny ()], 0 < i(k) <1, i=1,...,1n, (9.20a)
(k) = [a(k)s -, (B)] T, 0< @i(k) <1, i=1,...,ny, (9.20b)

Besides, A € R™**™ and Bf(¢(k)) € R"**™ and C¢(vy(k)) € R™*"= are defined in

the following structure:

By(6(k)) = Bdiag (61(k), . ., 6, (k) 9.21a)
Cr(1(K)) = diag (41 (), . .-, 4y (K)) C, (9.21b)

where B and C are given in the nominal descriptor system (9.1).

Assumption 9.1. The additive and multiplicative actuator and sensor faults are assumed to be

estimated as known variables.
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Figure 9.1: FTC scheme using VA and VS.

As shown in Figure 9.1, in this chapter, we focus on designing a VA and a VS for the
reconfiguration of the faulty system (9.19) and its application to FTC using a nominal

observer-based delayed state-feedback controller as in (9.4) with (9.2).

9.3 FTC of Descriptor Systems with Reconfiguration

We now propose a general FTC scheme for discrete-time descriptor systems using VA
and VS. In this FTC scheme, an observer-based delayed state-feedback controller de-
fined in (9.4) is used. Then, we define the structure of a virtual delayed actuator (VDA)
in a descriptor form as well as in a form that accommodates the delayed state feedback.
On the other hand, as introduced in Chapter 2, the observer of discrete-time descriptor
system is in a dynamical form. Hence, the duality between VDA and VS in traditional
dynamical systems no longer hold. In the section, we present the closed-loop system

dynamics that proves separation principle can also be used.

9.3.1 Nominal Observer-based Delayed Controller

Recall the observer-based delayed state-feedback controller in (9.2) and (9.4) as the

nominal controller as follows:
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uc(k) = Kz(k — 1), (9.22a)
2(k+1) =(TA— LC)z(k) + TBuc(k) + Ly.(k), (9.22b)
(k) = z(k) + Ny(k), (9.22¢)

where u, € R™ and y. € R™ are nominal input and output provided by the VDA and
the VS, respectively.

9.3.2 VDA and VS for Descriptor Systems

We now define the VDA and the VS for the descriptor system (9.19).

For designing the VDA, let us define the following matrices:

Nua((k)) = By(¢(k))' B, (9.23a)
B* = By(¢(k)) Nua((k)). (9.23b)

Definition 9.2 (Virtual delayed actuator for descriptor systems). Given the descriptor

system subject to actuator and sensor faults in (9.19), the VDA is defined as follows:

Exyo(k+ 1) = Azye(k) + B* Myqwye(k — 1) + (B — B*) uc(k), (9.24a)
uf(k) = Nva(d)(k)) (uc(k> - Mval'va(k - 1)) - fa(k)7 (9.24b)
where z,, € R™ denotes the vector of VDA states. Moreover, M,, € R**" js a VDA

gain.

For designing the VS, let us also define the following matrices:

Nys(v(k)) = CCf(’V(k))T’ (9.25a)
C" = Nus(7())Cr (y(k)).- (9.25b)

Assumption 9.2. The pair (E,C*) is assumed to be observable and hence matrices E and C*

satisfy the rank condition

E
rank [ ] = Ng. (9.26)
C’*
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If Assumption 9.2 holds, there exist matrices 7y € R™**"* and Ny € R™**™ satisfy-

ing the following condition
T.E + N,C* = 1I,,. (9.27)

Definition 9.3 (Virtual sensor of descriptor systems). Given the descriptor system sub-

ject to actuator and sensor faults in (9.19), the VS is defined as follows:

Zos(k + 1) = (TsA — MysC*) 245 (k) + Ts Bue(k)
+ MysNos (7(8)) (g7 (k) + Cp (k) 20a(k) — fo(R)) (9.282)
Zus(k) = 2zus (k) + NoNus((k)) (57 (k) + Cp (y(k))zualk) — fo(k)), (9.28b)
ye(k) = Nus(v(k)) (yr (k) + Cp(v(k))zoa(k) — fs(k)) + (C — C)zus(k),  (9.28c)
where z,, € R™ and z,, € R" denote the vector of states and intermediate states of
VS. Moreover, M, s € R"**™ is a VS gain.

Remark 9.3. According to [107], B* and C* are independent to multiplicative actuator

and sensor faults ¢(k) and (k).

9.3.3 The Closed-loop Analysis and Designs

We now analyze the closed-loop dynamics of the faulty system (9.19) with the VDA
and the VS in Definitions 9.2 and 9.3 as well as the nominal observer-based delayed
controller (9.22).

Theorem 9.5. Consider the faulty descriptor (9.19), the nominal controller in (9.22),
the VDA in (9.24) and the VS (9.28). Let us define the wvariable ((k) =

(GRS R, GHE)T, k)] with

G (k) = wpa(k), (9.29a)
G(k) = zp(k) + zva(k), (9.29b)
G(k) = (k) — 2vs(k), (9:29¢)
Calk) = wos(k) — 25 (k) — 2o (k). (9.29d)
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Then, the closed-loop behavior is given by
EC¢(k+1) = AC(k) + Aal(k — 1), (9.30)
where
2 0 0 0]
- 0 E O 0
E= )
0 0 I, 0
0 0 0 I,
(4 0 0 ]
- 0 A 0
A=
0 0 (TA-LC) =
0 0 0 (T, A — M,,C*)
(B*M,, (B—B)K (B—-B)K (B-B*)K]
~ 0 BK BK BK
Ay =
0 0 0 —-TBK
0 0 0 0

with Z = (TA — LC*) — (TE + NC*)(Ts A — M,,C*).

Proof. From the definition of {(k) in (9.29), we know that

Tva(k) = C1(k),
zp(k) = —C(k) + C2(k),

&(k) = G(k) + ¢3(k) + Ga(k),
Tus(k) = Ca(k) + Ca(k).

From (9.24) and (9.22), it follows

ECi(k+1) = Bxy(k+1)
= Awyo(k) + (B — B")Ki(k — 1) + B"Mya@va(k — 1)
= AG (k) + B*"MuyaCi(k — 1) + (B — B ) K(a(k — 1)
+ (B - B)KC(k— 1) + (B — BYKC(k — 1).
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From (9.19), (9.24) and (9.22), we have that

ECy(k+1) = Exp(k+ 1) + Exye(k + 1)
= A(zs(k) + v0a(k)) + BKZ(k — 1)
= Ao (k) + BKCo(k — 1) + BK¢3(k — 1) + BKCGi(k — 1).

From (9.19), (9.24), (9.28) and (9.22), we have

Gk+1) =zys(k+1) —xp(k+1) — 2po(k + 1)
= 2ps(k + 1) + NoC* (xp(k+ 1) + 2pa(k+ 1)) —zp(k+ 1) — zpa(k + 1).

Considering the condition (9.27), the above equation can be simplified as

Gk +1) = zys(k + 1) = ToE (2 (k + 1) + 2oa(k + 1))
= (ToA — MysC*) (s (k) — 27(k) — 20a(k))
= (TyA — MysC*)Ca (k).

From (9.19), (9.22) and (9.28), we have

Glk+1)=a(k+1) — zps(k +1)
=2(k+1)+ Nye(k +1) — zps(k +1) = NC*(xf(k 4+ 1) + zpa(k + 1))
= (TA— LC)#(k) + TBuc(k) + LC* (x4 (k) + 2ya(k)) + L(C — C*)zps(k)
+ NC*(zf(k+1) + zpa(k+ 1)) + N(C — C")zys(k + 1)
— (TsA — MysC*)wys(k) — TsBue(k) — MysC*(z (k) + 200 (k)
— N,C*(xf(k + 1) + zyo(k +1)).

Considering the conditions (9.3) and (9.27), the above equation becomes
G(k+1) = (TA—-LC)G(k) + (TA - LCY) = (TE + NC*)(Ts A — MysC™)) Ca(k)

— TBK(4(k —1).

As a result, according to formulations above, we can conclude that the closed-loop

dynamics can be formulated as in (9.30). O
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From the result of Theorem 9.5, based on the separation principle presented in The-
orem 9.1, the admissibility of the closed-loop system in (9.30) is equivalent to admissi-

bility of the following subsystems:

Es(k + 1) = AS(k) + B* Myad(k — 1), (9.31a)
ES(k+1) = As(k) + BK3(k — 1), (9.31b)
5(k+1) = (TA— LC)5(k), (9.31¢)
5(k+1) = (TyA — My, C*)o(k), (9.31d)

where § € R"* denotes an auxiliary state.

From (9.31a) and (9.31b), the designs of the gains of the VDA and the nominal con-
troller correspond to the descriptor delay system form in (9.6). Thus, they can be de-

signed using Theorem 9.4.

On the other hand, since that (9.31c) and (9.31d) are in a dynamical form, the de-
signs of the gains of the descriptor observer and the VS can use the standard Lyapunov

stability result, i.e. in [32].

9.4 Numerical Example

In this section, we use a numerical example to test the validity of the proposed FTC

strategy. Consider the nominal descriptor system (9.1) with the following matrices

(1 08 0 1.05 0.68 0
E=1lo 1 o/, A=| 0 085 03],
0 04 0 0 034 1
(1 13 2 Lo o
B=1lo 1 03], Cz[ ]

01 1
0 04 1

and considering the faulty descriptor system (9.19) with known actuator and sensor

faults
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By = Bdiag ([0,0.3,0.5]),
C; = diag ([0.3,0.8]) C,

and f, = 0, fs = 0. Then, for designing the VDA and the VS, according to (9.23), it

comes

0 0 0 0.7859 1.3 2
Ny = 0.0157 3.3333 0|, B*=|0.1217 1 0.3},
0.7798 0 2 0.3918 04 1

and according to (9.25), we can obtain

3.3333 0 . 1 00
Nys = , C* = .
0 1.25 011

Sincerank ([ET, C'T]) = n, = 3, from the conditions (9.3), we choose the following

matrices
0.0135 —0.2162 0.5135 0.9865 0
T=1-0.1081 0.7297 0.8919(, N = [0.1081 0
—0.6486 —0.6216 0.3514 0.6486 1

Moreover, in this example, it can be also verified that rank ({ET, C*TD =n, = 3.

Then, we can also obtain T, = T and Ny = N.

From this example, by computing the generalized eigenvalues A\ (E,A) =
{1.05,0.85, 00}, the open-loop system (9.1) is unstable and therefore not admissible.
By means of the proposed FTC scheme as shown in Figure 9.1, according to discus-
sions above, we can independently design the gains of the VDA, delayed controller,

the descriptor observer and the VS. Then, we obtain

0.4230  0.3259 —0.0138 —0.4608 0.1956  0.0014
Myq = | 0.0054 —0.2638 —0.0048(, K = | 0.0052 —0.2842 —0.0013],
—0.3899 —0.0835 0.0114 —0.0034 —0.0431 0.0008
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Figure 9.2: Closed-loop FTC results.
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0.2871 0.3280 0.2871 0.3280
L =1-0.1047 1.0930|, Mys= [—0.1047 1.0930
—0.4827 0.0395 —0.4827 0.0395

Given the following initial condition: z(0) = [1.8, —0.8, —=2.5] ", u(0) = 0, Z,,(0) = 0,
2ps(0) = 0 and z,4(0). With the designed gains above, the closed-loop simulation has
been carried out for 150 sampling steps. The results of state trajectories are shown in
Figure (9.2). The faults were introduced from time step k£ = 3 and the FTC strategy was
implemented from time step & = 15. For three states, three different scenarios have
been provided, which are (i) no faults; (ii) faults without applying the proposed FIC;
(iii) faults with applying the proposed FTC.

From this figure, it can be seen that from k£ = 0 to k = 3, state trajectories of three
scenarios are the same since no faults occurred. From k£ = 3 to k = 15, since actuator
and sensor faults have been introduced in the closed-loop system but no FTC has been
implemented, the green and red dashed lines are starting to diverge simultaneously.
From k£ = 15, state trajectories with using the proposed FTC (in green dashed lines)
are converging to zero during a transient time. Thus, from the closed-loop simulation
result, we can conclude that the closed-loop system is stable and hence admissible.

And the proposed FTC strategy is effective.

9.5 Summary

This chapter has presented an FTC scheme for discrete-time descriptor systems using
VDA and VS. Based on the discussions in this chapter, in order to solve the implemen-
tation problem of an observer-based state-feedback control of discrete-time descriptor
systems, an observer-based delayed control for discrete-time descriptor systems has
been proposed. For the admissibility analysis and the delayed controller design, an
improved admissibility condition has been studied. Then, based on the delayed con-
troller, a VDA and a VS for FTC reconfiguration have been defined. According to the
separation principle for descriptor delay systems, the gains of nominal controller, de-
scriptor observer, VDA and VS can be design independently. Through a simulation

result, the proposed FIC strategy has been verified.

Future direction of the topic in this chapter can be summarized as follows:
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e Discrete-time descriptor systems could be affected by uncertainties. Robustness
should be addressed in the designs of VA and VS;

e Nonlinearities sometimes appear in descriptor systems. VA and VS could be ex-

tended into nonlinear systems using LPV embeddings;

e Set-membership approach for discrete-time descriptor systems proposed in
Chapter 2 could be linked with VS.
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CHAPTER 10

CONCLUDING REMARKS

10.1 Conclusions

In this thesis, several theoretical contributions and application results on robust state

estimation, set-based fault diagnosis, EMPC and FTC strategies for complex systems

have been presented. Specifically, the conclusions are summarized with respect to the

envisaged thesis objectives as follows:

(i)

(ii)

Develop robust state estimation approaches based on set theory for descriptor systems;

It has been shown in Chapter 2 that a set-based framework for discrete-time de-
scriptor systems has been proposed. The set-membership approach based on
zonotopes and zonotopic Kalman observer have been extended to descriptor sys-
tems subject to unknown-but-bounded uncertainties, which are able to achieve
robust state estimation results. As a significant difference from classical state es-
timation approaches, the obtained results include not only a punctual value but
also guaranteed estimation bounds that reflect the worst-case state estimation in
presence of uncertainties. This framework has also been proved to be applicable

in fault diagnosis.

Improve the limitation of set-membership approach for complex systems;

The disadvantage of classical set-membership approach derived from the geo-
metrical complexity has been solved by investigating a distributed approach. It
has been shown in Chapter 3 that considering a distributed model with cou-

pled states, distributed state bounding zonotopes are built for agent by agent.
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(iii)

(iv)

Then, the correction from the consistency test is implemented between the system
model and the individual measured output. In terms of communication among
agents in the distributed model, each agent send its distributed zonotope to all
its neighbors and the effects of neighbors are translated by the distributed model.
This distributed approach has been demonstrated with a simple example and
compared with a corresponding centralized approach. According to the simu-
lation results, the performance of the proposed distributed approach is slightly
worse than the centralized one due to the fact that less information is used for
the correction. However, for high dimensional complex systems, centralized set-
based approaches cannot be directly applied. Hence, this distributed approach

provides a potential way to deal with those systems.

Investigate fault diagnosis strategies based on set theory for descriptor systems;

To achieve fault diagnosis of descriptor systems, the proposed set-based frame-
work has been extended for FD, FI and FE in Chapters 4-5. For the design, in
addition to make the observer gain be robust against uncertainties, additional
conditions are required for different objectives. For FD, two fault sensitivity cri-
teria are defined. For FI, unknown input observers are employed to locate where
the occurred fault is from. For FE, the identification condition is introduced to
estimate faults from measured outputs. On the other hand, in Chapter 3, a gen-
eral framework of set-invariance characterizations has also been proposed for
discrete-time descriptor systems. Taking into account that occurred faults may
lead to a different operating mode of the considered model. The active mode de-
tection mechanism has been provided using set invariance. These contributions

complete a set-based fault diagnosis for discrete-time descriptor systems.

Contribute to EMPC strategies for periodic operation with applications to realistic com-

plex systems;

Motivated by WDNs, the exogenous and endogenous signals in these networks
imply a periodic behavior and naturally an optimal periodic operation could be
useful for management of these real systems. For this reason, as presented in
Chapter 7, a novel EMPC formulation for periodic operation has been addressed
as well as its robust case. This formulation has also been proved to be recursively
feasible, converging to (a neighborhood of) a periodic steady trajectory. In ad-
dition, when a defined optimality certificate is satisfied, this steady trajectory is

equivalent to the optimal trajectory obtained by the corresponding planner. From
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application point of view, to apply a control strategy into a real system, some is-
sues could happen. As shown in Chapter 8, a two-layer control strategy is used
for translate the optimal set-points produced from the upper-layer EMPC con-
troller into a sequence of ON/OFF operations in WDNs. A nonlinear constraint
relaxation approach is used for dealing with nonlinear algebraic equation in the
control-oriented model of WDNs. Besides, a robust technique is used for sat-
isftying disturbances in descriptor model of SG. These contributions provide an

insight on finding an optimal management of complex systems.

(v) Include fault-tolerant capability in the controller design for descriptor systems.

In terms of the critical nature, the fault-tolerant capability has been introduced
by means of defined VA and VS for descriptor systems as shown in Chapter 9.
Taking into account that occurred faults can be estimated, these faults are hidden
using VA and VS for descriptor systems. The advantage of this approach is to
make use of the nominal controller in the reconfiguration loop in presence of

fault occurrence.

10.2 Future Work

There are still some open issues regarding the presented problems in Chapters 2-9.
From the summary of each chapter, several improvements have been introduced. Gen-
erally speaking, some interesting ideas for future directions derived from this thesis are

suggested as follows:

e Applications of all the presented theoretical results to real case studies including
large-scale complex systems are interesting. Among them, new challenges in the
implementations of these approaches could be met and useful solutions could be

demonstrated.

e The set-based framework deserves to be extended to nonlinear descriptor sys-
tems. The DC programming as introduced in [2] could be an option. Considering
a nonlinear function can be a difference between two convex functions, uncertain

system states can be bounded by convex analysis.

e It is interesting to improve the distributed approach in Chapter 3 by defining a
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suitable geometrical set. The expected performance of an improved approach is

not worse than the corresponding centralized one.

The set-based fault diagnosis could be extended to deal with different types of
faults, e.g. multiplicative actuator and sensor faults. In terms of multiplicative

faults, switching control techniques may be used.

The closed-loop input design to guarantee the admissibility of discrete-time de-
scriptor systems can be integrated into the proposed active mode detection mech-

anism. Suitable state/output feedback can be introduced for descriptor systems.

The proposed EMPC formulation can be extended into nonlinear systems. In-
vestigating the closed-loop properties of nonlinear systems is challenging but of

interest.

The proposed FIC can be extended into a robust case. Making use of the pro-

posed set-based framework could be a good option.
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APPENDIX A

PROOF OF LEMMA 1.3

Consider the transformation (), P) with the restricted equivalent form in (1.3). Besides,

from (1.1), we have

QEPP 'z(k+1) = QAPP '2(k) + QB w(k).

Using (1.3) and defining Z(k) as in (1.6), we obtain

fﬁl(k + 1) = Ali'l(k) + Agjfg(k) + Bwlw(k), (Ala)
0 = A321(k) + AyZa(k) + Buow(k). (A.1b)

From Lemma 1.2, A4 is invertible. Then, from (A.1b), we have

i‘Q(k‘) = —AzlAgjl(k) — Allegw(k}) (AZ)

Substituting Z2(k) in (A.1a) by (A.2) leads to

T (k + 1) = (Al — AQAZlAg) fl(k) + (Bwl — AQAZleQ) w(k) (A3)

From (A.2), we have

To(k+1) = —A; A371(k +1) — A7 Byow(k 4 1)
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and using (A.3) yields

i’g(k + 1) = —AZlAg (Al — AQAZIA:;) .fl(k‘) — AzlAg (Bwl — A2AZ1Bw2) w(k)
— Alewgw(kJ + 1)

Thus, we obtain the equivalent form in (1.4).
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PROOF OF THE RANK
CONDITION (2.2)

Consider a pair of matrices 7' € R™**"* and N € R"**" satisfying

TE + NC =1,,,
TDy = 0.

The above condition can be reformulated by an augmented form as

[ o]

7 ¥]

C 0

and its transpose form can be expressed as

E D

which satisfies the matrix equation form of & X = %, where &/ = 0

T
I

, B =
0

According to [173, Corollary 1], if the matrix equation &/ X = 2 has a solution X,

and X = [T N}T.
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the following rank condition holds:

rank ([@{ 35’]) = rank (&) .

However, the above condition is a necessary condition, but not a sufficient con-
dition. Therefore, by using the property of the Kronecker product, we vectorize the

matrix equation &/ X = % to obtain
(In, ® o)vec(X) = vec(A),

where ® denotes the Kronecker product and vec(-) denotes the vectorization of a
matrix. The sufficient and necessary rank condition of linear vector equation (/,,, ®
o )vec(X) = vec(ZA) is

rank |I,, @ o vec((%’)} = rank (1, ® o).

From the rank property with the Kronecker product, we know rank (/,,, ® &) =

rank (I, ) rank (o) = n, - rank (7). Therefore, the rank condition becomes

rank | [, ® .o/ vec(%B)| =n,-rank ().

Hence, with the properties rank(A) = rank(A") and (A ® B)" = AT ® BT, we

obtain the rank condition to guarantee the existence of solutions of 7"and N as

E Dyl
I,
cC 0 E Dy
rank 7| =ng -rank .
I, 0
vec
- O -

Besides, we also discuss the rank condition for the case of dynamical systems with
unknown inputs in Section 5.2. Consider a pair of matrices T € R"%*" and N €

R™=>"y satisfying

T+NC=1,,
TDy = 0.
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By combing above condition, we have
T—1, - NC,

Dy = NCD,.

According to [23, Section 3.2], assuming that Dy is full column rank, the existence

of solutions of T and N is given by
rank(Dy) = rank(CDy),

which leads to the same result in [23, Lemma 3.1].
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