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ABSTRACT

This dissertation intends to provide theoretical and practical contributions on estima-

tion, diagnosis and control of complex systems, especially in the mathematical form of

descriptor systems. The research is motivated by real applications, such as water net-

works and power systems, which require a control system to provide a proper manage-

ment able to take into account their specific features and operating limits in presence

of uncertainties related to their operation and failures from component malfunctions.

Such a control system is expected to provide an optimal operation to obtain efficient

and reliable performance.

State estimation is an essential tool, which can be used not only for fault diagnosis

but also for the controller design. To achieve a satisfactory robust performance, set the-

ory is chosen to build a general framework for descriptor systems subject to uncertain-

ties. Under certain assumptions, these uncertainties are propagated and bounded by

deterministic sets that can be explicitly characterized at each iteration step. Moreover,

set-invariance characterizations for descriptor systems are also of interest to describe

the steady performance, which can also be used for active mode detection.

For the controller design for complex systems, new developments of economic

model predictive control (EMPC) are studied taking into account the case of under-

lying periodic behaviors. The EMPC controller is designed to be recursively feasible

even with sudden changes in the economic cost function and the closed-loop conver-

gence is guaranteed. Besides, a robust technique is plugged into the EMPC controller

design to maintain these closed-loop properties in presence of uncertainties.

Engineering applications modeled as descriptor systems are presented to illustrate

these control strategies. From the real applications, some additional difficulties are

solved, such as using a two-layer control strategy to avoid binary variables in real-time
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optimizations and using nonlinear constraint relaxation to deal with nonlinear alge-

braic equations in the descriptor model. Furthermore, the fault-tolerant capability is

also included in the controller design for descriptor systems by means of the designed

virtual actuator and virtual sensor together with an observer-based delayed controller.

Keywords: Robust state estimation, fault diagnosis, economic model predictive

control, fault-tolerant control, set theory, descriptor systems, water distribution net-

works, smart grids.
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RESUMEN

Esta tesis propone contribuciones de carácter teórico y aplicado para la estimación del

estado, el diagnóstico y el control óptimo de sistemas dinmicos complejos en partic-

ular, para los sistemas descriptores, inluyendo la capacidad de tolerancia a fallos. La

motivación de la tesis proviene de aplicaciones reales, como redes de agua y sistemas

de energı́a, cuya naturaleza crı́tica requiere necesariamente un sistema de control para

una gestión capaz de tener en cuenta sus caracterı́sticas especı́ficas y lı́mites operativos

en presencia de incertidumbres relacionadas con su funcionamiento, ası́ como fallos

de funcionamiento de los componentes. El objetivo es conseguir controladores que

mejoren tanto la eficiencia como la fiabilidad de dichos sistemas.

La estimación del estado es una herramienta esencial que puede usarse no solo

para el diagnóstico de fallos sino también para el diseño del control. Con este fin, se

ha decidido utilizar metodologı́as intervalares, o basadas en conjuntos, para construir

un marco general para los sistemas de descriptores sujetos a incertidumbres descono-

cidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos

que se pueden caracterizar explı́citamente en cada instante. Por otra parte, también se

proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descrip-

tores que permiten describir comportamientos estacionarios y resultan útiles para la

detección de modos activos.

Se estudian también nuevos desarrollos del control predictivo económico basado

en modelos (EMPC) para tener en cuenta posibles comportamientos periódicos en la

variación de parámetros o en las perturbaciones que afectan a estos sistemas. Además,

se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, in-

cluso frente a cambios repentinos en la función de coste económico y se garantiza la

convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto

pata garantizar que las estrategias de control predicitvo económico mantengan las

prestaciones en lazo cerrado, incluso en presencia de incertidumbre.
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Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de

aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia

de control de dos niveles para evitar incluir variables binarias en la optimización y el

uso de la relajación de restricciones no lineales para tratar las ecuaciones algebraicas no

lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también

una contribución al diseño de estrategias de control con tolerancia a fallos para sistemas

descriptores.

Palabras clave: Estimación de estado robusta, diagnóstico de fallos, control pre-

dictivo económico basado en modelos, control tolerante a fallos, métodos intervalos,

métodos basados en conjuntos, sistemas descriptores, redes de distribución de agua,

redes inteligentes.
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RESUM

Aquesta tesi proposa contribucions de caràcter teòric i pràctic sobre l’estimació d’estat,

el diagnòstic i el control òptim de sistemes complexos en particular, per als sistemes

descriptors, incloent-hi la capacitat de tolerància a fallades. La motivació de la tesi

prové d’aplicacions reals, com ara xarxes d’aigua i sistemes d’energia que, per la seva

naturalesa crı́tica necessàriament requereixen d’un sistema de control capaç de tenir en

compte les seves caracterı́stiques especı́fiques i els lı́mits de funcionament, la presència

d’incerteses relacionades amb el seu funcionament i situacions de malfuncionament

dels components. Es pretén que aquest sistema de control millori l’eficiència i la fiabil-

itat d’aquests sistemes.

L’estimació d’estat és una eina essencial no només per al diagnòstic de fallades,

sinó també per al disseny del sistema de control. Amb aquest objectiu, s’utilitzen

tècniques intervalars i basades en conjunts per a generar un marc general per als sis-

temes de descriptors sotmesos a incerteses desconegudes però limitades. Aquestes

incerteses es propaguen i limiten amb conjunts determinı́stics que es poden caracter-

itzar explı́citament en cada instant. D’altre part, també es proposen caracteritzacions

basades en conjunts invariants per a sistemes descriptors, que permeten descriure com-

portaments estacionaris i que son d’utilitat per a la detecció dels modes actius en cas

de sistemes amb múltiples modes.

S’estudien, a més nous desenvolupaments del control predictiu econòmic basat en

models (EMPC) per a tenir en compte el cas de comportaments periòdics. Es demostra

que el controlador EMPC desenvolupat garanteix la factibilitat recursiva, fins i tot amb

canvis sobtats en la funció de cost econòmic, aixi com la convergència de llaç tancat.

Finalment, s’utilitzen tècniques de control robust per a garantir les prestacions en llaç

tancat, considerant la presència d’incerteses.
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Els desenvolupaments de la tesi es mostren amb casos d’estudi realistes. Per a al-

gunes aplicacions reals, es resolen també problemes addicionals, com ara l’ús d’una

estratègia de control de dues capes per evitar variables binàries en l’optimització i la

relaxació de restriccions no lineals en el model descriptor en les xarxes d’aigua. Final-

ment, s’inclou també una contribució al disseny d’estratègies de control amb tolerència

a fallades per a sistemes descriptors.

Paraules clau: Estimació robusta d’estat, diagnòstic de fallades, control predictiu

econòmic basat en models, control tolerant a fallades, teoria de conjunts, sistemes de-

scriptors, xarxes de distribució d’aigua, xarxes intel·ligents.
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摘摘摘要要要

本论文致力于为复杂系统，尤其是对广义系统的形式，提供理论和实践结果。这

些结果包括状态估计，诊断和控制器设计。在供水网络和智能电网等实际应用的启发

下，这些关键系统需要一个控制系统来提供一种适当的管理，并且考虑到这些系统的特

征和操作局限性受到系统扰动和组件故障的影响。这种控制系统能将提供一种最佳管理

以获得高效可靠的性能和良好的经济效益。

首先，作为一个重要的工具，状态估计不仅可用于故障诊断，还可用于控制器设

计。为了获得令人满意的鲁棒性能，集合理论被用于为广义系统构建一个框架、所研究

的广义系统受到未知但有界不确定性的影响。利用确定的集合，这些不确定性可以被

逐步迭代。此外，本文还对广义系统进行不变集描述。这种描述方法可以很好反应广义

系统的稳态性能，同时这种方法也可以用于对广义系统进行主动模式检测。

其次，在复杂系统的控制器设计方面，本文重点研究了经济模型预测控

制(EMPC)，并在设计的过程中考虑到这些复杂系统潜在的周期性。 即使在经济成

本函数突然变化的情况下，这些被设计的EMPC控制器仍具有良好的递归可行性，并且

保证了闭环收敛性。此外，为了使EMPC控制器具有良好的鲁棒性能，在EMPC控制器

设计中也运用了一种鲁棒控制技术。在控制系统存在不确定性的情况下，该EMPC控

制器仍能保持这些闭环特性。

最后，本文介绍一些工程应用结果来说明这些控制策略。在实际应用中，一些新方

法用来解决所遇到的困难。例如，在解决最优问题中，使用一种双层控制策略来避免出

现二进制变量。在处理非线性最优问题中，使用非线性约束松弛的方法来处理广义模

型中的非线性代数方程。此外，在广义系统的控制器设计中，容错能力也被考虑到。本

文运用虚拟执行器，虚拟传感器以及基于观测器的延迟控制器为广义系统设计容错控制

器。

关关关键键键词词词: 鲁棒状态估计，故障检测，经济模型预测控制，容错控制，集合理论，广
义系统，供水网络，智能电网。
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NOTATION

� (≺) positive (negative) definite

� (�) positive (negative) semi-definite

R set of real numbers

R+ set of non-negative real numbers, defined as R+ , R \(−∞, 0]

N set of natural numbers

C set of complex numbers

Z set of integer numbers

Z+ set of non-negative integer numbers

Z[a,b] set Z in an interval between a and b

Sn set of symmetric matrices of dimension n

Sn�0 set of positive definite symmetric matrices of dimension n

Sn�0 set of positive semi-definite symmetric matrices of dimension n

S≺0 set of negative definite symmetric matrices of appropriate dimension

S�0 set of negative semi-definite symmetric matrices of appropriate dimension

Bn hypercube defined as Bn := [−1, 1]n

X ⊕ Y Minkowski sum of two sets X and Y
X 	 Y Pontryagin difference of two sets X and Y
X × Y Cartesian product of two sets X and Y
X ⊂ (⊆)Y set X is a (strict) subset of set Y
dH (X ,Y) Hausdorff distance of two sets X and Y
Card (X ) Cardinality of a set X , that is, the number of elements of X
X ⊗ Y Kronecker product of two matrices X and Y

In identity matrix of dimension n

x>(X>) transpose of a vector x (a matrix X)

X−1 inverse matrix of X

X† pseudo-inverse matrix of X

rank(X) rank of a matrix X
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tr(X) trace of a matrix X

det (X(z)) determinant of a matrix X on variable z

deg(det(X(z))) degree of the determinant of a matrix X on variable z

vec(X) vectorization of a matrix X

He(X) He(X) = X +X>

σ(X) least/minimum singular value of a matrix X

λ(X) set of eigenvalues of a matrix X , that is, λ(X) := {z : det(zI −X) = 0}
λ(X,Y ) set of generalized eigenvalues, that is, λ(X,Y ) := {z : det(zX − Y ) = 0}
‖X‖F Frobenius norm of a matrix X is defined by ‖X‖F :=

√
tr(X>X)

‖X‖F,W weighted Frobenius norm ‖X‖F,W :=
√

tr(X>WX) with W ∈ S�0

cat
j∈N
{Xj} cat

j∈N
{Xj} = [Xj1 , . . . , XjN ] for a set of matrices Xj with j ∈ N

‖x‖2 2-norm of a vector x is defined by ‖x‖2 =
√
x>x

‖x‖2,W weighted 2-norm ‖x‖2,W =
√
x>Wx with W ∈ S�0

‖z‖∞ L∞ norm (peak norm) of a signal z is defined by ‖z‖∞ = sup
k
‖z(k)‖

mod(a, b) modulo operator of two scalars a and b

diag(·) operator that builds a diagonal matrix with the elements of its argument

? a term induced by (Hermitian) symmetry in a block matrix
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ACRONYMS

EMPC Economic Model Predictive Control

FD Fault Detection

FDI Fault Detection and Isolation

FE Fault Estimation

FI Fault Isolation

GAMS General Algebraic Modeling System

KKT Karush-Kuhn-Tucker

KPI Key Performance Indicator

LMI Linear Matrix Inequality

LPV Linear Parameter Varying

LTI Linear Time Invariant

LTV Linear Time Varying

mRPI Minimal Robust Positively Invariant

MAE Mean Absolute Error

MSE Mean Square Error

MPC Model Predictive Control

NEMPC Nonlinear Economic Model Predictive Control

REMPC Robust Economic Model Predictive Control

RI Robust Invariant

RMPC Robust Model Predictive Control

RMS Root Mean Squared

RNI Robust Negatively Invariant

RPI Robust Positively Invariant

SG Smart Grid

SMAPE Symmetric Mean Absolute Percentage Error

UIO Unknown Input Observer

VA Virtual Actuator
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VDA Virtual Delayed Actuator

VS Virtual Sensor

WDN Water Distribution Network
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In modern societies, reliable and sustainable operation of certain infrastructures plays a

fundamental role in the quality of individual life, economic development and security

of nations. Large-scale critical infrastructure systems, especially those located in urban

areas, such as water distribution networks (WDNs) and smart grids (SGs), are a subject

of increasing concern. Therefore, it is of vital importance to develop management sys-

tems that guarantee a reliable and sustainable operation of these infrastructures. On

the other hand, for the management of these infrastructures, it is also significant that

their operation must use efficiently the resources that they can deliver, e.g., water and

electricity, and also be efficient from an economic point of view and guarantee future

supply.

The critical nature of these complex systems implies the need for a management

able to take into account their specific features and operating limits in presence of un-

certainties related to their operation and failures from component malfunctions. Thus,

it is of paramount importance to have a control system for the management that, from

sensor measurements and available predictions of external influential variables based

on a priori knowledge, produces a suitable way to operate the complex system in an

efficient, reliable and sustainable manner.

For designing a model-based control system, an appropriate mathematical model is

required to represent the most relevant system dynamics. In terms of aforementioned

complex systems, system dynamics are usually described by differential/difference

1
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equations while static relations also appearing in complex systems based on their

topologies lead to the use of algebraic equations. In the literature, the class of sys-

tems including not only differential/difference equations but also algebraic equations

is called descriptor, singular, or differential/difference-algebraic systems [28, 31].

Together with sensor measurements, the need for state predictions in a control im-

plementation requires a suitable state estimation approach also being able to attenu-

ate effects from uncertainties in order to achieve robustness. Such a state estimation

approach is also useful for implementing fault diagnosis of component malfunctions

inside systems. A plausible solution to address a robust state estimation is to use set

theory under the assumption that unknown uncertainties are bounded in a determin-

istic set with a predefined geometrical structure. Based on an iterative procedure, the

effects of these bounded uncertainties can be propagated at each time step and explic-

itly characterized in an updated set. From analysis of these effects, fault diagnosis may

also be achieved by means of these set tools. As a result, worst-case scenarios for state

and fault predictions can also be used in the controller design.

In many applications, control objectives of complex systems are mainly different

from traditional tracking or regulating problems. Thus, the challenge for the optimal

controller design is how to obtain an optimal economic cost and meanwhile guaran-

tee closed-loop stability and convergence to a certain steady trajectory. Looking into

real systems, the system behavior is usually not only constrained by some limits but

also affected by potential periodic behavior. For instance in WDNs, water demands

and economic cost of consumed energy follow periodic patterns which may lead to an

optimal periodic operation. For this purpose, periodicity can be used in the design of

the controller, where the closed-loop convergence can be guaranteed. Furthermore, in

terms of the critical nature of complex systems, fault-tolerant capability deserves to be

included in the controller design. After having a suitable fault diagnosis block in the

control system, a fault hiding strategy can be employed for the system reconfiguration.

The research in this thesis is motivated by real application of WDNs, under the

scope of the Spanish project: EConomic Operation of Critical Infrastructure Systems

(ECOCIS), which is also in line with the objectives of European research policy devel-

oped through the framework program of Horizon 2020, and the Spanish research plan

2013. This doctoral thesis is devoted to investigating an optimal economic-oriented

control and fault-tolerant control (FTC) strategies for the management of complex sys-

tems. To this end, several approaches on robust state estimation and fault diagnosis
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based on set theory taking into account descriptor models are investigated.

1.2 State of the Art

1.2.1 Descriptor Systems

Due to mass, volume or energy conservation laws, the differential/difference equa-

tions describing a dynamical system can be coupled with a set of algebraic equations.

As aforementioned, descriptor models may be used for representing this class of sys-

tems. Instances of such systems can be found in water systems [7, 94, 146], chemical

processes [9], electrical circuits [102], aircraft [119], biological systems [179] and eco-

nomic models [28]. From a theoretical point of view, descriptor systems satisfying a

well-posed property, for which a solution exists and is unique, are called regular [28].

Regularity, however, does not imply causality and some models of interest in economy

may be non-causal, see e.g. the Leontief model [28, 75, 178]. In terms of a control

system, stability [45] is an important property for the analysis of boundedness and con-

vergence of the closed-loop trajectory. In particular, in terms of descriptor systems,

admissibility guarantees the properties of regularity, causality and stability [28]. For

monitoring purposes and for developing control strategies, state estimation is usually

required. Some research works on state estimation for discrete-time descriptor systems

have been carried out (see as e.g. [48, 53], where system states can be estimated using

different versions of Kalman filtering).

1.2.2 Economic Model Predictive Control

Economic model predictive control (EMPC) has attracted an increasing attention dur-

ing the past decade [6, 35, 80]. Unlike conventional model predictive control (MPC)

formulations [77, 101], the main control objective of EMPC is to optimize an economic

performance index without regulating the system to a given trajectory. Economic cost

functions are not necessarily quadratic or positive-definite with respect to a given tra-

jectory as tracking MPC. EMPC has been applied to a variety of industrial applications

as a real-time control strategy, see, e.g. drinking-water networks [19, 20, 85, 89, 146],

wastewater treatment processes [175], SGs [87, 88] and chemical processes [72, 111].
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Recently, the closed-loop stability and convergence of EMPC has been widely inves-

tigated. Since the cost function in EMPC may not be a quadratic function, the conven-

tional MPC stability analysis as in [101] cannot be directly applied to EMPC. In [5, 6, 84],

stability analysis of EMPC has been established under the strong duality and the dis-

sipativity assumptions. Terminal cost and constraint around the optimal steady state

are used. In [34], a review is presented for discussing the role of constraints in EMPC,

where the convergence of EMPC can be enforced by adding terminal constraints. Be-

sides, EMPC without terminal constraints is studied in [42, 43]. Based on the turnpike

and controllability properties, closed-loop convergence is proved. In [71], EMPC with

extended prediction horizon is designed based on an auxiliary controller. An addi-

tional term with the auxiliary control law is included in the cost function in order to

guarantee closed-loop convergence.

From an application point of view, systems may also be affected by disturbances,

which implies that a proper robust MPC (RMPC) strategy should be addressed for such

systems, for instance [87]. Tube-based techniques have been proposed to guarantee

robust constraint satisfaction in the presence of uncertainties for conventional MPC

and other applications, as e.g. in distributed approaches [82]. An RMPC was proposed

to track periodic trajectories online in [90], where a local control law is used to refine

the constraints in order to guarantee recursive feasibility in closed-loop. In recent years,

several developments on adjusting the robustness of EMPC have been studied in [8, 18,

50], where the strong terminal constraint and cost are used to enforce the periodicity.

1.2.3 Fault Diagnosis

As introduced in [13, 30], fault diagnosis basically consists of the following three essen-

tial tasks:

• Fault Detection (FD): detection of the occurrence of faults in malfunctioned com-

ponents that lead to undesired or intolerable behavior of the whole system;

• Fault Isolation (FI): localization of different occurred faults;

• Fault Estimation (FE): determination of the magnitude of occurred faults.

A fault detection and isolation (FDI) module usually includes robust performance

for the system affected by uncertainties. Robust FDI aims at minimizing the sensitivity
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to uncertainties (such as modeling errors, process disturbances, measurement noise as

so on) while maximizing fault sensitivity to achieve great FDI performance. For this

aim, different approaches have been studied. One category relies on the use of ro-

bust control techniques, for instance usingH∞ andH− norms (see e.g. [21, 30, 51, 66]).

Among these references, a generated adaptive threshold is usually computed for the

decision making of the FDI alarm. An over-approximation of the decision-making

threshold may lead to wrong FDI results. Alternatively, another category of FDI strate-

gies is built under a set-based framework, such as [11, 99, 168]. System uncertainties

are considered as unknown but bounded in predefined sets (intervals, zonotopes and

polytopes) and the resulting uncertain states and generated residuals are propagated

also in bounded sets [95]. Due to the simple computation load, zonotopes are usually

chosen as the geometrical sets for bounding uncertain states or residuals [1, 114]. Un-

der this framework, robustness and fault sensitivity of the FDI strategy can be achieved

by checking the consistency between the system model and the measurement informa-

tion. Unknown input observer (UIO) is a well-known tool for designing a robust FDI

strategy that can be achieved by generating residuals with decoupled unknown in-

puts [23]. The design of UIO has been well-discussed for a variety of systems with

different structures (see e.g. [23, 47, 60, 110]). In the design of UIO for implementing

an FDI strategy, robustness and fault sensitivity should also be taken into account. As

discussed in [169], it has shown the potential of linking UIO with a set-based frame-

work, where unknown inputs are divided into two groups: the one can be decoupled

using UIO transformation matrices; the other cannot be decoupled but bounded using

invariant sets. Besides, an extension to robust FDI based on set-based UIO has been

studied in [170].

FE has been studied by a large amount of approaches during the past decades, see

e.g. [13, 30, 125]. A suitable FE with robust performance against system uncertain-

ties is necessary for implementing an active fault-tolerant control system [39, 40, 65].

By means of alternative robust control techniques, robust FE has been implemented

in a variety of systems as e.g. [110, 163, 177], where the effects of uncertainties are

bounded and therefore FE results can be obtained with the minimum estimation er-

ror. In the literature, several FE approaches for different types of descriptor systems

have been investigated. In [40], a Lyapunov-based robust FE approach is developed

for Lipschitz non-linear descriptor systems. Robust FE approaches for linear descrip-

tor systems can be found in [60, 163, 166]. Besides, FE approaches have also studied

for linear parameter-varying (LPV) systems [74, 104, 118, 162] and switched descriptor
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systems [61]. From these existing approaches, it can be seen that the obtained esti-

mation results only include punctual values. In terms of set-based approaches, with

considering system uncertainties bounded in a predefined set, the uncertain variables

are propagated by operating these sets. Regarding the possible application to robust

FE, as a benefit from using a set-based approach, the obtained estimation results can

be characterized in a deterministic set that includes not only punctual values but also

worst-case bounds. The robustness against uncertainties can be achieved by shrinking

the size of these sets.

1.2.4 Fault-tolerant Control

An increasing number of research works in the control field focus on satisfying reliabil-

ity, safety and fault tolerance of critical complex systems. In many situations, the con-

sequences of a minor fault in a control system can be catastrophic. According to [13],

FTC techniques can be divided into two types: passive and active. Passive FTC tech-

nique, also known as robust approach, aims to find a control law able to cope with the

occurred faults considering them as system perturbations. Compared with active FTC

technique, neither FD, FI and FE modules nor reconfiguration/accommodation are re-

quired for passive FTC. A literature review including a comparison of different ap-

proaches according to different criteria is addressed in [180]. In this reference, several

active FTC techniques that can be found in the literature are considered including lin-

ear quadratic, pseudo-inverse method, intelligent control, gain-scheduling approach,

model following, adaptive control, multiple model, integrated diagnostic and control,

eigenstructure assignment, feedback linearization/dynamic inversion, MPC, quantita-

tive feedback theory and variable structure control/sliding model control.

Faults may appear in actuators, sensors and other system components. Typically,

the active FTC scheme can be divided into four parts:

• a reconfigurable controller;

• a fault diagnosis scheme;

• a controller reconfiguration mechanism;

• a command governor.
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The inclusion of both the fault diagnosis scheme and the controller reconfiguration

within a general control system is the main difference between active FTC and pa-

ssive FTC. Hence, some key issues of active FTC have to be considered:

• a controller that can be reconfigured, for instance, an MPC strategy provides an

alternative and flexible framework and it is quite easy to be reconfigured;

• a fault diagnosis scheme with high sensitivity to faults and robustness against

model uncertainties, variations of the operating conditions and external distur-

bances;

• a reconfiguration mechanism that allows recovering the fault-free system perfor-

mance as much as possible within admissible performance degradation.

In recent years, the fault-hiding paradigm has been proposed as an active FTC strat-

egy to obtain fault tolerance [76]. In this paradigm, the faulty plant is reconfigured by

inserting a reconfiguration block, named virtual actuator (VA) in the case of actuator

faults and virtual sensor (VS) when sensor faults occurred. VA and VS aim at hiding the

faults from controller and sensor failures, so that it approximately recovers the same

plant as before faults occurred. This active FTC strategy has been extended success-

fully to many classes of systems, e.g. LPV systems [107], hybrid systems [109], Takagi-

Sugeno systems [108], piecewise affine systems [103] and uncertain systems [106].

1.2.5 Set-based Approaches

Research on set-based state estimation has been quite active for the last decades,

e.g. [1, 2, 26, 56, 93, 98, 123] among others. In the literature, set-based state estima-

tion approaches can be classified according to whether they follow a set-membership

or an interval observer-based paradigm. A set-membership approach relies on over-

bounding the uncertain estimated states considering unknown-but-bounded uncer-

tainties [112]. An interval observer-based approach bounds the set of estimated states

by means of an observer structure in which the gain is designed assuming that un-

certainties are modeled in a deterministic way (as e.g. using intervals for bounding

them [33]) or in a stochastic way (as e.g. using the Kalman filtering [57, 58]). From

the application point of view, the set-based approaches are very popular in the fault

diagnosis framework, e.g. [92, 168].
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Zonotopes are a special class of geometrical sets. The symmetry properties of zono-

topes help to reduce the computational load of using them in an iterative way. Worst-

case state estimation for dynamical systems using zonotopes is investigated in [93]. A

state bounding observer based on zonotopes is introduced in [24]. The zonotopic ob-

server in combination with Kalman filtering is addressed in [25, 26]. Moreover, a set-

membership approach based on zonotopes is proposed for dynamical systems in [1, 2].

On the other hand, set invariance theory has played an essential role in automatic

control with a variety of applications to control systems, which is widely used for guar-

anteeing the stability and achieving desired performance [10, 64, 67]. For systems af-

fected by disturbances, different techniques in set invariance theory are used for the

computation of invariant sets. These techniques have been applied to linear dynamical

systems [100, 120], LPV systems [115, 116], switched systems [12, 46, 115], and non-

linear systems [3, 16, 36, 37]. In particular, ultimate boundedness methods are used to

compute invariant sets with relative low complexity [46, 62]. In this context, an iterative

strategy is proposed in [86], which leads to approximations of minimal RI sets for lin-

ear systems and its generalization to discrete-time descriptor systems is the motivation

of the present work.

Furthermore, set-invariance characterizations are instrumental for control strate-

gies, such as reference governor design [122], FDI [11, 168], FTC [86, 117, 121, 167] and

RMPC [81, 82]. A remarkable application of RI sets is on mode detection of systems

subject to multiple modes of operation. Indeed, since different operating modes lead

to different RI sets, the distance between these sets can be used for monitoring and

mode detection. Due to the fact that the RI sets of different modes may overlap, an ad-

ditive input signal can be conveniently designed to separate a parametrization of the RI

sets, represented by tubes of trajectories [63]. In this case, the set-based mode detec-

tion mechanism is called active. In the literature, this mechanism is also called active

fault diagnosis, which can be found in [97, 113]. A set of additive inputs are designed

to guarantee fault diagnosis outputs that are only consistent with one faulty scenario.

These additive inputs can be obtained from the solution to a mixed-integer quadratic

program or using a multi-parametric approach, see e.g. [79, 122].
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Part I

Part IIPart III
Fault-tolerant
Capability

Control

State Estimation

System

Fault Diagnosis

Figure 1.1: General scheme of thesis.

1.3 Thesis Objectives

According to the motivation of this thesis and state of the art, specific thesis objectives

are summarized as follows:

(i) Develop robust state estimation approaches based on set theory for descriptor systems;

(ii) Improve the limitation of set-membership approach for complex systems;

(iii) Investigate fault diagnosis strategies based on set theory for descriptor systems;

(iv) Contribute to EMPC strategies for periodic operation with applications to realistic com-

plex systems;

(v) Include fault-tolerant capability in the controller design for descriptor systems.
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1.4 Thesis Outline

The contents of this thesis are organized into 3 parts, as shown in Figure 1.1. Part I deals

with the contributions on the objectives (i)-(ii). Part II refers to the contributions on the

objective (iii). Finally, Part III summarizes the contributions towards the objectives

(iv)-(v). The road map of this thesis is shown in Figure 1.2, which gives the general

scheme and illustrates the connections among chapters. Specifically, the contents of

Chapters 2-10 are summarized as follows:

Chapter 2: Set-based state estimation approaches for descriptor systems

This chapter proposes a general set-based framework for discrete-time descriptor

systems with application to robust state estimation. Specifically, set-membership ap-

proach based on zonotopes and zonotopic Kalman observer are extended to descriptor

systems subject to unknown-but-bounded uncertainties as well as unknown inputs.

The relationship between these two approaches is discussed. As another extension, the

zonotopic set-membership approach is also investigated for discrete-time LPV descrip-

tor systems with a new zonotope minimization criterion. This chapter summarizes the

results from the following publications:

• Y. Wang, V. Puig, and G. Cembrano. Set-membership approach and Kalman

observer based on zonotopes for discrete-time descriptor systems. Automatica,

93:435–443, 2018

• Y. Wang, Z. Wang, V. Puig, and G. Cembrano. Zonotopic set-membership state es-

timation for discrete-time descriptor LPV systems. IEEE Transactions on Automatic

Control, 2018. (in press)

Chapter 3: Distributed set-membership approach based on zonotopes

This chapter presents a distributed approach to overcome the weakness of the set-

membership approach for potential applications to large-scale systems. Instead of

bounding uncertain system states in a single zonotope, a set of distributed zonotopes

is defined to only bound uncertain states in each agent. Each distributed zonotope is

only corrected by the measurement information of each agent. Besides, considering

the coupled states, each distributed zonotope is able to send its information to all its

neighbors. This chapter gathers the results from the following publications:



1.4 : Thesis Outline 11

2
.
S
et
-b
a
se
d
S
ta
te

E
st
im

a
ti
o
n

A
p
p
ro
a
ch
es

fo
r
D
es
cr
ip
to
r
S
y
st
em

s

3
.
D
is
tr
ib
u
te
d
S
et
-m

em
b
er
sh
ip

A
p
p
ro
a
ch

b
a
se
d
o
n
Z
o
n
o
to
p
es

4
.
S
et
-b
a
se
d
F
D
I
fo
r

D
es
cr
ip
to
r
S
y
st
em

s

5
.
S
et
-b
a
se
d
F
E

fo
r

D
es
cr
ip
to
r
S
y
st
em

s

6
.
S
et
-i
n
va
ri
a
n
ce

C
h
a
ra
ct
er
iz
a
ti
o
n
s

a
n
d
A
ct
iv
e
M
o
d
e
D
et
ec
ti
o
n

fo
r
D
es
cr
ip
to
r
S
y
st
em

s

1
0
.
C
o
n
cl
u
d
in
g
R
em

a
rk
s

7
.
E
M
P
C

S
tr
a
te
g
ie
s
b
a
se
d
o
n

a
P
er
io
d
ic
it
y
C
o
n
st
ra
in
t

8
.
A
p
p
li
ca
ti
o
n
s
o
f
E
M
P
C

S
tr
a
te
g
ie
s

fo
r
C
o
m
p
le
x
S
y
st
em

s

9
.
F
T
C

o
f
D
es
cr
ip
to
r
S
y
st
em

s
u
si
n
g
V
A

a
n
d
V
S

1.
In
tr
o
d
u
ct
io
n

P
ar
t
I

P
ar
t
II

P
ar
t
II
I

Fi
gu

re
1.

2:
R

oa
d

m
ap

of
th

es
is

ch
ap

te
rs

.



12 Chapter 1 : Introduction

• Y. Wang, T. Alamo, V. Puig, and G. Cembrano. A distributed setmembership

approach based on zonotopes for interconnected systems. In 57th IEEE Conference

on Decision and Control (IEEE-CDC), Miami, USA, 2018. (to appear)

• Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Distributed set-membership ap-

proaches based on zonotopes and ellipsoids. Automatica, 2018. (to be submitted)

Chapter 4: Set-based fault detection and isolation for descriptor systems

This chapter applies the set-based approach to FDI for discrete-time descriptor sys-

tems under the set-based framework in Chapter 2. In addition to achieving robustness

against uncertainties, the design of the FD gain also takes into account sensitivity to

faults. Two different criteria of fault sensitivity are investigated for the design of the

FD observer gain. Besides, a bank of zonotopic UIOs is designed for FI. This chapter

summarizes the results from the following publications:

• Y. Wang, M. Zhou, V. Puig, G. Cembrano, and Z. Wang. Zonotopic fault detection

observer with H− performance. In 36th Chinese Control Conference (CCC), pages

7230–7235, Dalian, P.R. China, 2017

• Y. Wang, V. Puig, F. Xu, and G. Cembrano. Zonotopic unknown input observer

of discrete-time descriptor systems for state estimation and robust fault detec-

tion. In 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical

Processes (IFAC-SAFEPROCESS), Warsaw, Poland, 2018. (to appear)

• Y. Wang, V. Puig, and G. Cembrano. Zonotopic fault detection observer design

for discrete-time descriptor systems withH− fault sensitivity. International Journal

of Control, 2018. (under review)

• Y. Wang, V. Puig, F. Xu, and G. Cembrano. Robust fault detection and isolation

based on zonotopic unknown input observer for discrete-time descriptor sys-

tems. Journal of the Franklin Institute, 2017. (under review)

Chapter 5: Set-based fault estimation for descriptor systems

This chapter applies the set-based approach to FE for discrete-time descriptor sys-

tems under the set-based framework in Chapter 2. The fault detectability indices and
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matrix are used for the identification of the occurred actuator faults. Under the frame-

work of zonotopic Kalman filter, the optimal filter gain for FE is computed. Moreover,

boundedness of zonotopic FE is proved to guarantee that the estimation results do not

diverge. This chapter collects the results from the following publications:

• Y. Wang, Z. Wang, V. Puig, and G. Cembrano. Zonotopic fault estimation filter

design for discrete-time descriptor systems. In 20th IFAC World Congress, pages

5211–5216, Toulouse, France, 2017

• Y. Wang, V. Puig, and G. Cembrano. Robust fault estimation based on zonotopic

Kalman observer for discrete-time descriptor systems. International Journal of Ro-

bust and Nonlinear Control, 2018. (in press)

Chapter 6: Set-invariance characterizations and active mode detection for de-

scriptor systems

This chapter systematically presents a general set-invariance framework for

discrete-time descriptor systems considering both causal and non-causal parts. In ad-

dition to RPI sets, an RNI set for non-causal descriptor systems is defined. The compu-

tation of these sets is based on ultimate bounds. Moreover, an active mode detection

mechanism is proposed for discrete-time descriptor systems based on set invariance

theory. Active detection inputs are designed using optimization methods. This chapter

is based on the results from the following publications:

• Y. Wang, S. Olaru, G. Valmorbida, V. Puig, and G. Cembrano. Robust invariant

sets and active mode detection for discrete-time uncertain descriptor systems. In

56th IEEE Conference on Decision and Control (IEEE-CDC), pages 5648–5653, Mel-

bourne, Australia, 2017

• Y. Wang, S. Olaru, G. Valmorbida, V. Puig, and G. Cembrano. Set-invariance char-

acterizations of discrete-time descriptor systems with application to active mode

detection. Automatica, 2018. (under review)

Chapter 7: Economic model predictive control strategies based on a periodicity

constraint
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This chapter addresses a novel formulation of EMPC for periodic operation in both

nominal and robust cases. With the convex analysis, the closed-loop properties in-

cluding recursive feasibility, robust constraint satisfaction as well as convergence are

discussed. Moreover, an optimality certificate is also provided to check if the periodic

steady trajectory is optimal. This chapter summarizes the results from the following

publications:

• Y. Wang, D. Muñoz de la Peña, V. Puig, and G. Cembrano. A novel formulation

of economic model predictive control for periodic operations. In European Control

Conference (ECC), Limassol, Cyprus, 2018. (to appear)

• Y. Wang, J. Salvador, D. Muñoz de la Peña, V. Puig, and G. Cembrano. Economic

model predictive control based on a periodicity constraint. Journal of Process Con-

trol, 68:226–239, 2018

• Y. Wang, D. Muñoz de la Peña, V. Puig, and G. Cembrano. Robust economic

model predictive control based on a periodicity constraint. International Journal of

Robust and Nonlinear Control, 2018. (under review)

Chapter 8: Applications of economic model predictive control strategies for com-

plex systems

This chapter collects three application results of EMPC strategies for complex sys-

tems, such as WDNs and SGs. These complex systems can be modeled by difference-

algebraic equations in a descriptor form. First, a two-layer control strategy for real-

time implementation with a realistic simulator is proposed, which includes a nonlinear

EMPC (NEMPC) in the upper layer and a pumping scheduling approach in the lower

layer. Second, an iterative approach of nonlinear constraint relaxation is proposed

for dealing with nonlinear algebraic equation in WDN and therefore an integration

to EMPC is implemented. Finally, a robust EMPC (REMPC) for periodic operation is

applied to a micro SG. This chapter collects the results from the following publications:

• Y. Wang, V. Puig, and G. Cembrano. Non-linear economic model predictive con-

trol of water distribution networks. Journal of Process Control, 56:23–34, 2017

• Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Periodic economic model predic-

tive control with nonlinear-constraint relaxation for water distribution networks.
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In IEEE Conference on Control Application (IEEE-CCA), pages 1137–1172, Buenos

Aires, Argentina, 2016

• Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Economic model predictive control

with nonlinear constraint relaxation for the operational management of water

distribution networks. Energies, 11(4):991, 2018

• Y. Wang, D. Muñoz de la Peña, V. Puig, and G. Cembrano. Robust periodic eco-

nomic predictive control based on probabilistic set invariance for descriptor sys-

tems,. In 6th IFAC Conference on Nonlinear Model Predictive Control (IFAC-NMPC),

Madison, USA, 2018. (to appear)

Chapter 9: Fault-tolerant Control of discrete-time descriptor systems using vir-

tual actuator and virtual sensor

This chapter designs an FTC controller for discrete-time descriptor systems. First,

for the use of state feedback, an observer-based delayed state-feedback controller is

proposed for this class of systems taking into account the algebraic loop appeared in

the implementation that prevents using a standard state feedback. Improved admis-

sibility conditions are proposed for discrete-time descriptor system with state delay.

Then, system reconfiguration of discrete-time descriptor systems subject to actuator

and sensor faults is based on VA and VS. This chapter extends the results from the

following publications:

• Y. Wang, D. Rotondo, V. Puig, and G. Cembrano. Observer-based delayed con-

troller design for discrete-time descriptor systems. Automatica, 2018. (under re-

view)

• Y. Wang, D. Rotondo, V. Puig, and G. Cembrano. Fault tolerant control of discrete-

time descriptor systems using virtual actuators. In European Control Conference

(ECC), Naples, Italy, 2019. (to be submitted)

Other Publications

Some other publications related to the research topic that have been done during the

period of my Ph.D. training are presented as follows:
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1. Y. Wang, C. Ocampo-Martinez, and V. Puig. Stochastic model predictive control

based on Gaussian processes applied to drinking water networks. IET Control

Theory & Applications, 10(8):947–955, 2016

2. Y. Wang, G. Valmorbida, S. Olaru, V. Puig, and G. Cembrano. Static output-

feedback synthesis strategies with an extended quadratic Lyapunov function. Au-

tomatica, 2018. (to be submitted)

3. Y. Wang, C. Ocampo-Martinez, and V. Puig. Robust model predictive control

based on Gaussian processes: application to drinking water networks. In Euro-

pean Control Conference (ECC), pages 3292–3297, Linz, Austria, 2015

4. Y. Wang, V. Puig, and G. Cembrano. Economic MPC with periodic terminal con-

straints of nonlinear differential-algebraic-equation systems: application to drink-

ing water networks. In European Control Conference (ECC), pages 1013–1018, Aal-

borg, Denmark, 2016

5. Y. Wang and V. Puig. Zonotopic extended Kalman filter and fault detection of

discrete-time nonlinear systems applied to a quadrotor helicopter. In 3rd Inter-

national Conference on Control and Fault Tolerant Systems (SysTol), pages 367–372,

Barcelona, Spain, 2016

6. Y. Wang, V. Puig, G. Cembrano, and T. Alamo. Guaranteed state estimation and

fault detection based on zonotopes for differential-algebraic-equation systems.

In 3rd International Conference on Control and Fault Tolerant Systems (SysTol), pages

704–710, Barcelona, Spain, 2016

7. Y. Wang, V. Puig, and G. Cembrano. Fault-tolerant periodic economic model

predictive control of differential-algebraic-equation systems. In 3rd International

Conference on Control and Fault Tolerant Systems (SysTol), pages 478–484, Barcelona,

Spain, 2016

8. Y. Wang, A. Ramirez-Jaime, F. Xu, and V. Puig. Nonlinear model predictive con-

trol with constraint satisfactions for a quadcopter. Journal of Physics: Conference

Series, 783:012025, 2017

9. Y. Wang, J. Salvador, D. Muñoz de la Peña, V. Puig, and G. Cembrano. Periodic

nonlinear economic model predictive control with changing horizon for water

distribution networks. In 20th IFAC World Congress, pages 6588–6593, Toulouse,

France, 2017
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10. Y. Wang, G. Cembrano, V. Puig, M. Urrea, J. Romera, and D. Saporta. Optimal

management of barcelona water distribution network using non-linear model

predictive control. In 20th IFAC World Congress, pages 5380–5385, Toulouse,

France, 2017

11. Y. Wang, T. Alamo, V. Puig, and G. Cembrano. Distributed zonotopic set-

membership state estimation based on optimization methods with partial pro-

jection. In 20th IFAC World Congress, pages 4039–4044, Toulouse, France, 2017

12. Y. Wang, J. Blesa, and V. Puig. Robust periodic economic predictive control

based on interval arithmetic for water distribution networks. In 20th IFAC World

Congress, pages 5202–5207, Toulouse, France, 2017

13. Y. Wan, V. Puig, C. Ocampo-Martinez, Y. Wang, and R. Braatz. Probability-

guaranteed set-membership state estimation for polynomially uncertain linear

time-invariant systems. In 57th IEEE Conference on Decision and Control (IEEE-

CDC), Miami, USA, 2018. (to appear)

14. Y. Wang, G. Cembrano, V. Puig, M. Urrea, J. Romera, and D. Saporta. Model

predictive control of water networks considering flow and pressure. In Real-

Time Monitoring and Operational Control of Drinking-Water Systems, pages 251–267.

Springer, 2017

1.5 Background

In this section, some necessary definition, mathematical tools and properties are intro-

duced, which will be used in this thesis.

1.5.1 Properties of Discrete-time Descriptor Systems

Consider the discrete-time linear time-invariant (LTI) descriptor system with additive

disturbances

Ex(k + 1) = Ax(k) +Bww(k), (1.1)

where x ∈ Rn and w ∈ Rq denote the state vector and the disturbance vector, respec-

tively, k ∈ N. A ∈ Rn×n, Bw ∈ Rn×q and E ∈ Rn×n with rank(E) = r ≤ n.
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The definitions and lemma below are related to the trajectories and solutions of a

descriptor system (1.1).

Definition 1.1 (Regularity). The descriptor system (1.1) is said to be regular if it has a

unique solution defined as an application x(k) : N → Rn, ∀k ∈ N which satisfies (1.1)

for any disturbance realization w(k) : N→ Rq and a compatible initial state x(0).

From the above definition, if the system (1.1) is regular, then it has a unique solution

for the disturbance-free case (w ≡ 0). The matrix pair (E,A) is also called to be regular.

Definition 1.2 (Causality). The regular descriptor system (1.1) is said to be causal

if x(k), ∀k ∈ N is determined completely by the initial condition x(0) and w(j),

for j = 0, . . . , k. Otherwise, it is said to be non-causal.

Definition 1.3 (Asymptotic stability). The regular descriptor system (1.1) is said to be

asymptotically stable for the disturbances-free case (w ≡ 0) if lim
k→∞

x(k) = 0.

Definition 1.4 (Admissibility). The descriptor system (1.1) for the disturbances-free

case (w ≡ 0) is said to be admissible if it is regular, causal and asymptotically stable.

Lemma 1.1 ([28]). For the matrix pair (E,A) of the descriptor system (1.1), the following

properties hold:

• (Regularity) the pair (E,A) is regular if ∃z ∈ C, det(zE −A) is not identically zero;

• (Causality) the pair (E,A) is causal if ∃z ∈ C, deg(det(zE −A)) = rank(E);

• (Asymptotic stability) the pair (E,A) is asymptotically stable if |ν| < 1, ∀ν ∈ λ (E,A).

In the following, admissibility is not part of the assumption, i.e. the study concerns

both causal and non-causal descriptor systems.

Assumption 1.1. The descriptor system (1.1) (the matrix pair (E,A)) is regular and asymp-

totically stable in the disturbance-free case (w ≡ 0).

The following suitable transformations are established, which decompose the de-

scriptor system (1.1) in subsystems for set-invariance characterizations and active

mode detection.
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Definition 1.5 (Equivalence of descriptor systems). Consider two descriptor systems

respectively defined by the triplets (E,A,Bw) and (Ẽ, Ã, B̃w). If there exists a pair of

non-singular matrices Q ∈ Rn×n and P ∈ Rn×n satisfying

QEP = Ẽ, QAP = Ã, QBw = B̃w, (1.2)

then these two systems are called restricted equivalent under the transforma-

tion (Q,P ).

For the descriptor system (1.1), two standard restricted equivalent forms are pre-

sented [31, Chapter 2].

Dynamics Decomposition Form

Consider the descriptor system (1.1) with rank(E) = r. There always exists a transfor-

mation (Q,P ) yielding

QEP =

[
Ir 0

0 0

]
, QAP =

[
A1 A2

A3 A4

]
, QBw =

[
Bw1

Bw2

]
, (1.3)

with A1 ∈ Rr×r, A2 ∈ Rr×(n−r), A3 ∈ R(n−r)×r, A4 ∈ R(n−r)×(n−r), Bw1 ∈ Rr×q and

Bw2 ∈ R(n−r)×q.

Lemma 1.2 (Dynamics decomposition form [31]). The descriptor system (1.1) is causal

if and only if there exists a transformation (Q,P ) yielding (1.3) with a non-singular block

matrix A4.

Based on the above lemma, an equivalent causal descriptor system in a standard

dynamical form is presented in the following.

Lemma 1.3 (Equivalent causal descriptor system). The causal descriptor system (1.1) with

rank(E) = r can be transformed into the following form

x̃(k + 1) = Ãx̃(k) + B̃ww̃(k), (1.4)
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where

Ã =

[
A1 −A2A

−1
4 A3 0

−A−1
4 A3

(
A1 −A2A

−1
4 A3

)
0

]
, (1.5a)

B̃w =

[
Bw1 −A2A

−1
4 Bw2 0

−A−1
4 A3

(
Bw1 −A2A

−1
4 Bw2

)
−A−1

4 Bw2

]
. (1.5b)

and A1, A2, A3, A4, Bw1, Bw2 are defined in (1.3) and

x̃(k) =

[
x̃1(k)

x̃2(k)

]
= P−1x(k), w̃(k) =

[
w(k)

w(k + 1)

]
, (1.6)

with x̃1(k) ∈ Rr, x̃2(k) ∈ R(n−r).

Proof. See Appendix A.

Kronecker Canonical Form

The regular descriptor system (1.1) also allows the transformation in the so-called Kro-

necker canonical form according to the following lemma.

Lemma 1.4 (Kronecker canonical form [28]). The descriptor system (1.1) is regular if and

only if there exists a transformation (Q̄, P̄ ) yielding

Q̄EP̄ =

[
Ip 0

0 N̄

]
, Q̄AP̄ =

[
Ā 0

0 I

]
, Q̄Bw =

[
B̄w1

B̄w2

]
, (1.7)

with Ā ∈ Rp×p, B̄w1 ∈ Rp×q, B̄w2 ∈ R(n−p)×q. Moreover, N̄ ∈ R(n−p)×(n−p) is a nilpotent

matrix (that is there exists a scalar s > 0 such that N̄ s = 0 and N̄ s−1 6= 0, s ≤ n − p)

and p ≤ r = rank(E).

Computationally efficient and numerically stable methods exist to obtain these

transformations as reported in [41, 125].

Lemma 1.5 (Causality [28]). The descriptor system (1.1) transformed in the Kronecker canon-

ical form (1.7) is causal if and only if N̄ = 0.
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1.5.2 Zonotopes

Definition 1.6 (Zonotope). The r-order zonotope Z ⊂ Rn in n-dimensional space is

defined with its center p ∈ Rn and the segment matrix H ∈ Rn×r as

Z = 〈p,H〉 = {p+Hz, ‖z‖∞ ≤ 1} . (1.8)

Definition 1.7 (Interval hull). Given a zonotope Z = 〈p,H〉 ⊂ Rn, the interval

hull rs(H) ∈ Rn×n is defined as an aligned box such that the inclusion property

holds: 〈p,H〉 ⊂ 〈p, rs(H)〉, where rs(H) is a diagonal matrix with diagonal elements of

rs(H)i,i =
∑r

j=1 |Hi,j |, i = 1, . . . , n.

Define Br = [−1,+1]r ⊂ Rr as a r-order hypercube. Using the Minkowski sum,

the zonotope Z in (1.8) can also be defined by Z = p ⊕ HBr. Besides, the following

properties hold:

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉, (1.9a)

L〈p,H〉 = 〈Lp,LH〉, (1.9b)

〈p,H〉 ⊆ 〈p, rs(H)〉, (1.9c)

where L is a matrix of appropriate dimension.

Definition 1.8 (FW -radius). Given a zonotope Z = 〈p,H〉 ⊂ Rn and a weighting ma-

trix W ∈ Snx , the FW -radius of Z is defined using the weighted Frobenius norm of H

as

`F,W = ‖〈p,H〉‖F,W = ‖H‖F,W . (1.10)

Definition 1.9 (W -radius). Given a zonotope Z = 〈p,H〉 ⊂ Rn and a weighting ma-

trix W ∈ Snx , the W -radius of Z is defined by

`W = max
z∈Z
‖z − p‖2W = max

b∈Br
‖Hb‖2W . (1.11)

Definition 1.10 (Radius). Given a zonotope Z = 〈p,H〉, the radius is defined by

` = max
z∈Z
‖z − p‖2 = max

b∈Br
‖Hb‖2 . (1.12)
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In order to reduce the order of a zonotope Z = 〈p,H〉 ⊂ Rn, the weighted reduction

operator ↓q,W (H) proposed in [26] is used, where q specifies the maximum number of

columns of H and W ∈ Sn�0 is a weighting matrix. The inclusion property 〈p,H〉 ⊂
〈p, ↓q,W (H)〉 also holds. The procedure for implementing the operator ↓q,W (H) is

summarized as follows:

• Sort the column of segment matrix H in decreasing order: ↓W (H) =

[h1, h2, . . . , hr], ‖hj‖2W ≥ ‖hj+1‖2W , where ‖hj‖W is the weighted 2-norm of hj ;

• Take the first q-column of ↓W (H) and enclose a set H< generated by remaining

columns (r − q ≥ n) into an aligned box (interval hull) as follows:

If r ≤ q, then ↓q,W (H) =↓W (H),

Else ↓q,W (H) = [H>, rs(H<)] ∈ Rn×(q+n),

H> = [h1, . . . , hq] , H< = [hq+1, . . . , hr] .

1.5.3 Set Invariance Theory

The set-based notions are introduced for discrete-time descriptor systems. For a regular

and stable descriptor system (1.1), consider that the additive disturbances are unknown

but bounded in a known set

w(k) ∈ W = {w ∈ Rq : |w| ≤ w} , ∀k ∈ N, (1.13)

with a given w ∈ Rq.

As a consequence of the boundedness of the disturbances and the stability of the

dynamics, the system trajectories eventually converge to a bounded region of the state

space [64] for the forward trajectories. Given an initial state x(0) and the unique solu-

tion to (1.1) (note that the discrete-time domain of the solution may include negative

values for backward propagations), the following definitions are introduced in terms

of the set-based analysis.

Definition 1.11 (RI set). A set Ω ∈ Rn is said to be robust invariant (RI) with respect to

the system (1.1) if x(0) ∈ Ω implies x(k) ∈ Ω, ∀w(k) ∈ W and ∀k ∈ Z.

Definition 1.12 (RPI set). A set Ω ∈ Rn is said to be robust positively invariant (RPI)

with respect to the system (1.1) if x(0) ∈ Ω implies x(k) ∈ Ω, ∀w(k) ∈ W and ∀k ∈ N.
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Definition 1.13 (mRPI set). An RPI set Ω∞ ∈ Rn is said to be minimal RPI (mRPI) with

respect to the system (1.1) if it is contained in every closed RPI set.

Definition 1.14 (L-step RNI set). A set Ω ∈ Rn is L-step robust negatively invariant

(RNI) with respect to the system (1.1) if x(L) ∈ Ω implies x(L + k) ∈ Ω, ∀w(k) ∈ W
and ∀k ∈ Z[−L,0].

For dynamical LTI systems (i.e. the system (1.1) with E = In), the mRPI sets are

characterized as a limit set of a sequence of sets and lacks finite determinedness. A

number of strategies to approximate the mRPI sets have been proposed [62, 86, 100].

The iterative strategy proposed in [86] yields a polytopic approximation of the mRPI

set and will be extended here for the class of descriptor systems.

1.5.4 Linear Algebra

Let X , A, B and C be matrices of appropriate dimensions. The following matrix calcu-

lus regarding the matrix trace holds:

∂

∂X
tr
(
AX>B

)
= A>B>, (1.14a)

∂

∂X
tr
(
AXBX>C

)
= BX>CA+B>X>A>C>. (1.14b)

For two matrices X and Y , it holds

tr
(
X>Y

)
= vec(X)>vec(Y ) = vec(Y )>vec(X).

The Kronecker product of X and Y is denoted by X ⊗ Y . Consider matrices A, B

and X , the following properties hold:

vec (AXB) =
(
B> ⊗A

)
vec (X) ,

vec (AB) = (I ⊗A)vec (B) .
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Table 1.1: Selections of matrices Ξ in different frequency domains.

LF MF HF

Θ |θ| ≤ θl θ1 ≤ θ ≤ θ2 |θ| ≥ θh
Ξ

[
−P Q
Q P−2 cos(θl)Q

] [
−P ejθcQ

e−jθcQ P−2 cos(θw)Q

] [
−P −Q
−Q P+2 cos(θh)Q

]
LF: low-frequency domain, MF: middle-frequency domain, HF: high-frequency

domain.

1.5.5 H− Index and Generalized KYP Lemma

To formulate the fault sensitivity, theH− index is used. The definition of theH− index

and generalized KYP lemma are introduced in the following.

Definition 1.15 (H− index of discrete-time systems [30]). Given a transfer function

Gyu(z) of discrete-time systems as Gyu(z) = C(zI − A)−1B + D between signals yk
and uk with z = ejθ and ∀k ∈ N, theH− index of Gyu(z) is defined by

‖Gyu(z)‖− := inf
u6=0

‖y‖2
‖u‖2

= inf
θ
σ
(
Gyu(ejθ)

)
. (1.15)

By this definition, the H− index between signals y and u, k ∈ N can also be pre-

sented by ‖Gyu(z)‖− ≥ β with β > 0, that is

∞∑
k=0

y(k)>y(k) ≥ β2
∞∑
k=0

u(k)>u(k). (1.16)

Lemma 1.6 (Generalized KYP lemma for discrete-time systems [54]). Given a transfer

functionG(z) of discrete-time systems asG(z) = C(zI−A)−1B+D with z = ejθ, a symmetric

matrix Π of appropriate dimension. The following statements are equivalent:

(1) For a finite-frequency domain ∀θ ∈ Θ, the following condition holds:

[
G(ejθ)

I

]>
Π

[
G(ejθ)

I

]
≺ 0, ∀θ ∈ Θ. (1.17)
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(2) There exist Hermitian matrices P and Q such that Q � 0 and

[
A B
I 0

]>
Ξ

[
A B
I 0

]
+

[
C D
0 I

]>
Π

[
C D
0 I

]
≺ 0, (1.18)

where the selections of Ξ are presented in Table 1.1, and θc = θ1+θ2
2 , θw = θ2−θ1

2 .
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SET-BASED STATE ESTIMATION
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SYSTEMS

Descriptor Systems

Dynamical Systems

State Estimation
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Kalman

Set-membership Approach

Figure 2.1: Set-based state estimation scheme.

This chapter proposes a general set-based framework for robust state estimation of

discrete-time descriptor systems, which builds a bridge to fault diagnosis and con-

trol design problems. Specifically, a set-membership state estimator and a zonotopic

29
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Kalman observer are investigated. The contributions of this chapter have been pub-

lished in [148] and [160], respectively. In the first part, the considered LTI descrip-

tor systems are affected by three types of system uncertainties: unknown inputs and

unknown-but-bounded system disturbances and measurement noise. One limitation

for the use of zonotopic approaches in real applications is that some system distur-

bances are unknown and it may not be possible to bound them in a predefined zono-

tope as a priori. To overcome this problem, two classes of unknown system distur-

bances are considered: (i) bounded disturbances in a zonotope; (ii) unbounded distur-

bances, which are considered to be unknown inputs and can be decoupled in the ob-

server design. As shown in Figure 2.1, two set-based approaches with different criteria

are studied and therefore the relationship between both approaches is also established.

In particular, it is proved that the zonotopic observer in the current estimation type is

equivalent to the set-membership approach. In the second part, the set-membership

approach is extended for discrete-time LPV descriptor systems, where a new zonotope

minimization criterion based on the L∞ norm is defined.

2.1 Set-membership Approach and Zonotopic Kalman Ob-

server for Discrete-time Descriptor Systems

Consider the discrete-time descriptor linear system as

Ex(k + 1) = Ax(k) +Bu(k) +Dw(k) +Ddd(k), (2.1a)

y(k) = Cx(k) + Fv(k), (2.1b)

where x ∈ Rnx denotes the vector of system states, u ∈ Rnu denotes the vector of

known inputs, d ∈ Rnd denotes the vector of unknown inputs, y ∈ Rny denotes the

vector of measurement outputs, E ∈ Rnx×nx , A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx ,

D ∈ Rnx×nw , Dd ∈ Rnx×nd and F ∈ Rny×nv . For the descriptor system (2.1), E may be

a singular matrix and rank(E) ≤ nx.

Assumption 2.1. The initial state x(0) is assumed to be in the inclusion zonotope X (0) =

〈p(0), H(0)〉, where p(0) ∈ Rnx and H(0) ∈ Rnx×nx are the center and generator matrix of

this zonotope.

Assumption 2.2. The system disturbance vector w(k) ∈ Rnw and measurement noise vec-

tor v(k) ∈ Rnv are assumed to be unknown but bounded by zonotopes w(k) ∈ W = 〈0, Inw〉,
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v(k) ∈ V = 〈0, Inv〉, ∀k ∈ N.

Assumption 2.3. For the descriptor system (2.1), the unknown input d(k), ∀k ∈ N can be

decoupled, and matrices E, C and Dd satisfy the following rank condition1:

rank


Inx ⊗

[
E Dd

C 0

]

vec

([
Inx

0

])>
 = nx · rank

[
E Dd

C 0

]
. (2.2)

Thus, there exists a non-empty set of solutions of matrices T and N satisfying

TE +NC = Inx , (2.3a)

TDd = 0. (2.3b)

In this section, we investigate state estimation approaches based on zonotopes for

descriptor system (2.1). We propose two set-based approaches to use zonotope bound-

ing uncertain states with unknown but bounded disturbances and noise as well as

unbounded disturbances (as unknown inputs).

2.1.1 Set-membership Approach based on Zonotopes for Discrete-time De-
scriptor Systems

We now propose a set-membership state estimation approach based on zonotopes for

discrete-time descriptor system (2.1). This approach uses the structure of the param-

eterized intersection zonotope for implementing the measurement consistency test in-

cluding unknown inputs. Some preliminary definitions are introduced as follows.

Definition 2.1 (Uncertain state set). Given the descriptor system (2.1) with x(0) ∈
〈p(0), H(0)〉, w(k) ∈ W , ∀k ∈ N, the uncertain state set X̄ (k) is defined by

X̄ (k) =
{
x ∈ Rnx | Ex ∈ AX̄ (k − 1)⊕Bu(k − 1)⊕Ddd(k − 1)⊕DW

}
.

Definition 2.2 (Measurement state set). Given the descriptor system (2.1), a measure-

ment output vector y(k) and v(k) ∈ V , ∀k ∈ N, the measurement state set P(k) is

1The proof of this condition can be found in Appendix B.
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defined by

P(k) = {x ∈ Rnx | Cx− y(k) = Fα,∀α ∈ Bnv} .

Definition 2.3 (Exact uncertain state set). Given the descriptor system (2.1), a measure-

ment output vector y(k), w(k) ∈ W and v(k) ∈ V , ∀k ∈ N, the exact uncertain state

set X (k) is defined by X (k) = X̄ (k) ∩ P(k).

Since d(k) is a unknown input vector, it is impossible to directly characterize the

uncertain state set from Definition 2.1. Meanwhile, the goal is to approximate the ex-

act uncertain state set X (k) by an outer approximation for the descriptor system (2.1)

through implementing a measurement consistency test. In general, the proposed set-

membership approach includes three steps: (i) prediction step; (ii) measurement step; (iii)

correction step.

More specifically, assuming x(k) ∈ X (k) ⊆ X̂ (k) = 〈p̂(k), Ĥ(k)〉 at time step k ∈
N that also satisfies x(0) ∈ X (0) = 〈p(0), H(0)〉 when k = 0, these three steps are

implemented as follows: (i) compute the predicted uncertain state set X̄ (k + 1); (ii)

compute the measurement state setP(k+1) with a measurement output vector y(k+1);

(iii) find an intersection zonotope X̂ (k+ 1) satisfying {X̄ (k+ 1)∩P(k+ 1)} ⊆ X̂ (k+ 1),

where X̂ (k + 1) is a parameterized intersection zonotope with respect to a correction

matrix Λ ∈ Rnx×ny . The structure of this intersection zonotope is defined as follows.

Theorem 2.1 (Intersection zonotope for descriptor systems). Given the descriptor sys-

tem (2.1), a measurement output vector y(k+ 1), x(0) ∈ X (0), w(k) ∈ W , v(k) ∈ V , ∀k ∈ N,

x(k) ∈ 〈p̂(k), Ĥ(k)〉 ⊆ 〈p̂(k), H̄(k)〉 with H̄(k) =↓q,W (Ĥ(k)), T ∈ Rnx×nx and

N ∈ Rnx×ny satisfying (2.3). Then, for any correction matrix Λ ∈ Rnx×ny , x(k + 1) ∈{
X̂ (k + 1) ∩ P(k + 1)

}
⊆ X̂ (k + 1) = 〈p̂(k + 1), Ĥ(k + 1)〉, where

p̂(k + 1) = (I − ΛC)TAp̂(k) + (I − ΛC)TBu(k)

+ (N + Λ− ΛCN) y(k + 1), (2.4a)

Ĥ(k + 1) =
[
(I − ΛC)TAH̄(k), (I − ΛC)TD, (I − ΛC)NF, ΛF

]
. (2.4b)

Proof. For any x(k + 1) ∈
{
X̂ (k + 1) ∩ P(k + 1)

}
, we know that x(k + 1) ∈ X̂ (k + 1)

and x(k + 1) ∈ P(k + 1). Considering the descriptor system (2.1a) with the inclu-

sion x(k) ∈ 〈p̂(k), Ĥ(k)〉 ⊆ 〈p̂(k), ↓q,W (Ĥ(k))〉, there exists a vector s1 ∈ Bq+nw such
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that

Ex(k + 1) = Ap̂(k) +Bu(k) + Ddd(k) +
[
AH̄(k), D

]
s1.

Besides, from x(k + 1) ∈ P(k + 1), there exists a vector α ∈ Bnv such that

Cx(k + 1)− y(k + 1) = Fα. (2.5)

Consider the rank condition (2.2) is satisfied. With a pair of matrices T and N

satisfying (2.3), (2.1) and (2.5) can be combined leading to

(TE +NC)x(k + 1) = TAp̂(k) + TBu(k) + TDdd(k) +Ny(k + 1)

+
[
TAH̄(k), TD

]
s1 +NFα.

Set R(k) =
[
TAH̄(k), TD, NF

]
and β =

[
s>1 , α>

]>
. According to (2.3), the

above equation can be simplified to be

x(k + 1) = TAp̂(k) + TBu(k) +Ny(k + 1) +R(k)β. (2.6)

Therefore, with Λ ∈ Rnx×ny and a correction term ΛCR(k)β, we add and substi-

tute CR(k)β in (2.6) to obtain

x(k + 1) = TAp̂(k) + TBu(k) +Ny(k + 1) + ΛCR(k)β + (I − ΛC)R(k)β. (2.7)

By substituting x(k + 1) in (2.5) by (2.6), we also have

CR(k)β = y(k + 1)− CNy(k + 1)− CTAp̂(k)− CTBu(k) + Fα.

And then by replacing CR(k)β in (2.7), we have

x(k + 1) = (I − ΛC)TAp̂(k) + (I − ΛC)TBu(k)

+ (N + Λ− ΛCN) y(k + 1) +
[
(I − ΛC)R(k), ΛF

] [β
α

]
.
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Thus, we obtain p̂(k + 1) and Ĥ(k + 1) as in (2.4).

Due to the intersection zonotope bounding uncertain states including propagated

estimation errors and uncertainties, we would like to find a suitable (time-varying or

time-invariant) correction matrix minimizing the effects of estimation errors and un-

certainties by reducing the size of the intersection zonotope. To measure the size of a

zonotope, the FW -radius and the W -radius are used as in Definitions 1.8 and 1.9.

In the following, we first compute a time-varying Kalman correction matrix based

on the FW -radius. On the other hand, with aW -radius minimization criterion, a correc-

tion matrix can be obtained by solving an off-line optimization problem. This off-line

correction matrix can also be updated following an on-line updating procedure.

Computing the Correction Matrix via Kalman Filtering Procedure

From Definition 1.8, the size of the intersection zonotope X̂ (k + 1) can be measured by

the FW -radius as

`F,W (k + 1) =
∥∥∥Ĥ(k + 1)

∥∥∥2

F,W
= tr

(
Ĥ(k + 1)>WĤ(k + 1)

)
= tr

(
WĤ(k + 1)Ĥ(k + 1)>

)
= tr

(
WP (k + 1)

)
,

(2.8)

where P (k + 1) = Ĥ(k + 1)Ĥ(k + 1)>. As in the Kalman filtering procedure described

in [26, Theorem 5], a time-varying Kalman correction matrix Λ∗(k) can be obtained by

minimizing `F,W (k + 1) of the intersection zonotope 〈p̂(k + 1), Ĥ(k + 1)〉.

Theorem 2.2 (Kalman correction matrix). Given the intersection zonotope X̂ (k + 1) =

〈p̂(k + 1), Ĥ(k + 1)〉 in (2.4) and a weighting matrix W ∈ S�0. The optimal correction

matrix Λ∗(k) minimizes J = `F,W (k + 1) and its explicit solution is given by

Λ∗(k) = L(k)S(k)−1, (2.9)

L(k) = R̄(k)C(k)>, (2.10)

S(k) = CR̄(k)C> +Qv, (2.11)

R̄(k) = T
(
AP̄ (k)A> +Qw

)
T> +NQvN

>, (2.12)

with P̄ (k) = H̄(k)H̄(k)>, Qw = DD> and Qv = FF>.
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Proof. From (2.4), we have

P (k + 1) = (I − ΛC)TAP̄ (k)A>T> (I − ΛC)> + (I − ΛC)TQwT
> (I − ΛC)>

+ (I − ΛC)NQvN
> (I − ΛC)> + ΛQvΛ

>.

The criterion J = `F,W (k + 1) is convex with respect to Λ. By setting L, S and R̄

as in (2.10), (2.11) and (2.12), we take the partial-derivative of J = `F,W (k + 1) in (2.8)

with respect to Λ to obtain

∂

∂Λ
tr
(
WP (k + 1)

)
=

∂

∂Λ
tr
(
WΛSΛ>

)
− 2

∂

∂Λ
tr
(
WLΛ>

)
.

Then, Λ∗(k) is the value of Λ such that ∂
∂Λtr

(
WP (k + 1)

)
= 0. By using (1.14a)

and (1.14b), we have that

S(k)Λ∗(k)>W + S(k)>Λ∗(k)>W> − 2L(k)>W> = 0,

from which, since that S(k) is also symmetric, we thus obtain WΛ∗(k)S(k) = WL(k),

which leads to (2.9).

Remark 2.1. From Theorem 2.2, the optimal correction matrix Λ∗(k) is independent of

the weighting matrix W . Hence, this weighting matrix W can be set freely and we

can also use the non-weighted Frobenius norm to measure the zonotope size as the F -

radius.

Computing the Correction Matrix using Optimization-based Methods

From Definition 1.9, the size of the intersection zonotope X̂ (k+1) can also be measured

by the W -radius as

`W (k + 1) = max
z∈B(q+nx+2ny)

∥∥∥Ĥ(k + 1)z
∥∥∥2

2,W

= max
z∈B(q+nx+2ny)

z>Ĥ(k + 1)>(Λ)WĤ(k + 1)z.
(2.13)

We now present a W -radius minimization criterion and the corresponding linear
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matrix inequality (LMI) condition to find a constant correction matrix Λ in the follow-

ing theorem.

Theorem 2.3 (W -radius minimization criterion). Given the intersection zonotope X̂ (k +

1) = 〈p̂(k+ 1), Ĥ(k+ 1)〉 in (2.4), γ ∈ (0, 1) and ε > 0. The zonotope minimization criterion

`W (k + 1) ≤ γ`W (k) + ε, (2.14)

holds if there exist matrices W ∈ Snx�0, Y ∈ Rnx×ny , diagonal matrices Γ ∈ Snx�0, Υ ∈ Sny�0

and Ω ∈ Sny�0 such that

tr(Γ ) + tr(Υ ) + tr(Ω) < ε, (2.15a)

γW ? ? ? ?

0 Γ ? ? ?

0 0 Υ ? ?

0 0 0 Ω ?

(W − Y C)TA (W − Y C)TD (W − Y C)NF Y F W


� 0. (2.15b)

Proof. By combining (2.13) and (2.14), we have

max
z∈B(q+nx+2ny)

∥∥∥Ĥ(k + 1)z
∥∥∥2

2,W
− max
ẑ∈Bq

γ
∥∥H̄(k)ẑ

∥∥2

2,W
− ε ≤ 0. (2.16)

Let us set z =
[
z̄>, b>1 , b

>
2 , b

>
3

]> ∈ B(q+nw+2nv) with z̄ ∈ Bq, b1 ∈ Bnw , b2 ∈ Bnv

and b3 ∈ Bnv . Since max
ẑ∈Bq

∥∥H̄(k)ẑ
∥∥2

2,W
≥
∥∥H̄(k)z̄

∥∥2

2,W
, ∀z̄ ∈ Bq, we obtain a sufficient

condition of (2.16)

max
z̄∈Bq ,b1∈Bnw ,b2∈Bnv ,b3∈Bnv

(∥∥∥Ĥ(k + 1)z
∥∥∥2

2,W
− γ

∥∥H̄(k)z̄
∥∥2

2,W
− ε
)
< 0 (2.17)

Then, we obtain a sufficient condition of (2.17)

‖Ĥ(k + 1)z‖22,W − γ
∥∥H̄(k)z̄

∥∥2

2,W
− ε < 0, ∀z̄ ∈ Bq,∀b1 ∈ Bnw , ∀b2 ∈ Bnv ,∀b3 ∈ Bnv .

(2.18)
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Recall Ĥ(k + 1) in (2.4b) and set Y = WΛ. Let us denote

R̃ =
[
(W − Y C)TA, (W − Y C)TD, (W − Y C)NF, Y F

]
. (2.19)

Then, (2.18) can be reformulated as


H̄(k)z̄

b1

b2

b3


>

R̃>W−1R̃


H̄(k)z̄

b1

b2

b3

− γz̄>H̄(k)>WH̄(k)z̄ − ε < 0, (2.20)

for any z̄ ∈ Bq, b1 ∈ Bnw , b2 ∈ Bnv and b3 ∈ Bnv . If Γ , Υ and Ω are diagonal positive

semi-definite matrices, then we have b>1 Γb1 =
∑nw

i=1 b
2
1Γi ≤ tr(Γ ), b>2 Υb2 =

∑nv
i=1 b

2
2Υi ≤

tr(Υ ), b>3 Ωb3 =
∑nv

i=1 b
2
3Ωi ≤ tr(Ω), for any b1 ∈ Bnw , b2 ∈ Bnv and b3 ∈ Bnv , where Γi,

Υi and Ωi are each diagonal element of Γ , Υ and Ω. Therefore, we obtain

tr(Γ )− b>1 Γb1 ≥ 0,∀b1 ∈ Bnw , (2.21a)

tr(Υ )− b>2 Υb2 ≥ 0,∀b2 ∈ Bnv , (2.21b)

tr(Ω)− b>3 Ωb3 ≥ 0, ∀b3 ∈ Bnv . (2.21c)

By adding (2.21) to (2.20), we obtain a sufficient condition of (2.20)


H̄(k)z̄

b1

b2

b3


>

R̃>W−1R̃


H̄(k)z̄

b1

b2

b3

− γz̄>H̄(k)>WH̄(k)z̄ + tr(Γ )− b>1 Γb1

+ tr(Υ )− b>2 Υb2 + tr(Ω)− b>3 Ωb3 − ε < 0.

If (2.15a) holds, then we obtain


H̄(k)z̄

b1

b2

b3


>R̃>W−1R̃−


γW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω






H̄(k)z̄

b1

b2

b3

 < 0.
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Again, from the above inequality, we have a sufficient condition
γW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω

− R̃>W−1R̃ � 0.

By using the Schur complement and R̃ in (2.19), we obtain (2.15b).

Proposition 2.1 (Ultimate bound of the W -radius). Given the intersection zono-

tope X̂ (k) = 〈p̂(k), Ĥ(k)〉, ∀k ∈ N, γ ∈ (0, 1) and ε > 0. If the criterion (2.14) holds,

then the W -radius of intersection zonotope X̂ (k) is ultimately bounded by

`W (∞) ≤ ε

1− γ
. (2.22)

Proof. Given γ ∈ (0, 1) and ε > 0, we take k →∞ in (2.14) to obtain `W (∞) ≤ γ`W (∞)+

ε that implies the ultimate bound (2.22) of `W .

Since (2.22) characterizes an ellipsoid with given γ ∈ (0, 1) and ε > 0, in order to

minimize the ultimate bound `W (∞), we can maximize a norm of W . For instance,

we choose to maximize tr(W ). Therefore, the optimization problem to find the off-line

correction matrix Λf can be expressed as

maximize
W,Y,Γ,Υ,Ω

tr(W ), (2.23)

subject to (2.15a)-(2.15b).

Then, the optimal solution of the optimization problem (2.23) gives

Λf = W−1Y.

To tighten the size of the intersection zonotope during iterations, we also introduce

an on-line method to update the correction matrix Λo(k) with the weighting matrix W

obtained by solving (2.23).

Theorem 2.4. Given the intersection zonotope X̂ (k) = 〈p̂, Ĥ〉, ∀k ∈ N and the matrix W
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obtained by solving (2.23). If there exists a diagonal matrix M ∈ Snx such that[
M ?

WĤ(k + 1) W

]
� 0, (2.24)

then `W (k + 1) in (2.13) is bounded by

`W (k + 1) < max
z∈B(q+nx+2ny)

‖Mz‖22 . (2.25)

Proof. According to [4], the vertices of the intersection zonotope X̂ (k+1) can be approx-

imated by using a diagonal matrix. With a diagonal matrix M ∈ Rnx×nx , a sufficient

condition of (2.25) can be obtained as

z>Ĥ(k + 1)>WĤ(k + 1)z < z>Mz, ∀z ∈ B(q+nx+2ny).

Then, from this inequality, we have a sufficient condition M − Ĥ(k + 1)>WĤ(k +

1) � 0. By applying the Schur complement, we obtain (2.24).

At each time step, minimizing the size of the intersection zonotope measured by

the W -radius `W can be implemented by minimizing the trace of the diagonal ma-

trix M . Therefore, the on-line updating correction matrix Λo(k) can be obtained by

solving the following optimization problem:

minimize
Λ

tr(M), (2.26)

subject to (2.24).

Then, the optimal solution of the optimization problem (2.26) gives

Λo(k) = Λ.

Remark 2.2. It is worth mentioning that the off-line correction matrix Λf could already

be useful for estimating the states. Hence, sometimes Λo obtained through the on-

line updating implementation with (2.26) does not provide significant improvements

since the state estimations are already satisfactory in terms of degrees of freedom of the

intersection zonotope defined in (2.4).
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2.1.2 Zonotopic Kalman Observer of Discrete-time Descriptor Systems

We now design a zonotopic Kalman observer for the descriptor system (2.1). Unlike

the presented set-membership approach with an implementation of consistency test,

this zonotopic observer structure is defined based on a standard Luenberger observer

structure.

Zonotopic Observer Structure for Descriptor Systems

With a pair of matrices T and N satisfying (2.3), we consider the Luenberger observer

structure for the descriptor system (2.1) in a prediction type [164] as

x̂(k + 1) = TAx̂(k) + TBu(k) + TDw(k) +Ny(k + 1)

−NFv(k + 1) +G(k) (y(k)− Cx̂(k)− Fv(k)) ,
(2.27)

where x̂ ∈ Rnx denotes the estimated state vector, G ∈ Rnx×ny denotes a time-varying

observer gain.

For the descriptor system (2.1), we would like to bound the uncertain system

states x(k), ∀k ∈ N in a zonotopic set. A suitable observer gain G(k) is used to reduce

the state estimation error with a measured output y(k). We first recursively define the

structure of the zonotopic observer.

Theorem 2.5 (Prediction-type zonotopic observer for descriptor systems). Given the de-

scriptor system in (2.1), measured outputs y(k), y(k+ 1), x(0) ∈ X (0), w(k) ∈ W , v(k) ∈ V ,

∀k ∈ N, x(k) ∈ 〈p̂(k), Ĥ(k)〉 ⊆ 〈p̂(k), H̄(k)〉 with H̄(k) =↓q,W (Ĥ(k)), T ∈ Rnx×nx

and N ∈ Rnx×ny satisfying (2.3). The zonotope bounding uncertain states can be recursively

defined by x(k + 1) ∈ X̂ (k + 1) = 〈p̂(k + 1), Ĥ(k + 1)〉 , where

p̂(k + 1) = (TA−G(k)C) p̂(k) + TBu(k) +G(k)y(k) +Ny(k + 1), (2.28a)

Ĥ(k + 1) =
[
(TA−G(k)C) H̄(k), TD, −NF, −G(k)F

]
. (2.28b)

Proof. Considering x(k) ∈ 〈p̂(k), H̄(k)〉, we set x̂(k) = x(k) ∈ 〈p̂(k), H̄(k)〉.
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Since w(k) ∈ W , v(k) ∈ V , ∀k ∈ N, from (2.27), we can derive that

x(k + 1) ∈ X̂ (k + 1) = 〈p̂(k + 1), Ĥ(k + 1)〉

=
(
(TA−G(k)C)〈p̂(k), H̄(k)〉

)
⊕ (TB〈u(k), 0〉)

⊕ (G(k)〈y(k), 0〉)⊕ (N〈y(k + 1), 0〉)⊕ (TD〈0, Inw〉)

⊕ ((−NF )〈0, Inv〉)⊕ ((−G(k)F )〈0, Inv〉) .

By applying properties in (1.9) to the above equation, we obtain p̂(k+1) and Ĥ(k+1)

as in (2.28).

From the state bounding zonotope in (2.28), the state estimation error ε(k + 1) is

bounded by the zonotope ε(k+1) = x(k+1)− p̂(k+1) ∈ Ex(k+1) := 〈0, Ĥ(k+1)〉. The

objective for the zonotopic observer design is to find a time-varying observer gainG(k)

to minimize the estimation error, that corresponds to the size of Ex(k + 1).

Optimal Kalman Observer Gain for Descriptor Systems

As in Theorem 2.2, the minimization criterion is based on the FW -radius. The optimal

observer gain G∗(k) can be found by minimizing the FW -radius of Ex(k + 1), that is

minimizing J̃ = tr
(
WP̃ (k + 1)

)
with P̃ (k + 1) = Ĥ(k + 1)Ĥ(k + 1)>.

Theorem 2.6 (Optimal Kalman observer gain for descriptor systems). Given Ex(k+1) =

〈0, Ĥ(k + 1)〉 with Ĥ(k + 1) in (2.28b) and any weighting matrix W ∈ S�0. The optimal

observer gain G∗(k) minimizes J̃ = tr
(
WP̃ (k + 1)

)
and its explicit solution is given by

G∗(k) = TAK(k), (2.29)

K(k) = L̃(k)S̃(k)−1, (2.30)

L̃(k) = P̃ (k)C>, (2.31)

S̃(k) = CP̃ (k)C> +Qv, (2.32)

with P̃ (k) = H̄(k)H̄(k)> and Qv = FF>.
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Proof. Based on (2.28b), we can derive that

P̃ (k + 1) = (TA−G(k)C)H̄(k)H̄(k)>(TA−G(k)C)> + TDD>T>

+NFF>N> +G(k)FF>G(k)>.

Since J̃ is convex with respect to G(k), G∗(k) is the value of G(k) such

that ∂
∂Gtr

(
WP̃ (k + 1)

)
= 0. By setting L̃(k) and S̃(k) as in (2.31) and (2.32), we have

that

∂

∂G(k)
tr
(
WG(k)S̃(k)G(k)>

)
− 2

∂

∂G(k)
tr
(
WTAL̃(k)G(k)>

)
= 0.

Due to the symmetry of S̃(k), by using (1.14a) and (1.14b), we obtainWG∗(k)S̃(k) =

WTAL̃(k). Set K(k) as in (2.30). Thus, G∗(k) can be found as in (2.29).

From Theorem 2.6, G∗ is also independent of the weighting matrix W . To make use

of ↓q,W (·), a weighting matrix W is required. One selection of W is proposed in the

following proposition.

Proposition 2.2. Given the nominal descriptor system

Ex(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),

with matrices T ∈ Rnx×nx andN ∈ Rnx×ny satisfying (2.3a). The Luenberger observer defined

by

x̂(k + 1) = TAx̂(k) + TBu(k) + Ḡ ((y(k)− Cx̂(k)) +Ny(k + 1),

is µ-stable (stable with a decay rate µ) if there exists W ∈ Snx�0, Y ∈ Rnx×ny , and a scalar µ ∈
(0, 1] such that [

µW ?

WTA− Y C W

]
� 0. (2.33)

Proof. With matrices T and N satisfying (2.3a), the nominal system dynamics can be
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expressed as

x(k + 1) = TAx(k) + TBu(k) +Ny(k + 1).

Define the state estimation error e(k) = x(k) − x̂(k). Then, we have the error dy-

namics e(k+ 1) = x(k+ 1)− x̂(k+ 1) = (TA− ḠC)e(k). With W ∈ Snx�0, the Lyapunov

candidate function is chosen as V (k) = e(k)>We(k). With µ ∈ (0, 1], we have that

∆V (k) = e(k + 1)>We(k + 1)− e(k)>µWe(k)

= e(k)>(TA− ḠC)>W (TA− ḠC)e(k)− e(k)>µWe(k).

For e(k) 6= 0, ∆V (k) < 0 gives a sufficient condition µW −(
TA− ḠC

)>
W
(
TA− ḠC

)
� 0. By applying the Schur complement with µW � 0

and Y = WḠ, we obtain (2.33).

For the nominal descriptor system Ex(k+ 1) = Ax(k) +Bu(k), a nominal observer

gain without taking into account system uncertainties can also be found by satisfy-

ing (2.33) with Ḡ = W−1Y . We will use Ḡ with the zonotopic observer structure de-

fined in (2.28) to compare with the optimal Kalman gain G∗(k) in order to assess the

state bounding performance.

2.1.3 Discussions on Set-membership Approach and Zonotopic Kalman
Observer

Relationship between the Proposed Approaches

Comparing the parameterized intersection zonotope structure proposed in Theo-

rem 2.1 and the zonotopic observer structure proposed in Theorem 2.5, the intersection

zonotope is formulated by considering the measurement output y(k+ 1) to implement

the system consistency test while the zonotopic observer includes measurement out-

puts y(k) and y(k + 1).

To find the relationship between these two approaches, we also consider a current

estimation-type zonotopic observer for the descriptor system (2.1) only containing the
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current measurement output y(k + 1) as follows:

x̂(k + 1) = TAx̂(k) + TBu(k) + TDw(k) +Ny(k + 1)

−NFv(k + 1) + Ĝ (y(k + 1)− Cx̌(k + 1)− Fv(k + 1)) ,
(2.34)

where Ĝ ∈ Rnx×ny is an observer gain for the current estimation-type zonotopic ob-

server. x̌(k + 1) denotes the predicted state from the previous observed state x̂(k) that

can be defined by

x̌(k + 1) = TAx̂(k) + TBu(k) + TDw(k) +Ny(k + 1)−NFv(k + 1). (2.35)

Theorem 2.7. Consider the descriptor system (2.1). The proposed set-membership approach is

equivalent to the current estimation-type zonotopic observer in the structure of (2.34).

Proof. In terms of the zonotopic observer in the current estimation-type, by substitut-

ing x̌(k + 1) by (2.35) to (2.34), we can derive

x̂(k + 1) =
(
I − ĜC

)
TAx̂(k) +

(
I − ĜC

)
TBu(k) +

(
I − ĜC

)
TDw(k)

+
(
N + Ĝ− ĜCN

)
y(k + 1)−

(
I − ĜC

)
NFv(k + 1)− ĜFv(k + 1).

Considering x(k) ∈ 〈p̂(k), H̄(k)〉with H̄(k) =↓q,W (Ĥ(k)), w(k) ∈ W and v(k+1) ∈
V , the uncertain state x(k+1) is bounded into the zonotope X̃ (k+1) = 〈p̃(k+1), H̃(k+

1)〉, where

x(k + 1) ∈ X̃ (k + 1) = 〈p̃(k + 1), H̃(k + 1)〉

=
(

(I − ĜC)TA〈p(k), H̄(k)〉
)
⊕
(

(I − ĜC)TB〈u(k), 0〉
)

⊕
(

(I − ĜC)TD〈0, Inw〉
)
⊕
(

(N + Ĝ− ĜCN)〈y(k + 1), 0〉
)

⊕
(

(−(I − ĜC))NF 〈0, Inv〉
)
⊕
(

(−ĜF )〈0, Inv〉
)
.

By using properties in (1.9), we obtain p̃(k + 1) and H̃(k + 1) as follows:

p̃(k + 1) = (I − ĜC)TAp(k) + (I − ĜC)TBu(k) + (N + Ĝ− ĜCN)y(k + 1), (2.36a)

H̃(k + 1) =
[
(I − ĜC)TAH̄(k), (I − ĜC)TD, −(I − ĜC))NF, −ĜF

]
. (2.36b)
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By definition of the zonotope, the subtraction sign in the last two terms of (2.36b)

can be removed. Therefore, (2.4) and (2.36) are equivalent with Λ = Ĝ.

Remark 2.3. Since the structure of 〈p̃(k + 1), H̃(k + 1)〉 is equivalent to the intersection

zonotope 〈p̂(k + 1), Ĥ(k + 1)〉 in (2.4), the observer gain Ĝ can be obtained by using

methods proposed for the set-membership approach in Section 2.1.1.

Extension to Dynamical Systems with Unknown Inputs

In the case of rank(E) = nx, the system (2.1) becomes a dynamical system. The un-

known input d can be decoupled by finding matrices T̄ ∈ Rnx×nx and N̄ ∈ Rnx×ny that

satisfy

T̄ + N̄C = Inx , (2.37a)

T̄Dd = 0. (2.37b)

By combining (2.37a) and (2.37b), we obtain Dd = N̄CDd and T̄ = Inx − N̄C. As-

sumeDd to be full column rank. The condition to guarantee the existence of T̄ and N̄ is

given by rank(Dd) = rank(CDd). In this case, the proposed set-membership approach

and zonotopic Kalman observer in Section 2.1.1 and 2.1.2 can be applied to dynami-

cal systems subject to unknown inputs, which can be considered an improvement on

the methods presented in [1], [26]. Under this structure with T̄ and N̄ , the effects of

unknown inputs can be decoupled. In this way, the limitation of zonotope-based ap-

proach that requires the system disturbances to be bounded is relaxed.

2.1.4 Numerical Example

To illustrate the proposed state estimation approaches, consider a discrete-time de-

scriptor system as defined in (2.1) with

E =


1 0 0

0 1 0

0 0 0

 , A =


0.5 0 0

0.8 0.95 0

−1 0.5 1

 , B =


1 0

0 1

0 0

 , Dd =


0

0

0.8

 ,
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C =

[
1 0 1

1 −1 0

]
, D =


0.1 0 0

0 1.5 0

0 0 0.6

 , F =

[
0.5 0

0 1.5

]
.

and the known input signal is given by u(k) =

[
0.5sin(0.01πk) + 1

−2cos(0.01πk)

]
, for 100 sampling

steps. The system disturbancesw(k) and measurement noise v(k) are random Gaussian

white noise bounded in zonotopes: w(k) ∈ W = 〈0, I3〉 and v(k) ∈ 〈0, I2〉, ∀k ∈ N,

∀k ∈ N.

Since E, C and Dd satisfy the rank condition (2.2), there exists a solution of matri-

ces T and N satisfying (2.3). Therefore, we choose one feasible solution as follows:

T =


0.6667 0.3333 0

0.3333 0.6667 0

−0.6667 −0.3333 0

 , N =


0 0.3333

0 −0.3333

1 −0.3333

 .

The initial state zonotope X (0) is given by X (0) = 〈p(0), H(0)〉, where

p(0) =


0.5

0.5

0.25

 , H(0) =


0.1 0 0

0 1.5 0

0 0 0.6



The actual initial state vector x(0) = [0.5, 0.5, 0.25]> is considered unknown for

the state estimation scheme. We choose q = 15 in the zonotope reduction operator to

reduce the computation load and simulation time. Simulations have been carried out in

a PC with the CPU of Intel (R) Core (TM) i7-5500U 2.4GHz, 12GB RAM and MATLAB

R2015a. As a result, the state estimation results are shown in Fig. 2.2 and 2.3. These

plots show that both the set-membership approach and the zonotopic Kalman observer

are able to provide the interval-based state estimation results.

Recall that Λ∗(k) behaves as the Kalman correction matrix, Λf is obtained by solv-

ing the off-line optimization problem (2.23), Λo(k) is obtained by solving the on-line

optimization problem (2.26), G∗(k) is the optimal Kalman gain and Ḡ with µ = 1 is

the nominal observer gain of the prediction-type zonotopic Kalman observer, and Ĝ is
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Figure 2.2: Result of applying the set-membership approach.

the optimal Kalman gain of the current estimation type. Besides, the optimal weight-

ing matrix W ∗ is obtained also by solving (2.23). The observation error is defined

as e(k) = x(k) − x̂(k) = x(k) − p(k), where x̂(k) ∈ 〈p(k), H(k)〉 and the subscript :

represents any time instant k ∈ N. The root mean square error (MSE) between the real

uncertain states and observed states can be computed by

MSE(e) :=

√√√√( 1

N

N∑
k=1

1

nx
‖e(k)‖22

)
.

Besides, we also compute the root mean squared (RMS) value of rs(H(k)) that is

denoted by RMS(rs(H)). The weighted and non-weighted Frobenius norm as well as

the weighted 2-norm of the segment matrix of zonotopes are computed to compare the

sizes of the state zonotopes for all the scenarios. Table 2.2 and 2.1 show the comparison

results of all the cases using RMS up to the step 100 with weighted and non-weighted

zonotope reduction operator.

From the MSE(e) results of Λ∗ and G∗(k) in Table 2.2, the performance of the
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Figure 2.3: Result of applying the prediction-type zonotopic Kalman
observer.

set-membership approach is better than the zonotopic Kalman observer in prediction-

type. This is because the prediction-type observer structure includes two consecutive-

step measurement outputs and noise. Both the measurement noise v(k) and v(k + 1)

should be over-approximated by the terms −NF and −G(k)F in (2.28b). Hence, this

could enlarge the size of the zonotope and gives more conservative estimation inter-

vals. In terms of the real-time implementation of control loops, in both proposed ap-

proaches, the estimate x(k + 1) depends on y(k + 1). Hence, a state feedback control

like u(k + 1) = Kx(k + 1) cannot be applied at the same time as y(k + 1) is acquired.

However, this real-time synchronization difficulty does not exist when implementing a

control loop based on the zonotopic Kalman filter in prediction-type form for dynam-

ical systems as proposed in [26]. Hence, a real-time synchronization remains an open

problem when implementing a state feedback control loop with the proposed state es-

timators for descriptor systems. The possible option can be realized by using a delayed

state feedback control.

From the results with Λf and Λo(k), the mean-square error and the size of the in-

tersection zonotopes using the on-line method are smaller than the one using the off-

line method. According to RMS(rs(H)) and ‖H‖2,W of the set-membership approach,

the on-line method improves the correction matrix Λ with the weighting matrix W
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Ĝ
0.

05
39

3.
19

70
1.

51
10

0.
70

70
-

-



50 Chapter 2 : Set-based State Estimation Approaches for Descriptor Systems

Table
2.2:C

om
parison

w
ith

w
eighted

zonotope
reduction

operator↓
q
,W

(H
).

A
pproach

Λ
/
G

M
S
E

(e)
R

M
S

(rs(H
))
‖H
‖
F
‖
H
‖
F
,W

‖H
‖

2
,W

Tim
e

[s]

Λ
∗

0.0355
3.0963

1.5485
0.7070

-
-

Set-m
em

bership
approach

Λ
f

0.0326
2.5443

-
-

14.1385
3.809

Λ
o

0.0287
2.4755

-
-

14.1373
46.238

G
∗

0.2528
3.8781

1.9694
1.9594

-
-

Z
onotopic

observer
Ḡ
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computed off-line. Since the optimization problem (2.26) is implemented on-line, the

simulation time is longer than the off-line method. For the prediction-type zonotopic

Kalman observer, the optimal Kalman gain G∗(k) deals with uncertainties better than

the nominal observer gain Ḡ.

Besides, by comparing the first and last rows of Table 2.2 and 2.1, it is numerically

shown that the set-membership approach is equivalent to the current estimation-type

zonotopic Kalman observer as the discussion in Theorem 2.7. From Table 2.1, all the

approaches are run with non-weighted zonotope reduction operator ↓q (H). From

results of RMS(rs(H)), the size of each zonotope is larger than the case with ↓q,W (H).

This is because the non-weighted zonotope reduction operator can bring more over-

approximated results.

2.2 Extension of Set-membership Approach for LPV Descrip-

tor Systems

In this section, we extend the proposed set-membership approach for LPV descriptor

systems with a new defined zonotope minimization criterion based on the L∞ norm.

Let us consider the following LPV descriptor system

Ex(k + 1) = A
(
θ(k)

)
x(k) +B

(
θ(k)

)
u(k) +D

(
θ(k)

)
d(k), (2.38a)

y(k) = Cx(k) + Fd(k), (2.38b)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny denote the state, input and output vectors, re-

spectively. d ∈ Rnd denotes the system uncertainty vector. C ∈ Rny×nx and F ∈ Rny×nd

are measurement matrices. Besides, E ∈ Rnx×nx is a singular matrix corresponding

to the definition of the descriptor system. As expressed in [165], A
(
θ(k)

)
, B
(
θ(k)

)
and D

(
θ(k)

)
are expressed in the polytopic form:

A
(
θ(k)

)
=

h∑
j=1

ρj (θ(k))Aj ,

B
(
θ(k)

)
=

h∑
j=1

ρj (θ(k))Bj ,
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D
(
θ(k)

)
=

h∑
j=1

ρj (θ(k))Dj ,

where Aj ∈ Rnx×nx , Bj ∈ Rnx×nu , Dj ∈ Rnx×nd , ∀j = 1, . . . , h are known con-

stant matrices. θ(k) ∈ Rnθ is a scheduling vector that can be measured online and

ρj (θ(k)), ∀j = 1, . . . , h are weighting functions satisfying

ρj (θ(k)) ≥ 0,
h∑
j=1

ρj (θ(k)) = 1, ∀j = 1, . . . , h. (2.39)

Compared to (2.1), the system uncertainty vector d in (2.38) can be divided as d :=[
w>, v>

]> ∈ Rnd with nd = nw + nv, where w ∈ Rnw and v ∈ Rnv are the vectors of

system disturbances and measurement noise. Besides, D
(
θ(k)

)
=
[
D̄
(
θ(k)

)
, 0
]
, F =[

0, F̄
]

with D̄
(
θ(k)

)
∈ Rnx×nw and F̄ ∈ Rny×nv .

Assumption 2.4. The uncertainty vector d(k) is unknown but bounded in a known centered

zonotopeD as d(k) ∈ D = 〈0, Hd〉, ∀k ∈ N and the initial uncertain state x(0) is also bounded

in the zonotope X (0) = 〈p(0), H(0)〉.

Remark 2.4. Since d(k) ∈ D, ∀k ∈ N, the worst-case d(k) on the boundary ofD = 〈0, Hd〉
is given by max

b∈Bnd
‖Hdb‖. Meanwhile, by definition, the L∞ norm of d(k) is denoted

by ‖d‖∞ = sup
k
‖d(k)‖, which satisfies

‖d‖∞ = sup
k
‖d(k)‖ = max

b∈Bnd
‖Hdb‖ . (2.40)

Definition 2.4 (C-Observability [28]). The LPV descriptor system (2.38) is said to be

C-observable if the initial state x(0) of the system can be uniquely determined by u(k)

and y(k), ∀k ∈ N.

Assumption 2.5. The LPV descriptor system (2.38) is assumed to be C-observable. Then,

matrices E, Aj and C satisfy rank

[
zE −A
C

]
= nx, ∀j = 1, . . . , h, ∀z ∈ C, z finite and

rank

[
E

C

]
= nx. (2.41)
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Lemma 2.1 ([162]). Since (2.41) holds, there exist two matrices T and N such that the follow-

ing condition is satisfied:

TE +NC = Inx . (2.42)

Then, the general solutions of T and N are given by

T = Ψ †α1 + S
(
Inx+ny − ΨΨ †

)
α1, (2.43a)

N = Ψ †α2 + S
(
Inx+ny − ΨΨ †

)
α2, (2.43b)

with Ψ =

[
E

C

]
, α1 =

[
Inx

0

]
and α2 =

[
0

Iny

]
, where S is an arbitrary matrix of appropriate

dimension.

Based on the result in Section 2.1.1, since the uncertain state x(k − 1) is bounded

in the zonotope X (k − 1) = 〈p(k − 1), H(k − 1)〉, the estimated uncertain state x(k)

is over-approximated by implementing three steps including prediction, measurement

and correction. We now extend Definitions 2.1-2.3 for the LPV descriptor system (2.38).

Definition 2.5 (Uncertain state set). Given the LPV descriptor system (2.38) and As-

sumption 2.4 holds, the uncertain state set X̄ (k) propagated by (2.38a) is defined as

X̄ (k) =
{
x ∈ Rnx

∣∣∣(Ex−B(θ(k − 1)
)
u(k − 1)

)
∈(

A
(
θ(k − 1)

)
X (k − 1)⊕D

(
θ(k − 1)

)
D
)}
.

(2.44)

Definition 2.6 (Measurement state set). Given the LPV descriptor system (2.38) and a

measured output vector y(k), the measurement consistent state set at time instant k is

defined as

Xy(k) = {x ∈ Rnx | (y(k)− Cx) ∈ FD} . (2.45)

Definition 2.7 (Exact uncertain state set). Given the LPV descriptor system (2.38), the

exact consistent uncertain state set X (k), that encloses uncertain states consistent with

measured outputs, is defined as

X (k) = X̄ (k) ∩ Xy(k). (2.46)
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2.2.1 Zonotopic Set-membership Approach for Discrete-time LPV Descrip-
tor Systems

We now present the set-membership state estimation approach for discrete-time LPV

descriptor systems. Based on the system model (2.38), the prediction step can be im-

plemented using the Minkowski sum and the model information through the forward

set propagation. With the output data measured from the real system, the set defined

in (2.45) can be obtained in the measurement step. Then, we compute the consistent

state set (2.46) by a suitable approximation allowing to implement the consistency test

in the correction step.

Intersection Zonotope for LPV Descriptor Systems

The set X (k) defined in (2.46) is a polytope obtained by an intersection between the

zonotope X̄ (k) and the polytope Xy(k). To implement the steps of the set-membership

state estimation approach in an iterative way, we first construct a parameterized inter-

section zonotope to over-approximate X (k) in the following theorem, which includes

the three steps of the set-membership state estimation.

Theorem 2.8. Consider the LPV descriptor system (2.38), x(k − 1) ∈ X̂ (k − 1) = 〈p̂(k −
1), Ĥ(k−1)〉, the measured output y(k) and the measurement consistent state setXy(k). Then,

for a parameter-varying correction matrix Λ (θ(k − 1)) ∈ Rnx×ny , the consistent uncertain

state set X (k) is over-approximated by the zonotope X̂ (k):

X̄ (k) ∩ Xy(k) ⊆ X̂ (k) =
〈
p̂(k), Ĥ(k)

〉
, (2.47)

where

p̂(k) =
(
I − Λ (θ(k − 1))C

)
TA
(
θ(k − 1)

)
p̂(k − 1)

+
(
I − Λ (θ(k − 1))C

)
TB
(
θ(k − 1)

)
u(k − 1)

+
(
N − Λ (θ(k − 1))CN + Λ (θ(k − 1))

)
y(k), (2.48a)

Ĥ(k) =
[(
I − Λ (θ(k − 1))C

)
R(k), Λ (θ(k − 1))FHd

]
, (2.48b)

R(k) =
[
TA
(
θ(k − 1)

)
Ĥ(k − 1), TD

(
θ(k − 1)

)
Hd, NFHd

]
. (2.48c)

Proof. For any x̂(k) satisfying x̂(k) ∈ X̄ (k) ∩ Xy(k), it implies x̂(k) ∈ X̄ (k) and x̂(k) ∈
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Xy(k). First, in the prediction step, from x̂(k) ∈ X̄ (k) and (2.38a), there exists an unitary

vector z1 such that

Ex̂(k) = A
(
θ(k − 1)

)
p̂(k − 1) +B

(
θ(k − 1)

)
u(k − 1)

+
[
A
(
θ(k − 1)

)
Ĥ(k − 1), D

(
θ(k − 1)

)
Hd

]
z1.

(2.49)

Therefore, in the measurement step, from x̂(k) ∈ Xy(k) and (2.38b), there exists

another unitary vector z2 such that

Cx̂(k)− y(k) = FHdz2. (2.50)

With a pair of T and N satisfying (2.42), (2.49) and (2.50) can be combined to obtain

x̂(k) = TA
(
θ(k − 1)

)
p̂(k − 1) + TB

(
θ(k − 1)

)
u(k − 1) +Ny(k)

+
[
TA
(
θ(k − 1)

)
Ĥ(k − 1), TD

(
θ(k − 1)

)
Hd, NFHd

] [z1

z2

]
.

Set R(k) as in (2.48c) and s =
[
z>1 , z

>
2

]>. Finally, in the correction step, we intro-

duce a parameter-varying correction matrix Λ (θ(k − 1)) ∈ Rnx×ny and a correction

term Λ (θ(k − 1))CR(k)s such that substituting x̂(k) in (2.50) by (2.51), it becomes

CR(k)s = (I − CN) y(k)− CTA
(
θ(k − 1)

)
p̂(k − 1)− CTB

(
θ(k − 1)

)
u(k − 1) + FHdz2.

Adding and subtracting this correction term Λ (θ(k − 1))CR(k)s in (2.51), we can

derive that

x̂(k) = TA
(
θ(k − 1)

)
p̂(k − 1) + TB

(
θ(k − 1)

)
u(k − 1) +Ny(k)

+ Λ (θ(k − 1))CR(k)s+ (I − Λ (θ(k − 1))C)R(k)s

= TA
(
θ(k − 1)

)
p̂(k − 1) + TB

(
θ(k − 1)

)
u(k − 1) +Ny(k)

+ Λ (θ(k − 1)) (I − CN) y(k)− Λ (θ(k − 1))CTA
(
θ(k − 1)

)
p̂(k − 1)

− Λ (θ(k − 1))CTB
(
θ(k − 1)

)
u(k − 1) + (I − Λ (θ(k − 1))C)R(k)s

+ Λ (θ(k − 1))FHdz2
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=
(
I − Λ (θ(k − 1))C

)(
TA
(
θ(k − 1)

)
p̂(k − 1) + TB

(
θ(k − 1)

)
u(k − 1)

)
+
(
N − Λ (θ(k − 1))CN + Λ (θ(k − 1))

)
y(k)

+
[
(I − Λ (θ(k − 1))C)R(k), Λ (θ(k − 1))FHd

] [ s
z2

]
,

from which we obtain the zonotope X̂ (k) with the center p̂(k) and the generator ma-

trix Ĥ(k) as in (2.48).

Remark 2.5. Along an iterative estimation procedure, the order of X̂ (k), ∀k ∈ N is grow-

ing because at each time step, the term Λ (θ(k − 1))FHd is added into Ĥ(k), ∀k ∈ N.

From the application point of view, the order of the intersection zonotope with time

should be limited. To achieve this, we use the reduction operator ↓q,W (·) to fix the

maximum number of columns of the intersection zonotope to preserve the inclusion

property:

〈p̂(k − 1), Ĥ(k − 1)〉 ⊆ 〈p̂(k − 1), H̄(k − 1)〉,

with H̄(k − 1) =↓q,W (Ĥ(k − 1)), where q is maximum column of H̄(k − 1) and W

denotes a weighting matrix of appropriate dimension.

Considering the polytopic form of the system (2.38), we introduce the polytopic

representation of the parameterized intersection zonotope in the following corollary.

Corollary 2.1. Consider the LPV descriptor system (2.38). If there exists a parameter-varying

correction matrix Λ (θ(k − 1)) in a polytopic form:

Λ (θ(k − 1)) =

h∑
i=1

ρi (θ(k − 1)) Λi, (2.51)

with Λi ∈ Rnx×ny for i = 1, . . . , h, then the intersection zonotope X̂ (k) can be reformulated as

follows

p̂(k) =

h∑
i=1

h∑
j=1

ρi (θ(k − 1)) ρj (θ(k − 1))
((
I − ΛiC

)
TAj p̂(k − 1) +

(
I − ΛiC

)
TBju(k − 1)

)

+

h∑
i=1

ρi (θ(k − 1))
((
N − ΛiCN + Λi

)
y(k)

)
, (2.52a)
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Ĥ(k) =

[
h∑
i=1

h∑
j=1

ρi (θ(k − 1)) ρj (θ(k − 1))
((
I − ΛiC

)
TAjH̄(k − 1)

)
,

h∑
i=1

h∑
j=1

ρi (θ(k − 1)) ρj (θ(k − 1))
((
I − ΛiC

)
TDjHd

)
,

h∑
i=1

ρi (θ(k − 1))
((
I − ΛiC

)
NFHd

)
,

h∑
i=1

ρi (θ(k − 1)) ΛiFHd

]
. (2.52b)

Proof. Based on (2.39), A(θ(k− 1)), B(θ(k− 1)) and D(θ(k− 1)) can be reformulated by
A(θ(k − 1))

B(θ(k − 1))

D(θ(k − 1))

 =

h∑
j=1

ρj (θ(k − 1))


Aj

Bj

Dj

 , j = 1, . . . , h, (2.53)

with ρj (θ(k − 1)) ≥ 0 and
∑h

j=1 ρj (θ(k − 1)) = 1. By combining (2.47) with (2.51)

and (2.53), we obtain (2.52).

Computing Optimal Correction Matrix

Since all uncertain states are bounded in the intersection zonotope X̂ (k), we would

like to find a suitable correction matrix Λ (θ(k − 1)) in such a way that the size of X̂ (k)

is limited. As presented in Section 2.1.1, the size of a zonotope can be measured by

the W -radius. Based on Definitions 1.9 and 1.10, we propose the condition to limit the

size of X̂ (k) in the following theorem.

Theorem 2.9. Consider the LPV descriptor system (2.38) and X̂ (k) in (2.47). If there ex-

ists a positive scalar γ > 0, a matrix W ∈ Rnx and a parameter-varying correction ma-

trix Λ (θ(k − 1)) ∈ Rnx×ny such that
αW ? ? ?

0 (1− α)βI ? ?

0 0 (1− α)(1− β)I ?

Φ1 Φ2 Φ3 W

 � 0, (2.54a)
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[
I ?

γW W

]
� 0, (2.54b)

with

Φ1 = W (I − Λ (θ(k − 1))C)TA(θ(k − 1)),

Φ2 = W (I − Λ (θ(k − 1))C)TD(θ(k − 1)),

Φ3 = W (NF − Λ (θ(k − 1))CNF + Λ (θ(k − 1))F ) ,

then the parameterized intersection zonotope X̂ (k), ∀k ∈ Z+ satisfies

`W (k) ≤ α`W (k − 1) + (1− α) `d, (2.55a)

`(k) ≤ γ2`W (k), (2.55b)

with α, β ∈ (0, 1) and

`d = max
b1∈Bnd

β ‖Hdb1‖2 + max
b2∈Bnd

(1− β) ‖Hdb2‖2 . (2.56)

Proof. By Definition 1.9, the W -radius of the intersection zonotope X̂ (k) in (2.47) at

time instant k can be formulated as

`W (k) = max
ẑ∈Bn+2nd

∥∥∥Ĥ(k)
(
Λ (θ(k − 1))

)
ẑ
∥∥∥2

W
,

where ẑ ∈ Bn+2nd is an unitary vector. According to (2.48b), the vector ẑ can be parti-

tioned as ẑ =
[
z̄>, b>1 , b>2

]> with z̄ ∈ Bn. By combining (2.55a) and (2.56), we obtain

max
ẑ∈Bn+2nd

∥∥∥Ĥ(k)ẑ
∥∥∥2

W
≤ max

z̄∈Bn
α
∥∥∥Ĥ(k − 1)z̄

∥∥∥2

W
+ max
b1∈Bnd

(1− α)β ‖Hdb1‖2

+ max
b2∈Bnd

(1− α) (1− β) ‖Hdb2‖2 ,
(2.57)

Then, we obtain a sufficient condition of (2.57) as

ẑ>Ĥ(k)>WĤ(k)ẑ − αz̄>Ĥ(k − 1)>WĤ(k − 1)z̄ − (1− α)βb>1 H
>
d Hdb1

− (1− α) (1− β) b>2 H
>
d Hdb2 < 0,

(2.58)

for ∀ẑ, ∀z̄, ∀b1 and ∀b2. Set ξ = Ĥ(k−1)z̄, φ = Hdb1 and ϕ = Hdb2. By substituting Ĥ(k)
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defined (2.48b) in (2.58), it follows that


ξ

φ

ϕ


> 

w11 ? ?

w21 w22 ?

w31 w32 w33


︸ ︷︷ ︸

w


ξ

φ

ϕ

 < 0, (2.59)

with

w11 = A
(
θ(k − 1)

)>
T>
(
I − Λ (θ(k − 1))C

)>
W
(
I − Λ (θ(k − 1))C

)
TA
(
θ(k − 1)

)
− αW,

w21 = D
(
θ(k − 1)

)>
T>
(
I − Λ (θ(k − 1))C

)>
W
(
I − Λ (θ(k − 1))C

)
TA
(
θ(k − 1)

)
,

w22 = D
(
θ(k − 1)

)>
T>
(
I − Λ (θ(k − 1))C

)>
W
(
I − Λ (θ(k − 1))C

)
TD
(
θ(k − 1)

)
− (1− α)βI,

w31 =
(
NF − Λ (θ(k − 1))CNF + Λ (θ(k − 1))F

)>
W
(
I − Λ (θ(k − 1))C

)
TA
(
θ(k − 1)

)
,

w32 =
(
NF − Λ (θ(k − 1))CNF + Λ (θ(k − 1))F

)>
W
(
I − Λ (θ(k − 1))C

)
TD
(
θ(k − 1)

)
,

w33 =
(
NF − Λ (θ(k − 1))CNF + Λ (θ(k − 1))F

)>
W

·
(
NF − Λ (θ(k − 1))CNF + Λ (θ(k − 1))F

)
− (1− α)(1− β)I.

By the definition of a positive definite matrix, (2.59) implies w ≺ 0. By applying

Schur complement lemma [14] to this matrix inequality, we obtain (2.54a).

On the other hand, by Definition 1.10, the radius of the intersection zonotope X̂ (k)

in (2.47) at time instant k can be formulated as `(k) = max
ẑ∈Bn+2nd

∥∥∥Ĥ(k)ẑ
∥∥∥2

. From (2.55b),

we derive

I − γ2W � 0. (2.60)

Again, by applying Schur complement lemma to (2.60), we thus obtain (2.54b).

Considering that A(θ(k − 1)) and Λ(θ(k − 1)) are defined in the polytopic

form, (2.54a) leads to a double sum problem. The following result is used for the refor-

mulation of a double sum problem.
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Lemma 2.2 ([21, 124]). Consider the following double sum inequality condition

Γ (ϑ(k), ϑ(k)) =
r∑
i=1

r∑
j=1

µi (ϑ(k))µj (ϑ(k))Γi,j � 0. (2.61)

Then, the condition (2.61) is fulfilled provided that the following conditions hold:

Γi,i � 0, i = 1, . . . , r, (2.62a)
2

r − 1
Γi,i + Γi,j + Γj,i � 0, , 1 ≤ i < j ≤ r. (2.62b)

Based on Lemma 2.2, we now reformulate (2.54a) with multiple vertices in the form

of (2.61) in the following corollary.

Corollary 2.2. Consider the LPV descriptor system (2.38). If there exist matrices W ∈ Snx�0

and Yi ∈ Rnx×ny for i = 1, . . . , h such that

Ψi,i � 0, i = 1, . . . , h, (2.63a)
2

h− 1
Ψi,i + Ψi,j + Ψj,i � 0, , 1 ≤ i < j ≤ h, (2.63b)

with

Ψi,j =


αW ? ? ?

0 (1− α)βI ? ?

0 0 (1− α)(1− β)I ?

WTAj − YiCTAj WTDj − YiCTDj WNF − YiCNF + YiF W

 , (2.64)

then (2.54a) is satisfied.

Proof. For the polytopic representation of A(θ(k − 1)), D(θ(k − 1))

and Λ (θ(k − 1)), (2.54a) can be reformulated by the double sum as (2.61). Thus,

we obtain (2.63) by means of (2.62).

Based on the condition in Theorem 2.9, an adaptive bound, that is the upper bound

of the radius of the intersection zonotope, can be obtained in the following theorem.

Theorem 2.10. The L∞ performance of the radius of the intersection zonotope X̂ (k) in (2.47)
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at time instant k is characterized by

`(k) ≤ γ2αk`W (0) + γ2 ‖d‖2∞ , (2.65)

with `W (0) = max
b(0)∈Bn(0)

‖H(0)b(0)‖2P .

Proof. From (2.40) and (2.56), we have `d = max
b∈Bnd

‖Hdb‖2 = ‖d‖2∞. From (2.55a), for

some α ∈ (0, 1), we can derive that

`W (k) ≤ α`W (k − 1) + (1− α) ‖d‖2∞ ,

≤ αk`W (0) + (1− α)
k−1∑
i=0

αi ‖d‖2∞ ,

≤ αk`W (0) + ‖d‖2∞ .

Then, from (2.55b), we obtain

`(k) ≤ γ2`W (k) ≤ γ2
(
αk`W (0) + ‖d‖2∞

)
, (2.66)

which gives (2.65).

Remark 2.6. Note that Theorem 2.9 provides a procedure to obtain the most ad-

justed zonotope that outer-bounds the intersection of the measurement consistent state

set X̄ (k) and the consistent uncertain state set Xy(k). The radius `(k) (introduced in

Definition 1.10) is used to measure the size of the resulting zonotope. According to

Theorem 2.9, this radius satisfies (2.55b). On the other hand, Theorem 2.10 introduces a

time-varying bound for this radius considering the worst-case disturbances. As shown

in the proof of Theorem 2.10, the relation of this worst-case bound with the one ob-

tained in Theorem 2.9 is given by (2.66) which leads to (2.65). This inequality estab-

lishes that the time-varying radius `(k) is bounded by `W (0) (from the initial condi-

tion), the worst-case disturbance, a given scalar α ∈ (0, 1) as well as a scalar γ > 0. As

the time k increases, the term αk is going to be zero. Hence, for k ≥ kM (let us denote

kM as an arbitrary large integer), a worst-case bound for `(k) is obtained considering

the worst-case disturbance as `(k) ≤ γ2 ‖d‖2∞ for γ > 0.

Based on Remark 2.6, the optimal polytopic correction matrices Λi for i = 1, . . . , h
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can be found by solving the following optimization problem:

minimize
W,Yi

γ, (2.67)

subject to (2.54b) and (2.63) that allows to obtain the least conservative worst case

bound of `(k).

Then, the optimal solutions of the optimization problem (2.67) give

Λ∗i = W ∗−1Y ∗i , i = 1, . . . , h.

Remark 2.7. The constraints in (2.63) are linear and hence convex with given α, β ∈
(0, 1). To deal with term γW in (2.54b), the optimization problem (2.67) can be solved

by a linear programming solver with a line search to find the minimum γ.

Remark 2.8. The condition (2.55a) can be replaced by the one in Theorem 2.3, which can

be formulated as

`W (k) ≤ σ`W (k − 1) + ε, (2.68)

with σ ∈ [0, 1) and ε is a scalar that can be determined by system uncertainties.

From d(k) =
[
w(k)>, v(k)>

]> ∈ D, ∀k ∈ N, we consider that the set D can be

rewritten by the Cartesian product as D = W × V with w(k) ∈ W = 〈0, Hw〉
and v(k) ∈ V = 〈0, Hv〉, ∀k ∈ N, where Hw and Hv are the segment matrices of ap-

propriate dimensions. Therefore, according to Theorem 2.3, ε can be estimated by

ε = max
b̄1∈Bnw

∥∥Hw b̄1
∥∥2

+ max
b̄2∈Bnv

∥∥Hv b̄2
∥∥2

+ max
b̄3∈Bnv

∥∥Hv b̄3
∥∥2
.

From (2.68), we follow the proof of Theorem 2.9 to obtain
σW ? ? ? ?

0 D(θ(k − 1))>T>TD(θ(k − 1)) ? ? ?

0 0 F>N>NF F>F ?

Φ̄1 Φ̄2 Φ̄3 Φ̄4 W

 � 0, (2.69)

with

Φ̄1 = W (I − Λ (θ(k − 1))C)TA(θ(k − 1)),
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Φ̄2 = W (I − Λ (θ(k − 1))C)TD(θ(k − 1)),

Φ̄3 = W (NF − Λ (θ(k − 1))CNF ) ,

Φ̄4 = WΛ (θ(k − 1))F,

which can also be reformulated to be the polytopic form as presented in Corollary 2.2.

Besides, when time tends to infinity, (2.68) can be bounded by `W (∞) ≤ σ`W (∞)+ε

leading to `W (∞) ≤ ε
1−σ . To minimize the P -radius `W (∞) of the intersection zono-

tope (2.47), we can solve an eigenvalue optimization problem with a scalar τ > 0 as

follows:

maximize
W,Yi

τ, (2.70)

subject to (1−σ)W
ε � τI and the polytopic form of (2.69).

Then, the optimal solutions of the optimization problem (2.70) give

Λ̄∗i = W ∗−1Y ∗i , i = 1, . . . , h.

Remark 2.9. The main difference between using criteria (2.55a) and (2.68) is that al-

though the resulting approaches compute the intersection zonotope based on the same

structure in Corollary 2.1, the corresponding correction matrices Λ∗i and Λ̄∗i for i =

1, . . . , h are obtained using different objectives. In the case of the approach based

on (2.55a) proposed in this section, the optimization problem (2.67) seeks to minimize

the upper bound of the time-varying radius (based on Definition 4) of the intersec-

tion zonotope, while in the approach based on (2.68), the optimization problem (2.70)

minimizes the steady W -radius of the intersection zonotope.

Finally, we summarize the proposed set-membership state estimation approach for

the discrete-time LPV descriptor system (2.38) in Algorithm 2.1.

2.2.2 Case Study: the Truck-trailer Model

From [162], the truck-trailer system is modeled by (2.38) in the polytopic form of LPV

descriptor system with the following matrices
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Algorithm 2.1 Set-Membership State Estimation for LPV Descriptor Systems
1: Given X (0) and D;
2: X (k − 1)⇐= X (0);
3: Solve the optimization problem (2.67) (or (2.70))

to obtain Λ∗i (or Λ̄∗i );
4: for k := 1 : end do
5: Obtain θ(k − 1);
6: Measure y(k);
7: Compute the intersection zonotope by (2.52) obtaining

X̂ (k) =
〈
p̂(k), Ĥ(k)

〉
;

8: Obtain the upper and lower bounds xi(k) ∈ [xi(k), xi(k)] for i = 1, . . . , nx by
xi(k) = p̂i(k) + rs

(
Ĥ(k)

)
i
,

xi(k) = p̂i(k)− rs
(
Ĥ(k)

)
i
,

where p̂i(k) is the i-th element of p̂(k) and rs
(
Ĥ(k)

)
i

returns the i-th diagonal

element of rs
(
Ĥ(k)

)
.

9: end for

E =


1 0 0 0

0 1 0 0

0 0 1 −1

0 0 0 0

 , A1 =


1.025 0 0 0

−0.218 1 0 0

0 0 1 1

0 0.06 0 1

 ,

A2 =


1.05 0 0 0

−0.436 1 0 0

0 0 1 1

0 0.12 0 1

 , B1 =


−0.025

0

0

0

 , B2 =


−0.05

0

0

0

 ,

D1 =


0 0 0 0

0 0 0 0

−0.12 0 0 0

0 0 0 0

 , D2 =


0 0 0 0

0 0 0 0

−0.24 0 0 0

0 0 0 0

 ,

and the sampling time is ∆t = 0.2s. The speed of backing up θ(k) varies in

the range θ(k) ∈ [−1.2,−0.6] as presented in Figure 2.4 and the weighting func-

tions ρj (θ(k)) for j = 1, 2 are computed as ρ1 (θ(k)) = θ(k)+1.2
0.6 and ρ2 (θ(k)) = θ(k)+0.6

−0.6 .

Besides, the initial state is chosen as x(0) = [0.1745, 0.3491, 3, −0.4189]> and the

initial estimation is bounded in the zonotope X (0) = 〈p(0), H(0)〉 with p(0) = x(0)

and H(0) = diag ([0.02, 0.02, 0.1, 0.02]).
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Figure 2.4: Time-varying parameter θ(k).

Besides, to reduce the computation time and limit the growing complexity of

the resulting zonotope, we set q = 20 in the zonotope reduction operator ↓q,W
(H) and the weighting matrix is chosen as W . d(k) ∈ D, ∀k ∈ N with Hd =

diag ([0.03, 0.004, 0.004, 0.004]).

From Lemma 2.1, since S is an arbitrary matrix in (2.43), we take

S =


1.01 5.92 8.87 2.23 0.34 4.48 5.57

0.72 3.78 5.99 1.31 8.80 3.47 8.89

9.05 9.52 6.90 1.72 5.22 7.57 8.40

3.12 7.42 3.91 9.39 8.08 3.60 2.44

 ,

to obtain

T =


1 2.7864 3.3204 2.2327

0 −2.0097 3.8036 1.3126

0 2.1462 2.9088 1.7248

0 −0.3293 0.5831 9.3860

 , N =


−2.7864 −3.3204 3.3204

3.0097 −3.8036 3.8036

−2.1462 −1.9088 2.9088

0.3293 −0.5831 1.5831

 .

From (2.55a), the convergence rate of the W -radius `W (k) is described by α. By

simulations, we tune α ∈ (0, 1) to find a minimum γ. Moreover, we choose β = 0.5

in (2.56). The optimization problem (2.67) is solved using the YALMIP toolbox [73]

and the MOSEK solver [83]. All the simulations are carried out in a PC with CPU of
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Table 2.3: Comparison between Λ∗i and Λ̄∗i .

Approach MSE rs(Ĥ) Computation time [s]

Λ∗i 4.7362e-05 0.1332 0.0090
Λ̄∗i 5.2623e-04 0.1459 0.0099

Intel (R) Core (TM) i7-5500U 2.4GHz and 12GB memory. By means of a line search,

we obtain the minimum γ = 11.95 with α = 0.75 and the optimal polytopic correction

matrices Λ∗i , i = 1, 2,

Λ∗1 =


0.8359 −0.0031 0.1491

1.0755 −0.1189 0.0239

−0.0558 0.9437 0.0723

0.0496 0.0466 0.9378

 ,Λ∗2 =


0.7413 0.1768 0.0952

1.0728 −0.1191 0.0274

−0.0547 0.9386 0.0743

0.0464 0.0519 0.9371

 .

As a comparison, we also solve the optimization problem (2.70) by a line search

with σ ∈ [0, 1). Then, we obtain the maximum τ = 0.00024 with σ = 0.8 and the

polytopic correction matrices Λ̄∗i for i = 1, 2,

Λ̄∗1 =


1.8397 −2.3403 0.8747

0.9557 0.0102 0.0185

0.0098 0.9453 0.0222

0.0200 0.0223 0.9730

 , Λ̄∗2 =


1.9712 −2.4276 0.8667

0.9646 −0.0022 0.0199

−0.0020 0.9627 0.0196

0.0206 0.0203 0.9740

 .

By implementing Algorithm 2.1 for N = 300 sampling steps with Λ∗i and Λ̄∗i sep-

arately, the comparison results of the state estimation are shown in Figure 2.2.2 and

Figure 2.2.2, where the real states are plotted by red stars as the validation. From these

two figures, the proposed approach with Λ∗i and the comparison approach with Λ̄∗i are

able to estimate uncertain states in dash lines and propagate the estimation interval in

solid lines (green ones for Λ∗i and blue ones for Λ̄∗i ).

In order to quantitatively compare the results with Λ∗i and Λ̄∗i , we define the state

estimation error between the estimated states and real states as e(k) = x(k) − p̂(k)
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Figure 2.5: State estimation results of the truck-trailer case study.
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Figure 2.6: L∞ performance with Λ∗i .

and MSE. Since system uncertainties are propagated to the states during iterations,

we also measure rs(Ĥ(k)) to compare the size of the intersection zonotope with Λ∗i

and Λ̄∗i bounding uncertain states. Table 2.3 shows the MSE result, the root mean

square of rs(Ĥ(k)) as well as the computation time. For this case study, it is clear from

this table that the estimation error of the proposed approach is smaller as well as the

size of intersection zonotopes. The mean computation time per one iteration for both

approaches are similar and smaller than the sampling time.

Besides, with the proposed approach, the time-varying radius of the intersection

zonotope is expected to be lower than the adaptive bound based on γ (as presented

in Theorem 2.10), which is called the L∞ performance. In Figure 2.6, with the optimal

solution γ, we can see that the radius of the intersection zonotope at each time is always

constrained.
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2.3 Summary

This chapter has presented a general set-based framework for discrete-time descriptor

systems with application to robust state estimation. Specifically, two approaches are

proposed: (i) the zonotopic set-membership approach; (ii) the zonotopic observer. It

has been proved that the zonotopic observer in the current estimation type is equivalent

to the set-membership approach. Several zonotope minimization criteria have been

defined to find the optimal correction matrices for set-membership approach and the

optimal Kalman gain for the zonotopic observer. For the set-based approaches, one

weakness could be the assumption of unknown-but-bounded disturbances and noise.

In this chapter, unknown inputs have been considered so that this conservativeness can

be significantly reduced. Potential improvement and applications are summarized as

follows:

• In terms of large-scale systems, a single set for bounding uncertain states could

be difficult to be characterized due to the large number of variables. To overcome

this, we will study a distributed set-membership approach in Section 3;

• Under this set-based framework, fault diagnosis strategies including FDI and FE

will be studied in Part II of this thesis.





CHAPTER 3

DISTRIBUTED SET-MEMBERSHIP

APPROACH BASED ON ZONOTOPES

Descriptor Systems
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(Frobenius Norm)
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Kalman

Distributed State Estimation

Set-membership Approach

Figure 3.1: Set-based distributed state estimation scheme.

Following the research line of Chapter (2), this chapter presents a distributed set-

membership approach based on zonotopes for discrete-time systems, which improves

the applicability of the set-based approach in large-scale systems. The contribution of

this chapter has been published in [130]. In fact, the set-based approaches in Chapter 2

only consider the construction of single set for bounding all the uncertain states in a

centralized way. Since that the dimension of large-scale systems is very high, it could

be difficult to propagate a high-dimensional single set bounding all the uncertain states

along iterations. As a result, a distributed set-membership approach is effective for a

71
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system with partitioned subsystems including coupled states.

3.1 Problem Statement in Distributed Set-membership Ap-

proach

Consider the class of discrete-time dynamical systems that can be decomposed into l

interconnected subsystems (called agents) with coupled dynamics. Each agent can be

modeled as

xi(k + 1) =
∑
j∈Ni

Aijxj(k) +Biui(k) + wi(k), (3.1a)

yi(k) = Cixi(k) + vi(k), (3.1b)

where xi ∈ Rnxi , ui ∈ Rnui and yi ∈ Rnyi denote the state, the input and the output

vectors, wi ∈ Rnwi and vi ∈ Rnvi denote the state disturbance and the measurement

noise vectors of the i-th agent with i = 1, . . . , l, respectively. Aii ∈ Rnxi×nxi , Bi ∈
Rnxi×nui and Ci ∈ Rnyi×nxi . Besides, Ni is defined to be the set that includes all the

agents related to the agent i (i also included).

To design an iterative approach, the following assumptions are made.

Assumption 3.1. The state disturbance and measurement noise vectors wi(k) and vi(k) are

unknown but bounded by the centered zonotopes:

wi(k) ∈ 〈0, Dwi〉, vi(k) ∈ 〈0, Dvi〉, ∀k ∈ N, (3.2)

and for i = 1, . . . , l, where Dwi ∈ Rnwi×nwi and Dvi ∈ Rnvi×nvi .

Assumption 3.2. The initial state xi(0) is assumed to be bounded by the zonotope xi(0) ∈
Xi(0) := 〈pi(0), Hi(0)〉 for i = 1, . . . , l.

In this chapter, the goal is to obtain robust state estimation by finding a sequence

of distributed state zonotopes Xi(k) to independently bound the uncertain states xi(k)

for i = 1, . . . , l, ∀k ∈ N. Instead of using a centralized zonotope, these distributed state

zonotopes can provide robust state estimation results.
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3.2 Distributed Set-membership Approach based on Zono-

topes

We now present a distributed set-membership approach for robust state estimation.

A parameterized distributed state bounding zonotope is established for each agent

considering coupled states. To determine the parameters (correction matrices) of the

distributed state bounding zonotopes for robust state estimation, we propose an opti-

mization problem based on W -radius minimization to find a set of optimal correction

matrices.

3.2.1 Distributed State Bounding Zonotope

Instead of finding a centralized state bounding zonotope, we introduce the struc-

ture of the parameterized distributed state bounding zonotope Xi(k) for i = 1, . . . , l

and ∀k ∈ N. In this case, the coupled states are considered. Each zonotope Xi(k) is

built to be consistent with its own measured output yi(k) of each agent. Considering

that the initial states xi(0) are assumed to be bounded in an initial zonotope, the param-

eterized distributed state bounding zonotopes are recursively defined in the following

proposition.

Proposition 3.1 (Distributed state bounding zonotope). Given the dynamics of the dis-

tributed systems in (3.1), suppose that Assumption 3.1 and 3.2 hold, and that xi(k − 1) ∈
Xi(k− 1) = 〈pi(k− 1), Hi(k− 1)〉, i = 1, . . . , l. Then, the following inclusion holds for every

correction matrix Λi ∈ Rnxi×nyi :

xi(k) ∈ Xi(k) = 〈pi(k), Hi(k)〉, i = 1, . . . , l, (3.3)

where pi(k) and Hi(k) are defined as

pi(k) = (I − ΛiCi)
( ∑
j∈Ni

Aijpj(k − 1) +Biui(k − 1)
)

+ Λiyi(k), (3.4a)

Hi(k) =

[
(I − ΛiCi) cat

j∈Ni
{AijHj(k − 1)} , (I − ΛiCi)Dwi , ΛiDvi

]
. (3.4b)

Proof. Since xi(k − 1) ∈ 〈pi(k − 1), Hi(k − 1)〉 for i = 1, . . . , l, by Definition 1.6, there
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exists a vector θi(k − 1) with ‖θi(k − 1)‖∞ ≤ 1, i = 1, . . . , l such that

xi(k − 1) = pi(k − 1) +Hi(k − 1)θi(k − 1), i = 1, . . . , l.

From the dynamics in (3.1), in the prediction step, we have that

xi(k) =
∑
j∈Ni

Aijxj(k − 1) +Biui(k − 1) + wi(k − 1)

=
∑
j∈Ni

Aij (pj(k − 1) +Hj(k − 1)θj(k − 1)) +Biui(k − 1) + wi(k − 1). (3.5)

From Assumption 3.1, there exists a vector $i(k − 1) with ‖$i(k − 1)‖∞ ≤ 1 for

i = 1, . . . , l such that wi(k − 1) = Dwi$i(k − 1). Thus, from (3.5), we derive

xi(k) =
∑
j∈Ni

Aij (pj(k − 1) +Hj(k − 1)θj(k − 1)) +Biui(k − 1) +Dwi$i(k − 1).

Set

p̂i(k) =
∑
j∈Ni

Aijpj(k − 1) +Biui(k − 1),

Ri(k) =

[
cat
j∈Ni
{AijHj(k − 1)} , Dwi

]
,

ηi(k − 1) =

[
cat
j∈Ni

{
θj(k − 1)>

}
, $i(k − 1)>

]>
,

where ‖ηi(k − 1)‖∞ ≤ 1. Then, we have

xi(k) = p̂i(k) +Ri(k)ηi(k − 1). (3.6)

From Assumption 3.1, there exists a vector σi(k) with ‖σi(k)‖∞ ≤ 1 for i = 1, . . . , l

such that vi(k) = Dviσi(k). From the output equation of (3.1), we have that

yi(k)− Cixi(k)−Dviσi(k) = 0. (3.7)

Thus, by replacing xi(k) in (3.7) with the expression in (3.6), we obtain
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yi(k)− Cip̂i(k)− CiRi(k)ηi(k − 1)−Dviσi(k) = 0.

Pre-multiplying by Λi and rearranging the terms of the above equation yields

Λiyi(k)− ΛiCip̂i(k)− ΛiCiRi(k)ηi(k − 1)− ΛiDviσi(k) = 0. (3.8)

Finally, in the correction step, we add (3.8) to the right side of (3.6) obtaining

xi(k) = p̂i(k) +Ri(k)ηi(k − 1) + Λiyi(k)

− ΛiCip̂i(k)− ΛiCiRi(k)ηi(k − 1)− ΛiDviσi(k).

By setting pi(k) and Hi(k) as in (3.4), the above equation becomes

xi(k) = pi(k) +Hi(k)

[
ηi(k − 1)

−σi(k)

]
.

Since ‖ηi(k − 1)‖∞ ≤ 1 and ‖σi(k)‖∞ ≤ 1, we thus conclude that xi(k) ∈
〈pi(k), Hi(k)〉.

From (3.3) and (3.4), we can see that in order to find the distributed state bounding

zonotope Xi(k) in a iterative way along the time step k ∈ N, the correction matrices Λi

for i = 1, . . . , l are required. In the following, we will investigate the way to compute

Λi for i = 1, . . . , l.

3.2.2 Computing Correction Matrices

For state estimation, the objective is to minimize the state estimation errors. Since all es-

timation errors and uncertainties are propagated and bounded in the distributed zono-

tope Xi(k), we would like to find Λi for i = 1, . . . , l to minimize the size of these dis-

tributed zonotopes. In this section, we also use the W -radius to measure the size of a

zonotope (see Definition 1.9). In order to guarantee the global stability, we first rewrite

the interconnected subsystems (3.1) as follows.
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Denote x =
[
x>1 , . . . , x

>
l

]> ⊂ Rnx with nx =
∑l

i=1 nxi , u =
[
u>1 , . . . , u

>
l

]> ⊂
Rnu with nu =

∑l
i=1 nui , y =

[
y>1 , . . . , y

>
l

]> ⊂ Rny with ny =
∑l

i=1 nyi , w =[
w>1 , . . . , w

>
l

]> ⊂ Rnw with nw =
∑l

i=1 nwi and v =
[
v>1 , . . . , v

>
l

]> ⊂ Rnv with

nv =
∑l

i=1 nvi . The general system including l agents defined in (3.1) can be formulated

as

x(k + 1) = Ax(k) +Bu(k) + w(k), (3.9a)

y(k) = Cx(k) + v(k), (3.9b)

with

A =


A11 · · · A1l

...
. . .

...

Al1 · · · All

 ,

B = diag (B1, . . . , Bl) , C = diag (C1, . . . , Cl) ,

where w(k) ∈ 〈0, Dw〉 and v(k) ∈ 〈0, Dv〉, ∀k ∈ N, with Dw = diag (Dw1 , . . . , Dwl) and

Dv = diag (Dv1 , . . . , Dvl).

Proposition 3.2 (Centralized state bounding zonotope). Given the dynamics of the sys-

tem (3.9) and suppose that x(k − 1) ∈ X (k − 1) = 〈p(k − 1), H(k − 1)〉, for every correction

matrix Λ ∈ Rnx×ny , the following inclusion holds:

x(k) ∈ X (k) = 〈p(k), H(k)〉, (3.10)

where

p(k) = (I − ΛC) (Ap(k − 1) +Bu(k − 1)) + Λy(k),

H(k) =
[
(I − ΛC)AH(k − 1), (I − ΛC)Dw, ΛDv

]
.

Proof. Because of its similarity to Proposition 3.1, the proof is straightforward and omit-

ted here.

Based on the general state bounding zonotope, we present the conditions of the

W -radius minimization criterion in the following theorem.
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Theorem 3.1. Given X (k) = 〈c(k), H(k)〉 in (3.10), ∀k ∈ N, two scalars γ ∈ (0, 1) and

ε > 0. If there exist matrices W ∈ Snx�0, Y ∈ Rnx×ny , diagonal matrices Γ ∈ Snw�0 and Υ ∈ Snv�0

such that

tr(Γ ) + tr(Υ ) < ε, (3.11a)
γW ? ? ?

(W − Y C)A W ? ?

0 D>w (W − Y C)> Γ ?

0 D>v Y
> 0 Υ

 � 0, (3.11b)

then it is guaranteed that

`W (k) ≤ γ`W (k − 1) + ε, ∀k ∈ Z+, (3.12)

which leads to `W (∞) ≤ ε
1−γ when k → +∞.

Proof. From (3.12), with W ∈ Snx�0 and Λ ∈ Rnx×ny , for every H(k − 1) and γ ∈ (0, 1),

we have that (3.12) is equivalent to

max
‖φ‖∞≤1

‖H(k)φ‖2W − max
‖θ‖∞≤1

γ‖H(k − 1)θ‖2W − ε ≤ 0. (3.13)

Since max
θ
‖H(k−1)θ‖2W ≥ ‖H(k−1)θ‖2W for any ‖θ‖∞ ≤ 1, we obtain the following

sufficient condition of (3.13)

max
‖φ‖∞≤1

‖H(k)φ‖2W − γ‖H(k − 1)θ‖2W − ε ≤ 0. (3.14)

Let us denote φ =
[
θ>, $>, σ>

]> and Y = RΛ, then

R =
[
(W − Y C)A, (W − Y C)Dw, Y Dv

]
. (3.15)

With this notation, we have

H(k)φ = W−1R
[
(H(k − 1)θ)>, $>, σ>

]>
.
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Therefore, we rewrite (3.14) as


H(k − 1)θ

$

σ


>

R>W−1R


H(k − 1)θ

$

σ


− γ(H(k − 1)θ)>WH(k − 1)θ − ε < 0, (3.16)

for any ‖φ‖∞ ≤ 1. If Γ and Υ are diagonal and positive semi-definite matrices, then we

have

tr(Γ )−$>Γ$ ≥ 0, ∀ ‖$‖∞ ≤ 1, (3.17a)

tr(Υ )− σ>Υσ ≥ 0, ∀ ‖σ‖∞ ≤ 1. (3.17b)

By adding (3.17) to (3.16), we can obtain a sufficient condition


H(k − 1)θ

$

σ


>

R>W−1R


H(k − 1)θ

$

σ


− γ(H(k − 1)θ)>WH(k − 1)θ − ε

+ tr(Γ )−$>Γ$ + tr(Υ )− σ>Υσ < 0.

If (3.11a) is satisfied, then we obtain


H(k − 1)θ

$

σ


>R>W−1R−


γW ? ?

0 Γ ?

0 0 Υ




H(k − 1)θ

$

σ

 < 0.

From the above inequality, we have a sufficient condition

R>W−1R−


γW ? ?

0 Γ ?

0 0 Υ

 ≺ 0,
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and by changing the sign and applying the Schur complement, we obtain
γW ? ? ?

0 Γ ? ?

0 0 Υ ?

(W − Y C)A (W − Y C)Dw Y Dv W

 � 0.

Finally, we obtain (3.11b) through a linear coordinate transformation by the matrix

T =

[
I 0 0 0
0 0 I 0
0 0 0 I
0 I 0 0

]
applied to the above inequality.

Remark 3.1. Denote CA = CA. The inequality (3.11b) implies[
βW ?

WA− Y CA W

]
> 0,

which is related to the design of an observer gain for the system pair (A,CA).

From the expression of the system (3.9), it includes l agents in (3.1). Based on the

definition of A, we propose the structure of matrices W and Y to be block diagonal

matrices in order to find a group of Λi for i = 1, . . . , l. Let us define the following

structures [78]

W = diag(W1, . . . ,Wl), Wi ∈ Snxi�0 , i = 1, . . . , l, (3.18a)

Y = diag(Y1, . . . , Yl), Yi ∈ Rnxi×nyi , i = 1, . . . , l. (3.18b)

By Definition 1.9, `W (∞) ≤ ε
1−γ leads to

(x(∞)− p(∞))>W (x(∞)− p(∞)) ≤ ε

1− γ
, (3.19)

which is an ellipsoid. To minimize the size of this ellipsoid in (3.19), we can maximize

a norm of W , as e.g. we choose to maximize tr(W ). Therefore, the correction matri-

ces Λi ∈ Rnxi×nyi for i = 1, . . . , l can be obtained by solving the following optimization

problem:

maximize
W,L,Γ,Υ

tr(W ), (3.20)

subject to (3.11).
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From the optimal solutions of (3.20), Λ = W−1Y gives Λ = diag(Λ1, . . . ,Λl) with

Λi ∈ Rnxi×nyi for i = 1, . . . , l.

3.2.3 Distributed Set-membership Algorithm

We summarize the distributed set-membership state estimation approach in the fol-

lowing algorithm.

Algorithm 3.1 Distributed Set-membership State Estimation
1: (Offline procedure) Solve the optimization problem (3.20) with the structured W

and Y in (3.18) to obtain Λi ∈ Rnxi×nyi for i = 1, . . . , l.;
2: for k := 1 : end do
3: Each agent i sends the state bounding zonotope 〈pi(k−1), Hi(k−1)〉 to its neigh-

bors for i = 1, . . . , l and ∀k ∈ Z+;
4: Receive the information 〈pi(k − 1), Hi(k − 1)〉, ∀j ∈ Ni from neighbors and ob-

tain the measurement yi(k) and 〈pi(k − 1), Hi(k − 1)〉. The distributed zono-
tope 〈pi(k), Hi(k)〉 of the agent i is updated by (3.3) with Λi at time k.

5: Obtain the upper and lower bounds xi(k) ∈ [xi(k), xi(k)] for i = 1, . . . , nx by
xi(k) = p̂i(k) + rs

(
Ĥ(k)

)
i
,

xi(k) = p̂i(k)− rs
(
Ĥ(k)

)
i
,

where p̂i(k) is the i-th element of p̂(k) and rs
(
Ĥ(k)

)
i

returns the i-th diagonal

element of rs
(
Ĥ(k)

)
.

6: end for

3.3 Numerical Example

Given the system including two interconnected subsystems in (3.1) (l = 2) with system

matrices:

A11 =


0.6848 −0.0749 0.1290

0.6671 0.9666 −0.5852

−0.2789 −0.1119 1.0251

 , A12 =


−0.2488 −0.0242

−0.9545 −0.8138

0.3474 0.3067

 ,
A21 =

[
−0.2180 −0.0909 0.2027

1.1606 0.3804 −0.9879

]
, A22 =

[
0.8466 0.1632

−1.6068 −0.5130

]
,



3.3 : Numerical Example 81

B1 =


0.8 0

0 0.58

0.6 0.8

 , B2 =

[
0.8

−0.75

]
,

C1 =

[
1 1 0

0 0 1

]
, C2 =

[
1 0

0 1

]
,

and wi(k) ∈ 〈0, Dwi〉, vi(k) ∈ 〈0, Dvi〉 for i = 1, 2 and ∀k ∈ N, where

Dw1 =


0.1 0 0

0 0.15 0

0 0 0.25

 , Dw2 =

[
0.1 0

0 0.15

]
,

Dv1 =

[
0.05 0

0 0.05

]
, Dv2 =

[
0.1 0

0 0.1

]
,

and the initial state is chosen as x1(0) = [0.25, 1.5,−0.5]> ∈ 〈p1(0), H1(0)〉 and x2(0) =

[0.8, 0]> ∈ 〈p2(0), H2(0)〉, where p1(0) = x1(0), p2(0) = x2(0) and

H1(0) =


0.01 0 0

0 0.01 0

0 0 0.01

 , H2(0) =

[
0.01 0

0 0.01

]
.

The simulations with this numerical example have been carried out in MATLAB

and the optimization problems have been solved using the YALMIP [73] with the

MOSEK solver [83]. By setting γ = 0.8 and W and Y in block diagonal forms (3.18), we

obtain the optimal correction matrices for the two agents:

Λ1 =


0.2433 0.1841

0.7567 −0.1841

0.0375 1.1077

 ,Λ2 =

[
1.4788 0.0093

0.5687 1.0129

]
.

Besides, for a comparison, we also compute the centralized correction matrix Λc
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Figure 3.2: State estimation result of Agent 1.

with full-dimensional W and Y obtaining

Λc =



0.3273 0.0877 0.1625 0.0479

0.6728 −0.0877 −0.1625 −0.0479

0.0920 1.0439 0.0414 −0.0247

0.1916 0.1993 0.6911 −0.1313

0.2677 0.1113 −0.0047 0.7835


.

Following the proposed set-membership state estimation algorithm and the corre-

sponding centralized algorithm, robust state estimation results are shown in Figure 3.2

and Figure 3.3. From these plots, we can see that both approaches are able to provide
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Figure 3.3: State estimation result of Agent 2.

Table 3.1: Comparison between the distributed and centralized
approaches.

tr(W ) MSE RMS(
∑100

k=0(H(k)))

Distributed approach 799.4855 0.0061 0.6174
Centralized approach 799.5274 0.0037 0.6066

state estimations with generated bounds, and the bounds of the distributed approach

are not significantly larger than the centralized ones. Besides, the optimal values of the

optimization problem (3.20), the MSE result and a measure of bounds are computed

and shown in Table 3.1. With the unstructured W , the optimal objective tr(W ) in the

centralized approach is slightly better than the distributed one. As a result, the state

estimation error and generated bounds in the centralized approach is slightly smaller

than the distributed ones. However, the distributed approach uses less information

and is able to get similar results as the centralized approach.
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3.4 Summary

This chapter has presented a distributed set-membership approach based on zonotopes

for interconnected systems with coupled states. The interconnected systems are af-

fected by unknown-but-bounded state disturbances and measurement noise. Instead

of finding a single zonotope for bounding all the uncertain states, a group of param-

eterized distributed state bounding zonotopes to over-bound uncertain states is de-

fined. For obtaining robust state estimation results, the parameters, that is the correc-

tion matrices, are designed by solving the proposed optimization problem based on

the W -radius minimization. The proposed approach is tested by a numerical example

and compared with the centralized approach. From the simulation results, it can be

seen that the distributed approach is not much worse than the centralized one since

less information of measured outputs is used to correct the predicted state set for each

agent. As future research, a customized geometrical set could be defined and a suit-

able communication strategy can be applied to improve the performance of distributed

set-membership approach.
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Figure 4.1: Set-based FDI scheme.

This chapter presents set-based FDI strategies for discrete-time descriptor systems. The

contributions of this chapter have been submitted in [149] and [151]. In this chapter,

we apply the set-based framework proposed in Chapter 2 into FDI for discrete-time

descriptor systems. In particular, fault sensitivity should be taken into account for

implementing an FD strategy. In this chapter, we will show two different criteria for

achieving fault sensitivity: (i) the one based on aH− index and therefore the condition

87
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is transformed as an LMI; (ii) the other based on a new defined criterion and algebraic

solution is explicitly presented. In the first method, the effects of occurred faults are

propagated in the center of state bounding zonotopes while in the second method,

they are bounded in the segment matrix of state bounding zonotopes. Besides, the FI

strategy is implemented by adopting a bank of zonotopic UIOs.

4.1 Zonotopic FD Observer for Descriptor Systems consider-

ing theH− Fault Sensitivity

Consider the following discrete-time descriptor system with additive actuator faults as

Ex(k + 1) = Ax(k) +Bu(k) +Dww(k) + Ff(k), (4.1a)

y(k) = Cx(k) +Dvv(k), (4.1b)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny denote the state, the known input and the output

vectors, w ∈ Rnw , v ∈ Rnv and f ∈ Rq denote the state disturbance, the measurement

noise and the additive fault vectors. A ∈ Rnx×nx , B ∈ Rnx×nu , Dw ∈ Rnx×nw , F ∈
Rnx×q, C ∈ Rny×nx and Dv ∈ Rny×nv are the system matrices. Besides, the matrix

E ∈ Rnx×nx may be singular, that is, rank(E) ≤ nx.

For the system (4.1), we consider Assumptions 2.1 and 2.2 hold. Besides, the de-

scriptor system (4.1) is also assumed to be C-observable. Then, matrices E, C sat-

isfy the rank condition (2.41). Thus, there exists two non-zero matrices T ∈ Rnx×nx

and N ∈ Rnx×ny that can be obtained by Lemma 2.1.

Based on the result in Section 2.1.2, we use a zonotopic observer in Theorem 2.5

to implement the FD strategy. Recall the result of Theorem 2.5, considering a state

observation x̂(k) ∈ 〈p̂(k), Ĥ(k)〉 ⊆ Rnx at time step k ∈ N, which also satisfies x̂(0) =

x(0) ∈ 〈p(0), H(0)〉 when k = 0 and no faults occurred. Then, at time step k + 1, the

state observation is recursively defined by x̂(k + 1) ∈ 〈p̂(k + 1), Ĥ(k + 1)〉with

p̂(k + 1) = (TA−GC) p̂(k) + TBu(k) +Gy(k) +Ny(k + 1), (4.2a)

Ĥ(k + 1) =
[
(TA−GC) H̄(k), TDw, −GDv, −NDv

]
, (4.2b)
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where H̄(k) =↓q,W (Ĥ(k)) and G ∈ Rnx×ny is an observer gain. Then, from the state

zonotope x̂(k) ∈ 〈p̂(k), Ĥ(k)〉, ∀k ∈ N, we define the zonotopic FD observer for de-

scriptor system (4.1) by the residual zonotope r(k) ∈ 〈pr(k), Hr(k)〉 ⊆ Rny with

pr(k) = y(k)− Cp̂(k), (4.3a)

Hr(k) =
[
CĤ(k), Dv

]
, (4.3b)

In this section, we would like to design an FD observer gain G that minimizes the

effects of uncertainties and meanwhile maximizes the sensitivity to faults based on the

H− index. The design of this gain G will be based on two LMI conditions.

4.1.1 Zonotopic Observer Decomposition

For the descriptor system (4.1), with matrices T and N , the descriptor dynamics can be

reformulated as

x(k + 1) = TAx(k) + TBu(k) + TDww(k) + TFf(k)

+Ny(k + 1)−NDvv(k + 1).
(4.4)

Considering a state observation x̂(k) ∈ 〈p̂(k), Ĥ(k)〉, we define the state estimation

error as e(k) = x(k)− p̂(k). Then, with (4.4), the state estimation error dynamics can be

formulated as

e(k + 1) = (TA−GC)e(k) + TDww(k) + TFf(k)

−GDvv(k)−NDvv(k + 1).
(4.5)

From (4.5), the effects of faults appear in the error dynamics. Consider that

x(k) ∈ 〈p(k), H(k)〉 = {〈p̂(k), Ĥ(k)〉 ⊕ 〈pf (k), 0〉} is the uncertain state of the descrip-

tor system (4.1) at time step k, where pf (k) ∈ Rnx is the center of the zonotope only

affected by faults and pf (0) = 0 at time step k = 0. We recursively provide a zonotope

that bounds the uncertain state x(k + 1) in the following theorem.

Theorem 4.1 (State bounding zonotope decomposition). Given the descriptor sys-

tem (4.1), w(k) ∈ 〈0, Inw〉 and v(k) ∈ 〈0, Inv〉, ∀k ∈ N and x(k) ∈ 〈p(k), H(k)〉 =

{〈p̂(k), Ĥ(k)〉⊕ 〈pf (k), 0〉}, ∀k ∈ N. The uncertain state x(k+ 1) is bounded by the zonotope
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in the decomposition form: x(k+1) ∈ 〈p(k+1), H(k+1)〉 = {〈p̂(k+1), Ĥ(k+1)〉⊕〈pf (k+

1), 0〉} where p̂(k + 1) and Ĥ(k + 1) are defined in (4.2) and

pf (k + 1) = (TA−GC)pf (k) + TFf(k). (4.6)

Proof. From x(k) ∈ 〈p(k), H(k)〉 = {〈p̂(k), Ĥ(k)〉 ⊕ 〈pf (k), 0〉}, we know that p(k) =

p̂(k) + pf (k) and e(k) = x(k) − p̂(k) ∈ 〈pf (k), Ĥ(k)〉. Then, we have x(k + 1) = ĉ(k +

1) + e(k + 1). Considering w(k) ∈ 〈0, Inw〉, v(k) ∈ 〈0, Inv〉, ∀k ∈ N and e(k + 1) in (4.5),

we can derive that

x(k + 1) ∈ 〈p(k + 1), H(k + 1)〉 = {〈p̂(k + 1), Ĥ(k + 1)〉 ⊕ 〈pf (k + 1), 0〉}

= 〈p̂(k + 1), 0〉 ⊕ ((TA−GC)〈pf (k), Ĥ〉)⊕ (TDw〈0, Inw〉)

⊕ TF 〈f(k), 0〉 ⊕ (−GDv〈0, Inv〉)⊕ (−NDv〈0, Inv〉) .

By applying properties in (1.9), we thus obtain p̂(k + 1) and Ĥ(k + 1) defined as

in (4.2) and pf (k + 1) as in (4.6).

From Theorem 4.1, it can be seen that the uncertain state x(k) of the descriptor

system (4.1) is bounded in the zonotope {〈p̂(k), Ĥ(k)〉 ⊕ 〈pf (k), 0〉} and 〈p̂(k), Ĥ(k)〉
is only affected by state disturbances and measurement noise while 〈pf (k), 0〉 is only

affected by additive actuator faults. Besides, with x(k) ∈ 〈p(k), H(k)〉 = {〈p̂(k), Ĥ(k)〉⊕
〈pf (k), 0〉}, v(k) ∈ 〈0, Inv〉 and y(k) in (4.1b), we define the zonotopic FD observer

r(k) ∈ 〈pr(k), Hr(k)〉 in the following decomposition form:

pr(k) = Cpf (k), (4.7a)

Hr(k) =
[
CĤ(k), Dv

]
, (4.7b)

from which the effects of occurred faults are characterized at the center of the zonotopic

FD observer while uncertainties are propagated in the zonotope segment matrix.

4.1.2 Observer Gain Design consideringH− Fault Sensitivity

We now present the LMI results that allow achieving robustness against bounded

uncertainties and sensitivity to faults for descriptor system (4.1). From the analysis

in (4.7), we formulate the robustness condition by minimizing the size of the zonotope
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〈pr(k), Hr(k)〉. We use the W -radius to measure the size of the zonotope. From (4.7b),

to minimize the size of 〈pr(k), Hr(k)〉 is equivalent to minimize the size of 〈p̂(k), Ĥ(k)〉.
Besides, we derive the H− fault sensitivity condition for the center pr(k) as presented

in (4.7a).

Robustness Condition

According to Definition 1.9, with a matrix W ∈ Snx�0, we recall the W -radius of the

zonotope 〈p̂(k), Ĥ(k)〉 as

`W (k) = max
z̄∈Bh

∥∥∥Ĥ(k)z̄
∥∥∥2

2,W
. (4.8)

Considering uncertainties (state estimation error, disturbances and noise) are prop-

agated and bounded in the zonotope 〈p̂(k), Ĥ(k)〉, to reduce the effects of uncertainties,

the size of this zonotope should be minimized. Based on Section 2.1.1, we implement

the result of Theorem 2.3 to find the gain of zonotopic observer.

Proposition 4.1. Given the descriptor system (4.1), the zonotope 〈p̂(k), Ĥ(k)〉, ∀k ∈ N and

its W -radius in (4.8), two scalars γ ∈ (0, 1) and ε > 0. If there exists a matrix W ∈ Snx�0 such

that a minimization criterion is defined as

`W (k + 1) ≤ γ`W (k) + ε, ∀k ∈ N, (4.9)

then the W -radius is ultimately bounded by `W (∞) ≤ ε
1−γ .

Proof. The proof can be found in Theorem 2.3 and omitted here.

Based on (4.9), we now formulate the robustness condition of the zonotopic FD

observer.

Theorem 4.2 (Robustness condition). Given the descriptor system (4.1), matrices T ∈
Rnx×nx and N ∈ Rnx×ny satisfying (2.42), two scalars γ ∈ (0, 1) and ε > 0. If there ex-

ist matrices W ∈ Sn�0, Y ∈ Rnx×ny , and diagonal matrices Γ ∈ Snw�0, Υ ∈ Snv�0 and Ω ∈ Snv�0



92 Chapter 4 : Set-based Fault Detection and Isolation for Descriptor Systems

such that

tr(Γ ) + tr(Υ ) + tr(Ω) < ε, (4.10a)

γW ? ? ? ?

0 Γ ? ? ?

0 0 Υ ? ?

0 0 0 Ω ?

WTA− Y C WTDw Y Dv WNDv W


� 0, (4.10b)

then the dynamics of Ĥ(k) in (4.2b) is stable and the W -radius minimization criterion in (4.9)

holds.

Proof. As `W (k) in (4.8), we reformulate (4.9) as follows:

max
z∈B(h+nw+2nv)

∥∥∥Ĥ(k + 1)z
∥∥∥2

2,W
≤ max

z̄∈Bh
γ
∥∥∥Ĥ(k)z̄

∥∥∥2

2,W
+ ε.

Set z =
[
z̄>, b>1 , b

>
2 , b
>
3

]>. Based on the proof of Theorem 2.3, for any z ∈
B(h+nw+2nv), we obtain a sufficient condition∥∥∥Ĥ(k + 1)z

∥∥∥2

2,W
− γ

∥∥∥Ĥ(k)z̄
∥∥∥2

2,W
− ε < 0. (4.11)

By setting Y = WG and recalling Ĥ(k + 1) in (4.2b), we denote

R = [WTA− Y C, WTDw, Y Dv, WNDv] . (4.12)

Then, (4.11) becomes


H̄(k)z̄

b1

b2

b3


>

R>W−1R


H̄(k)z̄

b1

b2

b3

− z̄>H̄>γWH̄z̄ − ε < 0. (4.13)

If Γ , Υ and Ω are diagonal and positive semi-definite matrices, then we have following
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conditions:

tr(Γ ) ≥ b>1 Γb1, ∀b1 ∈ Bnw , (4.14a)

tr(Υ ) ≥ b>2 Υb2, ∀b2 ∈ Bnv , (4.14b)

tr(Ω) ≥ b>3 Ωb3, ∀b3 ∈ Bnv . (4.14c)

With (4.14), we can obtain a sufficient condition of (4.13) as


H̄z̄

b1

b2

b3


>

R>W−1R


H̄(k)z̄

b1

b2

b3

− z̄>H̄>γWH̄z̄ + tr(Γ )− b>1 Γb1

+ tr(Υ )− b>2 Υb2 + tr(Ω)− b>3 Ωb3 − ε < 0.

If (4.10a) is satisfied, then from the above condition we obtain


H̄(k)z̄

b1

b2

b3


>


γW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω

−R>W−1R




H̄(k)z̄

b1

b2

b3

 > 0.

From the above inequality, a sufficient condition can be obtained
γW 0 0 0

0 Γ 0 0

0 0 Υ 0

0 0 0 Ω

−R>W−1R � 0, ∀H̄(k)z̄, ∀b1,∀b2,∀b3,

from which, by applying the Schur complement, we thus obtain (4.10b).

H− Fault Sensitivity Condition

With pr(k) in (4.7a) with the propagation of pf (k) in (4.6), theH− performance index β

between the signals pr(k) and f(k) satisfies
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∞∑
k=0

pr(k)>pr(k) ≥ β2
∞∑
k=0

f(k)>f(k). (4.15)

Based on the generalised KYP lemma (see Lemma 1.6), a relaxation of (4.15) is given

in the following lemma.

Lemma 4.1. Consider the fault frequency contents θ ∈ Θ with Θ defined in Table 1.1, the

dynamics of pf (k) in (4.6) and suppose (TA−GC) to be Schur. If there exist matrices P ∈ Snx

and Q ∈ Snx�0, and a scalar β > 0 such that

[
TA−GC TF

Inx 0

]>
Ξ

[
TA−GC TF

Inx 0

]

+

[
C 0

0 Iq

]> [
−Iny 0

0 β2Iq

][
C 0

0 Iq

]
≺ 0,

(4.16)

where Ξ is chosen as in Table 1.1 with respect to θ ∈ Θ, then the H− performance index β

between the signals pr(k) and f(k) satisfies (4.15).

Proof. Without loss of generality, let us consider ∀θ ∈ Θ in the middle-frequency do-

main. Recall θc = θ1+θ2
2 and from Table 1.1, Π is chosen as

Π =

[
−P ejθcQ

e−jθcQ P − 2 cos(θw)Q

]
.

By pre-multiplying
[
p>f , f

>
]

and post-multiplying its transpose to both sides

of (4.16), we obtain a sufficient condition

pf (k)>Ppf (k)− pf (k + 1)>Ppf (k + 1)− pr(k)>pr(k) + β2f(k)>f(k)

+ He
(
pf (k + 1)>ejθcQpf (k)

)
− pf (k)>2 cos(θw)Qpf (k) ≤ 0.

(4.17)

Since the term He
(
pf (k + 1)>ejθcQpf (k)

)
−pf (k)>2 cos(θw)Qpf (k) is a number, we
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have that

He
(
pf (k + 1)>ejθcQpf (k)

)
− pf (k)>2 cos(θw)Qpf (k)

= tr
(
Q
(
He

(
ejθcpf (k)pf (k + 1)>

)
− 2 cos(θw)pf (k)pf (k)>

))
.

Therefore, with pf (0) = 0 and pf (∞) = 0, we sum (4.17) from k = 0 to∞ obtaining

−
∞∑
k=0

pr(k)>pr(k) + β2
∞∑
k=0

f(k)>f(k) + tr(QS) ≤ 0,

where S =
∑∞

k=0

(
He

(
ejθcpf (k)pf (k + 1)>

)
− 2 cos(θw)pf (k)pf (k)>

)
. Based on the re-

sult of [55, Theorem 4] and considering the frequency range θ ∈ [θ1, θ2] of occurred

faults, with (4.6), we assume that the following condition holds:

ejθw
∞∑
k=0

(
pf (k + 1)− ejθ1pf (k)

)(
pf (k + 1)− ejθ2pf (k)

)∗
≤ 0, (4.18)

with θw = θ2−θ1
2 . If (4.18) holds, then we have tr(QS) ≥ 0 and −

∑∞
k=0 pr(k)>pr(k) +

β2
∑∞

k=0 f(k)>f(k) ≤ 0 that implies (4.15).

Furthermore, following the above proof, by choosing θ1 = −θl and θ2 = θl for the

low-frequency case or θ1 = −θh and θ2 = 2π − θh for the high-frequency case, we can

obtain that (4.15) is satisfied.

Based on the result in Lemma 4.1, we then propose the H− fault sensitivity condi-

tion for designing the observer gain in the following theorem.

Theorem 4.3 (H− fault sensitivity condition). Given the zonotope 〈pr(k), Hr(k)〉 in (4.3),

∀k ∈ N with the fault f(k) in a finite-frequency domain θ1 ≤ θ ≤ θ2, a scalar α, L ∈ Rq×nx ,

and T ∈ Rnx×nx and N ∈ Rnx×ny satisfying (4.28). If there exist matrices W ∈ Snx�0,

Y ∈ Rnx×ny , P ∈ Snx and Q ∈ Snx�0, and a scalar β > 0 such that
Φf ? ?

αF>T>W> + LWTA− LY C ? ?

αW> + ejθcQ+WTA− Y C W>L> +WTF P +W +W>

 � 0, (4.19)
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with Φf = C>C − P + 2 cos(θw)Q+ He (αWTA− αY C), then the zonotopic FD observer

in (4.3) guarantees theH− performance in (4.15).

Proof. For θ1 ≤ θ ≤ θ2 in any finite-frequency domain, from (4.16), we derive[
Φ1 Φ2

Φ3 Φ4

]
≺ 0, (4.20)

where

Φ1 = P − 2 cos(θw)Q− C>C − (TA−GC)>P (TA−GC)

+ He
(

(TA−GC)>ejθQ
)
,

Φ2 = e−jθQTF − (TA−GC)>PTF,

Φ3 = (TF )>ejθQ− (TF )>P (TA−GC),

Φ4 = β2Iq − (TF )>PTF.

Set Φ̄ =

[
C>C − P + 2 cos(θw)Q 0

0 −β2Iq

]
, Qf =

[
Q

0

]
and Af = [TA−GC, TF ].

Then, (4.20) is equivalent to

[
In

Af

]> [
Φ̄ ?

ejθcQ>f P

][
In

Af

]
� 0.

By using the Finsler’s lemma to above inequality, we obtain[
Φ̄ ?

ejθcQ>f P

]
+ He (RU) � 0, (4.21)

where U = [Af , In] and R ∈ R(2nx+q)×nx is an arbitrary matrix (called multiplier).

Therefore, with given α and L ∈ Rq×n, we define a structure of the multiplier as R =[
αW
LW
W

]
. By substituting R in (4.21), we thus obtain (4.19).

Remark 4.1. From (4.21), we can see that the multiplier R is chosen arbitrarily. The

defined structures of R are based on parameters α and L that can be tuned to find

feasible solutions of (4.19).
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Optimization Problem Setup

The objective of designing the FD observer gain is to minimize the effects of un-

certainties and maximize the sensitivity to occurred faults. On the one hand, for

given γ ∈ (0, 1) and ε > 0, we have the ultimate bound of the W -radius `W (∞) ≤ ε
1−γ

that corresponds to an ellipsoidal set. To minimize the size of this set, we can maximize

a measure of the matrix W , for instance we choose to maximize tr(W ). On the other

hand, we can maximize the H− fault sensitivity index β. In general, given γ ∈ (0, 1),

ε > 0, α, L ∈ Rq×nx , T ∈ Rnx×nx and N ∈ Rnx×ny satisfying (4.28), and two prioritiza-

tion weights λr and λf , the optimization problem for designing the FD observer gain

is expressed as follows:

maximize
W,Y,Γ,Υ,Ω,
P,Q,β2

λrtr(W ) + λfβ
2, (4.22)

subject to (4.10b), (4.10a) and (4.19).

Then, the optimal solution of (4.22) gives the optimal FD observer gain G = W−1Y .

Remark 4.2. The weights λr and λf are set for obtaining a trade-off between robust-

ness and fault sensitivity conditions. For instance, the fault sensitivity objective can be

enhanced by choosing λf > λr.

4.1.3 Zonotopic FD Algorithm

From the output equation (4.1b), we have 0 = y(k)−Cx(k)−Dvv(k). Hence, if f(k) = 0,

we know 0 ∈ 〈pr(k), Hr(k)〉, which can be used to determine the FD alarm χ. The logics

of the determination of χ(k), ∀k ∈ N is formulated as follows:

χ(k) =

0 if 0 ∈ 〈pr(k), Hr〉

1 if 0 /∈ 〈pr(k), Hr〉
(4.23)

where χ = 0 means that no fault is detected and χ = 1 means that a fault is detected.

In general, the robust FD strategy is summarised in Algorithm 4.1.
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Algorithm 4.1 Zonotopic FD for Descriptor Systems
1: Given the descriptor system (4.1), γ ∈ (0, 1), ε > 0, α, L, x(0) ∈ 〈p(0), H(0)〉 and

suppose the faults in a finite-frequency domain θ ∈ Θ;
2: Obtain a pair of T and N satisfying (2.42);
3: Solve the optimization problem (4.22) to obtain G = W−1Y ;
4: while k > 0 do
5: Compute the state zonotope x̂(k) ∈ 〈p̂(k), Ĥ(k)〉 using the recursive form of (4.2);

6: Compute the zonotopic FD observer 〈pr(k), Hr(k)〉 using (4.3);
7: Determine the FD alarm χ(k) using the logics in (4.23).
8: end while

4.1.4 Case Study: the Chemical Mixing System

Consider the chemical mixing system in [174]. By using the Euler discretization method

with the sampling time ts = 0.1s, we obtain a discrete-time descriptor model of the

chemical mixing system as in (4.1) with the following matrices

E =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 , A =


0.9625 0.0067 0 0

0 −0.1 0 0

0.03 0.0533 0.95 −0.004

0 0.1 0 −0.1

 ,

B =


0.01 0

0.1 0

0 0.002

0 0.1

 , Dw =


0.005 0 0 0

0 0.005 0 0

0 0 0.005 0

0 0 0 0.005

 ,

C =


0 1 0 0

0 0 1 0

0 0 0 1

 , Dv =


0.005 0 0

0 0.005 0

0 0 0.005

 ,
and F = 3B. The initial state x(0) = [0.5, 0, 0.5, 0]> is assumed to be bounded by the

zonotope x(0) ∈ 〈p(0), H(0)〉, where c0 = x0 and H0 = 0.001I4. The input signal u is

set as u = 4 sin(0.3k) + 5, ∀k ∈ N. For the reduction operator ↓q,W (·), q = 20 and W is

chosen as the optimal solution of (4.22). Since the rank condition (2.41) is satisfied, we
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Figure 4.2: FD alarm result.

choose one solution as follows:

T =


1 1 0 1

0 1 0 1

0 1 0.5 1

0 1 0 1

 , N =


0 0 0

1 0 0

0 0.5 0

0 0 1

 .

Assume that the step fault signal f(k) = [0.2, 0.2]>, k ≥ 50 otherwise f(k) = 0 in

the finite-frequency domain |θ| ≤ 0.1. We choose γ = 0.7, ε = 1, α = 0.3, L = 10F>,

λr = 1 and λf = 10. By solving the optimization problem (4.22), we thus obtain the

optimal FD observer gain G as

G =


−1.2194 121.2034 −3.7687

−0.7457 −6.0439 0.0837

0.0793 1.6789 −0.0904

−0.2943 19.9514 −1.6032

 ,

and β = 0.0045 and tr(W ) = 21034.9. By applying Algorithm 4.1, we obtain the FD

alarm result as shown in Figure 4.1.4. The assumed actuator faults can be detected from

time k = 51.

To compare the performance of the optimization problem with different selections
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Table 4.1: Comparison of the objectives in different scenarios.

Weights Robustness tr(W ) Fault sensitivity β

Scenario 1 λr = 1 and λf = 10 21034.9 0.0045
Scenario 2 λr = 10 and λf = 1 12348.9 0.0031
Scenario 3 λr = 1 and λf = 1 12348.9 0.0033
Scenario 4 λr = 1 and λf = 0 12348.7 0.0032

of weights λr and λf , we have carried out the simulations and the comparison results

are presented in Table 4.1 to the trade-off between the robustness against uncertainties

and the sensitivity to faults. In order to obtain a better H− fault sensitivity perfor-

mance, we can set λf > λr in Scenario 1. In this case, the H− fault sensitivity index β

increases and the robustness objective tr(W ) also increases compared to the other sce-

narios. From Scenario 2-3, with the same λf = 1, tr(W ) reaches a locally stationary

value because the fault sensitivity LMI depends on the parameters α and L, which

subsequently leads to a suboptimal solution of the optimization problem (4.22). The

similar suboptimal solution can also be found in Scenario 4.

In order to compare the performance of the FD observer gain, a time-varying ob-

server gain denoted by Ḡ(k) for state estimation is considered as presented in Sec-

tion 2.1.2, where the objective is only to minimize the effects of bounded uncertainties

by reducing the size of the uncertain state zonotope. The comparison result of the gen-

erated residual bounds with two observer gains is shown in Figure 4.3. The residual

bounds ri(k) ∈ [ri(k), ri(k)] for i = 1, . . . , ny and ∀k ∈ N are computed by using the

interval hull of the zonotope (see Definition 1.7) by

ri(k) = pr,i(k)− rs(Hr(k))i,i,

ri(k) = pr,i(k) + rs(Hr(k))i,i.

From Figure 4.3, we can see that the residual bounds with G are more sensitive

to the fault than the others and staying far away from the coordinate origin. Since

the considered uncertainty sets are centered and the coordinate origin is used in the

decision-making of the FD module, the proposed method is more effective.
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Figure 4.3: Generated residual bounds.

4.2 Robust FDI based on Zonotopic UIOs for LTV Descriptor

Systems

In this section, we propose a robust FDI based on zonotopic UIOs for linear time-

varying (LTV) descriptor systems. The FD observer gain is designed based on a new

defined fault sensitivity criterion. Consider the discrete-time LTV descriptor systems

with additive actuator faults as

E(k + 1)x(k + 1) = A(k)x(k) +B(k)u(k) +Dw(k)w(k) + F (k)f(k), (4.24a)

y(k) = C(k)x(k) +Dv(k)v(k), (4.24b)
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where x ∈ Rnx , u ∈ Rm and y ∈ Rny denote the state, the known input and the

output vectors, respectively. w ∈ Rnw , v ∈ Rnv denote the state disturbance vec-

tor and the measurement noise vector. f ∈ Rm denotes the normalized additive

fault vector. A(k) ∈ Rnx×nx , B(k) ∈ Rnx×m, C(k) ∈ Rny×nx , Dw(k) ∈ Rnx×nw ,

Dv(k) ∈ Rny×nv and F (k) ∈ Rnx×m, ∀k ∈ N are known time-varying system matri-

ces. Besides, E(k) ∈ Rnx×nx satisfies rank(E(k)) ≤ nx, ∀k ∈ N. In particular, when

rank(E(k)) = nx, (4.24) is equivalent to a dynamical system.

Following the basic FDI framework in [23, Chapter 6.2] and [30, Chapter 3.5], the

actuator fault f is modeled in an additive form with the input u. To develop a robust

FDI strategy, the fault vector f(k), ∀k ∈ N can be rewritten in an element-wise form as

f(k) = [f1(k), . . . , fi(k), . . . , fm(k)]> , ∀k ∈ N, (4.25)

where the element fi(k) with i = 1, . . . ,m in the fault vector f(k) corresponds to the

i-th actuator fault at time step k. Then, the descriptor system (4.24) can be rewritten as

E(k + 1)x(k + 1) = A(k)x(k) +B(k)u(k) +Dw(k)w(k)

+ Fi(k)fi(k) + F̄i(k)f̄i(k), (4.26a)

y(k) = C(k)x(k) +Dv(k)v(k), (4.26b)

where Fi(k) denotes the corresponding fault magnitude matrix on the i-th actuator,

f̄i(k) = f(k) \ fi(k) is the fault vector f(k) excluding the i-th element and F̄i(k) =

F (k) \ Fi(k) is the matrix obtained by removing i-th column from the fault magnitude

matrix F (k) at time step k.

Assumption 4.1. Matrices E(k) and C(k) satisfy the following rank condition:

rank

[
E(k)

C(k)

]
= nx, ∀k ∈ N. (4.27)

Thus, from the condition (4.27), there always exist two time-varying matrices

T (k) ∈ Rnx×nx and N(k) ∈ Rnx×ny such that

T (k)E(k) +N(k)C(k) = I, ∀k ∈ N. (4.28)

Assumption 4.2. The initial state vector is assumed to be bounded in the initial zonotope
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x(0) ∈ X (0) = 〈p(0), H(0)〉 and the system disturbances and measurement noise are assumed

to be unknown but bounded by the centered zonotopes:

w(k) ∈ W = 〈0, Inw〉, v(k) ∈ V = 〈0, Inv〉, ∀k ∈ N. (4.29)

Assumption 4.3. The normalized fault vector f(k) is assumed to be unknown but bounded by

the centered zonotope f ∈ F = 〈0, Im〉, ∀k ∈ N and its magnitude is given by the distribution

matrix F (k).

The uncertain states are estimated by a zonotope considering that all the uncertain-

ties are also bounded by zonotopes. Based on a recursive procedure, estimation errors

and uncertainties are also propagated using set operations. We would like to design a

zonotopic UIO of the descriptor LTV system (4.24) and (4.26) to implement robust FDI.

The objectives for the zonotopic UIO design are summarized as follows:

(i) Robust FD: For the LTV descriptor system (4.24), a zonotopic UIO with an ob-

server gain for robust FD is designed to minimize the effects of bounded uncer-

tainties and meanwhile to maximize the fault sensitivity on actuator faults.

(ii) Robust FI: For the LTV descriptor system (4.24) in the representation of (4.26),

a bank of zonotopic UIOs for robust FI are designed. The observer gain of the

i-th zonotopic UIO is designed to remove the effect of the corresponding actuator

fault fi, to maximize the fault sensitivity on the remaining faults f̄i, and mean-

while to minimize the effects of bounded uncertainties.

4.2.1 Zonotopic UIO structure of LTV Descriptor Systems

Considering Assumption 4.1, we can always find a pair of matrices T (k + 1) ∈ Rnx×nx

and N(k + 1) ∈ Rnx×ny such that (4.28) holds at the time step k + 1, ∀k ∈ N. From the

system (4.24), the descriptor dynamics can be transformed into

x(k + 1) = T (k + 1)A(k)x(k) + T (k + 1)B(k)u(k)

+ T (k + 1)Dw(k)w(k) + T (k + 1)F (k)f(k)

+N(k + 1)y(k + 1)−N(k + 1)Dv(k + 1)v(k + 1).

(4.30)
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According to [169, 22, 44], we consider a basic UIO structure as

z(k + 1) = M(k)z(k) +K(k)u(k) +G(k)y(k), (4.31a)

x̂(k) = z(k) +N(k)y(k), (4.31b)

ŷ(k) = C(k)x̂(k), (4.31c)

where z ∈ Rnx , x̂ ∈ Rnx and ŷ ∈ Rny denote vectors of the observer state, the estimated

state and output. Besides, M(k) ∈ Rnx×nx , K(k) ∈ Rnx×nu , N(k) ∈ Rnx×ny and G(k) ∈
Rnx×ny are time-varying matrices to be designed. In particular,G(k) is the time-varying

observer gain of the UIO (4.31).

Let us define the state estimation error as e(k) = x(k)− x̂(k). From (4.31b), we have

e(k) = x(k) − x̂(k) = x(k) − z(k) − N(k)y(k). From (4.31) at time step k + 1, we can

derive

e(k + 1) = x(k + 1)− x̂(k + 1)

= x(k + 1)− z(k + 1)−N(k + 1)y(k + 1).

By substituting x(k + 1) by (4.30) and introducing e(k) in the above equation, we

obtain the state estimation error dynamics as

e(k + 1) = M(k)e(k) +
(
T (k + 1)A(k)−G(k)C(k)−M(k)

)
x(k)

+
(
T (k + 1)B(k)−K(k)

)
u(k) +M(k)N(k)y(k)

+ T (k + 1)Dw(k)w(k) + T (k + 1)F (k)f(k)

−G(k)Dv(k)v(k)−N(k + 1)Dv(k + 1)v(k + 1).

(4.32)

We first define recursively the zonotopic UIO of the descriptor LTV system (4.24).

In this case, the fault vector f(k) is considered as the unknown input. For decoupling

the unknown input, it is desired that matrices E(k), C(k) and Dd = F (k) satisfy the

condition in (2.2), ∀k ∈ N. Therefore, there always exist two time-varying matrices

T (k) ∈ Rnx×nx andN(k) ∈ Rnx×ny such that (4.28) and T (k)F (k) = 0, ∀k ∈ N. Suppose

that the state vector x(k) of the descriptor LTV system (4.24) satisfies the inclusion

x(k) ∈ X (k) = 〈p(k), H(k)〉 at time step k ∈ N, which also satisfies the initial state

vector x(0) ∈ 〈p(0), H(0)〉 at time step k = 0.
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Theorem 4.4 (Zonotopic UIO structure of LTV descriptor systems). Consider the ad-

missible LTV descriptor system (4.24) and x(k) ∈ X (k) = 〈p(k), H(k)〉 at time step

k ∈ N. The zonotopic UIO of the descriptor system (4.24) can be recursively defined by

x(k + 1) ∈ X (k + 1) = 〈p(k + 1), H(k + 1)〉, where
p(k + 1) = (T (k + 1)A(k)−G(k)C(k)) p(k) + T (k + 1)B(k)u(k)

+G(k)y(k) +N(k + 1)y(k + 1),

H(k + 1) = [R(k), T (k + 1)Dw(k),−G(k)Dv(k),−N(k + 1)Dv(k + 1)] ,

(4.33)

with R(k) = (T (k + 1)A(k)−G(k)C(k)) H̄(k) and H̄(k) =↓q,W (H(k)).

Proof. Consider x(k) ∈ 〈p(k), H(k)〉 at time step k ∈ N and 〈p(k), H(k)〉 ⊂ 〈p(k), H̄(k)〉
holds. By setting x̂(k) = p(k), we have e(k) = x(k) − x̂(k) ∈ 〈0, H(k)〉 ⊂ 〈0, H̄(k)〉.
Therefore, at time step k + 1, we have x(k + 1) = e(k + 1) + x̂(k + 1).

From e(k + 1) in (4.32), let us choose

M(k) = T (k + 1)A(k)−G(k)C(k), (4.34a)

K(k) = T (k + 1)B(k). (4.34b)

Taking into account f ≡ 0, (4.32) becomes

e(k + 1) = (T (k + 1)A(k)−G(k)C(k)) e(k)

+ (T (k + 1)A(k)−G(k)C(k))N(k)y(k)

+ T (k + 1)Dw(k)w(k)−G(k)Dv(k)v(k)

−N(k + 1)Dv(k + 1)v(k + 1).

From (4.31), we can derive

x̂(k + 1) = (T (k + 1)A(k)−G(k)C(k)) p(k)

+ T (k + 1)B(k)u(k) +
(
G(k)− (T (k + 1)A(k)−G(k)C(k))N(k)

)
y(k)

+N(k + 1)y(k + 1).

Considering e(k) ∈ 〈0, H̄(k)〉, w(k) ∈ W = 〈0, Inw〉 and v(k), v(k+1) ∈ V = 〈0, Inv〉,
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from x(k + 1) = e(k + 1) + x̂(k + 1), we derive

x(k + 1) ∈ 〈p(k + 1), H(k + 1)〉

=
(
(T (k + 1)A(k)−G(k)C(k))〈0, H̄(k)〉

)
⊕ 〈(T (k + 1)A(k)−G(k)C(k))N(k)y(k), 0〉

⊕ (T (k + 1)Dw(k)〈0, Inw〉)⊕ (−G(k)Dv(k)〈0, Inv〉)

⊕ (−N(k + 1)Dv(k + 1)〈0, Inv〉)⊕ 〈x̂(k + 1), 0〉.

Thus, using the properties in (1.9), we obtain p(k+ 1) and H(k+ 1) as in (4.33).

Remark 4.3. Note that the zonotope X (k) = 〈p(k), H(k)〉 is used for bounding x(k),

∀k ∈ N while the estimated state x̂(k) in (4.31) only determines the nominal value and

the estimation error is omitted in the formulation of (4.31). According to the proof of

Theorem 4.4, from x(k) ∈ 〈p(k), H(k)〉, we know p(k) = x̂(k) and the state estimation

error e(k) = x(k)− x̂(k) ∈ 〈0, H(k)〉.

Remark 4.4. Considering Assumption 4.2, from the output equation (4.24b), for x(k) ∈
X (k) = 〈p(k), H(k)〉, ∀k ∈ N, we can derive the output zonotope Y(k) = 〈py(k), Hy(k)〉,
where

y(k) ∈ 〈py(k), Hy(k)〉

= (C(k)〈p(k), H(k)〉)⊕ (Dv(k)〈0, Inv〉)

= 〈C(k)p(k), [C(k)H(k), Dv(k)]〉.

Since p(k) = x̂(k), from the output zonotope Y(k) = 〈py(k), Hy(k)〉, we also know

ŷ(k) = py(k) = C(k)p(k) and the output estimation error ε(k) = y(k) − ŷ(k) ∈
〈0, Hy(k)〉.

To implement a FDI strategy, let us define the residual zonotope

R(k) = y(k)⊕ (−Y(k)) . (4.35)

We present the explicit computational result of this residual zonotope in the follow-

ing.

Corollary 4.1. Consider the admissible LTV descriptor system (4.24) and x(k) ∈ X (k) =
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〈p(k), H(k)〉, ∀k ∈ N. The residual zonotope is given byR(k) = 〈pr(k), Hr(k)〉, wherepr(k) = y(k)− C(k)p(k),

Hr(k) =
[
−C(k)H(k), −Dv(k)

]
.

(4.36)

Proof. Based on Theorem 4.4, x(k) ∈ 〈p(k), H(k)〉 can be computed recursively, ∀k ∈ N.

According to the definition ofR(k), it follows

R(k) = 〈pr(k), Hr(k)〉

= y(k)⊕ 〈−C(k)p(k), [−C(k)H(k), −Dv(k)]〉.

By applying the properties in (1.9), we thus obtain (4.36).

The output equation (4.24b) can be rewritten as 0 = y(k) − C(k)x(k) −Dv(k)v(k).

Taking into account that v(k) ∈ 〈0, Inv〉, if no fault occurred until time step k in the

zonotope x(k) ∈ X (k) = 〈p(k), H(k)〉, then the following condition holds:

0 ∈ R(k). (4.37)

To analyze the effects of occurred actuator faults in the defined state or residual

zonotope above, we consider the normalized fault vector f(k) ∈ F , ∀k ∈ N, i.e., the

magnitude of the fault vector f(k) is stored in the matrix F (k). Therefore, we present

the decomposed zonotopic UIO structure for the descriptor system in the presence of

faults considering f(k) ∈ F , ∀k ∈ N in the following theorem.

Theorem 4.5 (Zonotopic UIO decomposition of LTV descriptor systems). Consider the

admissible LTV descriptor system (4.24) with f(k) ∈ F and x(k) ∈ {〈pe(k), He(k)〉 ⊕
〈pf (k), Hf (k)〉}, ∀k ∈ N. The zonotopic UIO affected by actuator faults can be recursively de-

fined in the decomposition form as x(k+1) ∈ {〈pe(k+1), He(k+1)〉⊕〈pf (k+1), Hf (k+1)〉},
where

pe(k + 1) = (T (k + 1)A(k)−G(k)C(k)) pe(k) + T (k + 1)B(k)u(k)

+G(k)y(k) +N(k + 1)y(k + 1),

He(k + 1) =
[
Re(k), T (k + 1)Dw(k), −G(k)Dv(k), −N(k + 1)Dv(k + 1)

]
,

(4.38)
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and pf (k + 1) = (T (k + 1)A(k)−G(k)C(k)) pf (k),

Hf (k + 1) =
[
(T (k + 1)A(k)−G(k)C(k)) H̄f (k), T (k + 1)F (k)

]
,

(4.39)

with Re(k) = (T (k + 1)A(k)−G(k)C(k)) H̄e(k), H̄e(k) =↓q,W (He(k)), H̄f (k) =↓q,W
(Hf (k)), He(k + 1) ∈ Rnx×ne , and Hf (k + 1) ∈ Rnx×nf .

Proof. Consider x(k) ∈ {〈pe(k), He(k)〉 ⊕ 〈pf (k), Hf (k)〉} ⊂ {〈pe(k), H̄e(k)〉 ⊕
〈pf (k), H̄f (k)〉} = 〈(pe(k) + pf (k)) ,

[
H̄e(k), H̄f (k)

]
〉. By setting x̂(k) = pe(k) + pf (k),

we have e(k) = x(k)− x̂(k) ∈ 〈0,
[
H̄e(k), H̄f (k)

]
〉.

Let us choose the matrices M(k) and K(k) as in (4.34). With w(k) ∈ W = 〈0, Inw〉,
v(k), v(k + 1) ∈ V = 〈0, Inv〉 and f(k) ∈ F = 〈0, Im〉, we derive x(k + 1) = e(k + 1) +

x̂(k + 1) to obtain

x(k + 1) ∈ {〈pe(k + 1), He(k + 1)〉 ⊕ 〈pf (k + 1), Hf (k + 1)〉}

=
(

(T (k + 1)A(k)−G(k)C(k)) 〈pe(k) + pf (k),
[
H̄e(k), H̄f (k)

]
〉
)

⊕ 〈T (k + 1)B(k)u(k), 0〉 ⊕ 〈G(k)y(k), 0〉 ⊕ 〈N(k + 1)y(k + 1), 0〉

⊕ (T (k + 1)Dw(k)〈0, Inw〉)⊕ (−G(k)Dv(k)〈0, Inv〉)

⊕ (−N(k + 1)Dv(k + 1)〈0, Inv〉)⊕ (T (k + 1)F (k)〈0, Im〉) .

Then, the zonotope 〈pe(k+ 1), He(k+ 1)〉 is only affected by uncertainties while the

zonotope 〈pf (k + 1), Hf (k + 1)〉 is only affected by faults if they are chosen as in (4.38)

and (4.39).

Corollary 4.2. Consider the admissible LTV descriptor system (4.24) with f(k) ∈ F and

x(k) ∈ {〈pe(k), He(k)〉 ⊕ 〈pf (k), Hf (k)〉}, ∀k ∈ N. The residual zonotope R(k) =

〈pr(k), Hr(k)〉 can be decomposed asR(k) = {〈pre(k), Hre(k)〉 ⊕ 〈prf (k), Hrf (k)〉}, wherepre(k) = y(k)− C(k)pe(k),

Hre(k) =
[
−C(k)He(k), −Dv(k)

]
.

(4.40)
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and prf (k) = −C(k)pf (k),

Hrf (k) = −C(k)Hf (k).
(4.41)

Proof. The proof is straightforward based on the zonotope properties and therefore is

omitted here.

From Theorem 4.5 and Corollary 4.2, we have divided the effects of system uncer-

tainties and actuator faults. Specifically, the effects of uncertainties (disturbances and

noise) are propagated to the zonotope 〈pe(k + 1), He(k + 1)〉 while the effects of actu-

ator faults are constrained in the zonotope 〈pf (k + 1), Hf (k + 1)〉. Hence, for the FD

observer gain G design, we use the decomposed zonotopic UIO structure defined in

Theorem 4.5 to discuss robustness to uncertainties and sensitivity to actuator faults.

4.2.2 Observer Gain Designs

Optimal Kalman Gain for LTV Descriptor Systems

As discussed in Theorem 4.5, we can characterize the effects of uncertainties and faults

with the zonotopes 〈pe(k+ 1), He(k+ 1)〉 and 〈pf (k+ 1), Hf (k+ 1)〉 separately. Hence,

the problem of designing an FD observer gain to be robust against uncertainties and

to be sensitive to faults is transformed to minimizing or maximizing the size of these

zonotopes. Following the result in Section 2.1.2, the size of a zonotope can be measured

by the FW -radius. For state estimation, the objective of the observer gain design is

only to minimize the effects of uncertainties. According to Theorem 2.6, the optimal

Kalman observer gain for the admissible LTV descriptor system (4.24) in the fault-free

case (f = 0) can be computed in the following corollary.

Corollary 4.3 (Optimal Kalman gain for LTV descriptor systems). Given the zonotopic

UIO structure in (4.33) of the admissible LTV descriptor system (4.24) with f ≡ 0 and a

matrix W ∈ Snx�0, the optimal time-varying Kalman gain Ḡ(k) = arg minG(k) Js, where Js =
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‖H(k + 1)‖2F,W is computed by the following procedure:

Ḡ(k) = T (k + 1)A(k)K̄(k), (4.42a)

K̄(k) = L(k)S(k)−1, (4.42b)

L(k) = P̄ (k)C(k)>, (4.42c)

S(k) = C(k)P̄ (k)C(k)> +Dv(k)Dv(k)>, (4.42d)

with P̄ (k) = H̄(k)H̄(k)>.

Proof. For x(k + 1) ∈ 〈p(k + 1), H(k + 1)〉 in (4.33), the criterion

Js = ‖H(k + 1)‖2F,W = tr(WP (k + 1))

with P (k + 1) = H(k + 1)(H(k + 1))> is convex with respect to G(k). The optimal

Kalman gain Ḡ(k) satisfies

d

dG(k)
tr (WP (k + 1)) = 0.

Hence, we compute derivative of Js with respect to G(k). Selecting L(k) and S(k)

as in (4.42), we have

d

dG(k)
tr
(
WG(k)S(k)G(k)>

)
− 2

d

dG(k)
tr
(
WT (k + 1)A(k)L(k)G(k)>

)
= 0.

From the above equation, we obtain the optimal Kalman gain Ḡ(k) as in (4.42).

FD Observer Gain

To design an FD observer gain, in addition to guarantee robustness to uncertainties, we

would like to maximize the fault sensitivity on actuator faults, which can be realized

by maximizing the FW -radius of the zonotope 〈pf (k + 1), Hf (k + 1)〉. Assume that

there exist matrices T (k + 1), N(k + 1) and G(k) such that the zonotopic UIO in (4.33)

is stable. The objectives of the FD observer gain G(k) can be implemented by solving
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the following optimization problem:

minimize
G

‖He(k + 1)‖2F,W1
and simultaneously maximize

G
‖Hf (k + 1)‖2F,W2

, (4.43)

with matrices W1,W2 ∈ Snx�0.

To implement the optimization problem above, we define a performance criterion

as

Je/f =
‖Hf (k + 1)‖2F,W1

‖He(k + 1)‖2F,W2

. (4.44)

Therefore, the optimization problem (4.43) is converted to maximize Je/f . In order

to find the solution of the FD observer gain, we first reformulate ‖Hf (k + 1)‖2F,W1
and

‖He(k+1)‖2F,W2
using the properties in (1.9) as follows. From Definition 1.8, for ‖Hf (k+

1)‖2F,W1
, we have

‖Hf (k + 1)‖2F,W1
= tr

(
(Hf (k + 1))>W1Hf (k + 1)

)
= tr

(
W1Hf (k + 1)(Hf (k + 1))>

)
= vec (Hf (k + 1))> vec (W1Hf (k + 1))

= vec (Hf (k + 1))>
(
Inf ⊗W1

)
vec (Hf (k + 1)) ,

and from (4.39), we have

vec (Hf (k + 1)) =

[
−(C(k)H̄f (k)> ⊗ Inx

0

]
vec(G(k)) +

[
vec

(
T (k + 1)A(k)H̄f (k)

)
vec (T (k + 1)F (k))

]
.

Selecting

θ(k) = vec(G(k)),

and

Sf (k) =

[
−(C(k)H̄f (k))> ⊗ Inx

0

]
, bf (k) =

[
vec

(
T (k + 1)A(k)H̄f (k)

)
vec (T (k + 1)F (k))

]
,
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we have

‖Hf (k + 1)‖2F,W1
= (Sf (k)θ(k) + bf (k))>

(
Inf ⊗W1

)
(Sf (k)θ(k) + bf (k))

=

[
θ(k)

1

]> [
Sf (k), bf (k)

]> (
Inf ⊗W1

) [
Sf (k), bf (k)

] [θ(k)

1

]
= θ̄(k)>Qf (k)θ̄(k),

where

θ̄(k) =

[
θ(k)

1

]
,

and

Qf (k) =
[
Sf (k), bf (k)

]> (
Inf ⊗W1

) [
Sf (k), bf (k)

]
. (4.45)

Similarly, ‖He(k + 1)‖2F can be reformulated as

‖He(k + 1)‖2F,W2
= θ̄(k)>Qe(k)θ̄(k),

where

Qe(k) =
[
Se(k), be(k)

]>
(Ine ⊗W2)

[
Se(k), be(k)

]
, (4.46)

and

Se(k) =


−(C(k)H̄e(k))> ⊗ Inx
−Dv(k)> ⊗ Inx

0

0

 , be(k) =


vec

(
T (k + 1)A(k)H̄e(k)

)
0

vec (T (k + 1)Dw(k))

−vec (N(k + 1)Dv(k + 1))

 .

Then, the performance criterion Je/f defined in (4.44) can be rewritten as

Je/f =
θ̄(k)>Qf (k)θ̄(k)

θ̄(k)>Qe(k)θ̄(k)
. (4.47)
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Due to change of variables θ̄(k) =

[
θ(k)

1

]
and θ(k) = vec(G(k)), finding an FD

observer gain G by maximizing Je/f in (4.44) is equivalent to finding θ̄∗(k) such that

Je/f in (4.47) is maximum. Then, we provide the explicit solutions of the optimal θ̄∗(k)

corresponding to maximum J∗e/f in the following theorem.

Theorem 4.6. Given the criterion Je/f defined in (4.47) with respect to θ̄(k) and matrices

W1,W2 ∈ Snx�0, the maximum Je/f is the maximum generalized eigenvalue of (Qf (k), Qe(k))

withQf (k) as in (4.45) andQe(k) as in (4.46), that is denoted by J∗e/f = λmax (Qf (k), Qe(k)),

and the optimal θ̄∗(k) belongs to the null space of
(
Qf (k)− J∗e/fQe(k)

)
, that is also the gen-

eralized eigenvector of (Qf (k), Qe(k)) corresponding to its maximum generalized eigenvalue.

Proof. To find the optimal θ̄∗(k) corresponding to the maximum J∗e/f , we take the

derivative of Je/f in (4.47) with respect to θ̄(k) as

d

dθ̄(k)
Je/f =

2Qf (k)θ̄(k)
(
θ̄(k)>Qe(k)θ̄(k)

)
− 2Qe(k)θ̄(k)

(
θ̄(k)>Qf (k)θ̄(k)

)(
θ̄(k)>Qe(k)θ̄(k)

)2 ,

By setting d
dθ̄(k)

Je/f = 0, we obtain

2Qf (k)θ̄∗(k)
(
θ̄∗(k)>Qeθ̄

∗(k)
)
− 2Qe(k)θ̄∗(k)

(
θ̄∗(k)>Qf (k)θ̄∗(k)

)
= 0,

which can be simplified to be

Qf (k)θ̄∗(k) =
θ̄∗(k)>Qf (k)θ̄∗(k)

θ̄∗(k)>Qe(k)θ̄∗(k)
Qe(k)θ̄∗(k).

From (4.47) and θ̄∗(k) corresponding to the maximum J∗e/f , we have

Qf (k)θ̄∗(k) = J∗e/fQe(k)θ̄∗(k). (4.48)

Then, (4.48) leads to a generalized eigenvalue problem with J∗e/f =

λmax (Qf (k), Qe(k)) being the maximum generalized eigenvalue and θ̄∗(k) being the

corresponding eigenvector. Besides, from (4.48), we can also derive(
Qf (k)− J∗e/fQe(k)

)
θ̄∗(k) = 0.
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Hence, θ̄∗(k) also belongs to the null space of
(
Qf (k)− J∗e/fQe(k)

)
.

Based on the optimal solution θ̄∗(k), we derive the optimal FD observer gain in the

following theorem.

Theorem 4.7 (Optimal FD observer gain for LTV descriptor systems). Given the optimal

solution θ̄∗(k) from Theorem 4.6 as θ̄∗(k) =

[
θ̃∗(k)

θ̌∗(k)

]
, θ̃∗(k) ∈ R(nx·ny)×1 and θ̌∗(k) ∈ R, the

optimal FD observer gain G∗(k) can be computed by

G∗(k) = vec−1

(
θ̃∗(k)

θ̌∗(k)

)
. (4.49)

Proof. By dividing θ̌∗(k) in both sides of (4.48), we have

Qf (k)

 θ̃∗(k)

θ̌∗(k)

1

 = J∗e/fQe(k)

 θ̃∗(k)

θ̌∗(k)

1

 .

Based on the structure of θ̄(k) =

[
θ(k)

1

]
, we thus obtain G∗(k) as in (4.49).

4.2.3 Robust FDI using Zonotopic UIOs

To include robust FI, the idea is to design a bank of zonotopic UIOs for identifying

the effect from each actuator fault. From (4.25), the single fault is considered as an

unknown input to be decoupled for the corresponding zonotopic UIO. The general

robust FDI scheme is presented in Figure 4.4. For the LTV descriptor system (4.24)

with m actuators, we would like to design m zonotopic UIOs. By checking the residual

zonotopes obtained by m zonotopic UIOs, the FDI alarm can be determined by the FDI

module.

From the LTV descriptor representation in (4.26), we treat fi(k), i = 1, . . . ,m as an

unknown input of the LTV descriptor system (4.26). With fi(k) and f̄i(k), i = 1, . . . ,m,
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Figure 4.4: Zonotopic UIO-based robust FDI scheme.

the descriptor dynamics can be reformulated as

x(k + 1) = Ti(k + 1)A(k)x(k) + Ti(k + 1)B(k)u(k) +Ni(k + 1)y(k + 1)

+ Ti(k + 1)Dw(k)w(k)−Ni(k + 1)Dv(k + 1)v(k + 1)

+ Ti(k + 1)Fi(k)fi(k) + Ti(k + 1)F̄i(k)f̄i(k),

(4.50)

and from (4.50), state estimation error dynamics can also be reformulated as

e(k + 1) = (Ti(k + 1)A(k)−G(k)C(k)) e(k)

+ (Ti(k + 1)A(k)−G(k)C(k))Ni(k)y(k)

+ Ti(k + 1)Dw(k)w(k)−G(k)Dv(k)v(k)

−Ni(k + 1)Dv(k + 1)v(k + 1)

+ Ti(k + 1)Fi(k)fi(k) + Ti(k + 1)F̄i(k)f̄i(k).

(4.51)

To remove the effect of fi(k) and preserve the effect of f̄i(k) in (4.39) and (4.51), a

pair of matrices Ti(k + 1) ∈ Rnx×nx and Ni(k + 1) ∈ Rnx×ny for the i-th zonotopic UIO
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also satisfies (4.28) and

Ti(k + 1)Fi(k) = 0, (4.52a)

Ti(k + 1)F̄i(k) 6= 0. (4.52b)

Based on the condition (2.2), we present the condition for the existence of matrices

Ti(k + 1) and Ni(k + 1) satisfying (4.28) and (4.52a) in the following.

Assumption 4.4. For the LTV descriptor system (4.24), matrices E(k + 1), C(k + 1) and

Fi(k) satisfy the following rank condition:

rank


Inx ⊗

[
E(k + 1) Fi(k)

C(k + 1) 0

]

vec

([
Inx

0

])>
 = nx ·

[
E(k + 1) Fi(k)

C(k + 1) 0

]
, ∀k ∈ N. (4.53)

Therefore, from the proof of Theorem 4.4, we know x(k + 1) = e(k + 1) + x̂(k + 1).

In (4.51), the effect of fi is removed in e(k + 1) by using the matrix Ti(k + 1) with

Ti(k+1)Fi(k) = 0 and meanwhile the effect of f̄i(k) is preserved. Besides, for designing

the i-th observer gain, considering f̄i(k) ∈ Fi = 〈0, Im−1〉, we replace T (k + 1) by

Ti(k + 1) and F (k) by F̄i(k) in (4.39). Following the design procedure of FD gain, the

optimal observer gain G∗i (k) for robust FDI can be obtained.

After havingm zonotopic UIOs, at each time step, a sequence of residual zonotopes

〈pr,i(k), Hr,i(k)〉, i = 1, . . . ,m can be generated based on Corollary 4.1. Then, a fault

can be determined in the FDI module. The logics of the FDI module are proposed as

follows.

The logics of the FDI module:
0 ∈ 〈pr,i(k), Hr,i(k)〉 and 0 /∈ 〈pr,j(k), Hr,j(k)〉, i 6= j = 1, . . . ,m

The i-th actuator

fault is detected

0 ∈ 〈pr,i(k), Hr,i(k)〉, i = 1, . . . ,m No fault is detected

Remark 4.5. Note that we can also decouple m − 1 actuator faults as unknown inputs

by finding suitable Ti(k) and Ni, ∀k ∈ N. For the remaining fault that is not decoupled,

if 0 /∈ 〈pr,i, Hr,i〉, i = 1, . . . ,m, then it can be detected.
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Algorithm 4.2 Robust FDI based on Zonotopic UIOs
1: Given the discrete-time LTV descriptor system (4.24) with system matricesE(k+1),
A(k), B(k), C(k), Dw(k), Dv(k), F (k) and x(0) ∈ 〈p(0), H(0)〉, w(k) ∈ 〈0, Inw〉,
v(k) ∈ 〈0, Inv〉, f(k) ∈ 〈0, Im〉, ∀k ∈ N;

2: p(k)←− p(0), H(k)←− H(0);
3: pe(k)←− p(0), He(k)←− H(0);
4: pf (k)←− 0, Hf (k)←− 0;
5: for k = 1 : Γ do
6: Obtain the residual zonotope 〈pr,i(k), Hr,i(k)〉 in (4.36);
7: Determine the FDI alarm by the logics of the FDI module;
8: for i = 1 : end do
9: Reformulate F (k) to find F̄i(k) = F (k) \ Fi(k);

10: Obtain matrices Ti(k + 1) and Ni(k + 1) for i = 1, . . . ,m by satisfying (4.28)
and (4.52);

11: F ←− F̄i, T (k + 1)←− Ti(k + 1), N(k + 1)←− Ni(k + 1);
12: Compute the zonotopes 〈pe(k+1), He(k+1)〉 by (4.38) and 〈pf (k+1), Hf (k+1)〉

by (4.39) for the i-th zonotopic UIO;
13: Compute the observer gain G∗i (k) for (4.33) following the proposed computa-

tion steps presented above;
14: Gather the system outputs y(k) and y(k + 1);
15: Update the state zonotope x(k + 1) ∈ 〈p(k + 1), H(k + 1)〉 in (4.33);
16: end for
17: end for

We now summarize the robust FDI strategy in Algorithm 4.2 considering a simula-

tion horizon of Γ . Note that this robust FDI strategy based on zonotopic UIO can also

be applied to standard dynamical systems, that is when rank(E) = nx, ∀k ∈ N.

4.2.4 Case Studies

Numerical Example

To compare the FD observer gain obtained with the proposed approach with zonotopic

Kalman observer gain, we consider the LTV descriptor system (4.24) with

E =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , A(k) =


0.5 0.3 sin(0.4k) 0 0

0 0.3 0 0

0 0 0.6 0

0 −0.5 −0.5 0.8

 , B =


0.1

1

−0.1

−1

 ,
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C =


0 1 0 0

0 0 1 0

0 0 0 1

 , Dw = 0.005I4, Dv = 0.01I3, F = 2B,

and the initial state x(0) = [2, 2, 3, 3.125]> is assumed to be bounded by the zono-

tope x(0) ∈ 〈p(0), H(0)〉, where p(0) = x(0) and H(0) = 0.1I4. The weighting matrices

W1 and W2 for designing the FD observer gain are chosen to be identity matrices of ap-

propriate dimensions. The input signal u is set as u(k) = 2, ∀k ∈ N. For the reduction

operator ↓q,W (·), q and W are set respectively as q = 20 and W = I . With constant ma-

trices E and C, by satisfying the condition (4.28), we consider one solution of constant

matrices T and N as follows:

T =


1 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 1

 , N =


0 0 0

0.5 0 0

0 0.5 0

0 0 1

 .

The simulation has been carried out in MATLAB for 100 sampling time steps. With

this example, we compute the time-varying Kalman gain Ḡ(k) (following Corollary 4.3)

and the designed FD observer gain G∗(k) (following Theorem 4.7) at each time step.

Since the system has three measurement outputs, the residual zonotope 〈pr(k), Hr(k)〉,
∀k ∈ N is in a 3-dimensional space. Therefore, the interval hull (see Definition 1.7) of the

residual zonotope is used to plot the individual residual bounds ri(k) ∈
[
ri(k), ri(k)

]
for ri(k) ∈ Rny , where

ri(k) = pr,i(k)− rs(Hr(k))i,i, i = 1, . . . , ny,∀k ∈ N,

ri(k) = pr,i(k) + rs(Hr(k))i,i, i = 1, . . . , ny,∀k ∈ N.

Consider a step actuator fault f(k) = 0.3, k ≥ 30. The comparative results of the

residuals and their lower and upper bounds are shown in Figure 4.5. From these plots,

it is shown that when no fault occurred (f(k) = 0, k < 30), the coordinate origin is

inside all the residual bounds, which means it is also inside the residual zonotope.

Besides, the bounds with the Kalman gain Ḡ(k) are tighter than those obtained with

the FD observer gain G∗(k). This is because the objective of the Kalman gain design is

to minimize the effects of uncertainties. On the other hand, when the system is affected
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(a) r1(k)

k
20 40 60 80 100

r
2
(k
)

-0.1

-0.05

0

0.05

0.1

0.15

0.2
pr with G∗

r, r with G∗

pr with Ḡ
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Figure 4.5: Comparison of generated residuals.

by actuator fault f(k) = 0.3, k ≥ 30, the residual bounds obtained with G∗(k) are

moved further away from the coordinate origin which means they are more sensitive

with respect to the occurred fault. This fault sensitivity will be useful when faults with

small magnitude occur.

Table 4.2 presents the minimal detectable faults of this example with two observer

gains obtained in simulation. It is shown that the observer with G∗ is able to detect

smaller faults when the fault sensitivity is considered. The trade-off between robust-

ness to uncertainties and sensitivity to faults is improved using G∗(k).
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Table 4.2: Minimum detectable fault using optimal Kalman and FD
gains.

Ḡ(k) G∗(k) Improvement

Minimal detectable fault 0.0135 0.0089 51.69%

Table 4.3: Unknown input decoupling for robust FDI strategy.

T,N f1 f2

Zonotopic UIO 1 T1, N1 × ×
Zonotopic UIO 2 T2, N2 ×

The Chemical Mixing System

We also use the case study in Section 4.1.4 with F = B and the initial state x(0) =

[0.5, 0, 0.5, 0]> is assumed to be bounded by the zonotope x(0) ∈ 〈p(0), H(0)〉, where

p(0) = x(0) and H(0) = 0.001I4. The weighting matrices W1 and W2 for designing the

FD observer gain are also chosen to be identity matrices of appropriate dimensions.

The input signal u is set as u(k) = [4 sin(0.3k) + 5, 5]>, ∀k ∈ N. For the reduction oper-

ator ↓q,W (·), q and W are set respectively as q = 20 and W = I . Taking into account

that this system has two actuators, two zonotopic UIOs are used. For implementing

robust FDI strategy, the actuator faults are considered to be unknown inputs for each

zonotopic UIO and the unknown input decoupling strategy is described in Table 4.3.

By satisfying the conditions in (4.28) and (4.52), and considering the strategy in
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Table 4.3, we have

T1 =


1 1 0 1

0 1 0 1

0 1 0.5 1

0 1 0 1

 , N1 =


0 0 0

1 0 0

0 0.5 0

0 0 1

 ,

T2 =


1 23.4588 0.1777 0.0032

0 23.4588 0.1777 0.0032

0 23.4588 0.1777 0.0032

0 23.4588 0.1777 0.0032

 , N2 =


0 −0.1777 0

1 −0.1777 0

0 0.8223 0

0 −0.1777 1

 .

The zonotopic UIO 1 is designed with T1 and N1. Besides, the sensitivity to the

second actuator fault is considered such that F̄1(k) = [0, 0, 0.02, 1]>. The zonotopic UIO

2 is designed with T2 andN2. Because the effect of the second actuator fault is removed

by using the unknown input decoupling, this observer is designed to be sensitive to the

first actuator fault.

From Figure 4.6, it is shown that the coordinate origin is inside all the residual

bounds of zonotopic UIO 1 and 2, that is inside the residual zonotopes corresponding to

zonotopic UIO 1 and 2, which implies that there is no fault occurrence. From Figure 4.7,

it can be seen that for both zonotopic UIOs, the coordinate origin is not inside all the

residual bounds after 20 sampling time steps. Based on Table 4.3 and the designed FDI

strategy, the first actuator fault is detected at time step 21. Figure 4.8 shows that the

coordinate origin is always inside the residual bounds of zonotopic UIO 2. Besides,

after 20 sampling time steps the coordinate origin is not inside the residual bounds of

zonotopic UIO 1. According to the proposed FDI strategy, the second actuator fault is

detected at time step 21.
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Figure 4.6: FDI result of the chemical mixing system without faults.
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Figure 4.7: FDI result of the chemical mixing system with the first
actuator fault.
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Figure 4.8: FDI result of the chemical mixing system with the second
actuator fault.
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4.3 Summary

This chapter has presented two robust FD methods and an application of robust FI

based on zonotopic UIOs. For the two proposed FD methods, the first one based on

LMI conditions to find a constant FD observer gain, where the H− fault sensitivity is

considered. The second FD method seeks for a time-varying FD observer gain with

minimizing a defined fault sensitivity criterion. The advantage of the first method

is that the stability of zonotopic FD observer can be guaranteed. However, for the

second robust FD method, the stability with a time-varying FD observer gain for LTV

descriptor systems deserves to be investigated as a future research.
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Figure 5.1: Set-based FE scheme.

The chapter presents a robust FE based on zonotopic Kalman filter for discrete-time

descriptor systems subject to unknown-but-bounded uncertainties and additive actua-

tor faults. The contribution of this chapter has been published in [147] and [159]. The

FE results provide not only a punctual value but also a deterministic set bounding the

propagated uncertainties. Following the set-based framework for descriptor systems

in Chapter 2.1.2, we first define the structure of the zonotopic FE filter based on fault
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detectability indices and matrix proposed in [59]. The zonotopic FE filter gain is for-

mulated in a parametrized form. The optimal filter gain is designed to achieve the

robustness against uncertainties and meanwhile the identification of occurred actuator

faults. Furthermore, we discuss the boundedness of the propagated zonotopic FE.

5.1 Problem Statement in FE

Consider the discrete-time LTI descriptor system with additive actuator faults as fol-

lows:

Ex(k + 1) = Ax(k) +Bu(k) +Dww(k) + Ff(k), (5.1a)

y(k) = Cx(k) +Dvv(k), (5.1b)

where x ∈ Rnx and u ∈ Rnu denote the system state and the known input vectors, w ∈
Rnw and v ∈ Rnv denote the state disturbance vector and measurement noise vector,

y ∈ Rny denotes the measurement output vector, f ∈ Rq denotes the actuator fault

vector. A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , Dw ∈ Rnx×nw and Dv ∈ Rny×nv are the

system matrices. Besides, F ∈ Rnx×q denotes the fault distribution matrix describing

the directions of the fault vector. In terms of the descriptor system (5.1), the matrix

E ∈ Rnx×nx might be singular, that is rank(E) ≤ nx.

For the system (5.1), we consider that Assumptions 2.1 and 2.2 hold. Besides, based

on [59], we assume that rank(C) = r and rank(F ) = q with q ≤ r and the system (5.1)

is C-observable. Then, matrices E and C satisfy (2.41). Thus, there always exist two

non-empty matrices T ∈ Rnx×nx (T also non-singular) and N ∈ Rnx×ny that can be

obtained by Lemma 2.1.

In the following, we will design a set-based robust FE filter for the discrete-time de-

scriptor system (5.1) to estimate the actuator fault magnitude f . The FE filter is built in a

zonotopic framework considering unknown-but-bounded disturbances and measure-

ment noise. Using this framework, robustness against uncertainties can be achieved

by minimizing the size of the zonotope bounding estimation errors, disturbances and

noise. The FE results are bounded using a zonotopic set.
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5.2 Zonotopic FE Filter for Descriptor Systems

We now propose a zonotopic FE filter for the descriptor system (5.1). By means of fault

detectability indices and matrix, we analyze and construct the FE zonotope to estimate

occurred actuator faults. Therefore, the optimal FE filter gain is computed. Besides, we

discuss boundedness of zonotopic FE.

5.2.1 Fault Detectability Indices and Matrix

Denote the fault distribution matrix F = [F1, · · · , Fq] and the fault vector f(k) =

[f1(k), · · · , fq(k)]>, ∀k ∈ N, where Fi is the i -th column of F and fi(k) is the i-th ele-

ment of f(k) for i = 1, . . . , q, ∀k ∈ N. We recall definitions of fault detectability indices

and matrix first introduced in [59, 70] and extended for descriptor systems in [163] as

follows.

Definition 5.1 (Fault detectability indices [163] ). The discrete-time descriptor system

(5.1) is said to have fault detectability indices ρ = {ρ1, ρ2, . . . , ρq} if

ρi = min
{
σ | C(TA)σ−1TFi 6= 0, i = 1, 2, . . .

}
. (5.2)

and s = max {ρ1, ρ2, . . . , ρq} denotes the maximum of fault detectability indices.

Assumption 5.1. Without loss of generality, the discrete-time descriptor system (5.1) is as-

sumed with finite fault detectability indices.

Definition 5.2 (Fault detectability matrix [163] ). With the fault detectability indices of

the descriptor system (5.1) defined as ρ = {ρ1, ρ2, . . . , ρq}, the fault detectability matrix

is given by

Υ = CΨ, (5.3)

with

Ψ =
[
(TA)ρ1−1TF1, (TA)ρ2−1TF2, · · · , (TA)ρq−1TFq

]
. (5.4)

5.2.2 Zonotopic FE Filter

When the condition (2.41) is fulfilled, there exists matrices T and N satisfying (2.42).

We consider a state estimation filter for the discrete-time descriptor system (5.1) as
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z(k + 1) = TAx̂(k) + TBu(k) +G(k) (y(k)− Cx̂(k))

x̂(k) = z(k) +Ny(k),
(5.5)

where x̂ ∈ Rnx denotes the estimated state vector and z ∈ Rnx denotes the filter state

vector.

Let us define the state estimation error e(k) = x(k)− x̂(k) and the output estimation

error ε(k) = y(k)−Cx̂(k). Then, the error dynamics of e and ε can be written as follows:


e(k + 1) = (TA−G(k)C)e(k) + TFf(k) + TDww(k)

−G(k)Dvv(k)−NDvv(k + 1),

ε(k) = Ce(k) +Dvv(k).

In order to analyze the effects of uncertainties and faults, we split e and ε into two

parts: e = ef + ew and ε = εf + εw, where ef and εf are the errors only affected by

actuator faults (w(k) = 0 and v(k) = 0, ∀k ∈ N), and ew and εw are the errors only

affected by disturbances and noise (f(k) = 0, ∀k ∈ N).ef (k + 1) = (TA−G(k)C)ef (k) + TFf(k),

εf (k) = Cef (k),
(5.6)

and 
ew(k + 1) = (TA−G(k)C)ew(k) + TDww(k)

−G(k)Dvv(k)−NDvv(k + 1),

εw(k) = Cew(k) +Dvv(k),

(5.7)

with the following initial conditions ef (k) = 0 and ew(0) = e(0). Therefore, we

know εf (k) = 0, ∀k ∈ N.

We now analyze the effects of occurred actuator faults and uncertainties in the es-

timation errors using the fault detectability indices and matrix in Definition 5.1 and

Definition 5.2 in the following theorem.

Theorem 5.1 (FE condition). Consider the descriptor system (5.1). If there exists the gain

G(k) ∈ Rnx×ny such that

(TA−G(k)C)Ψ = 0, (5.8)
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then the effect of the faults on ε(k) can be expressed as

ε(k) = CΨ
[
f1(k − ρ1)>, · · · , fq(k − ρq)>

]>
+ εw(k). (5.9)

Proof. By merging (5.6), we can derive from the time instant k = 0 that

εf (k) = CΦkef (0) + CΦk−1TFf(0) + · · ·+ CΦ1TFf(k − 1), (5.10)

where Φk =
k∏
j=1

(TA−GjC). According to [163, Theorem 1], we obtain

CΦjTFi =

{
C(TA)ρi−1TFi, j = ρi,

0, j 6= ρi.
(5.11)

Substituting (5.11) into (5.10) yields

εf (k) = CΦkef (0) + C(TA)ρ1−1TF1f1(k − ρ1)

+ · · ·+ C(TA)ρq−1TFqfq(k − ρq)

= CΦkef (0) + CΨ
[
f1(k − ρ1), · · · , fq(k − ρq)

]>
.

(5.12)

Since ef (0) = 0, (5.12) becomes εf (k) = CΨ
[
f1(k − ρ1), · · · , fq(k − ρq)

]>
.

Therefore, from ε(k) = εf (k) + εw(k), we obtain (5.9).

From Theorem 5.1, we can see that the effects of faults and uncertainties can be

separated in (5.9). Therefore, we define the zonotopic FE filter for the descriptor sys-

tem (5.1) in the following theorem.

Theorem 5.2 (Zonotopic FE filter for descriptor systems). Given the descriptor sys-

tem (5.1) with w(k) ∈ 〈0, Inw〉 and v(k) ∈ 〈0, Inv〉, ∀k ∈ N, matrices T ∈ Rnx×nx ,

N ∈ Rnx×ny satisfying (2.42). Consider the state bounding zonotope xw(k − 1) ∈ 〈p(k −
1), H(k − 1)〉 ⊆ 〈p(k − 1), H̄(k − 1)〉 with H̄(k − 1) =↓`,W (H(k − 1)), the state bounding

zonotope xw(k) ∈ 〈p(k), H(k)〉, ∀k ∈ N is recursively defined by

p(k) = (TA−G(k − 1)C) p(k − 1) + TBu(k − 1)

+G(k − 1)y(k − 1) +Ny(k), (5.13a)

H(k) =
[
(TA−G(k − 1)C) H̄(k − 1), TDw, −G(k − 1)Dv, −NDv

]
. (5.13b)
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If there exist matrices G(k − 1) ∈ Rnx×ny satisfying (5.8) and M ∈ Rq×ny satisfying

M = (CΨ)† = Υ†, (5.14)

then the actuator faults is bounded by f̂(k) =
[
f1(k − ρ1), · · · , fq(k − ρq)

]>
∈

〈pf (k), Hf (k)〉, where

pf (k) = My(k)−MCp(k), (5.15a)

Hf (k) =
[
−MCH(k), −MDv

]
. (5.15b)

Proof. From the analysis of effects of occurred actuator faults and uncertainties in (5.9),

we can build state bounding zonotope and FE zonotope in the following.

(State bounding zonotope) With a filter gain G(k − 1), from (5.5), we can derive

x̂(k) = (TA+G(k − 1)C) x̂(k − 1) + TBu(k − 1)

+G(k − 1)y(k − 1) +Ny(k).

For xw(k − 1) ∈ 〈p(k − 1), H̄(k − 1)〉, we set x̂(k − 1) = p(k − 1) and we know

ew(k − 1) = xw(k − 1) − p(k − 1) ∈ 〈0, H̄(k − 1)〉. From (5.7), with w(k) ∈ 〈0, Inw〉,
v(k) ∈ 〈0, Inv〉, ∀k ∈ N, we derive xw(k) = x̂(k) + ew(k) obtaining

xw(k) ∈ 〈p(k), H(k)〉

= ((TA−G(k − 1)C)〈p(k − 1), 0〉)⊕ (TB〈u(k − 1), 0〉)

⊕ (G(k − 1)〈y(k − 1), 0〉)⊕ (N〈y(k), 0〉)

⊕
(
(TA−G(k − 1)C)〈0, H̄(k − 1)〉

)
⊕ (TDw〈0, Inw〉)

⊕ ((−G(k − 1)Dv)〈0, Inv〉)⊕ ((−NDv)〈0, Inv〉) .

By using the properties in (1.9), we obtain p(k) and H(k) in (5.13).

(FE zonotope) From xw(k) ∈ 〈p(k), H(k)〉 and x̂(k) = p(k), we know ew(k) ∈
〈0, H(k)〉. By definition, we also have the output estimation error ε(k) = y(k)− Cp(k).

On the other hand, by pre-multiplying M ∈ Rq×ny on both sides of (5.9), we obtain

Mε(k) = MCΨ
[
f1(k − ρ1), · · · , fq(k − ρq)

]>
+Mεw(k). (5.16)
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Denote f̂(k) =
[
f1(k − ρ1), · · · , fq(k − ρq)

]>
. Taking into account M satisfy-

ing (5.14), we know MCΨ = I . Therefore, from (5.16), we obtain

f̂(k) = Mε(k)−Mεw(k) = Mε(k)−M (Cew(k) +Dvv(k)) . (5.17)

Recall ε(k) = y(k) − Cp(k), ew(k) ∈ 〈0, H(k)〉 and v(k) ∈ 〈0, Inv〉. From (5.17), we

can derive that

f̂(k) ∈ 〈pf (k), Hf (k)〉

= (M〈y(k)− Cp(k), 0〉)⊕ (−MC〈0, H(k)〉)⊕ (−MDv〈0, Inv〉) .

Again, by using the properties in (1.9), we obtain pf (k) and Hf (k) as in (5.15).

Remark 1: From the structure of the zonotopic FE filter proposed in Theorem 5.2,

it is clear that the estimated fault f̂(k) has delays for each element and the delays are

determined by the fault detectability indices ρi for i = 1, . . . , q.

5.2.3 Optimal FE Filter Gain

We now present the results of optimal FE filter gain. For designing the gain of the

zonotopic FE filter, the following criteria are taken into account:

• G(k) satisfies the algebraic condition (5.8);

• G(k) minimizes the estimation error ew(k + 1), that reduces the size of the zono-

tope 〈p(k + 1), H(k + 1)〉.

Following the zonotopic Kalman gain in Section 2.1.2, the size of a zonotope can

be measured by the FW -radius. The objective of the zonotope minimization can be

defined by J = tr(WP (k + 1)) with a weighting matrix W ∈ Snx�0 and the covariation

P (k + 1) = H(k + 1)H(k + 1)>. (5.18)

Theorem 5.3 (Optimal FE filter gain). Given H(k + 1), a weighting matrix W ∈ Snx�0,

the fault detectability matrix Υ in (5.3) with rank(Υ) = q. The optimal gain G∗(k) can be
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computed by the parametrized form:

G∗(k) = ΦM + Ḡ∗(k)Ω, (5.19)

with

Φ = TAΨ, M = Υ†, Ω = α (Im −ΥM) , (5.20)

where α ∈ R(p−q)×p is an arbitrary matrix guaranteeing that Ω has full-row rank and Ḡ(k) ∈
Rn×(p−q). Besides, Ḡ(k) = Ḡ∗(k) minimizes J = tr(WP (k + 1)) with P (k + 1) in (5.18),

which is computed through the following procedure

Ḡ∗(k) = L̃(k)S̃(k)−1, (5.21)

L̃(k) = (TA− ΦMC)P̄ (k)C>Ω> − ΦMV Ω>, (5.22)

S̃(k) = Ω
(
CP̄ (k)C> + V

)
Ω>, (5.23)

with P̄ (k) = H̄(k)H̄(k)> and V = DvD
>
v .

Proof. From M = Υ† and rank(Υ) = q, we have MΥ = Iq. Since rank(Υ) = q, we can

obtain a matrix Ω ∈ R(ny−q)×ny such that ΩΥ = 0.

Therefore, with G(k) defined in (5.19), we derive

(TA−G(k)C)Ψ =
(
TA−

(
ΦM + Ḡ(k)Ω

)
C
)

Ψ

= TAΨ− TAΨMCΨ− Ḡ(k)ΩCΨ

= TAΨ− TAΨMΥ− Ḡ(k)ΩΥ.

Since MΥ = Iq and ΩΥ = 0, the above equation leads to TAΨ − TAΨMΥ −
Ḡ(k)ΩΥ = 0. Thus, (5.8) is satisfied with G(k) parametrized as in (5.19).

Then, the problem is converted to find Ḡ(k) minimizing J = tr(WP (k + 1)). By

definition, J is convex with respect to Ḡ(k). Thus, Ḡ∗(k) is a value of Ḡ(k) such

that ∂J
∂Ḡ(k)

= 0.

Set L̃(k) and S̃(k) as in (5.22) and (5.23). Evaluating ∂J
∂Ḡ(k)

= 0, we have that
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∂tr

∂Ḡ(k)

(
WḠ(k)S̃(k)Ḡ(k)>

)
− 2

∂tr

∂Ḡ(k)

(
WL̃(k)Ḡ(k)>

)
= 0. (5.24)

By means of the matrix calculus in (1.14), (5.24) can be simplified as

WS̃(k)Ḡ(k)> +WS̃(k)>Ḡ(k)> − 2WL̃(k)> = 0.

Because S̃(k) is also a symmetric matrix, we thus obtain Ḡ(k) as in (5.21).

From the proof of Theorem 5.3, we can see the independence of Ḡ∗(k) with respect

to the weighting matrix W . Thus, W can be set as an arbitrary matrix, for instance

W = I . Besides, time-varying weighting matrix W (k) will be taken into account for

discussing boundedness of the proposed zonotopic FE for descriptor systems.

Remark 5.1. For the proposed zonotopic FE filter in Theorem 5.2, G that satisfies the

condition (TA−GC)Ψ = 0 is a stabilizing gain if there exist matrices W ∈ Snx�0, and Y

[
W ?

WTA−WΦMC − Y ΩC W

]
� 0, (5.25)

then the feasible solutions give G = ΦM −W−1Y Ω. Note that the condition (5.25) can

be found by the Lyapunov stability condition and the parametrized gain as in (5.19).

With the zonotopic FE filter defined in Theorem 5.2 and the optimal gain in Theo-

rem 5.3, we summarize the FE algorithm in Algorithm 5.1.

5.2.4 Boundedness of Zonotopic FE

We now study the boundedness of zonotopic FE by implementing Theorem 5.2 with

the designed optimal gain in Theorem 5.3. To find a sequence of time-varying weight-

ing matrices W (k) ∈ Snx�0, we introduce a result for discrete-time nominal descriptor

systems in the following.

Proposition 5.1. Given the descriptor systemEx(k+1) = Ax(k) with a measurement output

y(k) = Cx(k), matrices T and N satisfying (2.42), and γ ∈ (0, 1). The filter x̂(k + 1) =
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Algorithm 5.1 Zonotopic FE algorithm for descriptor systems
1: Given the system matrices E, A, B, C, Dw, Dv and F and the initial state bounded

in x0 ∈ 〈c0, H0〉;
2: Solve the equation (2.42) by using to obtain T and N ;
3: Compute the fault detectability indices ρi, i = 1, . . . , q;
4: Compute the fault detectability matrix Υ = CΨ;
5: Φ←− TAΨ;
6: M ←− Υ†;
7: Ω←− α (Im −ΥM);
8: while k > 0 do
9: Compute Ḡ∗(k − 1) according to the procedure in (5.21)-(5.23);

10: Obtain the optimal parametrized gain G∗(k − 1) following (5.19) with Ḡ∗(k − 1)
following (5.21)-(5.23);

11: Compute the state bounding zonotope 〈c(k), H(k)〉 by using (5.13);
12: Compute the FE zonotope 〈cf (k), Hf (k)〉 by using (5.15);

13: Obtain the FE f̂(k) = cf (k) with its bounds f̂i(k) ∈
[
f
i
(k), f i(k)

]
, i = 1, . . . , q

with

f i(k) = cfi(k) + rs(Hf (k))i,i,

f
i
(k) = cfi(k)− rs(Hf (k))i,i,

14: where cf =
[
cf1 . . . cfi . . . cfq

]>.
15: end while

TAx̂(k) + G(k)(y(k) − Cx̂(k)) + Ny(k + 1) is γ-stable (stable with a decay rate γ) if there

exist matrices G(k) ∈ Rn×p and W (k) ∈ Sn�0, ∀k ≥ 0 such that[
γW (k) (TA−G(k)C)>W (k + 1)>

W (k + 1)(TA−G(k)C) W (k + 1)

]
� 0. (5.26)

Proof. With matrices T and N satisfying (2.42), we reformulate the system dynamics to

be x(k+ 1) = TAx(k) +Ny(k+ 1). Define the state estimation error e(k) = x(k)− x̂(k).

Therefore, we have the error dynamics

e(k + 1) = x(k + 1)− x̂(k + 1) = (TA−G(k)C)e(k).

With a sequence of matrices W (k) ∈ Snx�0, ∀k ≥ 0, we consider the Lyapunov candi-

date function as V (k) = e(k)>W (k)e(k). Given γ ∈ (0, 1), we have
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∆V (k) = V (k + 1)− V (k) = e(k + 1)>W (k + 1)e(k + 1)− e(k)>W (k)e(k)

= e(k)>
(

(TA−G(k)C)>W (k + 1)(TA−G(k)C)− γW (k)
)
e(k).

For any e(k) 6= 0, ∆V (k) < 0 implies

γW (k)− (TA−G(k)C)>W (k + 1)(TA−G(k)C) � 0.

By applying the Schur complement with γW (k) � 0, we thus obtain (5.26).

Since the zonotope reduction operator ↓`,W (·) is used in the proposed zonotopic FE

filter, we also introduce the following lemma to describe the boundedness of the use of

↓`,W (·).

Lemma 5.1 ([26]). Consider H ∈ Rnx×r as the generator matrix of a zonotope 〈p,H〉 ⊂ Rn,

a weighting matrix W ∈ Sn�0 with all its eigenvalues in
[
λ, λ

]
⊂ R. By means of the reduction

operator H̄ =↓`,W (H) with n ≤ ` < r, 〈p, H̄〉 is a reduced zonotope such that 〈c,H〉 ⊆
〈p, H̄〉. Let µ =

(
λ(n+r−`)

λ − 1
)

(n+ r − `) and β = 1 + µ
r . Then, it holds:

∥∥H̄∥∥2

F,W
≤ β ‖H‖2F,W . (5.27)

Proof. The proof of this lemma can be found in [26, Theorem 10].

From the structure of the proposed zonotopic FE filter in Theorem 5.2, due to that

〈pf (k), Hf (k)〉 is a linear projection of 〈p(k), H(k)〉, ∀k ∈ N, the filter dynamics is

bounded by 〈p(k), H(k)〉 as defined in (5.13). Based on presented results above, we

now discuss the boundedness of zonotopic FE for descriptor systems in the following

theorem.

Theorem 5.4 (Boundedness of zonotopic FE). Consider the zonotopic FE fil-

ter 〈pf (k), Hf (k)〉 in (5.15) with 〈p(k), H(k)〉 in (5.13) and the optimal gain G∗(k) in (5.19),

W (k) ∈ Snx�0, ∀k ∈ N and γ ∈ (0, 1) satisfying (5.26). If there exists a bounded sequence ψ(k)

such that

‖TDw‖2F,W (k+1) + ‖G(k)Dv‖2F,W (k+1) + ‖NDv‖2F,W (k+1) ≤ ψ(k), ∀k ∈ N, (5.28)
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and when k →∞, ψ̄ is the upper bound of ψ(k), then the FW -radius of 〈c(k), H(k)〉 is bounded

by

‖H(k + 1)‖2F,W (k+1) ≤ γ̄ ‖H(k)‖2F,W (k) + ψ(k), ∀k ∈ N, (5.29)

with γ̄ = γβ < 1. Moreover, when k →∞, the upper bound ‖H(∞)‖2F,W (∞) is given by

‖H(∞)‖2F,W (∞) ≤
ψ̄

1− γ̄
. (5.30)

Proof. ConsideringH(k+1) and the optimal gainG∗(k), the FW -radius of the zonotope

〈p(k + 1), H(k + 1)〉 is expressed as

‖H(k + 1)‖2F,W (k+1) =
∥∥∥[(TA−G∗(k)C) H̄(k), TDw, −G∗(k)Dv, −NDv

]∥∥∥2

F,W (k+1)
.

Since the optimal gain G∗(k) is obtained by minimizing ‖H(k + 1)‖2F,W (k+1) with

independence of W (k + 1), we thus have

‖H(k + 1)‖2F,W (k+1) ≤
∥∥∥[(TA−G(k)C) H̄(k), TDw, −G(k)Dv, −NDv

]∥∥∥2

F,W (k+1)
,

for any G(k) instead of G∗(k) satisfying (5.26). Then, considering the boundedness

in (5.28), from above inequality, we obtain a sufficient condition

‖H(k + 1)‖2F,W (k+1) ≤
∥∥(TA−G(k)C) H̄(k)

∥∥2

F,W (k+1)
+ ψ(k). (5.31)

Based on Proposition 5.1, with W (k) ∈ Snx�0, ∀k ∈ N and γ ∈ (0, 1) satisfy-

ing (5.26), (TA − G(k)C) is γ-stable. By applying the Schur complement to (5.26), we

obtain γW (k) − (TA − G(k)C)>W (k + 1)(TA − G(k)C) � 0. Since H̄(k) 6= 0 and by

the linearity of the operator tr(·), we have

tr
(
H̄(k)>(TA−G(k)C)>W (k + 1)(TA−G(k)C)H̄(k)

)
< γtr

(
H̄(k)>W (k)H̄(k)

)
.

By the FW -radius definition, we obtain
∥∥(TA−G(k)C) H̄(k)

∥∥2

F,W (k+1)
<

γ
∥∥H̄(k)

∥∥2

F,W (k)
. Therefore, with (5.31), we have

‖H(k + 1)‖2F,W (k+1) ≤ γ
∥∥H̄(k)

∥∥2

F,W (k)
+ ψ(k).
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Based on the condition (5.27) in Lemma 5.1, we obtain

‖H(k + 1)‖2F,W (k+1) ≤ γβ ‖H(k)‖2F,W (k) + ψ(k).

Thus, with γ̄ = γβ, we obtain (5.29). Considering γ ∈ (0, 1), γ̄ ∈ (0, 1) can also hold.

Besides, when k →∞, with the upper bound ψ(∞) = ψ̄, (5.29) becomes

‖H(∞)‖2F,W (∞) ≤ γ̄ ‖H(∞)‖2F,W (∞) + ψ̄,

which implies (5.30).

According to Theorem 5.4, the boundedness of the state bounding zonotope

〈p(k), H(k)〉, ∀k ∈ N defined in (5.13) is provided by the boundedness condition. As a

conclusion, ultimate boundedness of the proposed zonotopic FE is obtained.

5.3 Case Studies

In the following, the simulation results obtained with a numerical example and an

engineering systems are shown to verify the proposed robust FE method for discrete-

time descriptor systems.

5.3.1 Numerical Example

Consider a discrete-time descriptor system modeled by (5.1) with system matrices as

follows:

E =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , A =


0.9 0.005 −0.095 0

0.005 0.995 0.0997 0

0.095 −0.0997 0.99 0

1 0 1 1

 ,
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B = F =
[
F1 F2

]
=


0.1 0

1 1

−0.1 1

−1 0

 , C =


0 1 0 0

0 0 1 0

0 0 0 1

 ,

Dw =


0.3 0 0

0 0.3 0

0 0 0.3

0 0 0

 , Dv =


0.1 0 0

0 0.1 0

0 0 0.1

 .

The initial state x(0) is set as x(0) =
[
0.5, 1, 0, −0.5

]>
and the initial state zono-

tope is given by x(0) ∈ 〈p(0) = x(0), 0.1I4〉. Besides, w(k) ∈ 〈0, I3〉 and v(k) ∈ 〈0, I3〉,

∀k ∈ N. The input signal is set as u(k) =
[
2 sin(k), 3 sin(k)

]>
.

From the general solution (2.43), we choose the matrix S as

S =


1 0 0 0 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1

 ,

and we obtain two non-empty matrices T and N satisfying the condition (2.42) as fol-

lows:

T =


1 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 1

 , N =


0 0 0

0.5 0 0

0 0.5 0

0 0 1

 .

Since rank(F ) = rank(CF ) = 2, we have CTF1 6= 0 and CTF2 6= 0. The fault

detectability indexes are ρ1 = 1 and ρ2 = 1 and the fault detectability matrix is Υ =

CΨ =


0.5 0.5

−0.05 0.5

−1 0

 with Ψ =
[
Tf1 Tf2

]
=


0.1 0

0.5 0.5

−0.05 0.5

−1 0

. Therefore, we obtain the
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matrices to obtain the optimal gain G∗(k) as follows:

Ψ =


0.0973 −0.045

0.2465 0.2737

−0.0449 0.2226

−0.95 0.5

 ,

M =

[
0.2389 −0.2389 −0.8686

0.8925 1.1075 0.3909

]
,

Ω =
[
0.8686 −0.8686 0.4777

]
.

Therefore, the time-varying matrix Ḡ∗(k) can be obtained following (5.21)-(5.23)

and we can find the optimal parametrized gain G∗(k) in (5.19). Besides, as a compar-

ison, according to Remark 2, by satisfying (5.25), we also obtain a stabilizing gain G

as

G =


0.3283 −0.4183 0.0878

0.4907 0.0566 −0.0040

−0.0279 0.4730 0.0073

0.3051 0.6949 1.0678

 .

Consider the actuator faults are in the following scenarios:

f1(k) =

0 k < 80

5 k ≥ 80

f2(k) =

0 k < 100

6sin(0.1k) k ≥ 100

As a result, the simulation has been carried out forNs = 200 sampling steps and the

robust FE results are shown in Figure 5.2 withG∗(k) andG. Note that due to ρ1 = 1 and

ρ2 = 1, there is one-step delay in the estimation of the faults f1 and f2. In the figures, for

allowing a better comparison, we plot the real faults delayed one sample, fi(k−1) with

i = 1, 2. Using the proposed zonotopic FE filter, the punctual values of estimated faults

are obtained altogether with the worst-case bounds of estimated faults are also found in

the estimation intervals under the assumption of unknown-but-bounded disturbances
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Figure 5.2: Actuator-FE results with G∗(k) and G.
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Table 5.1: Comparison between G∗(k) and G.

MSE RMS(rs(Hf ))

G∗(k) 0.0389 1.3049
G 0.0641 2.0470

and measurement noise in given zonotopes.

The actual faults in red dashed lines are bounded by estimation intervals withG∗(k)

and G. From the Figure 5.2, it is obvious that the bounds obtained with G are larger

than the ones obtained with G∗(k). For the comparison of the performance with G∗(k)

and G, the MSE between the actual faults and estimation faults (centers of FE zono-

topes) is computed by

MSE :=
1

Ns

Ns∑
k=1

1

q
‖f(k)− cf (k)‖ ,

and the root mean squared value of rs(Hf (k))) for k = 1, . . . , Ns is computed, which

is denoted by RMS(rs(Hf )). The computation result is shown in Table 5.1. From the

MSE results, the one obtained with G∗(k) is close to zero and smaller than the other,

which means that the estimation results with the optimal gain are more accurate than

the ones obtained with the stabilizing gain G. Since the estimation errors of faults are

bounded in the zonotopes, the obtained bounds with G are larger and the RMS result

provides that the one with G is larger than the other.

5.3.2 The Machine Infinite Bus System

Consider a machine infinite bus system used in [60] and its linear continuous-time

system with parameters described in [166] as follows:

δ̇1 = ω1,

δ̇2 = ω2,

δ̇3 = ω3,

ω̇4 =
1

m1
(p1 − Y12V1V2(δ1 − δ2))− 1

m1
(Y15V1V2(δ1 − δ5) + c1ω1) ,
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ω̇5 =
1

m2
(p2 − Y21V2V1(δ2 − δ1))− 1

m2
(Y25V2V5(δ2 − δ5) + c2ω2) ,

ω̇6 =
1

m3
(p3 − Y34V∞δ3)− 1

m3
(Y35V3V5(δ3 − δ5) + c3ω3) ,

0 = Pch − Y51V5V1(δ5 − δ1)− Y52V5V2(δ5 − δ2)− Y53V5V3(δ5 − δ3)− Y54V5V∞δ5,

where δ1, δ2, δ3 and δ5 denote the phase angles of the generators, ω1, ω2 and ω3 de-

note the speeds of the generators, p1, p2 and p3 are the mechanical powers per unit

that are set as p1 = 0.1, p2 = 0.1 and p3 = 0.1, and Pch is the unknown power

load. From [166], the other parameters are chosen as follows: the inertia m1 = 0.014,

m2 = 0.026 and m3 = 0.02, the damping c1 = 0.057, c2 = 0.15 and c3 = 0.11, the poten-

tial V1 = 1, V2 = 1, V3 = 1, V∞ = 1 and V5 = 1, and the nominal admittance Y15 = 0.5,

Y25 = 1.2, Y35 = 0.8, Y45 = 1, Y35 = 0.7 and Y12 = 1. Besides, the uncertain part of the

admittance is set in the state disturbances. Let us define

x =
[
δ1, δ2, δ3, ω1, ω2, ω3, δ5

]>
, u =

[
p1, p2, p3

]>
.

We use the Euler discretization method with the sampling time ∆t = 0.05s to obtain

the discrete-time descriptor model in the form of (5.1) with system matrices as follows:

E =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0


,

A =



1 0 0 0.05 0 0 0

0 1 0 0 0.05 0 0

0 0 1 0 0 0.05 0

−5.3571 3.5714 0 0.7964 0 0 1.7857

1.9231 −4.2308 0 0 0.7115 0 2.3077

0 0 −3.75 0 0 0.725 2

0.025 0.06 0.04 0 0 0 −0.175


,
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B = F =
[
F1 F2 F3

]
=



0 0 0

0 0 0

0 0 0

3.5714 0 0

0 1.9231 0

0 0 2.5

0 0 0


, C =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

 ,

Dw =



0 0 0 0

0 0 0 0

0 0 0 0

0.3 0 0 0

0 0.3 0 0

0 0 0.3 0

0 0 0 0.3


, Dv =


0.025 0 0 0

0 0.025 0 0

0 0 0.025 0

0 0 0 0.025

 .

Given the initial state x(0) = 0 and the initial state zonotope x(0) ∈ 〈0, 0.01I7〉,
w(k) ∈ 〈0, I4〉 and v(k) ∈ 〈0, I4〉, ∀k ∈ N. The input signal is set as u(k) =[
20, 15, 10

]>
, ∀k ∈ N. From the general solution (2.43), we choose the matrix

S =



1 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0


and we obtain two non-empty matrices T

and N satisfying (2.42) and the matrix T is also non-singular as follows:

T =



0.5 0 0 0 0 0 0

0 0.5 0 0 0 0 0

0 0 0.5 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


, N =



0.5 0 0 0

0 0.5 0 0

0 0 0.5 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1


.
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Therefore, for the first actuator, we have CTF1 = 0 and C(TA)TF1 6= 0. Hence, the

fault detectability index for f1 is ρ1 = 2. Similarly, we have ρ2 = ρ3 = 2. Therefore, we

have the fault detectability matrix Υ as

Υ = CΨ =


0.0893 0 0

0 0.0481 0

0 0 0.0625

0 0 0

 .

Therefore, we can obtain the matrices for the optimal parametrized gain G∗(k) as

follows:

Ψ =



0.1158 0 0

0 0.0582 0

0 0 0.0766

1.7870 0.1717 0

0.1717 0.7702 0

0 0 1.0797

0.0022 0.0029 0.0025


, M =


11.2 0 0 0

0 20.8 0 0

0 0 16 0

 , Ω =
[
0 0 0 1

]
.

In the simulation, consider the actuator fault f(k) in the following

f(k) =


0 k ≤ 98[
15, 12 sin(0.1k), 9.5 cos(0.1k)

]>
k > 98

The simulation has been carried out for Ns = 200 sampling time steps and the

simulation results are shown in Figure 5.3. Because of the fault detectability in-

dices ρ1 = ρ2 = ρ3 = 2, the fault f(k) occurred at time k will be estimated in two

samples. For different time-varying actuator faults, all the estimated results provide

the satisfactory results including the punctual values and the worst-case bounds. By

minimizing the size of the filter zonotope bounding all the uncertainties and propa-

gated estimation errors, the obtained optimal gain G∗(k) reduces the estimation errors.

Furthermore, during the propagations, the obtained FE intervals (centers of FE zono-

topes and the worst-case bounds) are bounded.
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Figure 5.3: Actuator-FE results of the machine infinite bus system.

5.4 Summary

This chapter has proposed a zonotopic FE filter for discrete-time descriptor systems.

The system disturbances and measurement noise are bounded in given zonotopes. To

achieve robustness against system uncertainties and identification of occurred actua-

tor faults, the optimal gain is formulated in a parametrized form and following the

set-based framework in Section 2.1.2, the optimal Kalman gain is computed. Besides,

boundedness of the proposed zonotopic FE is discussed. The proposed zonotopic FE

filter with the optimal FE gain is proved to be ultimately bounded. The proposed

method is tested in two examples. We have compared the results with a stabilizing

gain, where the robustness is not considered. The results with the optimal gain are

shown to be more accurate based on the mean squared error results. As future research,

the proposed FE method could be linked with set-based FI. Besides, the condition for
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estimating sensor faults deserves to be investigated.
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Figure 6.1: Active mode detection based on set invariance theory.

149



150
Chapter 6 : Set-invariance Characterizations and Active Mode Detection for

Descriptor Systems

This chapter presents a general framework of set-invariance characterizations for

discrete-time descriptor systems, and its application to active mode detection. We

use ultimate boundedness of trajectories to obtain set-invariance characterizations for

the systems subject to unknown-but-bounded disturbances. The contributions of this

chapter have been published and submitted in [141] and [142], respectively. The pro-

posed computation of invariant sets relies on partitioning the state space of descriptor

systems considering both causal and non-causal parts. For causal systems, we apply

the ultimate boundedness method to obtain an RPI set and approximation of an mRPI

set. In particular, for the case of non-causal systems, the states are split into causal and

anti-causal. When the invariance property is considered asymptotically for both causal

and anti-causal parts, the standard mRPI notation will be applied. For the computa-

tional result, the mRPI approximations will be discussed. On the other hand, consider-

ing the finite-time trajectories of the anti-causal states, a new notation of invariant sets,

namely RNI, is introduced. For the mode detection problem, we present two strate-

gies that use positive set invariance. The proposed solution is the design of additive

active detection inputs for RPI set separations. These input signals are obtained from

the solution of two mixed-integer optimization problems. We propose two active mode

detection algorithms for online monitoring of the current operating mode. Besides, the

proposed active mode detection mechanism is not only limited for being used in de-

scriptor systems. The designed active detection inputs and algorithms can also be used

for standard dynamical systems.

6.1 Set-invariance Characterizations for Descriptor Systems

We now formulate explicit expressions of several RI sets and approximations of min-

imal RI sets for discrete-time descriptor systems in both causal and non-causal cases.

Furthermore, the convergence time for each RI set is provided.

6.1.1 RPI Sets of Admissible Descriptor Systems

For an admissible descriptor system (1.1), the set analysis will be performed using the

dynamics decomposition form. From Lemma 1.3, there exists a transformation (Q,P )

leading to (1.3) and (1.4)-(1.6). We consider a partition of the matrix P as P = [P1, P2]

with P1 ∈ Rn×r and P2 ∈ Rn×(n−r). The structure of the mRPI set of the admissible
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descriptor system (1.1) is characterized in the following theorem.

Theorem 6.1 (mRPI set of admissible descriptor systems). Consider an admissible descrip-

tor system (1.1) with the dynamics decomposition form in (1.3) and w(k) ∈ W , ∀k ∈ N. The

mRPI set Ωc is given by

Ωc = P1Φ1 ⊕ P2Φ2, (6.1)

where

Φ1 =
∞⊕
i=0

Ãi1B̃w1W, (6.2a)

Φ2 =
(
−A−1

4 A3Φ1

)
⊕
(
−A−1

4 Bw2W
)
, (6.2b)

with Ã1 = A1 −A2A
−1
4 A3 and B̃w1 = Bw1 −A2A

−1
4 Bw2.

Proof. With the transformation (Q,P ), the descriptor system (1.1) is equivalent to a

dynamical system including two subsystems as in (1.5). On the one hand, from (1.5)

we have

x̃1(k + 1) = Ã1x̃1(k) + B̃w1w(k). (6.3)

The stability of (1.1) implies that the matrix Ã1 is Schur. Then, the characterization

of the mRPI set of x̃1 can be obtained as in (6.2a) using the standard LTI notions [64].

On the other hand, from (1.3) we obtain

x̃2(k) = −A−1
4 A3x̃1(k)−A−1

4 Bw2w(k), (6.4)

Since (6.4) is an algebraic equation, we obtain the mRPI set Φ2 by a linear projection

image of the set Φ1 in (6.2a), which leads to (6.2b).

By definition in (1.6) and using the Minkowski addition of the sets obtained via the

linear mapping defined by the matrices P1 and P2, we determine the mRPI set Ωc for

the admissible descriptor system (1.1) as in (6.1).

To approximate the mRPI set in (6.1), we use the ultimate bounds for dynamical

systems in the following lemma which represents also a starting point for an iterative
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approximation of Ωc.

Lemma 6.1 ([62]). Consider the system (1.1) with E = I and a Schur matrix A ∈ Rn×n,

the Jordan decomposition form of A = V ΛV −1 with Λ = diag (λ1, . . . , λn) and the compact

disturbance set as in (1.13). The set

Φ (ε) =
{
x ∈ Rn :

∣∣V −1x
∣∣ ≤ v + ε

}
, (6.5)

where v = (I − |Λ|)−1
∣∣V −1Bw

∣∣w and ε ∈ Rn is a vector with arbitrary small and positive

components, is RPI and attractive for all the trajectories.

Corollary 6.1. Consider the mRPI set Ωc as in (6.1) and the Jordan decomposition Ã1 =

V1Λ1V
−1

1 . An RPI approximation of Ωc is given by

Ωc
0 = P1Φ̂1,0 ⊕ P2Φ̂2,0, (6.6)

where

Φ̂1,0 =
{
x ∈ Rr :

∣∣V −1
1 x

∣∣ ≤ ṽ0 + ε̃
}
, (6.7a)

Φ̂2,0 =
(
−A−1

4 A3Φ̂1,0

)
⊕
(
−A−1

4 Bw2W
)
, (6.7b)

with ṽ0 = (I − |Λ1|)−1
∣∣∣V −1

1 B̃w1

∣∣∣w and ε̃ ∈ Rr is a vector with arbitrary small and positive

components. Moreover, any set Ωc
i = P1Φ̂1,i ⊕ P2Φ̂2,i, i ∈ N where

Φ̂1,i = Ã1Φ1,i−1 ⊕ B̃w1W,

Φ̂2,i =
(
−A−1

4 A3Φ̂1,i

)
⊕
(
−A−1

4 Bw2W
)
,

is also an RPI approximation of Ωc and satisfies Ωc
i ⊇ Ωc

i+1 ⊇ Ωc, i ∈ N with ε > 0 satisfying

dH (Ωc
i , Ω

c) < ε.

Proof. By using Lemma 6.1, the RPI set Φ1 can be approximated by ultimate bounds

as Φ̂1,0 in (6.7a). Therefore, the mRPI set Φ̂2,0 for x̃2 can be obtained through a linear

mapping as in (6.7b).

Using [86, Algorithm 1], an iterative positively invariant approximation of the mRPI

set Ωc
i ⊇ Ωc

i+1 for i ∈ N can be obtained by applying the forward i-step propagation.

Finally, with a constant ε > 0, we have dH (Ωc
i , Ω

c) < ε for a finite index i by exploiting

the convergence of the sequence Ωc
i to Ωc.
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Based on the above results, we present a practical condition for the compatibility

check of any initial state x(0) in the following corollary.

Corollary 6.2. Consider an initial state x(0) for the admissible descriptor system (1.1) in (1.4)-

(1.6). If

x̃2(0) /∈
(
−A−1

4 A3ζ
∗Φ1

)
⊕
(
−A−1

4 Bw2W
)
, (6.8)

where x(0) = P1x̃1(0) + P2x̃2(0) and

ζ∗ = min {ζ ∈ R : x̃1(0) ∈ ζΦ1} ,

then x(0) is not a compatible initial state for (1.1) and it is independent of any disturbance

realization w(0) ∈ W .

Proof. The set in (6.8) is not an RPI set but it also represents a constraint for the de-

scriptor part of states whenever this constraint is violated. As a consequence, it leads

to algebraic equations cannot be satisfied.

Remark 6.1. By Definition 1.11 and its characterization in Theorem 6.1, the consistency

in terms of initial state x(0) with the descriptor model (1.1) can be tested. In presence

of the disturbance w(0) ∈ W , x(0) may not be a compatible initial state. This shows

that x(0) should be understood as an implicit function of w(0), i.e. x(w(0)), by means

of the solution of algebraic equations.

To complete the study of admissible descriptor systems, the computation result of

the convergence time for discrete-time admissible descriptor systems is provided. This

is equivalent to an upper bound for the total number of steps necessary for the system

trajectories to reach the set Ωc from a given initial state.

Lemma 6.2 (Convergence time [117]). Consider the system (1.1) with E = I and a Schur

matrixA ∈ Rn×n, the Jordan decomposition form ofA = V ΛV −1 with Λ = diag (λ1, . . . , λn).

Let ξ(k) = V −1x(k) with ξ(k) = [ξ1(k), . . . , ξn(k)]> and

ξ(k + 1) = Λξ(k) + V −1Bww(k),

and the initial condition ξ(0) = ξ∗ = [ξ∗1 , . . . , ξ
∗
n]> ∈ Rn. Consider the RPI set Φ (ε) in (6.5)
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and define the vector v∗ = [v∗1, . . . , v
∗
n]> with

v∗ = arg min
v̄
|ξ∗ − v̄| subject to |v̄| ≤ v,

where the minimum is computed element-wise. Then, the system trajectory x(k) with the initial

state x(0) = V ξ(0) belongs to Φ (ε), ∀k ≥ Tc, where

Tc = max (`1, . . . , `n) ,

with

`i =


0, if ξ∗i = v∗i ,

max

(
0, log|λi|

(
εi

|ξ∗i−v∗i |

))
, otherwise,

for i = 1, . . . , n.

Based on Lemma 6.2, from any compatible initial state x(0), the convergence time

of the admissible descriptor system (1.1) is given in the following theorem.

Theorem 6.2 (Convergence time of admissible descriptor systems). Consider an admis-

sible descriptor system (1.1), w(k) ∈ W , ∀k ∈ N and the set Ωc
0 ⊇ Ωc in Corollary 6.1. For

a compatible initial state x(0), the system trajectory x(k) belongs to Ωc
0, that is, x̃1(k) defined

in (1.6) belongs to Φ̂1,0, for k ≥ Tca , where Tca is the convergence time corresponding to (1.1)

and depends on x(0) and ε̃.

Proof. Based on Lemma 1.3, x̃2(k) has no dynamics and is a linear mapping of x̃1(k)

and w(k). By directly applying the result in Lemma 6.2 to x̃1(k) with its dynam-

ics x̃1(k + 1) = Ã1x̃1(k) + B̃w1w(k), we can obtain the convergence time Tca .

6.1.2 RPI Sets of Non-causal Descriptor Systems

In case that the descriptor system (1.1) is regular and stable but not causal, there might

exist a unique solution at each time [28]. We now consider a non-causal and stable

descriptor system (1.1) and use the Kronecker canonical form in (1.7) for the RPI char-

acterization.

From Lemma 1.4, a non-causal descriptor system (1.1) can be transformed in (1.7)
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with a nilpotent matrix N̄ satisfying N̄ 6= 0. As introduced in [28, Chapter 8], for

a regular matrix pair (E,A), there exists a suitable transformation (Q̄, P̄ ) with P̄ =[
P̄1, P̄2

]
, P̄1 ∈ Rn×p, P̄2 ∈ Rn×(n−p) yielding to (1.7).

For the transformed system in the Kronecker form, we use the following partition-

ing notations:

x̄(k) =

[
x̄1(k)

x̄2(k)

]
= P̄−1x(k), Q̄Bw =

[
B̄w1

B̄w2

]
, (6.9)

with x̄1(k) ∈ Rp, x̄2(k) ∈ R(n−p).

Based on the Kronecker canonical form in Lemma 1.4, we have that

x̄1(k + 1) = Āx̄1(k) + B̄w1w(k), (6.10a)

N̄ x̄2(k + 1) = x̄2(k) + B̄w2w(k). (6.10b)

The structure in (6.10) highlights the fact that the non-causal descriptor system (1.1)

is stable if and only if the matrix Ā is Schur. We now formulate the mRPI set of discrete-

time non-causal descriptor systems.

Theorem 6.3 (mRPI set of non-causal descriptor systems). Consider a non-causal descrip-

tor system (1.1) with the Kronecker canonical form in (1.7) and w(k) ∈ W , ∀k ∈ N. The mRPI

set Ωn is given by

Ωn = P̄1Θ1 ⊕ P̄2Θ2, (6.11)

with

Θ1 =

∞⊕
i=0

ĀiB̄w1W, (6.12a)

Θ2 =

n−p−1⊕
i=0

(
−N̄ iB̄w2W

)
. (6.12b)

Proof. The non-causal descriptor system can be decomposed in two subsystems,

where (6.10a) is an ordinary difference equation. Hence, the mRPI set of x̄1 can be

constructed as in (6.12a). On the other hand, from (6.10b), the anti-causal state x̄2(k)
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can be propagated as follows:

x̄2(k) = N̄ x̄2(k + 1)− B̄w2w(k),

x̄2(k + 1) = N̄ x̄2(k + 2)− B̄w2w(k + 1),

and after the (n− p)-step iterations, this inequality becomes

x̄2(k) = N̄ (n−p)x̄2(k + n− p)

−
n−p−1∑
i=0

N̄ iB̄w2w(k + i). (6.13)

Since N̄ is a nilpotent matrix with N̄n−p = 0, we know that for k > n − p, N̄k =

0. Therefore, (6.13) becomes x̄2(k) = −
∑n−p−1

i=0 N̄ iB̄w2w(k + i). With w(k) ∈ W ,

∀k ∈ N, the set for x̄2 can be computed by Θ2 =
n−p−1⊕
i=0

(
−N̄ iB̄w2W

)
=
(
−B̄w2W

)
⊕(

−N̄B̄w2W
)
⊕ · · · ⊕

(
−N̄n−p−1B̄w2W

)
. Finally, we derive the mRPI set Ωn for the non-

causal descriptor system (1.1) by the linear mapping as in (6.11).

Remark 6.2. Theorem 6.3 builds on the assumption that the time domain of solution to

the system (1.1) is N. The existence of this infinite-time trajectory leads to a positive

invariance property although the system is not causal. Theorem 6.3 should be recon-

sidered in case that the trajectories are defined only for a finite-time window.

Corollary 6.3. Consider the mRPI set Ωn as in (6.11) and the Jordan decomposition Ā =

V̄1Λ̄1V̄
−1

1 . An RPI approximation of Ωn is given by

Ωn
0 = P̄1Θ̂1,0 ⊕ P̄2Θ2, (6.14)

with

Θ̂1,0 =
{
x ∈ Rnx̄1 :

∣∣V̄ −1
1 x

∣∣ ≤ v̄0 + ε̄
}
, (6.15a)

Θ2 = B̄w2W ⊕ N̄B̄w2W ⊕ · · · ⊕ N̄ s−1B̄w2W, (6.15b)

where v̄0 =
(
I −

∣∣Λ̄1

∣∣)−1 ∣∣V̄ −1
1 B̄w1

∣∣w and ε̄ ∈ Rp is a vector with arbitrary small and positive

components. Moreover, any set Ωn
i = P̄1Θ̂1,i ⊕ P̄2Θ2, i ∈ N where

Θ̂1,i = Ã1Φ1,i−1 ⊕ B̃w1W,
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is also an RPI approximation of Ωn and Ωn
i ⊇ Ωn

i+1 ⊇ Ωn, i ∈ N with ε > 0 satisfy-

ing dH (Ωn
i , Ω

n) < ε.

Proof. From Lemma 6.1, the mRPI set Θ1 related to x̄1 can be approximated by an RPI

set Θ1 ⊆ Θ̂1,0 based on (6.15a). Similar to the proof of Corollary 6.1, we thus obtain Ωn
i

by the iterative forward mapping all by preserving the positive invariance.

For a non-causal descriptor system (1.1), we also present a practical condition for

the compatibility check of any initial state x(0) in the following corollary.

Corollary 6.4. Consider an initial state x(0) of a non-causal descriptor system (1.1). If x̄2(0) /∈
Θ2 where x(0) = P̄1x̄1(0)+P̄2x̄2(0), then x(0) is a compatible initial state for (1.1) irrespective

of any disturbance realization w(0) ∈ W .

Proof. Similar to Corollary 6.2, thus the proof is omitted.

For any compatible initial state x(0) of a non-causal descriptor system (1.1), the

computation result of the convergence time is presented as follows.

Theorem 6.4 (Convergence time of non-causal descriptor systems). Consider a non-

causal descriptor system (1.1) affected by disturbances w(k) ∈ W , ∀k ∈ N and let the

set Ωn
0 ⊇ Ωn. For a compatible initial state x(0), the system trajectory x(k) converges to Ωn

0

in Tcn iterations, that is, x̄1(k) defined in (6.9) belongs to Θ̂1,0, for k ≥ T cn , where T cn is the

convergence time corresponding to (1.1) and depends on x(0) and ε̄.

Proof. In terms of the mRPI set Ωn
0 , again based on Lemma 6.2, the convergence

time T cn of the non-causal descriptor system (1.1) is determined by the partitioned

state x̄1(k) with its dynamics described in (6.10b).

6.1.3 RPI Sets for Finite-time Trajectories of Non-causal Descriptor Systems

As an extension for a non-causal descriptor system (1.1), we now focus on trajectories

defined only on a finite-time window, that is x(k), k ∈ Z[0,L] with L > 0. The dynamics

of a non-causal descriptor system (1.1) obey the equivalent subsystems in (6.10) but the

set-invariance characterization need to be relaxed in order to consider the finite number
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of dynamical constraints as well as the structural particularities (algebraic equations)

related to anti-causality.

The difficulties are related to a combination of causal and anti-causal dynamics

in (6.10a) and (6.10b). For (6.10a), the positive invariance will be the appropriate con-

cept while for (6.10b), the negative invariance offers the suitable framework in a pre-

defined finite-time window L.

Theorem 6.5 (L-step RNI set of non-causal descriptor systems). Consider the anti-causal

subsystem (6.10b). A set Υ is L-step RNI if

Υ ⊇ N̄Υ ⊕
{
−B̄w2W

}
⊇ · · · ⊇ N̄LΥ

L−1⊕
i=0

{
−N̄ iB̄w2W

}
. (6.16)

Proof. From (6.10b), we have x̄2(k) = N̄ x̄2(k + 1)− B̄w2w(k). For a finite time window

L > 0, x̄2(L) ∈ Υ . By the backward propagations of x̄2(k + L) ∈ Υ for any k ∈ Z[−L,0],

we can derive (6.16).

Corollary 6.5. Given L1- and L2-step RNI sets Υ1 and Υ2 with L1 ≥ L2 ≥ n − p satisfy-

ing Υ1 ⊇ Υ2, then for any l ≥ 0, it holds

N̄ lΥ1

l−1⊕
i=0

{
−N̄ iB̄w2W

}
⊇ N̄ lΥ2

l−1⊕
i=0

{
−N̄ iB̄w2W

}
. (6.17)

Proof. The relationship (6.16) holds for l = 0 as Υ1 ⊇ Υ2. Suppose

N̄ lΥ1

l−1⊕
i=0

{
−N̄ iB̄w2W

}
⊇ N̄ lΥ2

l−1⊕
i=0

{
−N̄ iB̄w2W

}
holds for some l ≥ 0. Then, by pre-

multiplying with N̄ and Minkowski summing the set
{
−B̄w2W

}
on both sides, we

obtain N̄ l+1Υ1

l⊕
i=0

{
−N̄ iB̄w2W

}
⊇ N̄ l+1Υ2

l⊕
i=0

{
−N̄ iB̄w2W

}
. The proof is completed by

induction.

Remark 6.3. The set Θ2 in (6.12b) is L-step RNI with respect to (6.10b), ∀L > 0.

Remark 6.4. Consider the set Θ2 as in (6.12b). An L-step RNI set with respect to (6.10b)

can be constructed iteratively starting from Υ0 = Θ2 and for i ∈ Z[1,L], the recursive

construction is given by

Υi =
{
x ∈ X2 : ∃w ∈ W, N̄x− B̄w2w ∈ Υi−1

}
, (6.18)

and X2 ⊆ R(n−p) is a pre-defined set of state constraints for x̄2.
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Theorem 6.6 (L-step RI set of non-causal descriptor systems). Consider a non-causal

descriptor system (1.1) in with the Kronecker form in (1.7). The set

Ω = P̄1Θ1 ⊕ P̄2Υ, (6.19)

guarantees that x(k) ∈ Ω, ∀k ∈ Z[0,L] if x̄1(0) ∈ Θ1 and x̄2(L) ∈ Υ .

Proof. From (6.12a), the set Θ1 is RPI for the dynamics of x̄1(k). If x̄1(0) ∈ Θ1, then

it follows x̄1(k) ∈ Θ1, ∀k ∈ Z[0,L]. Meanwhile, the set Υ is L-step RNI for x̄2(k) as

discussed in Theorem 6.5. If x̄2(L) ∈ Υ , then it follows x̄2(k) ∈ Υ , ∀k ∈ Z[0,L]. Thus, we

obtain Ω by a linear mapping of Θ1 and Υ as in (6.19).

Proposition 6.1. Consider a non-causal descriptor system (1.1) in the restricted equivalent

form (1.7) and define a finite-time trajectory x(k) for k ∈ Z[0,L] with L > 0. If x(0) ∈ Ω0

for L > s = n − p with N̄ s = 0 and N̄ s−1 6= 0, then x(k) ∈ Ω0 for k ∈ Z[0,L−s] and x(k) ∈
Ωk−(L−s) for k ∈ Z[L−s,L], where Ωi = P̄1Θ1 ⊕ P̄2Υi with Υi in (6.18).

Proof. For k ∈ Z[0,L−s], from (6.13), x(k) is contained in the RI set Ω0 = Θ2 as defined

in (6.19). On the other hand, for k ∈ Z[L−s,L], the anti-causal component is contained

in Υi, which can be propagated by using (6.18) leading to the confinement of the finite

time trajectories for L− s < k < L.

Example. Consider the closed-loop dynamical Leontief model described from [178]

in the form of (1.1), where

E =


1 0.5 0.75

0.25 0 0.5

0 0 0

 , A =


1.1328 0.1427 −0.3413

−0.1172 0.6427 −0.1913

0.1328 0.1427 −0.0913

 ,

Bw =


−0.3828 −0.1427 −0.4087

−0.3828 −0.1427 −0.4087

−0.3828 −0.1427 −0.4087

 ,



160
Chapter 6 : Set-invariance Characterizations and Active Mode Detection for

Descriptor Systems

(a) RNI sets of x̄2 (b) RI sets

Figure 6.2: RNI and RI sets of the dynamical Leontief model.

and w(k) ∈ W , ∀k ∈ N with w̄ = [0.2, 0.3, 0.1]>. By applying the computational

method in [41], we obtain a transformation (Q̄, P̄ ) with

Q̄ =


−0.5524 −0.7530 3.8890

0.5393 −1.1540 −0.0193

0 0 4.6456

 , P̄ =


−0.2576 0.6414 0.5385

−0.3391 −0.8020 0.5596

−0.9048 −0.3206 −0.6998

 ,
yielding the Kronecker form in (1.7) for this Leontief model with Ā = 0.0284 and N̄ =[

0 0.4067

0 0

]
. With n − p = 2, by means of (6.18), we obtain the RNI sets Υ0 and Υ1 for

x̄2 = [x̄21, x̄22]> ∈ R2 as shown in Figure 6.2(a). By means of (6.19), we obtain the RI

sets Ω0 and Ω1 of this dynamical Leontief model as shown in Figure 6.2(b). Note that

at each figure, both computed sets are overlapped.

6.2 Active Mode Detection for Multi-mode Descriptor Systems

We now propose an active mode detection mechanism based on the RPI set characteri-

zations for systems with multiple modes of operation and no switch between different

modes. The objective is the identification of the current operating mode in a finite

time with any initial state x(0). This operating mode will be detected from a (finite)

predefined set of modes of operation. The algorithmic procedures are able to detect
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the current operating mode based on the offline design of active detection inputs and

the online monitoring. We formulate two mixed-integer optimization problems to find

suitable active detection inputs for guaranteed set separations in a finite time window.

6.2.1 Problem Formulation in Active Mode Detection

Consider a family of discrete-time descriptor systems corresponding to multiple modes

of operation as

Eσx(k + 1) = Aσx(k) +Bσu(k) +Bσ
ww(k), (6.20)

where Eσ ∈ Rn×n with rank(Eσ) ≤ n, Aσ ∈ Rn×n, Bσ ∈ Rn×m, Bσ
w ∈ Rn×q, and σ ∈

Σd = {1, . . . , d} denotes the constant mode index and u(k) ∈ Rm denotes an additive

input vector at time instant k. It is assumed that the descriptor system (6.20) is regular

and stable for any σ ∈ Σd, then it follows that matrices (Eσ −Aσ) are non-singular.

To simplify the notation for analysis, based on the Kronecker canonical form in

Lemma 1.4, let us denote the partitioning form:

x =
[
x>1 , x

>
2

]>
, (6.21)

where x1 ∈ Rp is the dynamical part corresponding to the dynamics (6.10a) and x2 ∈
R(n−p) is the algebraic part corresponding to the algebraic equation (6.10b). Based on

this notation, we also denote Bσ =
[
Bσ

1
>, Bσ

2
>]> and Bσ

w =
[
Bσ
w1

>, Bσ
w2

>]>.

The objective of the mode detection is to decide which mode σ ∈ Σd is ac-

tive in (6.20) by monitoring the current state x(k) and without prior knowledge on

w(k) ∈ W . The initial state x(0) is assumed to be known and we make use of the RPI

sets of (6.20) of each mode σ ∈ Σd as P̃σ when u ≡ 0. For a state x(k) of (6.20), ∀k ∈ N,

the system (6.20) in the mode i ∈ Σd can be performed by x(k) = x̄i(k) + x̃i(k) with the

nominal and perturbed dynamics

Eix̄i(k + 1) = Aix̄i(k), (6.22a)

Eix̃i(k + 1) = Aix̃i(k) +Bi
ww(k), (6.22b)

where x̄i ∈ Rn and x̃i ∈ Rn.
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The basic passive mode detection mechanism (u ≡ 0) can be summarized as follows:

Proposition 6.2. Consider the compatible initial state x(0) = x̄i(0) + x̃i(0) satisfying

x(0)− x̄i(0) ∈ P̃ i,

and let the set of viable modes be initialized as Σ(0) = Σd. Given the state measured at time k,

if x(k) /∈
{
x̄i(k)⊕ P̃ i

}
, then the mode i is not the current operating mode, that is,

Σ(k) = Σ(k) \ {i}.

Proof. The error dynamics x̃i(k) = x(k) − x̄i(k) satisfy (6.22b) and the initialization

ensures x̃i(k) ∈ P̃ i. If the system (6.20) is operating in mode i, then the positive invari-

ance of P̃ i is guaranteed with respect to (6.22b). Whenever x(k) /∈
{
x̄i(k)⊕ P̃ i

}
, the

positive invariance is violated and the mode i cannot represent the current operating

mode.

Let us also denote the transformation
(
Q̄i, P̄ i

)
for the descriptor system (6.20) at

mode i ∈ Σd such that Q̄iEiP̄ i and Q̄iAiP̄ i satisfy the Kronecker canonical form in (1.7).

From the RPI set characterizations in Section 6.1, the RPI set P̃ i composed by P̃ i =

P̄ i1Φ
i
1 ⊕ P̄ i2Φi2 with P̄ i =

[
P̄ i1, P̄

i
2

]
.

Theorem 6.7. A state x(k) =
[
x1(k)>, x2(k)>

]> in the form of (6.21) is compatible with

respect to the descriptor system (6.20) in an operating mode i ∈ Σd only if x2(k) satisfies

x2(k) ∈ P̄ i2Φi2. (6.23)

Proof. Based on the Kronecker canonical form in (1.7), with the transformation
(
Q̄i, P̄ i

)
in mode i ∈ Σd, for a compatible state x(k), the corresponding algebraic equa-

tion (6.10b) should be satisfied. Thus, the condition (6.23) could be used for checking

the operating mode i ∈ Σd.

Based on the above theorem, we state the following corollary without proof.

Corollary 6.6. For an initial state x(0) =
[
x1(0)>, x2(0)>

]> in the form of (6.21), if x2(0) 6∈
P̄ i2Φ

i
2, then the initial operating mode set Σd(0) = Σd \ {i}.
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Figure 6.3: A passive mode detection example.

Remark 6.5. Assuming Σd(k) = Σd(k − 1) \ {i}, ∀i ∈ Σd such that x(k) − x̄i(k) 6∈
P̃ i, then Card (Σd(k)) is monotonically decreasing as time k increases. However, one

cannot guarantee Card (Σd(k))→ 1.

Example. Consider three modes of operation in (6.20)1. As shown in Figure 6.3, from

an initial state x(0), the mode shown in blue sets is detected after several steps. As time

k increases, the modes in red and green sets are discarded. Note that the system state

trajectory x(k) may always stay in the intersection of three sets during propagations.

In this case, we cannot discard any mode.

This passive mode detection does not guarantee the mode identifiability regardless

of the initial conditions. Indeed,
⋂

σ∈Σd
P̃σ 6= ∅ and thus there exists at least a realization

w(k), ∀k ∈ N, which does not allow to decrease the cardinality of Σd(k) and eventu-

ally identify the current mode of operation. The active mode detection is intended to

enhance the monitoring process by the injection of an excitation signal.

1Numerical values are provided later in the numerical example chapter.
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6.2.2 Design of Active Detection Input

In the following, we would like to design two types of active detection inputs: (i) con-

stant detection input; (ii) a sequence of variable detection inputs. For any two different

modes i, j ∈ Σd, the active detection input denoted by u(k) is designed to guaran-

tee P i(k) ∩ Pj(k) = ∅ for some k ∈ N, where P i(k) and Pj(k) denote the tube of

trajectories parameterized by u(k). From (6.20), the system (6.20) in modes i and j can

be formulated as

Eix(k + 1) = Aix(k) +Biu(k) +Bi
ww(k), (6.24a)

Ejx(k + 1) = Ajx(k) +Bju(k) +Bj
ww(k). (6.24b)

Recall that for u(k) = 0 in (6.24), it follows P i(k) = P̃ i and Pj(k) = P̃j .

Similar to (6.22), assuming the system (6.20) in mode i ∈ Σd, we split x(k) = x̄i(k)+

x̃i(k) with

Eix̄i(k + 1) = Aix̄i(k) +Biu(k), (6.25a)

Eix̃i(k + 1) = Aix̃i(k) +Bi
ww(k). (6.25b)

With an active detection input u(k), ∀k ∈ N, the state x(0) has to be decomposed

as x(0) = x̄i(0) + x̃i(0) (for instance in mode i ∈ Σd) to satisfy the algebraic equations

in the descriptor model (6.20). Based on this observation, we introduce the following

proposition to check whether the initial state x(0) is compatible by testing the satisfac-

tion of algebraic equations in (6.20) for different modes.

Proposition 6.3. Given the set of modes Σd. For any i ∈ Σd such that rank(Ei) < n,

if Bi
2 6= 0, then ∃u(0) such that

x(0) 6∈ P̃ i. (6.26)

Proof. From (6.25b), we know x(0) = x̄i(0)+x̃i(0) and x̃i(0) ∈ P̃ i. Based on the nominal

descriptor dynamics (6.25a), x̄i(0) is also constrained by u(0) at time k = 0. If Bi
2 6= 0,

then x̄i(0) 6= 0. Considering the boundedness of P̃ i and the fact that x(0) = x̄i(0)+x̃i(0),

there exists u(0) acting on x̄i(0) that satisfies (6.26).
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The result in Proposition 6.3 shows that descriptor systems have structural advan-

tages in view of mode detection, that is, the algebraic equations in a descriptor systems

must hold. When an additional detection input signal is applied, by checking (6.26),

some modes can be discarded.

Constant Active Detection Input

We first present the procedure to design a constant active detection input ū 6= 0 that

can be applied to the system (6.20) with a finite detection time NT as

u(k) =

ū, if k ≤ NT − 1,

0, otherwise.
(6.27)

With this constant input ū, (6.25) becomes

Eix̄i(k + 1) = Aix̄i(k) +Biū, (6.28a)

Eix̃i(k + 1) = Aix̃i(k) +Bi
ww(k). (6.28b)

Recall x(0) =
[
x1(0)>, x2(0)>

]>. The initial condition is given by x̄i1(0) = x2(0)

and x̄i2(0) satisfies (6.28a) with ū.

By definition of the RPI set, we denote x̃i(k + 1) ∈ P̃ i, ∀x̃i(k) ∈ P̃ i, ∀w(k) ∈ W ,

∀k ∈ N. The system trajectory in mode i belongs to the parameterized RPI set, that is,

x(k) ∈ P i(k) =
{
x̄i(k)⊕ P̃ i

}
, (6.29)

with x̄i(k) obtained from (6.28a) and ∀w(k) ∈ W , ∀k ∈ N.

From the nominal dynamics (6.28a), the stability is guaranteed when the system

evolves towards the equilibrium point

x̄i∞ =
(
Ei −Ai

)−1
Biū. (6.30)

In the following theorem, we present the set separation condition for the design

of ū.
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(a) The operating mode (b) The other modes

Figure 6.4: Propagated RPI sets with a constant active detection
input ū.

Theorem 6.8. For any two modes i, j ∈ Σd, the sets

P i∞ =
{
x̄i∞ ⊕ P̃ i

}
, Pj∞ =

{
x̄j∞ ⊕ P̃j

}
(6.31)

satisfy P i∞ ∩ P
j
∞ = ∅ if and only if there exists an active detection input ū such that(

(Ei −Ai)−1Bi − (Ej −Aj)−1Bj
)
ū /∈ Sij . (6.32)

Proof. From (6.31), P i∞ ∩ P
j
∞ = ∅ is equivalent to{
x̄i∞ ⊕ P̃ i

}
∩
{
x̄j∞ ⊕ P̃j

}
= ∅. (6.33)

By adding −x̄∞j to the above both sets in (6.33), we obtain{
x̄i∞ ⊕

(
−x̄j∞

)
⊕ P̃ i

}
∩
{
x̄j∞ ⊕

(
−x̄j∞

)
⊕ P̃j

}
= ∅,

which can be simplified as {(
x̄i∞ − x̄j∞

)
⊕ P̃ i

}
∩ P̃j = ∅, (6.34)

leading to (6.32) based on (6.30).
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Let us denote the half-space representation of the set Sij as

Sij = {x ∈ Rn : Hijx ≤ bij} , ∀i, j ∈ Σd,

where Hij ∈ Rpij×n, bij ∈ Rpij , and pij is the total number of the linear constraints

corresponding to Sij .

Based on the set separation condition in (6.32), the constant active detection input

u ∈ [umin, umax] can be obtained by solving offline the following mixed-integer opti-

mization problem.

Problem 6.1 (Constant active detection input).

minimize
u

u2, (6.35a)

subject to

x̄i∞ =
(
Ei −Ai

)−1
Biu, (6.35b)

x̄j∞ =
(
Ej −Aj

)−1
Bju, (6.35c)

umin ≤ u ≤ umax, (6.35d)

Hij

(
x̄i∞ − x̄j∞

)
≥ bij −Mr∆ij + εr, (6.35e)

∆ij =
{
δ1, . . . , δpij

}
∈ {0, 1} , (6.35f)

pij∑
l=1

δl = pij − 1,∀i, j ∈ Σd, i 6= j (6.35g)

with an arbitrary large positive scalar Mr and an arbitrary small positive scalar εr.

The optimal solution of Problem 6.1 defines the constant active detection input ū =

u.

Example. Consider the same three modes of operation in (6.20). By solving Prob-

lem 6.1, a constant active detection input ū can be obtained. A example of the prop-

agated RPI sets with ū is shown in Figure 6.4 for causal and non-causal descriptor

systems. From an initial state x(0), the system state trajectory only stays in the RPI sets

of the red mode during propagations which sometimes stays outside the others (blue

and green modes).
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With the constant detection input obtained from solving Problem 6.1, the guaran-

teed mode detection result is presented in the following theorem.

Theorem 6.9. If ū is a feasible solution of Problem 6.1, then for any initial state x(0), there

exists a finite time NT (x(0)) such that the detection Card(Σd(k)) = 1 is achieved in k ≤
NT (x(0)). Moreover, the convergence time from x(0) to the set P i∞ denoted as T ic can be

computed explicitly for any i ∈ Σd. Then, the upper bound for the detection time is

NT (x(0)) = max
i
T ic . (6.36)

Proof. By the design of ū, it is guaranteed P i∞ ∩ P
j
∞ = ∅ for any two modes i, j ∈ Σd.

For a given initial state x(0) compatible with the mode i in (6.28), one has x(T ic) ∈ P i∞
independent of the operating mode

x
(
NT (x(0))

)
∈ P i∞. (6.37)

But P i∞∩P
j
∞ = ∅ for all i 6= j and (6.37) only holds for the current operating mode.

Variable Active Detection Inputs

The previous result shows that for any initial state x(0), the mode detection can be

achieved in a finite time. However, this finite time or the energy of the active detection

input can be further optimized with variable signals [11]. Assume that the system (6.20)

is in mode i. Considering a horizon Nt, we would like to design offline for a given

initial state x(0), a variable active detection input sequence u∗(l), l = 0, . . . , Nt− 1 such

that the operating mode of (6.20) will be detected in no more than Nt time steps. The

applied active detection input for (6.20) will be

u(k) =

u∗(k), if k ≤ Nt − 1,

0, otherwise.
(6.38)

According to the discussion above, for any mode i ∈ Σd, the state x(k) can be split

to be x(k) = x̄i(k) + x̃i(k), where x̄i(k) and x̃i(k) are propagated based on (6.25).

By definition of the RPI set, we know x̃i(k + l + 1) ∈ P̃ i for l = 0, . . . , Nt − 1,

∀w(l) ∈ W . From (6.25), when the system (6.20), the following condition should be
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satisfied:

x(k + l + 1) ∈ P i(k + l + 1) =
{
x̄i(k + l + 1)⊕ P̃ i

}
,

for l = 0, . . . , Nt − 1.

For any two modes i, j ∈ Σd, the variable active detection input sequence u∗(l) for

l = 0, . . . , Nt − 1 along the horizon of Nt can be designed to guarantee that at least one

of the following condition:{
x̄i(l)⊕ P̃ i

}
∩
{
x̄j(l)⊕ P̃j

}
= ∅, (6.39)

holds for l = 0, . . . , Nt − 1.

We now propose the following offline mixed-integer optimization problem to de-

sign variable active detection inputs satisfying (6.39).

Problem 6.2 (Variable active detection inputs).

minimize
u(0),...,u(Nt−1)

Nt−1∑
l=0

u(l)2, (6.40a)

subject to

Eix̄i(l + 1) = Aix̄i(l) +Biu(l), (6.40b)

Ej x̄j(l + 1) = Aj x̄j(l) +Bju(l), (6.40c)

umin ≤ u(l) ≤ umax, (6.40d)

u(Nt) = 0, (6.40e)

x̄i1(0) = x̄j1(0) = x1(0), (6.40f)

Hij

(
x̄i(l + 1)− x̄j(l + 1)

)
≥ bij −Mr∆ij(l) + εr, (6.40g)

∆ij(l) =
{
δ1(l), . . . , δpij (l)

}
∈ {0, 1}pij , (6.40h)

Nt−1∑
l=0

pij∑
np=1

δnp(l) ≤ Ntpij − 1, (6.40i)

for l = 0, . . . , Nt − 1 and ∀i, j ∈ Σd, i 6= j, with an arbitrary large positive scalar Mr and an

arbitrary small positive scalar εr.
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The optimal solution of Problem 6.2 defines the variable active detection in-

puts u∗(l) for l = 0, . . . , Nt − 1.

The variable detection input sequence obtained from solving Problem 6.2 guaran-

tees that the mode detection result is also presented in the following theorem.

Theorem 6.10. Given an initial state x(0). If Problem 6.2 is feasible for a horizon Nt, then the

detection is guaranteed Card(Σd(k)) = 1 for k ≤ Nt.

Proof. Similar to the proof of Theorem 6.9, the feasible solution ensures that the set

separation P i(k) ∩ Pj(k) = ∅ for some 0 ≤ k ≤ Nt. Thus, the monotonic decrease of

Σd(k) is guaranteed, and consequently the convergence in finite time to Card(Σd(k)) =

1.

Corollary 6.7. Given x(0) and assuming Problem 6.1 is feasible. Then, a feasible solution for

Problem 6.2 exists with Nt ≤ NT (x(0)).

Proof. The feasibility of Problem 6.1 ensures a mode detection in NT (x(0)) steps. The

sequence u(0) = u(1) = · · · = u(NT (x(0))) = ū represents a feasible solution of Prob-

lem 6.2 with Nt = NT (x(0)). Thus, the proof is complete and the optimal solution of

Problem 6.2 can only improve the detection time Nt ≤ NT (x(0)).

6.2.3 Active Mode Detection Algorithms

Based on the above results, we next propose two algorithms for active mode detec-

tion. The first algorithm exploits the separation based on the constant input signal

(Problem 6.1) and achieves the mode detection by updating online the active input ac-

cording to the monitoring of the compatible modes. Overall, this leads to a piecewise

constant signal and a detection time upper-bounded by NT (x(0)).

The second algorithm builds with a variable detection input sequence, which guar-

antees the active mode detection in Nt time steps. This algorithm can be enhanced by

recomputing the active detection input sequence u∗(l) for l = 0, . . . , Nt − 1 after each

update of the set Σd.



6.2 : Active Mode Detection for Multi-mode Descriptor Systems 171

Algorithm 6.1 Active mode detection with constant detection input
1: (Offline procedure) For any Σ ⊆ Σd with Card(Σ) ≥ 2, compute ūΣ as the solution

of Problem 6.1;
2: (Online procedure) Input an initial state x(0);
3: Compute the compatible state x̄i(0) with u(0) = ūΣd(0) and x(0);
4: k = 0;
5: while Card(Σd(k)) > 1 do
6: for i ∈ Σd(k) do
7: if x(k) 6∈

{
x̄i(k)⊕ P̃ i

}
then

8: Σd(k) = Σd(k) \ {i};
9: end if

10: end for
11: u(k) = ūΣd(k);
12: Update the nominal state x̄i(k + 1) by (6.28a);
13: k = k + 1;
14: end while
15: Obtain Card(Σd(k)) = 1 and the operating mode is detected.

Algorithm 6.2 Active mode detection with variable detection inputs
1: (Offline procedure) Given an initial state x(0), solve Problem 6.2 and obtain the active

detection input sequence u∗(l) for l = 0, . . . , Nt − 1;
2: (Online procedure) Initialize Σd(0) = Σd;
3: Compute the compatible state x̄i(0) with u(0) = u∗(0) and x(0);
4: k = 0;
5: while Card(Σd(k)) > 1 do
6: for i ∈ Σd(k) do
7: if x(k) 6∈

{
x̄i(k)⊕ P̃ i

}
then

8: Σd(k) = Σd(k) \ {i};
9: end if

10: end for
11: u(k) = u∗(k);
12: Update the nominal state x̄i(k + 1) by (6.25a);
13: k = k + 1;
14: end while
15: Obtain Card(Σd(k)) = 1 and the operating mode is detected.
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6.3 Numerical Example

Given the descriptor system (6.20) with three modes (d = 3) where system matrices are

given by

E1 =


1 0 0

0 1 0

0 0 1

 , A1 =


0.8558 −0.1692 0.2212

0.0186 0.7203 −0.0929

0.0292 −0.0467 0.7540

 ,

E2 =


1.5 0.8 0

0 1.6 0

0.7 0.8 0

 , A2 =


1.275 0.64 2

0 1.28 2.5

0.595 0.64 1

 ,

E3 =


0.5 0 1.8

0 0 −1.2

0 0 1.5

 , A3 =


0.32 1.8 −2

0 −1.2 1.5

0 1.5 0.8

 ,
from which mode 1 is a standard dynamical system, mode 2 is an admissible descriptor

system, and mode 3 is a non-causal descriptor system. Besides,

B1 =


1

1

0.5

 , B2 =


3.3

2.85

2

 , B3 =


1.3

−0.45

1.9

 ,

B1
w =


1

1

1

 , B2
w =


6.3

6.6

3.5

 , B3
w =


−3.7

3.3

3.9

 ,
and w(k) ∈ W , ∀k ∈ N, whereW is defined in (1.13) with w̄ = 0.01. By means of results

in Section 6.1, the mRPI sets of three modes P̃σ for σ ∈ Σ3 = {1, 2, 3} can be obtained

as shown in Figure 6.5 with u ≡ 0. Since the coordinate origin is the equilibrium point

of three modes, these three mRPI sets P̃σ for σ ∈ Σ3 overlap.

By solving Problem 6.1 with three modes in this example, we can obtain a con-

stant input ū123 = −0.0202. The separated RPI sets Pσ∞ for σ ∈ Σ3 are shown in Fig-

ure 6.6. Besides, from an initial state x(0) = [0, 0, 0]>, using the results in Lemma 6.2,

Theorem 6.2 and 6.4, the convergence time corresponding to three modes can be com-

puted as T 1
c = 22, T 2

c = 33 and T 3
c = 10. Hence, based on Theorem 6.9, the upper
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Figure 6.5: mRPI sets of three modes.

Table 6.1: Computation result with constant active detection input.

U with ū Detection time NT (x(0))

Upper bound 0.1353 33
Online simulations 7.9686× 10−4 3

bound for the detection time is NT (x(0)) = maxi T
i
c = 33. Furthermore, for any two

modes i, j ∈ Σ3, by solving Problem 6.1, constant detection inputs can be obtained:

ū12 = 0.0202, ū23 = 0.0139 and ū13 = 0.0167. These constant detection inputs will be

used in the simulation by applying Algorithm 6.1.

With the same initial state x(0) = [0, 0, 0]>, by solving Problem 6.2 withNt = 10, we

obtain the active detection input sequence u∗(l) for l = 0, . . . , 9. This input sequence

will be used in the simulation by applying Algorithm 6.2.

The comparison result of the constant detection input and variable detection input



174
Chapter 6 : Set-invariance Characterizations and Active Mode Detection for

Descriptor Systems

Figure 6.6: Separated RPI sets of three modes.

Table 6.2: Computation result with variable active detection input.

U with u∗(k) Detection time Nt

Upper bound 0.0047 10
Online simulations 1.5948× 10−4 1

sequence is reported in Tables 6.1 and 6.2. Based on the objective of Problem 6.1 or

Problem 6.2, a measure of the effort used in active detection inputs is given by

U :=

Nh∑
k=0

u(k)2,

whereNh is a detection time. From Theorem 6.9, the upper-bound of the detection time

with the constant detection input isNT (x(0)) = maxi T
i
c = 33. From Theorem 6.10, with

a given initial state x(0), we obtain a feasible solution to Problem 6.2 with the detection
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(a) by Algorithm 6.1

(b) by Algorithm 6.2

Figure 6.7: Active mode detection results.

time Nt = 10. From the above equation with Nh = NT (x(0)) = 33 and Nh = Nt =

10 respectively, we obtain the computation results of energy. In Table 6.2, it can be

seen that with variable detection input sequence, less effort is taken than the one with
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constant detection input.

The online simulations of applying Algorithm 6.1 and 6.2 have been carried out un-

der the same initial conditions: x(0) and w(k) ∈ W within the simulation window. The

results are shown in Figure 6.7. By applying Algorithm 6.1, the operating mode can be

detected at time k = 3 and the system (6.20) is in mode 2 since the state trajectory only

stays in the blue set at time k = 3. By applying Algorithm 6.2, the current operating

mode can be detected at time k = 1 since the state trajectory only stays in the blue set,

which is faster than the previous case. Moreover, from Tables 6.1 and 6.2, the effort

associated with constant detection input is larger than the one with variable detection

input sequence.

6.4 Summary

This chapter has proposed robust invariant set characterizations of discrete-time de-

scriptor systems in both causal and non-causal cases. Two restricted equivalent forms

of descriptor systems have been revisited. Based on these forms, the explicit results

on robust invariant set characterizations are provided. Besides, we have also proposed

an active mode detection mechanism based on set invariance for discrete-time descrip-

tor system with multiple modes of operation. To separate RPI sets of descriptor sys-

tems, we have proposed two methods to design active detection inputs, from which we

present two active mode detection algorithms. Finally, through a numerical example,

the results show that the operating mode can be detected in a finite time by applying

the proposed algorithms.

The future research related to this chapter is summarized in the following potential

directions:

• The unstable descriptor systems with a stabilizing feedback could be considered

in active mode detection. The RI sets can be extended to be controlled RI sets. For

implementing active mode detection, the stabilizing feedback control input and

active detection input can be designed simultaneously.

• The constraints on system states of descriptor systems can be considered, which

should also be taken into account in the design of active mode detection.
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CHAPTER 7

ECONOMIC MODEL PREDICTIVE

CONTROL STRATEGIES BASED ON A

PERIODICITY CONSTRAINT

Periodic behavior appears in some specific systems, such as WDNs [68] and electrical

networks [88]. One specific example stems from the periodic behavior of customer de-

mands in WDNs. A WDN generally consists of a large number of hydraulic elements,

such as storage tanks, pressurized pipelines, pumping stations (including several par-

allel pumps) and valves. EMPC is suitable for optimizing the economic performance

of operations in WDNs, as shown in [20, 85, 94], but these methods do not take specific

advantage of the periodic nature of the consumer demands and energy costs. Taking

into account the daily water demand patterns and periodic electricity prices, periodic

operations can also be considered in the EMPC design.

In this chapter, a novel EMPC framework for periodic operation is first proposed.

We formulate an EMPC optimization problem without setting a terminal state. Hence,

it does not need to know a periodic steady trajectory as a priori knowledge. There-

fore, the economic cost function is optimized with a periodicity constraint considering

all the periodic trajectories including the current state along the prediction horizon.

Unlike the conventional MPC optimization formulation, the current state is set as a

shifted position and not necessarily being the first prediction state. In order to investi-

gate the closed-loop convergence, an optimal periodic steady trajectory can be obtained

by the proposed finite-horizon optimization problem that is called the EMPC planner.

179
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Recursive feasibility and the closed-loop convergence to the optimal periodic steady

trajectory are discussed and an optimality certificate is provided based on the Karush-

Kuhn-Tucker (KKT) optimality conditions. Furthermore, the proposed EMPC frame-

work is extended into the robust case. The tube-based approach is used to achieve

robust constraint satisfaction as well as recursive feasibility in the presence of distur-

bances. The mismatches between the nominal model and the closed-loop system with

perturbations are limited using a local control law. Also under convexity assumption,

robust stability of the closed-loop system is analyzed using KKT optimality conditions

and an optimality certificate is provided to check if the closed-loop trajectories reach

a neighborhood of optimal nominal periodic steady trajectories. The contributions of

this chapter have been published and submitted to [157] and [136], respectively.

7.1 EMPC based on a Periodicity Constraint

Consider the class of discrete-time LTI systems

x(k + 1) = Ax(k) +Bu(k), (7.1)

where x ∈ Rnx and u ∈ Rnu denote the system state vector and the control input vector,

respectively. Moreover, A ∈ Rnx×nx and B ∈ Rnx×nu are system matrices.

For (7.1), system states and control inputs are limited by the following constraints:

x(k) ∈ X , u(k) ∈ U , ∀k ∈ N, (7.2)

where X and U are strictly convex sets of states and inputs.

The economic performance of the system (7.1) is measured by a time-varying eco-

nomic cost function

` (x(k), u(k), pi) , i = mod(k, T ) (7.3)

where T ∈ Z+ is a period index and pi is a time-varying exogenous signal usually

indicating the unit prices, which is stored in a known sequence p as

p = {pi} , i = 1, . . . , T,
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and exhibiting a periodic behavior is implemented using the modulo opera-

tor mod(k, T ). It is worth mentioning that ` (x(k), u(k), pi) is not necessarily a quadratic

function that depends on a sequence of references for tracking. The main control ob-

jective is to minimize the closed-loop economic cost measured by ` (x(k), u(k), pi) that

is a strictly convex function, ∀k ∈ N and the periodicity of this economic stage cost

function is given by `(x(k), u(k), pi) = `(x(k + T ), u(k + T ), pi) with i = mod(k, T ).

In this section, we propose an EMPC formulation that by guaranteeing the closed-

loop system convergence to a periodic steady trajectory minimizes the economic cost

while satisfying all the constraints. A procedure to certify that the reached trajectory is

optimal with respect to the optimal economic cost. In addition, the proposed controller

does not lose feasibility even in the presence of sudden changes in the economic cost.

In principle, MPC controllers are based on solving a finite horizon optimization

problem. If a steady state trajectory is known, a terminal constraint is included forcing

the predictions to reach this steady trajectory at the end of the MPC prediction horizon.

While several controllers proposed in the literature are based on a standard terminal

region/constraint approach, we assume that a steady state trajectory is unknown in

the EMPC design. We propose a different approach in which the MPC controller seeks

to minimize the economic cost function over a single period that includes the current

state. Besides, we propose an optimization problem to find an optimal periodic steady

trajectory that will be used for the analysis of the closed-loop convergence.

The proposed controller guarantees recursive feasibility and hence the closed-loop

convergence even in the presence of sudden changes in the economic cost function,

because the constraints of the optimization problem are independent of this cost func-

tion. Note that standard approaches that depend on terminal constraints often lead to

optimization problems that have to be modified if the economic cost function changes,

which in general lead to a more complex control scheme and even to possible loss of

feasibility issues [69, 80].

7.1.1 EMPC Planner

We first present a finite-horizon optimization problem, the so-called planner, to find

the optimal periodic steady trajectory that will be used for the analysis in the next sec-

tion. Because of the periodic nature discussed above, it can be proved that the infinite
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horizon problem is equivalent to the following finite horizon optimization problem in

which a single period is taken into account [68]. This optimization problem yields the

same solution if the time frame to be considered is any period.

minimize
x(0),...,xT ,

u(0),...,u(T−1)

JT (x, u, p) =

T−1∑
i=0

` (x(i), u(i), pi) , (7.4a)

subject to

x(i+ 1) = Ax(i) +Bu(i), (7.4b)

x(i) ∈ X , (7.4c)

u(i) ∈ U , (7.4d)

x(0) = x(T ). (7.4e)

Remark 7.1. Note that in formulation above, the time step i = 0 is chosen as the first

step of one period. If a different initial step is chosen, the functions would be different

but would lead to an equivalent problem. This choice will affect the proposed EMPC

optimization problem as it will be based on solving a finite horizon optimization prob-

lem in a period that starts at some multiple of T , that is, at the same time step used to

define the planner.

7.1.2 EMPC Controller

The EMPC strategy is proposed by implementing the following optimization problem.

Considering the periodicity, the current state x(k) at time step k ∈ N is inserted into the

shifted position.

minimize
x(0),...,x(T ),
u(0),...,u(T−1)

JT (x, u, p), (7.5a)
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subject to

x(i+ 1) = Ax(i) +Bu(i), (7.5b)

x(i) ∈ X , (7.5c)

u(i) ∈ U , (7.5d)

x(0) = x(T ), (7.5e)

x(j) = x(k), j = mod (k, T ) . (7.5f)

Due to the periodic system behavior, the optimization problem (7.5) is always ini-

tialized from time step i = 0. At each time step, this optimization problem is solved

with a fixed prediction horizon of T . Note that the current state x(k) is not always set

as the first state prediction.

Let u∗(i), i = 0, . . . , T − 1 be a set of optimal solutions of the optimization prob-

lem (7.5) with the initialization of x(k). According to the receding horizon strategy, the

optimal control action u(k) applied to the closed-loop system at time step k is chosen

by

u(k) = u∗(j), j = mod (k, T ) . (7.6)

Remark 7.2. In the formulations of the optimization problems (7.4) and (7.5), the sub-

script k, ∀k ∈ N corresponds to a time instant while the index i with i = 0, 1, . . . , T − 1

refers to a prediction step in the optimization problem.

We now provide the following two remarks regarding the properties of the pro-

posed EMPC controller. The detailed discussion and proof will be presented in the

next section.

Remark 7.3. Note that the constraints of the optimization problem (7.5) do not depend

on the economic cost function, so recursive feasibility is guaranteed even in the pres-

ence of a sudden change.

Remark 7.4. The optimization problem (7.5) is feasible if there exists a feasible periodic

trajectory over a length of T that includes the current state x(k). This implies that

the domain of attraction, that is, the feasibility region of (7.5) is in general very large,

as it is not constrained to reach a specific target in a fixed time as in standard MPC

formulations with terminal regions.
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7.1.3 The Closed-loop Properties with the EMPC Controller

We now discuss the closed-loop properties of the system (7.1) with the EMPC controller

implemented by (7.5). Recursive feasibility and convergence analysis are standard no-

tions in MPC designs [80]. In the following, we summarize and prove these closed-

loop properties of the proposed controller. In particular, under a certain assumption,

the closed-loop system trajectory converges to the optimal periodic steady trajectory

obtained by the planner (7.4).

Theorem 7.1. The system (7.1) in closed-loop with the EMPC implemented by the optimiza-

tion problem (7.5) is stable and converges to a periodic steady trajectory. This trajectory is

equal to the optimal trajectory obtained from the optimization problem (7.4), if there exists a

time step M > 0 such that for any k ≥ M , the dual variables corresponding to the equality

constraints (7.5f) in KKT optimality conditions are zero.

Proof. We first discuss the recursive feasibility of the closed-loop control system.

(Recursive feasibility) If the optimization problem (7.5) is feasible at time step k ∈ N,

then it is also feasible at time step k + 1. Let us denote x(j) and u(j) for j = mod(k, T )

be feasible solutions of the optimization problem (7.5) at time step k ∈ N. All the

constraints (7.5b)-(7.5f) are satisfied at time step k ∈ N. Thanks to the formulation

in (7.5), as discussed in Remark 7.2, constraints (7.5b)-(7.5e) are also satisfied at time

step k + 1 since they do not depend on the time step k + 1.

From (7.5f), we have

x(j) = x(k + 1), j = mod (k + 1, T ) ,

which is equivalent to

x(j + 1) = x(k + 1), j = mod (k, T ) . (7.7)

If the constraint (7.7) holds, then the optimization problem (7.5) is feasible at time

step k + 1. Recall the feasible solutions x(j) and u(j) for j = mod(k, T ) and we know

x(j) = x(k) and u(j) = u(k) hold. From (7.5b), we can derive

x(j + 1) = Ax(j) +Bu(j),
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and with the control action u(k) chosen in (7.6) and the system (7.1), the constraint (7.7)

is satisfied. Thus, we can conclude that the optimization problem (7.5) is also feasible

at time step k + 1.

Since the optimization problem (7.5) is recursively feasible, we denote its optimal

MPC cost as V (k, x, p) at time step k. By optimality [15], we know that

V (k + 1, x, p) ≤ V (k, x, p), (7.8)

which implies the cost of the optimization problem (7.5) is a non-increasing sequence

and therefore the closed-loop system is stable.

Next, we discuss about the convergence of the closed-loop control system.

(Convergence analysis) For the analysis below, we first reformulate the optimization

problems (7.4) and (7.5) into standard convex formulations. Let us define the vector

z =
[
x(0)>, · · · , x(T )>, u(0)>, · · · , u(T − 1)>

]>
, (7.9)

and the cost function JT (x, u, p) becomes JT (z, p). Then, we rewrite the optimization

problem (7.4) to be in a standard convex form as follows

minimize
z

JT (z, p) , (7.10a)

subject to

hr (z) ≤ 0, r = 1, . . . ,m, (7.10b)

gi (z) = 0, i = 1, . . . , n. (7.10c)

where the functions hr for r = 1, . . . ,m correspond to the constraints (7.4c)-(7.4d), and

the functions gi for i = 1, . . . , n represent the prediction model (7.4b) and the peri-

odicity constraint (7.4e). Besides, let us denote the optimal solution of the optimiza-

tion problem (7.10) (the optimization problem (7.4)) as zp, that is, the optimal periodic

steady trajectory.
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By the convexity assumption, it follows that there exist dual variables

λp =


λp1
...

λpm

 , µp =


µp1
...

µpn

 ,
such that the following KKT optimality conditions of (7.10) hold

∇JT (zp, p) +
m∑
r=1

λpr∇hr (zp) +
n∑
i=1

µpi∇gi (zp) = 0, (7.11a)

hr (zp) ≤ 0, r = 1, . . . ,m, (7.11b)

gi (zp) = 0, i = 1, . . . , n, (7.11c)

λpr ≥ 0, r = 1, . . . ,m, (7.11d)

λprhr (zp) = 0, r = 1, . . . ,m. (7.11e)

Similarly, with the vector z defined in (7.9), the optimization problem (7.5) can be

reformulated to a standard convex form as

minimize
z

JT (z, p) , (7.12a)

subject to

hr (z) ≤ 0, r = 1, . . . ,m, (7.12b)

gi (z) = 0, i = 1, . . . , n, (7.12c)

Qjz = x(k), j = mod (k, T ) , (7.12d)

whereQj with j = mod (k, T ) is defined based on (7.5f). Besides, we denote the optimal

solution of the optimization problem (7.12) at time k as z(k). Then, there exist dual

variables

λ(k) =


λ1(k)

...

λm(k)

 , µ(k) =


µ1(k)

...

µn(k)

 , ν(k) =


ν1(k)

...

νnx(k)

 ,
such that the following KKT optimality conditions of (7.12) hold
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∇JT (z(k), p) +
m∑
r=1

λr(k)∇hr (z(k)) +
n∑
i=1

µi(k)∇gi (z(k)) +

nx∑
l=1

νl(k)Qlmod(k,T ) = 0,

(7.13a)

hr (z(k)) ≤ 0, r = 1, . . . ,m, (7.13b)

gi (z(k)) = 0, i = 1, . . . , n, (7.13c)

Qjz(k) = x(k), j = mod(k, T ), (7.13d)

λr(k) ≥ 0, r = 1, . . . ,m, (7.13e)

λr(k)hr (z(k)) = 0, r = 1, . . . ,m, (7.13f)

where Qlj is the l-th row of Qj transposed.

As discussed above, the cost of the optimization problem (7.5) is a non-increasing

sequence. Taking into account that by assumption that the cost function JT (z, p) is

strictly convex, with recalling V (k, x, p) as the cost at time step k, it is not possible that

there exist two consecutive time steps k and k + 1 such that the costs V (k, x, p) =

V (k + 1, x, p) with z(k) 6= z(k + 1) due to optimality. Hence, if V (k + 1, x, p) =

V (k, x, p), ∀k ≥ M , the system (7.1) in closed-loop reaches a periodic steady trajec-

tory, that is, z(M) = z(M + 1) = · · · .

Without loss of generality, we assume that mod (M,T ) = 0. Let us denote zs =

z(M) as this periodic steady trajectory. The solution zs is also feasible for the optimiza-

tion problem (7.4). On the one hand, the closed-loop solution z(k) should be equal to

the optimal solution zs, that is zs = z(k), ∀k ≥ M . On the other hand, zs is an optimal

solution of the optimization problem (7.5) such that zs, ∀k ≥ M satisfies the KKT con-

ditions in (7.13). If the dual variables in ν(k) are zero, then (7.13d) can be disabled. As

a result, zs also satisfies the KKT conditions in (7.11). Hence, we have

zs = zp,

which means that the closed-loop trajectory z(k) converges to the optimal periodic

steady trajectory zp, ∀k ≥M .

Remark 7.5. For a periodic steady trajectory zs, all the constraints of (7.12) must be

satisfied for all k = 1, . . . , T with z(k) = zs and x(k) = Qjz
s with j = mod(k, T ). The

solution provided by the planner (7.10) satisfies this condition by definition with dual
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variables of constraint (7.12d) equal to zero. Although it is rarely found because the

number of constraints is larger than the number of variables, other trajectories may also

satisfy the condition. In this case, the closed-loop system may converge to a periodic

trajectory different from the planner.

7.1.4 Example

To better illustrate Remark 7.5, we present the following example in which the closed-

loop system converges to a periodic trajectory different from the planner.

Consider the following system subject to additive known signal

x(k + 1) = Ax(k) +Bu(k) +Bdd(k),

with the following system matrices

A =

[
0.5 0.5

1 0.25

]
, B =

[
1

1

]
, Bd =

[
1

0

]
,

where d is a periodic known disturbance signal with a period T = 3. The values of

these periodic signals are given by d(k) = di with i = mod(k, T ), where d1 = −0.1,

d2 = −0.2 and d3 = −0.1 for i = 1, 2, 3. This system is controlled by the proposed

EMPC. In this example, consider the formulations in (7.10) and (7.12) and the quadratic

cost function JT (z) = 1
2z
>Hz + f>z with

H = diag
([

1 1 10 1 1 20 1 1 10
])
,

f =
[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]>
,

where diag(·) returns a diagonal matrix with diagonal elements defined by its argu-

ment. The input must belong to the set U = {u ∈ R : −0.1 ≤ u ≤ 0.1} and no con-

straints are considered for the states.

The simulation with this example has been carried out for 60 sampling steps. As

shown in Figure 7.1, the closed-loop trajectories of both entries x1(k) and x2(k) of the

state states converge to a periodic trajectory that are different from the one correspond-

ing to the planner. Figure 7.1.4 shows that the cost of the MPC optimization problem

is a non-increasing sequence that reaches a constant value when the system converges
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Figure 7.1: Closed-loop state trajectory of the example.

to the periodic trajectory. In this case, because this trajectory is different from the op-

timal one computed by the planner, its corresponding cost is higher that the planner.

Besides, we show a measurement (defined by the 2-norm) of the dual variable ν(k) in

Figure 7.1.4. From this figure, we can see that dual variables corresponding to (7.12d)

are not zero at any time since the closed-loop trajectory cannot reach the planner.
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Figure 7.2: Closed-loop MPC cost and a measure of dual variables of
the example.

7.2 REMPC based on a Periodicity Constraint

Consider the system (7.1) subject to additive disturbances

x(k + 1) = Ax(k) +Bu(k) + w(k), (7.14)

where w ∈ Rnx denotes the disturbance vector.
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Remark 7.6. From application point of view, the disturbance vector w(k) may include

two parts as

w(k) = Bdd(k) + w̃(k), (7.15)

where d ∈ Rnd denotes the vector of deterministic disturbances that is considered to

be known also following a periodic behavior, that is d(k) = d(k + T ) with a period

T ∈ Z+ (see, e.g. [18, 146]). w̃(k) is the unknown disturbances vector. Bd ∈ Rnx×nd is a

distribution matrix.

For notation simplicity, we consider that in general w(k) is unknown and the fol-

lowing assumption is made.

Assumption 7.1. The disturbance vector w(k) is assumed to be unknown but bounded by a

convex setW , that is

w(k) ∈ W, ∀k ∈ N. (7.16)

The state and control input vectors, x(k) and u(k) are required to satisfy the con-

straints in (7.2). Denote the nominal state and input vectors as x̄ ∈ Rn and ū ∈ Rm,

which follow (7.1). Let us recall it as

x̄(k + 1) = Ax̄(k) +Bū(k). (7.17)

In principle, the nominal system (7.17) could be used as the prediction model in

an MPC design. However, due to the existence of w(k) ∈ W , ∀k ∈ N, the predicted

states have a mismatch with the real states of the system (7.14). Hence, an REMPC con-

troller is required to guarantee recursive feasibility and robust constraint satisfaction

in closed-loop.

With the strictly convex economic cost function (7.3), the control objective is to min-

imize the closed-loop economic cost
∑∞

k=0 ` (x(k), u(k), pi) of system (7.14) in the pres-

ence of disturbances. The mismatch between the closed-loop perturbed states and the

open-loop nominal predicted states is corrected using a local control law.

We consider that state x of system (7.14) is fully measured and the pair (A,B) is

controllable. Following the so-called tube based approach [82], to guarantee recursive

feasibility, we will use a robustly stabilizing local control gain K ∈ Rnx×nu such that

(A + BK) is Schur stable to tighten the sets X and U . Based on Definition 1.12 and
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Lemma 6.1, let an RPI set Z be a polytopic form as

Z :=
{
x ∈ Rn : Hzx ≤ bz, Hz ∈ Rnx×n, bz ∈ Rnx

}
.

Based on the robust tube-based technique, we refine the sets X and U to be X r and

Ur, where

X r = X 	 Z, (7.18a)

Ur = U 	KZ. (7.18b)

Assumption 7.2. The sets X r and Ur are assumed to be not empty.

7.2.1 REMPC Planner

We now extend EMPC planner in (7.4) to the robust case that provides the best possi-

ble periodic trajectory with respect to the economic cost taking into account the set of

tightened constraints that will be used in the MPC formulation. The resulting trajec-

tory provides the optimal nominal periodic steady trajectory. The control objective of

the proposed robust MPC controller is to drive the closed-loop system to a neighbor-

hood of the optimal nominal periodic steady trajectory while robustly satisfying all the

constraints.

minimize
x̄(0),...,x̄(T ),
ū(0),...,ū(T−1)

JT (x̄, ū, p) =
T−1∑
i=0

` (x̄(i), ū(i), pi) , (7.19a)

subject to

x̄(i+ 1) = Ax̄(i) +Bū(i), (7.19b)

x̄(i) ∈ X 	 Z, (7.19c)

ū(i) ∈ U 	KZ, (7.19d)

x̄(0) = x̄(T ). (7.19e)

By solving the optimization problem (7.19) offline, we can obtain the optimal solu-

tion denoted as x̄∗(0), . . . , x̄∗(T ) and ū∗(0), . . . , ū∗(T − 1).
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7.2.2 REMPC Controller

In addition, the controller formulation is based on a tube-based approach. This implies

two facts: (i) the constraints are tightened using an RPI set; (ii) the periodic trajectory

will not meet through the current state k at prediction time j = mod(k, T ), but instead

the difference has to be included in the aforementioned RPI set. These ingredients,

together with the controller equations aiming to reduce this difference between the

real state and the predicted state, will provide recursive robust constraint satisfaction.

The closed-loop properties of the proposed REMPC controller will be demonstrated in

the following section. In general, the REMPC controller is formulated by the following

optimization problem:

minimize
x̄(0),...,x̄(T ),
ū(0),...,ū(T−1)

JT (x̄, ū, p) , (7.20a)

subject to

x̄(i+ 1) = Ax̄(i) +Bū(i), (7.20b)

x̄(i) ∈ X 	 Z, (7.20c)

ū(i) ∈ U 	KZ, (7.20d)

x̄(0) = x̄(T ), (7.20e)

x(k)− x̄(j) ∈ Z, j = mod (k, T ) . (7.20f)

From the optimal solutions of (7.20), with the local control gain K ∈ Rnx×nu , the

control action at time instant k is chosen as

u(k) = ū(j) +K (x(k)− x̄(j)) , j = mod (k, T ) . (7.21)

Using the formulation in (7.21), the mismatch between the predicted state x̄(j)

for j = mod (k, T ) and the closed-loop state x(k) is attenuated by the local control gain

K. In this case, thanks to constraint (7.20f), the closed-loop state trajectory x(k) can al-

ways stay in a neighborhood of x̄(j), that is the tube defined by the RPI set Z . Besides,

a periodic operation with the proposed REMPC can be achieved using the periodicity
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constraint defined in (7.20e).

Remark 7.7. In the optimization problems (7.19) and (7.20), the index i = 0, . . . , T − 1

is a prediction step along the MPC prediction horizon while the index k ∈ N is a time

instant for the simulation loop.

7.2.3 The Closed-loop Properties with the REMPC Controller

In this section, we study the properties of the system (7.14) in closed-loop with the

robust economic MPC controller implemented by (7.20), which are summarized in the

following theorem.

Theorem 7.2. Consider the system (7.14) with the robust economic MPC controller imple-

mented by (7.20), the following closed-loop properties hold:

(a) If the optimization problem (7.20) is feasible from an initial state x(0), then the closed-loop

system satisfies all the constraints for all possible disturbances satisfying Assumption 7.1

and the optimal MPC cost V (k, x, p), ∀k ∈ N is a non-increasing sequence.

(b) If there exists a time step M > 0 such that for any k ≥ M , all the variables in the dual

vector corresponding to the constraint (7.5f) are zero in the KKT optimality conditions,

then the closed-loop system has reached a neighborhood (enclosed by the RPI set Z) of the

optimal nominal periodic steady trajectory x̄∗(j) with j = mod(k, T ) obtained from the

planner (7.19).

Proof. We first prove the closed-loop property expressed in the statement (a). In the fol-

lowing, we discuss recursive feasibility and robust constraint satisfaction of the closed-

loop system. From these result, the closed-loop convergence is provided.

(Recursive feasibility) Let x̄(j) and ū(j) be feasible solutions of the optimization prob-

lem (7.20) at time instant k. We now prove that the optimization problem (7.20) is also

feasible at time k + 1. From the REMPC formulation in (7.20), the constraints (7.20b)-

(7.20e) do not depend on the time instant k so x̄(j) and ū(j) satisfy them by definition.

The only constraint that depends on the time instant k is (7.20f). From (7.20b), we have

that

x̄(j + 1) = Ax̄(j) +Bū(j), j = mod (k, T ) .
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Taking into account (7.14) and the control action u(k) chosen in (7.21), we can obtain

x(k + 1) = Ax(k) +B
(
ū(j) +K

(
x(k)− x̄(j)

))
+ w(k)

= A
(
x(k)− x̄(j) + x̄(j)

)
+B

(
ū(j) +K

(
x(k)− x̄(j)

))
+ w(k)

= Ax̄(j) +Bū(j) +A
(
x(k)− x̄(j)

)
+BK

(
x(k)− x̄(j)

)
+ w(k).

Therefore, by subtracting above two equations, we have

x(k + 1)−x̄(j + 1) = (A+BK)
(
x(k)− x̄(j)

)
+ w(k).

Considering the constraint (7.20f), we obtain

x(k + 1)− x̄(j + 1) ∈ (A+BK)Z ⊕W ⊆ Z,

for any w(k) ∈ W . Hence, the constraint (7.20f) holds at time k+1 and the optimization

problem (7.20) is also feasible at time k + 1.

(Robust constraint satisfaction) With the feasible solution x̄(j) and ū(j) at the time

instant time k, we know x̄(j) ∈ X 	 Z and ū(j) ∈ U 	KZ for j = mod(k, T ). Taking

into account that constraint (7.20f) holds, the control action u(k) at time instant k is

chosen in (7.21), which implies

u(k) ∈ U 	KZ ⊕KZ ⊆ U .

From constraint (7.20f), we also have

x(k) ∈ x̄(j)⊕Z ∈ X 	 Z ⊕Z ⊆ X .

We have proved that the optimization problem (7.20) is recursively feasible with

an initial condition x(0) and the constraints in (7.2) are satisfied. Since the optimal

solution of the previous time step is always feasible, by optimality, we can know the

optimal MPC cost V (k, x, p) is a non-increasing sequence along the time step k, that is

V (k + 1, x, p) ≤ V (k, x, p) , ∀k ∈ N. (7.22)
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We next prove the closed-loop property in the statement (b). For notation simplic-

ity, we denote a periodic trajectory including states and control inputs over the MPC

prediction horizon as the vector z ∈ Rnx+nu , where

z =
[
x̄(0)> · · · x̄(T )> ū(0)> · · · ū(T − 1)>

]>
, (7.23)

and therefore the economic cost function JT (x̄, ū, p) becomes JT (z, p). For the plan-

ner (7.19), the optimal cost can be denoted as JT (z∗, p). Taking into account that the

optimization problems (7.19) and (7.20) are strictly convex, we reformulate them in the

following convex forms. The optimization problem (7.19) is equivalent to

minimize
z

JT (z, p) , (7.24a)

subject to

hr (z) ≤ 0, r = 1, . . . ,m, (7.24b)

gi (z) = 0, i = 1, . . . , n, (7.24c)

where (7.24b)-(7.24c) are linear constraints. Specifically, (7.24b) corresponds to the re-

fined constraints on states and inputs in (7.18), and (7.24c) corresponds to the nominal

prediction model.

Similarly, the optimization problem (7.20) is equivalent to

minimize
z

JT (z, p) , (7.25a)

subject to

hr (z) ≤ 0, r = 1, . . . ,m, (7.25b)

gi (z) = 0, i = 1, . . . , n, (7.25c)

Hz
j x(k)−Hz

jQ
z(σ)z − bzj ≤ 0, j = 1, . . . , nx, σ = mod(k, T ), (7.25d)

where Hz
j and bzj denote the j-th row of Hz and bz , and Qz(σ)z = x̄(σ) with σ =

mod(k, T ).

For the optimization problem (7.25) at the time instant k, we denote
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z(k) = arg min
z

V (k, x, p) . (7.26)

According to [15, Chapter 5.5.3], we can obtain the KKT optimality conditions

of (7.25) as follows:

∇JT (z(k), p) +

m∑
r=1

λr(k)∇hr (z(k)) +

n∑
i=1

µi(k)∇gi (z(k)) +

nx∑
j=1

νj(k)Hz
jQ

z(σ) = 0,

(7.27a)

hr (z(k)) ≤ 0, r = 1, . . . ,m, (7.27b)

gi (z(k)) = 0, i = 1, . . . , n, (7.27c)

Hz
j x(k)−Hz

jQ
z(σ)z(k)− bzj ≤ 0, j = 1, . . . , nx, σ = mod(k, T ), (7.27d)

λr(k) ≥ 0, r = 1, . . . ,m, (7.27e)

λr(k)hr (z(k)) = 0, r = 1, . . . ,m, (7.27f)

νj(k) ≥ 0, j = 1, . . . , nx, (7.27g)

νj(k)
(
Hz
j x(k)−Hz

jQ
z(σ)z(k)− bzj

)
= 0, j = 1, . . . , nx, σ = mod(k, T ), (7.27h)

where λr(k), µi(k) and νj(k) are dual variables. Denote the following vectors

λ(k) =


λ1(k)

...

λm(k)

 , µ(k) =


µ1(k)

...

µn(k)

 , ν(k) =


ν1(k)

...

νnx(k)

 . (7.28)

In terms of the REMPC planner in (7.19), the equivalent convex form can be written

in a similar form as (7.25) excluding the constraint (7.25d).

Recall the optimal nominal periodic steady trajectory as z∗, where the variable as-

signment for z is defined in (7.23). Therefore, there exists a set of dual vectors λ∗ and µ∗

this optimal solution z∗ also satisfies the KKT optimality conditions:

∇JT (z∗, p) +
m∑
r=1

λ∗r∇hr (z∗) +
n∑
i=1

µ∗i∇gi (z∗) = 0, (7.29a)

hr (z∗) ≤ 0, r = 1, . . . ,m, (7.29b)

gi (z∗) = 0, i = 1, . . . , n, (7.29c)
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λ∗r ≥ 0, r = 1, . . . ,m, (7.29d)

λ∗rhr (z∗) = 0, r = 1, . . . ,m. (7.29e)

(Convergence) We have proved that the optimal MPC cost V (k, x, p), ∀k ∈ N is a

non-increasing sequence. Without loss of generality, we also consider that this opti-

mal MPC cost is lower bounded by the optimal MPC cost corresponding to the plan-

ner (7.19). This implies that as the time step k → +∞, the optimal MPC cost can reach

a constant value. In this case, there exists a time instant M such that for any k ≥ M ,

V (k + 1, x, p) = V (k, x, p) holds, that is, we have reached a constant cost. Because the

economic cost function JT (z, p) is strictly convex, it follows z(k + 1) = z(k) = zs. It

means that after M time steps, we can obtain a steady periodic trajectory zs.

(Optimality Certificate) Since zs is a feasible solution of the optimization prob-

lem (7.25), there exist dual vectors λs, µs and νs such that the KKT optimality con-

ditions (7.27) hold. Recall z∗ and JT (z∗, p) as the optimal planner trajectories and the

economic planner cost obtained by solving the optimization problem (7.25). If the dual

vector νs = 0, then λs and µs satisfy the KKT conditions (7.29) of the planner, which

implies zs = z∗ and V (k, x, p) = JT (z∗, p).

The condition νsj = 0 is called the optimality certificate. If this certificate is satisfied,

then from the trajectory zs = z∗, we denote x̄∗(σ) = Qz(σ)z∗, σ = mod(k, T ) corre-

sponding to states. From constraint (7.5f), we obtain x(k) − x̄∗(σ) ∈ Z for any k ≥ M ,

which means the closed-loop system can reach a neighborhood (enclosed by the RPI

set Z) of the periodic nominal steady trajectory that is obtained by the planner.

Summing up, the proposed controller guarantees robust constraint satisfaction, re-

cursive feasibility and a non-increasing optimal cost of the optimization problem (7.20),

which guarantees the convergence to a neighborhood of the optimal nominal peri-

odic steady trajectory when the optimality certificate is satisfied. Based on the con-

straint (7.5f), as the time step k → +∞, the deviation of the closed-loop system trajec-

tory from the nominal steady trajectory is bounded in the RPI set Z .

Remark 7.8. From Theorem 7.2, we have provided an optimality certificate, that is all

the variables in the dual vector corresponding to the inequality constraint (7.25d) are

zero in the KKT optimality conditions, which can be verified online to known if the

closed-loop convergence is optimal, that is it reaches a neighborhood of the optimal

periodic steady trajectory after M time steps.
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Figure 7.3: Closed-loop trajectory and optimal nominal steady
periodic trajectory with tubes.

Remark 7.9. For some certain systems, due to tight constraints leading to low degree of

freedom, the optimality certificate may be not satisfied. Then, from the recursive feasi-

bility, the corresponding KKT optimality conditions (7.27) can be still satisfied. In this

case, he optimization problem (7.25) is also possible to reach a steady solution zs with

|V (k + 1, x, p)− V (k, x, p)| ≤ ε, ∀k ≥ M̄ with an arbitrary small scalar ε. However,

from the KKT optimality conditions (7.29), zs is a suboptimal solution. Thus, we can

conclude that zs 6= z∗ and VT (k, x, p) > JT (z∗, p).

In this REMPC design, the tube-based technique is used. As an example shown

in Figure 7.3, the optimal nominal periodic steady trajectory obtained by the plan-

ner (7.19) is plotted in red dashed line, the tubes defined by the RPI set Z are plotted

in blue boundaries, and a closed-loop trajectory of system (7.14) with the proposed

REMPC (7.20) is plotted in the blue line. Hence, we can conclude that once the closed-

loop trajectory is close to the optimal nominal periodic steady trajectory, the optimal

solution does not change because the state is in a tube and the input applied in (7.21)

guarantees that it will not go outside the tube because it is defined as an RPI set.
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m

Figure 7.4: Mass model with a spring and a damper.

7.2.4 Example: the Mass Model

The mass model with a spring and a damper taken from [18] is shown in Figure 7.4.

Consider a discrete-time model of this mass model in the form as in (7.14) with the

following system matrices

A =

[
0.9952 0.0950

−0.0950 0.9002

]
, B =

[
0.0048

0.0950

]
, Bd = B,

and w(k) := Bdd(k)+w̃(k), where the displacement and the velocity of the mass model

are chosen as state variables in x, d is a periodic known signal with a period T = 10 that

is given by a sequence d(k) = di with i = mod(k, T ). The disturbance w̃(k) ∈ W , ∀k ∈
W , where the setW is given byW =

{
w ∈ R2 | |w| ≤ [0.005 0.01]>

}
. The constraints

on states and inputs are given by the following sets:

X =
{
x ∈ R2 | |x| ≤ [1.5 0.75]>

}
,

U = {u ∈ R | |u| ≤ 8} .

The local control lawK ∈ R1×2 is computed using the LQR method with weighting

matrices Q =

[
0.1 0

0 0.1

]
and R = 0.01 obtaining

K = [−1.8635 − 2.5172] .

The initial state is x(0) = [−0.0890 0.3570]>. As defined in [18], the economic cost

function is chosen to be `(x̄, ū, p) = 10(x̄2(i)− pi)2 + (ū(i))2 with a periodic signal p. In
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order to test the proposed controller with sudden changes. These sudden changes are

given by choosing different values of periodic signals d and p. In the simulation, the

following two scenarios are considered:

• Scenario 1: For k < 50,

di = 5 cos(
2πi

T
), i = 0, . . . , T − 1,

pi = 0.1 sin(
2πi

T
), i = 0, . . . , T − 1.

• Scenario 2: For k ≥ 50,

di = 0.1 sin(
2πi

T
) + 0.5, i = 0, . . . , T − 1,

pi = 1.2 cos(
2πi

T
), i = 0, . . . , T − 1.

The optimization problems (7.19) and (7.20) are solved using the YALMIP tool-

box [73] and the MOSEK solver [83] in the MATLAB environment. For the previous

scenarios, the planner has been applied. Then, two optimal nominal periodic steady

trajectories and two different optimal MPC costs can be obtained.

The closed-loop simulation has been carried out for 120 sampling time steps with

a sudden change defined in the previous two scenarios. As shown in Figure 7.5, the

unknown disturbance w̃(k) is defined as follows:

w̃(k) =


w̄, k < 40,

w̃ ∈ W, 40 ≤ k < 80,

0, k ≥ 80.

The closed-loop results of state and control input trajectories are shown in Figure 7.6

and Figure 7.7. For k < 50 (Scenario 1), starting from the feasible initial state x(0),

the closed-loop state and input trajectories converge to a neighborhood of the optimal

nominal periodic trajectories obtained by the Planner 1. At the time step k = 50, there

is a sudden change of the periodic signals d and p as defined in Scenario 2. For k ≥ 50

(Scenario 2), the closed-loop system is also feasible and the closed-loop state and input

trajectories converge to a neighborhood of the optimal nominal periodic trajectories

obtained by the Planner 2. From these results, it proves that the closed-loop system is
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Figure 7.5: Sampled bounded disturbances.

always feasible from an initial state even with a sudden change.

Since we have discussed that the recursive feasibility mainly relies on the equality

constraint (7.5f), this constraint should be satisfied with the closed-loop state x(k), ∀k ∈
N. As shown in Figure 7.8, the mismatch between the closed-loop state and the optimal

nominal state should be always inside the RPI set Z . Hence, this result also proves that

the closed-loop system can be always recursively feasible in the presence of unknown-

but-bounded additive disturbances.

Taking into account three different selections of bounded additive disturbances, for

k < 40, the closed-loop state and input trajectories are periodic based on the period-

icity constraints and meanwhile approaching to the optimal nominal periodic steady

trajectories obtained by the Planner 1. For 40 ≤ k < 80, the closed-loop trajectories are

close to the optimal nominal periodic steady trajectories and with the sudden change,

the optimal nominal periodic steady trajectories are switched to the ones obtained by

the Planner 2. Besides, the closed-loop trajectories in Figure 7.6(b) and Figure 7.7 stay

close to the optimal nominal periodic steady trajectories in the tube (defined by the

RPI set Z). For k ≥ 80, since w(k) = 0, the closed-loop state and input trajectories are

able to match the optimal nominal periodic steady trajectories of the Planner 2 after a

transient time.

Moreover, from the offline computation results of the planners, two optimal MPC
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Figure 7.6: Closed-loop state trajectories of the mass model.

costs are also shown in Figure 7.9(a). Since the optimality certificate is verified online,

the closed-loop optimal MPC cost can converge to the optimal one for each scenario

with a sudden change in the closed-loop cost between two scenarios.

As discussed in Theorem 7.2, the optimality certificate is given by checking whether

all the variables in the dual vector ν(k) corresponding to (7.5f) are zero. From the

online closed-loop simulation, these dual variables can be extracted together with the
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Figure 7.7: Closed-loop input trajectory of the mass model.

Figure 7.8: Validation of the recursive feasibility for the mass model.
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Figure 7.9: Closed-loop economic cost and online verification of the
optimality certificate for the mass model.

optimal solution of (7.20) at each time step. To verify the optimality certificate, the 2-

norm of ν(k) as ‖ν(k)‖2 is shown in Figure 7.9(b). For these scenarios considered, two

steady situations are expected to be observed. Despite sudden changes in the controller

design parameters, after a transient time, the 2-norm of ν(k) converges to zero. Also

as shown in Figure 7.6 and Figure 7.7, the closed-loop trajectories are able to reach

a neighborhood of the optimal nominal periodic steady trajectories obtained by each
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planner.

7.3 Summary

This chapter has presented an EMPC framework based on a periodicity constraint for

both nominal and uncertain linear systems. We have proved that with the proposed

both EMPC controllers, the closed-loop system is able to converge to a (neighborhood

of) periodic trajectory and all the system constraints can be satisfied even in the pres-

ence of disturbances and sudden changes in the economic cost function. Besides, an

optimality certificate of the proposed EMPC has been given. We have proved that if

this optimality certificate is satisfied, the closed-loop trajectories can reach (a neighbor-

hood of) the optimal periodic steady trajectory obtained by the planner. In the robust

case, the neighborhood region is defined by the considered RPI set. Besides, in some

particular cases, due to constraints of the corresponding optimization problem are set

too hard, the closed-loop trajectory may be trapped in another periodic trajectory and

the optimality certificate cannot be satisfied.

Some future directions for this EMPC framework could be

• Extension to nonlinear systems;

• Enforcing the convergence to the optimal periodic steady trajectory. In this case,

additional constraint or penalty cost function might be used;

• Application to real case studies.



CHAPTER 8

APPLICATIONS OF ECONOMIC

MODEL PREDICTIVE CONTROL

STRATEGIES FOR COMPLEX SYSTEMS

This chapter presents three application results of EMPC strategies for realistic water

distribution networks and power systems. The control-oriented model of all these sys-

tems is built in a descriptor form. The importance of this chapter is to demonstrate the

proposed EMPC strategies in real case studies. Meanwhile, some additional difficul-

ties encountered from these applications appear. To address these, a two-layer control

strategy and a nonlinear constraint relaxation approach are presented. These contri-

butions have been published in [146], [131] and [137]. Specially, this chapter includes

three parts:

• The first part presents a two-layer NEMPC of WDNs with a real simulation plat-

form. The upper layer includes a real-time NEMPC controller to provide an op-

timal flow set-point while the lower layer is based on a pumping scheduling ap-

proach to translate this optimal set-point into an ON/OFF sequence. The detailed

WDN is simulated in a realistic simulator, namely EPANET;

• The second part proposes an iterative algorithm of nonlinear constraint relax-

ation, which is used to implement with the EMPC controller designed in Sec-

tion 7.1. According to the descriptor model of WDNs, nonlinearities only appear

in algebraic equations and thus the relaxation approach is used to obtain a set of

linear constraints for bounding these algebraic equations;

207
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• The third part presents an extension of the REMPC controller designed in Sec-

tion 7.2 for the descriptor model of smart micro-grids. Since both differen-

tial/difference and algebraic equations are affected by disturbances, in particular,

algebraic equations should be satisfied at any time with unknown disturbances.

In order to guarantee recursive feasibility, the tube-based approach presented in

Section 7.2 is improved using change of variable.

8.1 A Two-layer NEMPC of WDNs

In the section, we present a two-layer control scheme that combines an NEMPC strat-

egy in the upper layer, and a pump scheduling approach in the lower layer. The

NEMPC strategy is implemented by using a nonlinear programming technique and

the pump scheduling approach is realized by solving a local optimization problem.

The proposed two-layer control strategy is validated using a hydraulic simulator that

emulates the real WDN behavior. The D-Town water network, a well known bench-

mark, is used as the case study. The closed-loop simulation is implemented using a

simulation platform with a virtual-reality hydraulic simulator that emulates the online

operation.

8.1.1 Control-oriented Modeling WDNs

We first introduce the control-oriented mathematical modeling methodology of the

WDN including the flow and hydraulic head relations for the different network com-

ponents. As result of the application of this methodology to a particular WDN, a set of

dynamic and static relationships that lead to a system of DAEs in discrete-time ready

to be used in the implementation of the MPC is obtained. A WDN can be decomposed

by a set of constitutive elements: reservoirs/tanks, control valves, pump stations, nodes and

water demand sectors, each being characterized by means of flow-head relations [85, 17].

Tanks

Water tanks supply and provide the entire WDN with the storage capacity of drinking

water to consumers guaranteeing adequate water pressure service. The mass balance
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expression relating the stored volume$ in them-th tank can be written as the discrete-

time difference equation which describes the tank dynamical evolution as

$m(k + 1) = $m(k) + ∆t

∑
i

qin
i,m(k)−

∑
j

qout
m,j(k)

 , (8.1)

where qin
i,m(k) denotes the inflows from the i-th element to the m-th tank and qout

m,j(k)

denotes the outflows from the m-th tank to the j-th element. ∆t is the sampling time

and k is the discrete-time instant. The physical limitation related to the storage volume

in the m-th tank is described as

$m ≤ $m(k) ≤ $m, ∀k ∈ N, (8.2)

where $m and $m denote the minimum and maximum admissible storage capacity,

respectively.

The head model in WDN is typically written in terms of the hydraulic head that

relates the energy in an incompressible fluid to the height of an equivalent static column

of that fluid. Note that the head is usually expressed in units of height.

Using this concept, the head related to the m-th tank with respect to the volume of

storage water inside can be determined as follows:

hm(k) =
$m(k)

Sm
+ Em, ∀k ∈ N, (8.3)

where Sm is the cross-sectional area of them-th tank and Em corresponds the m-th tank

elevation.

Pumping Stations

Pumps located in pumping stations of a WDN can be of several types: fixed-speed

pumps, variable-speed pumps and variable throttle pumps [17] depending on how they

are controlled. We will consider fixed-speed pumps that are the most used in WDN

because of the simplicity of operation, i.e., they are operated in an ON/OFF manner.

However, such simplicity introduces an additional problem when implementing an

MPC strategy since the ON/OFF operation would involve including discrete variables

in the optimization problem.
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Pump flows are regarded as the manipulated variables. Therefore, the flow limita-

tions for pumps can be regarded as input constraints, which can be expressed as

qun ≤ qun(k) ≤ qun, ∀k ∈ N, (8.4)

where qun represents the manipulated flow of the n-th pump (or valve), qun and qun

represent the minimum and maximum flow capacity of the n-th pump, respectively.

These limitations vary with the pressure according to hydraulic flow/head curve of

the pump.

The hydraulic characteristic of a pump is formulated by a nonlinear function related

to the flow and head variables. Therefore, for a pump, the hydraulic characteristics are

bounded by the following constraints:

∆hp(k) = hd(k)− hs(k) ≥ 0, ∀k ∈ N, (8.5a)

hd(k) ∈
[
hd, hd

]
, (8.5b)

hs(k) ∈
[
hs, hs

]
, (8.5c)

where hd(k) and hs(k) denote the suction head and the delivery head at time step k, re-

spectively, with the physical limitation of hd(k) ≥ hs(k). Moreover, hd and hs denote

the minimum values of the suction and delivery heads. hd and hs denote the maximum

values of the suction and delivery heads.

Valves

In terms of the type of valves, there is a variety of options, such as pressure modulating,

non-return, pressure reducing, flow variable control, head control and so on [17]. For

simplicity, valves considered are of the flow-control type.

It is worth mentioning that unlike pumps, the characteristic of valves is difficult to

model, because different degrees of opening of the valve produce different character-

istic curves (head-flow relationships). Due to this, it is not possible to include these

curves in the control-oriented model of a WDN. Then, from control point of view, the

pressure (head) variables are left to be free decision variables within considered bounds

in the closed-loop optimization. Thus, the valve model considers only the following
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constraints

∆hv(k) = hus(k)− hds(k) ≥ 0, ∀k ∈ N, (8.6a)

hus(k) ∈
[
hus, hus

]
, (8.6b)

hds(k) ∈
[
hds, hds

]
, (8.6c)

where hus(k) and hds(k) denote the heads at the nodes around the valve in the up-

stream and downstream at time step k, respectively. hus and hds denote the minimum

values of the upstream and downstream heads. hus and hds denote the maximum val-

ues of the upstream and downstream heads.

Nodes

Water flow through each node of the network must fulfill the mass balance relations.

The expression of the mass conservation in these nodes can be written as

∑
i

qin
i,l(k) =

∑
j

qout
l,j (k), ∀k ∈ N, (8.7)

where qin
i,l represents the non-manipulated inflow through l-th node from the i-th ele-

ment and qout
l,j represents the non-manipulated outflow through l-th node to the j-th

element.

Water Demand Sectors

A demand sector represents water demand of the network users of a certain physical

area. At a certain time step k, the consumed water in the r-th demand sector can be

expressed as dr(k). Since the optimal control strategy is considered as a predictive

one, the short-term demand forecasts are able to obtain by using a suitable demand

forecasting algorithm, such as [96, 140].
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Pipes

Pipes convey water from one place in the network to another. Water inside pressurized

pipes flows from the higher hydraulic head to that at lower head. Therefore, the head-

flow relationship for a pipe can be described as

qi,j(k) = Φi,j (hi(k)− hj(k)) , (8.8)

where Φi,j is a nonlinear relationship, usually described by an empirical equation, for

instance, the Hazen-Williams formula. Hence, the head drop through a pipe ∆hd(k),

∀k ∈ N can be calculated as

∆hd(k) = hi(k)− hj(k) = Ri,jqi,j(k)
∣∣qi,j(k)

∣∣0.852
, (8.9)

with

Ri,j :=
10.67Li,j
C1.852
i,j D4.87

i,j

,

where Li,j , Di,j and Ci,j denote the pipe length, diameter and roughness coefficient,

respectively.

Basically, pipes can be classified based on the flow sense into unidirectional and

bidirectional. Therefore, ∆hd(k), ∀k ∈ N in unidirectional pipe is always positive with

its selected direction while in bidirectional pipe ∆hd(k), ∀k ∈ N could be varying be-

tween positive and negative since the direction of the flow can be reversed.

8.1.2 The Upper Layer: NEMPC

Control-oriented Model of WDNs

Considering the modeling methodology of each component in WDNs presented above,

the control-oriented model of WDNs can be formulated as

x(k + 1) = Ax(k) +Buu(k) +Bvv(k) +Bdd(k), (8.10a)

0 = Euu(k) + Evv(k) + Edd(k), (8.10b)

0 = Pxx(k) + Pzz(k) + ψ (v(k)) . (8.10c)
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Table 8.1: Variable assignments in the control-oriented model of the
WDN.

Type of variable Related symbols Description

Difference states: x hm Hydraulic heads at the storage
nodes (i.e. storage tanks)

Algebraic states: z hd, hs, hi, hj Hydraulic heads at the non-storage
nodes

Control inputs: u qun Manipulated flows through actua-
tors (pumps and valves)

Non-control inputs: v qi,j Non-manipulated flows through
interconnected pipes

System disturbances: d dr Water demands

where x ∈ Rnx represents the vector of hydraulic heads at storage nodes (tanks) as dif-

ference states, z ∈ Rnz represents the vector of hydraulic heads at non-storage nodes as

algebraic states, u ∈ Rnu denotes the vector of the manipulated flows through actuators

(pumps and valves) as control inputs, v ∈ Rnv denotes the vector of non-manipulated

flows through interconnected pipes and d ∈ Rnd corresponds to the vector of water

demands as system disturbances. k ∈ N denotes the time step. All the considered vari-

ables are classified as control-oriented variables in Table 8.1. Moreover, ψ(·) denotes

the vector of nonlinear Hazen-Williams mapping functions.

Remark 8.1. Note that units of all the control-oriented variables need to be consistent.

The unit of the head is selected as m (meter). The water flows is with unit of m3/s

(cubic-meter per second).

Cost Function Settings

According to [94], the operational goals for the management of WDNs include:

• Economic: To provide a reliable water supply with the required pressure mini-

mizing operational costs;

• Safety: To guarantee the availability of enough water with suitable pressure in

each storage tank to satisfy its underlying uncertain water demands;

• Smoothness: To operate actuators (pumps and valves) in the WDN under smooth
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control actions.

The main control objective is to minimize the water distribution costs that includes

water acquisition costs and electrical costs especially for pumping water through the

pumps. The water is delivered into the nodes with different heads (including eleva-

tions) through the distribution network implying many electrical costs on the booster

pumping. Therefore, the cost function associated to this objective can be formulated as

`1(k) := p(k)>u(k), (8.11)

with p(k) = α1 + α2(k), where α1 denotes the single-column vector of static economic

costs of the water depending on the selected water sources and α2(k) represents the

vector of the time-varying electrical costs. Considering the variable daily electrical

tariff, α2(k) is time-varying.

For the purpose of maintaining the water supply in spite of the variation of water

demands between two consecutive MPC sampling steps, a suitable safety head for each

storage tank must be maintained. Hence, the mathematical expression for this objective

is formulated with a quadratic penalty as

`2(k) :=

‖x(k)− xs‖22, if x(k) ≤ xs,

0, otherwise,
(8.12)

where xs denotes the vector of the safety heads for all the tanks and ‖·‖22 is the squared

2-norm symbol. This cost function can also be realized by means of a soft constraint

with adding a slack variable ξ(k), which can be reformulated as

`2(k) := ‖ξ(k)‖22, (8.13)

together with the following soft constraint:

x(k) ≥ xs − ξ(k). (8.14)

The actuators in WDN mainly include pumps and valves. Thus, the flow-based

control actions found by the EMPC controller is required to be smooth in order to max-

imize the lifespan of the actuators. In addition, the use of the smooth operations is

benefit for the lower-layer regulatory performance. To achieve a sequence of smooth
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operations, the slew rate of the control actions between two consecutive time steps is

penalized. Hence, the cost function for this part can be written as

`3(k) := ‖∆u(k)‖22, (8.15)

with ∆u(k) := u(k)− u(k − 1).

In general, the multi-objective cost function that gathers all the control objectives

for the operational management of the WDN can be summarized as

Γ∑
j=1

λj`j(k), (8.16)

where λj denotes the weighting term that indicates the prioritization of control objec-

tives and Γ = 3 is the number of the selected control objectives.

Constraint Settings

In the real components of a WDN, there are the physical limitations associated to the

system variables. Therefore, these constraints should complement the mass balance

principles and physical relations between flow and head introduced in (8.10). In the

following, these physical constraints are described in detail.

The hard constraint on the system states x comes from the tank capacity in the

WDN, which can be described as

xi ≤ xi(k) ≤ xi, ∀k ∈ N, i ∈ [1,m] ⊂ Z+, (8.17)

where xi and xi represent the minimum and maximum heads with respect to capacities

of the i-th tank, respectively. The tank volumetric capacity can be transformed into

hydraulic head constraints by (8.3).

Taking into account the physical capacity of different actuators, the manipulated

flows are under the following constraint

ui ≤ ui(k) ≤ ui, ∀k ∈ N, i ∈ [1, n] ⊂ Z+, (8.18)

where ui and ui denote the minimum and maximum manipulated flows of the i-th
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actuator, respectively. On the other hand, the non-manipulated flows throughout the

interconnected pipes can be limited between vi and vi as

vi ≤ vi(k) ≤ vi, ∀k ∈ N, i ∈ [1, np] ⊂ Z+, (8.19)

where np is the number of pipes.

The heads at some certain non-storage nodes are required to be up to some mini-

mum levels as in the case of the water demand sectors. Hence, the following inequality

constraint is necessary to be considered:

zi(k) ≥ zi, ∀k ∈ N, i ∈ [1, nh] ⊂ Z+, (8.20)

where zi are the required heads at the water demand sectors. Moreover, nh is the total

number of the water demand sectors.

NEMPC Formulation

In general, the NEMPC strategy can be implemented by solving a finite-horizon opti-

mization problem over a prediction horizonHp, where the multi-objective cost function

is minimized subject to the prediction model and a set of system constraints. Thus, the

optimization problem associated to the NEMPC strategy can be formulated as follows:

minimize
x(0),...,x(Hp)

u(0),...,u(Hp−1)

Hp−1∑
i=0

Γ∑
j=1

λj`j(i), (8.21a)

subject to

x(i+ 1) = Ax(i) +Buu(i) +Bvv(i) +Bdd(i), (8.21b)

0 = Euu(i) + Evv(i) + Edd(i), (8.21c)

0 = Pxx(i) + Pzz(i) + ψ
(
v(i)

)
, (8.21d)

x ≤ x(i) ≤ x, (8.21e)

u ≤ u(i) ≤ u, (8.21f)

z(i ≥ z (8.21g)
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x(i) ≥ xs − ξ(k + i), (8.21h)

x(i) = x(k). (8.21i)

Since the control-oriented model of the WDN includes the nonlinear relations

in (8.21d), the above optimization problem naturally becomes nonlinear. Thus, the

optimization problem (8.21) should be solved using a suitable nonlinear programming

technique. Assuming that the optimization problem (8.21) is feasible, the sequence of

control actions is

u∗ =
[
u∗(0)>, · · · , u∗(Hp − 1)>

]>
. (8.22)

And then by deploying the receding-horizon strategy, the optimal control action at

time step k is the first component of the sequence of control actions denoted by

u(k) = u∗(0). (8.23)

8.1.3 The Lower Layer: Pumping Scheduling Approach

In practice, the main energy consumption is used for pumping water through the

pumping stations. In case of the pumps with ON/OFF operation, the flows in (8.22) be-

come discrete values and subsequently (8.21) becomes a nonlinear mixed-integer prob-

lem. In the lower layer, we propose the following pumping scheduling approach. De-

note Q∗j = uj(k), ∀j ∈ [1, ns] ⊂ Z+ with
∑ns

j=1 uj(k) = u(k) as the optimal hourly flow

set-point of the j-th pumping station obtained from the upper layer, where ns is the

total number of pumping stations in WDN. The control objectives of the lower layer

can be summarized as follows:

• To provide enough water to reach the optimal water flow set-points.

• To use the minimum possible number of parallel pumps and avoid too many

switches in order to maximize their working lives.

In terms of the j-th pumping station, the pumping flow of the i-th pump is affected

by the factors of the suction and delivery heads. Hence, if these boundary heads are

given, the actual flow qri,j through the pump is considered within an interval, which
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can be formulated as

qri,j ∈
[
qni,j − σi,j , qni,j + σi,j

]
, (8.24)

where qni,j denotes nominal pumping flow produced through the i-th pump, and σi,j

represents the variance of the pumping flow depending on the uncertainty of the

boundary heads. It is assumed that the actual flow qri,j can be measured. In some cases,

only one pump cannot provide enough flows to maintain the optimal flow set-point.

Hence, parallel pumps are set in each pumping station. Ideally, the optimal pumping

flow Q∗j can be satisfied when all the pumps are open in the lower layer such that the

following condition holds:

Q∗j∆tu =

ncj∑
i=1

Hl∑
t=1

qri,j∆tl, (8.25)

where ncj is the total number of parallel pumps in the j-th pumping station and Hl is

the control horizon of the lower layer.

Consider that the parallel pumps are operated in ON/OFF way, the binary variable

χi,j(t) ∈ {0, 1} at time step t is chosen, where χi,j(t) = 0 describes the OFF-status and

χi,j(t) = 1 presents the ON-status. Therefore, the actual flow of the i-th pump can be

computed by

qi,j(t) = χi,j(t)q
r
i,j , ∀i ∈

[
1, ncj

]
⊂ Z+, ∀t ∈ [1, ns] ⊂ Z+. (8.26)

Furthermore, the minimum usages of required parallel pumps and switches are

necessary to be taken into account. It is considered that the parallel pumps are selected

in a sequence order from i = 1 to i = ncj . Therefore, the required parallel pumps for

j-th pumping station can be constrained by the following condition:

χi+1,j(t) +
(
1− χi,j(t)

)
≤ 1, ∀i ∈

[
1, ncj

]
⊂ Z+, (8.27)

which means if i-th pump is not used, then i + 1-th pump is also not used. Addition-

ally to (8.27), the minimum required parallel pumps with their selection orders can be

decided by maximizing the following term:

Jp =

ncj∑
i=1

Hl∑
t=1

µiχi,j(t), (8.28)

where µi > 0 for ∀i ∈
[
1, ncj

]
⊂ Z+. Considering the pump operations in an order, the
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lexicographic prioritization is used to set this sequence of weights as µ1 > · · · > µncj .

On the other hand, during total horizon of the lower layer, the used parallel pumps

are switched once in order to get smooth control actions. The required pumps are used

at the beginning and then turned off when the optimal set-point is satisfied. Therefore,

this objective can be realized by

χi,j(t+ 1)− χi,j(t) ≤ 0, ∀t ∈ [1, ns] ⊂ Z+, (8.29)

which means that the required parallel pumps can be switched from ON-status to OFF-

status only once.

The pump scheduling approach in the lower layer can be implemented by solving

the following optimization problem:

minimize
χi,j(t)

φv

∥∥∥V p
j − V

∗
j

∥∥∥2

2
− φp

ncj∑
i=1

Hl∑
t=1

µiχi,j(t), (8.30a)

subject to

V p
j =

ncj∑
i=1

Hl∑
t=1

qi,j(t)∆tl, (8.30b)

V ∗j = Q∗j∆tu, (8.30c)

qi,j(t) = χi,j(t)q
r
i,j , (8.30d)

χi+1,j(t) +
(
1− χi,j(t)

)
≤ 1, (8.30e)

χi,j(t+ 1)− χi,j(t) ≤ 0, (8.30f)

χi,j(t) = {0, 1} , (8.30g)

where the weight φv and φp are prioritization weights, where φv should be chosen to be

much bigger than φp because the main objective is to reach the optimal flow set-point

from the upper layer.

By solving the optimization problem (8.30) for each pumping station, the pump

scheduling χ∗i,j(t) for ∀i ∈
[
1, ncj

]
⊂ Z+, ∀j ∈ [1, ns] ⊂ Z+,∀t ∈ [1, ns] ⊂ Z+ can be

obtained for the lower layer.



220
Chapter 8 : Applications of Economic Model Predictive Control Strategies for

Complex Systems

8.1.4 Application: the D-Town WDN

Description

The benchmark of D-Town network contains 388 water demand sectors, 405 links

(pipes), 7 tanks, which contains multiple unidirectional and bidirectional links. The

required pressure for all the water demand sectors is selected to be equal to 20 meters.

The unidirectional pipes and water demand sectors inside can be aggregated into its

root node. Therefore, the aggregate topology of the D-Town water network is shown

in Figure 8.1. The required water demands in the root nodes are modified by aggregat-

ing the demands from a branch of unidirectional pipes and nodes while the required

head of a branch is equivalent to the maximum head in this branch taking the head-loss

through the pipes into account as well.

The required hydraulic head at each demand node is time-varying during one day

since the head-loss through the pipes has been taken into account and the head de-

pends on the water flow. For the control objectives associated to management of this

case study, the prioritization is determined considering the economic objective is the

most important and then the safety objective is more significant than the smoothness

objective.

The online simulation has been carried out in a PC with the CPU of Intel (R) Core

(TM) i7-5500U 2.4GHz, the memory of 12GB and MATLAB R2014a.The NEMPC strat-

egy is implemented by means of the GAMS1 and the CONOPT3 nonlinear solver, the

EPANET2 hydraulic simulator and MATLAB that is used for the communication be-

tween the GAMS model of the NEMPC controller and the EPANET hydraulic simula-

tor. Besides, the proposed pump scheduling approach is also implemented in the MAT-

LAB environment. The mixed-integer optimization problem of the pump scheduling

approach is solved by using the MOSEK solver [83]. The topological graph of the com-

munication is shown in Figure 8.2. The database includes the water demands data and

electrical tariff data.

1General Algebraic Modelling System (GAMS) is a programming language for mathematical opti-
mization and able to solve the complex, large-scale and nonlinear optimization problems [38].

2EPANET software is a hydraulic simulator used for the hydraulic behavior analysis of a WDN.
The WDN is built in EPANET consisting of water storage tanks/reservoirs, pumps, valves, pipes and
nodes [105].
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Figure 8.1: Aggregate topology of the D-Town WDN.

SimulatorOptimiser

MATLABGAMS EPANET

DB

Figure 8.2: Online simulation platform.

Simulation Results

The optimization problem (8.21) is solved using GAMS programming while the op-

timization problem (8.30) is solved using linear programming. The MPC prediction
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horizon is chosen as 24 with the sampling time of 1 hour in the upper layer. In the

lower layer, the computational horizon of the optimization problem is chosen as 60

with the sampling time of 1 minute. In the upper layer, the prioritization weights for

economics, safety and smoothness objectives are chosen as 10, 1 and 0.1, respectively.

In the lower layer, the prioritization weights φv and φp are chosen to be 10 : 1. For the

pumping station having three parallel pumps, the weights of µ1, µ2 and µ3 are chosen

as 1.5, 1 and 0.5. For the pumping station having two parallel pumps, the weights of

µ1 and µ2 are chosen as 1 and 0.5. The tolerance of the nonlinear solver is set as 10−4.

The average single-step computation time of solving the upper layer nonlinear opti-

mization problem is 53.21 seconds, being considerably smaller than the sampling time

of 1 hour used in this layer. On the other hand, the average single-step computation

time of solving the lower layer mixed-integer optimization problem is 4.19 seconds,

being also smaller than the sampling time of 1 minute used in this layer. Thus, the

proposed strategy can be applied in real-time.

Figure 8.3 shows the head evolutions of selected storage tanks. The dash blue line

denotes the optimal hydraulic heads of the storage tanks. It is obvious that the head has

daily quasi-periodic feature mainly because of the daily water demands and electricity

tariffs. Moreover, results from the EPANET hydraulic simulator are plotted in the cyan

lines. By means of this state comparison between the EPANET simulator and optimizer,

it is clear that the optimal system trajectories can be reached with the two-layer control

strategy.

The selected average hourly water flows of the pumping stations are shown in the

Figure 8.4 in the magenta lines. The average hourly water flow of a pumping station

can be calculated by

Q̄j =

∑Nq
i=1 q̄i,j
60

. (8.31)

The water flow in Figure 8.4(a) is associated to the pumping station S1 and the

average water flow is approximately similar and sometimes below the optimal flow

set-point because the actual pumping flow is varying during each control interval de-

pending on the boundary heads. Furthermore, the patterns of electrical tariff are added

for reference in all the plots in Figure 8.4. In general, the optimal flows are small when

the electricity price is expensive. On the contrary, the flows are increasing when the

electricity price becomes cheaper.
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Figure 8.3: Results of the head evolutions of storage tanks.

Figure 8.5 shows the optimal flow set-point and actual flow evolution of the valve

in D-Town water network. The type of the valve is flow-controlled. The simulation

flow is approximately tracking the optimal flow set-point. Hence, there is single-layer

control for the valve and the optimal flow set-point is applied to the valve during one

hour at a MPC step from the upper layer. But from this plot, there are small differences

between the actual flow and optimal flow set-point.

Figure 8.1.4 presents the economic cost achieved by the EMPC controller at each

sampling time (EMPC cost). It can be observed, that after a transient, the cost con-

verges to a stable small cost. These results are confirmed with the results presented in

Figure 8.1.4 where the EMPC cost obtained using the EPANET simulator to emulate

the real network is presented. From this last figure, it can be observed that the EMPC
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Figure 8.4: Results of the flows through pumping stations.

cost converges to a stable mean value. The cost fluctuations around this mean value

are due to the mismatch between the control-oriented model used by the EMPC and

the high fidelity hydraulic cost used by EPANET.

Table 8.2 proposes the safety tank water heads used in the online simulation to

cope with the underlying stochastic water demands, which is considered as the initial

conditions to compute the operational costs of the WDN.

The weekly electrical costs for the pumping water can be calculated by the mathe-

matical formulation below:

κw :=
168∑
i=1

Λ∑
j=1

ρwg∆Have
j (i)ϕe(i)Q

ave
j (i)

η(i)
, (8.32)
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Figure 8.6: Economic costs with NEMPC.

where κw denotes the average weekly electricity costs for the utilization of the total

pumping stations. ∆Have denotes mean head supplied by the pump and Qave repre-

sents the produced flows by the pump.

The annual electrical cost can be calculated by

κa :=
52× κw

%
, (8.33)

where % is the peak-day factor of 1.3 because the variability of the electric tariff, of the
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Table 8.2: Safety heads of storage tanks.

Tank Safety head (m)

T1 72.25
T2 65.42
T3 114.38
T4 133.90
T5 106.41
T6 102.83
T7 102.97

demand, and of any other design variable, during the year and the lifetime of this case

study is not considered.

As a result, the annual operational cost of the D-Town water network is approx-

imated to be 104, 482AC. Compared to previous similar results for the D-Town net-

work 117, 740AC by using the successive linear programming in [91] and approximately

168, 118AC by using the pseudo-genetic algorithm in [52], the two-layer NEMPC strat-

egy is able to bring less operational costs for the management of the D-Town water

network.

8.2 EMPC with Nonlinear Constraint Relaxation for WDNs

The periodicity in WDNs can be observed as in Figure 8.3. In order to implement

the EMPC controller proposed in Section 7.1, a linear descriptor model of WDNs is

required. We now propose an iterative algorithm to relax the nonlinear algebraic

equation (8.10c) by linear inequality constraints. For the relaxation of nonlinear con-

straints (8.10c), two cases are considered as follows.

Let us denote vi, i = 1, . . . , nv as the water flow for the pipe i and ∆hi, i = 1, . . . , nv

as the i-th row of Pxx + Pzz. According to [105], ψ (vi) = αivi |vi|β−1. Therefore, the

head-flow relation in the nonlinear algebraic equation (8.10c) can be explicitly written

as

0 = αivi |vi|β−1 + ∆hi, (8.34)

where αi ∈ R+ is the pipe resistance coefficient for the i-th nonlinear equation due to
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friction with the pipe, and β is flow exponent that depends on the particular approx-

imation, such as in Hazen-Williams, Darcy-Weisbach and Chezy-Manning formulas

but, in all cases β > 1 according to ([105], Table 3.1).

The interconnected pipes in WDNs may be unidirectional or bidirectional. For the

unidirectional pipe with a chosen positive direction, (8.34) becomes

0 = αiv
β
i + ∆hi, (8.35)

with

0 ≤ vi ≤ vi, (8.36)

where vi denotes the upper bound of the i-th flow.

The goal of dealing with these nonlinear algebraic equations in (8.34) is to relax

them obtaining a set of linear inequality constraints using an iterative over-bounding

algorithm. Note that finding these linear constraints with a proper constraint relaxation

method is different than the traditional linearization method with a chosen operating

point.

8.2.1 Nonlinear Constraint Relaxation for Unidirectional Pipes

We first discuss the relaxation for unidirectional pipes. By choosing a positive direction

of the flow vi, the nonlinear term vi |vi|β−1 becomes vi |vi|β−1 = vβi with vi ≥ 0. As

shown in Figure 8.7, the objective is to find a set of upper and lower linear bounds for

over-bounding this term (shown in blue solid line).

The nonlinear algebraic equation (8.35) is equivalent to the satisfaction of the fol-

lowing inequalities:

αiv
β
i + ∆hi ≥ 0, (8.37a)

αiv
β
i + ∆hi ≤ 0, (8.37b)

in which vβi is a convex function due to β > 1. From 0 ≤ vi ≤ vi, we have that vβi ≤
vβ−1
i vi. Therefore, the inequality (8.37a) can be relaxed considering (8.36) as

αiv
β−1
i vi + ∆hi ≥ 0. (8.38)
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On the other hand, from the convex nature of vβi , we have that every linearization

constitutes a lower bound (dashed dotted lines in Figure 8.7). The constraint (8.37b) can

be approximated by considering Na sampled operating points v?i,j for j = 1, 2, . . . , Na

as

0 ≥ αivβi + ∆hi ≥ αi(ajvi + bj) + ∆hi, (8.39)

in which parameters aj and bj are given by

aj = βv?i,j
β−1, (8.40a)

bj = (1− β)v?i,j
β. (8.40b)

In general, for a unidirectional pipe, the nonlinear algebraic equation (8.35) can

be relaxed by using Na + 1 inequality constraints as presented in (8.38) and (8.39).

Figure 8.7 shows graphically the obtained relaxation. As a potential improvement, this

relaxation can be refined iteratively. The iterative algorithm of nonlinear constraint

relaxation can be improved by adding a penalty term in order to refine the region of vi.

As shown in Figure 8.8, the upper bound can be moved by a scalar τi > 0. Therefore,

the region of vi is refined to be
[
vai , v

b
i

]
⊆ [0, vi].

Considering a slack decision variable τi, (8.38) can be replaced by

αiv
β−1
i vi + ∆hi − τi ≥ 0, (8.41a)

τi ≥ 0, (8.41b)

where a small positive τi can be found in the MPC optimization loop. Hence, the cost

function for the scalar τi(j) varying in the MPC prediction horizon Hp = T can be

penalized as

`e(τi(j)) := λe(j)τi(j), (8.42)

where λe(j), j = 1, 2, . . . , T is a weight that can be set as a forgetting (monotonically

decreasing) factor along the MPC prediction horizon T .

8.2.2 Nonlinear Constraint Relaxation for Bidirectional Pipes

As shown in Figure 8.9, the goal is to relax the nonlinear algebraic equation for bidi-

rectional pipes also by linear inequality constraints. As in the unidirectional case, the
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Figure 8.7: Relaxation for vβi in unidirectional pipes: original
function vβi is plotted in blue bold line, its upper bound is
in dashed line and its lower bounds are in dashed dotted
lines.

nonlinear algebraic equation (8.34) is equivalent to

αivi |vi|β−1 + ∆hi ≤ 0, (8.43a)

αivi |vi|β−1 + ∆hi ≥ 0. (8.43b)

From (8.43a) and (8.43b), we can see that these two inequality constraints are not

convex along vi ≤ vi ≤ vi. In order to obtain a convex relaxation for (8.43a), we

consider lower bounds for |vi|β−1 with vi ≤ vi ≤ vi in the following form:

aljvi + blj ≤ vi |vi|
β−1 , j = 1, . . . , Nb + 1, (8.44)

where alj and blj for j = 1, . . . , Nb + 1 are two scalars. With a given aj , the condition for

the parameter bj should be satisfied:

blj ≤ min
vi≤vi≤vi

(vi |vi|β−1 − aljvi), (8.45)
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Figure 8.8: Improving nonlinear constraint relaxation for
unidirectional pipes.

and let us consider the right side of the previous inequality:

M := min
vi≤vi≤vi

(vi |vi|β−1 − aljvi) (8.46)

= min {M+,M−} , (8.47)

where

M+ = min
0≤vi≤vi

(vβi − a
l
jvi), (8.48)

M− = min
vi≤vi<0

(vi(−vi)β−1 − aljvi). (8.49)

We now summarize the way to find alj and blj for j = 1, . . . , Nb + 1. The minimum

al1 along vi ≤ vi ≤ vi can be determined by

al1 = β
(
vl,?i

)β−1
, (8.50)
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where vl,?i can be obtained by satisfying the following condition

β
(
vl,?i

)β−1
=

(
vl,?i

)β
+ vβi

vl,?i − vi
. (8.51)

Denote vli,1 = vl,?i . By choosing Nb values of vli,j in the interval vl,?i ≤ vli,j ≤ vi,

we obtain alj = β
(
vli,j

)β−1
for j = 2, . . . , Nb + 1. Therefore, the parameter blj can be

obtained by

blj =
(
vli,j

)β
− aljvli,j , j = 1, . . . , Nb + 1. (8.52)

Furthermore, the upper and lower bounds are symmetric as shown in Figure 8.9.

Therefore, we can find the upper bounds in a similar way. Let us consider upper

bounds of (8.43b) in the following form

arjvi + brj ≥ vi |vi|
β−1 , j = 1, . . . , Nb + 1. (8.53)
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Because of symmetry, ar1 can be determined by

ar1 = β
(
vr,?i
)β−1

, (8.54)

where vr,?i can be obtained by satisfying the following condition

β
(
vr,?i
)β−1

=
vβi +

(
vr,?i
)β

vi − vr,?i
. (8.55)

Denote vri,1 = vr,?i . Similarly, by choosing Nb values of vri,j in the interval vi ≤ vi ≤

vr,?i , we obtain arj = β
(
vri,j

)β−1
for j = 2, . . . , Nb + 1. Therefore, the parameter brj can

be computed as

brj = vri,j(−vri,j)β−1 + arjv
r
i,j , j = 1, . . . , Nb + 1. (8.56)

As a result, (8.34) for bidirectional pipes can be relaxed as 2Nb+2 linear inequalities.

From (8.43a) and (8.43b), we obtain the relaxed linear inequality constraints

0 ≥ αivi |vi|β−1 + ∆hi ≥ αi
(
aljvi + blj

)
+ ∆hi, (8.57a)

0 ≤ αivi |vi|β−1 + ∆hi ≤ αi
(
arjvi + brj

)
+ ∆hi, (8.57b)

both for j = 1, . . . , Nb + 1.

8.2.3 EMPC with Nonlinear Constraint Relaxation for WDNs

From the above results, we can obtain the relaxed linear inequality constraints in the

MPC prediction horizon Hp = T as follows:

P̃ lx(j)x(k + j) + P̃ lz(j)z(k + j) + P̃ lv(j)v(k + j) + P̃ lb(j) ≤ 0, (8.58a)

P̃ rx (j)x(k + j) + P̃ rz (j)z(k + j) + P̃ rv (j)v(k + j) + P̃ rb (j) ≥ 0, (8.58b)

for j = 1, . . . , T . Taking into account the proposed iterative algorithm for the non-

linear constraint relaxation, the nonlinear algebraic constraint (8.10c) can be replaced
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by (8.58a) and (8.58b) along the MPC prediction horizon. We now formulate the opti-

mization problem for implementing the economic MPC with nonlinear constraint re-

laxation as follows

minimize
x(0),...,x(T )

u(0),...,u(T−1)

JT (x, u, p) =

T−1∑
i=0

Γ∑
j=1

λj`j(i), (8.59a)

subject to

x(i+ 1) = Ax(i) +Buu(i) +Bvv(i) +Bdd(i), (8.59b)

0 = Euu(i) + Evv(i) + Edd(i), (8.59c)

P̃ lx(i)x(i) + P̃ lz(i)z(i) + P̃ lv(i)v(i) + P̃ lb(i) ≤ 0, (8.59d)

P̃ rx (i)x(i) + P̃ rz (i)z(i) + P̃ rv (i)v(i) + P̃ rb (i) ≥ 0, (8.59e)

x ≤ x(i) ≤ x, (8.59f)

u ≤ u(i) ≤ u, (8.59g)

x(0) = x(T ), (8.59h)

x(j) = x(k), j = mod (k, T ) . (8.59i)

Let us denote the optimal solution of the optimization problem (8.59) as u∗(j).

Based on the receding horizon strategy, the optimal control action u(k) at time step

k is chosen as

u(k) = u∗(j), j = mod (k, T ) . (8.60)

8.2.4 Application: the Richmond WDN

Description

The topology and layout of the Richmond WDN is shown in Figure 8.10. The Rich-

mond WDN has 6 water storage tanks, 7 booster pumps and 11 water demand sectors.

Besides, there are 41 non-storage nodes and 41 pressurized pipes connected in this net-

work. The demand pattern is also given for a 24-hour period, that is T = 24. We use

the Chezy-Manning head-flow formula to obtain (8.10c) as follows [105]:

zi − zj = Ri,jvi,j |vi,j | , (8.61)
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Figure 8.10: Topology of the Richmond WDN.

where zi and zj correspond to the hydraulic heads at any two adjacent nodes, and vi,j is

the corresponding water flow. The parameter Ri,j in the Chezy-Manny formula is given

by

Ri,j =
10.29Li,jC

2
i,j

D5.33
i,j

, (8.62)

where Li,j , Di,j and Ci,j are the length, diameter and roughness coefficient of the cor-

responding pipe, respectively. Li,j and Di,j are given in the EPANET model of the

Richmond WDN.

As shown in Figure 8.10, this WDN has two bidirectional pipes in (8.34) and 39 uni-

directional pipes in (8.35). In addition to the economic cost function defined in (8.59a),

for the relaxed linear constraints (8.58a) and (8.58b) with the setting in (8.41), a penalty

term λe(j) is set to be a forgetting factor as

λe(j) = max {λe(j − 1)− ε, 0} , (8.63a)

λe(0) = λe, (8.63b)

where ε denotes the relaxed step and λe is the initial value of this weight.
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Therefore, the total MPC cost function is set to be

J̄T (x, u, p) =
T−1∑
i=0

(λ1`1(i) + λ2`2(i) + λe(i)τ(i)) , (8.64)

where τ denotes a slack variable for all the constraints in (8.41). In this simulation, we

select the weights as λ1 = 10, λ2 = 1, λe = 0.1 and ε = 0.01.

For the Richmond network, the period T is considered to be T = 24 (24 hours)

with the sampling time of an hour because of the periodicities of the water demand

and electricity price considering the variations in the daily tariff. Hence, the prediction

horizon of the proposed economic MPC strategy is also chosen to be T = 24. The

minimal pressure at all the demand sectors is set to be 10 meters. Furthermore, for

the implementation of the proposed nonlinear constraint relaxation, we choose Na =

Nb = 10. Therefore, there are 11 relaxed constraints replacing (8.35) and 22 relaxed

constraints replacing (8.34) for each pipe.

The simulations have been carried out with the MATLAB R2015a and the EPANET

simulator [105] for seven days (168 h) in a PC of Intel i7-5500U CPU and 12GB RAM.

The linear optimization problems are solved using the YALMIP toolbox [73] and

the MOSEK solver [83]. The nonlinear optimization problems are solved using the

nonlinear programming through the YALMIP toolbox and the IPOPT solver available

in the OPTI toolbox [27]. The Richmond network is given in the EPANET simulator as

the simulation model.

Recall the price signal p = α1 + α2. To compare the performance of the proposed

economic MPC with the nonlinear economic MPC, we define the following key perfor-

mance indicators (KPIs):

KPIE :=
1

ns

ns∑
k=1

(
p>j u(k)

)
, j = mod(k, T ), (8.65a)

KPIS :=
1

ns

ns∑
k=1

nx∑
i=1

max
{

0, (xsi − xi(k))
}
, (8.65b)

KPIM :=
1

ns

ns∑
k=1

nx∑
i=1

(
xi(k)− xsi

)
, (8.65c)

whereKPIE is the economic KPI that measures the operational costs at each time step.
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Table 8.3: Hydraulic heads at storage tanks to assess safety
constraints.

Tank Elevation (m) Volume (m) Hydraulic Head xs (m)

A 184.13 1.02 185.15
B 216 2.03 218.03
C 258.9 0.5 259.40
D 241.18 1.1 242.28
E 203.01 0.01 203.03
F 235.71 0.19 235.90

KPIS is the safety KPI that computes the average differences of the water storage that

are lower than safety hydraulic head xsi given in Table 8.3. KPIM is the measure-

ment KPI that represents the additional water reserved in storage tanks. Based on the

original benchmark available online, all the tanks are cylindrical and the relationship

between water level and stored volume is considered to be linear and constant.

On the other hand, with the optimal solutions of the optimization problem (8.59),

we would like to check whether all the nonlinear algebraic equations in (8.10c) are

satisfied. To assess the relaxation algorithm for 40 nonlinear algebraic equations in the

Richmond WDN, the error measurements for (8.10c) including MSE, mean absolute

error (MAE) and symmetric mean absolute percent error (SMAPE) are introduced as

follows:

MSE(k) :=
1

ne

ne∑
j=1

(P jxx(k) + P jz z(k) + ψj (v(k)))2, (8.66a)

MAE(k) :=
1

ne

ne∑
j=1

∣∣P jxx(k) + P jz z(k) + ψj (v(k))
∣∣ , (8.66b)

SMAPE(k) :=
100

ne

ne∑
j=1

∣∣∣P jxx(k) + P jz z(k) + ψj (v(k))
∣∣∣

P jxx(k) + P jz z(k) + ψj (v(k))
, (8.66c)

where P jx , P jz and ψj(·) denote the j-th row of Px, Pz and ψ(·), respectively. ne denotes

the total number of nonlinear algebraic equations. In terms of MSE and MAE, they

represent the violation of nonlinear algebraic equations. SMAPE is an indicator based

on percentage errors.
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Simulation Results

For the notation simplicity, we denote the simulation results of applying the proposed

economic MPC with nonlinear constraint relaxation as EMPC-NCR, while the com-

parison results with the solutions of nonlinear planner in (7.4) and NEMPC controller

in (7.5) both with updated nonlinear prediction model in (8.10) are denoted by EMPC-

Planner and NEMPC, respectively. The closed-loop simulation results of system states

and control inputs are shown in Figures 8.11–8.14. In Figures 8.11 and 8.12, the state

trajectories obtained from applying the proposed EMPC-NCT are in solid lines with

circles. Due to the convexity, the steady states can be obtained from the solution of the

optimization problem (7.4) shown in dashed line. As a comparison, the state trajecto-

ries of NEMPC are also shown in solid lines with cross marks. From these results, we

can see that the closed-loop trajectories obtained using the EMPC-NCR and NEMPC

strategies are similar to those of the optimal planner trajectories (both states and con-

trol inputs). The NEMPC results are smoother and closer to the planner trajectories

since a more accurate nonlinear model is used in the NEMPC optimization problem.

Similarly, in terms of control inputs, as shown in Figures 8.13 and 8.14, three trajecto-

ries of EMPC-NCR, NEMPC and EMPC-Planner are plotted. The input trajectories of

EMPC-NCR are approaching the ones of EMPC-Planner.

To assess the performance of different control strategies, the comparison is also pro-

vided based on the defined KPIs. The computation results using the defined KPIs are

shown in Table 8.4. In general, the performances of both MPC strategies are similar.

Specifically, from the KPIE results, the pure economic cost of EMPC-NCR is slightly

cheaper than the one of NEMPC. According to KPIS and KPIM results, small differ-

ences between the reserved water in the storage tanks can be seen for both MPC strate-

gies. This is because in the EMPC-NCR we use the pressure constraint on the variable

z to guarantee the safety objective, which implies the water levels in the storage tanks

should be greater than some certain values.

The results of error measurements for the EMPC-NCR and NEMPC strategies are

shown in Figure 8.15. Through the MSE and MAE results, it is obvious that the re-

sult of NEMPC is similar to the one of EMPC-NCR, although none of them are iden-

tically equal to zero. This is because the tolerance of the nonlinear solver is chosen

as 10−5. The SMAPE of NEMPC is smaller and closer to zero than the one of EMPC-

NCR, which means that nonlinear algebraic equations are satisfied by NEMPC better
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Figure 8.11: Results of system states using EMPC-NCR and NEMPC.
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Figure 8.12: Results of system states using EMPC-NCR and NEMPC.

Table 8.4: KPI results using EMPC-NCR and NEMPC.

MPC Strategy KPIE KPIS KPIM

EMPC-NCR 0.6992 0.2604 6.7078
NEMPC 0.7028 0.1914 6.5249
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Figure 8.13: Results of control inputs using EMPC-NCR and
NEMPC.
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Figure 8.14: Results of control inputs using EMPC-NCR and
NEMPC.

than EMPC-NCR since the nonlinear programming technique is able to solve hard con-

straints. However, the EMPC-NCR strategy is able to produce a similar performance

according to three error measurement results.

For the comparison of simulation time in a scenario of 168 h, it takes 62.86 min for
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Figure 8.15: Comparison of error measurements using EMPC-NCR
and NEMPC.

NEMPC while 1.43 min for EMPC-NCR. Hence, the EMPC-NCR strategy has a signifi-

cant improvement in the reduction of computational load and meanwhile based on the

above comparison result, the performance of the EMPC-NCR strategy is similar to the

NEMPC strategy. This reduction in the computation time would be more relevant in

larger networks.
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8.3 REMPC of SGs

In the following, let us consider discrete-time descriptor system affected by additive

disturbances as

x(k + 1) = Ax(k) +Bu(k) +Bdd(k) +Bww(k), (8.67a)

0 = Exx(k) + Euu(k) + Edd(k) + Eww(k), (8.67b)

where x ∈ Rnx , u ∈ Rnu , d ∈ Rnd , w ∈ Rnw denote the vectors of system states, control

inputs, endogenous demands and unknown disturbances, respectively. Besides, A ∈
Rnx×nx , B ∈ Rnx×nu , Bd ∈ Rnx×nd , Bw ∈ Rnx×nw , Ex ∈ Rnr×nx , Eu ∈ Rnr×nu , Ed ∈
Rnr×nd and Ew ∈ Rnr×nw are system matrices.

Assumption 8.1. The disturbance vector w ∈ Rnw is assumed to be unknown but bounded in

the setW .

We now extend REMPC proposed in Section 7.2 for the descriptor system (8.67).

The goal is to use a robust tube-based technique based on nominal predictions that

drives the closed-loop system trajectory to a neighborhood of an optimal periodic

steady trajectory. A local controller is used to reduce the difference between nomi-

nal predictions and closed-loop trajectory. This local controller is designed to stabilize

the nominal dynamical model of (8.67a) and simultaneously to satisfy the algebraic

equation (8.67b).

8.3.1 Refined State and Input Constraints

Based on [87], an auxiliary input signal v ∈ Rnv with nv = nu − nr is used. Therefore,

the control input u(k) is structured from the solution of (8.67) satisfying the algebraic

equation (8.67b) for any w(k) as

u(k) = Mxx(k) +Mdd(k) +Mww(k) +Mvv(k), (8.68)

where the matrices Mx ∈ Rnu×nx , Md ∈ Rnu×nd , Mw ∈ Rnu×nw and Mv ∈ Rnu×nv

should be designed.
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By combining (8.67b) and (8.68), we have that the following condition holds:

Exx(k) + Edd(k) + Eww(k) = −EuMxx(k)− EuMdd(k)

− EuMww(k)− EuMvv(k).

which gives

Ex + EuMx = 0, (8.69a)

Ed + EuMd = 0, (8.69b)

Ew + EuMw = 0, (8.69c)

EuMv = 0. (8.69d)

From the condition (8.69), we can obtain matrices Mx, Md and Mw. Note that there

are infinite solutions of these matrices Mx, Md and Mw. Specifically, Mv is the null

space (kernel) of Eu, and Mx, Md and Mw can be obtained in a generalized solution

with pseudo-inverse matrices.

Besides, by combining (8.67a) and (8.68), we have

x(k + 1) = Ãx(k) + B̃vv(k) + B̃dd(k) + B̃ww(k), (8.70)

where Ã = A+BMx, B̃v = BMv, B̃d = Bd +BMd and B̃w = Bw +BMw.

Let us define the nominal dynamical model of (8.70) as

x̄(k + 1) = Ãx̄(k) + B̃vv̄(k) + B̃dd(k), (8.71)

where x̄ ∈ Rnx and v̄ ∈ Rnv , and define the error between closed-loop states and state

predictions as e(k) = x(k)− x̄(k). With (8.70) and (8.71), the error dynamics is given by

e(k + 1) = Ãe(k) + B̃v (v(k)− v̄(k)) + B̃ww(k). (8.72)

To attenuate the effect of this error along the prediction horizon, a local control law

K ∈ Rnv×nx is proposed for v(k) = Kx(k) and v̄(k) = Kx̄(k) such that the matrix
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ÃK = Ã+ B̃vK is Schur stable. Therefore, (8.72) is simplified as

e(k + 1) = ÃKe(k) + B̃ww(k). (8.73)

Since w(k) ∈ W , by applying Lemma 6.1, we can obtain the set Z is RPI sat-

isfying ÃKZ ⊕ B̃wW ⊆ Z . Therefore, for any k ∈ N, e(k) ∈ Z is equivalent to

x(k)− x̄(k) ∈ Z . Considering the state constraint set x(k) ∈ X , we have

x̄(k) ∈ X 	 Z. (8.74)

Based on (8.68), let us also denote the nominal input ū ∈ Rnu as

ū(k) = Mxx̄(k) +Mdd(k) +Mvv̄(k). (8.75)

By combining (8.68) and (8.75), we derive

u(k)− ū(k) = Mx (x(k)− x̄(k)) +Mww(k) +Mvv(k)−Mvv̄(k)

= Mxe(k) +Mww(k) +MvKe(k).

Since u(k) ∈ U , e(k) ∈ Z and w(k) ∈ W , we obtain

ū(k) ∈ U 	MxZ 	MwW 	MvKZ. (8.76)

As a result, the constraints on the nominal state and input vectors are refined as

in (8.74) and (8.76), which will be used in the robust economic MPC design.

8.3.2 REMPC Planner for Descriptor Systems

Based on the optimization problem (7.4), the optimal periodic trajectory can be ob-

tained solving the following open-loop optimization problem.

minimize
x̄(0),...,x̄(T ),
ū(0),...,ū(T−1)

JT (x̄, ū, p) =
T−1∑
i=0

` (x̄(i), ū(i), pi) , (8.77a)
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subject to

x̄(i+ 1) = Ax̄(i) +Bū(i) +Bdd(i), (8.77b)

0 = Exx̄(i) + Euū(i) + Edd(i), (8.77c)

x̄(i) ∈ X 	 Z, (8.77d)

ū(i) ∈ U 	MxZ 	MwW 	MvKZ, (8.77e)

x̄(0) = x̄(T ). (8.77f)

The feasible solutions of the optimization problem (8.77) define the optimal periodic

steady trajectory of system states and control inputs as

x̄p = {x̄(0), . . . , x̄(T )} , (8.78a)

ūp = {ū(0), . . . , ū(T )} . (8.78b)

The closed-loop system with the proposed controller will be driven close to a neigh-

borhood of this trajectory.

8.3.3 REMPC Controller for Descriptor Systems

In general, the REMPC controller is proposed by implementing the following optimiza-

tion problem:

minimize
x̄(0),...,x̄(T ),
ū(0),...,ū(T−1)

JT (x̄, ū, p) , (8.79a)

subject to

x̄(i+ 1) = Ax̄(i) +Bū(i) +Bdd(i), (8.79b)

0 = Exx̄(i) + Euū(i) + Edd(i), (8.79c)

x̄(i) ∈ X 	 Z, (8.79d)

ū(i) ∈ U 	MxZ 	MwW 	MvKZ, (8.79e)

x̄(0) = x̄(T ), (8.79f)

x(k)− x̄(j) ∈ Z, j = mod (k, T ) . (8.79g)
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From the feasible solutions of the optimization problem (8.79), the control action at

time k is chosen to be

u(k) = ū∗(j) +Mww(k) + (Mx +MvK) (x(k)− x̄∗(j)), (8.80)

with j = mod (k, T ). Note that in the closed-loop simulation, at time k ∈ N, the current

state x(k) and the disturbance w(k) are measurable to implement the control action

u(k) chosen in (8.80).

8.3.4 Application: the Smart Micro-grid

In this section, we apply the proposed robust control strategy into a smart micro-grid

chosen from [87]. Periodic operation has been proved to be suitable for this system

taking into account the potential periodicity of signals in the system.

Description

The micro-grid system includes three nano-grids placed in parallel. Each nano-grid

consists of a cluster of batteries and a fuel cell. These batteries are used to compensate

the voltage peaks from the fast system dynamics. Therefore, two system state vari-

ables are chosen as the state of charge of batteries and the storage level of hydrogen in

the metal hydride tank. Besides, control inputs in each nano-grid are the power of ex-

change with the electric utility, the power of exchange with the hydrogen and the load

power. The control-oriented model of this micro-grid is built by difference-algebraic

equations in the form of (8.67) with the sampling time of 30 minutes, where system

matrices are defined by

A =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, Bd =



5.5847 0 0 0

0 0 0 0

0 5.5847 0 0

0 0 0 0

0 0 5.5847 0

0 0 0 0


,
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and B = diag (Bn, Bn, Bn), Bw = Bd, with Bn =

[
5.5847 5.5847 −5.5847

−3.4495 0 0

]
. And

Ex = 0, Eu = [0, 0, 1, 0, 0, 1, 0, 0, 1], Ed = [0, 0, 0,−1], Ew = Ed. The constraint sets

on the state vector x(k) ∈ X and the input vector u(k) ∈ U , ∀k ∈ N are considered as

follows:

X =


x ∈ R6 :



40

20

40

20

40

20


≤ x ≤



95

95

95

95

95

95




,U =



u ∈ R9 :



−0.9

−1.5

0

−0.9

−1.5

0

−0.9

−1.5

0



≤ u ≤



0.9

1

2

0.9

1

2

0.9

1

2





.

The patterns of the periodic signal d(k) with the period T = 48 are shown

in Figure 8.16. This periodic signal is repeated along the simulation time. The

variance matrix Σw for the Gaussian white disturbance w(k) is given by Σw =

diag ([0.0339, 0.0264, 0.0189, 0.0532]) and with the 95% confidence level, the set w(k) ∈
W , ∀k ∈ N can be obtained. The initial state x(0) is chosen as x(0) =

[67.2513, 47.4267, 67.0940, 47.4985, 67.3972, 47.0535]>.

According to [87], the main control objectives for the management of this micro-grid

are considered:

• To optimize the economic costs by maximizing the benefit of the energy exchange

taken into account a time-varying electricity prices presented in c;

• To minimize the usage damages of equipments.

Based on these two objectives, the cost functions are defined as follows:

`1(ū(i), pi) = λ1(pi − P1ū(i))2,

`2(ū(i)) = λ2ū1(i)2 + λ2ū2(i)2 + λ2ū4(i)2 + λ2ū5(i)2 + λ2ū7(i)2 + λ2ū8(i)2,

where P1 = [0, 1, 0, 0, 1, 0, 0, 1, 0]. Moreover, λ1 and λ2 are prioritization weights. In
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Figure 8.16: Pattern of the periodic signal d(k).

this simulation, they are chosen as λ1 = 10 and λ2 = 40.

Simulation Results

By satisfying the condition in (8.69), we can obtainMv as the null space ofEu andMd is

equal to Mw. For the design of the local control law K, the LQR technique is used with

the weighing matrices Q = diag ([0.0182, 0.0133, 0.0182, 0.0133, 0.0182, 0.0133]), R =

diag ([0.5556, 0.4, 0.5, 0.5556, 0.4, 0.5, 0.5556, 0.4, 0.5]) and an mRPI set can be obtained

using Lemma 6.1.

The simulation has been carried out for 2 hours (192 sampling time steps). The

optimization problems (8.77) and (8.79) are solved using the linear programming tech-

nique. Note that the planner implemented (8.77) is only solved once to find the op-

timal periodic steady trajectory (8.78). And the closed-loop simulation considers the

system (8.67) with the REMPC controller in (8.79). The Gaussian white disturbances

w(k) ∈ W are sampled in a customized way as shown in Figure 8.17(c). With these
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Figure 8.17: Closed-loop state trajectory and sampled Gaussian
white disturbances of the smart micro-grid.

disturbances, the closed-loop system is recursively feasible. Besides, some simulation

results of the closed-loop state and input trajectories are shown in Figure 8.17 and Fig-

ure 8.18.

Since this micro-grid consists of three nano-grids, we show the results of the first

nano-grid. As shown in Figure 8.17, the blue lines represent the closed-loop states x1(k)

and x2(k) while the red dashed lines represent the optimal periodic steady states xp1
and xp2. When the disturbances are present in Figure 8.17(c), both closed-loop states

reach a neighborhood of the optimal periodic steady states and when the disturbances

vanish, they converge to their optimal periodic steady states. For this nano-grid, as also
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Figure 8.18: Closed-loop input trajectory of the smart micro-grid.

shown in Figure 8.18 control inputs are close to a neighborhood of the optimal periodic

steady inputs.

8.4 Summary

This chapter has presented three real application results of EMPC strategies. The re-

search is motivated by the real application problem in WDNs. The mathematical model

is built in a descriptor form, where algebraic equations must be included based on mass

balance. From dealing with a nonlinear model, a linear EMPC strategy is proposed

with nonlinear constraint relaxation. In addition, uncertainties, i.e. modeling error, al-

ways exist in the mathematical model. For this reason, an REMPC is investigated in

order to guarantee recursive feasibility of the closed-loop simulation. As a future di-

rection, fault diagnosis scheme can be included in the design of EMPC. Consequently,

an active fault-tolerant EMPC with suitable system reconfiguration can be used to deal

with faults from actuator or sensor malfunctioning.





CHAPTER 9

FAULT-TOLERANT CONTROL OF

DISCRETE-TIME DESCRIPTOR

SYSTEMS USING VIRTUAL ACTUATOR

AND VIRTUAL SENSOR

This chapter presents an FTC framework for discrete-time descriptor systems using

VA and VS with delayed state feedback. As discussed in Chapter 2, the descriptor

observer is based on the Luenberger structure in (2.27). In the case of discrete-time

descriptor systems, an algebraic loop could exist in the observer-based state feedback,

which prevents the implementation. To overcome this issue, an observer-based de-

layed controller is designed for discrete-time descriptor systems. A separation princi-

ple is formulated and proved in a general manner. The contribution of this part has

been reported in [154].

With this observer-based delayed control scheme, VA and VS are defined for

discrete-time descriptor systems. The closed-loop system with reconfiguration is pre-

sented. Based on the presented separation principle, the gains of VA, VS, descriptor

observer and delayed controller can be designed independently. The preliminary re-

sult of this contribution has been reported in [155].

251
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9.1 Observer-based Delayed Control of Discrete-time Descrip-

tor Systems

In [31, 172], the solution of state-feedback control design for descriptor system has

been presented. However, so far, the problem of observer-based state-feedback control

of descriptor systems has only been addressed in the case of continuous-time systems

in [29], but not in the case of discrete-time systems. In particular, when formulating the

problem in discrete-time, an algebraic loop appears in the implementation, prevent-

ing the use of a classical state feedback law. In fact, let us consider the discrete-time

descriptor system

Ex(k + 1) = Ax(k) +Bu(k), (9.1a)

y(k) = Cx(k), (9.1b)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny denote the system state, control input and

measurement output vectors, respectively. A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and

E ∈ Rnx×nx are the state space matrices, with E possibly singular, such that rank(E) =

r ≤ nx.

Under the assumption that matrices E and C satisfy rank
[
E>, C>

]
= nx, based

on (2.27), we use the descriptor observer as follows:

z(k + 1) = (TA− LC) x̂(k) + TBu(k) + Ly(k), (9.2a)

x̂(k) = z(k) +Ny(k), (9.2b)

where z ∈ Rnx and x̂ ∈ Rnx denote the observer state and the estimated state, respec-

tively, L ∈ Rnx×ny is an observer gain. Besides, T ∈ Rnx×nx and N ∈ Rnx×ny are

matrices such that

TE +NC = I, (9.3)

whose existence is guaranteed by the above-mentioned observability and the rank con-

dition.

To make the descriptor system (9.1) admissible, i.e. regular, causal and stable, using
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a feedback law fed by the estimated state x̂, one might propose to use a standard state-

feedback law, that is u(k) = Kx̂(k), where K ∈ Rnx×nu is a controller gain. However,

in many cases, the choice u(k) = Kx̂(k) creates an algebraic loop, which makes the

practical implementation impossible. In fact, u(k) depends on x̂(k), which is calculated

using y(k) through (9.2b). The output vector y(k) depends on x(k) through (9.1b),

which might depend on u(k) itself if rank [E,B] 6= rank(E).

For this reason, we propose a delayed state feedback to perform the observer-based

control of the descriptor system (9.1), as follows:

u(k) = Kx̂(k − 1). (9.4)

Thus, the closed-loop system can be modeled as a descriptor system with state de-

lay. In the following, we will discuss about this choice by showing that the separation

principle still holds, so that the controller design and the observer design can be per-

formed independently. Then, by revisiting some preliminary results for discrete-time

descriptor systems with state delay given in [172], we propose an improved admissibil-

ity condition for these systems taking into account a Lyapunov functional as in [176],

which is later used to present a design procedure for the observer-based state-feedback

control of discrete-time descriptor systems.

9.1.1 Separation Principle

Let us define the state estimation error e(k) = x(k) − x̂(k). From (9.1b) and (9.2b),

we obtain e(k) = x(k) − z(k) − NCx(k) which, taking into account (9.3), becomes

e(k) = TEx(k)− z(k). Then, the dynamics of e(k) can be formulated as follows:

e(k + 1) = TEx(k + 1)− z(k + 1)

= TAx(k) + TBu(k)− (TA− LC) x̂(k)− TBu(k)− Ly(k)

= (TA− LC) (x(k)− x̂(k))

= (TA− LC) e(k).

Besides, using (9.4) with x̂(k − 1) = x(k − 1)− e(k − 1), the descriptor system (9.1)
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can be rewritten as

Ex(k + 1) = Ax(k) +BKx(k − 1)−BKe(k − 1).

As a result, the augmented system can be expressed as the descriptor system with

state delay

Ē

[
x(k + 1)

e(k + 1)

]
= Ā

[
x(k)

e(k)

]
+ Ād

[
x(k − 1)

e(k − 1)

]
, (9.5)

with

Ē =

[
E 0

0 I

]
, Ā =

[
A 0

0 (TA− LC)

]
, Ād =

[
BK −BK

0 0

]
.

Consider the class of discrete-time descriptor systems with state delay

Ex(k + 1) = Ax(k) +Adx(k − 1). (9.6)

According to [172, pp. 178], we first recall the following definition for discrete-time

descriptor systems with state delay.

Definition 9.1. The discrete-time descriptor system with state delay (9.6) is said to be

• regular if det
(
z2E − zA−Ad

)
is not identically zero;

• causal if it is regular and

deg
(
znxdet

(
zE −A− z−1Ad

))
= nx + rank(E);

• stable if it is regular and max (|ν|) < 1, with ν ∈ λ (E,A,Ad), where

λ (E,A,Ad) =
{
z : det

(
z2E − zA−Ad

)
= 0
}

;

• admissible if it is regular, causal and stable.

The following theorem establishes the separation principle for a discrete-time de-

scriptor system with state delay in a block-triangular form, i.e. (9.5).
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Theorem 9.1. The following statements are equivalent:

• The descriptor systems with state delay

E1x1(k + 1) = A11x1(k) +Ad11x1(k − 1), (9.7a)

E2x2(k + 1) = A22x2(k) +Ad22x2(k − 1), (9.7b)

where the states x1 ∈ Rn1 and x2 ∈ Rn2 are admissible.

• The descriptor system with state delay[
E1 0

0 E2

][
x1(k + 1)

x2(k + 1)

]
=

[
A11 A12

0 A22

][
x1(k)

x2(k)

]

+

[
Ad11 Ad12

0 Ad22

][
x1(k − 1)

x2(k − 1)

]
,

(9.8)

where A12 ∈ Rn1×n2 and Ad12 ∈ Rn1×n2 is admissible.

Proof. (Regularity) The following equality holds

det

(
z2

[
E1 0

0 E2

]
− z

[
A11 A12

0 A22

]
−

[
Ad11 Ad12

0 Ad22

])

= det

([
z2E1 − zA11 −Ad11 −zA12 −Ad12

0 z2E2 − zA22 −Ad22

])
= det

(
z2E1 − zA11 −Ad11

)
det
(
z2E2 − zA22 −Ad22

)
.

Hence, according to Definition 9.1, the regularity of the systems (9.7a) and (9.7b) is

equivalent to that of the system (9.8).

(Causality) Let us denote

Ψ =

[
zE1 −A11 − z−1Ad11 −A12 − z−1Ad12

0 zE2 −A22 − z−1Ad22

]
.
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According to Definition 9.1, we also have that

deg
(
zn1+n2 det (Ψ)

)
= deg

(
zn1 det

(
zE1 −A11 − z−1Ad11

)
zn2 det

(
zE2 −A22 − z−1Ad22

) )
= deg

(
zn1 det

(
zE1 −A11 − z−1Ad11

))
+ deg

(
zn2 det

(
zE2 −A22 − z−1Ad22

))
.

From causality of the systems (9.7a) and (9.7b), it follows that

deg
(
zn1 det

(
zE1 −A11 − z−1Ad11

))
= n1 + rank(E1),

deg
(
zn2 det

(
zE2 −A22 − z−1Ad22

))
= n2 + rank(E2).

Then, we know that

deg
(
zn1+n2 det (Ψ)

)
=n1 + rank(E1) + n2 + rank(E2)

= (n1 + n2) + rank

[
E1 0

0 E2

]
,

which implies causality of the system (9.8).

On the other hand, for the pairs (E1, A11, Ad11) and (E2, A22, Ad22), we know

deg
(
zn1 det

(
zE1 −A11 − z−1Ad11

))
≤ n1 + rank(E1),

deg
(
zn2 det

(
zE2 −A22 − z−1Ad22

))
≤ n2 + rank(E2).

From causality of the system (9.8), it follows

deg(zn1+n2 det(Ψ)) = (n1 + n2) + rank(E1) + rank(E2),

which implies deg
(
zn1 det

(
zE1 −A11 − z−1Ad11

))
= n1 + rank(E1) and

deg
(
zn2 det

(
zE2 −A22 − z−1Ad22

))
= n2 + rank(E2), and therefore causality of

the systems (9.7a) and (9.7b).

(Stability) Following the proof of regularity, we know

λ

([
E1 0

0 E2

]
,

[
A11 A12

0 A22

]
,

[
Ad11 Ad12

0 Ad22

])
= λ (E1, A1, Ad11) ∪ λ (E2, A2, Ad22) ,
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which implies the equivalence of the stability according to Definition 9.1.

(Admissibility) Since we have proved the equivalence of regularity, causality and

stability in systems (9.7a), (9.7b) and(9.8), we can conclude the equivalence of admissi-

bility of systems (9.7a) and (9.7b) and the system (9.8).

Theorem 9.1 is crucial, since it states that the admissibility of (9.5) can be enforced

by considering independently the systems

Ex(k + 1) = Ax(k) +BKx(k − 1), (9.9a)

e(k + 1) = (TA− LC)e(k), (9.9b)

where (9.9b) is in a dynamical form without state delay and the design of a stabilizing

observer gain L is available in literature. In this section, we focus on the design of a

delayed controller gain K to guarantee the descriptor system (9.9a) admissible.

9.1.2 Improved Admissibility Analysis and Controller Design

In this section, we first present an improved admissibility condition for the descriptor

system with state delay (9.6). Then, we propose the design condition of the delayed

controller using matrix inequalities.

Improved Admissibility Condition

Let us recall an admissible result in [172, Theorem 9.3], which provides a sufficient

condition for the admissibility of the system (9.6).

Proposition 9.1. The discrete-time descriptor system with state delay (9.6) is admissible if

there exist matrices P ∈ Snx and Q ∈ Snx�0 such that

E>PE � 0, (9.10a)[
A>PA− E>PE +Q A>PAd

A>d PA A>d PAd −Q

]
≺ 0. (9.10b)

Proof. Based on [172, Theorem 9.3] with τ = 1, we can obtain (9.10) with Q � 0.

Since τ = 1, following the proof of [172, Theorem 9.3], we know the matrix P̂ =
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diag(P,Q) and Q does not appear in [172, Eq. (9.33)] and hence can be positive semi-

definite.

However, as stated by [176], conditions as the ones provided by Proposition 9.1

may lead to conservativeness, since the considered Lyapunov functional is of the type

V (k) = x(k)>E>PEx(k) + x(k − 1)>Qx(k − 1),

and the possibility of introducing an additional term related to (x(k)− x(k − 1)) is ig-

nored. Inspired by the choice of the Lyapunov functional in [176, Eq. (6)], we now

present an improved admissibility condition in the following theorem.

Theorem 9.2. The discrete-time descriptor system with state delay (9.6) is admissible if there

exist matrices P ∈ Snx , Q ∈ Snx and S ∈ Snx such that[
E> (P + S)E −E>SE
−E>SE Q+ E>SE

]
� 0, (9.11a)

[
φ1 φ2

φ>2 φ3

]
≺ 0, (9.11b)

with

φ1 = A>(P + S)A+Q− E>PE −He
(
E>SA

)
(9.12a)

φ2 = A>(P + S)Ad − E>SAd + E>SE, (9.12b)

φ3 = A>d (P + S)Ad −Q− E>SE. (9.12c)

Proof. Define the variable

ξ(k) =
[
x(k)>, x(k − 1)>

]
.

Then, it can be verified that the system (9.6) can be rewritten as

Êξ(k + 1) = Âξ(k), (9.13)

where

Ê =

[
E 0

0 I

]
, Â =

[
A Ad

I 0

]
. (9.14)
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Set

P̂ =

[
P + S −SE
−E>S Q+ E>SE

]
. (9.15)

For the system (9.13), it can be shown that

Â>P̂ Â− Ê>P̂ Ê =

[
φ1 φ2

φ>2 φ3

]
≺ 0. (9.16)

By noting that Ê>P̂ Ê � 0 due to (9.11a), and employing [49, Theorem 2], we have

that the system (9.13) is admissible. From regularity of (9.13), it follows that det(zÊ−Â)

is not identically zero, and since det(zÊ − Â) = det(z2E − zA−Ad), regularity of (9.6)

follows from Definition 9.1. Moreover, from the causality of (9.13), we have that

deg
(

det
(
zÊ − Â

))
= rank(Ê) = nx + rank(E),

which proves causality of (9.6) since det(zÊ − Â) = znx det
(
zE −A− z−1Ad

)
. Finally,

the stability of (9.13) implies the stability of (9.6) and, therefore, its admissibility.

Remark 9.1. Note that Theorem 9.2 can be reduced to Proposition 9.1 when S = 0.

The condition of Theorem 9.2 includes non-strict inequalities due to (9.11a). Fol-

lowing the spirit of [172, Theorem 9.4], we next present the admissibility condition

with strict inequalities.

Theorem 9.3. The discrete-time descriptor system with state delay (9.6) is admissible if there

exist matrices P ∈ Snx , Q ∈ Snx , S ∈ Snx and W ∈ R2nx×(nx−r) such that

P̂ � 0, (9.17a)[
φ1 φ2

φ>2 φ3

]
+ He

(
WE⊥ [A, Ad]

)
≺ 0, (9.17b)

with P̂ as in (9.15), and φ1, φ2 and φ3 as in (9.12).

Proof. Consider the matrix

Ê⊥ =
[
E⊥, 0

]
,

which is of full row rank and satisfies Ê⊥Ê = 0 with Ê defined as in (9.14). It is
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straightforward from (9.16) that

Â>P̂ Â− Ê>P̂ Ê + He
(
WÊ⊥Â

)
=

[
φ1 φ2

φ>2 φ3

]
+ He

(
WE⊥ [A, Ad]

)
≺ 0.

Since P̂ � 0, according to [171, Theorem 1], the system (9.13) is admissible. Fol-

lowing a discussion similar to the proof of Theorem 9.2, the system (9.6) is shown to be

admissible.

Remark 9.2. Note that Theorem 9.3 can also be reduced to [172, Theorem 9.4] when

S = 0.

Delayed Controller Design

Based on above results, we now present the condition for the design of a controller gain

K, which is obtained by applying Theorem 9.3 taking into account that (9.9a) is in the

form (9.6) with Ad = BK.

Theorem 9.4. The discrete-time descriptor system with state delay (9.9a) is admissible if there

exist matrices P ∈ Sn, Q ∈ Sn, S ∈ Sn, W1 ∈ Rn×(n−r), W2 ∈ Rn×(n−r) and K ∈ Rm×n

such that (9.17a) and
ψ1 ψ2 A>(P + S)

ψ>2 ψ3 K>B>(P + S)

(P + S)A (P + S)BK −(P + S)

 ≺ 0, (9.18)

with P̂ as in (9.15) and

ψ1 = Q− E>PE + He
(
W1E

⊥A− E>SA
)
,

ψ2 = W1E
⊥BK +A>

(
E⊥
)>

W>2 − E>SBK + E>SE,

ψ3 = He
(
W2E

⊥BK
)
−Q− E>SE.

Proof. According to (9.17b), let us set W =
[
W>1 , W

>
2

]> and Ad = BK. Taking into ac-

count that the positive definiteness of the matrix (P+S) is ensured by (9.17a), applying
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the Schur complement to (9.17b), we obtain
ψ1 ψ2 A>

ψ>2 ψ3 K>B>

A BK −(P + S)−1

 ≺ 0.

Pre- and post-multiplying the above inequality by diag(I, P + S), we thus ob-

tain (9.18).

9.2 Problem Statement in FTC

Consider the following discrete-time descriptor system subject to actuator and sensor

faults

Exf (k + 1) = Axf (k) +Bf (φ(k)) (uf (k) + fa(k)) , (9.19a)

yf (k) = Cf (γ(k))xf (k) + fs(k), (9.19b)

where xf ∈ Rnx , uf ∈ Rnu and yf ∈ Rny denote the vectors of faulty system states,

faulty control inputs and faulty measurement output vectors, respectively. fa ∈ Rnu

and fs ∈ Rny denote the vectors of additive actuator and sensor faults. φ ∈ Rnu and

γ ∈ Rny denote the vectors of multiplicative actuator and sensor faults with

φ(k) = [φ1(k), . . . , φnu(k)]> , 0 ≤ φi(k) ≤ 1, i = 1, . . . , nu, (9.20a)

γ(k) =
[
γ1(k), . . . , γny(k)

]>
, 0 ≤ φi(k) ≤ 1, i = 1, . . . , ny, (9.20b)

Besides, A ∈ Rnx×nx and Bf (φ(k)) ∈ Rnx×nu and Cf (γ(k)) ∈ Rny×nx are defined in

the following structure:

Bf (φ(k)) = Bdiag (φ1(k), . . . , φnu(k)) , (9.21a)

Cf (γ(k)) = diag
(
γ1(k), . . . , γny(k)

)
C, (9.21b)

where B and C are given in the nominal descriptor system (9.1).

Assumption 9.1. The additive and multiplicative actuator and sensor faults are assumed to be

estimated as known variables.
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Figure 9.1: FTC scheme using VA and VS.

As shown in Figure 9.1, in this chapter, we focus on designing a VA and a VS for the

reconfiguration of the faulty system (9.19) and its application to FTC using a nominal

observer-based delayed state-feedback controller as in (9.4) with (9.2).

9.3 FTC of Descriptor Systems with Reconfiguration

We now propose a general FTC scheme for discrete-time descriptor systems using VA

and VS. In this FTC scheme, an observer-based delayed state-feedback controller de-

fined in (9.4) is used. Then, we define the structure of a virtual delayed actuator (VDA)

in a descriptor form as well as in a form that accommodates the delayed state feedback.

On the other hand, as introduced in Chapter 2, the observer of discrete-time descriptor

system is in a dynamical form. Hence, the duality between VDA and VS in traditional

dynamical systems no longer hold. In the section, we present the closed-loop system

dynamics that proves separation principle can also be used.

9.3.1 Nominal Observer-based Delayed Controller

Recall the observer-based delayed state-feedback controller in (9.2) and (9.4) as the

nominal controller as follows:
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uc(k) = Kx̂(k − 1), (9.22a)

z(k + 1) = (TA− LC)x̂(k) + TBuc(k) + Lyc(k), (9.22b)

x̂(k) = z(k) +Nyc(k), (9.22c)

where uc ∈ Rnu and yc ∈ Rny are nominal input and output provided by the VDA and

the VS, respectively.

9.3.2 VDA and VS for Descriptor Systems

We now define the VDA and the VS for the descriptor system (9.19).

For designing the VDA, let us define the following matrices:

Nva(φ(k)) = Bf (φ(k))†B, (9.23a)

B∗ = Bf (φ(k))Nva(φ(k)). (9.23b)

Definition 9.2 (Virtual delayed actuator for descriptor systems). Given the descriptor

system subject to actuator and sensor faults in (9.19), the VDA is defined as follows:

Exva(k + 1) = Axva(k) +B∗Mvaxva(k − 1) + (B −B∗)uc(k), (9.24a)

uf (k) = Nva(φ(k)) (uc(k)−Mvaxva(k − 1))− fa(k), (9.24b)

where xva ∈ Rnx denotes the vector of VDA states. Moreover, Mva ∈ Rnu×nx is a VDA

gain.

For designing the VS, let us also define the following matrices:

Nvs(γ(k)) = CCf (γ(k))†, (9.25a)

C∗ = Nvs(γ(k))Cf (γ(k)). (9.25b)

Assumption 9.2. The pair (E,C∗) is assumed to be observable and hence matrices E and C∗

satisfy the rank condition

rank

[
E

C∗

]
= nx. (9.26)
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If Assumption 9.2 holds, there exist matrices Ts ∈ Rnx×nx and Ns ∈ Rnx×ny satisfy-

ing the following condition

TsE +NsC
∗ = Inx . (9.27)

Definition 9.3 (Virtual sensor of descriptor systems). Given the descriptor system sub-

ject to actuator and sensor faults in (9.19), the VS is defined as follows:

zvs(k + 1) = (TsA−MvsC
∗)xvs(k) + TsBuc(k)

+MvsNvs(γ(k)) (yf (k) + Cf (γ(k))xva(k)− fs(k)) , (9.28a)

xvs(k) = zvs(k) +NsNvs(γ(k)) (yf (k) + Cf (γ(k))xva(k)− fs(k)) , (9.28b)

yc(k) = Nvs(γ(k)) (yf (k) + Cf (γ(k))xva(k)− fs(k)) + (C − C∗)xvs(k), (9.28c)

where xvs ∈ Rnx and zvs ∈ Rnx denote the vector of states and intermediate states of

VS. Moreover, Mvs ∈ Rnx×ny is a VS gain.

Remark 9.3. According to [107], B∗ and C∗ are independent to multiplicative actuator

and sensor faults φ(k) and γ(k).

9.3.3 The Closed-loop Analysis and Designs

We now analyze the closed-loop dynamics of the faulty system (9.19) with the VDA

and the VS in Definitions 9.2 and 9.3 as well as the nominal observer-based delayed

controller (9.22).

Theorem 9.5. Consider the faulty descriptor (9.19), the nominal controller in (9.22),

the VDA in (9.24) and the VS (9.28). Let us define the variable ζ(k) =[
ζ1(k)>, ζ2(k)>, ζ3(k)>, ζ4(k)>

]> with

ζ1(k) = xva(k), (9.29a)

ζ2(k) = xf (k) + xva(k), (9.29b)

ζ3(k) = x̂(k)− xvs(k), (9.29c)

ζ4(k) = xvs(k)− xf (k)− xva(k). (9.29d)
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Then, the closed-loop behavior is given by

Ẽζ(k + 1) = Ãζ(k) + Ãdζ(k − 1), (9.30)

where

Ẽ =


E 0 0 0

0 E 0 0

0 0 Inx 0

0 0 0 Inx

 ,

Ã =


A 0 0 0

0 A 0 0

0 0 (TA− LC) Ξ

0 0 0 (TsA−MvsC
∗)

 ,

Ãd =


B∗Mva (B −B∗)K (B −B∗)K (B −B∗)K

0 BK BK BK

0 0 0 −TBK
0 0 0 0

 ,

with Ξ = (TA− LC∗)− (TE +NC∗)(TsA−MvsC
∗).

Proof. From the definition of ζ(k) in (9.29), we know that

xva(k) = ζ1(k),

xf (k) = −ζ1(k) + ζ2(k),

x̂(k) = ζ2(k) + ζ3(k) + ζ4(k),

xvs(k) = ζ2(k) + ζ4(k).

From (9.24) and (9.22), it follows

Eζ1(k + 1) = Exva(k + 1)

= Axva(k) + (B −B∗)Kx̂(k − 1) +B∗Mvaxva(k − 1)

= Aζ1(k) +B∗Mvaζ1(k − 1) + (B −B∗)Kζ2(k − 1)

+ (B −B∗)Kζ3(k − 1) + (B −B∗)Kζ4(k − 1).
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From (9.19), (9.24) and (9.22), we have that

Eζ2(k + 1) = Exf (k + 1) + Exva(k + 1)

= A(xf (k) + xva(k)) +BKx̂(k − 1)

= Aζ2(k) +BKζ2(k − 1) +BKζ3(k − 1) +BKζ4(k − 1).

From (9.19), (9.24), (9.28) and (9.22), we have

ζ4(k + 1) = xvs(k + 1)− xf (k + 1)− xva(k + 1)

= zvs(k + 1) +NsC
∗ (xf (k + 1) + xva(k + 1))− xf (k + 1)− xva(k + 1).

Considering the condition (9.27), the above equation can be simplified as

ζ4(k + 1) = zvs(k + 1)− TsE (xf (k + 1) + xva(k + 1))

= (TsA−MvsC
∗)(xvs(k)− xf (k)− xva(k))

= (TsA−MvsC
∗)ζ4(k).

From (9.19), (9.22) and (9.28), we have

ζ3(k + 1) = x̂(k + 1)− xvs(k + 1)

= z(k + 1) +Nyc(k + 1)− zvs(k + 1)−NsC
∗(xf (k + 1) + xva(k + 1))

= (TA− LC)x̂(k) + TBuc(k) + LC∗(xf (k) + xva(k)) + L(C − C∗)xvs(k)

+NC∗(xf (k + 1) + xva(k + 1)) +N(C − C∗)xvs(k + 1)

− (TsA−MvsC
∗)xvs(k)− TsBuc(k)−MvsC

∗(xf (k) + xva(k))

−NsC
∗(xf (k + 1) + xva(k + 1)).

Considering the conditions (9.3) and (9.27), the above equation becomes

ζ3(k + 1) = (TA− LC)ζ3(k) + ((TA− LC∗)− (TE +NC∗)(TsA−MvsC
∗)) ζ4(k)

− TBKζ4(k − 1).

As a result, according to formulations above, we can conclude that the closed-loop

dynamics can be formulated as in (9.30).
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From the result of Theorem 9.5, based on the separation principle presented in The-

orem 9.1, the admissibility of the closed-loop system in (9.30) is equivalent to admissi-

bility of the following subsystems:

Eδ(k + 1) = Aδ(k) +B∗Mvaδ(k − 1), (9.31a)

Eδ(k + 1) = Aδ(k) +BKδ(k − 1), (9.31b)

δ(k + 1) = (TA− LC)δ(k), (9.31c)

δ(k + 1) = (TsA−MvsC
∗)δ(k), (9.31d)

where δ ∈ Rnx denotes an auxiliary state.

From (9.31a) and (9.31b), the designs of the gains of the VDA and the nominal con-

troller correspond to the descriptor delay system form in (9.6). Thus, they can be de-

signed using Theorem 9.4.

On the other hand, since that (9.31c) and (9.31d) are in a dynamical form, the de-

signs of the gains of the descriptor observer and the VS can use the standard Lyapunov

stability result, i.e. in [32].

9.4 Numerical Example

In this section, we use a numerical example to test the validity of the proposed FTC

strategy. Consider the nominal descriptor system (9.1) with the following matrices

E =


1 0.8 0

0 1 0

0 0.4 0

 , A =


1.05 0.68 0

0 0.85 0.3

0 0.34 1

 ,

B =


1 1.3 2

0 1 0.3

0 0.4 1

 , C =

[
1 0 0

0 1 1

]
,

and considering the faulty descriptor system (9.19) with known actuator and sensor

faults
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Bf = Bdiag ([0, 0.3, 0.5]) ,

Cf = diag ([0.3, 0.8])C,

and fa = 0, fs = 0. Then, for designing the VDA and the VS, according to (9.23), it

comes

Nva =


0 0 0

0.0157 3.3333 0

0.7798 0 2

 , B∗ =


0.7859 1.3 2

0.1217 1 0.3

0.3918 0.4 1

 ,
and according to (9.25), we can obtain

Nvs =

[
3.3333 0

0 1.25

]
, C∗ =

[
1 0 0

0 1 1

]
.

Since rank
([
E>, C>

])
= nx = 3, from the conditions (9.3), we choose the following

matrices

T =


0.0135 −0.2162 0.5135

−0.1081 0.7297 0.8919

−0.6486 −0.6216 0.3514

 , N =


0.9865 0

0.1081 0

0.6486 1

 .

Moreover, in this example, it can be also verified that rank
([
E>, C∗

>
])

= nx = 3.

Then, we can also obtain Ts = T and Ns = N .

From this example, by computing the generalized eigenvalues λ (E,A) =

{1.05, 0.85,∞}, the open-loop system (9.1) is unstable and therefore not admissible.

By means of the proposed FTC scheme as shown in Figure 9.1, according to discus-

sions above, we can independently design the gains of the VDA, delayed controller,

the descriptor observer and the VS. Then, we obtain

Mva =


0.4230 0.3259 −0.0138

0.0054 −0.2638 −0.0048

−0.3899 −0.0835 0.0114

 , K =


−0.4608 0.1956 0.0014

0.0052 −0.2842 −0.0013

−0.0034 −0.0431 0.0008

 ,
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Figure 9.2: Closed-loop FTC results.
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L =


0.2871 0.3280

−0.1047 1.0930

−0.4827 0.0395

 , Mvs =


0.2871 0.3280

−0.1047 1.0930

−0.4827 0.0395

 .

Given the following initial condition: x(0) = [1.8,−0.8,−2.5]>, u(0) = 0, xva(0) = 0,

zvs(0) = 0 and xvs(0). With the designed gains above, the closed-loop simulation has

been carried out for 150 sampling steps. The results of state trajectories are shown in

Figure (9.2). The faults were introduced from time step k = 3 and the FTC strategy was

implemented from time step k = 15. For three states, three different scenarios have

been provided, which are (i) no faults; (ii) faults without applying the proposed FTC;

(iii) faults with applying the proposed FTC.

From this figure, it can be seen that from k = 0 to k = 3, state trajectories of three

scenarios are the same since no faults occurred. From k = 3 to k = 15, since actuator

and sensor faults have been introduced in the closed-loop system but no FTC has been

implemented, the green and red dashed lines are starting to diverge simultaneously.

From k = 15, state trajectories with using the proposed FTC (in green dashed lines)

are converging to zero during a transient time. Thus, from the closed-loop simulation

result, we can conclude that the closed-loop system is stable and hence admissible.

And the proposed FTC strategy is effective.

9.5 Summary

This chapter has presented an FTC scheme for discrete-time descriptor systems using

VDA and VS. Based on the discussions in this chapter, in order to solve the implemen-

tation problem of an observer-based state-feedback control of discrete-time descriptor

systems, an observer-based delayed control for discrete-time descriptor systems has

been proposed. For the admissibility analysis and the delayed controller design, an

improved admissibility condition has been studied. Then, based on the delayed con-

troller, a VDA and a VS for FTC reconfiguration have been defined. According to the

separation principle for descriptor delay systems, the gains of nominal controller, de-

scriptor observer, VDA and VS can be design independently. Through a simulation

result, the proposed FTC strategy has been verified.

Future direction of the topic in this chapter can be summarized as follows:
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• Discrete-time descriptor systems could be affected by uncertainties. Robustness

should be addressed in the designs of VA and VS;

• Nonlinearities sometimes appear in descriptor systems. VA and VS could be ex-

tended into nonlinear systems using LPV embeddings;

• Set-membership approach for discrete-time descriptor systems proposed in

Chapter 2 could be linked with VS.
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CONCLUDING REMARKS

10.1 Conclusions

In this thesis, several theoretical contributions and application results on robust state

estimation, set-based fault diagnosis, EMPC and FTC strategies for complex systems

have been presented. Specifically, the conclusions are summarized with respect to the

envisaged thesis objectives as follows:

(i) Develop robust state estimation approaches based on set theory for descriptor systems;

It has been shown in Chapter 2 that a set-based framework for discrete-time de-

scriptor systems has been proposed. The set-membership approach based on

zonotopes and zonotopic Kalman observer have been extended to descriptor sys-

tems subject to unknown-but-bounded uncertainties, which are able to achieve

robust state estimation results. As a significant difference from classical state es-

timation approaches, the obtained results include not only a punctual value but

also guaranteed estimation bounds that reflect the worst-case state estimation in

presence of uncertainties. This framework has also been proved to be applicable

in fault diagnosis.

(ii) Improve the limitation of set-membership approach for complex systems;

The disadvantage of classical set-membership approach derived from the geo-

metrical complexity has been solved by investigating a distributed approach. It

has been shown in Chapter 3 that considering a distributed model with cou-

pled states, distributed state bounding zonotopes are built for agent by agent.
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Then, the correction from the consistency test is implemented between the system

model and the individual measured output. In terms of communication among

agents in the distributed model, each agent send its distributed zonotope to all

its neighbors and the effects of neighbors are translated by the distributed model.

This distributed approach has been demonstrated with a simple example and

compared with a corresponding centralized approach. According to the simu-

lation results, the performance of the proposed distributed approach is slightly

worse than the centralized one due to the fact that less information is used for

the correction. However, for high dimensional complex systems, centralized set-

based approaches cannot be directly applied. Hence, this distributed approach

provides a potential way to deal with those systems.

(iii) Investigate fault diagnosis strategies based on set theory for descriptor systems;

To achieve fault diagnosis of descriptor systems, the proposed set-based frame-

work has been extended for FD, FI and FE in Chapters 4-5. For the design, in

addition to make the observer gain be robust against uncertainties, additional

conditions are required for different objectives. For FD, two fault sensitivity cri-

teria are defined. For FI, unknown input observers are employed to locate where

the occurred fault is from. For FE, the identification condition is introduced to

estimate faults from measured outputs. On the other hand, in Chapter 3, a gen-

eral framework of set-invariance characterizations has also been proposed for

discrete-time descriptor systems. Taking into account that occurred faults may

lead to a different operating mode of the considered model. The active mode de-

tection mechanism has been provided using set invariance. These contributions

complete a set-based fault diagnosis for discrete-time descriptor systems.

(iv) Contribute to EMPC strategies for periodic operation with applications to realistic com-

plex systems;

Motivated by WDNs, the exogenous and endogenous signals in these networks

imply a periodic behavior and naturally an optimal periodic operation could be

useful for management of these real systems. For this reason, as presented in

Chapter 7, a novel EMPC formulation for periodic operation has been addressed

as well as its robust case. This formulation has also been proved to be recursively

feasible, converging to (a neighborhood of) a periodic steady trajectory. In ad-

dition, when a defined optimality certificate is satisfied, this steady trajectory is

equivalent to the optimal trajectory obtained by the corresponding planner. From
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application point of view, to apply a control strategy into a real system, some is-

sues could happen. As shown in Chapter 8, a two-layer control strategy is used

for translate the optimal set-points produced from the upper-layer EMPC con-

troller into a sequence of ON/OFF operations in WDNs. A nonlinear constraint

relaxation approach is used for dealing with nonlinear algebraic equation in the

control-oriented model of WDNs. Besides, a robust technique is used for sat-

isfying disturbances in descriptor model of SG. These contributions provide an

insight on finding an optimal management of complex systems.

(v) Include fault-tolerant capability in the controller design for descriptor systems.

In terms of the critical nature, the fault-tolerant capability has been introduced

by means of defined VA and VS for descriptor systems as shown in Chapter 9.

Taking into account that occurred faults can be estimated, these faults are hidden

using VA and VS for descriptor systems. The advantage of this approach is to

make use of the nominal controller in the reconfiguration loop in presence of

fault occurrence.

10.2 Future Work

There are still some open issues regarding the presented problems in Chapters 2-9.

From the summary of each chapter, several improvements have been introduced. Gen-

erally speaking, some interesting ideas for future directions derived from this thesis are

suggested as follows:

• Applications of all the presented theoretical results to real case studies including

large-scale complex systems are interesting. Among them, new challenges in the

implementations of these approaches could be met and useful solutions could be

demonstrated.

• The set-based framework deserves to be extended to nonlinear descriptor sys-

tems. The DC programming as introduced in [2] could be an option. Considering

a nonlinear function can be a difference between two convex functions, uncertain

system states can be bounded by convex analysis.

• It is interesting to improve the distributed approach in Chapter 3 by defining a
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suitable geometrical set. The expected performance of an improved approach is

not worse than the corresponding centralized one.

• The set-based fault diagnosis could be extended to deal with different types of

faults, e.g. multiplicative actuator and sensor faults. In terms of multiplicative

faults, switching control techniques may be used.

• The closed-loop input design to guarantee the admissibility of discrete-time de-

scriptor systems can be integrated into the proposed active mode detection mech-

anism. Suitable state/output feedback can be introduced for descriptor systems.

• The proposed EMPC formulation can be extended into nonlinear systems. In-

vestigating the closed-loop properties of nonlinear systems is challenging but of

interest.

• The proposed FTC can be extended into a robust case. Making use of the pro-

posed set-based framework could be a good option.
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APPENDIX A

PROOF OF LEMMA 1.3

Consider the transformation (Q,P ) with the restricted equivalent form in (1.3). Besides,

from (1.1), we have

QEPP−1x(k + 1) = QAPP−1x(k) +QBww(k).

Using (1.3) and defining x̃(k) as in (1.6), we obtain

x̃1(k + 1) = A1x̃1(k) +A2x̃2(k) +Bw1w(k), (A.1a)

0 = A3x̃1(k) +A4x̃2(k) +Bw2w(k). (A.1b)

From Lemma 1.2, A4 is invertible. Then, from (A.1b), we have

x̃2(k) = −A−1
4 A3x̃1(k)−A−1

4 Bw2w(k). (A.2)

Substituting x̃2(k) in (A.1a) by (A.2) leads to

x̃1(k + 1) =
(
A1 −A2A

−1
4 A3

)
x̃1(k) +

(
Bw1 −A2A

−1
4 Bw2

)
w(k). (A.3)

From (A.2), we have

x̃2(k + 1) = −A−1
4 A3x̃1(k + 1)−A−1

4 Bw2w(k + 1)
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and using (A.3) yields

x̃2(k + 1) = −A−1
4 A3

(
A1 −A2A

−1
4 A3

)
x̃1(k)−A−1

4 A3

(
Bw1 −A2A

−1
4 Bw2

)
w(k)

−A−1
4 Bw2w(k + 1).

Thus, we obtain the equivalent form in (1.4).



APPENDIX B

PROOF OF THE RANK

CONDITION (2.2)

Consider a pair of matrices T ∈ Rnx×nx and N ∈ Rnx×ny satisfying

TE +NC = Inx ,

TDd = 0.

The above condition can be reformulated by an augmented form as

[
T N

] [E D

C 0

]
=
[
In 0

]
,

and its transpose form can be expressed as

[
E D

C 0

]> [
T N

]>
=

[
In

0

]
,

which satisfies the matrix equation form of AX = B, where A =

[
E D

C 0

]>
, B =

[
In

0

]
and X =

[
T N

]>
.

According to [173, Corollary 1], if the matrix equation AX = B has a solution X ,

283



284 Appendix B : Proof of the Rank Condition (2.2)

the following rank condition holds:

rank
([

A B
])

= rank (A ) .

However, the above condition is a necessary condition, but not a sufficient con-

dition. Therefore, by using the property of the Kronecker product, we vectorize the

matrix equation AX = B to obtain

(Inx ⊗A )vec(X) = vec(B),

where ⊗ denotes the Kronecker product and vec(·) denotes the vectorization of a

matrix. The sufficient and necessary rank condition of linear vector equation (Inx ⊗
A )vec(X) = vec(B) is

rank
[
Inx ⊗A vec(B)

]
= rank (Inx ⊗A ) .

From the rank property with the Kronecker product, we know rank (Inx ⊗A ) =

rank (Inx) rank (A ) = nx · rank (A ). Therefore, the rank condition becomes

rank
[
Inx ⊗A vec(B)

]
= nx · rank (A ) .

Hence, with the properties rank(A) = rank(A>) and (A ⊗ B)> = A> ⊗ B>, we

obtain the rank condition to guarantee the existence of solutions of T and N as

rank


Inx ⊗

[
E Dd

C 0

]

vec

([
Inx

0

])>
 = nx · rank

[
E Dd

C 0

]
.

Besides, we also discuss the rank condition for the case of dynamical systems with

unknown inputs in Section 5.2. Consider a pair of matrices T̄ ∈ Rnx×nx and N̄ ∈
Rnx×ny satisfying

T̄ + N̄C = Inx ,

T̄Dd = 0.
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By combing above condition, we have

T̄ = Inx − N̄C,

Dd = N̄CDd.

According to [23, Section 3.2], assuming that Dd is full column rank, the existence

of solutions of T̄ and N̄ is given by

rank(Dd) = rank(CDd),

which leads to the same result in [23, Lemma 3.1].
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[117] M. Seron, J. De Doná, and S. Olaru. Fault tolerant control allowing sensor

healthy-to-faulty and faulty-to-healthy transitions. IEEE Transactions on Auto-

matic Control, 57(7):1657–1669, 2012.

[118] F. Shi and R. Patton. Fault estimation and active fault tolerant control for linear

parameter varying descriptor systems. International Journal of Robust and Nonlin-

ear Control, 25(5):689–706, 2015.

[119] B. Stevens, F. L. Lewis, and E. Johnson. Aircraft Control and Simulation: Dynamics,

Controls Design, and Autonomous Systems. Wiley-Blackwell, New York, USA, 2016.
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